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ABSTRACT

--Large matrix storage constitutes a limitation on the

applicability of most numerical techniques including the

Finite Element Method, when very accurate results are required.

This is particularly true when dealing with Boundary Value

Problems. In order to surpass this difficulty a new method

to solve these problems has been devised which does not re-

quire matrix storage while still providing the possibility of

accuracy improvement. cd-tA t -~--

Although restricted to one-dimensional, linear differen-

tial equations of the form Yr=))x f(x) this new approximating

technique gives acceptable results. The method will perform

equally well for problems with exact or non-exact integrable

forcing functions, continuous or discontinuous, or functions

existing only as a set of values at discrete points.
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I. INTRODUCTION

For many engineering problems it is not always possible

to find an exact solution. An exact solution is an analyti-

cal mathematical expression that gives the value of the unknown

at any point within a previously specified range. For problems

involving complex material properties and boundary conditions,

different numerical techniques have been developed to approxi-

mate the exact solution to a more or less acceptable degree

of accuracy. One of -ese techniques is the Finite Element

Method, where a given problem is to be discretized, that is to

say, approximate solutions are to be found at discrete points

in the body. The way one accomplishes this, is by subdividing

the whole body into finite elements. The solution is then

formulated for each small unit and combined to obtain the

solution of the whole system. Obviously the greater the number

of elements, the better the accuracy.

However, despite the fact that high-speed digital computers

have enabled engineers to successfully apply these numerical

techniques, we still face the problem of large matrix storage.

Complex problems requiring very accurate approximate solutions

lead to large matrices and consequently larger computer memory

will be required. This fact constitutes a limitation on the

applicability of these numerical techniques.

6
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The method we are dealing with in this work intends to

solve this difficulty by reducing a B.V.P. to an I.V.P. Unlike

the "shooting" method, where basically the same idea is used

together with an iterative scheme to achieve a solution, the

method developed here achieves a solution without iteration.

Although restricted to a particular type of linear differ-

ential equations and only to one-dimensional problems, as it

will be shown, this method can be applied to many problems

where no exact integrable forcing functions occur, or, even

more, the function exists only as a set of values at specific

points.

Basically what the method does is approximate the exact

solution by a set of linear functions, each of them applying

in a very small interval. However, these functions are not

independent from each other. We use the previous one to find

the next, until we eventually reach the other end of the range

in consideration. Depending on the order of the differential

equation, we will find as many sets of linear functions as

required by its order, each set applying to a specific inte-

gration, and as before, every set depends on the previous one.

The way in which we will do this will allow us to correlate

all possible boundary conditions in an explicit manner which

transforms boundary value problems into initial value problems

and by doing that, get to the result.

The method is indeed an approximation and as such, it is

subject to error. We can say, however, that by decreasing the

7



step size we get better accuracy, provided we carry enough

significant digits to take care of round-off errors. With

respect to the later a good programming technique is required.

Finally we shall apply the method to several practical applica-

tions, specifically to beam problems where a fourth order

differential equation occurs, and a variety of boundary

conditions can be given.

8
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II. BACKGROUND

A. GENERAL

In this section we are going to introduce the basic ideas

of the method we will be dealing with. Let

Y'(x) f(x) (2.1)

where it is understood that the function f(x) may or may not

be exactly integrable, but we can integrate it numerically.

From the above relationship we have:

Y(x) = ff(x)dx + Y (2.2)

Here the constant of integration Yo is assumed to be zero

for the moment. In the most general case, it is clear that

there is no way to know what the function Y(x) is, since we

may be dealing with non-integrable functions. However, we

can approximate the function Y(x) by a linear function y(x),

provided the interval in which this approximation applies is

sufficiently small. So we take

Y(x) =y(x) X m+.c (2.3)

Now, by following the general procedure of integration, and

from (2.2), we have:

9
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b b
jmx + cj = f f(x)dx (2.4)

a a

where (a,b) denote the limits of the interval under considera-

tion. After simplification it is found that:

b
f f(x)dx

M a (2.5)

that is to say, the slope of the approximating line given by

(2.3) can be explicitly determined. Actually, as we will see

later, it can be said that the "general" approximate solution

to (2.1) has been found within the interval from a to b. In

order to determine the "particular" solution, in other words

to find the intercept c of (2.3), an auxiliary condition must

be imposed. Let

Y(a) = Y
0

then:

Y(a) = Yo= ma+ c

or

y(x) = m(x-a) + Yo a < x < b (2.6)

10



where m is given by (2.4). Now we have fully determined the

approximate solution inside the given interval. Note that

(2.6) will give results at points a and b, as accurate as the

numerical integration performed on (2.5).

Fig. 2.1 shows the whole process so far. The upper curve

represents f(x), which is given. The lower curve is Y(x),

the integral of f(x); however within the interval a to b, Y(x)

is approximated by a line. Point Y is the given auxiliary

condition and point Yb can be determined exactly from (2.6),

by letting x = b.

The next step now becomes evident, since point Yb can be

determined. We are now in the same position as before, so

all we need to do is repeat the process over again. However,

this time with a new auxiliary condition; the last one we -

have just found, and over the next interval. We keep going

this way until we reach the other extreme of the range where

the differential equation applies. See Fig. 2.2. "-.

In summary, we can say that every step we take we are

solving a "new" differential equation by approximating lines

which gives us true values at the points of intersection.

The fact that we have a "new" differential equation at every

single step allows us to deal with discontinuous functions and/

or functions existing only as a set of values.

B. THE FIRST INTEGRATION

At this point let us introduce a new parameter:

h = b-a (2.7)

11i :



- . ~ .. r n n .- r.--

l

them. By similarity to an exact problem we can look at this

term as being the general solution of the differential equation.

Note that this term actually links the left and the right

boundary conditions in a very explicit way. This is the

heart of what the present method is all about. With this
l

idea in mind we are now going to find several relationships

for successive integrations.

Let us start by noticing that (2.10) is a general relation

that applies not only to the first integration but also to

successive ones. The only term that is particular for each

integration is the summation of the slopes. So in order to l

perform the next integration we shall determine this term

specifically and substitute it into (2.10). We are now dealing

with a fourth order differential equation since this type

occurs in beam problems. The application to other orders will

be self-evident. Let

Y (x) = f4 (x) (3.6)

After a first integration we have:

n
+ .111

Y"' h [ m. + Y"' (3.7)
n 3 1 0i=l 1

where the subscript 3 in the summation indicates that these

slopes belong to Y"' f3 (x) and are given by (2.11). We need3P

to find now

25



There is another subscript that we must keep track of.

Recall that the whole solution function is going to be repre-

sented by a set of approximating lines, see Fig. 2.2. Then if

we start at the left end, we shall use the subscript n as a

second indice to identify each line as we move rightwards. Be - -

aware that we will take the subscript i inunediately to the

right of each line to name it locally.

Some words must be said about the auxiliary conditions.

Recall that in a specific problem the number of these condi-

tions are equal to the order of the differential equation to

be solved. If all these conditions are given at the same

point, then we are dealing with an Initial Value Problem.

However, if the auxiliary conditions are given at both ends

of the range of interest, then we have a Boundary Value Prob-

lem. When we are able to have an exact solution, we usually

are led to a set of simultaneous equations involving the unknown

B.C.'s; those can be solved alg-raically and lead to the

whole solution. However for equations with no exact solution,

like the ones we are interested in, there is no way to deter-

mine the conditions at the other end of the interval, and that

is precisely the goal of our approach. We need to correlate

in an explicit way the known conditions and the unknown ones

by means of equations of the form of (2.10), so we can be able

to find them.
n

Note that in this equation the term h m. is independent

of B.C.'s and it can be readily found even if we do not know

24



Such equations arise in the study of deflections of beams,

and we shall apply the method to practical beam problems. Let

us introduce the notation to be followed. We will write the """

approximate solution line of (3.5) as:

y(x) = mx + c

in a clean way without subscripts. The approximation line S
to the first derivative will then be:

y'(x) mlx + c

and for the second derivative:

y" (x) = m2x + c2

and so on.

