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1. INTRODUCTION

The earth's gravitational potential, V, at a point with geocentric coordinates
(r, o', x), may be represented by a spherical harmonic expansion (Moritz, 1980a,
Sec. 3):

V=V(r, 0', C)o[+ s ( ) (Cncos mi+S sin mx)Pn (sin ')] (1.1)
r n=2 m=O r nm nm nm

where GM is the gravitational constant times the earth's mass, a is the equatorial
radius of the best-fitting earth ellipsoid; (Cnm, Snm) and Pnm (function of
sin o', o' is geocentric latitude) are respectively the fully normalized poten-
tial, or harmonic, coefficients and associated Legendre functions of degree n
and order m. If we subtract the potential coefficients corresponding to the
earth's normal gravity field from (Cnm, Snm), the residual potential coefficients
(Cm, Sm) when ubstituted in (1.1) will yield the anomalous potential T.

As other quantities related to the earth's gravity field, e.g., gravity
anomalies, geoid undulations, deflections of vertical, etc., are simply related
to the anomalous potential T, a knowledge of the potential coefficients (Cnm, Snm)
serves to describe the earth's gravity field. The computation of gravity related P
quantities from the potential coefficients may be termed as 'harmonic synthesis'.
Several very efficient algorithms are now available for harmonic synthesis. A
comparison of these algorithms is described by Tscherning et al. (1983). The
inverse operation of computing potential coefficients from a global data set of
gravity related quantity may be termed as 'harmonic analysis'. The algorithms
for harmonic analysis will be described in Sections 2 and 3 of this study following
the development by Colombo (1981).

The resolution of gravity related quantities computed by harmonic synthesis
depends on the degree n up to which the potential coefficients are available.
A dramatic improvement in the resolution of geoid undulations around Japan com-
puted with potential coefficients up to degree n=180, when compared with n=36,
may be seen in Rapp (1982, Figures 1 and 2). Another advantage of potential
coefficient determination to a high degree, through harmonic analysis, is the
use of residual quantities, referred to this high degree field, for evaluating
integral formulas, e.g. computing geoid undulations from residual gravity anom-
alies. A much smaller residual data 'cap' would be adequate with the use of
high degree field. For further discussion of the role of high degree field in
solving geodetic problems, see Tscherning (1983).

A high degree potential coefficient field GEMIOC to degree 180 was developed
by Lerch et al. (1981) using global 1°x 10 mean geoid heights H*, residual to
GEM 10 B (complete to degree 36), by implementing: m.

C-* Cos mX "T-Cnm _1
fx f (0' X Pn(sin o)  cos 0do dX (1.2) ..

S* sin mX
nm 4 f (mico d(
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Rapp has developed several high degree fields, the current one to degree 180
is described in Rapp (1981). He utilized global lx1" mean gravity anomalies
which were first adjusted with a potential coefficients set to degree 36. The
procedure will be discussed more fully in Section 2.3. In concept, the following
relation was implemented:

cos mA
, 4ry(n-l) f ag Pm(Sin') da (1.3)S* sin mx i
nm -

where Ag is the gravity anomaly over a block size do, y is an average value
of gravity over the globe, denoted by a, and other notations are as in (1.1).

The main problems in implementing (1.2) or (1.3), or similar relations, are
as follows. Firstly, the uncertainty in the gravity related quantity, H*, Ag,
etc., is not taken into account in computing the potential coefficients. These
coefficients remain the same so long as the global data set, e.g. of gravity
anomalies, is not changed, whether the uncertainty ascribed to the anomalies is
20 mgals, or 5 mgals, globally, or more realistically varies over the globe.
Secondly, the error estimates of the potential coefficients are not obtained
satisfactorily taking into account both theuncertainty or 'noise' of the gravity
related quantity, and the finite block size, or 'sampling', over which this
quantity is given as a mean value. Thirdly, in the practical implementation of
(1.2), (1.3), etc., the integration is replaced by a summation, and the fact
that we are using mean values instead of point values requires a choice of 'de-
smoothing' factors (see Rapp (1981), p. 4), depending on the degree of potential
coefficients being computed. If a few desmoothing factors are chosen, separately
for different degree bands, to span the entire spectrum, a sharp discontinuity
may result at the boundary of degree bands. In fact, the current potential co-
efficients field by Rapp (1981) was developed to degree 300, but has been usually
employed only up to degree 180 because of concern over such a discontinuity.

Colombo (1981) developed algorithms for 'optimal' estimation of potential
coefficients which are free of the above problems. His tests were carried out
with global set of 5°x 50 anomalies. He estimated CPU time of about two hours,
on an Amdahl 470 V/6-I computer, for computing coefficients to degree 180 with
a global set of lox 10 anomalies. With a faster 470 V/8 computer, and by slight
modifications in the subroutines, we can now compute coefficients to degree 250
with lox 10 anomalies in about 60 minutes CPU time. This procedure will be
described in Section 3.

The initial potential coefficients set used in this study is the one developed
by Rapp (1981) to degree 180. We used this set to compute a global lx I anomaly
data, which then served as a test data to generate different potential coefficient
sets by optimal estimation procedure, assuming different error estimates for the
anomaly data. Rapp (ibid.) had also generated an adjusted global lx 10 anomaly
data set, adjusted with a potential coefficient set to degree 36. This was the
second global anomaly data set used in the present study. The different poten-
tial coefficient sets, and the global anomlay data sets, are described in Section 4.

-2-



The differences between the various potential coefficient sets are examined
i Section 5. This allows us to estimate the improvement by the optimal estimation
rocedure over the current (Rapp, 1981) harmonic analysis procedure in developing
high degree field. There are presently several areas in the world, which have

eophysically predicted l0x 1' anomalies. We therefore also examine in Section
.3, the change in potential coefficients set if anomalies in some areas of theorld are set to zero.

The potential coefficients developed to degree and order 250, and their
rror estimates, by optimal estimation procedure are discussed in Section 6.
here is a very substantial improvement in these error estimates when compared
ith the error estimates of the current set of potential coefficients (Rapp,
981). The error estimates of geoid undulations, and gravity anomalies, computed
rom the potential coefficients developed by optimal estimation, are also
xamined by degree, and cumulatively. Section 7 summarizes the findings of the
resent study. The choice of the highest degree 250, to which the coefficients
,ill be estimated from 1°x 1' anomalies, was somewhat arbitrary. It was chosen
rom the dual consideration of keeping the computational effort manageable, and
'et not lose the high degree information available in 1°x I anomalies. The re-
ormulation of the computational algorithm in several steps is given later in
able 3.4. We will also find in Section 6, that at degree 250, the undulation
lagnitude per degree is about 1 cm, and the anomaly magnitude per degree is about
1.5 mgals. .

-3-
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ut on tape after rearranging as 180 (=Ne(2.22)) numbers, (NN+I) times, for 90
atitude bands. The requirement is to form them into (NN+I)(R(m), m=O to NN)
atrices of 180 x 180 numbers. The expansion of 180 x 90 numbers into 180 x 180
atrix, by exploiting the persymmetric nature of R(m) matrices, can be handled .
y proper indexing. However, reading 180 numbers as one logical record still
equires 90x (NN+I) records to be read to access the whole set to pick out elements
or one (R(m) matrix; and 90x (NN+1)2 records to be read to form (NN+I) R(m)
atrices, and additional TAPE 10 for writing out the reordered R(m) matrices.
sing the largest block size for reading and writing, the TAPE 10 for different
N are given in Table 3.2.

able 3.2 TAPE 10 for Reordering Normals for Estimating Coefficients to Degree NN.

TAPE 10
NN

Read Write Total

180 134, 121 724 134, 845

250 257, 777 1,004 258, 781

300 370, 832 1,204 372, 036

To avoid excessive TAPE 10 costs, the coding was modified to put the sequen-
ial set of generated normals, after grouping 180x (NN+I) numbers for k latitude
)ands as one record, on random disk storage. This not only removed the need to
ead the entire sequential set to form one R(m) matrix, but also allowed k R(m)
iatrices to be assembled at a time, as any one record was read in from random
;torage. However, this required that an array of kx (16,290) x8 bytes should be
ivailable, where 16,290 (= 180x181/2) is the number of double precision elements
in vector form of a 180x180 R(m) matrix.

With 2048 K bytes of virtual storage, k was chosen as 13. A proportionally
larger value of k could be chosen if a larger region size is available. This
;tep of reordering the normals may be termed as step 3A.

3.32 Reordering of the Right Hand Side Vectors - --

After the reordering of R(m) matrices, mO to NN, we need to read in the
-ight hand side vector knm in the following manner, for the solution of xmm in
:2.30). For knm, 180 elements for latitude bands i=O to 179, arranged by order
a0 to NN, and degree n=m to NN; where NN is the highest degree and order up
: which coefficients are to be estimated, usually N<NN<Nmax. From the 45,451
[1 values per latitude band, n:O to Nmax, m=O to n, available in step IC, then
iaTues corresponding to mO to NN, n=m to NN, could be piked by suitable indexing
in each latitude band, and multiplied by the factor in (3.4) to obtain corres-
)onding k' . This would result in the elements of knm being assembled as
(NN+I)(NN+ )/2 elements, m=O to NN, n=m to NN, for each latitude band i=O to
179. If we consider it as a general matrix stored in a vector form row by row,

-17-



m=O to NN, for each row p. The procedure is repeated by reading in lnm for
i=I, 2, ... , 89 and implementing p=i to 179-i for each i, thereby fully exploiting
the equatorial symmetry of the data grid, which makes R(m) matrices persymmetrical,
i.e., symmetrical wi n respect to both the main diagonal and the main antidiagonal.

For a given NN, the CPU time for generating rm varies almost linearly with
the latitude band i, decreasing from high to low latitudes, except for slight
reduction in the polar region for high NN. A modification was made to generate
only a portion of the normals, i.e. r1P for any one or more i (for al p=l to
179-i) for estimating the time to generate the entire normals for a given NN.
Some CPU times on an Amdahl 470 V/8 computer are gi"en in Table 3.1 for various
NN for the case of 1°x 10 anomalies.

Table 3.1 CPU Time for Generating Normals for Estimating Coefficients to Degree NN.

