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* Edge Det~ction and Geometric Methods in

Computer Vision
A. Peter !Ilicher

Abstract

Basic problems or vision are studied from the viewpoint of modern differential topology 7

and geometry; primarily: edge detection, stereo matching, picture representation at

multiple scales, and motion. Some mathematical background is provided ror the non-

expert.

A comprehensive review of edge detection is presented, including analyses from a math-

ematical perspective as well as evaluations or practical performance and promise.

">Some new edge dletection techniques are introduced, including a nonlinear operator based

on a symmetry principle, a variational approach to global edge finding, and a least-squares,

localization method. A theorem is proved which shows that localizing edge position and

orientation requires at least 2 orientation dependent families of convolution operators.

A unifying 1mUStheIMical structure is presentedi ror vision, notably stereo, mnotion stereo,

optic flow (apparent now of visual space under motion), and matching. The general

matching problem is analyzed, and it is proved that generically, general matching In

highly degenerate for monochrome pictures, but him a unique solution for 2 or more

color dimensions. The result is extended to pictures with unknown bias and gain. Smale

- diagrams and level wet topology are introduced as Inva'rants useful for matching, reducing r

the problem to graph or tree matching. The ;evel set topology tree Is also proposed

as a method of multi-scale description of the picture, and shown to be an invariant
generalization or the *scale space" technique. .

The motion problem is analyzed using Ue group methods, and a theorem is proved

Abstr......... -.



Abstract -

establishing that generically 6 simultaneous values of time derivative of the monochrome

picture function are necessary and sufficient to uniquely specify the 3-dimensional rigid

motion of a generic given object. For 2 or more color dimensions, this is reduced to values - -

at 3 points in the picture. .
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Preface 6

I wrote this work for an audience of both vision workers and mathematicians. There are

many people who could be counted in both groups, but the full intended audience has

a wide spectrum of backgrounds. Among vision workers, I include students of biological

vision, but it is artificial vision that I am directly addressing. It is widely appreciated that -

there are many common problems, but I haven't written about any specifically biological

problems, such as explaining the function of some cell population. My hope is not only

to communicate research results, but to convince readers in each of these lields that S

there is something of interest to them in the other. Many people have a bad taste from

previous experience with touters of fancy mathematics in these concrete situations, with

elixirs which turned out to be oversold or plain irrelevant. Mathematics is not magic;

using it doesn't inct all impediments into triviality. It merely provides a structure for

understanding, and an apparatus for resolving questions. If the questions are the right

grist for the mill. Attracting these fields to each other isn't necessarily easy.

Also, it poses a problem in writing; since I have tried to keep the material accessible to the

novice, some of it must necessarily be old lhat to the expert, so I apologize to the expert

whom I have subjected to the obvious. I have tried to make this work reasonably self-

contained, including various standard definitions and results from differential topology

and geometry. When these are not in the main line of thought, they have been relegated

to fine print, so they can be easily skipped by those who already have the necessary

background. Sometimes, standard terms are used before they are defined, and sometimes

they are defined twice, partially from a lack of organization, but primarily to locate

the mathematical digressions where they are most important, and avoid bogging things

down where they are not. I haven't tried to be exhaustive in this, or I would have

been obliged to* include a complete introduction to differential topology and geometry,

............................... . .... .... .... ....



Preface IV

something which has alleady been accomplished with great skill by others. The chapter

Geometric Methods in Vision makes the heaviest use or abstract mathematics; therefore

I have put most mathematical background material into the fine print of that chapter. .- "*

Since I have assumed some of that background material in earlier chapters, the reader

may find it useful to glance through it to clarify the unfamiliar, such as the implicit . -

function theorem, or functional notation.

The 3 major chapters (A Survey or Edge Detection, Contributions to Edge Detection, p

and Geometric Methods in Vision) are largely independent, and can be read in any order,

or in isolation. The survey has many discussions which go beyond summarizing, and

should be or interest to readers who are already familiar with the literature, as well as to

newcomers. The contributions chapter is probably of most interest to specialists, while

the geometry chapter is likely to appeal to the more mathematically inclined.

Stanford, California

October, 1984

oI q° t
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A Survey or Edge Detection Introduction 12

systems. The theory lr nonlinear systems is not as well developed, and not so widely

known. Who can say that there is not some other isometry that is more appropriate for

a nonlinear system? But how is a physiologist or psychologist to seek evidence ror such

an unknown object?

Finally, a third motivation ror edge finding is based on the computational consideration

or efficiency. Since boundaries are or a smaller dimension than images or regions, they

are easier to handle: e.g. (for a smooth boundary, rather than a rractaf) ir the number of

boundary points increases as O(n), with I/n the discretization interval (grid size), then

thc .umber or region points increases as 0(n 2 .). Also, the 1-di-ensionality or a boundary

provides a natural ordering ror its points, which is easily translated to a processing order

ror a sequential algorithm. While the entirety or an image is filled with region points,

only a small fraction constitute edge points.

The sparsity or edge points among image points is a major attraction or edge (detection

as an early step in stereoscopic vision, sine it extremely diminishes the size or the search

involved in matching points; between the two images. or course, this is only userul if the

edge points bear some relation to things rigidly attached to fixtures in the world, so as to

vindiicate the aissumnption that edge point,; must mvatch edge p)oint-;. As it happens, this

%ems in ract to be a good1 assumption, and edge points appear to be more stable than

more rudimentary features or intensity, such as the actual brightness values.

So rar we have given a very general definition or edge detection as finding the geographical

limits or a description. It is probably rair to say that rew ir any authors or edge (detection

methods thought that was what they were doing. The universal goal or edge detection

algorithms is to find places in the image which a human would classify as "edges" or

"boundaries." We apologize ir that seems a trivial statement, but since we do not know

how a person segments a scene, we are in no position to give an authoritative definition of

what constitutes an "edge." Et ryone agrees that a transversely translated step runction

d ta i



A Survey of Edge Detection Introduction 11

In more familiar terms, the description is nothing more than a model of the data in

some system of representation of the pertinent knowledge. Including boundaries or
. '. " -

regions per se in the representation language makes vacuous the notion of homogeneity.

Our observations above are merely rewordings of the thesis that humans have a very

rich representation language available, while machines ai yet do not. Incidentally, the

term representation language is meant to refer to the internal representation, whether

it be essentially symbolic, continuous, or whatever, and shouldn't be confused with the

language we use to communicate about the aspects or the representation introspectively

available to us.

The problem or finding homogeneous regions can be approached either by finding the

regions directly, whose difficulty increases with the complexity of description, or by

finding the boundaries between the regions. Thus the first motivation for edge finding is

for the purpose of segmentation into homogeneous regions in accordance with our own

models of the world. It is based on introspective observations.

A second motivation is derived from eztrospective observations which have been made

by physiologists, perception psychologists and perceptual psychophysicists. Anatomical

structures have been round which respondl to abrupt changes in intensity and] color as

runctions botlh or position and time. Observations have been made that indicate absolute

colors and intensities, as well as their slow changes are not readily perccived, but abrupt - .'-

changes are. Whether it is wise to mimic nature, or rather to attempt to mimic the

precious little we think we know about nature, is problematic, despite the widespread tacit

acceptance or the idea. It is worth considering that we are unlikely to find physiological

processes involved with things that are not aiready a part of our introspective models. For

example, we look for evidence that the visual system performs Fourier transforms, since

Fourier transforms have a particular intuitive appeal. But they can also be viewed as only

one of a myriad of possible isometrics or a function space, special because they transform

convolutions to multiplications. But that special property is mainly significant for linear

- .- °.. ...



A Survey of Edge Detection Introduction 10

way to describe such a lv-terogeneous object is still to partition it into homogeneous com-

ponents. The tendency is always to subdivide, perhaps reflecting the reductionist ethos

widespread in modern science. One might expect that in artificial intelligence jargon, this

process would be called the chotomizing heuristic; in fact, it is called segmentation. (Or

borrowing from C&esar, subdivide and conquer.)

The products of the subdivision are homogeneous entities. For a human, the homogeneity

is one of description, while for the machine it is generally one of me'asurement. Now, a

measurement is a description, and a set or descriptions is a description, so we have to

explain what we mean by these terms a little more precisely. By a description, we mean

something which might be quite complicated from a machine perspective, encompassing

such explicit descriptions as "it gets darker and redder rrom right to left, with a speckling

that looks like that on a trout, but which fades into a very dense network or lines in the

periphery." That would not generally be found to be a homogeneous region by a machine.

A measurement, on the other hand, is meant to connote something very close to the

language or the transducer providing the imnage data, e.g. brightness or range values.

Most or the (efinitiono or homogeneity implicit in automatic segmentation programs

stray little rroin a constancy or such a meatsurement, though the sitation appears to be

improving.

fly demanding a homogeneous description to define a homogeneous region, we mean that

the description can have no explicit mention or boundaries or constituent regions. The

relatively weak condition of explicitness is right because an implicit boundary would

not be a property or the description, but rather something inferred from it. Thus a

description such as "the value goes linearly from 100 in the lower left to -100 in the

upper right" would be judged homogeneous, despite the well defined diagonal boundary

separating positive from negative values. For the time being, we are content to include

as homogeneous such descriptions as "the intensity goes as a step function..."

....................:............................ , ........ :................-....:.............,-.........,
.......................................................... i.l | -



A Survey of Edge Detection

Introduction

Whty edge detection?

Edge detection, in the form of spatial differentiation, appears in thc computer vision

literature as early as 1955 [lfincen 19551. This carly and sustained interest arises from

a perception that the types. o patterns significant to a visual system consist of ap- ,

proximately homogeneous regions separated by abrupt boundaries. Although years of

experience have shown that real digitized scenes are not easily characterized this way,

the idea has persisted tenaciously, ror the following reasons.

S

First, from an introspective point or view, one tends to believe the world to be composed of

objects, each homogeneous in its cohesion, and abruptly separated from other objects and

the background. That is an essential aspect of our way of perceiving the world, pervading

disciplines from anatomy (where every bump, nodule, fascia, and tissue type is seen

as a separate structure) to quantumn mechanics (in which art acsermtially conmtin~uous all-

pervasive field is seen to describe a separate localized particle). Whether this (liscretization

of the world is a part of the structure of the world or of ourselves we cannot say (arguably

it is impossible to say); nevertheless, it is here to stay.

Now close inspection of digital images, or for that matter, Paintings from past centuries, -

leaves little doubt that the image of a single (realistic looking) object can but rarely be

described as "homogeneous." Yet, even upon making such an observation, one's natural

Some mathematical background which is aurnued in this chapter, such :Lq ruttctioital notation andi some
results rromn differential t~opology, is explained in more detail if, the fine prinit or the chapter Geomectric
Methods in Vision.

-S,.'



Introduction 8

beginning steps in appj~ring the qualitative method. The edge detection problem has

not been laid to rest, alas, but I think the armamentumn for its conquest, and others as

well, is now closer at hand. A few dragons have been slain along the way, and their proofs -

are given.
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in understanding how the geometry and topology interact, and I began by studying the

consequences of topology. This led to results which intertwine color vision with stereo,

and which clarify the role of geometric constraints in monochrome stereo vision.

The main invariant structure in these studies was the family or level sets; each level set

is the set of points in the picture that all have the same brightness or color. Differential

topology has studied this structure thoroughly, so we were able to say some things about

how the level sets fill up the picture, and what happens when the picture is perturbed.

This forms a departure point for characterizing the picture function which is independent

of viewpoint. It also is related to smoothing the picture, and some other operations

which people have applied to find features in pictures, e.g. zero crossings of Laplacians

of Gaussians.

The next step was to study the effects of the geometry. In the spirit of modern geometry,

I approached this by studying the action of a Lie group, i.e. by looking abstractly at .

the effect of rigid motion. This type of problem is usually easier in its differential form,

i.e. for infinitesimal motions, so that was the best place to start. This put us into the

business of studying motion rather than discrete views. A ramnily of basic questions is

how much can be deduced about the motion fromi how much data. The particular one

of these questions that I studied was based on the idea that the raw data consists only

of brightness or color values at fixed places on the retina, along with data on how they

are changing with time. This is somewhat different than the approach many have taken

in the past, where the goal has either been to find the 3-dimensional motion from the

motion or points on the retina, or else to find that motion of individual retinal points

itself. We were able to show that generally 6 data points of our kind are enough to

specify the motion of a given surface. Again, this was related to color. The number 6 is

for monochrome data; for color data, 3 points are enough.

The 2nd main topic of this thesis, geometry applied to vision, thus comprises some

.,o°.- °..



Introduction 6

suited to scrutiny under the macroscope of modern geometry. The "real" objects of vision

are objects embedded in 3-dimensional space. They are subjected to various lighting

conditions, and viewed in a variety of ways. It is the properties of the real, solid objects

that we must deduce from the image; so we must study how the properties express - p -

themselves, and come to understand their invariances, especially invariances of qualitative

features. I use "qualitative" in the sense of "qualitative dynamics," where understanding

comes from topological descriptions, still quite rigorous, rather than from some formula

which allows us to calculate the precise numerical values describing the state of a system.

E.g., we would rather know where (and whether) an object's shape changes (say from

convex to concave), than know the terms or a polynomial that specifics that shape.

The route or study then became to approach the specific, e.g. edge finding, by first

understanding the overall problem. My first step was simply to write down what the . .- =

spaces, maps, and groups were that were involved. This provided a structure in which to

apply formal results of mathematics.

A basic fact or life in seeing 3-dimensional objects on a 2-dimensional retina is that as

we change our viewpoint, or as the objects move, their 2-dimensional images undergo

distortions. Understanding 3 dimensions lroin this 2-dimensional world must involve

recognizing an object despite these distortions, and, what's more, interpreting the dis-

tortions to deduce the shape or the object and its relative motion. The exact distortion
p

that the picture undergoes depends on the shape of the object, the motions of object and

observer, and the optics that produce the picture.

Stereoscopic vision conventionally starts with 2 pictures from different views and requires

finding places in the 2 pictures that correspond to a single place in the 3-dimensional

scene. When this is done for enough places in the pictures, it allows triangulation to

find depth (i.e. the 3rd dimension). A basic problem is to study the invariants which
a

allow such matching to take place. Since the distortions can be complex, ! was interested ,.,..

1= 'oo
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rifts, ridges, dips, etc. are, and how they interlock. Then, once the image is "understood'

this way, maybe to the point of hypothesizing objects, some regions may take on special

importance as "edges." In this view, while 1-dimonsional objects-edges-arc important

for representing what's in the image, they are a result, not a first step, of understand-

ing. This is a somewhat heretical point of view, and it is by no means certain. But I

became convinced that the understanding of local image features, e.g. labelling some

features as edges, depended on getting a qualitative global understanding of the image.

When I say "global" here, I don't mean that one has to understand the whole area of

the picture, but rather a large enough area that the most local measurements can be put

into a context. For example, from a single view through a tiny peephole one might say

something about which way the shading is changing, but it takes a larger field of view

to say something about the 3-dimensional object involved -whether we are looking at a

*convexity or concavity, a told, an edge, an uninteresting shading gradient, or some other

solid feature.

The eniterprise of computer vision seeks to duplicate a reat we know fromn introspection,

but to duplicate it by cold mathematical means. There are many styles or research, but in

mny thinking, this enterprise is most likely to succeed ir the mnatheinatical setting and the

quiestio~ns being posed are stated explicitly and precisely. Often, in tact, finding the right -

way to state a problem~ turns out to be a cornerstone of the solution. I had comec to see the

problem as one of describing the image appropriately on increasingly global scales, and

piecing together the descriptions to arrive at local interpretations. This makes it essential

to ind the right ways to understand the picture function for the goal of understanding

3-dimensional structure. D~iffcrential topology and geomeitry scemed to be the right places

to look.

Vision is teeming with geometry: the image comes from a map fronm a higher dimensional

space with important singularities, there are natural group actions, e.g. the rigid motion

group, t~opological invariance in thec image is important, etc. These are things perfectly

• °-.' _-o%. . .. . . . . . . .. .. . . . .. . . . . . .
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through a very small peephole.

Since the very beginnings, researchers who have built vision systems which did some

higher level recognition tasks have been sorely limited by the abilities of the lower level

algorithms they used for input. This was a problem for ACRONYM [Brooks 19811 no less

than for [Waltz 19721. Waltz created a system which was able to understand line drawings

of toy blocks. The presumption was that low-level vision could supply the line drawings.

But it had turned out to be very difficult to obtain line drawings good enough to use

as input, even in the blocks world domain or unirorm matte surfaces in good lighting.

This problem had already spawned the efforts or llinford-llorn [florn 19721 and then,

later, or [Shirai 19731. 10 years later, [B3rooks 19811 used the state-or-the-art line finder

or [Nevatia and Babu 19781, and round that he had to draw inferences based on almost

laughably meager low-level output. Today, reliable segmentation (dividing an image Into

meaningrul parts) remains a paramount obstacle to image understanding.

Hence I was drawn to edge detection as a basic problem which might yield to a math-

ematical approach. I round that people had applied a great patchwork or techniques,

but that the problem i.tself was very poorly understood. Idges, it seems, are a lot like

obscenity, for as Mr. Justice Potter Stewart wrote of obscenity [Jacobellis v. Ohio 1964J, -

lie may not be able to define it, "lut I know it when I see it." Everyone agrees that a

perrect step function should give an edge, but there has been no adequate criterion put

forth to classify any other runction as edge or non-edge. There was no viable theory

to bridge the gap between the local methods or the peephole and the global objects we

think or as edges, if indeed thle global must even first come from tile local. I eventually

realized that the problem or edge detection was first a problem or understanding the

image intensity function, a qualitatie understanding which must be suited to the needs

of vision. In fact, I wonder ir edge detection is a bit of a red herring. The best, sharpest

edges are easy enough to find, all right, but it seems that the global picture may require

knowing how all the local qualitative reatures or the image fit together: where the bumps,
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anywhere within range.-

Someone who has never tried to write a vision program is likely to think that it really

can't be all that hard. The act of vision is so effortless for us, so transparent, that it

is hard at first to imagine that anything at all must be done to bring it off, beyond O.-

the initial transduction. You digitize what's out there; the objects are delineated by

their borders, which are the places where things change suddenly, so you look for the

places of rapid change, figure out what the objects are, and voili! all done. In fact,

a lot or research was based on that paradigm. The illusion or simplicity seduced many -

people into thinking that it was a programming problem like many others, which could

be solved by doing some intuitively obvious things, followed by bug-fixing, honing, and O

tuning. Unfortunately, life is not so easy.

One of the hardest things to appreciate, even to describe, is what it means to know

what is in an image. In some sense, the set of all the pixel* values already has allthe

information about the image. But there is no knowledge that, i.e. no symbolic knowledge.

You can't know about the relation between any 2 pixels unless those pixels talk to each

other somehow. From another perspective, knowing all the pixel values is no better than

knowing them one at a time - as completely localinformnation but what we really need is

global information. And the global information needed must be exactly that information

that let us draw inferences about the physical situation that produced the image. Global

information is very hard to obtain because a picture contains a lot of data--around 256K

bytest for a normal TV frame; on the order or 100,OOOK bytes for the human retina (for

comparison, a page of text in a book is around IK byte)-- and the space or patterns to -"-

consider is or high dimension. Most people have approached this complexity problem by

trying to extract information for very small regions, from a few to a few hundred pixels,

and to use this information for only a few such regions at a time. This is like looking

$ Pizelis a contraction or pictvre elemeun a single point or data in the picture. "
t We take a blge to consist or 8 W4 where a ht is a single binary digit.

....... o
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very cleverly; but Isn't the act of the programmer, the act of creating the symbolic data

base, a fundamental act of abstraction and hence of intelligence? These linguistic entities

tend to be like things that people would say, compact statements, but how much of a

thought or worldly experience can be captured this way? So one must worry about what

knowledge is, what knowledge is needed, and how to represent it. What is often neglected

* is the question or how that knowledge can come to be known. One way is to hire a team

of knowledge engineers who spend months or years codifying the knowledge of an isolated

domain into a formal system accessible to the machine. In the long run for Al, this has to

* be a losing proposition: how long would it take you to write down everything you know?

And that only counts the things that you know you know and you know how to express.

There's no substitute for experience.

Experience is the only possible way to amass a data base that can be said to have "world"

knowledge. Experience must be abstracted, perhaps in many stages and many ways, toL

yield the data structures used by the higher processes, perhaps abstracted even to yield

the velry processes. The rope of mind has 2 ends: what do I need to know to be able to

reason, and what can I say about what's happening; and it has to be spliced somewhere

in the middle to connect the outside world with the inner one. Perception must be

able to produce the data structures required For reasoning. In fact, given our meager

understanding of intelligence, we can't really draw a line between perception and reason.

Maybe there is none. Aeter all, the relatively "minor" ability of perception has o far

* proven vexingly intractable.

Among our senses, vision is probably the richest and most important. Only vision and

hearing have well-developed transducer technologies, making them readily accessible to'

attack by computer. The problems of hearing, particularly speech understanding, are

no les than those of vision, but I happen to be more visually than aurally oriented, and

vision has more obvious connection to geometry and topology, so it was vision that I

found myself working in. Also, there was a vision group at Stanford, but no speech effort

.. .. .. .. ...................
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Introduction-

This work is mainly about 2 topics in computer vision:

* Edge detection

* Applications of geometrical methods.

The "geometrical methods" are those or modern differential topology and geometry.

I came to do this research in pursuit or the eventual goal or understanding and building

intelligence.

An intelligent creature, whether or Ilesh or metal, must be able to know what is going

on around it, and do something about it. Those are the peripheral functions: perception

and action. These are certainly necessary, but aren't they rather minor in comparison .:".

to the "higher" functions involved in thinking, reeling, learning, language, etc.? This is

an interesting question; but it isn't just this simple necessity or perctption that led me

to its study.

A great deal or artificial intelligence (Al) research studies the higher functions, and with

varying degrees olsuccess, tries to duplicate them. I find a curious thread running through -

much or this work: the manipulation or linguistic entities. People have long said that the

main thrust or Al is symbol manipulation, and indeed it seems that to be smart you should

be able to transform data into abstractions, and abstractions are symbols, which in some

sense are linguistic entities, abstractly at least. The linguistic entities or Al tend to be

statements with a great deal of meaning to the programmer, such as (DUCK IS-A BIRD),

but the machine hasn't the least interest in what the symbols stand for in the % rId.

