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W. V.7

Large Deviations for the Maxima of Some Random Fields

by

M. L. Hogan * and D. Siegmund t

Columbia University and Stanford University

Dedicated to Herbert Robbins on the occasion of his 70th birthday

Several statistical problems which involve the distribution of the maximum of Gaus-

sian random fields are described. Specific examples are the pinned Brownian sheet and

a Brownian bridge with "reflection," which arises in certain change point problems. In

these concrete cases the method of Pickands (1969, Trans. Amer. Math. Soc.) is adapted

to give large deviation probabilities for the maximum, both for continuous and for discrete

indexing sets. A different method is used to give a second order correction for the reflected

Brownian bridge and hence for reflected Brownian motion. The numerical accuracy of the

approximations is studied via simulation.

Research supported in part by an NSF Postdoctoral Fellowship.

t Research supported in part by ONR Contract N00014-77--0306 and NSF Grant MCS80-24449.
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1. Introduction and Summary.

A random field is a stochastic process indexed by a more than one dimensional set,

typically a subset of the n dimensional integer lattice or n dimensional Euclidean space.

We shall call such a process an n dimensional random field. Since the random variables

themselves assume real values, no confusion should result from this terminology. For the

most part we consider only the case n = 2, but some of our methods are valid more generally.

We wish to discuss some examples of random fields arising in statistics. The statis-

tical questions give rise to probability questions about the random fields, among which is

determining the distribution of the maximum of the field over some subset of its indexing

set. We deal with fields which are closely related to simple one dimensional processes such

as random walk, Brownian motion, and Brownian bridge. There are many techniques for

deriving exact results about the maximum of these one dimensional processes, mainly based

on the strong Markov property and the relation of the time at which the process first ex-

ceeds a level (first passage time) and the maximum of the process. For higher dimensional

random fields there is no natural linear ordering of the indexing set. Consequently there are

no first passage times, and the techniques that give exact results for one dimension work

only approximately or not at all in more than one.

On the other hand there are methods for approximating the tail of the distribution

of the maximum, which are not intrinsically one dimensional. These have been developed

mainly in the context of Gaussian random fields, especially by Pickands [13], Bickel and

Rosenblatt [4], and Quails and Watanabe [14]. The techniques can be broken into two

parts. The first is to observe that the contribution to the probability of ever crossing a high

level comes from a small neighborhood of the subset of the indexing set where the marginal

probability of being above the level is greatest. Second, when this subset is not a single

point, it can be broken into small pieces which contribute approximately disjointly to the

total probability, which consequently can be obtained by adding together the contributions

of each small piece. The method does not in general give explicit results, and in fact does

so only rarely in the papers quoted above. For the problems in which we are interested, it

does give explicit asymptotic approximations for the tail probability of the distribution of
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the maximum.

Since our interest in these approximations arises because of their relations to certain

statistical problems, these problems provide criteria for judging whether the approximations

are adequate or not. Usually the probabilities can be interpreted as the significance levels of

* statistical tests, so it is important that they be accurate when the true probabilities are in

the range .01-.10. We discuss later how accurately the asymptotic expressions approximate

the actual distribution.

4 We begin by describing two statistical problems that lead to random fields: the em-

pirical distribution in more than one dimension and certain change point problems. In

each case we consider in some detail two random fields, one of which is common to both

.- problems.

Suppose that XI, X2," are independently and identically distributed with a contin.

uous distribution function F. Let

F.(z) = ,,,-'
t=

be the empirical distribution function and

b.(z) - n1 1/[F.(z) - F(zl]

the empirical process. The change of variables z - F(z) converts this to

D.() - ni/2[(z) - zI,

where
n

Un(z) -n- ' (o,,(F(X)).

The random variables F(Xi) are independently and uniformly distributed on (0, 1), so the

distribution of D,(z) does not depend on F. It is well known that the limiting distribution of

Dn(z) is that of a Brownian bridge on (0,11 (cf. [51, Section 13.6). The Kolmogorov-Smirnov

* statistic is

n 1/2 sup[P,(z) - F(z)J sup Dn~z).
.. ~* O<*<l
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Thus the distribution of the Kolmogorov-Smirnov statistic does not depend on the under-

lying distribution function F, and its limiting distribution is that of the maximum of a

Brownian bridge.

Now suppose that we have independent, identically distributed bivariate observations

(Xi, Y1) with distribution function G(z, v). Assume that Xi and Y have continuous marginal

distribution functions F, and F2 respectively. The empirical distribution function of the

first n observations is

n

G.(z, v) = n- . 1l(..(o0,,l(Xi. Y).

