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‘ Edge Detection and Geometric Methods in
Computer Vision

A. Peter Blicher
Abstract
i Basic problems of vision are studied from the viewpoint of modern differential topology
; and geometry; primarily: cdge detection, stereo matching, picture representation at
multiple scales, and motion. Some mathematical background is provided for the non-
% expert.
:::. A comprehensive review of edge detection is presented, inciuding analyses from a math-
. emalical perspeetive as well as evaluations of practical perl'ormancé and promise.
_i > Some new cdge detection lechniques are introduced, including a nonlinear operalor based
: on a symmctry principle, a variational approach to global cdge finding, and a least-squares
localizalion method. A theorem is proved which shows that localising cdge position and
' oricnlalion requires al least 2 orientation dependent familics of convolution operators.
A unifying mathematical steuclure is presented for vision, nolably sterco, motion sterco,
. optic flow (apparcnt flow of visual spacc under motion), and matching. The gencral
'j malching problem is analyscd, and it is proved that gencrically, gencral matching is
§ highly degencrate for monochrome pictures, but has a unique solution for 2 or more
' --. color dimensions. The result is extended to pictures with unknown bias and gain. Smale
{—'~ dingrams and level sel topology are introduced as invrciants usclul for malching, reducing
- the problem to graph or tree matching. The ievel scl lopology tree is also proposed
n\ ’
- as a mecthod of multi-scale description of the picture, and shown to be an invariant
E generalisation of the “scale space” technique.

The motion problem is analysed using Lic group mcthods, and a thcorem is proved

........................................................
......................................................................




Abstract ' 2

establishing that 'generi::ally 8 simultaneous values of time derivative of the monochrome
picture function are necessary and sufficient to uniquely specify the 3-dimensional rigid
motion of a generic given object. For 2 or more color dimensions, this is reduced to values

at 3 points in the picture.
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Preface

I wrote this work for an audience of both vision workers and mathematicians. There are
many pcople who coul;i be counted in both groups, but the full intended audience has
a wide spectrum of backgrounds. Among vision workers, I include students of biological
vision, but it is artificial vision that I am directly addressing. It is widely appreciated that
therc arc many common problems, bul [ haven’t written about any specifically biologieal
problcms, such as explaining the functlion of some cell population. My hope is not only
to communicate rescarch results, but to convince readers in cach of these licids that
there is something of intercst to them in the other. Many people have a bad taste from
previous cxperience with touters of fancy mathematics in these concrete situations, with
clixirs which turned out Lo be oversold or plain irrelevant. Mathematics is not magic;
using il doesn’t mell all impediments into trivialily. It merely provides a structure for
understanding, and an apparatus for resolving questions. If the questions are the right

grist for Lhe mill. Attracting these ficlds to cach other isn’t nccessarily casy.

Also, it poscs a problem in writing; since | have tried Lo keep Lthe malerial accessible Lo Lhe
novice, some of it must necessarily be old hat to the expert, so | apologize Lo the expert

whom | have subjecled to the obvious. I have tried to make this work rcasonably self-

containcd, including various standard definitions and results from differential topology
and geomcetry. When these are notl in the main linc of thought, they have been rclegated
to fine print, so they can be casily skipped by those who already have the ncecssary
background. Somctimes, standard terms are used before they are defined, and somnelimes
they are defined twice, partially from a lack of organization, but primarily to locate
the mathematical digressions where they are most important, and avoid bogging things
down where they are notl. 1 haven'’t tried to be exhaustive in thiq, or I would ha\;e

been obliged Lo include a complele introduction Lo differentinl Lopology and gecometry,




Preface iv

something which has already been accomplished with great skill by others. Thé chapter
Geometric Methods in Vision makes the hcavicst use of abstract mathematics; therefore
I have put most mathematical background matecrial into the fine print of that chapter.
Since I have assumed some of that background material in earlier chapters, the reader
may find it useful to glance through it to clarify the unfamiliar, such as the implicit

function theorem, or functional notation.

The 3 major chapters (A Survey of Edge Detecction, Contributions to Tidge Detection,
and Geometric Mcthods in Vision) arc largely independent, and can be read in any order,
or in isolation. The survey has many discussions which go beyond summarizing, and
should be of interest to rcaders who are already familiar with the literature, as well as to
newcomers. The.contribul.ions chapter is probably of most inlcrest to spccialists, while

the gecometry chapter is likely to appeal to the more mathcmatically inclined.

Stanford, California
October, 1984
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A Survey of Edge Detection Introduction 12

systems. The theor'y far nonlinear systems is not as well developed, and not so widely
known. Who can say that there is not some other isometry that is more appropriate for
a nonlinear system? But how is a physiologist or psychologist to seek evidence for such

an unknown objcet?

Finally, a third motivation for cdge finding is based on the computational consideration
of cfficiency. Since boundaries are of a smaller dimension than images or regions, they
are casicr to handle: e.g. (for a smooth boundary, rather than a fractai} if the number of
boundary points increases as O(n), with 1/n the discretization interval (grid size), then
the number of region points increascs as O(n2). Also, the 1-dimensionality of a boundary
providces a natural ordering for its points, which is easily translated to a processing order
for a scquential algorithm. While the entircty of an image is filled with region points,

only a small fraction constlitute cedge points.

The sparsity of cdge points among image points is a major attraction of cdge detection
as an carly step in stercoscopic vision, since it extremely diminishes the size of the search
involved in matehing points between the two images. OF course, this is only useful if the
cdge points bear some relation to Lhings rigidly attached to fixturcs in the world, 8o as to
vindicate the assumption that edge poinls must malch edge points. As it happens, Lhis
scems in fact Lo be a good assumption, and cdge points appear to be more stable than

morc rudimentary lcaturcs of intensitly, such as Lhe actual brighlness values.

So far we have given a very general definition of edge detection as finding the geographical
limita of a descriplion. IL is probably Fair Lo say that few if any authors of edge detection
mcthods thought that was what they were doing. The universal goal of edge detection
algorithms is to find places in the image which a human would classify as “cdges” or
“boundarics.” We apologize il that scems a trivial stalement, but since we do not know
how a person scgments a scene, we are in no posilion Lo give an authoritative definition of

what constitutles an “edge.” Iiveryone agrees that a transverscly translated step function

RPN VR WK W W VW
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A Survey of Edge Detection Introduction 11

In more familigr terms, the description is nothing more than a model of the data in
some system of representation of the pertinent knowledge. Including boundaries or
regions per se in the rcpresentation language makes vacuous the notion of homogeneity.
Our observations above are merely rewordings of the thesis that humans hﬁve a very
rich represcntation language available, while machines a3 yet do not. Incidentally, the
term representation language is meant to refer to the internal representation, whether
it be essentially symbolic, continuous, or whatever, and shouldn’t be confuscd wit.h tile
language we use to communicate about the aspects of the representation introspectively

available to us.

The problem of finding homogencous regions can be approached cither by flinding the
rcgions dircelly, whose difliculty increases with the complexity of description, or by
finding thc boundarics between the regions. Thus the first motlivalion for edge finding is
for the purpose of segmentation into homogeneous regions in accordance with our own

models of the world. It is bascd on introspective obscrvations.

A sccond molivation is derived fromn eztrospective obscrvations which have been made
by physiologists, perceplion psychologists and perceplual psychophysicists. Anatomical
structures have been found which respond to abrupt changes in inlensity and color as
functions both of position and time. Obscrvations have been made that indicate absolute
colors and intensities, as well as their slow changes are not readily perceived, butl abrupt
changes are. Whether il is wise to mimic nature, or rather to attempt to mimic the
precious litLle we think we know about nature, is problematic, despite the widespread tacit
acceplance of the idea. It is worth considering that we arc unlikely to find physiological
processes involved with things that are not aiready a part of our introspective models. For
example, we look for evidence tﬁat the visual systein performs FFourier transforms, since
Fouricr transforms have a particular intuitive appeal. But they can also be viewed as only
one of a myriad of possible isometrics of a function space, special because they transforr.n

convolutions to mulliplications. Butl that special property is mainly significant for linear
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way to describe such a heterogeneous object is still to partition it into homogeneous com-
ponents. The tendency is always to subdivide, perhaps reflecting the reductionist ethos
widesprcad in modern science. One might expect that in artificial intelligence jargon, this
process would be called the chotomizing heuristic; in fact, it is called segmentation. (Or

borrowing from Cesar, subdivide and conquer.)

The products of the subdivision arec homogeneous entities. For a human, the homogeneity
is one of descriplion, while for the machine it is gencrally one of mcasurement. Now, a
measurement is a descriplion, and a sct of deseriptions is a description, so we have to
explain what we mecan by these terms a little more precisely. By a description, we mean
something which might be quite complicaled from a machine perspective, encompassing
such cxplicit descriptions as “it gets darker and redder from right to left, with a speckling
that looks like that on a trout, bul which lfades into a very densc nctwork of lines in the
perip.hcry.” That would not generally be found Lo be a homogencous region by a machine.
A measurement, on the other hand, is meant to connole something very close to the
language of the transducer providing the image data, c.g. brightness or range valucs.
Most of the definitions of homogencity implicit in automalic scgmentation programs
stray litllc from a constancy of such a measurement, Lhough the situation appears to be

improving.

By demanding a homogeneous description to define a homogencous region, we mean that
the dcscription can have no ezplicst mention of boundaries or constiluent regions. The
relatively weak condition of cxplicitness is right because an implicit boundary would
not be a property of the description, bul rather something inferred from it. Thus a
description such as “Lhe valuc goces lincarly from 100 in the lower left Lo —100 in the

upper right” would be judged homogenecous, despite the well defined diagonal boundary

separating positive from negative values. For the time being, we are contcnt.to_include ‘

as homogencous such descriplions as “the intensity goes as a step funclion...”

IR AT i vt
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A Survey of Edge Detection

Introduction

Why edge detection?

Edge dctection, in the formn of spatial differentiation, appears in the computer vision
literature as carly as 1955 [Dincen 1955). This carly and sustained interest ariscs {rom
a pereeption that the Lypes of patterns significant to a visual system consist of ap-
proximately homogeneous regions separated by abrupt boundaries. Although years of
experience have shown that real digitized scenes are not easily characterized this way,

the idea has persisted Lenaciously, for the lollowing reasons.

First, from an introspective point of view, one tends Lo believe the world to be composed of
objects, cach homogencous in its cohesion, and abruptly separated from other objects and
the background. Thal is an cssenlial aspect of our way of percciving the world, pervading
disciplines from anatomy (where cvery bump, nodule, fascia, and lissue lype is scen
as a Qcp:\ratc structure) Lo quantum mcchanics (in which an mscntiﬁlly counlinuous all-
pervasive ficld is seen to describe a separate localized parlicle). Whether this discretization
of the world is a part of the structure of the world or of ourselves we cannot say (arguably

it is impossible Lo say); nevertheless, it is here to stay.

Now closc inspeclion of digital images, or for thal matter, painlings from pasl cenluries,
leaves litlle doubt that the image of a single (realistic looking) object can but rarcly be

described as “homogencous.” Yet, cven upon making such an observation, one’s natural

Some mathematical background which is assumed in this chapter, such as funclional notation and some
results from differential topology, is explained in more detail in the fine print of the chapter Geometric
Mecthods in Vision.

DRI ST S P
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Introduction 8

beginning steps in applying the qualitative method. The edge detection problem has
not been laid to rest, alas, but I think the armamentum for its conquest, and others as
well, is now closer at hand. A few dragons have been slain along the way, and their proofs

are given.
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in understanding how the geometry and topology interact, and I began by studying the
o .
consequences of topology. This led to results which intertwine color vision with stereo,

and which clarify the role of geometric constraints in monochrome sterco vision.

The main invariant structure in these studies was the family of level sets; each level set

is the set of points in the picture that all have the same brightness or color. Differential
. topology has studicd this structurc thoroughly, so we were able to say some things about
how the level sets fill up the picture, and what happens when the picture is perturbed.
This forms a departure point for characterizing the picture function which is independent
of vicwpoint. It also is rclated Lo smoothing the picture, and some other operations
which pcople have applied to ﬁhd features in pictures, e.g. zcro crossings of Laplacians

of Gaussians.

The next step was to study the cffects of the geometry. In the spirit of modern gcométry,
I approached this by studying the action of a Liec group, i.e. by looking abstractly at
the cffect of rigid motion. This type of problem is usually casicr in its differential form,
i.c. for infinitesimal motions, so that was the best place to starl. This'put us into the
business of studying mrotion rather than discrete views. A [amily of basic qucstions is
“how much can be deduced aboul the molion from how much data. The particular one
of these questions that | studied was bascd on Lhe idea thal the raw data consists only
of brightness or color values at fixed places on the retina, along with data on how they
are changing with time. This is somewhat diffcrent than the approach many have taken
in the past, where Lthe goal has either been to find the 3-dimensional motion from the
molion of poinis on the retina, or clse Lo find that motion of individual retinal points
itsclf. We were able to show that gencrally 8 data points of our kind arc cnough to
specify the motion of a given surface. Again, this was related to color. The number 8 is

for monochrome data; for color data, 3 points arc enough.

The 2nd main topic of this thesis, gcometry applicd to vision, thus compriscs some

...............................

A
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Introduction 6

suited to scrutiny uﬁder.the macroscope of modern geometry. The “real” object.s.of vision
are objects embedded in 3-dimcnsional space. They arc subjected to various lighting
conditions, and viewed in a variety of ways. It is the properties of the real, solid objects
that we must deduce from the image; so we must study how the properties express
themselves, and come to understand their invariances, especially invariances of qualitative
features. | use “qualitative” in the sense of “qualitative dynamics,” where understanding
comes I'rorﬁ topological descriptions, still quite rigorous, rather th.an from some formula
which allows us to calculate the precise numerical values describing the state of a system.
E.g., we would rather know where (and whether) an object's shape changes (say from

convex to concave), than know the terms of a polynomial that specifics that shape.

The route of study then became to approach the specific, e.g. cdge finding, by first -

understanding the overall problem. My first step was simply to write down what the
spaces, maps, and groups were that were involved. This provided a structure in which to

apply formal results of mathematics.

A basic lact of lifc in secing 3—dimensional objeccts on a 2-dimensional retina is that as
we change our viewpoint, or as the objects move, their 2-dimensional images undergo
distortions. Understanding 3 dimensions from this 2-dimensional world must involve
recognizing an object despite these dislortions, and, what's more, interpreting the dis-
tortions to deduce the shape of the objeet and its relative motlion. The exact distorlion
that the picturc undergoes depends on the shape of the object, the motions of object and

obscrver, and the optics Lthat produce the picture.

Stercoscopic vision conventionally starts with 2 pictures from different views and requires
finding places in the 2 picturcs that correspond to a single place in the 3-dimensional
scene. When this is done for cnough places in the picturcs, it allows triangulation to
find depth (i.e. the 3rd dimcnsion). A basic problem is to study the invariants which

allow such malching to take place. Since the distortions can be complex, 1 was interested

[N

0

C
£

P e | L4 v 8 U
,.',," [ R N
s [ « e
et - et e
K .
ot L
e eE T

[
el
. l' "

]
1,

‘e .
FaRrs
e T T

!
. s




O A M A O S £ i S S bAoAt Al malt A A Ao nat et S C Ak i el R e e L i P e A el P

Introduction 5

rifts, ridges, dips, etc. a:e, and how they interlock. Then, once the image is “understood”
this way, maybe to the point of hypothesizing objccts, some regions may take on special
importance as “edges.” In this view, while 1-dimensional objects—edges—are important

- for representing what's in the image, they are a result, not a first step, of understand-
ing. This is a somewhat heretical point of view, and it is by no means certain. But I
became convinced that the understanding of local image features, e.g. labelling some
features as edges, depended on getling a qualitative global understanding of the iinage.
When 1 say “global” here, T don’t mean that one has to understand the whole area of
Lhe picture, but rather a large enough area that the most local measurements can be put
into a context. For cxample, from a single view through a liny pcephole one might say
something about which way the shading is changing, but it takes a larger ficld of view
to say somcthing about the 3-dimensional object involved —whether we are looking at a

. convexity or concavity, a fold, an cdge, an uninteresting shading gradient, or some other

solid feature.

The enterprise of computer vision secks to duplicate a leat we know from introspcction,
-but to duplicate it by cold mathematical means. There are many styles of research, but in
" my thinking, this clil.crprisc is most likely to succeed il the mathemalical sctl;ing and the

questions being posed are stated explicitly and precisely. Often, in fact, finding the right

way Lo state a problem Lurns out Lo be a cornerstone of Lhe solution. | had come Lo sce the
problem as one of describing the image appropriately on increasingly global scales, and
piccing logether the descriptions to arrive at local interpretations. This makes it cssential

to find the right ways Lo understand the picture function for the goal of understanding

3-dimensional structure. Differential topology and geometry scemed to be the right places

to look.
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Vision is tceming with geometry: the image comes from a map from a higher dimensional

A
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space with important singularities, there are natural group actions, c.g. the rigid motion

group, lopological invariance in the image is important, cte. These are things perfectly
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through a very small peephole.

Since the very beginnings, researchers who have built vision systems which did some
higher level recognition tasks have been sorely limited by the abilities of the lower level
algorithms they used for input. This was a problem for ACRONYM [Brooks 1981] no less
than for (Waltz 1972]. Waltz created a system which was able to understand line drawings
of toy blocks. The presumption was that low-level vision could supply the line drawings.
But it had turned out to be very difficult to obtain line drawings good cnough to use
as input, even in the blocks world domain of uniform matte surfaces in good lighting.
This problemn had already spawned the clforts of Binford-florn [[lorn (972] and then,
later, of [Shirai 1973). 10 years later, [Brooks 1981} used the state-of-the-art line finder
of [Nevatia and Babu 1978}, and lound that he had to draw infcrences based on almost
laughably meager low-level output. Today, rcliable segmentation (dividing an image into

meaningful parts) remains a paramount obstacle to image understanding.

Ilence T was drawn to edge delection as a basic problem which might yicld to a math-
cmalical appronch.. 1 found that people had applicd a great patchwork of techniques,
but that the problem itsell was very poorly understood. 1dges, it scems, are a lot like
obscenity, for as Mr. Justice 1’otler Stewart wrole of obscenily [Jacobellis v. Ohio 1964),
| he may nol be able Lo define it, “But 1 know it when I sce it.” Everyone agrees Lhat a
perfect step function should give an edge, but there has been no adequate criterion put
forth to classifly any other lunction as cdge or non-cdge. There was no viable theory
to bridge the gap between the local methods of the peephole and the global objects we
think of as cdges, if indeed the global must even first come from the local. I eventually
realized that the problemn of cdge detection was first a problem of understanding the
image intensity function, a qualifative understanding which must be suited to the nceds
of vision. In fact, I wonder if cdge detection is a bit of a red herring. The best, sharpest

cdges arc casy cnough Lo find, all right, but it scems that the global picture may require

knowing how all the local qualitative featurcs of the image (it together: where the bumps,

.........
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Introduction 3

anywhere within range.,

Someonc who has never tried to write a vision program is likely to think that it really
can't be all that hard. The act of vision is so effortless for us, so transparent, that it
is hard at first to imagine that anything at all must be done to bring it off, beyond
the initial transduction. You digitize what's out there; the gbjecté are delineated by
their borders, which are the places where things change suddenly, so you look for the
places of rapid change, figure out what the objccts are, and voild! all done. In fact,
a lot of rescarch was based on that paradigm. The illusion of simplicity scduced many
people inlo thinking that it was a programming problem like nany others, which could
be solved by doing some intuitively obvious things, followed by bug-ﬁ*ing, honing, and

tuning. Unfortunately, life is not so easy. -

One of the hardest things to appreciate, even to describe, is what it means to know
what is in an image. In some sensc, the set of all the pixel* values alrcady has all-the
information about the image. But there is no knowledge that, i.e. no symbolic knowledge.
You can’t know aboul the relation between any 2 pixels unless those pixcls talk to cach
other somchow. From another perspective, knowing all the pixel valucs is no better than
knowing Lthem onc at a time - as compictely localinformation but what we really need is
global inforinalion. And the global information needed must be cxacl,iy that information
that lets us draw infcrences about Lhe physical situation that produced the image. Global
information is very hard Lo obtain becausc a piclure contains a lot of data—around 256K
byticst for a normal TV frame; on the order of 100,060K bytes for the human retina (for
comparison, a page of text in a book is around 1K byte)—and the space of patterns to

consider is of high dimension. Most ;kople have approached this complexity problem by

trying to extract information for very smail regions, from a few to a few hundred pixels,

and to use this information for only a few such regions at a time. This is like looking

e A
P S
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* Pizelis a contraction of picture elemeny, a single point of data in the picture,

tWe take a dyte Lo consist of 8 bits, where a bit is a single binary digit.
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very cleverly; but isn't {he act of the programmer, the act of creating the symbolic data
base, a fundaméntal act of abstraction and hence of intelligence? These linguistic entities
tend to be like things that pecople would say, compact statements, but how much of a
thought or worldly experience can be captured this way? So one must worry about what
knowledge 13, what knawledge is needed, and how to represent it. What is often neglected
is the question of how that knowledge can come to be known. One way is to hire a team
of knpwledgc engineers who spend months or years codifying the knowledge of an isolated
domain into a formal system accessible to the machine. In the long run for Al, this has to
be a'losing proposition: how long would il take you Lo write down everything you know?
And that only counts the things that you know you know and you know how to express.

There's no substitute for experience.

Expericnce is the only possible way to amass a data base that can be said to have “world”

" knowledge. Experience must be abstracted, perhaps in many stages and many ways, to

yicld the data structures used by the higher processes, perhaps abstiracted even to yield
the very processes. The rope of mind has 2 ends: what do I nced to know to be able to
reason, and what can [ say about what’s happening; and it has to be spliced somewhere
in the middic to conncct the outside world with the inner one. l’crccptién must be
able o produce the dala structures required for rcasoning. In facl, given our meager
understanding of intelligence, we can't really draw a line belween perceptlion and reason.
Maybc‘ there is none. After all, the relatively “minor” ability of perccption has so far

proven vexingly intractable,

Among our scnses, vision is probably the richest and most important. Only vision and
hearing have well-developed transducer technologies, making them readily accessible to
attack by computer. The probléms of hearing, partlicularly speech understanding, are
no lcss than those of vision, but I happen to be more visually than aurally oriented, and
vision has more obvious connection to geomelry and topology, so it was vision that

found myself working in. Also, there was a vision group at Stanford, but no specch cffort
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.This work is mainly about 2 t.opics in computer vision:
¢ Edge detection
o Applications of gcometrical methods,
The “geometrical methods™ are thosc of modern differential Lopology and geometry.

I came (o do this research in pursuit of the eventual goal of understanding and building

intelligence.

An intelligent creature, whether of flesh or metal, must be able to know what is gbing
on around it, and do somelhing about it. Those are the peripheral funclions: perception
and aclion. These are certainly nccessary, but aren’t they rather minor in comparison
to the “higher” lunctions involved in thinking, [celing, learning, lahguai;e, ete.? This is
an inleresling question, but it isn’t just this simple nceessity of perception that led me

to its study.

A greal deal of artificial intelligence (Al) rescarch studics the higher functions, and with
varying degrees of success, tries to duplicate them. [ find a curious Lhread running through
much of this work: the manipulation of linguistic entitics. People have long said that the
main thrust of Al is sy mbol manipulation, and indeced it scems Lhat Lo be smart you should
be able to Lransform data into abstractions, and abstractions arc symbols, which in some
sensc are linguistic cntitics, abstractly at least. The Iil;guistic enlitics of Al tend to be
statements with a great deal of meaning Lo the programmer, such as (DUCK IS-A BIRD),
but the machine hasn’t the least intercst in what the symbols stand for in the w rld.

The Al program cndows the machine with a means to manipulate these symbols, perhaps
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A Survey of Edge Detection Introduction 13

ought to be called an edge. This corresponds to a l?oundary between regions of uniform
intensity measurement, uniform at least near the boundary. Very littie attention i\as been
paid to any other definition of “edge,” despite the fact that closc obscrvation of images
reveals that step edges between uniform (strip) regions are exceedingly rare. This is not
to say that edge detectors built to detect step edges don’t find real edges; indced they

- often do, and indeed they often make grievous errors.

The term “edge” has been fairly w'idcly abused, and we will continuc’that tradition here.
Onc type of cdge is Lhal resulting from the boundary of some object. There are also
edges which are mercly boundarics between surface features. There are local cdges and
global cdges, which arc frcquenﬂy called contours. lLocal and global are rclative terms,
and we mean them in comparison either to image or grid size. A local part of a curve, for
example, would be well approximated by a straight segment in the gi‘ven grid size. Thus
another way of looking at the difference between local and global is related to manageable
and uninanageable search problems, since locally all possible curves can be represented as
all possible linc scgments on a coarse grid, while globally the space of all possible curves

is vast.

Local edge detection

We will not altempt to give a mathematically precise as well as operationally general
definition of “cdge” here. Properly, to do so onc would study the imaging process as
well as real images. [[lcrskovits and Binford 1970] did so to a limited extent, presenting
essentinlly (-dimensional results. 19ssentially, what people have been looking for as cedges
are placcé with a large gradient, or places which resemble a step lunction in cross-scclion.
So-called “roof™ cdges, modclled as a discontinuity in ‘lst derivalive have been sought
as well. It turns out that a number of different outlooks on how to look for these

features lead Lo essentially the same computational Lechnique, viz. convolution with some

kerncl followed by thresholding. (Strictly speaking, it is usually cross-corrclation which

Lin anss Sade b
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is implemented, but singe the families of kernels involved are complete under inversions,

we take liberties with the term “convolution.”)

Spatial differentiation and gradient estimation

If edges are places where things change fast, then the obvious way to look for them is
by performing a spatial differentiation. This may be done by some discrete analog of the
gradient, which is implemented by convolving with a kerncl of small support. The sm.aﬂo;st
possible support lor a diffcrentiation is 2 pixels, and in such a case the convolution is often
thou‘ght of as taking adjacent pixel differences, or first differences. Larger supports allow
morc creativity in the choice of the convolution kernel defining the differentiation, and
provide the benelit of improvéd noisc behavior. A great many authors estimate gradient

or “stepness” by computing adjacent pixel diffcrences. [Martelli 1972, Martelli 1973) and

. [Turner 1974] arc examples of the latler. Another way Lo think of the gradient is as a

derived parameter of fitling a plane to the data. For sufliciently symmetric supports,
this can also be implemented as convolutions. In fact inany ouiwardly sophisticated

techniques have as their core the cstimalion of gradient.

Template matching and matched filtering

A popular way Lo look for fealures is with a matched filter or template, and this is
quite common for step edges. Again the cross-corrclation with the template, or the space
domain rcalization of the filter are implemented as convolutions. The idea is that the
“template” (the convolution kernel) is an ideal case of the feature one is secking, and
one looks for large valucs of the correlation as indicating the presence of the fealure.
The term “lemplate-matching” often suggests that the vector space projection analysis
of Lthe process is at best a sccond.ary consideration. Examples are the operators of Sobel _
[Duda and Ilart 1973] and [Kirsch 1971}, as well as many others (further examples can
be found in [Abdou 1978] and [Rosenfeld and Kak 1976]). The matched filter npproac.h

is operationally Lhe same, but includes the analylical idea that as a consequence of the
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A Survey of Edge Detection Introduction 15

Cauchy-Schwarz inéqua‘lity, the maximum response for normalized data occurs when
the data is the (complex conjugate of the) template. [Duda and Hart 1973] provide a
more detailed discussion of the ideas of spatial differentiation, gradient estimation, and

- template matching, with a slightly different viewpoint. [Shanmugam, Dickey, Green 1979]

seek a slight generalization of the matched filter, in the sense that the filter must be

strictly bandlimited and the objective is to maximize the powci- of the step response in a

given space interval. o
Locally, i.c. at a single point of the convolution resuit, the integration against the kernel

can be thought of as orthogonal projection onto a 1-dimensional subspace of R", where »‘:
n is the number of pixcls in the support of the kernel, and the projeclion is with respect :. . _ﬁ

to the usual inner product on R™. Il there is more than 1 subspace involved, i.e. more
than onc convolution, then one has components which can be thought of as components

of a vector in the space spanned by the subspaces. Then one can compute a magnitude

for that veclor (so as to get a nuinber representing “cdgencss” for thresholding). The

magnilude may be in the Euclidean norm

llll = (3 v¥)'/2,

or in some olher norm, such as the max norm

llell = maz{w}, O
or the sum norm

; llzll = 3 lwil.

Best edge fit and optimal estimation

The simplest edge model, a translated step function, has 3 paramecters (for a 2 dimen-

sional picture). These might be, c.g., angle, left height, and right height. With enough

.....................................................................
............................
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A Survey of Edge Detection Introduction 16

normalization, these cap be reduced to the single parameter of angle. Template mateh«
ing methods use a separate template for each angle considered. But one can al.so try to
determine the angle that best accounts for the data. Furthermore, the modcl may have

more parameters, and there may be statistical information available.

- The simplest type of best fit problem occurs when the model space is a linear subspace

of the data space, which is an inner product space. In that case, the best fit is obtained
by orthogonal projection to the model space. This is a very common mcthod for fitting
functions in 1 dimension, based oi: Lhe observation Lhat translation in space is cquivalent
to multiplication by a complex-valued function of frequency in the frequency domain, so
that all the translates of a given frequency component make up a linear subspace. In 2
dimensions, though, matters arc complicated by the presence of rotations, so that while
the same arlifice applies to Lranslations, the Fouricr equivalent of rotation is still rotation,
and (..hc set of all rotations of a component is no longer a (!-dimeasional) lincar suBspace,
so dirccl orthogonal projeclion is no longer applicable. llence many methods which seemn
very clever I'of I dimension fail for 2 dimensions. However, this nice property of Fourier
transforms for 1 dimcension can be thought of as a special case of a more general principle,
which may be of use in inventing best fit methods. Specifically, one way to restate the
Aspccl,ral theorem [llalmos 1957, talmos 1963] is that any normal operalor in a Hlilbert
space i8 unilarily cquivalent Lo a mulliplication. For our purposes the llilberl space can
be taken to be L2(R?). Then the spectral theorem can be interpreted Lo say that given
a normal operator A, we can find some isometry U : L2 — [,2 and some funclion ¢ € L?
such that U='AU(f) = o[ for all [ simultancously. If A is a translation operator, the
Fourier transform is such a unitary transformation, as we menlioned above. According to
the theorem, there is some isometry of L?(R?) which wili transform rotation into complex
multiplication. Using that isometry like a Fouricr transform, one could usc projection
methods to find best fits. Iiven better would be a transform that worked I'ér translations

and rotations at the same time, butl that is impossible because translations do not in

..............................................
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general commute with fotations (as would clearly be necessary for the existence of such.

a transform because multiplication is commutative).

i . A slightly more general best fit problem occurs when the model set consists of an n-
parameter family of functions, and the object is to find a member of the family which
minimizes some error measure with respeet to the datum. If the family is differentiable,

it can be thought of as a submanifold of the ambient space. Frequently the error measure

L B

is a metric on the space, and then the problem is seen as one of finding the closest point
of the model manifold to the datum. In the case of cstimation, Lhere is a probability

distribution involved, and onc secks a set of paramcters minimizing the ezpected crror.

N [Altes 1975), [lueckel 1971,Hueckel 1969), [0’Gorman 1976), [Abdou 1978) find best fit

edges. Altes uses cssentially the 1-dimensional Fourier method described above. Ilueckel
- and O’Gorman minimize the distance between the projection of data and pnrametrizeq

model onto a truncated orthonormal basis, deiiving the “optimal” parameters. However,.
- both the number of parameters and the number of terms in the series arc too small to
allow good performance. Altes uses a more realistic edge model (in 1 dimension), but his
l “results are not readily generalized to 2 dimensions. Abdou finds the best fit edge by what
_is esscatially an exhaustive scarch over a slightly more general but still too simple model

space, namcly lincar ramps beltween constants,

- When the paramclers one is sceking are Lhe cocllicients in an orthonormal basis, the

paramcicers can be obtained simply by taking the inner product with the basis clements,

. Higher order derivatives

Mecthods that rely on cstimates of the gradient, or whose responsc is largely determined
by the gradient cannot distinguish smooth transitions from abrupt ones. In the Ilucckel
) and O'Gorman approaches, for cxample the carly term(s) in the expansions arc cssentially.

the gradient. Onc approach to this problem is to usc a preproccssing step which takes
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linear functions to 0. This idea is advanced by [Binford 1981} in the form of “lateral
inhibition,” and in fact operators modelled on second and higher order derivatives will
have this property. (It's interesting to consider just how many such operators there
are. Suppose the operator support is n pixels. There are then n linearly independent
such operators. Requiring that all operators take constants to 0 is'a lincar constraint,
and that they take all linear functions to 0 is 2 more linear.cor'lstraints, so there are
n — 3 linearly independent operators fulfilling the constraints. One may impose further
constraints by requiring various symmetrics, and each discrete symmetry will reduce the
dimension of the operator space by 1. For large supports, it is ciear that therc are many
candidate opcrators.) The sccond derivalive.in the calculus of scveral variables is the
Hessian, which is a matrix. Its algebraic invariants are the geometric invariants of the
original function viewed as a surface. Various combinations of its components (taken
lincarly and nonlinearly) can be used as 2nd derivative operators. If an cdge is sought‘
at suitably defined maxlima of the gradient, then for a 2nd derivative operator, one sccks
zero-crossings. [Marr and Hildreth 11}79] usc an approximation to the Laplacian, which is.
the trace of the Ilessian. {Dreschier and Nagel 1981a, Dreschier and Nagel {981b] use the
determinant of the Hessian. [Beaudel 1978] computes rotationally invariant derivatives
up I.o.4l.h order. [Canny I§8:¥] takes an oplimal cstimation approach Lo the xcro-crossing
of 2nd derivalive problem of [Marr and 1lildreth 1979), using criteria ol detectability and

localization in a variational formulation.

Approximation and representation of image function

Onc of Lhe drawbacks of the methods we have been describing is that a very few

paramcters are derived by some kind of local projection. The paramcters are chosen

for scmantic intercst, bul while they respond well to intended fealures, Lhe same is often

truc for uninlended features. We have the following situation. Let X be the space of all

local images, and F* C X the features onc is secking. Perhaps this is done by some map v

@ : X = R. One dcsigns this map so that p(F) > 6, for some threshold O, and one

.........................
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would like to be able tosinfer that if w(z) > O, then z € F. Clearly, to do this, one must

have some information about p—!(—o00, ©), but this is surprisingly often negle.

Another way to think of this is that the few semantically derived parameters actually
do not provide enough information to understand the structure of the image intensity
function, even locally. Now, ﬁf course the pixel values constitute complete information,
but it is not directly usable. One approach, then, is to seek a local representation for
the image data which is appropriate {or the questions one wishes to :rcsolva with Turther
processing. Approximating the Ilessian is such a process, since that can be regarded as
finding the best local quadratic approximation, just as computing a gradient can be viewed
as finding a planar approximation. [Prewitt 1970] computed her gradient parameters
based on a planar fit. In the same vcin, [Haralick 1980] fits plancs to the data and defines
edges as boundaries between maximal domains of fit, relative to an crror measure. Planar
fitting is very crude so he [Haralick 1981] proposes polynomial fitting as an cxlension.
[Beaudet 1978) is motivated by fitling a truncated Taylor scrics, though the scmantics
he ascribes to his opcralors are somewhat naive. [lIsu, Mundy, Beaudct 1978 use a
quadratic fit, bascd on Beaudet's techniques. [Altes 1975) is put forward as emcnl.iaily a
spline fit.

Global edge detection

The Hough transform [Hough 1962}, [Duda and Hart 1971, Duda and Hart 1972, Duda

and Ilart 1973] is a Lechnique Lo find collincar scts of feature points over an enlire image.

This can be applied in complete globality, t.e. over the entire image at once. [Ballard and ]
Sklansky 1976) [Shapiro 1974, Shapiro 1975, Shapiro 1978], and others use generalizations g
of the mcthod to look for other 1 dimensional objects. - ' 1

Frequently, the term linking is used synonymously with global cdge detection. Linking
consists of making lists of local edge clements connceled head Lo Loe, cach list co,r!'cspond-

ing to an extended (global) edge. This is the most common global edge detection method,

..................
......................................
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dating back at least to, [Roberts 1963], and including many others (e.g. [Horn 1972,
[Binford 1970), [Nevatia and Babu 1978]). These methods differ primarily in the predi-
cates used to determine whether to join a particular edgel into a contour. A major
difficulty stems from the fact that the linking proceeds only after irreversibie decisions
are made about local edges, c.g. limiting each pixel to having an edgel of unique orien-
tation, or making a binary decision about the presence of a local edge. The type of
information available to the linking, which generally proceeds locally, is inadequz;te .for

many situations.

An improvement on the linking method is advanced by [Montanari 1970, Mont.a.nari 1971)
and [Martélli 1972, Martelli 1973]. Here the prior local commitment is less extreme, and
dynamic programming or hcuristic graph scarch methods are used to find optimal paths
with respect to some figure of merit. The figure of merit, a global paramcter, replaces the

" Jocal predicate as the contour sclection method, and likewise as the main artistic elcment.

The “relaxation” methods propounded by [Zucker, Hummel, Rosenfeld 1977] and
[Rosenfeld, Hummel, Zucker 1975] attempt to find the contours globally, in parallel,
and without cxcessive initial commitment. The process depends on a local pairwise
reinforcement-inhibivion process between edgels. The art is in choosing the reinforcement
process. Ixplicit global cdges are not produced, but presumably the process terminates
with scts of cdge points which are both connceled and of a desired minimum length,

which are then readily identified.

Region growing

We motivaled cdge detection as a means to region finding. Why not just find the regions
dircelly? Many pcople have tric& doing just that. The advantage is that onc is dealing .
with a global objcct, so the problem of linking is (or scems to be) avoided. Rather than
deciding whether an edge scparates 2 points, one must decide whether 2 points belong ‘bo

the same region. Scen thus, the difference is mainly one of (linguistic) semantics. The

..........

.....
-«




-y P e it S e e dma S e b i Skt Shut e e Jt At St o IR gt St Shss B et A A At it A e I AR St

....................................................

A Survey of Edge Detection Introduction 21

data structures reflect wgions, not edges, as do the algorithms. Consequently, despite the
conceptual equivalence with edge finding, different approaches, harder to express in the
edge detection paradigm, are developed. The simplest method is based on segmentation
simply by intensity or color value. [Brice and Fennema 1970, Fennema and Brice 1970]
take this as their starting point, and then try heuristics to clean up. [Ohlander 1975)
segments based on dividing bimodal histograms of several color parameters. [Shafer 1980]
builds on Ohlander’s work. [Somerville and Mundy 1976} use a technique based on more
sophisticated reasoning. They grow regions based on the uniformity of an ap;;roximation
to the normal to the image intensity function. [Kirsch 1971] dofines regions based on

thresholding a “contrast” (gradient) function.

In the followmg, I have attempted to provide a cntxcal guide to the literature in seg-
mentation. The list of works reported on is by no means exhaustive, but it is intended
to include the most influential works as well as some others reprecsentative of the field.
In addition to summarizing each work, I have usually tried to put it into some perspec-
tive, which is to say that 1 have included many of my own reflections. I hope Lthat the

boundarics between the two are discernible cnough.
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General Works

Prewitt 1970
“Object Enhancement and Eztraction”
The paper is concerned with the entire image understanding p}ob!em:
o image formation
e image restoration
¢ enhancement (including ‘cdge enhancement)
¢ object extraction

The author provides a fairly extensive bibliography (237 references) of literature at that

time (much of which is still germane).

The work is lairly sophisticaled mathemaltically. E.g., Prewitt co{nsidcrs the Laplace,
MeHin, Fouricr, and 1ankel transforms, moments, 1laar-Walsh funclions (ef. [O'Gorman
1976]), Chebyshev polynomials, point spread function (I’S)), line spread function (LS)),
edge spread funclion (I2SF), modulation transfer function (MTF), and phasc transfler
function (PTF). She also discusses resolving power and restoration, including “super-
resolution” for resloring images which have been dcg}adcd by a convolution (referencing
e.g. [Slcpian and Pollak 1961, Landau and PPollak 1961, Landau and Pollak 1962 and

applications).

Edge cnhancement

A scction devoted to cdge enhancement discusses the gradient, generalized derivative,

Laplacian, and discrcle approximalions to gradicnt.

...................................
...........................................

.........
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As one means of ‘obtait;ing an estimate of the gradient, she introduces the 3 X 3 (now

so-called) “Prewitt operator:”

1 0 -1 1 1 1
1 0 -1 0o 0 O
1 0 -1 -1 -1 -1

" This is used in a method of estimating the gradient by fitting a quadratic surface to data
on a 3x3 square. The masks give 8/9z,8/dy for that surface dircctly from the data.
This is cxactly the method used by [llaralick 1980] for faccts. Similarly, onc can use the

same idea for a 4 X 4 fit or a Laplacian.

She also discusses oriented cdge masks, e.g.

