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RELAXATION PHENOMENA AND STABILITY OF PROBABILITY DENSITIES

I. Introduction

We are interested in the overall time dependence of the relaxation of a

perturbed entity to equilibrium. The overall time dependence of the perturbed

part of an entity is freque ,tly tracked in terms of the step function response p

function I t(t). The function 0(t) has maximal value at t-O, is continuous, and

vanishes as t).-. The function 0(t) may be identified as the positive time part

of an even function 0(t) which may be related2' 3 to the dissipative part of a

scalar impulse response function X"(t) by
X"( ) -d0(t) - < t < ( )ii':'

dt
'.

In the following we only consider situations where ""

lim X"(t) = 0 (1.2)

so that the Fourier transform of x"(t), namely the dissipative part of the sus-

ceptibility X"(w), has only a continuous spectrum with no singularity at w-0.

Further, since the Fourier transform of X"(t) or the dissipative part of the

susceptibility has all moments, all the derivatives of X"(t) and hence also

0(t) at t=0 must be finite.

The dissipative impulse response function X"(t) may be related by pertur-

bation theoretical developments such as those of Kubo, 2 Case,3 and Martin 4 to

the ecuilibrium average of a two-time scalar commutator of a configurational

coordinate operator A(t),

X"(t-t' Trfpo(A(t), A(t')]} (1.3)

Here po is the canonical equilibrium density matrix and we have taken A(t) to

be the perturbed part only. Then it is clear that X"(t) and also 0(t) are

functions only of a time difference t.

Manuscript approved March 21, 1985.
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The equation for 0(t) corresponding to X"(t) in Eq. (1.3) is2 ,3

0(t) - 2 E Wi-Wm' J<mnAjm'>I 2 cos(Em-Em)t/4 (1.4)
m>m' Emi-Em

Here Em is an eigenvalue of the unperturbed Hamiltonian, Wm-exp(-aEm)/Z,

Z-Eexp(-aEm) and 8=1/kT. It is clear that P(t) is even in t. In the high - -

temperature limit, equivalent to a classical limit, O(t) is just 8/2 times the

canonical average of the anticommutator {A(t), A(O)} which may be identified

with a real autocorrelation function. In any event D(t) shares with the auto-

correlation function of a weakly stationary process the general properties that

it is a two-time function dependent only on time differences, i.e. location

invariant, and continuous for all time. We have also in addition that O(t) has

other temporal behavior determined by the physical properties of 0(t) mentioned .

above, viz. it is maximal and differentiable to all orders at trO, and mono-

tonically vanishing as t+-. Furthermore from the causality of 0(t),

we infer X"(w) is one of a Hilbert transform pair.2 Consistency with this

latter property of x"(w) leads us to the requirement that 1(t) is square

integrable for -<<t<o- i.e. L2(-_._). Also from Eq. (1.4) we may verify that

since 0(t) is continuous at t-O, it is also continuous at neighboring points,

e, and hence for all t. Moreover if X(t) is an arbitrary function whose

Fourier transform exists, then from Eq. (1.4) it follows that

ffX(t)O(t-t')X*(t')dtdt' Z E (W-Wmf) <mlAlm'>12

m*m' Em -Em

- i (E.-E , )t

dtI 2 >0IfX(t)e 2  (1.5)

Bochner's theorem5 may then be used to prove that (t) is proportional to a

characteristic function.

2. ..
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We find it convenient to deal with the normalized function
C(tJo) = (t)/O(o) (1.6) 'ii2

where we have made the two time nature of C(tJO) explicit. By its definition

C(010) 1 1 so that it is in fact a characteristic function and we shall refer

to it as such in the following.

A major purpose of this paper is to construct a class of characteristic

functions with behavior that is consistent with the mathematical and phenomeno-

logical constraints on the step-response function 0(t). These requirements are

satisfied by allowing a continous C(tIO) to be only differentiable almost

everywhere. This leads to a piecewise character of C(tIQ) which will be dis-

cussed in detail in the next section. The resulting construction is a C(tO)

which has the form of appropriate exponentials of monomial functions of t, r

namely -(Itl/rk)k, termed monomial exponentials, on appropriate non-overlapping

segments of time. For example, for k-2 we have a segment of quadratic exponen-

tial behavior, etc. Continuity conditions at the Joining points of the seg-

ments provide relations among the Tk. It is pointed out that a C(t1O) so .-

defined is in fact the Fourier transform of a probability density.

