

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

MASTER 019 NARRAGANSETT BAY BASIN EAST PROVIDENCE, RHODE ISLAND AD-A156 JAMES V. TURNER DAM **RI 01002** PHASE I INSPECTION REPORT NATIONAL DAM INSPECTION PROGRAM DEPARTMENT OF THE ARMY NEW ENGLAND DIVISION, CORPS OF ENGINEERS WALTHAM. MASS. 02154 **JANUARY 1981**

REPRODUCED AT COVERNMENT LARENSE REPRODUCED AT GOVERNMENT SXPENSE

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

i.

REPORT DOCUMENTA	TION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
REPORT NUMBER	2. GOVT ACCESSION NO	3. RECIPIENT'S CATALOG NUMBER
RI 01002	AD-A156 019	
TITLE (and Sublille)	,	5. TYPE OF REPORT & PERIOD COVERED
James V. Turner Dam		INSPECTION REPORT
ATIONAL PROGRAM FOR INSPECTIO	N OF NON-FEDERAL	6. PERFORMING ORG, REPORT NUMBER
.S. ARMY CORPS OF ENGINEERS EW ENGLAND DIVISION		8. CONTRACT OR GRANT NUMBER(*)
PERFORMING ORGANIZATION NAME AND AD	DDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT HUMBERS
CONTROLLING OFFICE NAME AND ADDRES		12. REPORT DATE
EPT. OF THE ARMY, CORPS OF EN EW ENGLAND DIVISION, NEDED	DINFER2	January 1981
24 TRAPELO ROAD, WALTHAM, MA.		63
MONITORING AGENCY NAME & ADDRESSIE	different from Controlling Office)	18. SECURITY CLASS. (of this report)
		UNCLASSIFIED
		154. DECLASSIFICATION/DOWNGRADING
PROVAL FOR PUBLIC RELEASE: D		
PPROVAL FOR PUBLIC RELEASE: D		
SUPPLEMENTARY NOTES OVER PROVAL FOR PUBLIC RELEASE: D SUPPLEMENTARY NOTES Over program reads: Phase I In owever, the official title of on-Federal Dams; use cover da KEY WORDS (Continue on reverse oids if nece DAMS, INSPECTION, DAM SAFETY	entered in Block 20, 11 different in hspection Report, Nat the program is: Nationate for date of repor	••• Report) ional Dam Inspection Program; onal Program for Inspection of t.
DISTRIBUTION STATEMENT (of this Report) APPROVAL FOR PUBLIC RELEASE: D DISTRIBUTION STATEMENT (of the observed SUPPLEMENTARY NOTES OVER program reads: Phase I In Nowever, the official title of Ion-Federal Dams; use cover da KEY WORDS (Continue on revorce eide if necess DAMS, INSPECTION, DAM SAFETY, Narragansett Bay Basin East Providence, RHode Isla Ten Mile River	entered in Block 20, 11 different fr hspection Report, Nat the program is: Nationate for date of repor	ional Dam Inspection Program; onal Program for Inspection of t.
SUPPLEMENTARY NOTES OUSTRIBUTION STATEMENT (of the ebotteet SUPPLEMENTARY NOTES Over program reads: Phase I It iowever, the official title of Ion-Federal Dams; use cover da KEY WORDS (Continue on reverse elde if neces DAMS, INSPECTION, DAM SAFETY, Narragansett Bay Basin East Providence, RHode Isla Ten Mile River	entered in Block 20, 11 different in hspection Report, Nat the program is: Nation ate for date of repor the for date of repor end dentify by block number and entry and identify by block number 20 ft. long. The dan ich require maintenar th a high hazard poter	ional Dam Inspection Program; onal Program for Inspection of t.))))))))))))))))))

1

1

-

DEPARTMENT OF THE ARMY

NEW ENGLAND DIVISION. CORPS OF ENGINEERS 424 TRAPELO ROAD WALTHAM. MASSACHUSETTS 02254

REPLY TO ATTENTION OF:

NEDED-E

JUN 1 5 1981

Honorable J. Joseph Garrahy Governor of the State of Rhode Island State House Providence, Rhode Island 02903

Dear Governor Garrahy:

Inclosed is a copy of the James V. Turner Dam (RI-01002) Phase I Inspection Report, which was prepared under the National Program for Inspection of Non-Federal Dams. The report is based upon a visual inspection, a review of past performance, and a preliminary hydrological analysis. A brief assessment is included at the beginning of the report.

The preliminary hydrologic analysis has indicated that the spillway capacity for the James V. Turner Dam would likely be exceeded by floods greater than 37 percent of the Probable Maximum Flood (PMF). Our screening criteria specifies that a dam of this class which does not have sufficient spillway capacity to discharge fifty percent of the PMF, should be adjudged as having a seriously inadequate spillway and the dam assessed as unsafe, non-emergency, until more detailed studies prove otherwise or corrective measures are completed.

The term "unsafe" applied to a dam because of an inadequate spillway does not indicate the same degree of emergency as that term would if applied because of structur 1 deficiency. It does indicate, however, that a severe storm may cause overtopping and possible failure of the dam, with significant damage and potential loss of life downstream.

It is recommended that within twelve months from the date of this report the owner of the dam engage the services of a professional or consulting engineer to determine by more sophisticated methods and procedures the magnitude of the spillway deficiency. Based on this determination, appropriate remedial mitigating measures should be designed and completed within 24 months of this date of notification. In the interim a detailed emergency operation plan and warning system should be promptly developed. During periods of unusually heavy preciptiation, round-the-clock surveillance should be provided. NEDED-E Honorable J. Joseph Garrahy

 \mathbf{D}

I have approved the report and support the findings and recommendations described in Section 7, with qualifications as noted above. I request that you keep me informed of the actions taken to implement these recommendations since this follow-up is an important part of the non-Federal Dam Inspection Program.

A copy of this report has been forwarded to the Department of Environmental Management, the cooperating agency for the State of Rhode Island. This report has also been furnished to the owner of the project, East Providence Water Works, Rumford, RI.

Copies of this report will be made available to the public, upon request to this office, under the Freedom of Information Act, thirty days from the date of this letter.

I wish to take this opportunity to thank you and the Department of Environmental Management for the cooperation extended in carrying out this program.

Sincerely,

C. E. EDGAR, III Colonel, Corps of Engineers Division Engineer

NARRAGANSETT BAY BASIN EAST PROVIDENCE, RHODE ISLAND JAMES V. TURNER DAM RI 01002

PHASE I INSPECTION REPORT NATIONAL DAM INSPECTION PROGRAM

DEPARTMENT OF THE ARMY NEW ENGLAND DIVISION, CORPS OF ENGINEERS WALTHAM, MASS. 02154

JANUARY 1981

BRIEF ASSESSMENT

PHASE I INSPECTION REPORT

NATIONAL PROGRAM OF INSPECTION OF DAMS

Name of Dam: JAMES V. TURNER DAM RI 01002 Inventory Number: State: RHODE ISLAND County: PROVIDENCE EAST PROVIDENCE Town: TEN MILE RIVER Stream: EAST PROVIDENCE WATER WORKS Owner: OCTOBER 8, 1980 and NOVEMBER 20, 1980 Date of Inspection: PETER HEYNEN, P.E. Inspection Team: HECTOR MORENO, P.E. TIMOTHY KAVANAUGH FRANK SEGALINE THEODORE STEVENS

The James V. Turner Dam was constructed in 1934 to impound a public water supply reservoir, but the reservoir is no longer used for this purpose. The entire project consists of an approximately 22 foot high earth embankment dam and several small dikes and berms around the reservoir. The dam is approximately 820 feet long and includes a 200 foot long concrete spillway and a concrete outlet structure. The spillway crest is 5 feet below the top of the dam, and with the reservoir level to the top of the dam, approximately 3100 acre-feet of water is impounded. Two 54 inch low-level outlets are located at the bottom of the outlet structure to the right of the spillway. An abandoned brick gatehouse located at the top of the outlet structure contains two manually operated lifts which operate the low-level outlets and a third lift which operates a sluice gate to a 66 inch raw water supply line to an abandoned filtration plant about 2600 feet downstream of the dam. Adjacent to the right end of the dam is the west dike, which is a 6 foot high, 730 foot long earth embankment. Two small dikes on the east shoreline and a berm on the west shoreline of the reservoir do not prevent water from flowing out of the reservoir to another water-They appear to have been constructed mainly to provide course. access to portions of the reservoir shoreline and to a buried storm sewer line around the reservoir.

Based upon the visual inspection at the site and past performance, the project is judged to be in fair condition. There are items which require maintenance and/or evaluation, such as the inacessability of the gatehouse, brush and trees growing on the embankments and at the abutments, erosion of areas of the dam, presence of animal burrows in the embankments, and cracks and deterioration of the concrete.

i

In accordance with the Army Corps of Engineer's Guidelines, James V. Turner Reservoir Dam is classified as a high hazard, intermediate size dam. The test flood for Turner Reservoir Dam is the Probable Maximum Flood (PMF). Peak inflow to the reservoir at PMF is 24,000 cubic feet per second (cfs); peak outflow is 22,600 cfs with the dam overtopped by 2.0 feet. The spillway capacity with the reservoir level to the top of the dam is 8300 cfs, which is equivalent to 37% of the routed test flood outflow.

It is recommended that the owner retain the services of a registered professional engineer qualified in dam design and inspection to perform further studies as presented in Section 7.2. These include a more detailed analysis of the project discharge capacity, repair of the concrete training walls, removal of trees from the embankments, restoration of the outlet facilities and an evaluation of the condition of the spillway and downstream channel. Recommendations made by the engineer and should be implemented by the owner.

The above recommendations and further remedial measures presented in Section 7.3 should be instituted within one year of the owner's receipt of this report.

Peter M. Heynen, P.E. Project Manager - Geotechnical

Ē

D

Cahn Engineers, Inc.

C. Michael Horton P.E.

Chief Engineer Cahn Engineers, Inc.

This Phase I Inspection Report on James V. Turner Reservoir Dam has been reviewed by the undersigned Review Board members. In our opinion, the reported findings, conclusions, and recommendations are consistent with the <u>Recommended Guidelines for Safety Inspection of</u> <u>Dams</u>, and with good engineering judgement and practice, and is hereby submitted for approval.

Camey M. Terzian

CARNEY N. TERZIAN, MEMBER Design Branch Engineering Division

JOSEPH W. FINEGAN, JR., MEMBER Water Jontrol Branch Engineering Division

Uma Drata

ARAMAST MAHTESIAN, CHAIRMAN Geotechnical Engineering Branch Engineering Division

APPROVAL RECOMMENDED:

fre B.

JOE B. FRYAR Chief, Engineering Division

The information contained in this report is based on the limited investigation described above and is not warranted to indicate the actual condition of the dam. The integrity of the dam can only be determined by a means of a monitoring program and/or a detailed physical investigation. The accuracy of available data is assumed where not in obvious conflict with facts observable during the visual inspection.

v

ŗ.

PREFACE

This report is prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams, for Phase I Investigations. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I Investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspection. Detailed investigation, and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I Investigation; however, the investigation is intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. In cases where the reservoir was lowered or drained prior to inspection, such action, while improving the stability and safety of the dam, removes the normal load on the structure and may obscure certain conditions which might otherwise be detectable if inspected under the normal operating environment of the structure.

It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam would necessarily represent the condition of the dam at some point in the future. Only through continued care and inspection can there be any chance that unsafe conditions will be detected.

Phase I inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established Guidelines, the Spillway Test Flood is based on the estimated "Probable Maximum Flood" for the region (greatest reasonably possible storm runoff), or fractions there of. Because of the magnitude and rarity of such a storm event, a finding that a spillway will not pass the test flood should not be interpreted as neccessarily posing a highly inadequate condition. The test flood provides a measure of relative spillway capacity and serves as an aid in determining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition and the downstream damage potential.

The Phase I Investigation does <u>not</u> include an assessment of the need for fences, gates, no-trespassing signs, repairs to existing fences and railings and other items which may be needed to minimize trespass and provide greater security for the facility and safety to the public. An evaluation of the project for compliance with OSHA rules and regulations is also excluded.

iv

SECTION 2: ENGINEERING DATA

2.1 DESIGN DATA

Available data consists of original drawings, entitled East Providence Reservoir, Contract 1, by Waterman Engineering Company dated March 1934, data sheet dated June 30, 1949, dam inspection report dated Sept. 20, 1978, a summary of run-off data prepared by the East Providence Water Company beginning in May 1922 until June 1927 and a dam inventory report.

The drawings and correspondence indicate the design features stated previously in this report. There were no engineering values, assumptions, test results or calculations available for the original dam design.

2.2 CONSTRUCTION DATA

There is no data available for the original construction of the dam other than the run-off data stated in 2.1.

2.3 OPERATIONS DATA

The reservoir was abandoned as a public water supply in 1970 because of poor water quality. Since that time, there has been no operational procedures followed at the dam.

2.4 EVALUATION OF DATA

a. <u>Availability</u> - Existing data was provided by the State of Rhode Island Department of Environmental Management. The owner made the project available for visual inspection.

b. <u>Adequacy</u> - There was no detailed engineering data available; therefore, the final assessment of this project must be based on visual inspection, performance history, hydraulic computations of spillway capacity, and hydrologic judgements.

c. <u>Validity</u> - A comparison of record data and visual observations reveals that the East Dikes were not built according to plan. The designed top elevations of East Dike No. 1 and East Dike No. 2 were 51.0 and 50.0 respectively, but field measurements indicate that the top elevation of each is approximately 48.0.

l. Invert:	Low-level outlets: Supply main (at inlet):	el. 29.5 el. 32.25
2. Size:	Low-level outlets Supply main	54 inch (2 low-level outlets) 66 inch
3 Descript	ion: Low-level outlets	
J. Descript	Supply main	Unknown Unknown
4. Control	mechanism:	manually operated sluice gates
5. Other:		N/A

ream) stream) ream) wnstream) ream) stream) ream and all (Earth ling y)
stream) ream) wnstream) ream) stream) ream and all (Earth ling
stream) ream) wnstream) ream) stream) ream and all (Earth ling
stream) ream) wnstream) ream) stream) ream and all (Earth ling
wnstream) ream) stream) ream and all (Earth ling
stream) ream and all (Earth ling
ream and all (Earth ling
ling
ling
te stilling pavenent ved channel
]

4. Top of dam pool:	12,000 <u>+</u> ft.
5. Test flood pool:	12,300 <u>+</u> ft.
e. <u>Reservoir Storage</u>	
1. Normal pool:	1300 acre-ft.
2. Flood control pool:	N/A
3. Spillway crest pool:	1300 acre-ft.
4. Top of dam pool:	3100 acre-ft.
5. Test flood pool:	4100 acre-ft.
f. <u>Reservoir Surface</u>	
1. Normal pool:	275 acres
2. Flood control pool:	N/A
3. Spillway crest pool:	275 acres
4. Top of dam pool:	390 acres
5. Test flood pool:	460 acres
g. <u>Dam and Dikes</u>	
l. Type:	
Dam Left of spillway Right of spillway	Earth embankment Concrete gravity and earth fill
Dikes West dike East dike #1 East dike #2	Earth embankment Earth embankment Earth embankment
2. Length:	
Dam West dike East dike #1 East dike #2	820+ ft. 730+ ft. 550+ ft. 350 <u>+</u> ft.
3. Height:	
Dam West dike East dike #1 East dike #2	22.0 ft. 6 <u>+</u> ft. 2 <u>+</u> ft. 2 <u>+</u> ft.

.

• • •

4. Ungated spillway capacity @ test flood el. 53.0:	13,700 cfs
5. Gated spillway capacity @ normal pool:	N/A
<pre>6. Gated spillway capacity @ test flood:</pre>	N/A
7. Total spillway capacity @ test flood el. 53.0:	13,700 cfs
8. Total project discharge@ test flood el. 53.0:	22,600 cfs

D

F

c. <u>Elevations</u> - The spillway crest elevation, on which all the elevations in this report are referenced, is assumed to be 46.0, as shown on Design Drawings sheets 1 through 4 by Waterman Engineering Co. (March 1934). This elevation was confirmed by a survey on Dec. 10, 1980 under the direction of Mr. Owen Devine, Superintendent of the East Providence Water Company and is approximately equal to elevation 46.0 on National Geodetic Vertical Datum (NGVD).

1.	Streambed at toe of dam:	29.0 <u>+</u>
2.	Bottom of cutoff:	12.0
3.	Maximum tailwater:	32.0 <u>+</u>
4.	Normal pool:	46.0
5.	Full flood control pool:	N/A
6.	Spillway crest (ungated):	46.0
7.	Design surcharge (original design):	Not known
	(
8.	Top of Dam:	51.0
9.	Top of Dam:	51.0
9. 10.	Top of Dam: Top of west dike:	51.0 51.0
9. 10. d.	Top of Dam: Top of west dike: Test flood surcharge:	51.0 51.0
9. 10. d. 1.	Top of Dam: Top of west dike: Test flood surcharge: <u>Reservoir Length</u>	51.0 51.0 53.0

1-5

f. <u>Operator</u> - Owen Devine 67 Talmer Avenue Riverside, Rhode Island 02915 Tel: (401)433-3123

g. <u>Purpose of Project</u> - Originally for public water supply, but its use was discontinued because of poor water quality.

h. Design and Construction History - The following information is believed to be accurate, based on the available data, correspondence and an interview with the owner of the dam. The dam was designed by Waterman Engineering Company and constructed in 1934 to serve as a public water supply. Maximum flow over the spillway was reported in 1949 to be 15 inches above the spillway crest. This flow was assumed to have occured in 1936. Because of the vandalism to the gatehouse the handwheels to the gates were removed, the door was removed and the doorway opening sealed with concrete block and mortar and a window which is easily accessible was covered with a steel plate. There is no record of repairs or other alterations other than removing the handwheels and sealing the doorway and window to the gatehouse.

i. <u>Normal Operational Proceedures</u> - There are no formal operational procedures followed at the dam. The sluice gates for the two 54 inch low-level outlets and the 66 inch supply main are closed, inaccessible, and for all practical purposes, abandoned.

1.3 PERTINENT DATA

E

a. <u>Drainage Area</u> - The drainage area is 48 square miles of flat and coastal terrain with many areas of swampland to the east and northeast. The land is moderately to heavily developed.

b. <u>Discharge at Damsite</u> - Discharge is over the concrete spillway only. The two low-level outlets cannot be considered discharge structures because the present condition of the gatehouse prevents access for operation. These outlets are therefore considered abandoned.

1. Outlet Works
2 - 54 inch low level outlets
invert el. 29.5:

Considered abandoned at time of inspection

66 inch supply main inlet invert el. 32.25:

Abandoned

 Maximum known flood at damsite:

15 inches (el. 44.25) above spillway crest Assumed date 1936.

3. Ungated spillway capacity @ top of Dam el. 51.0 8300 cfs The spillway, having a crest elevation of 46.0, is a 200 foot long concrete ogee type spillway with a $30\pm$ foot long, 2.0 foot deep concrete stilling pool approximately 14.5 feet (el. 31.5) below the spillway crest. The spillway crest, at el. 46.0, is 5 feet below the top of dam (el. 51.0). At each end of the spillway are concrete training walls which extend approximately 100 feet downstream from the spillway.

The masonry outlet structure, which is also the foundation of the brick gatehouse, is adjacent to the right end of the spillway. Within the gatehouse, which is presently sealed, there are three gate operating stands. If operable, these stands control flow through the two 54 inch low-level outlets and an abandoned 66 inch raw water supply main. The two low-level outlets discharge from the base of the gatehouse foundation into the spillway channel. The supply main is buried along the right side of the downstream channel and transmitted flow by gravity from the reservoir to the filtration plant approximately 2600 feet downstream of the dam. Reportedly, the filtration plant was abandoned in 1970 and the supply main shut off at the gatehouse.

D

To the right of the dam, the west dike extends in a north westerly direction. The west dike has a height of 6 feet and a top width of about 15 feet. The upstream slope is riprapped and inclined at 3 horizontal to 1 vertical and the downstream slope is inclined at 2 horizontal to 1 vertical.

