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ABSTRACT

N

‘//Large matrix storage constitutes a limitation on the ¢

applicability of most numerical techniques including the
Finite Element Method, when very accurate results are required.
This is particularly true when dealing with Boundary Value
Problems. 1In order to surpass this difficulty a new method
to solve these problems has been devised which does not re-
quire matrix storage while still providing the possibility of
accuracy improvement.’ +othe M th }ﬂ»@‘

~ Although restriéfed to one-dimensional, linear differen-

tial equations of the form Y{BI%X) = f(x) this new approximating

technique gives acceptable results. The method will perform
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I. INTRODUCTION

For many engineering problems it is not always possible
to find an exact solution. An exact solution is an analyti-
cal mathematical expression that gives the value of the unknown
at any point within a previously specified range. For problems
involving complex material properties and boundary conditions,
different numerical techniques have been developed to approxi-
mate the exact solution to a more or less acceptable degree
of accuracy. One of ‘aese techniques is the Finite Element
Method, where a given problem is to be discretized, that is to
say, approximate solutions are to be found at discrete points
in the body. The way one accomplishes this, is by subdividing
the whole body into finite elements. The solution is then
formulated for each small unit and combined to obtain the
solution of the whole system. Obviously the greater the number
of elements, the better the accuracy.

However, despite the fact that high-speed digital computers
have enabled engineers to successfully apply these numerical
techniques, we still face the problem of large matrix storage.
Complex problems requiring very accurate approximate solutions
lead to large matrices and consequently larger computer memory
will be required. This fact constitutes a limitation on the

applicability of these numerical techniques.




The method we are dealing with in this work intends to
solve this difficulty by reducing a B.V.P. to an I.V.P. Unlike
the "shooting" method, where basically the same idea is used
together with an iterative scheme to achieve a solution, the
method developed here achieves a solution without iteration.

Although restricted to a particular type of linear differ-
ential equations and only to one-dimensional problems, as it
will be shown, this method can be applied to many problems
where no exact integrable forcing functions occur, or, even
more, the function exists only as a set of values at specific
points.

Basically what the method does is approximate the exact
solution by a set of linear functions, each of them applying
in a very small interval. However, these functions are not
independent from each other. We use the previous one to find
the next, until we eventually reach the other end of the range
in consideration. Depending on the order of the differential
equation, we will find as many sets of linear functions as
required by its order, each set applying to a specific inte-
gration, and as before, every set depends on the previous one.
The way in which we will do this will allow us to correlate
all possible boundary conditions in an explicit manner which
transforms boundary value problems into initial value problems
and by doing that, get to the result.

The method is indeed an approximation and as such, it is

subject to error. We can say, however, that by decreasing the

G St i il S Bt Sl Rl it




step size we get better accuracy, provided we carry enough
significant digits to take care of round-off errors. With
respect to the later a good programming technigue is required.
Finally we shall apply the method to several practical applica-
tions, specifically to beam problems where a fourth order
differential equation occurs, and a variety of boundary

conditions can be given.
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II. BACKGROUND

A. GENERAL
In this section we are going to introduce the basic ideas

of the method we will be dealing with. Let

Y'(x) = £(x) (2.1)

where it is understood that the function f(x) may or may not
be exactly integrable, but we can integrate it numerically.

From the above relationship we have:

Y(x) = [f(x)dx + Y, (2.2)

Here the constant of integration Yo is assumed to be zero
for the moment. 1In the most general case, it is clear that
there is no way to know what the function Y(x) is, since we
may be dealing with non-integrable functions. However, we
can approximate the function Y(x) by a linear function y(x),
provided the interval in which this approximation applies is

sufficiently small. So we take

Y(x) = y(x) = mx + cC (2.3)

Now, by following the general procedure of integration, and

from (2.2), we have:
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b
mx + c|] = [ £(x)dx (2.4)
a a

where (a,b) denote the limits of the interval under considera-

tion. After simplification it is found that:

[ £(x)dx
m = — (2.5)

b -a
that is to say, the slope of the approximating line given by
(2.3) can be explicitly determined. Actually, as we will see
later, it can be said that the "general" approximate solution
to (2.1) has been found within the interval from a to b. 1In
order to determine the "particular" solution, in other words
to find the intercept ¢ of (2.3), an auxiliary condition must

be imposed. Let

then:

Y(a)

Il
<
[l

ma + c

or

y(x) = m(x-a) + Y, a<x<hb (2.6)
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where m is given by (2.4). Now we have fully determined the
approximate solution inside the given interval. Note that
(2.6) will give results at points a and b, as accurate as the
numerical integration performed on (2.5).

Fig. 2.1 shows the whole process so far. The upper curve
represents f(x), which is given. The lower curve is Y(x),
the integral of f(x); however within the interval a to b, Y(x)
is approximated by a line. Point Y, is the given auxiliary
condition and point Yb can be determined exactly from_(2.6),
by letting x = b.

The next step now becomes evident, since point Y, can be
determined. We are now in the same position as before, so
all we need to do is repeat the process over again. However,
this time with a new auxiliary condition; the last one we
have just found, and over the next interval. We keep going
this way until we reach the other extreme of the range where
the differential equation applies. See Fig. 2.2.

In summary, we can say that every step we take we are
solving a "new" differential equationby approximating lines
which gives us true values at the points of intersection.

The fact that we have a "new" differential equation at every
single step allows us to deal with discontinuous functions and/

or functions existing only as a set of values.

B. THE FIRST INTEGRATION

At this point let us introduce a new parameter:

h = b-a (2.7)
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them. By similarity to an exact problem we can look at this
term as being the general solution of the differential equation.
Note that this term actually links the left and the right
boundary conditions in a very explicit way. This is the

heart of what the present method is all about. With this

idea in mind we are now going to find several relationships

for successive integrations.

Let us start by noticing that (2.10) is a general relation
that applies not only to the first integration but also to
successive ones. The only term that is particular for each
integration is the summation of the slopes. So in order to
perform the next integration we shall determine this term
specifically and substitute it into (2.10). We are now dealing
with a fourth order differential equation since this type
occurs in beam problems. The application to other orders will
be self-evident. Let

vy Vi(x) = £,(%) (3.6)

After a first integration we have:

n
"y — "e
Yy = h ] m, +7Y" (3.7)

3 N
i=1 o

where the subscript 3 in the summation indicates that these
slopes belong to Y™ = f3(x) and are given by (2.11). We need

to find now

25




A 20w 2 B e o d e m e a " P ——— —y—r—— . ———r . -

There is another subscript that we must keep track of.
Recall that the whole solution function is going to be repre-
sented by a set of approximating lines, see Fig. 2.2. Then if
we start at the left end, we shall use the subscript n as a
second indice to identify each line as we move rightwards. Be
aware that we will take the subscript i immediately to the
right of each line to name it locally.

Some words must be said about the auxiliary conditions.
Recall that in a specific problem the number of these condi-
tions are equal to the order of the differential equation to
be solved. If all these conditions are given at the same
point, then we are dealing with an Initial Value Problem.
However, if the auxiliary conditions are given at both ends
of the range of interest, then we have a Boundary Value Prob-
lem. When we are able to have an exact solution, we usually
are led to a set of simultaneous equations involving the unknown
B.C.'s; those can be solved algc.raically and lead to the
whole solution. However for equations with no exact solution,
like the ones we are interested in, there is no way to deter-
mine the conditions at the other end of the interval, and that
is precisely the goal of our approach. We need to correlate
in an explicit way the known conditions and the unknown ones

by means of equations of the form of (2.10), so we can be able

to find them.
n
Note that in this equation the term h | m; is independent
i=1
of B.C.'s and it can be readily found even if we do not know

. o CLtete et T
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Such equations arise in the study of deflections of beams,
and we shall apply the method to practical beam problems. Let
us introduce the notation to be followed. We will write the L

approximate solution line of (3.5) as:

y(x}) = mx + ¢

in a clean way without subscripts. The approximation line - -

o
to the first derivative will then be: s
y'(x) = mx + ¢ L
ot o
and for the second derivative: I;f
P
y"(x) = myX + ¢, ST
and so on. RN
®
The boundary conditions will be represented as: o
Y(xo) = Y Y(xn) = Y, .-
1 — ] ] - ]
Y (xo) = Y Yi(x ) = Y|
" - " " = " )
Y (xo) = Y7 Y (x,) Yo

etc., where the subscript o refers to the left hand side, and

the subscript n to the right, of the range under consideration. !} -
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%(a + b)

”
(i}

in the line y'(x) and we get:

a+b _ a+b _
Y'( 2 ) = ml( 2 ) + cl = m

As seen, it reproduces m, the slope of the lower straight
line.

