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A -strongly disturbed layer of jonization irregularities that is
used as a propagation channel for radio waves can degrade the propagating
wave and thereby affect the resulting measurements at the receiving.
antenna, The antenna aperture itself also affects measurements of the

- received signal by its inherent averaging process. Here an analytic solue

tion for the two-position, two-frequency mutual coherence function, valid

“in the strong-scatter limit, is used to characterize the propagation
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20. Abstract (Continued)

channel. -lhe channel itself consists of a tn1ck slab of anisctropic elec-

tron density irregularities that are elongated in the direction parallel
to the earth's magnetic field. ‘

Analytic expressions are obtained that give the effect of the
aperture antenna on measurements of received power, decorrelation time (or
distance), mean time delay, time delay jitter and coherence bandwidth.
These quantities are determined as functions of the aperture diameter and
of the angle between. the magnetic field and the direction of propzgation.
It is shown that in strong turbulence aperture averaging can be a signi-
ficant factor in reducing the received power by angu1ar scattering loss,
increasing the observed signal decorrelation time via aperture averaging,

-and reducing the time delay jitter by suppression of signals received at .
off-boresight angles.

. Results are presented for two cases. One-way propagation
through an ionospheric communication channel is considered where both
transmitter and receiver utilize aperture antennas. This result is easily
extended to the case that one of the antennas is an omnidirectional point
source, corresponding to the usual case of transionospheric satellite
communication from a small satellite antenna to a large ground based
receiver. The second case invoives transmission and reception of a radar
signalrthat travels through a disturbed ionospheric channel to a targat
located in free space. This case is applicable . to the situation of a
large antenna aboard a space based radar or to the case of a ground based
defense radarn. :
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SUMMARY

In this report analytit expressions are derived for the effecf
of aperture antennas on measurements of signals that have propagated
through strong an1sotrop1c turbulence. Results are given for the effect:
of Gaussian apertures on measurements of received signal power, decorre1a-
tion distance (or time), mean time delay and time delay jitter. The’
geometries considered correspond to the case of a single, one-way propaga-
tion path between two aperture antennas. located in free spabe and
separated by a layer of turbulence and to the case of a monostatic radar

where radar and target are on opposite sides of a strong scattering layer,

A1l calculations depend on the analytic solution for the two-
position, two-frequency mutual -coherence function for spnerical wave
propagation in an anisotropic layer of electron density irregularities.
The analytic solution for propagation in a ‘thick layer is derived here

‘using the quadratic phase structure-function approximation va]id for

'strdng turbulence. This result is then specialized to a thin phase-screen
approximation to facilitate analytic calculation of the effect; of

apertures.

It is shown that antennas that are larger in diameter than the
decorrelation distance that would be measured by an omnidirectional
antenna can experience significaht angular scattering loss and exhibit
increased measurements of qecorreIatioﬁ distance, and decreased measure-

" ments of mean time delay and time delay jitter. Increascd measurements of

signal decorrelation distance are caused by the averaging effect of the
antenna aperture that smooths (eliminates) the small scale signal fluctua-
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tions. Decreased measuréments of mean time delay and time delay jitter
are caused by'the action of the aperture to cut off signal contributions
that originate from off-boresight angles and have therefore exper’enced
more time Jelay than experienced over more direct signal paths.

Generally, the effects of aperture averaging first begin to be
significant for aperture sizes .that approach ten times the decorrelation
distance measured with a point antenna. For even larger apertures, the
aperture has a signjficant effect on the received signal at 'the antenna

output that can te 6omputed using the formulas and curves provided herein,




The author is indebted to.Dr. Robert W. Stagat‘of Mission
Research Corporation-and to Dr. Leon A, Wittwer of the Defense Nuclear

Agency for their he]pfu1'discussions regarding this work.
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L etatat

_ SECTION 1
- "'INTRODUCTION

Large high-gain antennas are used in ‘many radér and communica-
tions applications to.intréase‘fhelenergy collected, to increase angular
accuracy, and to proevide protection against jamming. If the wavefront at
the antenng aperture experiencés scintillation, large apertures can act to
average the signal and theéreby modify the cbserved signal properiies. in
the late fifties Wheelon (1957, 1959) obtained the weli-known aperture
~ smoothing effect for the measurement of phase fluctuations by a finite
circular aperture. Since then, various investigators have studied the
aperture smoothing effect on intensity'scintillafions in the optics regime
(Fried, 1567; Tatarskii, 1971; Homstad et al., 1974) and also the related
,effect of optical beam wave oropagation to an infinitesimal receiver (Lee
and Harp, 1969; Ishimafu, 1969). Knepp (1975) obtained results for the
affects of an antenna aperture on measurements of the in-bhase and quad- -
rature components and their spatial derivatives, for the case of weak

scattering.

Scintillation or rapid'variations in the amplituﬂé. phase, and
: ‘angle-oflarrival ﬁf.a probagating\waie is qfténﬁohserved over satellite
-1inks'at.VHF and UHF. Scintillation can alsn be observed at frequencies
as high as the GHz range (Pnpe and Fritz, 1971; Skinner et al., 1971
Taur, 1976) énd is bccasionaT1y seve#e; even at L—band'(Fremduw at al.,
1978). Qowever. aperture averaging is nbt generally important at
satellite fre uencies (UHF-GHi) uhder amhient or naturaily perturbed

1onospheric conditions,
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Worst case or Rayleigh amplitude scintillation is likely to
occur if the ionosphere is highly disturbed, as for example by high alti-
tude nuclear explosions (Arendtvand'Soicher, 1964; King and Fleming, 1980)
or by chenﬁcaf releases (Davis et al., 1974; Woicott et al., 1978).
Increased electron concentrations and the irregular structure of the joni-
zation can lead to intense Rayleigh signal scintillation at frequencies as
high as the 7-8 GHz SHF band (Knepp, 1977). Conseguently, the effects of
scintillation are important to any UHF through SHF -communications or radar
system that - must operate through an 1onospher1c channel and that may have
to operate in highly disturbed propagat1on env1ronments.,

For cases of severe scintillation where the signai varies across
the area of the receiving aperture, the effect of the dperture can be
significant. It is weil known that an aperturé antenna acts to cut off
energy that is incident at off-boresight angles where the antenna gain is
reduced. This effect may also be viewed as- the result of averaging or
coherent processing of the electromagnetic field ingercepted at thé
aperture location. In this report the effects of aperture averajing are
analytically calculated for the case where Gaussian antenna heams are used

by transmitter and receiver. Results are presented for two different

physical situations. One-way propagation through an ionospheric communi -
cation channel is considered where both transmitter and receiver utilize
aperture antennas. This result is easily extended to the‘case that one of

___the-antennas is a point source, corresponding to the usual case of trans-

4//

. ,-,,.~,-.-_.-,'-,r,',.v, mtE e .p’.'- od .-",'"z'

ionospheric satellite communications. The second antenna geometry corre-
spords. to transmission and reception of a radar signal that travels '
through an 1onospherfc'chanael to a target located in free space. This

corresponds to the situation of a long-range ground or space based radar .