East Dike No. 1 is a 2 foot high irregularly shaped earth embankment built on a grade sloping upward away from the reservoir toward Ledge Road. A 16 inch storm sewer line is buried in, and adjacent to, the dike which serves as an access road to the sewer manholes. East Dike No. 2 is a 2 foot high earth embankment. The top of the dike is approximately 15 feet wide and also serves as an access road for nearby manholes to the storm sewer line. Neither of these dikes or the West Berm are necessary for the impoundment of water in the reservoir.

c. <u>Size Classification</u> - INTERMEDIATE - The project impounds 3100 acre-feet of water with the reservoir level to the top of the dam, which at elevation 51.0, is 22 feet above the streambed of Ten Mile River. According to recommended guidelines, a dam with a storage capacity between 1,000 and 50,000 acre-feet is classified as intermediate in size.

d. <u>Hazard Classification</u> - HIGH - If the dam were breached, there is potential for the loss of more than a few lives and extensive property damage to industrial buildings and numerous houses downstream of the dam.

e. <u>Ownership</u> – East Providence Water Works Hunts Mill Road Rumford, Rhode Island 02916 Owen Devine (Superintendent) Tel: (401) 434-3311

1.2 DESCRIPTION OF PROJECT

a. Location - The dam is located on Ten Mile River in a densely populated area of the City of East Providence, County of Providence, State of Rhode Island. The dam is shown on the East Providence, Mass.-R.I. USGS Quadrangle Map having coordinates latitude N41°50.0' and longitude W71°20.5'.

b. Description of Dam and Appurtenances - As shown on Sheets B-1 hrough B-4, the dam is an earth embankment with a total length of approximately 820 feet including a 25 foot long masonry outlet structure, and a 200 foot long ogee type spillway. Adjacent to the right end of the dam is the 730+ foot long west dike. Extending in a northerly direction from the end of the west dike to Newman Avenue (a distance of approximately 2600 feet) the shoreline was straightened by placing fill and grading it to the existing topography. This fill area, which was constructed at the same time as the dam, is referred to as the west berm. Two dikes are located on the east side of the impoundment. East Dike No. 1 is a low dike which closes a small depression at Ledge Road. East Dike No. 2 is a low dike located approximately midway between the dam and Newman Avenue. The portion of the reservoir north of Newman Avenue is shown on some maps as Central Pond (See Sheet D-2). Newman Avenue is on a man-made embankment with no apparent regulation of flow, i.e. water level is the same on both sides, and its ability to withstand head differentials is unknown. Therefore, the two water bodies are considered to be a single impoundment.

The earth embankment dam, which is adjacent to the left end of the spillway and approximately 22 feet high, contains a steel sheet pile cutoff and a concrete corewall (See Sheets B-1 through B-4). The top of the dam is approximately 15 feet wide and grass covered. The upstream slope is inclined at 3 horizontal to 1 vertical with riprap slope protection to about 2 feet from the top of the dam. The grass covered downstream slope is inclined at 4 horizontal to 1 vertical. The portion of the dam to the right of the outlet structure consists of a 20 inch thick concrete wall upstream and a grass covered earth embankment inclined at 3 horizontal to 1 vertical downstream. The top width is approximately 15 feet.

A 6 inch agricultural tile foundation drain is located along the footing on the downstream side of the corewall and outlets through the left spillway training wall to the spillway channel. This drain is located approximately at original ground elevation and is accessible from manholes near the toe of the downsteam slope. There are 16 inch diameter storm drains along both the east and west shorelines of the reservoir. These drains outlet to the spillway channel from the left and right spillway training walls, respectively. Manholes to the drain pipes are located at the top of the embankment section to the left of the spillway and at the toe of the west dike, to the right of the spillway (See Sheet B-2).

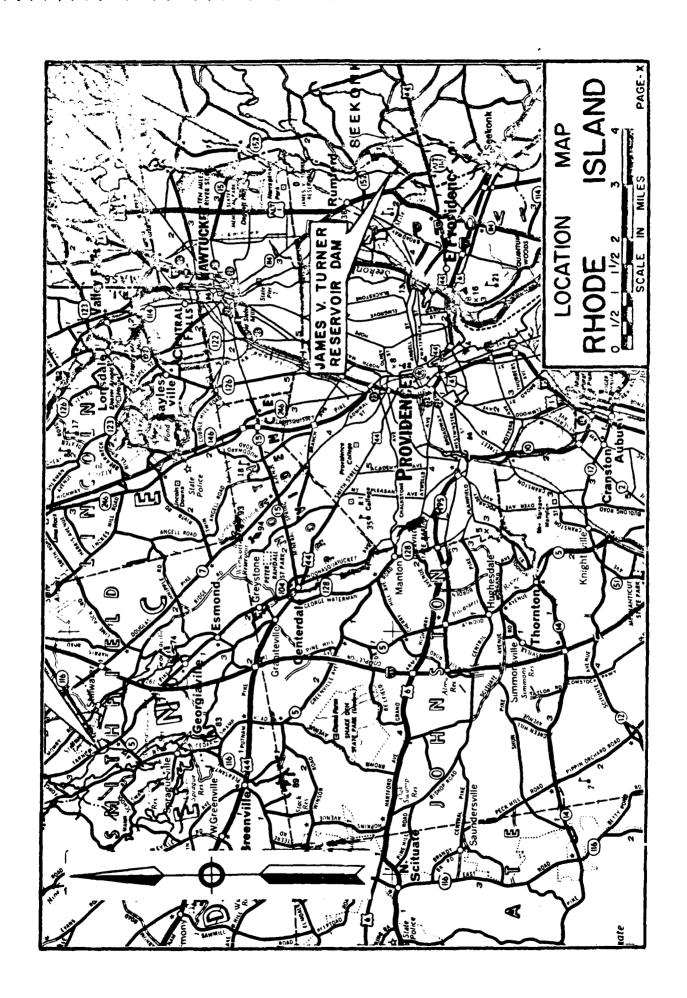
PHASE I INSPECTION REPORT JAMES V. TURNER RESERVOIR DAM SECTION I - PROJECT INFORMATION

1.1 GENERAL

Ē

Б

a. <u>Authority</u> - Public Law 92-367, August 8, 1972, authorized the Secretary of the Army, through the Corps of Engineers, to initiate a National Program of Dam Inspection throughout the United States. The New England Division of the Corps of Engineers has been assigned the responsibility of supervising the inspection of dams within the New England Region. Cahn Engineers, Inc. has been retained by the New England Division to inspect and report on selected dams in the State of Rhode Island. Authorization and notice to proceed were issued to Cahn Engineers, Inc. under a letter of April 14, 1980 from William E. Hodgson, Jr., Colonel, Corps of Engineers. Contract No. DACW 33-80-C-0052 has been assigned by the Corps of Engineers for this work.


b. <u>Purpose of Inspection Program</u> - The purposes of the program are to:

- 1. Perform technical inspection and evaluation of non-federal dams to identify conditions requiring correction in a timely manner by non-federal interests.
- 2. Encourage and prepare the States to quickly initiate effective dam inspection programs for non-federal dam.
- 3. To update, verify and complete the National Inventory of Dams.

c. <u>Scope of Inspection Program</u> - The scope of this Phase I inspection report includes:

- Gathering, reviewing and presenting all available data as can be obtained from the owners, previous owners, the state and other associated parties.
- 2. A field inspection of the facility detailing the visual condition of the dam, embankments and appurtenant structures.
- 3. Computations concerning the hydraulics and hydrology of the facility and its relationship to the calculated flood through the existing spillway.
- 4. An assessment of the condition of the facility and corrective measures required.

It should be noted that this report does not pass judgement on the safety or stability of the dam other than on a visual basis. The inspection is to identify those features of the dam which need corrective action and/or further study.

-

Б

The state of the second state of the second states OVERVIEW FROM LEFT SIDE OF CHANNEL (11-20-80)OVERVIEW FROM RIGHT SIDE OF CHANNEL (10 - 8 - 80)James V. Turner Res. Dam US ARMY ENGINEER DIV. NEW ENGLAND NATIONAL PROGRAM OF CORPS OF ENGINEERS WALTHAM , MASS Ten Mile River East Providence, RI INSPECTION OF CAHN ENGINEERS INC. CE# 27 785 KG WALLINGFORD, CONN NON-FED. DAMS DATE Jan. 1981 PAGE ENGINEER ix

[

SECTION 7		ASSESSMENT, RECOMMENDATIONS & REMEDIAL MEASURES	
7.1	Dan	Assessment	7-1
	a. b. c.	Condition Adequacy of Information Urgency	
7.2	Rec	commendations	7-1
7.3	Ren	medial Measures	7-2
	a.	Operation and Maintenance Procedures	
7.4	<u>Alt</u>	ernatives	7-2
		APPENDICES	
			Page
APPENDIX	A:	INSPECTION CHECKLIST	A-1 to A-5
APPENDIX	B:	ENGINEERING DATA AND CORRESPONDENCE	
		Dam Plans, Profile and Sections List of Existing Plans Summary of Data and Correspondence Data and Correspondence	Sheet B-1 to B-4 B-1 B-2 B-3 to B-18
APPENDIX	С:	DETAIL PHOTOGRAPHS	
		Photograph Location Plan Photographs	Sheet C-l . C-l to C-4
APPENDIX	D:	HYDRAULIC/HYDROLOGIC COMPUTATIONS	
		Drainage Area Map Dam Failure Impact Area Map Computations Preliminary Guidance for Estimating Maximum Probable Discharges	Sheet D-l Sheet D-2 D-l to D-ll i to viii
APPENDIX	E:	INFORMATION AS CONTAINED IN THE NATIONAL INVENTORY OF DAMS	E-1

3

i.

٠.

2.4 1	Evaluation of Data	2-1
	a. Availability	
1	b. Acequacy	
(c. Validity	
SECTION 3:	VISUAL INSPECTION	
3.1 <u>1</u>	Findings	3-1
-	a. General	
•	b. Dam and Dikes	
	c. Appurtenant Structures d. Reservoir Area	
	e. Downstream Channel	
· -		
3.2	Evaluation	3-2
SECTION 4:	OPERATIONAL AND MAINTENANCE PROCEDURES	
4.1 <u>(</u>	Operational Procedures	4-1
	a. General	
	b. Description of Warning System in Effect	
4.2 <u>N</u>	Maintenance Procedures	4-1
	a. General	
	b. Operating Facilities	
4.3 <u>1</u>	Evaluation	4-1
SECTION 5:	EVALUATION OF HYDRAULIC/HYDROLOGIC FEATURES	
5.1 0	General	5-1
5.2 <u>I</u>	Design Data	5-1
5.3 <u>H</u>	Experience Data	5-1
5.4 1	rest Flood Analysis	5-1
5.5	Dam Failure Analysis	5-2
SECTION 6:	EVALUATION OF STRUCTURAL STABILITY	
6.1 Y	/isual Observations	6-1
-	Design and Construction Data	
-		6-1
6.3 <u>I</u>	Post Construction Changes	6-1
6.4 <u>s</u>	Seismic Stability	6-1

וֹיַיּוֹ ן∎

{ |

ار با بر الم

•_

۰. .

E,

T

TABLE OF CONTENTS

Ď

۰.

. ~~~

۰.

D

المحادية والارتفار المحاجر وسيعتهم

Page Letter of Transmittal i, ii Brief Assessment iii Review Board Signature Page iv-v Preface vi-viii Table of Contents ix **Overview Photo** Location Map x PROJECT INFORMATION SECTION 1: 1.1 General 1-1 Authority a. Purpose of Inspection Program b. Scope of Inspection Program c. 1.2 Description of Project 1-2 a. Location Description of Dam and Appurtenances **b**. Size Classification c. Hazard Classification d. Ownership e. £. Operator Purpose of Project g. Design and Construction History h. i. Normal Operational Procedures 1.3 Pertinent Data 1-4 a. Drainage Area Discharge at Damsite b. C. Elevations đ. Reservoir Length e. Reservoir Storage Reservoir Surface £. Dam and Dikes g. h. Diversion and Regulating Tunnel Spillway i. Regulating Outlets j. SECTION 2: ENGINEERING DATA 2.1 <u>Design Data</u> 2-1 2.2 Construction Data 2-1 2.3 Operations Data.... 2-1

SECTION 3: VISUAL INSPECTION

3.1 FINDINGS

a. <u>General</u> - The general condition of the project is fair. The inspection revealed several areas requiring maintenance and monitoring. At the time of the inspections the pond level was at elevation 46.2, i.e. 4.8 feet below the top of the dam with water flowing at a depth of 0.2 feet over the spillway crest.

b. Dam and Dikes

Dam

Top of Earth Dam - The grass cover on the dam is approximately 2 feet tall except for where trespassing along the top has worn a path. Some small trees and brush are also growing along the top (Photos 1 and 4).

<u>Upstream Slope</u> - The upstream slope is heavily overgrown with small to moderate size trees and brush (Photo 1). The growth of this vegetation has displaced riprap thus allowing wave action and surface runoff to begin eroding the slope.

<u>Downstream Slope</u> - The downstream slope is vegetated with tall grass, small trees and brush (Photo 4). There are many animal burrows approximately 8 to 12 inches in diameter in the embankment. The soil at the toe of the dam from the left of the spillway to the left abutment is wet. A back channel, which is the original streambed, extends from about the left abutment and connects with the spillway channel approximately 350 feet downstream of the spillway. This channel is approximately 30 feet wide at its widest point and is up to 3 feet deep (Photo 7). There is no apparent movement of the water in the channel and its depth is regulated by a smal! dam approximately 2500 feet downstream. No seepage along the toe of the slope was observed; however, observation was obscured in certain areas where the back channel extends to the toe of the dam. It appeared that the foundation drain was functioning properly. Discharge from the drain was clear and flowing at a rate of approximately 2 to 3 gallons per minute (gpm).

<u>Spillway</u> - Water was flowing over the spillway at the time of the inspection; therefore, the extent of the inspection was limited. The spillway crest shows no signs of irregularities (Photo 4). A concrete stilling pool extends from the toe of the spillway for a distance of about 30 feet. With water flowing over the spillway, the condition of the stilling pool could not be observed. Cracks up to 1 inch wide are present in the concrete training walls at construction joints and where the walls change slope or direction. The left wall has some spalling and deterioration on its face and above the drain outlet and the storm sewer outlet. The downstream end of the right wall is deteriorated and some minor spalling is present on the wall face (Photos 4,5,6).

West Dike

2

1

3

10

Top of West Dike - The top of the dike is irregular and overgrown with many small to moderate size trees and brush. Excessive trespassing along the top has worn a path through the protective grass mat (Photo 3).

<u>Upstream Slope</u> - The upstream slope is irregular and heavily overgrown with brush and small to moderate size trees (Photos 2, 3). Wave action has displaced riprap and eroded into the slope. Tree growth has also contributed to riprap displacement.

Downstream Slope - The downstream slope is also heavily overgrown with brush and small to moderate size trees. Some minor erosion is present from surface runoff. No seepage was observed at the time of the inspection (Photo 3).

East Dikes - The East Dikes are not necessary for the impoundment of water in the reservoir. They appear to have been constructed mainly for facilitating the alignment of storm sewer lines around the reservoir. Both dikes have irregular top elevations and are vegetated with trees and brush. However, the only possible damage resulting from overtopping and/or failure of the dikes would be to the storm sewers.

c. <u>Appurtenant Structure</u> - The brick gatehouse is in poor condition. All the windows are broken, graffiti covers the walls, wood trim is broken, roof shingles are torn off, etc. (Photo 8). The door has been removed and the opening sealed with concrete block and mortar. One window on the downstream side has been covered with a steel plate to prevent trespassing. The handwheels have been removed and stored by the East Providence Water Department to prevent vandals from opening the sluice gates. The lowlevel outlets could not be inspected because of the condition of the gatehouse. For all practical purposes the gatehouse has been abandoned.

d. <u>Reservoir Area</u> - The area surrounding the reservoir is generally wooded, flat coastal terrain. There are residential developments at several locations near the edge of the reservoir. The reservoir area includes the water body to the north of Newman Avenue, which is shown on the USGS topographic map (Sheet D-2) as Central Pond.

e. <u>Downstream Channel</u> - The downstream channel is a realigned channel of the Ten Mile River. From the stilling pool for about 50 feet the channel is lined with stone pavement. Beyond this pavement the channel bottom is soil and cobbles with riprap protection on the banks. Approximately 1200 feet downstream of the dam, the manmade channel joins the original river channel.

3.2 EVALUATION

Based upon the visual inspection, the project is assessed as being in fair condition. The following features which could influence the future condition and/or stability of the project were identified.

- 1. Erosion has occurred due to trespassing along the top of the dam and other embankments.
- 2. Trees, brush and burrowing animals could cause piping and/or seepage by creating flow paths, either along root systems or through holes, in the embankments. Trees, if uprooted, may produce depressions which may be critical to the stability of the dam.
- 3. Trees and brush growing through the riprap on the upstream slope will displace the riprap, thus leaving the underlying earth vulnerable to erosion.
- 4. The lack of riprap at the waterline on the upstream embankment will allow wave action to continue eroding into the embankment.
- 5. Freeze-thaw cycles can act within the cracks in the concrete structures, thus leading to further deterioration.
- 6. The condition and operability of the low level outlets is unknown because of the inaccessible condition of the gatehouse.
- 7. If there were an emergency where the low-level outlets had to be opened, with the gatehouse in its present condition, the time it would take to obtain the handwheels, gain access, and open the valves, if operable, may prove critical to the safe operation of the dam.

SECTION 4: OPERATIONAL AND MAINTENANCE PROCEDURES

4.1 OPERATIONAL PROCEDURES

a. <u>General</u> - No formal program of operation has been in effect since the reservoir was abandoned as a public water supply in 1970.

b. <u>Description of any Warning System in Effect</u> - No formal warning system is in effect.

4.2 MAINTENANCE PROCEDURES

a. <u>General</u> - There is no formal program of maintenance or inspection at the dam.

b. <u>Operating Facilities</u> - No formal prog m for maintenance of operating facilities is in effect.

4.3 EVALUATION

.

2

Operation and maintenance procedures are not performed. A formal program of operation and maintenance procedures should be implemented, including documentation to provide complete records for future reference. Also, an emergency action plan as well as a formal downstream warning system should be developed and implemented within the time frame indicated in Section 7.1c. Remedial operation and maintenance recommendations are presented in Section 7.3.

SECTION 5: EVALUATION OF HYDRAULIC/HYDROLOGIC FEATURES

5.1 GENERAL

The James V. Turner Reservoir Dam watershed is 48.0 square miles of flat and coastal wooded terrain typically containing large swamps and impoundments (Falls Pond, Manchester Pond Reservoir, Greenwood Lake and Digville Pond) which contribute to the sluggish runoff characteristics of the watershed.

The reservoir is formed by an earthfill dam with a concrete spillway, and three earthfill dikes. The available storage reduces the outflow from a Probable Maximum Flood (PMF) of 24,000 cubic feet per second (cfs) to 22,600 cfs and the ½ PMF outflow from 12,000 cfs to 11,000 cfs.

The top of the dam and west dike are approximately at elevation 51.0. Overtopping of the East Dikes will occur at a lower elevation, but this will only cause small depressions behind the dikes to be flooded. Therefore, the elevation of the top of the East Dikes in not significant in hydrualic computations. The reservoir is crossed by an embankment at Newman Avenue; however, this structure was not assumed to be capable of impounding water.

5.2 DESIGN DATA

No computations could be found for the original design of the dam.

5.3 EXPERIENCE DATA

No documented information is available. Presently no records are kept and the owner's previous flow records were destroyed in a fire. A flow of 15 inches in depth over the spillway is reported to have occured in 1936. Mr. Owen Devine, superintendant of the East Providence Water Works, reported that the most severe flood he could recall occured in March or April 1968, when sandbags had to be placed to prevent flooding of the filtration plant.

5.4TEST FLOOD ANALYSIS

Based upon the U.S. Army Corps of Engineers "Preliminary Guidance for Estimating Maximum Probable Discharges" dated March, 1978; the watershed classification (Flat and Coastal), and the watershed area of 48.0 square miles, a PMF of 24,000 cfs or 500 cfs per square mile is estimated at the damsite. In accordance with the (intermediate) and hazard (high) classification, the test size The reservoir level at the start of the test flood is the PMF. flood is considered to be at spillway crest elevation 46.0. The peak outflow for the test flood is estimated at 22,600 cfs and this flow will overtop the dam by 2.0 feet. Based on hydraulic computations, the spillway capacity to the first point of overtopping of the dam is 8,300 cfs which is equivalent to 37% of the routed test flood outflow (Appendix D-6).

5.5 DAM FAILURE ANALYSIS

Many houses and industrial/commercial structures with first floors less than 12 feet above the stream constitute the potential initial impact area in case of failure of Turner Dam. These are located in an approximately 12,000 foot long reach of the Ten Mile River between Turner Reservoir and the river's confluence with the Seekonk River. In particular, at least 10 houses with first floors between 6+ feet and 10+ feet above the stream are located in an area immediately downstream from Pawtucket Avenue (Route 1A-114).

The dam failure analysis is based on the April, 1978 Army Corps of Engineers "Rule of Thumb Guidance for Estimating Downstream Dam Failure Hydrographs". With the reservoir level at the first point of overtopping of the dam, peak outflow before failure of the dam would be about 8,300 cfs and the peak failure outflow from the dam breaching would total about 48,300 cfs.

The prefailure depth of flow at the initial impact area would be 5.5 feet, or approximately 0.5 foot below the first floor of the lowest house in the impact area. A breach of the dam would result in a rapid 2.6 to 3.6 foot increase in water levels to depths of approximately 8.1 to 9.1 feet. This sudden outflow will cause rapid innundation of several houses by 2 or more feet, possibly causing loss of more than a few lives and substantial economic loss. Based on the dam failure analysis, James V. Turner Reservoir Dam is classified as a high hazard dam (Appendix D-11).