Latitude Band CPU Time in Seconds

i NN=12 NN=60 NN=250

0 5.3 13.4 25.7

29 4.1 8.1 31.8

59 2.9 5.0 10.0

89 1.7 1.8 2.1

Total Time t5.3 min. 10 min. t26 min.
i=O to 89

The generation of normals in this step 2 depends only on the data grid,
e.g. Ae=Ax=l° . As the error estimates of anomalies are introduced in later steps,
the normals are not required to be regenerated for testing the effect of different
anomaly error estimates.

3.3 Optimal Quadrature Weights and Error Estimates

The elements of R(m) matrices generated in step 2 in Section 3.2 first need
to be arranged by the order m, m=O to NN, in a vector form for the 180x180 symmetric
matrix, for all latitude bands i and p. Similarly, the elements 1i in step IC
need to be arragned by the order m to assemble the vector _km in t m form needed

for implementing (2.30) to solve for _nm, for all n for a given m. It is only
at this stage that average variance a? of anomalies in (2.32) in different latitude
bands has to be considered. -

3.31 Reordering of the Normals

rm are generated in step 2 as (NN+1) numbers, for 180 latitude bands p,
for 90 latitude bands i from pole to equator. The generated numbers are written

-16-
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S

+k 7 ) even
PIm (i = 0 to 89) = (k =179-i n - m = (3.3)

odd

nm are needed in the form of Inm as in (2.24) for all
further computations, a third tape was written for I'm from north pole to south
pole, i = 0 to 179:

iim P 1 P k1 k1/\! (.4

l nc AI. n = ki  (n ,, " -. nm n / 2nI i3 4 --

These three steps of computing PI1nm, i = 0 to 89; extending PInm to i = 0 to 179;
and modifying these to 11m, i = 0 to 179 are preliminary steps to the generation of
normals. These three steps may be termed as 1A, 1B and 1C for convenience of refer- R.
ence. The anomaly degree variance model will be specified in Section 4.

3.2 Generation of Normals

The Fourier transforms, am , m = 0 to n, of the covariances of anomaly blocks
in two latitude bands i and p are obtained by (Colombo, 1981, p. 44, (2.63)): I .

Nmax Nmax . AX2  for m=0

= [ inm l i 2N-m (a 2  for m=O
n=m n nm n-- 2(1-cos m Ax) for m O (.

where 2N-m Nmax. The second term in the square brackets take the aliasing of
Fourier transform into account, with increasing m. Nmax was taken as 300 based
on experiments by Colombo (1981, Sec. 4.2).

ipThe element r m , corresponding to latitude bands i and p, of the matrix
R(m), m 0 to NN, where NN is the highest degree up to which coefficients will
be estimated (N < NN < Nm), are obtained by:

max

ip= ip 2N, if m=0
r a (3.6)m m Nim'N if mVO

The formation of R(m) matrix may be termed as the generation of normals
in the frequency domain corresponding to the formation of the covariance matrix
Czz of the 64,800 anomaly blocks. This step of the algorithm takes a large
CPU time. However, the CPU time is dependent on the highest degree up to which
the coefficients are to be estimated, as the number of 180 x 180 R(m) matrices
to be formed is NN+1.

The implementation of (3.5) starts by reading in the 45,451 values of Inm
in (3.4) in step IC for i=O, and multiplying with the corresponding values of
ID in (3.5) for p=O to 179 yielding NN+1 numbers aOP (and rOP from (3.6)),nm m m

-15-



3. ALGORITHM FOR OPTIMAL ESTIMATION OF POTENTIAL COEFFICIENTS

The algorithm outlined in Section 2.2 was coded by Colombo (1981, Appx. B4)
in subroutines NORMAL and ANALYS, and were tested by him up to the smallest
anomaly block size of 5°x 5', comprising of 2592 anomalies globally. In applying
these subroutines to the case of 64,800 lx lo anomalies, it appeared advisable
both for testing, and for actual computations, to separate out portions of NORMAL
which could run sequentially, without repeating earlier stages and thus allowing
greater flexibility in considering different anomaly uncertainties, and later
different global anomaly data sets. Also, two major modifications were required
because of very large TAPE/DISK 10's, or very large array size, needed with
the existing coding for the case of 1°x 1 anomalies. The separate portions of
implementing the algorithm and the modifications, are described below. The
numerical values, and ranges, will refer to the case of lox 10 anomalies.

3.1 Integration of Associated Legendre Functions

The integrals of associated Legendre functions, PInm

+(3.1)

are needed repeatedly for implementing (2.20) and (2.21), e.g. in the formation
of the elements of R(m) matrices and the array knm for computing the optimal
quadrature weights xnm in (2.30). The recursive relations for efficiently computing

Pm were developed by Paul (1978). A subroutine supplied by him (private com-
munication to R.H. Rapp) was used to generate PI on tape for:

00 K < 890, 10, n = 0 to Nmax; m 0 to n; N max  300 (3.2)

These are nominal values of Ae, and e as the complement of geodetic latitude
p. The actual integration limits in (3.1) were obtained by e = 90-0', by con-
verting the nominal geodetic latitudes 0 to the corresponding geocentric latitudes
0'. To avoid the numerical instability in computing the sectorial PI _, the
direct series expansions were used for latitudes up to 500 from the pole for PI nm
instead of forward sectorial recurrence relations. This tape was already avail-
able for this study, but for any future studies with n exceeding 300, Gleason
(1983) has suggested modifications to Paul's routines for employing backward and
forward sectorial recursions depending on the condition number associated with
the recursion (Gerstl, 1980).

The order of PI on tape was according to latitude bands from the north pole
to the equator; andon each latitude band (N ax+l)(Nmax+ 2)/2=45,451 PI1 values
were arranged by degree and order as in (3.2. As the PIm are required for all
latitude bands from the north pole to the south pole for Re elements in the
right.hand side of (2.30), a new tape was written by exploiting the symmetry
of P 1 with respect to the poles, and change of sign in the two hemispheres
when ?n-m) is odd:

-14-
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We note from (2.40) that under the assumption of a constant global anomaly
error, the propagated error estimate of all coefficients of different order are
the same in each degree. This also appears to be the case in (2.41) for sampling
error, but this is an artifact due to the fitting of the quartic expression
in (2.41) to estimation errors cen per degree in (2.33) instead of estimation
errors for each pair of coefficients Ca as discussed after (2.32).

nm

Based on root mean square errors of 56,751 merged anomalies
as ±10 mgals, and ±30 mgals for the balance 8049 anomalies, the constant global
anomaly error m in (2.36) could be taken as ±15 mgals. A larger value of ±20
mgals was chosen to allow for possible anomaly errors in the several largely
unsurveyed areas (Rapp, 1981, p. 15). This caused a slightly pessimistic coef-
ficient error estimate in (2.40).

1.-

-13-
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A = 
2 ~(2.36)[-y(n-1)] 2  e=

where a is the standard error of a 10x 10 anomaly, assumed to be the same for all
64,800 anomaly blocks; and Vn are the de-smoothing factors (2.7) in HARMIN.
B =aF/a 3rethe partials in (2.34) and P2 is the weight matrix of anomalies,
assumed to be diagonal,

[P ] = cos0'/o 2 = sin e/02  (2.37)

The corrections V to the anomaly data set is obtained by:

V = P-iBT p V (2.38)

The simplification in the adjustment model results from BkP-"B matrix being
diagonal (so that its inversion becomes trivially simple), which depends on the
assumption (2.37) with the standard error a of all anomalies being the same globally.

Elements of the covariance matrix Enx of coefficient errors due to propagation
of anomaly errors are given (Rapp, 1969, p, 112, (12)) by:

A[EA (2.39)Enx ] - +[Px] A  .

E was considered as a diagonal matrix. The standard errors of 'adjusted SET1'
c 4 fficients to degree 36 (some additional coefficients to degree 48) were retained,
while for higher degree and order coefficients Px was null matrix and Vn in (2.7)
was uniformly taken as 1/4r. Then the diagonal elements of Enx for coefficients,
other than the 'adjusted SET1 °, were computed (Rapp, 1981, p. 29, (30)) by using
(2.36) as:

0
2 A0 AX

[E] = A = (2.40)
nx 47r[y(n-1)]2

The diagonal covariance matrix Ens of coefficient errors due to sampling
finite size of 0x 10 anomaly blocks was based on empirical relation derived from
a Montecarlo approach (Colombo, 1981, p. 78, (3.10):

[Ens [N10 (((-16.19570 (-E) + 30.34506) (-E) + 40.29588) *) 2(2.41)

The Montecarlo experiments are described in Colombo (1981, Sec. 3.1) and the
sampling error computations were performed as described in Section 2.2 of this
study utilizing noise-free data.
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2.3 Rapp's December 1981 Potential Coefficients . ,

Rapp's current set of coefficients was developed (Rapp, 1981) to degree
and order 300, but have been generally employed to degree and order 180. The
procedure for computing these coefficients is reviewed here. In concept, the
coefficients were computed as in Section 2.1, but the error estimates included .
sampling error based on Section 2.2.

First, a low degree potential coefficients set (complete to degree 36 with
some additional coefficients to degree 48) was assembled by a weighted merging
of most current sets, including resonance coefficients of orders 12 to 15 and
30. These merged coefficients were called SETI, and were also assigned error
estimates. Similarly, a global set of 64,800 1°x 1 mean gravity anomalies was
assembled by merging most current terrestrial anomaly data with anomalies deter-
mined from adjusted Seasat altimeter data. The number of merged anomalies was
56,751 with root mean square of standard errors of anomalies being ±10 mgals.
The remaining 8049 anomalies, to complete the global set, were assigned values /
implied by SET1 coefficients, and assigned standard error of 30 mgals.

Next, a simplified adjustment was made, whose procedure is outlined below,
of SET1 coefficients and 64,800 lox 10 anomalies. The result of the adjustment
may be called 'adjusted SET1' to degree 36 (some additional coefficients to " -

degree 48), and 64,800 'adjusted anomalies'. The 'adjusted anomalies' were used .
to compute potential coefficients to degree 300 using subroutine HARMIN, which
implements (2.5) with de-smoothing factors (2.7). The 'adjusted anomalies' and
the coefficients (using HARMIN) up to degree 180 will be termed test data set
B in Section 4.2. Because of the simplified adjustment procedure, the low degree
coefficients in data set B did not fully agree with the 'adjusted SETI' coef-
ficients, though the difference was small as discussed later in Section 5. A
merged set of coefficients was then formed using 'adjusted SET1' where available
(complete to degree 36, with some additional coefficients to degree 48), and
the remaining high degree coefficients as developed from 'adjusted anomalies'
using HARMIN. This merged set up to degree 180 are Rapp's current (December
19813 potential coefficients, and will be part of test data set A in Section 4.2.