It is shown that aperture averaging can greatly afféct measurements of
scattering loss, signal decorrelation time, mean time delay and time deiay
jitter. Simple analytic expréssions are given'er all these quantities in
terms of the geometry of the propagation path and the severity and struce
ture of the -ionization irreqularities. |
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To obtain results'applicahie-to a general geometry of the line-
of-sight reiative to the field aligned ionization structure, it is naces-
sary to obtain an analytic soluticn for the two-position, two-irequency.
mutual coherance function (MCF) for spherical wavé propagationlthrough a
thick layer of anisotropic electron density irregularities. 1t is assumed
here that strong scattering conditions prevail and that the quadratic

approximation to the phase structure-function is valid.

This approximation was used by Sreenivasiah et al., (1976) and
by Sreenivasiah and Ishimaru (1979) for the cases of plane wave and beam
wave propagation in homogeneous turbulence. More recently the two-posi-
tion, two-frequency mutual coherence function was obtained for spherical
wave propagation using the extended Huygens-Fresnel principle (Fante,
1981)., Although the quadratic structure-function approximétion can some-
times lead to difficuities (Wandzura, 1980) it is appropriate for the .
twd-frequency mutual coherence function but not for calculation of higher
moments of the field (Fante, 1980). Fante (1981) discusses the accuracy .
of the quadratic structure-function approximation for the case of atmo-
spheric turbulence with a Koﬁmogorév power spectrum. Hg has found that
the accuracy is a function of the'irregu1arity power spectrum and of the
strengéh of the turbulence (Private Communication, 1982), with accuracy
« increasing for stkonger scattering: ' '

, ‘ This aspect of thel work here is a generalization cf an earlier
-calculation (Knepp, 1983(b)) valid only for isotropic turbulénce."Ag in
the former study, the results here are specialized to the case of a thin
phase-screen approximation to‘the thick scattering medium. With this
simplification;'analytic rejults are obtained for the received impulse

response function to a tran mitted'power delta function. Then results may
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easily be determined for the mean time delay and time delay jitter for
strong, anisotropic turbulence in the thin phase-screen approximation.
- Results for these quantities in tnis approximation have previously been
shown (Knepp, 1983(b)) to‘c]osely approximate the results for a thfck
scattering layer for the case of isotropic turbulence.

The effects of Gaussian antennas on measurements of received
power, decorrelation time (or distance), mean' time delay, time delay
jitter and ccherence bandwidth are determined. It is shown that aperture
averaging can reduce observed signal power, increase observed qecorre1a-

tion time and be a significant factor in reduced observed time-of-arrival
jitter at the antenna output.

10

P, L. P
eI S LIRS BTN

WL A

RIS

e alel

v-

S TS LA AT T SN

[y




SECTI.:. 2
" FORMULATION

In this section the solution for the two-position, two-frequency

mutual coherence functioh is presented for transmitter and receiver
Tocated on opposite sides of a thick layer of anisotropic electron density

irregularities. In the next section this result is utilized fp'determine'

the effect of transmitting and receiving antennas on measurements of the

received signal,

Consider a monochromatic spherical wave E(P,z,w,t) which origi-
nates from a transmittér,locatéd at (0,0,-z¢) and propagates in free
space in the positive z direction where it is: incident on an ionization
irregularity layer which extends from 0 < z < L. After emerging from the
layer at 2z = L, the waQe then propagates in free space to a=recéiver
located at (0,0,z.). This thick layer geometry is shown in Figure 1.
As the wave propagatés; its phase substantiglly behaves as (¥i<k>z+iwt) S0

write , ‘ .
E(F,2,0,t) = U(B,2,0) exp(i{ut<fck({z')>dz")} m

where <k(z)> is the mean wave number given by

: 2 Loyz o
<k(z>>'..c°i (1 - Ny/n,) / =k (1 k32 e

where ¢ is the speed of light in a‘vacuum; Ne s the mean fonization
density, nc is the critical electron density and is related to the clas~’
sical electron radius re by nc = ?/(Azre), (re . 2.82810-15 m).
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- Dﬁg TRANSMITTER
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TARCET . ANTENNA

Figure 1. P‘rdpagation of signals through a disturbed
transionospheric' channel.

In the case that the transmitted waveform is no longer a mono-
chromatic wave, but can be expressed as a waveform modulated on. a carrier,

- the two-position, two-frequency MCF T is of interest. T is important

for the éa1cu1atibp of pulse.propa‘gétion in a random medium and it serves

‘as a bhasis f-rom which to calculate the important power impulse response '
function and its moments. Under the Markov approximatfon, I is found to

satisfy. (Yeh and Liu, 1977; Knepp, 1983(b)).
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where V5 and V4 are the gradient operators in the sum and difference

coordinate system. Here T = <U(x),y1,Z,w))U%(xp,y2,2,w;)> which is
written as T(Z,n,z,wq) after the sum and difference transformation. The
standard transformations

X = (x1+x2)/2 5= x,-x,
Y= (y1+y2)/2l nsy-y,
= (k = N

( 1+k2)/2 Ky kl K,

are used to obtain Equation 3. In,additfon, it has been ascumed that the
frequencies of interest are much greater than the plasma frequency.‘ The
quantity ks is the wavenumber at the carrier frequency, kS = wo/c.