SECTION 6: EVALUATION OF STRUCTURAL STABILITY

6.1 VISUAL OBSERVATIONS

The visual inspection did not reveal any indications of immediate stability problems. There are areas of deterioration, and erosion, as described in Section 3, however they are not considered stability concerns at the present time.

6.2 DESIGN AND CONSTRUCTION DATA

The drawings and data available and listed in Appendix B were not sufficient to perform an in depth stability analysis of the project. No engineering assumptions, data or calculations could be found for the original design of the dam.

6.3 POST CONSTRUCTION CHANGES

There are no known post-construction changes to the project other than the sealing of the gatehouse doorway and window.

6.4 SEISMIC STABILITY

The project is in Seismic Zone 2 and according to the Recommended Guidelines, need not be evaluated for seismic stability.

SECTION 7: ASSESSMENT, RECOMMENDATIONS AND REMEDIAL MEASURES

7.1 DAM ASSESSMENT

a. <u>Condition</u> - Based upon the visual inspection of the site and past performance, the project appears to be in fair condition. However, there are areas which require maintenance, repair and monitoring.

Based upon the Army Corps of Engineers' "Preliminary Guidance for Estimating Maximum Probable Discharges" dated March, 1978, the watershed classification and hydraulic/hydrologic computations, peak inflow to the reservoir at test flood is 24,000 cubic feet per second (cfs); peak outflow is 22,600 cfs with the dam overtopped 2.0 feet. Based upon our hydrualic computations, the spillway capacity to the top of the dam is 8300 cfs, which is equivalent to approximately 37% of the routed test flood outflow.

b. <u>Adequacy of Information</u> - The information available is such that an assessment of the condition and stability of the project must be based solely on visual inspection, past performance and sound engineering judgement.

c. Urgency - It is recommended that the measures presented in Section 7.2 and 7.3 be implemented within one year of the owner's receipt of this report.

7.2 RECOMMENDATIONS

It is recommended that further studies be made by a registered professional engineer qualified in dam design and inspection pertaining to the following items. Recommendations made by the engineer should be implemented by the owner.

- A detailed hydraulic/hydrologic analysis to determine the adequacy of the project discharge and existing outlet facilities.
- 2. With the gatehouse and low-level outlets restored to operating condition, the reservoir level should be lowered to where no water is flowing over the spillway so that the condition of the spillway stilling pool, paved channel, and unpaved channel can be evaluated.
- 3. Removal of all trees and tree stumps from the embankments and abutments and from within 25 feet of the toe of the dam and west dike. This should include removal of root systems and proper backfilling.
- 4. The slopes of the dam and west dike should be regraded and riprap slope protection replaced to prevent further erosion by wave action and surface runoff.

- 5. The possibility of seepage contributing flow to the backchannel at the toe of the embankment should be investigated.
- 6. Cracks in the concrete structures should be filled and spalling repaired to prevent further deterioration of the concrete.

7.3 REMEDIAL MEASURES

 \mathbf{D}

a. <u>Operation and Maintenance Procedures</u> - The following measures should be undertaken by the owner within the length of time indicated in Section 7.1.c, and continued on a regular basis.

- 1. Round-the-clock surveillance should be provided during periods of heavy precipitation or high project discharge. A formal downstream warning system should be developed to be used in case of emergencies at the dam.
- 2. A formal program of operation and maintenance procedures should be instituted and fully documented to provide accurate records for future reference. The maintenance procedures should include a monthly inspection by the owner or owner's representative.
- 3. A comprehensive program of inspection by a registered professional engineer qualified in dam inspection should be instituted on a biennial basis.
- 4. Brush should be removed from the embankments and from within 25 feet of the toe as part of the regular maintenance of the project.
- 5. Grass should be re-established at the eroded areas particularly where trespassing has caused erosion along the tops of the embankments.
- 6. Grass on the slopes and at the top of the dam and west dike should be mowed as part of regular maintenance procedures.
- 7. Animal burrows should be properly backfilled.
- 8. The gatehouse should be restored to a condition where it would be accessible by authorized personnel only and the gates should be operational upon entry. Gate lifts should be maintained and exercised on a regular basis.

7.4 ALTERNATIVES

This study has identified no practical alternatives to the above recommendations.

APPENDIX A

`**·**

E

.

INSPECTION CHECKLIST

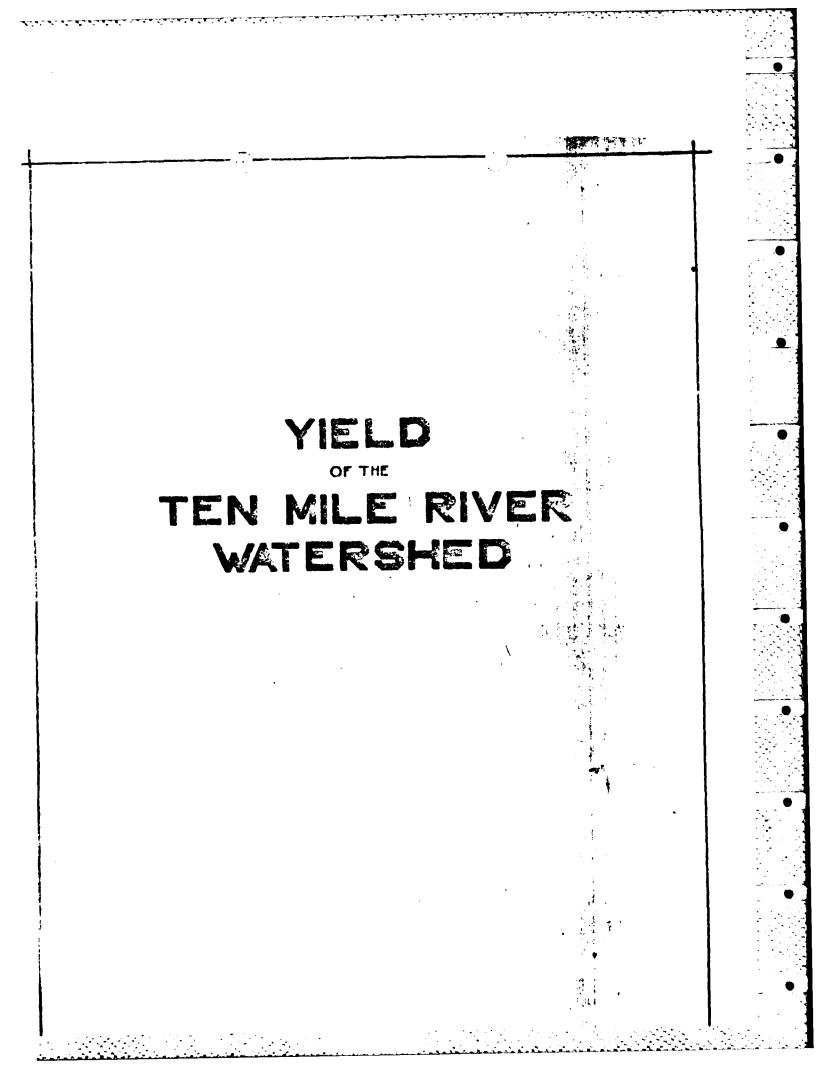
Retain Heyres: PH Gentrehnice Ted Stevens TS Gentrehnice Tim Kevenaugh TK Gentrehnice Hector Macane HM Hydraulic Hector Macane HM Hydraulic Fronk Segatine ES Servexy PROJECT FEATURE INSPECTED BY REMARKS Secth Embrankments PH, TS, TK, HM Meest Dike Vest Dike PH, TS, TK, HM Jour - level Outlets Image: Ievel Outlets PH, TS, TK, HM Image: Ievel Outlets	VISU	AL INSPECTION CHEC PARTY ORGANIZATIC	•
WEATHER: <u>Sindy foir Sources</u> ground W.S. ELEV. U.S. DN.S <u>RTY:</u> <u>INITIALS:</u> <u>DISCIPLINE:</u> <u>Retric Hyperic</u> <u>PH</u> <u>Sectrobascal</u> <u>Ted Stevens</u> <u>TS</u> <u>Grotechaical</u> <u>Tim Kevenaugh</u> <u>TK</u> <u>Grotechaical</u> <u>Histor Mocana</u> <u>HK</u> <u>Hydraulic</u> <u>Histor Mocana</u> <u>HK</u> <u>Hydraulic</u> <u>Fronk Segatine</u> <u>ES</u> <u>Secury</u> <u>PROJECT FEATURE</u> <u>INSPECTED BY</u> <u>REMARKS</u> <u>South Embankments</u> <u>PH, TS, TK, HM</u> <u>Southers</u> <u>PH, TS, TK, MM</u> <u>Southers</u> <u>PH, TS, TK, MM</u>	OJECT James V. Turner K	<u>eservoir</u> Dem DATE	: 10-8-80 11-20-80
W.S. ELEV. U.S. DN.S RTY: INITIALS: DISCIPLINE: Retechtique: PH Gentechnicel Ted Stevens IS Gentechnicel Ted Stevens IS Gentechnicel Ted Stevens IS Gentechnicel Tim Kevensugh TK Gretechnicel Histor Mector Mydraulic Gent Sequence HM Hydraulic Gent Sequence Figure Servex PROJECT FEATURE INSPECTED BY REMARKS Servex PROJECT FEATURE INSPECTED BY REMARKS Servex Ph, TS, TK, HM Machter Ph, TS, TK, MM Jour level Outlets PH, TS, TK, MM Phone Phone Image: Phone Phone Phone Phone		TIME	Merning
RTY: INITIALS: DISCIPLINE: Cetec Hares PH Geotechnicel Ted Stevens TS Geotechnicel Tim Kevenaugh TK Geotechnicel Hector Merene HM Hydraulic Geotechnicel Geotechnicel Hector Merene HM Hector Merene HM Hydraulic Geotechnicel Frenk Segatine ES Secrex Secrex		WEAT	THER: Sunny, Fair Snow on ground
Retre Heyrer: PH Geotechnicel Ted Stevens TS Geotechnicel Tim Kevenaugh TK Geotechnicel Hecter Mecane HM Hydraulic Hecter Mecane HM Hydraulic Fronk Segatine ES Secret PROJECT FEATURE INSPECTED BY REMARKS Secth Endemkonents PH, TS, TK, HM West Orke PH, TS, TK, MM Spillway PH, TS, TK, MM Lows-level Outlets PH, TS, TK, MM		W.S.	ELEV. U.S. DN.S
Ted Stevens TS Groteshoweel Tim Kevenawgh TK Groteshoweel Hector Morene HM Hydrawhie Hector Morene HM Hydrawhie Fronk Segaline ES Servex PROJECT FEATURE INSPECTED BY REMARKS Serth Embankments PH, TS, TK, HM Vest Dike Sollway PH, TS, TK, HM Low - level Owthets Low - level Owthets PH, TS, TK, HM	ARTY:	INITIALS:	DISCIPLINE:
Tim Kevenavgh TK Grotichnical Hictor Mocene HM Hydrawlic Frank Segaline ES Servex PROJECT FEATURE INSPECTED BY REMARKS South Embodients PH, TS, TK, HM West Dike PH, TS, TK, HM Southers PH, TS, TK, MM Southers PH, TS, TK, MM Southers PH, TS, TK, MM	Peter Heyner:	PH	Gentrehnical
Hector Morene HM Hydraulic Frank Segaline ES Servex PROJECT FEATURE INSPECTED BY REMARKS Earth Endendents PH, TS, TK, HM West Dike PH, TS, TK, HM Spillway PH, TS, TK, HM Low level Outlets PH, TS, TK, HM	Ted Stevens		Grotechnical
Hector Morene HM Hydraulic Frank Segaline ES Servex PROJECT FEATURE INSPECTED BY REMARKS Earth Endendents PH, TS, TK, HM West Dike PH, TS, TK, HM Spillway PH, TS, TK, HM Low level Outlets PH, TS, TK, HM	Tim Kevanaugh	<u> </u>	Grotechnical
PROJECT FEATURE INSPECTED BY REMARKS Earth Embankments PH, TS, TK, HM West Dike PH, TS, TK, HM Spillway PH, TS, TK, MM Lows-level Outlets PH, TS, TK, HM	0		
Earth Embankments PH, TS, TK, HM West Dike PH, TS, TK, HM Spillway PH, TS, TK, MM Low - level Outlets PH, TS, TK, HM	Frank Segatine	<u> </u>	Sorvey
Earth Embankments PH, TS, TK, HM West Dike PH, TS, TK, HM Spillway PH, TS, TK, MM Low - level Outlets PH, TS, TK, HM	·	<u></u>	
Jet Dike PH, TS, TK, HM Spillway PH, TS, TK, HM Low - level Outlets PH, TS, TK, HM	PROJECT FEATURE	INSI	PECTED BY REMARKS
Spillway PH, TS, TK, MM	Earth Endankme	ents PH, T-	S, TK, HM
Low-level Outlets PH, TS, TK, HM	West Dike	PH, TS,	TKHM
•	_ Spillway	PH, TS	TKAM
	Low-level Outlet	5 <u>PH, TS</u> ,	TK, HM
•	·		· · · · · · · · · · · · · · · · · · ·
•	·		·····
•	, <u></u>		
•	·		
•			
•). <u></u>		
•	•		<u></u>
	•	·····	· · · · · · · · · · · · · · · · · · ·

I

ļ

PERIODIC INS	PECTION CHECK LIST Page A-2
PROJECT James V. Turner Rese	DATE 0-8-80 \$ 11-20-80
	knients BY PHIS, TK, HM
AREA EVALUATED	CONDITION
DAM EMBANKMENT	
Crest Elevation	El. 51.0
Current Pool Elevation	46.2 (Both inspection dates)
Maximum Impoundment to Date	Alert Known
Surface Cracks	None
Pavement Condition	Grass covered - Trees & brush on slope
Movement or Settlement of Crest] None observed
Lateral Movement	Appears good
Vertical Alignment	Appears good
Horizontal Alignment	
Condition at Abutment and at Concrete Structures	Abutment heavily overgrown with trees
Indications of Movement of Structural Items on Slopes	None observed
Trespassing on Slopes	2 ft wide path along top
Sloughing or Erosion of Slopes or Abutments	training wall near top of dom. Ere. on on upstream embankment.
Rock Slope Protection-Riprap Failures	some riprop displaced by tree gre the
Jnusual Movement or Cracking at or Near Toes	None closerved.
Unusual Embankment or Downstream Seepage	standingwater (Back Channel) extending from left a butment connecting with pillway channel approx. 350 Ft daw not of spillway structure. (orignal strain be
Piping or Boils	None ob erved
oundation Drainage Features	None ob rived None ob rived 6" agricultural clay pipe, left side of spitimay only.
Coe Drains	Spitlway only- NA
Instrumentation System	None

A-2

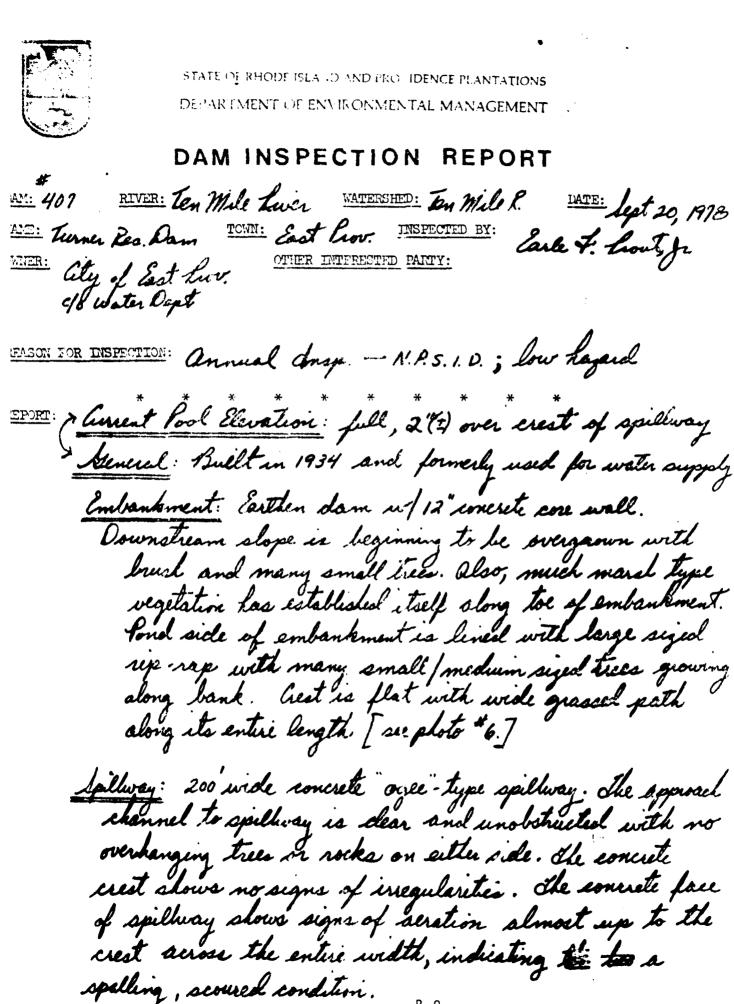

PERIODIC INSE	PECTION CHECK LIST Page A-3
PROJECT bries V. Turner K-ser	Voin Dam DATE 10-8-80 = 11-20-E0
PROJECT FEATURE West D.Ke	BY <u>PHTS_TK_HM</u>
AREA EVALUATED	CONDITION
KE EMBANKMENT	
est Elevation	51.0 t (Irregular)
rrent Pool Elevation	46,2 (Both inspection dates)
ximum Impoundment to Date	Not Known
rface Cracks	None observed
vement Condition	Grass covered - Overgrown with trees and brush
vement or Settlement of Crest	None observed
teral Movement	
rtical Alignment	Appears good
rızontal Alignment	ľ
ndition at Abutment and at Concrete ructures	N/A
dications of Movement of Structura ems on Slopes	N/A
oughing or Erosion of Slopes or utments	wave action eroding upstream slope some crossion of down stream slope
ck Slope Protection-Riprap Failures	Eprop displaced on upstream slope
usual Movement or Cracking at or ar Toes	None observed
usual Embankment or Downstream epage	None observed
ping or Buils	klone observed
ndation Drainage Features	None
Drains	None
strumentation System	None
espassing on Slopes	Foot path worn along top of dike