1 1 1
1 -2 1
-1 -1 -1

as approximations Lo Lhe gradient (“compass gradient”), and gives some cxamples of their

use.

A discussion of modificd “crispening” (Laplacian) operators is prcscnl.(;d, as well as of line

enhancers (which are basically templates, i.c. matched filters).

Frequency filtering

Low, high, and band pass filtering is considered.

She discusscs Lemplates, matched fillering, and cross corrclation for feature detection.

A good discussion of thresholding is presented.

The paper is an exccllent overall survey of the then-cxisling methods for feature extrac- \
tion, and in particular edge delection. By and large, the intervening years havc.spcn only .!, _j

minor improvemenis, so the analysis she presents is slill relevant today.

...................................................................................................
......................................
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Evaluation

Asidc from frequency domain filtering, the methods presented, including the “Prewitt”
operator, are completely local with small support—in her words, “context-insensitive.”
Consequently, global structures cannot contribute to the edge finding process, and the
derived image description is limited to 1 or 2 local parameters which provide inadequate

description of the image intensity [unction for all but especially regular images.

Unlike most gradicnt estimation or template matching operators, the Prewitt operator
is based on a well-defined process--the best fit of a planc. The gradient by itsclf is not
suflicient for edge detection, since no discrimination is made between smooth and abrupt
transitions, although plane ﬁté can be used in more sophisticated ways (see e.g. [Haralick

1980]).

Davis 1973
“A Survey of Edge Detection Technigques”

The author presents some discussions of prior edge deleetion techniques:

Parallel edge detection
lerskovits and Binford 1970
lincar vs. nonlincar operators (nonlincar: mainly Rosenfeld, [fummel, Zucker 1975)
texture edges
Griflith 1970, Grillith 1973a, Griflith 1973b
Ilucckc|. 1971, 1ucckel 1973
Chow an;l Kancko 1972

Sequential cdge detection
Martelli 1972 Montanari 1970

“Guided” (Lop-down) edge dotection
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Kelly 1971
Harlow and Eisenbeis 1973
Shirai 1973

He discusses and criticizes what was done very tersely. There are no particularly decp or
sophisticated analyses; nevertheless Lthis work provides a uscfu) first tour or refresher of
some of the more significant work in the ficld. One can dectect a subtle and not surprising

bias toward Rosenfeldism.

Kanade 1978
“Region Segmentation: Ss'gndl vs. Semantics”

A survey of image scgrﬁcntation is presented, based on the paradigm: Image — Picture
Domain Cues — Scene Domain Cucs —+ Model — Instantiated Model — View Sketch —
Image ..., which may be iterated. A distinction is madc among the categories of signal,

physical, and semantic knowledge.

A large number of works are briclly surveyed, and categorized according Lo how Lhey fit
into the above paradigm. For example, many methods use only signal level knowledge,
and hence, in this paradigm, can provide al most a segmentation based on picture domain

cucs.

Evaluation

The paradigm presented can be more conventionally summarized as saying that one's
goal musl be Lo infer the 3-dimensional structure of a scene in order to model the scene
and understand the image. Furthermore, one must usc physical knowledge, c.g. imaging
physics and geometry, Lo make this inference. This is hardly new or controversial. What
is dcbalable, however, is the distinclion which is made belween piclure and scene domain

cucs. The main orienlation of Lthe paper is toward region growing and splitting methods,
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1sing fairly primitive “s.ignal level knowledge,” e.g. histograms of the image gray values.
For these types of systems, the image-picture-scene-model division is clear and seems

natural. But for
an easy description does not seem justified, and no arguments are presented to persuade
the reader, though in the author’s defense it must be said that there were sevcre space

limitations for a fairly broad article.

It scems rcasonable that the first step in image understanding might well be to compute
a description of the image data in a more usclul represcntation, or set of represcntations,
than is provided by the standard onc, i.e. the sct of pixel values. Kanade notces, in fact,
that [Pavlidis 1972] defincs segmentation as a process for describing the image features
themsclves. From this point of view, “picture cues” are features of this re-representation.
(Kanade takes a more restrictive and ill-defined view; he defines “picture cues” by the
cxam.plcs: linc segments, homogencous regions, and intensity gradient. The last of these
is properly a property of the image, but it can be argued that the first two gencrally

cannot be extracted reliably without using knowledge about 3-dimensional structures, and

‘image understanding” in gencrél (which the author is addressing), such

that is LanLlamount Lo making inferences about the “scene domain,” although admittedly.

historically such inferenees are implicit.) But it is not so obvious that there must be a

trichotomy: picturc-scene-model. IMirst, the new image representation is chosen based.

on physical knowledge- - the knowledge that determines for what it is important Lo look.
Whatever lcatures are focused on in analyzing the new image representation are likely to
be interpretable as features in the scene domain only in conjunction with fitling them into
a model. For example, the interpretation of a narrow gradient-shaded region may depend
on its conncclion to other rcgions and on some sct of hypotheses about other regions in
the vicinity. This might even be on the level of dccidin[‘; whether the region is an object
limb, a surfacc, a highlight, or even whether it should be regarded as a scparate region at

all. Onc can readily cnvision a Waltz or Zucker type relaxation process occurring using

the semantic relations of a model to interpret part of an image representalion as a scene
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ich expansions cannot®avoid truncation error. However, if the sampling kernel is taken
1 (say) C°, its linear combinations (i.e. the functions Y ai¥:, where the 1; are discrete
anslations of the sampling kerncl ¢) become prime candidates for an expansion series.
hese can be frequency (or sequency) ordered. Expansion in terms of such functions has .

een extensively studied; use of truncated serics fitting is worth investigating.

‘urner 1974
Computer Perception of Curved Objects Using a Television Camera”
Ve arc concerned here only with the edge finding aspecis of this work

‘he author gives a briefl critical synopsis of carlier line finding work:

Binford-Ilorn {Iforn 1972]
Griffith 1970

Herskovits and Binford 1970
Ilough 1962

Hueckel 1971, IHucckel 1973
Kelly 1971

Murphy 1969

O'Gorman and Clowes 1976

Pingle 1966

Pingle and Tencnbaum 1971
Roberts 1963
Shirai 1973

RN e B

Tencnbawin 1970

“he edge finder Turncr employs is very simple, using the first difference of adjacent pixels, . ., ]

ollowed by thinning, and further by a local tracker (inchworm).

\ short review of curve scgmentation is provided.




A Survey of Iidge Detection Local Methods 39

assumes that the digitization process takes place by averaging over a square pixel sized

window, i.e.

g5 = /,Ps'jfdA.

where . .
J =image irradiance

P;; =unit 2-dimensional pulse at the point (£, §)
gi; =the sampled output,

then the P;; constitute an orthonormal set whose span is identical to the Walsh functions
of order less than /- J (where [,J are the cardinalities of the 1,7 sets). The higher
order Walsh Tunctions describe exactlly only what gocs on within pixels, which is precisely
the information lost in the digitization process, so onc has a perfect match of model
to data. The Walsh basis differs from Lhe single pixel basis most nbtably because the
support is sprcad over the entire region of intercst, i.c. the Walsh basis has global support.
Trum.:at.ing the serics therefore results in global degradalion, rather than local as 'would

be the case with the analogous action of lcaving off some set of pixels.

Unfortunately, incorporating suflicient Walsh terms to ulilize all the picture data is
equivalent Lo loing a fit of a perfect edge to the sampled data with the pixcl value =
average inlensity assumption. This becomes extremely complex as the number of pixels
increases, and if lateral displacements of edges are permitted, since the discontinuous pulse
convolution kernel forces independent examinalion of nuincrous cascs corrcsponding to
the cdge configurations’ rclations Lo corners of pixcls. O'Gorman alrcady has to consider
2 such cascs for a 4x4 operator and 8 Walsh functions. As the space grows larger, so does
the complexity, so Lthat [Abdou 1978] chooscs Lo do an exhaustive scarch as his method

of fit.

The advantage of cverywhere differentiable functions (such as [[Tucckel 1971, Tlueckel
1973) uses) is that the lack of discontinuily permits a single sct of cquations to cxpress

the optimization problem. Of course, if one assumes a discontinuous sampling kernel,




------
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the point sprcad functidn, one would have to preserve this property while generalizing
the integration propertics, which is not at all trivial. What comes to mind is using tensor
products of the 1-dimensional §(—™) functions, which could be expected to have similar

properties, but that would not lead to a simple description of boundaries.

The method of locating the free knots is not very clearly presented, and appears to be
bascd on a possible misconception. In 2 dimensions the problem is of course more difficult
because of the complexity of the boundary space. There is no obvious way Lo solve this

problem.

The paper is more biology oricnted than computer oricnled, so understandably no con-
sideration is given to digital processing issues, the most imnportant of which is the effect

of discrete sampling on a periodic grid.

O’'Gorman 1976
“Edge Detection using Walsh Functions”

O’Gorman shows that finding cdge dircction by fitting a planc and then taking its gradient
direction is subjeet Lo systemalic crror for perfect step edges centlered in a square window.
However, this is a consequence of the shape of the window  a circular window would not
have the same problem. Nevertheless, Lthe analysis is salient because pictures are sampled

on a square grid and rectangular operators arc common.

He uses the 2-dimensional Walsh functions (tensor products of squarc waves) as an
orthonormal basis for representing the image funclion. In analogy Lo [llucckel 1971,
Hucckel 1973] he docs an L? (Icast squarcs) fit of a perfect edge on the first 6 terms (in

his Walsh expansion).

The contribution of this idea derives from the fact that the Walsh basis bears a simple

relationship Lo the digitizalion process (il one assumes square pixcls). In particular, if one
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It is interesting to compare these with the difference of Gaussians suggested by Marr and

Hildreth based on similar assumptions.

Some comparisons with human vision are made, notably betwcen line spread functions,

which are shown to be similar.
Evaluation

The work is quite provoking. The most interesting features are that it incorporates
the transducer transfer function, models images as intrinsically disconlinous objects
in a cohcrent way, and uses statistical estimation for detection. Unfortunately, the
generalization to 2 dimensions is not easy, and probably not as easy as Altes scems to
suggest. Ile proposes 2 routes of “gencralization.” The more straightforward involves
. using rasters at a number of angles. Though this is not as salisfying as an intrinsically
2-dimensional approach, it may be a viable way to proceed. Signilicant problems that
would have to be overcome include integrating all the information from the various scan
lines (which could be argued to be 99% of the problem to begin with), and accounting
for or using a 2-dimensional transducer transfer function. Making a truc generalization
to 2 dimensions poses Lhe following difficulties. Knots are of codimension 1; i.c. they are
boundarics belween regions, so on a space of | dimension, a knot is 0-dimensional, or
a point. 3ut on a space of 2 dimensions, a knot is the boundary ol a region, i.c. some
curve, a l-dimensional object. So for 1 dimension, the space of knots is 1-dimensional
(since it is the space of points), bul for 2 dimensions the space of boundarics is infinite
dimensional (since it is a space of curves). The approach of workers in spline theory has

been to generalize the inlervals between knots to projeclions fromn higher dimensional

simplices, lcading in the 2-dimensional case to piccewise straight boundarics, but this

scems to be inadequate for a natural description of the boundary. The 2-dimcnsional
analog of the dclta funclion al a knot is a delta Funclion whose support is a boundary.

Since the main virtue of using the 6(=) cxpansion is the simplicity of convolution with
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where u(—") is dcfined #nalogously to 6(—™), since u + 6(—™) = u(~"),

Working in the Fourier domain, he introduces a derived set of normalized basis functions,
and shows how to estimate the coefficients in the exi)ansion in the case of a single knot of
known position. For multiple free knots, he proposes using techniques from detection and
cstimation theory, bascd on a statistical model of knot location. However, the approach
s predicated on the usc of a matched filter to locate the knots, which appears to be

doomed to failure because the basis is not orthogonal.

The core of the author’s method uses filters Lo estimate cocflicients or detect complex
patlerns. Based on filter complexily considerations, he argues that these filters should
all have approximately equal spacc-bandwidth products. These arguments are rclated
lo implementation issucs, and for the digital case would be rclated to cost. One must
keep in mind, however, that a major consideration of Lthe work is a theory of human
vision. In order to achicve a sct of filters with the desired property, he secks a set
of transduccr transfer functions to incorporale into Lhe imaging transfer function U.
Although it is not stated in the paper, one can think of this as a convolution preprocessor
which allows furl.hclr processing to be done by filters all having Lhe same space-bandwidth
product. 1le uses onc particular way of obtaining a constant space-bandwidlh product,
vit. Va(w) = apVa_js(kw) for all n with a fixed constant k& > 1, where a,, is an arbitrary

proportionality constant and

U(w)/(iw)"
Valw) = oordrie)
" WU (w)/Gw)m|)’
where |||| signifies the L2 norm. Although this is a simple way lo get a constant space-
bandwidth product, it is not the only way: e.g., a different k could be used for cach n.
In any case, using this assumption, he arrives at a set of log-normal transducer transfer

functions, i.c. funclions of the form

U(w) = Awverllor)’
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the color space. From this point of view, 3) is not really possible (unless one ;ivants to
be ad hoc), 2) is unsophisticated (though it may be adequate in many cases, but won't
maximize S/N ). It might be computationally efficient to choose not a basis, but a larger
spanning set. 1) therefore is the way to go. Note that there may be more than one metric
which is worth using simultaneously. It is also worth investigating the differences between

using a metric such as

dpa) =llp—gll = /2 (m - %}

and using a Tunction

pipa) = gl =t = |y 72 -yt

Notice the latter is like the intensity difference.

Altes 1975
“Spline-like Image Analysis with a Complezity Constraint. Similarities to Human Vision”

The author proposes modelling a (1-dimensional) picture as a finite su m of basis flunclions

which arc integrals of delta functions:

N M
f(z) = Z 2 fnm6(—n)(z - zm)v

where 6(=™) ia the nth integral of the unit Dirac delta function, 0 € n < o0, and the z,,
are free knots. Splines can be viewed as such sums with 1 < n < 00 and smoothness

conditions imposcd at the knotls, hence the paper’s title. Including the point spread

funclion, u, of the imaging system yields

N M
I(z) = Z Z Samu™(z = 20m),
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Nevatia 1977
“A Color Edge Detector and Its Use in Scene Segmentation”
Nevatia's goal in this work is to define a lueckel operator for the 3-color dorﬁain. -
A review of color spact; represcntation;s is presented.
He states there are 3 ways to look for color cdges:
1) Choose a metric in the color space and look for disconlinuitics
2) Choosc a basis and look for edges in the projection to cach basis clement separately
3) Do 2) but require uniformity to usec 3 components together
. He chooses to do 3).

Iowever, what he actually proposcs doing is minimizing the sum of the squares of the
crrors of thc_ individual color component ueckel fits. This is exactly cquivalent to
choosing an inncr product on the color space such that the 3 color components are all
orthogonal, then usiﬁg the metrie induced by the inner product, i.e. the Euclidcan metric.
This, as he points out, is equivalent Lo minimizing the individual components scparately.
| Doing so, though, would lead to 3 fits for the 3 componcents which might have nothing
‘_whatev.cr to do with each other (sincc one is not looking for the single cdge thal.leads
to all the data, but independent cdges for 3 sets of data. Therclore, he imposes the
additional constraint that the inclination angles for all 3 solutions must be the same, i.e,

he adds the 2 cqualions ay = ag = a3. Ilowever, compuling Lhis angle is not casy,

so instcad he takes a weighted average of the 3 independent solutions (i.e., without the

.
r“l »

single angle constraint).

,"" [
AR

The idea of “best” fit implics a metric, since one must have a way to measure how good

B B R »*

the it is. Ilcnce there is no way to avoid (cxplicitly or implicitly) choosing a metric for

..............................................................
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Evaluation
These papers contain some mathematical inaccuracies, which in themselves are not very
important, but whose presence brings into question other mathematical claims which are

not proven. An example of an inaccuracy is the statement that “The set of all continuous

functions over [the closed unit disk] is a Hilbert space.” Since a Hilbert space is defined

tobea complete normed inner product space, the stalement is false because the space in

question is complete in the sup norm, where there is no inner product, but not complete
in the inner product space L2, which is the one Hucckel is using. One might then be more
skeptical of the claim that the basis funclions he sectiles on arc the unique solutions of

somc unspecificd sct of “functional cquations.”

The main contribution here is to approach the best edge fit problem in a tractable
subspacc, thereby transforming an cssentially combinatorial problem into an analytic one.

The particular implemncentation of that idea, however, sulfers numerous shortcomings.

Several criticisms have appeared in the literature. [Abdou 1978] argues that the trunca-
tion of Lthe orthogonal series introduces excessive crror, cspecially for thin lincs, and that
unjustificd assumptions arc made in the oplimization procedure. {Shaw 1977, Shaw 1979]
makes a similar criticism of the optimization. [Davis 1973] complains that no attempt is

made to rclate performance to the image noise process.

Expcricnee using the dpcrator shows that rcgions of smooth shading rcsull in multiple
firings, while regions busicr than the size of the operalor have missed edges and poor
paramcicr values. These failurcs are a consecquence of using a poor model for the
underlying image intensity function. The edge and edge-line models arc unrealistic,
cspecially for the support arca of the operator. The difliculty can be traced to the fact that

in the spaces considered, ideal edges and lincar functions are not mutually orthogonal.

Unfortunately, no analysis cxists, cither here or clsewhere, of the crror one incurs by

using such simplistic modcls.
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to minimize d(x. [, ﬁEi,,,) with respect to 0,p. Since the basis is orthonormal, this can
be done componentwise. This is computationally efficient because the series is truncated
at a point which allows a closed form solution for the lcast squares problem. The line
paper uses essentially the same method, with additional parameters to allow for an ideal
step edge-line, i.c. a sum of 2 parallel ideal step edges. The method can equivalently be
thought of as fitting the best function from the fixed subspace Sk to the data and finding
the best edge fit to the function. (This is a consequence of orthogonalities of various

subspaces).

The orthonormal expansion uscd consists of polynomials in z,y with a uniform radial
weighting function m For the edge (old) operator, 8 polynomials up to degree
3 are used, while the edge-linc (ncw) uscs 9 polynomials up to degree 4 (ncither set spans
the space of all polynomials up to their maximum degree). What, il any, classical sct of
orthogonal polynomials these correspond to is not staled and not immediately evident,
since the definition of the basis lunctions is presented in a complex way. The orthogonal
functions arc related to a Fourier-Bessel basis, since z = rcos@, y =rsin0, and ther
polynomials can be thought of as approximations to the Besscl functions one obtains for a

radial Fouricr Lransform. It is not staled how the basis funclions were derived, however.

The cdge/no-cdge decision is based on the “angle” between the projections of the data
and the best fit edge in the truncated space Sg. le., he Lhresholds on the value of

(Wk,) "kEO,p)
EYIRLT el

This suffers from the common problem that little analysis is devoted to the possible
picture functions xy '(n¢ By ,), which arc going o look like cdges to this operator. In
particular, the average gradient plays a large role, and the decision criterion therefore IR

tends Lo respond to arcas wilth large average gradients over the support. ~——1

-------------
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Evaluation of line findidg

This was an early effort. It probably is not bad for straight lines, though it seems to miss
a lot. Curved edges or complex scenes are not handled, and many ad hoc methods are

used.

The technique presented here has no hope of working where there are wide variations
in smooth shading gradients, since the thresholds are global, and the gradient operator

cannol discern whether the signal is from a smooth gradient or a local step.

Of course, it must be stressed that Roberts broke ground in the use of his gradient
operator, as well as in the use of homogencous coordinates, Lhe fitting of 2-dimensional

data to 3-dimensional modcls, and in line following.

" Hueckel 1969, Hueckel 1971, Hueckel 1973
"“A Local Visual Operator Which Recognizes Edges and Lines”

[Abdou 1978] presents a detailed analysis, to which we dircct the reader rather than

repeal Lhe same points,

The method involves linding the parameters of the best fitting ideal step edge in a dise-like
region of 32 to 137 pixcls. The Iittiﬁg is done in the spiril of the Rayleigh-Ritz method
of finding approximate solutions to variational problems (sce, e.g. [Morse and Feshbach
1953]). Using a fixed orthonormal basis for the function space of intercst, and a fixed
truncation of the orthonormal basis, he finds paramecters to minimize the 12 distance
between the projections of data and ideal cdge in the finite dimensional space spanned
by the truncated scries. Le., let %, $ =1,...,00 be an orthonormal basis for L3.
Let f : R? — R be the picture (data). Let Eyp be an idcal step edge of orientation
0 centercd at p € R?. Consider the space Sk spanned by the first k basis vcctor's,

¥1,-..,¥%, and let x, be the orthogonal projection onto that space. Then the idea Is
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e correlate (i.e. sum), along lines of length = 5, for values of § = n - 45°,
¢ threshold on the ratio ;’f—:{-‘- of the line values, yielding edges.
Linkin
e connect edgels if:
1) they lie in contiguous 4x4 squares.

2) they are related by a < 23° change in direction.

N U

e climinate singletons.

- e apply an ad hoc cleaning processes for small triangles, quadrilaterals, and spurs.

Curve rcpresgntntion and scgmentation

" o lcast squares fit stfaighl. lines Lo linked sets.

¢ uscs sequential (updating) method of fit.

o firsl donc on connccted cdgels.

e choose a random starting point, then procced until:

1) a branch is rcached, or
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: 2) an crror threshold is excceded for the line fit, in which case back up until the :'.;:
v "
'E::: local angle to the fit is cul by 1/2. i

: ]

The remainder of the paper is concerned with the recognition and display of polygonal

3-dimensional objects.
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Local edge detector

He first takes the square roots of the pixel values, on the basis of psychophysical evidence
which he cites. In a 2x2 pixel window, let the square root values be

a
c d
The edge measure is then defined by
p=+V(a—-dP+(b-c)

This is proportional to the gradient magnitude of a least squares fit plane (c.g. [Haralick
1980]). Le., if ¥ is the best fit plane, '

=L- a—d)?+(b—c)?
|VF| \/fﬁ )2 +(b—c)

Roberts cautions that his line finder “makes mistakes in complex picturcs and is a complex
~special-purpose program demonstrating very few general concepls.” One must keep in
mind that this was a pioncering work and his main intcresl was higher level model

matching.

We summarize the operations performed in line finding in the following lists.

i DN
. Jdge deteclion process -

o & = RRg(I’) (do “Roberts cross™ opcration, i.c. cor‘npuw \rad|). ‘:j:'.-_j:'..-‘
e lake maz on cach 4 X 1 squarc of a tessclation.

o threshold.
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Local Methods

Best fit techniques

Roberts 1963
“Machine Perception of Three-Dimensional Solids”

This is a seminal work, often cited as the first scrious attempt at a functioning computer

vision system.

The rcsearch described seeks to malch piclures of a narrow class of prismatic solids to
stored models, starting from raw picture data. There is a wide range of issucs which the
author had to address to achieve Lhis; since we are concerncd here with segmentation, we

ignore most of the other contributions of the paper.

The central task the program performs is to match a wire frame model Lo derived wire
frame data. An important pm"t of this consists of vertex matching. To this end, he trics
to fit n-point data (2-dimensional) to an n-point model (3-dimensional) by finding the

best transforms /7, D in homogencous coordinales such that
AH = DB +¢,

where
A = n points (z,y, z, w) from the modecl

I3 = n points (y, z,w) from the data (uses z as projeclion axis)
H = 3 X 4 homogencous perspectlive transform
D = Diagonal n X n scale matrix

€ = crror matrix

He solves this as a leasl squares problem.

- oo
e e
Lot
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feature. In the shape-from-shading paradigm, for example, one is hard put to identify

any stage as “picture domain cues.”

In summary, the paradigm presented is a useful one for discussing extant image under-
standing systems, and is particularly clear for those based on rudimentary image charac-
teristics. One must be: carcful, though, not to be misled into a dogmatic adherence to
the paradigm presented, since it seems likely, perhaps necessary, that it is inadequate
as a description of the type of sysltem rcquired to do successful image understanding

in unrestricted environments. The survey is readily accessible as well as concise; it is

rccommended as a good entry into a fair portion of the scgmentation literature.
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. : . ’
He discusses the (i, s) representation of plane curves, defined by g
© = tangent direction, and ;::f
s = arc length. .‘
b - ) &
i Then -
: dp/ds = « is the curvature, and
E ~ dp/ds = constant & the curve of © vs. s is a straight line =
- ¢ ¢ = alinear function of s. ’
Curves arc then found by fitling straight line scgments to the (p, s) data.
’
Abdou 1978 =
“Quantitative Methods of Edge Detection”
This work is concerned solely wilh local operators. -
| :5‘
The author presents a review of several such operators:
B
Roberts 1963 L
Sobel [Duda and 1lart 1973] R
Prewitt 1970
Compass gradicnt [Prewitt 1970) !
Kirsch 1971
3-level, 5-level [Robinson 1977)
Hucckel 1971, Hucckel 1973 .
?
It is intcresting Lo note, perhaps as a comment on the literature in general, that Abdou -
presents 8 different 3 X 3 convolution operators. With a support of 9 pixels, there can
be only 9 lincarly independent 3 X 3 operators (since they make a 9 dimensional vector !

spacc). The 8 presented are in fact lincarly independent, and the further inclusion of an
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operator which picks o a single pixel value (the trivial operator), e.g. :
000 -
010 s
000 -
would result in a set which spans the entire space.
He evaluates the performance of convolution operators on perfect step cdge visual input, -
. i
assuming squarc pixels and area-proportional sampling (i.c. the pixel.value g(») is defined .
by
= dA =
g(p) /B (’)f , .

]
where R(p) is the (square) pixel support region). This leads to complicated formulae for ‘
pixel values from rotated cdges.

He discusses stalistical aspects of edge detection and cvaluates the 2 X 2 and 3 X 3 ,""‘
operators with respeet Lo statistical performance. E.g., probabilitics of detection vs. false -A:l:
detection for various S/N arc compiled. f:;:‘.}
A discussion of cdge deleclion as patiern classification is also presented, including the f;f:
_application of the llo-Kashyap algorithm Lo the problem. ' :'.‘_:_-'.:
A review of statistical methods is presented, focussing on various methods of hypothesis ::;:::j

testing: ' -

Bayes dccision rule -

: Neyman-Pearson criterion

: minimax critcrion : . ‘ :
Al cvaluations arc based on assuming the input to consist of a perfect step edge plus" \
simple (usually Gaussian) noisc. Unfortunatcly, real data rarely have perfect step cdges ~_“
and usually have non-constant arcas which are not edges. (Sce c.g. the review. of [Canny ; '

1983] for a more detailed discussion of this assumption.)

.....................................................
..................................................................
.....................................
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An analysis is presented of the effects of Gaussian noise for linear masks.

Abdou uscs Pratt's figure of merit to test the various convolution operators. The best
performers are the 3-level and Prewitt operators (which are essentially the same). (Pratt’s:
figure of merit is defined as follows. The input is a perfect vertical ramp edge, ie. a
function only of z, hav.ing a cross-section of constant-ramp-constant, i.e. a constant part
connected by a linear part to another constant part. The variable parameters of the input
are the contrast (the difference between the 2 constant valucs), the slope (of the linear
transition ramp), and the standard deviation of additive Gaussian noisc. The figure of
merit is then defined by a formula based on parameters of the output error. Also, an

analogous version is presented for edges at a 45° angle to vertical.)

For convolutions with square support, he analyzes the effects of mask size, center-weighted

. masks, and local adaptive thresholds.

Abdou proposes 2 new cdge operators: 1- and 2-dimensional ramp best ﬁ(s, resp. The
ideca for the I-dimensional case is to fit an idcal I-dimensional ramp cdge to the data for
all possible ramp sizcs (with discrete end points). Results for each size are given in closed
- form, but the vnrio;ns sizes must be considered separalely to determine the .bcst, among
“them. The 2-dimcnsional ramp best fiL procceds in the same way as the 1-dimensional,

but he also considers all possible orientations. These he limits to multiples of 15°.

There arc several appendices:
Analysis of the Hucckel operalor (fairly good)
Orthogonal transformation in edge delection
(the béginnings of a DFT melhod of cdge detection)
The lierskovits algorithm (not a very enlightening discussion)
Decrivations of Iigs. 3.29, 3.31, 3.32 (somc stalistics)
Experimental resuits (pictures)--not very informative, extensive or usclul.

Ifc only provides binary .cdge maps of 3 pictures. One can't really

........................................
...............................................................
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see what is happening locally (the pixels are too small to be seen).

Evaluation

To the extent that the local edge ramp hypothesis is valid, the ramp fitting method
may work, though it is essentially equivalent to applying variqus slolpe masks in various
directions. .This is a rather inclegant approach since a best {it must be performed for cach
possible ramp width and angular oricntation, with the optimum found by exhaustively
comparing the error parameters for all the fits. One advantage over gradicnt operators
and other best fit operators is that the present method can be used to reject regions of
smooth shading il the all-ramp condilion is rcjected as not an edge. 'j‘hc main virlues,
then, stem from the enlargement of the space of possible features to include the ramp
edges. However, the Haralick “facct” modcl is more general, no more expensive, more
elegant, and probably more glfcctive, though probably also inadequate (sce rcvie\y of
[Haralick 1980]).

Beaudet 1978
“Rotationally Invariant Image Operators”

The author is inlerested in finding a lcast square polynomial approximation Lo image

data. The cocflicicnls of the monomial terms are computed via convolution.

Thg starting point is to consider Lthe polynomial Lo be fitted as a truncated Taylor scrics.
The cocflicienis arc found as in a normal least squares problem, but are taken Lo represent
the derivatives in the Taylor expansion. To 18t order, this is the same as fitling a plane
and cstimaling the gradient. The guadralic part is tantamount Lo finding the classical

Hessian.

Beaudet considers operators up to Ath order, and operator sizes from 3 X 3 o 8 X 8. The

only rolationally invariant 1st order operator is the gradient, or rather, more preciscly,

Laad St i gl Al Al S e AL A el At il il AR
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the squared magxiitude %f the gradient, Vf-Vf. The 2nd order operators correspond to
the linear invariants of the Hessian matrix, '

(f =z f sy)
H= R
f Y ! vy

.

as well as the scalar-valued operators |[HV f| and VfHV {.

Unfortunately, it appears that the author confuses the Hessian with a matrix repre-
sentation sometimes called the Weingarten map, which is the differential of the Gauss
map. The linear invariants of the Weingarten map are the intrinsic curvatures of the sur-
face: the cigenvalues are the principal curvatures, Lthe trace is Lthe mean curvature, and the
determinant is thc Gaussian curvature. The author, however attributes these properties
to the Hessian. This confusion most likely stems from the fact that the two coincide
at any critical point of the function f, and it is possible to rotat.e the 3-dimensional
coordinate system of a surface in R3 so that any given point is a critical point when the
surface is being viewed as the graph of a function from R2 — R. This is commonly
donc in cxpositions of the subjcct to simplify formulas. ITowcever, since we are in a fixed
coordinatle systcm,.such a simplificalion is nol possible (without, of course, including the
rolalion matrices). (Sc;:, c.g. [do Carmo 1976).) The diffcrential of the Causs map, when

" the surface is given as Lhe graph of a function f: R? — R, can be writlen in coordinates

dN=~ 1 (:z fzv)(l*‘fz "fsfv)’
(1""2"'}3)3/2 fzv fw -fs.fy 1+I2

which is casily sccn Lo reduce to Lhe [lessian at a crilical point of f.

z,y as

“cmndc(. correclly points out that the trace of the Hessian is the Laplacian, but he makes
incorrect asscrlions about the relations between the quantities he derives from the Hessian

and various curvatures.

Three 3rd order operators arc presented, which are claimed Lo have significance as line

end, curve boundary, and line detectors.
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The above terminology“and interpretation is mine; he presents these in the more classical

language of tensors and coordinates, where his operators are contractions of tensors.

One should note that considerations and techniques very similar to those presented in
this paper were described by Prewitt circa 10 years before, though no reference is made

to that work.

Evaluation

The experimental results consist in the application of a few of the operators to a single
image. Since the notions of line detection and edge detection are very simplistic, there
is no cffort to usc the results of the processing in any way other than to present the
magnitude of the operator output. Not surprisingly, this is m')t very cllective. However,
more sophisticated proccssing based on the obtained fit is promising. A potential difliculty

may lie in the manncr in which the fit is obtained, since polynomial least squares fits tend

to produce spurious oscillations.

Despite these shorlcomings, the proposal to compule geometrically and analytically
“signilicant propertics of the image inlensily function, using convolutions, is a worthwhile
contribution. The thrust, perhaps not made clecar by the author, is Lo derive an under-
standing of Lhe image inlensily funclion in terms which have precise, well-understood
meanings, and which go beyond a few naively chosen parameters. As it happens, the
error aboul intrinsic surfacc properties may be fortuitous, since it may make more sense
to consider Lhe [lessian of the intensity function, rather Lthan ils surface gcorﬁctry inde-
pendent of coordinate system. There is, alter all, a special coordinale system in Uhis

situation: intensity (Lhe z-axis) is quite different from location (z,y), and so there is no

reason lo expect thal the invariances of rotaling the cntire 3-dimensional space should _

be the right oncs. It would be intercsting to see results of psychophysical studics where
the intensity function is changed so that only the Ilessian or the Weingarten map, but
not both, change.
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As prescnted, this is not®a viable edge detection method. However, the idea of local fitting

merits further investigation, particularly in regard to deriving differential operators.

Hsu, Mundy, Beaudet 1978
- “Web Representation of Image Data”

The authors are interested in using a local quadratic fit to dctectjimagc fcatures. A
quadralic polynomial is I(:;mt..squnrcs fit Lo Lhe image data on (presumably uniform) local
ncighborhoods. The polynomial is regarded as a Taylor scries, and Lhe cocflicients are
interpreted as partial derivalives (sec [Beaudet 1978]). The principal axes are identified,
and a mesh is constructed over the image by extcnding straight lines along these special
dircclions until some error threshold is rcached, resulting in a new mesh node ‘and
rcpcl.';tion of the process. The implementation is based on starling from sced nodes, with
special rules for the image periphery, propagaling down and right, and merging of nearby
nodes. Somc nodcs'of the resulting mesh are labelled according to the “curvatures” and
an extremum predicate. Global paths through the mesh arc then sought by the use of
production rules based on the local labelling to follow ares. I is not entircly clear how

this process works; apparently some kind of relaxation is involved.

Experimental results

Yartial results are shown for [ real and 2 synthetic images of ca. (28 X 128 resolulion.

Feature finding is only shown for two of these, where a purporled ridge is found in a
synthelic normal saddle, and some ridges arc found in *a real picture of scratches. The
performance on the real picture is quite poor, although it is hard to isolale the rcason.
Probably it is a consequence cither of the extreme coarseness and irrcgul:\riiy of .the mesh,

or the localness and ingenuousncss of Lhe production rules.
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Evaluation

See the review of [Beaudet 1978] for remarks about fitting and differential operators.
The same misconception is present here as in [Beaudet 1978] regarding use of the Hessian
to define principal curvatures and intrinsic surface properties, rather than the correct
expression for the diﬂ'c;-cnt.ial of the Gauss map. Causcquently, the “principal axes” and
“curvatures” the authors find correspond to the conventional usage of those terms only at
stationary points of the image intensity function. However (sce review of [Beaudet 1978]),
these objects may actually be more meaninglul for image analysis than the gcomctric
invariants. 1.g., [Canny 1983] uscs cssentially the same paramclers in his dircctional

opcerators.

The construction of the mesh is a good idea insofar as a coordinate systern based on
- principal dircctions is found. Ilowever, the mesh is far too coarse, and the mcthod of its
construction leads to a lopology which may not have much to do with the underlying
structure. The authors apparently wanted a graph structure Lo propagate their produc-
tion rules on, but unless they have bugs, what they got was morc or less a mess. The
produclion rule technique is not very well explained, hence diflicult to evaluate, but the
impression one gels is thal it is somewhat inflexible, c.g. pulting limits on rolation of

principal direction. 1L is not clear, c.g. how the production system performs a function

scparate from the mesh gencration itself, where error criteria are also imposed. It may

be that using a finer mesh would provide much improved results. L -—

A sccond problem is Lhat no analysis is given regarding noise behavior. A big question is

the behavior of the mesh generation in the presence of noise. .

Dreschler and Nagel 1981a, Dreschler and Nagel 1981b |

“Volumetric Model and 3D-Trajectory of a Moving Car Derived from Monocular TV-

Frame Sequences of a Street Scene”

.......................
__________________




TR AT P P AR ST R AP WP LI VL W W WA A W AR TP P L Y L L WP

A Survey of Edge Detection Local Methods 49

The authors are primarfly intcrested in tracking objects in a sequence of successive static
frames. They scck point features which arc expected to be stable from frame to frame,
setiling on extremal points of the Gaussian curvature of the intensity function. The
computation of the curvature is performed via “principal curvatures” using the operators
of Beaudet (which in fact compute something other than principal curvatures: see review

of {Beaudet 1978]).

The authors arc motivated by sceking local extrema of Gaussian curvature. However,
they found that such extrema occur at knees of edges (cliffs in the inlensity function)
in an unstable manner, as a conscquence of local noise and small variations. Therefore,
a more involved predicale is used. Viz., pairs of nearby points are found which are a
maximum and a.minimum of Gaussian curvature. Along the line joining Lhese points,
that point having the steepest slope of intensity (i.e. directional dcl;ivativc) is selected as
the fealure point, subject to Lhe following 2 criteria. First, it is asserted that exactly 1
principal curvature must change sign along the line in question (this is truc only if the
cxirema of Gaussian curvature are of opposile sign, which is implicitly assumned), hence it
is required Lthat Lhe principal direction corresponding to the principal curvalure which is
changing sign be roughly parallel to the line in question. This assu mc;! that the extrema of
the Gaussian curvalure should be joined by principal curves, a proposition whose truth is
by no means sclf-cvident. Sccondly, the intensity value at the maximum must be greater
than that al the minimum. This is for the case thal the high intensity arca is convex
at the corner. Since the reverse case obtains by turning the surface upside down, which
docs not change the Gaussian curvature anywhere, the opposite condition tust be true
when Lhe low inlensity arca is convex, so withoul olher information aboul the context of
the extrema, this scems Lo be a vacuous condition. Also, an ad hoc maximumn scpar. ‘ion
of 4 pixcls is required for pairs of extrema to be linked. Obviously, this is a requircment

that the corner be quite sharp at the resolution of the image.

IBoth 5 X 5 and 3 X 3 operators are used: the 5 X 5 for good noise behavior, and the 3 X 3

.................... -
.................................
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for better resolution in’places selected by the 5 X 5. The operators used are the ones
presented in [Beaudet 1978). Consequently, the present authors are victims of an i.ncorrect
definition of Gaussian curvature (see review of [Beaudet 1978]) and principal dircctions.
However, it is extrema of Gaussian curvature which are of intercst. The relation between
these and what is actually (crroneously) used is algebraically complicated, and we do not
- attempt to analyse it, but these parameters may be just as meaningful for imagces as the
geometric ones. Furthermore, there is already a heuristic clement to locating the points
of intercst. Therclore, it docsn’t seem likely that the usc of the correct values of the
Gaussian would change the performance significantly. To gel a betler understanding of
the situation, one should in fact analyze the bchavior of these parameters in the light of

what is known about the image irradiance equation.

Experimental results

The results displayed scem to be fairly good. Of course, there arc a number of other
clements of the system we are not considering here, c.g. the method of tracking, so that
it is difficult o say how rcliably the features sclected represented. intrinsic features of

objects or cven of the intensity function.

The present work is best regarded as a corner deleclor. As such, it is not adequate
for performing scgmentation. As far as its uscfulness for matching images is concerned,
onc would have to analyze to whal degree extrema of Gaussian curvatlure are intrinsic
features of Lhe objecl geometry, eather Lhan the intensity surface gecomelry. There are 2
componentis to such a study: the cffects of perspective Lransformation, and the cffects of
photometric laws. An inilial approach could consider I:hcse components scparalcly, i.e.
constant light with moving obscrver, and fixed observer with moving light. source. Since
the features used are piccewise smootlh functions of Lhe parameters of motio.n and lighting,

onc can expect Lthal Lhey will Lrace oul piccewise sinoolh curves as those paramcters are
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varied; and henpe they ean be tracked. Whether they are good things to track is another-
question. Consider the extreme case of a moving flat mirror, moving in its own plane,
and reflecting a light source. This isn’t a completely ridiculous case, since it is a limiting
casc of what can happen with specularity, which in turn is a matter of degree for tix;‘
reflectance function. The point to note is that the feature associated with the speculanty
| will bchave as a function of the location of the light source rather than as a functlon of
the motion of the object reflecting it. The moral is that the behavior of a feature can be
highly dccoupled from that of the object whose surface creates it. A less extreme example

to pénder is studicd by [Kocnderink and van Doorn 1980}, who show that the extrema of

the image intensity stay ncar parabolic lines of the object surface (but move along them).