The function A(®) is the integral of the'autocorrelation func ~
tion of elect: on density fluctuations, Bg. in the direction of prﬂpa-

gat1on

A(3,-3,) = f Bl ol-pz.z ")dz’ (4)
-l
where 31-?2 = (xi=x2,y1-y2) and &= N /<N > 'so that

AB1-52) = 21 [ [ exp[1K)(3iBy)] & (K| K =0)d%K)  (5)

where og is the power spectrum of electron density fluctuations. Equa-

tions 4 and'S depend upon the validity of the Markov approximation where -

it is assumed that the electron density fluctuatfons are delta-correlated
~in the direction of propagation (Fante. 1975) That is B (ox-oz,zl~zz)
= A(51-02)8(21-22). '
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The unknown two-frequency MCF may be written as I' = I'iTy (Knepp,
1983(b))‘whgre Iy is the exact free space solution in the parabolic
approximation: Substitution of T . I'yTo into Equation 3 and neglact of °
g i near-zone terms yields a differential equatlon with terms containing the
factors 9Ty /9X and 3T,/3Y, Since the boundary condition at z = 0,
ry(g,n,z=0,w4) = 1, is indepenQent of X.and Y, the derivatives w1th .
respect to these quantities may be neglected. The change of variébles z! :
=27z + it, 8 = 277", ¢ = n/z', and the additional substitution Ty = Tyly
where | :
ry = e |- 2 A0 (2! )-‘*(‘ ,.L>2 (6) ;
p\ky k2 i

v

and the replacements

L g

DI S Y ol ARSI T 1 Wiy o s aslan ad - 20 T id

\\. - 1 2 ‘ : ' :
1w, 2 | '
b =2 k'/k 7b
o G - (7b)
V= (abAz)l/z Z. = alz. . ! ' (83)
U= ___1__ 1/“ 9 = aze. S ) i ] (Bb) |
\a’mm,/ ,
€ = ._.1,.... 1% ¢ = 2,4 ' o (8¢) .
a bA ‘ o . . : , =
enable one to write the equation for [, és
: 2 2 ' '
ary oy (37,37 r2 - (u2+aZe2)vlir, = 0 (9)
av 2 \aw? el .
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where A(Z,n) has been expanded in a truncated Tayior series

A(z,n) = Ag + Ape? + 4%A4n? ‘ . (10)

(see appendix) This is the quadratic phase structure function approxima-

tion. The difference wave number kg has also been neglected with
respect to ks. The effect of this assumption is to restrict the val1d-
ity of the sotution to. a small range of wavelengths centered about kg.

‘lThick Layer Solution

An anaiyticiso]ution of the form

rp = £(v) exp{-g(v)uZ-n(v)e?} | )
may be substituted into Equation 9 to obtain three equations,. the first
consisting of terms that are factors of %, the eecond consisting of

factors of e2, and the third independent of u and €. These equations may
be solved exactly for T, and the results substituted into Equatioh 3 to

yield
‘l‘l('e,‘#‘,z'=L+zt,wé)'=
Foexp{-{A-Bt)0? - (A-sBt')¢?} . (12)
where
o2 w? »
e axpl- 29 1a
F = exp{- - " Bal(L+;t)
0-J o _
N A . . . ]1/2

(3alzt cesh,galL + sinh'galL)(Agalzt cosh pga,L ¢ sinh AsatL?k
o . } ' 13)
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. ) ’ . 2 .
A = 1(L+z%l ajaz v (14)

N 22
5 (L+Zt)2.alaz

— . - (15
B - (12)
1+ ga,z tanh ga;L
t = t ‘ o (16)
Salzt + tanh Ba,lL .

1+ ABalzi tanh Aga,L

t' = . 7
ABa)z, + tanh ABa,L. (17)

82 = -i4 (18)

In transcribing Equation 6 for I'3, the relationship between the
coefficient Ao and the phase variance o: given by Equation A-6a is
-utilized. Equation A-5 gives the expression for the quantity A in terms
of the geometry of the line-of-sight relative to the magnetic field ‘
'ldirection. '

Iq complete the solution, it is necessary to solve for I'; in the
- region L <.z <z (sce F{gure 1). Equation 12 serves -as the boundary
,condition at z' i L+ Zy. Since the region 2' > L+ zt corresponds to
free space wvth no ionization, Equation 3 is app:-opriate after the Ig -

Substitution is included 1nsertion of thp z', 9, and ¢ substitutions, and .

deletion of the last term fnvolving the function A that is zero in free
" $pace. ' '
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The Fourier transform

: . . (19)
X Ti(KgKyez'sug) dRodK,

may be substitptéd into the suitably modified Equation 3 to obtain the

algebraic equation

+RHT =0 | ~(20)

Equation 20 may be solved, and the boundary condition Equation
12 applied at z' =L + z¢ with the result

rl(Ke ,K¢.7.t+2r 9“’d) = rl(Ka ,K¢.L+Zt ""d)

k§ (L+zg)l(ze+zp)

(21)
X exp[-iY(Kg’* Ki)]
jwhere
X, (z_-L)
ya L 4 __ (22)
2 ké o

The final result may then be obtained by taking the Fourier transfbfm of .

Equation 12 to obtain rl(Ke'K¢'1£+zr’”h) and then taking the inverse
Fourier transform of Equation 21. . The required integrals are easily

found,. and the.resulg may be written as
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_ F

+7 , W = -
r [(1+i8Y(A-Bt)) (1+idy(A-aBt'))] /2

t

rl(C,n,Z d)

2 2 2 ' 2
4 (A-Bt)/(zt+zr) - n°(A-2Bt')/(z, +z )

| x exp y- . — - . (23)
| 1+i4y(A-Bt) ., 1+i4y(A-8Bt")

Equation 23 is the result for r; after propagation through a thick iajer.
characterized by anisotropic electron density irfégularities. The full
solution for the twb-position, two-frequency MCF fs.obtained by multi-
'p1ication by Tg, the free space MCF., Since Ty is not affected by the
randomllayer, it may be ignored here. '

Thin Phase-Screen Approximation

Much simplification is possible if the thick séattering layer is
replaced by an equivalent thin phase-screen of infinitesimal thickness and
the same overall phase variance. To the first order, in the thin phase-
screen approximation o

. cosh AaajL =1 : ' (24a)
sinh Aaa L = Aaa;L - . ‘ ' (24b)
‘tanh Aaa Ll = daa;l o : (24c)

Utilizing these approiimations as well as Equations Ba-c and Equagion 18
for a,, a,, and B, the two-position, two-frequency MCF is found in the
thin ghase-screen limit as ' ' '
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+zr,wd) = | - 1 - v/2
(1+1 fi) (1+1 °d )
w' tu'/A2