Now we can have a deeper insight of the whole process,
and why it works. See that what we are really going to do is
to use the slope at the midpoint (the average of the slopes at
the extremes) to approximate the true slope of the straight
line y(x), and later determine the corresponding intercepts.
In fact, had we known exactly the function Y'(x) = fl(x), we
would have been able to determine the true slope of y(x) by
direct integration as before. As we can see now, we are intro-
ducing a source of error, and from now on we will not have as

accurate results as in the first integration.

B. DEVELOPMENT OF THE METHOD

Before we go into a general development of this method a
slightly different notation must be introduced, and we will
be using it throughout the rest of this research. The type
of differential equations we will be looking at are of the

form:

YVix) = f£(x) (3.5)

22




have been given at the left hand side. However, it really

need not be like this, as will be shown later.

At this point some considerations are in order. With
reference to Fig. 3.1 where the upper curve is the given
function Y"(x) = fz(x), the middle curve is Y'(x) = fl(x),
and the lower one is the solution Y(x) = f(x).

As explained previously we have approximated the solution

by straight lines. Consider now the slope of the lower

straight line m which is given by (3.2). This equation can be

written as:

m = %[(mla + cl) + (mlb + cl)]
1

1
m o= Y, + Y] (3.4)

Since the ordinate at any point x in the Y'(x) curve is
indeed the slope of the Y(x) curve at the same point, then
by virtue of (3.4), we can say that the slope m of the lower
straight line is the average of the slopes corresponding to
its end points, namely point Ya and Y, in Fig. 3.1. Recall
that these two slopes are given exactly by the ordinates of
the middie curve Y'(x). Furthermore let us evaluate
y'(x) = mx + ¢, the equation of the upper straight line, at

the midpoint of the interval, that is we let:

21
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m

j%(a + b) + ¢ (3.2)

=
[

1

So we know now the slope of the next line; the line belong-
ing to the solution function. 1In order to find the intercept

c, another auxiliary condition must be supplied. Let:

then, replacing this condition in the line y(x) = mx + ¢, we
get:
Y(a) = Y = ma + C
a
It can be shown that:
y(x) = m(x-a) + Y, (3.3)

where m is given by (3.2). Eg. (3.3) gives the approximate
solution of the original second order differential equation,

inside the interval a to b. Note that both auxiliary conditions

20
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Y(x) = £(x)

be the exact result, which is the lower curve in the same

figure. Now let

y'(x) = mx + ¢,
and

y(x) = mx + ¢

be the approximating lines to fl(x) and f(x), respectively,
that applies inside the interval from a to b only. 1In this
figure, we can easily see that the area enclosed by the upper
straight line is almost equal to the area enclosed by the
function fl(x). Obviously as the interval becomes smaller and
smaller, both areas tend to be equal; in the limit they are
indeed equal. It is evident now that we can approximate the
exact integration of fl(x), by integrating the line

y'(x) = mx + ¢y, provided the interval is small enough so the
error is negligible. Now, as before, we need to determine m
and ¢. Recall that “iand qlhave already been found. So by

virtue of (2.5):

[ f£,(x)ax

19 o
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IITI. HIGHER ORDER DIFFERENTIAL EQUATIONS

A. GENERAL

The previous chapter was dealing basically with the main
ideas of the method, and we have solved a first order differ-
ential equation. We are now going to extend the method to
higher order equations. Essentially what we will do is, inte-
grate several times the right hand side of the given equation;
as required for its degree, using the same approach as before.
However, we should keep in mind that it is only for the first
integration that we will use the given function, f(x). After
this integration, this function is no longer available because
what we have is a set of straight lines, each applying to a
specific interval. We need to find now a method that will
allow us to perform a second integration of the function f(x),
from the given set of lines.

In order to do this, let us consider the curves of Fig.
3.1. Suppose we have been given the following second order

differential equation:

Y"(x) = fz(x) (3.1)
represented in Fig. 3.1 by the upper curve. Let us assume we
have determined Y'(x) = fl(x) after a first integration by the

method just introduced, Let

17
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for this first integration, so its accuracy is determined only
by the exactness of the integration routine used. Second, the
values of Y(xX) can be directly determine at any arbitrary point
n, that is to say we need not find its previous values as is
the case for many numerical methods. Later this fact will
become more useful. Finally, we see that, by transposing terms
we can find either the left or right B.C., and this apparently
unimportant fact is indeed a key step, since as we will see
later, we will be able to correlate B.C.'s of higher order
differential equations and solve for them without having to
generate all previous values of the unknown function. In other
words, we could transform a Boundary Value Problem into an
Initial Value Problem and vice versa, depending on what is

known, and what we are looking for.

R
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£ Y, = (m + my, + ... ¢ mh + ¥
.
_&_ or
N n
N Y = h .Z m, + Y (2.10)
. i=1
< similarly,
h
[ fix)dx
m = 2
1 h
2h
) [ f(x)ax g
5 h I
= M2 T h o
S Adding terms gives:: o
nh
:\:. le of f(x)dx
-
2N m, = (2.11)
- i=p 1 h
j% We can replace in (2.10) to obtain:
- X
= n
- Y o= 0[ £(x)dx + Y (2.12)
- since x = nh. Equations (2.10) and (2.12) constitute two very
IEL important results. Eq. (2.12) is indeed not an unexpected one,
N
- and several considerations can be drawn from it. First of all
S the value of Yn does not depend on the step size h, at least
= 15
-
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where h is assumed to be small and constant throughout the
analysis. We are now in a position to determine a general
relationship which will allow us to find the value of Y(x) at
discrete points, namely at the intersection of the straight

lines. From (2.6) we have:

y (b) = m(b-a) + YO = mh + Yo .
In general,
Y., = mh+vy, . 0 <i<n (2.8)
where
X,
i
[ f(x)dx
X,
_ i-1
but:
Yisp = myah Y,
Y1-2 = m,_oh + Y 3

Replacing these last relationships in (2.8) and after factor-

ing h, we have:
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n
Yr = h J, m; + Y2 (3.8)

i=1

Following our convention, My o4 is given by:
14

_ 3,1
my ; = —o(x;_ )+ x5+ by
but
- "t -
by s Yy M3, 5%
then
m3 i
= ’ " -
m, (%53 Xg) + YLy - My Xy
orxr
m N
3I1 n
my 4 S2h o+ Yy (3.9)
Now, since
n-1
"y — L}
Ypop = B 23 mg * XS
i=1

then

26




n-1

m3 n
14
'—7"h + h 23 m,

i 1 Yg' (3.10)

mz,n
i=1

This last relationship in the way it has been derived
becomes a general one, and expresses the slope My n at any
point i as a function of the previous slopes. Similar rela-
tions can be derived for successive integrations just by
shifting the first indice. Now we need to find the summation

of these slopes. It becomes:

n h D n-1 i
22 moo= % Y m, + h izl 23 my + ny? (3.11)
i=1 i=1 j=1
Now, replacing (3.11) in (3.8):
n P n-1 i ,
Y’ = hiz J3m +h £1 23 my + nYQ 1+ Y2
i=1 1

4



Note that, as stated above, this last term Szis also
H independent of boundary conditions and can be readily deter-
1 mined. Equation (3.12) gives the particular solution to a

second order differential equation as well as, in this

specific case, it represents the second derivative of Y(x).