The boundary conditions will be represented as:

Y(X 0) y Y(x) = gn

Y'(x) = Y(x) =y
0 0 n- n.

Y"( ) = YY (x )11
0 0 nl n

etc., where the subscript o refers to the left hand side, and

the subscript n to the right, of the range under consideration. .

23
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x 1(a + b)

in the line y'(x) and we get:

(a +b. (a +b) + c m
(m -  + 

As seen, it reproduces m, the slope of the lower straight

line.

Now we can have a deeper insight of the whole process,

and why it works. See that what we are really going to do is

to use the slope at the midpoint (the average of the slopes at

the extremes) to approximate the true slope of the straight

line y(x), and later determine the corresponding intercepts.

In fact, had we known exactly the function Y'(x) = fl(x), we -

would have been able to determine the true slope of y(x) by

direct integration as before. As we can see now, we are intro-

ducing a source of error, and from now on we will not have as

accurate results as in the first integration.

B. DEVELOPMENT OF THE METHOD

Before we go into a general development of this method a

slightly different notation must be introduced, and we will

be using it throughout the rest of this research. The type

of differential equations we will be looking at are of the

form:

Y"V(x) = f(x) (3.5)

22
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have been given at the left hand side. However, it really

need not be like this, as will be shown later.

At this point some considerations are in order. With

reference to Fig. 3.1 where the upper curve is the given

function Y"(x) = f 2 (x), the middle curve is Y'(x) =f(x),

and the lower one is the solution Y(x) = f(x).

As explained previously we have approximated the solution

by straight lines. Consider now the slope of the lower

straight line m which is given by (3.2). This equation can be

written as:

m = ![(ma + c) + (mlb + c

2 1 1

m = [yl(a) + yl(b)]

1

m = 2[Ya + Yb]  (3.4)

Since the ordinate at any point x in the Y'(x) curve is

indeed the slope of the Y(x) curve at the same point, then

by virtue of (3.4), we can say that the slope m of the lower

straight line is the average of the slopes corresponding to

its end points, namely point Ya and Yb in Fig. 3.1. Recall

that these two slopes are given exactly by the ordinates of

the middle curve Y'(x). Furthermore let us evaluate

yI(x) = mlx + cl, the equation of the upper straight line, at

the midpoint of the interval, that is we let:

21

- . .. :* .-



but by (2.4)

f (mlx + cl)dx
am = h

or:

m = -- (a + b) + c1  (3.2)

So we know now the slope of the next line; the line belong-

ing to the solution function. In order to find the intercept

c, another auxiliary condition must be supplied. Let:

Y(a) =Ya

then, replacing this condition in the line y(x) = mx + c, we

get:

Y(a) = Y = ma + c
a

It can be shown that:

y(x) = m(x-a) + Ya (3.3)
aI

where m is given by (3.2) . Eq. (3.3) gives the approximate

solution of the original second order differential equation,

inside the interval a to b. Note that both auxiliary conditions

20



Y(x) = f(x)

be the exact result, which is the lower curve in the same

figure. Now let

y'(x) = mx + c

and

y(x) = mx + c

be the approximating lines to fl(x) and f(x), respectively,

that applies inside the interval from a to b only. In this

figure, we can easily see that the area enclosed by the upper

straight line is almost equal to the area enclosed by the

function fl(x). Obviously as the interval becomes smaller and

smaller, both areas tend to be equal; in the limit they are

indeed equal. It is evident now that we can approximate the

exact integration of fl(x), by integrating the line

y'(x) = m1x + cl, provided the interval is small enough so the

error is negligible. Now, as before, we need to determine m

and c. Recall that imand cjhave already been found. So by

virtue of (2.5):

b
f f (x)dx

M am =h'.[-
h

19
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a.

FIGURE 3.1
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III. HIGHER ORDER DIFFERENTIAL EQUATIONS.

A. GENERAL

The previous chapter was dealing basically with the main

ideas of the method, and we have solved a first order differ-

ential equation. We are now going to extend the method to

higher order equations. Essentially what we will do is, inte-

grate several times the right hand side of the given equation;

as required for its degree, using the same approach as before.

However, we should keep in mind that it is only for the first

integration that we will use the given function,.f(x). After

this integration, this function is no longer available because

what we have is a set of straight lines, each applying to a

specific interval. We need to find now a method that will

allow us to perform a second integration of the function f(x),

from the given set of lines.

In order to do this, let us consider the curves of Fig.

3.1. Suppose we have been given the following second order

differential equation:

Y"(x) = f 2 (x) (3.1)

represented in Fig. 3.1 by the upper curve. Let us assume we

have determined Y'(x) = f1 (x) after a first integration by the

method just introduced, Let

17



for this first integration, so its accuracy is determined only

by the exactness of the integration routine used. Second, the

values of Y(x) can be directly determine at any arbitrary point

n, that is to say we need not find its previous values as is

the case for many numerical methods. Later this fact will

become more useful. Finally, we see that, by transposing terms

we can find either the left or right B.C., and this apparently

unimportant fact is indeed a key step, since as we will see

later, we will be able to correlate B.C. 's of higher order

differential equations and solve for them without having to

generate all previous values of the unknown function. In other

words, we could transform a Boundary Value Problem into an

Initial Value Problem and vice versa, depending on what is

known, and what we are looking for.

16
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Yn= (m + m2 +"' + mn)h + Y 0

.,7I

or .-

n
Y n h m +Y (2.10)

Similarly,

h
f f(x)dx

0m - h

2h
f f(x) dx

h
m2  h

Adding terms gives::

nh
m f(x)dx

M. h (2.11)
i=l1h"

We can replace in (2.10) to obtain:

xn
g = f(x)dx + Y (2.12)0

since x = nh. Equations (2.10) and (2.12) constitute two very

important results. Eq. (2.12) is indeed not an unexpected one,

and several considerations can be drawn from it. First of all

the value of Yn does not depend on the step size h, at least

15
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where h is assumed to be small and constant throughout the

analysis. We are now in a position to determine a general

relationship which will allow us to find the value of Y(x) at

discrete points, namely at the intersection of the straight

lines. From (2.6) we have:

y(b) =m(b-a) Y = nh +Y

In general,

y i- m h +Y 0O< i<n (2.8)

where

f f(x)dx

1_

but:

Y. =M. h+Y.

Y m h + Y

Replacing these last relationships in (2.8) and after factor-

ing h, we have:

14
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Ycx=JF M dx

0 0

FIGURE 2.1
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n
Yll h(3.8)

llowing our convention, -a2  is given by:

in 2  - 3,i (x + x) +b

but

b =Y11" -m x
3,i 1-1 3,i i-i

then

m
m 3,i (x 1  + x) + VII -

or

m2, - 3__ h + Y7 ~ (3.9)

Now, since

n-1
=11h h

n-i 13 mi +O"

then

26



' "m 3  n-i

m h + (3.10)2,n 2 13 mi + Yo
~i=l

This last relationship in the way it has been derived

becomes a general one, and expresses the slope m2,n at any

point i as a function of the previous slopes. Similar rela-

tions can be derived for successive integrations just by

shifting the first indice. Now we need to find the summation

of these slopes. It becomes:

n h n n-l i
mi + h + nY"' (3.11)

12 3 133 m,
i=l i=l j=l

Now, replacing (3.11) in (3.8):

Y"= hn n-1 i
n [. 13 mi + h n 3 m. + nYo 0 + Y"i 1l o o

i=l j=l

or

= h2 1  n n-l i
Y11 ~ ~ ~ ~ ~ I [II+nY' "(.2

n [2 13 mi + - 13 m] nhY Y
i=l j=l

Let:

I n n-l i
$2 =f 1 3 mi +  1 13 mj

i=l i=l j=l

27
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.1

Note that, as stated above, this last term S2 is also

independent of boundary conditions and can be readily deter-

mined. Equation (3.12) gives the particular solution to a

second order differential equation as well as, in this

specific case, it represents the second derivative of Y(x).
p

The whole process, so far, can be summarized as follows:

Equation (2.10) gives the solution at any point n of any

integration, first second, etc. In order to use this equation

we need to find the summation term, and this is given by a

relation of the form of (3.11), which is also a general rela-

tionship and expresses the summation of slopes in terms of
p

the previous one. Recall that the only slope summation we know

is the one involving the known function f(x), and is given by

(2.11). That is why all further summations must be expressed

as a function of this one. This last summation is then re- . -

placed in (3.8), and simplified if possible. The next step is

to identify the terms that are independent of boundary condi-

tions and isolate them as in (3.12) and to evalute them

separately.