The relevance to image segmentation is this. Principal curvalures, principal directions,
and principal curves arc uscful features of the image intensity function. They define
" a local geomcetlry, and notably a local orthogonal coordinate system which is a natural
coordinate system in the vicinily of edges. Predicates based on observation of the behavior
of priricipal curves scemn good candidates for edge detection and hence seginentation. This
work al lcast shows that such leatures have some stability in the presence of noise and

deformation.

Haralick 1980

“Edge and Region Analysis for Digital Image Data”

The view taken here is that cdges and regions can be viewed as places where there are
large or small dilferences, resp., in some parameters. In this light, the old method, i.e.
looking for perfect step cdges, amounts to filting a piceewise constant function to the
image intensity. The new method which the author puts forth, is to do a piccewise linfqr
fit, i.c. to fit plancs (or facets). The work is purely theorctical in that rcal images a‘re- .

not considered.

The central feature of the analysis is lo perform a least squarcs fitof a planc Lo the data.
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The author provides a ‘nice analysis of noise for this problem. The critical question is

whether 2 planar patches are actually part of the same plane: the edge null hypothesis.

To resolve this question, he uses the F-test on a x? distribution derived from the error.

More spccifically, the way this is used is as lollows. Each péint p of the picture is assigned
a neighborhood p — U, which is the onc supporting the best fit among all U; containing

p. Le., of all ncighborhoods U:, such that p € U:,, let Up be such that €{(Up) is minimum.

Edge and region dctection are then based on an F-test of the parameters associated with
the optimal neighborhoods for adjacent pixcls, followed by Lhinn'ing. Even neglectling the

piccewisc planarily assumption, this adjacent-F-test is probably too simple minded.

The technique c:;n be summarized as follows:

edge detection method:

cach pixel has a best-fit ncighborhood with parameters of fit.
cdgeness = I statistic that adjacent pixels’ fits come from same plane.
compute for vertical, horizontal adjacencies for vertical, horizontal cdges.

find maxima by non-maximum supprcssion.

region growing melhod:

group adjacent pixels if same best fit neighborhood plane hypothesis cannot be rejected. ::::'::-:

The hypothcsis testing is based on Lhe relation between paramcter differences and errors

. s
of fit. If the local is relatively poorer, greater parameler diffcrences are tolerated for ]
region merging. In Lhis sense, the region merging is adaptive. Tlowever, no analysis is -]
presented describing how this method would behave for large regions or long cdges. Also, B

no atlenlion is given Lo the problem of determining whether local edges are part of a

larger cdge. ::'_'::.‘__-
The author includes a quick but nice review of some related literature. For example, he v

AR
shows that the “Roberts cross” operalor [Roberts 1963] computes the magnitude of the )
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gradient of a linear fit (4lthough this is all but explicitly stated in [Prewitt 1970]).

Unfortunately, the paper includes no experimental results or consideration of real images.

Evaluation

_ The idea of fitting regions and looking at the parameters is a good one. Statistical analysis
is good, too. However, the piecewise planar hypothesis is not sophisticated enough. On
the other hand, the statistics becomes more complicated for more complicated fits. In the
form proposed, Lthis method is not likely to be noticeably betler than other local methods.
The extended edge and region part is rather ad hoc—not based on a sound analysis. This
paper can be recommended as a good introduction to the use of statistics and fitting,

despite some ambiguities.

Haralick 1981, Haralick 1982, Haralick 1984
“Digital Step Edges from Zero Crossing of Second Directional Derivatives”

The esscntial feature of the Lechnique proposed by the author is littihg Lhe image inlensity

function by a polynomial.

| Ile first intuitively defines edges as discontinuities in brightness value or its “derivative.”
But then he notes that for Lhis to make sense, the discrete picture must be thought of as
samples of a function on a contlinuum. To obtain such a funclion from the data, he does
polynomial approximation using discrcte orlhogonal polynomials. “Discrete orthogonal”

means orthogonal with respeel lo Lhe “inner product”

(£,0) =Y f(p)alp)
peP

where P is some finite sct of points, Lthough Lhis is not explicitly stated. Tt is not a true

inner product beeause it can happen that (f, f) = 0 with f # 0. (scc c.g., [DeBoor
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B]). Regrettably, heprovides no references: there is, after all, a rather large literature

laining to fitting polynomials.

‘hin this context, he can define what is meant by “edge.” In [Haralick 1981], this is
ned as a place where the “direction isotropic magnitudes” of the 1st or 2nd partials of
fitted function exceed some threshold. However, he requires the assumption that the
ivatives of the underlying function are uniformly bounded except at discontinuities
that the high estimated values can be attributed to discontinuities). This is not very
listic, and in [Haralick 1982 and Haralick 1984] it is replaced by a definition of “edge”
a zero crossing of the 2nd directional derivative in the gradient direction (éce review
[Canny 1983] for a more detailed definition of this entity), i.e. a maximum of the
dient. While looking at the parameters of a fitted function is a good approach, this
itill too local a criterion, and too simplistic a structural representation, so that most
the bencefits of surface fitting arc lost, as demonstrated by [Canny 1983]. In [I1aralick,
itson, Laflcy 1983}, he improves this considerably, expanding to the derivation of the

ilitative structure of the function.

imposcs 1-dimcensional symmetry on the index sets of the polynomials, i.c. the points
which they are defined must be symmetric about the origin. For 2-dimcensional basis
ictions, he uscs the tensor product of his 1-dimensional sct. Ile then shows how to
by the usual mcthod of projeclion onto the orthonormal basis. A further section of
ralick 1981] is devoled to showing that DI + D} and D2, + D2, are rolationally

ariant differential operators.

Muation

e idea of fitting a funclion to 'thc intensity data as a [irst step in cdge finding is good, .
hough the definition of “cdge” is somewhat sitnple-minded. I.g., the 1st derivative

«crion will result in cdges being found in regions of sinooth shading. Unflortunately,

papers do not addrcss issucs.associated with the itting problem. E.g., polynomial
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done, which Cann’y tackles with numerical methods, yiclding a family of optimal
olution kernels, parametrized by K, the mean separation of maxima normalized by.
upport interval. Qualitatively, this family ranges in appearance from a smoothed.

‘ence of boxes for small values of K to a derivative of Gaussian for large values of:

he same time, he develops another mcasure of multiple response, a local measure

1 by
1£'(0)]

o

ict a signal-independent constraint, a proportionality can be required between this
sure and the false positive (detection) measure, since they are both normally dis-

ited; i.e. onc can require
IO _  f5-1)
(Yl ]

rrms of previously defined duantitics, this can be wrilten as
AKW = kX

ough Canny sccks an f for which k = 1, the besl he is able Lo do is & = .58, which
L Loo surprising, since at Lhis point the constraints arc no longer all independent.,

value is achicved for one of the larger values of K. The f thus arrived at is well.
oximaled by a derivalive of Gaussian, which is desirable for case of computation,
icularly in a 2-dimensional version. However, aside from compulalional considera-
), it is nol entircly clear that this is a nccessary choice. Canny docs not make it
* that onc nccessarily wanls k = 1, and for that malter, the argument leading to the
| responae measure uscd in defining k is less convincing than one would like. It would-
i that where a st derivative of noisc response is used, that a 2nd derivative (possibly

aged over some neighborhood) should be used. In any case, he computes that the
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raw (i.e. signal-dependant) SNR and localization terms do not cancel when these terms
are multiplied, but result in a cocfficient of A%/n3, i.e. if these terms are not dropped in

defining the detection and localization criteria, the resulting product would be

255
The problem of finding an f to optimize the composite measure is solved as a variational
problem, making an assumption of finite extent and thereby using a tractable formulation.
The sct of admissible functions is taken to be C9, which may be slightly inconsistent,
since it would scem that f must be at lcast C?! to conclude that the maximum of £+ 7 will
be achicved where Lhe derivative is 0, which was used in Lhe derivation of the optimization
measure. Solving Lhe variational problem leads to an cxpressionvdepcnding on a parameter
(for normalized f). It turns oul thal the paramcter can be increased without bound,
leading to cver better f's, and, in fact Lhe limit of the [’s is a difference of boxes (not in
the admissible spacc), which, not too surprisingly, is the Wicner filter, giving infinitely
good |.oca|izat.ion, and the best SNR.

Multiple response criterion and optimizing for all criteria

Now, if [ is a difference of boxes, f » I is no longer smooth, so the derivative method of
finding maxima is called into question. But what is more important, as Canny notcs, the

maxima will be cssenlially as noisy as the noisc. This obscrvalion leads Lo an excellent

way of imposing a smoothncss constraint on f. Namely, one can couple the requircment
that maxima of f * / be sufficiently isolated (in the mean) with a formula giving the
scparalion value to arrive at a smoothness constraint on f of the form

(]
-21—1’ - mean scparation = I Kw

(TR

where W is the support width, and K the paramcter which scts the constraint in units

of W. This leads to a complicaled algebraic problem once Lhe variational work has

..............................
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lo one can write

-g:‘—?-)—(f—) =z4+ R (higher order terms)

Ap() 7 ()
laking root mean square expcctation values, one gets

noll/'ll

= EY2(z? 4 az* + higher order terms
Aoy = E . )

The right sidc is taken as an approximalion Lo the standard deviation of z, the solved-for

iocation. The localization mecasure is taken as the reciprocal of the left side, i.e.

\7(0)|

A= ""1

A

A, then, should also be maximizsed.

Optimizing sensitivity and localization

Canny chooscs Lo oplimize over Lthe composite incasure

. _ Waonlf)
YA=

AW e e N
H R

based on the obscrvation that this is a scale invarianl quantity, i.c. its value is the same
for f(z) as for f(az). Whilc this sccius Lo be an inleresting property, the only argument
presented in its favor is Lhal the resulting measure depends only on Lhe “shape” of f. [t
would be interesting Lo put this on some stronger fooling. 15.g., Lhe noise is scale invariant,
and so is the step (when considered as a function, thouéh not as a distribution), so there
s a symmetry argument for scalc invariance. On the other hand, £2 + A? or (¥ + A)?

'where ¥ is redefined to be always nonncgative) also scem like reasonable candidates for .

measurcs Lo be oplimized. Incidentally, one should nole that the A/ng cocllicicnts in the
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where (-,-) and ||}| ‘are’the L2 inner product and norm, respectively, #_; is defined by
©—1(¢) = u—_y(—t), and ng is the RMS noise. A noise figure T for the operator f can then

be defined by

— (I:i—l)
==

Part of the optimization, then, is to maximize .

Localization criterion

The localization is given by the location of the maximutn of [+ I. Canny cqualces finding

this maximum with solving

(f+ 1Y(z) =0

This amounts to a smoothness assumption on f + I, which unfortunately is not explicitly
stated, which makes it unclear what function spaccs arc involved al various stages. Since

I = Au_y + n, this is the same as solving
(f + Au_y)(2) + (f + n)(z) =0
(f+ Auy) = Aj. ug = Aj, and (f +n) = [’ +n, so we have
Af(2)+ ([ +n)(z) =0

Le., Wc want to solve

Af(z) = (/' + n)(z)

Canny approaches Lhis problem by first obscrving that f should be an odd function,
then lincarizing the problem as follows. Near 0, f can be approximated by its Taylor

cxpansion, so we can write

Af(z) = A|/'(0)z + higher order terms] = —(f' » n)(z)
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of both variational and‘numerical methods. The operator is extended to a directional
family for 2 dimensions. He uses an adaptive thresholding technique and a noise based

scale selection technique to finally output a very clean set of linked edges.

The 1-dimensional problem

The 1-dimensional problem which he poses is this. Assume that the data consists of some

step function in white Gaussian noise, i.e. the data is given by
I(t) = Au_,(t) + n(t)

where A is a real constant, u_q(t) is the unil step function, and n(t) is the noise process.

Assume further that edge detection procecds by finding the maxima of f + I, for some
. convolution kernel, f. The problem is to find the best f subject to Lhe following

performance criteria:

1) Good dctection: low false negative, false positive. Equivalent to maximizing S/N

(signal to noisc ratio).
2) Good localization.
3) 1 edge yiclds only 1 response.
Sensitivity criterion
The signal Lo noise ratio is given by

i SNR = signal rcsponse Affw J(z)dz
" RMS noisc response  ng([2_ f2(z)dz)1/?

which we can write morc compactly as

A(.’ra-—l)

SNR = —————
: noll /Il

________
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[Shanmugam, Dickey, Creen 1979]. In any case, as a 2nd derivative operator it is es-
thetically pleasing because of smoothness and the Fourier domain symmetry (i.e. the
Gaussian is an cigenfunction, or Gaussians in general are an invariant subspace of the
Fourier transform). Zero crossings are a useful way to locate edges, but none of the

“mathematical” or hcuristic arguments presented about them here are convincing.

‘ One must regard the assumptions and techniques of this work as tentative and experimen-
tal, rather than as a well founded theoretical or practical system. The idcas are based
on intuition, perhaps good intuition, bul lacking better justilication must be regarded as
only intuitive. The professed purposc is an explication of human vision. Unflortunately,
so little is known about human vision (c.g. there is no viable theory of how any but
the most rudimentary information is coded or utilized), that onc cannot draw any con-
clusions about the validity of any thecory purporting to cxplain human vision, and in
any casc it is not our purpose to do so here. For example, it is clear that there are on-
center off-surround receptive ficlds with a response qualitatively like the DOG. Bul one
can approximate the same data with polynomials, 13esscl functions, or your own favorite.
The important thing is the qualitative feature of smoothly varying on-center oﬂ‘-surro;lnd
response. The DOG may be computationally convenient, which is reason cnough for its
use, bul Lhe Lype of convenience does nol translate into cost lor a living system, without
further analysis. It is Tair Lo say thatl Lhe theory presented here is nol obviously ruled
out, but ncither is it clearly the best or only possibility. As far as its being a Ltheory of
visual information or an cngincering design, onc can only say that it is an interesting and

provoking hypothcsis, butl not incxorable or proven.

Canny 1983
*Finding Edges and Lines in Images”

In this work, Canny begins by posing a local 1-dimensional edge detection prohlcyn as an

optimization problem over the scl of convolulion operalors, which he solves by the use
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[8%1/0z:0z;). Note tht D3f = D(D,f), where D, is the directional dcrivativé in the v
direction). Unfortunately, they seem to be mainly thinking about the special case where
df/3y = 0; they develop some strange ideas about the conditions and ramifications of
their maximum slope concern. They state and claim to prove a theorem to the effect
that the condition (confusingly stated) obtains if and only if 8f/3y = constant. They
arc somewhat carcless in the proof of the if part, failing to cxi;lici'tly consider the slope.
In fact, what they are trying to show, in their notation, is that cos®# . f,., attains a
strict maximum for & = 0. This will be truc if f is 3 times differentiable and fzz, 7% 0.
However, the authors have only assumed that f € C?, and tlnéy negleel Lthe possibility
that f:.. may vanish. The qnly if part and its “proof” arc omitted from the Proc. R.
Soc. version of the paper, and wiscly so, for they arc erroncous; the purported proof
shows only that D2?f may not be 0 for v 7 z. See [Canny 1983] for a more cohcrent use

of 2nd dcrivative, and the review of {Canny 1983) for more discussion.

The authors assume that coinéidcﬁt zero crossings from a sct of contiguous channecls
imply a recal cdge and conversely. This so-called spatial coineidence assumption is not
well-supportcd by any argument. (E.g. scc [Canny 1983] for pictoriai countcrexamples.)
The only siluation for wlﬁch it really makes sense is that of a very sjmrp edge between
fairly large constant arcas. Otherwise, it scems perfectly reasonable to believe that the
cdge will be visible at only 1 scale, while smaller scales will have inadequate sensitivity,
i.e. their zero crossings will be cssentially random, and larger scales may include other

featurcs, so their scro crossings will depend (arbitrarily) on those featurcs as well.

Lvaluation
The paper presents no convincing arguments that the V3G or DOG opcrator is optimal

or otherwise privileged in this context. Iowever, for the purpose of step cdge detec-

tion a particular kind of oplimality under some conditions has been shown clsewhere

.....................................

...............

.................

...................




A Survey of Edge Detection Local Methods 61

matched, yieldipg a sim;.ale result in the case of a step edge. In that case, the approximate
filter has an impulse response which is the 2nd derivative of a Gaussian (sce review of
[Shanmugam, Dickey, Green 1979] for details). For the ranges that the approximations
are valid (sce review of [Shanmugam, Dickey, Green 1979)), this vindicates the use of the
Laplacian of the Gaussian by Marr and ITildreth, but only for the specific type of matched
filtering of step edges studied by [Shanmugam, Dickey, Green 1979), though [Marr and
Hildreth 1979] makes no mention of the type of analysis in [Shanmugam, Dickey, Cre;:n

1979}, basing the use of the Gaussian on the more ncbulous grounds mentioned above.

The authors are interested in finding points of maximum dircetional derivative as edge
locations, and they choose to locate these as zero crossings of a 2nd derivative. Based
on cost considerations they opt for an isotropic 2nd derivative operator, the Laplacian

V2 (the only such), and wish to compute V3(G * f), where G is the Gaussian. Since
- V3(G * f) = (V2G) » f, they want to convolve with V2G, which they approximate as a
dilference of Gaussians (DOG).

l.ogan's Lhecorem (rcconﬂrucl.ib“ity of analytic 1 octave bandpass signals from their zero
crossings) is invoked lo help justify use of zcro crossings. llowever, the thcorem is
_applicable only for 1 dimension, and the signals involved here have a bandpass of nearly 2
oclaves. An argument is made that slope information may be adequate to bridge the gap
(in analogy Lo the situation for the sampling thcorem). On the other hand, there is no
reason why rcconstructibility should be a crilerion, since therc is never any requircment

that an image understanding system should be able to reconstruct the input signal.

It appears Lhat the authors are concerned that the zero crossing dircction be perpendicular
to the dircction of “maximum s'lope of the dircctional derivative.” Apparcnlly, what
this is supposed to mean is that VD2 should be collinear with v (where D2 is the 2nd
direclional derivative in the v dircclion, the second derivative of a section of f taken nlon‘g

a linc in the v dircction, which can be written as vTHv, where H: is the Hessian matrix




A Survey of Edge Detection Local Methods 80

lead to the frequéncy demain. If one regards “scale” as referring to rate of change, then
normalizing a bandlimited function bounds the derivative, but the converse l.xecd not
be true. Thus, bandlimiting can be regarded as one way to limit scale in some sense.
However, no arguments are presented to bolster the desire to consider the frequency
domain. The reason that frequency domain methods work in enginecring is the fact that
- exponentials are eigenfunctions of lincar translation invariant operators, so one can use
superposition to combine the effects of various bandpasses. Relate'd is Lthe convenient
fact that convolutions arc mapped to multiplications. The work under considcration
uses exclusively lincar methods, but does not present such an argument. On the other
hand, if onc uses nonlinear methods, there is no such justification. (Sce the review of

[Shanmugam, Dickey, Green 1979] for another argument supporting bandlimiting.)

The authors argue further that the conflicting requiremcnts of space- and band-limiting
are obtimally reconciled by minimizing the space-bandwidth product. For the apprdpriate
dcfinition of these terms, it is well known that the Gaussian ( e~*=* | for the right k )
achieves the minimum, so the authors conclude that the fillers they want are Gaussian.
Unfortunatcly, even if one accepts the doctrine of band-limiting, it is by no means clear
that the Gaussian is optimal. In the first place, the Gaussian is neither stricily band-
Alimitcd nor striclly spacc-limited. When one, say, bandlimits by truncation, il is no
longer oplimal. If onc requires a striclly band-limited or space-limited function, i.c.
onc which is 0 outside of a given interval in cither Lhe spatial or frequency domain,
the work of [Slepian and Pollak 1961, Landau and Pollak 1961, Landau and Pollak
1962] and {Shanmugam, Dickey, Green 1979] shows that Lhe oplimal filler has a Lrans(cr
function which is cssentially a prolate spheroidal wave function divided by the transform
of the waveform to be matched, where optimality is d‘cﬁncd in terms of concentrating
energy in a spatial interval, rather than minimizing space-bandwidth product. Under
some conditions, the prolate spheroidal wave functions can be approximated by functions

rclated Lo the Gaussian. Ilowever, the optimal filler still depends on the function to be

''''''''''''''''''''''''''
...............................
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be strictly space-liﬁtited. This is the case if one convolves a mask with the image. If
one were interested in concentrating energy in some band, then the problem would be
the dual of the one considered in the reviewed paper, viz. to find the optimal space-
(or time-) limited filter for concentrating its energy in some frequency band. With the
duality of the Fourier transform, the solution is essentially the same. Now an argument
can be made for considering the frequency domain based on n;)ise‘ considerations, for as
the authors show, the signal to noise ratio is a function of the space-bandwidth product.
Since white Gaussian noise has constant spectral power density, the frequency domain is
a nalural setting for its analysis. Uaflortunatcly, for good prescnt-day images, the true
noise is of the same order as .the digilizalion noisc, and mosl of the “noise” really comes
from real variations in the image, i.e. from the fact that the image is not in Lhe space
of idcal features. It is not clecar whether this type of “noise” can properly be regarded as

white and Gaussian; c.g., it is not perfectly uncorrelated.

On the other hand, it would indeed be salislying to learn that bandlimiling i required
for some strong inherent reason, so the prolate spheroidal wave functions are worth

experimenting with, and should at least be kepl in mind.

Marr and Hildreth 1979
“Theory of Edge Detection®

The authors arc concerned with finding a smoothing filter which will analyze the visual

input into a number of channels related Lo physical scale.

They arguc that such a filter should operate over a subrange of scales —not over all scales
possiblc in the image. [furthermore, it should be spatially localized. From this they
infer the (contradictory) requircments that the filter be _bol.h band-limited and space-
limited. Although space limiting clearly follows from the localization requirement, the

band-limiling conclusion is on shaky ground, since the idea of “scale” docs not incxorably
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where {1 is the_bandwiath (i.e. the signal is nonsero only when w € (~01,01)), and the

energy is to be concentrated in the spatial interval (—1,7) (note this is a slightly different
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use of I than in [Shanmugam, Dickey, Green 1979, Lunscher 1983]). These conditions

say that the approximation is valid for large space-bandwidth products, and under those

e
.,

conditions it is valid only away from the band limits. If those conditions are violated,
e.g. by requiring better localization, then the prolate spheroidal wave function which is
the solution no longer looks like a Gaussian. This is similar to the localization résults

found by [Canny 1983).

Blurred cdges are modclled as the difference of exponentials to obtain a symmelirical
sigmoid function (only once continuously differentiablc, though). They show Lhat if the
resolution interval [ is larger than the blur width (defined by the 90% points), then the

filter is still a good approximation to optimal in an appropriate sense.

| A Gaussian noisc analysis is also presented, showing that S/N improves with increasing
spacc-bandwidth product, e.g. coarser resolution, not a very surprising result in view of

'many others Lo the same cffeet. An expression for S/N is given.

The experimental results are notl very impressive when compared to nonlinear cdge

detectors (e.g. afler thresholding), but Lthey show a clear improvement over other standard

lincar filters, c.g. high pass, Laplacian.

‘This is not a dircel method of detecting edges, but rather should be regarded cither as an . B

cnhancement method, or, more importantly, as a precise approach that could be taken

in finding an optimum filter to reconcile space- and band-limiting.

If one must do computations in the frequency domain, then the filter used must be strictly
band-limited. But there is no persuasive argument for using the frequency domain, If

onc docs computations in the spatial (or time) domain, then of course the filter must
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where K, K2 are simpje functions of §2,7. When the ideal input is a step edge, this
reduces to .

H(w) = Kywle~ K’

The authors allude to work by Streifer {Streifer 1965b] showing that “the error is not
. prohibitive even when Slepian’s constraints are violated.” [Lunscher 1983] has pointed out
a dimensional error in the exponent above, and uses asymptotic cxpansions of [Streifer
1965a, Strcifer 1965b] to arrive at a K3 of the correct dimensiom; to assure a scale-

invariant response.

The optimalily of Gaussians

What does this say about the optimality of Gaussians? Since Gaussians minimizeA the
spacce-bandwidth product for functions of infinite (frequency) extent, one would cxpect
that the imposition of a finite extent constraint would lead to a result which approached
a Gaussian asymplotlically. The question then becomes whether the conditions for the
asymplolic approximation arc applicable in a particular situation. For example, if .onc
starls with a Gaussian which is approximaltely band-limited, say 99% of its cnergy is
within (=0, (1), then that Gaussian has a particular spatial extent, too, parametrized by
- its standard deviation, so 99% of its cnergy is in the spatial inteeval (-7, 7}, where [ is the
appropriate multiple of 0. Now if we are demanding that the lfunction we are intcrested
in must concentrate its energy in the interval (—.01 - 7,.01 - [), then clearly the Gaussian

will not be a very good approximation.

For the scalc-invariant version of the prolate spheroidal approximation due to [l.unscher

1983, the domain of validity is defined by

QI»1
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Following [Slepian and Pollak 1961, Landau and Pollak 1961, Landau and Pollak 1962]
they decompose in terms of prolate spheroidal wave functions, and show that the optimal
filter output is 44, the order 1 prolate spheroidal wave function, with the space-bandwidth
parameter dependent on the space and bandwidth cutoffs required. This method of
analysis allows the bandwidth and space cutoff to be chosen independently, unlike the
situation with a Gaussian. This constitutes a more rcalistic .trez'itmcnt of the type of
oplimality sought in [Marr and Ilildreth 1979], yielding functions other than Gaussians,
although under ccrtain ranges of paramcters the Gaussian is a good approximation.

Specilically, the transfer funclion of the oplimal filter is given by

*'(ﬂll )
s 2N <0
H(w) = P ol

0 ’ I“?IZQ

where K is a real constant, ¥, is the 1st order prolate spheroidal wave function, is_the
half bandwidth (i.c. the signal is nonzero only when w € (—2,)), and the energy is to be
concentrated in the spatial interval (=1, 1) (note this is a slightly different use of 7 than
in [Shanmugam, Dickey, Green 1979, Lunscher 1983]), and /*(w) is the Fouricr transform
of the ideal input. The only informatlion used about the input and filter to derive this
formula is the facl that they are odd and even functions, resp. There is no particular
justification for requiring the filter Lo be even (il gives a neater result) exeepl that it allows
ready gencralization to a rotalionally invariant 2-dimensional operator simply by making
the value depend only on distance from the origin, i.e. by rotating the 1-dimensional
opérator. (Canny 1083] regards this as a rather unfortunate assumption, since in his
analysis dirccliona! operators provide better sensitivity, and he shows that dropping the

assumption lcads to an operator very much like the one he proposes.

Using an approximation of Slepian {Slepian 1965), the optimal filter within the bandpass

is approximated as

Kiwe K aw?
iF(w)

H(w) =
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least squares fits (which‘ are being proposed) are notorious for being badly bcha\;ed—they
tend to have extra wiggles. One would expect that such functions would not be very
good ones to use if one wanted to look at derivatives. One might prefer to use Fourier
interpolation, B-splines, Fourier splines, or some other appropriately well-behaved set
of functions. No mention is made of his previous idea of looking at discontinuities of
parameters of fit between adjacent regions. Nevertheless, some .kind of fitting process
seems to be in order to use global inl'orrqation for local features (in this case the global fit
yields the local derivative). The noise performance issue is postponed in [[Taralick 1981),

but treated thoroughly in [ITaralick 1984).

These “edge” detcctors arc a beginning based on surface fitting. The particular predicates
involved arc not .adcquate, though, and therefore cannot bé expected to give outstanding
performance (sec [Canny 1983] for one discussion of performance). Improvements can be
expecled when the type of qualitative information used in [[Taralick, Walson, Laffey 1983)

is brought Lo bear on finding cdges.

Optimal Filters

Shanmugam, Dickey, Green 1979
“An Optimal Frequency Domain Filter for Edge Detection in Digital Images”

The authors consider the 1-dimensional edge detection problem, with the proviso that
“symmelrics appropriate to the 2-dimensional probicm arc relained.” Their goal is to
obtain a lrequency domain filter to concentrate maximal energy near an edge. The model

for an input cdge is the unit step.

Morec particularly, the authors require a strictly bandlimited filter (i.c. a filler whose
Fourier transform has its support on an intcrval surrounding Lhe origin), and they scek
to snaximize the power in some interval around the origin in the space domain for the

filter oulpul response Lo a unit step.
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Gaussian approxiination has a performance measure LA which is about 20% worse than

the optimum operator.

The 2-dimensional problem

Canny does not consider the 2-dimensional optimization problem de novo, but rather

starts from the point he rcached with the 1-dimensional problem, which is the derivative-
of-Gaussian operator. The approach is to use an operator of the form h(z,y) = f(z) -
9(y), for various oricntalions of thc orthogonal coordinates z,y. Then [ is to be the
(approximate) optimal 1-dimensional operator, and g must be determined. By reasoning
similar to that involved in ﬁnding J, he notes that g should be smooth, i.e. a smooth
window function, and he notes that the Gaussian he chooses is a good approximation to
standard windowing functions. Firsl, the edge orientation is cstimated from the gradient

of the smoothed image, i.e. from

V(G 1)

where G is a rotalionally symmetric Gaussian. Then the location of the cdge is dctcrmincd
by finding the zcro crossings of an operator which computes DZG » I,'the 2nd direclional
derivalive in the v direction, where v is approximately given from the gradicent. estimate.
This is what it would scemn [Marr and lildreth 1979] were really after. Notice that this
can be realized as a single operalor (i.c. it is nol a directional family) sinee onc sccks the

zerocs of

DysS
where S =G 1.

A compact description of the 2nd derivative operator is as follows. The 2nd derivative for
a function f of 2 variables can be Lthought of as a matrix, known as the Hessian matrix,

given by Il = [(')2j/¢'):n.-¢')z,-]. The 2nd dircctional derivalive in the v dircction is then
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given by D3f = vTHve When v = V, this can be written

vyl ==z Jy

! Jov Sw/\Jy RS

- o -

which expands to !
Dszf=fzfzz +2f¢fvf=y+f3fvv . ) J

' o

Normalizing by iV}‘ | does not alter the zeroes of this quantity. ! 2

Canﬁy makes a useflul observation in comparing this dircctional derivative operator to
the Laplacian, V2(G « I), which is worthwhile repeating here. Consider a coordinate
system with the z-axis aligne& with the gradient direclion (at the point of interest). In
this coordinate system, the dircctional derivative has a contribution only from f.., since
- fy = 0, since the y dircclion is orthogonal to the gradient, which is as it should be
for a directional derivative. The Laplacian, on the other hand, also is invariant under
rotation, but does not depend on the gradient, hence it has a contribution from the
2nd derivative in the “uninteresting” y-direclion, which leads to nothing but a noise
“contribution. Actually, this is a littlc more subtle than may appear at first glance. If
onc assumcs an ideal edge as signal embedded in noise, then the signal is completely

constant in the y dircclion; hence all y derivatives will be 0, so in fact the directional

derivative gives the same answer as the Laplacian (modulo a first order coeflicient which

would be normalized away), for the signal response alone. But with noise, the Laplacian T
will respond in the y dircction, while the direclional derivative will not. “ j-_';-f‘_l
From this theme (the sccond dircctional derivative of Gaussian convolution), Canny . , .
procceds to devclop a number of variations: multiple widths, “featurc synthesis,” clon- < !

gated operators, and lateral inhibition.

A

Multiple widths are required since scnsilivity increases with size of support, while Iocaliz.a- ir_fj
tion degrades. Canny’s approach is Lo usc the smallest operator with scnsilivily adequate 3
SR
.;1;;}?;:;'
e -
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to provide a given error’ probability. This requires estimating the noise, which he does by
convolving a filter with the cdge detector output. Under the assumption that the signal
: ) is an ideal step and the step size is much larger than the noise amplitude (low noise),
I ~ he finds that the optimal filter for this is the 2nd d=:ivative of a delta function, and
- smoothing the response gives the 2nd derivative of a Gaussian. This he approximates
with a difference of Gaussians, which is less sensitive to the acéurgcy of the edge location

estimate, with coefficients chosen so as to make it orthogonal to the step response. Of

Y T ety ;L

course measuring noise involves a model of the image, in this case an ideal step, so the
noisec measurement is also a measurcment of the deviation from the model. Neverthcless,

since it is also a measure of the it of the model, it is still uscful as a confidence measure.

It is a fact of li}'e that images are not composed of idez-al step edges. Conscquently,
operators of dillerent sizes with adequate S/N centered at the same i)oint. may be respond-
ing to diffcrent aspccls of the image funcltion. The simplest example is a diffuse edge
superimposed on a sharp one (possibly at a different oricntation). In general, the single
number that a filter gives at a point docs not convey a great deal of information about
the struclure of the immage in a ncighborhood of that point. In particular, the response
of an cdge operator based on an assumption of ideal cdges gives v¢;ry little information
about Lhe shape of aclual edge candidates. Canny's approach to this problem, “featlure
synthesis,” is reminiscent of the Gram-Schmidt orthogonalization procedure. The idea is
that, starting wilh the response from the smallest significant operator, he cstimates what
th(_: response from the next largest would be if a step edge were responsible. If there is a
large enough disparity with the observed responsge it is decined Lo come from something

clse. This has the cffect of enlarging the feature space.

Elongating a mask along the cdge directlion is another way to increase the support, hence
the sensitivity, but since there is no scale change, the localization improves (under the
ideal straight cdge assumption). Canny’s clongated operator is cssentially the sum of

Gaussians taken along an inlerval, resulting in a mesa shape with Gaussian falt-off.
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A common problein with¥ local operators that respon.d to the gradient is that they respond
to slow changes as well as abrupt ones. This can be regarded, again, as a symptt;m of an a :'"--:
inadequate feature space (the 1-dimensional “edgeness” number, essentially a projection
\ to a 1-dimensional space). One remedy for this problem is to introduce a preprocessing -
step, lateral inhibition, which sends offending subspaces to 0. In the context of Lthe Taylor
- expansion, the first offending subspace is the constant term, but this is already taken care
of as long as the operator has 0 average value, e.g. if it is an odd function. The next
problem is the 1st order term, which is an example of a “smooth gradient.” This can
be removed by some 2nd order operation, c.g. 2nd derivative. Canny uscs a difference
of 1st derivative of Gaussians of dilferent widths, weighted to send linear functions to
0, i.e. roughly the diffcrence of adjacent channels of the optimal operator. Like other
lateral inhibition methods, this degradcs the performance, in this case by about 30%. It’s =
not Loo hard to sce what the problem is here. First of all, the operator f was chosen to
I maxir.nize ' -

h=/f'u—l =(f,u-1)

. Without any constrainis (and an appropriate measure), this is achicved for f = u_y.
With the extra conslraints, we can think of it as linding the dual veclor of u_y, or we
can pul everylhing into the measure, in Lhis case Gaussian measure. Now Lo computle the
@_y-ncss of I, we compute (f, /), i.c. we apply the distribution [ to I, or equivalently,
look at the projection on the u_j-axis. Unfortunately, it Lurns out that (f,t) % 0 (where
t stands for the idenlity funclion on the line). le. u_y(¢) is not orthogonal to t. The
idea of sending ¢ Lo 0, Lhen, is Lo find some g such that (g, t) = 0, but (g,u_) is still as
large as possible. This cssenlially mecans making f orthogonal to £. Roughly speaking, : _-
one can think of u_, and t as 2 veclors in an inner p;oduct space. [ is derived from .
orthogonal projcction onto u_;, but since u_; and ¢ are not orithogonal, ¢t has a u_y ‘ ‘

componcnt. Finding something that will not respond to ¢, i.c. send it Lo 0, means finding

somc new veclor v in Lhe subspace orthogonal to . u_; cannot lic in this subspace, since
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it is not orthogonal to €, so the v component of u_; will be reduced. One way to get
- this is to subtract off the ¢ component of u_;, a canonical orthogonalization. This would
. be the Gram-Schinidt orthogonalization for ¢,u_,. In any case, sensitivity is lost. But
consider the problem another way. Consider the subspace spanned by u_j, ¢, and instead
of orthogonal projection to a 1-dimensional subspace (the value of a single inner product),
look at the orthogonal projection to this 2-dimensional subspace. l.e., try to find the best
fit of the form |

au_y + bt

Then a, e.g., can bc found by orthogonalizing the basis and rcnormalizing. Le. the
problem is just that of writing a vector in a non-orthogonal basis. E.g., for the above

subspace, one gets
- (I,i-y) - (1‘4_1,3)(1,3)

a Y
1- (‘l‘l_l,t)2

where § denotes g normalized for the appropriate measure and support interval. This is for
a single support interval, so it cannot be dircctly compared with Canny’s method, which
uscs results from 2 different support intervals, without first speciflying what measures,

support intervals, and subspaces one was interested in.

-Using oplimization methods analogous to those for his cdge opcrators, Canny also finds
optimum detectors for “roofs” and “ridges,” and indeed, this could be donc for any
distribulion. Extending these operators to 2 dimensions is somewhat trickicr than for the
cdge. And as the number of operalors increasces, it becomes harder and harder to make
sense of Lheir oulputs, since they are not mutually orthogonal. More than | operator, e.g.,
can simultancoisly give above threshold output. Furthermore, they may be applied at
different scales and at different oricntations. Canny calls this problem of understanding
all these outpuls the “integration” problem, and concedes that it is a sticky one. The
problem really stems from the lack of a coherent way to deseribe the image (locnlly).

Projectling onto some axcs that scem interesting is a start, but such a local projection
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yields only a few numbers from which it is hard to derive a picture of the qualitative
behavior of the image. This is a problem of disintegration, or fragmentation. What is
required is a coherent way of describing the qualitative structure of the image, in terms

of the structures which are of interest.

Canny uses a [lairly ellective solulion to the “streaking” problem (breaking up of
thresholded edges), which he calls “thresholding with hysteresis.” While this mecthod
does not address Lhe basic problem- -understanding the image globally and semantically
(in terms of “edges”™)-—it is very workable in the ambient context of ideal edges found by
a local lincar operator. The technique outputs contours which are the maximal connected
contours with some part above a high threshold and all parts above a low threshold. This
is equivalent to sceding with strong edges (Lhose above the high threshold) and following
the contour at a lower (hreshold. This is still not quite the same as delecting a weak
edge duc to ils length, somct.hiﬁg commonly beyond Lhe ability of edge deteclors. The
source of Lhe problem is thal one is attempling Lo find a global object based on local
measurcs. Deciding on a continuation of an codge through a region of poor signal to
noisc _r:xtio is not a local problem, and it is nol clear how Lo treal it as a signal process-
ing problem. Onc could try Lo look for evidence of long straight cdges. Canny docs
this to some cxtent by using clongated operators. But for much longer cdges, this is
no longer a local critcrion, and special methods are required Lo deal with the increased
combinatorial load (c.g.. a dircctional operator would have to be applied in very many
dircctions). Alternately, a method akin to the Hough transfor [{lough 1962] could be
used. llowever, these methods have a bias toward partlicular shapes of conlour; again,
since the locality condilion is violated, including additional dimensions of shape is very
costly. There arc scmantic problems as well. Consider the casc of a long straight cdge
in.a high noisc background (or, equivalently, of low contrast). Looking at such data, a

human obscrver generally secs in fact a straight edge in noise. [lowever, it is clear that if

.....................
......................
..............................
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the edge is long ehough and the noise is large enough, there must be places along it where
an estimator based only on local data will meander slightly to get the best estitﬁate. By
the local measure, this will be a better estimate than a long straight edge. That is all

one can expect from a criterion which ignores the global shape of the curve.

Empirical results

The results shown appear qhitc good in that most of the edges of interest arc present
without a preponderance of “noise” cdges. P’robably, this is mostly due to using lo-
cal noisc analysis with “hysteresis” thresholding and incorporating the single response
criterion (smoothing). While accurate localization is important for applications requiring
precision, subjeclive appraisal cannot take this inlo account very readily, and the main
manifestation of good localization is in localization consistency, i.e. in the estimated
location varying smoolhly and monotonically with the actual while maintaining minimal
scatler. This fenlure enables, c.g., reliable linking, even if the absolute locations are
unrcliable. llowcvc.r, hf:rc the single responsc crilerion already clears Lthe clutler, so the

localizalion accuracy is probably notl very important in this respect.

To the cxtent that the results are apparently cleancer than other edge deteclors, they are
very good. However, Canny’s resulls show the same Lopological problems inherent in all
step-matcher filters. These problems are manifested in “wrong” conncetivity of contours
(i.c., relative Lo what a human would draw), and occur in places where the image function
cxhibits a local behavior which is different from the class of functions considered in the
dcsign. In Canny’s case, the design functions were co;lstallts and idcal straight cdges,
possibly augmented by linear functions. This can be expected to fail in busy places,

e.g. corners, resulling in incorrect connectivity, and in fact such behavior is.cvﬁdent in

Canny's examples.
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Evaluation

This work is a significant contribution to the theory of edge detection by finding extrema
of a convolution. Particularly notcworthy are the ideas relating to localization: how to
express it mathematically, and how to incorporate a single response criterion. The latter
leads directly to smoo'thing, and thus puts the usc of smooth convolution kerncls on
a firm footing (in computer vision—we are not speaking of statistics in general).. The
comparisons with other cdge operators, e.g. Laplacian, lueckel, surface fitting are quite
uscful, as is the discussion of prolatc spheroidal wave functions. The ideas have their
germ in the work of Marr and llildreth, but go much further in the way of development,

sophistication, and rigor, and are certainly crcative on their own.