LS VIO
exp{- - (25)
“ 140 e M
xh m'/t\2

Pl(gsn»z

X
]
x

©

]

where

22 _tr.e | (26)

LI | (@
x;rzto¢A2 :
Equations 25-27 are valid for any anisotropic power spectrum for which, in
the strong scattering limit, the phase structure-function can be expanded
in the form of Equation 10. For the anisotropic Gaussian power spectrum
of interest in this work AOIA2 = - rg where o is the axial scale
size of the elongated irregularities as discussed in the appendix. The
parameter % is a measure of the decorrelation distance of the complex
electric field as measured in the ﬁlane of the receiver; w' is the
: cohefence Randwidth and will be shown to be inversely proportional to the
"time delay jitter;'a¢ is given'in the appendix as the phase standard

deviation imposed on the wave by the phase-screen,
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SECTION 3
APERTURE ANTEMNA EFFECTS

" In this Section, appropriate expretsions are derived to obtain
the effect of the anterna aperture on measurementsx of,thé properties of
the received signal during strong scintilla;ion cenditions. The first
geometry considered is that of a spherical wave that propagates through
the disturbed layer to a receiving aperture antenna. Results for this
case are then easily extended to the case of a transmitting and receiving
antenna and then fo the case of a monostatic radar géometry.

Consider the geometry shown in Figure 2 where the aperture is
located in the receiver plane, z = zp. If the incident field in the
-plane of the antenna is U(p,2z .w), then the complex voltage envelope at
the antenna cutput may be expressed as (Price. Chesnut and Burns, 1972)

V(52,0 = U5z, 0) Ar(ﬁ'-'o'o) LI (28)

where U is the solution to ‘the parabolic wave equation at Iocatton I
in the receiver plane for a monochromatic signal of frequency @, . is

0
the location of the center of the aperture antenna and A fs the complex

antenna weighting function.

Equation 28 gives the output voltage from an apérture antennan
pointed in the z-direction for a transmitted monochromatfc wavefnnm of

~ radian frequency w. If the transmitted waveform is a pulse waveform

‘modulated on a carrier, the transmitted signal can be expressed as

"s(r) = Re {m‘(t) exp(iwof}} - ‘ 7(29) v
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Figure.2. Receiving antenna aperture cente *ed at origin of
coordinate system,

where wb is the carrier radian frequency and m(t) is the modulation
~waveform. After passage fhrough a 1ayef of irregularities, the received
signal may be written (Knepp, 1983(a)) in .the absence of an artenna, as

r(B.2,,7) = Re{e(s.zr.r)exp(iwor)} | o (30)
where | | |
e‘(‘;;;zr, 1) = .}._ [ M{ w)U(E.i},m+wo)exb(1mt)du'o‘ : " {31)
i 5% |

The quantity e 1is called the complex envelope of the feceived waveform,
M(w) 1{s the Fourier transform of the transmitted modulation waveform and

is given by

"“(“) = f m(t)exp(-fut)dr o ey

-oh
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In order to obtain the effect of the antc.una on the received

time-domain waveform, the received complex envelogpe U 1in Equation 31 is

replaced by the expression for v given by Equation 28. Thus the
. received time-domain signal at the antenna output may be written as

T— - l -1
e(éo,z,_.f) g [ M(U(E", 2z, wva )

¥
x Ar(-ﬁf-ﬁo)exp(m)dzp'dm (33)
"In the case that the receiving aperture is an'omnidirectional poinf'

antenna, A* s a delta function and the received complex envelope given
by Equation 33 is identical to the result given by Equation 31l.

For the case that the transmitted signal power has a delta

function behavior in delay, m(r)m*(r) = §(t), the correlation function
of the received power can be expressed as '

<el? 1)e* (P ,T)> = G(F -P
el? .z, Je (pz,zr. ) G(pl pz,r)

\ ,
= (2m)* [ S(K,7)|Ar(K}| exp[iK*(P1-p2)]a®k - (34)

where S(K,t) f{s the generalized power spectrum (Knepp and Wittwer, 1984)
definec as the Fourier transform of the MCF,

R D S e . 2 -
$(K, 1) 33 [ T(By,u) exp (-iK By +iuyT)dw 120y (35)

and Nr(f). is the Fourier transform of the weighting function of the
receiving aperture -

A = L[4 (B) exp(+iR-5) d% e
an2 T L A
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The vector K is giyen'cs k sin6(cos¢ i +sing 3) for the geometry

shown in Figure 2,

To obtain Equation 34, use is made of the fact that the MCF
depends on ohly the differences in positioﬁ and frequency. A detailed
derivation similar to the above appears in Ishimaru (1978). Note that the
dependehce of the power impulse response function, G, on the receiver
distance zp 'has been omitted for notational cunvenience.

Equation 34 can be written in another very useful form with the
substitution ‘

+(K = 1 3 e 142 -
r(K,w,) it [ T(ng,u))exp(~iKp )d P, (37) .

wherehlf(?,md) is the Fourier transform of the MCF, If T 1{s used in
Equation 34 one obtains 4

G('El?”ﬁz,r) = (2n)3 [ .l:(_K-,-wd')lAr(f)'Z_exp‘[ik_o(;1;;2)+iwdr]dwdd2K (38)

It Wil be seen that Equat’on 38 is preferab‘e for the evaluation of the
effects of apertures on mean time de1ay and’ time delay jitter,

For later usage. it is noted that the function r(K,md) may be

c obtained directly from Equation 25 as

o g,z' 2wy
r(x,md-)s;._‘.’.exp{ "’}

2
4ma 2“0_ - |
k22 / @, k22 wy ' '
x exp{ - 22 (144 2}« L2 (144 (39)
: 4 \ w' 44 w'/Az-
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Aperture Weighting Function

‘ Let the antenna possess a Gaussian beam pattern with gain
function

| G(8) = G exp (-ez/eﬁ) A | (40)

where the receiver beamwidth 6, is related to the effective aperture
‘diameter D by eﬁ = (A/D)2%/(44n2) and A is the wavelength at the

carrier frequency. With this choice of beamwidth G(A/2D) = GO/Z so that .

this Gaussian aperture has approximately 'the same 3 dB beamwidth as a
uniformly illuminated circular antenna. The antenna gain ‘pattern is the

'_square of the transform of the aperture response function defined earlier.
“Thus '

7y . nl/2 2 2
AL(K) = Go/ exp (-0%/20%) | (41)