With a probability density in hand, we turn to another major purpose of

the paper in section III and consider the description of a total system built

up from subsystems that share the same generic temporal behavior. We find the

conditions under which the probability density for the total system also has -

the same piecewise characteristic function as that of the subsystems. A new

type of stability for probability densities is thereby obtained.

In section IV, we compare the general properties of the piecewise C(tO)

for t>0 with the step-response function in a model of relaxation in complex

systems previously introduced6 and discussed7 by us. The latter in fact shares

two important features with the C(tJO) constructed in section III. Namely it

3 >>
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has: (1) a long time fractional exponential regime preceded by a linear expo-

nential regime; and (2) a relationship between the relaxation times or

T-parameters in the two regimes. The model is reviewed briefly as a way to

gain insight into the meaning of the piecewise C(t O) and the new type of sta-

bility for probability densities discussed in section IV.

II. Temporal Behavior of the Characteristic Function

le want now to consider the consequences of the various phenomenological

and mathematical constraints on the temporal behavior of the characteristic

function C(tIO) introduced in section I. The properties already indicated in

that section are the general ones of location invariance and continuity, and

the more special ones of evenness in t, differentiability to all orders at t-0 "z-

(from the existence of all moments of the dissipative part of the suscepti- ..--

bility), maximum value at t-0, and L2 (-oo).

It should be noted that the physics of all our considerations is nonrela-

tivistic so the details of behavior at or near t-0 is not actually included in

our formulation. The best we can hope for near t-0 is a self-consistent phe-

nomenology. However, this self-consistency leads to some interesting con-

straints. From the differentiability property of C(t1O) at t-0, linear (and

all other odd) terms in its power series expansion around t-O must vanish. In

particular, C(tI0) cannot then be taken to have a linear exponential form at I

t=0. An even more stringent condition arises from the fact that all the deriv-

atives of C(t1O) at t-0 must be finite. Further as already noted, from the

physical meaning of step response, C(t10) is also maximal at t-O. A self-

consistent (but not unique) choice for C(tfO) at or near t-0 is a quadratic

exponential or a Gaussian form centered on t-0.

4 . ..
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For values of t>O, we expect from empirical evidence covering most parti-

cular cases that C(tJO) may appear to decay in one of three general forms: (a)

quadratic exponential (Gaussian); (b) linear exponential (most usually calcu-

lated, and most often observed in simple systems); (c) fractional exponential "- .

(for complex systems). Further for very long times, the real L2 (-00,00) charac-

teristic function considered here is constrained to be consistent with the p

Paley-Wiener bound
8

Ztm C(tIO) > exp-(Itl/Ta), O<c<l (2.1)

p

where T. is a positive real scale parameter. It may be noted that the Paley-

Wiener bound is a fractional exponential so the latter is the fastest allowable

decay as tI . .

Thus for any C(tJO) there are conditions near or at t=O and for very long

times that must be satisfied. At intermediate times, there may be physically

determined behavior that differs from at least one 9 and possibly both of the

behaviors respectively around t--O ani for very long times. We now consider a

generic C(tIO) that incorporates all these features and, dependent upon the

choice of parameterization, can be used to describe any of the observed mono-

mial exponential time behaviors.