The simplified adjustment of combining SET1 with global anomaly data is
based on the model:

F = F(La , La) = 0 (2.34)

where La are the adjusted SETI coefficients, while La are the adjusted anomalies.
Denoting one element as [.1, an element [Vx] of the- orrection vector Vfxto.

SETI coefficients is given by:

L
[Vx  -[w]/(l + A[Px) (2.35)

where w is the misclosure vector between the SET1 coefficients and the computed
coefficients from the anomalies using HARMIN, Px is the weight matrix (assumed
to be diagonal) for the SET1 coefficients, and A is one of the elements of the
diagonal matrix B P-1 BT, given by (Rapp, 1981, p. 6, (23)):
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(2.31) allows harmonic analysis through a quadrature formula, and xnm may
be called the optimal quadrature weights. The optimal quadrature weights are
derived on the basis of minimizing the sum of both error quadratic terms due to
finite size of anomaly blocks, and the anomaly uncertainties. And (2.31) retains
the efficiency in computation of the coefficients inherent in the structure of
(Czz+D) discussed before (2.24). This however requires (Colombo, 1981, Sec. 2.9) .-.

a slight modification in the structure of noise matrix D. The modification is
that the variances for all anomalies in a latitude band be equated to the average .
value for that band, i.e.

2N-1 ""
o2 1 (2.32)

2N2j=O 13..

i 0

This modification causes a change in estimates for propagated error (en in
(2.15)) for non-zonal coefficients. But the sum of variance of a pair of non-
zonal coefficients ie m, Snm), is unaltered. The estimated variance
of each of the coefficients, in a pair, is then arbitrarily made equal. This
is a minor modification to retain the computational efficiency of not having
to directly invert the (C zz+D) matrix of a large size.

There is no change in error estimates of the zonal coefficients. There is
also no change in the error variance per degree, on, or the error variance per
average coefficient per degree, on:

n 1 n 2
2 a2  2 (~+ 2 -2 ....~"En = I X nma (-Enm +3nm en 2n+1 (2.33)

The implementation of (2.23) to (2.29), leading to the computation of optimal
quadrature weights in (2.30) is done by subroutine NORMAL. The error estimates
for the coefficients, obtained in concept through (2.21), are also computed by
NORMAL, including (2.33), under the condition (2.32). The optimal quadrature
weights, Xnm, computed by NORMAL, are used in subroutine ANALYS with the global
anomaly data for the harmonic analysis of coefficients in (2.31). The coding
of NORMAL and ANALYS is documented in Colombo (1981, Appx. B4). Some changes
made in these subroutines will be discussed in Section 3.

One may notice the similarity of (2.5) and (2.6), the quadrature formula
with de-smoothing factors An, and (2.31) read with (2.28), (2.26), (2.30), i.e.
the quadrature formula with optimal quadrature weights Xnm. As already mentioned,
4£nm are dependent on the anomaly uncertainties through (2.30), while An computed
through (2.7) and (2.8) do not take into account the anomaly uncertainties.
Hence, the coefficients computed in Section 2.1 will remain the same whether
the global anomaly data has standard error, as an example, of 5 mgals, or 20 mgals,
or more realistically varies over the globe. However, the estimated coefficients
in Section 2.2 would realistically reflect the uncertainties in the estimate of
aromalies, subject to the averaging of variance in a latitude band in (2.32).
Section 2.2 coefficients are also optimal in the sense of minimizing ET in (2.16),
and satisfactorily accounting for both Es and En, and also do not show any dis-
continuities which are caused in Section 2.1 coefficients due to (2.7).

-10-
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n f mcse ied T T
nmma f cc dX ...] (2.25)

1=0 to (Nei

= ... A .+aT . (2.26)nm' Td

where a [... Ics m j AX ... ]T, j=O to (N,-1) (2.27)

d-A Co AM) BWm

and f Jm ACos mj AX + sirt mi A(2.28)

AA Bm) 0 ifm=0 (.9

wher A~) =(sinm Ax)/m B (m) Cos m AA-i/1 1  if MNO(.9

If we collect in for all latitude bands 1=0 to (Ne-)t eie~ n

simiarl colect m for all latitude bands to define Xrim, see below, i.e.,

k = k Ne.1 T
-rim nn nm knmlT

4 x0 ... N0 ... T
Xm m xnm

where .&m=(R(m)+W)-l knm (2.30)

W being the diagonal matrix consisting of average anomaly variance in each latitude
band (see (2.32) below); then Colombo (1981, p. 43, (2.61)) shows that elements of
vector in~ (2.20) may be computed by:

N-i1 2N-1 [JA(Mi)) BWm .1

ea - 1 i ICos mAX+sin mjAZgj (2.31)-rm y7-n-TT 1=0 nm= j., -B(n)) IA(m) jgj

where we have substituted N for N0 and 2N for NA in view of (2.4) and (2.22).
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The formation and inversion of (Czz + D) for 64,800 lox1 0 anomalies in (2.20)
and (2.21) would be a formidable task. But Colombo (1979) has shown that under
general conditions fulfilled by equi-angular grids, each covariance matrix between
lox l anomaly blocks in two latitude bands has Toeplitz circulant structure
(Colombo, 1981, Sec. 2.10). The main requirement of the same constant value
of AX in each of the N latitude bands in (2.4):

AX Xj+l - i = 0 to 359 for all e i = 0 to 179

Ae ei+ I - ei; Ae = Ax = 10; Ne = - 180; NX 2ir 360 (2.22)iAl Ae AX

is naturally fulfilled for equi-angular grid (the numbers correspond to lox 10
grid).

The structure of (Czz + D) makes it possible that its inversion can be equi-
valently substituted (Colombo, 1981, p. 42, (2.54)) by the much simpler inversion
of Ne x No matrices R(m), m=O to Nx, if we wish to solve only for coefficients
up to the Nyquist frequency given by Ne = INX. However, if we were to solve
for coefficients up to degree NN > No, it will require the formation of:

N x N matrices R(m), m=O to NN (2.23)

However, their inversion is still a relatively simple problem as their size is
No x No. Also, the elements of R(m), which are related to the discrete Fourier
transform of covariances of anomaly blocks in a pair of latitude bands, can be
obtained directly without actually computing the anomaly covariances. This re-
quires repeated manipulation (Colombo, 1981, Sec. 2.11) of integrals I, of

associated Legendre functions in the form:

Int = c n 1 .i Pt(cos e) sine de k nt (2.24)
~1

where subscript t is related to the order m, k t is defined in (2.25) below,
other notations are as in (2.1), (2.4), (2.6); and cn are the anomaly degree
variances. The computation of integrals in (2.24) will be discussed in Section
3.1; the computation of the elements of matrices R(m) will be discussed in
Section 3.2, and the anomaly degree variance model will be specified in Section 4.

TThe componentsCnma, z of the cross-covariance matrix Ccz in (2.20), (2.21)
are computed, for degree n -and order m, by:
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where en represents the propagated noise, while ts may be interpreted as the
sampling error. es would tend to zero if perfect data (without any error or
noise) was employed in (2.13), and the number of data points tended to infinity;
or in other words, the mean anomaly block size tend to zero. We assume that the "-
,errors es and en arise due to completely independent causes.

The total covariance matrix ET of the potential coefficient errors, may
then be written as the sum of covariance matrices of errors Es due to sampling
and En due to data noise:

T TT

S{(c- Fz)(c- Fz) T } + M {Fnn F T  (2.16)

where M { } is the averaging operator.

(2.16) is easily simplified to:

ET C 2CczFT + F(C + D) FT (2.17)T'.:--;-i

where

C = M {ccT}, T = M {czT 1 zz = M {zz T } (2.18)

D M {nnT I

are the covariance matrix of the coefficients, cross covariance matrix of coef-
ficients and mean anomalies, covariance matrix of mean anomalies, and covariance
matrix of mean anomaly errors, respectively.

An optimal value of estimator operator F in (2.13) may now be obtained,
which will minimize the sum of square of total errors for all coefficients, i.e.
the trace of ET, by setting atr[ET]/aF to zero. This leads (Colombo, 1981,
Sec. 2.8) to the well-known relations in least squares collocation:

F =Ccz (Czz + D)-  (2.19)

and by inserting (2.19) in (2.13) and (2.17), we get:

_=Ccz (Czz + D)'(z +n) Ccz (Cz + D)'.. (2.20)

TET = C - C (C + D)- C (2.21)T cz zzcz

-7-
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For the case of harmonic synthesis, we may write for the point and mean
anomalies:

0-n 1
Ag(e i , Aj) = y (n-1) -m (ei A.) (2.9)

n=2 m=O a=O

0n 1
- -(-a i a , x) do (2.10)

ij n=2 m=0 a=O o..

However, as the potential coefficients are available only up to degree
n <Nmax, in the practical implementation of (2.10) the estimate gij is affected
by the truncation error at N (and similarly for (2.9)):

max
Nmax n 1

=-Y- (n-i) C a d f n(e,x)da (2.11)
13 n=2 m0 a=O 0..

Ij

Subroutine HARMIN implements the harmonic analysis (2.5) using the de-smoothing
factors in (2.7). Subroutine SSYNTH implements the harmonic synthesis (2.11).
The coding of these subroutines is documented in Colombo (1981, Appx. B2, B3).

2.2 Quadrature Formulas with Optimal Weights

if we consider the global mean gravity anomaly vector. U to comprise two
parts, the signal z and the noise n, i.e.,

z + n (2.12)

and denoting the potential coefficients vector [Cm], m=O to n, n=O to Nmax by
c, which is estimated from the anomaly data through a system of linear equations
denoted by the matrix operator F, we may write:

= F(z + n) (2.13)

An optimal value of the estimator operator F will be derived later in (2.19).