Set

b.(z,V) n'I2IGn(z, V) - G(z, 00)] - o< Z, < 00.

With the change of variables z = FI(z), w = F2(V), D. transforms to a process on the unit

square

Dn(z, t) = W)/ 2 [Un(Z, W) - G(Fi'(Z), F;'(W))],

where
n

Un(z, wo) = ,- I x,(o,,jx(o,.] [F(X), F2(Y).

The Kolmogorov-Smirnov statistic is

n /2 sup[G.(z, Y) - G(z, v)I = sup D.(z, to).

The random field D,(z, W) converges to a limiting Gaussian random field Wo(z, w) on the

unit square, but unlike the one dimensional case the covariance function of the random field

depends on the underlying distribution G. The special case that Xi and Y are independent

is particularly important. Then the covariance function is K[(zi, wo), (z2 , W2) = (zt A

z2)(w, A W2)(I - z1 V Z2)(I - Wt V W2). This random field, the pinned Brownian sheet, stands

in the same relation to another random field, the Brownian sheet, as the Brownian bridge

does to Brownian motion in one dimension. The question suggested by the Kolmogorov-

Smirnov statistics is to compute the distribution of the maximum of the pinned Brownian

sheet.

In Section 2 we establish

3



Theorem 1. As u -0

P{supWo(z,w) > u} ,,41og2 u2 exp(-u 2 ). (1.1)
ztv

Goodman [8] showed that the probabiity on the left hand side of (1.1) exceeds (2u +

1) exp(-2u2 ). An upper bound is given in [6].

Since the distribution of the two dimensional Kolmogorov-Smirnov statistic depends

on the underlying distribution G, Adler and Brown [11 raise the question of finding

sup P(sup D.(z, w) > u},

and show that in the asymptotic limit (n -+ oo) the supremum is attained by a two dimen-

sional distribution C which is uniform on the off-diagonal, z+to = 1. Moreover, the limiting

value of this supremum has the following representation in terms of the one dimensional

Brownian bridge, Wo(t), 0 < t < 1:

P{ sup [W0(t) - Wo()] > u). (1.2)I o<.<*~1

A slightly more general quantity than (1.2) arises in a class of change point problems, which

we discuss next.

As a second example we consider a class of change point problems, more or less as

formulated by Levin and Kline [12]. Let X, i = 1, 2,. .., m be independent, normally

distributed ranIom variables with means ;4 and variance 1. Consider the problem of testing

Ho :#1 =..-#2,. PO)

against
H, :31_<p, < P2< , , <'", 2Al=P oop

The alternative hypothesis H, has been called a square-wave or epidemic alternative because

an epidemic runs from time pi through p after which the baseline rate po is restored. It

may be compared to the more common hypothesi3 of a single change point where, in effect,

02 tn.

/..
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If it is assumed that po and 6 are known, the log likelihood ratio statistic for testing

Ho against H, is given by

Z,=6 max [S -jpO -(Si - ilo) -(j -i) 6 21

= ~,max ' (1.3)

= max[S - ins,] j,
im i "

where 5, =61S,- i(pa + 6/2)].

When po is unknown one possible course, suggested by Levin and Kline [121, is to

replace po by its estimate under Ho, Stmn, which leads to the test statistic

Z2 = 6 max [Si - j Sm/rm - (Si - Sm/rm) - (j- i)6/21. (1.4)
0_5i<j~m

Levin and Kline are interested in Bernoulli and Poisson random variables rather than nor-

mal. Since Po is a nuisance parameter, they suggest that the distribution of Z2 should be

calculated conditional on Sm. The conditional and unconditional distributions of Z2 are

the same in the normal case, but in general this adds another feature to the problem.

Alternatively, the actual likelihood ratio statistic may be computed by maximizing the

log likelihood over Po, pl, and P2. This gives

Z3 = 6 Max [Si - S i - (j - i)Sm/m - 6(i - i)(1 - U - i)/m)l. (1.5)o<_i<i<_m2

When 6 is also not known one might use either Z2 or Z3 based on some value 6o, the

smallest difference in means which is considered impbrtant to detect, or proceed to the full

log likelihood ratio statistic by maximizing (1.5) over 6, obtaining

Z4 = Max ([S, - S, - (j- i)Sm/,ml+/[(j - i)(1 - M'(j i))1/2),

where z+ = max(z, 0).

Each of these statistics is the maximum of a Gaussian random field defined on {(i, j):

0 < i,j i m). !t is interesting to compare the third expression for Z, given in (1.3) to what

would be obtained under the simpler alternative hypothcsis of exactly one change point.