We consider C(tIO) to be piecewise continuous with appropriate monomial

exponential behavior in given nonoverlapping segments which cover --<t<- com- I

pletely. The conditions around t=O and for a physical decay regime that has a

quadratic monomial behavior can be satisfied by taking C(tIO) to have the form

exp-(t/T2 )2 in an initial segment pair joined at t-0, i.e. for 0Otl<To. Here

T2 is a positive real scale parameter and To is also nositive real. The pos-

sibility of a linear exponential regime that often occurs empirically and is

the form obtained in standard decay calculations can be allowed by choosing

C(tJO) to have the form exp-ltl/-rl in a second segment pair To<ItI<TL. Here

5
. ~ ~~~ .' . . . .
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gain TI is a positive real scale parameter and TL is positive real. To allow

or complex physical systems that have a fractional exponential decay and for

ong time behavior at the Paley-Wiener bound, C(tI0) is taken to have the form

xp-(tI/ra)a, 0<a<l for TL<tl <o. Again TL is positive real. The continuity

f C(tIO) is assured by continuity conditions at its joining points TO, -TL.

he time behavior of our generic C(tI0) may be summarized as follows. :0IPl exp-(t/T2)2  
,T~tT

exp-(To/T 2)
2 = exp-(TQ/T I) , ItI = T0

(tfO, To, TL; Tk) = exp-ItI/Tl ' T0<ItI<TL.

exp-(TL/Tl)=exp-(TL/T)a , O<a<l, ItI = TL

exp-( Itl IT,)a, o<a<l, TL<Itl <- "-

(2.2)

The symbol Tk in C(tIO, TQ, TL; Tk) represents any of the k=a, 1, 2 since

nly one of the Tk is an independent parameter. From the continuity condi-

ions, it follows that

T 2  TQT I  (2.3a)
2

a= TLa-l IT (2.3b)

he choice of Tk as a label will be made on physical grounds as described in

ore detail below. For the moment we write

C(t10, To, TL; Tk) Ctk(tl0) (2.4)

nd choose Tk to be that rk which falls within the positive t segment with k

xponential behavior. This can happen for only one of the k values. For

xample, if TO<Tl<TL we would write C (ti 0) and note that T 2 = TQT 1 >T 2

1 2 '
a = T-lTl<Ta so that T2 is not in [0,T 0 1 and T, is not in [TL, Similarly
a L L

or CT (tIO), T2 is in [0,TQ] but Ti is not in [TO,TL] and ra is not in [TL,o].
2

6
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Finally for CT (tlO), Ta is in [TL,-) but T2 is not in [0,T O ] and TI is not
a

in [To,TLI. We shall see that C. (tI0) is, for centrally placed Tk on a
k

logarithmic time scale, dominated by its behavior in the region in which Tk

falls. We shall call CT (t0) a k-dominant characteristic function in such
k

cases. However, before addressing this particular point, we want to note some

general properties of CT (tIO).
k

First it is clear that although CT (tIO) is continuous, it is only piece-

wise differentiable with discontinuities in derivative at t=±TQ, ±TL. Further,

location invariance is maintained by the requirement that a translation of the

origin, e.g. by 6, is accompanied by a like translation of time segment end-

points e.g. -TL+-TL+ 6 and TL+TL+ 6, etc. Also we note that C.k (t0) is the

Fourier transform of a probability density. This follows because the nature of

the probability distribution function associated with the characteristic func-

tion depends on the manner in which the latter behaves as ItI- .I0  If it goes

to zero as with our L2(-_,_) class of functions, then a probability distribu-

tion function is continuous. For completeness it may be noted that if the

characteristic function tends to a constant, D, with O<D<I, the associated

probability distribution function is singular and may be of the form of a

Cantor set, for example. If it tends to unity, then the probability distribu-

ion function is discrete.

We return now to the discussion of the generic character of CT k(t10)

which is readily exhibited by considering three mutually exclusive cases of

parameter magnicude: (a) 0<<T 2(<T); (b) TQ<<TI<<TL; (c) TL<<T<<-. Case (a)

corresponds to 2-dominant behavior. The major part of the decay of CrT(tO)

appears as a quadratic exponential, and the linear and fractional exponential

parts are submerged in a long time tail of small magnitude. On the basis of

its direct effect, we could here omit the linear exponential part. However,

.. -.- . .



present construction requires the continuity condition Eq. (2.3a) that pro-

es a relation between T2 and T1. Thus the linear exponential region would

revealed by comparing functional relations for a measured T2 with corre-
I

nding functional relations for a calculated TI. Finally, the fractional

onential or slower behavior must be included at long times to meet the con-

ion of the Paley-Wiener bound. I

Case (b) corresponds to l-dominant behavior. The major part of the decay

CT (tIO) appears as a linear exponential. The latter is of course the most

monly observed behavior in simple systems and is the usual result of theo-

ical calculations based on a random phase approximation or the introduction

a phenomenological friction term. The quadratic exponential segment of

(tJO) is submerged in small deviations at times short compared to T1 but

or some equivalent must be included to meet the conditions on C. (tIO)

t=O. Also again a fractional exponential or slower time behavior must be

luded to meet the Paley-Wiener bound at long times even though that region p

a small magnitude.