The estimation error vector e may then also be broken into two parts es
and e n:

e:c-c=c- F(c + n) = (c- F z) - (F) (2.14)

S =c Fz; n =F n (2.15)

-6-
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(2.3) may be termed as the 'point value-type' quadrature formula as it
assumes that the value of Ag and Vnm at ei. xj (or perhaps at the center of the block
ei +-At , xj +--) is constant over the whole block Aij. We may easily integrate

Ynm over the block, but by keeping -g outside the integral in (2.5) below implies
a very 'smooth' gravity anomaly signal over the block equal to the mean value.
This can be remedied by multiplying by a 'de-smoothing' factor, Vn (Colombo,
1981, p. 33), so that we have a 'mean value-type' quadrature formula:

=a ln N-12N-1 (2.5
Cnm =n--7-n-- -I Agij Y nm(, x) do, (2.5)i=0 j=O ij

where
6i+Ae Aj+A (COS 0

f i n(e, X)da = i Pnm(cos e) sine de f >mx dx , (2.6)
,i m mA sin a=I

The evaluation of the integral of associated Legendre functions in (2.6)
will be discussed in Section 3.1. The de-smoothing factor Vn may be related to
the Pellinen/Meissl smoothing, or averaging, operator Bn (Rapp, 1977). By
numerical tests for blocks of 5*x5 0 and larger, Colombo (1981, p. 76, (3.9)) found
a simple nearly optimal relationship:

JA = 4n n 'n =  B N/3 < n < N (2.7)

n , n>N

The use of various de-smoothing factors in (2.7) may cause a sharp discon-
tinuity in the potential coefficients at degree N/3, and at degree N, as was
noticed by Rapp (1981, p. 24). Further, Pn takes into account only the block
size, as Bn is given by:

L

n  cot 0 Pni(cs (2.8)n 2 n(n+1) .8

where *0 is the radius of a circular cap having the same area Oai of the block.
But n does not take into account the error estimate of 7; employed in (2.5). Hence,
Colombo (1981) also considered the rigorous determination of 'optimal quadrature
weights', x, based on the minimization of the sum of two quadratic terms, one
due to 'sam~fing error', and the other due to 'data noise'. This is discussed
in Section 2.2.

-5-
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2. HARMONIC ANALYSIS AND SYNTHESIS

We will henceforward consider 1x 1V mean anomalies, referred to the Geodetic
Reference System 1980 (Moritz, 1980b), as the specific gravity related quantity,
as in (1.3). We will also adopt a more compact notation:

= Cnm' (2.1a)
nm , 1

S o)CO=m 1O

a nnm(Cos ) Cos x (2.b)
nm nm (cos e) sin mx, a=1

where we have expressed the functions in (2.1b) in terms of co-latitude e, instead
of geocentric latitude o'. We will henceforward assume as in (2.1a) that the
potential coefficients COm, i.e. {Cnm, Snm}, are the residual potential coefficients
to the ellipsoidal field of GRS 80, and we will dispense with the notation
of superscript asterisk to denote such residual quantities.

* . 2.1 Quadrature Formulas with De-smoothing Factors

We may then rewrite (1.3) for harmonic analysis as follows:

nm 4ry(n-1) f Ag (6 ) nm(, X) do (2.2)
(a

To implement (2.2), we first replace the integral by summation over the anomaly

blocks; and the estimate nm is now affected by the 'sampling error' because of
the finite area, Aij, of the actual anomaly blocks, in the numerical quadrature
formula:

N-1 2N-1
nm 4 Y1n-f) Ag (ei  X 1

4 1)=0 j1=O nm 1 j 1

Aij = AX (cose i - cos(ei+Ae)) = Ai for all j in any latitude band i,

AX = X Xse = il-ei; Ae Ax = 10 N 180 (2.4)•~ '+ AB

where the numerical values of Ae, AX, N have been shown for 1°x 1 equi-angular
blocks.

-4-
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the correct order of km required is the vector form of the matrix stored column
by column. This would then allow the right hand side vectors to be read in suc-
cessively as 180 numbers at a time for a given R(m) matrix (m=O to NN), for solving
180 numbers of Xnm for the given m, for degrees n=m to NN.

This reordering of the right hand side vectors, analogous to the transpose
of a matrix, is a trivial problem if the whole matrix could be indexed as one
array. In fact, by the exploitation of symmetries in (3.3), it would be sufficient
to.reorder the right hand side vectors, obtained from I1 in the manner indicatednm
above for i=O to 89; and after reordering the 90 elements of each right hand side
vector, extend it to 180 elements using (3.3). However, the array dimension
required for reordering the right hand side by indexing is not possible for the
case of lx 10 anomalies, as is apparent from Table 3.3.

Table 3.3 Size of Array Needed for Reordering the Right Hand Side Vectors by
Indexing for Estimating Coefficients to Degree NN.

# Elements in km Array Dimension

Degree (NN+1)(NN+2)/2 Total (Double Precision)
NN

each i i=O to 89 in Mega Bytes

180 16,471 1,482,390 11.86 MB

250 31,626 2,846,340 22.77 MB

300 45,451 4,090,590 32.72 MB

The problem of reordering was solved by using IBM utility SORT. after the
elements of knm were correctly ordered in a latitude band i, m=O to NN, n=m to

* NN, they were tagged with a number k,

k = j*100 + (i+1); j=1 to NLL, i=O to 89; NLL = (NN+I)(NN+2)/2 (3.7)

and written on tape. After the tagged numbers were sorted in ascending sequence
*by SORT, they were in the order needed in (2.30). The number tag was stripped,

and the right hand side vector knm written out on another tape. This step of
reordering knm may be termed as step 3B. The CPU time by the SORT routine for
sorting 2.8 million elements of knm for NN=250 on an Amdahl 470 V/8 computer
was 2 min. 58 sec., while the initial tagging of numbers took 3 min. 2 sec., and
the writing out of sorted numbers took 2 min. 33 sec.

It may be noted that steps 2, 3A and 3B do not depend on the 1°x 10 anomaly
error estimates, or the anomalies, but depend on the degree NN up to which co-
efficients are to be estimated. The testing of the effect of different anomaly

• .errors, or different anomaly data sets may therefore be tried for low values of
NN like 12, or 60, or 180, before developing coefficients to the highest degree.
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3.33 Solution of the Normals

The solution of the normals in (2.30) proceeds by reading in the reformatted
normals R(m) in step 3A, which is the vector form of the upper diagonal of symmetric
180 x180 matrix. The average variance a? in (2.32) of anomalies in each latitude
band i, i=0 to 179, is added to the diagonal elements of R(m), yielding the matrix
(R(m)+W) in (2.30). This is done for each R(m) matrix, one at a time, for m=O to
NN.

After inversion of (R(m)+W), 90 numbers of the reordered right hand side
vectors in step 3B are read in, expanded to 180 numbers by utilizing the symmetries
in (3.3), and the optimal quadrature weights xnm are solved for 180 numbers at a
time, x1 i=O to 179. The solution proceeds for each m=O to NN, n=m to NN, re-
quiring"TNN+l) matrix inversions, and (NN+1)(NN+2)/2 solutions. The CPU time
for this step increases sharply for large NN. An Amdahl 470 V/8 computer took
about 34 minutes CPU time for this step at NN=250.

The total error variance estimates in (2.21) are computed by:

2 o 1 2X1 if m=0 N-i
CFsnm = y(n-1)2  - l-co!i• 2N - ki ni  (3.8) mcn nm T m1 _2 _ if 0 0O i=O nm nm

which follows from the similarity of terms in (2.20) and (2.21); and the expres-
sions (2.31) and (2.26) using x~m and k1m. The variances were earlier computed
only for a pair of coefficients, unless m=O, as discussed below (2.32). A modi-
fication was made to compute the standard error of each coefficient; and the
factor of for m O, for makirg the variance for each coefficient in a pair equal, -

i.e. a2nm = a2n, has been incorporated in (3.8)

The error variance [En]rnm = [En]Tnm, for each coefficient due to propagated
noise is computed similarly to (3.8) by:

[E I = [En].nm y 1(n1 cn - f m=0 N- i2 2 (3.9)

21-cosmA if m O i=0 nm
m 2J

And, the error variances due to sampling finite size of 1°x 1' anomaly blocks is
computed by:

[Els]nm =[E s]9n m  anm -[En7Yn m[E -[EIn (3.10) t

The program sums up the variances per degree due to sampling, propagated
noise, and total. Modification was made to also compute other statistics for . -'

corresponding standard errors per degree, percentage sampling and noise errors
of the total error, and also percentages of the errors per potential coefficient
variation, on , per degree:
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o =\/cn/(y(n-1)) (3.11)n

This step of solving the normals for computing the optimal quadrature weights
and the error estimates for the coefficients, based on average anomaly variances
in different latitude bands, may be termed as step 3C.

3.4 Computation of Potential Coefficients

The computations of potential coefficients in (2.31), from the optimal quadra-
ture weights Xnm obtained in step 3C, is done by the harmonic analysis of global
anomaly data by subroutine ANALYS. The computations are shortened by recognizing
that the symmetries in (3.3) also apply to Xnm. Hence, (2.31) is transformed to:

m 1 N'I/. 2N-I/1 A(m) B(m)= --- T , 0" IxnmL j=OI1B~ cos mj Ax+ (Am] sin mjAx - (ei, )

Co m! Ax +(ml + ]
(-1) nmj~o£-B m)IcOsm j  (A(m) I s inm jA, x Ag (eN 1i, j)Jy 3 .12)

Thle implementation of (3.12) is further speeded up by computing ai ,in aml-

-Con,~~~~ D"Tn -- 1 am ,

bN-l-i as the Fourier transform along latitude bands i and N-i-i o~ the values
otm g (e, x), i.e.

(3.13)
a i - cos-

= mj A Ag (Nl
b JO sin. - '

A modification was made to ANALYS to compute several sets of coefficients
in the same run, either combining several sets of optimal quadrature weights
associated with different anomaly error estimates with one global anomaly data
set, or by utilizing different anomaly data sets with one Xnam set associated
with a certain set of anomaly errors. The CPU time for the harmonic analysis
of 64,800 1°x 1° anomalies to estimate two potential coefficient sets up to de-
gree NN=250 was only 1 min. 26 sec. on an Amdahl 470 V/8 computer. This step
of computing the potential coefficients may be termed as step 4.

-20-
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There were two additional steps of the comparison of potential coefficient
sets by degree, and of computing error estimates by degree and cumulatively for
the undulations and anomalies implied by a coefficient set. These may be termed
as steps 5 and 6, and are discussed in Sections 5 and 6 respectively.

