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Large Deviations for the Maxima of Some Random Fields

by
M. L. Hogan * and D. Siegmund {
Columbia University and Stanford University

Dedicated to Herbert Robbins on the occasion of his 70th birthday :

Several statistical problems which involve the distribution of the maximum of Gaus- ;

sian random fields are described. Specific examples are the pinned Brownian sheet and 1

a Brownian bridge with “reflection,” which arises in certain change point problems. In :

these concrete cases the method of Pickands (1969, Trans. Amer. Math. Soc.) is adapted 1

to give large deviation probabilities for the maximum, both for continuous and for discrete '.

indexing sets. A different method is used to give a second order correction for the reflected

Brownian bridge and hence for reflected Brownian motion. The numerical accuracy of the ,1

approximations is studied via simulation. 1
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1. Introduction and Summary.

boouuno l bcesd

A random field is a stochastic process indexed by a more than one dimensional set,
typically a subset of the n dimensional integer lattice or n dimensional Euclidean space.

We shall call such a process an n dimensional random field. Since the random variables

. ' PR
. l-‘ e le ta Ay e o

themselves assume real values, no confusion should result from this terminology. For the

most part we consider only the case n = 2, but some of our methods are valid more generally.

R
A
g al e L

We wish to discuss some examples of random fields arising in statistics. The statis-
tical questions give rise to probability questions about the random fields, among which is
determining the distribution of the maximum of the field over some subset of its indexing

set. We deal with fields which are closely related to simple one dimensional processes such

as random walk, Brownian motion, and Brownian bridge. There are many techniques for
deriving exact results about the maximum of these one dimensional processes, mainly based
on the strong Markov property and the relation of the time at which the process first ex-

ceeds a level (first passage time) and the maximum of the process. For higher dimensional

random fields there is no natural linear ordering of the indexing set. Consequently there are

- no first passage times, and the techniques that give exact results for one dimension work
only approximately or not at all in more than one. :
? On the other hand there are methods for approximating the tail of the distribution -

h of the maximum, which are not intrinsically one dimensional. These have been developed :

:." mainly in the context of Gaussian random fields, especially by Pickands [13], Bickel and

,:.U Rosenblatt (4], and Qualls and Watanabe [14]. The techniques can be broken into two

parts. The first is to observe that the contribution to the probability of ever crossing a high

level comes from a small neighborhood of the subset of the indexing set where the marginal

3 probability of being above the level is greatest. Second, when this subset is not a single -

E' point, it can be broken into small pieces which contribute approximately disjointly to the .1
, total probability, which consequently can be obtained by adding together the contributions <
E of each small piece. The method does not in general give explicit results, and in fact does i
'A. so only rarely in the papers quoted above. For the problems in which we are interested, it -
E i_f does give explicit asymptotic approximations for the tail probability of the distribution of
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the maximum.

Since our interest in these approximations arises because of their relations to certain
statistical problems, these problems provide criteria for judging whether the approximations
are adequate or not. Usually the probabilities can be interpreted as the significance levels of
statistical tests, so it is important that they be accurate when the true probabilities are in
the range .01-.10. We discuss later how accurately the asymptotic expressions approximate

the actual distribution.

We begin by describing two statistical problems that lead to random fields: the em-
pirical distribution in more than one dimension and certain change point problems. In
each case we consider in some detail two random fields, one of which is common to both

problems.

Suppose that X, X,,--- are independently and identically distributed with a contin-
uous distribution function F. Let
n
Fa(2) = 071 ) Lo q)(Xi)
=1

be the empirical distribution function and
Da(z) = n*/*(Fu(z) - F(a)}
the empirical process. The change of variables z = F(z) converts this to
Da(2) = n'/?[U,(2) - 2],

where

Un(z) =n~! Z Lo ,4)(F(X5)).

=1
The random variables F(X;) are independently and uniformly distributed on (0, 1), so the
distribution of D,(z) does not depend on F. 1t is well known that the limiting distribution of
Dy (z) is that of a Brownian bridge on [0, 1] (¢f. [5], Section 13.6). The Kolmogorov-Smirnov

statistic is

/% sup{Fu(2) - F(2)] = 2 Da(2).

sy
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Thus the distribution of the Kolmogorov-Smirnov statistic does not depend on the under-
lying distribution function F, and its limiting distribution is that of the maximum of a

Brownian bridge.

Now suppose that we have independent, identically distributed bivariate observations
(X;, Y;) with distribution function G(z,y). Assume that X; and ¥; have continuous marginal
distribution functions F; and F; respectively. The empirical distribution function of the
first n observations is
n
Cn(2:¥) =171 1cooilx(-coul(Xi. Yi)-
=1
Set
Da(z,y) = n'?[Gu(z,9) - Glz,¥)] -o0<z,y<oo.