The whole process, so far, can be summarized as follows:

Equation (2.10) gives the solution at any point n of any

v ,
. o

et N e

LA A Al
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P
F e

integration, first second, etc. 1In order to use this equation Ef;
we need to find the summation term, and this is given by a ﬁjﬁj
relation of the form of (3.11l), which is also a general rela-
tionship and expresses the summation of slopes in terms of

the previous one. Recall that the only slope summation we know
is the one involving the known function f(x), and is given by
(2.11). That is why all further summations must be expressed
as a function of this one. This last summation is then re-
placed in (3.8), and simplified if possible. The next step is
to identify the terms that are independent of boundary condi-

tions and isolate them as in (3.12) and to evalute them

separately. .
We can continue in the same way until we get a solution ol

’
formula for Y(x). It can be shown that the complete solution f:?
for a fourth order differential equation of the form Y '(x) = f(x) o
is given by the following relationships: ;33
mo e
y)too= 83+ 7 (3.13) i
) b T
4 . " " o
YA = hS2 + nhYo + Y7 (3.14) R
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Yn = h sl + Nlh Yo + nhYo + Yo (3.15)

3 3
h So + Noh

<
i}

(13 ) 2 " ]
Yo + Nlh Yo + nhYo + Yo (3.16)

.

where:

n S

S, = Z m, (3.17) - 1

1 B :~'_f:_'j

s, = 3 £ mg + ) m, (3.18) el S

) 'i § My (3.19)

n-3 i j k
. g ) m,
k=1 i=1 §=1 k=1 21

(3.20)

N, = 3+ ] i (3.21) T

1
Y3 (3.22)
)

and
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IV. ERROR ANALYSIS AND CONVERGENCE

Refer to Fig. 4.1 where we have plotted the functions
Y' = fl(x) and Y = f(x) together with their respective
approximating straight lines inside the interval x = a to
X = b. We assume that the upper straight line belongs to a
first integration; in other words we have not introduced any
error so far. A second integration, however, will be performed
using this line yl(x) since we do not know the function fl(x).
It is worth considering now what happens when we integrate
the line instead of the function itself. Let m be the slope

of the lower straight line. This is given by:

b
aI £, (x)dx
mo= b-a

Let m* be the approximating slope given by:

f (m;x +c,)dx

_ a
mn* = 5=a (4.1)

Now for the particular case shown in the figure, we have:

b b
[ (mx + cjlax > [ £ (x)ax (4.2)
a a




[‘(x)

Y00 ="M, X +Cy e

// efb//

Y=o

V) =
X x) mX+c

y(x) = F(x)

FIGURE 41
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since the area enclosed by the curve is smaller than the area
enclosed by the line (we assume that there are no inflection
points and/or discontinuities inside the interval). It is

now clear that:

m*¥ > m
and the error introduced is:

b b
e = [ (mx+c)dx - [ £, (x)dx (4.3)
a-b a 1 1 a 1

which is equal to the shaded area in Fig. 4.1.

As indicated in Chapter III, m* comes out to be the average
of the slopes at the end points of the lower straight line,
and it is this slope we work with. So, the actual approximat-
ing line y*(x) = m*x + c*, shown in Fig. 4.2 is steeper than
y(x) since m* > m. The distance ED becomes the error introduced
and we can not evaluate it because we do not know f£(x). Another
integration using y*{(x) will make things even worse. Note
that the error to be committed this time will be larger and
is given by the shaded area in Fig. 4.2.

So far it appears that the method is divergent in nature
due to the fact that the error will grow bigger and bigger
unless we find some means to correct it. At this point, the

only possible way to do this is by reducing the "shaded"
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areas, which means that we have to reduce the step size.
Fortunately, we can say, at least in theory, that in the limit
there will be no error; in practice however, a very small
step size will increase the round-off errors. The examples
provided show that the approximation is indeed acceptable.
There is a special case, however, where an error correc-
tion can be made. This applies only to boundary value problems.
Recall that a solution of any differential equation by this

method is given by the general relationship:

In B.V.P., we know the conditions at both ends of the interval.

So this last equation can be written as:

2 O
I m = 2% (4.4)

where the right hand side is known. Now since we are actually
dealing with approximations to the true slopes, what we really

have as a summation is the next term, call it M:
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Our approximate solution is then:

n
Y* = h

n m* + Yo (4.5)
i=1

and the error at point n will be given by:

—d *—
e, Yn Yn (4.6)

Now let us see how the correction could be carried out
individually at each interval. To do this we must find the

exact slope m. It is given by:

where e is the shaded area of Fig. 4.1 and is given by (4.3).

The slope summation is therefore:

m* - je
i=1

| b~
=]
'-l.
]
[ W]

i

Multiplying by h and adding Yo to both sides, we obtain:

orx

. ."‘ ‘v e "l .

FREY




Y. =

When j = n, we have:

Y = y*

Y. - jhe (4.7)

~ nhe
n

or

but from (4.6) we get:

= 1
e = oh (4.8)

+ Y - % e (4.9)

which is the corrected solution at any point j. In summary,
what we need to do to correct the solution is: a) determine

Y; by performing the integration without any correction by
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using equation (4.5); b) compare Y; with the given B.C. Yn
and obtain e; c¢) Perform again the integration this time using
the relationship given by (4.9).

From (4.9) we can find a whole set of corrected equations
similar to those given by (3.13) to (3.20). However, by doing
this we will enormously complicate those relationships and
the computational effort, together with round-off errors, may
not give any advantage at all, especially since we expect the
local error e to be very small.

There is, however, another stronger reason not to do that.
The fact is that we have assumed that the error e is a con-
stant and this is not always the case. If we restrict our-
selves to integrate linear and/or constant functions, then the
corrected method could be justified since for these functions
the error given by (4.3) is a constant, for the shaded area
of Fig. 4.1 will always be the same. In more general cases,
the error e will be unpredictable and no correction can be
made.

This example serves only to illustrate how the error
correction could be carried out. But it would not be practical
and a reduction in step size appears to be the best correction

as we will see in the examples.

As stated above, the method appears to be divergent in

nature, so our approximate solution will look like Fig. 4.3.

S

,
PRI

P

In this figure, note that for any integration after the first

one, the set of approximating lines diverge from the exact

R

A
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solution, the further we move to the right, the greater the
error introduced. 1In dealing with I.V.P.'s, the points Yé
and Yo are known and these are our starting conditions. The
solution will appear then as shown in this figure. Since we
do not know the exact end points at the right hand side,
namely points Y' and Y, there remains an uncertainty in the
accuracy of the solution.

For B.V.P.'s, however, the other extreme points are known.
Referring to Fig. 4.3, suppose we are given as boundary condi-
tions, points Yé and Yo in the lower curve of this figure.

The method we are dealing with requires that we know the
initial points to be able to start the integrating algorithm.
If we know the exact starting points, namely Yé and Yo’ then

by using these initial conditions, our solution will appear

as shown in Fig. 4.3. That is to say we will not end up at
point Y which is exact, but at point Y*. To be able to reach
the exact point Y, which we assume is known, we need to give
the algorithm a "wrong" starting point Yé*. It is this approxi-
mate starting point which we find using the relationships given
by equations (3.13) to (3.22) that allow us to match the exact
solution in the whole range as shown in Fig. 4.4 in the lower
curve.