The various steps in the algorithm for optimal estimation of coefficients
are summarized in Table 3.4.

t ------.
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4. POTENTIAL COEFFICIENT AND GRAVITY ANOMALY DATA SETS

The parameters affecting the optimal estimation of coefficients are given
in the last column of Table 3.4. The highest degree Nmax, to which the summations
are carried out for computing the Fourier transforms of the covariances of lx 10
anomalies in (3.2), was kept as 300 based on experiments carried out by Colombo
(1981, Sec. 4.2). The global anomaly degree variance model used by Colombo (ibid.,
Sec. 3.1) was also retained. It consisted of empirically obtained anomaly degree
variances up to degree 100 from a 180 x180 potential coefficients field developed -

by Rapp in 1978, and by a two component variance model described by Rapp (1979,
p. 15, Table 5, Case 1) for degree n > 100:

: 0 -= )n+2 + 2 I (S )n+2 (mgals )2cn (n-l)L. . (si + n+----B J n-gals)J(4.1)

a, = 3.4050, a2 = 140.03, s, = 0.998006,s 1 = 0.914232, A 1, B 2

The other parameters, and data sets, used in the optimal estimation of coefficients

are described below.

4.1 Anomaly Error Estimates

Several differint sets of anomaly error estimates were used. One set computed
average variance, a. in (2.32), in each latitude band from error estimates of a
global ox 10 anomaly data set utilizing terrestrial anomalies merged with anomalies
determined from Seasat data, and balance anomalies computed from potential coef-
ficients being assigned standard error of 30 mgals. This anomaly data set was a
slightly updated version, with some additional terrestrial data, of the set described
in Section 2.3. The computed values of average anomaly standard errors, oi , per
latitude band are given in Table 4.1, and this will be termed as anomaly error
estimate A. The standard errors range from 30 to about 4 mgals.

Table 4.1 Average Anomaly Errors in 10 Latitude Bands for Error Estimate A.

Latitude
Bands Average Anomaly Standard Error, ai, in mgals
i

0 to 14 30 27 27 27 27 27 28 27 27 26 25 25 24 23 22

15 tc 29 22 21 20 19 19 16 16 15 16 16 15 15 15 15 14

30 to 44 12 12 11 11 11 11 11 11 10 11 10 9.9 10 10 11

45 to 59 11 11 11 11 12 12 11 11 12 12 10 10 10 11 10

60 to 74 11 10 9.8 10 9.9 10 10 9.2 9.4 9.7 9.7 8.9 9.3 8.3 8.1

75 to 89 6.9 7.1 8.3 8.5 8.9 9.1 8.8 8.8 8.8 9.1 8.8 7.5 7.6 7.9 7.4

90 to 104 8.0 8.2 8.4 8.4 8.9 9.1 8.7 8.3 8.7 7.7 7.3 7.3 7.7 7.4 7.6

105 to 119 8.1 7.4 7.4 7.8 7.2 7.6 7.2 6.8 6.9 6.5 6.4 6.0 5.6 5.7 5.8

120 to 134 5.6 5.3 5.0 4.2 4.6 3.8 4.1 3.9 4.6 4.9 4.1 4.1 4.4 4.8 5.2

135 to 149 4.4 4.0 3.6 3.9 4.4 5.1 5.0 4.4 4.5 4.6 3.8 3.6 3.3 3.7 5.5

150 to 164 3.7 3.9 4.5 5.2 5.9 6.7 8.0 I1 12 13 27 28 27 28 28

165 to 179 26 26 25 24 24 24 24 24 23 25 26 26 23 14 14
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A second set, termed anomaly error estimate B, assigned uniformly for each
10 latitude band average anomaly standard error, ai, of 5 mgals. Error estimate
A is a realistic estimate of the current averaged anomaly variances in 10 latitude
bands for 1°x l° anomalies. Error estimate B assumes no latitude variation in
averaged variances, and is therefore an idealized version of anomaly error distri-
bution. A value of 5 mgals is an optimistic estimate giving a lower error bound
till the Geopotential Research Mission is flown at the end of this decade.

A uniform average anomaly standard error of 20 mgals was also used in some
tests, as a 20 mgal error was used for each anomaly in generating the current
Rapp (1981) coefficients, as discussed at the end of Section 2.3 of this study.
Another set of error estimates was developed on the same lines as error estimate
A, but only using terrestrial data resulting in a range of average standard error,
ai, from 30 to 9 mgals. Some other anomaly error estimates would be described
in the tests in Sections 5.1 and 5.2.

4.2 Data Sets A

The development of the current set of merged potential coefficients to degree
and order 180 (Rapp, 1981) was described in Section 2.3. This will be termed as
coefficient set A, and will be compared with other coefficient sets developed
by optimal estimation.

Coefficient set A was used to compute a global set of 64,800 1°x V mean
gravity anomalies by (2.11) using subroutine SSYNTH, with Y=979,800 mgals. This
global set will be termed as anomaly set A. As the maximum degree, Nmax, in
the summation in (2.11) was 180, the anomaly set A can only be used for estimating
coefficients to the highest degree NN of 180. But the anomaly set A would be
a good data set to test the effect of anomaly error estimates on the optimal
estimation of coefficients, by testing the latter against coefficient set A.
These tests will be described in Section 5.1.

4.3 Data Sets B

Anomaly set B was the global set of 64,800 10x 1' 'adjusted anomalies' described
in Section 2.3 obtained by implementing (2.38). Anomaly set B therefore retains
the high degree (n >180) information present in the terrestrial and the Seasat
altimeter derived anomalies, which were used to develop the 'adjusted anomalies'.

As mentioned in Section 2.3, the coefficient set developed by the harmonic
analysis of anomaly set B, by implementing (2.5) with de-smoothing factors (2.7),
using subroutine HARMIN will be termed as coefficient set B. Coefficient set B
would be considered only up to degree and order 180.

Coefficient sets A and B are the same from degree 49 to 180. 'Adjusted
SETI' coefficients, complete to degree and order 36, with some additional coef-
ficients to degree 48, replaced the corresponding coefficients in coefficient
set B to form the coefficient set A. The difference between these two sets is
shown in Table 5.1.

The coefficients developed by optimal estimation from anomaly set B are there-
fore comparable to coefficient set B through degrees 2 to 180, or to coefficient
set A through degrees 49 to 180. The comparison with coefficient set A through
degrees 2 to 48 would also show the additional, though small, effect due to the
simplified adjustment model in (2.35).

-24-
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5. COMPARISON OF SETS OF POTENTIAL COEFFICIENTS

If the potential coefficients in two different estimates to degree NN are
denoted by (Cnm, -nm) and (4nm, Snm), then the two sets of estimates may be com-
pared in magnitude by percentage coefficient difference (%An) by degree n, undu-
lation difference (VTn) by degree, and anomaly difference (V/rn) by degree.

n n

%A 100 (5.1)
n

n

o2 = (C2 +  2 (5.2)

n -

= - m )-+Snmm)2] (5.3)
m=O

YAYn R •A meters (5.4) Kn n

YAVcn : Y (n- 1) •Ac n mgals (5.5) "~""

where, as before, y = 979,800 mgals is the average value of gravity over the whole
globe approximated by a sphere of radius R=6.371x 106 meters. For example, co-
efficient sets A and B differ up to degree 36; differ in some additional coefficients
up to degree 48, and are the same in higher degrees to 180. This comparison is
shown in Table 5.1.

Table 5.1 Comparison of Potential Coefficient Sets A and B (,Sec. 4.2 and 4.3).

% Coefficient Undulation Anomaly
Degree n Difference Difference Difference

%AnAI in meters A in mgals

2 1.23 .22 .03
3 .34 .06 .02
4 .39 .04 .02
5 .64 .05 .03
6 .51 .03 .02
9 .54 .01 .02
12 .56 .01 .01
24 .51 .00 .01
36 .71 .00 .01

37 .03 .00 .00
42 .17 .00 .00
48 .06 .00 [ .00

49-180 .00 .00 .00 -
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5.1 Initial Tests with Data Set A j
We first show in the first set of columns in Table 5.2, a comparison between

coefficient set A and another coefficient set computed to degree 180 by harmonic
analysis of the anomaly set A by HARMIN in (2.5), using de-smoothing factors in
(2.7). The differences would arise primarily due to sampling error because of
using 1°x 10 anomaly blocks of a finite size, instead of using an infinite number
of point anomalies implied by the integral in (2.2). Additional differences
would also arise due to any inadequacy in the de-smoothing factors, particularly
a discontinuity in (2.7) near degree N/3=60, which is seen in Table 5.2. We
also see an increase in the sampling error with higher degrees. Anomaly error
estimates are, of course, not considered in (2.5).

In the next two sets of columns in Table 5.2, coefficient set A is compared
with coefficient sets developed from anomaly set A by optimal estimation procedure,
using error estimate B (o.=5 mgals), and error estimate A (a. ranging from 30
to 4 mgals in Table 4.1) iespectively. We would now see, besides the effect of
sampling error, larger differences because of propagated noise of the anomalies.
We would also expect that the larger the uncertainty in anomaly error estimate,
the larger would be the difference from cjefficient set A. We do, in fact, see
increased differences in the second set of columns over the first set of columns,
and further increased differences in the third set of columns over the second
set. However, we do not find any discontinuity in the optimal estimation procedure
in the second and third sets of columns near degree 60, as is seen in the first
set of columns with de-smoothing factors.

Table 5.2 Variation of Coefficients from De-smoothing Factors with Coefficients
from Optimal Estimation.
Comparison of Coefficient Set A with 3 Coefficient Sets Obtained from
Anomaly Set A.

De-smoothing Factors Optimal Estimation Procedure
(2.7) with (2.5) (Table 3.4) - -

Degree Anomaly Errors Anomaly Error Anomaly Error
n Not Considered Directly Estimate B** Estimate A**

%An A'An m E mgal %An v-n m A nmgal % n m .'A -E mgal

2 .61 .11 .02 .64 .11 .02 .85 .15 .02
3 .44 .08 .03 .48 .09 .03 .40 .08 .02
6 .56 .03 .02 .58 .03 .03 .63 .04 .03

12 .91 .01 .02 .87 .01 .02 1.4 .02 .03
36 1.2 .00 .02 1.7 .00 .02 5.0 .01 .07
60 2.1 .00 .04 2.3 .00 .04 6.9 .01 .13
61 4.4 .01 .07 2.9 .01 .05 8.6 .02 .14
90 8.9 .01 .14 6.0 .01 .10 15.2 .02 .25
120 14.2 .01 .23 10.7 .01 .17 21.4 .02 .34
150 22.3 .01 .30 22.2 .01 .30 33.9 .02 .45
180 27.4 .01 .35 36.2 .02 .46 46.8 .02 .60
•Anomaly errors were not considered in computing coefficients from anomalies using

de-smoothing factors.
**Error Estimate B: oi in (2.32) = 5 mgals.