With the change of variables z = Fy(z), w = Fa(y), Dp transforms to a process on the unit
square

Dn(z,w) = n'/?[Un(2,0) - G(F{!(2), F;Y(w))),

where

n
Un(z,0) = 071 Y~ Lo sjx(0,0][F1(X3), Fa(Y)].
=1
The Kolmogorov-Smirnov statistic is

n!/2 s:xz)[G,.(z, y) - G(z,y)] = sup Dq(z,w).

The random field Dn(z, w) converges to a limiting Gaussian random field Wy(z, w) on the
unit square, but unlike the one dimensional case the covariance function of the random field
depends on the underlying distribution G. The special case that X; and Y; are independent
is particularly important. Then the covariance function is K[(z1,w,),(22,w2)] = (1 A
22)(wy Awz2)(1— 2,V 22)(1 = w1 Vw3). This random field, the pinned Brownian sheet, stands
in the same relation to another random field, the Brownian sheet, as the Brownian bridge
does to Brownian motion in one dimension. The question suggested by the Kolmogorov-
Smirnov statistics is to compute the distribution of the maximum of the pinned Brownian

sheet.

In Section 2 we establish
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Theorem 1. As u — c©
j. P{sup Wo(z,w) > u} ~ 4log?2 u? exp(—2u?). (1.1)
5,0

Goodman (8] showed that the probabiity on the left hand side of (1.1) exceeds (2u2 +

a 1) exp(—24?). An upper bound is given in [6].
Since the distribution of the two dimensional Kolmogorov-Smirrov statistic depends
on the underlying distribution G, Adler and Brown (1] raise the question of finding
_. sup P{sup Dy (z, w) > u},
T~ G 5.

and show that in the asymptotic limit (n — co) the supremum is attained by a two dimen-
- sional distribution G which is uniform on the off-diagonal, z+ w = 1. Moreover, the limiting
b
value of this supremum has the following representation in terms of the one dimensional
';:' Brownian bridge, Wy(t),0<t < 1:
l P{ sup [Wo(t) - Wo(s)] > u}. (1.2)
as 0<s<i<l
A slightly more general quantity than (1.2) arises in a class of change point problems, which
~ we discuss next.
! As a second example we consider a class of change point problems, more or less as

formulated by Levin and Kline [12]. Let X;, ¢ = 1,2,---,m be independent, normally

distributed rancdom variables with means y; and variance 1. Consider the problem of testing

Hy:p=pr="=pm (=po)

against
By:31Sp<p<m, pr=---=py =py,

B4l = = fhpy = o+,  pPost1 = = P = plo.
The alternative hypothesis H; has been called a square-wave or epidemic alternative because
an epidemic runs from time p; through ps after which the baseline rate pg is restored. It
may be compared to the more common hypothesis of a single change point where, in effect,

p2=m.
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If it is assumed that po and § are known, the log likelihood ratio statistic for testing

Hj against H, is given by
Zi=§ 5’?&?2,..[3" - Jio — (8i — ipo) — (7 - 4)8/2]

=, Sr..rg;.xs,nlsi -5 (1.3)

= glsa"flsi - }g)f Sil,

where S§; = 8[S; — i(po + §/2)].

When po is unknown one possible course, suggested by Levin and Kline [12], is to
replace pg by its estimate under Hp, Sn/m, which leads to the test statistic

Z; = Jogﬁ%mls" — 3 Sm/m = (Si — Sm[m) - (7 - $)6/2]. (14)

Levin and Kline are interested in Bernoulli and Poisson random variables rather than nor-
mal. Since pq is a nuisance parameter, they suggest that the distribution of Z; should be
calculated conditional on S,,. The conditional and unconditional distributions of Z; are

the same in the normal case, but in general this adds another feature to the problem.

Alternatively, the actual likelihood ratio statistic may be computed by maximizing the

log likelihood over uq, p1, and p2. This gives

Zy=6_max (5~ 5i-(j=i)Sn/m= 6= (- (F-)m)).  (15)

0<i<i<m

When § is also not known one might use either Z, or Z; based on some value &y, the
smallest difference in means which is considered important to detect, or proceed to the full
log likelihood ratio statistic by maximizing (1.5) over §, obtaining

2= gmax {[S;= 8~ (5 = $)Sm/mI* /[l = )1 = m~}(5 = NP2,

where zt = max(z, 0).

Each of these statistics is the maximum of a Gaussian random field defined on {(s, 5) :
0 < 4,7 < m}. Tt is interesting to compare the third expression for Z; given in (1.3) to what

would be obtained under the simpler alternative hypothesis of exactly one change point.