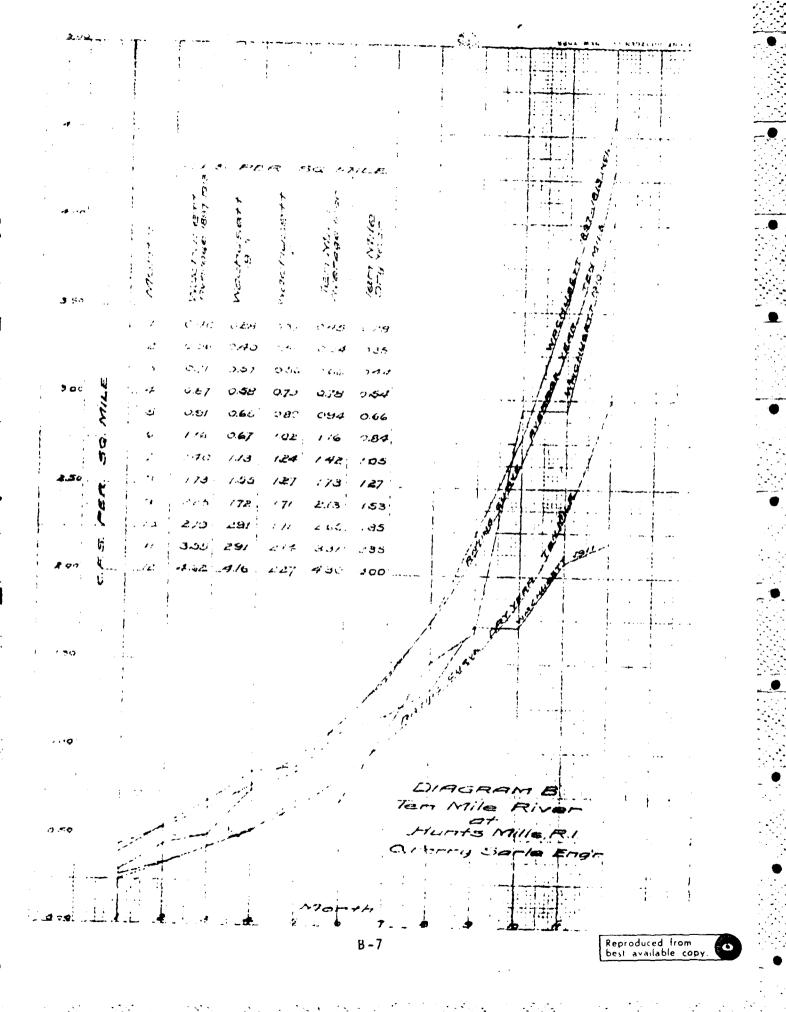
A-3

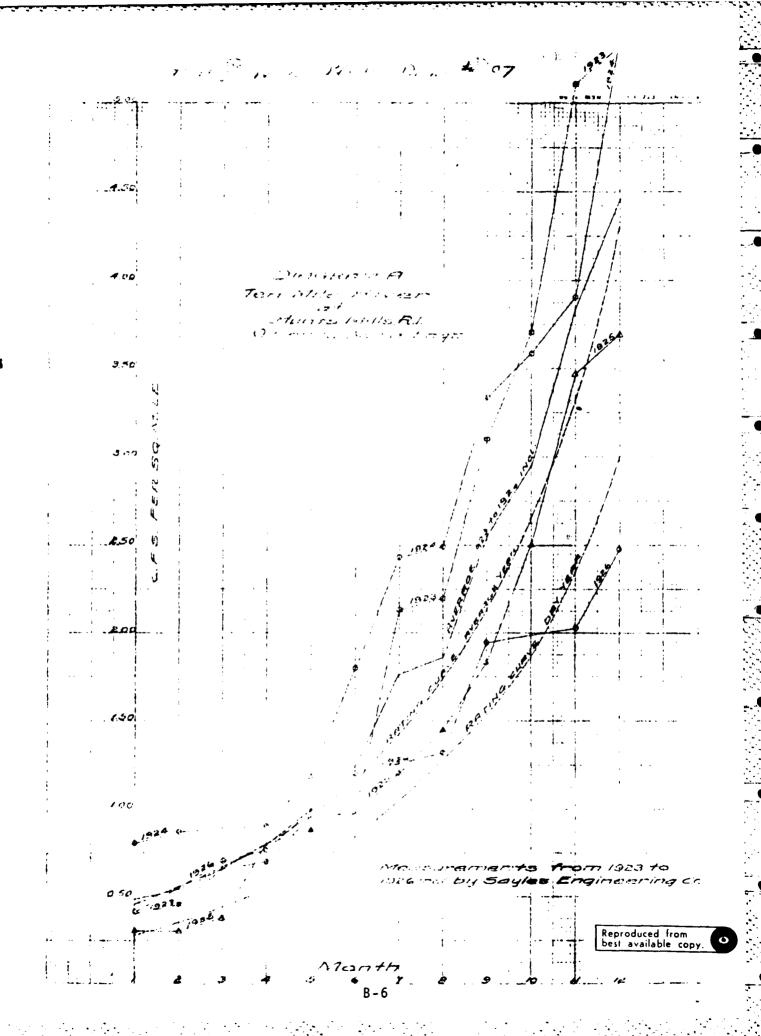
PERIODIC INSE	PECTION CHECK LIST Page $A - 4$
PROJECT James V Turner Reserva	DATE D-8-80\$11-20-80
PROJECT FEATURE	BY <u>FHTS, TK, HM</u>
AREA EVALUATED	CONDITION
ET WORKS-SPILLWAY WEIR, APPROACH AND DISCHARGE CHANNELS	
Approach Channel	Fair
General Condition	None
Trees Overhanging Channel	None
Floor of Approach Channel	N/A
Weir and Training Walls	Fair
General Condition of Concrete	Some staining of training wells
Rust or Staining	Some spelling of training walls
Spalling Any Visible Reinforcing	Deterioration at downstream and a right training wall.
Any : eepage or Efflorescence	right training wom
Drain Holes	
Discharge Channel General Condition	6000
Loose Rock Overhanging Channel	None
Tree:, Overhanging Channel	None
Floor of Channel	Natural streambed.
Other Obstructions	Bridge crossing channel approx. 1200 Ft. downstream of spitlury

4-4

	E	AST PROY	IDENCE WA	TER COMI	PANY .	
Ĩ	ENP	ALE	WA	ter		D
	53	5000000	MILES AT	HUNTS M	1115	•
		,			1	•
	JUMM	ARY OF	DTATISTIC	<u>7 rok </u>	923	· :
	TOTAL	YIELD D	FISQMILE	OANSALL	RAINFALL	PER CENT
IONTH	YIELD	MIL CAL:	CU FT.	RAINFALL	COLLECTED	COLLECTED
	MIL CALS	PER DAY	PER SEC.	INCHE5	INCHES	
Jan	56648	3.447	5 320	8.78	6.15	70
ret. Mor	2050.3 5479.8	1.302 3.305	2132 5.100	2.06 5.12	2.22	108
Apr	3029.7	2409	9.7/7	5.52	1.00	74
Moy	2930.2	1426	2.200	1.34	8.51	187
JUNS	1010.9	.696	.981	5.17	1.05	21
JUIN	743.3	A5A	.700	3.49	.79	23
Aug.	482.1	.294	A53	1.65	,51	31
Sept. Oct.	408.2 709.1	.259 . 128	A00 .660	1.39 A.90	44	32
NOV:	9914	623	.962	A.30	.75 1.05	15
Dec	33/4.5	2.009	3.100	5.99	3. 54	60
YEAR	269523	/ 390	2.144	47.67	29.7/	61
	n F anana an a	A	ad -, ak , , , , , , , , , , , , , , , , , 			,
	5UMM/	ARY OF	5TATISTIC	5 FOR 192	22	k
·· -	I	-	Ţ	-	T	
		1		:	n na de de la composition de la composition de la composition de l	
		1				Ì
May	3756.5	2.286	3.528	5.25	5.6E	10
June	A743A	2989	4 60A	6.98	5.00	79
JULY	4499.7	2738	4.276	7.45	A.B.4	65
AUQ. Sept	2/29.9	1.296	2.000	6.48	2.27	35
Sept Oct	2663.3	1.685	2.600	3.42	2.97	84
Nov ·	1647.2	1.002 8.842	1.547	9,10 1,26	1.18	55 115
Dec	14062	0.855	1 3 20	2.80	1.54	55
· · · ·			4		7 i 7 i 7 i 7 i 7 i 7 i 7 i 7 i 7 i 7 i 7 i 7	• • • • • • • • • • • • • • • • • • •
	1	•		•		1


DAM INSPECTION REPORT (Continued)


the concrete abutment walks are in generally good condition. However, the concrete has began to open spell and break off along top cap at the base of wall on the right (west) side. also, effloresence has began on left wall at construction joint half way up wall [see photo # 17. <u>Quitlet Works</u> . The gatehouse is presently abandoned and beginning to show signs of neglect and disrepair. The door has been removed and replaced with concrete block units. The windows have all been busted out. de foundation is of concrete construction and appears to be in good condition. The walls are brick and roof is asplatt shingles and wood construction.


the approach channel is clear and unobstructed. The handles of the manually operated gate values have been removed and the present condition of gate-lifting mechanism is unknown but there is no visually apparent reason to doubt this sperability.

good condition. However, the more charles to be in good condition. However, the more charles that the provident of the embandment should be structure before the growth of trees become a significant detersent of the to the safety of the structure.

B - 9

The spillway appears to be ample or discharge of an i freshet and the waste gates are surplusage for this surpose.

The charasteristics of this drains a area indic tes that the run-off during the dry months of the year will be higher than that of a stream of normal features. This condition of run-off is proved by the measurements of discharge made by the Sast Providence Water Co. We give ing in 1921 and continuing for 5 years.

These measurements were as privised by we (0. F. Sarle, Engr.) and from these I designed rating curves of Sincharge For an overage year and for a year of low run-off. These were checked against the Wachusett Fiver yields as that drainage area and the 10 Mile River are to some extent similar.

(4) <u>Maximum, dinimum, and average rainfull and runoff on water shed</u> See tables with yield arranged wonth by wonth from 1922 to 1926, depth in inches, inches collected and per cent collected.

(5) Stream gravings and any other stream flow characteristics readily available.

#407

5

[.

Б

Capacity & Spillway Thev. 46.0 crest elev. =) ht.= " 51.0 5 ft. Top of abut.= Approx. elev. of walley flow at wall clev. 34 Use u = 12 in Hazer Tables Q = (in c. f. s.) for sharp edge weis for 5' ht. - Multiplier based on Hazen's K = 1.20 Then disch. over weir= 38.21 x 1.8 - 45.85 co f. s. per ft. of length Tength of splliway= 200* Total Disch. Capacity = 200 x 45.85 = 9170 c. f. s. or 191 c. f. s. per sq. mile of drainage area over 48 sr. siles.

STATE AND FOR T. NORKE DAM #407

· · · · ·

6/30/25

20 Just Providence C. Somer Let

 \mathbf{b}

1.

Reproduced from best available copy.

Min - star ed May, 1934 A 1949 J. Consecto Core well and steel shost-pile outcorr - r refuect. T BL LINETCHE ಾವುಂ ್ರೇಗ್ರಾರ್≠ -170 c. .. s. Diset. On acity E1. 51.0 26.0 1 ne nen in transformer ne nen syntager i deé isa e shat Privi kat abor higt.) Sec. 2 ter gla <u>11.01</u> 11.0.11 by the millingle with pressness of a territoric of Hiev. 46.0 Car intate wit place of 18 of 0.57 for 18 contracts are known, the sterness depth and but a litude many or less then 50% of the depth at the down. 12 DTP 1X, 1 1220 of r. & Wold 12: Ver. 1021 2 PH TVOID 61 Constant atom dealar e a un Subir dior arche en as ar al d A (s= 3. . It and the later of measults sute ned by du the ly ho 18 15 CH 16 -weil, 3. 1. 1. Mar. of 1. 1. and inse. (2" = 1 while) 5.t.C and the second of the such a solution of the solution of the second second second solution of the solution of the second solution and the second solution of the The se 121 - 121 - 11 16 19 to 10 1 **.**... ithis : inclusion discorperion and content of the formation of the content of the cont . тС resiet.

> develation by Drong Horbers Rive areas 27 of acris in C.435 squeecons. B-4

State of Lipode Fstand

INTER-SPACE MENTAL COMPLEXICATION

教授 シス酸 と動力 しょうしん

TO.... M. ANDY AN INSTAL

La Asia Francisco de la 15 A de

NO.

shad, etc.

avillance.

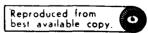
HI. M

Die i Charles Division of Harbers & Rivers

STE CAL

The arapawa summary of vailable statistics to the Ten Mile hiver the ten in Last Provincence Mater Supply Statem in hunts Lift, Rudford, The Market state state the following:

) Bris on the dec, such as date of construction, type, less th, theirin, so liker length and capacity, elevation of cam and spillway, ownership, etc.


Eurage calacity, surface eres, maxisum and average depth of reservoir, so c. (1) (1) Grups tributury drainage area. Land and water areas on water-

Marinan, minia and average rainfall and runoff on mateushed.

Stream gaugings and any other stream flow characteristics readily

- Samp Gie

Henry Ise, Chie:

JAMES V. TURNER RESERVOIR DAM

. .

.

2

6

SUMMARY OF DATA AND CORRESPONDENCE

PAGE	B-3	B-4	B-6	B-7	B-8	B-10	B-15
SUBJECT	Request for summary of available statistics	Notes of E. Providence (James V. Turner) Water Works Dam.	Run-off rating curve (average year) from 1923 to 1926.	Run-off rating curve	Dam inspection report	Yield of the Ten Mile River Watershed, 1922 through 1926.	Dam Inventor ₎ sheets
FROM	Henry Ise' State of Rhode Island Division of Harbors and Rivers	State of Rhode Island Division of Harbors and Rivers	Sayles Engineering Co.	0. Perry Sarle	Earle F. Prout State of Rhode Island Dept. of Environmental Management	East Providence Water Company	State of Rhode Island Dept. of Environmental Management
21	John V. Reily State of Rhode Island Division of Harbors and Rivers				Files		Files
DATE	June 24, 1949	June 30, 1949			Sept. 20, 1978	Jan. 1922 to Dec. 1926	

B-2

JAMES V. TURNER RESERVOIR DAM

EXISTING PLANS

East Providence Reservoir East Providence Rhode Island Contract No. 1 Waterman Engineering Co. March 1934

•

Ĺ.,

1

~

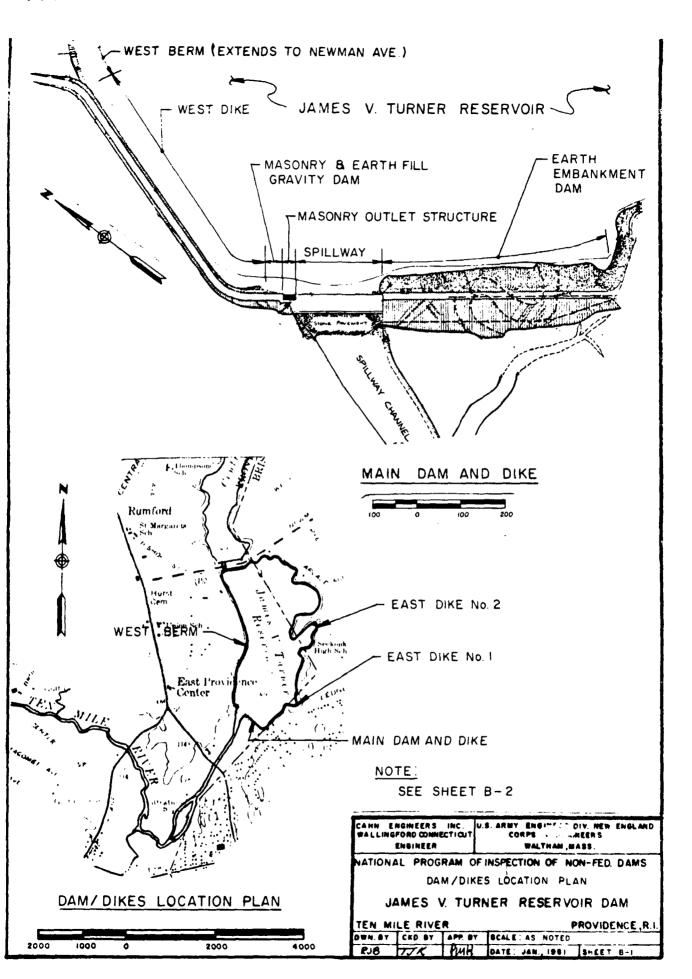
(**~**

Ĩ.

•.

۳

be.


t

Ť

. . i

े. भ Sheet 1 General Plans - Sections of Dam - Drains
Sheet 2 Profile Along Dam - Borings - Etc.
Sheet 3 West Wing Wall - Gate House
Sheet 4 East Spillway Wall - Details, Manholes, Corewall,
Underdrains, Etc.

Note: Selected segments of the above listed existing plans have been compiled to produce sheets B-1, B-2, B-3 and B-4 within this section.

D

APPENDIX B

ENGINEERING DATA AND CORRESPONDENCE

D

PROJECT Turner Res	Page A - 5 DATE Dam DATE D- R-RO \$ 11-20-80
PROJECT FEATURE Low-level Or	
AREA EVALUATED	CONDITION
UTLET WORKS-OUTLET STRUCTURE AND OUTLET CHANNEL	
eneral Condition of Concrete	Fair
ust or Staining	Some minor staining from construction
palling	Minor spalling st construction joints
rosion or Cavitation	Mone observed
isible Reinforcing	None observed
ny Seepage or Efflorescence	None observed
ondition at Joints	Miner staining and spulling
rain Holes	None
hannel	Discharge directly into spillway
Loose Rock or Trees Overhanging Channel	None
Condition of Discharge Channel	Fair

.

6

r

: _

1

ĩ

4

į

		21- 		<i>f</i>		
		EAST PRO	VIDENCE	WATER CO	MRANY	
6	733 6 326 6	1	• • • • •			
			- V/6		a the second second	
	53	SQUARE N	ILES AT	HUN15 M	ILLS	
	5UM	IN ARY	OF STAT	ISTICS 1	-0D	
	TOTAL	YIELD	OF I SQ. ML		RAINFALL	THE CENT
MONTH	YIELD			RAINFALL		COLLECTED.
	MILS.GALS	MIL. GALS. P.TR. DAY	CU. FT. PER SEC.	INCHES	ANCHE'S	
Jan	3816.7	7.323	3.585	4.90	4.12	84
Fet	2400.5	1.614	2490	3.34	2.71	61
Part.	4158.2	2.531	3.906	3.20	4.68	140
APE -	5501.5	3.460	5.940	4.29	5.92	136
1 hans	3555.6 1846.8	2.164	3.340	9.35	285	115
Just	9240	1.161	1.792 0.868	0.99 1.31	2.00	202 77
Asta	944.1	0.575	0.888	5.47	1.04	19
s of	2507.0	1.577	2494	696	2.71	38
127	964.2	0.587	0.906	0.23	: 1.00	436
· N97.	724.5	0.525	0.810	1.71	0.91	53
2:5	1265.5	0.770	1.185	2.06	1.34	66
YEAR	286894	1487	2.295	3.31	31.5	85
				1	alampanan ana araan Ariya	
i. Kana ka					n n n n n	~ ~ ~
206	MARY O	5)A11	<u>) (5 </u>	K 2 YL	<u>1K2 1917</u>	0-24
	• •					
Jan.	9481.5	2.935	4.452	6.84	5.13	75
·	4530.0	1.498	2.3/1	2.70	2.40	9/
Net	9582.C	2.918	4.503	3.16	5.15	163
A.3.T.	9331.2	2.934	4.5 28	4.90	5.00	102
May June	5885.8 2857.7	1.795	2.770	3.08	3.10	135
JULY	1667.3	0.508	0.784	2.57	0.90	30
Aug	1476.2	DAJA	0.670	3.56	4. 0.77	22
Sept	2916.0	0.918	1.417	: 4.17	1.58	36
Oct.	1667.3	0.507	0.783	2.60	0.07	31
Nov.	1715.9	0.574	0.006	3.00	0.99	33
Dec.	4500.0	1.309	2.1.44	3.99	246	62
YEAR	55641.8	1442	2.219	42.71	2997	70

-		MII F	: WA	FFDS	K H P	Ĩ
			MILES AT			
	53.(HUNTS MIL		
	SUMMA	RY OF 51	ATISTICS	FUR 192	2 7	
	TOTAL		FISQ MILE	Ţ	RAINFALL	PER CENT
10NTH	TOTAL		r - · · · · · · · · · · · · · · · · · ·	RAINFALL		COLLECTED
	YIELD MIL. GALS.	MIL GALS. PER DAY	CU. FT. PER.SEC.	INCHES	INCHES	
Jan.	1285.6	0.783	1.208	4.38	1.40	32
Feb.	35562	2.398	3.700	2.00	384	192
Mər.	3696.2	2.249	3471	4.39	395	90
Apr. 2	2585.5	1.626	2.510	2.02	2.77	137 93
May June	15 46.8 913.7	0.942 0.575	1.453 0.887	1.79 2.65	1.66	38
JUILI 1	973.7 8638	0.525	0.801	4.13	0.95	23
AUG	401.8	0.247	0.382	2.06	043	21
Sent 3	3/1.0	0.198	0.306	249	0.35	14
Sept.	321.4	0.198	0.306	404	0.36	9
NOV	991.4	0.632	0.975	5.14	1.08	21
Dec.	19284	1.189	1.835	3.92	2.08	53
YEAR	18401.8	.962	1.487	39.01	19.88	52
• 			Le sur la calca		ξ	
SUM	MARY O	- STATIS	TICS FOR	3 YEAR	25 1923-	1925
			منتقدينه : متونيني			
Jon.	10767.1	2.218	3.371	6.02	3.89	65
Teb.	0087.0	1.798	2.774	2.47	2.92	118
Mar.	1327.02	2.695	4./59	3.57	4.75	133
AOV.	11916.7	2.53/	3855	3.9 4 2.16	425 2.67	124
Malj June	7432.6 3771A	1.511 0.791	1.220	2.76	1.27	43
July	2531.1	0.5/3	0.793	2.95	0.91	31
	1828.0	0.372	0.574	3.06	0.66	22
Auó.	3227.0	0.678	1.047	3.61	1.16	32
Aug. Sept.		0.404	0.624	.1.08	0.70	23
Sept. Oct.	1988.7			.3.7/	1.02	28
Sept. Oct. Nov.	2707.3	0.5 9 3	0.915	1		
Sept. Oct.		0.5 9 3 1.32 3	0.915 2.041	397	2.3 3	59

÷

.

5

· · Tanuta

P

Ņ

.