Without detracting from Lhe quality of the work, the subject matter should be put in some

. perspective. Each refinement that Canny introduces can be regarded as an enlargement

or refinement of some lincar featurc space, which is compuled pointwise in the image. By
considering suffliciently complicaled convolutions, perhaps a greal deal can be determined
about the image Tunclion, although clearly convolution with imngc-indopcndcnl. kerncls
cannol yicld nonlinear funclionals. In any case, for convolutions which arc cssentially
matched filters subject Lo some constraints, Lthe oulput of such a filler, al cach point,
can be regarded as orthogonal projeclion onto a l-dimensional subspace of some function
spacc (perhaps after some other linear operation, such as differentiation). The purpose

of doing this is Lo producc a dala struclture which allows a pointwise decision procédure,

e.g. “is there a scro-crossing here?” This works when one assumes the image comes from-

a very special subspace, e.g. ideal steps. Unfortunately, Lthe type of information required

about an image function cannot be adequalely compacted to a single number Lhis way.

Consequently, further operators must be used to get more information. Thus the feature

space is enlarged, but it is very difficull to enlarge it in such a way as to mnake it casy
to solve the decision probiem in the feature space. To do this properly, one nceds first a

theory which says something about equivalence of images. E.g., certain transformations

..........
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should not affect the qualitative interpretation of a piece of the image. Another way to
put this is that convolving with some number of kernels, and using the information only
locally, is the same as projecting some high dimensional space (the pixel values) onto the.
space of kernels. This is essentially a standard problem of classification. Experience has
shown that even with nonlincar classifiers, it is very difficult to duplicate the intuitive
distinctions one secks. The reason for this is that such classiﬁca@ion can be incredibly
complex unless it incorporates the structure which captures the distinctions. Projection
.onto an “edge” dimension is an attempt at this, but is not cnough. What is required
is a more complete understanding of the qualitative shape of I.hAc image lunction, based
perhaps on very nonlincar predicates, c.g. equivalence under some class of Lransformations

of the support.

“Feature synthcsis” and “fcature integration” require goodness of fit. So does incorpora-
tion of clongaled dircclional operators. “Non-maximum suppression” ean be viewed in the
same way. Removal of the rcspdnsc to slow gradicents is also a goodness of (it stratagem,
in that goodness of fit Lo a lincar funclion is senl Lo 0. It scems that the original idea
of a single oplimal operator has to be modified again and again for different situations.
Why is this? There is really nothing wrong with the operator; the problem is with the
problem that has been posed. One can find an operalor Lhat will respond optimally to a
step cdge, cven for various definitions of optimality and noise process. The diflicully is
twofold. First, the definition of siep cdge is nol entirely realistic. There is no rcason to
cxpect Lthat a natural cdge will be well modclled by a step between regions of constant
image intensily (or color). This amounts Lo a Oth order approximation in the vicinity of
the edge. Thiigs may cven be worse than just the smooth fluctuations one might imagine,

e.g. ncar the limb of an occluding object, onc would cxpecet in principle the derivative

normal to the image cdge to grow to oo to a cusp (the intensity would stay finite).’

Thus the Oth order term would be a bad approximation in any ncighborhood of the edge. (] -
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Devialion from constancy near Lhe step will alfeet at lcast the localization from a linear AN
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integral operator with nontrivial support. E.g. (at+bJu—1(—t)+(ct+d)u_,(t), which is 2
ramps of unequal slope scparated at the origin by a step, will lead to incorrect.localiza-
tion for Canny’s operators, including latcral inhibition. One cannot expect any better, as
the feature space includes such a function only in the noise term. Of course, if all such
possible functions conform to the hypothesis of Gaussian white noise, the operator will

- still give the best guess, on the average, but that is probably not what one has in mind.

The second difficulty is that this type of formulation answers the qugstion “If there is an
edge there, how can 1 best determine its parameters?” But,' first one really wants to know
“is therc an edge there?” To answer that, though, besides knowing what “edge” means
(not at all a trivial matter), one must be able Lo estimate how well an edge hypothesis
accounts for the data, comparcd to some other hypothesis. A distribution on one such
space (say step cdges plus while Gaussian noisc) docs not translate casily into anqther
distribution on what is cssentially the same space (say step cdges plus step ramps plus
white Gaussian noisc). Again this is the problem of sclecting the right feature space at

the outset.

Unfortunatcely, if the step cdge is not ideal, e.g. if the values cither gidc of the slep are
not conslant, localization based on convolution will be inaccurale. This is casy lo sce
“since the extrema of cven a lincar perturbation g(z) + az arc generically shifted from
thosc of just g{z). This is the manifestation of an intrinsic problem of convolution with
smooth kerncls: the space of signals is much too large lo be adequately classified by a
pointwise criterion (such as zero crossing), even for very simple predicates. Restated, it
is difficult Lo find integral approximations Lo point propertics (unless one is willing to

integratc against dclta funclions, of course).

A nonlincar approach

Casut Zuvek e

We claim that the problem can be approached through topologichl methods.. The first .

difliculty is duc Lo the lack of any smoolhness in Lthe noise process (as usually formulated,
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the noise need not be &* for any k). This would make a frontal assault by topological
mcthods difficult, since the natural settings for such methods are spaces of differentiable
functions. However, we can exploit a certain amount of smoothness which is intrinsic to
the data. lLe., the data already incorporate some “natural” smoothing, whose effects in
any case we would have trouble removing. So we seek to get by with (and exploit) the
“minimal” smoothing, without introducing any more confounding convolution. We can
consider the data as arising from sampling some smoothing process such as bandlinﬁtiﬁg,
Gaussian convolution, or even something nonlinear. Since the data space (pixel values) is
finite dimensional (though possibly of high dimension), there is a great deal of collapsing
in \' ¢ mapping from the infinite dimensional input and model spaces. Thercfore, one
should scek a regularity condition on the modelling function (i.e., the smooth function we
assume gave risc to the data) which will guarantee robustness. Put another way, given
. an cquivalence class of functions yielding the same data, any derived property should be
generic. Such a rigorous crilerion of robustness is rarely considered; instead, one simply
assumes (bascd on good rcasons) that, c.g., the model function is bandlimited. In that
case, for a fine cnough sample grid, there is a unique (smooth) model function. Since
we arc not able Lo provide a rigorous analysis of robuslness here, we just consider what
happens with a smooth model function, assuming it has been chosen to be generic (or
is unique, as with bandlimiting). [low can we remove extra extrema, i.c. do smoothing,
without blurring? [Koenderink and van Doorn 1979] and [Witkin 1983) have proposed
convolving with a I-parameter family of smoothing opcrators, and considcring how con-
tours of interest (say zero crossings) change as a function of the parameter. One can do
this in even more generality, as is done in singularity theory. We can consider gencerie
smooth [-paramecter familics of smooth functlions, i.c. smooth paths in our model space.
In this way, we arc led to the théory of generie bifurcations of crivical points, since these .
play the major rolc in determining the topology of the contours. For real functions in the
planc, this theory is very well understood: the only generic changes in the topology of tilc

level set structure arc saddle-node bifurcations of crilical points,-and saddle-connection
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nges in the nestfng df saddles. Also, the topology of an individual level set can change
t passes through a critical point. For functions on the line, things are even simpler:
only possibility is max-min bifurcation through an inflection point. One can show
t the critical point bifurcations of parametrized Gaussian smoothing are generically
dlc-nodes as well [Blicher and Omohundro 1984], so that the behavior which occurs
Gaussian scale space is described by the usual generic theoi'y. .Thia opens up the pos-
ility of doing very non-linear smoothing in a coherent (and simple) fashion. Actually,
cc one can now understand the relationships among the extrema, the actual smoothing
»robably unnccessary. The important thing is that the smoothing must proceed by
: annihilation of a saddle v«_rith an adjacent node (extremum), or the swapping of saddle
tings by the saddle connection. This is how any smoothing must work. Exactly in
at order these things happen for a given funclion depends on the type of smoothing and
sperties of the funclion. Sometimes, this can happen in ways thal are not very uscful,
cc spatial extent and amplitude are interchangeable in a linear (integrating) operz.ltor.
is probably morc usclul to know things like the heighls, supports, and proximities
critical point domains independently. Then certain kinds might be readily smoothed
ilc others might not, depending on some interpretation heuristic. E.g. cven a very
ge spike, if of tiny support, could be removed (by cxcision— i.c. without aflccting

irby data), or small bumps on a big bu.np could be regarded as such.
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Global Methods

Accumulator arrays

Hough 1962

“Method and Means for recognizing complez patterns” (Duda and Hart 1971, Duda and
Hart 1972, Duda and Hart 1978

The Hough technique offers a solution to the problem of finding global straight lines, or
more cxaclly, finding global sets of ncarly collincar feature points. In the present context,
“global” means over the cntire image, though other workers have used the same idea for

subregions.

Basic idca

Consider L, the scl of all lines in the plane, as a lopological space. Duda and Hart
use the so-called normal parametrization for L, where cach line is spccificd by the
pair (@, p), representing the oricntation and distance from the origin of the line. This
parametrization is borrowed from integral geometry, where it is used in the solulion of
the Bullon’s necedle problemn. It derives its utility from providing a translation invariant
measurc for the space, so that probabilitics behave in desired ways. ([Santalo 1976) is
an exccllent source for information about integral gcometry, and should be of interest to
vision rescarchers.) Ilough, on the other hand, uscd the slope-intercept parametrization
Familiar from analylic gecomelry, bul which is fraught with diflicultics lor this situation.
Incidentally L is a non-trivial space: for p > 0, every value 0 < 8 < 27, dcfines o
different line. But when p = 0, i.e. for lines through the origin, (6, p) defines the same
line as (# + x, p). Thus, L is homecomorphic to a semi-infinite circular cylinder with the
bounded cnd terminated so that antipodal points on the cross-section circle are identified,

which in turn is hoincomorphic Lo a punctured disk with antipodal points on its periphery
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ed. This is also ¢he same thing as an infinite Mobius strip, formed by taking a

infinite strip and gluing it together with a half-twist.

isic insight Hough used is this. For each point p in the plane, there is some curve
. L which corresponds to all the lines through p. For each p of interest in the
5, accumulate weight for 9(p) in L. Then lines in the picture will be places in L
igh accumulated values. (One can think of this as defining a weight accumulation

m h:L = R by h =3 Xy(@p.) Where x.(p,) is the characteristic function of y(p;).

da and llart point out, the method provides a savings because of quantization of

e finer the quantization, the less the savings.

ition

ough mcthod is not adaplable beyond very limiled spaces of curves because storage
»ments grow cxponentially with the number of parameters characterizing the fea-

i.c. with the dimension of the space of curves.

Lhe method is tolally global, undesired features can come into .plny, i.c. the noise
i high due te many chance conlributions throughout the image. 1lowever, Lo combat
'oblem, onc can design localized variations, at the price of requiring a method to

the local results iogcther.

le gencralizatlions include the detectlion of curves with more paramcters, weighted
ulation (based on confidence or signilicance of the data points), the inclusio. of

.onsiderations, and localization.

tccess of the Iough method is very dependent on sclecting the initial poinis of

t, i.c. on the local feature operator. On the other hand, a good way of doing this

compensate for large parameler spaces.




,ﬁb-ﬂiSS 873 EDGE DETECTION AND GEOHETRIC HETHODS IN COMPUTER YISION 2/3 .

Uy STANFORD UNIY CA _DEPT OF COMPUTER SCIENCE
P BLICHER FEB 85 STAN-CS5-85-1041 MDR983-80-C-0162

UNCLASSIFIED F/G 12/4

- i




ST e TR T
“o. N . RS A Claik PR
’ : R I R S

® s .T-_..,‘:.

4
v

1
Ao

A

l.!

t
|
1
1
1
1

o

FE

i

|
iz s

I

FEEEEER

EFER

=
B
(]

EFF
FE

I.8

>
.

o

Il

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A




-----------

------
.................................................

A Survey of Edge Detection Global Methods 83

Ballard and Sklansky 1976
“A ladder-structured decision tree for recognizing tumors in chest radiographs”

The authors are concerned with finding roughly circular regions of approximately 100

pixels in area.

Summary of processing steps

A thresholded gradient picture is first arrived at, using a sequence of proéesscs OroVo

No I., where

L is the low pass filter operation delined by averaging and then resampling on a coarser
grid. (Note that averaging is not strictly low pass, since the filter transfer function

is a sinec.)

¥ s a high pass filtering operation performed in the frequency domain via FFT’s, using

a filter characteristic atiributed to Kruger.

'V is a digital gradient operator defined in terms of adjacent pixel differcnces.

O7 is a global thresholding operator.

A heuristic scarch connceting edge pixels, similar Lo Martelli’s technique, is then used to

find the lung arca, following a Kelly-like “plan.”

To locate tumors and nodules, a llough-like mcthod is used: An accumulator array
corresponding to possible circles, indexed by position and radius is incremented by the
number of cdge pixels with positions and gradicent dircclions consistent with lying on the
given circle. An improvement is achieved by using the gradicnt direction in addition to

the magnitude.

Big and small radii arc tumor and nodule candidates, resp. The big ones arc immediately

declared to be tumors, while the candidate nodules are subjected to a 2 stage classifier
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which looks at features from a detailed nodule boundary finder. The latter is based on
growing all optimal cdges of length n in a given region until closure is rcached, using a z

Kelly-like “plan.”

The accumulator array mcthpd seems to be useful for finding some cirele-like boundaries. S
One must always keep in mind 2 questions for such [cature detectors: what does it really
find, and what will it miss. These questions are best answered either by mathematical
proof or application to numecrous examples. Unfortunately, ncither of Lhese tesls is
available in the present paper, though probably onc cannot fault the authors for not
including morc examples, sincc‘spacc limitations may have been imposed. In any case,

what is being delected is nol regions with roughiy circular boundarics, but arcas having

-
a sufliciently high count ol'.above threshold gradient values (of the right orientation) lying E:
on a f:irclc. This provides some kind of global understanding of the intensity function, »__. '
which is commendable, but it is not likely Lo find sharp edges which do nol stay ncar and . -
tangent Lo some such circle. Tlowever, Lhe main use in the paper being reviewed is Lo guide e

a more detailed process of boundary finding, and in_that context the question becomes L~
whether the feature being found is indicative of a closed boundary in its vicinity. On X
the onc hand, there is litlle doubt that a roughly circutar boundary of adequate contrast, >
sufliciently defocussed would cause onc or a few such circle detectors to fire, allowing the Y
morc detailed process Lo find the precise boundary. On the other hand, the firing of a

circle detector is no guarantce that there must be such a boundary: all that is neccssary

is Lthat the intensily have a steep enough centripetal gradient over a large cnough part of b

a circle, which might happen if the intensity function has a maximum inside the circle.
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Region gowing.

Brice and Fennema 1970, Fennema and Brice 1970

“Scene Analysis Using Regions”

This is now a classic work in region growing. Its methods are extremely simple, which a
priori may not be an indictment, but in this case they are based on an overly simplistic
image modcl that no one now belicves. The approach was motivated purely by heuristics,

rather than any theory, and at this level of processing Lhat turns oul to be inadequate.

The basic segmentation operation is to partition the image by pixcl intensily value. The
aulhors use boundary predicates which arc based on a completely local measure: nearest

ncighbor inlensily differences.

There are 2 merging heuristies:

Phagocyte heuristic

Merge adjacent rc(!;ions if the “weak” part of their common boundary is a big enough
parl of onc of their Lolal boundarics. “Weak™ and “big cnongh;’ arc relative Lo global

“thresholds.

Weal heuristi

Merge adjacent regions if the “weak” part of their common boundary is a big cnough

fraction of it (common boundary). Another global threshold is used for “big cnough.”
Evaluation

The mcthod presented is much too simplistic. E.g., it will clearly lail if smooth shading

leads to 1st differences of the same magnitude as an edge. Noise spikes will always end

up as regions. The hcuristics are loo heuristic --they are nol based on any analysis or
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understanding of real immages, beyond a few common-sense notions. Global thresholds are
invariably a bad idea: a little observation can persuade onc that the same magnitude (of
cdge parameter, gradient, or whatever) can be significant in one context and meaningless

in another. -

Kirsch 1971
“Computer Determination of the Constituent Structure of Biological Images”

The author indicates that he is interested in image processing as deriving data structures

from image data.

lle differentiates beltween “well-defined objects” and “aggregates,” which is essentially
the difference between smoothly shaded objects with smooth boundaries, and textured
" “objccts” wilth texture boundarics. He suggests, among other examples, that cells are

weli-defined objects, while Lissucs are aggregates.

The goal is to find boundarics for both types of objeccts, and the approach is via a local

contrast funclion which is based on the use of the convolution masks

5 5 5 -3 5 5
-3 o0 -3 -3 0 5
-3 -3 -3 -3 -3 -3

and their 90° rotations. The local contrast function C is then defined as the local
maz over all masks of the absolute valucs from the convolutions. lle dcfincs a blob of

heterogeneity i a8 (our cquivalent definition) a connected region 12 such that Cliner € K -

and Clar > K: basically a low contrast rcgion with a high contrast boundary, with

“low,” “high” defined by the threshold K. S

The data structure he derives is based on the observation that varying the threshold

induces a partial order on the regions by inclusion, which is of course a functorial




ISP D e S A RN

A Survey of Edge Detection Global Methods 87

consequence of the hatqral ordering on the thresholds. This partial order he represents

as a tree, and as a reduced tree showing only when regions coalesce.

Evaluation

The data structure which Kirsch proposes is interesting in that ';t is esscntially the
structure of the level sets of the contrast function he uses. As we point out elsewhere, the
level set structure of a functicn captures the topologically invariant information. In this
casc, however, the preprocessing steps lcading Lo Lhis structure are heurislically based
and unfortunately the invariant features are nol adequalcely studied, :_md the clfects of
noise on the structurc are not Laken into consideration. The author cannot really be
much faulted l'or. this, as the mathecmatics involved was not very widely known at the

time.

The resull is a technique which is better than just intensity thresholding, but suffers many
of the same drawbacks. Although he keeps track of what may happen for all threshold

valucs, the thresholds are siill global Lhresholds, although one could gencralize slightly

and usc thresholds global only o a region. Now although one might expect boundary
contlrast Lo be less variable over some region than simple inlensily, it's easy Lo imagine,
c.g., a weak spot in a boundary such that lowering the threshold Lo include the weak spot

introduces cnough boundary points to disconnecl Lhe region.

Because only the maz of the dircctional contrasts is used, important gcometric informa-
tion is discarded in finding the boundarics. This is apt to lead Lo errors for uniform
regions, since noisc cannol be rejecled on Lhe basis of direclion Lo other boundary points.
The clfect for textured regions is hard to evaluate; in some cases it may be helpful, but

it scemns unlikely to work alone.

No justlification is given for the values in the convolution mask. For the purpose of

detecling a step cdge in the presence of Gaussian noise, il is nol Lthe most scnsitive.

...................
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Not enough experiment:;l data is presented to give any fecl for performance on real images.

N Somerville and Mundy 1976 ::

I “One Pass Contouring of Images Through Planar Approzimation”® - ' .

o _ The authors state that they are interested in finding contours of the intensity function, .';".:..-f.

but what they mean by this is finding places of large change of gradient. _ -
. - L]
"."_' Their first goal is to represent the picture data compactly for further processing. Thisis a g :
good idea, sincc it is necessary to have a representation of the inlensily surface for varying -ﬁ.‘ ‘

‘J ncighborhoods--nol just single pixcls. An important reason for doing so, which they do

[ )

not mention, is to synthesize scmi-global but accurate information. (By semi-global, we
mean regions larger than a single pixel or pair of pixcls, yet smaller, usually much smaller,

than the entire image.)

The primitive regions to be used for region growing are triangles. These are initially
formed by drawing diagonals for each sct of 4 poinls so as to keep similar intensilies
- together. The rcgidn growing is then done by a process of raster scan local merging. The

i_ merging crilerion is as follows.

1) Compute the normal vector of the intensity lTunction on the next triangle. This is

A RN e

not normalized it is actually the 3-dimensional gradicent.
RS
2) Compare with the current average normal vector for cach whole adjacent region. .
3) Merge the triangle into Lhe region if the magnitude of the vector error (jnr — ng)) .".Q.j":ﬁ:"
! is lcss Lthan a threshold based on region size: . I; —
‘-: ‘m.s(A) = kle—k'A + ka ::;"
L b
. IACARR
- -\ ) -
- -::'-":-:j
: : :"::':::;:1
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This can be criticized as follows.

2) Presumably, they do this because they want regions of uniform normal. But it seems
more reasonable to compare normals locally, lcading to locally uniform normal, i.e.

regions of slowly changing normal.

3) The adaptive threshold is not well justified. The stated purpose is noisec immunity—
presumably, valucs for large regions should be more stable, so there arc 2 termé, one
for the region noise, onc for the triangle noise, though this is not explicitly stated.
Sinee the gradicnt is a linear operator, one could in lact explicitly solve for the noise
characteristics of the expected difference in normals. The region component would
be of the form o = kog/ \//T, and in fact the standard deviation of error in normals

is given by

k2 o2
ity

where k? is the mean square contribution of cach pixel in the region Lo the expres-
sion for the normal, and ¢2 is the analogous quantity for a single triangle. In this
light, the Lhreshold adopled by the authors is scen Lo be a linearization and exponen-
tial npproxinmll,ion to this function, for a fixed standard deviation of image noise.
I'urthermore, since the merging is done on a raster scan, the merging predicate will
resull in dilferent behavior near Lhe Lops of regions as compared to the bottoms. Not
only that, but this can happen in a disconlinous way, when 2 regions suddenly get

merged.

The enlire process is cquivalent Lo edge delection based on computing a gradient from
z and y first differences. However, the cdge predicate is adaptive in the sense that the
threshold is based on the mean éradienl. of adjacent regions (in this case, only of regions
above, i.c. earlicr in scanning). The adaptive part isn't a bad idea, but using an operator
with a support of 3 will lead to noisc problems, as well as prablems with discerning Iargt;r

scale fecatures.

LI lopagt Teadh peul Jeghd
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Experimental results

A single example on a 84 X 48 X 6 picture is given. A reconstruction of the original is
presented, based on linear interpolation about the centroid of each region. This result is
not impressive. The authors are concerned with data compression anfi reconstructibility,
but from the point of view of image understanding, reconstructibility should not be seen
as a measure of performance. The region boundaries displayed do not appcar significantly
better than other, local, mcthods. It would be interesting to sce the results of a process

incorporating the improvements suggested above, vis.

o gradientls computed lor larger ncighborhoods
o thresholds based on picture noise and exact formulas
e merging based on local information. Alternately, one could iterale taking gradicnts.

e somc isotropic merging process (which might result in the requirement for more than

1 pass).

Even so, Lhe gradient idea leads to dillicultics if an edge should pass through the operator

supporl — onc might get many regions perpendicular to the cdge, clongated along the

cdge, but broken up as the geometry of the edge changes- in other words, poor bechavior.

A planc is Loo simple a modecl for the local intensity surface. . o
Hiitogrammin; j-;:-:: _::-'

Ohlander 1975
“Analysis of Natural Scenes”

The author docs region growing basced on analyzing histograms of 9 color image

paramctlers: the 3 raw R, G, B values, as well as the derived paramcters of intensity,




..............
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hue, saturation and thé Y, I, Q parameters used i.n color signal coding techniques. In-
. addition, values of their gradient as found by a Sobel operator arc used, as is the local
density of points above threshold in the gradient picture, called the “busincss matrix.” He
performs shrinking and expansion on the business matrix to eliminate thin regions (i.e.,
non-texture edges). The histogram analysis is based ona simple heuristic, and sometimes

is done with manual intervention. Regions are found by thresholding.

Evaluation

The technique of thresholding based on features of histograms ignores any geometric
relations in the data (a random permutation of the position of pixels doesn’t change the
histogram). Similarly, it takes no account of the photometric properties of the real world.
These problems aside, the use of 9 I-dimensional histograms is still somcwhat naive,
since Lhe pixel space is only 3-dimensional. It would be more systematic to usc clustering

techniques in some 3-dimensional color space (which have an extensive literature) instead

of 9 somewhat arbitrary 1-dimensional projections.

This mecthod can be expected to work on images that happen to be amenable to it,
i.e. oncs where the rc.(;ions arc pretty much homogencous and scparable from others
by histogramming. Looking al the technique as a clustering approach, regions can be
scgmenled only il their 3-dimensional pixel color values can be scparaled by one of 9
familics of parallcl plancs in R3, the plancs perpendicular to the 9 coordinate axcs used.
This docs not cven allow lor scparabilily by an arbitrary planc in R3, and the latter is

known to alrcady be an overly restrictive condition for most clustering problems.

Shafer 1980
“MOOSE. Users’ Manual, Implementation Guide, Evaluation”

Shafer describes a system following Ohlander’s technique of image segmentation by the

use of mulli- spectral histograms. The implementation is cssentially automalic, and
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reasonably fast (30 secoads on a PDP-10 to segment a 96 X 128 image, and 20-25 minutes
total time with all displays). See the remarks about Ohlander’s work regarding the

histogramming technique.

The author himself provides some crit;icism of the technique. The main shortcoming 1‘
pointed out is referred. to as the “majority rule” problem, which occurs when the his- :
togram peak scparation process is dominated by large regions. In that case, if a small _ 4
region happens to be situated in a narrow valley between the large regions (i.e. the large . IS
histograms ncarly overlap), the small region will be broken in two arbitrarily. This is g :
a conscquence of the fact that histogramming ignores gcometric relationships. The solu- g
tion proposed is to first crop the picturc so that a small region to be scgmented from —.;
its surround becomes a large region in the sub-picture. Of cburse, this amounts to an . ‘-]
approximale scgmentation. No method is proposed to do this automatically, though the
author argucs thal the cropping idea is robust by showing that including some other iM
objccls in the cropped arca slill allows rcasonable performance. This scems to indicate 4
that histogramming works better for very small pictures. A scductive idea (not suggested
by the author) is Lo try arbitrarily subdividing the picture and simply segmenting the X “‘
smaller picturcs. Unfortunately, Lhis will ¢create non- Lrivial problems in mcréing regions xiiey

across subpicture boundarics. In view of Lhe many shorteomings of histogramming and’ MO

Lhresholding Lechniques, it does not seem worthwhile to pursuc improvements.

.'. ...
e
s Tl e e

The author also points outl the following problems. Many small arcas al the bound.;xry of . 1
a region arc lost since the boundary is sensilive to the threshold. e suggests the solution

of merging Lthem alter olher segmentation is complete. Regions of non-constant intensity :L.'.A:-V'.:
cannot be handled, i.c. the technique fails in the presence of any shading. Strangely, he a ! .

points out that the gradicent requires 2 parameters for descriptlion, but he does not know

how to express Lhis in “onc-dimensional features.” Presumably, he means he wants to

histogram the gradient somchow, but using Ohlander’s methods means sclecting a single

A s
h alatatata’lala’eh

parameter Lo histogram and threshold. In analogy, c.g. Lo Ohlander’s use of R+ G + B, - f-':j::"
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gradient magnitude' scefns like a reasonable candidate for one such parameter, and it is:

unclear why the author neglects it.

The eventual goal of this system is for use in an object tracking system. One might.
hope that even if one couldn’t overcome the problems of segmenting a single image, the
segmentation would at least be stable from frame to frame. This .seems to be a false
hope. Thresholding can be thought of as creating boundaries where some level plane
intersects the image parameter value function, so that different thresholds correspond
to different height contours on a topographic map. At boundarics with small gradient,
geometry will change rapidly with threshold value; and at pcaks, valleys, and saddles
there will be a change in topology as a function of threshold value. If this function has
lots of bumps, and if it is changing with time, then there is a serious problem of keeping
track of what is going on. The problem becoincs one of kecping track of the topological
structurc of the whole parameter function, particularly its singularity bifurcations, but
this cannot be donc by simply applying a single threshold, unless the regions created this
way arc slable over large intervals of Lime. What can reasonably be expected to be so
stable? An objecl with regions of constant parameter value (shading is tolerable in a
syslem which looks at hue, as long as hue is constant— an adn'littmlls' unlikely situation),
moving through light in such a way that the reflectance changes very slowly relative Lo the
molion, against a background having very different speciral characteristics, occurring in‘
an image wherce cverything clse also has different spectral characteristics than the object
and its background. This appears to be a very limited domain, though there may be.
usclul applicalions, ncvertheless, c.g. in an arlificial cnvironment like an asscmbly line,

where Lhese paramcters can be controlled.

Optimal linking

Montanari 1970, Montanari 1971

“On the Optimal Detection of Curves in Noisy Pictures”

lhntndh,
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The author presents a’ nonserial dynamic programming approach to find optimal 8-
connected paths of a fixed length on a grid, and suggests a generalization which permits
arbitrary length curves. Examples are displayed with mean square noise = mean square
signal (S/N = 1) of length 45, with good results, though the examples are not related
to real images. “Optimal” is with respect to a ﬁguré of merit (FOM); he uses one based
- on Y intensity — ) curvature (he is primarily interested in curves which arise in the

character recognition domain).

Evaluation

Using Montanari’s method as an edge deteclor requires developing an appropriate FOM.
This is diflicult, unless there is a canonical FOM imposed by the problem, since an FOM
is not robust in the lollowing sense. Viz., FOM's which are monotonic functions of cach
other (and as rcgular as you like) can give different global optima. For edge detection, to
the extent that one can estimate the probability that local data were caused by ah cdge,

one can use an ['OM bascd on the relative probabilily of the curve, so there is promise.

The requircment that the curve be an 8-connected path on a grid is troublesome, since one LT
would prefer smooth curves as solutions. There is no casy way Lo Lranslate the oplimal
path to a sct of parameclers representing a smooth curve, aside lrom an independent

fitting process. Also, it is diflicult to take into account any but the most local propertics

of the curve one is fitling, if for no other rcason than the prohibilively large growth of !

the dimension of the interaction graph for the dynamic programming problem.

Although one is guaranteed an optimum for the I'OM, it is nol cerbain Lhat one necessarily
wants such an optimum lor image understanding applications, at least if the I'OM is .
totally decomposable inlo spatially local components. ‘ The curve onc is looking for is
onc which is the most meaninglul in the context of the enlire image intensily lunction

(and world knowledge, psychological sot, ete.), and this meaning may depend on data

away from the curve, which would lead Lo an intractable interaction graph for a naive

b

. . T e . e L . .
- e R - - I S P S o
Ca et eltal alealal el wlalal e LN, WAL S . T




Contributions to Edge Detection Edge localization in both @ and z 108

The condition that the 2 derivatives be nonzero when s is C" is there for 2 reasons: First,
so that the definition reduce to the C? case, which is intuitively the meaning of “zero
crossing.” And sccondly, to avoid degencrate cases, e.g. when the locus of zeroes is a

submanifold perpendicular to the z-axis in the z,y,# space, i.e. when the zero locus is

tangent to Lhe @ direction. Note that in this case, a zero can still be a regular point of "

a. Converscly, even if 8 is C”, the C° condition is weaker, since c.g. it doesn’t exclude

tangent crossings. . ‘. B
s

Theorem. 3s: R2 X S§! — R rannot have an isolated zcro crossing in cither of the above

senses. (By isolated we mecan there arc no other zcroes in the z,8 manifold, for fixed y.) 3

That is, edges cannot be localized simultancously in z and 8 by the zcro crossings of a e

single (#-parametrized) convolution opcrator.

Proof.

Case 1l: sof class C", r > 1 ':vv'»'. 7

Since (z,y,8) is a regular point of s, the implicit funclion theorem applies and in some
neighborhood of (z,y,8), s7'(0) is a C" submanilold of dimension 2. The conditions on

the partials guarantee that the surface is not normal to any of the z, y, or 8 axes, so

that for fixed y, there is a curve of (z,#) values for which s(z,y,8) = 0, so that the zero

cannot be localized in z and # simultancously. A more direct way to sce this is to observe ]
that what we are sccking is a function s whose zcro crossings are the locus of an cdge. - :::'- .
Regarding the cdge as a function v : R — R2, it’s obvious that adding orientation lcads _:'.:f:'j:’ <
to a function X : R — R? X S! defincd by \(¢) = (7(¢), (¢)), where 8(¢) is the oricntation . L e

of the cdge at 4(¢). Since the image of X\ is I-dimensional, we cannot hope for it to be

Lete e
PRI
tals.ae b

the inversc image of a regular value of 3 map to the reals, since by the implicit function

thcorem, that must be a 2-dimensional object. Butl by the same token, if we have instead

s:R3 — R?, then one can try to-find cdges by finding s~'(0). QED Case 1.

PP BTN S ISP I S G AT ST Sl Sl SE L PR U U Pl R W R W, U D TS LIRS DAL . DAL Il W I LI PRI MPOIPLIP IS S '




Contributions to Edge Detection Edge localization in both 0 and z 107

s ai e . o
The Limitations of Zero-croumg .
T
N . ST
Definition of zero crossings S
It's sometimes handy to have a notation for the function you get by holding the arguments of some other _ - ;

function fixed. We will usc the notation f(:,y) for the function that results from fixing the 2nd argument ®
of the function f to be the value y. The dot represents an argument position to be lilled. The purpose §

is to usc a notation like f(z,y) while avoiding the confusion of whether it is z, y, or both which are
the variable, since cach of these cascs actually correspond to a differc. « function object. More precisely,

that
. Suppose [:XXY 2 e
(z,y)— = - J
so that f(z,y) = 5. Now define ®
fy): X —2 O
T2 :
e, S, uNz) = f(z,v) = ». »
-
DR
If s is C° (continuous), then we will say it has a zero crossing at (z,y, 8) if the functions =. ]

s(-,¥,0) and s(z,y,-) both have 1-dimensional zcro crossings at z and 8, respectively.
Colloquially, this means that the z and @ functions have zero crossings. We don’t require
a zcro crossing in the y direclion, because it may be the direction of the edge. We will
say that f : R — R has a 1-dimensional zero crossing at z if f(z) = 0, z is the only
zero in some ncighborhood, and f has opposile signs on opposite sidcsf of z in such a

ncighborhood.

Ifsis C", r 2 1, then we will say Lhat s has a zero crossing al (z,y,0) il s(z,y,8) =0
and Dys(z,y,0) 7 0 # Dys(z,y,8), where D; indicates the derivative with respect to

the i-th coordinate. Thus (z,y,8) is a regular poinl of 8, which means that not all of its

partials arc 0 al that point. This implics the C° dclinition of zcro crossing.

Remarks on the definition of zero crossings

e,
B A

The picture we are keeping in mind has Lhe edge oriented along the y-axis. The definitions

scem to single oul a particular scl of coordinales asy mictrically, to keep with this picture.

However, Lthe definitions really only require that the z and € axcs not be oriented along
the edge; cquivalently we could have required that some sct of coordinale axes with these

propertics exist,
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2) For each y € U, each®partial D; f(z,y) (taken with respect to the j-th y-variable) is in
L(p).
3) There exists a function f; € L(u) such that for all y € U,

|D;f(z,9)| < |/1(=)]-

Let
o) = [ 1z, dua).

Then D;® cxists and we have

D;é(y) = /x D; f(z, y) du(z).

The lemma permits us to conclude the following

Theorem [Lang 1989]. Let f € L' and ¢ € C", r > | with compact support. Then
Jro€C and DP(frp)= [+ DPplorp<r.

Notice that this mecans that no maller how badly bchaved f may be, f + o is as
differentiable as . In particular, convolulion with a C™ funclion results in a C* fune- '.T"".f‘:.-t'.‘
tion. In our situation, if cither the picture or the convolution kernel is differentiable with
respect to the paramelers (we may interchange the two, allowing the symmetrics Lo act on
the picture if it suits us), then our function s, the convolulion, is likewise dilferentiable.
If we have a differentiable kerncl, then we can take U Lo be an open sct in the paramecter
space of the kernel, and X to be the picture plane. If insicad, we have a differentiable
picture, we reverse the roles of U and X. On the other hnqd it may happen that both the
kc‘rncl and picturc contain discontinuitics, c.g. il they have steps. In that case, integration

by parta yiclds the lact that the convolulion, i.c. s, is continuous.
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Using all the notations? we can include rotations by allowing G to be the rigid motion

(Euclidean) group of R2, and considering the functions defined by
S(K,F,z,6) = Ke+F(z) = (T(z,0)(K), F) = (Trocr0ps(K), F) = / Kopy'olor ! .FdA

We are interested in the function obtained from Ky F(z) by fixing K, F': this is a function
s:R? X §' - R, i.e. a function of z,0. Le., we define s by s(z,6) = S(K, F,z,9). It is
the zcro crossings of s which we are secking. Let’s underscore the role of the symmetry

group G in the definition of s. The conslruction we uscd to defline 8 actually defines a

map s : G — R. In fact, for any family of K's defined by some map M — F(R?), where
M is the indexing sct for the family, we can define s : M —+ R. This way, one can casily
add paramcters, e.g. to allow different size operators, and this type of analysis is still

applicable.

We want {o show that for s : M3 — R (where M? is a 3-dimensional manifoldj the
“zero crossings” cannet be an édge locus, To do this, we will have to bec more precise
aboul whal we mean by “zcro crossing,” and we will consider separalely the cases where

s is dillerentiable, and only continuous. The 2 cases can be analyzed independently; the

continuous casc subsumes the differentiable case, but sinee the differentiable case provides

better insight, we treat it first.

To begin with, we make somc obsecrvations about when we can conclude that s is con-
linuous or continuously diffcrentiable. ITere is Lemma 2 of Ch. XTIV §4 (p. 375) of [Lang

1969).

We take L' in the space of all Lebesgue integeable functions, with the norm given by |If]| = f |1 dn.
cquivalenced by the functions of norm 0. Cf. the definition of L? given in the later scclion on the
nonlincar reflcction operator. -‘Q -

PN

Lemma. Let X be a measured space with positive measure g. Let U be an open subset

of R™. Let [ be a function on X X U. Assume:

1) For cach y € U the function z + f(z,y) is in L(p).

..................
.,
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T,(K) is what you get ‘when you “move K by g;” the right hand side of its definition
shows how to calculate the new K. For a translation 7, Ty, 9(K)(p) = K(p — z), which

is often baffling for beginning students.

Define the inversion operator, ¢, by

t:R¥ - R?

T —2
Note that ¢=! = ¢, and that in R?, inversion is the same as rotation by 180°.

Using the notation for inversion and translation, the convolution formula can be rewritten

KtF(z):-/Koco‘r:l-FdA.

" where z is now a gencric point of R? and dA is the area measure. Note co7;! = 1,00 =

(72 0 ¢)~'. So, using the T notation,
K+ F(z)= /T,_o,(K)-FdA
or, abusing the notaiion somewhat,
K*F(z)=/T,(K)-FdA

We can make the notation more compact by using the L? inner product (-, ), defined by

(9,h) = [ ghdA:

K + F (z) = (T:(K), F)

We can define a rotalion operator, p, by

;
pe :R? < R? J
re'® + petlP o)
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or, in vector notation

K+ F ()= /m""“’”‘“’“

We want to use a more abstract notation for this, so that we can generalize it slightly in

a transparent way.

R——

N

o -1
Fig. (8)
Let g : R? — R2 be an invertible map, c.g. a rolation or translation of the plane, nnd let N

K :R? — R. To describe “doing” g Lo K, define the map T, : .'r'(R’) — F(R?), where :f'_::‘-

F(R?) is a spacc of functions cach taking R? - R, by

T(K)=Kog™
°
Observe that Tyon(K) = K o(goh)~! = Koh~'og~!, so the argument transformations L
“go in reverse order” from Lhe space Lransformations. Nolice also the inleresting fact ;':':f: :
that T, is a lincar map, cven il K and g are not. Proofl: Ty(aK + L) = (aK + L)og™". _!‘:_T.j‘q
’ SR
L.'.-\..t*,':
In particular, let G be the Lranslation group of R2, where 7, € G is dcfined by NI
ol

7
oS

Nl

)
v

7,:R? - R?
p—p+z
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Edge localization*in both ¢ and =z

Introduction

One way to localize edges is by finding zero crossings of la convolution operator. This
method yields a precise value for, say, the z-coordinate, but to .determine Lhe orientation
of the edge requires further processing, e.g. using a number of oriented operators (which
may disagree as to the z-position) or by observing the locus of zero crossings. An

integrated method of extracting the posilion and oricntation would be prefcrable.