This is tantamount to setting p2 = m in H;, which leads in the case of known p and 6 to
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the log likelihood ratio statistic
Zs = max[Sm — Si]
i<m

This random variable can be shown by means of time reversal to have the same distribution
as max(0, S, ,Sm) ([7], p. 198), and consequently the distribution of Zs is determined
by solving a first passage problem for the random walk S;. However, the time reversal
technique applied to Z; leaves it basically uncimnged. In addition, first passage problems
for ordinary random walk are analytically tractable because the value of the random walk
at the time of first passage is ratker well determined. (For Brownian motion it would be
known exactly.) In principle the problem of computing the distribution of Z, is equivalent

to a first passage problem for the “reflecting” barrier process
W;=S§; - !?SI}IS.',

in the sense that P{Z; > u} = P{T < m}, where T = min{s : W; > u}. The fact
that the value of Sy is not known, even approximately, makes this problem substantially
more difficult than the corresponding passage problem for S;i. (The distribution of St has
been studied in {18], at least in continuous time, but this does not seem to help us here.)
Nevertheless, the observation that (1.3) and (1.4) can be formulated as one dimensional
problems is very useful. See Theorem 3 below and its proof in Section 3. There does not

seem to be any corresponding transformation of (1.5) to a one dimensional problem.

In order to state the following results it is convenient to let W¢(t) denote one dimen-
sional Brownian motion conditioned to equal £ at time ¢ = m. Then Z, = maxocigm|[We(t)-

We(s)] is essentially a continuous version of Z; defined in (1.4). In Section 3 we prove

Theorem 2. Suppose u = m¢ and § = m§, for some ¢ > 0 and £ < ¢. Then as m — oo

P{max [We(s)-Weld)] > u} = v7[2(25— Eol[2(2u~ €)(u—€)/m+o(m)] expl-2u(u-€)/m],
(1.6)

where v(-) is defined in (3.2), and s, 5 are restricted to be integers.
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Theorem 3. With the same asymptotic normalization
P{ max [Velt) - We(o)] > u} = [2(2u— €)(u— €)/m -+ 1+ o{1)] expl~2u(u — £)/m]. (17

Theorem 2 was stated and Theorem 3 conjectured in [16]. Related statistics are dis-

Theorem 2 is a sampled version cof Theorem 3. The two approximations differ in the )
leading term by the factor ©2[2(2¢ — &)], which occurs because of the discrete indexing set -

in Theorem 2. For computational purposes it usually suffices to use the approximation L
v(z) = exp(—pz) + o(z?) (z— 0), (1.8)

where p is a numerical constant approximately equal to 0.583 ([17], X.2). Typically the value i
of v2 is in the range .2 to .5, so failure to account for the discreteness usually overestimates
the true probabiity by a considerable amount. Theorem 3 contains a higher order term in

an asymptotic expansion of the tail probability for that process.

L - -

If the max in Theorem 3 were taken over all s # ¢, instead of s < ¢, it would be easy

to calculate the probability exactly. For example,

PR A

e St St
Py dhad ododecdhodad

T

P{ max [We(t) - We(s)] > u} (1.9)

Z {m~[2n(2nu — £)(u — £) exp[—2nu(nu — £)/m] - (2n + 1) exp[—2nu(nu + £)/m).

n#0

For the special case £ = 0 this becomes .

P{.Qflxm[%(t) — Wo(s)] > u} = f:(Snzuz/m - 2) exp(—2nu?/m). (1.10)

n=1

From considerations of symmetry, it appears that the probability in (1.7) in the case { =0
should be about 1/2 that in (1.10). This heuristic is asymptotically correct at the first order
term, but not the second. It may be possible to evaluate the probability in (1.7) exactly,

but we have no idea how to do it.

By integrating out { one obtains from Theorems 2 and 3 analogous results for uncon-

ditional processes. For example we have,

T
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Corollary to Theorem 3. Let W(t), 0 < t < oo, be standard Brownian motion and
p > 0. Suppose m — oo and u — oo such that mpuu~! is some fixed number in (1, ).

Then
P{ max [W(t) - W(s) - plt - 8)] > u} = [2u(mp ~ u) + 3 + o(1)] exp(—2pu).

Proofs of Theorems 1, 2, and 3 are given in Sections 2, 3, and 4 respectively. A
numerical example illustrating the accuracy of the approximation of Theorem 2 appears in
Section 5, which also contains a heuristic attempt to adapt the expansion (1.7) for use with

a discrete indexing set.
2. Proof of Theorem 1.

In this section we use Pickands’ [13] method to prove Theorem 1. The method was
also applied to random field problems in [4] and [14]. Our exposition follows closely that
given in [11], Chapter 12, in the one dimensional case. Large parts of the proofs carry
over almost word for word, but with two novel features. All of the authors above were
interested in stationary fields or processes in which the random variables corresponding
to each point in the indexing set contribute equally to the maximum. Our processes are
nonstationary, and asymptotically the only contribution comes from a neighborhood of
that subset of the index set where the marginal probability of being above a high level is
a maximum. For the present case of the pinned Brownian sheet, Wy(s,t) is a zero mean
Gaussian variable. Therefore, P{Wy(s,t) > u} is maximized at those values of s,t which
maximize E[W3(s,t)] = st(1— st). This set is the section of the hyperbola st = 1/2 lying in
the unit square. Technically this means that the major contribution to certain sums comes
from a neighborhood of the critical set, resulting in delta-functon like approximations. Every
argument in {11] must be modified to take this fact into account, but it is straightforward
to do so. One example of the necessary changes is given in Lemma 3, but most, along with

most detailed proofs, are omitted.