. The Fourier transform relaﬁionship of Equation'36 may be used and the
small angle approximation invoked to obtain the aperture weighting
function and its Fourier transform as

= ome29261/2 k2,292 '
| A.(B) = 2nk?8261/% exp (-k20%02/2) ~(42)
and

Ty = gl/2 ", z‘ 242 | | :
A,r-(l() Go/ exp (-K?%/2k er) | (43)

Before procéeding, it is useful to note that the effect of an
aperture antéenna is immediately apparent from the form of Equation 38.
With a point or omnidirectional antenna, the beamwidth is large in
Equatign.43 and Ar(f)_ is censtant.' Therefore, with a point ‘antenna, the
aperture angular response function is not important in Equation 38: 1t is
apparent that the receiving aperture acts to. modify the value of T such
that '

- ...‘2‘,‘ o
PalK,ag) = Fo(K,ug)|Ap(x)| EERRER (O
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where the subecript a on E denotes that this exbression contains the
effect of the receiving.éperture. ‘The subscript r on f' on the right
hand side of Equatioh 44 refers to the case here that the receiver is
located at z.. This equation is an exp1icft expression of the well known

result that an aperture modifies the angular spectrum of the received

signal.

Case of Transmittingeend Receiving Antennas

Equations 34 and 38 give the received power impulse response

" function for the case of an omn1d1rect10"1 spherical wave transmitter and

a receiving aperture antenna with aperture angu1ar response function
Ar(K). A transmitting aperture antenna is easily included in Equations
34 and 38 since its only effect is to reduce the region of the.
phase-screen that is illuminated. This is accomplished by including

an additional antenna angular response function A (Kz /z ) where A (K)

is the response function of the transmitter with beamwidth et and where

‘the factor .zr/zt transforms the antenna angle utilized by the trans-

mitter to the angle observed by the receiver. This transformation is
equivalent to the observation that a iey transmitted from location -2t
at the angle 9 and that scatters from the thin 1ayer is observed by the
recefver at ang1e 8' = 2 6/2 .. For this case one may w;ite

l

l:tr(zl‘"’d) * ;r(i;wdilAr(f)l2'At(ﬁér/zt)'% | (45)

where the 5ubscript tr refers to the fact that this expression iniludes
the effects of both transmitting and recefving apertures. Since the
one-way propagation path here again utilizes a receiverea; zr. I' on the
right hand side again appears with the subscript r.
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For the later calculations of scattering loss, mean time delay
and time delay jitter, Equation 38 is evaluated at B;-p, = 0 where
Equation 45 is substituted for the factors P(E;m )'Ar(f)lz. That is,

"~ for the one-way propagation path with both transmit and receive apertures

Gy (07) = (20)° T, (Kou exp (1u,7) 4%Kdw (46)

d
For evaluation of the effect of an aperture antenna oﬁ the measured signal

decorrelation distance, the necessary function is the two-position, single
frequency MCF given by the Fourier transform of Equation 37 as '

(50 = [ B Edemp(iTB e ()

The use of Tt includes the effect'of-bqth transmitting and receiving
apertures.

Case Of Monostatic Radar

Now consider the case that the two-antenna‘geometry above is
repIacéd by a monostatic radar geometry. ~In the radar case, the solution
is facilitated by considering two one-way propaggtion paths. Let.fhe
radar antenna be located at (0,0,-2¢) and also let the antenna angular

“response function be given by At -with beamwidth 8¢ on both trans-

mission and reception, First consider the one-way propagation path from

the transmitter antenna to the'target located at (0,0,2.), For this
- path, the effect of the aperture antenna is obtained from Equation 45 with

the omission of Ap, since the point target accepts énergy incident from
all directions. That is, -

- - A . 2 a E '
Ta1(Keg) = To(Kowg)|A, (K2 /2, )| - . (48)

2%
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- the monostatic radar geometry.

.considered in this report except for the interchange of receiver and
"transmitter location. For this one-way propagation path, f 1is replaced

where the subscript ml refers to the firét one-way propagation path for

Now consider the second bne-way propagation path from the target
back to the receiver. This is the propagation geometry initially

by rt appropriate to the one-way propagation path from z. to ~Zy .

Thus

Fa(Raay) = T, (Rou))|A ()2 o (49)

Note that the occurrence of At here as well as in Equation 48
signifies the use of the same aperture antenna (with beamwidth 8:) for
reception as well as transmission. The only effect of the reversal of the
direction of propagation is an interchange of 2z, and z¢ 1in the
calculation of the MCF. This interchange has the effect of replacing zo
in Equation 39 with the term zé = ztzo/zr.

In the case of the monostatic radar geometry under considera-
tion, the principle of reciprocity states that the propagating signal
takes the same path over each of the oné-way propagation paths. This js
true provided that the random medium is "frozen" for the duratjon of the

. signal traversal.

The power impulse response function for the sigha! recefved at

the target due to a transmitted delta function of power from the radar is

given by Equation 38 as

60,0 = (21 f Ty (Riugexp(iuglalian, - (50)
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If a delta function of power is transmitted from the target, the
power impulse response function at the radar receiver is giVen by a
simiiar expression ' '

6(0,7) = (1) J 1, (K,uydexp (1) Kds (51)

d

The net power impulse response function after transmission of a delta

function from the antenna, scattering from the target, and propagation
over both of the one-way paths is given as the convolution (Ishimaru,

1978)

6 (0,7) = fGl(O,t')Gz(O,r-t')dt' _— (52)

whera the subscript m refers to the monostatic radar geometry. Using
the convolution theorem, it is easy to show that

6 (0,7) = (2m)7 rml(E.wd)dZK rmz(i',w ')dzl(v’ exp (1w, T)du, (53)

This equation is the equivalent of Equation 46 for the case of the one-way
propagation path. ‘

" The above considerationslgpp1y to the calculation of the power
impulse response function Gp(0,t) for the case-of monostatic radar.
For this'geometry the signal'decorrelagion distance is eastly obtained as
‘a simplification of the previous development for the one-way propagation
path, For a monostatic radar, the decorrelation distance is obtained by
‘transmission of a signal to the target and observation of the scattered
signal'at_two spatial locations in the plane of the receiver. The point
target acts as q.trabsmitter of ‘a spherical wave which is then observed by
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the radar receiver. For a small target and frozen irreqularities, there
is no dependence of signal decorrelation distance on the one-way propaga-
tion path from the transmitter to the tarrat. The necessary two-position,
single frequency MCF is given in a form similar to Equation 47 as

r(s,,0) = / ;hz(f,O)exp(iivﬁa)de (54) -

where Emz ié-given by Equation 49 ‘and incjudes the effect of the

receiving radar antenna. It will be shown that evaluation of the analytic
form of the expression P(EE,O) “immediately yields the sigﬁa] decorrela-
tion distance in this strong scatter calculation.