The A program endows the machine with a means to manipulate these symbols, perhaps

. .,;g:.
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ought to be called an edge. This corresponds to a boundary between regions of uniform

intensity measurement, uniform at least near the boundary. Very little attention has been

paid to any other definition of "edge," despite the fact that close observation of images

reveals that step edges between uniform (strip) regions are exceedingly rare. This is not

to say that edge detectors built to detect step edges don't find real edges; indeed they

often do, and indeed they often make grievous errors.

The term "edge" has been fairly widely abused, and we will continue'that tradition here.

One type of edge is that resulting from the boundary of some object. There arc also

edges which are merely boundaries between surface features. There are local edges and

global edges, which arc frequently called contours. Local and global are relative terms,

and we mean them in comparison either to image or grid size. A local part of a curve, for

example, would be well approximated by a straight segment in the given grid size. Thus

another way of looking at the difference between local and global is related to manageable

and unmanageable search problems, since locally all possible curves can be represented as

all possible line segments on a coarse grid, while globally the spae or all possible curves

is vast.

Local edge detection

We will not attempt to give a mathematically precise as well as operationally general

definition of "edge" here. Properly, to do so one would study the imaging process as

well as real images. [llerskovits and Ilinford 19701 did so to a limited extent, presenting

essentially 1-dimensional results. lIssenltially, what people have been looking for as edges

are places with a large gradient, or places which resemble a step function in cross-section.

So-called "roof" edges, modelled as a discontinuity in 1st derivative have been sought

as well. It turns out that a number or different outlooks on how to look for these

features lead to essentially the same computational technique, viz. convolution with some

kernel followed by thresholding. (Strictly speaking, it is usually cross-correlation which

.. . . . . . . . . . . . .

. . . . . . . . . . .
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is implemented, but singe the families or kernels involved are complete under inversions,

we take liberties with the term "convolution.")

Spatial differentiation and gradient estimation

Ir edges are places where things change fast, then the obvious way to look for them is

by performing a spatial differentiation. This may be done by some discrete analog of the

gradient, which is implemented by convolving with a kernel of small support. The smallest

possible support ror a differentiation is 2 pixels, and in such a case the convolution is often

thought of as taking adjacent pixel differences, or first differences. Larger supports allow

more creativity in the choice or the convolution kernel defining the differentiation, and

provide the benefit or improved noise behavior. A great many authors estimate gradient
or "stepness" by computing adjcent pixel differences. [Martelli 1972, Martelli 1973] and

[Turner 1974] are examples of the latter. Another way to think or the gradient is as a

derived parameter of fitting a plane to the data. For sufficiently symmetric supports,

this can also be implemented as convolutions. In fact many outwardly sophisticated

techniques have as their core the estimation or gradient.

Template matching and matched filtering

A popular way to look for features is with a matched filter or template, and this is

quite common for step edges. Again tile cross-correlation with the template, or the space

domain realization of the filter are implemented as convolutions. The idea is that the

"template" (the convolution kernel) is an ideal case of the feature one is seeking, and

one looks for large values or the correlation as indicating the presence of the feature.

The term "template-matching" often suggests that the vector space projection analysis

of the process is at best a secondary consideration. Examples are the operators of Sobel

[Duda and Hart 1973] and [Kirsch 1971), as well as many others (further examples can

be found in [Abdou 1978] and [IRosenfcld and Kak 1976]). The matched filter approach

is operationally the same, but inoludes the analytical idea that as a consequence of the

..- .". ..... - -. .. .. .\ . - ' -. - " . '.- . .' - .- . . . -' " . .- ...- . .. . - . . - . ' .. . . -. - .. - .- .- .- .-. - . . . - .-. - . . -. - .-
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Cauchy-Schwarz inequality, the maximum response ror normalized data occurs when

the data is the (complex conjugate or the) template. [Duda and Hart 19731 provide a

more detailed discussion of the ideas of spatial differentiation, gradient estimation, and

template matching, with a slightly different viewpoint. [Shanmugam, Dickey, Green 19791 A

seek a slight generalization of the matched filter, in the sense that the filter must be

strictly bandlimited and the objective is to maximize the power of the step response in a

given space interval.

Locally, i.e. at a single point of the convolution result, the integration against the kernel

can be thought of as orthogonal projection onto a I-dimensional subspacc or R", where

n is the number of pixels in the support or the kernel, and the projection is with respect -0

to the usual inner product on R". II there is more than 1 subspace involved, i.e. more

than one convolution, then one has components which can be thought or as components

oF a vector in the space spanned by the subspaces. Then one can compute a magnitude

for that vector (so as to get a number representing "edgeness" for thresholding). The

magnitude may be in the Euclidean norm

or in some other norm, such as the max norm

or the sum norm

a1141 = vd

Best edge fit and optimal estimation

The simplest edge model, a translated step function, has 3 parameters (for a 2 dimen- -O

sional picture). These might be, e.g., angle, left height, and right height. With enough

. . . .. . . . . . . ...
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normalization, these cap be reduced to the single parameter of angle. Template match4

ing methods use a separate template for each angle considered. But one can also try to

determine the angle that best accounts for the data. Furthermore, the model may have

more parameters, and there may be statistical information available.

The simplest type of best fit problem occurs when the model space is a linear subspace

or the data space, which is an inner product space. In that case, the best fit is obtained

by orthogonal projection to the model space. This is a very common method for fitting

runctions in I dimension, based og; the observation that translation in space is equivalent

to multiplication by a complex-valued runction or rrequency in the frequency domain, so

that all the translates or a given frequency component make up a linear subspace. In 2

dimensions, though, matters are complicated by the presence or rotations, so that while

the same artifice applies to translations, the Fourier equivalent of rotation is still rotation,

and the set or all rotations or a component is no longer a (l-dimrensional) linear subspace, L.

so direct orthogonal projection is no longer applicable. I lence many methods which seem

very clever for I dimension rail ror 2 limensions. However, this nice property or Fourier

transforms ror I dimension can be thought or as a special case or a more general principle,

which may be or use in inventing best lit methods. Specifically, one way to restate the

spectral theorem ([lalmos 1957, llalhos 1963] is that any normal operator in a lilbert

space is unitarily equivalent to a multiplication. For our purposes the Ifilbert space can

be taken to be I.2(R2 ). Then the spectral theorem can be interpreted to say that given

a normal operator A, we can find some isometry U L2 -- ,2 and some runction 9 E L2

such that U-'AU() of for all f simultaneously. Ir A is a translation operator, the

Fourier transform is such a unitary transrormation, as we mentioned above. According to L

the theorem, there is some isometry or L2(R2 ) which will tranisform rotation into complex

multiplication. Using that isomctry like a Fourier transform, one could use projection

methods to find best fits. Even better would be a transform that worked ror translations

and rotations at the same time, but that is impossible because translations do not in

* . . . .o.
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general commute with otations (as would clearly be necessary for the existence of such.

a transform because multiplication is commutative).

A slightly more general best fit problem occurs when the model set consists of an n-

parameter family of functions, and the object is to find a member of the family which

minimizes some error measure with respect to the datum. If the family is differentiable,

it can be thought of as a submanirold of the ambient space. Frequently the error measure

is a metric on the space, and then the problem is seen as one of finding the closest point

of the model manifold to the datum. In the case of estimation, there is a probability

distribution involved, and one seeks a set of parameters minimizing the expected error.

[Altes 19751, [llueckel 1971,llueckel 1969], [O'Gorman 1976], [Abdou 1978) find best fit

edges. Altes uses essentially the 1-dimensional Fourier method described above. Ilueckel.

and O'Gorman minimize the distance between the projection of data and parametrized

model onto a truncated orthonormal basis, deriving the "optimal" parameters. However,:

both the number or parameters and the number of terms in the series are too small to

allow good performance. Altes uses a more realistic edge model (in I dlimension), but his

results arc not readily generalized to 2 dimensions. Abdou finds the best fit edge by what

is essentially ani exhaustive search over a slightly more general but still too simple model

space, namely linear ramps between constants.

When the parameters one is seeking are the coefficients in an orthonormal basis, the

parameters can be obtained simply by taking the inner product with the basis elements.

Higher order derivatives

Methods that rely on estimates of the gradient, or whose response is largely determined

by the gradient cannot distinguish smooth transitions from abrupt ones. In the Ilueekel,

and O'Gorman approaches, for example the early term(s) in the expansions are essentially.

the gradient. One approach to this problem is to use a preprocessing step which takes

. . . . . ..%
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linear functions to 0. This idea is advanced by (Binford 1981] in the form of "lateral.

inhibition," and in fact operators modelled on second and higher order derivatives will

have this property. (It's interesting to consider just how many such operators there

are. Suppose the operator support is n pixels. There are then n linearly independent

such operators. Requiring that all operators take constants to 0 is'a linear constraint,

and that they take all linear functions to 0 is 2 more linear constraints, so there are

n - 3 linearly independent operators fulfilling the constraints. One may impose further

constraints by requiring various symmetries, and each discrete symmetry will reduce the

dimension or the operator space by 1. For large supports, it is clear that there are many

candidate operators.) The second derivative, in the calculus or several variables is the

Hessian, which is a matrix. Its algebraic invariants are the geometric invariants of the

original function viewed as a surface. Various combinations of its components (taken

linearly and nonlinearly) can be used as 2nd derivative operators. If an edge is sought

at suitably defined maxima of the gradient, then for a 2nd derivative operator, one seeks

zero-crossings. (Marr and llildreth 19791 use an approximation to the Laplacian, which is

the trace or the I lessian. [Dreschler and Nagel 198[a, I)reschler and Nagel 1981b] use the

determinant of the Hessian. [Beaudet 19781 computes rotationally invariant derivatives

up to 4th order. [Canny 19831 takes an optimal est.imaton approach to the zero-crossing

or 2nd derivative problem or [Marr and Ilildreth 1979], using criteria or delectability and

localization in a variational formulation.

Approximation and representation of image function -

One or the drawbacks or the methods we have been describing is that a very few

parameters are derived by some kind of local projection. The parameters are chosen

for semantic interest, but while they respond well to intended features, the same is often

true for unintended features. We have the following situation. Let X be the space of all

local images, and F C X the features one is seeking. Perhaps this is done by some map

SX -* R. One designs this map so that jo(F) 0 0, for some threshold 0, and one

. . . .. .. . . . . .
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would like to be able to.infer that if po(z) > e, then X E F. Clearly, to do this, one must

have some information about (o-(-oo, 0), but this is surprisingly often neglected.

Another way to think of this is that the few semantically derived parameters actually

do not provide enough information to understand the structure of the image intensity

function, even locally. Now, of course the pixel values constitute complete information,

but it is not directly usable. One approach, then, is to seek a local representation for

the image data which is appropriate for the questions one wishes to -resolve with further

processing. Approximating the lessian is such a process, since that can be regarded as

finding the best local quadratic approximation, just as computing a gradient can be viewed

as finding a planar approximation. [Prewitt 1970 computed her gradient parameters

based on a planar fit. In the same vein, [tlaralick 19801 fits planes to the data and defines

edges as boundaries between maximal domains of fit, relative to an error measure. Planar

fitting is very crude so he [llaralick 1981] proposes polynomial fitting as an extension.

[Beaudet 19781 is motivated by fitting a truncated Taylor series, though the semantics

he ascribes to his operators are somewhat naive. [lsu, Mundy, Beaudet 1978 use a

quadratic fit, based on Beaudet's techniques. [Altes 1975] is put forward as essentially a

spline fit. -

Global edge detection

The Ilough transform [Hough 19621, [l)uda and Hart 1971, Duda and Hart 1972, Duda

and hlart 1973] is a technique to lind collinear sets of feature points over an entire image.

This can be applied in complee globality, i.e. over the entire image at once. [(Ballard and

Sklansky 1976] [Shapiro 1974, Shapiro 1975, Shapiro 1978], and others tise generalizations

of the method to look for other I dimensional objects. -

Frequently, the term linking is used synonymously with global edge detection. Linking

consists of making lists of local edge elements connected head to toe, each list correspond-

ing to an extended (global) edge. This is the most common global edge detection method,

-7- .
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dating back at least to (Roberts 19631, and including many others (e.g. [Horn 1972),

[Binford 1970), [Nevatia and Babu 1978]). These methods differ primarily in the predi-

cates used to determine whether to join a particular edgel into a contour. A major

difficulty stems from the fact that the linking proceeds only after irreversible decisions

are made about local edges, e.g. limiting each pixel to having an edgel of unique orien-

tation, or making a binary decision about the presence of a local edge. The type of

information available to the linking, which generally proceeds locally, is inadequate for

many situations.

An improvement on the linking method is advanced by [Montanari 1970, Montanari 1971]

and [Martelli 1972, Martelli 1973]. Here the prior local commitment is less extreme, and

dynamic programming or heuristic graph search methods are used to find optimal paths

with respect to some figure of merit. The figure of merit, a global parameter, replaces the

local predicate as the contour selection method, and likewise as the main artistic element.

The "relaxation" methods propounded by [Zucker, Hummel, Rosenfeld 1977] and

[Rosenfeld, Hummel, Zucker 1975) attempt to find the contours globally, in parallel,

and without excessive initial commitment. The process depends on a local pairwise

reirforcernent-inhibiLion process between edgels. The art is in choosing the reinforcement

process. Explicit global edges are not produced, but presumably the process terminates

with sets of edge points which are both connected and of a desired minimum length,

which are then readily identified.

Region growin"

We motivated edge detection as a means to region finding. Why not just find the regions

directly? Many people have tried doing just that. The advantage is that one is dealing

with a global object, so the problem or linking is (or seems to be) avoided. Rather than

deciding whether an edge separates 2 points, one must decide whether 2 points belong to

the same region. Seen thus, the dilTerence is mainly one or (linguistic) semantics. The

L ° ",
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data structures reflect regions, not edges, as do the algorithms. Consequently, despite the

conceptual equivalence with edge finding, different approaches, harder to express in the

edge detection paradigm, are developed. The simplest method is based on segmentation

simply by intensity or color value. [Brice and Fennema 1970, Fennema and Brice 19701 -

take this as their starting point, and then try heuristics to clean up. [Ohlander 1975]

segments based on dividing bimodal histograms of several color parameters. [Sharer 19801

builds on Ohlander's work. [Somerville and Mundy 1976] use a technique based on more

sophisticated reasoning. They grow regions based on the uniformity of an approximation

to the normal to the image intensity function. [Kirsch 19711 defines regions based on

thresholding a "contrast" (gradient) function.

In the following, I have attempted to provide a critical guide to the literature in seg-

mentation. The list of works reported on is by no means exhaustive, but it is intended

to include the most influential works as well as some others representative of the field. 0
In addition to summarizing each work, I have usually tried to put it into some perspec-

tive, which is to say that I have included many or my own reflections. I hope that the

boundaries between the two are discernible enough.

A-

0

........................................--

-. . . . .. . . . . . . . . .

. . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . .



A Survey of Edge Detection General Works 22

General Wor6i

Prewitt 1970

"Object Enhancement and Estractien'

The paper is concerned with the entire image understanding problem:

" image formation

" image restoration

" enhancement (including edge enhancement)

* Object extraction

The author provides a fairly extensive bibliography (237 references) or literature at that

time (mu~ch or which is still germane).

The work is fairly sophisticated mathematically. B.g., Prewitt, considers the Laplace,

Mellin, F~ourier, aned I lankel transforms, momentsm, Illaar-Walshi functions (cf. jO'Corman

19761), (;hcbyshcv l)olyIornlials, point spread runction (118F), hne .pread function (pmS),

edge spread function (1?,SF), modulation transfrr unction (MTIr) and phase transfer -

runctiosi (IITF). She also discusses resolving power and restoration, including "super-

resolution" for restoring images which have been degraded by a convolution (referencing

e.g. ISlepian and Pollak 1961, Landau and Pollak 1961, Landau and Pollak 19621 and

applications).

Edge enhancement

A section devoted to edge enhancement discusses the gradient, generalized derivative,

Laplacian, and discrete approximations to gradient.

....... ........................
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As one means of obtaiqrng an estimate of the gradient, she introduces the 3 X 3 (now

so-called) "Prewitt operator:"

1 0-1 1 1 1

1 0 -1 0 0 0

1 0 -1 -1 -1 -1

This is used in a method of estimating the gradient by fitting a quadratic surface to data

on a 3x3 square. The masks give a/az, a/a1 for that surface directly from the data. O

This is exactly the method used by Illaralick 1980) for facets. Similarly, one can use the

same idea for a 4 X 4 fit or a laplacian.

She also discusses oriented edge masks, e.g.

1 1 1 . .

1 -2 1
-1-1 -1.O

as approximations to the gradient ("compass gradient"), and gives some examples of their

use.

A dimsussion or modified "crispening" (Laplacian) operators is presented, as well as of line

enhancers (which are basically templates, i.e. matched filters).

lrequency filtering

Low, high, and band pass filtering is considered.

She discusses tnplates, matched filtering, and cross correlation ror feature detection.

A good discussion or thresholding is presented.

The paper is an excellent overall survey of the then-existing methods for feature extrac- . -

tion, and in particular edge detection. By and large, the intervening years have.seen only

minor improvements, so the analysis she presents is still relevant today.

.-:.S -:
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Asidc from frequency domain filtering, the methods presented, including the "Prewitt"

operator, are completely local with small support-in her words, "context-insensitive."

Consequently, global structures cannot contribute to the edge finding process, and the

derived image description is limited -to 1 or 2 local parameters which provide inadequate

description of the image intensity function for all but especially regular imagesi.

Unlike nmost gradient estimation or template matching operators, the Prewitt operator

is based on a well-defined process-- thec best it or a plane. Thc gradient by itself is not

sufficient for edge detection, since no discrimination is made between smooth and abrupt

transitions, although plane fits can be used in more sophisticated ways (see e.g. (Hlaralick

1980 j).

Davis 1973

"A Stirvey of Edge Detection Technique.'

The author presents somne discussions or prior edge detection techniques:

Parallel edge dJetection

llerskovits and Binrord 1970

linear us. nonlinear operators (nonlinear: mnainly Rosenreld, Hlummel, Ztickcr 1975)

texture edges

Criffith 1970, Crillth 1973a, Crillth 1973b

llucckcl 1971, llueckcl 1973

Chow and Kaneko 1972

Sequential edge detection

Martelli 1972 Montanari 1970

"Guided" (top-down) edge datection
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Kelly 1971

Harlow and Eisenbeis 1973

Shirai 1973

Hie discusses and criticizes what was done very tersely. There are no particularly deep or

sophisticated analyses; nevertheless this work provides a useful first tour or refresher or

some or the more significant work in thc field. One can detect a subtle and not surprising

bias toward Rosenfeldism.

Kanade 1978

'Region Segmentation: Signal vse. Semantics'

A survey or image segmnentation is presented, based on the paradigm: Image -~Picture.-

Domain Cues - Scene lDornain Cues - Model -- Instantiated Model --I View Sketch -

Image .... which may be iterated. A distinction is made among the categories or signal,

physical, and semnantic knowledge.

A large number or works are briefly surveyed, and categorized according to how they fit. .......

into Lte above paradigm. For examiple, umany mnethods use only signial level k nowledge,

anid hence, in this paradigin, cait provide at inost a segmentation ba-sed on p~icture (10111mm

Cues.

Evaluatio

The parmaligin presented can be inore coniventionally quinmarized as saying that one's

goal must be to irfer the :l-dimuensiorial structure or.a scene iii order to model Lte scene

and understand the image. Furthermnore, one munst use physical knowledge, e.g. imaging-

physics and geomietry, to make this inference. This is hardly new or controversial. What

is debatable, however, is the distinction which is made betwern picture and scene domnain

cues. The main orientation or tire paper is toward region growing anid splitting methods,



k Survey of Edge Detection General Work. 28

ising fairly primitive "signal level knowledge," e.g. histograms of the image gray values.

F'or thcse types of systems, the image- picture-scene- model division is clear and seems

natural. But for "image understanding" in general (which the author is addressing), such

.4 ,

in easy description do"s not seem justified, and no arguments are presented to persuade

he reader, though in the author's derense it must be said that there were severe space

limitations for a fairly broad article.

It eems reasonable that the first step in image understanding might well be to compute

a description or the inge data in a more useful representation, or set of representations,

than is provided by the standard one, i.e. the set of pixel values. Kanade notes, in fact,

that [Pavlidis 1972] defines segmentation as a process for describing the image features

themselves. From this point of view, "picture cues" are features or this re-representation.

(Kanadc takes a more restrictive and ill-defined view; he defines "picture cues" by the

examples: line segments, homogeneous regions, and intensity gradient. The last of these

is properly a property or the image, but it can be argued that the first two generally

cannot be extracted reliably without using knowledge about 3-dimensional structures, and

that is Lmtaniount to making inferences about the "scene domain," although admittedly.

hlslorhcally stch inferences are implicit.) But it is not so obvious that there must be a

trichotomy: picture-scene-model. First, the new image representation is chosen based.

on physical knowledge- -the knowledge that determines for what it is important to look.

Whatever features are rocuined on in analyzing the new image representation are likely to

be interpretable as reatures in the scene domain only in conjunction with fitting them into

a model. For example, the interpretation or a narrow graulient-shaded region may depend

on its connection to other regions and on some set of hypotheses about other regions in

the vicinity. This might even be on the level of deciding whether the region is an object

limb, a surface, a highlight, or even whether it should be regarded as a separate region at

all. One can readily envision a Waltz or Zucker type relaxation process occurring using

the semantic relations of a model to interpret part of an image representation as a scene
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Ac expansions cannotavoid truncation error. However, ir the sampling kernel is taken

(say) C', its linear combinations (i.e. the functions ai4'i, where the 4'i are discrete

'anslations or the sampling kernel b)become prime candidates for an expansion series.

bese can be frequency (or sequency) ordercd. Expansion in terms or such functions has

een extensively studied; use or truncated series fitting is worth investigating.