This is tantamount to setting P2 = m in HI, which leads in the case of known Po and 6 to

5



the log likelihood ratio statistic

Z6 max[S., - Sid
i<fl

= Sm - min Si.

This random variable can be shown by means of time reversal to have the same distribution

as max(O, S,. -S,.) ([7], p. 198), and consequently the distribution of Z6 is determined

by solving a first passage problem for the random walk S. However, the time reversal

technique applied to Z, leaves it basically unchanged. In addition, first passage problems

for ordinary random walk are analytically tractable because the value of the random walk

at the time of first passage is rather well determined. (For Brownian motion it would be

known exactly.) In principle the problem of computing the distribution of Z, is equivalent

to a first passage problem for the "reflecting" barrier process

Wi S - min Si,
'ii

in the sense that P{gZ > u} = P{T _ m}, where T = minfj : Wi > u}. The fact

that the value of §T is not known, even approximately, makes this problem substantially

more difficult than the corresponding passage problem for S. (The distribution of §T has

been studied in 118], at least in continuous time, but this does not seem to help us here.)

Nevertheless, the observation that (1.3) and (1.4) can be formulated as one dimensional

problems is very useful. See Theorem 3 below and its proof in Section 3. There does not

seem to be any corresponding transfcrmation of (1.5) to a one dimensional problem.

In order to state the following results it is convenient to let Wf(t) denote one dimen-

sional Brownian motion conditioned to equal C at time t = m. Then Ze = maxo<p<m[W(t)-

Wf(a) is essentially a continuous version of Z2 defined in (1.4). In Section 3 we prove

Theorem 2. Suppose u = m; and f = me0 for some f > 0 and CO < ;. Then as m --# oo

P{ .max [W(j -Wd(.) > u) = V212(2f - Co)112(2u- f)(u- f)/m+o(m)] exp[-2u(u- C)/m],
(1.6)

where v(.) is defined in (3.2), and i,j are restricted to be integers.

6
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Theorem 3. With the same asymptotic normalization

P( max [We(t) - Wf(a)] > u} = [2(2u - )(u - e)/m + 1 + o(1)] e-xp[- 2u(u - C)/m]. (1.7)

Theorem 2 was stated and Theorem 3 conjectured in [16]. Related statistics are dis-

cussed in [3].

Theorem 2 is a sampled version of Theorem 3. The two approximations differ in the

leading term by the factor v2[2(2 - Co)], which occurs because of the discrete indexing set

in Theorem 2. For computational purposes it usually suffices to use the approximation

v(z) " exp(-pz) + o(z 2) (z -- 0), (1.8)

where p is a numerical constant approximately equal to 0.583 ([171, X.2). Typically the value

of v2 is in the range .2 to .5, so failure to account for the discreteness usually overestimates

the true probabiity by a considerable amount. Theorem 3 contains a higher order term in

an asymptotic expamsion of the tail probability for that process.

If the max in Theorem 3 were taken over all s # t, instead of a < t, it would be easy

to calculate the probability exactly. For example,

Prmax [Wf(t) - Wf()] > u} (1.9)e t<m

00

S{m-'[n(2nu - C)(u- f)exp[-2nu(nu- f)/m]- (2n + 1) exp[-2nu(nu + e)/m].
n=-oo "°

n;60

For the special case f 0 this becomes

00

Pmax [Wo(t) - W0(8)] > u} = 2(8xu2/m - 2)exp(-2n 2 u2 /m). (1.10)

From considerations of symmetry, it appears that the probability in (1.7) in the case = 0

should be about 1/2 that in (1.10). This heuristic is asymptotically correct at the first order

term, but not the second. It may be possible to evaluate the probability in (1.7) exactly,

but we have no idea how to do it.

By integrating out f one obtains from Theorems 2 and 3 analogous results for uncon-

ditional proces-es. For example we have,

7
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Corollary to Theorem 3. Let W(t), 0 < t < oo, be standard Brownian motion and

p > 0. Suppose m - oo and u -* oo such that mpu -1 is some fixed number in (1, o).

Then

P( max [W(t) - W(a) - u(t - s)] > u} = [2p(mp - u) + 3 + o(1)]exp(-24u).

Proofs of Theorems 1, 2, and 3 are given in Sections 2, 3, and 4 respectively. A

numerical example illustrating the accuracy of the approximation of Theorem 2 appears in

Section 5, which also contains a heuristic attempt to adapt the expansion (1.7) for use with

a discrete indexing set.