Finally, case (c) corresponds to a-dominant behavior. The major part of

decay of C. (tO) appears as a fractional exponential. The quadratic expo- p
a

tial segment has an immeasurable effect at short times but it or its eauiva-

t is essential to meet conditions at t=O. The linear exponential regime

e provides only small deviations that would most nrobablv also not be noted

measurements. Thus again as in case (a) the linear exponential segment

ht at first sight appear to he unnecessarv. However, if there is a linear

onential regime, the measured parameter Ta can be conDared to a calculated

by means of the continuity condition Ea. (2.3b). This continuity condition "...Z.;

n then provides an important relation that is subject to verification. In

t, a similar relation between relaxation time parameters respectively in the

8
p ii l



linear and fractional exponential regimes is a key feature of the model of

relaxation in complex systems6 ,7 to be discussed below in section IV.

We can gain further insight into the time behavior of CT (t0) by con-
k

sideration of the instantaneous decay rate WT (tJO) which is defined to be
k

WTk (tO) = -(d CTk (tlO)/dt)/C k(tO)

t t- TQ, TL  (2.4)

= - d InCT (tIO)/dt
k

We designate WT (tJ0) to be W2 (t10), Wl(tIO), and Wa(tlO) respectively in the
k

segments where CT (tIO) has quadratic, linear and fractional exponential behav-
k

vior. Since CT (tIO) is even, it is sufficient to consider t>O. In the quad-
k

ratic exponential segment, W2 (tlO)-2t/T
2 which approaches a maximum value
2

W 2 (ToIO)=2To/rT-2/TI as t approaches TQ. On the other hand Wi(tIO)=I/T I for2

all TQ<t<TL so there is a discontinuity in WTk (t0) at t-TQ where it falls to
k

one half its limiting maximum value in the ouadratic segment. Similarly there

is a discontinuity at t-TL for Wa(tI0) = at-I/Ta has a maximum limiting value
a

'&1(TL!0) - a/r1 < I/TI. it is clear that this sequential behavior for WT (t0)
k

is independent of the choice of magnitude r's and so occurs for all possibili-

ties of the k in k-dominance.

The sharpness of the discontinuities in WT (t1O) is an artifact of our
k

piecewise construction for CT (to). Nevertheless decay rates depend on system
k

interactions so these or perhaps snmewhat more smooth behavior can be given a

* physical meaning. They can be viewed as due to changes in the nature of the

interactions in the system at It1=To, TL. Such changes can be thought of as

* temporal transformations of the environment in which the relaxation is

*occurring. These transformations can be viewed as the analogs of thermodynamic

phase transformations.

.
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The C.T (tI0) of Eq. (2.2) could be readily generalized by addition of
k

other monomial exponential intermediate segments or appropriate short time or

long time segments. Such a generalization would also involve corresponding

additions (and discontinuities) in WT (t0). The point we wish to emphasize
k

however is that the generic CT (tj0) defined in Eq. (2.2) satisfies all the
k

mathematical requirements for, and can provide an adequate description of the

most usually phenomenological behaviors of real step-response functions. A

simple and useful property of CT (tI0) so constructed is that it has monomial
k

exponential behavior in all segments. This has provided simple continuity con-

ditions, Eqs. (2.3a,b), and further, provides the basis for consideration in

the next section of stability properties for the probability density PTk (W)

belonging to CT k(tIO).

III. k-dominant Stability for Probability Densities

We turn now to a discussion of the stability properties of PT k(,). The

probability density PT (M) corresponding to CT (t00) is a function of w as a
k k

random variable that incorporates properties that reflect the particular

k-dominant and piecewise properties of CT (t0).-C-k

CT (tO) = fPT (W) cosct dW (3. a)
k k

(W) = 1 ' CT (t10) cos Wt dt (3.1b)
-k k • .