!urner 1974

Computer Perception of Curved Objects Usng a Televis ion Camera"

Vare concerned here only with the edge finding aspects of' this work

'he author gives a brier' critical synopsis of' earlier line finding work:

Binrord-Ilorn Illorn 19721

Griffith 1970

lcrskovits and Binrord 1970

liough 1062

llueckcl 1971, Ilucckcl 1973

Kelly 1971

Murphy 1960R

O'Corinan an(I Clowes 1976

Pirigle 1966

Pingle and Tenenbaum 1971

Roberts 1983

Shirai 1973

Tcnenbauin 1970

'he edge finder Turncr employs is very simple, using thc first difference or adjacent pixels,

allowed by thinning, and further by a local tracker (inchworm).

Lshort review or eurve segmentation is provided.
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assumes that the digitization process takes place by averaging over. a square pixel sized

window, i.e.

fPifdA.

where w =image irradliance

Pi =unit 2-dimensional pulse at the point (i,j)

gj =the sampled output,

then the Pi" constitute an orthonormal set whose span is identical to the Walsh functions

of order less than I J (where f,J are the cardinalities or the i,j sets). The higher

order Walsh runctions describe exactly only what goes on within pixels, which is precisely
.O

the information lost in the digitization process, so one has a perfect match of model

to data. The Walsh basis differs from the single pixel basis most notably because the

support is spread over the entire region or interest, i.e. the Walsh basis has global support.

Truncating the series therefore results in global degradation, rather than local as would

be the case with the analogous action or leaving off some set or pixels.

Unrortunately, incorporating sulficient Walsh terms to utilize all the picture data is

equivalent to .oing a fit or a perfect edge to the satmpled data with the pixel value -

average intensity JLsuml)tion. This becomes extrenely complex as the number or pixels

increases, and if lateral displacements or edges are permitted, since the discontinuous pulse

convolution kernel rorces independent examination of nurnerotis cases corresponding to

the edge configurations' relations to corners or pixels. O'Gorman already has to consider

2 such cases for a 4x4 operator and 6 Walsh runctions. As the space grows larger, so does

the complexity, so that [Abdou 1978] chooses to do an exhaustive search as his method

of fit.

The advantage or everywhere differentiable functions (such as [Illueckel 1971, Ilueckel

19731 uses) is that the lack or discontinuity permits a single set or equations to express

the optimization problem. Of course, if one assumes a discontinuous sampling kernel, -"

.-.- , _ -~~~~~~~~~. .. ..... ......--.-......-......-- . ;.... .- .-. ?. . . . -?-2.:l
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the point spread function, one would have to preserve this property while generalizing

the integration properties, which is not at all trivial. What comes to mind is using tensor

products of the -dimensional 6(-") functions, which could be expected to have similar

properties, but that would not lead to a simple description of boundaries.

The method of locating the rree knots is not very clearly presented, and appears to be

based on a possible misconception. In 2 dimensions the problem is of course more difficult

because of the complexity of the boundary space. There is no obvious way to solve this

problem.

The paper is more biology oriented than computer oriented, so understandably no con-

sideration is given to digital processing issues, the most important or which is the effect

of discrete sampling on a periodic grid.

O'Gorman 1976

"Edge Detection using Walsh Anction*"

O'Gorman shows that finding edge direction by fitting a planc and then taking its gradient

direction is subject to systematic error for perfect step edges centered in a square window.

llowevcr, this is a consequence or the shape of the window a circular window would not

have the same problem. Nevertheless, the analysis is salient because pictures are sampled

on a square grid and rectangular operators are common.

lie uses the 2-dimensional Walsh runctions (tensor products or square waves) as an

orthonorlnal basis for representing the image function. I, analogy to Illueckel 1971,

Ilueckel 19731 he does an L' (least squares) fit of a perrect edge on the first 6 terms (in

his Walsh expansion).

The contribution of this idea derives from the fact that the Walsh basis bears a simple

relationship to the digitization process (if one assumes square pixels). In particular, if one

........... -.. ..... ..... ..... ...-
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It is interesting to compare these with the difference of Gaussians suggested by Marr and

lildreth based on similar assumptions.

Some comparisons with human vision are made, notably between line spread functions,

which are shown to be similar.

The work is quite provoking. The most interesting features are that it incorporates

the transducer transfer runction, nodels images as intrinsically discontinous objects

in a coherent way, and uses statistical estimation for detection. Unfortunately, the

generalization to 2 dimensions is not easy, and probably not as easy as Altes seems to

suggest. He proposes 2 routes or "generalization." The more straightforward involves

using rasters at a number or angles. Though this is not as satisfying as an intrinsically

2-dimensional approach, it may be a viable way to proceed. Significant problems that

would have to be overcome include integrating all the information from the various scan ..-

lines (which could be argued to be 99% of the problem to begin with), and accounting . -

for or using a 2-dinensional transducer transrer function. Making a true generalization

to 2 dimensions poses the rollowing diffliculties. Knots are or co(inension I; i.e. they are

boundaries between regions, so on a space of i dimension, a knot is; 0-dimlensional, or

a point. But on a space or 2 dimensions, a knot is the boundary of a region, i.e. some i

curve, a 1-dimensional object. So for I dimension, the space or knots is t-dimensional

(since it is the space or points), but for 2 dimensions the space or boundaries is infinite

dimensional (since it is a space or curves). The approach or workers in spline theory has

been to generalize the intervals between knots to projections from higher dimensional

simplices, leading in the 2-dimensional case to piecewise straight boundaries, but this

seems to be inadequate for a natural description of the boundary. The 2-dinensional

analog of the delta function at a knot is a delta function whose support is a boundary. _

Since the main virtue of using the 6(- ") expansion is the simplicity of convolution with

. .. .'. . . . . ..0 ;-.
,. .', - 1
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where u(- ") is defined £nalogously to 6(-"), since u* 6(-" -

Working in the Fourier domain, he introduces a derived set of normalized basis functions,

and shows how to estimate the coefficients in the expansion in the case of a single knot of

known position. For multiple free knots, he proposes using techniques from detection and

estimation theory, based on a statistical model of knot location. However, the approach

is predicated on the use of a matched filter to locate the knots, which appears to be

doomed to failure because the basis is not orthogonal.

The core of the author's method uses filters to estimate coefficients or detect complex

patterns. Based on filter complexity considerations, he argues that these filters should

all have approximately equal space-bandwidth products. These arguments are related

to implementation issues, and for the digital case would be related to cost. One must

keep in mind, however, that a major consideration of the work is a theory of human

vision. In order to achieve a set of filters with the desired property, he seeks a set

or transducer transfer functions to incorporate into the imaging transfer function U.

Although it is not stated in the paper, one can think or this as a convolution preprocessor

which allows rurther processing to be done by filters all having the same space-bandwidth

product. lie uses one particular way or obtaining a constant space-bandwidLh product,

viz. V.(w) .V.._I(kw) for all n with a fixed constant k > 1, where a. is an arbitrary

proportionality constant and

v(W) =

where 11'1 signili(es the 1,2 norm. Although this is a simple way to get a constant space-

bandwidth product, it is not the only way: e.g., a different k could be used for each n.

In any case, using this assumption, he arrives at a set of log-normal transducer transfer

functions, i.e. functions of the form

U(w) -A'e -=(1*9 ' ) 3.

. 4.. .
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the color space. From this point of View, 3) is not really possible (unless one wants to

be ad hoc), 2) is unsophisticated (though it may be adequate in many cases, but won't

maximize S/N ). It might be conputationally efficient to choose not a basis, but a larger

spanning set. 1) therefore is the way to go. Note that there may be more than one metric 0

which is worth using simultaneously. It is also worth investigating the differences between

using a metric such as

d(p, q) 11 ,- qjj V-,(pi -qi)2

and using a function

p(p, q)= I IplI-IlqllI Q2

Notice the latter is like the intensity difference.

Altes 1975

"Splint-like Image Analysis with a Complezity Constraint. Similarities to Human Vision'.

The author proposes modelling a (1-dimenmional) picttire asa finite sum or basis runctions

which are integrals or delta functions:

N M.
1(z) = f,¢.6(-)(z -.. ,-

R==O m ,O "

where 6(-") is the nth integral or tlhe unit Dirac delta fuinction, 0 <n < 00, anti the x,

are rree knots. Splines can be viewed as such sums with I < n < oo and smoothness

conditions imposed at the knots, hence the paper's title. Including the point spread . -

function, u, or the imaging system yields

(X) = ,.u(-")(z- ,

.~~~ .• . .. . .

,i-. • m.O

-"-"-'.' :_'_L ._.- .- : "_;--, --- "t - t
=
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"
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Nevatia 1977

"A Color Edge Detector and Its Use in Scene Segmentation"

Nevatia's goal in this work is to define a Hueckel operator ror the 3-color domain.

A review of color space representations is presented.

lie states there are 3 ways to look for color edges:

1) Choose a metric in the color space and look for discontinuities

2) Choose a basis and look for edges in the projection to each basis element separately

3) Do 2) but require uniformity to use 3 components together

lie chooses to do 3).

However, what he actually proposes doing is minimizing the sum of the squares or the

errors or the individual color component llueckcl fits. This is exactly equivalent to

choosing an inner product on the color space such that the 3 color components are all

orthogonal, then using the metric induced by the inner product, i.e. the ,uclidean metric.

This, as he points out, is equivalent to minimizing the individual components separately.

Doing so, though, would lead to 3 fits ror the 3 components which might have nothing

whatever to do with each other (since one is not looking for the single edge that&leads

to all the data, but independent edges for 3 sets of data. Therefore, he imposes the

additional constraint that the inclination angles for all 3 solutions must be the same, i.e.

he adds the 2 equations al = - a0 . However, computing this angle is not easy,

so instead he takes a weighted average of the 3 independent solutions (i.e., without the

single angle constraint).

The idea or "best" fit implies a metric, since one must have a way to me.ure how good

the fit is. Hence there is no way to avoid (explicitly or implicitly), choosing a metric for
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These papers contain some mathematical inaccuracies, which in themselves are not very

important, but whose presence brings into question other mathematical claims which are

not proven. An example of an inaccuracy is the statement that "The set of all continuous

functions over [the closed unit disk] is a Hlubert space." Since a Hilbert space is defined

to be a complete normed inner product space, the statement is false because the space in

question is complete in the sup norm, where there is no inner product, but not complete "

in the inner product space 2., which is the one Ilueckel is using. One might then be more

skeptical of the claim that the basis functions he settles on are the unique solutions of

some unspecified set of "functional equations."

The main contribution here is to approach the best edge fit problem in a tractable

subspace, thereby transforming an essentially combinatorial problem into an analytic one.

The particular implementation of that idea, however, sulTers numerous shortcomings. .6•

Several criticisms have appeared in the literature. [Abdou 1978] argues that the trunca-

tion or the orthogonal series introduces excessive error, especially for thin lines, and Chat -

unjustified assumptions are made in the optimization procedure. [Shaw 1977, Shaw 1979 1-

makes a similar criticisn of the optimization. [D)avis 1973] complains that no attempt is

made to relate performance to the image noise process.

Experience using the operator shows that regions of smooth shading result in multiple

firings, while regions busier than the size of the operator have missed edges and poor

parameter values. These failures are a consequence of using a poor model for the

underlying image i,,tensity function. The edge and edge-line models are unrealistic,

especially for the support area or the operator. The dilliculty can be traced to the fact that

in the spaces considered, ideal edges and linear functions are not mutually orthogonal.

Unfortunately, no analysis exists, either here or elsewhere, of the error one incurs by _

using suclh simplistic models.

• -~~~~~~~~~~~~~~~~~~~~~~..-.-.-.-.......-........................-...,.:- ...... .... .-..-........... .... ....-... ..... .....:-: :.-. .. ...
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to minimize d(Irh, TkES,p) with respect to 0, p. Since the basis is orthonormal, this can

be done componentwise. This is computationally efficient because the series is truncated

at a point which allows a closed form solution for the least squares problem. The line

paper uses essentially the same method, with additional parameters to allow for an ideal

step edge-line, i.e. a sum of 2 parallel ideal step edges. The method can equivalently be

thought of as fitting the best function rrom the fixed subspace Sk to the data and finding

the best edge fit to the function. (This is a consequence or orthogonalities of various ---

subspaces).

The orthonormal expansion used consists of polynomials in ;,y with a uniform radial

weighting function /1 - x- y2. For the edge (old) operator, 8 polynomials up to degree

3 are used, while the edge-line (new) uses 9 polynomials up to degree 4 (neither set spans

the space of all polynomials up to their maximum degree). What, ir any, classical set of

orthogonal polynomials these correspond to is not stated and not immediately evident,

since the definition of the basis functions is presented in a complex way. The orthogonal

runctions are related to a Fourier-13essel basis, since z = rcos0, y = rsin0, and the r

polynomials can be thought of ra approximations to the Bessel functions one obtains for a

radial Fourier transform. It is not stated how the basis fr,,nctions were derived, however.

The edge/no-edge decision is based on the "angle" between the projections of the data

and the best fit edge in the truncated space Sk. I.e., he thresholds on the value of

(7r i, 71kr.,)

I7rfl IWkE,,pI.

This suffers from the common problem that little analysis is devoted to the possible

picture functions ;r-'(wrE*,p), which are going to look like edges to this operator. In

particular, the average gradient plays a large role, anrd the decision criterion therefore

tends to respond to areas with large average gradients over the support.

. . - ...

- .. .•
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Evaluation or line findidg

This was an early effort. It probably is not bad for straight lines, though it seems to miss

a lot. Curved edges or complex scenes are not handled, and many ad hoc methods are

used.

The technique presented here has no hope of working where there are wide variations

in smooth shading gradients, since the thresholds are global, and the gradient operator

cannot discern whether the signal is from a smooth gradient or a local step.

or course, it must be stressed that Roberts broke ground in the use or his gradient

operator, as well as in the use or homogeneous coordinates, the fitting of 2-dimensional

data to 3-dimensional models, and in line following.

Hueekel 1969, Hueckel 1971, Hueckel 1973

"A Local Visual Operator Which Recognizes Edges and Lines"

[Abdou 19781 presents a detailed analysis, to which we direct the reader rather than

repeat the same points. .

The method involves finding the parameters or the best liLting ideal step edge in a disc-like

region or 32 to 137 pixels. The fitting is done in the spirit or the Rayleigh-Ritz method

or finding approximate solutions to variational problems (see, e.g. [Morse and Feshbach

19531). Using a fixed orthonormal basis for the function space or interest, and a fixed

truncation or the ortlionorrual basis, he finds parameters to minimise te 2 ditance

between the projections or data and ideal edge in the finite dimensional space spanned

by the truncated series. I.e., let 0i, i = 1,...,oo be an orthonormal basis for L2. -'

Let f R2 --e R be the picture (data). Let E,p be an ideal step edge or orientation

o centered at p E R'. Consider the space Sk spanned by the first k basis vectors,

*0,...,0b, and let wk be the orthogonal projection onto that space. Then the Idea Is

"-- 1 -'
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9 correlate (i.e. sum) along lines of length - 5, for values of = n . 45 ° .

* threshold on the ratio _ of the line values, yielding edges.

- Linking

• connect edgels if:

1) they lie in contiguous 4x4 squares.

2) they are related by a < 23 change in direction.

. eliminate singletons.

. apply an ad hoc cleaning processes for small triangles, quadrilaterals, and spurs.

Curve representation and segmentation

* least squares fit straight lines to linked sets.

e uses sequential (updating) method o fit.

* first done on connected edgels.

0 choose a random starting point, then proceed until:

I) a branch is reached, or

2) an error threshold is exceeded for the line fit, in which case back up until th'

local angle to the fit is cut by 1/2.

The remainder of the paper is concerned with the recognition and display or polygonal

3-dimensional objects.

L '.
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Local edge detector

He first takes the square roots or the pixel values, on the basis or psychophysical evidence

which he cites.' In a Wx pixel window, let the square root values be

a b

c d

The edge measure is then defined by

SO %/a - d)2 + (b -c2

This is proportional to the gradient magnitude of a least squares fit plane (e.g. (Haralick

19801). i.e., ir F is the best fit plane,

IVFI= %(a -d)'2+ (b -c)2

Roberts cautions that his line rinder "makes mistakes in complex pictures and is a complex

special-puarposc program demonstrating very rew general concepts." One must keep In

mfindi that this was a pioneering work and his main interest was higher level model

matching.

We summtarize thc operations pcrrormned in line finding in the following lists.

FAdgc detection proces

* =Ib(P) (do "Roberts cross" operation, i.e. compuic 1gradj).

* take max on each 4 X 4 square or a tessclation.

* threshold.

J~
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Local Methods

Best fit techniques

Roberts 1963

"Machine Perception of Three- Dimensional Solids'

This is a seminal work, often cited as the first serious attempt at a functioning computer

vision system.

The research described seeks to match pictures of a narrow class of prismatic solids to

stored models, starting from raw picture data. There is a wide range of issues which the

author had to address to achieve this; since we are concerned here with segmentation, we

ignore most of the other contributions of the paper.

The central task the program performs is to match a wire frame model to derived wire

frame data. An important part of this consists or vertex matching. To this end, lie tries

to fit n-point data (2-dimensional) to an n-point model (3-dimensional) by finding the

best transforms it, D in homogeneous coor(linates such that

AH =D +e,

where
A = n points (z, y, z, Iw) from Lhe model

1 - n points (p, z, w) from the data (uses x as projection axis)

H = 3 X 4 homogeneous perspective transform

D = Diagonal n X n scale matrix

c = error matrix

lie solves this as a least squares problem.

................. ~.-...* .-.... ... ... .

A.t.tta*.* .. . . . . . . . . . . . .. . . . . . . . . . . . .
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feature. In the shape-from-shading paradigm, for example, one is hard put to identify

any stage as "picture domain cues."

In summary, the paradigm presented is a useful one for discussing extant image under-

standing systems, and is particularly clear for those based on rudimentary image charac-

teristics. One must be careful, though, not to be misled into a dogmatic adherence to

the paradigm presented, since it seems likely, perhaps necessary, that it is inadequate

as a description of the type or system required to do successful image understanding

in unrestricted environments. The survey is readily accessible as well as concise; it is

recommended as a good entry into a fair portion or the segmentation literature.

----- .. . . .
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He discusses the (p, a) ?.,presentation of plane curves, defined by

j= tangent direction, and
a = arc length.

Then
d~/ds x i is the curvature, and

d~o/ds = constant 4* the curve of 9 vs. s is a straight line
9= a linear function of s.

Curves are then Found by fitting straight line segments to the (to, s) data.

Abdou 1978

'Quantitative Methods of Edge Detection'

This work is concerned solely with local operators.

The author presents a review or several such operators:

Roberts 1963

Sobl JIM&d ind] I art 1973)

lPrewitt 1970

Compass gradient (lPrewitt 19701

Kirsch 1971

3-level, 5-level [Robinson 19771

luieckel 1971, luieckel 1973

It is interesting to note, perhaps as a comment on the literature in general, that Abdou

presents 8 different 3 X 3 convolution operators. With a support of 9 pixels, there can

be only 9 linearly independent 3 X 3 operators (since they make a 9 dimensional vector

space). Thc 8 presented are in fact linearly indiependent, and the further inclusion of an
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operator which picks oUft a single pixel value (the trivial operator), e.g.

0 "0 0 i

0 0 0

would result in a set which spans the entirie space.

fie evaluates the performance of convolution operators on perfect step edge visual input,

assuming square pixels and area-proportional sampling (i.e. the pixel value g(p) is defined

. by

"p)= fdA,

where R(p) is the (square) pixel support region). This leads to complicated formulae for

pixel values from rotated edges.

lie discusses statistical aspects or edge detection and evaluates the 2 X 2 and 3 X 3 -

operators with respect to statistical performance. E.g., probabilities or detection e. false

detection for various SIN are compiled.

A discussion or edge detection as pattern classification is also presented, including the

application of the Ilo-Kashyal) algorithm to the problem.

A review or statistical methods is presented, focussing on various methods or hypothesis

testing:

Bayes decision rule

Neyman-IPearson criterion

minimax criterion

All evaluations are based on assuming the input to consist of a perfect step edge plus

simple (usually Gaussian) noise. Unfortunately, real data rarely have perfect step edges

and usually have non-constant areas which are not edges. (See e.g. the review. or (Canny

1983) for a more detailed discussion of this assumption.)

*. *. .. * - * . *.S.S
. . .. . . . . . . . . . • - .
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An analysis is presented of the effects of Gaussian noise for linear masks.

Abdou uses Pratt's figure of merit to test the various convolution operators. The best

performers are the 3-level and Prewitt operators (which are essentially the same). (Pratt's-

figure of merit is defined as follows. The input is a perfect vertical ramp edge, i.e. a

function only of z, having a cross-section of constant-ramp-constant, i.e. a constant part

connected by a linear part to another constant part. The variable parameters of the input

are the contrast (the difference between the 2 constant values), the slope (of the linear 5

transition ramp), and the standard deviation of additive Gaussian noise. The figure of

merit is then defined by a formula based on parameters of the output error. Also, an

analogous version is presented for edges at a 450 angle to vertical.)

For convolutions with square support, he analyzes the effects or mask size, center-weighted -

masks, and local adaptive thresholds.

Abdou proposes 2 new edge operators: 1- and 2-dimensional ramp best fits, reap. The

idea for the 1-dimensional case is to fit an ideal I-dimensional ramp edge to the data for

all possible ramp sizes (with discrete end points). Results for each size are given in closed

rorm, but the various sizes must be considered separately to determine the best among ---

theiti. The 2-dimensional ranip best fit proceeds in the same way as the 1-dimensional, ..-

but he also considers all possible orientations. These he limits to multiples of 45* .

There are several appendices:

Analysis of the 1iueckel operator (fairly good)

Orthogonal transformnation| in edge detection

(the beginnings or a DFT method or edge detection)

The Ilerskovits algorithm (not a very enlightening discussion)

Derivations or Eqs. 3.29, 3.31, 3.32 (some statistics)

Experimental results (pictures)-- not very informative, extensive or useful.

lie only provides binary edge maps or 3 pictures. One can't really

0 °o"%'
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see what is happening locally (the pixels are too small to be seen).

To the extent that the local edge ramp hypothesis is valid, the ramp fitting method

may work, though it is essentially equivalent to applying various slope masks in various

directions. .This is a rather inelegant approach since a best fit must be performed for each

b possible ramp width and angular orientation, with the optimum round by exhaustively

comparing the error parameters ror all the fits. One advantage over gradient operators

and other best fit operators is that the present method can be used to reject regions of

smooth shading if the all-ramp condition is rejected as not an edge. The main virtues,

then, stem from the enlargement or the space or possible features to include the ramp

edges. However, the Hlaralick "facet" model is more general, no more expensive, more

elegant, and probably more effective, though probably also inadequate (see review of

[tlaralitc 1080]). L.