Error Estimate A: oi ranges from 30 to 4 mgals, see Table 4.1.
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To examine, in greater detail, the effect of anomaly error estimates on
coefficients by optimal estimation, several different sets of coefficients were
computed with anomaly error estimates as shown in Table 5.3, which also shows
the comparison with coefficient set A. There is some instability in the inverse
of matrix (R(m)+W) in (2.30), when the elements of diagonal matrix W in (2.32)
correspond to ai of .001 mgals. But with i .l mgal, Table 5.3 shows conclusively
that optimally estimated coefficients depend on the magnitude of anomaly error
estimates.

The tests in Table 5.3 were run with NN=12, after ensuring that the estimated
coefficients are not correlated, and hence the results in Table 5.3 with NN=12
are also valid for higher degrees. This conclusion was arrived at by repeating
the optimal estimation of coefficients for anomaly set A, with both error estimates
A and B, for NN=180 in Table 5.2, also for NN=60 and NN=12. The common coef-
ficients were the same whether the coefficients were estimated to NN=12, 60, or
180. Similar results were obtained later with anomaly set B.

5.2 Initial Tests with Data Set B

Tests were first made to examine the variation in optimally estimated coef-
ficients from anomaly set B by using different error estimates as in Table
5.3, and comparing the optimally estimated coefficients against the coefficient
set B. The results were similar to those presented in Table 5.3 showinq larger
variation in the optimally estimated coefficients as larger anomaly error esti-
mates were used, reflecting the effect of propagated anomaly errors.

It was also noticed that generally there was a better agreement between
coefficient set B and optimally estimated coefficients from anomaly set B for
any given anomaly error estimate, as contrasted with the case of agreement between .-

coefficient set A and optimally estimated coefficients from anomaly set A pre-
sented in Section 5.1. For example, this may be seen in Table 5.4 for the anomaly
error estimates for ai= 5 mgals, and ai= 1 mgal, when contrasted with similar
results in Table 5.3. This may be due to the anomalies in set B having been
obtained in a combined adjustment with 'SETI' coefficients (Section 2.3), yielding
the anomaly set B and the 'adjusted SET1' coefficients. The adjustment of anomalies
in set B not only adjusts the anomaly spectrum to degree 36 (including some co-
efficients to 48), but perhaps also modifies to some extent the higher degree
spectrum. This will be seen in the results in Section 5.4.

However, we also find curiously a larger disagreement in the comparisons
in Section 5.2 at the very low degrees, when contrasted with the comparisons
in Section 5.1. This may be seen again in Table 5.4 for the anomaly error esti-
mates for ai = 5 mgals, and ai = 1 mgal, when contrasted with similar results
in Table 5.3 for degrees 2 and 3. This may be due to the simplified adjustment
model in (2.35) and (2.36) being generally adequate at degrees greater than 3.
Or, this may be an artifact of forcing the weight matrix of anomalies in (2.37)
as cos o,/a2, while the weight matrix in optimal estimation is implicitly
I/ i in (2.30), read with (2.32).

Several sets of coefficients were then optimally estimated with Ci being
modified from 1 mgal to 1/cos 0! mgal, and 1/, mgal to match the anomaly
weights in (2.37) as cos '/o2. However, this made the agreement with coefficient
set B worse for all degrees as compared to the case of ai = 1 mgal. Other sets
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of coefficients were then optimally estimated with ai 1 coso' mgal, and
1 ic.I mgal. The last case resulted in close agreement with coefficient
set B at degrees greater than 3, but the disagreement persisted at degrees 2
and 3, and was now of a larger amount. All these tests were run with coef-
ficients estimated to degree NN=12.

Table 5.4 shows the comparison of coefficient set B with four optimally ...
estimated coefficient sets by harmonic analysis of anomaly set B. The anomaly
error estimates in the four cases were ai = 5, 1, 1. cos 0i and 1 -'v 7T mgal.
The first two cases are for comparison with similar cases in Table 5.3 for the
data set A,and the last two cases in Table 5.4 were an attempt to reduce the
disagreements at degrees 2 and 3. The tests were repeated with data sets A in
Section 5.1 with ai = l/cos 0!, 1/ coso;, 1, 1 • cos 0!, and I • cos but
did not show any larger differences as noticed in the case of data sets B.

As already mentioned, the optimally estimated coefficients from the adjusted
anomalies in set B, adjusted through the simplified model in (2.35), show generally
a better agreement with coefficient set B as contrasted with the agreements of
data sets A in Section 5.1, except for degree 2 and 3. Coefficient sets will be
optimally estimated from anomaly set B to higher degrees up to NN=250 in Section
5.4 for the cases of anomaly error estimates A and B, without forcing these error
estimates to i 'co or ai/ - .o.s- c

5.3 Test with Altered Anomaly Data Set

The assembling of 64,800 1°x l' global anomalies was described in Section
2.3, where 8049 anomalies were assigned values implied by 'SETI' coefficients
(complete to degree 36), and a standard error of 30 mgals. During the combined
adjustment of anomalies and SETI coefficients, anomalies with higher standard
errors received larger corrections. The location of 3827 anomalies, which had
corrections larger than 7 mgals, were shown in Rapp (1981, p. 25, Fig. 6) and
is now reproduced here as Figure 5.1.

Four 10'x O' blocks are marked in Figure 5.1, two each in the northern
hemisphere in Central Siberia and Central Africa, and two each in the southern
hemisphere in Southwest Africa and Central Andes in South America. The lati-
tudinal and longitudinal limits of these blocks are listed in Table 5.6. Three
tests were made to examine the effect on optimally estimated coefficients if
some lx 10 anomalies in the global anomaly data are set to zero instead of the
value implied by a-priori coefficients. From the global anomaly set A, three
other anomaly sets were obtained: anomaly set I with 200 Iox1V anomalies set
to zero in the two 10'x 10' blocks in the northern hemisphere; anomaly set 2 with
200 1X 1° anomalies set to zero in the two 10°x 100 blocks in the southern
hemisphere; and anomaly set 3 with 400 1°x 10 anomalies set to zero in the four
10x 100 blocks in both hemispheres. Four set: of coefficients were optimally
estimated, all to degree NN=60, from the global anomaly sets A, 1, 2, and 3.
The realistic anomaly error estimate A, ai = 30 to 4 mgals in Table 4.1, was
used in all four cases. The comparison of coefficient set A with these 4 sets
of coefficients is shown in Table 5.5.
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6.2 Error Estimates by Degree

The expression for error variances of a coefficient, Cnm, due to sampling
error, [Es] nma, propagated noise, [En]rnma, and the total variance, 0 2nm , were

given in (3.10), (3.9) and (3.8) respectively. We may now define the error vari-
ances per degree due to sampling, asn due to propagated noise, and
total error variance a En per degree, as:

a2  m[Es]nmesn [.T] a

n

where we have used [ET]In C o2 in view of (2.16), and [] indicates one elementrnma nmcz
of the matrix. The errors (square root of variance) per degree, a sn' Enn' En,

may be expressed as percentages of potential coefficient variation, Gn, per degree
in (3.11). If we denote these percentage errors due to sampling, noise and total
as %Sn, %Nn, %Tn per degree, then:

%N = (1n -0) (6.2)

%Tn En (

with n cvrc-(y (n- 1)) (6.3)nn

The percentage errors, %Sn, %Nn, %Tn, have been tabulated in Table 5.3 for
coefficient sets B1 and B2. We note that %Sn is small at low degrees, but in-
creases sharplywith degree. The sampling error predominates after around degree
120, is more than 50% of the coefficient value at degree 180, and more than 80%
of the coefficient value at degree 250. Because of the predominant effect of
the sampling error at high degrees, we find that the total percentage error,
%Tn, is only slightly different for sets B1 and B2 at degree 250, though it is
much smaller at lower degrees for set B2. However, %Tn does not reach 100% in
any case even at degree 250, because the optimal estimator cannot have a larger
error than a null estimator (which will correspond to 100% error), (Colombo,
1981, p. 73).
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Table 6.1 Variation of Optimally Estimated Coefficients to Degree 250 with
Variation in Anomaly Error Estimate.
Comparison of Coefficient Set BI with Coefficient Set B2.

% Coefficient Undulation Anomaly
Degree Difference Difference Difference

n %An  "AVn in meters iAVn in mgals

2 3.4 .61 .09

3 9.2 1.70 .52

6 4.0 .23 .17

12 10.5 .11 .18

24 6.6 .03 .09

36 4.4 .01 .06

60 5.5 .01 .09

90 11.7 .01 .18

120 14.6 .01 .22

150 20.2 .01 .23

180 26.8 .01 .24

210 30.6 .01 .22

240 37.0 .01 .20

250 40.6 .00 .19

Both coefficient sets BI and B2 were estimated from anomaly set B to degree and

order 250 using anomaly error estimates A and B respectively.

Error Estimate A ai ranges from 30 to 4 mgals (see Table 4.1).

Error Estimate B ai = 5 mgals.
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6. OPTIMAL ESTIATION OF COEFFICIENTS TO DEGREE AND ORDER 250

As the anomaly set A was computed by (2.11) from coefficient set A to degree
Nmax=180, "t could not be used to compute coefficients beyond degree 180. Accordingly,
anomaly set B was used to optimally estimate coefficients to degree NN=250, using
both anomaly error estimates A and B. We will term these coefficient sets B1 and
B2 respectively. As the anomaly error estimate A represents our current knowledge
of 1°x 1 anomalies realistically, coefficient set B1 would represent the current
estimates of high degree gravity field. However, comparisons with coefficient set
B2 would give us the upper bound of improvement, with respect to anomaly error esti-
mates, th.t we may expect until the end of this decade.

