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1. INTRODUCTION

The earth's gravitational potential, V, at a point with geocentric coordinates
(ry ¢', 1), may be represented by a spherical harmonic expansion (Moritz, 1980a,
Sec. 3):

V=V(r, ¢', 1) = [1-+ Z Z ( C €S mA-*S 51n mA)ﬁnm(sin¢')] (1.1)
n=2m=0

where GM is the gravitational constant times the earth's mass, a is the equatorial
radius of the best-fitting earth ellipsoid; (Com»> Spm) and Pyp (function of

sin ¢', ¢' is geocentric latitude) are respectively the fully normalized poten-
tial, or harmonic, coefficients and associated Legendre functions of degree n e
and order m. If we subtract the potential coefficients corresponding to the o
earth's normal gravity field from (Cphp, Spm), the residual potential coefficients »
(CAm» Skm) when _ubstituted in (1.1) will yield the anomalous potential T. o

[
L.

T N
Al o o

As other quantities related to the earth's gravity field, e.g., gravity
anomalies, geoid undulations, deflections of vertical, etc., are simply related
to the anomalous potential T, a knowledge of the potential coefficients (Cpps Spm)
serves to describe the earth's gravity field. The computation of gravity related
quantities from the potential coefficients may be termed as 'harmonic synthesis'.
Several very efficient algorithms are now available for harmonic synthesis. A
comparison of these algorithms is described by Tscherning et al. (1983). The
inverse operation of computing potential coefficients from a global data set of
gravity related quantity may be termed as 'harmonic analysis'. The algorithms
for harmonic analysis will be described in Sections 2 and 3 of this study following
the development by Colombo (1981).

The resolution of gravity related quantities computed by harmonic synthesis
depends on the degree n up to which the potential coefficients are available.
A dramatic improvement in the resolution of geoid undulations around Japan com-
puted with potential coefficients up to degree n=180, when compared with n=36,
may be seen in Rapp (1982, Figures 1 and 2). Another advantage of potential
coefficient determination to a high degree, through harmonic analysis, is the
use of residual quantities, referred to this high degree field, for evaluating
integral formulas, e.g. computing geoid undu]ations from residual gravity anom-
alies. A much smaller residual data 'cap' would be adequate with the use of
high degree field. For further discussion of the role of high degree field in
solving geodetic problems, see Tscherning (1983).

A high degree potential coefficient field GEM1OC to degree 180 was developed
by Lerch et al. (1981) using global 1°x 1° mean geoid heights H*, residual to

GEM 10 B (complete to degree 36), by implementing: ._‘~‘
R ..‘ ::!

Crn cos mx .

1 - = ) g

* Zra [] A* (¢, 1) P nisin o) cos ¢ do da (1.2) Chp

S* *A sin m |

nm T
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Rapp has developed several high degree fields, the current one to degree 180

is described in Rapp (1981). He utilized global 1°x 1° mean gravity anomalies
which were first adjusted with a potential coefficients set to degree 36. The
procedure will be discussed more fully in Section 2.3. In concept, the following
relation was implemented:

E:m ) cos ma
_ =m J’J’ Ag an(smq; ) . do (1.3)
S;m o sin mx

where Ag is the gravity anomaly over a block size do, Y is an average value
of gravity over the globe, denoted by o, and other notations are as in (1.1).

The main problems in implementing (1.2) or (1.3), or similar relations, are
as follows. Firstly, the uncertainty in the gravity related quantity, H*, ag,
etc., is not taken into account in computing the potential coefficients. These
coefficients remain the same so long as the global data set, e.g. of gravity
anomalies, is not changed, whether the uncertainty ascribed to the anomalies is
20 mgals, or 5 mgals, globally, or more realistically varies over the globe.
Secondly, the error estimates of the potential coefficients are not obtained
satisfactorily taking into account both theuncertainty or 'noise' of the gravity
related quantity, and the finite block size, or 'sampling', over which this
quantity is given as a mean value. Thirdly, in the practical implementation of
(1.2), (1.3), etc., the integration is replaced by a summation, and the fact
that we are using mean values instead of point values requires a choice of 'de-
smoothing' factors (see Rapp (1981), p. 4), depending on the degree of potential
coefficients being computed. If a few desmoothing factors are chosen, separately
for different degree bands, to span the entire spectrum, a sharp discontinuity
may result at the boundary of degree bands. In fact, the current potential co-
efficients field by Rapp (1981) was developed to degree 300, but has been usually
employed only up to degree 180 because of concern over such a discontinuity.

Colombo (1981) developed algorithms for 'optimal' estimation of potential
coefficients which are free of the above problems. His tests were carried out
with global set of 5°x 5° anomalies. He estimated CPU time of about two hours,
on an Amdahl 470 V/6-11 computer, for computing coefficients to degree 180 with
a global set of 1°x1° anomalies. With a faster 470 V/8 computer, and by slight
modifications in the subroutines, we can now compute coefficients to degree 250
with 1°x 1° anomalies in about 60 minutes CPU time. This procedure will be
described in Section 3.

The initial potential coefficients set used in this study is the one deveioped
by Rapp (1981) to degree 180. We used this set to compute a global 1°x 1° anomaly
data, which then served as a test data to generate different potential coefficient
sets by optimal estimation procedure, assuming different error estimates for the
anomaly data. Rapp (ibid.) had also generated an adjusted global 1°x 1° anomaly
data set, adjusted with a potential coefficient set to degree 36. This was the
second global anomaly data set used in the present study. The different poten-
tial coefficient sets, and the global anomlay data sets, are described in Section 4
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The differences between the various potential coefficient sets are examined
7 Section 5. This allows us to estimate the improvement by the optimal estimation N
rocedure over the current (Rapp, 1981) harmonic analysis procedure in developing RN
high degree field. There are presently several areas in the world, which have S
eophysically predicted 1°x 1° anomalies. We therefore also examine in Section ®
.3, the change in potential coefficients set if anomalies in some areas of the RS
orld are set to zero.

The potential coefficients developed to degree and order 250, and their e
rror estimates, by optimal estimation procedure are discussed in Section 6. RS
here is a very substantial improvement in these error estimates when compared °
ith the error estimates of the current set of potential coefficients (Rapp,

981). The error estimates of geoid undulations, and gravity anomalies, computed

rom the potential coefficients developed by optimal estimation, are also

xamined by degree, and cumulatively. Section 7 summarizes the findings of the

resent study. The choice of the highest degree 250, to which the coefficients 4
711 be estimated from 1°x 1° anomalies, was somewhat arbitrary. It was chosen ®

rom the dual consideration of keeping the computational effort manageable, and
et not Tose the high degree information available in 1°x 1° anomalies. The re-
‘ormulation of the computational algorithm in several steps is given later in
‘able 3.4. We will also find in Section 6, that at degree 250, the undulation
1agnitude per degree is about 1 cm, and the anomaly magnitude per degree is about
1.5 mgals.
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ut on tape after rearranging as 180 (=Ng(2.22)) numbers, (NN+1) times, for 90
atitude bands. The requirement is to form them into (NN+1)}(R(m), m=0 to NN)
atrices of 180 x 180 numbers. The expansion of 180 x 90 numbers into 180 x 180
atrix, by exploiting the persymmetric nature of R(m) matrices, can be handled
y proper indexing. However, reading 180 numbers as one logical reccrd still

equires 90 x (NN+1) records to be read to access the whole set to pick out elements

or one (R(m) matrix; and 90 x (NN+1)2 records to be read to form (NN+1) R(m)
atrices, and additional TAPE I0 for writing out the reordered R(m) matrices.
sing the largest block size for reading and writing, the TAPE 10 for different
N are given in Table 3.2.

able 3.2 TAPE I0 for Reordering Normals for Estimating Coefficients to Degree NN.

TAPE 10
NN
Read Write Total
180 134, 121 724 134, 845
250 257, 777 1,004 258, 781
300 370, 832 1,204 372, 036

To avoid excessive TAPE I0 costs, the coding was modified to put the sequen-
.ial set of generated normals, after grouping 180 x (NN+1) numbers for k latitude
yands as one record, on random disk storage. This not only removed the need to
-ead the entire sequential set to form one R(m) matrix, but also allowed k R(m)
iatrices to be assembled at a time, as any one record was read in from random
itorage. However, this required that an array of kx (16,290) x8 bytes should be
wvailable, where 16,290 (= 180 x 181/2) is the number of double precision elements
in vector form of a 180 x 180 R(m) matrix.

With 2048 K bytes of virtual storage, k was chosen as 13. A proportionally
larger value of k could be chosen if a larger region size is available. This
;tep of reordering the normals may be termed as step 3A.

3.32 Reordering of the Right Hand Side Vectors

After the reordering of R(m) matrices, m=0 to NN, we need to read in the
ight hand side vector kpm in the following manner, for the solution of xum in
(2.30). For kpm» 180 elements for latitude bands i=0 to 179, arranged by order
n=0 to NN, and degree n=m to NN; where NN is the highest degree and order up
.0 which coefficients are to be estimated, usually N<NN<Npgx. From the 45,451

values per latitude band, n=0 to Npax,» m=0 to n, available in step 1C, the

(1
lgTues corresponding to m=0 to NN, n=m to NN, could be pi:ked by suitable indexing

in each latitude band, and multiplied by the factor in (3.4) to obtain corres-
onding kln. This would result in the elements of kpm being assembled as
[NN+1)(NN+9)/2 elements, m=0 to NN, n=m to NN, for each latitude band i=0 to
179. If we consider it as a general matrix stored in a vector form row by row,

-17-
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m=0 to NN, for each row p. The procedure is repeated by reading in I;m for

i=1, 2, ..., 89 and implementing p=i to 179-i for each i, thereby fully exploiting
the equatorial symmetry of the data grid, which makes R(m) matrices persymmetrical,
i.e., symmetrical wi.nh respect to both the main diagonal and the main antidiagonal.

For a given NN, the CPU time for generating r}? varies almost linearly with
the latitude band i, decreasing from high to low latitudes, except for slight
reduction in the polar region for high NN. A modification was made to generate
only a portion of the normals, i.e. r1P for any one or more i (for ali p=1 to
179-1) for estimating the time to geng}ate the entire normals for a given NN.
Some CPU times on an Amdahl 470 V/8 computer are g:en in Table 3.1 for various
NN for the case of 1°x 1° anomalies.

Table 3.1 CPU Time for Generating Normals for Estimating Coefficients to Degree NN.

Latitude Band CPU Time in Seconds
i NN=12 NN=60 NN=250
0 5.3 13.4 25.7
29 4.1 8.1 31.8
59 2.9 5.0 10.0
89 1.7 1.8 2.1
Total Time 5.3 min. = 10 min. =26 min.
i=0 to 89

The generation of normals in this step 2 depends only on the data grid,
e.g. 46=a1=1°. As the error estimates of anomalies are introduced in later steps,

the normals are not required to be regenerated for testing the effect of different
anomaly error estimates.

3.3 Optimal Quadrature Weights and Error Estimates

The elements of R(m) matrices generated in step 2 in Section 3.2 first need
to be arranged by the order m, m=0 Lo NN, in a vector form for the 180 x 180 symmetric
matrix, for all latitude bands i and p. Similarly, the elements I‘m in step 1C
need to be arragned by the order m to assemble the vector kpyy in the form needed
for implementing (2.30) to solve for xum., for all n for a given m. It is only

at this stage that average variance o% of anomalies in (2.32) in different latitude
bands has to be considered.