Beaudet 1078

"Rotationally Invariant Image Operators'

The author is interested in finding a least square polynomial approximation to image

data. The coeicients or the monomial terms are computed via convolution.

The starting point is to consider the polynomial to be fitted as a truncated Taylor series.

The coefficients are round as in a normal least squares problem, but are taken to represent

the derivatives in the Taylor expansion. To Ist order, this is the same as fitting a plane

and estimating the gradient. The quadratic part is tantamount to finding the classical

Hessian.

fleaudet considers operators up to 4th order, and operator sizes from 3 X 3 to 8 X 8. The

only rotationally invariant Ist order operator is the gradient, or rather, more precisely,

.. .. .. . .m u l u..a. ,m.llld.Il~dn n~i '" ...... ..... ." " . t r . - "' " "
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the squared magnitude bf the gradient, Vf. VJ. The 2nd order operators correspond to

the linear invariants of the Hessian matrix,

(I: fs\
H-- ~' h,'

as well as the scalar-valued operators IHVII and VJHVf.

Unfortunately, it appears that the author confuses the Hessian with a matrix repre-_
*o

sentation sometimes called the Weingarten map, which is the differential of the Gauss

map. The linear invariants of the Weingarten map are the intrinsic curvatures of the sur- "-.

face: the eigenvalues are the principal curvatures, the trace is the mean curvature, and the

determinant is the Gaussian curvature. The author, however attributes these properties

to the Hessian. This confusion most likely stems from the fact that the two coincide

at any critical point of the function f, and it is possible to rotate the 3-dimensional

coordinate system of a surface in R3 so that any given point is a critical point when the

surface is being viewed as the graph of a function from R' -. R. This is commonly

done in expositions of the subject to simplify formulas. lowcver, since .we are in a fixed

coordinate system, such a simplification is not possible (without, or course, including the

rotation matrices). (See, e.g. [do Carmo 1976J.) The differential or the Causs map, when

the surface is given as the graph of a function f : R- R, can be written in coordinates -'-

z, as
dN += f + i,, =(+ f f.v)

(I + f 2)3/2k. V~ +A, f2+J

which is easily seen to reduce to the Ilessian at a critical point of .

l1caudet correctly points out that the trace or the lcssian is the Laplacian, but he makes

incorrect assertions about the relations between the quantities ie derives from the Hessian

and various curvatures.

Three 3rd order operators are presented, which are claimed to have significance as line

end, curve boundary, and line detectors.

. ".............................-......... ....
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The above terminology-and interpretation is mine; he presents these in the more classical

language of tensors and coordinates, where his operators are contractions of tensors.

One should note that considerations and techniques very similar to those presented In

this paper were described by Prewitt circa 10 years before, though no reference is made

to that work.

Evaluation

The experimental results consist in the application of a few of the operators to a single

image. Since the notions of line detection and edge detection are very simplistic, there

is no effort to use the results or the processing in any way other than to present the

magnitude or the operator output. Not surprisingly, this is not very effective. However,

more sophisticated processing based on the obtained fit is promising. A potential difficulty

may lie in the manner in which the fit is obtained, since polynomial least squares fits tend

to produce spurious oscillations.

Despite these shortcomings, the proposal to compute geometrically and analytically

significant properties of the image intensity function, using convolutions, is a worthwhile

contribution. The thrust, perhaps not made clear by the author, is to derive an under-

standing or the image intensity function in terms which have precise, well-understood

meanings, and which go beyond a few narvely chosen parameters. As it happens, the

error about intrinsic surface properties may be rortuitous, since it may make more sense

to consider the Hessian or the intensity function, rather than its surface geometry indo-

pendeiit of coordinate systen. There is, after all, a special coor(inate system in this

situation: intensity (the z-axis) is quite different from location (z,y), and so there Is no

reason to expect that the invariances or rotating the entire 3-dimensional space should

be the right ones. It would be interesting to see results of psychophysical studies where

the intensity runction is changed so that only the llessian or the Weingarten map, but

not both, change.
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As presented, this is nota viable edge detection method. However, the idea of local fitting

merits further investigation, particularly in regard to deriving differential operators. -

Hsu, Mundy, Beaudet 1978 0

'Web Representation of Image Data'

The authors are interested in using a local quadratic fit to detectimage features. A . -

quadratic polynomial is least squares lit to the image data on (presumably uniform) local .

neighborhoods. The polynomial is regarded as a Taylor series, and the coefficients are

interpreted as partial derivatives (see [13eaudet 19781). The principal axes are identified,

and a mesh is constructed over the image by extending straight lines along these special

directions until some error threshold is reached, resulting in a new mesh node and

repetition or the process. The implementation is based on starting from seed nodes, with

special rules for the image periphery, propagating down and right, and merging of nearby

nodes. Some nodes of the resulting mesh are labelled according to the "curvatures" and

an extremum predicate.. Global paths through the mesh are then sought by the use of

production rules based on the local labelling to rollow arcs. It is not entirely clear how

this process works; apparently somne kind of relaxation is involved.

Experimental results

P~artial results are shown for 1 real and 2 syntheitic images or ca. 128 X 128 resolution.

Feature finding is only shown ror two of these, where a purported ridge is round In a S

synthetic normal saddle, and some ridges are found in a real picture or scratches. The "

performance on the real picture is quite poor, although it is hard to isolate the reason.

Probably it is a consequence either of the extreme coarseness and irregularity of the mesh,

or the localness and ingenuousness of the production rules.

0-.
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See the review of [Beaudet 19781 for remarks about fitting and differential operators.

The same misconception is present here as in [Beaudet 1978) regarding use of the Hessian

to define principal curvatures and intrinsic surface properties, rather than the correct

expression for the differential of the Gauss map. Ccuscquently, the "principal axes" and

"curvatures" the authors find correspond to the conventional usage of those terms only at

stationary points or the image intensity function. However (see review of [Beaudet 1978]), V

these objects may actually be more meaningful for image analysis than the geometric

invariants. E.g., [Canny 1983) uses essentially the same parameters in his directional

operators.

The construction of the mesh is a good idea insofar as a coordinate system based on

principal directions is found. However, the mesh is far too coarse, and the method of its

construction leads to a topology which may not have much to do with the underlying .

structure. The authors apparently wanted a graph structure to propagate their produc-

tion rules on, but unless they have bugs, what they got was more or less a mesas. The

production rule technique is not very well explained, hence diflicult to evaluAte, but the

impression one gets is that it is somewhat inflexible, e.g. putting limits on rotation of

principal direction. It is not clear, e.g. how the prodtiction system performs a function

separate from the mesh generation itself, where error criteria are also imposed. It may

be that using a finer mesh would provide much improved results.

A second problem is that no analysis is given regarding noise behavior. A big question is

the behavior or the mesh generation in the presence or noise.

Dreschler and Nagel 1981a, Dresechler and Nagel 1981b

'Volumetric Model and 3D-Trajectory of a A!loving Car Derived from Monocular TV-

Frame Sequences of a Street Scee *

.......- ...... .,. . .... ..... ..... ....
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The authors are primartly interested in tracking objects in a sequence or successive static-

frames. They seek point features which are expected to be stable from frame to frame,

settling on extremal points of the Gaussian curvature of the intensity function. The

computation of the curvature is performed via "principal curvatures" using the operators 5

of leaudet (which in fact compute something other than principal curvatures: see review

of [Beaudet 19781).

The authors are motivated by seeking local extrema of Gaussian curvature. However, 6

they round that such extrema occur at knees of edges (cliffs in the intensity function)

in an unstable manner, as a consequence or local noise and small variations. Therefore,

a more involved predicate is used. Viz., pairs of nearby points are found which are a

maximum and a minimum of Gaussian curvature. Along the line joining these points,

that point having the steepest slope of intensity (i.e. directional derivative) is selected as

the feature point, subject to the following 2 criteria. First, it is asserted that exactly I

principal curvature must change sign along the line in question (this is true only if the

extrema or Gaussian curvature are or opposite sign, which is implicitly assumed), hence it

is required that the principal direction corresponding to the principal curvature which is

changing sign be roughly parallel to the line in question. This assumes that the extremna or

the C aussian curvature should be joined by principal curves, a proposiLion whose truth is

by no means self-evident. Secondly, the intensity value at the maximum must be greater

than that at the minimum. This is for the case that the high intensity area is convex _

at the corner. Since the reverse case obtains by turning the surface upside down, which

does not change the Gaussian curvature anywhere, the opposite condition must be true

when the low intensity area is convex, so without other information about the context of

the extrema, this seems to be a vacuous condition. Also, an ad hoc maximum separ. 'ion

of 4 pixels is required for pairs of extrema to be linked. Obviously, this is a requirement

that the corner be quite sharp at the resolution of the image.

Both 5 X 5 and 3 X 3 operators are used: the 5 X 5 for good noise behavior, and the 3 X 3

.. . . . . .. .. . . .
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for better resolution in'places selected by the 5 X 5. The operators used are the ones

presented in [Deaudet 1978J. Consequently, the present authors are victims of an incorrect

definition of Gaussian curvature (see review of [Beaudet 1978]) and principal directions.

However, it is extrema or Gaussian curvature which are of interest. The relation between 0

these and what is actually (erroneously) used is algebraically complicated, and we do not

* attempt to analyze it, but these parameters may be just as meaningful for images as the

geometric ones. Furthermore, there is already a heuristic element to locating the points

of interest. Therefore, it doesn't seem likely that the use or the correct values of the

Gaussian would change the performance significantly. To get a better understanding of

the situation, one should in fact analyze the behavior of these parameters in the light of

what is known about the image irradiance equation.

Experimental results

The results displayed seem to be fairly good. Of course, there are a number of other 11 OR

elements of the system we are not considering here, e.g. the method of tracking, so that

it is dilflicult to say how reliably the features selected represented intrinsic features or

objects or even of the intensity function.

SEvaluation""""

The present work is best regarded as a corner detector. As such, it is not adequate

for performing segmentation. As far as its usefulness for matching images is concerned,

one would have to analyze to what degree extrena of Gaussian curvature are intrinsic

features of the object geometry, rather than the intensity surrace geometry. There are 2

components to such a study: the effects of perspective transrormration, and the effects of 0

photometric laws. An initial approach could consider these components separately, i.e.

constant light with moving observer, and fixed observer with moving light.source. Since

the features used are pieewise smooth functions of the parameters of motion and lighting,

one can expect that they will trace out piecewise smooth curves as those parameters are

S. . °'.
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varied; and hence they ean be tracked. Whether they are good things to track is another-

question. Consider the extreme case of a moving flat mirror, moving in its own plane, -*

and reflecting a light source. This isn't a completely ridiculous case, since it is a limiting

case of what can happen with specularity, which in turn is a matter of degree for the. "

reflectance function. The point to note is that the feature associated with the specularity

will behave as a function of the location of the light source rather than as a function of -

the motion of the object reflecting it. The moral is that the behavior of a feature can be

highly decoupled from that of the object whose surface creates it. A less extreme example

to ponder is studied by (Koenderink and van Doorn 19801, who show that the extrema of

the image intensity stay near parabolic lines of the object surface (but move along them).

The relevance to image segmentation is this. Principal curvatures, principal directions,

and principal curves are useful features of the image intensity function. They define

a local geometry, and notably a local orthogonal coordinate system which is a natural

coordinate system in the vicinity of edges. Predicates based on observation or the behavior

of priicipal curves seem good candidates for edge detection a(d hence segmentation. This

work at least shows that such features have some stability in the presence of noise and

deformation. P-

Haralick 1980

"Edge and Region Analysis for Digital Image Data"

The view taken here is that edges and regions can be viewed as places where there are

large or small differences, resp., in some parameters. In this light, the old method, i.e.

looking ror perfect step edges, amounts to fitting a piecewise constant function to the

image intensity. The new method which the author puts forth, is to do a piecewise linear

fit, i.e. to fit planes (or facets). The work is purely theoretical in that real images are

not considered.

The central feature or the analysis is to perform a least squares fit of a plane to the data.

- . ,.. .-. . . . . . . . . . . . . . . . . . . .. .•
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The author provides alnice analysis of noise for this problem. The critical question Is

whether 2 planar patches are actually part of the same plane: the edge null hypothesis.

To resolve this question, he uses the F-test on a X2 distribution derived from the error.

More specifically, the way this is used is as follows. Each point p or the picture is assigned

a neighborhood p s-4 Up which is the one supporting the best fit among all U' containing

p. I.e., of all neighborhoods Up such that p E Up, let U, be such that c(U) is minimum.

Edge and region detection are then based on an F-test or the parameters associated with

the optimal neighborhoods for adjacent pixels, followed by thinning. Even neglecting the

piecewise planarity assumption, this adjacent-F-test is probably too simple minded.

The technique can be summarized as follows:

edge detection method:

each pixel has a best-fit neighborhood with parameters oF Ait.

edgeness = F statistic that adjacent pixels' fits come From same plane.

compute For vertical, horizonLal adjacencies for vcrtical, horizontal edges.

find maxima by non-maximum suppression.

region growing method:

group adjacent pixels ir same best fit neighborhood plane hypothesis cannot be rejected.

The hypothesis testing is based on the relation between parameter differences and errors

of fit. IF the local is relatively poorer, greater parameter dilTerences are tolerated for

region merging. In this senae, the region merging is adaptive. llowever, no analysis is

presented describing how this method would behave ror large regions or long edges. Also,

no attention is given to the problem of determining whether local edges are part of a

larger edge.

The author includes a quick but nice review of some related literature. For example, he

shows that the "Roberts cross" operator [Roberts 19631 computes the magnitude or the

. . . . . .. . ... . . .



A Survey of Edge Detection Local Methods 53

gradient of a linear fit (Ulthough this is all but explicitly stated in [Prewitt 19701).

Unfortunately, the paper includes no experimental results or consideration or real images.

Evaluationo

The idea of fitting regions and looking at the parameters is a good one. Statistical analysis

is good, too. However, the piecewise planar hypothesis is not sophisticated enough. On

the other hand, the statistics becomes more complicated for more complicated fits. In the

form proposed, this method is not likely to be noticeably better than other local methods.

The extended edge and region part is rather ad hoc-not based on a sound analysis. This

paper can be recommended as a good introduction to the use of statistics and fitting, 6

despite some ambiguities.

Haralick 1981, Haralick 1982, Haralick 1984

"Digital Step Edges from Zero Croesing of Second Directional Derivatives"

The essential feature of the technique proposed by the author is litting the inage intensity

function by a polynomial. " .

lie first intuitively defines edges as discontinuities in brightness value or its "derivative."

But then he notes that for this to make sense, the discrete picture must be thought of as

samples of a function on a continuum. To obtain such a function from the data, he does 7

polynomial approximation using disc rete orthogonal polynornials. "Discrete orthogonal"

iviians orthogonal with respect U) the "inner product"

(f, g) _ f(p)g(p)
pP

where P is some finite set of points, though this is not explicitly stated. It is not a true

inner product because it can happen that (f,f) 0 0 with f 3 0. (see e.g., [DeBoor

.- .- - - --" - - . . .
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81). Regrettably, heprovides no references: there is, after all, a rather large literature

aining to fitting polynomials.

ihin this context, he can define what is meant by "edge." In [Haralick 19811, this is

ned as a place where the "direction isotropic magnitudes" of the lst or 2nd partials of

fitted function exceed some threshold. However, he requires the assumption that the

ivatives of the underlying function are uniformly bounded except at discontinuities

that the high estimated values can be attributed to discontinuities). This is not very

listic, and in [Haralick 1982 and Haralick 1984] it is replaced by a definition of "edge"

a zero crossing of the 2nd directional derivative in the gradient direction (see review

[Canny 19831 for a more detailed definition of this entity), i.e. a maximum of the

dient. While looking at the parameters of a fitted function is a good approach, this

till too local a criterion, and too simplistic a structural representation, so that most

Lhe benefits of surface fitting are lost, as demonstrated by (Canny 1983]. In [Ilaralick,

Atson, Laffey 1983], he improves this considerably, expanding to the derivation of the

ditative structure or the function.

imposes i-dimensional symmetry on the index sets of the polynomials, i.e. the points

which they are defined must be symmetric about the origin. For 2-dimensional basis

ictions, he uses the tensor product of his 1-dimensional set. lie then shows how to

by the usual method or projection onto the orthonormal basis. A further section of

tralick 19811 is devoted to showing that D2. + D2 and D2. + D are rotationally

ariant differential operators.

ilhuaton

c idea of fitting a function to the intensity data as a first step in edge finding is good,

sough the definition or "edge" is somewhat simple-minded. E.g., the lst derivative

,erion will result in edges being round in regions or smooth shading. Unfortunately, L

papers do not Adress imu s..Lsociated with t e fitting problem. E.g., polynomial
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I.-

done, which Canny tackles with numerical methods, yielding a family of optimal p.

Diution kernels, parametrized by K, the mean separation of maxima normalized by.

upport interval. Qualitatively, this family ranges in appearance from a smoothed.

ence of boxes for small values of K to a derivative of Gaussian for large values of.

he same time, he develops another measure of multiple response, a local measure

i by

If'(O)I

;et a signal-independent.constraint, a proportionality can be required between this

iure and the false positive (detection) measure, since they are both normally dis-

ited; i.e. one can require
If'(O)I -- k (I'u -1) '-

IIf'iI 11111

!rms of previously defined quantities, this can be written as

AKW- k.

ough Canny seeks an f for which k I, the best he is able to do is k .58, which

t too surprising, since at this point the constraints are no longer all independent.

value is achieved for one of the larger values of K. The f thus arrived at is well

oximated by a derivative or Gaussian, which is desirable for ease of computation,

icularly in a 2-dimensional version. lowever, aside rror, computational considera-

i, it is not entirely clear that this is a necessary choice. Canny does not make it

that one necessarily wants k 1 1, and for thatmatter, the argument leading to the

i response measure used in defining k is less convincing than one would like. It would-

i that where a Ist derivative of noise response is used, that a 2nd derivative (possibly

aged over some neighborhood) should be used. In any case, he computes that the
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raw (i.e. signal-dependint) SNR and localization terms do not cancel when these terms

are multiplied, but result in a coefficient of A 2/n2, i.e. if these terms are not dropped in

defining the detection and localization criteria, the resulting product would be

A2
-EA

74

The problem of finding an / to optimize the composite measure is solved as a variational

problem, making an assumption of finite extent and thereby using a tractable formulation.

The set or admissible functions is taken to be C°, which may be slightly inconsistent,

since it would seem that f must be at least C' to conclude that the maximum of f", I will

be achieved where the derivative is 0, which was used in the derivation or the optimization

measure. Solving the variational problem leads to an expression depending on a parameter

(for normalized f). It turns out that the parameter can be increased without bound,

leading to ever better f's, and, in fact the limit or the f's is a difference or boxes (not in

the admissible space), which, not too surprisingly, is the Wiener filter, giving infinitely

good localization, and the best SNR.

Multiple response criterion and optimizing for all criteria

Now, if f is a difference of boxes, f, I is no longer smooth, so the derivative method of

finding maxima is called into question. But what is riore important, as Canny notes, the

maxima will be essentially as noisy as the noise. This observation leads to an excellent

way or imposing a smoothness constraint on r. Namely, one can couple the requirement

that maxima or f * I be sufliciently isolated (in the mean) with a formiula giving the

separation value to arrive at a smoothness constraint on / of the form

-' mean separation - - KW

where W is the support width, and K the parameter which sets the constraint in units

or W. This leads to a complicated algebraic problem once the variational work has

........................................................ i - ' ' - .* " .
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lo one can write

AI+'(o)O (higher order terms)

raking root mean square expectation values, one gets

nolIfIll E_ 112 (Z2 + aX4 + higher order terms)
AlI'(O)I

rhe right side is taken as an approximation to the standard deviation or x, the solved-for

ocation. The localization measure is taken as the reciprocal of the left side, i.e.

A W f'ON

t', then, should also be maximized.

Optimizing sensitivity and localization

Canny chooses to optimize over the composite measure

E - ~~f()
111/1 II1'II

based on the observation that this is a scale invariant quantity, i.e. its value is the same

ror f(z) as ror f(axr). While this sceinq to be an interesting property, tile only argument

presentedl in its favor is that thle resulting inesture depends4 only onl thle "sh~ape" orf . it

would be interesting to put this on some stronger footing. E .g., the noise is; scale invariant,

and so is the step (when considered as a function, though not as a distribution), so there

is a symmetry argument for scale invariance. On the other hand, 1'+ A' or (E + A)2

where E is redlefined to be always nonnegative) also seem like reasonable candidates for

measures to be op~timized. Incidentally, one should note that the A/no coefficients in the
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where (,)and flHare'the L2 inner product and norm, respectively, fi. 1 is defined by

i- 1 (t) u- u.I (-.t), and no is the RMS noise. A noise figure E for the operator f can then

be defined by

Part of the optimization, then, is to maximize E.

Localization criterionS

The localiz~ation is given by the location or the miaximumn of f 1 . Canny equates finding

this maximum with solving

(1 I)'() =0

This amounts to a smoothness assumption on f 1 , which unfortunately is not explicitly

stated, which makes it unclear what runction spaces are involved at various stages. Since

I =Au.. 1 + nt, this is the same as solving

(f Au....)'(z) +(f *n)'(z) =0

(I *Au-1)' = A * uo = Af, and (f s n)'=- '*ni, so we have

Af(z) + (f's n)(x) =0

L~e., we want to solve

Af(x) -(f' n)(z)

Canny approaches this problem by first observing that f should be an odd runction,

then linearizing the problem as rollows. Near 0, 1 can be approximated by its Taylor

expansion, so we can write

Af(x) =AIJ'(0)x + higher order terms] = -(I'
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of both variational and numerical methods. The operator is extended to a directional

family for 2 dimensions. He uses an adaptive thresholding technique and a noise based

scale selection technique to finally output a very clean set of linked edges.