We can continue in the same way until we get a solution
p

formula for Y(x). It can be shown that the complete solution

for a fourth order differential equation of the form Yl(x) = f(x)

is given by the following relationships:

y = S3 + (3.13)

ynt hS + nhY' + y" (3.14)n 2 0 -0-

28
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y h S1 + N h Y'+ nhY" + Y' (3.15)

y h S +N h 'l+ N h Y" + nhY' + Y (3.16)n0 0 0 1 0 0 0

where:

n
s 3 = mn (3.17)P

i=:i

1n n-i i
s2 m. m+ m i. (3.18)

i=1 i=i j=1

in n-i1 . n-2
S 1 4- lj+ jL _j + Z (3.19)

nn-i i n-2 i n-3 1 k
1=1 m I.+4+I

S0 im1 ~ i1j1 = i=i =1 k-1 2 1 ILL

(3.20)

NJ = + i (3.21)

n-i n-2 i
N + i 1+ j (3.22)

0i=1 = j

and

29
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IV. ERROR ANALYSIS AND CONVERGENCE .

Refer to Fig. 4.1 where we have plotted the functions

Y -fl(x) and Y = f(x) together with their respective
10

approximating straight lines inside the interval x = a to

x = b. We assume that the upper straight line belongs to a

first integration; in other words we have not introduced any

error so far. A second integration, however, will be performed

using this line yl(x) since we do not know the function fl(x).

It is worth considering now what happens when we integrate
S

the line instead of the function itself. Let m be the slope

of the lower straight line. This is given by:

b "-

f fl(x)dx S
a

b-a

Let m* be the approximating slope given by: p

b
f (mlx +c I )dx

am* = ba(4.1)b-a

Now for the particular case shown in the figure, we have:

b b
f (m x + c )dx > f f (x)dx (4.2)

a a
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since the area enclosed by the curve is smaller than the area

enclosed by the line (we assume that there are no inflection

points and/or discontinuities inside the interval). It is

now clear that:

m* > m

and the error introduced is:

b b
e = f (mlx +Cl)dx - f fl(x)dx (4.3)

a-b a a

which is equal to the shaded area in Fig. 4.1.

As indicated in Chapter III, m* comes out to be the average

of the slopes at the end points of the lower straight line,

and it is this slope we work with. So, the actual approximat-

ing line y*(x) = m*x + c*, shown in Fig. 4.2 is steeper than

y(x) since m* > m. The distance ED becomes the error introduced

and we can not evaluate it because we do not know f(x). Another

integration using y*(x) will make things even worse. Note

that the error to be committed this time will be larger and

is given by the shaded area in Fig. 4.2.

So far it appears that the method is divergent in nature

due to the fact that the error will grow bigger and bigger

unless we find some means to correct it. At this point, the

only possible way to do this is by reducing the "shaded"
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areas, which means that we have to reduce the step size.

Fortunately, we can say, at least in theory, that in the limit

there will be no error; in practice however, a very small..-

step size will increase the round-off errors. The examples

provided show that the approximation is indeed acceptable.

There is a special case, however, where an error correc-

tion can be made. This applies only to boundary value problems.

Recall that a solution of any differential equation by this

method is given by the general relationship:

n
= h m. + Y 0

In B.V.P., we know the conditions at both ends of the interval.

So this last equation can be written as:

n Y -Y
Sm 0 n (4.4)

h

where the right hand side is known. Now since we are actually

dealing with approximations to the true slopes, what we really

have as a summation is the next term, call it M:

n
M = m

i=l 1
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Our approximate solution is then:

n
Y* h m* + Y (4.5)

and the error at point n will be given by:

en Y* Yn (4.6)

Now let us see how the correction could be carried out

individually at each interval. To do this we must find the

exact slope m. It is given by:

m = m* - e

where e is the shaded area of Fig. 4.1 and is given by (4.3).

The slope summation is therefore:

m = m -jei=l J ~ 3.

Multiplying by h and adding Y to both sides, we obtain:
0

h m.+ Yo = h m + Y -jhe

or

36



Y. = Y. - jhe (4.7)

When j = n, we have:

Y =Y* nhe
n n

or

Y* Y = nhe
n n

but from (4.6) we get:

eS
en
n- (4.8)

-h

Replacing this last relation in (4.7):

j n n

and the general relationship given by (2.10) transforms into:

j .. .

Y. h [ m +Y - e (49)i=l 0 0 n n (

which is the corrected solution at any point j. In summary,

what we need to do to correct the solution is: a) determine

Y* by performing the integration without any correction by .....".
n
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using equation (4.5); b) compare Y* with the given B.C. Yn n

and obtain e; c) Perform again the integration this time using

the relationship given by (4.9).

From (4.9) we can find a whole set of corrected equations

similar to those given by (3.13) to (3.20). However, by doing

this we will enormously complicate those relationships and

the computational effort, together with round-off errors, may

not give any advantage at all, especially since we expect the

local error e to be very small.

There is, however, another stronger reason not to do that.

The fact is that we have assumed that the error e is a con- 
6

stant and this is not always the case. If we restrict our-

selves to integrate linear and/or constant functions, then the

corrected method could be justified since for these functions

the error given by (4.3) is a constant, for the shaded area

of Fig. 4.1 will always be the same. In more general cases,

the error e will be unpredictable and no correction can be

made.

This example serves only to illustrate how the error

correction could be carried out. But it would not be practical

and a reduction in step size appears to be the best correction

as we will see in the examples.

As stated above, the method appears to be divergent in

nature, so our approximate solution will look like Fig. 4.3.

In this figure, note that for any integration after the first

one, the set of approximating lines diverge from the exact

38-



Fmx

YO0

OkS

FIGURE 4.

39-



solution, the further we move to the right, the greater the

error introduced. In dealing with I.V.P.'s, the points Y'
0

and Yo are known and these are our starting conditions. The

solution will appear then as shown in this figure. Since we

do not know the exact end points at the right hand side,

namely points Y' and Y, there remains an uncertainty in the

accuracy of the solution.

For B.V.P.'s, however, the other extreme points are known.

Referring to Fig. 4.3, suppose we are given as boundary condi-

tions, points Y' and Y0 in the lower curve of this figure.

The method we are dealing with requires that we know the

initial points to be able to start the integrating algorithm.

If we know the exact starting points, namely Y' and Y0 , then00

by using these initial conditions, our solution will appear

as shown in Fig. 4.3. That is to say we will not end up at

point Y which is exact, but at point Y*. To be able to reach

the exact point Y, which we assume is known, we need to give

the algorithm a "wrong" starting point Y'*. It is this approxi-
0

mate starting point which we find using the relationships given

by equations (3.13) to (3.22) that allow us to match the exact

solution in the whole range as shown in Fig. 4.4 in the lower

curve.