2. Proof of Theorem 1.

In this section we use Pickands' [13] method to prove Theorem 1. The method was

also applied to random field problems in [4) and [141. Our exposition follows closely that

given in [111, Chapter 12, in the one dimensional case. Large parts of the proofs carry

over almost word for word, but with two novel features. All of the authors above were

interested in stationary fields or processes in which the random variables corresponding

to each point in the indexing set contribute equally to the maximum. Our processes are

nonstationary, and asymptotically the only contribution comes from a neighborhood of

that subset of the index set where the marginal probability of being above a high level is

a maximum. For the present case of the pinned Brownian sheet, Wo(e,t) is a zero mean

Gaussian variable. Therefore, P{Wo(s, t) > u} is maximized at those values of o, t which

maximize E[W02(s, t)] = ot(1 - st). This set is the section of the hyperbola st = 1/2 lying in

the unit square. Technically this means that the major contribution to certain sums comes

from a neighborhood of the critical set, resulting in delta-functon like approximations. Every

argument in [11] must be modified to take this fact into account, but it is straightforward

to do so. One example of the necessary changes is given in Lemma 3, but most, along with

most detailed proofs, are omitted.

Secondly, the general expressions for the tail of the maximum of Gaussian random

fields involve a constant given in terms o! a complicated functional of the maximum of a

related process, which can be shown to be positive and finite, but otherwise is not obviously

- , ', , ., , ,. - ' - , _. ..-. " - ." ._ - .- _ . __. .: . .. :- i8



tractable. The related processes which occur in the problems we discuss are simple enough

to allow explicit evaluation of all constants. The appearance of the function v in Theorem

2 because of the discrete indexing set is a particularly interesting example. See Lemma 3.4.

The proof of Theorem 1 is given as a series of lemmas, the proofs of which are mostly

omitted because they follow closely those of [11], Chapter 12. See also the analo;ous results

of Section 3 where occasionally more detail is given.

We shall use the notation

o(z) = (2r)-/2 exp (' .!2) ,  t(z) so (z)dz.

Also, for any random variable X, P{X E dz} denotes the measure corresponding to the

distribution function of X. In particular if X is absolutely continuous with probability

density function f, then P{X E dz) = f(z)dz. We write X , N(p, tr2) to mean P{X <

4/ i~( - .sh1

For the rest of this section u2q = a. Let r) = -- Wo(a - qo, t - qr) - ul.

Lemma 2.1. Suppose o, r > 0. Then

E('( r) I "'(O0, 0)= z) = - s-'aa - t-'ar + O(q)

and

COV( ."'(OuI, 1'2), "I(U2, r2 ) I I'"(0,0) = z) = ars(ri A r2) + t(a1 A '2)] + O(q),

where in both cases O(q) holds uniformly for (at, ri,f2, r2) in compact sets and a,t with at

bounded away from 0.

Proof. A straightforward calculation suffices.

Remarks. Since the conditional distribution is normal it is determined by its mean and

covariance. Furthermore, as u - oo (hence q - 0), "'t, r) converges in distribution to a

process having a very simple representation. Let X1(o) and X2(r) be independent standard

Wiener processes. It is easily verified by checking covariances that the limiting process can

be represented as

(at)1/ 2 X1 (O) - ac7/s + (aa)'/ 2X 2 (r) - ar/t. (2.1)

• • .o. .- ..
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Table I

Approximations to P(maxo<iqcm(Sj - S,) > U SI = f)

Monte Carlo Theoretical

u n m-'e (N = 1600) (1.6) Modified (1.7)
4.0 20 -.4 .00 ± .004 .024 .028

5.0 20 -.4 .0056 ± .0019 .0043 .0048

2.0 20 -.5 .344 ± .012 .298 .348

3.0 30 -.7 .044 ± .005 .044 .046

3.0 30 -.5 .156 ± .009 .135 .150

6.0 30 .0 .257 ± .011 .171 .256

8.0 30 .1 .174 ± .009 .110 .169

5.0 50 -.4 .053 ± .006 .049 .055

6.0 75 -.3 .117 ± .008 .094 .104

5.0 100 -.5 .063 ± .006 .067 .070

9.0 100 -.15 .117 ± .008 .098 .113
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2. This approximation appears to be moderately good, but consistently too small. It is

poor for > 0.

For random walk first passage problems there exists an approximation which uses a

completely different normalization than the large deviation normalization considered here,

although the resulting approximations are often are very similar [2, 9, 15, 171. These ap-

proximations often have the interpretation that they equal the analogous Brownian motion

probability corrected for discrete time and (if necessary) for nonnormality of the random

walk. Moreover, the correction for discrete time is simply to displace the first passage level

u by the average amount that the discrete time process jumps over the boundary. In the L

Gaussian case this is just the constant p which appears in (1.8). See [171 for a more detailed

discussion of this approximation and a comparison with large deviation approximations.