The 1-dimensional problem

The 1-dimensional problem which he poses is this. Assume that the data consists of some

step function in white Caussian noise, i.e. the data is given by

I(t) = -( ) ::.

where A is a real constant, u-1(t) is the unit step runction, and n(t) is the noise process.

Assume further that edge detection proceeds by finding the maxima or f 1 1, for some

convolution kernel, I. The problem is to find the best / subject to the following

performance criteria:

1) Cood detection: low false negative, raise positive. Equivalent to maximizing S/N

(signal to noise ratio).

2) Cood localization.

3) 1 edge yields only I response.

Sensitivity criterion

The signal to noise ratio is given by

S signal response A f". f(x)dz

RMS noise response no(f_ f 2 (z)dx) 1 /2

which we can write more compactly as

AY'fi'i-)SNR = A(fi)

nolf 11

.. o ..

S. . . . ". .
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(Shanmugam, Dickey, (dreen 1979). In any case, as a 2nd derivative operator it is es-

thetically pleasing because of smoothness and the Fourier domain symmetry (i.e. the

Gaussian is an cigenfunction, or Gaussians in general are an invariant subspace of the

Fourier transform). Zero crossings are a useful way to locate edges, but none of the

"mathematical" or heuristic arguments presented about them here are convincing.

One must regard the assumptions and techniques of this work as tentative and experimen-

tal, rather than as a well founded theoretical or practical system. The ideas are based

on intuition, perhaps good intuition, but lacking better justification must be regarded as

only intuitive. The professed purpose is an explication of human vision. Unfortunately,

so little is known about human vision (e.g. there is no viable theory or how any but

the most rudimentary information is coded or utilized), that one cannot draw any con-

clusions about the validity of any theory purporting to explain human vision, and in

any case it is not our purpose to do so here. For example, it is clear that there are on-

center off-surround receptive fields with a response qualitatively like the DOG. But one

can approximate the samoe data with Iolynomials, I essel functions, or your own favorite.

The important thing is the qualitative feat, re or smoothly varying on-center off-surround

response. The DOC Maiy be computaLionally convenient, which is reaison enough ror its

use, but the type or convenience does not translate into cost, for a living system, without

further analysis. It is rair to say that the theory presented here is not obviously ruled

out, but neither is it clearly the best or only possibility. As far as its being a theory of

visual information or an engineering design, one can only say that it is an interesting and

provoking hypothesis, but not inexorable or proven.

Canny 1983

"Finding Edges and Lines in Images"

In this work, Canny begins by posing a local 1-dimensional edge detection problem as an

optimization problem over the set of convolution operators, which he solves by the use

,-.-. .. , ......-.-- ,.-.',-,,,-.-.......,........ ....-. ;.,- - -.. ,.-.- .. - - . ,.,..
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[a'f//aaz,1. Note thdt D2f D,,(Dj), where D, is the directional derivative in the v

direction). Unfortunately, they seem to be mainly thinking about the special case where

lf/ly 0 0; they develop some strange ideas about the conditions and ramifications of "

their maximum slope concern. They state and claim to prove a theorem to the effect

that the condition (confusingly stated) obtains if and only if af/f -- constant. They

are somewhat careless in the proof or the if part, failing to explicitly consider the slope.

In fact, what they are trying to show, in their notation, is that cos3 0. f.. attains a

strict maximum for 0 = 0. This will be true ir f is 3 times differentiable and 3 4 0.

However, the authors have only assumed that f E C', and they neglect the possibility

that f.. may vanish. The only if part and its "proof" are omitted from the Proc. R.

Soc. version of the paper, and wisely so, for they are erroneous; the purported proof

shows only that D.f may not be 0 for v t i. See [Canny 1983 for a more coherent use

of 2nd derivative, and the review or [Canny 19831 for more discussion.

The authors assume that coincident zero crossings from a set of contiguous channels

imply a real edge and conversely. This so-called spatial coincidence assumption is not

well-supported by any argument. (E.g. see (Canny 19831 ror pictorial counterexamples.)

The only situation ror which it really makes semnse is that of a very sharp edge between

fairly large constant areas. Otherwise, it seems perfectly reasonable to believe that the

edge will be visible at only I scale, while smaller scales will have inadequate sensitivity,

i.e. their zero crossings will be essentially random, and larger scales may include other

features, so their zero crossings will depend (arbitrarily) on those features as well.

E ion

The paper presents no convincing arguments that the V2 C or DOC operator is optimal

or otherwise privileged in this context. Hlowever, for the purpose of step edge detec-

tion a particular kind or optintmaity under some conditions has been shown elsewhere

.. . .
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matched, yielding a sim le result in the case of a step edge. In that case, the approximate

filter has an impulse response which is the 2nd derivative of a Gaussian (see review of

[Shanmugam, Dickey, Green 19791 for details). For the ranges that the approximations -'

are valid (see review of [Shanmugam, Dickey, Green 19791), this vindicates the use of the

Laplacian of the Gaussian by Marr and Illildreth, but only for the specific type of matched

filtering or step edges studied by [Shanmugam, Dickey, Green 19791, though [Marr and

llildreth 19791 makes no mention of the type or analysis in [Shanmugam, Dickey, Green

1979], basing the use or the Gaussian on the more nebulous grounds mentioned above.

The authors are interested in finding points or maximum directional derivative as edge

locations, and they choose to locate these as zero crossings or a 2nd derivative. Based

on cost considerations they opt for an isotropic 2nd derivative operator, the Laplacian

V2 (the only such), and wish to compute V2 (C * f), where G is the Gaussian. Since

V2(G. f) - (VG). f, they want to convolve with V2 G, which they approximate as a

difference or Gaussians (DOG).

Logan's theorem (reconstructibility or analytic 1 octave bandpass signals rron their zero

crossings) is invoked to help justify use or zero crossings. llowever, tile theorem is

applicable only for I dimension, and( the signals involved here have a handpass or nearly 2

octaves. An argument is nmde that slope information may be adequate to bridge the gap

(in analogy to the situation for the sampling theorem). On the other hand, there is no

reason why reconstructibility should be a criterion, since there is never any requirement

that an image understanding system should be able to reconstruct the input signal.

It appears that the authors are concerned that the zero crossing direction be perpendicular

to the direction of "maximum slope of the directional derivative." Apparently, what

this is supposed to mean is that VD~f should be collincar with v (where D2 is the 2nd

directional derivative in the v direction, the second derivative of a section of f taken along

a line in the v direction, which can be written as vrTv, where H is the Hessian matrix
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lead to the frequency domain. If one regards "scale" as referring to rate of change, then .

normalizing a bandlimited function bounds the derivative, but the converse need not

be true. Thus r bandlimiting can be regarded as one way to limit scale in some sense. .'

However, no arguments are presented to bolster the desire to consider the frequency

domain. The reason that frequency domain methods work in engineering is the fact that

exponentials are eigenfunctions of linear translation invariant operators, so one can use

superposition to combine the effects of various bandpasses. Related is the convenient --

fact that convolutions are mapped to multiplications. The work under consideration

uses exclusively linear methods, but does not present such an argument. On the other

hand, if one uses nonlinear methods, there is no such justification. (See the review of

[Shanmugam, Dickey, Green 1979] for another argument supporting bandlimiting.) .

The authors argue further that the conflicting requirements or space- and band-limiting

are optimally reconciled by minimizing the space-bandwidth product. For the appropriate

definition of these terms, it is well known that the Gaussian ( 2
, ror the right k )

achieves the minimum, so the authors conclude that the filters they want are Gaussian.

Unfortunately, even if one accepts the doctrine or band-limiting, it is by no means clear

that the CauSsian is Olptimal. In the first place, the (Gaussian is neither strictly band-

limited nor strictly spacc-limited. When one, say, bandlimnits by truncation, it is no

longer optimal. ir one requires a strictly band-limited or space-limited function, i.e.

one which is 0 outside or a given interval in either the spatial or rrequency domain,

the work of [Slepian and Pollak 1961, Landau and Pollak 196t, Landau and Pollak

1962] and [Shanimugain, Dickey, Green 19791 shows that tle optinal filter has a transfer

function which is essentially a prolate spheroidal wave function divided by the transform .9...

of the waveform to be matched, where optimality is defined in terms or concentrating

energy in a spatial interval, rather than minimizing space-bandwidth product. Under

some conditions, the prolate spheroidal wave functions can be approximated by functions

relatd to the Gaussian. Ilowever, the optimal filter still depends on the function to be

* . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . ...... ... ...-
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be strictly space-limite4. This is the case if one convolves a mask with the image. If -

one were interested in concentrating energy in some band, then the problem would be

the dual of the one considered in the reviewed paper, viz. to find the optimal space-

(or time-) limited filter for concentrating its energy in some frequency band. With the 6

duality or the Fourier transform, the solution is essentially the same. Now an argument -

can be made for considering the frequency domain based on noise considerations, for as

the authors show, the signal to noise ratio is a function or the space-bandwidth product.

Since white Gausalan noise has constant spectral power density, the rrequency domain is

a natural setting for its analysis. Unfortunately, ror good present-day images, the true

noise is of the same order as the digitization noise, and most or the "noise" really comes

from real variations in the image, i.e. from the fact that the inage is not in the space .. _

of ideal features. It is not clear whether this type or "noise" can properly be regarded as

white and Gaussian; e.g., it is not perfectly uncorrelated.

On the other hand, it would indeed be satisfying to learn that bandlimiting is required

for some strong inherent reason, so the prolate spheroidal wave functions are worth "'

experimenting with, and should at least be kept in mind.

Marr and Hildreth 1979

'Theory of Edge Detection'

The authors are concerned with finding a smoothing'filter which will analyze the visual

input into a number or channels related to physical scale.

They argue that such a filter should operate over a subrange of scales-not over all scales lt.

possible in the image. Furthermore, it should be spatially localized. From this they

infer the (contradictory) requirements that the filter be both band-limited and space-

limited. Although space limiting clearly rollows from the localization requirement, the _.

band-limiting conclusion is on shaky ground, since the idea or "scale" does not inexorably

. . . ~ ~ ~ ~ ~ ~ ~ ~ ............... --*.. . .. .. .
.... . ............ ..... . .. '..-
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where fl is the bandwidth (i.e. the signal is nonzero only when w E (-fl, f), and the

energy is to be concentrated in the spatial interval (-I, I) (note this is a slightly different

use of I than in [Shanmugam, Dickey, Green 1979, Lunscher 1983]). These conditions ...-. ,

say that the approximation is valid for large space-bandwidth products, and under those

conditions it is valid only away from the band limits. Ir those conditions are violated,

e.g. by requiring better localization, then the prolate spheroidal wave function which is

the solution no longer looks like a Gaussian. This is similar to the localization results

found by [Canny 1983].

Blurred edges are modelled as the difference or exponentials to obtain a symmetrical

siginoid function (only once continuously differentiabic, though). They show that if the

resolution interval I is larger than the blur width (defined by the 90% points), then the

filter is still a good approximation to optimal in an appropriate sense.

A Gaussian noise analysis is also presented, showing that S/N improves with increasing

space-bandwidth product, e.g. coarser resolution, not a very surprising result in view of

many others to the same effect. An expression for S/N is given.

The experimental results are not very impressive when compared to nonlinear edge

detectors (e.g. arer thresholding), but they show a clear improvement over other standard

linear filters, e.g. high pass, Laplacian.

This is not a direct method or detecting edges, but rather should be regarded either as an

enhancement method, or, more importantly, as a precise approach that could be taken

in finding an optimum filter to reconcile space- and band-liHmiting.

If one must do computations in the frequency domain, then the filter used must be strictly

band-limited. But there is no persuasive argument for using the frequency domain. If

one does computations in the spatial (or time) domain, then or course the filter must

-. .. .... ............................... ".•.,
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where K1 , K 2 are simpje functions of fl, I. When the ideal input is a step edge, this

reduces to

H(w) Kjw2e-K I"

The authors allude to work by Strcier [Streifer 1965b] showing that "the error is not

prohibitive even when Slepian's constraints are violated." [Lunscher 19831 has pointed out

a dimensional error in the exponent above, and uses asymptotic expansions of [Streifer

1965a, Streifer 1965b] to arrive at a K2 of the correct dimensions to assure a scale-

invariant response.

The optimality or Gaussians

What does this say about the optimality of Gaussians? Since Caussians minimize the

spaco-bandwidth product for functions of infinite (frequency) extent, one would expect

that the imposition or a finite extent constraint would lead to a result which approached

a Gaussian asymptotically. The question then becomes whether the conditions for the

asymptotic approximation are applicable in a particular situation. For example, if one

starts with a Gaussian which is approximately band-limited, say 9o% or its energy is

within (-02, (1), then that Caussian has a particutlar spatial extent, too, parametrized by

its standard deviation, so 90% or its energy is in the spatial interval (- 1, 1), where I is the

appropriate multiple of a. Now if we are demanding that the runction we are interested

in must concentrate its energy in the interval (-.01 • 1, .01 • 1), then clearly the Gaussian

will not be a very good approximation.

For the scale-invariant version of the prolate spheroidal approximation due to [Lunscher

19831, the domain or validity is defined by

ii<
.'. -(2.)*
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Following [Slepian and Pollak 1961, Landau and Pollak 1961, Landau and Pollak 19621

they decompose in terms of prolate spheroidal wave functions, and show that the optimal

filter output is 01, the order 1 prolate spheroidal wave function, with the space-bandwidth

parameter dependent on the space and bandwidth cutoffs required. This method of

analysis allows the bandwidth and space cutoff to be chosen independently, unlike the

situation with a Gaussian. This constitutes a more realistic treatment of the type or

optimality sought in [Marr and llildreth 1979], yielding functions other than Gaussians,

although under certain ranges or parameters the Gaussian is a good approximation.

Specifically, the transrer function of the optimal filter is given by

KO'I < f)
11(w) o, IwI1 >

where K is a real constant, 01 is the 1st order prolate spheroidal wave function, (1 is the

half bandwidth (i.e. the signal is nonzero only when w E (-fl, 0)), and the energy is to be

concentrated in the spatial interval (-1, 1) (note this is a slightly different use of I than

in [Shanmugam, Dickey, Green 1979, Lunscher 19831), and F(w) is the Fourier transform

or the ideal input. The only information used about the input and filter to derive this

fornla is the fact that they are odd and even functions, resp. There is no particular

justification for requiring the filter to be even (it gives a neater result) except that it allows

ready generalization to a rotationally invariant 2-dimensional operator simply by making

the value depend only on distance from the origin, i.e. by rotating the 1-dimensional

operator. (Canny 19831 regards this as a rather unfortunate assumption, since in his

analysis dlirectiona! operators provide better sensitivity, and lie shows that dropping the

assumption leads to an operator very much like the one he proposes.

Using an approximation of Slepian [Slepian 1965], the optimal filter within the bandpass

is approximated as

Kj we - K w'
H(,,,)

...................................................... ° .-
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least squares fits (which are being proposed) are notorious for being badly behaved-they

tend to have extra wiggles. One would expect that such functions would not be very

good ones to use if one wanted to look at derivatives. One might prefer to use Fourier

interpolation, B-splines, Fourier splines, or some other appropriately well-behaved set

of functions. No mention is made of his previous idea of looking at discontinuities of

parameters of fit between adjacent regions. Nevertheless, some kind of fitting process

seems to be in order to use global information for local features (in this case the global fit

yields the local derivative). The noise performance issue is postponed in [llaralick 1981],

but treated thoroughly in [llaralick 19841.

These "edge" detectors are a beginning based on surface fitting. The particular predicates

involved are not adequate, though, and therefore cannot be expected to give outstanding

performance (see [Canny 1983] for one discussion of performance). Improvements can be

expected when the type of qualitative information used in [Ilaralick, Watson, Laffey 1983]
Le

is brought to bear on finding edges.

Optimal Filters

Shanmugam, Dickey, Green 1979

"An Optimal Frequency Domain Filter for Edge Detection in Digital Images"

The authors consider the 1-dirriensional edge detection problem, with the proviso that

"symmetries appropriate to the 2-dimensional problem are retained." Their goal is to

obtain a frequency domain filter to concentrate maximal energy near an edge. The model

for an input edge is the unit step.

More particularly, the authors require a strictly baridlirrited filter (i.e. a filter whose

Fourier transform has its support on an interval surrounding the origin), and they seek

to maximize the power in some interval around the origin in the space domain for the

filter output response to a unit step.

. . . . . ._.O
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Gaussian approximatiog has a performance measure EA which is about 20% worse than

the optimum operator.

The 2-dimensional problem S

Canny does not consider the 2-dimensional optimization problem de novo, but rather

starts from the point he reached with the 1-dimensional problem, which is the derivative-

of-Gaussian operator. The approach is to use an operator of the form h(x, y) = f(x) •

g(y), for various orientations of the orthogonal coordinates z,y. Then " is to be the

(approximate) optimal -dimensional operator, and 9 must be determined. By reasoning

similar to that involved in finding f, he notes that g should be smooth, i.e. a smooth S

window function, and he notes that the Gaussian he chooses is a good approximation to

standard windowing functions. First, the edge orientation is estimated from the gradient

of the smoothed image, i.e. from

V(G *I)

where G is a rotationally symmetric Gaussian. Then the location or the edge is determined

by finding the zero crossings of an operator which computes DG* I, the 2nd directional

derivative in the v direction, where v is approximaely given from the gradie, estimate.

This is what it would see,, [Marr and llildreth 1979] were really alter. Notice that this

can be realized as a single operator (i.e. it is noL a directional ramily) since one seeks the

zeroes of

DvSS

where S = C • I.

A compact description or the 2nd derivative operator is as follows. The 2nd derivative for

a function f of 2 variables can be thought or as a matrix, known as the Hessian matrix,

given by It - [OIf/Ox,Ox,]. The 2nd directional derivative in the v direction is then

.:., .; :- , -: -.- -- i.: .- .. -- .:. .-. - :--. .:.o. :. . :":;. .. .;,.:-9
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given by D'f - vTHvo When v Vf, this can be written 5

D'V! --- (f. fZ fZVV fs)' -

which expands to

D~,f = !f + 2f.fvf. + fvf,,

Normalizing by IVf! does not alter the zeroes of this quantity.

Canny makes a useful observation in comparing this directional derivative operator to

the Laplacian, V2 (G * I), which is worthwhile repeating here. Consider a coordinate

*. system with the z-axis aligned with the gradient direction (at the point of interest). In

this coordinate system, the directional derivative has a contribution only from f, since

f, = 0, since the y direction is orthogonal to the gradient, which is as it should be

ror a directional derivative. The Laplacian, on the other hand, also is invariant under P
rotation, but does not depend on the gradient, hence it has a contribution from the

2nd derivative in the "uninteresting" y-direction, which leads to nothing but a noise

contribution. Actually, this is a little more subtle than may appear at first glance. If
one assumes an ideal edge as signal embedded in noise, then the signal is completely

constant in the y direction; hence all y derivatives will be 0, so in fact the directional

derivative gives the same answer as the Laplacian (modulo a first order coelffcient which

would be normalized away), for the signal response alone. But with noise, the Laplacian

will respond in the y direction, while the directional derivative will not. -.... -;

From this theme (the second directional derivative or Gaussian convolution), Canny

proceeds to develop a number or variations: multiple widths, "reature synthesis," elcon-

gated operators, and lateral inhibition.

Multiple widths are required since sensitivity increases with size of support, while locallsa-

tion degrades. Canny's approach is to use the smallest operator with sensitivity adequate

""""'': -__
.... ... . * .* * - . * * .. * * *. .. . . . . . . . . . . . . . . . . . -
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to provide a given erroe probability. This requires estimating the noise, which he does by

convolving a filter with the edge detector output. Under the assumption that the signal

is an ideal step and the step size is much larger than the noise amplitude (low noise),

he finds that the optimal filter for this is the 2nd dmvative of a delta function, and

smoothing the response gives the 2nd derivative of a Gaussian. This he approximates

with a difference of Gaussians, which is less sensitive to the accuracy of the edge location

estimate, with coefficients chosen so as to make it orthogonal to the step response. Of

course measuring noise involves a model of the image, in this case an ideal step, so the

noise measurement is also a measurement or the deviation from the model. Nevertheless,

since it is also a measure or the lit of the model, it is still userul as a confidence measure.

It is a fact of life that images are not composed of ideal step edges. Consequently,

operators or different sizes with adequate S/N centered at the same point may be respond-

ing to different aspects of the image function. The simplest example is a diffuse edge

superimposed on a sharp one (possibly at a different orientation). In general, the single

number that a filter gives at a point does uiot convey a great deal or information about

the stricture or the image in a neighborhood or that point. In particular, the response

or an edge operator based on an assumption or ideal edges gives very little information a

about the shape of actual edge candidates. Canny's approach to this problem, "feature

synthesis," is reminiscent of the gram-Schmidt orthogonalization procedure. The idea is

that, starting with the response from the smallest significant operator, he estimates what -

the response fromn the next largest would be if a step edge were responsible. If there is a

large enough disparity with the observed response it is (eemei to come rrom something

else. rhis haus the eifect or eniargin; cite feature space.

Elongating a mak along the edge direction is another way to increase the support, hence

the sensitivity, but since there is no scale change, the localization improves (under the .

ideal straight cdt;e assumption). Canny's elongated operator is esentially the sum of

Caussians taken ;Aong an interval, resulting in a mesa shape with Gaussian fall-off.

.*~ .~ . .. . . .. . . ..
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A common problem witlt local operators that respond to the gradient is that they respond

to slow changes as well as abrupt ones. This can be regarded, again, as a symptom of an

inadequate feature space (the 1-dimensional "edgeness" number, essentially a projection

to a 1-dimensional space). One remedy for this problem is to introduce a preprocessing

step, lateral inhibition, which sends offending subspaces to 0. In the context of the Taylor

expansion, the first offending subspace is the constant term, but this is already taken care

of as long as the operator has 0 average value, e.g. if it is an odd runction. The next

problem is the 1st order term, which is an example or a "smooth gradient." This can

be removed by some 2nd order operation, e.g. 2nd derivative. Canny uses a difference

of 1st derivative or Gaussians of different widths, weighted to send linear runctions to

0, i.e. roughly the difference or adjacent channels or the optimal operator. Like other . "

lateral inhibition methods, this degrades the performance, in this case by about 30%. It's --

not too hard to see what the problem is here. First or all, the operator f was chosen to

maximize

hJf .u_ =(f, U-)

Without any constraints (and an appropriate measure), this is achieved for f -1.