Note that if we were using corrected relationships we

would be able to supply the algorithm with "exact" starting

values, and still match the exact end points. Unfortunately,

it is now the upper set of solution lines that absorb the
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EXA.MPLE 2

CLAIMPEC-POLLZI EaA;4

BGUNDARY CONC1ICNS: YEO)=J.0 Y(1)=O.CW

Y (J)=a.0 M(1)=J.0

A: SHEi*R PCMENT S LQP~ 0 EFLiCTIJJ EXA~CT DEF.

0.00 11.2L2190 -1.212193 C.COOUOO C.000000 0.30000

0.05 11.212190 -C.651564 -0.C4t6594 -C.001280 -0.301327

0.10 1..212190 -C.Z9C975 -O.C65158 -E.J0419)J -0.00-t374

0.15 11.212190 C.46';034 -0.C55b92 -C.OJ7327 -0.007734

0.20 11.2L2190 1.J3U243 -O.C18195 -C.0Q9290 -0.009999

0.25 11.212190 1.590C853j O.C47333 -C.00d677 -O.Ou9766

0.3C 11.212L90 2.151463 0.14t089U -C.U0406T -0.-005624

0.35 11.2.121%U 2*712071 0.262479 C.005aS2 o.ooid88

0.4tC L1.4,12190 3.272codU 0.412398 C.J2263U 0.0.20000

0.45 [1.2121)0 3 .8.331 91 U.5d9747 C.04 7j6 1 U.64&s*297

0.5U -988 .73 7 5t -3.l~bO')7 0.1164177 C.0819b5 0.J7d3125

0.55 1 L.221 iVi -5.0454.3b 0.504137 C.113693 0.110-390
C.bC 11.212190 -'s.48tt76 J.ib5677 C.132333 C.130GOO

0.b~r 1i.212I0U -2.S4'-'9 O.C55649 C.140755 0.136359

0.7C 11.2 1219U -3.343659 -Q.12o-,5U C.138d6,7 0.13o8 75

0.75 11.212190 -2.8C-4050 -0.280 C.j.28570 0.12oq53

U. 6 L1.z12190 4'.2't41-,+ -0.44U o855 C.iI1205 0.110000

0.85 11.212190 -1.661330 -J.504-61 C.J83354 0.08742

0.90 11.212190 -1.121222 -0.575U37 C.061239 0.0b0625

0.95 11.212190 -C.560o13 -0.617-064 C.0 I1319 0.031J1b

1.00 11.212190 -0;.000003 -0.631098 C.UOUOJ C.000uc00
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All the terms involved in these expressions are

defined by the relations (3.13) to (3.22), and they can be

computed in advance since they are independent of boundary

conditions. These initial values are only approximations as

we know, but serve to match the given B.C.'s at the other

extreme. The results are:

Shear: Y1'= 11.21219 Exact = 11.25
0

Moment: Y" -1.21219 Exact = -1.25
0

Running the program with these initial values, we

get the results shown on the next page. The deflection appears

accurate to about 2 percent for the more meaningful values of

deflection. However, if we reduce the distance between the

opposite forces, we improve the accuracy. But if we increase

it, the discrepancies grow enormously even for a very small

increment, and it does not reflect a concentrated moment

behavior.

The slope shows the expected behavior. However, we

should not expect high accuracy since we have started the

algorithm with approximate starting points of shear and moment.

At x = 1.0, we have Y = -0.631. The exact is -0.625. Pre-
nL I

ceding values of slope are expected to be better since here

we start with an exact known initial point. Similarly for

the moment we start with an approximation but get more accurate

53
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Shear: Y~' -Unknown Y"' =Unknown

Moment: Y11 - Unknown Yoe = 00 n

Slope: Y1 0 Y' Unknown

Deflection: y -0 = 0
0n

To start the algorithm we need to determine the initial

shearing force YE" and the initial bending moment Y". From
0 0

equations (3.13) to (3.16), after replacing the known values

we get:

0 =h5 2 + nhY"' + Y"
2 0 0

2 2
= h S +Nh Y111 + nhYH

o h h3S + N h 3 Y"' + Nh21
0 0 0 0

This is a set of three simultaneous algebraic equations with

three unknowns and we solve for the initial conditions. The

results are:

-o h (N oS 2 -nS 0)(54
0 nN -N

S N1 o

-s - (5.5)
0 nN -N
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In the current example we use M = 10 and it is

decomposed as follows:

10 1000 x 0.01

a pair of opposite forces of 1000 units acting 0.01 units of

length apart from each other. In our problem we use 200

intervals of 0.005 each, one concentrated force is located

at x = 0.495, and the other opposite force of equal magnitude

is placed at x = 0.505. So the loading function to be inte-

grated is defined by 5 partial functions as follows:

fl(x) = 0 0 < x < 0.495

ff 2 (x)dx = -1000 x = 0.495

f3 (x) = 0.495 < x < 0.505

fff4 (x)dx = 1000 x = 0.505

f5 (x) o0 0.505 < x < 1.0

c. Necessary Initial Conditions

We need to consider now the B.C.'s. For the present

configuration we have:

51
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M.= 0 for x x.
mi P

m - for x =x.mi h ..

Jf(x)dx = P for x= x

where P is the concentrated force acting at point xi -

b. Concentrated Moments

A concentrated moment can be treated in a similar

way if we use the second order differential equation. However,

in our case we need to decompose the given moment into a pair

of concentrated forces of equal magnitude acting in opposite

directions at equidistant points from the location of the

given moment. From statics we know that:

Moment = Force x Distance

Here we can have several combinations of force

times distance provided we keep this product a constant equal

to the given concentrated moment. However as we will see

later, accuracy is achieved only when we use very small dis-

tances and consequently very large concentrated forces. In

this way of moment decomposition, the usual behavior of a

concentrated moment is achieved. For larger distances the

couple is not an accurate representation of a concentrated

moment and the results are not so accurate.

50
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that previous values of all other columns are even more

accurate.

3. Example 2: Clamped-Roller Beam

Refer to Fig. 5.lb. This is a statically indeterminate

beam loaded by a moment of 10 units of we4.Tht x unit of length,

acting at the middle of the beam. As before we are going to

determine the shear, moment, slope and deflection of the beam.

4. Solution

This example will emphasize three things: How to deal

with a) concentrated forces, b) concentrated moments and c) the

necessary initial conditions required for this particular
S

case.

a. Concentrated Forces

We can conceive of a concentrated force as a dis-

tributed force of high intensity distributed over a very small

length of beam. Recall from the previous chapters that the

slope of any approximating line at any point i is given by

(2.9) where f(x) is the distributed load for the case of beams.

In this equation the integral in the numerator represents the

area under the f(x) curve. This area is actually the total .-..-

load in the specified interval. By decreasing the interval

while still holding the same inside area constant (same total

load), the distributed force tends to a concentrated force of

equal magnitude as the total load. In the limit it becomes a

concentrated force acting on a mathematical point on the beam.

For our purpose, in the integrating algorithm we simply let:

49
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EXAM'PLE I

CLAMPEC-FREE EEAM

OCUN0ARY CON'C1TICNS: yt0)z 0.ccoo Y MC) 0.3003

M. (J)= 0.375J VIO)= -0.5000

x: SHI EAR PC M EINT SLOP'- CEFL-=CTIJl EXACT DEF.