29

B Y SRR

[
o
.

l'l
- 8 R

IR

\

P AR
PSR INURR W R

T LEARRAL

i

il‘;

-« a’x

IR X o
LRy L -

AR I EPRE

»_3,

ola TSl a0 A




" SECTION 4
RESULTS

In this section the derivations presented in Section.3 are
utilized to obtain analytic expressions for several.prOperties of the

received signal as measured at the output of the appropriate aperture
antenna. a

Angular Scattering Loss

An antenna aperture acts to coherently collect the energy inci-
dent upon the antenna and to deliver it to the receiver. In the transmit-

ting mode a directive antenna is designed to transmit energy only over a

selected angular region. In thre receiving mode this same directive
antenna accepts energy only from a narrow range of angles. 'Thus, relative
to an omnidirectional point antenna, a directive antenna will experience
what is referred .to as angular scattering loss when the si§Eai at the
aperture exhibits scintiiiation. This angular scattering Toss arises From
‘ .angie-of ~arrival’ Jitter present 1n the incident wavefront that may cause

energy to arrive at the anterna propagating at angies greater than those -
accepted by the receiving aperture.

A different bet equivalent ﬁay to view the,effect of}a,reeeiving

antenna aperture is as a coherent integrator of the signal arriving on the

aperture face. If the antenna is pointing towards the source'of an .undis-
turbed planre wave, then the antenna output is maximum, If there are fluc-
tuations in the signal phase across the aperture or the incideht wavefront

fs tilted relative to the antenna boresight direction. the coherent inte-
grator output is decreased. o '
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It is convenient to compute the angular scattéring loss as the
ratio of the total power received with an antenna (or antennas) to that
received with an omnidirectional antenna that experientes no loss. In
both cases the transmitted signal power is taken as a delta funct1on .n

delay. The angular scattering loss may be written as

1im [
9 ,8 » G(0,t)dT
t'r (55)

loss =
' [ 6(0,t)dt

where the powér impulse response function G is givenrby Equation 46 for

the one-way path with both transmit and receive antennas and by Equat1on
52 for the monostatic radar case.

The integral of Equation 46 with respect td‘"r is easily
evaluated using the 1dent1ty / exp(1m r)dr = Zus(wd) This leaves a two-
dimensional integral of r(K 0) over ang]e which 1nvo1vps easily found
integrals of Gaussian functions. The result may be written as -

2 2 ' 2‘ 2
20 20g, ¢ \1/2 29 2081 \1/2
Toss = (14 X4 :" 2[4 8 23’ + 2y' / (56)
9; Ot 6'. 79t~

where ogy and ooy are the standard deviations of the theoretical

Snglé-of—arrival fluctuations in the x- and y-directfons over the propaga- '

tion'path from -2y to Z.. The quantities gy and Ogy* are

the same standard deviations calculated for the one-way propagatioﬁ path

from zp to -2y (see appendix). The quantities 9 and 0,
are the 3 dB beamwidths of the transmitting and receiving antennas,

- respectively,
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The expression for angular scattering loss given by Equation 56
contains the effects of variations of the properties of the propagation
medium and of the geometry of the propagation path. To show this result
pictorially, let the antenna beamwidths be identical and Tet the equiva-
lent phase-screen be lccated midway befween transmitter and receiver. In
th1s case 2‘ = 20. To simplify matters further,.write the antenna beam-
width in terms of the diameter as discussed earlier. Write the angle-of-
arrival jitter as a function of the signal decorrelation distance using
the expressions given in the appendix. These substitutions give -

2 /92 = 0.28 02/12 and 202 /e2 0.28 DZ/(I.Z/AZ). In order to
-separate the geometric effects of 1nc11nat1on angle variations from
aperture averaging effects, define 2%, as the 4ecorrelation distance
for propagat1on parallel to the magnetic field line. The quantity lp
is invariant with respect to changes in the inclination angle and is given
from Equation 26 and A-6b by lp = /326. The results remain .a function of
the axial ratio q which is here taken as 15 as suggested by Wittwer
(1979).

Figures 3(a-b) show the angular scattering loss in decjhels as a
function of the relative antenna size. D/25 and of the inclinatjon -
angle. In Figure 3(a) the inclination angle between the magnetit field
and the direction of propagat:on is shown for values of 0°, 15°,] 30°, 45°
and 90°. In Figure 3(b) the relative antenna size takes.the values of 1,
3, 10, 30 and 100. It is seen in both figures thet only when' antenna
"diameter is large with respect to the decorrelation distance is he
angu!ar scattering loss significant. Smaly inc]ination angies

An increase'in the fnclination angle caises a.decreafe in gy a
effective increase in the decorrelation distance -Lo;.therefore,|the
amount of angular scattering loss decreases., -
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For the.case of a monostatic radar, the power impulse response
function is given by Equation 52 as the convolution of the power impulse
response functions of each of the one-way propagation paths. A simple
change of variables is utilized to reduce the integral [Gm(0,t)dT to
the product of two integrals . of G, and G,. These integrals are easily
performed using the delta function identity discussed previously with
resulting angular scattering lots

‘ 205 , Zog ,
loss = 1+ X} (1 + -2} (57)

where 8¢ 1is the radar antenna 3 dB beamwidth. A comparison of this
result to Equation 56 shows that' the, addition of a second one-way propaga-
tion path essentially squares the scattering loss.