[Binford 1981) proposcs localizing edges in dircction and oricntation Simultaneously by
convolving a lateral inhibition signal with a dircclional operator and viewing the results
as a set of “stacked planes,” one for cach oricntation of the operator. The estimate for the
edge would be based on finding maxima of the gradient of the lateral inhibition signal with
respect Lo position and angle, by sccking zero crossings of Lthe partial derivatlives. S;mce
all of the operations prior to ﬁl;(ling zcrocs would be implemented as convolutions, it is
the zero crossings of the resulting convolutions which are sought. As ullimately stated in
[Binford 1981}, 2 convolulions, corresponding Lo 2 partial derivatives must be considered.
However, il is natural to ask [irst whether this can be accomplished by finding the zero
crossings of a single convolution. In the following, we show that this is impossible, using

the inverse function thecorem in what is cssentially a dimensionalily argument. This is

why it is nccessary for [Binford 1981] to require the use of 2 convolutions.

o at tics o tri i .
Let FF : R? — R be a picture function, and K : R?2 — R a convolution kernel, that we
also rcfer to as a convolution operator. The normal definition of the convolulion K « F
is’
o

Ko F ()= [ Klz=&y-n)p(en)dedn
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this at length in the sdrvey chapter.) We were led to a more general operator, based

R on symmectry considerations, which turns out to be intrinsically nonlinear. We dcscribe
this novel operator, including some of the theory around it, after discussing an idea

- of Binford’s for an operator using a ratio of linear terms, also based on' symmetry

considerations. The nonlincar operator avoids some of the shortcomings of linear filters.

Finally, we propose a variational technique for combining local cdge data into optimal
global edges. The key new observation is that the globalization problem, can be put
into a form nearly identical to the Lagrangian formulatlion of mechanics. This allows the

global variational problem to be reduced Lo completely local conditions.
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= Introduction
f::' . In this chapter we present original attacks on some of the problems we discussed in
E Chapter 2, our edge detcction survey. Major problems in edge finding are detection,

localization, and globalization; and the most frequent tool is convolution. Detection

consists in deltermining whether or not an edge is present in a given neighborhood.

e
P

Localization is the cxtraction of Lhe precise position and oricntation of the edge. By
globalization, we mecan finding cdge contours of large extent, in contrast to local edge
finding, which is concerned only with small ncighborhoods. Convolution is commonly

used for deriving local information, frequently in a form similar to matched filtering.

Creater detail can be found in Chapter 2, the survey of edge delection.
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We begin by ecstablishing some background mathemalics for studying families of

I

convolulion-like operators which are defined by somce group, such as rotation. We t;hen
use Lhis formulation to prove an original theorem showing that a single family of such
operators, parametrized by rolation, is nol adequate for simultancous position and orien-
tation localization by a zero-crossing method. The conscquence is that more involved

methods, with multiple families, are required for Lhis Lype of attack.

We present a novel localization operator which uscs a least squarcs fit to find a best local

rero-crossing line.

An obstacle in deteclion is that although matched filters give high response at edges, they

also often give above threshold response at uninteresting features. (We have discussed

Some mathematical background which is assumed in this chapter, such as functional notation and some
results from differentinl topology, is explained in more detail in the inc print of the chapter Geometric
Mcthods in Vision.
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hence only a finite number of final states. One should give some thought as to whether

that is an acccplable situation. It could be remedied by altering the relaxation coefficients

. based on the current state.

-
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be performed by a system of ordinary differential equations. Incidentally, economies can ?:.;::_j
be gained by transforming the state space so as to diagonalize, upper triangularize, or 3 E
Jordan normal form-alize the relaxation map if it is linear or approximately so. Even . \
if the rclaxation is not embeddable in a continuous dynamical system, ncérly all the - r—
machinery of dynamical system thcory is available. For example, if the fixed points are
known, theorems are available telling us under what conditions there is convergence near ‘
the fixed point, whether the system is stable (i.e. robust with respect to the choice .of .' ; ‘_
relaxation paramcters), cte. ’
el | i

The experimental resulis prcéentcd are unfortunately nol very impressive. But that

may well be because the continuous spectrum of labellings gencralization has not been ::t:'_f:-
o

. made, and because the rclaxation (compatibility) cocflicients arc chosen ad hoe without B
- -

any rigorous consideration of robusiness. So the poor experimental results should not | .

be regarded as an indictinent of the idea. Rather, it should be developed with greater
sophisticaltion. For example, onc should consider the clfects of noise in a qt;antitative
way. One should try to discover whether Lthere are any global quantities being oplimized v
in Lhe solution. One might consider generalizalions Lo infinite scls of objects, e.g. curves. %
Thus the local label would be a probability density function for, say, edge oricnlations
and strenglhs. This leads Lo an infinite dimensional stale space, and although there
is a respectable theory of dynamical systems in such spaces, one must confront the
compulalional difficulties. Ilowever, since the funclion faclors composing Lhe space are
on compact domains, there is a natural decomposition in terms of Fourier scries (of the . ::_:"--;
probability densitics in the oricnlation- strength domain), and it is cqually natural to . .-«—-
truncate these scries, so one agafn obtains a finite dimensional characlerization of the ‘ I

state space. One would then want Lo study the rclationship between such a process and,

say, varialional methods. One can expect that for reasonably regular (finite dimensional) .
systems, there will be a finite number of fixed points outside of a small neighborhood, .
'

.................................................................................
...............
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The authors generalize a method first developed in computer vision by [Waltz 1972] for
propagating constraints in a graph. Waltz called it “filtering” and used a s«;quential

process; the present authors call it “relaxation” (perhaps due to its similarity to a method

- used for solving partial differential equations, though it is not derived from it) and do

it in an essentially parallel way. One starts with some finite set of objects, some set of
- interpretations for each object, and a graph where the nodes are the objects and ares
represent mutual constraints between interpretations (“labellings”) of the objects. The
authors treat 3 types of labelling scts: discrete (finite set of labels) fuzzy (finite set of
labels with weights beltween 0 and o0o), and probabilistic (finite sct of labels with weights
betwecen 0 and 1). A gencralization to a continuous sct of labels is not hard Lo imagine,
~.and would be usecful in the applications, for example to represent the orientalion of an
edge. For the probabilistic case, they readily show that the relaxation process has a fixed
point, a nccessary condition for convergence. They go on Lo show that for a class of linear
opcra;tors with cigenvalues of norm no morc that unity, convergence to the unique fixed
point is guarantecd. Unfortunalely, it's nol an interesting case, because the fixed point
is independent of initial condilions, i.c. input data. They also present a more interesting
nonlincar operator, but arc unable to prove that it converges. One can probably invoke
onc of many varialions of the contraclion mapping theorem Lo show convergence for Lheir

| lincar case as well as nonlinear mappings which are contraclions in the appropriate sense,
thercby cxpending less clfort and achicving greater generality. The important point,
however, is that a wide, uscful class of such relaxatlion operators converges. One can even
say somcthing about the speed of convergence, based, for example, on the cigenvalues
of the relaxation iteration operator. The idea is closely related Lo dynamical syslems,
which has inleresting implications for ncurophysiology and hardware design. If one views
the state space as a free vector space on the labels ovt;r the ficld of weights (which we
take Lo be R), then the rclaxation is a map of that space to itself. If that map is a
diffcomorphism, it may be embcddable as a time-one map of a flow, i.c. it may be the

discrele Ltime snapshot of a continuous dynamical system. In that case, the process can

Pl ouPunii ol U 4
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are possible edge elemehts (pixel adjacencies) and the directed arcs are the allowed edgel

successors.

The computation cost varies with S/ N, since that is .:at determines how much searching

must be done. This is presented as a positive feature.

He uses a pmrwnse FOM of edge strength (nearest neighbor dlﬂ'erence), but suggests that

a larger loca.l operator would improve noise performance.

Evaluation
Summary :
The technique is susceptible to the standard probléms associated with FOM.
The local .operator is still very important. |
The same problems as in [Montanari 1970, Montanari 197114 are slill present.
The results look reasonable, but no results are presented for real images.
Analysis is requircd to decide whether the process can be made parallel—

as it stands it is intrinsically sequential.

The technique presented by Martelli in this paper is not usable in ils current form. With
an appropriate local opcr;'\tor, rcasonable FOM, the right discrete yariablcs (i.c. cdgel
‘parm;wtrization), it might produce rcasonable results, Bul that says only that global
cdge finding can be approached as a scarch problem. lfurthermore, it scems likely that
parallel search methods would be cheaper (as well as laster) than sequential, in analogy to
simultancous backward and forward scarching in classical scarch probiems. An intriguing
idea is to usc geometric informalion (i.c. relative direction) of other growing edges to
compute the heuristic funclion (i.c. cxpansion ordering) for Lhe search problem: cdgels

would be tried first that led toward something they might mate with.

Rosenfeld, Hummel, Zucker 1975, Zucker, Hummel, Rosenfeld 1977

“Scene Labelling by Relazation Operations”

.............................
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implementation (i.e., orfe without special processing for these other parameters).

The dynamic programming approach is computationally very cfficient; generalizations
and adaptations of Montanari’s method are probably worth pursuing, although it is not

a trivial matter to do so.

Martelli 1972, Martqlli 1973
“Edge Detection using Heuristic Search Methods”

Following Montanari, Martelli suggests that heuristics should be embedded in a figure of
merit (FOM) rather than in code. But it is questionable whether an FOM is enough in

the way of heuristics—cspecially if it is not based on an analysis of real images.

* He shows that any dynamic programming problem can be posed as a minimal path in a
graph problem, arguing that this is good becausc the usc of heuristics.to specd up search
in a graph is well-studied. Ifowever, the equivalence result is not very deep (cach variable

cxpands to a set of nodces, one for cach value). The advantage of dynamic programming is

that it is far chcaper than graph scarch, and a betier question is usually whether a graph
_scarch problem can be cast as a dynamic programming one. One can apply hcuristics in

the dynamic programming paradigm as well.

The variables z; of the dynamic programming problem FOM = f(z;,...,%;,...,Zy) are

the cdge clements- - discrete valued and thus hard to gencralize to continuous 0 edgels.

The figure of merit is delined in the form FOM = 3 ¢i(z;,. .., Zitk) - -sce the criticism
of Montanari that monolonically related ¢;’s don’t lead Lo the same oplimum. In this

conncction, no discussion of robustness with respect Lo F'OM’s is presented.

Ile derives a scarch graph for the dynamic programming problem, then uses the A*

algorithm to scarch the graph. The scarch graph is just a dirccted-graph where the nodes

........................
...........................................
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Case 2: s of class co*

We restrict attention to the function defined on the z, 0 manifold, and show that every

zero crossing is an accumulation point of zero crossings.

(0,0) © L,o0) +

b=

(a ¥

¢ =9

(°>‘) - (\,l\ 2

Fig. (proofl)

I _annnoos

Look at Fig. (prooll). What it shows, schemalically, is an cdge operator in the vicinity
of an cdge, and Lhe result of applying some motions to it. The positions‘ arc labelled on
b an arbitrary scale. The (0,0) position is where Lhe zero crossing is. If onc assumes there
. arc no other zerocs in some ncighborhood, the indicated operations show that there are

3 2 ways to get to Lthe same position of the operator with opposite signs for the result, a

contradiction.

The notlched circle represcnts the position and orientation of the operator, while the
vertical line is a reference value for  and is meant Lo suggest the cdge locus. Starting at
the upper lclt picture, we can gel to the upper right picture by translating the operator

support to the left slightly, which is thc mcaning of the sinall arrow over the long arrow.

..........................................................
...............................................................
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Since we were at a zero-crossing in z, the value we get by applying the operator at this
new position must be nonzero; let us call its polarity +, which we indicate near the
coordinates. Instead of translating, we can rotate, and this is schematicized in going
from the upper left picture to the lower left. Again, since we start at a zero-crossing in 8,

a slight rotation puts us into a nonzero value. Call its polarity —. We can assure that it is

- not the + of the upper right corner because we have a choice of 2 dircctions of rotations;

by the definition of zero-crossing, one of these will give us + and the other will give —, so
we choose the one which gives —. Now we have a contradiction to the assumption that
the zero-crossing was isolated, when we observe what happens as we try to get to the
lower right corner position. We have assumed that the zero-crossing at the upper left was
isolated. Going from the lower left configuration Lo that of the lower right by a slight
translation in the absence of a zero-crossing requires that the polarity of the lower right
position be —. On the other hand, doing Lhe same thing by moving from the upper right
by a .slight rolalion Lo the lower right, with the assumption of no zcro-crossing, yiclds a
polarity of + for the lower right. The value of the operator applied in the position of the
lower right corner can only have onc sig.;, so in facl there inust be anothier zero-crossing

somewhere, contrary to assumptlion. Note thal this is still Lrue no matler how tiny the

rolations and translations of Lhe operator.

.............................................
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— O

Fig. (proof2)

" A more abstract picturc of this is I'ig. (proof2), which shows a region of the z,0 manifold
ncar the zero crossing. In particular, we can assume without loss of generality that moving
up (i.c. rotating) causcs 3 Lo become + (clse flip the picture top for bottom), while moving
right (translaling) causes s to become — (clse flip right for left). The restriction of s to

the line joining the 2 end points of these motions must have a zero, by the intermediate

“value theorem (sce, e.g. [Rudin 1964]). QED]
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Nonlinear Local Edge Detection

An ideal step function is the sum of an even part—a constant function—and an odd

part—a symmetrical step (top of Fig. (latinh)). For edge detection, it is the odd part - !
which is of interest. [Canny 1983}, for example, requires that his optimum convolution '
kernel be an odd function, since the even part cannot contribite to detection of a step.
The bottorﬁ of Fig. (latinh) shows the (1-dimensional) result of appiying lateral inhibition .' -

to a step cdge, i.e. of convolving a slcp edge with a zero-sum differcnce of boxes (middle

of Fig. (latinh)).

Fig. (latinh) - -

...........................................................................
.............................
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Since lateral inhibition s an even operator, the result is again an odd function. Also, it is
the central zero crossing which marks the edge, while the lateral inhibition has int..roduced

spurious peripheral zero crossings.

A common approach to detecting signals like this is through matched filtering, template
_ matching, or surface ﬁttiné, all of which are cssentially equivalent linear processes.
& However, these tend to respond to undesired components while remaining specialized to a

particular functional shape. [Binford 1981] proposed using an even-odd characlerization
for dealing with this problem. We have used a somewhat different characterization of
even-odd, which led Lo the edge detector described below, an intrinsically and nontrivially
E nonlincar operalor. Nonlinearity has the advantage that space and intensity are not
cquivalent. Le., a lincar operator has no way lo Lell the difference between a high but

localized noise spike and a large modecratcely posilive area. While linearity always has this

problem, nonlinecarily can avoid it. Also, the cven-odd characterization is more general
than a matched filter kerncl, and thus deteels a more general class of funclions, so one is
not limited to the ideal slep. The reflection operator described below will flind edges on
a checkerboard pal:tcrn smaller than its support, something a maiched filter cannot do

(unless it's a matched filter for that size of checkerboard, of course).

ed’ge

Fig. (checkerboard)

...............
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The reflection operator esn be thought of as adding up a measure of edgeness along each
line perpendicular to the prospective edge, regardless of polarity. This could be done
with an operator lincar on each such line, if a nonlinear operation such as absolute value
or squaring were done before summing the line values. This would result in. esuenti#lly

the same operator, though, once all the nonlinear terms were herded up.

Let f be the laterally inhibited picture function. Then the even and odd parts are defined
by ‘

Sovenl2) = 31/(2) + f(=2)]

foaalz) = 311(2) ~ S(=2)]

To make the notation more compact, we can define f by f (z) = f(—z). Then

fm’ren = %[!+ ..n
Jodd = %U- 7

. The even-odd operator of [Binford 1981]

[Binford 1981] describes using the even and odd parts as follows. Let

R=/°w[(z)dz
L=/_°Wf(z)dz
= /owf(-z)dz

where we understand that we can consider this a summation by using a discrete mcasure.

Then, in terms of our previous dofinitions,
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w
R+L= /.- [/(z) + f(—=)}dz
w
=2 /‘; Jeven(z) dz
w
R-L= [ (f(e)~ f-alde
w
= 2./0 fodd(z)dz

The even-odd measurement is then given by

lR + L[ Ifow Jeven(Z) dz,
R-1L

: - Ifow fodd(z)dz| '

Notice that the only nonlincarity here is in the ratio, and there are no cross-terms in f,

since Lhe integralion is done over an argument lincar in f. Also

L
rR+L _'*p
R-L L’

R
80 one i csscnl.i:‘lly looking at the value of L/R. This compulation of cven-odd parls has

a simple interpretation in terms of convolutions. Define Ko, K_ as in Fig. (R-L).

Ky

Ko

Fig. (R-L)

...........................................................................................
........................................................................
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Then

R+L=K »f

R-L=K_=sf

The nonlinear reflection operator

~ We made a somewhat different interpretation of comparing even and odd parts; we
compare the relative sizes of the even and odd parts by considering their norms as elcments

of a function space. L.e. in our formulation, the detector output is

"fcven"
I foaall

where ||-|| is the norm coming from an inner product (-, ). For the continuous case, this

could be the inner product on L2, while for the discrete case it could be that on £2.

We take L? as the space of all Lebesgue square integrable real-valued functions, equivalenced by the
functions of square integral 0, with the inner product (f,9) = | fgdu, where u is lcbesgue measure.

The norm || f|| is then given by ||£lI2 = (f, /) = f J%dp. More generally, one speaks of L2(u), for an
appropriate mcasurc u. Il we take g to be the discrete measure, giving the value | at cach integer, we
get the space £2, of squarc-summable sequences.

We then compute

Wevenll® _ 7 + JH2
“j(uld'P "f - }"2
_ AP + 02 + 200, 1)
LA+ IFIE =20, )
2 Y, -~
= )i = 17
.7
_ e - 3
1~ ) ’
ik

Thus it is the relative size of the cross Lerm that is importanl. The function
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is monotonic in z. We ‘are interested only in the relative values of the dctector output,

- and in practice will threshold on its value, so it is sufficient to consider only
(4. 7)
Filh
Note that

< e

and
I/} if S is even

:))= {—Ilfll’ if / is odd

The higher dimensional generalization of ]’ we are interested in is reflection across a
hyperplanc; in 2 dimcensions this is reflection across a linc. This can be dcfined by choosing

" some coordinale system (z,y) and defining f by

j(zv y) = f(—zt y)

so Lhat we arc looking al the odd and cven parts along the z-axis. Instcad of reflection,

we could have generalized instead Lo inversion, defined by

H(z,y) = f(-2,~¥)

t

This could be interpreted as looking at the odd and even parls across all lines through S
{he origin at once. : BRI
Groups and families of quadratic operators ® ]

Using the notation introduced in our scction 3.2.2 on paramectric convolutions, these .

opcralors are of the form AR
Yy: FR")~R | 3.
I (1T) Qe
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where g is an isometry of R™. Since this operation is to be performed at every point of*

the image, we can parametrize it by a shift as

¥,: F(R") — F(R") .
Vo (f)2) = (£, T Ty T-<(1))

This is roughly the same as our definition of parametrized co;nvolution, except that the
fixed convolution kerncl K is replaced by the function f itsell, giving an operator which
is nonlinear in f. For n = 1, inversion and reflection are one and the same. For n = 2,
we have chosen reflection for the group clement g. W, can be thought of as a machine

which takes an imagce as input and gives as output another image, whose value at each

-~ g

point is a measure of Lthe invariance of the input under the symmetry g applied at that

point. FFor example, suppose g is a translation. Then since Ty, T;, T—; all commute, the

value of W (/) will not depend on z, and W,(f) will be the constant function with value
(I,T,(f)). If we now lcl g range over all translations, we get a funclion on the transla.tion -
group, viz. the autocorrclation. function of f. Now lct g be reflection across the line £
through the origin. ¥, takes an inputl function, and produces an oulput lunclion. To :._
find the value of Lhe output function at a point z, translate the input funclion so that z is :":"T
al the origin, transform Lhe input function by g (i.c. reflect across £), and translale back _'i'.-_'f::i‘
to z, then Lake the inner product with the untranslformed input funclion. Thal's now, j
the value of the output at z. Usually, we are interested in doing this for local support,, ‘
i.c. the result should only depend on a ncighborhood of cach point, or be weighted near 7’_ -7
the point. We can build this into the inner product by using a suitable measure, so that
this situation is still deseribed by the same formalism, except il is now more convenient
to write — f‘j
¥, : 7(R") = 7(R") A
¥o(/)z) = (T-=(f), Ty T-2(1)) R
_ , Y
which amounts to taking the inner product at the origin, rather than first translaling -‘}
back Lo Lhe point of interest. Since translation is an isometry, this docs not allect the L
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value of the unwéighted inner product, while for a locally weighted operator, the inner

product is just defined once, at the origin.

T ®
0\ i

Fig. (V)

. [Sunday 1978] has snown that W, is invariant under isometry, in the sense that
Vo(Tn) = Ta¥ (/)
for all isometries A, if and only if
g € Center(O(n))

where O(n) is the group of orthogonal transformations of R®, i.c. n X n malrices of

determinant £1, so the condition says that g must commute with all of O(n). Now,
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Center(O(n)) = {I,~{}. Le. the center consists only of inversion, ~I, and of course
the identity, I. Notice that for 2 dimensions, inversion is the same as a rotation by 180°.
Thus, in 2 dimensions, g can only be inversion for ¥, to be unaffccted by an arbitrary
isometry, except of course by being carried along with it. In particular, this.means ﬁhat

¥, is not directional: -

Vo(Tw )0) = Ta¥y(£)(0) = ¥,(/)(0)

Il we confine attention only to invariance under rotations, the situation is somewhat
different. The rotation group of R", SO(n), is the component of O(n) with determinant
+1. Since SO(2) is commutative, it is its own center. Thus, non-dircctional operators

in this family could be defined to measure the symmetry of rotation by some arbitrary

angle. On the other hand, reflection through a given line is not in Center(0(2)) or in the

center of SO(2) in O(2) (i.c., all those elements of O(2) which commute with all of SO(2));
and the operator ¥, it induces is therefore not invariant under isomctry or rotation, as
should be clcar after some reflection. The reflection operator is a dircctional operator,

and must be applied for a family of lines of reflection.

[Sunday 1978] has uscd cssentially the operator above, with ¢ = inversion, for binary

pictures as a symmetlry detector. For Lhat case, it is interesting Lhat

Y_r(/)z) = ﬁ,"—li(zz)

We note in passing that this could be considered as a 2nd order term in a Taylor expansion

in the Fourier domain.

Noise performance

Linear operalors mitigate noisc by averaging, thus reducing the normalized variance.

The nonlincar operalors of the class defined above also exploit the corrclation properties
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Contributions to Edge Detection Nonlinear Local Edge Detection 121

of the noise more airettly. In the presence of noise, these operators contair; a linear
and a quadratic noise term. The linear term behaves essentially like that of a linear
operator, though it is signal-dependent. It is often assumed that the noise is Gaussian
and uncorrelated. In that case, the quadratic noise term vanishes. (I.e., on the assumption
that the noise is uncorrelated under the group action involved, its contribution vanishes
except on the fixed points of g. In the continuous case, this is a set of measure 0. In the
discrete case, this set may not be of measure 0, so care should be taken to avoid including
the fixed part, e.g. the line of rcflection. It only adds to the noise, and measures nothing
of interest. If there has been a preprocessing step, such as latci'al inhibilion, additional
care must be taken, because not all outpul terms will be uncorrelated.) Thus, while the
nonlinearity in the signal term gives a quadratic gain, there is no comparable contribution
from the noise. Furthermore, the linear noisc term is scaled by the signal, providing

additional noise immunity.

Implementation

The nonlincar reflection operator was impleinented for a support size of ~ 100 pixels,
with uniform weighting. The image was first convolved with a difference of boxes lateral
inhibition operator of similar dimcensions, with central region of typically 9 pixels, The
reflcction operalor was used only for deteclion, using a threshold which was set based
on a global estimate of noisc. The resulls were qualitatively better than thosc obtained
for various lincar detection predicates based on difference of boxes. With tight coding,
including automalic compilalion of in-line machine code for cach operator at run time,
thus avoiding any subscript compulalions ater, Lhe cost was essentially the same as for

a lincar operator of comparable support and nontrivial cocllicients.
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Planar Fit Edge Location

Applying lateral inhibition [Binford 1981} to a perfect step edge results in a central planar
region whose zero crossing line corresponds to the edge locus. We implemented an edge
location operator which solves for this zcro crossing by finding the parameters of the

approximating plane in the appropriate region.

Let L be a lateral inhibition operator, f the inpul picture, and L(f) the result of lateral
inhibition. Define r, s to be the {discrete) coordinate functions in the £, directions. Le.,
rs: 2 — Z
r: (1,7) —

8: (4,7) » J

Then the problem of fitting a planc to L{f) in somc ncighborhood can be thought of as

finding u,v,w € R such that ¢ is minimized in the expression
L{f)=ur+vs+w+e

Since we are using the £2 norm with the standard inner product, minimizing ¢ in the

least squares sense is the same as minimizing ¢ - ¢, which happens il we delermine u, v, w

by orthogonal projection of L(f) onto the hyperplanc in L{Z2) spanncd by the functions
r,8,1, where 1 is the constant function. Since we are interested in local fitting, f.e., ) )
fitting the central planar region discussed above, the functions 7, 3,1 musl be taken as

the restrictions to the region of interest. If Lhis region is symmetrical about the origin,

it’s casy Lo sce thal r, s, 1 arc all mutually orthogonal, so that the parameters u, v, w are - hR

casily found as
L)
rer
_ s )
8.8
_ 1-L{J)
11
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structure we propose taeconsider is depicted in the following commutative diagram, Fig.
(s). This will require some technical improvements, which we make shortly, but this

simpler picture exhibits the main idcas in an uncluttered way.

lk? ¥ {RB

N4
” T
2D

N&

s

An example of functions Iy, Iy for a neighborhood of a familiar embedding of an object X
is presented in Fig. (sterco pair). In this case Iy and Fy Lake their values in R!, which is
represented as brightness, and the geometry has been carcfully controlled to assure that
features will coincide in a particularly simple way (i.c. the images are reetified). This
pair is best viewed by holding the page al arm's length, with the pictures side by side,

and crossing onc’s eycs so as to fusc the 2 images inlo one. This takes some practice.
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We will find it casicr ineour analysis to think of the equivalent situation of a stationary
observer in a world which moves. This situation is depicted in Fig. (cgocentric ei(amplc),

for a particular choice of object and imaging geometry.

vl @ |+

2

Fig. (cgocentric cxample)

We can formalize the cgocentric situatlion in a mathematical structure which covers a wide

range of situations, c.g. different imaging projections. "The cssence of the mathematical

..................
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) -4
6) A law which expresses the image intensity as a function of all the other characteristics '
of the situation. ‘
Fig. (world-o-centric example) is a schematic representation of a possible imaging situa- R
tion. The name indicates that we arc regarding the world as stationary, while the ob- . )
scrver moves, which is the usual way of thinking of a sterco imaéing situation. The
nomenclature is explained in detail later, and is unimportant right now.
'
4
)

Fig. (world-o-centric example)
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The Mathematicgl Structure

Here is the siluation we are confronted with. From a 2-dimensional image or set of
images, we want to reconstruct or at least describe the 3-dimensional object that gave
rise to our data. Furthermore, we ultimately want to identify objects independent of
viewpoint. Now if one can rcconstruct the 3-dimensional object, then by brute force one
can determine whether 2 data sets (a data set might be a picture, a pair of pictures, a
sequence of pictures) correspond to the same 3-dimensional object. Ilowever, nature is not
profligate in providing us with information, so c.g., one cannot hope Lo rcconstruct the
entire object, even in principle; and in practlice, accuracy is limited. It would be helpful
to know, therefore, something about the likclihood that various data sets may have arisen
from the same object, or, more generally, [rom a single meaningful class of objects. In

particular, it would be helpful to know something about how dilfcrent viewpoints affect

" the geometry or Lopology of a data sct. So what we have is*:

1) A surface or sct of surfaces embedded in R3.
2) A canonical map from R3 to R? (or possibly S2), the perspective projection.

3) A group of transformalions of R3, viz. the rigid motions of R®, which correspond

isomorphically Lo Lhe possible ways of viewing an objcct in R3.

4) A Tunction dcfined on the surface, which comprises the intrinsic surface characteris-

tics (c.g. reflectivity).

5) A function dcfined on R3, expressing Lhe illumination (which may depend on the
embedding and intrinsic surface characteristics as well).
*The mathematical notation and some related definitions are reviewed in a fine print section in a few

pages. For Lthe mowment, it may be helpful to know that R™ is n-dimemsional Fuclidean space; and S™ is
the n-dimensional sphere, so $? is the 2-dimcensionnd sphere --the surface of a solid 3-dimensional ball,
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Geometric Methods in Vision Introduction 132

derivative at 8 “typical™ points in the picture is just enough. That is for a monochrome

picture; in the case of color we show that 3 such points give the same information.

In between the beginning and end of the chapter, there is a middle, in which we apply ' A
some differcntial topology to study invariant structurcs in pictures. We mainly focus ’ :.':.'1:1
attention on the structure of level sets, the picture loci of each intensity value. These
" have an invariant tree structure with simple propertics given by Morse theory (part of .—J
differcntial Lopology). We also consider the bechavior of the tree in the presence of noise, R
which again is well understood, and propose the struclure as a good starting point for '.:
sterco matching. In a later scction, we show how the scale space paradigm is onc way of
exploring the structure of the level set tree, and we arguc that the invariant structure we 'r*i
propose, including the noise and deformation behavior, is a more complete model for the

scale structurc of the image, yet it requires no convolutions.

Alon{; the way, we introduce some ideas we nced from differential topology, with an cye
to explaining their significance in our context of vision. A central ideca is genericity,
a rigorous dcfinition of “typical,” which allows us to ignore the problems of special or

pathological cases. Without this, our theorems would be impossible, as there would be

an endless scries of special cases and exceplions Lo dispose of; instead we can focus on

the interesting cases Lthat occur “Lypically.”
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territory of differcntial Lopology. When we add in the group of rigid motions, we have

dillerential geometry.

We apply topological methods to study the correspondence problem of stereo vision,
which seeks to find corresponding points in 2 pictures taken from different vicwpoints; i.e.
matching a point in one picturc with the unique point in the other pic.turc that came from
the samec point on the object (if indecd such a point exists). We begin by assuming that
we know nothing of the distortion between the 2 pictures. If we ean find this distortion,
then we will have solved the correspondence problem. What we find is the novel result
(the Two Color Theorem) that this problem is degenerate for monochrome pictures,
but uniquely soluble for color pictures (of 2 or more color dimensions). This means
that in the mono.chrome case, Lhe distortion cannot be found without making additional
constraints which depend on the properties of the rigid motion group (i.e. the geometry),
the projections (including optics), and the possible relation between the viewpoints. On
the other hand, for color pictures, we can ignore the geometrical information, or more
practically, consider it independently in an overdetermined system. We also extend these
resulls Lo the situation where the contrast and absolute inlensity scalc of the pictures

may vary, and we consider some of the effectls of noise.

At the end of the chapter we return to the geometry which played only a minor role in
the proof of the Two Color Theorem, the gcomelry which we now exploit Lo snalyze the
molion problem, the differential analog of the sterco problem. We take the view that
our data consists only of poinlwisc color values in the picture. Since Lhe picture varies
wilth time, we also have pointwise derivative values. Unlike most previous work, we do
not assume that we know how any individual points in Lhe image arc actually moving
(the analog of correspondence), nor do we seck to find that motion as an intermediary
to the spatial motion. The question we address, then, is how much of this instantancous
poinlwise data docs it take to uniquely specily the molion in space. We apply Lie

algebra methods to show that knowing the picture function, ils gradient, and ils first time
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Geometric ‘Méthods in Vision

Introduction

In 1872, Felix Klein was admitted to the faculty of the University of Erlangen. On

this occasion he was required to give an inaugural speech, in which he proposed a

characterization of the study of gcometry, which had recently scen the introduction of
non-Euclidean geometries. Ilis proposal came to be known as the Erlanger Programm,
and was a unifying influence on geometric thought for the next 50 ycars or so. The cssence
of what he suggested is that a gcometry should be viewed as the study of the invariants
of the action of some group. In Euclidean geometry, for example, one studics invariants
of the group of rigid motions of the plane. One can view various gcometrical studies this
way, c.g. special relalivily considers the invariants of the Lorentz group, while topology
studics thosc of groups of homcomorphisms. In the same spirit, the task of computer
vision can be viewed as finding invariants of picture functions under the rigid motion

group of 3-dimensional Euclidean space.

As an object moves in space, or as we change our viewpoinl, the projoction of the

objecl's points to Lhe picturc undergoes a deformation which depends on the shape of -_":'.:‘_:'.-_1
the object, Lthe molion, and the projection. Carricd along with this deformation is the .
picture function, given by the color value at cach point, which is a result of intrinsic h -

propertics of the solid object, but which can depend on lighling conditions in addition to

the deformation of Lhe projection.

]
Our first goal in this chapler is Lo make precise what are all these functions, objects, j
projcctions, and motions, and what are Lhcir rclationships; in other words, Lo describe - i
this structure in Lhe language of modern abstract mnthe;natics, giving us somcthing to » E

attack with rigorous tools. The structurc we find, of manifolds and maps, is the natural

v" ,
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Contributions to Edge Detection A Variational Principle for Edge Linking 129

excursions of l_;he trajectory, as might happen in trying to maximize the integral of
a positive quantity (such as p(A(z) | E(z,£))). In maximizing a positive quantity,
lengthening the curve always increases the integral, so e.g. extending the curve always
improves things, and one can have the pathology of improving a curve by ﬁking out a
Liny piece and replacing it by some wild excursion which accumulates more of the positive
goodness. Minimizing a positive quantity (or maximizing a negative one) avoids this, since

there is a shortest path, i.e. one cannot kecp minimizing by always shortening the path.

In summary, the outcome is that the Lagrangian picturc aliows us to reduce the extrcmal
problem Lo a local one. Since we can estimate 8L/d% (z, z) and 0L/dz(z, &), we can find,
numerically at least, the trajectorics thal solve the Euler-Lagrange equations, and this is
based on local information. The key features making this possible are the existence of
the Lagrangian function defined on the space of (z, £), and the constraint that the only

trajectories of interest in that space arc those where dz/dt = z.
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Since exponentiation is monotonic, extremizing the exponential is equivalent to extremis-
ing the exponent. This leads to a simple way to extend this to the contin;lum, by
generalizing the sum to an integral (as could be done for any product). The condition

I then becomes one of maximiling

/ tog o h(=(1)) | E(=(#), 2(¢)) ) dt

which is a negative quantity, or, perhaps more intuitively, of minimizing

: —/logp(h(z(t)) | E(=(t), z(t))) dt

Le., we can choose — log p( h(z) | E(z, %)) as the Langrangian I{z, &).

i Integrating the Euler-Lagrange cquations requires an initial condition (or possibly a
boundary condition). Since the space in which the equations arc scl is the (z, £) space,
the initial condition must spccifly both z and z. In general, different .inil.ial values of
% will give differcent trajeclorics. That is the price onc pays [or bgctting a completely
local problem. Ilowcvc;r, this can be readily dealt with by separately maximizing over
dircctions of %, or choosing initial £ at points of high conflidence (seeding). Alternately,
the phasc portrait associaled with Lhe trajectories can be thought of as a “primal sketch”

of the potential global edge structure of the image. This struclure dircetly represcnts

simultancous mulliple, cven conflicting, interpretations. [5.g. there may be more than
one valuc of & at some z or in some neighborhood, which gives a tenable edge locus. The _::E:-.:"
orbits, i.c. global cdges, have a measure assigned to them by Lhe Lagrangian inlegral, so .

there is a rcady way to rank and prunc multiple interpretations.

As long as “edgeness” docs not have a canonical definition, we can't avoid a heuristic

aspect Lo the choice of Lagrangian. The particular extremal problem we havc.su‘ggcsted, _

however, has the nice property that the integral value cannot be improved by arbitrary
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the magic of the calculus of variations, this can be reduced to a purely local condition on
the trajectories, given by the Euler-Lagrange cquations: d/dt(8L/d%,) - 8L/z; = 0. Le.,
the solutions to the variational problem can be found by solving the system of equations

" . dz

P =

d (3L oL (Euler-Lagrange) -

(7). = .
Thus for our situation, all we must do is define an appropriate Lagrangian function f.'- 4
I{z, ). Of course, this will be related Lo the local “cdgeness” function. Typically, an j
“edgencss” Tunclion is the result of applying an operation which measures the degree : ‘
to which the image locally resembles an cdge. E.g., one might convolve with a family '.’:"}

of optimal Iiltcrs., such as oricnted smoothed steps; the output would be an “edgeness” 5

function depending on position and orientalion.

We describe onc candidate for such a Lagrangian function. Suppose that at cach point 2

& et v v

of the image we have computed some information, perhaps by convolving with some set
of operalors; call this information h(z). Define /2{z, &) to be the event that there is a local
i cdge of magnitude and direction & at the point z. Then with some assumplions about

the noisc process we can cstimate p(h(z) | 12(z, £)), the probability densily that h(z)

arosc as a “conscquence” of IZ(z, 2). The function p(- | #(z, 7)) is a probability density

: on the space of data k(z), for each E(z,). (Note that we have no a priori cstimates ;.j‘-f'.}_':j-
E for p(L(z, z)), and that the cntire event space nced not be U, :£(z,2).) Then we can .. - 4
argue that for a sct of points along a conlour, we wanl Lo maximize the resulting joint s {
probability densily for all the points. Assuming independence, this becomes ;{'.:j'-_;'f:
) L .

TL A A(=(0) | E(=(e) £(2)

for integer ¢, i.c. a finite sct of points. This can be convenicntly rewrittcn as

g exp (E logp(h(z(t)) | £(z(¢), .c(t))))
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Contributions to Edge Detection

A Variatiogal Principle for Edge Linking

The ficld of edge detection has seen no particularly successful consideration of global‘
shape (though see [Marimont 1984] for some recent work in that direction). One can try
to find global edge contours either by solving for global information directly (e.g finding

a level set of some [unction), or by piccing together data from simple local operators, -

as [Montanari 1970, Montanari 1971, Martelli 1972, Martelli 1973] did. Here we offer a

variational appréach for the laller kind of contour finding,.

The essence is the observation that there is a formal similarity between optimal edge

linking and Lagrangian mechanics.

Iig. (path)

Jonsider a trajectory 4 : I — R2 in the image, which we think of as an edge locus. We
can represent a local ideal step edge at each point (t) of y(I) as a vector whosc dircction
and magnitude represent those of the edge. (By magnitude of cdge, we mean the size of
the step.) This 'esl.ablishcs a correspondence belween Lrajectories in the plane and cdge

loci.

In the Lagrangian picture of mechanics, the statc space (phase space) is a 2n-dimensional
space of 2n-tuples (zy,...,Zn,%1,...,%a), and the trajeclorics Lthrough this space must

extremize the integral [ I{z, £)dt and satisly the constraint that z = dz/dt. Through

rasdrn av 8 o and 2 enaren S ul e
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to the true and precise 4ocation of the real edge giving rise to the data. Local detection
of edges is not an end in itself, but only the first step in the process of contour finding. .

The process of assembling the local edges into contours will confront ambiguities where

- it is not clear which, if any, contour a local edge belongs to. The coarser the resolution of e
the local edge parameters (c.g. position, oricntation) the more frequently ambiguitics will

- arise. As long as we compute the local edge parameters as nonsingular smooth functions

of the true edge paramecters, then the computed values will be samples of a continuous - S

function, and subpixel resolution will serve Lo decrease ambiguity.
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to find the parameters for a vertically clongated region (with analogous operators for

other dircctions). Square operators could also be used.

These convolutions yicld at every point p € Z? three parameters u(p), v(p), w(p), deter-
mining a plane given by z = uz + vy + w which is the best fit to the data L(f) in the
translated support of the convolution operators. The position and orientation of the edge,

i.c., the parameters of u_,{az + by + ¢), arc given by finding the zcro crossing linc of the
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fitted plane, i.c. by solving 0 = uz + vy + w.
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This opcrator gave qualitatively good results for location and dircction of cdges in

numerous rcal pictures.

Subpixel localization

l?i The zcro crossing parameters found by the above method give an edge locus to subpixel

precision. I'or an ideal edge, with sullicicntly low noise, this is an accurate cstimate. Real

edges are not idcal, and it would be quite fortuitous if the nonidcality occurred in just
such a way as to make the subpixcl cstimate accurate. Nevertheless, making such an

approximation for subpixcl location is usclul, even without knowing that it corrcsponds
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Of course, this is only géod for a region centered at the origin. For a region with arbitrary
center, we can apply the same technique modulo a translation to the origin. Equivalently,
since we are talking about a family of regions congruent under translation, we can consider '
u, v, w to be functions on Z2 expressing the parameters of the plane fit in local éoordinabes

centered at their argument. Then we have

r 1)
s liy)

U=

This permits us to implement the least squares fit as convolulions with the functions

' r,81. )

For example, using the laleral inhibition kernel

~1-1-1—f-1-1-1-1~1
~l=1=1=1-1-1-1~-1-1
~1-1—1=t—-1—-1-1-1—1
~1-1-1 8-1-1-1

~1-1-1 8-1-1-1
“1-f—-1=1-1—-1-1-1-1
~1-1-1-1-1-1-1-1-1
~1-1-1-1-1-1-1-1-1

we can usc r, s, 1 masks
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Geometric Methods in Vision

The Mathematical Structure

Fig. (sterco pair)
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_-g Although the diagram Fig. «(s) may at first appear rather formidable to the non-mathematician, it is b
- ) actually fairly simple. Nevertheless, here is a detailed explanation. X
:_'~: The diagram represents the relationships among various maps between various spaces. To be exact, . '.
~. the symbols at the nodes represent spaces, the arrows represent maps (i.e. functions) from one space
:: to another, and the symbols along the arrows name the maps. Somelimes a map can also be thought A
- of as a point in some other space, but that is not rcpresented in the diagram. Saying the diagram is : s
commutativeincans that any path along arrows (concatenated by composition) joining two spaces gives ) N

the same result. E.g. the following diagram

Y ; L
4/ \ '

X —>Z

n
Fig.(comm) ' -
is commutative iff h = g o f. Diagrams which arc not commutative arc generally conlusing. X
The problemn of delining or representing the general surface in spaces of dim > 3 is not trivial. That is =
beeause the surlace may have a strange conliguration, e.g. it may close on itsclf like the sphere or torus,
or it may wind around itself. o
P

The simplest examples of surfaces are given by cquations of the form z = f(z,y), i.c. as a map v

f : R? — R which we can interpret as assigning to cach point on the planc a height above the plane.