3.31 Reordering of the Normals

r}? are generated in step 2 as (NN+1) numbers, for 180 latitude bands p,
for 90 latitude bands i from pole to equator. The generated numbers are written

-16-
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Plogs (12010 89) = { Py, (k= 179-1)in-m= (3.3)

Finally, as the PI;m are needed in the form of I;m as in (2.24) for all
further computations, a third tape was written for Il from north pole to south
pole, i = 0 to 179:

LY T YL 4 A
Inm 2n+l a5 PInm knm// 2n+l (3.4)

These three steps of computing PI;m, i =0 to 89; extending PI;m to i=0 to 179;
and modifying these to I},, i = 0 to 179 are preliminary steps to the generation of
normals. These three steps may be termed as 1A, 1B and 1C for convenience of refer-
ence. The anomaly degree variance model will be specified in Section 4.

3.2 Generation of Normals

The Fourier transforms,a}?, m = 0 to n, of the covariances of anomaly blocks
in two latitude bands i and p are obtained by (Colombo, 1981, p. 44, (2.63)):

Nmax . Nmax . A2 for m=0

j 1 1 p .
ad =Ll Tamlam* 1 Toonm In,onemd 7, (3.5)
n=m n=m E?(l-cosm a)) for m#0

where 2N-m } Npax. The second term in the square brackets take the aliasing of
Fourier transform into account, with increasing m. Npzx was taken as 300 based
on experiments by Colombo (1981, Sec. 4.2).

The element r}f, corresponding to latitude bands i and p, of the matrix
R(m), m = 0 to NN, where NN is the highest degree up to which coefficients will
be estimated (N < NN < N___), are obtained by:

max
. . 2N, if m=0
ﬂ:=aw { (3.6)
N, if m#0

The formation of R(m) matrix may be termed as the generation of normals
in the frequency domain corresponding to the formation of the covariance matrix
C,z of the 64,800 anomaly blocks. This step of the algorithm takes a large
CPU time. However, the CPU time is dependent on the highest degree up to which
the coefficients are to be estimated, as the number of 180 x 180 R(m) matrices
to be formed is NN+1.

The implementation of (3.5) starts by reading in the 45,451 values of I;m E“A B
in (3.4) in step 1C for i=0, and multiplying with the corresponding values of e
Igm in (3.5) for p=0 to 179 yielding NN+1 numbers a%P (and rOP from (3.6)), RGO
m m “d
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3. ALGORITHM FOR OPTIMAL ESTIMATION OF POTENTIAL COEFFICIENTS

The algorithm outlined in Section 2.2 was coded by Colombo (1981, Appx. B4)
in subroutines NORMAL and ANALYS, and were tested by him up to the smallest
anomaly block size of 5°x5°, comprising of 2592 anomalies globally. In applying
these subroutines to the case of 64,800 1°x 1° anomalies, it appeared advisable
both for testing, and for actual computations, to separate out portions of NORMAL
which could run sequentially, without repeating earlier stages and thus allowing
greater flexibility in considering different anomaly uncertainties, and later
different global anomaly data sets. Also, two major modifications were required
because of very large TAPE/DISK I0's, or very large array size, needed with
the existing coding for the case of 1°x 1° anomalies. The separate portions of
implementing the algorithm and the modifications, are described below. The
numerical values, and ranges, will refer to the case of 1°x 1° anomalies.

3.1 Integration of Associated Legendre Functions

The integrals of associated Legendre functions, Pl;m,

. 6.+A8
PI'! =1 P (cose) sinedo (3.1)

nm oo nm

i

are needed repeatedly for implementing (2.20) and (2.21), e.g. in the formation
of the elements of R(m) matrices and the array knm for computing the optimal
quadrature weights xpm in (2.30). The recursive relations for efficiently computing
PI}, were developed by Paul (1978). A subroutine supplied by him (private com-

munication to R.H. Rapp) was used to generate PI on tape for:

o [} = o =
0° <o, <89%, 486 =1°, n=20to Nma

29 im=20 ton; Nm

x = 300 (3.2)

X a

These are nominal values of A6, and e as the complement of geodetic latitude
¢. The actual integration limits in (3.1) were obtained by 6 = 90-¢', by con-
verting the nominal geodetic latitudes ¢ to the corresponding geocentric latitudes
¢'. To avoid the numerical instability in computing the sectorial PI}., the
direct series expansions were used for latitudes up to 50° from the poTe for PI
instead of forward sectorial recurrence relations. This tape was already avail-
able for this study, but for any future studies with n exceeding 300, Gleason
(1983) has suggested modifications to Paul's routines for employing backward and
forward sectorial recursions depending on the condition number associated with
the recursion (Gerstl, 1980).

i

The order of PI on tape was according to latitude bands from the north pole
to the equator; and on each latitude band (Npax*1)(Nmax*t2)/2=45,451 PIV values
were arranged by degree and order as in (3.2). As the PIA are required for all
latitude bands from the north pole to the south pole for tWe elements in the
right hand side of (2.30), a new tape was written by exploiting the symmetry
of PI‘m with respect to the poles, and change of sign in the two hemispheres
when ?n-m) is odd:

-14-

....................
..................




...............................

We note from (2.40) that under the assumption of a constant global anomaly
error, the propagated error estimate of all coefficients of different order are
the same in each degree. This also appears to be the case in (2.41) for sampling
error, but this is an artifact due to the fitting of the quartic expression
in (2.41) to estimation errors o., per degree in (2.33) instead of estimation
errors for each pair of coefficients ca as discussed after (2.32).

Based on root mean square errors of 56,751 merged anomalies
as *10 mgals, and *30 mgals for the balance 8049 anomalies, the constant global
anomaly error m in (2.36) could be taken as *15 mgals. A larger value of +20
mgals was chosen to allow for possible anomaly errors in the several largely
unsurveyed areas (Rapp, 1981, p. 15). This caused a slightly pessimistic coef-
ficient error estimate in (2.40).

-13-
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G(n1)72 (2:%)

where o is the standard error of a 1°x1° anomaly, assumed to be the same for all
64,800 anomaly blocks; and up are the de-smoothing factors (2.7) in HARMIN.

‘§£=3F/agg are the partials in (2.34) and P, is the weight matrix of anomalies,
assumed to be diagonal,

ST PP

(P,] = cos¢'/o2 = sin 8/02 (2.37)
The corrections Y, to the anomaly data set is obtained by:

= p-1gT
v, =P8l PV (2.38)

The simplification in the adjustment model results from §£P§1§1 matrix being
diagonal (so that its inversion becomes trivially simple), which depends on the
assumption (2.37) with the standard error o of all anomalies being the same globally.

Elements of the covariance matrix Epyx of coefficient errors due to propagation
of anomaly errors are given (Rapp, 1969, p. 112, (12)) by:

- A

(E,, —_—1+[Px]A

(2.39)

E__ was considered as a diagonal matrix. The standard errors of 'adjusted SET1'

cB&fficients to degree 36 (some additional coefficients to degree 48) were retained,

while for higher degree and order coefficients Py, was null matrix and pp in (2.7)

was uniformly taken as 1/4n. Then the diagonal elements of Epy for coefficients,

?ther)than the 'adjusted SET1', were computed (Rapp, 1981, p. 29, (30)) by using
2.36) as:

2
E = A = —9° 8¢ AN 2.40

En] any(n-1)12 (2.40)

The diagonal covariance matrix Epg of coefficient errors due to sampling =
finite size of 1°x1° anomaly blocks was based on empirical relation derived from L
a Montecarlo approach (Colombo, 1981, p. 78, (3.10): )

f;ﬁ
= SN (((- n n 02 o
[Ens] [100{(( 16.19570 (N) + 30.34506)(N) + 40.29588)(N) }1] (2.41) L]

The Montecarlo experiments are described in Colombo (1981, Sec. 3.1) and the

sampling error computations were performed as described in Section 2.2 of this
study utilizing noise-free data.
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2.3 Rapp's December 1981 Potential Coefficients

Rapp's current set of coefficients was developed (Rapp, 1981) to degree
and order 300, but have been generally employed to degree and order 180. The
procedure for computing these coefficients is reviewed here. In concept, the
coefficients were computed as in Section 2.1, but the error estimates included
sampling error based on Section 2.2.

First, a low degree potential coefficients set (complete to degree 36 with
some additional coefficients to degree 48) was assembled by a weighted merging
of most current sets, including resonance coefficients of orders 12 to 15 and
30. These merged coefficients were called SET1, and were also assigned error
estimates. Similarly, a global set of 64,800 1°x 1° mean gravity anomalies was
assembled by merging most current terrestrial anomaly data with anomalies deter-
mined from adjusted Seasat altimeter data. The number of merged anomalies was
56,751 with root mean square of standard errors of anomalies being +10 mgals.
The remaining 8049 anomalies, to complete the global set, were assigned values
implied by SET1 coefficients, and assigned standard error of 30 mgals.

Next, a simplified adjustment was made, whose procedure is outlined below,
of SET1 coefficients and 64,800 1°x 1° anomalies. The result of the adjustment
may be called 'adjusted SET1' to degree 36 (some additional coefficients to
degree 48), and 64,800 'adjusted anomalies'. The ‘'adjusted anomalies' were used
to compute potential coefficients to degree 300 using subroutine HARMIN, which
implements (2.5) with de-smoothing factors (2.7). The 'adjusted anomalies' and
the coefficients (using HARMIN) up to degree 180 will be termed test data set
B in Section 4.2. Because of the simplified adjustment procedure, the low degree
coefficients in data set B did not fully agree with the 'adjusted SET1' coef-
ficients, though the difference was small as discussed later in Section 5. A
merged set of coefficients was then formed using 'adjusted SET1' where available
(complete to degree 36, with some additional coefficients to degree 48), and
the remaining high degree coefficients as developed from 'adjusted anomalies'
using HARMIN. This merged set up to degree 180 are Rapp's current (December
1981) potential coefficients, and will be part of test data set A in Section 4.2.

The simplified adjustment of combining SET1 with global anomaly data is
based on the model:

F=FL$, L3) = 0 (2.34)

where L§ are the adjusted SET1 coefficients, while La are the adjusted anomalies.
Denuting une element as [-], an element [V4] of the &orrection vector Vyto
SET1 coefficients is given by:

[v,] = -[wl/(1 + A[P]) (2.35)

where w is the misclosure vector between the SET1 coefficients and the computed
coefficients from the anomalies using HARMIN, P, is the weight matrix (assumed
to be diagonal) for the_SET1 coefficients, and A is one of the elements of the

diagonal matrix §1P;1 gl, given by (Rapp, 1981, p. 6, (23)):
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(2.31) allows harmonic analysis through a quadrature formula, and xpm may S
be called the optimal quadrature weights. The optimal quadrature weights are ek
derived on the basis of minimizing the sum of both error quadratic terms due to
finite size of anomaly blocks, and the anomaly uncertainties. And (2.31) retains J
the efficiency in computation of the coefficients inherent in the structure of .
(C;;+D) discussed before (2.24). This however requires (Colombo, 1981, Sec. 2.9)

a slight modification in the structure of noise matrix D. The modification is N
that the variances for all anomalies in a latitude band be equated to the average o
value for that band, i.e.