Note that if we were using corrected relationships we
would be able to supply the algorithm with "exact" starting
values, and still match the exact end points. Unfortunately,

it is now the upper set of solution lines that absorb the
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EXAMFLE 2
CLAMPEC-ROLLZR EZAM

BGUNDARY CONCITICNS: Y10)=0.0 Y(1)=0.C
Y (0)1=0.0 M{1)=0.0

x: SHEAR NCMENT SLOPE DEFLECTIIN  EXACT DEF.

0.0 11.212190 ~1.212193 €.CO0000 €. 000000 0.J00000

0.05 11.212190  ~C.651534  =0.C46594 =-C.0ul280 =0.301327

0.10 11.212190 =C.CSC975  =0.C65158  =-(.004190  =0.00+374

0.15 11.212190 C.465634  =0.055692 =-C.007327 -0.007734

0.2¢C 11.212190 1.020243  =0.C13195 -C.009290 -0.209999

0.25 11.212190 1.55C853 0.C47333  =C.008677 —0.0U9766

0.3C 11.212190 2.151463 0.140890  -C.UU4087 =0.005624

0.35 11.212190 2.712071 0.262479 C. 0U5382 0.003328

0.4cC 11.212190 3.212630 0.412098 Ce022630 .020000

0.45 11.2121%0 2,833291 0.549747 C.04T7561 UeUda 297

G.5G =~588.737500 =2.136077 J.1€4177 C.081963 0.073125

0.5¢ 11.212150 =5.04544d6 0.504137 C.113693 0.113390

G.6C 11.212150  -4.434878 04265877 C.132833 C.130C00

0.65 11212190  -2.S24269 0.C55643 C. 140755 0.138359

0.7¢ 11.212190  -2.363659 ~0.126550 C.138867 0.130875

0.75 11.212190  -2.8C3350 -0.2807i7 €.128570 0120953

0.d¢ 110212190  =..242440  =3.400855 C.ill2o5 0.113000

0.85 11.212190  =1.661330 -0.504361 €.083354 0.087422

0.9¢C 11.212190 =1.121222  =0.575057 €. 061239 0.060625

0.95 11.212190  -C.5600l3 -0.£17034 C.031319 0.231016 ]

1.00 11.212190  -0.000003 =-0.€£31398 €. G0QUOY .200C00 o

. S
Y
T
2
"
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All the terms involved in these expressions are
defined by the relations (3.13) to (3.22), and they can be
computed in advance since they are independent of boundary
conditions. These initial values are only approximations as
we know, but serve to match the given B.C.'s at the other
extreme. The results are:

Shear: Yg' = 11.21219 Exact 11.25

-1.21219 Exact -1.25

Moment : Y"
o

Running the program with these initial values, we
get the results shown on the next page. The deflection appears
accurate to about 2 percent for the more meaningful values of
deflection. However, if we reduce the distance between the
opposite forces, we improve the accuracy. But if we increase
it, the discrepancies grow enormously even for a very small
increment, and it does not reflect a concentrated moment
behavior.

The slope shows the expected behavior. However, we
should not expect high accuracy since we have started the
algorithm with approximate starting points of shear and moment.

At x = 1.0, we have Yn = -0.631. The exact is -0.625. Pre-

ceding values of slope are expected to be better since here

we start with an exact known initial point. Similarly for

the moment we start with an approximation but get more accurate




Shear: Yg' = Unknown Y;' = Unknown
Moment : Yg = Unknown Y; = 0
. ' = ' =
Slope: Yo 0 Yn Unknown
Deflection: Y = 0 Y = 0
o n

To start the algorithm we need to determine the initial
shearing force Y;' and the initial bending moment Yg. From
equations (3.13) to (3.16), after replacing the known values

we get:

—_— ni "
0 = hs2 + nhYo + Yo
v’ = h%s, + N h2Y" + nphy"
n 1l 1 o o)
_ 3 3 " 2 n
0 = h sO + Noh Yo + Nlh Yo

This is a set of three simultaneous algebraic equations with
three unknowns and we solve for the initial conditions. The

results are:

. h(NOS2 - nSo) .
Yo = nN, - N (5.4) = 3
1 o )
Y
S -N ]
Y"' = O lsz (5.5) ‘1
(o] an - No

i
e NI
aea'a'd
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In the current example we use M = 10 and it is

decomposed as follows:

10 = 1000 x 0.01

a pair of opposite forces of 1000 units acting 0.0l units of
length apart from each other. 1In our problem we use 200
intervals of 0.005 each, one concentrated force is located

at x = 0.495, and the other opposite force of equal magnitude
is placed at x = 0.505. So the loading function to be inte-

grated is defined by 5 partial functions as follows:

fl(x) = 0 0 < x < 0.495
ff,(x)dx = -1000 x = 0.495

f3(x) = 0 0.495 < x < 0.505
ff4(x)ax = 1000 x = 0.505

fs(x) = 0 0.505 < x < 1.0

c. Necessary Initial Conditions
We need to consider now the B.C.'s. For the present

configuration we have:

51 g




m, = 0 for X # X.

m, = g for X =X
[ fix)dx = P for X = X

where P is the concentrated force acting at point Xy
b, Concentrated Moments
A concentrated moment can be treated in a similar
way if we use the second order differential equation. However,
in our case we need to decompose the given moment into a pair
of concentrated forces of equal magnitude acting in opposite

directions at equidistant points from the location of the

given moment. From statics we know that:
Moment = Force x Distance

Here we can have several combinations of force
times distance provided we keep this product a constant equal

to the given concentrated moment. However as we will see

later, accuracy is achieved only when we use very small dis-
tances and consequently very large concentrated forces. In
this way of moment decomposition, the usual behavior of a 1}5
concentrated moment is achieved. For larger distances the .
couple is not an accurate representation of a concentrated ‘ i?

moment and the results are not so accurate.

50
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that previous values of all other columns are even more

accurate.

3. Example 2: Clamped-Roller Beam

Refer to Fig. 5.1b. This is a statically indeterminate
beam loaded by a moment of 10 units of we’stht x unit of length,
acting at the middle of the beam. As before we are going to
determine the shear, moment, slope and deflection of the beam.

4, Solution

This example will emphasize three things: How to deal
with a) concentrated forces, b) concentrated moments and c) the
necessary initial conditions required for this particular
case.

a. Concentrated Forces

We can conceive of a concentrated force as a dis-
tributed force of high intensity distributed over a very small
length of beam. Recall from the previous chapters that the
slope of any approximating line at any point i is given by
(2.9) where f(x) is the distributed load for the case of beams.
In this equation the integral in the numerator represents the
area under the f(x) curve. This area is actually the total
load in the specified interval. By decreasing the interval
while still holding the same inside area constant (same total
load), the distributed force tends to a concentrated force of
equal magnitude as the total load. 1In the limit it becomes a

concentrated force acting on a mathematical point on the beam.

For our purpose, in the integrating algorithm we simply let: 3}55]
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EXANPLE 1
CLAMPEC-FREE BEAM
BCUNDARY CONCITICNS:

0.340
0.05
g.10
Q.15
J.2G
0.25
Q.3C
0.35
Je4C
Q.45
0.54
0.55
Ueb0C
Q.65
0.7C
Q.75
0.3C
0.85
V.90
0.95
1.00

.