With the extra constraints, we can think of it as linding the dual vector or u-., or we

can put everything into the measure, in this case Caussian measure. Now to compute the

u- 1 -ness or t, we compute (f, i), i.e. we apply the distribution f to 1, or equivalently,

look at the projection on the u-1-axis. Unfortunately, it turns out that (f, t) & 0 (where

t stands for the identity function on the line). I.e. u-.(t) is not orthogonal to t. The

idea or sending t to o, then, is to find some g such that (g, t) 0, but (g, u. 1) is still as

large as possible. This essentially means making f orthogonal to t. Roughly speaking,

one can think of u- and t as 2 vectors in an inner product space. f is derived from

orthogonal projection onto u-1, but since u-1 and t are not orthogonal, t has a U-1 . -

component. Finding something that will not respond to t, i.e. send it to 0, rmea'ns finding

some new vector v in the subspace orthogonal to t. u-1 cannot lie in this subspace, since

.'~. ... .-......
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it is not orthogonal to t, so the v component of u- 1 will be reduced. One way to get

this is to subtract off the t component of u-1, a canonical orthogonalization. This would

be the Gram-Schmidt orthogonalization for t,u-1. In any case, sensitivity is lost. But

consider the problem another way. Consider the subspace spanned by u-1, t, and instead o

of orthogonal projection to a 1-dimensional subspace (the value of a single inner product),

look at the orthogonal projection to this 2-dimensional subspace. I.e., try to find the best

lit or the form p

au-1 + bt

Then a, e.g., can be round by orthogonalizing the basis and renormalizing. I.e. the

problem is just that or writing a vector in a non-orthogonal basis. E.g., for the above

subspace, one gets
(I, --

11-

where denotes g normalized ror the appropriate measure and support interval. This is for

a single support interval, so it cannot be directly compared with Canny's method, which

u.s results from 2 different support intervals, without first specirying what measures,

support intervals, and subspaces one was interested in.

Using optimization methods analogous to those For his edge operators, Canny also finds

optimum detectors ror "roofs" and "ridges," and indeed, this could he (lone ror any

distribution. Extending these operators to 2 dimensions is somewhat trickier than for the

edge. And as the number of operators increases, it becomes harder and harder to make ..-

5seC of their outputs, since they are toot riutually orthogonal. More than I operator, e.g.,

can simultaneously give above threshold output. Furthermore, they may be applied at

different scales and at different orientations. Canny calls this problem of understanding

all these outputs the "integration" problem, and concedes that it is a sticky one. The

problem really sterns from the lack of a coherent way to describe the imaige (locally).