0.00 -O.5ccciii U.375000 O.C000o0 C.000000 -0.300000

0.05 -0.50C0000 0.350000 0.018125 C.J00458 C.000458

0.10 -o.51 ccu0 C.325000 U.C35000 C. UJ1792 0.301792

0.15 -0.50CCJO C.300000 0.C50625 C.003937 0.303938

0.20 -o.50C000 0.275000 0.065000 C.006833 0.JU6333

0.25 -C.5CCCLuJ C.250000 O.C78125 C.JIU416 0.010417

0.3C -0.5CCCdo0 0.225030J 0.C90000 C.J14625 0.314625

0.35 -U.5 CCJJ 0.200000 0.100625 C.019395 0.0193i6

0.40 -0.5CCCOO 0.175JJ0 0.110U00 C.024666 0.0.44667

0.45 -0.5Z0CC0 C.15v000 0.118125 C.30375 0.J30375

0.50 -0.5.'COOU C.lz5003 0.12toi00 Co036453 0.336459

0.5 -0.42CCJO 0.101-15J 0.13J646 C.04285-+ 0.U428355

0c -U.4'3COUU C.Cauoo0 0.135.167 C.3;49504 0.049505

0.65 -C.35CCOG 0.061250 0 .138688 C.J5o354 0.35b355

0.7C -0.3ZCCtUQ C.C45003 0.L41334 C.363353 0.063358

0.75 -02C0 0 0.031/_50 0 .143230 C.070475 0.373475

0. 3 C -0.2Z.CCO0 C. 020303 0.1445J1 C.LJT7670 0.077o71

0.85 -0.150000 G011250 0.14527Z C.034916 0.334916

0.90 -0.lOJCCJO 0.00500 U.1456o7 C.092.19 0.j9z191

U.95 -k0.050030 U.001249 0.145313 C.099479 0.099479

1.00 -0.000000 -C.000001 0.145334 C.106770 0.106770
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from the given configuration. Here the function f(x) to be

integrated is discontinuous and given by a set of two differ-

ent functions defined by:

fl(x) = 0 0 < x < 0.5 -'

f2 (x) = 1.0 0.5 < x < 1.0

We need to determine the initial values to start the

algorithm. From statics, it can easily be shown that the

initial conditions are as follows:

Shear: Y = -0.5 Y = 0.0
0 n

Moment: Y" = 0.375 Y" 0.0
o n

Slope: Y = 0.0 Y = Unknown0 n

Deflection: Y = 0.0 Y = Unknown0 n [i-

By supplying these initial values to the program, we

obtain the computer output shown on the next page. The last

column show - the exact deflections. In these results, note "

that all the initial values are exact, and that the last value

found, namely the deflection of the beam at x = 1.0, is expected

to have the biggest cumulative error. However, as we can

see, we get 3 to 4 digits accuracy. Here we can conclude

47



The computer program used to solve these problems is shown

at the end of this chapter, and it is a straightforward coding

of equations (3.13) to (3.22). This programming technique, in

particular, tries to minimize round-off errors. For now, it

suffices to say that all problems are solved using SINGLE

PRECISION, one hundred intervals (problem 2 uses 200), and we

get accuracy to the fourth and even to the fifth decimal places

in some examples. Finally, only the fourth integration, the

deflection, is compared with the exact solution. Recall that

the error is cumulative, and it is here that we expect the

bigger error. We may conclude then that preceding integrations

are more exact. However, we should keep in mind that an

approximated starting point is needed in some cases, and the

results will be shifted by some amount from the exact. We

will see this as we proceed into the next section.

B. EXAMPLES

1. Example 1: Clamped-Free Beam

Refer to Fig. 5.1a. This is a statically determinate

cantilever beam loaded over half its length by a uniformly

distributed load of 1 unit of weight per unit of length as

shown. We shall determine the shearing force, bending moment,

slope and deflection at discrete points of the beam.

2. Solution

This is a B.V.P. but for purpose of illustrating how

to use the method when dealing with I.V.P.'s, we will treat

it as such. All the required initial conditions can be drawn

46
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a given problem could be solved by integrating the moment

second order differential equation. By doing this, we would

be able to achieve more accuracy since only two integrations

need to be performed and the accumulated error will be rela-

tively small.

However, when the loading of the beam is a complicated

distribution and the expression for the bending moment is

difficult to obtain, then the fourth order differential equa-

tion will be the one to use. One advantage in using this

expression is that the integrating algorithm will provide

results for the shear force, bending moment, slope and

deflection simultaneously. When using the second order equa-

tion we only get slope and deflection.

Since eq. (5.1) is a more general relationship, we are

going to use this expression in the examples. In fact, most

problems can be expressed in that way. Recall that a concen-

trated force can be treated as a distributed force acting in

a very small interval, and a concentrated moment reduces to a

couple of concentrated loads acting in opposite directions a

small distance apart. Example 2 illustrates this procedure.

The examples provided in this chapter account for all

types of B.C.'s. Fig. 5.1 shows the 4 cases to be treated,

and we shall study them one by one in the next subsections.

In all cases the flexural rigidity EI and the length L is

set equal to 1, for simplicity. Discontinuous types of loading

are emphasized, and of course, many combinations of loadings

can be dealt with by simply using the principle of superposition.
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V. APPLICATIONS AND RESULTS

A. GENERAL

In this chapter we are going to study a particular appli-

cation of the integrating algorithm introduced in the previous

sections, namely, the deflection of beams, where a fourth

order linear differential equation occurs, and several combina-

tions of B.C.'s can be considered.

From Mechanics of Solids, the relationships governing the

deflection of beams are given by:

EIY x) q(x) (load intensity) (5.1)

EIY"' (x) V(x) (shear force) (5.2)

EIY"(x) = M(x) (moment) (5.3)

Y'(x) = slope

y(x) = deflection

The method we are dealing with is basically a method of

successive integration. Because of that we - start to inte-

grate from any of the above relationships provided we know

explicitly the right hand side of the equation. In some cases,
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inherent error of the method since we have given them approxi-

mate initial values. The solution now is going to look like

Fig. 4.4. The lower solution becomes "exact" but the upper

actually shifts apart from the exact. We can explain this by

saying that the known B.C.'s are fixed by the algorithm while

the free (unknown) ones will take the error, and this is

exactly what happens in the examples in the next section. In

summary, all we do is to shift the error from one place to

another. We can not get rid of it unless we use corrected

relationships or an infinite number of intervals to minimize

the local error.
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L as we proceed, since we end up with the expected result of

0.0 at x = 1.0.

In the case of the shear force, we see it is con-

stant throughout the beam length as expected but it is shifted

*by an amount of 0.0378 from the exact. It is interesting to

note that at the point of the loading we have a very strong

shearing force. For a pure moment acting at this place, we

shall neglect this result. However, if we do have an actual

couple than a big shearing at this point should be expected.

Note that the algebraic sum of shear forces gives:

11.21219 - (-988.7875) = 1000.0

which is indeed the couple acting at this point.

5. Example 3: Pin-Roller Beam

Refer to Fig. 5.1c. This is a statically determinate

simple supported beam subjected to a triangular type of load

distributed over the central portion of the beam as indicated

in the figure. We need to determine the shear, moment, slope

and deflection of the beam.

6. Solution

First of all, some comments about this configuration

are in order. This example was chosen in order to emphasize

the ease with which we can switch from one kind of load dis-

tribution to another. As explained at the beginning of this

work, it is the fact that the algorithm solves a "new" differ-

ential equation at every single step that allows us to deal

55
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with different loads. Therefore it is possible to have a

different kind of loading per subdivision. Another reason for

selecting this problem is that here we deal with linear forcing

functions and we are going to perform four successive integra-

tions of a linear function. This will lead to a polynomial

of fifth degree and a bigger cumulative error is to be expected.

Proceding with the solution, the distributed load

f(x) to be integrated is given by four different functions:

fl(x) = 0 0 < x < 0.25

f2 (x) = 4x-1 0.25 < x < 0.50

f 3 (x) = -4x+3 0.50 < x < 0.75

f 4 (x) = 0 0.75 < x < 1.0

As indicated above, the computer program is such that

it can switch from one kind of loading to the other at the

specified point. Now, in order to start the algorithm we

need to determine the initial points from the B.C.'s of a

simple supported beam. These are:

Shear: Y"1- Unknown Y"= Unknowno n

Moment: Y1= 0 Y11 0o n

Slope: = Unknown Y = Unknown0 n

Deflection: Y = 0 Y = 0
o n
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Now, from the known relationships after we substitute in the . -

given values, we get:

0 hS + nhY"'
2 0

3 3 •"~

0 = h3S + Noh3Y"'+ nhY'
0 0 0 0

This is a pair of simultaneous algebraic equations in two

unknowns. We solve for Y"' and Y'. The results are:
0 0

Y n (NOS 2 - nS) (5.6)

Y#1 - (5.7)"-

o n

t.