2N-1 T

0'2 = -1— 2 o

2 = J_ZO o3 (2.32) .},::1

Y

This modification causes a change in estimates for propagated error (e, in MR
(2.15)) for non-zonal coefficients. But the sum of variance of a pair of non- .
zonal coefficients Cyp, i.e. (Cpps Spm)s 1S unaltered. The estimated variance o
of each of the coefficients, in a pair, is then arbitrarily made equal. This s
is a minor modification to retain the computational efficiency of not having 4
to directly invert the (CZZ+D) matrix of a large size. "7

IS
:

There is no change in error estimates of the zonal coefficients. There is
also no change in the error variance per degree, oZp, or the error variance per
average coefficient per degree, oZp:

n 1 n
o2 = § 7 o2 =7 (02 +0%2 ) ; G2 = 2.33 o
en  lotp  nme Lo cnm T “snm en (2.33) i

N

Q
8
(S

The implementation of (2.23) to (2.29), leading to the computation of optimal :tj
quadrature weights in (2.30) is done by subroutine NORMAL. The error estimates T
for the coefficients, obtained in concept through (2.21), are also computed by )
NORMAL, including (2.33), under the condition (2.32). The optimal quadrature T
weights, X,m, computed by NORMAL, are used in subroutine ANALYS with the global ]
anomaly data for the harmonic analysis of coefficients in (2.31). The coding o
of NORMAL and ANALYS is documented in Colombo (1981, Appx. B4). Some changes .
made in these subroutines will be discussed in Section 3. :

One may notice the similarity of (2.5) and (2.6), the quadrature formula
with de-smoothing factors u,, and (2.31) read with (2.28), (2.26), (2.30), i.e.

T
LSNPS - O S I ]

Section 2.2 coefficients are also optimal in the sense of minimizing ET in (2.16),
and satisfactorily accounting for both Eg and E,, and also do not show any dis-
continuities which are caused in Section 2.1 coefficients due to (2.7).

the quadrature formula with optimal quadrature weights X,m. As already mentioned, -

Xnm are dependent on the anomaly uncertainties through (2.30), while u, computed ey
through (2.7) and (2.8) do not take into account the anomaly uncertainties. 1T
Hence, the coefficients computed in Section 2.1 will remain the same whether R
the global anomaly data has standard error, as an example, of 5 mgals, or 20 mgals, h
or more realistically varies over the globe. However, the estimated coefficients RO
in Section 2.2 would realistically reflect the uncertainties in the estimate of Y
anomalies, subject to the averaging of variance in a latitude band in (2.32). pENe

A )
B
ata'a’als s
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[... ¥ g Pm{cOS 6) sing de | € dx R R (2.25)

i Ay
i=0 to (Ne—l)

AHAA
= i J T T
ook [ el dr..l] (2.26)
A
J
cos T
where cqm = [... mjax...], =0 to (N,-1) (2.27)
sin
A.+Ax  {cos A(m) B(m)
and | J mx dA = cos mj ax + sinmj ax [2.28)
Y sin -B(m) A(m)
A 0 if m=0
where A(m) = ,B(m)= (2.29)
(sinmax)/m (cos m ax-1)/m if m#0

__If we collect F;m for all latitude bands i=0 to (Ny-1) to define knp and
similarly collect x) for all latitude bands to define X,p, see below, i.e.,

; Ng-1
0 1 0 T
[knm e knm - knm ]

Ng-1
] ]T

0 i
[Xnm cer Xpm *** Xnm

Xnm

where Xpm = (R(m)+N)'1l<nm , (2.30)

W being the diagonal matrix consisting of average anomaly variance in each latitude
band (see (2.32) below); then Colombo ?1981, p. 43, (2.61)) shows that elements of
vector ¢ in (2.20) may be computed by:

B - L Nil g ZNE-I A(m)
Y i=0 "™ j=0

-8(m)

B(m)
A(m)

cos mj AX +

(sin mj A{]Kﬁii (2.31)

where we have substituted N for Ny and 2N for N, in view of (2.4) and (2.22).

......................................................
___________________
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The formation and inversion of (C,, + D) for 64,800 1°x 1° anomalies in (2.20)
- and (2.21) would be a formidable task. But Colombo (1979) has shown that under
I general conditions fulfilled by equi-angular grids, each covariance matrix between
i 1°x 1° anomaly blocks in two latitude bands has Toeplitz circulant structure
(Colombo, 1981, Sec. 2.10). The main requirement of the same constant value .
of Ax in each of the N latitude bands in (2.4):

N BA = Ajy) - Ags § = 0 to 389 for all o3 =0 to 179
= . = = 1°: =T = . =&T-=
A8 = B4y - 855 88 = AX 1°; N6 6 180; Nx o~ 360 (2.22)
P
al

is naturally fulfilled for equi-angular grid (the numbers correspond to 1°x 1°
grid).

The structure of (C,, + D) makes it possible that its inversion can be equi-
valently substituted (Colombo, 1981, p. 42, (2.54)) by the much simpler inversion
) of Ng x Ng matrices R(m), m=0 to 4N,, if we wish to solve only for coefficients
- up to the Nyquist frequency given by Ng = LN,. However, if we were to solve
for coefficients up to degree NN > Ng, it  will require the formation of:

N6 X Ne matrices R(m), m=0 to NN (2.23)

However, their inversion is still a relatively simple problem as their size is

- No x Ng. Also, the elements of R(m), which are related to the discrete Fourier
- transform of covariances of anomaly blocks in a pair of latitude bands, can be
o obtained directly without actually computing the anomaly covariances. This re-
iI quires repeated manipulation (Colombo, 1981, Sec. 2.11) of integrals I‘t of
- associated Legendre functions in the form: n
i _ [C AR R : =] n
: It = EEET" K? g Pnt(cos 8) sing de = knt// S+l (2.24)
) i

where subscript t 1is related to the order m, k%t is defined in (2.25) below,

other notations are as in (2.1), (2.4), (2.6); and c, are the anomaly degree

variances. The computation of integrals in (2.24) will be discussed in Section

3.1; the computation of the elements of matrices R(m) will be discussed in .
) Section 3.2, and the anomaly degree variance model will be specified in Section 4.

The components Elma, z of the cross-covariance matrix Ccy in (2.20), (2.21)
are computed, for degree n—and order m, by:

..............................................
.....................................
............................................
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where e, represents the propagated noise, while e may be interpreted as the
sampling error. eg would tend to zero if perfect data (without any error or
noise) was employed in (2.13), and the number of data points tended to infinity;
or in other words, the mean anomaly block size tend to zero We assume that the
‘errors eg and ep arise due to completely independent causes.

The total covariance matrix Et of the potential coefficient errors, may
then be written as the sum of covariance matrices of errors Eg due to sampling
and E, due to data noise:

_ = T T
By =B +E = Miee ) + Mieend
= M ((c - F2)(c - Fz)T} + M (Fan'F"} (2.16)
where M { } is the averaging operator.
(2.16) is easily simplified to:
=C - T T (2.17)
E;=C-2CF + F(czz +D) F
where
= T - T - T
C=Mi{cc}, C,=M{cz'}, C =M{zz'} (2.18)
D=M{nn'}

are the covariance matrix of the coefficients, cross covariance matrix of coef-
ficients and mean anomalies, covariance matrix of mean anomalies, and covariance
matrix of mean anomaly errors, respectively.

An optimal value of estimator operator F in (2.13) may now be obtained,
which will minimize the sum of square of total errors for all coefficients, i.e.
the trace of E1, by setting atr[E7]/3F to zero. This leads (Colombo, 1981,
Sec. 2.8) to the well-known relations in least squares collocation:

= =1
F Ccz(czz + D) (2.19)

and by inserting (2.19) in (2.13) and (2.17), we get:

c = Ccz(czz +D)~1(z + n) = CCZ(Czz + D)-laq (2.20)

T
= - -1
ET c ccz(czz + D) Ccz (2.21)
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For the case of harmonic synthesis, we may write for the point and mean

anomalies: ::
o nl—a—a
Ag(ei, xj) = YnZZ (n-1) mzo QZO Com Yrm (91’ Aj) (2.9) '3f
el [ (el [ 5T [ V(e ) e
Ag. . = n-1 C Y (8, A) do 2.10
15855 nf me0 oo MM Uij nm

However, as the potential coefficients are available only up to degree

A -

n < Nmax»> in the practical implementation of (2.10) the estimate agij is affected

by the truncation error at Nmax (and similarly for (2.9)): .
- - Nma x n 1 .
- Ag. . = X =a v :
= 8g;: = ! (n-1) ¥ 7 C [ Y (6, 1) do (2.11) ~
b i A . s .
L« LR - me0 asg ™M g nm -
1J
Subroutine HARMIN implements the harmonic analysis (2.5) using the de-smoothing ﬁgf
factors in (2.7). Subroutine SSYNTH implements the harmonic synthesis (2.11). e
The coding of these subroutines is documented in Colombo (1981, Appx. B2, B3). -
2.2 Quadrature Formulas with Optimal Weights -
if we consider the global mean gravity anomaly vector_&ﬁ:to comprise two .f.
parts, the signal z and the noise n, i.e., L
Ag=z+n (2.12) >
and denoting the potential coefficients vector [Cypl, m=0 to n, n=0 to Npax by -
¢, which {s estimated from the anomaly data through a system of linear equations
denoted by the matrix operator F, we may write:
. K
c = F(z +n) (2.13) o

An optimal value of the estimator operator F will be derived later in (2.19).

The estimation error vector e may then also be broken into two parts e

. S
and e,
e=c-c=c-Flz+n)=(c-Fz)- (Fn) (2.14) 3
e,=c-Fz; e =Fn (2.15)

..........
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......




(2.3) may be termed as the 'point value-type' quadrature formula as it
assumes that the value of ag and Yy, at o;. Aj (or perhaps at the center of the block

: 8§ + %; s Aj +-%%) is constant over the whole block Aij. We may easily integrate
Yt over the block, but by keeping 2g outside the integral in (2.5) below implies 2

a very 'smooth' gravity anomaly signal over the block equal to the mean value.
This can be remedied by multiplying by a 'de-smoothing' factor, u, (Colombo,

T T

1981, p. 33), so that we have a 'mean value-type' quadrature formula: I;
a b Nilznz-l 5 T y

C. = - Ag. : Y (6, A) do, (2.5)
t nm ~ y(n-1) i20 j=0 ij Jo;; nm |
) where N
h 9].+A6 A.tAA cosS a=0 "
[ Yo(es A)do = | P n(cos 8) sine de [ my dx , (2.6) ).
o5 1 8. A sin a=] o
1J 1 J o
The evaluation of the integral of associated Legendre functions in (2.6) f
will be discussed in Section 3.1. The de-smoothing factor p, may be related to )
the Pellinen/Meiss] smoothing, or averaging, operator g, (Rapp, 1977). By -
s numerical tests for blocks of 5°x 5° and larger, Colombo (1981, p. 76, (3.9)) found T
[ a simple nearly optimal relationship: 5
- B
: 5 82, 0<n<N3 P

f 1 -
s N

u = =
T
n 4nn n

8, N/3<n<N (2.7)

n k]
l , n>N

The use of various de-smoothing factors in (2.7) may cause a sharp discon-
tinuity in the potential coefficients at degree N/3, and at degree N, as was
noticed by Rapp (1981, p. 24). Further, u, takes into account only the block
. size, as B 1s given by:

T Ty
rey

v Pp(cos v,)
g = cot - 2.8
n 2 n(n+l) (2.8)
where ¢, is the radius of a circular cap having the same area o4 of the block. {

But up does not take into account the error estimate of &g employed in (2.5). Hence,
Colombo (1981) also considered the rigorous determination of ‘optimal quadrature

weights', x1 , based on the minimization of the sum of two quadratic terms, one
due to 'samBTing error', and the other due to 'data noise'. This is discussed
in Section 2.2.