Secondly, the general expressions for the tail of the maximum of Gaussian random
fields involve a constant given in terms of a complicated functional of the maximum of a

related process, which can be shown to be positive and finite, but otherwise is not obviously
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tractable. The related processes which occur in the problems we discuss are simple enough
to allow explicit evaluation of all constants. The appearance of the function v in Theorem
2 because of the discrete indexing set is a particularly interesting example. See Lemma 3.4.

The proof of Theorem 1 is given as a series of lemmas, the proofs of which are mostly
omitted because they follow closely those of [11], Chapter 12. See also the analogous results

of Section 3 where occasionally more detail is given.

We shall use the notation

o) = 2r) e (-32) . 9a) = [

o(z)dz.

Also, for any random variable X, P{X € dz} denotes the measure corresponding to the
distribution function of X. In particular if X is absolutely continuous with probability
density function f, then P{X € dz} = f(z)dz. We write X ~ N(p,0%) to mean P{X <
z} = ®{(z - u)/0o].

For the rest of this section u’q = a. Let £4*(a, 1) = u[Wo(s — go, t — gr) — u].

Lemma 2.1. Suppose 0,7 > 0. Then

E(£Mo,7) ] £210,0) = 2) = 2~ s7'ag — t""ar + O(q)

and

Cov(€4* (a1, 12), £5% (02, m2) | €54(0,0) = 2) = als(r1 A r2) + t(a1 Ao2)] + Olg),

where in both cases O(q) holds uniformly for (o1, 11,02, 72) in compact sets and s,¢ with st
bounded away from 0.

Proof. A straightforward calculation suffices.

Remarks. Since the conditional distribution is normal it is determined by its mean and
covariance. Furthermore, as u — co (hence ¢ — 0), f.:"(a, r) converges in distribution to a

process having a very simple representation. Let X;(o) and Xz(7) be independent standard

Wiener processes. It is easily verified by checking covariances that the limiting process can

be represented as

(at)V/2X,(0) - ac/s + (as)!/2Xz(r) — ar/t. (2.1)
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Table 1

Approximations to P{maxo<icj<m(S; — Si) > u| S = £}

u

m

m-1¢

Monte Carlo
(N = 1600)

Theoretical

(1.6) Modified (1.7)

4.0
5.0
2.0
3.0
3.0
6.0
8.0
5.0
6.0
5.0
9.0

20
20
20
30
30
30
30
50
[t
100
100

-4
-4
-5
-7
-5
.0
A
-4
-3
-5
-.15

117

+

 H H W W+ H H W

020 = .004
.0056 + .0019
344
044
156
.257
174
053
A17

012
005
.009
011
.009
.006
.008
006
.008

024
.0043
.208
044
135
171
.110
.049
.094
.067
.098

028
0048
348
.046
150
.256
.169
.055
104
070
113

-------------

.........
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2. This approximation appears to be moderately good, but consistently too small. It is

poor for £ > 0.

For random walk first passage problems there exists an approximation which uses a
completely different normalization than the large deviation normalization considered here,

although the resulting approximations are often are very similar [2, 9, 15, 17]. These ap-
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proximations often have the interpretation that they equal the analogous Brownian motion

probability corrected for discrete time and (if necessary) for nonnormality of the random

walk. Moreover, the correction for discrete time is simply to displace the first passage level
u by the average amount that the discrete time process jumps over the boundary. In the L
Gaussian case this is just the constant p which appears in (1.8). See [17] for a more detailed '

discussion of this approximation and a comparison with large deviation approximations.

For random walk problems with reflecting barriers, it is clear that the analogous mod- !

ification is to displace the first passage boundary by 2p (cf. [17], Theorem 10.16). If one

PR
oo
PRI )

were to make this modification to the Brownian motion approximation of Theorem 3, to the

i
Foure

extent that /.. 8) is an equality, the resulting approximation would be the same as (1.6) to

first order. Now, however, there are higher order terms, which might conceivably improve

oo I’ e,
PR e
LTI Y

the approximation.