We note that CT (t0) reains invariant under scaling of tiy,.e by a numerical
k

factor. From Eqs. (2.2) and (2.4),

C(AtJ0, ATQ, ATL; ATk) CATk(At0) = CT k(t10) (3.2)

This property merely reflects the fact that the choice of scale in tenporal

measurements does not affect the behavior of CT (tf0). On the other hand from

Eq. (3.1a), the probability density must then obey the following scaling rela- I,.,-

tion

10
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PAT (W) AP NAk (3.3)

Consider now N subsystems each of which is characterized by a member of

the set of independent and identically distributed stochastic variables wi. We *

want then a total system made up of these subsystems and characterized by a

normalized summand variable

-1N

w B E Wj (3.4)
Nk i=1

such that the probability density for w is also the Fourier transform of the -

same k-dominant characteristic function as that for the individual systems.

The normalization function B~k is expected to depend on both N and k. Such a

probability density will be called k-dominant stable. We write

-1 N N
PT (W) 6 ~.. (B U WifW) ff P T~ (Wj)dWj (3.5)

k -~- k~j~k

which from Eq. (3.3) can also be written in the form

N N. N- -

PT~ (w) =B f.f (E w -w) nI P T (B~k wi )dwj (3.6)
k -k i-1i i-1 k

Here

wi B Wj (3.7)
Nk

Transforming the 6-function to t-space and carrying out the N wi integrals,

we obtain

~ ~)= f [C ~(tIO)]N cog wt dt (3.8)
k Nk k



7 7 .7 7 .-

The time arguments in the products of CB T(00) in the integrand are the same

so the resulting product of N CB3 Tk(tIO)'s has the piecewise structure of
CB~~k~k( k --

CBT (tIO). However, Eq. (3.8) is not a proper equation unless

(t)N C(t) (3.9) ' -
[CBRkTkT tt O )] N .C k .--

4 k k

Using the monomial exponential property of all the segments of CB Tk(00) and

continuity conditions Eqs. (2.3a,b) as appropriate, we find Eq. (3.9) follows

if

Bp - NI/k (3.10)

le have the result then that k-dominant stability is achieved for a prob-

- ability density of a summand variable that is normalized by Ni/k. For k-'2,

N1 / 2 provides an enhancement in w with respect to the wi . For k-1, w and the

individual wi coincide while for k-a, 0<a<l, w is reduced with respect to an

individual wi.

We can view the normalization as a manifestation of an interaction envi-

ronment that is introduced when the independent subsystems are put together to

form the total system. However, once the total system is formed, it can be

viewed as a building block subsystem for a larger total system. It follows

that the interaction environment for the single system must be self-consistent

with the interaction environment for the total system. An important question

is how the interaction environment is first set up on a microscopic basis or

alternatively, if k-dominant stability is taken as a primary principle, how a

microscopic interaction environment is arranged to form the appropriate build-

ing block. In the next section we consider a model of relaxation in complex

systems that can be viewed as providing a microscopic basis for a-dominant

behavior. If k-dominant stability is taken as the primary principle, all -"

models of relaxation must be constructed in such a way to yield k-dominant

behavior.

12. -
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In general, this complementarity of microscopic basis and k-dominant

stability may be viewed in the following physical way. Theoretical descriptions

of relaxations in a complex physical systems such as glasses and polymers are

usually based on a microscopic relaxation species. The latter can e.g. be a

dipolar group, a hopping charge, a spin, or an entire polymer chain or segment

of it. A particular relaxation species i in a complex environment and inter-

acting with a nominal heat bath, will have behavior described in terms of a
i

a relaxation function 4i(t), or a characteristic function C, (tIO) or a proba-
ki-;

ability density PT (W). Measurements in relaxation are macroscopic quantities
k

such as transient current, stress, magnetization, volume and shear flow. The

stochastic variable w of the macroscopic quantity is a normalized sum of the

form of Eq. (3.4). It is generally assumed in all considerations of relaxation

that the macroscopic (t) is identical to the microscopic 4i(t). This assump-

tion is equivalent to the assumption that Pk (w) is a stable probability den-
k

sity or in our description, k-dominant stable. From the results of this sect-

ion, these equivalent assumptions are consistent with the requirement that

4i(t) be the positive time part of a k-dominant CT (tIO) of the form given in
k

Eq. (2.2).