SEEAR

-0.5CCu0
-0.53C000
-4.53CC00
-0.53CC00
-0.53C000
-C.5CCC00
-0.5CCCd0
-0.53CC00
-0.58CC00
-0.52¢C00
-U.53C000
-0.43CCJ0
-Ue43CQ0Y
-C.33CC06
-0.32CC00
~0.23CC00
-0.22€C00
-0.150000
-0.13CC00
-0.C5CCa0
-0.03C000

Y{0)=
M(O)=

MCMENT

0.375000
€.350000
C.32500¢
€.300000
0.275000
Ce25CCUC
0.225830
0.200000
0.175030
C.150000
Cel25303
Ua101250
C.C8u000
0.061250
CeC435000
C.021250
C.02Ga0U
C.011250
C.C05000
U.CC0Ll243
-C.000001

48

0.CC0O0
03754

SLOPZ

C.CO00VL
0.018125
G.C35000
0.C50625
0.C65090
C.C78125
0.C%0uu0
0.100625
0.110u00
0.118L25
0125030
0.130646
0.135167
0.138638
0.l41334
0.143230
0.144501
0.145272
0.145607
0.145313
0.145334

Y (Q)=
vViQ)=

CEFLECTION

€. 000000
€.000453
C.0ul732
€. 003937
€.006833
C.Jlu4ls
C.2l4625
C.0193935
CeJ24660
€.330375
C. 036458
C.042854
C. 549504
€. J56354
C.J63353
C.070475
CeuTToT9
(.J34316
C.u92191
€.0994793
C. 106770

0. \)O()O
-0.50C0

EXACT DEF.

=Q0.J30000
€.000458
0.301792
0.303933
0.JUu6333
0.J10417
0.314625
0.019396
0.0246067
0.330375
0.336455
0.042355
0.C49505
0.356355
0.063358
0.373475
0.077a71
0.23849316
0.092191
0.399479
0.106770




from the given configuration. Here the function f(x) to be
integrated is discontinuous and given by a set of two differ-

ent functions defined by:

"
o

£, (x) 0 < x <0.5

]
[
o
o
.
(S, ]
A
x
A
.—l
.
o

fz(x)

We need to determine the initial values to start the
algorithm. From statics, it can easily be shown that the

initial conditions are as follows:

Shear: YS' = =0.5 Yy = 0.0
Moment: Yg = 0.375 Y; = 0.0
Slope: Yé = 0.0 Yé = Unknown
Deflection: Yo = 0.0 Yn = Unknown

By supplying these initial values to the program, we
obtain the computer output shown on the next page. The last
column show-: the exact deflections. In these results, note
that all the initial values are exact, and that the last value
found, namely the deflection of the beam at x = 1.0, is expected

to have the biggest cumulative error. However, as we can

see, we get 3 to 4 digits accuracy. Here we can conclude
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The computer program used to solve these problems is shown
at the end of this chapter, and it is a straightforward coding
of equations (3.13) to (3.22). This programming technique, in
particular, tries to minimize round-off errors. For now, it -
suffices to say that all problems are solved using SINGLE
PRECISION, one hundred intervals (problem 2 uses 200), and we
get accuracy to the fourth and even to the fifth decimal places
in some examples. Finally, only the fourth integration, the
deflection, is compared with the exact solution. Recall that
the error is cumulative, and it is here that we expect the
bigger error. We may conclude then that preceding integrations
are more exact. Hnwever, we should keep in mind that an
approximated starting point is needed in some cases, and the
results will be shifted by some amount from the exact. We

will see this as we proceed into the next section.

B. EXAMPLES

1. Example 1l: Clamped-Free Beam

Refer to Fig. 5.la. This is a statically determinate
cantilever beam loaded over half its length by a uniformly
distributed load of 1 unit of weight per unit of length as
shown. We shall determine the shearing force, bending moment,
slope and deflection at discrete points of the beam.

2. Solution

This is a B.V.P. but for purpose of illustrating how

to use the method when dealing with I.V.P.'s, we will treat

it as such. All the required initial conditions can be drawn
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a given problem could be solved by integrating the moment

second order differential equation. By doing this, we would
be able to achieve more accuracy since only two integrations
need to be performed and the accumulated error will be rela-
tively small.

However, when the loading of the beam is a complicated
distribution and the expression for the bending moment is
difficult to obtain, then the fourth order differential equa-
tion will be the one to use. One advantage in using this
expression is that the integrating algorithm will provide
results for the shear force, bending moment, slope and
deflection simultaneously. When using the second order equa-
tion we only get slope and deflection.

Since eq. (5.1) is a more general relationship, we are
going to use this expression in the examples. In fact, most
problems can be expressed in that way. Recall that a concen-
trated force can be treated as a distributed force acting in
a very small interval, and a concentrated moment reduces to a
couple of concentrated loads acting in opposite directions a
small distance apart. Example 2 illustrates this procedure.

The examples provided in this chapter account for all
types of B.C.'s. Fig. 5.1 shows the 4 cases to be treated,
and we shall study them one by one in the next subsections.
In all cases the flexural rigidity EI and the length L is
set equal to 1, for simplicity. Discontinuous types of loading

are emphasized, and of course, many combinations of loadings

can be dealt with by simply using the principle of superposition.
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V. APPLICATIONS AND RESULTS

A. GENERAL R
In this chapter we are going to study a particular appli-

cation of the integrating algorithm introduced in the previous

sections, namely, the deflection of beams, where a fourth

order linear differential equation occurs, and several combina-

tions of B.C.'s can be considered. s
From Mechanics of Solids, the relationships governing the ‘

deflection of beams are given by:

EIY “(x) = q(x) (load intensity) (5.1) ;éf

EIY™ (%) = V(x) (shear force) (5.2) ;:j

EIY"(x) = M(x) (moment) (5.3) é;é
Y'(x) = slope |
y({x) = deflection e

The method we are dealing with is basically a method of
successive integration. Because of that we .- : start to inte- Vo
grate from any of the above relationships provided we know =

explicitly the right hand side of the equation. In some cases,

43




inherent error of the method since we have given them approxi-
mate initial values. The solution now is joing to look like
Fig. 4.4. The lower solution becomes "exact" but the upper
actually shifts apart from the exact. We can explain this by
saying that the known B.C.'s are fixed by the algorithm while
the free (unknown) ones will take the error, and this is
exactly what happens in the examples in the next section. 1In
summary, all we do is to shift the error from one place to
another. We can not get rid of it unless we use corrected
relationships or an infinite number of intervals to minimize

the local error.
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as we proceed, since we end up with the expected result of
0.0 at x = 1.0.

In the case of the shear force, we see it is con-
stant throughout the beam length as expected but it is shifted
by an amount of 0.0378 from the exact. It is interesting to
note that at the point of the loading we have a very strong
shearing force. For a pure moment acting at this place, we
shall neglect this result. However, if we do have an actual
couple than a big shearing at this point should be expected.

Note that the algebraic sum of shear forces gives:

11.21219 - (-988.7875) = 1000.0

which is indeed the couple acting at this point.

5. Example 3: Pin-Roller Beam

Refer to Fig. 5.1c. This is a statically determinate
simple supported beam subjected to a triangular type of load
distributed over the central portion of the beam as indicated
in the figure. We need to determine the shear, moment, slope
and deflection of the beam.

6. Solution

First of all, some comments about this configuration
are in order. This example was chosen in order to emphasize
the ease with which we can switch from one kind of load dis-
tribution to another. As explained at the beginning of this
work, it is the fact that the algorithm solves a "new" differ-

ential equation at every single step that allows us to deal
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with different loads. Therefore it is possible to have a
different kind of loading per subdivision. Another reason for ;
selecting this problem is that here we deal with linear forcing

functions and we are going to perform four successive integra-

el
Gt el

tions of a linear function. This will lead to a polynomial -
of fifth degree and a bigger cumulative error is to be expected.