AR .
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2. HARMONIC ANALYSIS AND SYNTHESIS

i]' We will henceforward consider 1°x1° mean anomalies, referred to the Geodetic
- Reference System 1980 (Moritz, 1980b), as the specific gravity related quantiy,
P - as in (1.3). We will also adopt a more compact notation:

c , a=0
T = nm (2.1a)
nm -S- . a=1
nm
_ P_(cos 8) cos m, a=0
Ynam(e’ WE _nm (2.1b)

an(cos 8) sinm, a=1

where we have expressed the functions in (2.1b) in terms of co-latitude ¢, instead
of geocentric latitude ¢'. We will henceforward assume as in (2.1a) that the
potential coefficients Cpp» i.e. {Cphm» Spm}» are the residual potential coefficients
to the ellipsoidal field of GRS 80, and we will dispense with the notation

of superscript asterisk to denote such residual quantities.

2.1 AQuadrature Formulas with De-smoothing Factors

We may then rewrite (1.3) for harmonic analysis as follows:
t2 = 1 [{ ag (8, 1) Y2 (8, A) do (2.2)
nm ~ dny(n-1) i g ’ nm*"? '

To implement (2.2), we first replace the integral by summation over the anomaly

blocks; and the estimate Eﬁﬁ is now affected by the 'sampling error' because of

the finite area, 455, of the actual anomaly blocks, in the numerical quadrature
formula:

N-12N-1

Za _ 1 < a
Cnm = m iZO JZO Ag (91, AJ) Ynm(ei, AJ) A'ij (2.3)
Aij = AX (cosei - cos(ei+Ae)) = 4, for all j in any latitude band i,
= - = - . = = 1° =T =
AN = AJ._H J\J-, A8 = 6,,4-6;5 46 = Ax = 1°, N e 180 (2.4)

where the numerical values of a6, Ax, N have been shown for 1°x 1° equi-angular
blocks.
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the correct order of kpy required is the vector form of the matrix stored column
by column. This would then allow the right hand side vectors to be read in suc-
cessively as 180 numbers at a time for a given R(m) matrix (m=0 to NN), for solving
180 numbers of xpy for the given m, for degrees n=m to NN.

This reordering of the right hand side vectors, analogous to the transpose
of a matrix, is a trivial problem if the whole matrix could be indexed as one
array. In fact, by the exploitation of symmetries in (3.3), it would be sufficient
to .reorder the right hand side vectors, obtained from I}, in the manner indicated
above for i=0 to 89; and after reordering the 90 elements of each right hand side
vector, extend it to 180 elements using (3.3). However, the array dimension
required for reordering the right hand side by indexing is not possible for the
case of 1°x 1° anomalies, as is apparent from Table 3.3.

Table 3.3 Size of Array Needed for Reordering the Right Hand Side Vectors by
Indexing for Estimating Coefficients to Degree NN.

# Elements in knp Array Dimension
Degree (NN+1)(NN+2)/2 Total (Double Precision)
NN
each i i=0 to 89 in Mega Bytes
180 16,471 1,482,390 11.86 MB
250 31,626 2,846,340 22.77 MB
300 45,451 4,090,590 32.72 MB

The problem of reordering was solved by using IBM utility SORT. after the
elements of knm were correctly ordered in a latitude band i, m=0 to NN, n=m to
NN, they were tagged with a number k,

k = j»100 + (i+1); j=1 to NLL, i=0 to 89; NLL = (NN+1)(NN+2)/2 (3.7)

and written on tape. After the tagged numbers were sorted in ascending sequence
by SORT, they were in the order needed in (2.30). The number tag was stripped,
and the right hand side vector kpm written out on another tape. This step of
reordering knm may be termed as step 3B. The CPU time by the SORT routine for
sorting 2.8 million elements of kpy for NN=250 on an Amdahl 470 V/8 computer

was 2 min. 58 sec., while the initial tagging of numbers took 3 min. 2 sec., and
the writing out of sorted numbers took 2 min. 33 sec.

It may be noted that steps 2, 3A and 3B do not depend on the 1°x 1° anomaly
error estimates, or the anomalies, but depend on the degree NN up to which co-
efficients are to be estimated. The testing of the effect of different anomaly
errors, or different anomaly data sets may therefore be tried for low values of
NN like 12, or 60, or 180, before developing coefficients to the highest degree.
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3.33 Solution of the Normals

The solution of the normals in (2.30) proceeds by reading in the reformatted
normals R(m) in step 3A, which is the vector form of the upper diagonal of symmetric
180 x 180 matrix. The average variance ¢% in (2.32) of anomalies in each latitude
‘ band i, i=0 to 179, is added to the diagonal elements of R(m), yielding the matrix
(R(m)+W) in (2.30). This is done for each R(m) matrix, one at a time, for m=0 to
NN.

B A

After inversion of (R(m)+W), 90 numbers of the reordered right hand side »
vectors in step 3B are read in, expanded to 180 numbers by utilizing the symmetries
in (3.3), and the optimal quadrature weights xpy are solved for 180 numbers at a
time, x% » 1=0 to 179. The solution proceeds for each m=0 to NN, n=m to NN, re-
quiring TNN+1) matrix inversions, and (NN+1)(NN+2)/2 solutions. The CPU time
for this step increases sharply for large NN. An Amdahl 470 V/8 computer took o
about 34 minutes CPU time for this step at NN=250. 2

The total error variance estimates in (2.21) are computed by:

2 i f M=
2 _ o2 1 Cn A if m=0
i=0 "nm nm

N-1
o= = —_ = X 2 - .ZN. z ki xi (3.8) i
cnm snm  y2(n-1)2 | 2n+l l1-cospax .
_.7m.;&_ if mg0

 ae gme A o

which follows from the similarity of terms in (2.20) and (2.21); and the expres-
sions (2.31) and (2.26) using )\, and k}.. The variances were earlier computed
only for a pair of coefficients, unless m=0, as discussed below (2.32). A modi-
fication was made to compute the standard error of each coefficient; and the
factor of % for m#0, for makirg the variance for each coefficient in a pair equal,
i.e. °%nm o%hm, has been incorporated in (3.8)

The error variance [Enlenm = [Eplenm» for each coefficient due to propagated
noise is computed similarly to (3.8) by:

L 4 L] |'. ST

N=1 .,
: 2
. 2N - iEOX:"" 01.] (3.9)

1 Cn A2 if m=0
(e 1. =[E 1. =% -
n-cnm n“snm y4(n-1)¢ | 2n+l _
1 cosmAAif m#0

m2

R LT
‘.' . '."l" . N
. ' e
L A I
PRI

And, the error variances due to sampliing finite size of 1°x1° anomaly blocks is
computed by:

ITnm (3.10) o

€ Jenm = (Edsnm = %2nm - [ Jgny = o2

snm Tom ~ °3nm

- [E,]

<nm

The program sums up the variances per degree due to sampling, propagated ‘
noise, and total. Modification was made to also compute other statistics for oo
corresponding standard errors per degree, percentage sampling and noise errors N
of the total error, and also percentages of the errors per potential coefficient !:
variation, on, per degree: ‘

-19-




on =\/c—n/(y(n-1)) (3.11)

- This step of solving the normals for computing the optimal quadrature weights . l}5
% and the error estimates for the coefficients, based on average anomaly variances y
= in different latitude bands, may be termed as step 3C. oy

ii 3.4 Computation of Potential Coefficients o

The computations of potential coefficients in (2.31), from the optimal quadra-
ture weights X,y obtained in step 3C, is done by the harmonic analysis of global
anomaly data by subroutine ANALYS. The computations are shortened by recognizing
that the symmetries in (3.3) also apply to Xnm. Hence, (2.31) is transformed to:

- q el Nl A(m) _ Bm)) o\ _
Som = neT .Z (X"m[,jzo({-B(m)= CostAx.k{A(m)} S1nmJAA) Ag (ei,xj)] +

At wnmre £ nnse ) o
- cos mj A sinmjax s A . o
ol gt \amf o lamf T et

The implementation of (3.12) is further speeded up by computing aj, b;, am'l'1, ;ﬁg
bN'E:‘ as the Fourier transform along latitude bands i and N-1-i om the values e
of 8g (8, 1), i.e. T
1. - .
4 2N-1 cos) _
0T ’ mj AXx Ag (ei, Aj)
j=0 sin
by J
(3.13)
N-1-i e
an 2N-1 ;cos _ ) *
= mj Ax Ag (8y_q_ s A,
bg"l'1 j=0 sin} N-1-i* %j

A modification was made to ANALYS to compute several sets of coefficients
in the same run, either combining several sets of optimal quadrature weights
associated with different anomaly error estimates with one global anomaly data e
set, or by utilizing different anomaly data sets with one x,y set associated L
with a certain set of anomaly errors. The CPU time for the harmonic analysis
of 64,800 1°x 1° anomalies to estimate two potential coefficient sets up to de-
gree NN=250 was only 1 min. 26 sec. on an Amdahl 470 V/8 computer. This step
of computing the potential coefficients may be termed as step 4.

..................................................
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There were two additional steps of the comparison of potential coefficient
sets by degree, and of computing error estimates by degree and cumulatively for
the undulations and anomalies implied by a coefficient set. These may be termed
as steps 5 and 6, and are discussed in Sections 5 and 6 respectively.

The various steps in the algorithm for optimal estimation of coefficients
are summarized in Table 3.4.
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4. POTENTIAL COEFFICIENT AND GRAVITY ANOMALY DATA SETS

The parameters affecting the optimal estimation of coefficients are given
in the last column of Table 3.4. The highest degree Npax, to which the summations
are carried out for computing the Fourier transforms of the covariances of 1°x1°
anomalies in (3.2), was kept as 300 based on experiments carried out by Colombo
(1981, Sec. 4.2). The global anomaly degree variance model used by Colombo (ibid.,
Sec. 3.1) was also retained. It consisted of empirically obtained anomaly degree
variances up to degree 100 from a 180 x 180 potential coefficients field developed
by Rapp in 1978, and by a two component variance model described by Rapp (1979,
p. 15, Table 5, Case 1) .for degree n> 100:

- Q) nt2 %2 1 n+2 2
¢, = (n-1) [FT\’ (s))7 " + 5 " 53 (s,) ] (mgals) (4.1)
o, = 3.4050, o, = 140.03, s = 0.998006, s, = 0.914232, A =1, B = 2

1

The other parameters, and data sets, used in the optimal estimation of coefficients
are described below.

4.1 Anomaly Error Estimates

Several differgnt sets of anomaly error estimates were used. One set computed
average variance, o3 in (2.32), in each latitude band from error estimates of a
global 1°x 1° anomaly data set utilizing terrestrial anomalies merged with anomalies
determined from Seasat data, and balance anomalies computed from potential coef-
ficients being assigned standard error of 30 mgals. This anomaly data set was a
slightly updated version, with some additional terrestrial data, of the set described
in Section 2.3. The computed values of average anomaly standard errors, o;, per
latitude band are given in Table 4.1, and this will be termed as anomaly error
estimate A. The standard errors range from 30 to about 4 mgals.

