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Abstract

For a ductile material, the tearing resistance curve represented by the
dependence of the fracture parameter J on crack extension Aa is a
material property only for the small-scale yielding conditions that are
approached for very large specimen size. In this paper the influence of size
on crack-growth resistance is studied theoretically for single-edge-notch
(SEN) specimens of ideally-plastic materials in plane stress. The calcu-
lations are based on the Dugdale model in conjunction with a crack-growth
criterion defined by an invariant crack-opening shape. Over a large range of
specimen sizes, results are exhibited for materials having low-to-moderate
values of initial tearing resistance. -

Introduction

The initiation of mode I crack growth in ductile materials is governed,
under broad circumstances, by a critical value of the Rice J-integral. Sub-
sequent to initiation, increasing values of J may accompany crack growth,
and the consequent relation between J and the growth .a is called the
tearing resistance curve. Although often tacitly regarded in the past as a
material property, the function J(Aa) is size and configuration dependent.
At the very least, the size of a specimen sets an upper bound on the maximum
possible value of crack size that can be attained in a test.

In this paper, we consider plane stress, and use the Dugdale model to
study crack growth in an elastic-ideally plastic material. We adopt a crack-growth criterion that rests on the assumption of an invariant, crack-opening

shape near the crack tip during crack extension. (This criterion is mathe-
matically equivalent to the "first-stretch" criterion proposed by Wnuk
(1972,, and has been used by Rice et al. (1980) for plane strain crack
grcwth.) We will first discuss the resistance curve for small-scale yielding,
w,- ..h is considered to be a material property, and applies to the limiting

",. -" 7 .. --- " " ' . ' . . - . . -. . . .- , ." . " .- . -. " - - -
. . " "

.-- ' ' " , -. ' '- - . -". .' ' ' . -" " ' ' ' ' ,



-2-

case of infinite specimen size. Attention will then be focused on the

single-edge-notch (SEN) configuration, for which calculations have been made

on the basis of an approximate numerical analysis (the details of which will
be reported elsewhere). Theoretical nondimensional resistance curves will be

shown for a wide range of specimen size, and compared with the small-scale

yielding curve. Finally, a recent proposal by Hellmann and Schwalbe (1984)

for correlating resistance curves on the basis of a special crack-opening
displacement will be discussed briefly.

Dugdale Model; Crack-Growth Criterion

Figure l(a) shows crack-tip parameters associated with the Dugdale model
of a stationary crack of length a0 . The shaded region shows the plastic
stretch ahead of the crack tip in a zone where the yield stress 0y is

attained. The crack opening displacement 6(r) near the crack tip is

6(r) ~ 6 tip + ( ,Zrr log[c(J,a)/r] (1)

where (Rice, 1968), 6 tip J/0y , C y/E , and the length c depends on the

specimen size and configuration as well as J and a . The crack starts

growing at J-J , when 6 t 6 Jc /a . Near the advancing crack tip

(Fig. l(b)) the opening displacement is

A(r) J(a) + r log[c(J,a)/r] - J(a-r)

y y

d3)

r log (2)

A first-order differential equation governing the relationship J(a)

follows from the assumption that A(r) remains invariant during crack

growth. This gives

E dJ rA. 1 (3)
2 da Tr oc(j a)]
y

where the characteristic length A is a material constant. The initial

Scondition that goes with (3) is J(ao)- ) and the length A will be

related to the tearing modulus (Paris et al., 1979)

Tm (4)

y
(dJ 1

that corresponds to the initial slope (-daj5  of the resistance curve of

Ssmall-scale yielding.

Small-Scale Yielding

In small-scale yielding,
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7T EJ c - 2 o 2 (5)
2

y
and so it follows from (3) that

TEJ

A -2--- exp(rT /4)
2a2
y

Henceforth, we regard Ts as the more useful material parameter, in lieu of

A . A general crack-growth differential equation, for arbitrary configu-
rations, now follows from Eq. (3) as

C T - lo(6
dj I P c) ]

where

n - (Aa) c 6 (7)
y c

is a convenient nondimensional crack-extension variable.

The resistance curve for small-scale yielding is given by the solution
of

d(J/J) 4
- Ts - 4 log(J/J) (8)

sn 7r c

which follows from the substitution of (5) into (6). With J/3 -l at
T- 0 ,this produces C

7rTs/4

in " e {E[7Ts/4- log(J/Jc)I - El[Ts/4]) (9)

where E 1 (x) e-P)dp . (An analogous small-scale yielding solution is
X

shown by Rice and Sorensen (1978) for plane-strain.)