For random walk problems with reflecting barriers, it is clear that the analogous mod-

ification is to displace the first passage boundary by 2p (cf. [171, Theorem 10.16). If one

were to make this modification to the Brownian motion approximation of Theorem 3, to the

extent that .8) is an equality, the resulting approximation would be the same as (1.6) to

first order. Now, however, there are higher order terms, which might conceivably improve

the approximation.

The third entry in each row of Table I gives the approximation of Theorem 3, but

with u replaced by u + 1.166. This second approximation seems to be slightly better in

cases where both approximations are good and substantially better when > 0, where the

approximation from Theorem 2 is not particularly good.

It appears to be a very complicated task to find a genuine second order approximation

or to justify the one suggested here. The problem becomes even more difficult for other

Gaussian fields, e.g. those considered in Theorem I and in (1.6), which do not appear to

have a convenient one dimensional representation.

2.

20



m}. To obtain an appropriate bound for the first term let vU) = cW(u) be defined by

W(ou)) ff in W(s)

and observe that

{T( 2)(u) < M)} C U ({TO)(u) < n < o(2)(u), T(2)(u) <.m}
n=1

U { max [W(t) - W(e)]> -u)) U (T(') (-u) <rm},
u-1~2 2,

and these events are easily analyzed individually. (Corollary 3 of [101 can be used to show

that
P("){ ( l IT "  ,7(2), (2) < M} _< (p(,-){IT < M})2,

or a somewhat weaker result may be obtained by "bare hands.') For the rest of the series p
a crude but more than adequate bound is a consequence of the following inequalities: for

any k,

P(-} ) ( <oo} mk P("'I{T(2) < o) + mk P(,){T('hnl < m)

and

P( ) {T(k k <n)5 < ,(P{W(t) - W(8) > u for some (I- 1)Iki 8 < <( + 1)ki).0ri Ol

5. Numerical Examples.

In this section we report the result of a Monte Carlo experiment to indicate the ac-

curacy of the approximations obtained in the preceding sections. As mentioned in the

introduction, the statistical origins of these problems, where they arise as significance lev-

eis of statistical tests, suggests that we should be particularly interested in cases where the

probability is about 0.01 - 0.10. (For the same reason we are more interested in non positive

values of the drift parameter, C.)

For selected values of u, m, and C Table 1 gives approximations to the probability in

(1.6). The first entry is a Monte Carlo estimate based on a direct frequency count from a

1600 trial experiment. The second entry is the asymptotic approximation given by Theorem

194 "



lim-p , {T<m - t - e, W(T) z + U}/,12c1/2 (4.3)C--0 SI-[-Il/ ,t

= 2(m-t)' { z(iu+z - )exp[-2iu(iu + z - f)/(m - t)], z>f -u

==o(2iu+ - z)exp[-2iu(iu+ -z)/(m-t)], z < C-u.

After a tedious argument to check that these formal substitutions, especially that

coming from (4.3), can be justified by the dominated convergence theorem, we obtain the

upper bound

lir C'-'Pol"{M,+. C dz, lt+, E (t, t + c), Tl+, < i, W(T) = u + z)/{2Jld3/mts/2(1 - t/M)3/2)

r. (z - CI/r) ]f { Z, 1 (2it + z - C) exp-2iu(iu + z- f)/(m - t)], z> C-u(4.4)

LN( -.Int/m)}/ F 0 _(2i 4- f - z) exp(-2iu(iu + C - z)/(m - t)], z < C - u.

An exact upper bound for the probability of interest can in principle be obtained by using

(4.4) to bound (4.1). A lengthy asymptotic evaluation of the resulting multiple integral

yields the right hand side of (1.7).

The lower bound is substantially more complicated, and we briefly outline the argu-

ment. Let TO1 ) 
- T and for k > I on {T(-) < m} let

T(k) = inf{t : t > TO ), W(t) - inf W(S) > ).
T(i-i)<S<

Then by Fatou's lemma, a lower bound for the right hand side of (4.1) is the upper bound

discussed above minus the limit inferior as c - 0 of

f J (-) {T < t < T , ,+, t, t + e),t8+4 < m9 (4.5)

III
W(T) = u + z~dt :5 ClJ FO')(t < T(k') < t+ c~dt + E'JP() (T() < t,

2(k+ ') > t + C, 644-. E dz, 11+t E (t, t + e), to+, < m, W(T) = + z}dt
P(M (Tkl < M,).