There is at present a divergence between Lthe mathematical literature on the one hand, and the enginecring .
and scientific literature on Lhe other, with respect Lo Lthe notation used Lo represent functions, This is a -
divergence which has developed during the past several decades, primarily because of the mathematicians’ -
realizations of the necessity of making explicit the existence of a funcltion (or map) as an object in its own
right, as well as Lhe requirement of avoiding varions ambiguitics which otherwise afise. In Lhe engincering !
literature one oflen sces references, e.g., o :

“a function z = f(z,y) " JL

. For many purposcs, it is clear enough what Lhis means. llowever, Lo be precise and avoid confusions we .
;.'- will adhere Lo Lhe following notalions. R
- , [: XY T
L- will mean that f is a funclion which maps points in the space X to points in the space Y. (By function, N
F ’ we [nean a single-valued Tunction, or an assigminent rule.) Additionally, the notation bt
f:zry
. or &
[: XY R
'
Ty ) o

will mean that f takes the point z € X to the point y € Y, which we will also write as
v=1(z) ' D

Note the difference between, e.g. z and X, and especially the different meanings of the 2 Lypes of arrows.
In this notation, rather than saying ‘

R

“the function £ = f(z,y) "

ets st
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we will say .
: J:R? 2R

(zy) s

(fiere R™ is n-dimensional Euclidean space). Here the function is f, which is a map from R? to R.
J(z,y) is the value of the function f at the point (z,y) € RZ. Notice that we might have said, e.g.

f:582 8"
(3.0»')"’9

(S™ is the n-dimensional sphere given by 1 = E::: z:%, where the z; are coordinatcs in R*+!, §% is
the 2-sphere (homcomorphic to the surface of a ball) and S is the circle.)

We can think of this as a surface by considering the points of the surface as given by the graph of £,
i.e. by {(z,y,2) € R? | z = f(z,y)}. We can deseribe the surface as a function f : RZ — R3 given by
the formula ](z,y) = (z,y, f(z,¥)). Unfortunately, most surfaces, e.g. the sphere, cannot be described
this way. Most importantly, no matter where we place the plane, there arc usually cither 2 points or
0 points of the sphere above any point on the plane. One can remedy this by delining the surface as
{(z,v,2) | g(z,y,2) = 0} for an appropriate Tunction g. I5.g., for a sphere of radius r ouc would take
9(z, v, 2) = 2% + y? + 2% — rZ. 1L turns out Lhat once can cssentially get all surfaces this way, but there
arc unplcasant side cflects which cause us to avoid this definition. To guarantee a meaningful concept
of dimension, we would have Lo impose extra conditions. Besides, finding the set of points that make up
the surface is hard. Instead, we define a surface by obscerving that a little piece of it is very much like a
little picce of the planc. We deline a pateh of the surface ¥ C R? (o be a smooth 1-1 map o : U2 — R3,
where U2 C R? is a neighborhood (i.e. an open set) in R2, such that ! lp(u3) is also smooth:

Iig. (patch)

A surface is then defined to be a collection of such patches such that for any 2 patches (p, U), (¥, V),
2~ (p(U) N ¥(V)) is an open set in R2. This guarantees that our object is unifornly 2-dimensional and
doesn’t have selfl-intersections. Such a patch is often also called a chartin analogy Lo the charts of the
carth’s sphere used by mariners. Similarly, a compatible collection of such charls, covering some object,
is known as an atlaa

By smooth we mean continwously differentiable some number of Limes. In particular, we use the notation
C" o represcnt the class of O-limes continuously differentiable functions, i.c. conlinuous functions; the
notation C* for k-Limes continuously differentiable functions; €™ for infinitely differentiable functions;
and C¥ for analytic funclions, i.c. infinitcly differentiable Tunctions representable by a Taylor series.
Usually smooth means C°, but somctlimes it can mean C* for some (linite) k. Usually il is immaterial,
but if it matlers it will be staled explicitly.

A homeomorphism is a 1-1 continuous map with a continuous inverse. A C' diffeomorphism is-a
C’ homcomorphism with a C” inverse. Often we will not specily the degree of smoothness of a
diffeomorphism, as it may not be important or it may be clear from context. Nearly everything we
consider can be thought of as C=, and.we will state when this is not so.
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Fig. (+) is meant to'cap.ture some of the basic features of imaging geometry. Tl;e object
surface we arc looking at, X, sits in 3-dimensional space. That 3-dimensional space has
a standard projection, e.g. perspective projection, to the image plane, a 2-dimensional
space. Our data, i.e. the picture, is not the projection of the object in the image plane,
but rather a color or brightness funclion defined on that projection.- Meanwhile, we can
change our viewpoint, or the object can move. We view this “cgocentrically,” as we
explain shortly, and take this as a molion of the wholc world whiic we stay put (we are
not considering relative motions of various objects); this motion is g, and the object is

carried along with it, rigidly fixed in 3-dimensional space.

Now we must consider what happens Lo the picture function. The complete physics of the
situalion is that t:hc observed picture changes as a function of the surface orientalion, the
lighting dircclion, and the obscrver position, as embodicd in the image irradiance equa-
tion, in addition to undergoing geometric distortion. We have lumped the photometric
considerations together into a constant cffect on Lhe observed image irradiance, to keep
things as simple as possible for an initial analysis. They could readily be included by us-
ing a sphere bundle over the surface, for example, to account for the relative positions of
obscrver, surface, and light. The simplifying assumption we have ma.dc, then, is that the
pholomectric elfects of change in viewpoint arc negligible in comparison Lo Lhe geometrie
ones. This is frequently a rcasonable assumplion, as is evidenced by the fact that we do
not often experience the retinal rivalry which occurs when the assumption is violated. Of
course, Lhe other extreme occurs with specular refiection, when the photometric cffects are
dominant. The conscquence of this assumption is Lthat obscrved data values arc carried
along wilh the object. All malching systems we are aware of Lo date are also predicated
on this assumption in that they deal only with features rigidly attached to objccts. Some
can mitigate some pholometric effects by using I'eni.urcs such as “cdges,” but cdges of

specular rellections are slill disastrous.

We assume, thercfore, that the picture function we detect is rigidly fixed to the object
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surface. This can be thought of as associating picture point values with points on the ob-

ject surface, although these values are really derived from intrinsic surface characteristics

and the image jrradiance equation. This fixed association is specified by the function F..

Then the distortion g, betwecn images tells us how the 2 pictures Fy, F, are rclated. We
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want to study the problem of finding the distortion g, and the motion g just from the
. data Fy, F,.

We now lay this out in more detail. First let’s consider just a part of Fig. (s), shown in

Fig(3)-
r3 ¢ 3
( ~> R
NN o
{» ’ \\' T
| :.'v/é.‘}.&,
\ R* \ SR>
\ U Y
Nk
\ﬁ\ n' F.)_
-~
Fig(3)

Roughly speaking, here is what we are depicting. The surface ¥ is cmbedded in R?
via i. 7 is Lthe imaging projection from R? Lo R?, the image plane. Iy is the observed
image inlensily on some closed sel Ky of the image plane, and F is the intrinsic surface
“inlensily” giving rise to Fy, i.c. F associales observed intensilics with points on the
object . (In what follows, we will assume that a change in vicwpoint docs not alter this
association, i.c. thal the inlensity we observe behaves as if it were an ini.rinsj_c surface

characteristic. This simplification is justificd when the changes in viewpoint we will be
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considering lead to negligible changes in the intensity associated with a given point on the

object being viewed.) This is just the standard imaging situation, slightly gencralized.

To be more precise, we consider some surface embedded in R3? as the 2-manifold T
cmbedded via the injection i. Let 7 : R3 — R2 be the standard projection onto the
first 2 factors, ie., x :'(z,y, z) — (z,y), also called orthographic projection. Perspective

projection can be defined as a map

. _z —_y
w2y, 2) - (kz+l' kz + 1)'

Since this map has a singularity at z = —1/k, it is not defined on all of R3. Thus
to subsume perspective projection, we have to gencralize our picture slightly (but really

without changing the cssence), as shown in Fig(%).

L
& , :
R i
o
Fig. (%) T

M3 is a fixed 3-dimensional subset of R3, and is the domain of definition for the imaging
projection m, which maps it to M2, the 2-dimensional image space. We require I'url.hér

the physically obvious regularily. condition that x® be a C* submersion, i.c. that its
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derivative be everywhege surjective. Usually, M2 C M3 and 7 is a projectit;n in the
sense that x2 = «. These conditions are all satisfied for ray optlics if the rays do not
intersect in the image (as might happen if there were caustics, e.g.), i.e. if an image point
corresponds to a unique ray. For orthographic projection, M3 = R3? and M? = R3.
Alternatively, so as not to look in front and bchind at the same time, M 3 could be the
upper half space of R3. For the usual perspective projection geometry given above, M3
can be t.akén o be the same upper half space. In this case, the s'méular planc (containing
the pinhole) is behind the film plane, M 2 = R2. Another imaging gcometry is interesting
at least theorelically, which we call spherical perspective projdction. In this geometry,
the projection can be looked at in spherical coordinates as the map = : (r, 6, p) — (8,0).
With our conventions, M3 = R3 — 0, M? = S2, the unit sphere, and = is projection
onto the sphere along the line Lo the center, 0. In this case, it is easy to see, c.g. that the

space of oricntations of the camera is isomorphic Lo the rotations of the unil sphere.

S, and K arc corresponding visible regions of ¥ and the image space M2, resp. More
precisely, let §; C ¥ be such that i(S1) C M? and = : i(S;) = M2 is 1-1. Then let
K, = x0£(8;). This makes all the pictured maps well-defined, and the diagram Fig.

(%) commutative.

We n#sumc that the surface ¥ admits a function £ : ¥ — R™ which describes intrinsic
surface featurcs. I.g., in the situation F : ¥ — R! (i.e. n = 1), I can be thought
of as rcprescnting an intrinsic surface brightness or luminance. Thus we are presently
ignoring the cffect of viewpoint on image irradiance, or, put another way, we arc taking
the refleclance function to be constant. To the extent that we deal only with small
changes in viewpoint, that will usually be a good approximation. Once can enlarge the
analysis to include an image irradiance cquation, but only with added complexily, so we
do not consider Lhis here. If onc wishes, I can be thought of as the intrinsic surface
pfopcrty albedo,” and assumc that our analysis deals wil,iu quantitics that depend only

on albedo, Lo good approximation. For the case n > 2, we have in mind color images:

The Mathematsical Structure 143
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normal human cone vision incorporates a function Fy : Ky — R3 (n = 3). Note that
we also subsume cases for a smaller (i.e. n = 2) or larger (4 < n < oo) number of
passbands, or in fact any surface attribute, such as a multi-dimensional texture measure,

which can be thought of as taking pointwise values in some real vector space.

We now make precise the imaging gcometry which gives us the observed image Fy from

the intrinsic surface function F. Basically, we want to say that we see the frontmost

surface of I (given ¢ and x, i.e.). This may not take up all of the image plane, and e.g. if £
is compact then its piclure, 7 o1 (X) will also be compact. Since 7 isa submersion, #~!(p)
(for 7 € M?) is always locally 1-dimensional. We assume that our imaging projection is
sufficiently simple that x~!(p) is not a circle; this is true if we assume light travels in

straight lines, e.g.

Here is an example of a map x: M3 — M2 which conforms to all the requircinents we have made until
now, but for which x~1(p) is a circle. Let M3 be the solid torus S X D2, where D? is the unit disk. Let
x simply be projection onlo the 2nd factor, i.c. n(#,p) — p. The situation is illustrated in Iig. (torus)

p* ¢'= N“(?)

Fig.(torus)

All our regularity assumptions arc clearly satisfied. And 7~ '(p) ~s S1.

We assume further that M3 and M2 can be embedded in a product structure such that
% is projcction on onc of the lactors (we have already assumed that the other factor is a
subsct of the line). L.c., we assume there is some manifold A and cmbeddings ey, eg which

make the following diagram commutative:

. N
v e :
o a

NN

o e
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M"—c:—"A x R
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Fig.(prod) e

Since we have excluded the circle, x~!(p) has a well defined order induced by the usual

ordering on the line, so we can define the closest point of some set on any ray as a lea_st
elclncr;t, 80 long as the interscction with the ray is closed. In fact it is, since the singular
sct is closed by virtuc of being the inverse image of a closed sct, while the inverse image of
a regular value is closed, since it is a submanifold. Using regularity, the ordering can be
‘extended to a submanifold (with boundary). (The underlying theory is presented later.)
Incidentally, the singular sct of x o1 is also called the silhouette of I, since it comprises

the points of tangency of the line of sight to the embedding of .

We are now ready Lo discuss the more involved situation of I'ig. (+). For the samne reasons
y

that we used I';ii;. (%), we will replace Fig. (+) with Fig. (+'):
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K, ——ﬁ' K,

Fig. (+')

The new feature in this picture (beyond Fig. (-‘,:)) is the effect of change in viewpoint.
A change in vicwpoint means that the imaging projection # changes. Let xp be the
projeclion for viewpoint vy and 7y that for vy, where we looscly define a viewpoint as a

location, dircction, and oricntation (we might Lilt our head) of looking. Then =y is just

%o preceded by a change of coordinates. Le., 1 = xgo 9, ¢ :R? — R3. In other

words we can describe the change in x using an cgocentric view where 7 is constant, but

the world moves. The world-o-centric picture is:

% (%% —
£\ "
R? R ;::;.;_f:;j
Ry
» .
Fig. (world-o-centric) BRI
—T?T:'
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This is really just a contraction of the egocentric Fig. (), so we will use the egocentric
model, since it is easier to make things explicit that way. The map g : R3 — R3 is the
coordinate change in R? (the ambient space in which our objects are embedded). In fact,
since we are restricting ourselves only to coordinate changes resulting from a change
in viewpoint, we do not want to alter any metric propertics, i.e. we want to preserve
geometry, so a little thought should persuade one that the possible coordinate changes g
arc only t};e oricntation preserving isomctries of R?, also known as the rigid motions of
R3, or the Euclidean group E(3). Atter we have applied the motion g, the new embedding
of X is given by i, = g o #; this jusl says thal the embedded surface got carried along

with the motion.

We now have lo .take some carc with the definitions of K, Ky, S1, and S;. If we were
to use just the definitions of 2 copies of I'ig. (3}) pasted togcther, 'g,, might not be well
defined, since we could not be sure that S; C S, or cauivalently that xod, : & — M?
is 1-1 on S, since for many surfaces ¥, different viewpoinis g have different domains of
visibility of ¥. This is a fancy way of saying thal part of what we saw in the picture Fy
might be hidden from view when we look after doing g. llence Lthe regions Ky, K, must be
chosen in such a way that g, is well-deflined. For example, having ch;)scn Sy, Sg as above,
we can define §f = 8, = §; NS, and K| = 7n0i(S}) and K = w01 (5}). With these
restrictions, g. is a diffcomorphism Ky — K, with the property that Fy(p) = Fy(q) =
Fg(g=(p)), which is the same as saying thal gx is a deformation of the picture Fy into the
picture F,. Nolec that this obscrvation is also cquivalent to asserting Lhat the diagram is

commutative (for the Iy, g,, Fy loop).

Occlusion, the obscuration of one part of surface by anolher, occurs al the singularities
of the mappings x o and «x o 4,. Scll-occlusion can occur for many objects, and if we
allow L to have more than 1 connccted component, we arc able to subsume all cascs of
occlusion. The complicatling feature then becomes that the domains of smoothness of Fy,

Fy arc bounded by the singular scts, and an important problein then is Lo understand the

............. R L T VT T WY P P R O O P EPUL L I
........................
..............
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singularities. We have pot considered this problem here, but the topology involved has
been well-studicd in singularity theory and catastroi)he theory (sce [Arnold 1984, Arnold,
V.1. 1983] for expositions of the theory by one of the grandmasters, and [Koenderink and
van Doorn 1982, Koenderink and van Doorn 1976} for some discussion in the context of

vision).
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A Catalog of Applications

Now that we have establishcd an abstract description of the mathematical setting for

vision, we can indicate how the usual computer vision problems fit into the structure.

We consider these problems:
¢ Area matching stereo ' - 4

e General matching

e Motion stcreo and optical flow

e Fealurc based stereo

o Singularity tracking

In subscquent seclions, we will prove theorems about general matehing and oplical flow.
The struclurc we have presented comprises dilferentiable mappings among various spaces,
and, emulating Lthe Erlanger Programm, a group - rigid motions in 3-space. The mathe-

malics of these structurcs is dilferential topology and differential gcomelry, so we turn to

the Lools of Lhese trades lor our analysis.

For general matching, the central result is that unique image matching requires at least
2 color dimensions, unless onc has knowledge of imaging geometry. ([Resnikoll 1974] Ai:
studicd some relations between color and geometry, but in a quite different context.) The ~. ) ﬁ
results for oplical flow show hoW to cxploil this knowledge, using the geometry of rigid . .,
molions of 3-space in the form of Lic group thcory. We will also discuss the topological

structure of images, and show how the invarianls can be used for stereo matching as wc.ll . . h

as image understanding via “scalo space” [Wilkin 1983].

. s Sl
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tereo

or the stereo problem, we assume that we are given 2 pictures Fy, Fy arising from
unultaneous views of a surface in R3. There may be some constraint, or even complete
nowledge, of the viewing situations which gave rise to the images, i.e. we may have

formation about the camera modcl. We want to find the topography of the surface.

. should be evident that the situation is cxactly that of Fig. (*), with the restriction
hat K and K, arc projections from the single surface £ (we could moot the restriction
y allowing £ to have morc than 1 componcent; however that creates complications, and

ic consider the simpler case). Then
-
miven

Fy, F, pictures

Ve want to find

i surface embedding
O picture correspondence
F intrinsic surface characleristic

xamples of possible viewpoint conslraints are:

1) g € I2(3) given camcra model completely specified
2) g = g for some t € R, where viewpoinls on a 1-paramecter subset

ge is defined by v : R — E(3), of [Z(3)
g:(p) = 1(t)(p), PER?

3) in addition, g¢+, = ge 0 g4 viewpoints on a 1l-paramecter sub-

group of £(3)

4) g¢ lcaves cach of a space-filling viewpoints arc coinbinations of
scl of parallel planes invariant translations and rotations such that
for cach ¢ cpipolar lines are well-defined

e sttt

I W W W e S L P PO L PRI S ST TR Sl ST S T Sl S T HE Tl T P P, LA W

- Ol
PN -GS 1




e patch @ (we omit the precise definition, which can be found in any differentiable manifold book).
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a point at which all the bartials of f vanish. The z; here are coordinate functionson M™, defined for = 1

v the only boundaryless 1-manifolds are the diffcomorphs of R! and S! (the circle)
Inor 1985), so in a region where f has only regular values, our picture is‘essentially ‘ -
rect. I.e., the level set corresponding to a regular value must be a 1-manifold. Now
need to know that almost all values are regular; then since each value determines a
il set, almost all level sets will be 1-manifolds as we are claiming. But so far, we VdorAl’t -
n know that there has to be any region (i.e. ncighborhood) free of eritical values. In

. if Iy is a constant map, then clearly all of Uj consists of crilical points.

eorem (Sard) Let f : M™ — M™ be a C* mapping between the m, n-dimensional (

% . 1

nifolds M™, M™, where k > max(m — n,0) (for a monochrome picturc this means R
°.4

> 0, i.c. [ is diflcrentiable). Then the Lebesgue measure of the set of critical values '-_:
M™)is 0. i
Inition In a measure space, almost all means all but a set of mcasure 0. -
nark In a probability space, almost all is cquivalent Lo with probability 1. o
d’s Lhecorem says, in other words, Lthal almost all values are regular, which is the same ]
slaims 1) and 2) above. Note that it is the critical values that are of measure 0, not Sa—

critical points. Thus, lor us, this means that the set of intensity values (but not

cssarily picture points) taken at critical points (where a level sel is not a l-manifold)

parsc. 1L could still be densc however, e.g. if there were critical values at all the
. ] i

onals. N
Typically, picturcs have isolaled critical points (i.c. they do not form blobs, lincs, or ok 1
umulations) . 1
' L4
SRR

tunatcly, we can say more. There are certain nasty types of critical points called

enerate and nice oncs called nondegenerate (we'll define them in a moment). One

he nice Lthings aboul nondcgencrale critical points is that they arc isolated, i.c. a

oy e L
. Lol
PR .
. < s

degenerate critical point has some ncighborhood which contains no other critical
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The Jacobianof f is rcally defined with respect to some pair of coordinate systems on M™ and M™. Let
a patch of the manifold M™ be a smooth -1 map ¢ : U™ — M™, where U™ C R™ is a ncighhorhood in
R™, such that <p“|p(um) is also smooth. (This is just like our definition of a patch of a surlace earlicr.)
Supposc we're intercsted in the Jacobian at a point z € M™. Thea let 3 be a similarly defined patch
in M™ such that f(z} € ¥(U™), i.e. so that f puts z into the right region for ¢. Then Y lofopisa
map R™ — R™, and we can speak of the classical Jacobian of this map, defined as follows. The Jacobian
matrizof F: R™ — R™ at p is the matrix of derivatives dF;/9z;, i.e.

AF; '
5(F) [ o (p)]

. Although the Jacobian itsclf depends on the coordinate systems chosen for M™ and M™, its rank does
not (sce c.g. [Golubitsky and Guillemin 1973]). Thus we can speak of the rank of the Jacobian of f above,
even though by definition we just presented, the Jacobian itsclf depends on the particular coordinate
charts. Onc can also give a coordinate-free definition of Jacobian, where the Jacobian of f is the derivative
of f, a map between Langent spaces, and then the Jacobian of f is a unique, well-defined object. The
interested reader can lind the details in any book explaining differcntiable manifolds, e.g. [Abraham and
Marsden 1978, Golubitsky and Guillemin 1973, Guillemin and Pollack 1974, [liesch 1976). The Jacobian
is nothing more than Lhe lincar approximation to Lthe map; or it can be thought of as the lincar term
in the Taylor scrics, which is the same thing. Thus it gives information on what the map docs to the
degrees of freedom in the domain space.

Here arc some related delinitions:
Definition. Let f: M™ —» M™, be C1.

1) p € M™ is a regular pointof f il the Jacobian of f at p is of maximal rank. .

2) p € M™ is a critical pointof f if it is not a regular point, i.c. if the rank of the Jacobian of f at p
is less than maximal.

3)If p € M™ is a critical point of f, then f(p) € M™ is a critical value of f. Notc this means that
g € M™ is a critical valuc of f if f~!(q) contains a critical point, even Lthough it may be that
g = J(p’) for some regular point p. Also nolice Lhat mountain peak heightsare critical values.

4) g € M™ is a regular value of f il iL is not a critical value. So q is a regular valuc if f~'(q) contains
only regular points, or il g is not even in the range of f. That'’s because iL's handy to have only 2
Lypes of points in M™: critical and regular. ’

5) [ is an immersionat p if p ix a regular point and dim M™ < dim M™,
6) f is a submersionat p if p in a ecgular point and dim M™ 2> dim M™,
7) If f is an immcrsion (submersion) at every p € M™, then it is simply called an immersion(submersion.

8) f is an embeddingif it is an inmersion and a homcomorphism onto its image. [A Aomeomorphismis
a mapping which is continuous and has a continuous inverse.]

There are numcrous versions of the implicit function theorem, which go by various names, the most
common of which is the inverse function theorem. The zbove version is one of the most general. The
theorem in frequently stated only for the cane m > n, and Lthe condition may be stated in terms of
regularity, rank or singularity (as a matrix or linear map) of the Jacobian or detivative, transversalityof
£, cte. What all these essentially mean is that at the point in question, f only does as much collapsing as
is required Lo squecse things into the dimension of the range, and no more. Notice that mountain peak
Aeights arc critical valucs.

In our case, we are currently deating with the situation of 1 color dimcnsion, so we are interested in
Fi,F3: M? = R'. Thus the theorem tells us that for a regulsr value y of Fy (resp. Fz), Fu ™1 (y) (resp.
Fa~'(y)) is u l-dimensional submanifold of Ky, = MZ2. Note that for a function f: M™ — R! the
Jacobian is an n X 1 matrix, so a critical point p of f is one for which

== )=
22,0 =" =5,-(p)=0
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Fig. (frag)

Ilere is Lhe gist of what we will say in more precise terms. .

1) Almost cvery level set of a picture is a circle or a line

2) Thesc 1-manifolds account for almost all of the brightness values; the rest are extrema

-
or saddles (critical points). ;.n:::::f

RN

S

| ]

3) Typically, picturcs have isolated critical points (i.e. the critical points do not form ,P“""‘:
-

oy

blobs, lines, or accumulations). %

.'-"

1) and 2) Almost all level sets and brighlness values are regular :j..':j::.

o
First we need to know that the conlour lines have the simple structure above. To this T *
cnd we need the following version of the R 1

Implicit function theorem (scc c.g., [Brocker and Lander 1975, Nitecki 1971,
Golubitsky and Guillemin 1973]). Let f: M™ — M™, be C". (Where M* denotes
some k -dimensional manifold.) Then f~'(y) C M™ is a C" submanifold of dimension
max(m — n,0) (or cinpty) il the Jacobian of [ is of maximal rank (i.c. rank min(m,n))

at cach z € f~'(y).
Note that f='(y) cannot be scif-intcrsccting, since it is a submanifold.
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diffcrentiable 1-dimensienal objects. That in turn is a consequence of the fact that the

picture is a map from a 2-dimensional object to a 1-dimensional object.

Some differential topology for vision

In the proof of the first part of the theorem the facts we uscd from dilferential topology, ;j—'t‘ii
about gradient veclor ficlds, flows, and conlour lines, were clementary enough that we did :"_f?i’lv'«j

not have to go inlo much detail about the theory behind them. For higher dimensions, in
particular for morc color dimensions, the situation is more diflicult; and several advanced
idcas are prerequisite to proceeding with the rest of the proof, Also, the proof we just
gave for the monochrome casc is somewhat technical, so we would like to illuminate the
intuitive idcas with some deeper resulls. The rest of this scction, thercfore, is devoted to a
review of some of Lhe nccessary ideas of diffcrential Lopology, integrated with cstablishing
(for the first time in the vision litcraturc) the aspects of vision to which they correspond.
We wi.ll usc Lhis Lheory in later scclions as well; morcover, it is basic to the geometric

aspects of vision.

' I'irst, lel's sce how the proofl given above fils into the intuilive scheme presented carlier
for using Fig. (frag). Then we will worry whether Fig. (frag) is a reasonable picture for
the contour lines of a picture function. The p, which we dcefined above, considered along
the dotted line, is cssentially Lhe rotation function we discussed carlier. We could use a
bump function to make it just what we want in some ncighborhood of the dotled line,
and shear could be climinated by using a p with negalive as well as posilive values. It

would lake a litlle work, but it could be made to do the right thing.
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Fig. (boundary)

By a standard construction (c.g. [Abraham and Marsden 1978]), there is a C* function
K — R which takes the value 0 outside of U and the value 1 on Uz. Using this “bump”
function 8 : K; — R, we get a vector ficld 8- Z on K| which vanishes outside of Uy, hence
its flow never leaves K, i.c. the flow o, of the vector ficld 8 - Z has the properly that
@¢(p) is defined and lies in K for all p € Ky and —00 < t < oco. Hence for any such ¢,
¢ : K; = K, constitutes a dilfeomorphism with contour lines invariant on K. In fact, it
is casy Lo see that this family of diffcomorphisms can be enlarged cven m'orc. Notice !;hnt
multiplying the vector ficld Z by a scalar C* function p: Ky — R ddes not alter orbits.
We can therefore enlarge the class of diffcomorphisims o, by laking all diffcomorphisms

©e,p Given by the llows of p-B-7Z on K. Obscrve that for any constant @, Yae,p = Pt,apty

so il p is a constant function, ¢, = Ppe,1 = @1,pe- Thus {p¢,,} = {p1,,}, so by abuse

of notation we will write p, for p; ,. QED (n = 1).

We have thus far proved our result for the monochrome case. In suminary, we have shown . o J
that in malching 2 regions free of occlusions, i.e. when we have a matching diffcomorphism - :-' 7
between Lhe regions, the mateh is far from unique. In l'zlct there are cssentially as many .
matches as C” functions from such a region Lo the reals. (One has to factor out functions p :
which lead Lo equivalent time-one maps, c.g. those which rotate contour Iinés by. multiplea ' ) . | i

of 2x.) This stems dircctly from the fact Lhat the iso-brightness loci constitute connected
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inner product on an orientable manifold). One might, e.g. define the new vector field
Z on K, by Z(p) = (-b,a) if VFi(p) = (a,b). Note that Z . VF; = 0 at all p. Since
smoothness is defined with respect to coordinates, Z has the same degree of smoothness
as VF;. Furthermore, wherever Z £ 0, it is tangent to the contour lines of Fy, so that
the orbits of Z arc exactly those conlour lincs, and the critical points are exactly the
critical points of VF;. We now want to consider the flow o, t K 1= K, of the vector

field Z.

The flowpe : M — M of a vector ficdd on the space M is Lhe solution to the initial value problem
defined by considering the vector ficld as a system of differential cquations on M. l.c., p¢ is the unique
map such that d/dt p(p) = v(p), where p € M and v(p) is Lhe vector at p. The llow moves the space
along the solution lines, which are always tangent to the veetor ficld. Smoothness of the vector ficld
guarantees smoothness (and uniquencus) of Lthe flow. The time-one map associated with a flow ¢ is the
diffcomorphism o, : M — M; i.c. asnapshol of the llow at one particular instant of time. The orbit of
a point (or sct) p under the flow, is the set of all values of p¢(p), for all ¢, i.e. —00 < t < co. Notice
that the flow is a funclion of time as well as 2 map on the manifold; this is a slight abuse of the notation
we arc using for functions. '

But first we have Lo deal with a slight problem, viz. that near the boundary of K, the
timc-one map may not be defined il a contour line has a boundary.. To overcome this,
we usc the following device Lo make Z vanish near the boundary of K;. We find open
sets Uy, Us such'that U; Cc Uy C U, C K,. Ug can be almost as big as K, since we
can choose U and U, as follows. Let U, be K, — V,, where V, is an ‘c -neighborhood of

the boundary of K, where by ¢ -ncighborhood we mean the union of all open balls of

radius € centered al points of the boundary of K. Then, of course, U; = interiorU,.
Similarly, U; can be slightly contracled to yicld Uz. If we assume that the boundary of

Ky is piccewisc smooth (which follows, c.g. if Lhe picture results from a finite number of '.-::‘.‘-'_:'s‘

smooth objects) then the measure of Uz can be made arbitrarily close to that of K. L .
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Fig. (frag)

Observe first that if ¢ : K; — K is a dillcomorphism taking contours of F; to contours
of Fy, then g, is a matching funcltion = g, o ¥ is a matching lunction. Decfine ¢ as

follows. As you go along the dotted line

q:1—-K,, I=[01CR
t— 1(t)

in Fig.(frag), slide cach contour along itscll by an amount 0(t). Aslongas0:/ - Risa
difcomorphism onlo its image, the map ¢ will be a dilfcomorphism in a neighborhood of
the dotied line. To Lhe extent that this picture is valid, Lhere will be as many malchings

9= © ¥ as there arce such maps 0.

Actually, we are going to usc a slightly more general method to construct a lamily
of difcomorphisms ¥, roughly in 1-1 correspondence with the set of all C* functions
Ky — R. For this we will usc a canonical veclor ficld defined along the contour lincs of

Fy, which will tell us how much to slide each contour line.

First we observe Lthal the map Fy : Ky — R has a canonical vector ficld associated with it, the gradient
veetor licld VP which assigns Lo each point p € K a vector VF (p). VF; is always orthogonal to the
contour lines of Fy (with the usual inner product on K inherited from R2), and it is O precisely at the
critical poinu of Fy. In (2-dimensional) coordinates, Vf = (8f/9z,0f/dy). Clearly, if f € C", then
viec .

Define a new vector ficld on K; by rolating cach of the local vectors of VI by +90°,

i.c. +00° counterclockwise, (which is uniquely defined because we have a globally defined
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If n > 3 (i.e. the pictur has at least 3 color dimensions), then generically there will be

a unique g» which makes the diagram commute.

Once the problém is appropriately formulated, the proof yiclds to repeated attack by some
standard machinery of differcntial topology. (An excellent introduction Lo the subject is

{Guillemin and Pollack 1974]; and [Hirsch 1978] is a good reference.)

Proof (case n = 1). For the time being, we only consider monochrome pictures (n = 1).

We will return later to the situation for piclures with more color dimensions.

The idea for this part of the proof is fairly simple; the difficulty lies in cstablishing when

it is valid.

The map Fy : K; — R can be thought of as a topographic landscape on K1 C R2, where intensity is
represented by altitude. Consider K(z) = F,~'(z) for some intensity z € R. K(z) is an iso-intcnaity
contour for the intensity z and corresponds Lo an clevation contour on a geographic topographic map.

The idca is this. Observe that il F3 o g (p) = Fy(p) (i.c. il Fig (a) is a commutative
diagram) then g.(Fy ™ (z)) = F~'(z), i.c. g« Lakes contour lincs Lo contour lines. (Proof:
Supposc p € 17,7 (z) and q = g«(p). Since Fuy(q) = I"(p) and F(p) ='z, q € Fy~(2).
Thus g.(F~"(z)) C Fz~'(z). Similarly, since gy is a diflcomorphism, {9=)"" (I~ Y(2)) C
Fy~V(z) whenee Iy~ (2) C gu(Iy7"(2)).) Conversely, any diffcomorphism k : Ky — K3
which takes contour lines of | 1o conlour lines of /g satisfics Lhe conditions for g,. (I’roof:
Essentially immediate: We want Lo show that A(F,~'(z)) = Fy~(z) = Fa(k(p)) = Fi(p)-
Choose p € K, and lct z = Fy(p) so that p € Fy~'(z). By hypothesis, h(p) € F3~'(z),
so 13(h(p)) = z = Ii(p). QED)

Thus far we have shown that any g, taking contour lincs to contour lincs will solve our
local matching problem. But how many such g4 ’s can there be? Assume for the moment
that a typical contour map contains a diffcomorphic image of the fragment represented

by the solid lincs below

......................................
.........................................................................
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confine our attention oply to a diffeomorphism g, : K; — K2 where K, K; are both

connected.

-C: O] ’

Theorem (2-color theorem). Sterco requires at least 2 colors or 3 dimensions. L.e., for a
monochrome picture, general matching has infinitely many solutions, but for 2 or more
color dimensions, it is generally unique. Hence the monochrome case requires knowledge

of the imaging situation to constrain the problem.

More preciscly, consider the commutative diagram

K 2 K,

AN o/ -

Fig. (a)
where g, is a C' diffcomorphism , Fy, Iy are C!, and Ky, K3 are compact. .-:'.':Ej.'_w
| o
If n = 1 (i.e. the picture is monochrome), then 3 an infinite-dimensional family of C! —

dilfcomorphisms {h,} such that replacing g. by ki, also resulis in a commutative diagram
(i.e. is a solution). The family A, is parametrized by (at lcast) the continuous functions

K — R, and contains an isomorph of a neighborhood of the identity. - .

If n = 2 (i.c. the picture has 2 color dimensions), then gencrically there will be a finite

number of g. which make the diagram commute (note we have assumed that such a gy \ N

there is a unique g,.

- 1
exists). If we take Ky, K3 to be rectangles or discs (as in a usual picturc) then gencrically ~
1
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al. 1983]). The epipolar geometry consists of known foliations of K and K3 by curves,
with the image of each such curve under g, also known. This information is derived from
sources other than gencral matching; e.g. from singularity matching, or interactive (i.e.,
human) guidance, used along with assumptions about imaging geometry, such as optical
characteristics. Part of our purpose is to understand how this information provides a

constraint, and ultimately Lo see how much of it can be found in an integrated process.

We are not, proposing here to usc exact equality of point brightness values as a matching
criterion for sterco vision programs, nor to ignore imaging geometry. Rather, we are
investigating Lhe conscauzaces of the idea that there is some function dcscribiﬁg surface
character, maybe not the data itself, which maniflests itself in 2 different distorted pic-
tures. We want to know what it takes to find that distortion in principle. We sce thisasa
first step to understanding what it takes in practice, where there are further complicating

" factors. We consider some of these in later scctions.
The following question then ariscs:

Problem (Uniqueness of General Matching). IF we are looking for an arbitrary (piecewise)

C' dilfeomorphism g, to make Fig.(GM) commute, under whal conditions are we

guaraniced a unique solution to the malching problem?

E.g., if I\, Fo arc both constant functions, i.c., we have uniformly gray pictures, the

problem is completely degencrate, and any diffcomorphism g, is a solution. - !T.f, P

Since there may be occlusion, Ky and K3 may not be connccled regions. We don't
consider the (important) problem of determining the connected components of Ky and
K3, i.c. deterniining the occlusion-free regions. Suppose, instead, thal some g. exists

fulfilling the above criteria. We will be concerned only with regions where g, is smooth,

i.c., a C' diffcomorphism. Thcse are regions containing no occlusions or points where the

surface is tangent Lo the line of sight. Furthermore, we do nol consider Lhe problem of !;

determining which arc the corresponding connecled components of the 2 piclures. We
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This means that every point in one region is matéhcfi to a corrcsponding one in the other,
in such a way that the 2 picture functions give identical brightness or color values on cor-
responding points, while keeping the distortion continuous and differentiable, i.e. main-
i taining the region topology. This automatically guarantecs matching of context. Only

after the matching function is found is the surface embedding computed by associating
- relative depth with relative disparity at each point of (say) K. In this approach the

matching procceds without any knowledge of the 3-dimensional structure represcnted by

Fig. (*). Stereo malching programs rarcly actually try to solve the problem in this pure

form, for a number of good recasons. In the first place, geomelric information ts usually

available, and somc of it is often used to constrain the matching. In fact, as we will

show, this is nccessary to achieve any success for unique point correspondence. Secondly,

programs do not usually use simple cquality of brightness values as a matching criterion

(though sec [Baker 1981] for a usc of cssentially that criterion as an interpolation method

I for r(.:gions between known corresponding points). There are several reasons for this.
Various sources of noise, including digitization as well as clectronics, make it impractical

lo look for exact values of brightness. There can be variations belween 2 images, such as

I camera sctlings or film, propertics, as well as photometric changes. In approaches which
use arca malching (e.g. [Gennery 1980]) one frequently uses some measure of similarity

| of context as a malching criterion; onc family of Lhese is derived from cross-corrclation.

Part of the arl of these measures is Lo compensate for the imperfections we have just

mentioned. Nevertheless, there is generally the assumption that there is some underlying

function which transformns according lo Fig.(GM); although this function may not be

idenlical with the data, il gives rise Lo it.

Frequently one assumes that the 2 images Iy, Iy are ;ectiﬁed, i.c. that g, takes scan

lines to scan lines in a known way: g.(z,y) = (9(z,¥),y) for some g : Ky — R. This

very strong constrainl on imaging geometry is rarcly valid in practice. Instead, one can

rely on knowledge of epipolar geometry for an additional constraint (sce, c.g., [Baker ct
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An Application: Stereo by General Matching

As an application of the abstract viewpoint we are proposing, we show that for
monochrome images, the general matching problem is insoluble. We exhibit the

degeneracy, and show that additional color dimensions allow unique solution.

The problem

A common goal of stereco matching is to solve the correspondence problem lor some region,
i.e. to pair corrcsponding points between 2 piclures within some region. A pair of points
in 2 pictures correspond il they arisc from a common single point in the scene. The
correspondence must be inférred from the picture funclions. There have been many
approaches taken to do this, and geometric information as well as a point's picture context

have been uscd in many ways Lo make the inference. One of our ultimate goals is to build

a theory which gives a coherent view of the problem and the methods which have been

used to attack it.