6.1 Magnitude Information by Degree

We first list in Table 6.1 the percentage coefficient difference, undulation
difference, and anomaly difference by degree, %An, Yvr n, Yr -n, between coefficient
sets B1 and B2. We notice large differences due to different anomaly error esti-
mates A and B, as we would expect from the information to degree 180 in Table
5.7. The disagreement at degree 3 is particularly noticeable because of strong
equatorial assymmetry of error estimate A in Table 4.1.

We next list in Table 6.2, the undulation magnitude i -n, and anomaly magnitude
i'E- by degree n, and also cumulatively, for coefficient set B1 to degree 250.
The same information is also listed for the current coefficient set A (Rapp, 1981)
till degree 180.

The undulation, and anomaly magnitude, per degree, for coefficient set BI
have been plotted in Figures 6.1 and 6.2. The values of / and En- at degree
250 are about 1 cm, and about 0.5 mgals respectively.
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anomaly error estimates are represented by error estimate A in Table 4.1. Hence,
a slightly conservative estimate of current improvement in coefficients is repre-
sented by the comparison of coefficient B (by de-smoothing factors from anomaly
set B) with the optimally estimated coefficients from anomaly set B using error
estimate A. This improvement, %An in (5.1), is seen in Table 5.7 to be about 8% at
degree 60, about 11% at degree 120, and rises to about 33% at degree 180. This im-
provement is also shown in Figure 5.2. The improvement by degree in geoid undu-
lation difference YAin in (5.4), and anomaly difference /Acn in (5.5) is shown in
Figure 5.3. The improvements have been shown only to degree 180. The cumulative
undulation difference, and the cumulative anomaly difference, to degree 180 was
1.51 meters and 2.70 mgal respectively.

NN
cumulative undulation difference = N  An (5.6)

n=2

cumulative anomaly difference = tJNAcn (5.7)
vn2
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Table 5.6 Limits of Four 10x 100 Blocks where lx 10 Anomalies were set to Zero

in Anomaly Set A.

# Location ON (0) S (ei) Remarks1, C (95H p

2 Central Siberia 70 (20) 60 (29) 95 105 N. Hemisphere
2 Central Africa 20 (70) 10 (79) 25 35 N. Hemisphere ..

3 Southwest Africa -10(100) -20(119) 10 20 S. Hemisphere

4 Central Andes -20(120) -30(129) 285 295 S. Hemisphere
(S. America)

By comparing the first two sets of columns in Table 5.5, we find noticeable
changes in the coefficients when 200 1°x l' anomalies are set to zero in the northern
hemisphere in the anomaly set A. But the last two sets of columns in Table 5.5
show that the setting of 200 lx 10 anomalies to zero in the southern hemisphere
have the predominant effect. This is due to the average anomaly error estimate
associated with the latitude band in which the anomaly is set to zero. With refer-
ence to Tables 5.6 and 4.1, the value of ai associated with the blocks in the
northern hemisphere range from 16 to 14 and 10 to 7 mgals, while oi ranges from 7 to 8 ""
and 4 to 5 mgals in the blocks in the southern hemisphere.

These tests highlight the importance of getting the best possible estimate
(instead of zero) for the global anomalies, and assigning realistic standard errors
to these estimates. The error estimates of lx 10 anomalies are, of course, averaged
over each latitude band before these are utilized in the optimal estimation procedure.

5.4 Improvement in Coefficients with Optimal Estimation

We now list in Table 5.7 the comparison of both coefficient sets A and B with
optimally estimated coefficients to degree 180 from both anomaly sets A and B, using
in each case anomaly error estimate A as well as anomaly error estimate B. By
listing these comparisons side by side, we first note that only small differences
exist in comparison with coefficient set A, when contrasted with comparisons made
with coefficient set B, at lower degrees < 12; coefficient sets A and B are, of
course, exactly the same for degrees > 36-(except for some coefficients to degree 48).
We also note the slightly better agreement of coefficients estimated from anomaly set
B, when contrasted with similar cases of coefficients estimated from anomaly set A,
except at lower degrees < 24. The large disagreement at degrees 2 and 3 of optimally
estimated coefficients from anomaly set B was commented upon in Section 5.2. The dis-
agreement at degree 3 becomes worse for the anomaly error estimate A, as compared to
anomaly error estimate B, because of the strong equatorial assymmetry of error esti-
mate A in Table 4.1.

Besides other points already discussed in Sections 5.1 to 5.3, the improvement,
particularly at higher degrees, in magnitude of coefficients estimated optimally
instead of using the de-smoothing factors primarily results due to the consideration
of realistic anomaly error estimates in optimal estimation, while the anomaly error
estimates are not considered when de-smoothing factors are used. The current realistic
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The total coefficient percentage error, %Tn, per degree has been plotted
in Figure 6.3 for both coefficient sets B1 and B2. Figure 6.3 has been repro-
duced from Rapp (1981, p. 33, Fig. 11) which showed %Tn for the current coef-
ficient set A. %Tn had already reached 100% for coefficient set A at degree
120. %Tn is better for sets B1 and B2 by more than a factor of two as compared
to set A for all degrees greater than 12.

We may also examine the error estimates in undulation, Gzn , and anomaly,
acn, per degree defined as:

n
a2 n =R

2  a 2  =R 2  2(a +C 2) (6.4)
nn ~m=O

n
02c y 2(n-1) 2  Y2(n-1)2  X (c 2  + a2 n) (6.5)

n En M=0 'nm 3mnm

and also cumulatively as ' a2cn and ncn respectively.nThe undulation and
anomaly error estimates, per degree, and cumulatively, have been tabulated in
Table 6.4 for coefficient sets B1, B2, and also for the current coefficient set A.

We note that error estimates for sets B1 and B2 are better than a factor of two
from the corresponding error estimates of set A for all degrees greater than
12. But the error estimates for sets BI and B2 are much larger than those for
set A at degree 6 and below, though as noted in Table 6.3, the coefficient per-
centage error itself for sets B1 and B2 is quite low at these degrees. This
illustrates the well-known fact that the low degree potential coefficients can
be estimated much better from satellite observations as compared to global
anomaly data. The error estimates of low degree coefficients in set A have been
put equal to the error estimates of '7 justed SET1' coefficients (see Section
2.3), while the error estimates of sets B1 and B2 are based on the anomaly error
estimates. If we were to assume that the error estimates for set BI for degree
<6 are taken from satellite observations, i.e. the same as for set A, then the
cumulative undulation error for set B1 to degree 250 would become about 81 cm
instead of 109 cm. In a similar way, the cumulative undulation error for set
B2 to degree 250 would be reduced to about 56 cm instead of 67 cm. The cumulative
undulation errors to degree 180 may then be compared for sets B1, B2 and A as
about 75, 48 and 146 cm respectively. The error estimates in Table 6.4, and
in the corresponding Figures 6.4 and 6.5, were however not changed.

The cumulative undulation error, r , has been plotted for sets A,
and B2 a , the top three curves in Figure 6.4. The undulation error, aRn, per
degree has also been plotted for set B1 as the bottom curve in Figure 6.4, except
that the portion for degrees 3, 4, 5 has not been drawn in to avoid confusion.

The cumulative anomaly error, n  has been plotted for the three sets
A, BI, B2 in Figure 6.5, which also shows the anomaly error, ccn , per degree forset B1 as the bottom curve.
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6.3 Empirical Anomaly Degree Variances

It is of interest to see what is the empirical anomaly degree variance cn,
implied by the optimally estimated coefficient sets B1 and B2.

n
C = y2(n-1)2 C2 ; =  (Cm +  ) (6.6) 
n n n mD nm nm

Four sets of anomaly degree variances have been plotted in Figure 6.6. At the
right edge of the plot, the curves in decreasing order of magnitude are: (1) the
a-priori cn model specified in (4.1) plotted with asterisks; (2) Kaula's model
ck corresponding to = lO- 5/n2 (Rapp, 1979, p. 1, (2)), which is the smoothn n
curve in the plot; (3) Cn for coefficient set B2; and (4) C for coefficient
set B1 plotted with crosses. As the optimal estimator in (2.19) in least squares
collocation minimizes the sum of total variances for all coefficients, the larger
the anomaly error estimate the smoother would be the optimally estimated coefficients.
We accordingly find that Cn for coefficient set B2 based on anomaly estimate B,
ai = 5 mgals, have consistently larger power as compared to coefficient set B1,
based on larger anomaly error estimate A, with oi ranging from 30 to 4 mgals
(Table 4.1).

We also note that the power in coefficient set B2 falls below Kaula's model
for degrees higher than 200, while the a-priori cn model has too much power for
degrees higher than 150. These are indicative of both a need for slight downward
adjustment of power in a-priori model in (4.1), and also that more reliable esti-
mates for higher degrees would be obtained if the global anomaly data was available
in blocks smaller than 1°x 1'.

Because of greater power in the a-priori model for cn, the error estimates
per degree are pessimistic at higher degrees, as larger error estimates are obtained
from (3.8) jith larger values of cn. We have thus pessimistic undulation and
anomaly error estimates per degree, Gkn and Gcn in Section 6.2, for hilher degrees.
On the other hand, the undulation and anomaly magnitude per degree, JZn and cn "
in Section 6.1, decrease rapidly at higher degrees for coefficient set B1 due to
large anomaly error estimate A. This explains why the signal to noise ratio
appears to fall below 1 for coefficient set B1 for degrees 180 and higher, when
we compare Tables 6.2 and 6.4. Similar results occur for coefficient set B2,
which has more power than set B1, for degrees 200 and higher. This artifact
however does not occur in Table 6.3 and Figure 6.3, where the coefficient percen-
tage error does not exceed 85% even at degree 250. This is due to the percentage
errors being computed through (6.2) and (6.3), where the numerator and denominator
both depend on the a-priori cn model.

We next compare Cn implied by coefficient sets B1 and B2, with Cn implied
by the current coefficient set (Rapp, 1981), i.e. coefficient set A computed
with de-smoothing factors (2.7) but we now consider the latter set also up to
degree 250, including the sharp discontinuity at degree 180. Cn values are com-
pared for coefficient sets B2 and A in Figure 6.7; and for coefficient sets BI
and A in Figure 6.8. The curves for coefficient set A are plotted with asterisks
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in both figures, while the curves for coefficient sets B2 and B1 are plotted
with crosses. The scale of En in Figures 6.7 and 6.8 is exaggerated five times
as compared to Figure 6.6.