Table 4.1 Average Anomaly Errors in 1° Latitude Bands for Error Estimate A.

Latitude

Bands Average Anomaly Standard Error, 9y in mgals
.i

0to 14 30 27 27 27 2727 28 27 271 26 |25 25 28 23 22
15 te 29 22 21 20 19 19|16 16 15 16 16 |15 15 15 15 14
30 to 44 12 12 1 1 1§31 1 11 10 11 }10 9.9 10 10 11
45 to 59 11 11 11 1 w21 11 1 12 124110 10 110 11 10

1

60 to 74 11 10 9.8 10 9.9}10 10 9.2 9.4 9.7]9.7 8.9 9.3 8.3 8.1
75 to 89 6.9 7.1 8.3 8.5 8.9(9.1 8.8 8.8 8.8 9.1|8.8 7.5 7.6 7.9 7.4
90 to 104 8.0 8.2 8.4 8.4 8.9(9.1 8.7 83 8.7 7.717.3 7.3 7.7 7.4 1.6
105 to 119 8.1 7.4 7.4 7.8 7.217.6 7.2 6.8 6.9 6.5/6.4 6.0 5.6 5.7 5.8
120 to 134 5.6 5.3 5.0 4.2 4.6 3.8 4.1 3.9 4.6 4.914.1 4.1 4.4 4.8 5.2
135 to 149 4.4 40 3.6 3.9 4.4;5.1 50 4.4 4,5 4.6|3.8 3.6 3.3 3.7 5.5
150 to 164 3.7 3.9 4.5 5.2 5.9/6.7 80 11 12 13|27 28 27 28 28

65 to 179 26 26 25 24 24| 24 24 24 23 25 26 26 23 14 14
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A second set, termed anomaly error estimate B, assigned uniformly for each
1° latitude band average anomaly standard error, oj, of 5 mgals. Error estimate
A is a realistic estimate of the current averaged anomaly variances in 1° latitude
bands for 1°x 1° anomalies. Error estimate B assumes no latitude variation in
averaged variances, and is therefore an idealized version of anomaly error distri-
bution. A value of 5 mgals is an optimistic estimate giving a lower error bound
till the Geopotential Research Mission is flown at the end of this decade.

A uniform average anomaly standard error of 20 mgals was also used in some
tests, as a 20 mgal error was used for each anomaly in generating the current
Rapp (1981) coefficients, as discussed at the end of Section 2.3 of this study.
Another set of error estimates was developed on the same lines as error estimate
A, but only using terrestrial data resulting in a range of average standard error,
oj»> from 30 to 9 mgals. Some other anomaly error estimates would be described
in the tests in Sections 5.1 and 5.2.

4.2 Data Sets A

The development of the current set of merged potential coefficients to degree
and order 180 (Rapp, 1981) was described in Section 2.3. This will be termed as
coefficient set A, and will be compared with other coefficient sets developed
by optimal estimation.

Coefficient set A was used to compute a global set of 64,800 1°x 1° mean
gravity anomalies by (2.11) using subroutine SSYNTH, with ¥=979,800 mgals. This
global set will be termed as anomaly set A. As the maximum degree, Npax, in
the summation in (2.11) was 180, the anomaly set A can only be used for estimating
coefficients to the highest degree NN of 180. But the anomaly set A would be
a good data set to test the effect of anomaly error estimates on the optimal
estimation of coefficients, by testing the latter against coefficient set A.

These tests will be described in Section 5.1.

4.3 Data Sets B

Anomaly set B was the global set of 64,800 1°x 1° 'adjusted anomalies' described
in Section 2.3 obtained by implementing (2.38). Anomaly set B therefore retains

" the high degree (n> 180) information present in the terrestrial and the Seasat

altimeter derived anomalies, which were used to develop the 'adjusted anomalies'.

As mentioned in Section 2.3, the coefficient set developed by the harmonic
analysis of anomaly set B, by implementing (2.5) with de-smoothing factors (2.7),
using subroutine HARMIN will be termed as coefficient set B. Coefficient set B
would be considered only up to degree and order 180.

Coefficient sets A and B are the same from degree 49 to 180. 'Adjusted
SET1' coefficients, complete to degree and order 36, with some additional coef-
ficients to degree 48, replaced the corresponding coefficients in coefficient
set B to form the coefficient set A. The difference between these two sets is
shown in Table 5.1.

The coefficients developed by optimal estimation from anomaly set B are there-
fore comparable to coefficient set B through degrees 2 to 180, or to coefficient
set A through degrees 49 to 180. The comparison with coefficient set A through
degrees 2 to 48 would also show the additional, though small, effect due to the
simplified adjustment model in (2.35).
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5.  COMPARISON OF SETS OF POTENTIAL COEFFICIENTS

If the potential coefficients in two different estimates to degree NN are
denoted by (Cpm> Spm) and (Cpoms Spm), then the two sets of estimates may be com-
pared in magnitude by percentage coefficient difference (%r,) by degree n, undu-
lation difference (%EE;) by degree, and anomaly difference (/ZE;) by degree.

%, = —"- 100 | (5.1)
n
2 E (2 32 )
02 = €2 +5 (5.2)
n meg m nm
2 Yo T2 < )2
boy = Z [(cnm - cnm) * (snm - snm) ] (5.3)
m=0
/Azn =R - Ao, meters (5.4)
/Acn = y(n-1) - Ao, mgals (5.5)

where, as before, y = 979,800 mgals is the average value of gravity over the whole
globe approximated by a sphere of radius R=6.371 x 106 meters. For example, co-
efficient sets A and B differ up to degree 36; differ in some additional coefficients
up to degree 48, and are the same in higher degrees to 180. This comparison is

shown in Table 5.1.

Table 5.1 Comparison of Potential Coefficient Sets A and B (Sec. 4.2 and 4.3),

% Coefficient Undulation Anomaly
Degree n Difference Difference Difference
%An VAln in meters /EC, in mgals
2 1.23 .22 03
3 34 .06 02
4 39 .04 02
5 64 .05 03 1
6 51 .03 02 Lo
9 54 .01 02 R
12 .56 .01 .01 R
24 .51 .00 .01 IR
36 71 .00 .01 ]
37 03 .00 00 t
42 17 .00 00 =
48 .06 .00 00 ]
49-180 .00 .00 .00 P
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5.1 Initial Tests with Data Set A

We first show in the first set of columns in Table 5.2, a comparison between
coefficient set A and another coefficient set computed to degree 180 by harmonic
analysis of the anomaly set A by HARMIN in (2.5), using de-smoothing factors in
(2.7). The differences would arise primarily due to sampling error because of
using 1°x 1° anomaly blocks of a finite size, instead of using an infinite number
of point anomalies implied by the integral in (2.2). Additional differences
would also arise due to any inadequacy in the de-smoothing factors, particularly
a discontinuity in (2.7) near degree N/3=60, which is seen in Table 5.2. We
also see an increase in the sampling error with higher degrees. Anomaly error
estimates are, of course, not considered in (2.5).

In the next two sets of columns in Table 5.2, coefficient set A is compared
with coefficient sets developed from anomaly set A by optimal estimation procedure,
using error estimate B (o.=5 mgals), and error estimate A (o, ranging from 30
to 4 mgals in Table 4.1) ﬂespective]y. We would now see, besides the effect of
sampling error, larger differences because of propagated noise of the anomalies.

We would also expect that the larger the uncertainty in anomaly error estimate,

the larger would be the difference from cuefficient set A. We do, in fact, see
increased differences in the second set of columns over the first set of columns,
and further increased differences in the third set of columns over the second

set. However, we do not find any discontinuity in the optimal estimation procedure
in the second and third sets of columns near degree 60, as is seen in the first

set of columns with de-smoothing factors. '

Table 5.2 Variation of Coefficients from De-smoothing Factors with Coefficients
from Optimal Estimation.
Comparison of Coefficient Set A with 3 Coefficient Sets Obtained from
Anomaly Set A. )

N ————— T ~
ERAra [l ARG SN A A A R Ny |

=y

q

De-smoothing Factors Optimal Estimation Procedure
(2.7) with (2.9) (Table 3.4) “:
o
Degree Anomaly Errors Anomaly Error Anomaly Error e
n Not Considered Directly Estimate B** Estimate A** g
% /Begm /Acp mgal {| %ap Jagam JAcpmgalll %An,  YAipm Vacp mgal .
2 61 .11 .02 64 .11 .02 85 .15 .02 1
3 .44 .08 .03 .48 .09 .03 .40 .08 .02 .
6 .56 .03 .02 .58 .03 .03 .63 .04 .03 s
12 .91 .01 .02 87 .01 02 1.4 .02 .03 'lkq
36 1.2 .00 .02 1.7 .00 .02 5.0 .01 .07 -
60 2.1 .00 .04 2.3 .00 .04 6.9 .01 .13 T
61 4.4 01 .07 2.9 01 .05 8.6 .02 .14 e
90 8.9 01 .14 6.0 .01 .10 15.2 .02 .25 e
120 14.2 01 .23 10.7 .01 .17 21.4 .02 .34 -
150 22.3 01 .30 22.2 .01 .30 33.9 .02 .45 -
180 27.4 01 .35 36.2 .02 .46 46.8 .02 .60 .
*Anomaly errors were not considered in computing coefficients from anomalies using iﬂ}
de-smoothing factors. A
**Error Estimate B: oj in (2.32) = 5 mgals. ;jﬁ}
Error Estimate A: oj ranges from 30 to 4 mgals, see Table 4.1. B
- 26~ 17_:}‘.'14
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To examine, in greater detail, the effect of anomaly error estimates on
coefficients by optimal estimation, several different sets of coefficients were
computed with anomaly error estimates as shown in Table 5.3, which also shows
the comparison with coefficient set A. There is some instability in the inverse
of matrix (R(m)+W) in (2.30), when the elements of diagonal matrix W in (2.32)
correspond to 93 of .001 mgals. But with 9;>1 mgal, Table 5.3 shows conclusively
that optimally estimated coefficients depend “on the magnitude of anomaly error
estimates.

The tests in Table 5.3 were run with NN=12, after ensuring that the estimated
coefficients are not correlated, and hence the results in Table 5.3 with NN=12
are also valid for higher degrees. This conclusion was arrived at by repeating
the optimal estimation of coefficients for anomaly set A, with both error estimates
A and B, for NN=180 in Table 5.2, also for NN=60 and NN=12. The common coef-
ficients were the same whether the coefficients were estimated to NN=12, 60, or
180. Similar results were obtained later with anomaly set B.

5.2 Initial Tests with Data Set B

Tests were first made to examine the variation in optimally estimated coef-
ficients from anomaly set B by using different error estimates as in Table
5.3, and comparing the optimally estimated coefficients against the coefficient
set B. The results were similar to those presented in Table 5.3 showing larger
variation in the optimally estimated coefficients as larger anomaly error esti-
mates were used, reflecting the effect of propagated anomaly errors.