Similarly, the computer supplies the values of the

variables involved in these relations and these are as follows:

Shear: Y111 -0.12499 Exact = -0.125

Moment: Y' = 0.014972 Exact = 0.0149740

which shows a remarkable accuracy. Running the program with

these initial values we obtain the results shown on the next

page. A comparison between the approximate deflection and the

exact reveals an error of about 2 percent at the point where

the largest deflection takes place. In this example, we

expected a larger error, but the algorithm appears to perform
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EXAldFLE 3

PIN-ROLLER BEll'

BOUNDARY CON'CIrICNS: Y(J)=O.0 ()=.

1%,(0)=0 .0 M(1)=0.C

X: SHEAR PCMENT SLOPE DEFLECTION EXACT DEF.

0.00 -0.1249599 C.CoOO~oO 0.C14972 C.000000 0.000000

0.05 -0.124999 -C.0Co25O O.C14316 C.030746 0.J00746

0.10 -0.1249q9 -C.012500 0.C1434? C.OU1476 0.001477

0.1.5 -0.124999 -C.01E750 O.C13566 C.J02175 0.J02176

0. e-C -0.124999 -0.C2500 O.C12472 C.002327 0.002328
0.2.5 -J.124cs99 -0.031250 O.C11066 C.0034i7 0.003418

U.30a -0.1999 -0.337415 U.C0934.8 C.003929 0OO3920

0.35 -0.1,)4999 -0.04,odU 0.007333 C.004347 0.00,+322

0.40 -O.019999 -C.047745 O.CO5057 C.00465dl 0.304609

0.45 -O.C44999 -C.05U910 0.C04 534 C. UU4849 O.004766

0.5G 0.Cjco0O -0.052075 0.CO0000 C.004914 0.00'4785

0.55 0.C45CJ0 -C.0569i0 -0.C02584 C.OU48'49 0.0047o6

0.QC U.23CCO0 -C.047745 -U.C05057 C.o.J4653 0.0046C9

0.r, 5 0.1 5C 10 -'.04.3030 -J.C07333 C.004347 0*004s22

0.7C 0.IZCCOO -C037415 -O.C0934d CJU392'9 0.003920

0.75 0.125000 -0.031250 -0.C11066 C.003417 C.33418

0.3C 0.125000 -CoC2503 -U.C124?2 C.J34827 0OOZ73Z8

03.85 0.125000 -0.01.3750 -0.CI.3565 C.302175 0 GO&'176

0.90 0.125000 -0.012500 -O.C14347 C.001476 0.001477

0.95 0.125C00 -C.CG6250 -OoC14d1l6 C.000746 0.00074o

1.00 0.125000 C.CQOOOO -0.C14972 -C.u)ooooo 0.0u000

58



* -* -. * . *.. -. *. - .. ,. . - .

fairly well even in this case. Nevertheless, the error should

be expected at the "free" (unknown) B.C.'s since the other

extremes are fixed. Here we make use of the fact that the

loading is symmetrical and the results should be symmetrical

too. This is actually the case in the computer printout, so
I

we can conclude that the results are indeed accurate.

7. Example 4: Clamped-Clamped Beam

Refer to Fig. 5.1d. This is a statically indeterminate

beam clamped at both ends and loaded with a totally arbitrary

discontinuous load known only as a table of values at discrete

points as shown on the next page. We shall determine the shear,
p

moment, slope and deflection of the beam.

8. Solution

Before we proceed with this example, let us remind

ourselves that we are not restricted to handle only exact-

integrable forcing functions. We can deal with arbitrary

functions as well, and this example intends to illustrate the

procedure. In this problem, the computer program reads in

data from a table of values instead of obtaining them by

evaluating a given function. With this data the program per-

forms trapezoidal integration in the usual way. The forcing

function is defined by three other functions as:

fl(X) = 0 0 < x < 0.3 L

f2 (x) = (from data deck) 0.3 < x < 0.7 ,Z-

2I

f3(x) = 0 0.7 < x < 1.0
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OATI C-'CK FCF 2-X&XPL2' 4

0! 5 T AC LOAD

j.121 UUJQo 0.3E 7 3;J0
.JJC) . 1; s)uJ 6.91ju0

ki .4 . 3t;6 .30J3330
0.01)0033 0.51 4. 1 J.300J

0. 6 0 .0000j U.62 4.4J330J
0.27 C.030030 0 .. ,2 4.6J000

O.000000 0.s'.. 3 .i 3300
J.'S 3,5t .65 4.000000

J.iC G.JJUJO 0 . 0JU
0 *LI U. 00i03 0.a7 3."Jjjooo
J. 12 C.Q0ji0i O~83 000
J.12- 0.30J000 0.5; 3.1+00j0j
J.14 0 .030 l(JaGjoU.i 3.J30Q00
J .1L5 J.Juji 0.11 G.X)OOJU
0.16 G.3oij030 . Ojokou
0.o1L7 0.300300 0.1,1 O.0J00OJ0
0.18 0.0Joljj-, 0. 74 C. 0iiio
0.1s 0. J))UJ o. 75 0J

(.c .Jo0033 U. 160033
0. i 0 . 0 i0 0. 17 c . i 0 0
0.22 C . ) 0 00 a3.18 0 .0i0330

.2 .O3JU.Jo 0. i 0.,&iU~o

.4 .UJ~jUj~ u .3 C, ,
J.25 C. )jjjo0 G.Ojjoou
0.2c U.,)3dJ )oJ i.J33~j30

U~~~ ~ ~ ~ . 203 700joj .3 UJ~
U . 2EC 10 6 100 J *3 4 0.03UU00
0. 21 I.c)J0O0 J. i C.JJQU30

3.3 1.3'; U 0.3t 0Ojuoo

0 .34 2.200.jo 0.I' C. Ji Uj'j
0 .15 2 .0.jui .c.j 003003
J.16 J.2.,Jjju . 3 o.o03300
0.3 7 3.OJUUJJ C.J %JOJJ

3J 3.40303 J o; 4 o.0o~ojo
U.S3.6iiXvjo J01 c.ijuju3
,j.iCo .'.J;)Ju0J 0.;e C. )Jj0o0

0. i1 5 .330030 3. ;7 0.,jouoo0
U.46.2333,jO U.38 J.JjouuO

0.-.'. 6.700000 0*3'G C.i3o000-.
J~~~~ ~ ~ ~ .' 403 6 )Jk 00.COUuo

J. 5 6. 4 0330ji
0.4c 6.10000
0.41 6.330000
U05 6.23UUOO
0.54 6.b000

0.55 6.730UGO0
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Unfortunately, no exact solution has been obtained for

this case and we are not able to compare the computer results 0

with the exact. Nevertheless some conclusions can be drawn. .-

The B.C.'s for a clamped-clamped beam are as follows:

Shear: Y"= Unknown Y" = Unknowno n

Moment: = Unknown Y"= Unknown
0 in

Slope: Y = 0 Y =0
0 i

Deflection: Y 0 0 Y i 0o n

To determine the initial conditions, we use the known

relationships and substituting in the known values, we obtain:

2 2
Sh Sl + N h Y" + nhy"

0 0

o = + N h Nlh 2'
0- 0 0 0

This is a pair of simultaneous algebraic equations

with two unknowns. Solving for the initial conditions we

get:

in(NoS2 - nS o) (5.8)

o nN -(N O .

s - N1 S 2  (5.9)

o nN -N
1 0
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For this example the values supplied by the computer

are:

Shear: Y = -0.948411
0

Moment: Y1= 0.230507
0

The computer printout is shown on the next page. Here

we have another column to show the arbitrary loading. Note

that we are using 100 intervals, but actually every fifth is

printed.