The sharp discontinuity at degree 180 for coefficient set A is clearly seen
in Figures 6.7 and 6.8. The smaller discontinuity at degree 60 may be inferred
in Figure 6.7, where the curve with asterisks (coefficient set A) has more power
for n <60, and lesser power for n >60 as compared to curve with crosses (coef-
ficient set B2). Except for the sharp discontinuity at degree 180, the spectrums
of coefficient sets A and B2 are fairly close in Figure 6.7, i.e. when we do
not consider any latitudinal variation in anomaly error estimate B for the optimal
estimation of coefficient set B2. However, when we do consider the currently
realistic latitudinal variations in anomaly error estimate A for the optimal esti-
mation of coefficient set B1, the spectrums of sets B1 and A differ substantially
in Figure 6.8 for the entire range.
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Figure 6.7 Comparison of Anomaly Degree Variances:
Sets A and B2

Coefficient Set A by de-smoothing factors marked
C) by asterisks.

CD
Coefficient Set B2 by optimal estimation marked by crosses.

Error Estimate B : i 5 mgals.
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C
• _Figure 6.8 Comparison of Anomaly Degree Variances:

Sets A and B1

Coefficient Set A by de-smoothing factors marked by asterisks.

C Coefficient Set BI by optimal estimation marked by crosses.
Error Estimate A : i= 30 to 4 mgals (Table 4.1).

C

__Ij *

CE

LU

C
'C

LUJ

LUJ

C - -"'

C

C

9t.o00 50.00 100.00 150.00 200. 00 2'50. 00 300.00
DEGREE

-54-

CI O-. .

.. .. . .. . .. .. . .. . .. .. .,



7. SUMMIARY AND CONCLUSIONS

The present study extends the algorithm developed by Colombo (1981), and
tested with 5°x 5' anomalies, to the use of 1°x 1 anomalies globally for the
optimal estimation of a high degree potential coefficients field, complete to
degree and order 250, along with their error estimates. The algorithm was divided
into several steps, for ease of computer implementation and running various tests,
and also needed two main modifications. These steps have been summarized in
Table 3.4.

The initial first step is to assemble the integrals of associated Legendre
functions in 10 latitude bands by an efficient algorithm to a degree Nmax, which
should be larger than the highest degree NN to which coefficients will be esti-
mated and smaller than (2n/anomaly block size), i.e. 360. A total of
(Nmax+l)(Nmax+2 )/2 integrals, which comes to 45,451 for Nmax= 300 , need to be --
computed for each 10 latitude band. The integrals are modified by factors, de-
pending on the anomaly degree variances and the anomaly block size, for later
processing. The anomaly degree variance model in (4.1) was used, which is
the current global model.

The generation of normals, which are based on combinations of the Fourier
transforms of the modified integrals in the first step for different pairs of
latitude bands, could take large CPU time depending on degree NN. The two main
modifications to the algorithm, i.e. the reordering of the normals and the re-
ordering of the right hand side vectors, became necessary due to very large
TAPE 10 and array size requirements for the ccse of 10x1' anomalies. These two
modifications, which are described in Sections 3.31 and 3.32,also depend on degree
NN. As none of the steps so far depend on anomaly errors, or anomalies, different
tests were carried out as described in Section 5 with NN=12 or 60.

The solution of normals, yielding the optimal quadrature weights, and the
computation of error estimates, depends on the anomaly error estimates. An
averaged variance is used in each latitude band, based on the anomaly error
estimates in that latitude band, as discussed in Section 2.2 to allow the inver-
sion of covariance matrix of 64,800 0x 10 anomalies to be equivalently carried
out by the inversion of 180 x 180 matrices in the frequency domain to degree NN.
The use of averaged anomaly variance in each latitude band allows the correct
computation of only the sum of variances for the two coefficients (Cnm, Snm)
for any particular degree and order, and not separate variance for each coefficient
in the pair. The variance for each coefficient in the pair is then arbitrarily
made equal.

A very realistic anomaly error estimate, given in Table 4.1, was used
for solution to degree NN=:250. Because only an averaged variance is required
in each latitude band, the anomaly error model is primarily sensitive to latitude
variation. Accordingly, another solution of the normals was done to degree
NN=250 with an anomaly error estimate without any latitude variation. The two
anomaly error estimates, one in Table 4.1 with average anomaly error in a lati-
tude band ranging from 30 to 4 mgals, and the other with a uniform value of
5 mgals in all latitude bands, were called anomaly error estimates A and B.
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The computation of potential coefficients is the last step, where the global
omaly data is used with the optimal quadrature weights, which are dependent
the anomaly error estimates. The current best estimate of a global 1°x 1.

omaly field, anomaly set B adjusted to a weighted set of satellite derived
tential coefficients 'SETI' complete to degree 36, with some additional coef-
cients to degree 48, was described in Section 2.3. Anomaly set B was used
th anomaly error estimates A and B to compute potential coefficient sets B1
d B2 complete to degree and order 250. The statistics on these two coefficient
ts, and the comparison with the current set of potential coefficients, coef-
cient set A, complete to degree and order 180 (Rapp, 1981), was presented in
,ction 6.

When the next updated version of a global set of lx 10 anomalies is assembled,
will be necessary to only repeat the last step of the computation of an up-
ted set of potential coefficients. The latitude variations of the averaged
romaly variances in anomaly error estimate A are unlikely to change in the near
iture till the flight of the Geopotential Research Mission. The optimal quadrature
,ights corresponding to anomaly error estimate A, (and those corresponding to
|omaly estimate B with no latitude variation of anomaly errors), of this study
iould therefore be directly usable with an updated version of global 1°x 10 anomalies.

.1 Conclusions of Present Study

- The most reliable estimate should be used for the global gravity anomaly
ita. When no reliable lox1 ° anomaly estimates a-e available, the anomaly implied
e a high degree potential coefficients field should be used in preference to
tting the anomaly estimate as zero. The lower the averaged variance of anomalies
a 10 latitude band, the larger is the effect of change in anomaly estimate for

ly lx 10 anomaly in that latitude band.

- The most realistic error estimate should be used for each anomaly, instead
F using a global average. Though the anomaly variances are averaged in each
latitudinal band before their introduction in optimal estimation of coefficients,

le potential coefficient determination is quite sensitive to any resulting latitude
ariation of averaged variances in each 10 latitude band.

- The optimal quadrature weights, Xnm, are computed as 180 numbers for each
3ecific coefficient pair, (Cnm, Snm), of given degree and order. The 180 numbers
ike into account the latitudinal variation of averaged anomaly variances. The
?-smoothing factors are based on the Pellinen/Meissl smoothing operator, n,.
lich is the same for all orders for a given degree. Further, the de-smoothing
ictors do not take account of any anomaly error estimates, or more specifically
iy latitudinal variation in these estimates.

- The optimal quadrature weights are computed based on the minimization of
le propagated anomaly error variances, and the error variance due to sampling '
finite number of mean anomalies, instead of an infinite number of point

nomalies. The desmoothing factors are based only on the size of anomaly blocks.

- The order of improvement in the coefficients, per degree, by optimal
stimation over the current estimates using de-smoothing factors, is about 8%
degree 60, about 11% at degree 120, and rises to about 33% at degree 180.
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The error estimates in optimal estimation are consistent with anomaly
•ror estimates in a meaningful way. The total percentage error, %Tn, per degree
ies not exceed 100% even at degree 250. %Tn had exceeded 100% for current set
coefficients at degree 120.

- The error estimates per degree in optimal estimation are better than a
ictor of two over the corresponding estimates in the current set of coefficients
)r all degrees greater than 12. The error estimates for low degrees in current
)efficients are based on satellite observations, while the error estimates per
!gree in optimal estimation are based only on anomaly data.

- If the error estimates per degree in optimal estimation procedure are set
the same values as current coefficient set only for degrees < 6, the cumula-

ive undulation error to degree 180 would be 75 cm as compared to 146 cm for
irrent set of coefficients.

- There is no discontinuity in the degree variances of optimally estimated
)efficients at degrees 60 and 180, as is the case with the current set of co-
Fficients, which were limited to degree 180 because of concern over sharp dis-
)ntinuity at that degree.

- No useful purpose may be served by expanding 1°x I' gravity anomaly data .
ito coefficients beyond degree 250. The undulation and anomaly magnitude per
?gree near n=250 is about 1 cm and 0.5 mgals respectively. The coefficient
?rcentage error near n=250 exceeds 80%.

- The a-priori anomaly degree variance model has too much power beyond degree
50. This leads to pessimistic error estimates per degree, and cumulatively, at
igher degrees.

.2 Recommendations for Further Investigations

- The optimal estimation algorithm applied to 1°xl ° anomaly data needs to
e extended further to consider the case when global anomaly data may be avail-
ble in 30'x30' blocks. Efforts have already been initiated (private communication
rom R.H. Rapp) to assemble a global data of 259,200 30'x30' anomalies. This
ill lead to several fold increase in the complexity of computer implementation
f the optimal estimation algorithm.

- The generation of normals requires (Nmax+l)(Nmax+2)/2 integrals of associated
egendre functions to be read in for each latitude band to obtain Fourier transform
or the data in a pair of latitude bands. Even after exploiting the persymmetric
tructure of the normals izatrix, about 136,000 TAPE IO's are required only to
ead in the date from all required 0airs of latitude bands for Nmax= 300 for I'
atitude bands. It needs to be investigated if data from several pairs of latitude
ands could be operated upon simultaneously instead of one pair at a time. Ef-
iciency of putting part of this data on random storage also needs to be considered.

- The CPU time for the solution of normals increases sharply with increase
n the highest degree to which coefficients are estimated. At degree 250, the
olution of normals in sequence of right hand side vectors after inverting
atrices of only 180x 180 for the case of lox 10 anomalies already took about
4 minutes CPU time on an Amdahl 470 V/8 computer. Faster algorithms need to
e investigated for this solution.

-57-

", '.'.- .,.- . -- --- .-. .-'. -- .-.-. -.-.-...-.... ."...-. • - -.-.- .- . -..... --'--..i.1.1 . -" " -



- Bose et al. (1983) have suggested some strategies for including data at
3oles but the computational load does not decrease significantly. They have
suggested different data sampling instead of equi-angular blocks. Further
stigations need to be continued to apply such strategies to actual computations
high degree field.
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