Nondimensional resistance curves for small-scaling yielding are
illustrated in Fig. 2 for T - 2,5,10 . For n- , J/J approaches the5 C
asymptotic, steady-state value exp[VT /4] . Note that even for low values

of 6 /C ('1 cm) practical limitations on specimen size would permit a
c y

close approach to steady-state cracking only for low values of T

SEN Specimens: Effect of Size on Initial Tearing Modulus

By means of an approximate method (details of which will be published
elsewhere) a method has been devised for estimating c(J,a) in Eq. (1) for
the single-edge-notch (SEN) specimen shown in Fig. 3. If we introduce the
specimen-size parameter

A - WC /6 (10)
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the second term in Eq. (6) is found to depend only on J/Jc A , and the

crack-width ratio a/W . The initial tearing modulus of the SEN specimen

y
is then given by (6) for a-a 0 , the initial crack size, and J/Jc - . The

resulting difference (T0-Ts) is shown in Fig. 4 as a function of a0 /W

for specimen sizes between A- 2 and A- 50 Of particular note are the

facts that (i) (T0-Ts) does not depend on Ts ; (ii) IT0-Ts1 decreases

rapidly with increasing A ; (iii) as a function of a0 /W , (T0-T5 ) changes

sign in the vicinity of a0/Wm .25 ; (iv) for all reasonable a0/W , and for
all sizes A , the relative error (T0-Ts)/T would be negligible for

moderate to large values of Ta , and is negligible for all T for a0/W

near 1/4 . Thus, the choice a0 wW/4 should eliminate any concern about the
effect of specimen size on initial tearing modulus.

SEN Specimens; Effect of Size on Resistance Curves

Introduction of the aforementioned estimate for c(J,a) into the
differential equation (6) and its subsequent integration permits the deri-
vation of nondimensional resistance curves of J/Jc vs. n , for various

values of a0 /W , A , and Ts , For a0 /W- .25 , we show results in Figs.

5-7 for T -2,5, and 10. In each case, the small-scale yielding (SSY)

curve, which applies for A~o , is shown together with resistance curves
for A- 2,5,10,20, and 50. The curves for finite A terminate well before
the values 1- A(-a/W) that correspond to cracking across the full
specimen width because the underlying approximations become inaccurate. In
particular, yielding in compression at the back face has been ignored. In

* - all cases, however, the applied load corresponding to the ends of the curves
is below the fully-plastic limit load of the cracked specimen, and is usually
well below this limit when the curves begin to deviate from the SSY result.

For each T and A the resistance curve peels off from the SSY result

*" after a certain amount of crack growth that decreases markedly with
decreasing A . Following Hellmann and Schwalbe (1984), we will let (Aa)0 5
correspond to a 5% reduction of J/J from its SSY value. For each T

* 0s (Aa)0 5  a appears roughly proportional to A . Indeed, as shown in
y c

Fig. 8, the quantity (Aa)0 5 /(W-a0 ) , representing fractional penetration
into the uncracked ligament, is a weak function of A , but decreases with
increasing T . Note that for a0/W-1/4 , T 510 , and A>5 , the crack

S S

can grow into at least 20% of the initially uncracked ligament without
serious deviation from the SSY resistance curve.

*Calculations of resistance curves for other values of a0/W give
results similar to those of Figs. 5-7. For the case ao/W- 1/2 , the values

,- * * ,*-.-



found for (Aa) 0 5 /(W-a 0 ) are shown in Fig. 9. Here the allowable penetration
is smaller than for a0/W- 1/4 , but varies less with T .

s

Corresponding to each of the resistance curves shown in Figs. 5-7, the
variations of a/a with a/W- (a0+Aa)/W are plotted in Figs. 10-12. The

y
dependence on a/W of the fully-plastic limit-load value of 0/0 is also

y
shown. The lines across the curves connect the points (a/W)0 5 m [a0+(Aa) 0 5 ]/W,
for which J/J deviates by 5Z from SSY. Note that the stress always peaks

C
before this crack length is reached. It is evident that the present calcu-
lations of (a/W)0 5 will become unreliable for higher values of Ts , because

the stress will get too close to the fully-plastic limit load. Nevertheless,
it appears that the trend established for (a/W)0 5 will continue for Ts> 10,

with significant deviation from the SSY resistance curve occurring at still
smaller crack extensions.