L]
LYY

The third entry in each row of Table I gives the approximation of Theorem 3, but

L R
g R

with u replaced by u + 1.166. This second approximation seems to be slightly better in
cases where both approximations are good and substantially better when £ > 0, where the )

approximation from Theorem 2 is not particularly good. =

It appears to be a very complicated task to find a genuine second order approximation -
or to justify the one suggested here. The problem becomes even more difficult {or other
Gaussian fields, e.g. those considered in Theorem 1 and in (1.6), which do not appear to

have a convenient one dimensional representation. b
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m}. To obtain an appropriate bound for the first term let o) = 0U) (1) be defined by

ey, .
l"‘l e l“
s e t.ll

W)= inf W(s) .'—3:
TU=-1N<Le<T ) j:.'_l
and observe that ;L']
™ e
{T®(u) < m} ¢ |JH{TH(u) < n < o (u), T?)(u) < m} ’.
n=} Y
1 3 .
- - (2
and these events are easily analyzed individually. (Corollary 3 of [10] can be used to show L‘
that l

DT <n <o, 10 < m) < (BT <mY

or a somewhat weaker result may be obtained by “bare hands.”) For the rest of the series

a crude but more than adequate bound is a consequence of the following inequalities: for

any k,
= [oend
ZP}:’;’{T(‘) < oo} < mk P(f"'? {T® < 0o} + ""‘E p&‘) (T4 < )
=2 =1

and

mk
PINT™) < m) < Y P{THW(t) — W(s) > ufor some (5~ 1)/ki < s <t < (5 + 1)ki}.
j=1

8. Numerical Examples.

In this section we report the result of a Monte Carlo experiment to indicate the ac-

curacy of the approximations obtained in the preceding sections. As mentioned in the
introduction, the statistical origins of these problems, where they arise as significance lev-

els of statistical tests, suggests that we should be particularly interested in cases where the

AR

R Y
PP I

probability is about 0.01 — 0.10. (For the same reason we are more interested in non positive

values of the drift parameter, §.)

For selected values of u, m, and £ Table 1 gives approximations to the probability in

[,
Sl et

(1.6). The first entry is a Monte Carlo estimate based on a direct frequency count from a
1600 trial experiment. The second entry is the asymptotic approximation given by Theorem

19
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gi_%p,‘:;‘;;,"‘{f <m-t—¢ W(T)=z+u}/ne/? (4.3)
2.(25u+ z - §) exp[-2u(iu+z - §)/(m~t)], z>E-u
=2(m~1t)"! { ) ]
oo(28u + & ~ z) exp[-2iu(iu+ { —z)/(m-t)], z<&-u.

After a tedious argument to check that these formal substitutions, especially that
coming from (4.3), can be justified by the dominated convergence theorem, we obtain the

upper bound

!i_l.!‘l) c"PJz){M.,.( € dz,li4e € (8,8 + €), Trpe < m, W (T) = u + z}/{2]z]dz/mt>/2(1 - t/m)*/?}
(z — €t/m) ] { 2 (2u+ z - ) exp[-2u(iu+z—§)/(m-t)], z>¢6~-u

(4.4)

ok {t(1-t/m)}/? oo(28 + & — z)exp[-2iu(iu+ - z)/(m—1)], z<E&-u.

An exact upper bound for the probability of interest can in principle be obtained by using
(4.4) to bound (4.1). A lengthy asymptotic evaluation of the resulting multiple integral
yields the right hand side of (1.7).

The lower bound is substantially more complicated, and we briefly outline the argu-
ment. Let T®) = T and for k > 1 on {T*~1) < m} let

T® = inf{t:¢> T W(t)- inf W(s)2u)

Tk-1)<e<t

Then by Fatou’s lemma, a lower bound for the right hand zide of (4.1) is the upper bound

discussed above minus the limit inferior as ¢ — 0 of
Zc" / / Pé:?{T"" <t< T(""’“,M.,., €dz,liy € (t,t + ), Tepe < m, (4.5)
k

W(F)=u+z)it< Y e / PO <TOH) <ot hat+ et / / PIT® <,
] &
TR+ > ¢ 4 ¢, Myye € dz,li4e € (8,8 + €), Trpe < m,W(T) = u + z}dt
o0
<2 Y PIHTt+) < m}.
k=1

Intuitively it seems clear that each term in the series (4.5) is exponentially smaller than its

predecessor and hence the entire series is exponentially smaller as m — oo than P(,(":’{T <

18
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Piy{min W(e) € dz} = 2exp(~2num)(ns +na)dz/c /2.
Formally substituting these expressions into the right hand side of (4.2) yields as an upper
bound for the left hand side
R — 4z dz ¢ pl(z — £t/m)/{H(1 - t/m)}/2}/£/2(1 - t/m)/2
2 ® [ (m~t=9 ¢ ~
/o /o mnz(m +m)e(m + m)[P L s {To<m—t—e¢ W(T)=z+u}

n2e'/*)dmdny

o + ofe).

A straightforward calculation beginning with (say) Theorem 3.42 of [17] shows that

v T T 7 PR D S
e e e PLEPE A
Catt L .
.'.'.‘4'-'.‘ L
hatoic . ALE.D

R N NN

2.

e e nling cndontond cadiil

e PRI -

S
sl ot el o,

‘."' 17 ]

----- R T T e - Dl A

.......................................... R N"‘-'~'-‘~-..b'l~.»“~- N
.................................. .l T e e N T
- RN W0, Y W 1, O

KRR A I LTl T, . S . P o e . I )
m~ PIPAE VORI N PRI PN ) PRI PUAY WO U W TR I DR SN G SA P USRI AT oy L RIS BT SR .