•

B-13

		: Di			• :	
	E,	AST PROVI	DENCE WA	TER COMP	ANY	
	'EN N			FDS	LFN	
ja J		منا ديا 1 1	A @ \ ? } (
	523	SQUARE N	ILES AT C	ENTRAL F	POND	
	SUMM	IARY OF	STATIST	ICS FOR	1926	
MONTH	TOTAL	YIELD OF I	SQ. MILE	RAINFALL	RAINFALL	PER CENT
nunin	YIELD MIL. GALS.	MIL. GALS. PER DAY	CU. FT. PER SEC.	INCHES	COLLECTED	COLLECTED
Jan.	1064.7	0.645	0.996	2.79	1.17	42
Feb.	1850.7	1.264	1.950	5.49	2.03	37
Mar.	3656.0	2.255	3.480	3.63	407	1/2
Api.	3071.5	1.958	3.021	2.72	3.35	/23
May	2089.2	1.288	1.988	2.79	2.32	03
June	1 224 7 8035	0.780 0.496	1.204 0.765	1.74 3.32	1.3 / 0.86	75
July Aug.	743.3	0.458	0.707	4.28	0.81	26 19
Sept.	427.7	0.272	0.420	1.68	0.47	28
Oct.	582.6	0.359	0.554	5/5	0.62	12
Nov.	1341.4	0.855	1.319	5.45	147	27
DEC.	1197.5	0.8 / 8	1.262	9.21	144	45
YEAR	18052.8	.954	1.472	42.25	/9.92	47
SUN	MARY ()F STATI	<u>5TIC5 FO</u>	R 4 YEAI	25 1923	• <u>19</u> 26
Jan.	11831.8	1.824	2.752	5.21	3.2/	62
Feb. Mar	9937.7	1.664	2.568	3.22 25 B	2.70	84
Mər. Apr.	16934.2 14988.2	2.585 2.388	<i>4.239</i> <i>3.647</i>	3.58 3.63	4.58 4.0 3	128
May	14900.2 9521.8	1.455	2.245	2.32	2.58	111
June	4996.1	0.788	1.216	2.64	1.35	51
July	3334.6	0.509	0.786	3.05	.90	29
Aug.	2571.3	0.393	0.607	5.38	.69	20
Sept.	3654.7	0.576	0.890	3./3	.96	3/
Oct.	2571.3	0.393	0.606	3.60	.68	19
Nov. Dec.	<i>4048.</i> 7 77 <i>05.</i> 9	0.659 1.196	1.016 1.846	A.15 3.78	1.13 2.11	27 56
YEAR	92096.3	1.202	1.868	41.69	2492	60

in the second

D

æ.

. . B-14

CODING SHELT	DATESTOR TORY	Card #1 Page #1
IDENTIFICARY G. COMM		
1. Dam measur	· · · · · · · · · · · · · · · [0407
d. City/town		10 East Trividance
3. 0.3.6.5. quad sheet	t nuccer	15
a. Owner/operator		
5. Mator rights owner		
6. Type of ownership -	aend	
7. Type of constaling -	public trace to [
8. Type of public acc	833 	
9. Designed purpose c	f dau	The second worker Supply
10. Current upg of dug		
WATERSHED DATAS		22
11. Drainago basin .		10 24 River
12. Stream name		101 27
13. Area of waterahed	(neerest tent): aq. mi.)	048 .0
14. Design store from	.engy	32
15. S.C.S. Hydrologic	curve name in	35
16. Posk discharge re	te of watershed (C.F.3.)	01872

-

F

.

(OWER)

B-15

<u>0.1)</u> I	<u>10 SH. 27</u>	D.J. INV LTORY	Card	#1	Page #2	
<u> P.) L</u>	DATA:		4o		_	
17.	Llevationnormal wate:	plevel (posl	04	9	. 0	
15.	Elevationpool bottom	? diko (7/10 ft.)	03	4	. 0	
1).	Elevation Instream ch	annel bud (`dike].[]	
20.	Area of pool surface ()	· · · · · · · · · · · · · · · · · · ·	52 0/	2	2	
	Normal characters, of	prol (tr t acre ft.)	56 00	7	32]
ĈĈ.	Water quality of pool]		
<u>SP11</u>	LAVAY DAVE:		ú3			
23.	Sype of stillway	· · · · · · · · · · · · ·	R			
24.	Type of saterial in sp	(llun:				
25.	Elevation-screat of the		04	6	. 0	
26.	liax, safe depth of fl-	w ever spillway	69 5.	0		
27.	Midth of sollingy (ne	reat (1)	20	0		
28.	Hax. flow capacity of	apillway (G.F.S.)	09		70]
29.	Condition of spillway	• • • • • • • • • • • •				
<u>10:</u>			80			
	Card number			•		

Í

h,

•		1. 1997 1. 1997 1. 1997				
CODING SHEET	DOM UNCOTOR	Card #2 Page #1				
ID:		1				
30. Dam numb		0407				
WASTE WATER C	WILET DATA:	· · · ·				
31. Type of	waste water outlet	Pire and Value				
32. Waste wa	ater outlet size (sqt.)	032				
33. Max. flo	ow cap. of waste water outlet (C.F.S.)	9 14				
34. Conditio	on of waste water outlet					
DIKE DATA:						
35. Blevatio	ontop of dike (1/10 ft.)					
36. Length	of dike (excl. spillway) (nearest ft.)	23				
37. Top wid	th of dike (nearest ft.)	25				
38. Type of	construction of dike					
39. Type of	material in dike	EC. Enath, Connect. 28				
40. Condition	on of dike					
FLOOD CONTROL	L DATA:	to the second				
41. Elevati	onexpected high water (1/10 ft.)	33				
42. Flood c	ontrol storage capacity (nrst acre ft.)					
43. Mas.sto	rm discharge cap. of dam (C.F.S.)					
44. Plood c	ontrol structuretype					
(OVER)						
	B-17					

CODING SHEET	DAM INVENTORY	Card #2 Page #2
DATA ON ASSOCIATED STRUCTURE	<u>5</u> :	44
45. Drain valve type		45
46. Drain valve size (sq. f	t.)	47
67. Drain valve location (s	ta, on C/L of dam)	50 • • • • • • • • • •
48. Draw down valve type .		Prove and Walve
49. Draw down valve size (s	g, ft.)	24 53
50. Draw down valve locatio	n (sta. on C/L of dam) .	
51. Fish ladderelevation	of floor @ dam (1/10 ft.)	
52. Fish ladder rise (neare	st ft.)	62
53. Fish ladder width (near	est ft.)	63
54. Pish ladderdesign der	oth of flow (nrst ft.)	
55. Pish l add er general lo	ocation	65 5
56. Pich ladder type of fi	ish	
GENERAL STAIUS OF DAM:	· · ·	6 <u>6</u>
		70
58. Date last modification	completed (mo./yr.)	
59. Date of last inspection	n (mo./yr.)	06,49
60. General condition of d	81	7 9
61. Note or remark	· • • • • • • • • • • • •	
ID:		
62. Card number		

Į.

[

DETAIL PHOTOGRAPHS

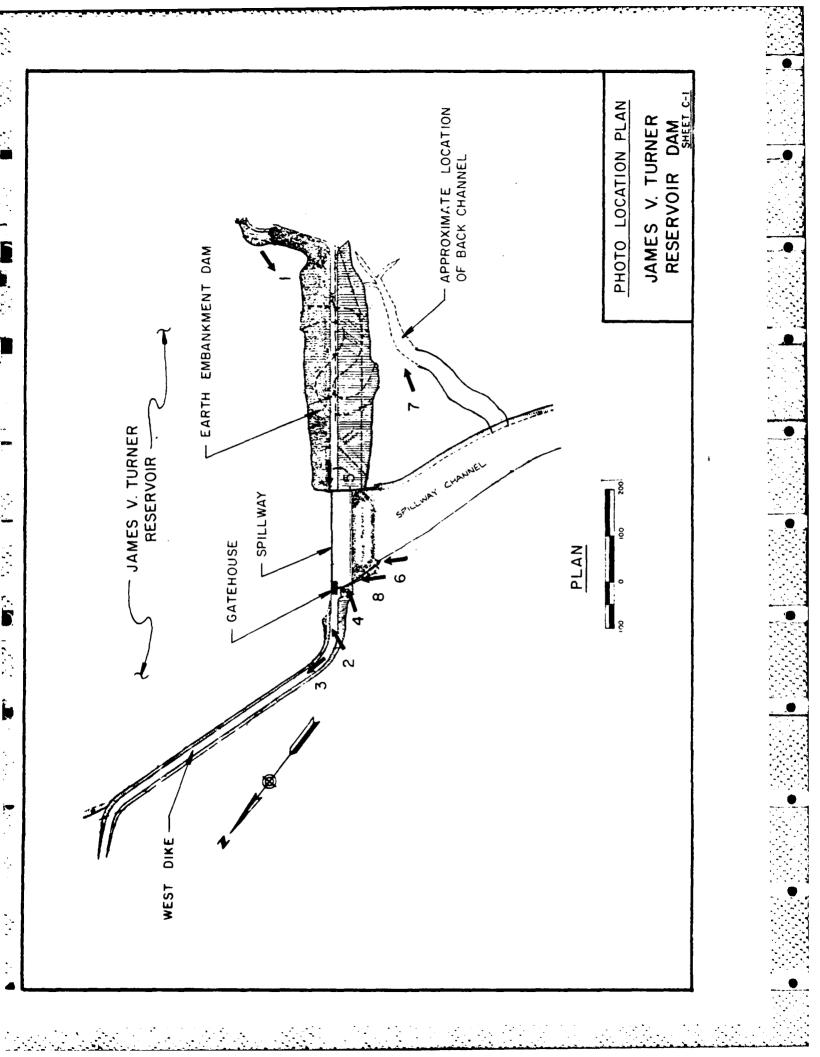
APPENDIX C

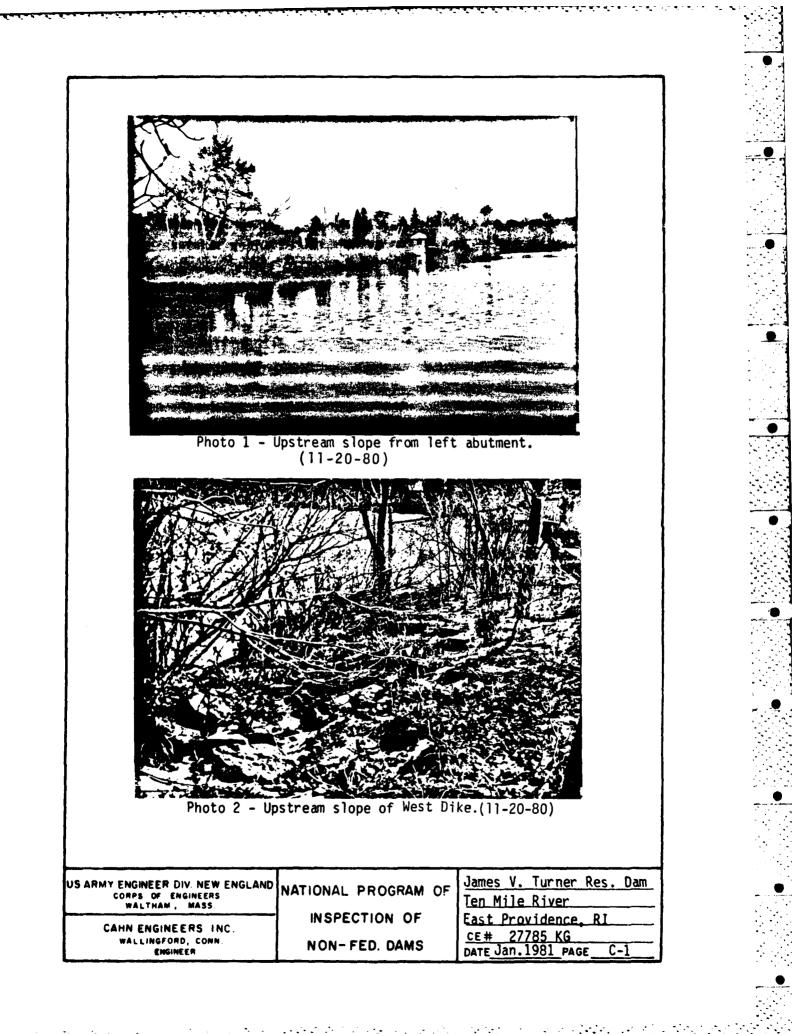
•

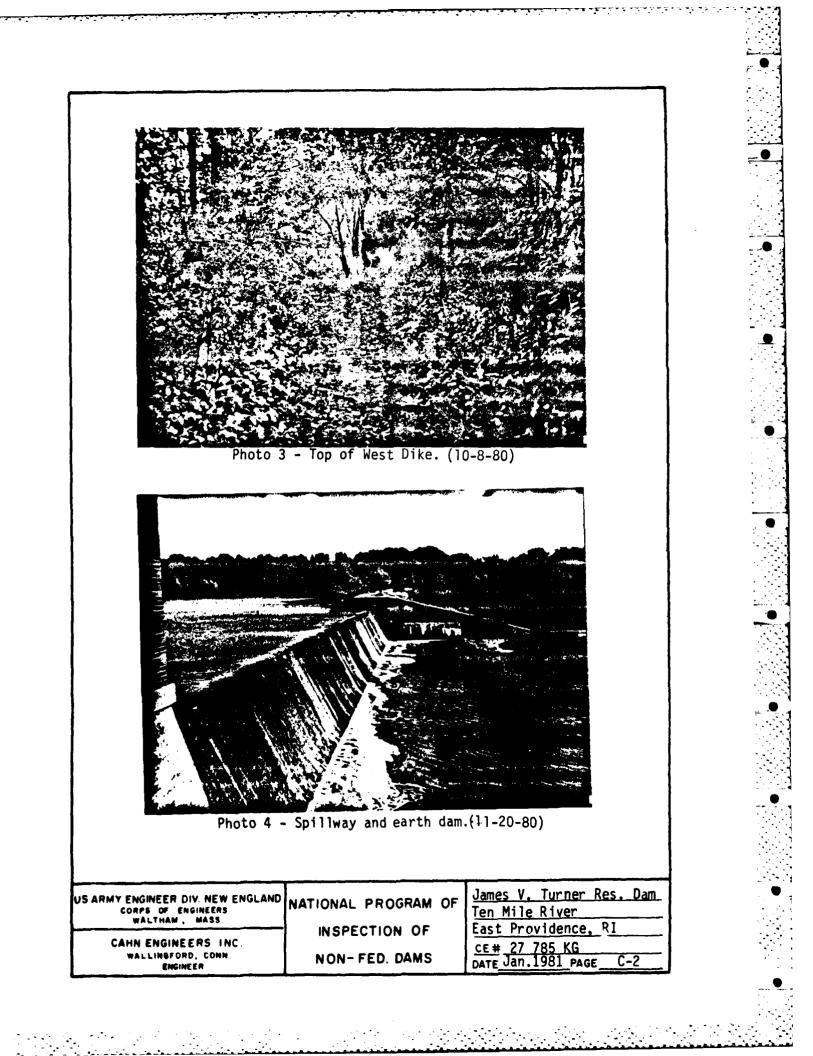
÷.

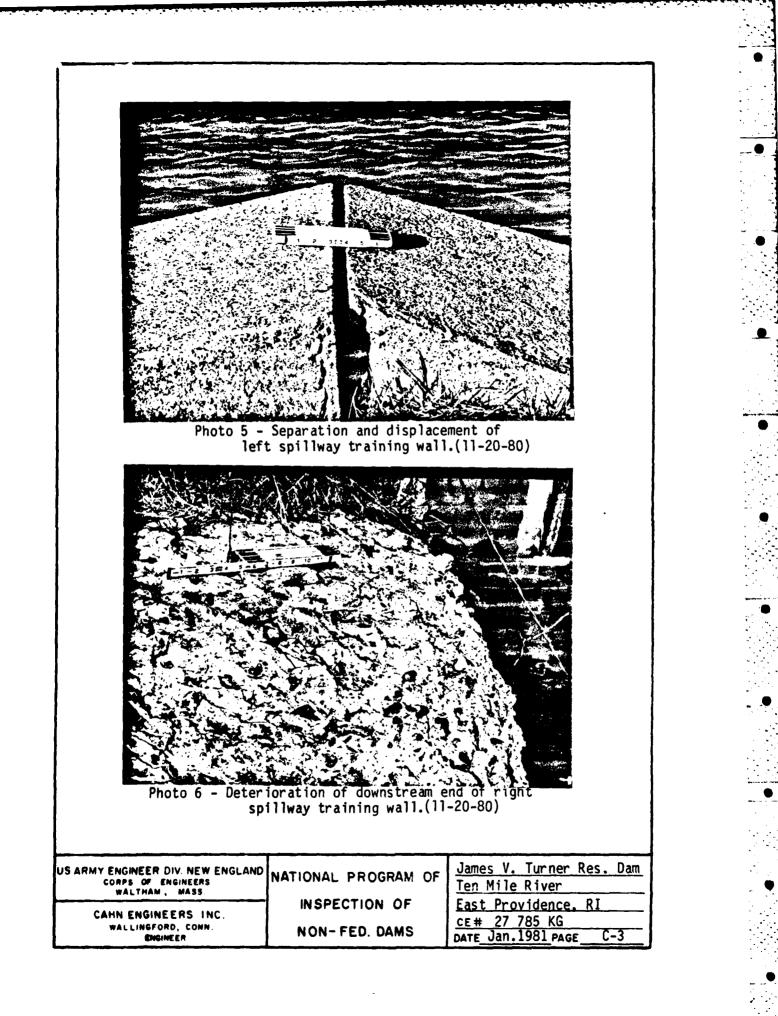
•

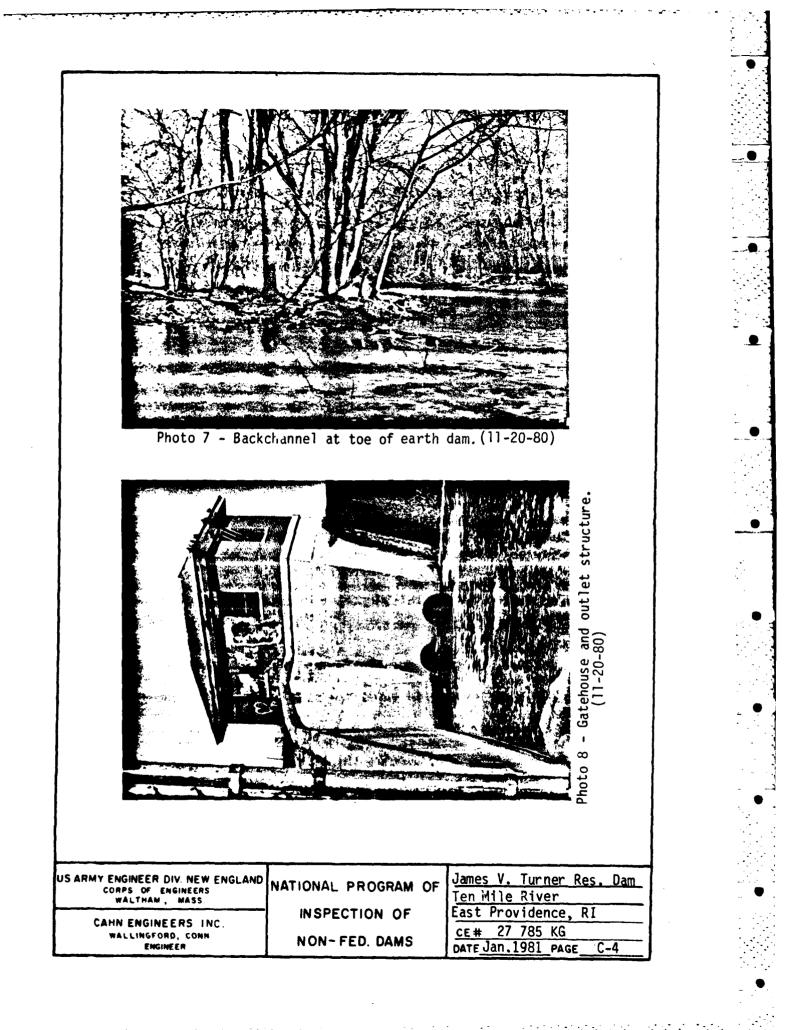
D


-




. .


 \cdot


.