Perhaps the only way to analyze these results would be

to check if the B.C.'s have been met or not. The results show

that they have. Another clue to assure some accuracy would be

to look at the maximum deflection and the minimum slope. The

loading was intentionally concentrated on the middle of the

beam so we can expect the highest deflection and minimum slope

in this neighborhood since we have similar B.C.'s at both

ends. We can say that this too checks. Consequently we see

that the results are likely to be trusted.
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EX..MPL 4

CL.AMP Z-CLA;P- 3'At

8CIJICARY c U;! c17 YL1 0 0

Y'(J0J,'f=.

x ACs7 sP'0IT iLCIPt DEFLECTIO)N

0.JC U. CCCOO -C.S4E411 0.230507 C.Jooou() 0.300000

0.35 U.0JccJu -C.946411 00183J836 C.Jl034J) 0.300263

J. 1c O.ZZ2(CJu -C.'4041, J.li5ot6b C. c 1 -19 0).O0994

0.15 O.C:CCu -C.S424i11 OCc3-245 C.0Z39J6 0.J32059

0.Zc r O.2C -j C U .A 4d4I 04C4J825 C * e-71 j3 0.J0.3344

U.5 c.c~CCio -L.94a.il -J.CQb53b C.U027939 0.304t732

u.3C I. c CC; -C.'34.j4l -43 .c!)3 9 li CoO2b474 0.306103

U2.5J L0 6J d- d4 '1 -o.c9l,0e7 C.Q2b~ 0,4 o .JO7339

0.4C U. CX,J -. 6 7 2411 -U.13 7 4.dl C.JI66Q30 0.JU8330

0.5.4" C,-,0 J3 5 1411 -01..2t2 'C.309394 U.Xj6979
tJ.jC o.ij%Uu 1~.~Ct --0.17.jIlb C .J JbL 4 U.30ij2Z4

0.:5 6.7:CCOJ LC.27'ij,36 -0.1673Z -C.,.),7952 O.309039

0C 6..J.Ioju C.6017)85 -0.144)~53 -C.015814 O.J08P,4Q

0.70 3.ZZCC..3 .99%5a --3.cb3i38 -C.326542 0.336255

U. 75 V., Xccju i.OIL580i -U 1234 -C.JZ3443) 0.004870

U.dC L;. C. u 4.CU,5uj3 O.C376,il -C.JZ7810 Q.Lj33454

0.j5 i c ;c2;uCL Ls015dU OC66'.02 -C.J24(05L 0. 002y132

Q3.3c0 ; i.OliSJO G.i39050 -C.JL3903 O.J01032

J.95 0.tU0 1 . iLi53 U 0.189b2)9 -C.Qi.0746 0.J00279

L ; 0.0iihcoo 1.3115dU 0.2't0207 C.J30030 -C.000000
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C. THE COMPUTER PROGRAM.

FILE: SLOPE ATFIV Al

$ice XREF

C O*******U****** THE CCPUER PROGRAM

C
C THIS PROGRAM CALCU.ATES THE SI-EARING FCRCE. BENCING MOMENT. SLOPE AND
C DEFLECTION OF BEAMS e; PERFCR&ING FCUR SUCCESIVE INTEGRATICS ON
C ThE LOADING FLNCTION. THE FCLLOWING CONFIGURATICNS ARE COhSIDERED:
C I.-CANTILEVER (CLANPEC-FRE_) BEAM
C 2a-CLAPPEO-ROLLER SEAM
C 3.-SIMPLE SUPCATEO (FIh-ROLLER) BEAN
C 4.-CLAPPEO-CLAMPED BEAM
C THE LOADING CAN aE ANY NUN"Eq OF DISTRUBUTED ANC.OR CCNCENTRATEO
C FORCES. CONCENTRATED MOMENTS CAN BE OECCMPCSED INTO A CCUPLE AT T"E
C MININUN POSSIELE CISTANCE ACTING AT THE POINT OF APPLICATICN OF THE
C " ENT.
C
C THE PROGRAM CCNSISTS OF T-REE ROUTINES:
C I. SUBROUTINE SLOPE
C 2. SUBROUTINE IhCCM
C 3. SUBROUTINE LCAC
C WHICH ARE DEFINEED IN THE FOLLCUING PARAGRAPHS
C
C******~ MAIN PROGRAM ************
C
C READS IN NUMBER CF STEPS CEFINED BY THE INTEGER VARIALBLE h
C CALLS SUSROUTINE LNCCM FOR INITIAL CCNOITICNS
C CALLS SUBROUTINE SLCPE FOR FINAL RESULTS
C
C**O**** SUBROLTINE INCOM ***~~*****
C
C READS IN THE INTEGEA VARIABLE K WHICH SPECIFIES THE KIND OF PROBLEM
C WITH THE FCLLCOING COCE:
C K=I CANTILEVER 8EAN (INITIAL CONDITICNS MUST BE SPECIFIEC)
C K=2 CLAMPED ROLLER BEAM
C K=3 CLAMPED-CLAPPED SEAM ,
C KZa SIMPLE SUPPCRTEC SEAM
C ,' CAPE-CA.E"BA
C
C THE PAPAMENTER5 ARE DEFINED AS FOLLOWS:
C CALL INCON(N.YC.YIC.Y20.Y30"
C N = NUMBER CF STEPS
C YO a INITAL CEFLECTION
C VIC = INITIAL SLOPE
C YVC = INITIAL SENCING MOMENT
C Y30 = INITIAL SHERING FCRCE
C
C THIS SUBROUTINE SUPPLIES THE INITIAL CONOITICNS BY CALLING SLOPE.
C FCR A CANTILEVER 6EAM THIS STATEMENT IS NCT EXECUTED
C
C-***C**** S.MqO;TI NE SLOPE **********
C PERFORM TWO TASKS: I. CALCULATES AND SUPPLY INCCM WITH THE NECESARY
C PARAMETERS TC DETERMINE INITIAL CCNCITICNS
C 2. EXECUTES THE SOLUTICN OF THE PRCELEV
C
C THIS SUdROUTINE IS A THE CODING OF THE RELATIONSHIPS GIVEN BY
C EGUATIONS 3.12 TO 3.32. TI- SLMMATICh TERNS ARE CONTAINED IN
C ThE COMMON STATEMENT
C
C THE CALLING PARAMETECS ARE DEFINED AS FOLLOWS:
C CALL SLCPE (N.YO .YIC.Y2,3.Y3C.J"
C N SANE AS IN ICC.M
C C 2W

C VIC 2 .
C Y20
C v3Cs
C J 2 TAKE TWO VALUES: J=0: TC FIND INITIAL CONDITICNS ONLY
C J-L2 TC EXECUTE THE SOLUTION
C
C**** ** SU8.ROLTINE LOAD N** Y NRNTI*TAN*FC IE.*
C
C SUPPLIES SLOPE sITH TI-E NECESARY INFCAMATION OBTAINED FRCN THE
C LOADING FUNCTION. IT CAN ES AN ACTUAL FUNCTICN OR A DATA DECK.
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FILE: SLOPE INATFIV A I

C MUST BE WRITTEN SPECIFICALLY FOR EACH ME% PRCBLEN. WHEN DEALIN~G
C WITH CONCENTRATED LOADS. THE VARIABLE PINT IN RCUTINE SLCPE 1S
C IS SET EOUAL IC THE CCNCENTRATED LOAD DIRECTLV. AT THE POINT OF
C ACTICN.
C THE CALLING PARAMETERS ARE DEFINED AS FCLLCUS
C CALL LOAo(e.m2)
C 8= CURRENT VALLE OF THE VARIABLE X (LENGHT) GIVEN By ACUTINE SLOPE
C M2 CONTAINS THE VALUE CF T"E LOADING FUNCTION AT X=8
C

C MAIN PPOGRAV

REAL YO3.YIC.Y2C.Y3O
INTEGER J.h
COMMON SO.SI.S2.SNO.ShIRN.h
REAOIS.1O 2t

10 FORMAT413)
"=I ./FLJA T (0-11
QN=FLJAT( h-I)
CALL 1tNCON(M. O.'VIC). 20.V3Q)
J=O
CALL SLOPEIN.VO.YIO.Y20.Y3O.J3
STOP
END

SU9kOUTINE LCAD(E.H2)

REAL a.r42

"F(e ).