CRMO NN A G B i A u i~ el A I s 4 e Bt Ml i g A a v YA AR ae B o A bl AR G D" ek At D i kol il aian N e Aol e uen e 0 A0 A 20 A SRt

¥
!
;
..l

W(t) — M; > u}. In this notation we are interested in
PINT < m).
Also let r, = inf{¢t : W(t) = z} and define o by W (o) = Myam. Finally let
Ty = Ti(z) =inf{s:2>¢t, W(s) & (2, z+u)}

and J;, = sup{s:s < t W(s) = M(t)}.

Lemma 4.1.

m 0
(m) = . _—1plm)
P,,;{r<m}_j‘: /_ngc PONT > t, My €dz, Ly €8, t+e), w .
Tise < m, W(T) = u + z}dt. 1
Proof. We start from the relation
m 0
PIHT < m} = /o /_ _lim PIHT < m, o € (t,t+¢), W(o) € dz}dt.

It may be shown that the absolute difference between this integral and the right hand side

of (4.1) is majorized by a sum of terms, each of which as a consequence of Fatou’s lemma

is less than

™ —1p(m) W -
[Ttme PG mp () - Wen)] > uhet,

which is easily seen to equal 0.

_:::,Z To obtain an upper bound for (4.1), we omit the condition T > ¢ and rewrite the right
hand side by conditioning on W(t) and W (¢ + ¢) to obtain

P My € dz, Iy € (8,8 +€), Frae <m, W(F) = u+ 3}

o o (o

o = / / PI{r > t, W(t) € dys } P (W (€) € dya) (4.2)
S s Js

= PLY, (M, € d2}Ps '~ NTo < m—t, W(To) = 2+ u}.

r. In (4.2) each of the first three factors can be evaluated explicitly with the aid of (3.13) of
5;: [17]. We do so and then make the change of variables y; = z + n;e!/2 to obtain as ¢ — 0
n":j-:f

F::f-; P,f"""{r. >t, W(t) €dy}

i  ~2amyepl(z - €¢/m)/{E(1 - ¢/m)} " dm /€1 - efm)L,

e
M

‘ PN W (e) € dya}  ~ plna — m)dm,
[

L
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This quantity can be calculated numerically (e.g. [20], Section 2.4) or approximately as
suggested in (1.8).

Lemma 3.4.
"li_lgoﬂ'zﬂ(Ao, n) = 2(2¢ - £0)*v2(2(2s - &)/ (s - &),

where v is defined in (3.2).
Proof. It suffices to evaluate the limit on the right hand side of (3.1). By the definition of
T, and Wald’s likelihood ratio identity (cf. [20], Theorem 1.1)
P_,..,{x?sa"xl].- > 2} = P_yy{Ts < n} = Epy[exp(-2u0U7,); Ts < n]
= exp(~2p0z) Ey, exp(~2poRs); T5 < n}.

Hence it suffices to evaluate the limit as n — o0 of
(- -]
n-! /o E,,{exp(~2uoR,); T, < n}dz. (3.3)

We split this integral into three pieces, 0 < z < (1-¢€)npo, (1 —€)npo < z < (1+¢)npo, and
(1+€)npo < z < co. Uniformly for z < (1= €)npo, Puo{Ts < n} 2 Ppo{Sn 2 (1 —¢€)npe} —
1, so by (3.2) the limit inferior of the expression in (3.3) exceeds

(1—¢€)npo
lim inf ™" /0 Epo{exp(~2p0Ra)}dz 2 (1 - €)pov(2po).

n—eco
For an upper bound, we use the obvious inequalities E,,{exp(-2poR;); Ts < n} <
Eyuo{exp(—2p0R;)} or Puy{T; < n} according as z < (1 + ¢)npg or = > (1 + ¢)npo. The
range z < (1+ ¢)npo is analyzed as above; and for z > (1+ ¢)npg, P {Ts < n} is bounded
by the corresponding probability for a Brownian motion process. Some calculation shows
that the limsup of (3.3) is smaller than (1 + €)pov(210). Since € > 0 is arbitrary, this

completes the proof.

Proof of Theorem 2. This follows immediately from Lemmas 3.3 and 3.4.
4. Proof of Theorem 3.

Let P.(g be the probability measure under which W(-) is a Brownian bridge starting
at @ at time O and terminating at b at time ¢. Let M; = minogs<t W (o) and T = inf{t :
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Proof. This is proved just like Lemma 2.3. We indicate the high points. Let

max Z;; > u}.
In<i<(k+1)n
In<j<(li+1)n

By={

It can be shown that for m and n large
P{osn."gm Zi; > u} & g P(Byy).