APPENDIX D

HYDRAULICS/HYDROLOGIC COMPUTATIONS

	NED RESERVOIRS					
	Project	2	D.A.	MPF		
		(Ēs)	<u>D.A.</u> (sq. mi.)	cfs/sq. mi.		
1.	Hall Meadow Brook	26,600	17.2	1 5/6		
2.	East Branch	15,500	9.25	1,546		
3.	Thomaston	158,000	97.2	1,675		
4.		9,000	5.7	1,625		
	Black Rock			1,580		
۶.	BIACK KOCK	35,000	20.4	1,715		
6.	Hancock Brook	20,700	12.0	1,725		
7.	Hop Brook	26,400	16.4	1,610		
8.	Tully	47,000	50.0	940		
9.	Barre Falls	61,000	55.0	1,109		
10.	Conant Brook	11,900	7.8	1,525		
11.	Knlghtville	160,000	162.0	987		
12.	Littleville	98,000	52.3	1,870		
13.	Colebrook River	165,000	118.0	1,400		
14.	Mad River	30,000	18.2	1,650		
15.	Sucker Brook	6,500	3.43	1,895		
15.	JUCKEL DIOOK	0,000	J.4J	1,095		
16.	Union Village	110,000	126.0	873		
17.	North Hartland	199,000	220.0	904		
18.	North Springfield	157,000	158.0	994		
19.	Ball Mountain	190,000	172.0	1,105		
20.	Townshend	228,000	106.0(278 tota	1) 820		
21.	Surry Mountain	63,000	100.0	630		
22.	Otter Brook	45,000	47.0	957		
23.	Birch Hill	88,500	175.0	505		
24.	East Brimfield	73,900	67.5	1,095		
25.	Westville	38,400	99.5(32 net)	1,200		
26.	Vest Thermoor	95 000	172 5/7/	1 150		
20.	West Thompson	85,000	173.5(74 net)	1,150		
	Hodges Village	35,600	31.1	1,145		
28.	Buffumville	36,500	26.5	1,377		
29.	Mansfield Hollow	125,000	159.0	786		
30.	West Hill	26,0 00	28.0	928		
31.	Franklin Falls	210,000	1000.0	210		
32.	Blackwater	66,500	128.0	520		
33.	Hopkinton	135,000	426.0	316		
34.	Everett	68,000	64.0	1,062		
35.	MacDowell	36,300	44.0	825		

MAXIMJM PROBABLE FLOOD INFLOWS

ii

PRELIMINARY GUIDANCE

FOR ESTIMATING

MAXIMUM PROBABLE DISCLARGES

IN

PHASE I DAM SAFETY

INVESTIGATIONS

New England Division Corps of Engineers

March 1978

	Consulting Engineers
101 MON-TEDERAC DARIS INSPECTION	Sheet of
puted By <u>HU</u> Checked By <u>GAB</u> Book Ref. <u>CE #27-785</u>	
Book Ref Other Refs # 27-785	-HB Revisions 4/17/51 144

JAMES Y. TURNER RESERVOIR DAM

IP) SUMMARY

hn Engingens

1) TEST FLOOD = PMF = 24000 CFS (PARAILEL COMPUTATION: HAVE BEEN MADE FOR 1/2 PMF = 12000^{CFS} AND ARE ALSO SUMARIZED BELOW)

2) PERFORMANCE ST PEAK FLOOD CONDITIONS.

 a) PEAR INFLORIS:
 Q_p = FHF 5 E4000 CAI
 Q'p = 1/2 PHF 5 12000 CAI

 b) PEAR OUTFLORIS:
 Q_p 7 22600 CAI
 Q'p = 1/2 PHF 5 12000 CAI

 c) SPILLUSAY CAPACITY:
 (SEE TABLE P. D-6)

 d) PERFORMANCE:
 (SEE TABLE P. D-6)

 i) AT TEST FLOOD
 (NERTOPPED (DAM)* (1)2.0' (W.S. ECER. S3'NGVD)

 ii) AT 1/2 PMF:
 SVERTOPPED (DAM)* (1)0.6' (W.S. ELEV. S1.6'HGVD)

3) DOWNSTREAM FAILURE CONDITIONS:

a) PEAR FAILURE OUTFIDE. OP = 54800 CFS 6) FLOOD DEPTH JAMEDIA. ECY VS FROM DAM 40= 11.6' C) CONDITIONS NEAR PAWTUCKET AND. (ETE # 114) - ((1) 6000' PS THUM DAM) () STAGE BEFORE FAILURE 1/3: 5.5' (G: 8300 CFI) (L) STAGE AFTER FAILURE. 45 = 9.1' (OB = 28900 -) UC) RAISE IN STAGE AFTER FAILURE BY = 3.6 d) CONDITIONS NEAR NORTH BUDAUWAY- ((+) 9500 ' % FROM DAM) () STAGE BEFORE FAILURE: Y: 5.5' (4: 8300 ") (1) STAGE AFTER FAILURE: 1/3 = 8.1' (OP. = 22000 CM) UL) RAISE IN STAGE AFTER FAILURE AY = 2.6'

* NOTE · EAST DIFE # 2 OVENSOPPED BY (1) 3.0' AT TENT FRODD AND (-) 1.6'AT 1/2 PAIF

D-11

	L DAMS INSPECTION	Sheet of
ed By Hill	Checked By GAT	3 Date 12/12/80
look Ref	Other Refs727-70	N - MC Revisions
TAMES V. TU.	RNER RESERVOIL DAM	
II) ELECT	TION OF TEST FLOOD	
1) Lassin	TCATION OF DAM ACCORDING	TO NED-ACE GUIDELINES:
2) vize	* \$70RAJE(44K) = 3100 40.4) * HEISHT (44K) = 22'	
**	STURAGE: SEE P.D-S ; HEIGH	T. SEE p. D-7
.:	S'ZE CLASSIFICATION : IN.	TERMEDIATE
		OF THE THE FAILURE ANDLYSIS AND
		FAILURE OF J.V. TURNER LEC. DALI
	MAY HAVE ON THE POTENTIA: SA CLASSIFIED AS HAVING:	APACT AREA (P. D-7), THE DAM IS
	HAEARD CLASSIFICATION :	HIGH
2) TEST R	ZOOD PMF = 24000 CFS	
7.	HI. SELECTION IS BASED ON	THE REGULTS OF THE PREVIOUS
	NA. YSI. AND CLASSIFICATION	

.

۰.

D-10

OJOCI NON-FEDERAL DAMS INSPECTICU	Sheet of
mouted By Hill Checked By GAB	Date 12/11/80
old Book Ref Other Refs #27-785-HB	Revisions 4/17/81

b) RESERVOIR STORAGE AT TIME OF FAILURE

Jahn Engineers Inc.

- U.SI'= 3/00 K.FT (SEE P. D.S) 5/2 = 1550 K.FT

Consulting Engineers

C) APPROXIMATE STAGE AT POTENTIAL JUPACT AREAS AFTER FAILURF.

Xp = \$4800 ; " = 11.6 ; VI = 3800 AC +T > 51 ON REACH L= 10000'

: SUBDIVIDE THE REACH TO HAVE VESSIZ (SEE NED-ACE SUIDE INES)

, REACH L (F1)	& P, (CFS)	4, (FT)	Vi (Acti)	(UP2 (CFS)	1/2 (FT)	V2 (AC FT)	T [.eff)	QP3 (CFS)	43 (Fr)
	54800								
	42500		3	1			1		1
2000	34500	9.7	540	28500	20	470	510	28900	7.1
3500	28900	9.1	830	21100	8.0	660	745	22000	8.1

d) APPRUXIMATE STAGE BEFORE FAILURE:

G= 8300 CPS (it P. D. D. G & D. 8) ... H. = 5.5'

C) RAISE IN STAGE US FROM S.Y. TURNER REG. DALY .:

DEPENDING ON THE LOCATION SEDNG THE LIVER WITHIN THE BITANIC. JUPACT ANEA THE RAISE IN STAJE & PON FAILURE SECTIONAL-LES. DAM IS ESTIMATED TO BE BETWEEN (2)6'AT THE DAM AND (2)4'TO 3' AT THE LEACH IS FROM PAUTUCKET AVE (RE#114)

Diect _ HON . TEOEILINC	DAME TINIPESTION	Sheet	D-8 of 11
mputed By	DAH - TINIPE TION Checked By GA Other Refs. <u>CE # 27-</u>	Date_	12/11/80
ld Book Ref	Other Refs	Revisio	ns <u>4/1/3/ wat</u>
C) BREAC	H WIDTH (SEE NED-ACE 4	FAILURE GUIDELIN	1E:)
	W=0.4×670 = 268'	Assume Ws =	268'
d) Assum	ED WATER DEPTH AT TIME OF	TAILURE . 15 ; 2	2' (ELEN, 51'70 ELEN, 23'
e) , P144	UNY DISCHARGE AT TIME OF T	FAILURE. Cy=33.	00 Car (GEE 7. D.6)
f) BREAC	H OUTFLOW (SEENED-ACE.	FUIDECINES)	
	a = = W W Vg 10 = - 46500	, CPS	
J) PEAK	FAILURE CUTTLOW (Gp) TO	TEN MILE RIVER	<u>.</u> .
	Qp= Qs + Qp = 5480043	¢.	
3) FLOOD DE	PTH * JMHEDIATELY X FROM	DAM:	
	Y = 3.44 % = <u>9.1</u>		
	* (FROM RETREATING		
4) ESTIMATE	OF & FAILURE CONDITIONS AT	Ротентіяс Імра	CT ALEAS
6	SEE NED-ACE GUIDELINES I	FOR ÉSTIMATING D	(FAILURE HYDRIGERAC.";)
	THE CHANNES & FROM J. V. T.		· · · · · · · · · · · · · · · · · · ·
	OIDAL JN CROSS SECTION WIT,		•
	O IN SIDE SLOPES. THE AVE. ASSUME N=0.050 Fon THE K		

.

.

.

Cahn Engi	neers In	C. Co	nsulting Engineer	*8
Project NON · FEDERAL D	AMS INSPECTION		Sheet of	
Computed By	Other Refs	E #27-785-HB	Revisions/17/81 W/4	

JAMES V. TURNER LESERVOIK DAM.

II) DOWNSTREAM FAILURE HASALD

1) POTENTIAL JULACT AREA

MANY HOUSES OF WHICH AT LEAST TEN HAVE FIRST FROM ELEVATIONS BETWEEN "5" AND 10' ABOVE THE STREAM; INDU. TRIAL AND COMMERCIAL STRUCTURES, ALL WITH FIRST FLOORS LESS THAN (2) 12' ABOVE THE STREAM, ARE LOCATED ALONG THE TEN HILE LIVER IN THE (2) 12000'LONG REACH BETWEEN THE J.V. TURNER LES, DAM L'ND JTS CONFLUENCE WITH THE SEELONK RIVER. THIS TEN MILE RIVEN, PENCH, PARTICULARLY D'S FROM PAULTUCKET ADE. (ETE #114), CONSTITUTE THE POTENTIAL INITIAL SUPACT AREA IN CASE OF FAILURE OF J.V. TURNER LEGERVOIR DAM.

NO DATA IS AVAILABLE AS TO DETERMINE THE ACTUAL JUPACT WHICH FAILURE OF EITHER ONE OF THE EAST DIKES MAY HAVE ON THE LEDGE ROAD/ARCHOE ALE. AREA. HOUREVER, THE PONTOURS ON THE US.G.S. EAST REUNDENCE, MASS-R'T. GRADRANGLE SHOW ALL THE TERRIN BETWEEN THE DIKES AND THE RUNNINS RIVER TO BE IN SEMERAL ABOVE ELEVATION SO NOW AND THE FLINNINS RIVER TO BE INSERVERAL ABOVE ELEVATIONS OF 48' AND 48' NAVD, NO. NO NOT SEEM TO HAVE OTHER THAN & RELATIVELY LOW FLOODING EFFECT OWER THIS POTENTIAL JUPACT AREA.

2) FAILURE AT J. V. TURNER RESERVOIR DAM.

ASSUME SURCHARGE TO TOF IF DAM (ELEV. 51'NGVD)

2) HICHI OF DAM " HHAX = 22' (TOP OF DAM ELEY. SI HOND - TOE OF ENGANGHENT AT OLD STREAMBED (1) ELEY. 29'NGYD)

6), 410 HEIGHT LENGIH . L= 670'

"TROM "EAG" PROVIDENCE RESERVUIR - CONTRACT NO. 1-SHEET 2" DROWING, DATED MARCH 1934.

				unauting Engineers
Project	NON FEDERAL DAM	INSPECTION		Sheet of
Computed	• f .	_ Checked By Other Refs	GAG	Date 12/11/80
Field Boo	k Ref	_ Other Refs	# 27-785- HB	Revisions

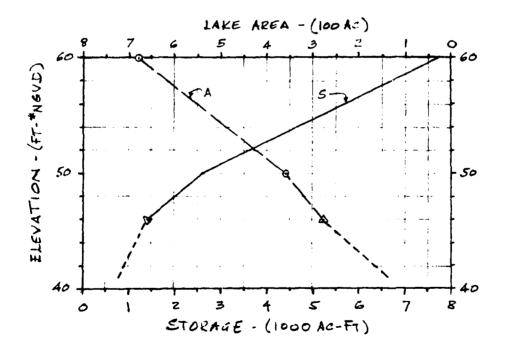
Engineens

III) PEAK OUTFLOWS (B₁₃ × S₁₃)
 B₁₃ = 22600^{CFS} H₃ = 7.0' (ELEY. S3.0'NOVD)
 S₁₃ = 11000^{CFS} H₃' = 5.6' (ELEY. S1.6'NOVD)
 (DETERMINED ON THE OUTFLOW RATING CORVE (P.D-4) BY USING THE APPROX. ROUTING NED-ACE GUIDELINES "SURCHARGE STORAGE ROUTING"
 ALTERNATE METHOD AND 19" MAX. PROBABLE R.O. IN NEW ENGLAND).
 * SEE (LAMPLE BEIDD)

3) SPILLWAY CAPACITY RATIO TO PEAK CONDITIONS:

SPILLWAY	SURCH*	W.S.	SPILLWAY	PILLWAY CAR 38 PEAK D	
CAPACITY TO:	H (FT)	ELEV. (FT-NúVD)	CAPACITY (CFS)	(22600 ^{CH})	(11000 ⁵³)
Low Point	2.0	48.0	2100	9.3	19
TOP OF DAM	5.0	51.0	8300	37	25
1/2 PHF	5.6	51.6	1800		87
PHF	7.0	530	13700	<i>i</i> l	

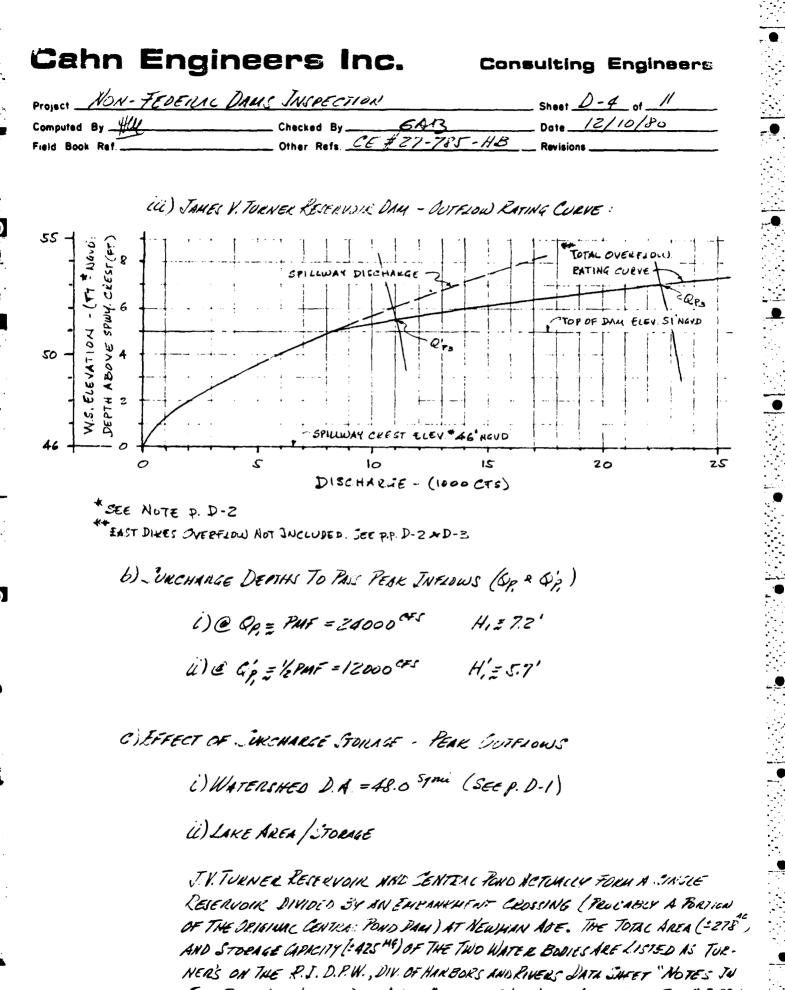
*SURCHARGE ABONE SPILLING CREST (ECEY. 46'NGVD) ** OVERTOPPING OF EAST DIKE #Z (SEE R.D.Z. D.3) CAUSING LUCAL TOODING WITH NO OR NEGRIGEABLE OVERTION TOWARDS KUNNING RIVER.


EXAMPLE OF PEAK OUTFLOW DETERMINATION: 1) FOR HYPOTHETICAL SURCHARGES . Ha = 8.5' AND Hg = 4.5': Ka = 3580 ACPT ; Sa = 1.40" ; (4p) a = 2000 CFS Qp= Qp (1- 5) V6= 1560 ACFT; S6= 0.61"; (Bp); = 23200 CFS D-6 2) INTERSECT OF LINE (GP), W/RATUR CURVE (P. D. A) DETERMINES GP AND HS

Cahn Engir	neers Ind). c	Consulting Engineers	
Project NON - FEDERAL DA	45 INSPECTION		Sheet of	
Computed By HUL	Checked By	6AB #27-285-H	Date 12/10/80	
Field Book Ref.	Other Refs	101 10 110	2 Revisions	

INVENTORY OF DAMS, LISTO ONLY THE AZEN (* 122 ") AND STORAGE CHRACITY (* 7.32 AC-FT) OF THE RESERVOIN', SOUTH FROM NEWMAN AVE., AS THOSE OF THE J.V. TURNER RESERVOIR DAM (RI DAM # 407).

BECAUSE THE PRESENT EXTENT OF SEPARATION BETWEEN THE TWO WATER BODIES IS UNKNOWN AND BECAUSE THE ROAD ENBANKMENT IS & MAN-MADE STRUCTURE WHORE STRUCTURE CONDITION TO WITH-STAND & DIFFERENTIAL HEAD IS UNKNOWN, IT WILL BE ASSUMED THAT THE TWO WATER BODIES ARE A SINGLE IMPOUNDMENT FORMED BY THE J.V. TURNER RES. DAM, WITH NO CONTROL/REGULATION AT NEWMANADE.


Ui) LAKE AREA /STORAGE CURVES - J. V. TURNER RESERVOIR

△ DATA FEOM R.T. DEPT. OF PUBLIC WORKS, DIV. OF HANBOR: AND RIVERS - "NOTES IN EAST FILM W. WORKS DAM # 407", DATED 6/30/49

O AREAS MEASSURED ON USGS EAST PROVIDENCE, MASS-RI QUADRANGLE SHEET (1971)

* SEE NOTE p. D-2

EAST PEDY. W. WORKE DAM & ADT " NOTED L'AN IAO JATE THE P.T. DP.I.

<u>....</u>

Cahn Enginee	ers Inc.	Consulting Engineers	
Project <u>NON-FEDERAC DAMS</u> Computed By <u>HUL</u> Field Book Ref.	NSHECTION Checked By <u>64-B</u> Other Refs. <u>677-785-</u>		

IS EXPECTED THROUGH THIS AREA FOR RESERVOIN LEVELS BELOW (*) EVEN. 53 NAVO.

CONSEQUENTLY, JT IS ASSUMED THAT NO OVERFLOW (ONLY FLOOPING OF CONFINED ALEAS) WILL RESULT FROM OVERTOPPING OF THE EAST DIKES WITHIN THE RANGE OF EXPECTED SURCHARGES.

(i) THEREFORE, THE OVERFLOW RATING CORVE FOR SURCHARGES (H) ABOVE THE SPILLWAY CREAT CAN BE ANDROXIMATED AS FOLLOWS:

1') SECTION AB: $Q_{AB}^{*} = 0.4 \times 3 \times 2.0 (H-5)^{5/2} = 2.4 (H-5)^{5/2}$ 2') SECTION BC (DAM): $Q_{ac} = 2.7 \times 560 (H-5)^{3/2} = \frac{1510 (H-5)^{3/2}}{150 (H-5)^{3/2}}$

3') SPILLWAY (SECTION DE):

Qs = Qpe = 3.7 × 200 H = 740 H 31

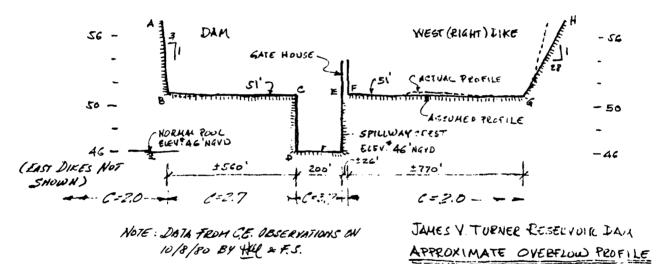
4') SECTION FG (RIGHT SIDE DIKE).