Proceding with the solution, the distributed load

f(x) to be integrated is given by four different functions: ;
£,(x) = 0 0 < x <0.25
£,(x) = 4x-1 0.25 < x < 0.50 ;
f£4(x) = -4x+3 0.50 < x < 0.75 ?
f,(x) = 0 0.75 < x < 1.0 :

As indicated above, the computer program is such that

[ |

it can switch from one kind of loading to the other at the
specified point. Now, in order to start the algorithm we
need to determine the initial points from the B.C.'s of a

simple supported beam. These are:

Shear: Yg' = Unknown Y;' = Unknown

Moment : Yo = 0 Yn = 0

Slope: Y, = Unknown Y. = Unknown - ;
Deflection: Yo = 0 Yn = 0 -




Now, from the known relationships after we substitute in the

. given values, we get: ;.1'
- " o
0 = hS2 + nhY0 i
]
0 = h3S_ + N_h3¢" 4 nhy!
o) o) o o

This is a pair of simultaneous algebraic equations in two -

unknowns. We solve for Yg' and Yé. The results are:

Y(') = (?1')2“‘]052 - nso) (5.6)

S,
"e - -
o= - 2 (5.7)

Similarly, the computer supplies the values of the

variables involved in these relations and these are as follows: :jfh
~

-0.12499 Exact -0.125

- e
Shear: Yo

0.014974 R

0.014972 Exact

- 1
Moment: Yo

which shows a remarkable accuracy. Running the program with
these initial values we obtain the results shown on the next
page. A comparison between the approximate deflection and the
exact reveals an error of about 2 percent at the point where

the largest deflection takes place. In this example, we

expected a larger error, but the algorithm appears to perform
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EXAMFLE 3
PIN-RCLLER BEAN

BOUNCARY CONCITICNS: Y{J)=0.0 Y(1)=0.0
) M(0)=0.0  M(1)=0.C

X: SHEAR MCMENT SLOPE DEFLECTION  EXACT DEF.

0.00 -0.124599 €.C000090 C.Cl4a972 €. 000000 0.000000

0.0S -0.124599 =C.0C0250 0.Cl4316 C.000746 0.300746

0.10 -0.124999 ~C.012500 0.Cl4347 C.001470 0.001477

0.1¢ -0.124599 -C.01E750 0.C13566 €.02175 0.002176

0.2¢ -0.124999 -0.025000 0.C12472 €.002827 0.0021328

0.25 -0.124599 -0.021250 0.C11066 €.0034i7 0.003418

V.30 -0.11$599  =G.J37415 0.C09348 €.003929 0.003920

0.35 -0.134999  -0.043080 0.C07333 €. 004347 0.004322

0.40 -0.C715999  -C.047745 0.C05057 C.004658 0.J04609

0.45 -0.(C44599 ~=C.05C910 0.C02534 C.004349 0.0047606

0.5C 0.CJC000  -3.052075 0.€00000 C. 004914 0.004 785

3.55 0.C45C00  =C.0509i0 -0.C02534 C. 004849 0.004706

O.oC Cec3CC00  —=C.047745  =0.005057 CeU04653 04004 6CS

0.c5 0.135C30  ~-C.C43030 -0.007333 €. 004347 0.004 322

g.7¢C 0.12CC00 -C.037415 =0.C09348 C.0u3929 0.003920 - -

0.75 0.125000 -0.031250 =0.Cl1066 €. 003417 C.203418 o

0.3C 0.125000  =-C.C25300 -0.Cl2472 €a00¢827 0.0023z28 ;~f

0.85 0.125G00 -0.01l3750 =-0.C13565 €.202173 0.602176 g

0.90 0.125000 -0.012500 ~0.Cl4347 C.001476 0.001477 .

0.95 0.125C00 ~C.C06250 =0.Cl4dl6 C.200746 0.000 740 “fj

1.00 0.125000 €C.CQ0000 =0.Cl4972 -(.J00000 0.000C00 Ij}
g

gx
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fairly well even in this case. Nevertheless, the error should
be expected at the "free" (unknown) B.C.'s since the other
extremes are fixed. Here we make use of the fact that the
loading is symmetrical and the results should be symmetrical
too. This is actually the case in the computer printout, so
we can conclude that the results are indeed accurate.

-

/. Example 4: Clamped-Clamped Beam

Refer to Fig. 5.1d. This is a statically indeterminate
beam clamped at both ends and loaded with a totally arbitrary
discontinuous load known only as a table of values at discrete
points as shown on the next page. We shall determine the shear,
moment, slope and deflection of the beam.

8. Solution

Before we proceed with this example, let us remind
ourselves that we are not restricted to handle only exact-
integrable forcing functions. We can deal with arbitrary
functions as well, and this example intends to illustrate the
procedure. In this problem, the computer program reads in
data from a table of values instead of obtaining them by
evaluating a given function. With this data the program per-
forms trapezoidal integration in the usual way. The forcing

function is defined by three other functions as:

fl(X) = 0 0 <x<0.3
fz(x) = (from data deck) 0.3 < x <0.7
f3(x) = 0 0.7 < x < 1.0
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Unfortunately, no exact solution has been obtained for
this case and we are not able to compare the computer results
with the exact. Nevertheless some conclusions can be drawn.

The B.C.'s for a clamped-clamped beam are as follows:

Shear: Yg' = Unknown YS' = Unknown
Moment: YS = Unknown Yﬁ = Unknown
-4 ' = —1
Slope: Yo 0 Yn 0
Deflection: Y = 0 Y = 0
o n

To determine the initjial conditions, we use the known
relationships and substituting in the known values, we obtain:
2 2

P ns n
0 = h Sl + Nlh Yo + nhYo

- 3 3 "e 2 ”
0 = h So * Noh Yo o+ Nlh Yo
This is a pair of simultaneous algebraic equations
with two unknowns. Solving for the initial conditions we
get:

n(NoS2 - nSo)
nN

Yo

(5.8)
1 No

¢ = So = N1%; (5.9)
o nN; - N_

+
o
s ‘v s

.
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For this example the values supplied by the computer

are:

Shear: Yg' -0.948411

0.230507

Moment : Y"

The computer printout is shown on the next page. Here
we have another column to show the arbitrary loading. Note
that we are using 100 intervals, but actually every fifth is
printed.

Perhaps the only way to analyze these results would be
to check if the B.C.'s have been met or not. The results show
that they have. Another clue to assure some accuracy would be
to look at the maximum deflection and the minimum slope. The
loading was intentionally concentrated on the middle of the
beam so we can expect the highest deflection and minimum slope
in this neighborhood since we have similar B.C.'s at both
ends. We can say that this too checks. Consequently we see

that the results are likely to be trusted.




EXAMPLS 4

CLANMFUC-CLANIPET
BCUNCARY CGHCITIONS:

3IAM

Y(C)=0.
Y'(2)=0.0

0

Y(11=0.0
¥ {1)=0.0

X: LI4C SFIAR M3IATT SLOPE CEFLECTIAN
9.9C 0.CCCI0 =C.54€411 0.230507 C. 2000U0 0.905000
0.J5 U.CJSCU0  ~C.G48411 0.183036 C.010340 0.200268
CelC 045I0CUU  =~C.S4E4l. J.135066 C.CL8209  0.000994
0.15 0.C2CCU0  =C.S434L1 0.C83245 C.023906 0.302059
0.2C 0.93C3)0 ~U.54c411 0.C40825 Ce0cT133 0.005344
0.25 CoCOCCU0.  =Ca9484L1 =J.C06576 C.C27939  0.304732
V.3C 1.C550CD  =~Ca545411 =0.C539451 C.02064T4 0.006103
0eus 24430060 -u.g404ll  -0.099067 Ce022628 0.J07339
J.4C 0euICisd —ueb724ll  =0.137447 Ce 16530 0.J08330
0.45 6.43CC20 =U.3504ll  -0.163%28 C.009094  0.)06579
V3G LeiJUoUYV -Ceudi9ll -Je«l7351 10 Couddbia UeJU 9224
0e35 6.72CCU0 Ce2T3086  ~-0.167332  =(.207952 0.909039
UeoC 54333300 Ce£09335  =0.144353  —(.0i5313  0.008440
D €5 4.2CCC000 Ve£25345  =U.i0334l  =Ce0l2<07  0.007483
0.70 3.22CC00 Ce956580  =0.C63038  =C.026542 0.326255
0.15 GetICCIU 1.CL1580  =0.C1263%  ~CoJ23440 0.004870
0.4¢C Ge £2CCIU 20612530 5.C3739%  =C.J278L0 0.u03454
0.05 J.C3C0eu 1.011540 0.08d472  =(.024651 0.002132
GedC 3.020400 1011530 Cel39050 =~C.013903  0.001032
J.55 Ge 22CCU9 1.CL15306 0139629  ~-C.Ul0T46 0.300279
LeJu 0.0JsC00 1.011550 0.240207 C.ud0000  ~C.000000
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cC.