1=i

Intuitively it seems clear that each term in the series (4.5) is exponentially smaller than its

predecessor and hence the entire series is exponentially smaller as m -* oo than P ') {T <

1l

............................. .. .. . . . . ••i



and

PW)1 (mi W(.o)E6dz = 2 exp(-2q 1v 2 )(t1 + . 2)dz/c'/ 2.

* Formally substituting these expressions into the right hand side of (4.2) yields as an upper

bound for the left hand side

-4z dz e jp[(z - et/M)/{t(1 t/M))1/2j/t3/2(1 t/m)1 1 2

j j 1172 (tii + 172)Po(th + "2( ./ T<m -t -c, W(T) = z+ u

+o0(c).

A straightforward calculation beginning with (say) Theorem 3.42 of [17] shows that

17



..

W(t) - A4 2 u}. In this notation we are interested in

Pf (T <m}

Also let r, = inf{t W(t) = z} and define o' by W(a) = MTA ,. Finally let

,=Z(z) =inf {8: > t, W(S) (z, + U)}

and t, s sup{ 8 5 t W(8) = M(t)}.

Lema 4.1.

P0( ) {T < 0 ="0 m C-'P ) {T > t, M,, dz, +,, E (t, t + ),.1 0 f~ -o It (4.1)

+ < m, W(.) =u + z}dt.

Proof. We start from the relation
00

Po(m)T < - limC ' f ){T < m, r E (t,t+ e), W(a) e dz)dt.

It may be shown that the absolute difference between this integral and the right hand side

of (4.1) is majorised by a sum of terms, each of which as a consequence of Fatou's lemma

is less than

Jo lim -P('){ sup IW( 2) -W(81)1 > u}dt,'-.- -..O " 9 <81<82<8+C

which is easily seen to equal 0.

To obtain an upper bound for (4.1), we omit the condition T > t and rewrite the right

hand side by conditioning on W(t) and W(t + c) to obtain

P,(-){M,+, e dz, 1,+, C (t,t + e), T, < , W(T) =U +z}

f=. P(7 > , W (E d.l}P( ()W(e) E dY2} (4.2)

P..),{MEz')T - t, W(i') = z + u}.

In (4.2) each of the first three factors can be evaluated explicitly with the aid of (3.13) of

[171. We do so and then make the change of variables yv = z + q l/2 to obtain as c -- 0

eom){ .. > t, W(t) e dv,}

- ( - C/m)/{( - t/m))'/jdIaf/t 3 /2 (1 - t/m)/2,

fill- ( 6 d ) v, " Ob(q - )

16....... ..........-. .. . . . . . . . . .



This quantity can be calculated numerically (e.g. [20], Section 2.4) or approximately as

suggested in (1.8).

Lemma 3.4.

lim n-2 H(Ao, n) = 2(2 - fo)3Y2 [2(2C - Co)]/(C - o),j

where v is defined in (3.2).

Proof. It suffices to evaluate the limit on the right hand side of (3.1). By the definition of

T. and Wald's likelihood ratio identity (cf. [20J, Theorem 1.1)

P-,o{maxj > z4 = P-,,({T, < n} = Epo[exp(-2poUr.); T. < j
'<n

= exp(-2ox)Epo exp(-2poR.); T', < n).

Hence it suffices to evaluate the limit as n -- co of

n- ' j EpO{exp(-2poR.); Ts < nidz. (3.3)

* We split this integral into three pieces, 0 < z 5 (1 -e)npo, (1 -c)npo < z < (1+c)npo, and

I (+e)npo : z < co. Uniformly for z:< (1-c)npo, P,.o(T. :- n} _ P,(S I (l- )npo) -.

1, so by (3.2) the limit inferior of the expression in (3.3) exceeds

lim inf n-' E,(exp(-2poR.)}dz _ (1 - e)pov(2p).
n-co Jo

Fur an upper bound, we use the obvious inequalities Eo0 {exp(-2poR.); T. < n) <

E,0o{exp(-2poR.)} or P,o{T. _ n} according as x _< (1 + c)npo or : > (I + e)npo. The

range z _ (1 + c)npo is analyzed as above; and for z > (1 + )npo, Pp(T. < n) is bounded

by the corresponding probability for a Brownian motion process. Some calculation shows

that the lim sup of (3.3) is smaller than (I + e)pov(2po). Since e > 0 is arbitrary, this

completes the proof.

Proof of Theorem 2. This follows immediately from Lemmas 3.3 and 3.4.