It was also noticed that generally there was a better agreement between
coefficient set B and optimally estimated coefficients from anomaly set B for
any given anomaly error estimate, as contrasted with the case of agreement between
coefficient set A and optimally estimated coefficients from anomaly set A pre-
sented in Section 5.1. For example, this may be seen in Table 5.4 for the anomaly
error estimates for oj= 5 mgals, and o= 1 mgal, when contrasted with similar
results in Table 5.3. This may be due to the anomalies in set B having been
obtained in a combined adjustment with 'SET1' coefficients (Section 2.3), yielding

the anomaly set B and the 'adjusted SET1' coefficients. The adjustment of anomalies

in set B not only adjusts the anomaly spectrum to degree 36 (including some co-
efficients to 48), but perhaps also modifies to some extent the higher degree
spectrum. This will be seen in the results in Section 5.4.

However, we also find curiously a larger disagreement in the comparisons
in Section 5.2 at the very low degrees, when contrasted with the comparisons
in Section 5.1. This may be seen again in Table 5.4 for the anomaly error esti-
mates for oj = 5 mgals, and oj = 1 mgal, when contrasted with similar results
in Table 5.3 for degrees 2 and 3. This may be due to the simplified adjustment
model in (2.35) and (2.36) being generally adequate at degrees greater than 3.
Or, this may be an artifact of forcing the weight matrix of anomalies in (2.37)
as cos ¢'/0?, while the weight matrix in optimal estimation is implicitly
1/o§ in (2.30), read with (2.32).

Several sets of coefficients were then optimally estimated with o4 being
modified from 1 mgal to l/cos ¢: mgal, and 1/v/cos ¢; mgal to match the anomaly
weights in (2.37) as cos 4'/c2. However, this made ' the agreement with coefficient
set B worse for all degrees as compared to the case of o = 1 mgal. Other sets
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of coefficients were then optimally estimated with oy = 1 - cos¢; mgal, and
1 - Ycoso; mgal. The last case resulted in close agreement with coefficient
set B at degrees greater than 3, but the disagreement persisted at degrees 2
and 3, and was now of a larger amount. All these tests were run with coef-
ficients estimated to degree NN=12.

Table 5.4 shows the comparison of coefficient set B with four optimally
estimated coefficient sets by harmonic analysis of anomaly set B. The anomaly
error estimates in the four cases were o = 5, 1, 1- cos ¢j and 1 - /cos ¢] mgal.
The first two cases are for comparison with similar cases in Table 5.3 for the
data set A,and the last two cases in Table 5.4 were an attempt to reduce the
disagreements at degrees 2 and 3. The tests were repeated with data sets A in
Section 5.1 with o4 = 1/cos ¢}, 1/ vcos ¢5, 1, 1 - cos ¢}, and 1 - /cos ¢] but
did not show any larger differences as no{iced in the case of data sets B.

As already mentioned, the optimally estimated coefficients from the adjusted
anomalies in set B, adjusted through the simplified model in (2.35), show generally
a better agreement with coefficient set B as contrasted with the agreements of
data sets A in Section 5.1, except for degree 2 and 3. Coefficient sets will be
optimally estimated from anomaly set B to higher degrees up to NN=250 in Section
5.4 for the cases of anomaly error estimates A and B, without forcing these error
estimates to oj /COS ¢ or oj/ /COS ¢;.

5.3 Test with Altered Anomaly Data Set

The assembling of 64,800 1°x 1° global anomalies was described in Section
2.3, where 8049 anomalies were assigned values implied by 'SET1' coefficients
(complete to degree 36), and a standard error of 30 mgals. During the combined
adjustment of anomalies and SET1 coefficients, anomalies with higher standard
errors received larger corrections. The location of 3827 anomalies, which had
corrections larger than 7 mgals, were shown in Rapp (1981, p. 25, Fig. 6) and
is now reproduced here as Figure 5.1.

Four 10°x 10° blocks are marked in Figure 5.1, two each in the northern
hemisphere in Central Siberia and Central Africa, and two each in the southern
hemisphere in Southwest Africa and Central Andes in South America. The lati-
tudinal and longitudinal limits of these blocks are listed in Table 5.6. Three
tests were made to examine the effect on optimally estimated coefficients if
some 1°x 1° anomalies in the global anomaly data are set to zero instead of the
value implied by a-priori coefficients. From the global anomaly set A, three
other anomaly sets were obtained: anomaly set 1 with 200 1°x 1° anomalies set
to zero in the two 10°x 10° blocks in the northern hemisphere; anomaly set 2 with
200 1°X 1° anomaiies set to zero in the two 10°x 10° blocks in the southern .
hemisphere; and anomaly set 3 with 400 1°x 1° anomalies set to zero in the four ' '?

10°x 10° blocks in both hemispheres. Four set: of coefficients were optimally
estimated, all to degree NN=60, from the global anomaly sets A, 1, 2, and 3.
The realistic anomaly error estimate A, o; = 30 to 4 mgals in Table 4.1, was
used in all four cases. The comparison of coefficient set A with these 4 sets e
of coefficients is shown in Table 5.5. <)
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6.2 Error Estimates by Degree

The expression for error variances of a coefficient, Cpp, due to sampling

error, [Es]tnma’ propagated noise, [E"]tnma’ and the total variance, o nme® Were

given in (3.10), (3.9) and (3.8) respectively. We may now define the error vari-
ances per degree due to sampling, o2 due to propagated noise,o? and the

; > esn? enn?
total error variance Ocp Per degree, as:

--'

T
._'l
-]
-.',4

oZsn [Es ]

n 1

oot~ oy dy (e

2 S
%en [ET]tnma .

Tnma

where we have used [ET]tnma = oﬁma in view of (2.16), and [-] indicates one element o

of the matrix. The errors (square root of variance) per degree, 9% sn’® %nn’® %en’

may be expressed as percentages of potential coefficient variation, o,, per degree e
in (3.11). If we denote these percentage errors due to sampling, noise and total
as %Sn, %Nn, %Tn per degree, then:

¥
R
24 L

(6.2)

<O
W TS

with o, = V¢ /(x(n-1)) (6.3)

The percentage errors, %Sp, %N, %T,, have been tabulated in Table 5.3 for T
coefficient sets Bl and B2. We note that %S, is small at low degrees, but in-
creases sharply with degree. The sampling error predominates after around degree
120, is more than 50% of the coefficient value at degree 180, and more than 80%
of the coefficient value at degree 250. Because of the predominant effect of
the sampling error at high degrees, we find that the total percentage error,
%Tp, is only slightly different for sets Bl and B2 at degree 250, though it is
much smaller at lower degrees for set B2. However, %T, does not reach 100% in
any case even at degree 250, because the optimal estimator cannot have a larger Sl
error than 3 null estimator (which will correspond to 100% error), (Colombo, S
1981, p. 73). R
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Table 6.1 Variation of Optimally Estimated Coefficients to Degree 250 with ﬂ
Variation in Anomaly Error Estimate. -
Comparison of Coefficient Set Bl with Coefficient Set B2. :
% Coefficient Undulation Anomaly Eiii
Degree Difference Difference Difference r
n %n YALn in meters /Acp in mgals Zﬁfkr
3.4 .61 .09
3 9.2 1.70 .52 L
6 4.0 .23 .17 o
12 10.5 11 .18 =
24 6.6 .03 .09
36 4.4 .01 .06 =
60 5.5 .01 .09 B
90 11.7 .01 .18 ]
120 14.6 .01 .22 N
150 20.2 .01 .23 -
180 26.8 .01 .24 R
210 30.6 .01 .22 T3
240 37.0 .01 .20 R
250 40.6 .00 .19 .-
Both coefficient sets Bl and B2 were estimated from anomaly set B to degree and i ji
order 250 using anomaly error estimates A and B respectively. N ;5
Error Estimate A : o, ranges from 30 to 4 mgals (see Table 4.1). E:??
Error Estimate B : o, = 5 mgals. ]
= 5;

X
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6. OPTIMAL ESTIMATION OF COEFFICIENTS TO DEGREE AND ORDER 250

As the anomaly set A was computed by (2.11) from coefficient set A to degree
Nmax=180, 't could not be used to compute coefficients beyond degree 180. Accordingly,
anomaly set B was used to optimally estimate ccefficients to degree NN=250, using
both anomaly error estimates A and B. We will term these coefficient sets Bl and
B2 respectively. As the anomaly error estimate A represents our current knowledge
of 1°x1° anomalies realistically, coefficient set Bl would represent the current
estimates of high degree gravity field. However, comparisons with coefficient set
B2 would give us the upper bound of improvement, with respect to anomaly error esti-
mates, that we may expect until the end of this decade.

6.1 Magnitude Information by Degree

We first list in Table 6.1 the percentage coefficient difference, undulation
difference, and anomaly difference by degree, %ap, vA&p, vACp, between coefficient
sets Bl and B2. We notice large differences due to different anomaly error esti-
mates A and B, as we would expect from the information to degree 180 in Table
5.7. The disagreement at degree 3 is particularly noticeable because of strong
equatorial assymmetry of error estimate A in Table 4.1.

We next list in Table 6.2, the undulation magnitude vz,, and anomaly magnitude
/¢, by degree n, and also cumulatively, for coefficient set Bl to degree 250.
The same information is also listed for the current coefficient set A (Rapp, 1981)
till degree 180.

The undulation, and anomaly magnitude, per degree, for coefficient set 81
have been plotted in Figures 6.1 and 6.2. The values of Vi, and /c, at degree
250 are about 1 cm, and about 0.5 mgals respectively.
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anomaly error estimates are represented by error estimate A in Table 4.1. Hence,
a slightly conservative estimate of current improvement in coefficients is repre-
sented by the comparison of coefficient B (by de-smoothing factors from anomaly -
set B) with the optimally estimated coefficients from anomaly set B using error .4
estimate A. This improvement, %, in (5.1), is seen in Table 5.7 to be about 8% at o
degree 60, about 11% at degree 120, and rises to about 33% at degree 180. This im- -
provement is also shown in Figure 5.2. The improvement by degree in geoid undu- ;Ei

SOt n o 20
. PR ST P

X 2% 2% 40

s

vy
]

lation difference /a1, in (5.4), and anomaly difference /ac, in (5.5) is shown in
Figure 5.3. The improvements have been shown only to degree 180. The cumulative
undulation difference, and the cumulative anomaly difference, to degree 180 was
1.51 meters and 2.70 mgal respectively.

NN

cumulative undulation difference =4/ ) agp (5.6)
n=2
N

cumulative anomaly difference = ACp (5.7)
n=2

RPN | T
O RO
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Table 5.6 Limits of Four 10°x 10° Blocks where 1°x 1° Anomalies were set to Zero
in Anomaly Set A.

# Location on (81) 05 (04) A AE Remarks -
1 | Central Siberia 70 (20) 60 (29) 95 | 105 | N. Hemisphere i
2 Central Africa 20 (70) 10 (79) 25 35 | N. Hemisphere F;E
3 Southwest Africa -10(100) -20(119) 10 20 S. Hemisphere -
4 Central Andes -20(120) -30(129) 285 295 S. Hemisphere =
(S. America) L

By comparing the first two sets of columns in Table 5.5, we find noticeable
changes in the coefficients when 200 1°x 1° anomalies are set to zero in the northern
hemisphere in the anomaly set A. But the last two sets of columns in Table 5.5
show that the setting of 200 1°x 1° anomalies to zero in the southern hemisphere
have the predominant effect. This is due to the average anomaly error estimate D
associated with the latitude band in which the anomaly is set to zero. With refer- -
ence to Tables 5.6 and 4.1, the value of o associated with the blocks in the
northern hemisphere range from 16 to 14 and 10 to 7 mgals, while oj ranges from 7 to 8
and 4 to 5 mgals in the blocks in the southern hemisphere.