A basic nced is to understand what the roles of gcometry and context are in this problem:

how much can you tell just from picturc distortion, and how much do you have to
know about the way the image was formed? To shed some light on this, we look at
the sterco problem as Lthe gencral matching problem. le., given 2 piclure Tunclions
Fi,F3 : M2 = R™, onc finds regions K\, Ks C M? and a 1-1 matching function

g~ : Ky = K3 such that the diagram Fig. (GM) commutes.

K = K,
A/
Rﬂ

Fig. (CM)
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neighborhoods K;. So,¢e.g. the assumption of rectified images could be stated as the

requirement that g, take horizontal straight lines to horizontal straight lines.

Motion stereo A |

Instead of a single g € E(3), we have a 1-parameter family {g.}, given by

v:I— E(3) i

t— ge . L “

such that go = 1 (the identity in /5(3)), where I = [0, 1] C R. Given is a corresponding
b family of pictures F,.

- . It’s common to consider a sequence of pictures related by a sequence of transformations

{gs i=0,1,...}, with thc corrcsponding family of picturcs F;. This can be thought of

as a special case of the above, where Lhe transformations are parametrized by a discrete
set:
7:Z% — E(3)
T g
Although this reficcts the discrete character of what happens in practice, the former

(continuous) representation makes it easier to exploit the Lemporal smoolhness propertics

of the image.

Fig. (#) illustrates the situation for only 2 g, ’s.
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5) g, is a translation for each ¢ the simplest case for epipolar lines

These constraints consist of focusing altention on subsets of E(3) having particular

properties.

Area matching stereo

To differentiate from feature-based sterco, we define area matching sterco by requiring
that the sterco problem be solved for a full-dimensional part of thc surface, ie. a
ncighborhood. This bears an implicit assumption that arca-supported functions Fy, Fy
are uscd dircetly, and that some intrinsic arca-supported function F can be found. An
example is matching of arcas based on the cross-correlation function between the 2 picture
functions on those arcas. Feature-based sterco, by contrast, depends on lower-dimensional

objccts, such as edges or critical points (preciscly defined later).

General matching

This we define to be arca malching sterco withoul any knowledge of imaging, deseribed

by the diagram:

K, Iy Kk,
R
Rﬂ

Fig. (CM)

Here we are only given Iy, I3 and the problem is to find Ky, K3,gx such that the
diagram commutes. There may be constraints on g cquivalent Lo those for sterco, except

the constrainls can only, of course, be stated in terms of the diffeomorphisms between

F.
‘4‘ X
-

A PRI ARSI

LI A At T I i Bt

TEE TS T T T T




Ly

AU e

R A A A A A I AP e T e e oo 4 A0 il el oy T T T T T ATy T

Geometric Methods in Vision =~ An Application: Stereo by General Matching 165

points. If we're talliing-about a region contained in a compact set, that impliés a finite
number of nondcgenerate critical points and a minimum spacing between them. Similarly,
there are nice functions which have all their critical points nondegenerate; these are
known as Morse functions (after Marston Morse). And finally, almost all C” functions
are Morse functions (we’ll have to specify what we mean by “almost all”), so that we have
a justification for acting as if all our critical points are nondegéner'at.e. Now, here’s what
all this means in terms of our illustration of level sets of the intensity map (Fig. (frag)).
Choose a picturc al random. (Say the picture is bounded by a rectangle R W;ll.h interior
V .) Il it has no critical points, then all the level sets are diITcomérphic Lo (disjoint unions
of) line segments (and not cir.clcs, which arc the only other possibility by Milnor’s result,
cited above). (Proof: By contradiction. Suppose f~'(a) C V is diffcomorphic Lo a circle,
so that it bounds a disk in V. The closed disk is compact, so f must take a maximum
and minimum on it. If onc of these is not on the boundary, f~!(a), it is a critical point
of V. Il both are on the boundary, then the enlire disk consists of critical points, since
the maximum and minimum arc both a. QED.) Suppose the picture does have critical

points. Then “gencrically” Lhe critical points arc isolated.

l"irst‘lct's sce what happens near such a critical point. 1y Mors-c’s Lemma (stated
com;')lctcly below) we know that there is a coordinate syslem (u,v) in a neighborhood of
the critical point p such that f = [(p) + u? + v2. The possible signs corrcspond to a
maximum (—~<), a minitnum (++), and a saddle (+-). So for an exiremum, it's casy to

scc Lhat the level scts are just a point surrounded by circles.
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IFig. {extremum)

For a saddle, the level scts are the scts 42 — v2 = const, which look like

)X

=7
|

r

(]

S
A

Fig. (saddle)

Nolc that the critical point is isolated (from olher critical points), though it is not isolated
as part of a level set.

The Morse incqualities Lell us thai the Buler characlerislic is related to the number and
type of critical poinls. In our case, il we assume thal the whole region of interest lies
within a single circular level set, this means that the number of extrema must be 1 more

than the number of saddles. In Fig. (frag), for the rotalion dircetions of the level sets to

be consistent with the way we proved the first part of Lhe theorem, we musl assume that

....................................................
..........................
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one of the critical points is a maximum and the other a minimum. But from the Morse:

inequalities, there must be a saddle somewhere, too. In fact, the larger picture looks like.

4@

Fig. (dimple)

When there are two maxima (or minima, in Australia), the picture is

Fig. (pass)

Now we make this precise. [We present the material here in Lhe reverse of the usual order,
i.c. we present the main Lheorem lirst, and then the delinitions required to understand

. it, since that is the order in which one actually trics to understand the idea.)

Theorem. (sce c.g. [[lirsch 1976]) For any manifold M, Morse functions form 2. dense

open set in C3(M,R),2 < r < co.

Nole that in our casc, M is the 2-dimensional support of the picture.
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Definition. C‘fg(M » N) is the space of all r times continuously differentiable fuactions
M — N, with the so-called strong topology. We omit the definition of this topology, but
only mention that it is based on the closencss of all derivatives from the Oth (i.e. the

value of the function itself) through the rth. : T

Definition. A Morse function is a lunction f : M — R which has only nondegcnerate

critical points.

Proposition. Nondcgenerale critical points arc isolated. l.c., a nondegencrate critical

point has a ncighborhood in which there are no other critical points.

Definition. A qondcgcneraic critical point is one where the Hessian matrix is nonsin-

s

gular. This basically means thal thc graph of the function is not flat at the critical

point.

'lifiij ": Z'f;; U

Definition. The Hessian matriz of a function g : R™ — R al a point p is the matrix

RPN

r
a'a'a g b

[ dz;0z; (p)]

Theorem (Morse’s Lemma). Let p € M™ be a nondegencrate critical point of index k of

aC™*? map f: M™ = R, with | < 7 < w. Then there is a C” chart (p,U) at p snch

that ‘ ~
k n Loy

Joo \(uy,eoyun) =f(p) - D ul+ D uf R

=1 s=k+1 SR

Definition. p € M™ is a nondcgenerate crilical point of indez k of amap f: M®* = R

if the Ilcssian of f at p has k negative cigenvalues (counting multiplicities).

Theorem (Corollary of Morsc incqualitics and Theorem of 1lopf). Let f: M™ - R bea

Morsc function on a compact manifold withoul boundary, with v, critical points of index

......................................................................
............................................
----------------------------------------------
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k,0< k<n. Then °*
n .
S (=1)ky = x(M™),

k==0

where x(M™) is the Euler characteristic of M™.

Open dense, usually, generically, almost all, typically

The key result of the theorem above is that the Morse functions are open dense. This
allows us to restrict our altention only to pictures whose critical points arc isolated and

thus to avoid considering pathological behavior.

Here's why. Instead of discussir.)g only pictures and Morse functions, we will talk about
dense open subscts of C"(M, N) gencrally, since the scope then includes things like general
position as well as other properties, with no extra difficulty. Suppoée some opcn dense
set consists of functions which all have some nice property. (We will call such a property
generic. Often generic is defined with respect to a countable intersection of open dense
gots, but for us open dense is enough.) Then, as a consequence of dcnsity, any function
inC"(M,N )-is arbitrarily close Lo a nice one, hence can be arbitrarfly well approximated
(with respect to all » (icrivntivm) by a nicz onc. OF course, we need more Lthan density
Lo be juslified in saying “most.” Dense sets ean have measure 0. For example, both the
ralionals and irrationals are dense in R, yel we don’t want Lo say that mosl numbers are
rational. Requiring that the sct be open dense solves Lhis problem (although note that
the irrationals aren’t open cither, though they are a countable interseclion of open dense
scts (viz. N QR - q), where Q ia the rational numbgrs)).
Actually, it does much more. For onc thing, it allows us Lo completely neglect any
functions which aren’t nice: Suppose we decide that I'un‘ctions having a nice property are
open dense. Then we decide that the same is Lrue of some other nice property. We'd

like to have bolh properlics, of course, which cannotl be glmranl,céd on the bnsig. of only .

density. But the inlerseclion of a finite number of open densce sels is open dense. We
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don’t use probgbility because there is no natural measure for C*(M, N), and no natural
probability distribution. We would like to say that in a measure space of total measure 1,
an open dense subset is also of measure 1, but strangcly enough, even though open dense
sets are very dense indeed, this does not have to be so. For example, one &n rerﬁove
a Cantor set of positive measure from the unit interval, leaving an open dense set of

measure less than 1.

Also genericity is related to stability. There are numerous definitions of stability; we
are éonccrned with structural stability. A function f € C"(M, N) is structurally stable
with respect to some equivalence relation (e.g. topological equivalence) if all sufficiently
small perturbations of f (relétivc to the C"(M, N) topology) result in an equivalent
function. In other words, f is not a freak, destroyed by the least perturbation. With
. respect to the equivalcnce determined by possessing the generic property, the openness
of gencric sets makes a function with a gencric property structurally stable. In other
words, small perturbations of f do not affect the presence of the generic property. And
with respect to some other cquivalence, the densily guarantces that a structurally stable
function will be equivalent to a generic onc. Usually, structural stability is defined
with respect to somne topological cquivalence relation. E.g., we can define 2 functions
| [,9: M — N to be topologically equivalent if there is a homcomorphism h: M - M
such that f = gh. This is the siluation of Fig. GM. Nolice Lthat topological equivalence
guarantces that topological properties will be shared, e.g. A takes level sets of J to
those of g, so the structural stability (with respect to this topological equivalence) of
J would guarantee thal the level sel structure topologically remains unchanged under

small perlurbations. Now the perlurbation could also be derived from: motions of the

observer, and we might be intcrested in some other feature, e.g. a derived boundary.

For Lthc purpose of analysing the picture, we would probably want to focus altention on
boundarics whose lopological structure didn't change with small changes in vicwpoint,

or in the picture (c.g. noisc), henee we would want Lo focus atlention on generic pictures




.................
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and structurally stable features. Of course, we are interested in more than just topology
in analysing a picture, so that is not all we would have to consider, but it is a first cut

at separating wheat from chaff.

Multiple color dimensions: the cases n 22
We now carry on with the proof of the 2-color theorem for higher dimensions

Let f: M™ — M™", be C" and regular at p. The analysis is baséd on the fact that
at a regular point, il there is enough room in the range spacé, J is a difeomorphism
from a neighborhood U of p to f(U). This is yet another version of the implicit function
theorem. The idea of enough. room can be made precise simply by requiring the Jacobian
to be 1-1. This is the case for a regular point if the dimension of. the range space is at
least that of the domain space, i.e. if m < n, which is the situation for us if there are at

least 2 color dimensions.

As before, the possible maps g which solve the matching problem are exaclly those which
take level sets Lo level sets. Since thc g arc dilfcomorphisms, we can just study the maps
of Lhe level scts of, say, Fy, since they are equivalent by a given g,' to the sct of all gg.
(To sece this, consider Iig. (equiv). Let h be a diffcomorphism which takes level scts to
level scts, i.c. which makes the diagram commutative, and define ¢/, = g, o A, 8o that

any h gives us a g,. Likewise given such a g/, define h =gl ogl.)

K 2 K

M K/ai
F,\ lF‘ \/F:

Rll

I'ig. (cquiv)
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So, without any loss of generality, we can restrict our attention to the part of Fig. (equiv)
shown in Fig. (equiv’), where we have replaced the notation K3 by M? to help keep in

mind that we are considering a 2-dimensional region:

M Ey

N\ /5
Rﬂ

Fig. (equiv’)

We pointed out carlier that any A which satisfies our conditions must take level sets Lo level sets. If Fy is
1-1 for some point ¢ € R™, then the level set for thal point is just a single point, and there is no choice
in what A can do: following the lefthand Fy arrow backwards, and likewise the righthand one, we see
that h must take the single point p = Fr'(q) to itsc!l and no other. So the question of the uniqucness
of h becomes onc of studying how F; can fail to be i-1.

First, let's look at how many points can be in 7! (p). By the implicit function theorem,
since the dimension of the range (i.c. the color space) is al least that of the domain, the
level set of a regular value is at most a discrete set of points. Since we are restricting
oursclves to compact picturcs, Lhe level set must be a finite sel (Lo avoid an accumulation
point). lience on a level set, gy i constrained Lo be one of a finite number of permutations
of the finite level sct. Furthermore, since I is a local difcomorphism at a regular value,
the permutation cannol jump around wildly among neighboring points, so that in fact g,
is a permutation of “sheets.” [.c., let p be a regular value of /. Then Fl"(p) = q;, § € Z.
And there is some neighborhood U of p such that I",—'(U) = V;, g; € V;, and the V; are
disjoint. The V; arc then said Lo belong Lo different sheets, and the clfect of gy is to
permute the V;. It may happen that there is a path of regular points joining q; W qx,
so that there is no global sheet as a sct of points, allthough one can make an arbitrary
partition (as is the case for the familiar integral power function in the complex planc).

The sheets may be separated (and conceivably punctured) by critical points. Thus we

are led to consider the topology of the crilical sets, and the cardinality of the level sets.

. e
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Fortunately, others,'not@bly Thom, Boardman, Mather, and Whitney were led to consider
the same questions, beginning in the 1950’s, and we now proceed to use some of their
results. As it turns out, the higher dimensions are casier to deal with in our context, so

we will start with them.

Regular points when n > 3

We are intercsted in studying how F} can fail to be 1-1. We know from the implicit
function theurem that because n > m, F is locally 1-1 at regular points. In other words,
Fy is a local embedding of its regular sel into R™. Bul it may not be a global cmbedding,
since the image may be sclf-intersecting. It is preciscly at these sclf-intersection points
that Fy fails to be 1-1 on the regular set. For a regular p, [ '(p) consists of isolated
points, so we can consider intcrsections of regular neighborhoods. What do these look

like?

Theorem. (sce c.g. [llirsch 1976]) Let M, N be embedded submanifolds of R™. Then
gencrically, dim M + dim N —~n = dim M N N, where a negative dimension teans the

inlersection is empty.

We are interested in the ease where M and N are the images in R™ of regular ncigh-
borhoods in M™, so dimM = dim N = 2. From thc above theorem we sce that the
inlerscetion is gencrically of dimension 2,1,0, and cmpty for n = 2,3,4,5 resp. Thus
if n > 3, the interseclion set is generically of lower dimension in the embedded regular
sets. h must be the identily other than on the interscction (since clsewhere Fy is 1-1),
and since removing a lower-dimensional subset leaves a dense set, A is generically 1-1 on
a dense subset of the embedded rcgul.;xr scls. The continuily of & then guarantces unique
continuation to the interscction, and there is again no choice in the behavior of A: it must
be the identity. So for the regular points, we have disposed of all the cases of 3 or more

color dimcnsions. Now we look at the critical sels, and their dimension,

The genericity of Morse funclions can be gencralized as follows,

---------
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Theorem(Critical set dimension). For an open dense subset of CP(M™, M"), the set

of points of M™ where the Jacobian of f is of rank r
1) comprise a submanifold of M™

2)=0if(m—r)(n-r) >m

3) is of codimension (m—r)(n —r)in M™ if (m—r)(n~7) < m -
(X is of codimensionk in Y if dimX + k = dimY.)
Before we get involved in studying the critical scls for various color dimensions, we state {
2 morc closcly related theorems which allow us to immediately understand the situations ) ]

for 1 or more color dimensions. An immediate consequence of the critical set dimension SRR

thcorem is the 1
Theorem (Whitncy Immersion Theorem). If X,Y arc smooth manifolds, with dimY > L 4

2 - dim X, then maps with no critical points are open dense in C®(X,, Y).

For a picturc; dim X = 2, so thc above thcorem applies when there are at least 4 color
dimensions. In that case, il states thal the typical picture won't have any crilical points

- at all. Hence, Llypically there is only one “sheel” and no folds.

A Turther result is the ::E:f:::.j;

Theorem (Whitney 1-1 lmmersion Theorem). If X,Y are smooth manifolds, with
dimY 2> 2-.dimX + 1, then 1-1 maps with no critical points arc residual (i.e. generic)

in C=(X,Y). R
So with at lcast 5 color dimcensions, we can assume no color is used twice,

Rcturning to the critical sct dimension thcorem, in our case, m = 2, so what the
theorem Lells us is that the dimension of the critical sct is rcspcctivcly 1,0, and empty

forn =2,3,4.

.......
..........................
.............................................
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By reasoning as we didefor multiple points of the regular set, A, the diffeomorphism of
Fig. (equiv’) which leaves the picture invariant, has unique continuation to the critical

set for n > 3, yielding the conclusion that k is generically unique when n > 3 (for n =2

the 1-1 set need not be dense, so the conclusion wouldn’t follow).

To summarize, we have thus far shown that A must be the identity for n > 3, and is at
worst one of a discrete sct of sheet permutations for n = 2. Now we will pursue the case

= 2 a bit further.

If we allow the support of a picture to be all of R? or §2, that is all we can say. (Consider,
¢.g., the function z — z* (for some k > 2) on the complex plane for the picture function.
Then the sheets can be permuted leaving the picture invariant.) But a real picture must
be finite in extent, so if we are considcring subsets of the plane, a rectangle (i.e. a disc)
" is an appropriale domain Lo consider. If we are thinking aboul the sphere, then since
we arc restricting oursclves Lo occlusion-free regions, using the entire sphere would imply
that there were no observable occlusions, which could only happen in the improbable
cvents Lthat only onc objeet was illuminated, or that the observer could only sce an object
which completely enclosed him. Right now we are only concerned with the gcncricity of

mappings of the plane, since we arc in Lthe context of general matching, so we will make

no claims rcgarding the genericity of occlusion or illumination, though such an analysis

is possible. . . o

Let us now assume Lhatl the picture support we are considering is Lopologically a disc.
Then h, being a homeomorphisin, must map the boundary of the dise (a circle S) to ::'ff_::"_-‘q
itscll. If £ is 1-1 then A must be the identity. If not, then consider what must happen
on this circle. A must be contiﬁunblc along S, so for p € S, [~'(p) must contain a .
conslant number of points. This excludes the possibility of transverse crossings of f(S).
But transverse crossings for such a map are gencric, so A must therefore gencrically l;e

the identity. QED |
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at does the 2-'Colpr Theorem really mean?

ight seem that we have shown that monochrome stercoscopic vision is impossible. But
y people with normal binocular vision have experienced stereoscopy with monochrome
ires such as aerial surveys, stick figurcs of molecules, r#ndom—dot_ stcrec;grams [Julesz
y Julesz 1971, etc. What is more, there is evidence that color is not important
uman stercopsis [Gregory 1977]. Machine sterco systems have been confined to
ochrome pictures, and though they have not approached human performance, they

: been successlul in extracting usable depth information.

it led to Lthe 2-Color Theorem was the observation that a change in viewpoint leads
complicaled distortion of an object’s picture. This distortion depends on surface
¢, viewpoint change, and imaging gcometry and optics. The problem was to deduce

listortion from thc data, i.c. Lo solve Lhe correspondence problem. What we studied

the degree Lo which this problem can be soived purcly from the lopology, without
idering the extra complcxiﬁes of many possible gcometric constraints. We conﬁhed
allention Lo open seis free of singularitics, i.c. arcas withoul occlusions, which is of

sc only a part of the sterco vision problem.

were able Lo show that generically the monochrome problem is highly degencrate,

we characterized the degeneracy. For Lhe color roblem, however, it turned out that
ly topological considcrations were cnough Lo (generically) solve the problem, and that [ )
gcometric information was therefore redundant. The conclusion is that there is a big
rence beltween monochrome and color slerco; monochrome sterco requires and must-
fully incorporate geomelric constraints Lo succeed in malching, while color sterco is -

ible without this, and can therefore use Lthe imaging geometry in a diffcrent strategy.

have considered genersc propertics, so there can be infinitely many exceplions. But
» our resulls are for a generic subsct of functions, they remain valid for small per-

alions, and since generic scls arc dense, cvery funclion can be approximated by a
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generic onc to arbitrary precision. The results are gbout degeneracy, and the exceptions
are invariably more degenerate. (This is simply because the exceplion sets are the inverse
images of closed sets, e.g. places where a determinant is 0.) This means there are no
special cases of monochrome pictures that are less degenerate. But it ¢s possible to ﬁnd_
more degenerate cases, so of course color picturcs do not have to be uniquely matchable
- in special cases, the simplest of which is a region of constant color. Actual data contains
noise and nonidealitics, and digitization introduces degencracy, so of coursc cven with
color one cannot expecet perfect matching in a real world program, and surely one would

still want to use constraints of imaging gcometry to help the solution.

On the other side of the cbin, a generic monochrome picture has isolated critical points,
and a finitc number of them for a bounded region. Since crilical points must match
critical points, finding this match is a combinatorial problem, which is made casicr since
the c-ritical points have other attributes which are invariant, as we have discussed in
the carlicr scction on differential topology for vision, and as we will discuss later in the
section on Lopological invariants of the picture function. One can say cssenlially the same
thing aboul. level sels, mutatis mutandi. For a sterco pair of stick figures, then, most of
the matching is between singular points associated with places such as branchings and
terminations. The sticks themselves are individual level sets. Along those level sets, nny:
stercopsis must come cither from special knowledge of imaging gecometry, i.c. the cpipolar‘
geomelry rclating the 2 retinas for a given state of convergence, interocular distance,
focal length, cyc rotalion, retinal posilion, and focus, or additionally from gestaltist
assumplions made by the visual system, such as an assumplion of maximal simplicity.
E.g., 2 horizontal black lincs of different lengths presented one to cach cye give no relative

depth information about the region between endpoints, aside from continuity. [lowever,

this stimulus invariably gives a scnsation of a straight linc receding in space at some fixed

angle. Similarly, a random-dot stercogram is asswmed (o be rectified, so the geometric

constraint is known and casily used. There arc a finile number of dots in cach line, so the
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1 is combinatorial, and there is no attempt to match the area within individual
hich is completely degenerate. The degeneracy is ignored through an assumption
licity in interpolation, i.e. it is assumed nothing new is happening within the dots,
only true that nothing knowable is happening. More generally, we aré concefned
eas of maximal dimension taking values in a space of maximal dimension, in other
in 2-dimensional patches that have a range of brightncsses or colors. The results
almost entirely on these dimensions, so if we consider situations involving dilferént

ions, we must expect different results.

sons for machine stcrcopsis are, as we said above, thal monochrome sterco must
reful attention to correctly using geomelric constraints, while the topology is
te to find a match between level set structures of some appropriate measurement
ice characteristic. On the other hand, color may offer a way to avoid this problem,
8 a large literature on machinc sterco vision, and we will not attempt a review here.
cprescntative works are [Arnold, R.DD. 1983], [Baker 1981], [Baker ct al. 1983],
'd and Fischler 1982}, [Gennery 1977, Gennery 1980], [Grimson 1980], [{fannah
Ohta and Kanade 1983], [Marr 1982}, [Marr and Poggio 1976, Marr and Poggio
Moravee 1977, Moravee 1980], [Nevatia 1976, [Panton 1978}, [Quam 1971). For
st part, the cffeetls of geomelry are not carelully considered; usually il is assumed
iages arc reclified, and no account is taken of possible distortion in the support
ators used in the malching process. Using roughly verlical edges, i.c. plakcs of
rigzontal gradient but small vertical gradient, renders some immunity, since these
imally ehanged under the distortions of Lypical imaging situations. [Arnold, R.D.
udicd how the distribution of edge angles is related Lo geometry. [Baker 1981] did
wline interpolation, but assumed rectified images; this is improved in [I3aker ct al. .
vhere epipolar geometry is explicitly considered. The cpipolar geometry, however,
'mincd by a previous process of camera solving involving known inlerest poi;nt

ondcnces. This permils epipolar line correspondence, but no correclion is made
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for distortion of opératcr supports. [Panton 1978] made some use of epipolar constraints, ‘.
and shaped the window, but doing this involved already having estimates of depth and
surface shape. [Grimson 1980}, following in the footsteps of [Marr and Poggio 1977], -‘
= assumed rectified images, but found that this was not a reliable assumption and resorted T;
to a vertical search to compensate for geometric factors. [Gennery 1977, Gennery 1980}
was able to deal with imaging geometries, but did little about oi)ergtor support distortion.
How does the constraint provided by epipolar geometry fit into the theory we have been - !
developing? The cepipolar constraint is quite analogous Lo the gencral matching constraint: -
1-dimensional objects must be matched to corresponding 1-dimensional objects (we are
confining ourselvgs now to monochrome pictures). For gencral matching the 1-dimensional [:
objccls are level sets. For epipolar matching, they are the epipolar lines. We do not’stddy _
this in dctail, but in the generic situation, one would cxpect thes;: 2 lamilies of curves
to intersect each other transversely, and thercfore give a discrete set of solutions for E;-
cach point to be malched. It rcmains, however, to study what the degencracies of this -:I::j
situation are. This is quite indcpendent of the basic problem of determining the cpipolar ;1
geometry. Gencerally this must be done by some combination of I_mowing the imaging ;:
paramctlers and solving a correspondence problem. Machine systems have relied heavily ",‘"
on the latler, so the problem is more subtle than may appear at first. ‘
When is this analysis useful? _!_
The Fy and Fy of Fig. (t') and the Fy and F3 of Fig. (GM), i.e. the “picture” functions '
we have considered in the general matching problem are assumed Lo be intringic Lo the
) object that is imaged. In practice, the absolule intensity levels or colors which onc has Ll
available in a sct of images are nol completely precise, reliable, or consistent. E.g., they o
are likely to differ in bias (reference 0 level) and gain (mceasuring scale), sulfer the effects
oI‘. change in viewpoint and lighting on image irradiance, And conlain digitization noise. _._
Such considerations have discouraged people .I'rom using programs that try to match raw
A
.
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measured intensity values directly, and instead have led to the use of derived values which
are felt to be more stable. .

Our results are not just statements about so-called tntensity matching. The above
theorems about matching are statements about intrinsic surface characteristics associated
with points in images. They .remain true even if the images themselves are not directly
matchable; i.e. if our goal in matching is to match points that have the same value
of an intrinsic function, then our theorems will govern the uniqu_eness of the match,
regardless of how the actual images must be manipulat.cd, or how they came about. If
a derived function, Lruly intrinsic to the object, is to be matched, our rcsults are just as
applicable, providing, of course, that the new function is not computed in some degencrate
way, destroying genericity (which would lead to even greater degeneracy in the solution).
E.g., the digitization process cannot decrcase the ambiguity, since it is a projectiqn to
a lower dimensional space. Since Lhis mapping cannot be 1-1, it is unavoidable that the
ambiguity will be increased, unless very special conditions occur-. We have not studied

the degradation imposed by digitization sysicmatically here.

Extension to unknown bias and gain settings

" What happens if we try to apply our analysis to funclions which are not intrinsic Lo
the surface? For certain kinds of ambiguity or lack of calibralion, we would like to
know that the data we get still allows the same uniquencss or degeneracy of match as
with an intrinsic function. As an cxample of such a situation, we analyze what happcns
when gain and bias values are unknown. We have chosen this example because it is
commonly believed that the uncontrollability of these parameters is a major impediment
to intensity-based matching. We show that these extra degrees of reedom have no effect
on the degencracy or uniquencss of the malching problem. The extra ambiguity does,

however, posc a greater challenge for a matrhing algorithm.,

Before, we were concerned with the problemn of Fig. (a): inding gy such that Fy = Faog,.
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K L K,
A\ /o
R'l

Fig. (a)

If 2 measurement of the variable z yiclds the value az + b, then a is called the gain and

b is called the bias.

Suppose that we observe the functions Fy and Fa as before, but now the bias and gain
settings may be different between the observations, so we must first correct for the different
scttings before matching. This correction can be compressed into a single lincar function,

giving the new situation shown in Fig. (a-bias).

K, I K,
FN / aF+b
Rl‘

Fig. (a-bias)

The matching problem then becomes Lo find gy such that (affy + b) o g = Fy for some
a € R,bé R"™, and we are concerned with the question whelher such a g, is unique; i.e,
whether there exists some other g which makes the dix;granl commute lor perhaps some
other valucs of a, b. Following the same reasoning as carlicr, this is the same as asking for

a diffcomorphism A which makes FFig. (cquiv-bias) commute for some values of . a, b, ¢, d.
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Fig. (cquiv-bias)

We now will prove

Theorem. The conclusions of Lhe 2-color Ltheorem remain unchanged even for unknown

“bias and gain diffcrences belween pictures.

If we try to find A only for the situation that ¢ = 1 and d = 0, we have cxactly the
problem we considered before, without gain or bias. So any h which satisfics our old
conditions will also work if Lthere is gain and bias crror, although of course there may be
cven more h's for other values of ¢,d. Thus, the gain and bias matching problem is at

least as degenerate as we have proved carlier for the “pure” problem.

The situation of Fig. (a-bias) can also be represented as
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where we have now included the unknown gain and bias parameters in a map

(Incidentally, one can take a to be some n X n matrix, to allow for diffcrent gains in
different spectral bands, including lincar crosstalk. In the absence of crosstalk, a is a

diagonal matrix.) Then the analog of Fig. (cquiv-bias) is Fig. (cquiv-bias’).

Fig. (a-bias’)

Ty:R" = R"
y—ay+b
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We sce from this, as we earlicr saw from Fig. (equiv) that the problem of. uniquencss is
' cquivalent to finding h such that the diagram in Iig. (equiv’-bias’) commutes for some .T-ﬂ
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When T is the identit}, we have the problem which we analyzed earlier, s0o we are
interested in what happens for nontrivial T. Using the same reasoning as before, we sce
that a neccssary and sufficient condition for commutativity is that Vy € R®  h(F7'(y)) =
FTY(T(y)) which we can write h : F7'(y) = FT'(T(y)). (Note that the inverse images
are sets, not points, as F; may not be 1-1.) But there isn't any guarantec that T'(y) €
Range(F}), even if y € Range(F)! Since h is a diffeomorphism, whatever we say about A
also goes for A~1, so the first prerequisite for the existence of h is that T(Rangc(F;)) =
Range(/",). Suppose that Range(Fy) is bounded. This must be so if K is contained in a
combacl, sct; and in any case any real image would have a bounded range of values. Then
it is casy to sce thal lor scalar gain or no crosstalk, this cannot be the case for a nontrivial
T. For the more general casc when 7 has cross terms and/or Range(F}) is unbounded,
iL scems likely that T and F; would have to be very special, and hence not generic, for
. the range condition Lo hold. We illustrate the ready failure of the range condition for

monochrome images in the following figure:

£,
RN /\

Fig. (Range condition)
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The 2 humps repreéent'a part of Fy, before and after the bias/gain change T. For the T
value represented by the planc slice, there may well be no corresponding value in the '-
bias/gain-changed image.
Thus we‘ have shown that even if we allow for the possibility that there may be unknown 5 i
bias/gain changes between corresponding images, so that we are forced to do matching %
of values corrected for arbitrary bias/gain, our results remain unchanged. Furthermore, . *;
we have shown that for reasonable 7”s, T is unique; i.e., there is only 1 possible bias/gain :;.:
transformation which allows matching. QED |l ‘
So lar, though, we haven’t addressed the question of discovering the correct T. Let's —“ ‘J
consider only the.monochrome case, so that the bias/gain parameters a, b are both scalars, rj
and assume that Range(F) is bounded. If the upper and lower bounds are known for - ‘
both Iy, I3, then it's clear that there is a unique T which takes corresponding bounds to :::
cach other (assuming a > 0, i.c. onc image is not a negative of the other). Unfortunately,

this would not work very well for real images, since noise and inconsislencies between

images might result in meaningless end points for the ranges. Ideally, we would want to .
match lopological features stably in the presence of noise, without the requirement for [:L
finding the bias/gain relation independently. : 1
Referring to Fig. (a-bias’), we can stale the matching problem in the presence of noise as -
follows. Looking for the best match means trying to find mappings g, 7y, which optimize L’“‘i
the value o(F3 o ge, Ty o Fy) of some similarity measure ¢ : C*(K,) X C"(K,) — R. )
(Candidates: L? distance, cross-correlalion, ete.) The measure should be chosen in such b

a way that the oplimal g, Ty arc in fact the most probable, given information about
the statistics of the noise, the stalistics of g and Ty, and the statistics of images, i.e.
some “probabilily” distribution on C"(K). The quotes are there becausc it is a difficult
pfoblcm to define cven a measure on an infinite-dimensional space; c.g. such spaces do

not admit translalion invariant measures. Also Lhe oplimizalion musl be carried out over

...............
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the inﬁnite-dimensional'space of diffeomorphisms between K; and K3. This suggests the

use of a variational principle. Of course, simplifying assumptions can be (and are) made.

It’s important to notice that the addition of noise does not change the applicability of our
results. For if we are seeking the “true” gy, i.e. the one which specifies the correspondence
between the unadulterated images, then any equivalent g/, that may exist as a consequence

of our results will match the ¢dentical unadulterated images, hence will be just as good as

g~ under any measure of the form of o. Of course, the corruption of the noise may lead to

further degeneracy. One expects that the similarity measure can be designed so that the

e,
LN YN €

matching process is stable. L.c., small amounts of noisc should lead to small uncerlaintics
in the match (modulo the topological ambiguities we have shown), and sufficiently small

amounts of noisc should not disturb Lopological properties of the solution.

Rather than tackle this difficult problem now, we skclch a possible (Lthough simple-

minded) way of finding 7y independently. In the presence of noise, some averaging method

is called for. Instead of Lrying lo malch only extreme values [notc that finding T is a
malching problem in the range space|, we might try to somchow match some kind of S
average ranging over all values. Fig. (Range condition) suggests onc approach, which

is rcasonable il g, is approximately an isometry (which is often the case in practice).

The idea is that for cach y € Range(l), the measure u of h : F7'(y) should be the
samc as that of F7'(7y(y)). IT we picture the slicing planc in Fig. (Range condition) as
moving up and down, then whal we are saying is Lhal corresponding slices in the 2 images DR
should have cqual total arc length. We alrcady know Lhat generically, these slices will be
-manifolds, so we are justified in using arc-length as our measure. Let Si(y) be the total sl
arc length of l":'(y), for i = 1,2. Then we can plot 8y and Sz as functions of the real
variablc y. Note that these arc continuous, but will have discontinuitics in derivative,

corresponding to critical values of F;. The graphs will look something like those in Fig.

(Range).
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&l
Range F, '

S, ' L0

—
p———p} 3’ Pt
Range Fy r ]

Fig. (Rangc)

i
g

IF 7" is monotonie (which is of coursc Lhe case for Lhe 2-scalar bias/gain), then our problem

is to match §; with Sy by a lincar map. In practicc this would mean malching histograms

:
. -2

of gray values. Since the search space is only 2-dimensional, this could be done by a brute
force method. Alternatively, Lechniques exist for maximizing such matches, e.g. time-
warping. This lechnique, like histogramming methods in general, ignores topological and

geometrical relationships.
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Topological Invariants of the Picture Function

Introduction
: ]
It is well-known that computer scientists are fond of graph-theorctic approaches, so it is
plcasing that the diffcomorphic invariants of (monochrome) pictures are well-represented
as graph and tree structurcs. In this scction, our goal is a representation of the picture -
topology Lo be nsed in the service of the matching problem. This requires us to present .  ,‘ i
the applicable theory from differential topology, adapt it to our purposes, and allows us »
to make soine observations along the way. ) ,
.
We review the definition of Smale diagrams, and establish the topological propertics of e 3
level set trees. [Koenderink and van Doorn 1979] independently proposed level scls as ‘
Lopological invariants, but put them to different usc, mainly as means to compute features -.~u-1-
of individual images, such as metrons and aperture spectrum. [Krakauer 1971] used a re- L]
lated structure for experiments in image analysis. Tle was inlerested in characterizing the l:;f-":'_"-‘_;',
shapes of Lhe level sels al, all iinage intensily values as a method of object classification. e J
used measures like cecentricity, region area, and scatter diagrams in an cffort to identily :, “j
various [ruil, a fitling goal for a tree approach. lle did not consider Lopological questions; ':'i:_-"'.r:f'

the work was an attempt at direct interpretation from region-based descriptions, with

little analysis of the nature of the image inlensity function. ..

We, on the other hand, are concerned with the topology of the tree, its deformations and -f: R

bifurcations as we move through the space of piclures, and the use of the bifurcalions

in handling noisc. In gencral, we are concerned with using the level set trec as a 5 ‘1

representalion, considering its generic behavior over the entire class of pictures, and using

it in the matching problem. [n a later scetion, we apply this structure to understanding -'_'.:-jj

scale space [Witkin 1983]. We also make some obscrvations about the stability of zcro- ’ » } _;

crossings. These applications are all new. ';{’
!_
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Smale diagramé and‘level set trees

We can formulate the general matching problem as a finite graph-matching problem. The
nodes of the graph are to be the critical points of the image function Fy, and the (graph)
edges are the gradicnt paths between the critical points. As we saw earlier, Morse theory
" tells us that generically the only critical points are maxima, minima, and saddles. More

formally,

Definition. Let f € C(M™,R) be a Morse function. For cach critical point p € M™,

define the steble and unstable manifolds, resp. of p as follows.

W(p) = {z € M™ | the uphill gradient linc of f leaving z converges to p}
W~(p) = {z € M™ | the downhiil gradient linc of f lcaving z converges to p}

Define a partial order < (and hence a directed graph) among the critical points by ¢ < p
it W*(p) N W(q) # 0.

Colloguially, ¢ < p means you can get from p to g by going downhill along gradients (Lhe :
sense of the partial order is chosen to rellect f(q) < f(p)). S

The Smale diagram [Smale 1967] of [ is the ordered graph obtained by refining the

preceding partial order so that p — ¢ il ¢ < p and there is no 7 between p and ¢, i.c. such

that ¢ < r < p. A generalization of the same idea is known as a Smale quiver [Abraham BN
and Marsden 1978). i
¥
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spatial extent of the ignored features. These are the 2 parameters which are linearly
combined in a linear smoothing operation, but here they are completely scparable, and - sy

therefore accessible to reasoning machinery. Each subtree has its own characteristics,

so a structure like this can be made as “adaptive” as you want; e.g. twiddles on very
big humps might not mean too much, while the same twiddles on little humps might be
quite important, though linear measures of local variation could bg identical. This really
has a philosophical basis in the principle of lcast commitment and in the Al paradigm of

symbolic (thus nonlinear!) reasoning.

Not every bifurcalion, and thercfore not every smoothi‘ng, amounts to lopping off a
subtree. As we saw before, we can also pass through a saddle connection. This implies
that using the tree data structure requires some added sophistication, viz., keeping tr#ck
of where saddlc nodes are rclative to cach other. More generally, therc must be a notion

of measure of stability—how far it is (in the function space) to a bifurcation.

We have described all the generic bifurcations of the level sct structure. A generic scale
spacc operalor (i.e. a l-paramcler family of smoothers, whose ¢ = 0 mcmber is the
identity) can thercfore have only these bifurcations. A particula} operator, however,

might nol have generic bifurcations; e.g. il might imposc some special constraint that

only allows spccial behavior. I.g., never creating zcro-crossings is not a generic property
for scalc spacc smoothers (Lthough it says nothing about the bifurcations of crilical points).
We have been able Lo show, though, that the generic critical point bifurcations of Gaussian . ;
scale space arc nol special, i.c. are the same as for generic perlurbalions, and arc thercfore jii_ﬁj::fw
among those we have described [Blicher and Omohundro 1984]. It remains to study which .

of these aclually occur, and what are the unfoldings of the zcro-crossing level set.

Now we can makc some comparisons between Gaussian scale space and the level set
topology trece. We have scen that zcro-crossings arc not stable, e.g. ncar a saddle in

the picture. It is not clear whether the range of scales can (ix this, for this depends on
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the entire scale space & R?, and codimension 1 manifolds are surfaces. The locus of

zero-crossings in scale space is one of the level sets of A.

To understand this level set of h is to understand zero-crossings in scale space. [Yuille
and Poggio 1983] state that the Gaussian is the unique convolution kernel which does
not create new zero-crossings with incrcasing ¢, under a number of reyilarity conditions.