RET URN
ENO

C

SUBRouriNE INCCN(N.YO.YIC .V2O.V3C)

REAL 'VG.YIC.YaO.YjO
INTEGER J.K.K
COMMNON SO.SI.52.SNO.ShI.R%.h
REAU(S.&02.C.YIO.Y2C.V3C

10 FORMATtiI1.4F1O.4)
IF4(K.EO.C).0A.(N.GT.4)I GO TG 60
IF(mK.EB.I) GC Ta 50
Ji
CALL SLGPE(N.vO.Y1O.Y2O.Vja.J)
IFIK.-3)2O .30.40

C CLAMPEO-RCLLER

215 FORMAT(I*'EXAMPLE 20*..vIX.4CLAMPED-QCLLeR EFEAM/IAel.
1
SUNOARY CON

*0 IT IONS: V(01=0.0 Y(lj=O.O'/,r2 7X.'Y (01=0.0 Mi(I I O.O vf1
Y2O=H*( 52*SNO-qN4*S03.' (RN*SN I- 5N02
Y30O (S0-SNI*523.#C(RN*SN I-SNO I
RE TURN

C CLAMPED-CLAMPED

30 lA! TE(6.3!!I
39 FORMAT(010.9EXAMPLE 4*,P/IX.ICLAMPEC-CLAPPEO BEAM9'4.iX.019OUNDARY Cc

*NotITIOCNS: Y1020O.O Y(I)=.Offf2SX.'Y (01=0.0 V (1120.O/#*d)
1ZGOH*IS0*SNI-SI*SNOIRIN*SNO-SNI*SNI I
VJOa I SI*SNIl-RN*SO 8/ (RN*SNO-SNI*SNII
RET URN

C PI.4-Q0LLER

4C WITE6.4e)
415 FORMAtt-10.9EAAMPLE 30' IX.9OIN-QOLLErq qEAAM'1.IX.'9CUNOAPV CONDI1TI

*ONS: Y10Izu.O Y(I)=0.0*i.'z7X.'a102xO.O MI)=O.O*//f)
Y 10 a (HfRN4 1 2 1*SNO S2 - AN* SOI
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FtLE: SLOPE IDATFIV Al

V30= -Seol~h

RETURN~ ~** ****~*~ *****.**

C CLAMiPEO-FrEE

SO WNITEC 6.51VO.Y1C.Y2O .y2C
55 FOQMlAT(' 1'.*EXAMPLE t*I//X.'CLAMPEO-FREE BEAM-* I/IX.*SUNOAPY CON

**O 101..PO..Vi)o.84&X* Oo.844.f2X M)*FS.

60 TO 90

60 WRITF(6.6t)
6S F09MAT(1X.NM FROM I TC 4 CNLY/J)
90 RETURN

ENa3
C

Su83ROUTINE SLCPEji.'VO.VIO.Y20 .Y3O.J)

PEAL SUO)O.SUOI.SU02.SU03.SUiI .SU12.SU13.SU22.SU23.Su33.RIT.
*INTl .RiN*42 .R NT 3.H1 I2.l.a. 5**4 . SN0dZ
INTEGER I .J.K.L.h.'4.NSIC.hSOL.NSIL.IM1
COMMON SO.Si.S2.SNO.Shl.R%.H
Suooza.
SUC 1=0.

51.03=0.
SUNIU
SU12 0.

SU22=0.
SU2 3=u.
SUj3J 0.
RINT=Q.
RINTI=0.
RINT2 0.
PINT3=0.
NSA K0

NSIL=O
HN=0.0

tF(J.GT.0) GO TO 100
WRITE 16. 2C)

100 00 '00 1=1.h

RI=FLOAT(I1*4)
S=R *H
CALL LOADtB.HZ)
AIf 1.dO. I)GC Ta 200

200 PINTASRIN4T3
PXNT3=RINT2
RINT2=RINT 1
RINT1=RINI

C
SU33=5U334P £04TI
S3 =SU33

C
SU23=SU23,R1N72
SU22=SU2 2 SU23
S2=.S*SU32+SU22

C
Cut -2
IF(1.LE.21 0(20
SU13=5U13#RIN4T3
SW 2=Su12 *SU13
SUlII SUII1+SU 12
NSI K=PAS1 X *K
SN*4I=FLOAT(NSIKI
SNI 30.stgKshp1

S1=.25*SiU3SL22,Su1 I
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FILE: SLOPE IMATF IV A i

C
L=1-3
I~FI.LE.3) L=O
SOJ SU03 *A tT&
SUO 2=SU 2 +SUO 3
suoI=su01 +suo2
suaJo=*uosu0 1
NSILzNSIL*L
NSi2JL=MS0L *#S1L
StMW=FL3AT(NSGLI
540 Z0.254RI+SNMIN2
S0O * I25*SU.33 .75*SU22I .5*SUI 1.suoo
IFIJ.GT.0) GO TO 300

C

Y2=h"*(S2+aI*Y303 4120
Yl=(SISh*y3)*H*A1*Y2C*N+Yt0
Y=( t(SO.SN0*y3GJ*H.SNI*V2C)**R1*YlO)*H+YC

:RITEC 6. IC I. v3. 2. 1~

400 CONTINUE
IF(J.GT.0) GO TO 999
WRI TE(6.gq) --

10 FORMAT(1X.F4.2.2X.4FI2 .6.41
20 FQpl4AT(.2X.*X:G. gx-iEq.XfC4N-6.ILPOS.OFET(1-
9q FORMAT(si*)

999 RETURN
E ND

C
SENTry

67



VI. CONCLUSIONS AND RECOMMENDATIONS

Based upon the research carried out in this thesis and

the results obtained, the following conclusions can be drawn:

1) First of all, the method, in the way it has been

developed, shows the fact that the solutions are totally

independent of each other. Any value of the unknown can be

found without generating all previous ones. A closer look at

equations (3.13) to (3.16) reveals that we can apply any of

these relationships at any point i (0 < i < n) directly, pro-

vided we know the initial conditions and the summation terms

which can be generated in advance. In all of these equations

there is only one summation term which depends on the given

function f(x), the other summations are series of integers

totally independent of the given problem. This fact represents

a good saving in terms of computer time if it is conveniently

exploited.

2) As it has been shown in the examples, the power of

the method is perhaps its ability to deal with arbitrary func-

tions and this is important since many engineering problems

lead to these kinds of functions.

3) So far, there has not been any error correction in a

strict sense. The only corrective measure has been step size

reduction. However, equation (4.9) shows that correction can

be performed provided we know how the local error behaves.
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When integrating constant and/or linear functions, (4.9)

applies, but for other cases it does not. In any case, equation

(4.3) indicates that the local error depends only on the second

integral which in turn is one degree higher than the given

function itself. This suggests the idea that if we know how

the original function behaves, linearly, quadratically, etc.,

we could, to some extent, predict the error behavior and carry

out a correction. Further research is recommended in this

particular case.

Nevertheless, as shown in the examples, some accuracy has

been achieved even working in single precision. For more

complicated problems involving complex functions and requir-

ing very accurate solutions, double precision is still a good

possibility.
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