 $Q_{F} = 5.0 \times 770 (H-5)^{3/2} = 1540 (H-5)^{3/2}$

SUSECTION 6H: 364 = 0.1 × 28 × 20 (H-5) Te = 22.4 (H-5) 12

THE TOTAL OVERFLOW RATING CURVE IS APPRIXIMATED BY THE SUM OF ALL THE APPLICABLE FORMULAE CH ITEMS (1') THRU (5'):

()= 740 H 312 + 3050 (H-5) 31/2 + 24.8 (H-5) 1/2 (SEE PLOT ON P. D. A)


"NOTE : FLOW OVER SLOPED SECTIONS BY APPLICATION OF FORMULA SIMEN BY THE USGS ON "MEAS HEAVENT OF FEAR DISCUMIGE AT DAMS BY INDUREST METHODS" BY HULSING (APPLICATIONS OF HADRAULES);

Q= 2Cb [h' - ha] NHERE: J=DISCH. ; = DISCH. GEFF. ; b= LENKIN; han hg= STATIC HEAD REFERED TO HEAN a Low Ewes OF VER , LES PERTIVELY.

Gann Engi	neers inc.	Consul	ting Engineers	
Project NON-FEDERAL			eet <u>D-2</u> of <u>11</u>	
Computed By <u>HUL</u> Field Book Ref.	Other Refs. CEF2	7-785-H3 Re	wisions	

DAM AND DIKES. TOP OF DAM AND ADJACENT HEST (RIGHT) DIKE AT (DELEV. ST NGW. (SEE OVERTIZED PROFILE). EAST DIKE \$1 (AT LEDGE RUND) (D)550'LONG NITH ADJACENT. TERRAIN AT (D)16" AND 13" TO 1" SOPE. EAST DIKE \$2 (SOUTH TROM ARCADE AVE.), (-)350'LONG WITH ADJACENT TERMAIN AT (D)60 "AND 15" TO 1" SLOPE. TOP ELEV. OF EAST DIKES \$1 AND \$2 ASSUMED TO BE ELEVS. 48' NGVO AND 48'NGVO, BEINECTIVELY, AS SHOWN ON EAST PROVIDENCE RESERVOIR - CONTRACT NºI - SHEET Nº1" DUALWAY, DATEL MARCH, 1734.

ASSUME C= 3.7 FOR THE SPILLION I SUSTINCESS, C= 2.7 FOR THE JAM AND C= 2.0 FOR THE DIKES AND ADTASENT TENERIN SVENEICOD.

ł

NO DETAILED SURVEY OF THE TERRAIN EXTENDING TO THE EAST (LEFT) OF THE RESERVOIR NEAR ARCADE AVE AND LEDGE ST. IS AVAILABLE & TO DETERMIKE WHET.YER OVERF.'OW TOWARDS RUMMINS RIVER WILL RESULT THAN THE OVER. ONPING OF THE EAST DIRES. HOWEVER, EXCEPT FOR SHALL, POCKET DEPRESSIONS, THE U.S.G.S. EAST PROVIDENCE, MASS - R.I. QUADRANGLE (1971) SHOWS ALL EXISTING TERRAIN ALONG THE EAST (LEFT) SHORE OF THE RESERVOR ABOVE ELEVATION 50'NGVD AND THEREFORE, NO OR NEGLIGEABLE OVERSILM

*NOTE: SPILLWAY CREST ELE 1971ON 46 AS "HOWN ON "EAST PROVIDENCE RESEAVOIR " CWIENST AN" DWAS (SWEETS Nº 1 TO 4), DATED MARCH 1934 AND STHER DATA DUNSE: BY THE F.J DEDT . OF PUBLIC DICRES, DAY OF HURBONS AND RIVERS, JS ASSUMED TO BE ON NATIONAL GEORTIC VENICA- DATUM (NEVE).

Cahn	Engineers	Inc.
------	-----------	------

Consulting Engineers

Project MINTECTION OF	NON-TEDEREDAMS X	TN NEW EN ICAN	Sheet of
Computed By Hell	Checked By	6413	Date 12/8/83
Field Book Ref	Other Refs. CE	# 27-785-HB	Revisions

HIDROLDAN: HADRAJEIC IN PECTION

JAMES V. TURNER REGERVOIR DAM, EAST PROVIDENCE, R.J.

I) PERFORMANCE AT PEAK FLOOD CONDITIONS:

1) PROBABLE MAXIMUM FLOOD (PMF)

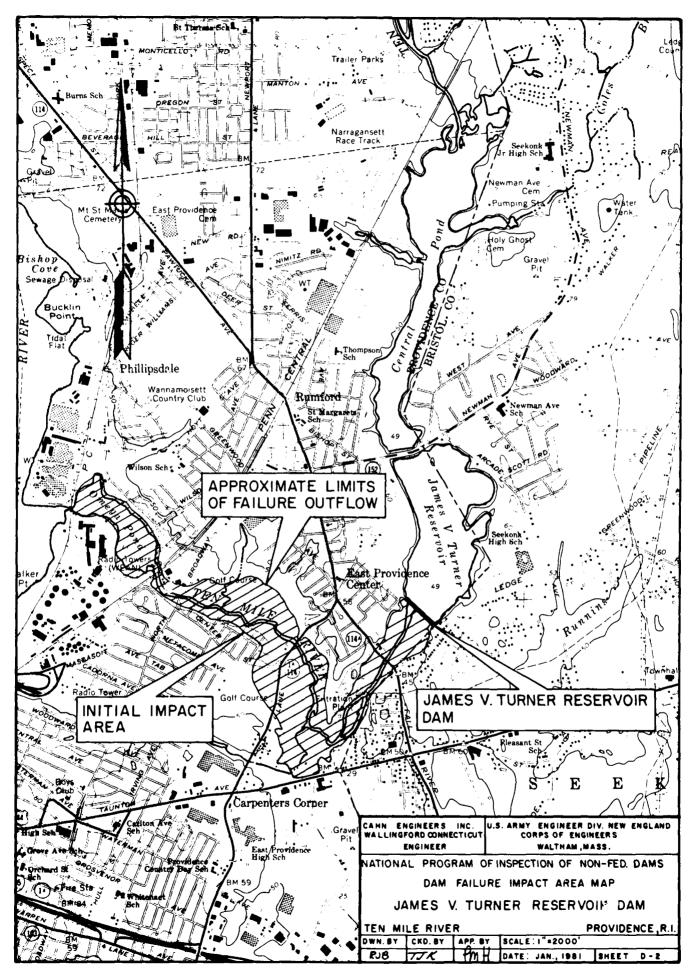
-2) WAIERSWED CLASSIFIED AS "ELAT AND COASTAC", TUPICALLY CONTAINING LARGE SUSAMES AND JUPDUNDMENTS ' FAILS POND, MANCHESTER POND RE:, GREENWOOD LARE AND DODGEVILLE BUD)

b) WATERSHED AREA: DA = <u>48.0</u> ^{Sq. Mil} Note: D.A. FROM R.J. DEPARTMENT OF PUBLIC WOLKS, LIVISION OF HARBORS XI'L RIVERS" NOTES IN EAST PROV. W. LONKS: DAN # 407" DAVED 6/20/49 MD JAM INVENTORY. JJ. NOTED HURCHAN, NAT THE 1122-1927 TEN HILE RIVER, R.O. DATA AT CENTRAL BUD DATA (Orn DATA " FROM J.V. TURNER DAM) SHONDS D.A. 52.3 ^{Sq.Mil}, (USE MORE BECENT DATA DA AP)

C) PEAK FLOODS (TROM NED-ACE SUIDELINES - STUIDE CURVES FOR PAIT).

i) FROM GURDE CURVES . 2 14 = 500 "Isani

(1) PHF = 48.0 × 500 = 24000 CFS

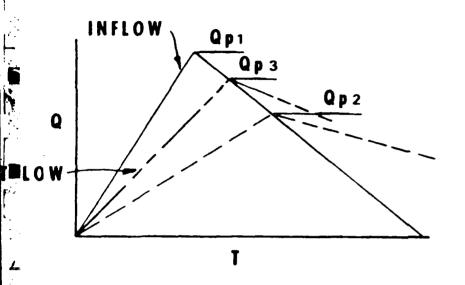

(4) 1/2 PMF = 12000 CFS

2) SURCHARGE AT PEAK INFLOWS (PHIT AND 1/2 PHIT)

a) OUTFLOW RATING CORVE:

C) SPILLWAY AND OVERFLUD PUSFICE OF DAM OSFE TYPE PILLWAY (+) 200'LOW: WITH REST ELEV. 46 NOVD. FORTH FILL

* TROM R.I. DEDT. OF PUBLIC WORKS, VIX. OF HOREDES & KIT AS DATA ADD DAVIS. - SEE NOTE Y. D-2



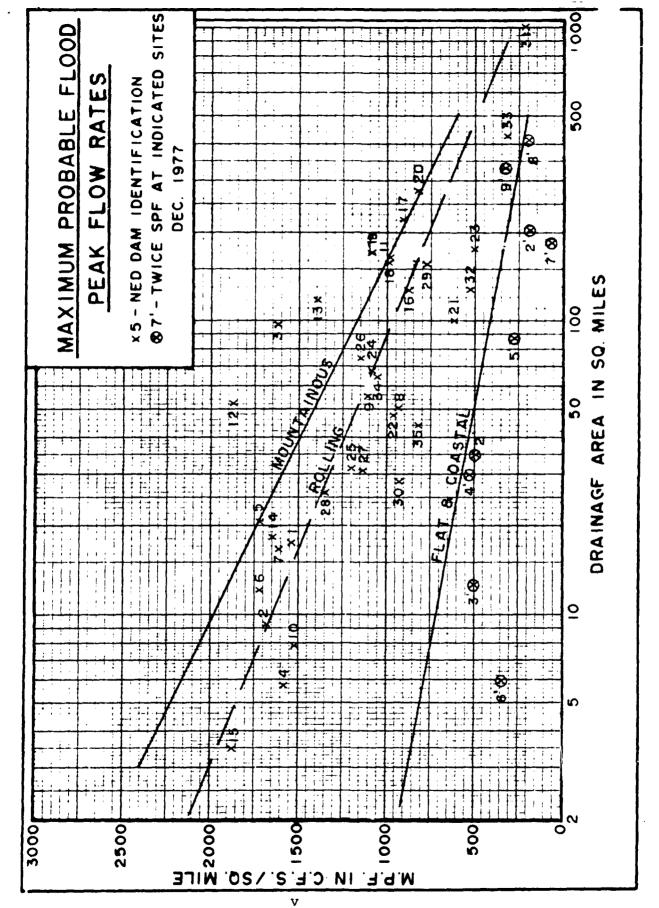
D

MAXIMUM PROBABLE	FLOWS
BASED ON TWICE	THE
STANDARD PROJECT	FLOOD
(Flat and Coastal	Areas)

	River	$\frac{\text{SPF}}{(\text{cfs})}$	<u>D.A.</u> (sq. mi.)	(cfs/sq. mi.)
1.	Pawtuxet River	19,000	200	190
2.	Mill River (R.I.)	8,500	34	500
3.	Peters River (R.I.)	3,200	13	49 0
4.	Kettle Brook	8,000	30	530
5.	Sudbury River.	11,700	86	270
6.	Indian Brook (Hopk.)	1,000	5.9	340
7.	Charles River.	6,000	184	65
8.	Blackstone River.	43,000	416	200
9.	Quinebaug River	55,000	331	330

ESTIMATING EFFECT OF SURCHARGE STORAGE ON MAXIMUM PROBABLE DISCHARGES

STEP 1: Determine Peak Inflow (Qp1) from Guide Curves.


- STEP 2: a. Determine Surcharge Height To Pass ''Qp1''.
 - b. Determine Volume of Surcharge (STOR1) In Inches of Runoff.
 - c. Maximum Probable Flood Runoff In New England equals Approx. 19'', Therefore:

$$Qp2 = Qp1 \times (1 - \frac{STOR_1}{19})$$

STEP 3: a. Determine Surcharge Height and ''STOR2'' To Pass ''Qp2''

iv

 Average ''STOR1'' and ''STOR2'' and Determine Average Surcharge and Resulting Peak Outflow ''Qp3''.

SURCHARGE STORAGE ROUTING SUPPLEMENT

STEP 3: a. Determine Surcharge Height and ''STOR2'' To Pass ''Qp2''

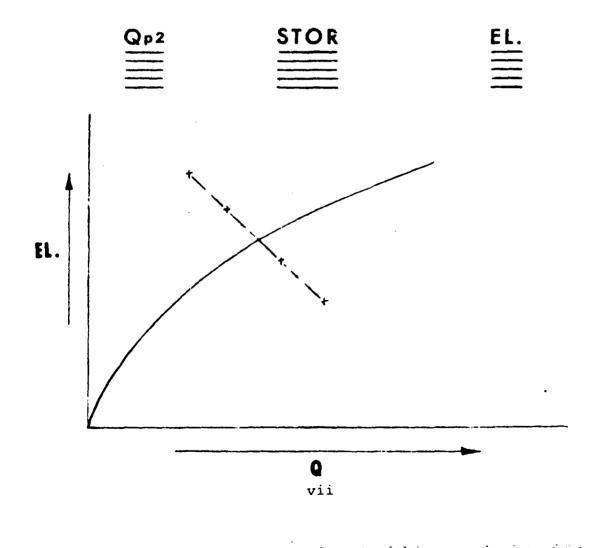
> b. Avg ''STOR1'' and ''STOR2'' and Compute ''Qp3''.

c. If Surcharge Height for Qp3 and 'STORAVG'' agree O.K. If Not:

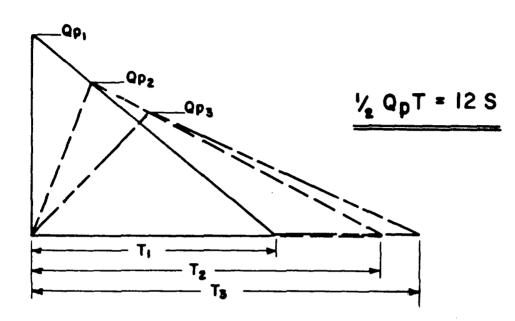
SIEP 4: a. Determine Surcharge Height and ''STOR3'' To Pass ''Qp3''

> b. Avg. "Old STORAvg" and "STOR₃" and Compute "Qp4"

c. Surcharge Height for Qp4 and ''New STOR Avg'' should Agree closely


vi

SURCHARGE STORAGE ROUTING ALTERNATE


$$Q_{p2} = Q_{p1} \times \left(1 - \frac{STOR}{19}\right)$$
$$Q_{p2} = Q_{p1} - Q_{p1} \left(\frac{STOR}{19}\right)$$

))

FOR KNOWN Qp1 AND 19" R.O.

RULE OF THUMB" GUIDANCE FOR ESTIMATING DOWNSTREAM DAM FAILURE HYDROGRAPHS

STEP 1: DETERMINE OR ESTIMATE RESERVOIR STORAGE (S) IN AC-FT AT TIME OF FAILURE.

STEP 2: DETERMINE PEAK FAILURE OUTFLOW (Qp1).

 $Qp_1 = \frac{8}{27} W_b \sqrt{g} Y_0 \frac{3}{2}$

Wb = BREACH WIDTH - SUGGEST VALUE NOT GREATER THAN 40% OF DAM LENGTH ACROSS RIVER AT MID HEIGHT.

Y_o = TOTAL HEIGHT FROM RIVER BED TO POOL LEVEL AT FAILURE.

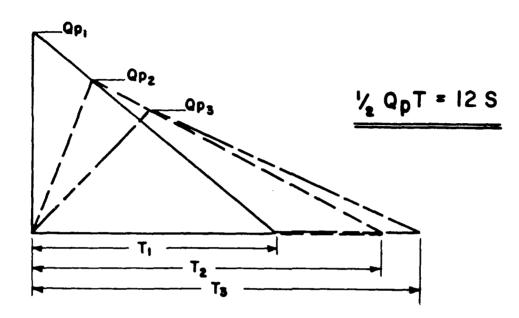
STEP 3: USING USGS TOPO OR OTHER DATA, DEVELOP REPRESENTATIVE STAGE-DISCHARGE RATING FOR SELECTED DOWNSTREAM RIVER REACH.

STEP 4: ESTIMATE REACH OUTFLOW (Q_{p2}) USING FOLLOWING ITERATION.

- A. APPLY Q_{p1} TO STAGE RATING, DETERMINE STAGE AND ACCOPMANYING VOLUME (v_1) IN REACH IN AC-FT. (NOTE: IF v_1 EXCEEDS 1/2 OF S, SELECT SHORTER REACH.)
- B. DETERMINE TRIAL Q_{D2}.

 $Qp_2(TRIAL) = Qp_1(1-\frac{V_1}{S})$

- C. COMPUTE V_2 USING Q_{p2} (TRIAL).
- D. AVERAGE V1 AND V2 AND COMPUTE Q_{D2} .


$$Qp_2 = Qp_1 \left(1 - \frac{V_{\text{MP}}}{2}\right)$$

STEP 5: FOR SUCCEEDING REACHES REPEAT STEPS 3 AND 4.

1

APRIL 1978

"RULE OF THUMB" GUIDANCE FOR ESTIMATING DOWNSTREAM DAM FAILURE HYDROGRAPHS

STEP 1: DETERMINE OR ESTIMATE RESERVOIR STORAGE (S) IN AC-FT AT TIME OF FAILURE.

STEP 2: DETERMINE PEAK FAILURE OUTFLOW (Qp1).

D

 $Qp_1 = \frac{8}{27} W_b \sqrt{g} Y_0 \frac{3}{2}$

Wb = BREACH WIDTH - SUGGEST VALUE NOT GREATER THAN 40% OF DAM LENGTH ACROSS RIVER AT MID HEIGHT.

Y₀ = TOTAL HEIGHT FROM RIVER BED TO POOL LEVEL AT FAILURE.

STEP 3: USING USGS TOPO OR OTHER DATA, DEVELOP REPRESENTATIVE STAGE-DISCHARGE RATING FOR SELECTED DOWNSTREAM RIVER REACH.

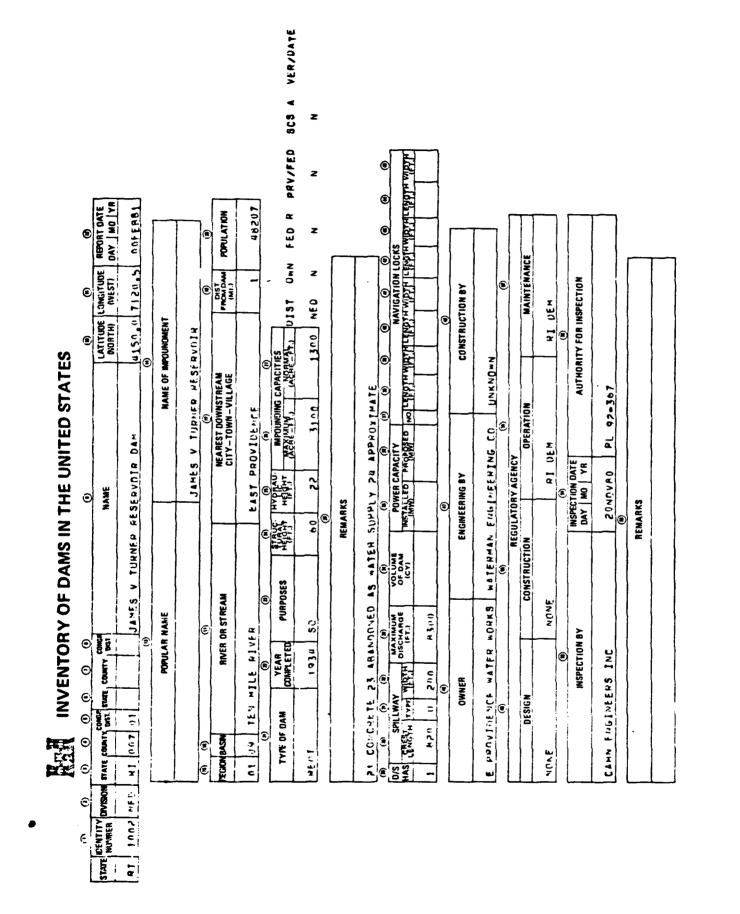
STEP 4: ESTIMATE REACH OUTFLOW (Q_{p2}) USING FOLLOWING ITERATION.