As a final comment in this section, it is interesting to consider the

relationship between Levy stability1 4,1  and the k-dominant stability intro-

duced here. While we have restricted ourselves to real characteristic func-

tions that must be piecewise with multiple monomial exponential behaviors,

Levy deals with characteristic functions with magnitude equal to a single mono-

mial exponential with monomial power g, O<g42. Except for the possibility of

the quadratic exponential behavior, such monolithic behavior cannot meet the

physical conditions on the autocorrelation function at t-0. For a real charac-

teristic function, the monolithic quadratic exponential is ruled out by the

13
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physical unrealistic requirement that its instantaneous decay rate is propor-

tional to t and therefore blows up as t-- and such behavior is never observed.

For any characteristic function, the limitation to a quadratic exponential mag- S

nitude at intermediate times is not sufficiently general to provide a satisfac-

tory basis for the description of decay phenomena. Thus from the viewpoint of .'

physics, the present generalization to k-dominant stability and its concomitant S

piecewise characteristic function, or some further generalization yet to be

made, is a necessary step beyond Levy stability.

IV. Comparison with the Ngai 'Model of Relaxation

We now take advantage of the fact that C. (tJO) for t>O can be identified
k

as a step response function to compare our constructed CT (t0) with the relax-
k

ation function obtained in the so-called Ngai model of relaxation. The latter

model predicts: (1) a fractional exponential decay in a time regime t>w'-

c

when wcTa>>l; (2) a relationship between a relaxation time Ti in a linear expo-

nential regime t<<w- and -. Here wc is a cutoff frequency that is a param-
c

eter of the model as described below and we have taken the liberty of using

Tk, k-a,[ to suggest the direct connection with our CT (tj 0). It is clear
k

that the model predictions are consistent with k-dominant behavior for

CT (tJO) and, as we shall see in detail below, the continuity condition Eq.
k

(2.3b). Thus the model may indeed provide insight into the physics of the for-

mation of CT (tJO) and the question of the microscopic origin of the building
k

blocks of k-dominant stability.

To provide context for such a discussion, we briefly review the concepts

in the Ngai model. The model considers a relaxing entity that is coupled to a

heat bath on a microscopic level. In accordance with the conventional descrip-

tion of relaxation, after some induction time, say t>TQ, the system initially

14..................................................- ,•...
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relaxes according to a linear exponential. The complexity of the system is

modelled in terms of correlations imposed on the simple system. These correla-

tions are represented by modes which are distinct from the heat bath but which

also interact with the relaxing entity. These modes were called correlated

state excitations in Ref. 6. The correlated state excitations themselves

modell, in terms of the energy level spacings of the Gaussian Orthogonal

Ensemble (GOE) of random matrix Hamiltonian theory. 1 2  The level spacing dis-

tribution of the GOE gives the energy density function N(E) of the correlated

state excitations which are also called level spacing excitations.7 N(E) varies

linearly with E up to an upper cutoff Ecz wc that defines the low frequency

regime, levels off to a plateau at intermediate energies, and vanishes (linear)

exponentially at high energies. As noted above, long and short time regimes S

for the model are quantified in terms of wc, i.e. wct>>l means t in the long

time regime while wct<<l means t is in the short time regime (for us, inter-

mediate time regime).

The relaxing entity is then not only coupled to the heat bath but also to

the energy level spacing or correlated state excitations. The latter coupling

strength is assumed to be independent of the energy of the excitations. It is

important to emphasize that the level spacing excitations are not part of the ''

heat bath. The excitations are in equilibrium prior to system excitation, are

driven out of equilibrium during the relaxation by their interaction with the 0

measured relaxing entity, and eventually return to equilibrium in a process not

addressed specifically in the model.