The main contribution to the sum on the right comes from a neighborhood of those & and

| for which the marginal probability
P{Zgnin > u}

is a maximum, i.e. from a neighborbood of In — kn = Agm, where Ay = ¢/(2¢ - &).
Substituting the estimate of P(Bg,) from Lemma 3.2 and analyzing the sum as in Lemma
2.3 gives the stated result. '

Before stating Lemma 3.4 we introduce some notation. First note that when 5 — ¢y =
mA¢ the random variables U; and V; from Lemma 3.1 are both N(—(2¢ - £),1), and the
exponential appearing in the definition of H(Ag,n) is

exp[z(s ~ Ao&o)/Ao(1 — Ao)] = exp[2(2¢ - &)z

Let P, denote the probability measure which gives the random walks U; and V; increments
having a N(u, 1) distribution. We are particularly interested in the case g = 2¢ — §p. Using
this notation and the identity

/“ e P{X > z}dz = a~1E[¢*X* - 1),
°

we obtain
lim n~H(Ao,n) = 2(2 — &)*(s - &)~

. lim (,.-l ]{' “exp(Zpoz)P.,.,{x.ps?U.- > :z}.iz)2

=00

(3.1)

Let T, = inf{n : U, > 2z} and R, = Ur, ~ z. It follows from renewal theory that for 4 > 0,
the P, distributions of R, converge weakly as z — 0o (cf. [20], Theorem 2.3). Let

v(p) = lim E,plexp(-pR,)). (3.2)
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Let W¢(t) be a Brownian bridge starting from 0 at ¢ = 0 and equal to § at ¢ = m. Let
u = m¢ and § = m§, for some fixed ¢ > 0 and § < ¢. Let Z;; = W¢(7) — We(s). We are
interested in

P{o B Z;; > u}.
Lemma 3.1. Let 3 — t9 = mA for some A > 0. Then as m — oo
L(Zigmijo—j—6+2,8,5=0,- 0|24 =t6—2)—= L(U; +Vj,4,5=0,1,---,n),

where U; and V; are partial sums of independent, identically distributed random variables
with Uy ~ N(-¢/A,1) and V; ~ N(—(¢ — £)/(1 — A),1). The convergence is uniform for
A bounded away from 0 and 1.

Proof. Note that
Zigmijo—i = Zigjo = Zig=isio T+ Zjo=jijos

and conditional on Z;,j,, the processes Z; _;jo, $ = 1,---,n and Zj_jjo, 7 = 1,---,n
are independent of each other, provided m is sufficiently large. The indicated limiting
distributions follow from Lemma 5.1 of {20].

Lemma 8.3. Let jo — i = mA. Asm — o0
WP{ DAx Ziymiip-j > u}/[mA(L - A)[2p{(u = AE)/[mA(1 - A)7) ~ 1+ H(4,n),
where
H(A,n)=¢ /o ” P{maxU; + max V; 2 z} expl(s — Abo)z/A(1 - A)|dz/A(1 - A),

and the convergence is uniform for A bounded away from 0 and 1.
Proof. This is proved exactly like Lemma 2.2.

Lemma 3.3.

lim P{ max Z;; > u}exp2ms(c - &)](2¢ = &0)*/m(s — &)* = lim n~*H(A,,n),

m—co  '0<ij<m

where Ag = (/(2{ - Eo)
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uniformly in ¢ bounded away from 0.

n Proof. This follows from Corollary 3 of [4]. Alternatively it can be proved by the method
of Lemma 3.4 below, which yields an explicit evaluation of H® in terms of the function v
defined in (3.2). The proof is completed by the observation that v(u) — 0 as p — 0.

Lemma 2.5. Let 7 = a? for some 0 < # < 1/2. Then as u — oo

.. -l = ofu? e,
P{osx._x:’z}'qxsl Wo(ig,79) <u-—yu~!, oggl Wo(s,t) > u} = o[u® exp(—2u*)].

Proof. See Lemma 12.1.5 of [11].

; Lemma 2.6. With the same notation as above
& 1
o Plu-v/u s mex Wolia,ja) < w}fu’expl(-2a?) = (7= 1) [ (. a)ds/ta’.
{'j‘ 0<ig,jg<1 1/2
Proof. This follows exactly as in Lemma 12.2.6 of [11].
s Proof of Theorem 1. Let ¢ > 0. Choose § < ] and a > 0 50 that forall } <t <1
la~2H*(t,a) -32]<e¢ and e*'-1<e.
Then
1
|a"/ H*(t,a)dt/t - 32l0g 2| < 2¢,
1/2
L
and by Lemmas 2.5,2.6, ]
. Wolia. ia) > u} — 2 —9,2 .
Jim |P{ max Wolig, jq) u} P{o Jup Wo(s,t) > u}|/u exp(—2u?) < 5, |
o while by Lemma 2.4 .
o :
o P{ max_Wo(iq,7q) > u} ~ (4log 2)u’ exp(—2u?). ]
- 0<igq.sgs1 1
o g
\. 3. Proof of Theorem 2. 3
For the most part the proof given here for Theorem 2 is very similar to that of Theorem 3
1. The main difference relates to the discrete indexing set. See Lemma 3.4. Lemma 3.1 could 4

be proved by calculation of means and covariances along the lines of Lemma 2.1, but we

give a proof which can be generalized to (nonnormal) exponential families of distributions.