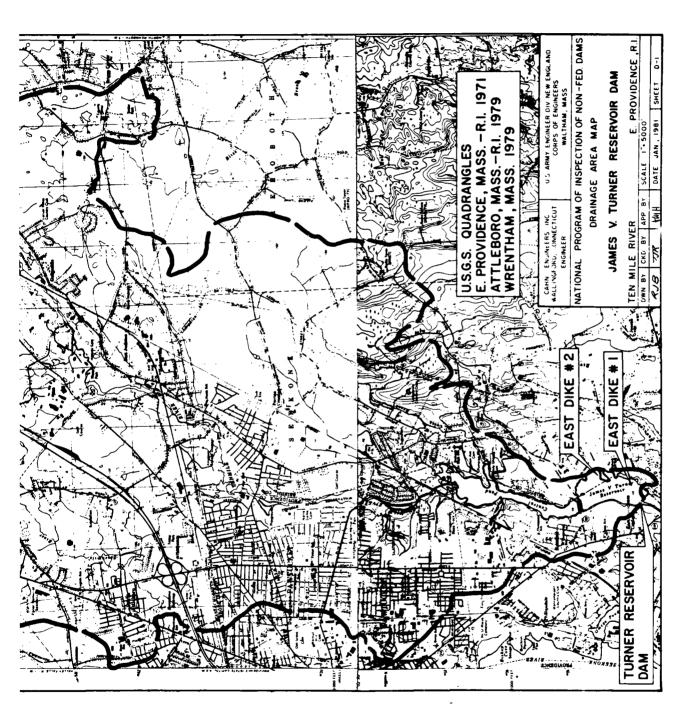
- A. APPLY Q_{p1} TO STAGE RATING, DETERMINE STAGE AND ACCOPMANYING VOLUME (V₁) IN REACH IN AC-FT. (NOTE: IF V₁ EXCEEDS 1/2 OF S, SELECT SHORTER REACH.)
- B. DETERMINE TRIAL QD2.

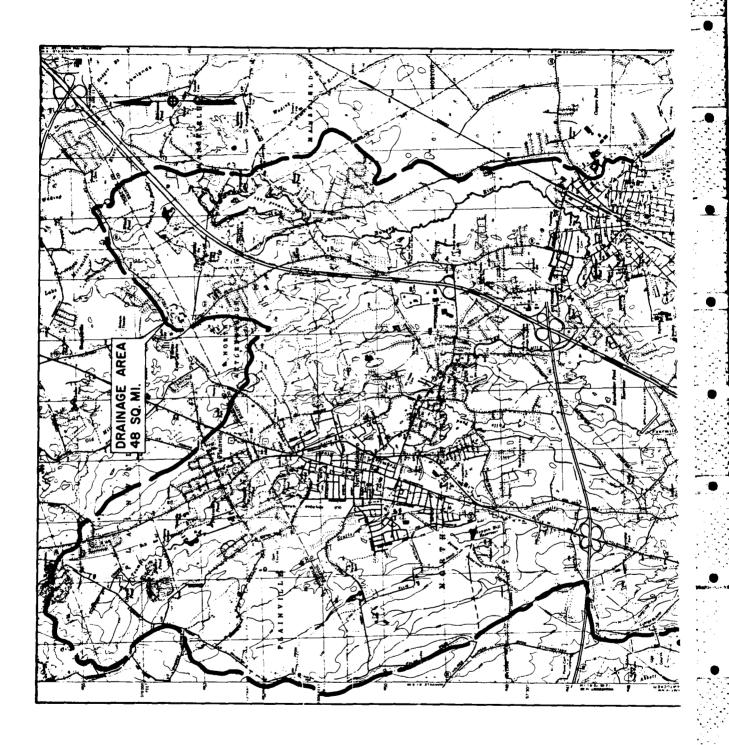
 $Qp_{2}(TRIAL) = Qp_{1}(1-\frac{V_{1}}{5})$

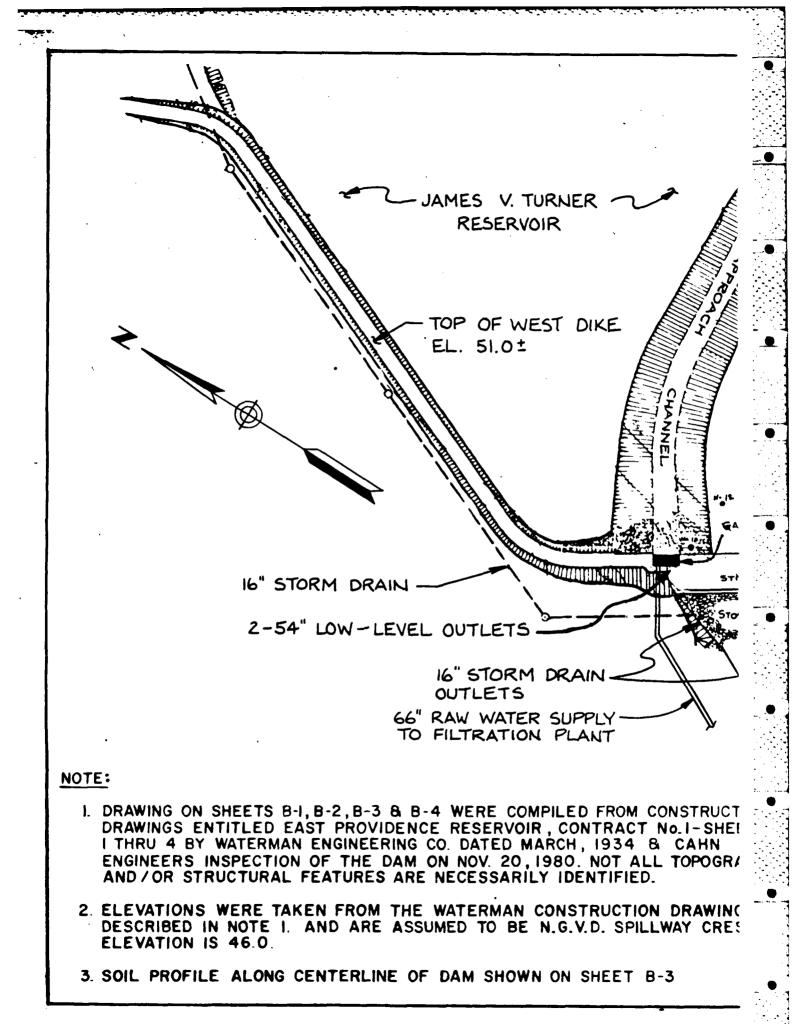
- C. COMPUTE V_2 USING Q_{p2} (TRIAL).
- D. AVERAGE V1 AND V2 AND COMPUTE Q_{n2} .

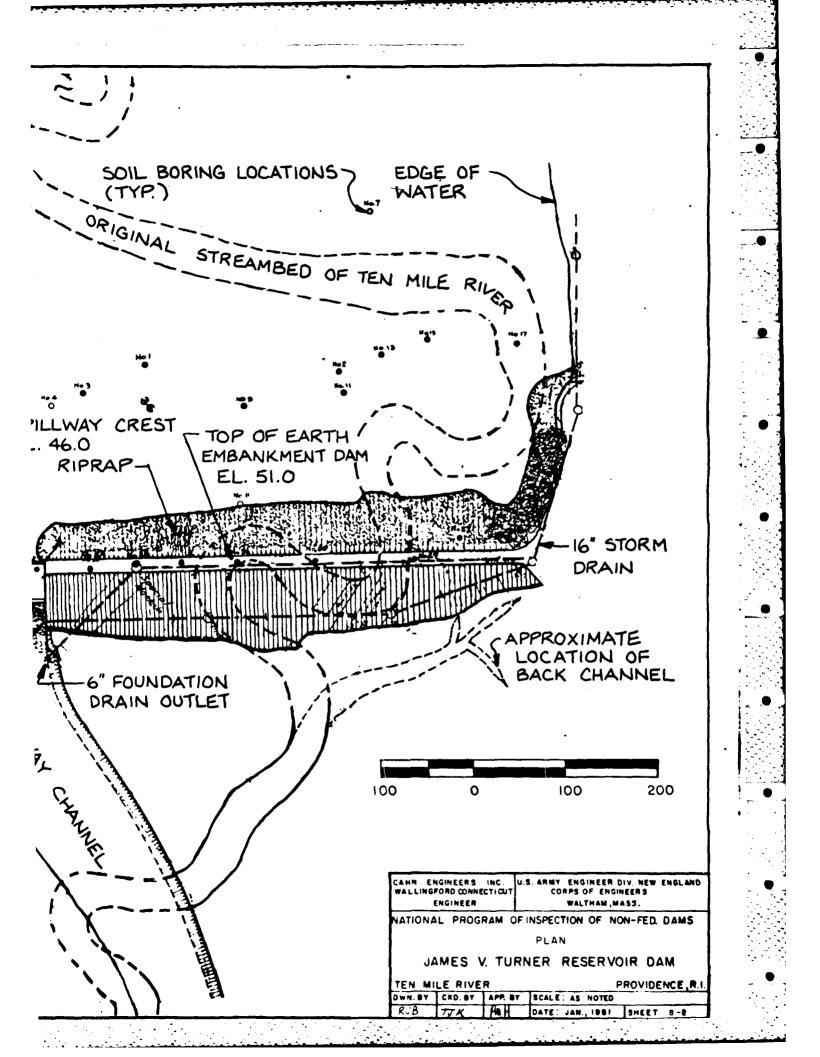
$$Qp_2 = Qp_1 \left(1 - \frac{V_{mer}}{S}\right)$$

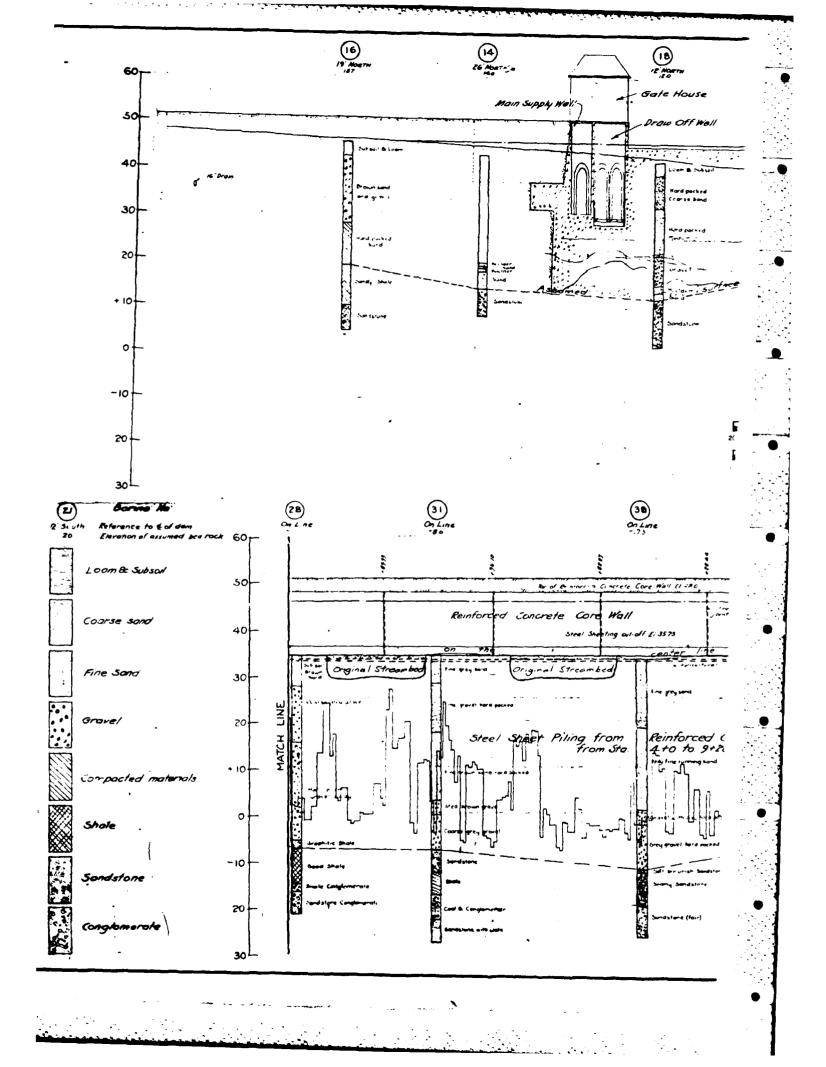

STEP 5: FOR SUCCEEDING REACHES REPEAT STEPS 3 AND 4.

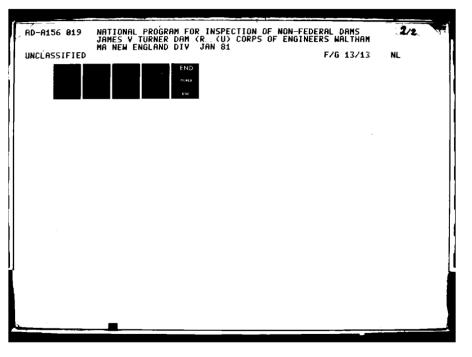

APRIL 1978

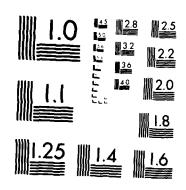

viii

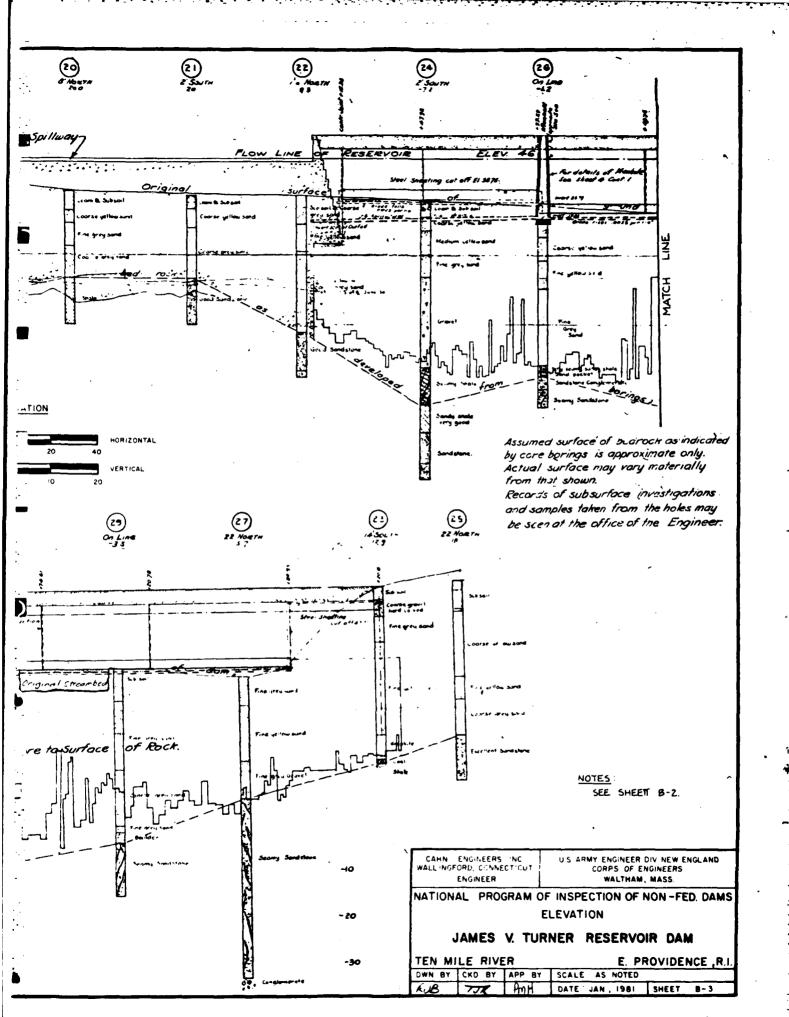

APPENDIX E

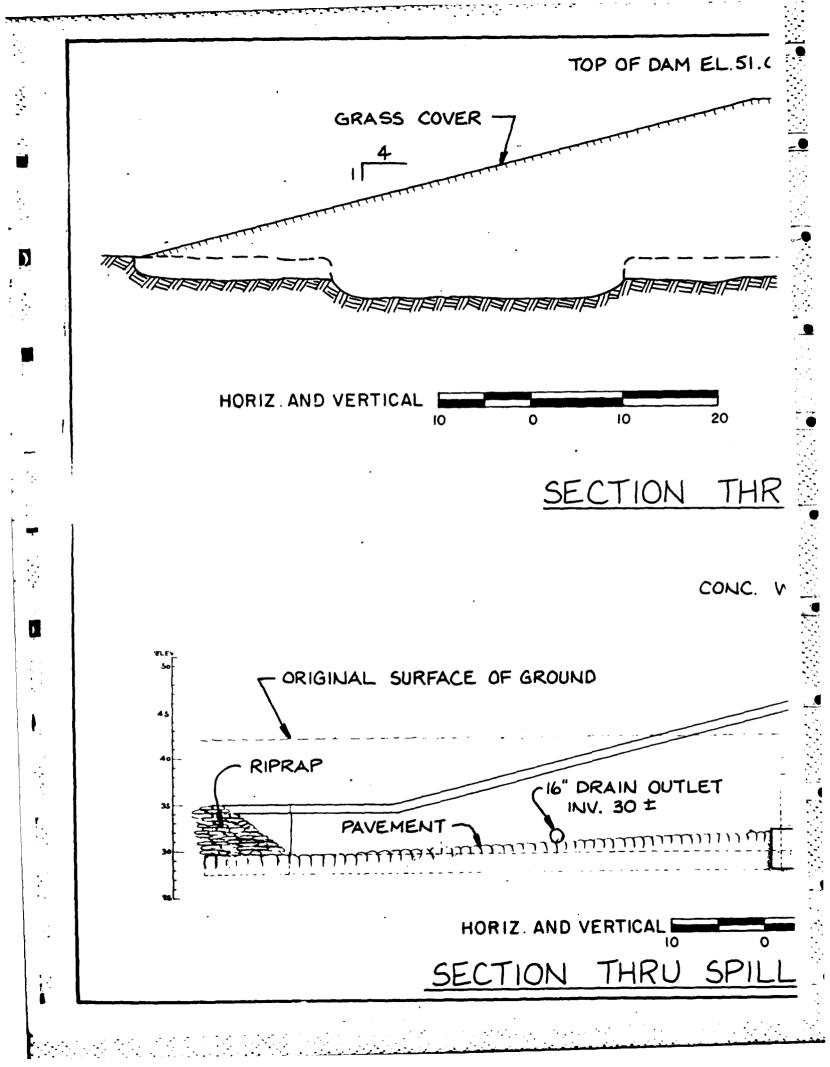

INFORMATION AS CONTAINED IN THE NATIONAL INVENTORY OF DAMS

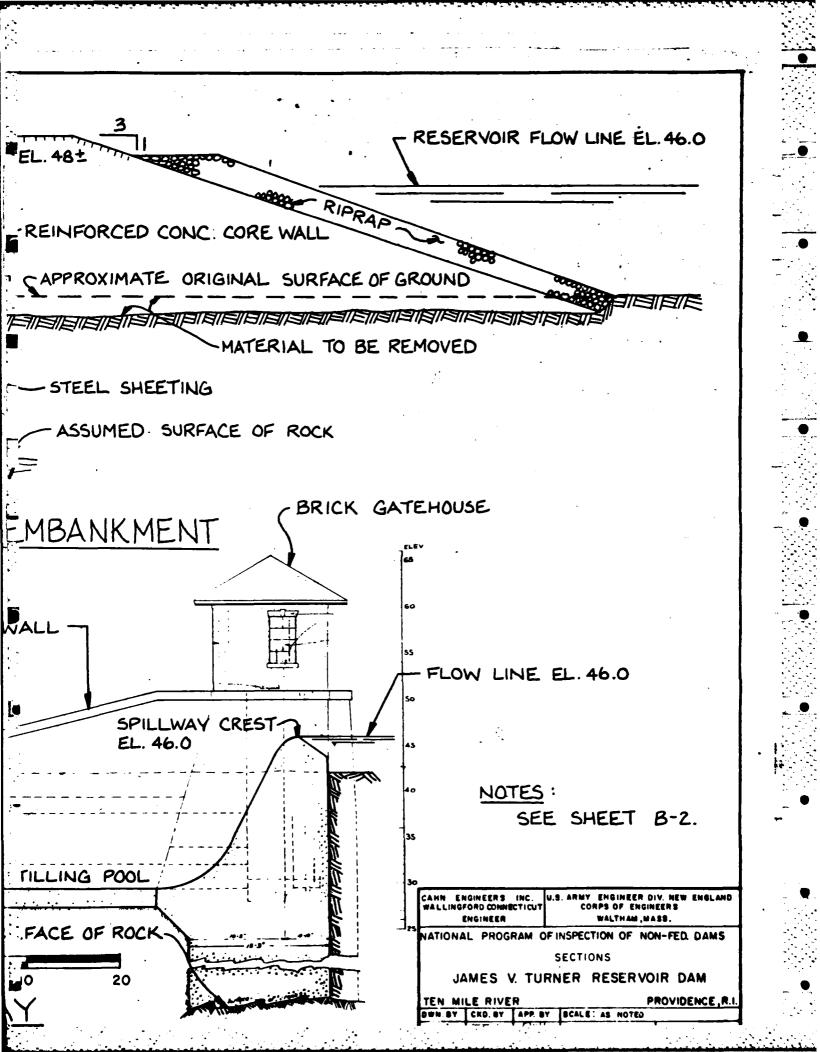












MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS 1963 4

<u>|</u>

END

FILMED

8-85

DTIC