These tests highlight the importance of getting the best possible estimate
(instead of zero) for the global anomalies, and assigning realistic standard errors
to these estimates. The error estimates of 1°x 1° anomalies are, of course, averaged
over each latitude band before these are utilized in the optimal estimation procedure.

5.4 Improvement in Coefficients with Optimal Estimation

.......
I S S LA U R e Y Wi |

We now list in Table 5.7 the comparison of both coefficient sets A and B with B
optimally estimated coefficients to degree 180 from both anomaly sets A and B, using

in each case anomaly error estimate A as well as anomaly error estimate B. By

listing these comparisons side by side, we first note that only small differences

exist in comparison with coefficient set A, when contrasted with comparisons made

with coefficient set B, at lower degrees < 12; coefficient sets A and B are, of

course, exactly the same for degrees > 36 (except for some coefficients to degree 48).

We also note the slightly better agreement of coefficients estimated from anomaly set

B, when contrasted with similar cases of coefficients estimated from anomaly set A,

except at lower degrees < 24. The large disagreement at degrees 2 and 3 of optimally
estimated coefficients from anomaly set B was commented upon in Section 5.2. The dis-
agreement at degree 3 becomes worse for the anomaly error estimate A, as compared to -
anomaly error estimate B, because of the strong equatorial assymmetry of error esti- :
mate A in Table 4.1.

Besides other points already discussed in Sections 5.1 to 5.3, the improvement,
particularly at higher degrees, in magnitude of coefficients estimated optimally -
instead of using the de-smoothing factors primarily results due to the consideration - -
of realistic anomaly error estimates in optimal estimation, while the anomaly error A
estimates are not considered when de-smoothing factors are used. The current realistic
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The total coefficient percentage error, %T,, per degree has been plotted
in Figure 6.3 for both coefficient sets Bl and B2. Figure 6.3 has been repro-
duced from Rapp (1981, p. 33, Fig. 11) which showed %T, for the current coef-
ficient set A. %T, had already reached 100% for coefficient set A at degree
120. %T, is better for sets Bl and B2 by more than a factor of two as compared
to set A for all degrees greater than 12.

We may also examine the error estimates in undulation, o%p, and anomaly,
oCp, per degree defined as:

n
2 = R2 . A2 = R2 . ° 2 2
ot R o2, R . (O'Cnm + G'S'nm) (6.4)
m=0
n
2 = v2({n-1)2 . 52 = ~2(n-1)2 2 2
ofC, = ¥ (n-1) o T Y (n-1) mZo (°'Cnm + °§nm) (6.5)

and also cumulatively as VEOZQn and 'ﬁczcn respectively. The undulation and
anomaly arror estimates, per degree, and cumulatively, have been tabulated in
Table 6.4 for coefficient sets Bl, B2, and also for the current coefficient set A.

We note that error estimates for sets Bl and B2 are better than a factor of two
from the corresponding error estimates of set A for all degrees greater than
12. But the error estimates for sets Bl and B2 are much larger than those for
set A at degree 6 and below, though as noted in Table 6.3, the coefficient per-
centage error itself for sets Bl and B2 is quite low at these degrees. This
illustrates the well-known fact that the low degree potential coefficients can
be estimated much better from satellite observations as compared to global
anomaly data. The error estimates of low degree coefficients in set A have been
put equal to the error estimates of '~ justed SET1' coefficients (see Section
2.3), while the error estimates of sets Bl and B2 are based on the anomaly error
estimates. If we were to assume that the error estimates for set Bl for degree
<6 are taken from satellite observations, i.e. the same as for set A, then the
. cumulative undulation error for set Bl to degree 250 would become about 81 cm
;‘ instead of 109 cm. In a similar way, the cumulative undulation error for set

B2 to degree 250 would be reduced to about 56 cm instead of 67 cm. The cumulative
undulation errors to degree 180 may then be compared for sets Bl, B2 and A as -
about 75, 48 and 146 cm respectively. The error estimates in Table 6.4, and

in the corresponding Figures 6.4 and 6.5, were however not changed.

and B2 as the top three curves in Figure 6.4. The undulation error, otp, per
degree has also been plotted for set Bl as the bottom curve in Figure 6.4, except
that the portion for degrees 3, 4, 5 has not been drawn in to avoid confusion.

The cumulative anomaly error, Vﬁozcn , has been plotted for the three sets

A, Bl, B2 in Figure 6.5, which also s

é;, The cumulative undulation error, Vﬁozln, has been plotted for sets A, Bl
p

S

ip set Bl as the bottom curve.

ows the anomaly error, oC,» per degree for

(
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6.3 Empirical Anomaly Degree Variances

It is of interest to see what is the empirical anomaly degree variance cp, ;ij
implied by the optimally estimated coefficient sets Bl and B2.

G =12 625 ok e ] (T + S (6.6) ]

-1

0

Four sets of anomaly degree variances have been plotted in Figure 6.6. At the
right edge of the plot, the curves in decreasing order of magnitude are: (1) the
a-priori cp model specified in (4.1) plotted with asterisks; (2) Kaula's model

cﬁ corresponding to o% = 10-5/n2 (Rapp, 1979, p. 1, (2)), which is the smooth

curve in the plot; (3) ¢, for coefficient set B2; and (4) ¢, for coefficient o
set Bl plotted with crosses. As the optimal estimator in (2.19) in least squares s
collocation minimizes the sum of total variances for all coefficients, the larger B
the anomaly error estimate the smoother would be the optimally estimated coefficients. o
We accordingly find that ¢, for coefficient set B2 based on anomaly estimate B,
oi = 5 mgals, have consistently larger power as compared to coefficient set Bl,
?ased on 13rger anomaly error estimate A, with o ranging from 30 to 4 mgals
Table 4.1).

We also note that the power in coefficient set B2 falls below Kaula's model
for degrees higher than 200, while the a-priori c, model has too much power for
degrees higher than 150. These are indicative of both a need for slight downward
adjustment of power in a-priori model in (4.1), and also that more reliable esti-
mates for higher degrees would be obtained if the global anomaly data was available
in blocks smaller than 1°x 1°.

Because of greater power in the a-priori model for cp, the error estimates
per degree are pessimistic at higher degrees, as larger error estimates are obtained
from (3.8) with larger values of c,. We have thus pessimistic undulation and
anomaly error estimates per degree, ogp and gcp in Section 6.2, for Bigher degrees.
On the other hand, the undulation and anomaly magnitude per degree, vin and /c
in Section 6.1, decrease rapidly at higher degrees for coefficient set Bl due to
large anomaly error estimate A. This explains why the signal to noise ratio
appears to fall below 1 for coefficient set Bl for degrees 180 and higher, when
we compare Tables 6.2 and 6.4. Similar results occur for coefficient set B2,
which has more power than set Bl, for degrees 200 and higher. This artifact
however does not occur in Table 6.3 and Figure 6.3, where the coefficient percen-
tage error does not exceed 85% even at degree 250. This is due to the percentage
errors being computed through (6.2) and (6.3), where the numerator and denominator
both depend on the a-priori ¢, model.

We next compare ¢, implied by coefficient sets Bl and B2, with Cn implied
by the current coefficient set (Rapp, 1981), i.e. coefficient set A computed
with de-smoothing factors (2.7) but we now consider the latter set also up to
degree 250, including the sharp discontinuity at degree 180. ¢, values are com-
pared for coefficient sets B2 and A in Figure 6.7; and for coefficient sets Bl
and A in Figure 6.8. The curves for coefficient set A are plotted with asterisks

-50-
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in both figures, while the curves for coefficient sets B2 and Bl are plotted
with crosses. The scale of C, in Figures 6.7 and 6.8 is exaggerated five times
as compared to Figure 6.6.

The sharp discontinuity at degree 180 for coefficient set A is clearly seen

in Figures 6.7 and 6.8. The smaller discontinuity at degree 60 may be inferred e
in Figure 6.7, where the curve with asterisks (coefficient set A) has more power )
for n< 60, and lesser power for n>60 as compared to curve with crosses (coef- R
ficient set B2). Except for the sharp discontinuity at degree 180, the spectrums

of coefficient sets A and B2 are fairly close in Figure 6.7, i.e. when we do :lsﬁ
not consider any latitudinal variation in anomaly error estimate B for the optimal O
estimation of coefficient set B2. However, when we do consider the currently iai}
realistic latitudinal variations in anomaly error estimate A for the optimal esti- ]
mation of coefficient set Bl, the spectrums of sets Bl and A differ substantially N

in Figure 6.8 for the entire range.
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Figure 6.7 Comparison of Anomaly Degree Variances: ; )
Sets A and B2 ]

Coefficient Set A by de-smoothing factors marked f_’-‘?‘.f.-:'
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. Figure 6.8 Comparison of Anomaly Degree Variances: -
™~ Sets A and Bl .
Coefficient Set A by de-smoothing factors marked by asterisks.
g Coefficient Set Bl by optimal estimation marked by crosses.
o Error Estimate A : o; = 30 to 4 mgals (Table 4.1).
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7.  SUMMARY AND CONCLUSIONS

The present study extends the algorithm developed by Colombo (1981), and
tested with 5°x 5° anomalies, to the use of 1°x 1° anomalies globally for the
optimal estimation of a high degree potential coefficients field, complete to
degree and order 250, along with their error estimates. The algorithm was divided
into several steps, for ease of computer implementation and running various tests,
and also needed two main modifications. These steps have been summarized in
Table 3.4.

The initial first step is to assemble the integrals of associated Legendre
functions in 1° latitude bands by an efficient algorithm to a degree Npyx, which
should be larger than the highest degree NN to which coefficients will be esti-
mated and smaller than (2v/anomaly block size), i.e. 360. A total of
(Nmax*1)(Npax*2)/2 integrals, which comes to 45,451 for Npay=300, need to be
computed for each 1° latitude band. The integrals are modified by factors, de-
pending on the anomaly degree variances and the anomaly block size, for later
processing. The anomaly degree variance model in (4.1) was used, which is
the current global model.

The generation of normals, which are based on combinations of the Fourier
transforms of the modified integrals in the first step for different pairs of
latitude bands, could take large CPU time depending on degree NN. The two main
modifications to the algorithm, i.e. the reordering of the normals and the re-
ordering of the right hand side vectors, became necessary due to very large
TAPE 10 and array size requirements for the cuse of 1°x1° anomalies. These two
modifications, which are described in Sections 3.31 and 3.32,also depend on degree
NN. As none of the steps so far depend on anomaly errors, or anomalies, different
tests were carried out as described in Section 5 with NN=12 or 60.

The solution of normals, yielding the optimal quadrature weights, and the
computation of error estimates, depends on the anomaly error estimates. An
averaged variance is used in each latitude band, based on the anomaly error
estimates in that latitude band, as discussed in Section 2.2 to allow the inver-
sion of covariance matrix of 64,800 1°x 1° anomalies to be equivalently carried
out by the inversion of 180 x 180 matrices in the frequency domain to degree NN.
The use of averaged anomaly variance in each latitude band allows the correct
computation of only the sum of variances for the two coefficients (Cpms Snm)
for any particular degree and order, and not separate variance for each coefficient
in the pair. The variance for each coefficient in the pair is then arbitrarily
made equal.