THE COMPUTER PROGRAM

FILE: SLOPE BATF IV Al
$JCE XREF
CEITRE£E2 = XS TSFLIBLTI VSIS X BH S T2 ES TS

caaaesccec#ctce; THE CCMPUTER FRCGRAM B VXIF VI L AR2BSS
CLXB2EAXXAWE LEAT XL LETPRE X VLB SLBIL IV EE LRV AL LT AP XX IX2L382 S

THIS PROGRAM CALCULLATZES THE SFEARING FCRCE., BENCING MOQMENT. SLOPE AND
DEFLECTION OF EBEAMS BY PERFCRMING FCUR SUCCESIVE INTEGRATICAS ON
THE LGCADING FLANCTION. THE FCLLOWING CONFIGURATICNS ARE CONSIDERED:

Le~CANTILEVER (CLAMPEC~-FREEZ) BEAM

2¢~CLAMPZO-ROLLER ESAM

3e~SIMFLE SUPCRTED (FIN~ROLLER) BEAM

4+=CLAMPED=CLANMPED BEAW
THE LOADING CAN B3E ANY NUMRER OF DISTRUBUTED ANC/CR CCNCENTRATED
FGRCESe CONCENTRATED MONMENTS CAN BE DECCMPCSED INTC A CCUPLE AT THE
:1qu¥N POSSIELE CISTANCE ACTING AT THE PCINT GCF APPLICATICN GF ThE

CMENT.

THE PROGRAM CCNSISTS OF THREE ROUTINES:

le SUBRQUTINE SLQFE

2. SUBRQUTINE INCCM

3. SUBROQUTINE LCAC

WhiCH ARS DEFINED IN THE FOLLCWING FARAGRAPHS

FR2ABXEE MAIN PROGRAM BTSSR 25SRLRENE0B022S535S

ANANANANAANNNANNNDANNNANN

C READS IN NUMBER CF STEPS CEFINED 8Y THE INTEGER VARIALBLE N
C CALLS SUSROUTINE [INCCM FQR INITIAL CCNOITICANS
C CALLS SUBROUTINE SLCFE FOR FINAL RESULTS

CELVITREX SUBROLTINE IANCOM FIEIIPRETASE X IR P 2R XY

READS IN TH:E INTEGER VARIABLE K WHICH SPECIFIES THE KINO OF PROBLEM
wiTn THE FOLLCWING COCE:

K=1 CANTILSVER BEAN (INITIAL CONDITICNS MUST BE SPECIFIEL)

K22 CLAMPED ROLLER BEAM

K=3 CLAMPED=-CLAMPED BEAM

Kz4 SIMPLE SULPBRCRTEC GEAM

-
x
L]

PARAMENTERS ARE DEFINED AS FOLLQWSS
CALL INCON(N.YC.Y1C.Y20,.,v30)

N = NUMBER CF STEPS
YO = INITA_L CEFLECTICN
¥1Q = INITIAL SLOES
YeC = INITIAL BENCING MOMENT
Y30 = INITIAL SHERING FCRCE

THIS SUBROUTINE SUPPLIES THE INITIAL CONDITICNS 8Y CALLING SLGPE.
FCR A CANTILEVER EEAM THIS STATZMENT 1S NCT EXECUTED

FXEBEEHETT SUHMQACUTINE SLOFE ISTHERTLARLLIIRIRSELNT
PERFORM TwO TASKS: le CALCULATES AND SUPPLY INCCM wlITH THE NECESARY
PARAMETERS TC DETERMINE INITIAL CCNCITICNS
2+ EXECUTES THE SOLUTICN OF TrE PRCELEWNV

THIS SUJROUTINE IS A THE COOING OF THME RELATIONSHIPS GIVEN BY
EQUATIONS 3.12 TQ 3.22. TrE SUMMATICN TERNMS ARE CONTAINED IN
THE COMMON STATEMENT

THE CALLING PARAMETESS ARE DEFINED AS FULLOwS:
CALL SLCPE(N«YO Y1C.Y23,¥3C,4)
2AHE AS IN INCCM

L)

]

»

TAKE TwO VALUES: J=0: TC FIND INITIAL CONODITICNS ONLY
JE1? TC EXECUTE THE SOLUTION

SHEE8XE SUBROLTINE LOAD 2o 212 ]

[+ YaYaYaYalalalaTalaYslaYalaYataYaYata e

«

(5

(<]
HHUNUNY

ngnnnruuﬂnnnnnnrn\nnnn
2

C SUPPLIZES SLOPE wITH THE NECESARY [INFCRMATION GCBTAINED FRCN THE
C LOADING FUNCTION. [T CAN EE AN ACTUAL FUNCTICN CR A DATA CECKe.
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FILE: SLOPE BWATF 1V Al

MUST BE WRITTEN SPECIFICALLY FOR EACH NEW PRCBLEWV, WHEN DEALING
WITh CONCENTRATED LOADS. THE VARIABLE RINT IN RCUTINE SLCPE IS
tsngt EQUAL TC THE CCNCENTVRATED LCAD DIRECTLY. AT THE POINT CF
ACTICN,
THE CALLING PAnAIETERS ARE CEFINED AS FCLLCWS
CALL LOAD(E.H2)
8= CURRENT VALLE GOF THE VARIABLE X (LEANGHT) GIVEN BY RCUTINE SLOPE
H2= CONTAINSE THE VALUE CF THE LOACING FUNCTION AT x=8

CEETILLRAIVILS S XX SEITVEELS TR LIIZL A IR ACISISEB &3
MAIN PROGRAN
CEELH LRSI LTV LLTH IV XL EVELIXLSLLT SIS LSS LSS 2B 40
REAL YO.Y1C,Y2C, v30
INTEGER J.N
COMMON SO0¢S1e52¢SNOSNL RN
READ(S.10)N
10 FORMAT(II)
HZt o /FLIATIN=1)
AN=FLJIAT(N=1)
CALL INCOAN{N.Y0O.Y10,Y20,Y30)
4=0
CALL SLOPE(NeYO,Y1Q«YZ04Y20.4)
STOP
END

C

CLRL R ARSI RAI VISR IR TR EEEIED e+ E2 221
SU?HOUTXNE LCAD(EB.,H2) -

CEITHM RS 2 = £ 21— £ 3223
REAL 3.2
FIX)Zaoos
He=F(E)