Figures 4(a-b) show the éngular scattering loss for the case of
a mondstatic radar geometry as a function of the inclination'ang!e and of
the relative antenna size D/zp. Here 8y is the decorrelation

distance observed for propagation parallel to the magnetic' field along the

path from (0,0,z.) to (0,0,-z¢). The overall behavior of scattering

Toss is quite similar to that exhibited in Figure 3. The major différence

observed lS the increased loss .caused by the additional one-way propaga-
tion path from the target back to, the radar.

i

Signa) Decorrelation Distance

As another aspeft of the aperture averaging effect, an aperture
_ can act to increase the measured decorrelation distance at the antenna

output. This ohserved increase is caused by the averaging effect of the
- coherent integration that smooths the_more rapid fluctvations. To obtain
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the signal decorrelation distance for the one-way propagation path from
(0,8,-2¢) to (G,O,zr), it is necessary to perform the integration
spegified in Equation 47. Fortunately, r given by Equation 45 is the
producf of simple Gaussian functions. The integral is available in
standard tables and the resulting expression contains the factor ,
(-cz/lsx - nz/zgy) where the decorrelation distances in the x- and
y-directions (see Figqure A-1) are

‘2 2
209 209y \1/2
+

fox = %o\l * 52 o2 ' (58)
r t
2 2 :

by TNt (59)

r t

If small apertures are used so'that (he beanwidths are large
with respact to the theoretical angle-of-arrival standard deviations, -the
parenthetical expressions above are un1ty leaving z and zo in
agreement with the coefficients of ¢ and n glvep in Equation 25 with
wd set to zero.

Figures 5 ‘and 5 show the relative signal decorre!ation distances

lox/zo and. z /(t /4) "in the x- and y-directions for the case of
identical transmit and receive antennas separated by a centrally !ocated
scattering layer. The quantities 2, and 1o/8 are the values of

decorrelation distance in the x- and y-directions, respectively, that are

.. observed with omnidirectional antennas. In the figures the results are

again shown as a function of the ratio of antenna diameter to the
decorrelation distance for propagation parailel to the magnetic field

_ direction,
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Figures 5(a-b) show the re]aﬁive decorrelation distance in the
x-direction as functions of D/lp and inclination angle . Apertures

with diameters less than the decorrelation distance do not affect measure-
ments of the signal decorrelation distance. It is evident that apertures
large with respect to 2p - can greatly increase the measured decorrela-
tion_distance (relative to an omnidirectional antenna) for sufficiently
"strohg angular scattering. ‘

It s immediately evident that the decorrelation distance is not
reciprocal. MWith omnidirectional antennas the decorrelation distances in
the two orthogonal directions, lzox and zoy' are dependent op the path
geometry as given by Equation 26. These values are not reciprocal;

2 and zqy are measures of thé'average distance betwgen'fades in the

ox
receiver plane and consequent1y depend on geometry.

In the case of the monostatic radar, the signal decorrelation
distances may be obtained directly from Equations 58 and 59 by using the
paraméters appropriate to only the second one-way propagation path with
transmitter (target) at (0,0,zp). The results are

262

: < ‘ ex I' 1‘/‘2 , f , . ’ B
YR - , | '. I (60)
N 2(; 1+ 2029:,1 1/2 K . . ' (61)

Loy T\ eg”f : o

where zé and zé/a are the signal decorrelation di;tances fn the x- and
" y- directions that correspond to the one-way propagation path from a
source in the 2z, plane to a receiver in the -zy plane. Figures
7+8 show %5 and  t,, for a.mandstatic radér as a fgnctioﬁ of
normalized antenna diameter and the angle bhetween the magnetfc field and
,‘the'directton of propagatioﬁ. -The rasults are similar to thosé shown fn
Figures 5-6. T - | ; -
S 3?‘, T
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"~ Mean Time Delay and Time Delay Jitter 2
i &
In the same manner that an aperture antenna with a small beam- g
width'neglects or .averages out energy incident at off-boresight angles to ;

- reduce the received power, it also acts to reduce the measured time delay %
"aﬁd time delay jitter. This reduction occurs because the energy arriving E
from directions away from boresight typically travels aver longer paths ?
than the more direct signal. These longer paths require a longer propaga- a
tion time for that portion of the received signal and hence' contribute to g
increased <T> and 9t values. If this energy is neglected: by an | ﬁ
aperture antenna, then the signal at the output will be characterized by %

smaller <T> and Ot than that measured-by an omnidirectional (point)
antenna. ' ' :

Now define. the mean time delay, <t>, as

.
M
.
e
.
XY

- .

L8600, 1)t

<O = (62) o
] G(0,t)dt o ' 3'

and define the time delay jitter, o, by the second moment 5

2, f6O, T 2 . (63) :

] 6(0,1)dt | .

v . :

where G{0,t) is the power impulse response measured at the wutput of the '
receiving antenna due' to an, 1mpulse of power originating from the trans- %
m1tter. ‘ a

, ' | | 5
To compute <t> and oy for the cne-way propagation path g
with transmit and receive aperture antennas,- it is convenient to utilize t‘
Equation 46 for the power impulse response function, The 1ntpgrals of T ;‘

and % give first and second dorivativps of delta functions which yield 3
first and second ‘derivatives of r(K w,). These derivatives are . ﬁ

" evaluated at zero wyq as a resuls of the T integration. TheAremaun- Q

ing integration‘with respect to K ois easilj performed, The results may %

“he written as -
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2 2 1
20 20 -
<T> = %‘T‘ + _ﬁgﬁ + 2*
@ bp 8¢
(64)
242 242 -1
+ a2 1+ by + Oy’
o8 o}
2 2 ~n 2 2
g 20 AL S W
g° = _.(E + 1| 1 + Ox + ___?f..
wcz) 2w 2 6,2. 6%
(65)
a2 202 \\ -2
sa% 1+ 8 4 8"
02 . of

_ Figure 9 shows the effect of aperture antennas on the observed
mean time delay by showing the mean time delay normalized by the value
observed with omnidirectional antennas, (1+§2)/(2w')§ In the figure,
transmit and receive apertures are identical and the equivalent phase-
screen is assumed to he located midway between the antennas. Figure 9(a)
shows the relative mean time delay as a function of D/2p for values 'of
the inclination angle of 0°, 15°, 30°, 45° and 90°. It is seen that large
apertures can have a significant effect in reducing the observed mean time
delay, particular1y when the direction of propagation is close to the
magnetic field direction. In Figure 9(b) the. abscissa and the parametric
quantity are interchanged relative to Figure 9(a).