4. Proof of Theorem 3.

Let P(t be the probability measure under which W(-) is a Brownian bridge starting

at a at time 0 and terminating at 6 at time t. Let M = minosst W(s) and T = inf{t

I .



Proof. This is proved just like Lemma 2.3. We indicate the high points. Let

max Zi, > U}.
kn<i!_(k+)n

It can be shown that for m and n large

P{max j> )M Bi.

The main contribution to the sum on the right comes from a neighborhood of those k and

I for which the marginal probability

P{Zkjt > U)

is a maximum, i.e. from a neighborhood of In - kn = A0m, where AO = - o).

Substituting the estimate of P(Bkj) from Lemma 3.2 and analyzing the sum as in Lemma

2.3 gives the stated result.

Before stating Lemma 3.4 we introduce some notation. First note that when is - io =

mAo the random variables U, and V from Lemma 3.1 are both N(-(2C - Co), 1), and the

exponential appearing in the definition of H(Ao, n) is

exp[z(c - Aofo)/Ao(l - Ao)] = exp[2( 2 c - fo)z].

Let P, denote the probability measure which gives the random walks Ui and Vi increments

having a N(pu, 1) distribution. We are particularly interested in the case Pao 2C - fo. Using

this notation and the identityJo **P{X > z}dz = 0 .R!,X+ - 1 ,

we obtain

lim n- H(Ao, n) 2 2(2C - Co) 3(f -o)
2 (3.1)

-n110exp(2poz)P.(maxU >

Let T. -inf{n U. > z) and R. = UT. - z. It follows from renewal theory that for p 2! 0,

the P, distributions of R. converge weakly as x -. oo (cf. [201, Theorem 2.3). Let

9() = lin E,/2 [eXp(-PR.)]. (3.2)

14
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Let Wf(t) be a Brownian bridge starting from 0 at t - 0 and equal to C at t = m. Let

u =m and = mCo for some fixed f > 0 and Co < C. Let Zi= W(j) - W(i). We are

interested in

P( max zi > u}.

Lemma 3.1. Let jo - o mA for some A > 0. Then as m -. oo

(Zo-jo-i - u +z, i,i= 0,..., n IZ = u - z) - (,+i , i,j =0o,1,...,n),

*. where Ui and Vi are partial sums of independent, identically distributed random variables

* with U, N(-c/A, 1) and V, .N(-( - Co)/(1 - A), 1). The convergence is uniform for

A bounded away from 0 and 1.

Proof. Note that

Zio-ijo-j = ziojo - z,o,,i'o + zjo-jjo,

and conditional on ZiojO, the processes Zio-io, i = 1,...,n and o-ijo, = n,...,n

are independent of each other, provided m is sufficiently large. The indicated limiting

distributions follow from Lemma 5.1 of [20].

Lemma 3.2. Let j - so= mA. As m oo

UP{ max Zioio i > u}/[,A(1 -I A)'/,{(,,- A /[,A(1- A)/ -. 1 + H(A,n),

where

H(A, n) -- f P(max U. + max V > z exp[(c - Afo)z/A(1 - A)Idz/A(1 - A),
Jo i:5n

and the convergence is uniform for A bounded away from 0 and 1.

Proof. This is proved exactly like Lemma 2.2.

Lea 3.3.

lim P{ max Zjj > u) exp[2m(f - fo)](2f - Co)I/m( - fo) 2 - lim n-H(Ao, n),

where Ao f /(2C - Co).

13
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uniformly in t bounded away from 0.

Proof. This follows from Corollary 3 of [4]. Alternatively it can be proved by the method

of Lemma 3.4 below, which yields an explicit evaluation of H* in terms of the function V~

defined in (3.2). The proof is completed by the observation that Y(;&) -0 as p - 0.

Lemma 2.5. Let -y 0 for some 0 <~ < 1/2. Then as u - oo

P(max WO(iq, jq) <tU - 'yu-1, max WO(a, t) > ta) =j ~ 2 exp(-2u2 )].

Proof. See Lemma 12.1.5 of [Ill.

Lenm 2.6. With the same notation as above

1'{U - -'i/U5 max Wo(iq~jq) < u}/u exp(-2u2 ) -. (e2" - 1)jH(t,)dt/ta2.

Proof. This follows exactly as in Lemma 12.2.6 of [111.

Proof ofTheorem 1. Let c >0. Choose$< and a>O0so that for all < t 1

laH*(t, a) -321 < eand e 2 1 < .