Projecting onto' some axes that seem interesting is a start, but such a local projection

~~~............................... ....- .................-..... ,
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yields only a few numifers from which it is hard to derive a picture of the qualitative

behavior or the image. This is a problem of disintegration, or fragmentation. What Is .-'-'."

required is a coherent way of describing the qualitative structure or the image, in terms -.. * -

of the structures which are of interest.

Linking

Canny uses a fairly effective solution to the "streaking" problem (breaking up of

thresholded edges), which he calls "thresholding with hysteresis." While this method

does not address the basic problem- -understanding the image globally and semantically

(in terms or "edges")--it is very workable in the ambient context or ideal edges round by

a local linear operator. The technique outputs contours which are the maximal connected

contours with some part above a high threshold and all parts above a low threshold. This

is equivalent to seeding with strong edges (those above the high threshold) and rollowing

the contour at a lower threshold. This is still not quite the same as detecting a weak

edge due to its length, something commonly beyond the ability or edge detectors. The

source or the problem is that one is attempting to fAnd a global object based on local

measures. l)eciding on a continuation or an edge through a region or poor signal to

noise ratio is not a local problem, and it is not clear how to treat it s a signal process-

ing problem. One could try to look ror evidence or long straight edges. Canny does

this to some extent by using elongated operators. But ror nuch longer edges, this is

no longer a local criterion, and special methods are required to deal with the increased

combinatorial load (e.g. a directional operator would have to be applied in very many

directions). Alternately, a method akin to the Ilough transform [llough 19621 could be

used. However, these methods, have a bias toward particular shapes or contour; again,

since the locality condition is violated, including additional dimensions or shape is very

costly. There are semantic problems as well. Consider the case of a long straight edge

in a high noise background (or, equivalently, or low contrast). looking at such data, a

human observer generally sees in fact a straight edge in noise. However, it is clear that if

--...-...........-............ ,..........,................,-.'........:..........,.... ,..........,..,.-.-.,',
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the edge is long enough And the noise is large enough, there must be places along it where

an estimator based only on local data will meander slightly to get the best estimate. By

the local measure, this will be a better estimate than a long straight edge. That is all

one can expect from a criterion which ignores the global shape of the curve.

Empirical results

The results shown appear quite good in that most of the edges of interest are present

without a preponderance of "noise" edges. Probably, this is mostly due to using lo- -

cal noise analysis with "hysteresis" thresholding and incorporating the single response z

criterion (smoothing). While accurate localization is important for applications requiring "''

precision, subjective appraisal cannot take this into account very readily, and the main

manifestation of good localization is in localization consistency, i.e. in the estimated S

location varying smoothly and monotonically with the actual while maintaining minimal

scatter. This feature enables, e.g., reliable linking, even if the absolute locations are

unreliable. However, here the single response criterion already clears the clutter, so the

localization accuracy is prol)ably not very important in this respect.

To the extent that the results are apparently cleaner than other edge detectors, they are

very good. However, Canny's results show the same topological problems inherent in all

step-matcher filters. These problems are manifested in "wrong" connectivity of contours

(i.e., relative to what a hurman would draw), and occur in places where the image runction

exhibits a local behavior which is different from the class or functions considered in the

design. In Canny's case, the design functions were constants and ideal straight edges,

possibly augmented by linear functions. This can be expected to fail in busy places, ,

e.g. corners, resulting in incorrect connectivity, and in fact such behavior is.evident In 0

Canny's examples.

* .. "-.-..?
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This work is a significant contribution to the theory of edge detection by finding extrema

of a convolution. Particularly noteworthy are the ideas relating to localization: how to

express it mathematically, and how to incorporate a single response criterion. The latter

leads directly to smoothing, and thus puts the use of smooth convolution kernels on

a firm rooting (in computer vision-we are not speaking of statistics in general). The

comparisons with other edge operators, e.g. Laplacian, Hlueckel, surface fitting are quite

uscul, as is the discussion or prolate spheroidal wave runctions. The ideas have their

germ in the work or Marr and llildreth, but go much further in the way or development,

sophistication, and rigor, and are certainly creative on their own. =-

Without detracting rrom the quality or the work, the subject matter should be put in some

perspective. Each refinement that Canny introduces can be regarded as an enlargement

or refinement of sonie linear feature space, which is computed pointwise in the image. By

considering sufficiently complicated convolutions, perhaps a great deal can be determined

about the image runction, although clearly convolution with image-independent kernels

cannot yield nonlinear runctionals. In any case, ror convolutions which are essentially

matched filters subject to somie constraints, the output or such a filter, at each point,

can be regarded as orthogonal projection onto a -dimensional sumaspace or some function

space (perhaps after some other linear operation, such as differentiation). The purpose

or doing this is to produce a data structure which allows a pointwise decision procedure,

e.g. "is there a zero-crossing here?" This works when one asuines the image comes from

a very special subspace, e.g. ideal steps. Unrortunately, the type or information required

about an image f'unction cannot be adequately compacted to a single nuimber this way.

Consequently, rurther operators must be used to get more information. Thus the feature

space is enlarged, but it is very difficult to enlarge it in such a way as to make it easy

to solve the decision problem in the reature space. To do this properly, one needs first a

theory which says something about equivalence of images. E.g., certain transformations
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should not affect the qttalitative interpretation of a piece of the image. Another way to

put this is that convolving with some number or kernels, and using the information only

locally, is the same as projecting some high dimensional space (the pixel values) onto the.

space of kernels. This is essentially a standard problem of classification. Experience has

shown that even with nonlinear classifiers, it is very difficult to duplicate the intuitive

distinctions one seeks. The reason for this is that such classification can be incredibly

complex unless it incorporates the structure which captures the distinctions. Projection O

onto an "edge" dimension is an attempt at this, but is not enough. What is required

is a more complete understanding of the qualitative shape or the image runction, based

perhaps on very nonlinear predicates, e.g. equivalence under some class of transformations

or the support.

"Feature synthesis" and "feature integration" require goodness of fit. So does incorpora-

tion of elongated directional operators. "Non-maximum suppression" can be viewed in the

same way. Removal of the response to slow gradients is also a goodness of fit stratagem,

in that goodness or fit to a linear function is senL to 0. It seems that the original idea

of a single optimal operator has to be modified again an( :again for different situations. _

Why is this? There is really nothing wrong with the operator; the problem is with the

problem that has been posed. One can find an operator Lhat will respond optimally to a

step edge, even for various definitions or optimality and noise process. "rhe difficulty is S
twofold. First, the definition or step edge is not entirely realistic. There is no reason to

expect that a natural edge will be well modelled by a step between regions of constant

image intensity (or color). This amnounts to a Oth order ap)proximation in the vicinity of

the edge. Thi igs may even be worse than just the smooth fluctuations one might imagine,

e.g. near the limb of an occluding object, one would expect in principle the derivative

normal to the image edge to grow to ±oo to a cusp (the intensity would stay finite)."

Thus the 0th order term would be a bad approximation in any neighborhood of the edge. A._.

Deviation rrom constancy near the step will affect at least the localization from a linear

..................... ............... ,. . .. . . .o"•"
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integral operator with nontrivial support. E.g. (at + b)u_ (-t) + (ci + d)u-. (t), which is 2

ramps of unequal slope separated at the origin by a step, will lead to incorrect locallza-

tion for Canny's operators, including lateral inhibition. One cannot expect any better, as

the feature space includes such a function only in the noise term. Of course, if all such

possible functions conform to the hypothesis of Gaussian white noise, the operator will

still give the best guess, on the average, but that is probably not what one has in mind.

The second difficulty is that this type of formulation answers the question "if there is an

edge there, how can I best determine its parameters?" But, first one really wants to know

"is there an edge there?" To answer that, though, besides knowing what "edge" means

(not at all a trivial matter), one must be able to estimate how well an edge hypothesis

accounts for the data, compared to some other hypothesis. A distribution on one such

space (say step edges plus white Gaussian noise) does not translate'easily into another

distribution on what is essentially Lte same space (say step edges plus step ramps plus

white Gaussian noise). Again this is the problem of selecting the right feature space at

the outset.

Unfortunately, if the step edge is not ideal, e.g. ir the values either side or the step are

not constant, localization based on convolution will be inaccurate. This is easy to see

since the extrema or even a linear perturbation g(z) + az are generically shirted from

those of just g(z). This is the manifretation of an intrinsic problem or convolution with

smooth kernels: the space of signals is much too large to be adequately classified by a

pointwise criterion (such as zero crossing), even for very simple predicates. Restated, it

is difficult to find integral approximations to point properties (unless one is willing to

integrate against delta functions, or course).

A nonlinear approach

We claim that the problem can be approached through topological methods.. The first

difficulty is due to the lack or any smoothness in the noise process (as usually formulated,
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the noise need not be &k for any k). This would make a frontal assault by topological

methods difficult, since the natural settings for such methods are spaces or differentiable

functions. However, we can exploit a certain amount or smoothness which is intrinsic to

the data. I.e., the data already incorporate some "natural" smoothing, whose effects in 0

any case we would have trouble removing. So we seek to get by with (and exploit) the

"minimal" smoothing, without introducing any more confounding convolution. We can

consider the data as arising from sampling some smoothing process such as bandlimiting,

Gaussian convolution, or even something nonlinear. Since the data space (pixel values) is

finite dimensional (though possibly of high dimension), there is a great deal or collapsing

in t' e mapping from the infinite dimensional input and model spaces. Therefore, one

should seek a regularity condition on the modelling function (i.e., the smooth function we

assume gave rise to the data) which will guarantee robustness. Put another way, given

an equivalence class or functions yielding the same data, any derived property should be

generic. Such a rigorous criterion of robustness is rarely considered; instead, one simply -

assumes (based on good reasons) that, e.g., the model function is bandlimited. In that

case, for a fine enough sample grid, there is a unique (smooth) model function. Since

we are not able to provide a rigorous analysis of robustness here, we just consider what

happens with a smooth model function, assuming it has been chosen to be generic (or

is unique, as with bandlimiting). flow can we remove extra extrena, i.e. do smoothing,

without blurring? [Koenderink and van l)oorn 1979] and [Witkin 1983] have proposed

convolving with a I-parameter family or smoothing operators, and considering how con-

tours or interest (say zero crossings) change as a runction of the parameter. One can do

this in even inore generality, as is done in singularity theory. We can consider generic

smooth I-paraneter families of smooth functions, i.e. smooth pa(,hs in our model space. ..

In this way, we are led to the theory or generic bifurcations or criiical points, since these

play the major role in determining the topology of the contours. For real functions in the

plane, this theory is very well understood: the only generic changes in the topology or the

level set structure are saddle-noke bifurcations of critical points, and saddle-connection

N.i1: ,
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nges in the nesting 4f saddles. Also, the topology of an individual level set can change

t passes through a critical point. For functions on the line, things are even simpler:

only possibility is max-min birurcation through an inflection point. One can show

t the critical point bifurcations of parametrized Gaussian smoothing are generically P

die-nodes as well [Blicher and Omohundro 1984], so that the behavior which occurs

Gaussian scale space is described by the usual generic theory. This opens up the pos-

ility of doing very non-linear smoothing in a coherent (and simple) fashion. Actually,

cc one can now understand the relationships among the extrema, the actual smoothing

)robably unnecessary. The important thing is that the smoothing must proceed by

annihilation or a saddle with an adjacent node (extremum), or the swapping of saddle

tings by the saddle connection. rhib is how any smoothing must work. Exactly in

at order these things happen for a given function depends on the type of smoothing and

,perties or the function. Sometimes, this can happen in ways that are not very useful,

cc spatial extent and amplitude are interchangeable in a linear (integrating) operator.

is probably more userul to know things like the heights, supports, and proximities

critical point domains independently. Then certain kinds might be readily smoothed

lie others might not, depending on some interpretation heuristic. E.g. even a very

ge spike, ir or tiny support, could be removed (by excision- i.e. without affccting

irby data), or small bumps on a big bunp could be regarded as such.

I

-

<
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Global Methodsa

Accumulator arrays

Hough 1962

'Method and Means for recognizing cornpie: patterns" [Duda and Hart 1971, Duda and

Hart 1972, Duda and Hart 197S/

T'hc Ilough technique offers a solution to the problem or finding global straight lines, or

more exactly, finding global sets or nearly collinear Feature points. In the present context,

"global" means over the entire imnage, though other workers have used the same idea ror

subregions.

Consider L, the set or all lines in Lte plane, as a topological space. Duda and Ilart

use the so-called normal paramnetrization for L, where each line is specified by the

pair (9, p), representing thle orientation and distance rrom thle origin or tile line. This

parametrization is lborrowed rroiin in~tegral geometry, where it is; used] in the solution or

tie Liulfon's; needle problem. It derives its utility froi providing a translation invariant

measure ror the space, so that probabilities behave in desired ways. ((Sanltalo 19761 is

an excellent source ror inrormation about integral geometry, and should be or interest to

vision researchers.) Ilough, on the other hand, uscd the slope-intercept parametrization

rainiliar Fromn analytic geometry, Wut which is Fraught. with difficuulties for this situation.

Incidentally L is a non-trivial space: for p > 0, every value 0 < 9 < 27r, deflnesu a

different line. But when p =0, i.e. for lines through the origin, (9, p) define:3 the samne

line as (9 + 7r, p). Thus, L is homeomnorphic to a semi-infinite circular cylinder with the

bounded end termrinrated so that antipodlal points on the cross-section circle are identified,

which in turn is hoineoinorphic to a puinctured dlisk with antipodal points on its periphery

A-
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ed. This is also 4.he same thing as an infinite Miibius strip, formed by taking a

infinite strip and gluing it together with a half-twist.

Lsic insight Hough used is this. For each point p in the plane, there is some curve

L which corresponds to all the lines through p. For each p of interest in the

:, accumulate weight for 'y(p) in L. Then lines in the picture will be places in L

igh accumulated values. (One can think of this as defining a weight accumulation

in h L - R by h = X-,(p,) where Xy(p,) is the characteristic function of 7(pi).

da and I lart point out, the method provides a savings because or quantization of

e finer the quantization, the less the savings.

ough method is not adaptable beyond very limited spaces of curves because storage •

-ments grow exponentially with the number of parameters characterizing the fea-

i.e. with the dimension of the space or curves.

Lhe method is totally global, undesired features can comie into play, i.e. the noise 5

high due to many chance contributions throughout the imiage. .lowever, to combat

'oblem, one can design localized variations, at the price of requiring a method to

the local results together.

le generalizations include the detection of curves with more parameters, weighted

ulation (based on confidence or significance or the data points), the inclusio of

'onsiderations, and localization.

access of the lough method is very dependent on selecting tie initial points of

it, i.e. on the local reature operator. On the other hand, a good way or doing this

compensate for large parameter spaces.
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Ballard and Sklansky 1976

"A ladder-structured decision tree for recognizing tumors in chest radiographs'

The authors are concerned with finding roughly circular regions of approximately 100

pixels in area.

Summary of processing steps

A thresholded gradient picture is first arrived at, using a sequence of processes OT o V o

X o L, where

L is the low pass filter operation defined by averaging and then resampling on a coarser

grid. (Note that averaging is not strictly low pass, since the filter transfer function

is a sine.)

N is a high pass filtering operation performed in the frequency domain via FFT's, using

a filter characteristic attributed to Kruger.

V is a digital gradient operator defined in terns of adjacent pixel differences.

OT is a global thresholding operator.

A heuristic search connecting edge pixels, similar to Martelli's technique, is then used to

find the lung area, following a Kelly-like "plan." $

To locate tumors and nodules, a llough-like method is used: An accumulator array

corresponding to possible circles, indexed by position and radius is incremented by the

number or edge pixels with positions and gradient directions consistent with lying on the

given circle. An improvement is achieved by using the gradient direction in addition to

the magnitude.

Big and small radii are tumor and nodule candidates, resp. The big ones are immediately

declared to be tumors, while the.candidate nodules are subjected to a 2 stage classifier

$

.. . . . . . ................ -, ...... ° . ..... o. o -o-
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which looks at features'from a detailed nodule boundary finder. The latter is based on

growing all optimal edges of length n in a given region until closure is reached, using a

Kelly-like "plan."

I-. "

The accumulator array method seems to bc uscrul ror finding some circle-like boundaries.

One must always- keep in mind 2 questions ror such reature detectors: what does it really

find, and what will it miss. These questions are best answered either by mathematical

proor or application to numerous examples. Unfortunately, neither of these tests is

available in the present paper, though probably one cannot rault the authors for not

including more examples, since space limitations may have been imposed. In any case,

what is being detected is not regions with roughly circular boundaries, but areas having

a sulliciently high count or above threshold gradient values (or the right orientation) lying

on a circle. This provides sonic kind or global understanding of the intensity Function,

which is commendable, but it is not likely to find sharp edges which do not stay near and

tangent to some such circle. However, the main use in the paper being reviewed is to guide

a more detailed process of boundary finding, and in. that context the question becomes

whether the Feature being round is' indicative of a closed boundary in its vicinity. On

the one hand, there is little doubt that a roughly circular boundary or adequate contrast, '

sufficiently derocussed would cause one or a few such circle detectors to fire, allowing the

more detailed process to find the precise boundary. On the other hand, the firing or a

circle detector is no guarantee that there must be such a boundary: all that is necessary

is that the intensity have a steep enough centripetal gradient over a large enough part of

a circle, which ,night happen iF the intensity runction has a maximum inside the circle. . -

• . • .-
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Region growing

Brice and Fennema 1970, Fennema and Brice 1970 ...- ,

"Scene Analysi Using Regions'

This is now a classic work in region growing. Its methods are extremely simple, which a

priori may not be an indictment, but in this case they are based on an overly simplistic
:0

image model that no one now believes. The approach was motivated purely by heuristics, '

rather than any theory, and at this level or processing that turns out to be inadequate.

The basic segmentation operation is to partition the image by pixel intensity value. The .

authors use boundary predicates which are based on a completely local measure: nearest

neighbor intensity differences.

There are 2 merging heuristics:

Phagocyte heuristic

Merge adjacent regions ir the "weak" part or their common boundary is a big enough

part or one or their total boundaries. "Weak" and "big enough" are relative to global

thresholds.

Weaknews heuristic

Merge adjacent regions ir the "weak" part or their common boundary is a big enough

fraction or it (common boundary). Another global threshold is uied ror "big enough."

Evaluation

The method presented is much too simplistic. E.g., it will clearly rail ir smooth shading

leads to Ist differences or the same magnitude as an edge. Noise spikes will always end

up as regions. The heuristics are too heuristic -- they are not b.med on any analysis or

................ -° "- ..... "oo . ". .. " ...... •... . .. . . .
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understanding of real images, beyond a few common-sense notions. Global thresholds are

invariably a bad idea: a little observation can persuade one that the same magnitude (of

edge parameter, gradient, or whatever) can be significant in one context and meaningless

in another.

Kirsch 1971

"Computer Determination of the Constituent Structure of Biological Images'

* The author indicates that fie is interested in image processing as deriving data structures

from image data.

* lie differentiates between "well-defined objects" and "aggregates," which is essentially

the difference between smoothly shaded objects with smooth boundaries, and textured

- "objects" with texture boundaries. fie suggests, among other examples, that cells are

well-defined objects, while tissues are aggregates.

The goal is to find boundaries ror both types of objects, and the approach is via a local

contrast function which is based on the use or the convolution masks

5 5 5 -3 5 5

-30-3 -3 0 5

-3 -3 -3 -3 -3 -3

and their 90 rotations. The local contrast runction C is then defined as the local

max over all masks of the absolute values from the convolutions, lie defines a blob of

heterogeneity m as (our equivalent definition) a connected region It such that CIi.,i -< K

*: and ClaR > K: basically a low contrast region with a high contrast boundary, with

"low," "high" defined by the threshold K.

The data structure he derives is based on the observation that varying the threshold

induces a partial order on the Fegions by inclusion, which is of course a functorial

. . .. . . . , . . . . , ,
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consequence of the nattjral ordering on the thresholds. This partial order he represents

as a tree, and as a reduced tree showing only when regions coalesce.

Evaluation

The data structure which Kirsch proposes is interesting in that it is essentially the

structure of the level sets or the contrast function he uses. As we point out elsewhere, the

level set structure of a functien captures the topologically invariant information. In this 0

case, however, the preprocessing steps leading to this structure are heuristically based

and unfortunately the invariant features are not adequately studied, and the effects of

noise on the structure are not taken into consideration. The author cannot really be

much faulted for this, as the mathematics involved was not very widely known at the

time.

The result is a technique which is better than just intensity thresholding, but suffers many L "

or the same drawbacks. Although he keeps track of what may happen for all threshold

valhes, the thresholds are still global thresholds, although one could generalize slightly

and use thresholds global only to a region. Now although one might expect boundary

contrast to be less variable over some region than simple intensity, it's easy to imagine,

e.g., a weak spot in a boundary such that lowering Lite threshold to include the weak spot

introduces enough boundary points to disconnect the region.

Because only the maz of the directional contrasts is used, important geometric informa-

tion is discarded in finding the boundaries. This is apt to lead to errors for uniform

regions, since noise cannot be rejected on the basis of direction to other boundary point.

The effect for textured regions is hard to evaluate; in some cases it may be helpful, but

it seems unlikely to work alone.

No justification is given for the values in the convolution mask. For the purpose of

detecting a step edge in the presence of Gaussian noise, it is not the most sensitive.

..-.-............ -"
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Not enough experimental data is presented to give any feel for performance on real images.

Somerville and Mundy 1076

'One Pass Contouring of Images Through Planar Approximation'

The authors state that they are interested in finding contours of the intensity function,

but what they mean by this is finding places of large change or gradient.

Their first goal is to represent the picture data compactly ror further processing. This is a

good idea, since it is necessary to have a representation or the intensity surrace ror varying

neighborhoods--not just single pixels. An important reason for doing so, which they do

not mention, is to synthesize seni-global but accurate information. (By semi-global, we

mean regions larger than a single pixel or pair or pixels, yet smaller, usually much smaller,

than the entire image.)

The primitive regions to be used for region growing are triangles. These are initially

rormed by drawing diagonals for each set or 4 points so as to keep sinilar intensities

together. The region growing is then done by a process or raster scan local merging. The

merging criterion is as ollowL

1) Compute the normal vector or the intensity runction on the next triangle. This is

not normalized it is actually the 3-dimensional gradient.

2) Compare with the current average normal vector for each whole adjacent region.

3) Merge the triangle into the region ir the magnitude or the vector error (Inr - nRI)

is less than a threshold based on region size:

e =.s(A) kie - A + k3 ..- "

-.
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This can be criticized as follows. -

2) Presumably, they do this because they want regions of uniform normal. But it seems

more reasonable to compare normals locally, leading to locally uniform normal, i.e.

regions of slowly changing normal.

3) The adaptive threshold is not well justified. The stated purpose is noise immunity-

presumably, values for large regions should be more stable, so there are 2 terms, one -

for the region noise, one for the triangle noise, though this is not explicitly stated.

Since the gradient is a linear operator, one could in fact explicitly solve for the noise

characteristics of the expected difference in normals. The region component would -.-

be of the form o - koo/v/-, and in fact the standard deviation of error in normals S

is given by
FkF C2l-_ ...k ' "c""

.-3,

where k2 is the mean square contribution or each pixel in the region to the expres-

sion for the normal, and c2 is the analogous quantity for a single triangle. In this

light, the threshold adopted by the authors is seen to be a linearization and exponen-

tial approximation to this runction, for a fixed standard deviation of image noise.

Iurthermore, since the merging is done on a raster scan, the merging predicate will

result in different behavior near the tops or regions as compared to the bottoms. Not

only that, but this can happen in a discontinous way, when 2 regions suddenly get

merged.

The entire process is equivalent to edge detection based on comiputing a gradient from

x and y first differences. However, the edge predicate is adaptive in the sense that the

threhold is based on the mean gradient of adjacent regions (in this case, only or regions

above, i.e. earlier in scanning). The adaptive part isn't a bad idea, but using an operator

with a support of 3 will lead to noise problems, as well as problems with discerning larger

scale features.

-. .. -....... °...-.......... .. •.... ....... .. °- . . . .. .....-. . .- .,
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Experimental results

A single example on a 64 X 48 X 6 picture is given. A reconstruction of the original is

presented, based on linear interpolation about the centroid of each region. This result is

not impressive. The authors are concerned with data compression and reconstructibility,

but from the point of view of image understanding, reconstructibility should not be seen

as a measure of perrormance. The region boundaries displayed do not appear significantly

better than other, local, methods. It would be interesting to see the results of a process .

incorporating the improvements suggested above, viz.

* gradients computed for larger neighborhoods

" thresholds based on picture noise and exact formulas

" merging based on local information. Alternately, one could iterate taking gradients.

" some isotropic merging process (which might result in the requirement for more than

I pass).

IEven so, the gralient idea leads to difliculties if an edge should pass through the operator

support- one might get many regions perpendicular to the edge, elongated along the

edge, but broken up as the geometry or the edge changes in other words, poor behavior.

A plane is too simple a model for the local intensity surface.

Histogrammning

Ohlander 1975 .-

"Anulysis of Natural Scenes'

The author does region growing based on analyzing histograms of 9 color image

parameters: the 3 raw R, G, BI values, as well as the derived parameters or intensity,

-.*' .- .•, -: -" ..... .-' .' .' . .- ' .-." . .-. ' - -• .,. .'. "- ."- ." - -. . ...-". +-". -. "-.- .- o . " ,5"S'
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hue, saturation and the* Y, I, Q parameters used in color signal coding techniques. In-

addition, values of their gradient as found by a Sobel operator are used, as is the local

density of points above threshold in the gradient picture, called the "business matrix." He

performs shrinking and expansion on the business matrix to eliminate thin regions (i.e., D

non-texture edges). The histogram analysis is based on a simple heuristic, and sometimes

is done with manual intervention. Regions are found by thresholding.

The technique of thresholding based on rcatures of histograms ignores any geometric

relations in the data (a random permutation or the position or pixels doesn't change the

histogram). Similarly, it takes no account or the photometric properties of the real world.

These problems aside, the use of 9 1-dimensional histograms is still somewhat naive,

since the pixel space is only 3-dimensional. It would be more systematic to use. clustering

techniques in some 3-dimensional color space (which have an extensive literature) instead

of 9 somewhat arbitrary l-dimensional projections.

This method can be expected to work on images that happen to be amenable to it,

i.e. ones where the regions are pretty Mach homogeneous arnd separable 'rom others

by histogramming. Looking at the technique as a clustering approach, regions can be

segmented only ir their 3-dimensional pixel color values can be separated by one of 9

families of parallel planes in R3 , the planes perpendicular to the 9 coordinate axes used.

This does not even allow for separability by an arbitrary plane in R3 , and the latter is

known to already be an overly restrictive condition for most clustering problems.

Shafer 1980

"MOOSE. Uiers' Manual, Implementation Guide, Evaluation"

Sharer describes a system following Ohlander's technique or image segmentation by the

use or multi- spectral histograms. The implementation is essentially automatic, and

• • . o
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reasonably fast (30 secoads on a PDP-10 to segment a 96 X 128 image, and 20-25 minutes

total time with all displays). See the remarks about Ohlander's work regarding the

histogramming technique.
S

The author himself provides some criticism of the technique. The main shortcoming

pointed out is referred to as the "majority rule" problem, which occurs when the his-

togram peak separation process is dominated by large regions. In that case, if a small

region happens to be situated in a narrow valley between the large regions (i.e. the large

histograms nearly overlap), the small region will be broken in two arbitrarily. This is

a consequence or the ract that histogramming ignores geometric relationships. The solu-

tion proposed is to first crop the picture so that a small region to be segmented from I

its surround becomes a large region in the sub-picture. or course, this amounts to an

approximate segmentation. No method is proposed to do this automatically, though the

author argues that the cropping idea is robust by showing that including some other

objects in the cropped area still allows reasonable perrormance. This seems to indicate

that histogramnming works better for very small pictures. A seductive idea (not suggested

by the author) is to try arbitrarily subdividing the picture and simply segmenting the

smaller pictures. Unfortunately, this will create non- trivial problenis in merging regions

across subpicture boundaries. In view or the many shortcomings of histogramming and'

thresholding techniques, it does not seeni worthwhile to pursue improvements.

The author also points out the following problems. Many small areas at the boundary of

a region are lost since the boundary is sensitive to the threshold. lie suggests the solution

or merging them after other segmenkttion is complete. Rtegions of non-coastant intensity

cannot be handled, i.e. the technique fails in the presence or any shading. Strangely, he '

points out that the gradient requires 2 parameters for description, but he does not know

how to express this in "one-dimensional features." Presumably, he means he wants to

histogram the gradient somehow, but using Ohlander's methods means selecting a single

parameter to histogram and threshold. In analogy, e.g. to Ohlander's use or R + G + B",

7....
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gradient magnitude seetnas like a reasonable candidate for one such parameter, and it is:

unclear why the author neglects it.

The eventual goal of this system is for use in an object tracking system. One might.-

hope that even if one couldn't overcome the problems of segmenting a single image, the

segmentation would at least be stable from frame to frame. This seems to be a false

hope. Thresholding can be thought of as creating boundaries where some level plane

intersects the image parameter value function, so that different thresholds correspond S

to different height contours on a topographic map. At boundaries with small gradient,

geometry will change rapidly with threshold value; and at peaks, valleys, and saddles

there will be a change in topology as a runction of threshold value. If this function has

lots or bumps, and if it is changing with time, then there is a serious problem of keeping

track of what is going on. The problem becomes one of keeping track of the topological

structure of the whole parameter function, particularly its singularity bifurcations, but .

this cannot be done by simply applying a single threshold, unless the regions created this. -

way are stable over large intervals or time. What can reasonably be expected to be so

stable? An object with regions or constant parameter value (shading is tolerable in a

system which looks at hue, as long as hue is constant-- an admittedly unlikely situation), S

moving through light in such a way that the reflectance changes very slowly relative to the

motion, against a background having very different spectral characteristics, occurring in

an image where everything else also has different spectral characteristics than the object

and its background. This appears to be a very limited domain, though there may be

userul applications, nevertheless, e.g. in an artificial environment like an assembly line,

where thes parameters can be controlled. -9

Optimal linking

Montanari 1970, Montanari 1971

'On the Optimal Detection of Curves in Noisy Pictures"

. . . ... .. .



A Survey or Edge Detection Global Methods 94

The author presents a nonserial dynamic programming approach to find optimal 8- -

connected paths of a fixed length on a grid, and suggests a generalization which permits

arbitrary length curves. Examples are displayed with mean square noise - mean square

signal (S/N = 1) of length 45, with good results, though the examples are not related I

to real images. "Optimal" is with respect to a figure of merit (FOM); he uses one based

on E'intensity - Ecurvature (he is primarily interested in curves which arise in the . -.

character recognition domain).

Evaluation

Using Montanari's method as an edge detector requires developing an appropriate FOM.

This is difficult, unless there is a canonical FOM imposed by the problem, since an FOM