Figures 10(a-b) show the éffect of aperture antennas:on the
observed time'deTay jitter o¢. Here o¢ fs normalized to 1ts value
for omnidirectional transmit and receive antennas [(1+A“)/( )]1/2
It is further assumed that the ratio o /m - is small, as is always the

case for GHz and higher frequencies, At w = 0° the antenna aperture has'

identical effects on °T and <E>. At other values of the 1nclination
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angle ¥, the results shown in Figure 10 are similar but not identical to
those shown in Figure 9. The decreased measurements of <T> and O¢
are the result of the action of the antenna to éxcfude signal energy
incident from off-axis directions that arrives later than energy - that

' propagates over the direct path. '

- For the general case that the power impulse response function is
given as the convolution of two other functions as by Equation 52, it is -
easy to perform the required t integrations to obtain

R R R - | : (66)
2 . 2 2 '
Om = %71 + L) ' o N , (67)

These results state that the mean time delay and time delay variance are
the sums of the values obtained over each.of the two one-way propagation
paths. The fequired one-way values may be obtained from Equations 64-65

with attention to the direction of propagation and antenna placement. The
final fesu]ts are ' : : :

oy 202\ 262 \ TV '
<> = (1 . X ),+ a2 (1 + Y ) g - (68)
w! e - of o ‘
202 2g2 \-2 202 ,\ -2 I
o= _% & 11_. (1 + ;;gfi) + A“(l P ) . (69
cg e T
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Figures 11-12 show the values of mean *time delay and time delay
jitter for an éperture antenna normalized to their values for an omni-
directional antenna. Again the factor o4/, is assumed small for
this monostatic radar case. These normalized results are very similar in

form to those presented in Figures 9-10 and again show the dramatic effect

of a large aperture antenna that operates in strong scattering conditions,
Coherence Bandwidth

_ The coherence bandwidth is appropriately chosen as the inverse'
of the time delay jitter exhibited by the received waveform due to a )
transmitted power that is a delta function in delay (Knepp, 1983(b)). In-
the cases considered here where J¢/wg is small, the effects of |

antenna apertures on the measured coherence bandwidth are easily obtained

from Equations 65 and 69. The results for the one-way propagation path
with transmit and receive antennas and for the monostatic radar case are )
given as the reciprocal of the values shown in Figures 10 and 12,

respectively.
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APPENDIX
IONIZATION IRREGULARITY DESCRIPTION

The ionization irregularities are assumed to be elongated along
the direction of the earth's magnetlc field as shown in .Figure A-1. The
electromagnetic wave propagates in the negative z direction. The magnetic
field vector lies in the y-2 plane at an angle of - ¥ with respect to the
z axis. The ionization irregularities are assumed rotat1ona11y symmetric
with autocorrelation function

N

: 2 2 ' '

Bg(r,s) = ez exp.‘- EE - s 5 (A-1)
Ne>? el (arg)?

Figure,A-i. A single irregularity elongated along the magnetic field
: - line in the y-z plane.
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where s 1is measured along the magnetic field direction and r s
measured perpendicular to this direction. The quantity gq is known as

the axial ratio (Briggs and Parkin, 1963) and rg is the correlation
distance or irregularity scale size.

The s, r coordinate system may be related to the x, y, 2
system by the equations s2 = (y sin ¥ + z cos ¥)2 and r2 = x2 +

u(y cos $ - 2z sin.w)z. Using the above transformation the irregularity

correlation function may be expressed in the x, y, z. This expression can
easily be integrated according to Equation 6 to obtain the function

A(g,n) as

aﬁ /n qr0
A(z,n) = &
<Ne>2(qzsin2w+coszw)l/2~

2 ' 2
- 2 —~ (A-2)

x exp ) - -t
r%(qzsin2w+coszw)

-5 -
oN

The above equation is essentfally Equation 10 in'Briggs and‘Pérkin
(1963). A{z,n) is easily expanded in a Taylor series and, retaining only

- terms up to the quadratic, one obtains Equation 10 in the text where

aﬁe/l qr»oA B
Ao = > — ' ‘ (A-3)
<Ne>
- ok Mmas | |
Ap # 2 | (A-4)
. <N '>2p
e
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A2 = 1

V qzsinzw + cos?y

(A-5)

This same formalism may also be applied to irregularity po&er sbectra that
are non-Gaussian. For the case of a power-law PSD the coefficients Ag
and A, are different than above but behave in essentially the same
manner as a function of ‘the outer scale size as long as the three-dimen-
sional in-sitg electron density PSD falls off at least as rapidly as K-“;

Phase Standard Devigtion

For an ionized medium, the phase standard deviation is given as
the integral of the irregularity autocorrelation function along the
direction of propagation (Salpeter, 1967).  The result may be written as
(Knepp, 1983(b))

2 .1 4 2 ' ' N :
.a¢ =4 kaAo/ko | (A-6a)

or

"

) 2 2 ~ : : -6b)
/n (Are) qAroLé o o | ~ [A-6b)
Theore§1c31 Angle-0f-Arrival Fluctuation

Consider a plane wave traveling .in the negativélz-direction and
incident in the x-y plane at an angle 9 ‘from the z-axisQ The é!ectric‘

field is given by E{x,y) = E0 exp {ik(sine x + cos8 z)} where the

exp{iwt) time dependence is suppressed. The angle-of-arrival upa;ured
along the x-axis is computed as ‘
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X jkE X . ' » (A-7)
) - :
This computation gives sin o which, in the small angle limit, is
approximately 6. '

In the case of interest here the incideht field is given as the
solution to the parabolic wave equation and’ the angle-of-arrival may be
measured in the x-direction as

[ EAPIAMAMILY - NN

Clos O R

g = 1 U(p,z,w)
X' jkUg  Ax

(A-8)

with a similar expression for ey. Here the measurement depends on the

AR08 e AT

frequency. At a single frequency the rms value of 8y is related to
the second derivative of the two-position MCF (Papoul!s, 1965, p. 317)

1 3 r(c.n w -0)

2 o
e T T —_ - : (A-9)
Ox K2 acz '

-

z=n=0

A e

With.a similar equation for ‘dev- For the caselof propagafion'from a
transmitter in the -z¢ plane to a receiver in the 2z, plane, oy
- and  dgy may be obtained from derivatives of Equation 25 in the ‘text.'as
= /27(k,.°) and ooy, = /Zf[k(zo/A)]

A R

For che case of propagation from a transmitter in the ze
plane to a recetiver in the -zt plane, the interchange of transmitter
and receiver may be taken into account by substitvting z' for z where -
_z; =z 2 /z . This substitution gives the angle-of-arrival fluctuation .

to
" over the reversed path as og. -/,/77(kl;) and °§y" /27[k(z;/A)}.
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