A very realistic anomaly error estimate, given in Table 4.1, was used
for solution to degree NN=250. Because only an averaged variance is required
in each latitude band, the anomaly error model is primarily sensitive to latitude
variation. Accordingly, another solution of the normals was done to degree
NN=250 with an anomaly error estimate without any latitude variation. The two
anomaly error estimates, one in Table 4.1 with average anomaly error in a lati-
tude band ranging from 30 to 4 mgals, and the other with a uniform value of
5 mgals in all latitude bands, were called anomaly error estimates A and B.

=
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The computation of potential coefficients is the last step, where the global

omaly data is used with the optimal quadrature weights, which are dependent

the anomaly error estimates. The current best estimate of a global 1°x1°
omaly field, anomaly set B adjusted to a weighted set of satellite derived
tential coefficients 'SET1' complete to degree 36, with some additional coef-
cients to degree 48, was described in Section 2.3. Anomaly set B was used

th anomaly error estimates A and B to compute potential coefficient sets Bl

d B2 complete to degree and order 250. The statistics on these two coefficient
ts, and the comparison with the current set of potential coefficients, coef-
cient set A, complete to degree and order 180 (Rapp, 1981), was presented in
ction 6.

When the next updated version of a global set of 1°x1° anomalies is assembled,
. will be necessary to only repeat the last step of the computation of an up-
ited set of potential coefficients. The latitude variations of the averaged
lomaly variances in anomaly error estimate A are unlikely to change in the near
iture till the flight of the Geopotential Research Mission. The optimal quadrature
»ights corresponding to anomaly error estimate A, (and those corresponding to
iomaly estimate B with no latitude variation of anomaly errors), of this study

ould therefore be directly usable with an updated version of global 1°x 1° anomalies.

.1 Conclusions of Present Study

- The most reliable estimate should be used for the global gravity anomaly
ita. When no reliable 1°x 1° anomaly estimates ave available, the anomaly implied
¢t a high degree potential coefficients field should be used in preference to
stting the anomaly estimate as zero. The lower the averaged variance of anomalies
1 a 1° latitude band, the larger is the effect of change in anomaly estimate for
1y 1°x1° anomaly in that latitude band.

- The most realistic error estimate should be used for each anomaly, instead
f using a global average. Though the anomaly variances are averaged in each
> latitudinal band before their introduction in optimal estimation of coefficients,
1e potential coefficient determination is quite sensitive to any resulting latitude
iriation of averaged variances in each 1° latitude band.

- The optimal quadrature weights, X/, are computed as 180 numbers for each
secific coefficient pair, (Coms Spnm)» Of given degree and order. The 180 numbers
ike into account the latitudinal variation of averaged anomaly variances. The
2~-smoothing factors are based on the Pellinen/Meissl smoothing operator, 8y,
nich is the same for all orders for a given degree. Further, the de-smoothing
actors do not take account of any anomaly error estimates, or more specifically
1y latitudinal variation in these estimates.

- The optimal quadrature weights are computed based on the minimization of
"e propagated anomaly error variances, and the error variance due to sampling
finite number of mean anomalies, instead of an infinite number of point
nomalies. The desmoothing factors are based only on the sijze of anomaly blocks.

- The order of improvement in the coefficients, per degree, by optimal
stimation over the current estimates using de-smoothing factors, is about 8%
t degree 60, about 11% at degree 120, and rises to about 33% at degree 180.
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- The error estimates in optimal estimation are consistent with anomaly
‘ror estimates in a meaningful way. The total percentage error, %T,, per degree
1es not exceed 100% even at degree 250. %T, had exceeded 100% for current set
" coefficients at degree 120.
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ST
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- The error estimates per degree in optimal estimation are better than a
ictor of two over the corresponding estimates in the current set of coefficients
i all degrees greater than 12. The error estimates for low degrees in current e
)efficients are based on satellite observations, while the error estimates per =
:gree in optimal estimation are based only on anomaly data.

Py

| oy

2

- If the error estimates per degree in optimal estimation procedure are set
. the same values as current coefficient set only for degrees < 6, the cumula-
ive undulation error to degree 180 would be 75 cm as compared to 146 cm for A
irrent set of coefficients. -

O

o a

- There is no discontinuity in the degree variances of optimally estimated
refficients at degrees 60 and 180, as is the case with the current set of co-
Fficients, which were limited to degree 180 because of concern over sharp dis-
mtinuity at that degree.

- No useful purpose may be served by expanding 1°x 1° gravity anomaly data &Qig
1to coefficients beyond degree 250. The undulation and anomaly magnitude per ~
agree near n=250 is about 1 cm and 0.5 mgals respectively. The coefficient RENER
rrcentage error near n=250 exceeds 80%. RO

- The a~priori anomaly degree variance model has too much power beyond degree L
50. This leads to pessimistic error estimates per degree, and cumulatively, at
igher degrees.

.2 _Recommendations for Further Investigations ;223

- The optimal estimation algorithm applied to 1°x 1° anomaly data needs to
e extended further to consider the case when global anomaly data may be avail-
ble in 30'x30' blocks. Efforts have already been initiated (private communication
rom R.H. Rapp) to assembie a global data of 259,200 30'x30' anomalies. This
i11 lead to several fold increase in the complexity of computer implementation
f the optimal estimation algorithm.

- The generation of normals requires (Npax+1l)(Npaxt2)/2 integrals of associated
egendre functions to be read in for each latitude band to obtain Fourier transform
or the data in a pair of latitude bands. Even after exploiting the persymmetric
tructure of the normals matrix, about 136,000 TAPE I0's are required only to
ead in the date fromall required pairs of latitude bands for Npzx=300 for 1°
atitude bancs. It needs to be investigated if data from several pairs of latitude
ands could be cperated upon simultaneously instead of one pair at a time. Ef-
iciency of putting part of this data on random storage also needs to be considered.

e ey e
l'-.-"""" . h" LN .
AN .

- The CPU time for the solution of normals increases sharply with increase :
n the highest degree to which coefficients are estimated. At degree 250, the T
olution of normals in sequence of right hand side vectors after inverting RO
atrices of only 180 x 180 for the case of 1°x 1° anomalies already took about O
4 minutes CPU time on an Amdahl 470 V/8 computer. Faster algorithms need to -
e investigated for this solution.
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- Bose et al. (1983) have suggested some strategies for including data at
Joles but the computational load does not decrease significantly. They have
suggested different data sampling instead of equi-angular blocks. Further
stigations need to be continued to apply such strategies to actual computations
high degree field. Ve

g

B
I
ST e

N WP e

OOV Sur TR N )

.
.
;
-
e
..‘
A
.

......................................................................
....................................

...........



RSO I S U A SIS A A G S e I - i e Jbon MO S A Sven i Srui S0 e Jive S atees Mben mead meen i e snes o o R o

References
, S.C., G.E. Thobe, J.T. Kouba and R.W. Mortensen, Optimal Global Gravity e
Representation, Paper presented at the XVIII General Assembly of IUGG, Proc. .

of IAG Symposia, Vol. 1, pp. 449-482, Hamburg, August 1983. Q?f}

nbo, 0.L., Optimal Estimation from Data Regularly Sampled on a Sphere with
Applications in Geodesy, Department of Geodetic Science Report No. 291,
The Ohio State University, Columbus, September 1979.

mbo, 0.L., Numerical Methods for Harmonic Analysis on the Sphere, Department
of Geodetic Science and Surveying, Report NO. 310, The Chio State University,
Columbus, March 1981.

tl, M., On the Recursive Computation of the Integrals of the Associated Legendre
Functions, Manuscripta Geodaetica, Vol. 5, pp. 181-199, 1980.

son, D.M., On Solving the Stability Problem in Computing the Integrals of
the Legendre Functions, Department of Geodetic Science and Surveying Internal
Report, The Ohio State University, Columbus, August 1983.

h, F.J., B.d. Putney, C.A. Wagner and S.M. Klosko, Goddard Earth Models for
Oceanographic Applications (GEM 10B and 10C), Marine Geodesy, Vol. 5, No. 2,
pp. 145-187, 1981.

tz, H., Advanced Physical Geodesy, Abacus Press, Kent, U.K., 1980a.

tz, H., Geodetic Reference System 1980, Bulletin Geodesique, Vol. 54, No. 3,
pp. 395-405, 1980b.

» M.K., Recurrence Reiations for Integral: of Associated Legendre Functions,
Bulletin Geodesique, Vol. 52, pp. 177-190, 1978.

1, R.H., Analytical and Numerical Differences Between Two Methods for the
Combination of Gravimetric and Satellite Data, Boll. di Geof. Teo. ed Appl.,
Vol. XI, N41-42, pp. 108-118, 1979.

'» R.H., The Relationship Between Mean Anomaly Block Sizes and Spherical
Harmonic Representations, Journal of Geophysical Research, Vol. 82, No. 33, b
pp. 5360-5364, November 1977. g 1

N )
L e e

), R.H., Potential Coefficient and Anomaly Degree Variance Modeling Revisited, RN
Department of Geodetic Science and Surveying Report No. 293, The Ohio State RS
University, Columbus, September 1979. L]

C -

)y, R.H., The Earth's Gravity Field to Degree and Order 180 Using Seasat
Altimeter Data, Terrestrial Gravity Data, and Other Data, Department of
Geodetic Science and Surveying Report No. 322, The Ohio State University,
Columbus, December 1981.

), R.H., Aspects of Geoid Definition and Determination, Proc. of the General e
Meeting of the IAG, pp. 411-433, Tokyo, May 1982. e
-59- Lo

.................................................
...................................




F-‘.‘-_--_'ﬁ.—‘-‘-:.ﬁ-,-—_—-—v_—-:_—‘? —r T T SR AV A S de-te e s Seci i I A I T " - R TN g YT N T L WL W, W I, v,

-

A2

}'. .ol
S
PP
BN

Tscherning, C.C., The Role of High Degree Spherical Harmonic Expansions in Solving
Geodetic Problems, Paper presented at the XVIII General Assembly of IUGG,
Proc. of IAG Symposia, Vol. 1, pp. 431-441, Hamburg, August 1983.

p

3

b

3

-

hv
pm

3

r..

Tscherning, C.C., R.H. Rapp and C.C Goad, A Comparison of Methods for Computing .
Gravimetric Quantities from High Degree Spherical Harmonic Expansions, -
Manuscripta Geodaetica, Vol. 8, pp. 249-272, 1983.

LI

PR TR AL AL EPSI I P DU « n . R R S . TR St S PO T S
. N . B T S S ST A S S
.

N I TR R e N R PR - L N N ) |
PO R S S P S B T WA UL JUNE ST N SPPR N WA WENE U SR Y Bl WP P WA MR St S S -2 PEIRA I RIS T G W LI Wit S T iaboon b adaioa el alatal




PRI

2t o a e 8 e e et

s ﬁw . ..4
| L
d , m, i . ..A
_ . Y
© .
) Lo
e i _.A .. L
| s
a L
; iy
3 4 ....
! 3
r. ~ -
_ ;

-
A Sl S |

M ol o aath amass

R

-

A Py

‘il e SN i ke i e

PR SN R WS RNE I