[Babaud, Witkin, Duda 1983) and [Hummel and Gidas 1984] also study this question.-

We saw that the level sct topology tree is a stable description of the level sets of f, and has
simple, well-understood bifurcations. The nesting structure gives us an intrinsic, global
criterion of relative scale, for il node z nests in node y, we know that z is a “Lwiddle”
of y, and likewise for any sub-sub-nodes. Here's a way to think of this. Consider Fig.
(topo) again. The saddhl‘e J is the 2nd Lype from‘ the + column of Fig. (level). That means
. that we can take the stull that éil.s above it on say the left side, cut it off at the f saddle
level, and replace it by a simple cap. This could be done smoothly by some bifurcations
(eritical point annihilations) inside that sidc of the figurc-8 of f. This is smoothing; highly
nonlincar smoothing, however. OF coursc the exacl single maximum cap thal we get isn't

uniquely defined, but why should it be? The picture docsn’t have one cap or another;

it has some complicated structure. The only justilication for choosing a particular cap
would be Lhat it was somchow special. In the tree structure, what this amounts to is

simply contracling a subtrce Lo a single node. In a real picture, the tree structure is apt to

be quite complicaled, with greal numbers of nodes. There will be ai enormous number of g
ways to conlract nodes Lo achicve grosser (smoother) representalions. Actually, it may be 1
betller Lo consider the problein not one of multiple representations, but one of intelligent :_::':‘.'i
usc of the singlé tree representation as a data structure. From that viewpoint, depth in ;', j

the tree corresponds to degree of detail. [lowever, that information must include more

than nesting depth: there must be a measure of the significance of the ignored subtree.

This can come from 2 things --the size of the up and down cxcursions in Lhe subtree

(i.c. the range of leal heights), and Lhe size of the support of Lthe subtree nodes, i.c. the
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Scale Space

In our discussion of the works of Marr, Hildreth, Canny, and others, we saw that an

important problem is the description of the picture at various scales. Small scales have
the advantage of precision, and can pick out small features, but are susceptible to noise. o j»'j
Large scales can see large features that aren’t visible in a small peephole, and can have

good noise immunity thanks to averaging, but large linear operators confound space and

intensity—they blur things. ]
[Koenderink and van Doorn 1979] proposed an aperture spectrum of an ihage be computed
by convolving with a 1-paramctler family of window functions. The aperture speetrum is ,._.. :'..-j
the sct of bifurcation values of the conlrol parameter, in the usual parlance of bifurcation b
theory. [Crowley 1982, Crowley and PParker 1984, Crowley and Stern 1984) scarched for

somc.geometric features in data resulting from a sequence of convolutions with Gaussians, ]

but did not consider geometric or {opological theory. [Witkin 1983] also convolved
with a 1-paramectler family of Gaussians, and considered Lhe bifurcalions of zcro-crossing

topology in the combined control-behavior space (sce [I’oston and Stewart 1978]), i.c.” the

product space of the parameler and image, which he calls scale space. This is the usual

approach of bifurcation theory, but [Witkin 1983] did not consider topological theory.

SRR

The scale spacc operation is :
Mt 2) = Gula)  /(2) o

]

where [ is the immage, and G, is a parametrized kerncl. For scale space, a sccond derivative ]
operation 8 required, so cither [ is the Laplacian of the image and Gy is a Tamily of - _'j'.j
Gaussians, or [ is Lhe image and G, is a lamily of Laplacians of Gaussians (z is a point ) Lﬁ:
in the picture spacec R™). Under these conditions, thc‘objcct ol interest is Lhe locus of };_3
scrocs of h. When (¢,z) is a regular point of h, the inverse function thecorem tells us -':::
that A~'(0) is of codimension 1 near (¢, z). This allows tying Logether zc;'o-cr.os.sings at .\;

different scales, which was a major obstacle for many edge finders. For a picture on R3,
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critical point) along the%ection of the tree on which it lics. When 2 nodes in the tree come .

together this way, giving 3 offspring of the combined node, we have a saddle connection.

Also, buds can form anywhere (but generically away from other nodes), creating critical.

points, and leafl nodes can atrophy to nothing, annihilating critical points.

For a generic path like this, critical points can only be created or annihilated in pairs, for

it is easy to construct arbitrarily small*perturbations which separate the critical points

into pairwise events. Recall that the Morse inequalities tell us that (with good bchavior o

at the boundary), the sum o

Y1)k S

k=0 e

.l L

must remain unchanged, so new critical points can only be created or annihilated in o .

extremum-saddic pairs (the saddle-node bifurcation). ij:‘

In the presence of noise, then, Lhe level set structures of the 2 images may not be the same. _M“____
4

They will differ by some sequence of the above bilurcations, which have simple cffects on
the level set tree. Equivalently, the 2 images will be connected by a path in function space
which crosscs some number of bifurcation frontiers. The matching problem can then be
reduced Lo a minimal path or optimal tree matching problem (with. labelled trees). The:
palh Lo be minimized can be viewed as a sequence of level set Lopologies, equivalent to a

sequence of bifurcations, or as the path in the Tunclion space itsell. We have nol studied

the oplimization criterion, but measures which could be taken into consideration are the
number of bifurcations and the size of perturbations (in view of knowlcdge about the:

noise).

Occlusions result in localized but large differences between images. Globally, they couldl , ’
be handled by cxcision and pasting of trce parts (grafting?). 'fhis is delicate, ilowevcr,
since onc must first study the global clects of excision and pasting. Another approach is,
to usc a number of local analyses, for example for a numb& of regions sclected by bump.

functions (which go from 1 to 0 sinoothly to all orders in a finite space).

........... . e T T T e e, - ~ R P T - -
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Iig. (saddle-conncction) o

The top part of Fig. (saddlc-conncction) shows a generic level set structure with 3 maxima. :,.'_-' ;
. “ 4
We can smoothly increasc the height of the lower saddle until it is preciscly at the same ! -y
level as the other saddle, at which point the topology abruptly changes Lo Lthe middle

picture, called a saddle connection. As we conlinue raising the level of the saddle, we :t‘__ -
immediately get the boltom picture, which is again stable. A similar silualion occurs - [ b
1
when Lhe other kind of saddlc is involved. -]
If we think of the path through function spacc as a homotopy of maps Lo level set tree A
spaccs, it is casy Lo visualizc how the trce can change. Changing the height of a saddle |
correaponds to sliding a saddlc nede (a node in Lhe tree, nol the same as a saddle-node ‘j‘jﬁj :
R
RPN
." b .-]‘
’ .
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talk about what a single noise signal can do to the topology; we are not going to attempt
here a statistical study of these effects, so we will not consider, c.g., what the. average

cffect on topology will be. It is, however, possible to do such a study; the enscmble

properties must be considered over an appropriate space of control parameters, of course.
E.g., these could be taken as parameters in the equation of a smooth surface. Examples of
- statistical yet topological studies of smooth functions are [Longuct-Higgins 1960}, [Berry *
1977), [Berry and Hannay 1977). '.

Think of a knob we can turn that gradually adds the smooth noisc signal that has

contribuled Lo the function we are observing; this corresponds to a path in function space -.
L S
whose parameter is the amount the knob has been turned. Let ¢ = 0 correspond to the S

unadulterated picture, and ¢ = 1 to the picture with the noise we are.actually observing.
E.g., we could let fn(t) = fo+tN, where fo is the unadulterated picture, N is the noise,
and fn(t) is the adulterated picturc at knob sciting ¢. What happens to the level set
topology as we Lurn our knob? Since it is stable, the topology chnné,cs al places where
the function is not generic. These changes arc called bifurcations or-catastrophes and are
completely classificd by singularity, or so-callcd catastrophe, theory [e.g. Arnold 1984,
Poston and Stewart 1978, Chow and llale 1982, looss and Joscph 1980], providing simple
rules which specify how the topology of f can (locally) change under such perlurbations.
For our case, 1-parameler familics on R2, Lhe situation is especially simple. Generically,

there are only 2 ways this proccss can change the level sct topology:
o Passing Lthrough n saddle-connection.

¢ Creating or annihilating crilical points.

--------------------------------------
....................
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sero-crossing contours. ‘Of course, one wants ultimately to segment the image, and the
level set topology does not do that. We have argued that rcliable segmentation can only
be donc after first getting a qualitative global understanding of the picture function, the
type of understanding in which the level set topology is one element, and a beginning
one. We wouldn’t advise, therefore, to attempt segmentation at this stage. Nevertheless,
if one insists that it is approzimately the zero values one is .intgrested in (we do not
nccessarily conlend they are the correct thing to be interested in), then if one knows
which critical points have values near 0, there arc then a finite number of zero-crossing
topologics depending on whether any given eritical point has a pésitive or ncgaltive value.
One could then use a const(aint propagation procedure based on other information to

sclect a parlicularly intercsting subset of topologies.
. e d .f o

Let's come back to the problem of noise changing the level sct topology or the Smale

diagram.

What kind of a modecl are we going to use for noise? We arc working in the domain of
smooifh functions, so we arc going Lo take any noisc signal to be a smooth function, in
keeping with the premise thatl the image irradiance is a smooth lunction. The statistical
analysis ol noisc involves computing integrals, so a natural sclting for stalistics is in L3,
a space which contains mainly non-smooth functions. There are several reasons why we
are justified in nonctheless taking our noisc signal to be smooth. While it is convenicnt
to do integration in L2, physical signals are in realily bandlimited. Any imaging situation
is well-modelled by a process that includes convolution with a smooth kernel, e.g. a
Gaussian, i.c. it is impossible to avoid some amount of blurring. As we stated in detail
carlicr in the scction Edge Localization in Both 8 and z of the chapter Contributions
l.o' Edge Detection, a standard theorem [Lang 1969] tells us that the resull of such a

convolution is as smooth as the kernel, even if the signal is only in L!. We are going to

...........
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is evident in sero-crossing edge finders when the connectivity shown in Fig. (Conn-a) is
found in one image, while the connectivity of the corresponding region in the other image

is found to be as in Fig. (Conn-b).

r

a M «0 X
o” //} - o://l\\'\

[0/

Fig. (Conn)

Referring back to IFig. (saddle), it is casy to scc how Lhis can happen with only a
small amount of noisc (or incxact mask-region correspondence belween the images in
a convolulion). Supposc that the funclion whosc zcro crossings onc is sccking looks like
a saddle, wilh the critical value ncar 0. Then it is casy to imagine that in one image the
zcro planc would slice the saddle a litlle below the critical value, while if the other image
n has slightly smaller values, the slice would be above, yiclding the grossly dilferent (i.e.

topologically different) connectivity patterns,

We stress that in this case, even though the zero-crossing conncclivity is unstable, the
level set topology and the Smale diagram are unchanged. Topologically, at lcast, the level

sct Lree and the Smale dingram ase more robust representations of the function than the

....................................................................
...........................................................................
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nesting diagram 6nly clussifies the coarser space of level sets. For example, in Fig. (topo),
the 2 parts of the figure-8 of saddle d can be essentially interchanged by a l-p.arameter

family of diffeomorphisms, viz., by shearing in a neighborhood of some level sct just below

d, just as in the proof of the 2-color theorem. In other words, choose a regular (circular)
level set between d and f, grab the stuff above it, and rotate that stuff 180°, sliding along
- the level set. That can be made smooth by shearing in a ncighborhood and splicing with

a bump function. This doesn’t change the level set topology, but it does interchange the )

e e
. . ."..'o_' TN
A 1 g '_.; L
(™ U TR SRR

roles of the components of the figure-8 in the Smale diagram.

R
o
Fry.

Stability

4
. »'1
¥

The Smale diagram and the level set topology are stable for generic functions (i.e. Morse

functions), i.c. they do not change under small perturbations. That mcans they are

good ways to characterize the Morse functions, since the space of such funclions is then j
parti;.ioncd into open regions (the boundarics arc non-generic). Notice that stability is !_; |
a criterion for robustness, in that it means that there is some latitude for crror- which : *
leaves the dc:;cripti‘on unchanged. Right now we are interested in the lével scl structure i
of J rather than the lopology of Vf, so we will only discuss the level set topology. i:-:
Unfortunately, the stability above, by itsclf, is not quite good cnough for a practical -
syslem. What “small perturbations” really means is that the diagram will not change : 1
il the perturbation is small cnough (values of derivatives are included in the measure). .;
The problem is that there is no guarantee that noisc corruptling the images will be small hﬂ_}
cnough. Furthermore, for any given size of nontrivial noise, one can find a Morse funclion fj;-{ :

with a critical point so delicate that the level set topology will be changed by the noise
(Lthough not by ¢ times the noisc for some ¢, thus adhering Lo the stability theorem).

Thus, a node (extremum) and a saddle might be introduced.

Instability of sero-crossings

A simpler cousin of this cllect, not even changing the level sct topology or Smale diagram,

........
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Fig. (tree)

Fig. (Lrec) shows 2 representations of the level set space for the image fragment in Fig.

(topo). The irce on the lcft is drawn to show Lhe nesting structure, relative heights, and
extremum Lype of Lhe critical points: Lthe absolute height of cach node in the tree is meant
to correspond Lo Lhe value of its corresponding crilical point in the image, and the arrow
is to be read “nests in.” The right half of the figure shows just the bare tree, where a
subnode ncsts in its parcni node. Node a is the global maximum, and w is the global
minimum, in the following scnse. For a compact manifold without boundary, @ and w
aré always critical points, but when there is a boundary, they correspond to the maximal
and minimal closed level sels. This can be itnproved if the gradicent is always Lransverse

to the boundary, or smoothing with bumps can allow cxtension to the sphere.

The important difference between the level set tree and the Smale diagram for functions
on 2-manifolds is this. Funclions with the same level set topology can have dilferent Smale

diagrams, for the Smale diagram classifics the gradient flow of the function, while the

...............................................
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Fig. (level)

The ggncrativc rule is that any ‘+’ can be replaced by anything from the ‘+’ column, and
similarly for ‘='. The symbols represent a maximum and minimum, respectively. The
-2 types of figure-8’s are saddlcs (or more precisely, Lthey arc the scparatrices associated
with the saddle at the crossing). This leads Lo a representation of the topology of f as a

tree, where the branch nodes are saddles and the leaves are extrema. In fact,

Lemma. As a lopological spacce, the level set tree is homeomorphic Lo the space of level

sets.

Proof. The lopology is given by the local mebric induced by the level values. U is casy

to check that this is well-defined. .

":‘ ‘.‘,':' A,'.',','.'.'.v . . L .
/A/I'.‘( -. '.". T N
PSP el

!y

This structure is very similar to the Smale diagram, and the problem of matching 2 .

‘s
')

N
D

e

. .
- "d

(monochrome) images is now cquivalent o linding Lree isomorphisms between the level

i)
P SV I I X

sct Lopologics (which preserve the itnage values at the nodes).
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like drainage basins for’lakes). The basins of attragtion are separated by 1-dimensional.
boundaries (like the continental divide). Clearly every non-critical point musi be in &
basin or on such a boundary. If we turn things upside-down, the new basins of attraction
are now basins of repulsion for the right-side up picture. [Nackman 1982, Nackman 1984]

catalogs some of the behavior of functions on R? which can be deduced from the partial:

- order used to define the Smale diagram. (lle calls this partial order the critical point

configuration grapk). Some examples of the modern mathematical approach to these

features can be found in {Abraham and Shaw 1981, Gilmore 1981, Thom 1972, Hirsch
and Smalc 1974, Abraham and Marsden 1978, Smale 1967].

The Smalc diagram is a diffcomorphic invariant of the vector ficld Vf. The matching
dilfeomorphism gy, howévcr, carries with it the values of f, not of V/f .' And diffeomorphic
cquivalence of [ and A is not cnough Lo guarantee dilfcomorphic cquivalence of Vf ahd
Vh, except for sulliciently small perlurbations. If g. is not Loo cxtreme, though, the
problem of matching 2 (monochrome) images is equivalent to ﬁnfling an isomorphism

between the Smale-dingrams of the images.

Inslead of considering Lhe topology of the Smale diagram, which classifies the gradient
vector ficlds, we can consider the topology of the level sets of f. As [Koenderink and
van Doorn 1979} have obscrved, these level sets obscrve simple rules in their nesting,
which define o generatlive grammar. In fact, the only possible structures arc shown in

Fig. (level).
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a b 3 d Q € 9

RO K@= @---
| | |

| 2 |

Fig. (partial order)

a b '3 d Q £ 9

R OG- @—x—@---
| i

]
t v 1

Fig. (Smale diag)

IMig. (Lopo) is an example of a level sel structure one might find in an image. The partial
order we have defined among its critical points is shown in Fig. (partial order), and
the refinement to a Smale diagram is shown in Iig. (Smalc diag). The dashed arrows’
represent partial order relationships which might cxist with other critical points if we had

exlended Lhe picture farther,

The entire topological struclure of V/f is given by its Smale diagram (posf;ibly along
with some oricntation information) [Peixoto 1973). I we know Lhe Smale diagram, then
we know how the critical points are connceted, which Iqts us make deductions about
thé topology of the level sets between them. FE.g., each .crit.icnl point has a basin of

attraction, the sct of all points whose gradicnts cventually lead Lo that critical point (just

.................................
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I*ig. (topo)

..............
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the behavior of the smeothing near saddles. The level set topology, however, s stable.
A case has been made that scale space allows tracking zero-crossings from coarser to

finer resolution. The level set tree requires no tracking; the coarscness is established

. by depth in the tree (in the above sense) and the level sets at that depth are already

precisely located. Gaussian scale space contains metrical information, for the result at

3 - a particular scale says something about extent. However, this metrical information is
t confounded with intensity information, as we have seen, so it is of limited value. The
[ level set tree allows separating space and intensity. There is a double confounding of the

metrical information, actually, becausc if we lift the Gaussian kernel lo the surface that

is projected to the picture, the nature of the kerncl depends on the shape and orientation
of the surface. This mecans that a change in viewer position, e.g., will give different
results for the convolution, and while the zeroes of the Laplacian of the raw image are
invariant, the zcroes of the smoothed version are not. The level set topology, of course,
is in\;ariant. Gaussian scale spacc is a particular class of bilurcations of the level set
topology, a particular scl of paths through function space, and so a -specialization‘ of the
struclturc we Arc proposing. But the question is, why should the image values resulling

from this particular smoothing be spceial?
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Motion, Optic Flew, and Lie Algebras®

Introduction

For the past several years, many researchers have been investigating problems of moving
objects and observers (see e.g., [Tsai and Huang 1984), [Prazdny 1981), [Prazdny 1983},
- [Buxton and Buxton 1983}, [Nagel 1983], [Horn and Schunck 1980], [Tsai 1983a), [Tsai
1983b), [Prazdny 1980}, [Bruss and Ilorn 1983], [Ullnan 1979]). The paradigm of this
rescarch is based on the I'ac@ that a point moving in space projects to a point moving
in the picture. The problem is then usually approached in 2 sieps. First, to find the
molion in the picture, the optical flow, you find corresponding points in 2 or more frames.
Then, given this set of correspondences, cither for a few or for many points, you solve
some sct of equations which yields the motion in space. These 2 subproblems have
generally been approached separately; thus there are 2 classcs of results: how to match
point.s (correspondencc), and how to compute motion from matches (c.g. how-many
corresponding points it takes). The correspondence problem, unfortunately, is subject
to degeneracies, as we have shown above. E.g. at a single point, the image function
and its time derivalive tell us nothing about motion perpendicular to the gradient of
A the image Tunclion. If possible, then, it would be better Lo consider the problem as a
whole, and avoid new diflicullics created by a partieular choice of subproblems, for, as
we showed above, the correspondence problem is much harder without knowledge about

the 3-dimcnsional changes that underlie the differences between pictures.

All the information which we have about the scene is contained in the time-varying
picture, which is a function on sofuc 2-dimensional space, as we said in more detail earlier.
Our final goal is to deduce the shape, position, and motion of the 3-dimcnsional objects
that give rise to this function. We want to approach this by looking only at the function

itself, i.e. the time-varying image, and without the constraint that our intellcctual path

*This work was done with the collaboration of Stephen M. Omohundro.
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go by way of first findimg some point motions in the plane.

The situation is this. Some rigid object is moving in space. Qur imaging of it gives us

a function, the image intensity function, which undergocs continuous distortions most

everywhere. These distortions are a result of the motion and of the shape and position

of the surface. The préblem is to scparate and quantily the sources of what we see.

The whole time course of the image has a vast amount of information in it, so it is casier .

L o an an an s aa o

to consider only parts of the information at once. One can look at what is happening
over whole chunks of Limne, or only at a single instant. For diffcreniiable situalions, the

differcntial theory is usually Lhe easier, Lransforming nonlincar problems into linear ones,

S L e o at an

so that is where we start. : 4

We prove some new theorems establishing how much picture information is ncccasary

- and suflicient to specify object motion. An important fcature is that we do not assume

that we can track individual points in the image, nor that we arc given any of their ’
velocities (i.c., the optic low). The major result is the 6 point df/dt theorem, showing ::-:::i‘:
that generically*the values of df /dE at 6 points of the monochrome image f are necessary ::?f:--‘
and suflicicnl to specify the motion of a given object. If we add color, we find that for 2 ':
“or more color dimensions, df /dt need only be known at 3 non-collincar points. Also, for :_
2 or more color dimensions, Lhe oplic llow is gencerically uniquely speceified, in contrast to :;::-.'-';
the monochrome case, where there is a 1-dimcnsional degeneracy. . -
We are going Lo usc the notalion of modern abstract gecomelry: Lic groups, Lic algebras,
tangent planes, vector ficlds and bundics, cte. This lets us say things very compactly
. and simply, once the definitions arc understood. Everylhing could also have been done .
without Lhese abstractions (except maybe the use of gencricity), solcly in the language e
of classical calculus: vectors, rotation matrices, coordinate systeins, etc, just as any -
Recall from our discussion of the 2-Color Theorem carlicr in Lhis chapter, that a generic property is one .__“_

which is truc for a Lypical clement of a space, i.c for a very dense subscl of thc spacc. For this scclion,
we Lake this Lo mean an open dense subsct.

........................
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computer program can‘be written in machine language, using absolute addresses. It is
easier, though, to understand one written in a more abstract notation, especially if you

don’t happen to be its author. Instcad of a maze of calculations, the reader is presented

with simple (but rigorous) descriptions. Abstract mathematical treatment actually does v
more—it lets you understand a whole class of problems at once. Incidentally, this is really
morc than just analogy; the process of specifying concrete objcéts for abstractions can be -
automated into a compilation, so abstract notation can actually be used as a high-level

programming language,

[ MR
e e
A achea die

The mathematical structure
The situation is again that of Fig. (+'), except now the nature of the transformation g

will be paramount.

R — R
v N /' U
M3 © M3
(O2N)
x 5 Sg l‘l’ .
z lF \1 \
M? M2
R"
)
U e
A 1 F"-\ L
K -’—') K,
Fig. (+') .
We are interested in rigid motions in R3, so g € E(3). Thg time evolution of the motion "Z'_._
is ‘thcn given by ! " B
iR - E(3)
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i.e., as a path in the trhnsformation group. In faqt, 4 defines a 1-parameter family of
transformations. Since we arc interested only in small changes from the current s;tate, we
take 4(0) = I, the identity in E(3) (we could have done this anyway by using the group

> structure to translate back to the identity). For every ¢, 7 gives a rigid motion of R},
since we arc identifying E(3) with the rigid motions of R3:

4(t): R® - R3

Each'point of R3 is carricd along with this motion, and describes a path in R3. In
particular, cvery point of our surface of inlerest, cmbedded in R3, has such a path. Now
apply the im#ging _projcction, and restrict allention only Lo the visible surface of -the
cmbedded object. By composition, this leads Lo a path through cach point that gets hit
in the image. Now consider only a single Llime, ¢t = 0. The structurc we have presented

thus far is summarized in I'ig. (flow).
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AYr————

G 5(3)

Iig. (flow)

LEach such path in the picture has a velocity vector, and each point in the image has a
path, so there is a vector ficld defined on the image. This is what is usually referred to as
the optic flow, though it would be more consistent with mathematical terminology to call
its integral, i.e. the paths in Lhe image, Lthe oplic flow. We will reserve the Lerm optic flow
for this integral, i.c. the map p, : U — R? which spccifics the paths of corresponding
points in the picture with initial boinl.s in the region U, while using optic velocity field or ‘
optic vector field for its instantancous velocitics, the veclors dpe /dt. Similarly, the paths
in R3 dcfinc a vector ficld on R3, and the path 4 in E(3) dcfines a tangent vector at t.l;e
identitly in E(3).
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The available data, however, is not the optical flow or vector ficld, but the Lime-varying
picture functlion f; which is just the projcction of the intrinsic surface function F, under
the samc approximations we used in choosing a mathematical structure at the beginning
of this chapter. Since we arc considering only Lhe differential theory, we regard our data
as lelling us only the instantancous value fo, and all Lthe Lime derivatives at ¢ = 0. This
is the same as knowing the Taylor serics for f;. We will only usc the 1st derivative for
now. At a point p of the image, call the optic low vector v. Then in a frame with velocity
v ﬁt p in the image, f¢ docs not appear Lo change; the optic flow specifies the motion of

corresponding points. Thus il we leave the frame fixed, we sce that
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G408 = =D\ (p)

where D, means diffcrentiation by the vector v, equivalent to vV, so that

S 1o) = —v-VAi(p), (+)

" (The more formal version of this theorem can be found on p. 91 of [Abraham and Marsden
1978], and was statcd by Marius Sophus Lie in 1890. It is well-known in the context of . .
optic flow; see c.g. (llorn and Schunck 1980, Ballard and Brown |982].) Equation (s) '_i:'.“_-:'j”_'-‘

AR .
«
ala s o

shows how it is that we only have partial information about v: we only know 1 component.

We can immediately see, also, that if f had multiple dimensions, i.c. if there were more J )
than 1 color dimension, we would have information about mulliple components, and v g
would be uniquely determined lor generic f. This is the dilferential vérsion of the 2-color - '.::".j
thcorem we proved carlier. Finding optic flow, like matching, is much casier with color. -;--—-
We formalize this in _ k:
Theorem. (2-color thcorem for optic flow) For a generic time-varying image function
Jo: M2 R, thc'optic flow vector is uniqucly specilied at a genceric point of the image ~-«--4

ifn 2 2,i.c. for 2 or more color dimensions.

When we fix ¢t = 0, cach side of cquation (*) is just a number, so for cach p we have a

map . . N

D (f)(p) : v~ a rcal number =
We have thus defined a string of linear mappings (v.f. stands for vector field, v.b. for ::"_:.:j-:‘;.‘-_? ‘
vector bundle): e |

tangent vector on 15(3) =+ v.b. scclion on object

A w o p ¢

— v.f. on image — vcctor at p — real number T

(We must consider sections of a vector bundle on the object rather than vector fields

' .
A et
I WO

By
et
e

POV SSURIC I,

(sections of the tangent bundle) because the veclors we are interested in are tangent

LN
La’a’s
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vectors to paths in R3 going through points of the object. Since the paths generally do
not lie in the object, their tangent vectors needn’t be in the tangent space of the object,

but rather are merely tangent vectors in R3.)

A 1-form is a map which takes a vector field and spews out a scalar field, lincarly at each point. Le.
at each point it linearly maps vectors to numbers. Thus it is dual to the notion of a vector field. A
function f has a canonical 1-form, df associated with it by looking at how the function changes along
paths. Consider a vector ¢ at the point p. To define df at p, we must specify a number to which it will
send v. v can be thought of as the tangent vector to some path, say 4 : I — M, so that v = 4/(0). Then

we can define df by
)=z _ 1(2t0)

df is somctimes callcd the differential of f. The space of all tangent vectors at a point is called the
tangent space. A linear map from a veclor space (o the reals is called a dual vector, and the space of
such maps, the dual space of the original veclor spacc. ‘The dual space of the tangent space is called the
cotangent space, and its clements covectors The disjoint union of the tangent spaces at all the points of
a manilold is called Lhe tangent bundle, and Lhat of cotangent sy , the cotangent bundle. The manifold
that the vectors were originally Ltangent Lo is called the base space. Both bundices have natural structures
as manifolds of dimension double that of the base space. A n..p which assigns to cach point of the
basc manifold an clement of its (co-)tangent space at Lthat point, is called a section of the bundle. In the
context of bundles, Lthe fiber over a point is the (co-Jlangent space of the original manifold at thal point.
A scction chooscs a point in cach fiber. The Langent space at a point p of M is writlen Tp M, Lhe tangent
bundle TM, the cotangent space al p is T, M, and the cotangent bundie T* M. Thus df is a scction of

- the cotangent bundle T° M. Vf, however, is a section of the tangent bundle, since it is vector-valued. It

can only be defined if there is a canonical isomorphism between the tangent and cotangent bundles, e.g.
if a mctric is defined, or equivalently, a dol product. We will be confining our aticntion mainly to df.
Instcad of using tangent spaces Lo make a bundle, we can replace the role of the tangent space with an
arbitrary vector spacce, yiclding a vector bundle. A Lie groupis a manifold which also has a group structure
such Lhat the group operation is a smooth map. Examples are matrices of nonzero determinant, and
rolalion groups. Like any other manifold, a Lic group has a tangent space at cach point. Because of
the group structure, though, vectors at the identity clement of the Lic group can be moved around the
manifold by the group action, so it is cnough for most purposes Lo consider only the Langent space at
the identity. This space is called the Lie algebra associated with the Lic group. I is an algebra because
in addition Lo the vector space steucture, there in o multiplication, ealled Lhe Lie bracket The bracket
measures what the Lic group does to one vector as ib moves it along in the direction specified by the
other vector. ‘The Lic algebra captures the infinitesimal behavior of its associated Lic group.

The Lic algebra g of a Lic group G is a veclor space which can be idenlified with the
tangent space of G at the identity. £(3) is a Lie group, and therefore associated with it
is the Lic algebra ¢(3); and since ££(3) is a 6-dimensional manifold, ¢(3) is a 6-dimensional

vector space. The tangent vector 4’(0), which is the instantancous motion, can therefore

be thought of as an clement of the Lie algebra ¢(3).

We can do Lhis for cvery path 4, hence for cvery clement of ¢(3), giving us a homomorphism
from the Lie algebra ¢(3) Lo scctions of the vector bundle on the object, and likewise

again to a Lic algebra of vector fields on Lhe image of the object in the image plane. The
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composition of these is a Lie algebra homomorphism. The sequehce of linear maps can
thercfore be written

Lie algebra ¢(3) — v.b. sections on object
: — v.{.’s on image — vectors at p — real numbers

This defines a map ¢(3) — R, i.c. an element of ¢*(3), the dual of ¢(3).

Now we have enough machinery to attack some questions. The first question is whether

there is cnough information in df /dt to uniquely specily the instantancous motion, for

generic f. The instantancous motion is an clement of ¢(3). As we just saw, for each point :.:'v " "
p of the image, the geometry defines an clement of ¢*(3). The qucsﬁon then becomes . .

whether we can span all of ¢*(3) by ranging over all points of the image, for knowing the ’ :
valuc of applying a dual basis in ¢*(3) uniquely specifies the original vector in ¢(3). ¢*(3) '

is 6-dimcnsional, so if this is possible, it is possible for 68 poinls corrcsponding to a dual
basis. This docsn’L say anylhing yet about finding Lhe shape or posilion of Lthe object; we

only want to know whelher we can recover the motion for fixed shape and position.

Theorem (6 point df /dt thcorem). Let

[{IXU—R i
(t,p)— J(t,P) N

be a Llime-varying picturc for some Lime inlerval I around 0, and some ncighborhood U in

the image planc of regular values of Lthe imaging projection of some 2-dimensional object i
]
embedded in R3. If £ comes from the projection of a gencric intrinsic function on an RS
objcet undergoing rigid motion in R3, then the values of :i."v E
“p
af .
a_t(or P)
al 6 gencric points p € U arc necessary and suflicient to uniqucly specify the instantancous » o

motion of the object.
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Proof. We are in effech measuring the optic velocit_;y field with our image function; this
is what equation () says. To be able to tell the differcnce between different elements of
¢(3), i.e. different motions, the mapping from ¢(3) to velocity fields on the picture must
be 1-1. Since the mapping is a vector space homomorphism, this is the same as saying it

has no (nontrivial) kernel. The homomorphism

'¢(3) — v.b. scctions on object

has no kernel, because any kernel would leave the entire object fixed, but a rigid motion
of R3 can leave at most a line fixed. So ¢(3) is mapped 1-1 to sections of bundles on the

objcct. Now we must show that the kernel of the homomorphism

v.b. scctions on object — v.f.’s on image

docsn't contain anylhing thal comes from Lhe previous map from ¢(3). The kernel of
the current map is just the scclions whose vectors lic along the rays of projection to the
picture. For orthogonal projection, vertical Lranslation would of coursc be in this kernel,

but we arc assuming a projective projcction, i.e. that the rays all mecet at a point; for a

planar relina Lhis is the usual perspective projection.

...........
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Fig. (kerncel-rays)

We have Lo show Lthat any such motion, where points move only along rays, cannol come

from a rigid motion. This is casy to sce; take 3 points on the object nol all on the same
line in R3: -
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Fig. (3 points) =
‘ 4
Since a rigid motion of R? can only Icave a single linc axis (or nothing) fixed, at lcast 1 o
of the poinls must move, say a. Il @ moves down, b must move up, to keep their distance :f:;ff
constant (rigid motion). Since b is moving up, ¢ must move down. But then a and ¢ L
are both moving down and therefore narrowing their distance, showing Lhat the motion '
cannol be a rigid molion, i.c. the kernel of e
v.b. scclions on object — v.[.’s on image .:
is not in the image of S :
¢(3) — v.b. scclions on object SRS
-
. 1
(cxcept for 0, of course). ]
So we know that the composition

¢(3) = v.f.'s on image
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has no kernel, i.e. is 1-l¢ This means that every rigid motion gives a unique optic velocity.

field, and the vector space of such fields is 8-dimensional.

Actually, we showed more than that. We showed that a generic set of 3 points cannot
stay fixed in the image—we didn’t even have to consider the whole vector field. The set

of vectors at 3 such points in the image make up a 6-dimensional vector space, so what

we showed is that the map
¢(3) — vectors at 3 given points in image

has no kernel, i.e. is 1-1.

That mecans that to specily a motion, i.e. an clement of ¢(3), we only have to figure out
the optic velocity vectors at 3 points. A gencric function, via equation (s), tells us 1
component of cach of the vectors (by gencricity, the gradient is nonzero at all 3 points).
If we had 2 genceric lunclions, Lthen we could recover both components of cach of the 3
vectors by using equation (*) for both funclions (generically, the grndicnt:s will be Iinchrly
independent, i.e. in different dircclions al the 3 points). Parenthetically, we have just

proved

Corollary (2 colors, 3 points). For generic f taking values in 2 or more color dimensions,
the values of df/3¢(0, p) at 3 noncollincar points p € U arc nccessary and suflicient to

uniquely specily Lhe instantancous motion of the object.

Now we must show that | component al each of 6 points is as good as 2 components at

cach of 3 points.

We saw carlier that df defines an clement of e*(3). Thus the gecometry defines a map

T°R? — ¢*(3)
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Postscript 224

We haven’t finished with the regular points, either. The Lie algebra analysis we began
can be extended to analyzing the problems of finding the shape and motion of moving

objects. The questions of what information is necessary should be resolvable.

We have thus far mainly ignored the problems of photometry. [Koenderink and van Doora
1980] have pioneered 'ui applying geometric methods here. The Lie algebra approach can
be extended to include photomctfy by considering not just the object in space, but a
double spherc bundle over it, describing the directions of light and observer. Part of
this is already implicit in the Gaussian sphere approach, for example. Therc arec many
interesting resulls that may be of use. Lines of principal curvature seem to be important,
but it is only recently that the topology of the lines of principal curvature, i.c. how they
fill out the surface, has been thoroughly understood [Sotomayor 1984].

. ANl this gcometlry must be brought to bear to get local and global understanding of the

image intensity function, the right type of understanding to make deductions about the
physical situation that produced it.. We have been arguing that an important clement is
qualitative, i.c. gcomelric understanding, rather than quantitative. A picture is not a C*®

funclion, so there is a problem of how Lo derive this information. The data results from

- a map lrom an infinite-dimensional space of smooth functions Lo a flinite-dimensional one

of valucs on a grid, and indecd Lo a finite sel of digitized values. The relation of these
maps to the smooth theory has Lo be looked at carefully. Probably the most dircct way
to apply thecory for smooth functions Lo this data is to choose some smooth function to
represent it, i.e. fit the data. How to do the fit? There arc many choices: polynomials,
Fouricr interpolants, spheroidal harmonics, ete. The mathematics of fitling is partially
independent of ‘what is being fit, so it should be possible Lo oblain a theory without
making a choice of basis at the v;)utset. The same philosophy should be transferable to

implementation: the program could be designed to take the basis as data.

......................
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somctime soon. In adhering to this tradilion, I present “cre a sketch of a program of

from a generic embedding. This is notl quite the same as a generic map between surfaces,
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Postscript -

It’s customary to conclude a thesis with a compendium of “future research directions,”

the research thal should have been, but wasn’t, done for the present work, but will be

research that conlinues what was started here. L , 1

The imaging projection has regular points and singular points. Intercsting cdges occur

at the singular points (which arc gencrally limbs), but our gcometric analysis has been

confined mostly Lo the regular points, mainly because it’s casier. We still had Lo consider
singular points, but they were of lower dimension. A large theory exists for singularities of
stable mappings; it is waiting to be applicd. [Koenderink and van Doorn 1976, Koenderink
and van Doorn 1980, Koenderink and van Doorn 1982] have begun some of this work.
First you have Lo classily the singularities which can occur. There arc only 2 singularitics
for generic nmjm fr9ln the planc to the plane: the fold and the cusp. In a masterly work,

[Arnold, V.1. 1983] suggests, however, Lhal the right selting is singularitics of a projeclion

and Arnold and his coworkers have found that Lhere are exaclly 14 types of singularitics

in this sclling.

We have stressed that picture data only reveals geometry via the measuring device of
the image intensity. It is therefore necessary Lo go beyond the projeclion singularitics
themselves, and study how they may be inferred from the image (unction. This is the

generalization of the edge detection intuition: “look for disconlinuities.”

To all this, we can add time. This leads to the study of unfoldings of singularities, and
again the lime-varying image intensity is the telltale, and the Lie group and Lic algebra

of the molion will be the instruments of analysis.
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Fig. (8 vector points)

If we remove a vector from onc of Lhe 3 original points (i.c. remove a point from the sct in

T*R?), this lcaves us with a 1-dimensional kerncl in ¢(3). 1T we go Lo onc of the new points,
B the spanning lernma Lells us we can again measure the kernel, perhaps after an arbitrarily
: small perturbation. This can be repealed, and 2 more measurements moved the same
o

way, Lo get 6 vectors at 6 points, corresponding to Vf, perhaps slightly perturbed.
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Now we can see what dappens when we choose 6 points in the image. df gives us 6

points in T*R2. We can perturb these points to guarantee that df 5 0. Now since every

_ neighborhood of each point maps to a spanning sect of ¢*(3) (local spanning lemma), we .::_L;:::j
' * can always perturb the nth point so that it is mapped to something outside the span of A
: the first n — 1 points (at least through n = 8, anyway). This gives a perturbation of the 6 L
P PN
f - points which maps to a spanning set. Since spanning sets are open, these points will still L
‘ span under sufficiently small perturbation. (In general, one might need a perturbation '. -
of both the location of the points and of f to guarantece a spanning'set. The degenerate
situation occurs when the optic velocity vector is in the direclion of constant f.) QED]
} !
% Here is a more concrete way of fooking at the last part of the proof. We already saw that _'. '
- if we had 2 generic functions then we would be finished with 3 generic points. This is the
situation of Fig. (3 fibers). It can be pictured in the image as in Fig. (vector points).
g X .%‘::": .
I X N g
.
»
I'ig. (3 vector points). SO
Each vector rcpresents a direction in which the optic velocily vector can be measured,
i.c. a value of VS for onc of the lunctions. We want Lo get rid of onc of th~sc.at cach v.

point, and substitute measurements at 3 new points Lhal have been given to us.

................................................................................
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. Fig. (local spanning)

Proof. Choose a point and neighborhood in T*R32. It projects to a ncighborhood of R3,

L |

in which we can choose 3 generic points. We can then choose 6 points in T*R32, 2 to a

fiber, by the 3 fiber lemma. QED (local spanning).

P
i S ¥

Fig. (6 points)

......................
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What we saw earlier is o

Lemma(3 fiber lemma). If we choose 3 generic points in R?, and 2 linearly independent
covectors in each fiber over those points, the 8 resulting points of T*R? are mapped to a

spanning set in ¢*(3).

T*R? is 4-dimensional, so it is a little hard to draw. We represent the situation schemati-

cally in Fig. (3 fibers).

/: i‘:;r

Fig. (3 fibers)

What we will now show is that we can choose any 6 generic points in T*R?, i.c. 6 generic
points in the image, and 6 generic values of df at those points (i.c. a generic f). This
is pretly casy by making use of the 3 fiber lemma. The lemma still applies for any
neighborhood of R3, i.c. we ean choose the 3 points arbitrarily close together. This gives

us

Lemma(local spanning). Every ncighborhood of every point in T*R? contains 6 points

which are mapped Lo a spanning sct in ¢*(3).
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