NAANDNNNN

[ 4
CEET 20 &R %3 e 2 CE S S Y i ]
SuBRBuYINE INCCN(N.'O.V!C-YZO-YJG)
CEER LTI £33 £2LHASL ISR
nEAL vo.vxc.vzo.v’u
INTEGER JoKoN
COMMON S0¢S1sS52eSN0SNL RANGH
READ(S.10)}X,YQav10.Y2C,Y3C
10 FORMAT(I1.,4F10.4)
IF{(KeZQeC)eDNFRalKeGT4)) GO TG 60
5F(K-EO.I) GC TC SO
=1
CALL SLUPE(NYQ.Y10,Y20.Y30eJ)
IF{K-3)20+¢30.00
cacsaascc:t:gsc:sss:es#tcat#saca:a::::e:s::tt#a:sa
CLAMPED-RCLLER
cszasssaaazsas 3 ] BLE SIS ELLFELVISE 8L
20 WRITE(6.2%)
25 FORMAT(®1*, EXAMPLE 29/7/1Xe *CLAMPZD-RCLLER EEAM® //1 X, *30QUNDARY CON
SO ITIONS: ¥Y(01=0.0 Y{1)=0e0°/727%4°Y (0)=0.0 M(1)=0.0Q°s7)
Y20=HE{S22SNO-ANESO )/ (RNESNL1~-SNQ)
Y30= (S0-SNISS2)}/(RNISAL=-SNO)

RETURN
CEEPAR XM ICTREXLBS * FEELSET AL AL RLNE
(4 CLAMPED-CLAMPED
CEBI T ITH TR0 SR 2388 IR EESREBEVESND

30 WRITE(6.3%)
3% FORMAT(I®1 9, *SRAMPLE 4°//1 X, CLANPEC=-CLAMPED BEAM®//]1X,.*BOUNDARY CO
ENDI TIONS S Y{0)=0,0 Y{(1)=0.0°7/25Xe°Y (0}=0.0 Y (1)=00°7)
Y20=HE(SOBSNLI-S1 2SNO) /I ANSSNO-SNISSNE )
Y302 (SL1ESN1I=-RANSSO )/ (RNESNO~-SNISSNL)

RETURN
CEREBUARILAVAR A RS SO VU AL EL R XL REALE S IV BT RV IR EAVE AR
PIN-QQLLEFR
CESAMPATRVS LI NS AL DG sot FEREI LT AL LT LSRN
AC WRITE(G6.8%)
45 FORMAT(*1°,°CXAMPLE 39//1x, %0 [N=-QQLLER BEAM®//1X,*BCUNDARY CONDITI
SONS 3 Y(0)=0.0 Y(1)=0e0°7/727%,°M(0)=040 M{1)=0.0°%/7)
V10=((HIRN|==2I$(SN0352 ~RAXS50 )
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FILE: SLOPE wATF IV Al '

Y30= ~S2/6N

RETURN
(o222 222 1223 % 2% -3 FFTTRITD SETTEXZ TS S
C CLAMPED-FREE

CREREEFVL IR AL FETF IS FETSLIRCEILEC T IR IT IS S IR TGS
SC WRITE(6+55)v0.Y1C,Y2Q,Y2C
SS FORMAT(®* 1*.*EXAMPLE 1°//1%X+°CLAMPED~FREE BEAMN® //71Xe*BCUNDARY CON

SOITIONS: Y{0)=% FB8e8.aXe'Y (0)=°¢FBed+¢aXe’//2TXs *M{0)=*+FBab,
BAX, *V(0)S*FB,8/7)
GO TO 90

CEELARIIILXCR LS FEIE PRSI TFLE LTS EERETEVIZ VLTS
60 WRITE(6.6%)
6S FOIMAT(LIX,*N FROM 1 TC & CNLY®*/)
S0 RETURN
END

C
CHIET TR BTLITRIB S E SIS AL IR ST AP EFIXICEE I I XE LI EL B
SUBRQUTINE SLCPE(N+YD.Y10,Y20.Y30.J)
CESTIM LIS ST LS TLBE ST ASTL LIV E ST I SRLISRI VT RS VS
REAL SUVO,SU01eSU02,SUO03+SULL sSULI2+5UL3oSU22+SU23+SU3ILRINT,
SRINTI JRINT2.RINTI ML F2,RleS5eS5NML.SNM2
INTZGER T oJeKolo NeMiNSLKNSOL sNSILeIMIL
COMMON SO +S1e¢S2+sSNOSNT sRAGM
SUQU=Ve.

F 4
[
-
r
1]
<

H2=0.0
IF{ J.GT.0) GO TO 100
WRITE(6.2C)
100 DQ 400 i=1+N
Mg =1=-1
RI=zFLOAT(1ML)
AR [&H
CALL LOAD(B.H2)
IFt1.2Q.1)GC TO 200
RINT=20.5%rS(H1+12)
200 RINT4=RINT3
RINT3I=RINT2
RINTZ2SRINT?
RINTI=RINT

SU33=SU334RINTL
$3 =s5u33

SU232SU23+RINT2
SU22=5U22+5U23
$2=.5250U32¢5U22

Kxl=2

IF(leLE2) K=0

SUL 3=SUL 3 +RINTI

SUl1 2=2SU12+S5L13

SuUl I=sSUl Lt eSUL2
NSIK=ENSIK 4K
SNMIZFLOAT(NSIK)

SNE ZQe5%RI+SNM)
$1=2.25%5U22450L22+SU11
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FILES

C

C
SENTRY

I T ——

SLOPE WATF IV Al

L=1l=-3

IF{leLEe3) L=0
SUO3=SUOI+RINTA .
SU02=SU02+SL03
SU01=5U01+Su02
SUC0=5U00 +SUO 1
NSIL=NSIL L

NSIL=NSOL #NS1L
SNMZ=FLIATI(NSOL)

SNO =0.25%R1+SNML +SNM2
S0=.125%S5U33¢,758SU2241 .S%S5U11+SU00
IF{ J.6T.0) GG TOQ 300

¥3=53+Y30

v2=n2(S2+RI3v30) +v2Q
YI=((S1+SNISV3C)SHERIZY2C)TH+ VIO

Y=(({ (SO+SNO=YIC)SHASNIBY2C)SH+RITY 10 ) FH+ YO
WRITE(6.2CIEeYI YZo Yoy

Hl=r2

CONTINUE

IF{J.GT.0) GO TQ 99%

WRI TE(6.96)

FORMAT(IX ¢Faa2e2X48F12067)

FORMAT(ZX s%X3 % X *SHEAR®LOGX o *MCMENT * 46X *SLCPE® +SXe *OEFLECTIONT )

FORMAT(*1*)
RETURN B
END
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VI. CONCLUSIONS AND RECOMMENDATIONS

Based upon the research carried out in this thesis and
the results obtained, the following conclusions can be drawn:
1) First of all, the method, in the way it has been
developed, shows the fact that the solutions are totally
independent of each other. Aany value of the unknown can be
found without generating all previous ones. A closer look at
equations (3.13) to (3.16) reveals that we can apply any of
these relationships at any point i (0 < i < n) directly, pro-
vided we know the initial conditions and the summation terms
which can be generated in advance. 1In all of these equations
there is only one summation term which depends on the given
function f(x), the other summations are series of integers
totally independent of the given problem. This fact represents
a good saving in terms of computer time if it is conveniently
exploited.

2) As it has been shown in the examples, the power of
the method is perhaps its ability to deal with arbitrary func-
tions and this is important since many engineering problems
lead to these kinds of functions.

3) So far, there has not been any error correction in a

strict sense. The only corrective measure has been step size
reduction. However, equation (4.9) shows that correction can

be performed provided we know how the local error behaves.

68 o




T T e L R N T T Y T T I T XN T T T ¥~ T .~ % -5~ 6=«

c Wy

[ When integrating constant and/or linear functions, (4.9)

8 )
k applies, but for other cases it does not. 1In any case, equation :
! (4.3) indicates that the local error depends only on the second

integral which in turn is one degree higher than the given

function itself. This suggests the idea that if we know how -
the original function behaves, linearly, gquadratically, etc.,
we could, to some extent, predict the error behavior and carry

out a correction. Further research is recommended in this -

)

particular case. :
Nevertheless, as shown in the examples, some accuracy has

been achieved even working in single precision. For more i

complicated problems involving complex functions and requir- f
ing very accurate solutions, double precision is still a good

possibility. é
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