The interaction between the relaxing entity and the level spacing excita-

tions leads to a long time fractional exponential decay as a manifestation of

the modification of the instantaneous decay rate from Wl(t)-.T- for wct<<l

Wa(t) - Wl(t) exp[(a-l)y] (wct)'-1' 0 <c%< 1 , wct>>l (4.1)

15
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I

Here y is the Euler constant. Instead of a, the model is usually formulated in

terms of the parameter

n = 1-a (4.2)
I

where , 2CIV1 2 (4.3)

Here C is the slope of the linear portion of the density of states N(E) and

IV12 is the averaged squared magnitude of the coupling interaction between the

relaxing entity and the level spacing excitations. As mentioned above, JVJ is

assumed to be independent of the energy of the excitation.

The long time step response function is written as p

-(t) exp-(t/Ta)l-n , wct>>l (4.4)

It should also be noted that Eq. (4.4) applies for experimental observations

where wcTa>>l so 0(t) meets the condition (c) of a-dominance. Given Eq. (4.4),

the instantaneous decay rate for wct>>l is

Wa(t) ata-/Ta (4.5)

Consistency of Eqs. (4.1) and (4.5) requires that

Ta  a exp[(1-a)yl wl-a T1 (4.6)
a c

Equations (4.4) and (4.6) are the predictions of the Ngai model which are

readily susceptible to experimental verification. For example, let us consider

the effect of elevated temperature on relaxations in complex systems such as

amorphous polymers and glasses which at normal temperatures have the a-dominant
I

form of Eq. (4.4) and Ta is thermally activated. The Ngai model has an addi-

tional prediction given by Eq. (4.6) which relates Ta to Ti. If Ta has an

Arrhenius temperature dependence with activation energy E*, then Ti will have a
a

different but oredictable activation energy of Ea aE*. More generally, a
a

dependence f( ) of Ta on a physical parameter i, such as molecular weight M of . - -

16
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a polymer chain in polymer melt relaxation or isotope mass m of alkali ion in

conductivity relaxation of glasses, will correspond to a different [f(C)Ia

dependence on C for T1 . These predictions have been verified in many different

complex systems. 1 4

An interesting possibility that is allowed in the Ngai model is the

cross-over from a-dominant to 1-dominant behavior by changing the conditions of

physical measurement. To discuss this point further, we complete the contact

between the Ngai model and the construction of CT (tJO) by identifying TL in

Eq. (2.3b) to be

TL  al/(a-l)exp(-y)w-I (4.7),-..[ i
c

Then we can consider a change in physical conditions by which TL does not vary

significantly but where Ta is changed by many orders of magnitude so that a

crossover occurs. In such a case, the new T1 can obey

-r << TL (4.8)

arid the behavior is 1-dominant because it is now TI that is in the interval

(TQ,TL). Perhaps surprisingly, such a situation occurs in a straightforward

way in the temperature dependence of the relaxation of several materials "

including the glass-forming fused salt 14 0.4Ca(NO3)2.(O.6)KNO 3 , the ionic con-

ductor sodium 5-alumina,15 and in polymeric systems. 16

It may be noted that most presently proposed models' 7 ,18  of relaxation . -

encompass neither the prediction of Eq. (4.6) nor the possibility of crossover 0

of type of dominant behavior. Although the Ngai model does not require the

sudden discontinuity by changing the decay rate from Wl=T-1 to Wa(t) at the

single point t-TL, it is compatible with such an interpretation. Then instead _

of the more abstract discussion of the temporal analog of thermodynamic phase . -

transitions in section II, we may now consider W1 (t) to be suddenly dressed by

17
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means of interaction with correlation or level spacing excitations at TL to

yield the decay rate Wa(t).

Correlation excitations may also be viewed as providing the vehicle by

which a-dominant stability is introduced microscopically. Thus the Ngai model

may be viewed as providing the first building block. On the other hand, as

indicated in section III, we may view a-dominant stability as a primary prin-
I

ciple. Then the microscopic interactions that enter the first building block

must be compatible with a-dominant (or more generally any k-dominant) stabil- .'-

i ty.

. . ... 

o 
. .-
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