Then

I&2 H'(t, a)dt/t -32 log 2j<2c,

and by Lemmas 2.5,2.6,

lim IP{ max Wo(iq,jq) > u) - P{ sup Wo(e,t) > u}I/u 2 exp(-2u2 ) < Se,
U-.~Oo!58g9!51

while by Lemma 2.4

P(max Wo(iq,jq) > u) ' (4log2)u exp(-2a)

0 3. Proof of Theorem 2.

For the most part the proof given here for Theorem 2 is very similar to that of TheoremI

1. The main difference relates to the discrete indexing set. See Lemma 3.4. Lemma 3.1 could4

be proved by calculation of means and covariances along the lines of Lemma 2.1, but we

give a proof which can be generalized to (nonnormai) exponential families of distributions.

12I



Fix t = (I + !)nq > 1/2. According to Lemma 2.2 rk P(Bkj) is asymptotically of the form

~ P(B~) ~ 0/(k + 1)nq, t, u]{1 + Hj(k + 1)nq, t, n, a])
& u/[(k + I)tqt(1 - (k + 1)nqt)]1/2

The function O'(., t, u) considered as a function of o has a unique maximum at R 1/2t.

Let ko be such that 11/2t - (ko + 1)nql = infk 11/2t - (k + 1)nql. Set (ko + 1)nq = 1/2t + enq,

where Ie5 < 1, and set i k - + 1. Then

(nq) -ko

EP(Bkj) E O(inq + 1/2t + enq, t, u]{1 + H[inq + 1/2t + enq, t, n, a]}
k ,)-ko u/[t(inq + 1/2t + cnq)(1 - t(inq + 1/2t + cnq))l1I2

To simplify this expression, note that the sum concentrates in a neighborhood of i - 0;

and since the function H as well as the denominator are continuous functions, they can be

replaced by their values at i = 0. Since q -- 0 as u - o, this yields .

P(Bj,,) 1+ H(I/2tt,,, 0 (,(inq + 1/2t + tsq, t, u). (2.2)
2u

The sum in (2.2) is easily approximated by the integral

'(2u) j exp(-8z2 )dz/nqu - exp(-2u2 )/4nqtu.

Substituting this into (2.2) yields

P(Bkj) ~[ + H(1/2t, t, n, a)] exp(- 2u')/8nqtu2 .

The case (I + 1)nq < 1 can be done similarly anA is seen to be of a smaller order of

magnitude. Therefore

~ P(Bjj) ,-, (8nqu2 )-1 exp(-2t 2 ) {I + HMX/2(1/2 + Inq), 1/2 + lrq, n, a))
,..' 1/2 + Inq

~ (8n 2q:u) exp(-2u2 ) {I + H(1/2t, t, n, a))dt/t

- 8-aU2 exp(- 2u2 ) j I + H(1f2t, t, n, a)}dt/t(n)'.

The proof is completed by letting n - oo and proceeding as in Lemma 12.2.4 of [11).

Lemrma 2.4. As a -- 0

a- *(t, a) -- 32

. . -



Lemma 2.2. For fixed n and a, as u - o

P( max Wo(- iq, t-jq) > u}/{u-I(at(l-at))/o[u/(at(1 - t))1/21) -I + H(8,t,n,a),
0:54:5n

where the convergence is uniform for at bounded away from 0 and 1, and

H(a,t,n,a) = P{max U + max Vj > z} expz/,t(1 - at)Jdz/.t(1 - at),0 in j5n
where Ui and Vi are partial sums of independent, identically distributed random variables

with

U" ,, N(-a/*, at), V - N(-alt, as).

Proof. The argument is the sam.. as Lemma 12.2.3 of 1111 used in conjunction with the

representation (2.1) of the limiting process.

Lemm 2.3. There exists a function W* (t, a) such that lim. 0 n-2 H(1/2t, t, n, a) =

H*(t,a) uniformly in t bounded away from 0. As u - o

Pf max Wo(iq,jq) > ut/u 2 exp(-2u2 ) -. 8-1a-2 (t,a)dt/t.

Proof. Recall that the major contribution to the indicated probability is expected to come

from a neighborhood of at 1/2, where E[Wo(at) 2 is a maximum.

Let

4={4 max W(iq,jq) > u}.
kn j:5 (k + 1)n
1n:5 j5 (IL+1)n

For technical convenience we assume that q is such that (nq)- 1 is an integer. Then

(0<max 1 Wo(iq, jq) > u} U I
kJ

so the probability of interest is sandwiched betweenI

." P(Bb.) - P{BI,. n VB,,}
kJ (k)(V')

and

SP(B&4 ).Jk

10
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