12

. L L. . e e e PR - . )
e P N DR AR S PR T Rl SRR el ST S PTG I U SRS S . I AP S SERE SRS DAPSIAP A SR O Vet



f e se s e e e . S TR S R S i 0 i A Vs b S it G R NG S~ g pith St St i S g Bt ae s 0 it )

Fix t = (I + Ung > 1/2. According to Lemma 2.2 }_, P(Bs,) is asymptotically of the form

$[(k +1)ng, ¢, ul{1 + H|(k + 1)ng, ¢, n,a]}
L P ~ Y gt = (k+ Dngt) A
The function ¢(s,t, u) considered as a function of s has a unique maximum at s = 1/2¢.
Let kg be such that |1/2t ~ (kg +1)ng| = infy |1/2t— (k+1)nq|. Set (kg + 1)ng = 1/2t+engq,
where |¢| < 1, and set i = k — kg + 1. Then
(ng) '~

ko ,¢. .
Yling + 1/2t + eng, ¢, u]{1 + Hling + 1/2t + enq, t,n, a]}
EE:P(B:J) ~ E u/[t(ing + 1/2t + eng)(1 — t(ing + 1/2t + eng))]1/2

i=-ko
To simplify this expression, note that the sum concentrates in a neighborhood of 1 = 0;
and since the function H as well as the denominator are continuous functions, they can be

replaced by their values at + = 0. Since ¢ — 0 as u — o, this yields

(ng)~*-ko
Y P(By) ~ H“Z"""’ VS gling+ 12 +engtiu). (22)
* i=—ko

The sum in (2.2) is easily approximated by the integral
> -]
©(2u) / exp(—82?)dz/ngtu = exp(—2u?)/4ngtu.
—c0
Substituting this into (2.2) yields

3" P(Bu) ~ (1 + H(1/2t,t,, o)) exp(~2u?) [8ngtu®.
&

The case (I + 1)ng < } can be done similarly and is seen to be of a smaller order of

magnitude. Therefore

E P(By;) ~ (8nqu?) ! exp(—2u?) 2‘: {1+ Hll/z(l/zl';zlz)’,‘;ﬂ +Ing,n,a]}

kJ
~ (8n%g%u?)™! exp(~24?) /‘ {1+ H(1/2t,t,n,a)}de/t
1/2

= 8 1u? exp(—2u?) '/1:2{1 + H(1/2t,t,n,a)}dt/t(na)?.

The proof is completed by letting n — oo and proceeding as in Lemma 12.2.4 of [11).

Lemma 2.4. Asa —~0
e~ H'(t,a) — 32
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Lemma 2.2. For fixed n and a, as 4 — o0

P{ogax Wo(s—ig,t—3q) > u}/{u~*(st(1- at))’/2¢[u/(at(l— at))'/z]} — 1+ H(s,t,n,a),

where the convergence is uniform for st bounded away from 0 and 1, and
H(s,t,n,a) = / P{maxU + maxV > z} exp|z/st(1 — st)]dz/st(1 - at),
where U; and V; are partial sums of independent, idectically distributed random variables
with
U, ~ N(-a/s,at), Vi ~ N(-a/t,as).

Proof. The argument is the sam. as Lemma 12.2.3 of {11} used in conjunction with the

representation (2.1) of the limiting process.

Lemma 2.3. There exists a function H*(t,a) such that lim,_.o n"’H(llzt,t,n, a) =
H*(t,a) uniformly in ¢ bounded away from 0. As 4 — oo

1
. 2 Y ; — 8™1 -2
P{osl-‘!:g:sx Wo(ig,7q) > u}/u’ exp(~2u®) — 8~ 'a /llzﬂ'(t,a)dt/t.

Proof. Recall that the major contribution to the indicated probability is expected to come

from a neighborhood of st = 1/2, where E[Wq(s,t)]? is a maximum.
Let

By = max Wo(sq, 79) > u}.
kJ {ImSiS(k+l)n o(s2, 5q) > u}
In<j<(l+1)n
For technical convenience we assume that g is such that (nq)~! is an integer. Then

{ max_, Wolig, jq) > u} = U Bes
0<i,4 Py

80 the probability of interest is sandwiched between

Y P(Bi)- 3, PF(BiynByp}
kJ (k)£ (b 1)

and

10
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deviation probabilities for the maximum, both for continuous and for
discrete indexing sets. A different method is used to give a second
order correction for the reflected Brownian bridge and hence for reflected
Brownian motion. The numerical accuracy of the apbroximations is studied

via simulation.
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