Hellmann-Schwalbe COD vs. Crack Growth

Hellmann and Schwalbe (1984) have suggested that the crack-opening-
displacement (COD) just behind the original crack tip might correlate well
with crack-growth, and be less size-dependent than J vs. Aa . We denote
this COD by 6* , and show in Figs. 13-15 calculated curves of 6*16 vs. rjc

for the cases studied in Figs. 5-7. It can be seen that the correlation is
indeed a little better, but that the curves all eventually become concave
upward. Indeed, it might be suggested that curvature reversal in the 6* vs.
Aa relation is a clear signal that the SSY resistance curve is no longer
applicable. Note, too, that the 6* curves tend to undershoot the SSY
result slightly before they turn upward.

Concluding Remarks

The most comforting conclusion to be drawn is that over a very large
range of SEN specimen sizes, the choice a0 /Wowl/4 eliminates size effects
on the initial tearing modulus. Resistance curves do display strong size
effects, but for given values of a0/W and T5 < 10 , sharp deviations from

the small-scale yielding curve begin at relative crack penetrations
(Aa)/(W-a0) that do not vary much with size. These conclusions will not, of
course, necessarily hold for configurations other than SEN, nor necessarily
for strain-hardening materials. The Hellmann-Schwalbe COD is a little better
than 3 as a correlating function for crack growth. Another correlation
parameter, the Ernst (1983) J should be mentioned, but its theoretical

M
performance on the basis of the present theory has not been studied.

Acknowledgements

This work was supported in part by the Office of Naval Research under
Contract N00014-84-K-0510, by the National Science Foundation under Grant
MEA-82-13925, and by the Division of Applied Sciences, Harvard University.

(PY . At~ . Q



-6-

References

Ernst, H. A., (1983), Proc. 14th Nat. Symp. Fract. Mech., ASTM STP 791,
Vol. I, 499-519.

Hellmann, D. and Schwalbe, R. H., (1984), Proc. 15th Nat. Symp. Fract. Mech.,
ASTM STP 833.

Paris, P. C., Tada, H., Zahoor, A. and Ernst, H. A., (1979), ASTM STP 668,
5-36.

Rice, J. R., (1968), in Fracture, Academic Press, ed. H. Liebowitz, Vol. II,
264.

Rice, J. R. and Sorensen, E. P., (1978), J. Mech. Phys. Solids, 26, 163-186.
Rice, J. R., Drugan, W. J. and Sham, T. L., (1980), ASTM STP 700, 189-219.
Wnuk, M. P., (1972), Proc. Int'l. Conf. Dynamic Crack Propagation, Lehigh

University, 273-280.

8(r4T>P .-

-°j

(a) (b)

Fig. 1 Crack-tip parameters, Dugdale model
(a) stationary crack, (b) growing crack.
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resistance curves.

!p



-7-

8.00

TO-Ts -20 M.1
.4010 / 5

5=5

A-20 LAC GO/W--1/4

"A-2\r

-LIM
S.W LIC *.o . 2 1.00 L@.0 W . .0 0.10 60.06 1.00

- Co/W a(o) 8

Fig. 4 Size effect on initial Fig. 5 Resistance curves, T -2
tearing modulus T . s

S

=50 U.N.

LW"

. 5 10 0

5, Ts=5 )"/ 0 Go /We 1/4

2/W x I/4
2 32

(t=(Ao____________C (0) Cy /B

Fig. 6 Resistance curves, Tea-5 . Fig. 7 Resistance curves, Ts 10

W-00  . oo/W 1/4 W'° g,, - 10

0.00 10.00 10.00 20.00 .00 00.00 g.mO sO'.. 2o. 3.00 40.10 10.0.

At W y/c A'W/Sc/S"

Fig. 8 Allowable crack penetration, Fig. 9 Allowable crack penetration,
ao/W=114 . a0 /W- 1/2

-I A
"-6 . .. : . .. . . . ."" . . . . . -; ;" '. -.: " " . -. .. .. " '



-8-

limit load limit lod
AC2 -2

TS 2 5. TS 5

.10 0

0.10"0I °

Fih. 0.a0 0.40 0,0 0.0 1.00

/W 0/W...1I

Fig. 10 Stress history, T -2 . Fig. 11 Stress history, Tsm 5

0 M00 A. 50 Y
... 2

0100

S it la

F . 2 t s stF 1 T 2 ' -- S

40.4 3q , 0.40 ,"
10

40.0N2340 204

340W5 10 1 103

0.0G040 .0 .4 0.00 24 0.40 2.0 4.40 6.00 00 10.40 12.00

Fig. 12 Stress history, T s . Fig. 13 COD curves, T 2 10

-= • '50. -.= " A =-/50

.SSY

1.0 ,2=0 A 50T .0
00/W 1/4.-

Zooo / OoW= 1/4 5o.

Fi.1 O creTs5 .Fig. 15 COD curves, T =10

L



FILMED

I 8-85

DTIC