is not robust in the following sense. Viz., FOM's which are monotonic functions of each "

other (and as regular as you like) can give dilfcrent global optima. For edge detection, to

the extent that one can estimate the probability that locai data were caused by an edge,

one can use an FOM based on the relative probability or the curve, so there is promise.

The requirement that the curve be an 8-connected path on a grid is troublesome, since one

would prerer smooth curves as solutions. rhere is no easy way to translate the optimal

path to a set or parameters representing a smooth curve, aside rromn an independent -

fitting process. Also, it is difficult to take into account any but the most local properties

or the curve one is fiting, if for no other reason than the prohibitively large growth of

the dimension or the interaction graph for the dynamic programming problem.

Although one is guaranteed an optimuin ror the I'OM, it is iol, certain ithat one neces arily

wants such an optimum ror image understanding applicttions, at least ir the IOM is i

totally decomposable into spatially local components. The curve one is; looking for is .

one which is the most meaningrul in the context or the entire image intensity function

(and world knowledge, psychological !;:'t, etc.), and this imeaning may depend on data

away from the curve, which would lead to an intractable interaction graph ror a naive

-,... ,-

. . . . . . . . . . . .. . . . . ..
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The condition that the 2 derivatives be nonzero when s is C" is there for 2 reasons: First,

so that the definition reduce to the C° case, which is intuitively the meaning of "zero

crossing." And secondly, to avoid degenerate cases, e.g. when the locus of zeroes is a

submanifold perpendicular to the x-axis in the x, , 9 space, i.e. when the zero locus is

tangent to the 9 direction. Note that in this case, a zero can still be a regular point of '. -

a. Conversely, even if s is C', the CO condition is weaker, since e.g. it doesn't exclude

tangent crossings.

Theorem. a : R2 X S' - R ,annot have an isolated zero crossing in either of the above

senges. (By isolated we mean there are no other zeroes in the x,O manifold, for fixed y.)

That is, edges cannot be localized simultaneously in z and 9 by the zero crossings of a ,

single (9-parametrized) convolution operator.

Proof.

Case 1: a of cas C', r 1

Since (x,y,O) is a regular point or s, the implicit function theorem applies and in some

neighborhood or (z,, 9), s-1(0) is a Cr subrnanirold of dimension 2. The conditions on

the partials guarantee that the surface is not norimal to any of the z, y, or 9 axes, so

that for fixed y, there is a curve or (x, 9) values for which a(z, y, 9) = 0, so that the zero

cannot be localized in z and 9 simultaneously. A more direct way to see this is to observe -

that what we are seeking is a function a whose zero crossings are the locus of an edge.

Regarding the edge as a runction -1 : R -+ R2 , it's obviots that adding orientation leads

to a function X: R -+ R 2 X S' defined by X(t) = (-(t),O(t)), where O(t) is the orientation S

of the edge at -y(t). Since the image of X is 1-dimensional, we cannot hope for it to be

the inverse image or a regular value of a map to the reals, since by the implicit function

theorem, that must be a 2-dimensional object. But by the same token, if we have instead

: -. R 2 , then one can try to-find edges by finding a-1(0). QI) Case 1.

. - . -. . .. . .
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The Limitations of Zero-crossings

Definition of zero crossings
It's sometimes handy to have a notation for the function you get by holding the arguments of some other
function fixed. We will use the notation f (-, V) ror the function that results from fixing the 2nd argument
of the function f to be the value y. The dot represents an argument position to be filled. The purpose
is to use a notation like f (z, V) while avoiding the confusion of whether it is z, V, or both which are
the variable, since each of these cases actually correspond to a differe,' function object. More precisely,
suppose that fX Y.

so that fj(z, V) x . Now define
f ,v):X -.

i.e., f(. vXz) =f(s, y) x .

If s is CO (continuous), then we will say it has a zero crossing at (x, y, 9) if the runctions

a(,y, 9) and s(z, y,) both have 1-dimensional zero crossings at x and 9, respectively.

Colloquially, this means that the x and 0 functions havc zero crossings. Wc dlon't require

a zero crossing in the y direction, because it, may be the direction or the edge. We will

say that f :R --a R has a 1-dimensional zero crossing at x irf (z) = 0, z is the only

zero in some neighborhood, and f has opposite signs on opposite sides of x in such a

neighborhood.

Ifa is c,, r > 1, thien we will say that a has a zero crossing at (zC? Y?9) ir .~zy,9e) o

and VIS(Z,Y,O) 34 0 34 D:s(7,Y,9), where DiJ indicates the derivalive with respect to

thc i-tli coordinate. Thus (x,y,9) is a regular point or s, which means that not all of its

partials are 0 at that point. This implies the C0 definition of zero crossing.

Remarks on the definition of zero crossings- -

The picture we are keeping in mind has the edge oriented along the y,-axis. The definitions

seem to single out a particular set or coordinates faymmentrically, to keep with this picture.

However, the definitions really only require that the x and 9 axes not be oriented along

the edge; equivaletly we could have required that some set of coordinate axes with these

properties exist.
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2) For each Y E U, each'partial Djf(r, y) (taken with respect to the j-th p-variable) is in

3) There exists a function hi E L'(Ip) such that for all pE Up

ID31(XPY)I 5 IAfr)I.

Let5

=f~.x', y) dpA(X).

Then DO exists and we have -

D3*O(y) = Djf(X, Y) dp(r).

The lemma permits us to conclude the following

Theorem [Lang 19691. Let f E L' and (P E C', r > I with compact support. Then

f*P~EC' and DP(f * 9)= J*DPpr or p r.p

Notice that this means that no matter how badly behaved f may bc, f P is as

differentiable as V~. In particular, convolution with a C'~ function results in a C' func-

tion. In our situation, if either the picture or the convolution kernel is differentiable with

respect to thc parameters (we may interchange the two, allowing the symmetries to act on

the picture if it suits mis), then our function a, the convolution, is likewime dlifferentiable.

If we have a differentiable kernel, then we can take U to be an open set in the parameter9

space of the kernel, and X to be the picture plane. If instead, we have a differentiable

picture, we reverse the roles of U and X. On the other hand it may happen that both the

kernel and picture contain disco nti nui ties, e.g. if they have steps. In that case, inte-grattion

by parts yields the fact that the convolution, i.e. s, is continuous.
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Using all the notations, we can include rotations by allowing G to be the rigid motion

(Euclidean) group of R2 , and considering the functions defined by

S(K, F, x, ) =K**F(m) =(T(:,e)(K), F) =(T%.~,(K),FP) f JKopj1oL-'or11.FdA

We are interested in the function obtained from Ke F(x) by fixing K, F: this is a function

a: R2  1  R, i.e. a function of x,9. ILe., we define a by .(z, 0) =S(K, F, x, 9). It is

the zcro crossings of s which we are seeking. Let's underscore the role of the symmetry

group C in the definition or a. The construction we used to define a actually defines a

map a: G i R. In fact, for any family or K's defi ned by some map M -. (R), where

M is the indexing set for the family, we can define a: M -~R. This way, one can easily

add parameters, e.g. to allow different size operators, and this type of analysis is still

applicable.

We want to show that for a M 3 
-. R (where M 3 is a 3-dimensional manifold) the

"zero crossings" cannot be an edge locus. To do this, we will have, to be more precise

about what we mean by "zero crossing," arid we will consider separately the cases where

is is differentiable, and only continuous. The 2 cases can be analyzed] independently; the

contiimuou-4 case subsumes tile differentiable case, but since thei diltereritiablc case provides5

better insight, we treat it first.

To begin with, we make some observations about when we can conclude that a is con-

tinuous or continuously differentiable. Here is Lemnma 2 of Ch. )UV §4 (p. 375) of [Lang

We Lake L' in .1w mpace or sill IAebesgune integrable runnctotmn, wiLls Lite norn given, by 1111 fill1 4~.
(!quivaIlcC( by Lite runcLions of normn 0. cr. Lite definit~ion or V~ given in Lite later section oil Lite
nonlinear relctfion operator.A

Lemma. Let X be a measured space with positive measure it. Let U be an open subset

of R". Let f be a function on X X U. Assume:

1) For each pE U the function x 1-4 f(x,y) is In Iu'(p).
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72(K) is what you get *When you "move K by g;" the right hand aide of its definition

shows how to calculate the new K. For a translation -r., T,. g(K)(p) =K(p - x), which

is often baffling for beginning students.

Define the inversion operator, L, by

Note that &-I1 t, and that in R, inversion is the same as rotation by 1800.

Using the notation for inversion and translation, the convolution formula can be rewritten

K F (x) K J o o;- F dA

where x is now a generic point or R2 and dA is the area measure. Note &o -r. 7=

(7a t)-'. So, using the T notation,-

K *F(x) = T,..(K).-F dA

or, abusing thc notation somewhat,

K F (z)=f T(K).-F dA

We can make the notation more compact by using the L2 inner product (..,defined by

(g, h) f fgh dA:

K *F (xr) =(T 3(K), F)

We can define a rotation operator, p, by

Pit R2-R
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or, in vector notation

K F(z) K( - C)F() dA
F0

We want to use a more abstract notation for this, so that we can generalize it slightly in

a transparent way.

LS

Fig. (13)

Let g R2 -. R2 be an invertible map, e.g. a rotation or translation or the plane, and let

K R 2 --s R. To describe "doing" g to K, define the map Tg :(R 2 ) T 7(R2 ), where

(R') is a spa~e ot" rinctious each taking R2 -R R, by

T,(K) =K o g-

Observe that Tgo9 ,(K) Ko (go h) - K o h- ' o g-, so the argument transformations

"go in reverse order" rro,, the s)cC.e tranrorrations. NoLice alko tile inlteresting fact.

that T. is a linear map, even ir K and g are not. Proor: 7;'(aK + L) = (aK + L) o g-.

In particular, let C be the translation group or R', where r. E C is defined by . *%,

3,-

R2 --' R2

........................................................ ...-. ,

. . . . . . .. . . .. .

......
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Edge localization-in both 9 and z

Intrslucti-

One way to localize edges is by finding zero crossings of a convolution operator. This

method yields a precise value for, say, the z-coordinate, but to.determine the orientation

or the edge requires further processing, e.g. using a number or oriented operators (which

may disagree as to the x-position) or by observing the locus of zero crossings. An

integrated method of extracting the position and orientation would be preferable.

[Binford 19811 proposes localizing edges in direction and orientation simultaneously by

convolving a lateral inhibition signal with a directional operator and viewing the results

as a set or "stacked planes," one for each orientation or the operator. The estimate for the

edge would be based on finding maxima of the gradient of the lateral inhibition signal with

respect to position and angle, by seeking zero crossings of the partial derivatives. Since

all or the operations prior to finding zeroes would be implemented as convolutions, it is

the zero crossings of the resulting convolutions which are sought. As ultimately stated in

(llinford 1981j, 2 convolutions, corresponding to 2 partial derivatives niust be considered.

However, it is natural to ask irst whether this can be accomplished by finding the zero

crossings of a single convolution. in the following, we show that this is impossible, using

the inverse function theorem in what is essentially a dimensionality argument. This is

why it is necessary for [Binrord 19811 to require the use or 2 convolutions.

Some Mathematics of Parametric Convolutions

Let F: R 2 -- R be a picture function, and K R2 -2 R a convolution kernel, that we

also refer to as a convolution operator. The normal definition of the convolution K * F

Is

K F (z,Y) = K(z - , y - r)'(f,it) dfd,

*. . . . . . . . .. . . . . . . . . . . . . . . . . . . . .
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this at length in the sdrvey chapter.) We were led to a more general operator, based

on symmetry considerations, which turns out to be intrinsically nonlinear. We describe

this novel operator, including some of the theory around it, after discussing an idea

of Binford's for an operator using a ratio of linear terms, also based on symmetry 0

considerations. The nonlinear operator avoids some of the shortcomings of linear filters.

Finally, we propose a variational technique for combining local edge data into optimal

global edges. The key new observation is that the globalization problem, can be put

into a form nearly identical to the Lagrangian formulation or mechanics. This allows the

global variational problem to be reduced to completely local conditions.
a.0

SO,

." o

0 ••.o..

i. .- . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . .
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Introduction

. In this chapter we present original attacks on some of the problems we discussed in

Chapter 2, our edge detection survey. Major problems in edge finding are detection,

localization, and globalization; and the most frequent tool is convolution. Detection

consists in determining whether or not an edge is present in a given neighborhood.

Localization is the extraction or the precise position and orientation or the edge. By

globalization, we mean finding edge contours or large extent, in contrast to local edge .

finding, which is concerned only with small neighborhoods. Convolution is commonly

used ror deriving local information, rrequently in a rorm similar to matched filtering.

Creater detail can be round in Chapter 2, the survey of edge detection.

We begin by establishing some background mathematics for studying raniilies of

convolution-like operators which are defined by some group, such as rotation. We then

use this formulation to prove an original theorem showing that a sihigle ramily or such

operators, parametrized by rotation, is not adc(iate for simniltameous position an(l orien-

tation localization by a zero-crossing method. The consequence is that more involved

methods, with multiple families, are required for this type of attack.

We present a novel localization operator which uses a least squares fit to find a best local

zero-crossing line.

An obstacle in detection is that although matched filtersgive high response at edges, they

also often give above threshold response at uninteresting features. (We have discussed

Some mathematical backgroind which is assumed in this chapter, such as fuinctional notation and some
remults from differential topology, is explained in more detail in the fine print or the chapter Geometric
Methods in Vision.
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hence only a finite number of final states. One should give some thought as to whether

that is an acceptable situation. It could be remedied by altering the relaxation coefficients

based on the current state.
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be performed by a system of ordinary differential equations. Incidentally, economies can

be gained by transforming the state space so as to diagonalize, upper triangularize, or

Jordan normal form-alize the relaxation map if it is linear or approximately so. Even

if the relaxation is not embeddable in a continuous dynamical system, nearly all the

machinery of dynamical system theory is available. For example, if the fixed points are

known, theorems are available telling us under what conditions there is convergence near

the fixed point, whether the system is stable (i.e. robust with respect to the choice of

relaxation parameters), etc.

The experimental results presented are unfortunately not very impressive. But that

may well be because the continuous spectrum of labellings generalization has not been

made, and because the relaxation (compatibility) coeicients are chosen ad hoe without

any rigorous consideration of robustness. So the poor experimental results should not

be regarded as an indictment of the idea. Rather, it should be developed with greater . -

" sophistication. For example, one should consider the effects or noise in a quantitative

way. One should try to discover whether there are any global quantities being optimized

in the solution. One might consider generalizations to infinite sets or objects, e.g. curves.

rhus the local label would be a probability density runction for, say, edge orientations

and strengths. This leads to an infinite dimensional state space, and although there

7 is a respectable theory of dynamical systems in such spaces, one must confront the

computational difficulties. However, since the function factors composing the space are

on coml)act domnains, there is a natural decomposition in terms of I.ourier series (of the

probability densities in the orientation strength domain), and it is equally natural to . L

truncate these series, so one again obtains a finite dimensional characterization of the

state space. One would then want to study the relationship between such a process and,

say, variational methods. One can expect that for reasonably regular (finite dimensional)

systems, there will be a finite number of fixed points outside or a small neighborhood,

[ :-:..,; ,_ . . .. .. .. .......... °.................... .................... . ... ...- ,..



.- .-. .*. . . . . .

A Survey of Edge Detection Global Methods 97

The authors generalize "a method first developed in computer vision by JWaltz 1972] for

propagating constraints in a graph. Waltz called it "filtering" and used a sequential

process; the present authors call it "relaxation" (perhaps due to its similarity to a method

used for solving partial differential equations, though it is not derived from it) and do •

it in an essentially parallel way. One starts with some finite set or objects, some set or

interpretations for each object, and a graph where the nodes are the objects and arcs

represent mutual constraints between interpretations ("labellings") of the objects. The

authors treat 3 types of labelling sets: discrete (finite set of labels) fuzzy (finite set of

labels with weights between 0 and co), and probabilistic (finite set or labels with weights

between 0 and I). A generalization to a continuous set or labels is not hard to imagine,

.- and would be useful in the applications, for example to represent the orientation or an

edge. For the probabilistic case, they readily show that the relaxation process has a fixed

point, a necessary condition for convergence. They go on to show that for a class of linear

operators with eigenvalues of norm no more that unity, convergence to the unique fixed S

point is guaranteed. Unfortunately, it's not an interesting case, because the fixed point

is independent or initial conditions, i.e. input data. They also present a more interesting

nonlinear operator, but are unable to prove that it converges. One can probably invoke

one of many variations or the contraction mapping theorem to show convergence for their

linear case. as well as nonlinear mappings which are contractions in the appropriate sense,

thereby expending less effort and achieving greater generality. The important point,

however, is that a wide, useful class of such relaxation operators converges. One can even

say something about the speed of convergence, based, ror example, on the eigenvalues

or the relaxation iteration operator. The idea is closely related to dynamical systems,

which has interesting implications For neurophysiology and hardware design. If one views 9

the state space as a free vector space on the labels over the field of weights (which we

take to be R), then the relaxation is a map of that space to itself. If that map is a

diffeomorphism, it may be enibeddable as a time-one map or a flow, i.e. it may be the S

discrete time snapshot of a continuous dynamical system. In that case, the process can

• --2.- ...i---'-..'...-. ..--.-... ".,--..-........ . ,-",----.-,-..".'.- ..-
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- are possible edge elemehts (pixel adjacencies) and the directed arcs are the allowed edgel

* successors.

- The computation cost varies with S/N, since that is !'at determines how much searching

*: must be done. This is presented as a positive feature.

- - He uses a pairwise FOM of edge strength (nearest neighbor difference), but suggests that

a larger local operator would improve noise performance.

Elatn

Summary

"- The technique is susceptible to the standard problems associated with FOM.

The local operator is still very important.

The same problems as in [Montanari 1970, Montanari 1971] are still present.

The results look reasonable, but no results are presented for real images.

Analysis is required to decide whether the process can be made parallel-

as it stands it is intrinsically sequential.

So"The technique presented by Martelli in this paper is not usable in its current form. With

- an appropriate local operator, reasonable l"OM, the right discrete variables (i.e. edgel

parametrization), it might produce reasonable results. But that says only that global

" edge finding can be approached as a search problem. Furthermore, it seems likely that

parallel search methods would be cheaper (as well as raster) than sequential, in analogy to

" simultaneous backward and forward searching in classical search probsems. An intriguing

- idea is to use geometric inrormatLion (i.e. relative direction) or other growing edges to

compute the heuristic function (i.e. expansion ordering) ror the search problem: edgels

. would be tried first that led toward something they might mate with.

* Rosenfeld, Hummel, Zucker 1975, Zucker, Hummel, Rosenfeld 1977

"Scene Labelling by Relazation Operations'



A Survey of Edge Detection Global Methods 95

implementation (i.e., ode without special processing for these other parameters).

The dynamic programming approach is computationally very cfficient; generalizations

and adaptations of Montanar's method are probably worth pursuing, although it is not

a trivial matter to do so.

Marteili 1972, Marteili 1973

"Edge Detection using Heuristic Search Methods"

Following Montanari, Martelli suggests that heuristics should be embedded in a figure of

merit (FOM) rather than in code. But it is questionable whether an FOM is enough in

the way of heuristics--especially if it is not based on an analysis of real images.

lie shows that any dynamic programming problem can be posed as a minimal path in a

graph problem, arguing that this is good because the use or heuristics to speed up search

in a graph is well-studied. However, the equivalence result is not very deep (each variable

expands to a set of nodes, one ror each value). The advantage or dynamic programming is

that it is rar cheaper than graph search, and a better question is usually whether a graph

search problem can be cast as a dynamic programming one. One can apply heuristics In

the dynamic programming paradigm as well.

The variables zi or the dynamic programming problem FOM f $(z,. . . Z) are

the edge elements- --discrete valued and thus hard to generalize to continuous 0 edgels.

'The figure or merit is delined in the form FOM = , ci(zi,..., zx+) - -see the criticism

or Montanari that monotonically related ci's don't lead to the same optimum. In this

connection, no discussion or robustness with respect to FOM's is presented.

lie derives a search graph for the dynamic programming problem, then uses the A*

algorithm to search the graph. The search graph is just a directedgraph where the nodes

.............................................

.............................................
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Case 2: a of class' CO*

We restrict attention to the function defined on the z, 0 manifold, and show that every

zero crossing is an accumulation point of zero crossings.

(010) 0 (1)0)

(0,,) - 211

Fig. (proori)

look at Fig. (proofi). What it shows, schematically, is an cdgc operator in the vicinity

of an edge, and the result of applying some motions to it. The positions are labelled on

an arbitrary scale. The (0,0) position is where the zero crossing is. If one assumes there

are no other zeroes in some neighborhood, the indicated operations show that there are

2 ways to get to the same position or the operator with opposite signs for the result, a

contradiction.

The notched circle represents the position and orientation or the operator, while the

vertical line is a reference value for z and is meant to suggest the edge locus. Starting at

the upper left picture, we can get to the upper right picture by translating the operator

support to the left slightly, which is the meaning or the small arrow over the long arrow.

. .°
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Since we were at a zerocrossing in x, the value we get by applying the operator at this

new position must be nonzero; let us call its polarity +, which we indicate near the

coordinates. Instead of translating, we can rotate, and this is schematicized in going

from the upper left picture to the lower left. Again, since we start at a zero-crossing in 0,

a slight rotation puts us into a nonzero value. Call its polarity -. We can assure that it is

* not the + of the upper right corner because we have a choice of 2 directions or rotations;

by the definition of zero-crossing, one or these will give us + and the other will give -, so

we choose the one which gives -. Now we have a contradiction to the assumption that

the zero-crossing was isolated, when we observe what happens as we try to get to the

lower right corner position. We have assumed that the zero-crossing at the upper left was

* isolated. Coing from the lower left configuration to that or the lower right by a slight

translation in the absence or a zero-crossing requires that the polarity of the lower right

*. position be -. On the other hand, doing the same thing by moving from the upper right

by a slight rotation to the lower right, with the assumption of no zero-crossing, yields a

polarity of + for the lower right. The value or the operator applied in the position of the

lower right corner can only have one sig.i, so in fact there mnist be another zero-crossing

- somewhere, contrary t9 assumption. Note that this is still true no riatter how tiny the

rotations adi(i translations of the operator.

. .
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Fig. (proof2)

A mnore abstract picture or this is Fig. (proor2), which shows a region or the x, 0 manifold

near tlic zero crossing. In particular, we can assume without loss or generality that moving

tip (i.e. rotating) causes a9 to become + (else flip the picture top for bottom), while moving

right (translating) causes a to become - (else flip right for left). The restriction or a to

tie line joining thle '2 end points or these motions must have a zero, by thle intermediate

value theoremn (see, e.g. litudin 19641). QEDI
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Nonlinear Local Edge Detection

An ideal step function is the sum of an even part-a constant function-and an odd

part--a symmetrical step (top of Fig. (latinh)). For edge detection, it is the odd part

which is of interest. [Canny 1983), for example, requires that his optimum convolution

kernel be an odd function, since the even part cannot contribute to detection of a step.

The bottom of Fig. (latinh) shows the (i-dimensional) result of applying lateral inhibition

to a step edge, i.e. of convolving a step edge with a zero-sum difference of boxes (middle

of Fig. (latinh)).

Fig. (latinh)

-I -
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Since lateral inhibition 1s an even operator, the result is again an odd function. Also, it In

the central zero crossing which marks the edge, while the lateral inhibition has introduced

spurious peripheral zero crossings.

A common approach to detecting signals like this is through matched filtering, template

matching, or surrace fitting, all of which are essentially equivalent linear processes.

However, these tend to respond to undesired components while remaining specialized to a

particular functional shape. ([linrord 1981] proposed using an even-odd characterization

for dealing with this problem. We have used a somewhat different characterization of

even-odd, which led to the edge detector described below, an intrinsically and nontrivially

nonlinear operator. Nonlinearity has the advantage that space and intensity are not

equivalent. I.e., a linear operator has no way to tell the difference between a high but

localized noise spike and a large moderately positive area. While linearity always has this

problem, nonlinearity can avoid it. Also, the even-odd characterization is more general p

than a matched filter kernel, and thus detects a more general class or functions, so one is

not limited to the ideal step. The reflection operator described below will find edg" on

a checkerboard pattern smaller than its support, something a matched filter cannot do

(unless it's a matched filter ror that size or checkerboard, or course).

Fig. (checkerboard) .

IL. .
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The reflection operator san be thought of as adding up a measure of edgenes along each

line perpendicular to the prospective edge, regardless of polarity. This could be done

with an operator linear on each such line, if a nonlinear operation such as absolute value

or squaring were done before summing the line values. This would result in essentially

the same operator, though, once all the nonlinear terms were herded up.

Let f be the laterally inhibited picture function. Then the even and odd parts are defined

by

.,..(z)= 2I1Z) + f(-Z)

%.dd(Z) = !lz)- I(-Z11

To make the notation more compact, we can define f by f(z) =f(-z). Then

fdd-= "lf -A

The even-odd operator of [Binford 19811

[Binrord 19811 describes using the even and odd parts as rollows. Let

R f( zldz

L = f(z)dz

f f(-z) dz

where we understand that we can consider this a summation by using a discrete measure.

Then, in terms or our previous definitions,

. . .. . . -..........- • ... ... ,, . .--. ., ., --.. ,.. .- , . ...... . .



Contributions to Edge Detection Nonlinear Local Edge Detection 115

R +L f I=z + f(-x)J dx

Lw
R= &~d

00

The even-odd measurement is then given by

I"Id(z) dx

Notice that the only nonlinearity here is in the ratio, and thecre are no cross-terms in f, -

since the integration is done over an argument linear in f. Also

L
R++
R+L R

R - L

so one in csscntially looking at the value or qn rhti, comnpuitation or even-odd parts has

a simple interpretation in termns or convolutions. D~efine K+, K_. as in F~ig. (iwI)...

Fig. (R-L)
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Then

R~~ -0 K

The nonlinear reflection operator

We made a somewhat different interpretation or comparing even and odd parts; we

compare the relative sizes of the even and odd parts by considering their norms as elements

of a function space. ILe. in our formulation, the detector output is

lifoddi

where 110is the norm comning from an inner product (...For the continuous case, this

could be the inner product on L2 , While ror the discrete case it could be that ont2
We Lake L2 as the space of all Lebexpie square integrable real-valuctd functions, cquivaicnced by the
runctibns or square integral 0, with the inner product (f, g) = f fg dp, where $A is ILcbesgue measure.
The norm 11f11 is then given by 111112 = (f, f) -f f2 dpA More generally, one Speaks or L2 (p), for an
appropriate measure IA. if we Lake p to be the discrete mecasure, giving the value I at each integer, we
gcl the sp~ace f2, of squarc-moininable sequences.

We then compute

4!jj 112 11f +I f+

If ..Idl' 11f - 1112

__111112 + 117112 + 2(f,7
11f112 + 111112 - 2(f, 1
111112 + (fp{ ine1/1 11
111112 - (f, snc1)fj 111

I+ (f f

- 11f/11

Thus it is the relative size or the cross term that is important. The function

1 + Z
x+
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is monotonic in z. We are interested only in the relative values of the detector output,#1

and in practice will threshold on its value, so it is sufficient to consider only

U1wf)
O112'

Note that

1(f, h)1 5l 1121

and
1 211 l/l irf is even

- lIan if f is odd

The higher diimensional generalization or we are interested in is reflection across a

hyperplanc; in 2 dimnensions this is reflection across a line. This can be defined by choosing

soine coordinate system (2:,Y) and defining Jby

so that we are looking at the odd and even parts along the x-axis. Instead of reflection,

we could have generalized instead to iniversionl, delined by

This could be interpreted as looking at the od1d and even parts across all lines through

the origin at once.

Groups and families of quadratic operators

Using the notation introduced in our section 3.2.2 on parainetric convolutions, these

operators are or the form
,P T(R -. R

f (fTv~f-
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where g is an isometry 'of R". Since this operation is to be performed at every point of-

the image, we can parametrize it by a shift as

T 9 (R") -- '(R")
*9($)z ( I, T-TO T-()

This is roughly the same as our definition of parametrized convolution, except that the

fixed convolution kernel K is replaced by the function f itself, giving an operator which

is nonlinear in f. For n = 1, inversion and reflection are one and the same. For n = 2,

we have chosen reflection for the group element g. Iv can be thought of as a machine

which takes an image as input and gives as output another image, whose value at each

point is a measure of the invariance of the input under the symmetry g applied at that

point. For example, suppose g is a translation. Then since T., T., T-... all commute, the

value of P,(f) will not depend on z, and l'(f) will be the constant function with value

(f,T,(f)). ir we now let g range over all translations, we get a function on the translation

group, viz. the autocorrclation funiction or I Now let g be reflection across the line t

through the origin. q4i takes an input function, and produces an output runction. To

find the value or the output function at a point z, translate the input function so that z is

at the origin, transrorni the input runction by g (i.e. rellc(t across t), and translate back

to z, then take the inner product with the untranslormed input function. That's now:

the value of the output at x. Usually, we are interested in doing this for local support,

i.e. the result should only depend on a neighborhood of cach point, or be weighted near.

the point. We can build this into the inner product by using a suitable measure, so that.

this situation is still described by the same forinalisti, except it is now more convenient

to write
7, (R") -* 7(R") "-

=( ) (T_ .(f), ",T-.,f)) .

which amounts to taking the inner product at the origin, rather than first translating

back to the point or interest. Since translation is an isometry, this does not affect the
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value of the unweighted inner product, while for a locally weighted operator, the inner

product is just defined once, at the origin.

*S Tf Th(f

whSrndOy it;8 the group ofthgonariant unlris oreiry, ie Xh sn tmatrcso

determinant ±1, so the condiitionl says that U must conminute with ani or 0(n). Now,
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Center(O(n)) {I,-( }. I.e. the center consists only of inversion, -I, and of course

the identity, I. Notice that for 2 dimensions, inversion is the same as a rotation by 180 ° .

Thus, in 2 dimensions, g can only be inversion for g to be unaffected by an arbitrary

isometry, except of course by being carried along with it. In particular, this means that

W. is not directional:

*O(Tf)(0) = T09,(f)(0) -*(=1(0)

If we confine attention only to invariance under rotations, the situation is somewhat

different. The rotation group of R", SO(n), is the component of 0(n) with determinant

+1. Since SO(2) is commutative, it is its own center. Thus, non-directional operators

in this family could be defined to measure the symmetry of rotation by some arbitrary

angle. On the other hand, reflection through a given line is not in Center(0(2)) or in the

center of SO(2) in 0(2) (i.e., all those elements of 0(2) which commute with all of SO(2));

and the operator it induces is therefore not invariant under isometry or rotation, as

should be clear after some reflection. The reflection operator is a directional operator,

and must be applied for a family of lines of reflection.

jSunday 19781 has used essentially the operator above, with g inversion, for binary

pictures as a symmetry detector. For that case, it is interesting that

411f)x =11- 12z). -

We note in passing that this could be considered as a 2nd order term in a Taylor expansion

in the Fourier domain.

Noise performance

Linear operators mitigate noise by averaging, thus reducing the normalized variance.

The nonlinear operators or the cla:s defined above also exploit the correlation properties
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of the noise more direttly. In the presence of noise, these operators contain a linear .0

and a quadratic noise term. The linear term behaves essentially like that of a linear

operator, though it is signal-dependent. It is often assumed that the noise is Gaussian .-

and uncorrelated. In that case, the quadratic noise term vanishes. (I.e., on the assumption 0

that the noise is uncorrelated under the group action involved, its contribution vanishes

except on the fixed points of g. In the continuous case, this is a set of measure 0. In the

discrete case, this set may not be of measure 0, so care should be taken to avoid including

the fixed part, e.g. the line of reflection. It only adds to the noise, and measures nothing

of interest. If there has been a preprocessing step, such as lateral inhibition, additional

care must be taken, because not all output terms will be uncorrelated.) Thus, while the

nonlinearity in the signal term gives a quadratic gain, there is no comparable contribution -

from the noise. Furthermore, the linear noise term is scaled by the signal, providing

additional noise immunity.

Implementation

The nonlinear reflection operator was implemented for a support size of -, 100 pixels,

with uniform weighting. The image was first convolved with a difference of boxes lateral

inhibition operator or similar dimensions, with central region or typically 9 pixels. The -

reflection operator was used only for detection, using a threshold which was set based

on a global esLiinate or noise. The results were qualitatively better than those obtained

for various linear detection predicates based on difference of boxes. With Light coding,

including automatic compilation of in-line machine code for each operator at run time,

thus avoiling any subscript com)ultations later, the cost was essentially the same as for

a linear operator of comparable support and nontrivial coefllicients. -

N. -°
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Planar Fit Edge Location

Applying lateral inhibition [Binrord 1981] to a perfect step edge results in a central planar

region whose zero crossing line corresponds to the edge locus. We implemented an edge

location operator which solves for this zero crossing by finding the parameters of the

approximating plane in the appropriate region.

Let L be a lateral inhibition operator, f the input picture, and L(f) the result of lateral 9
inhibition. Define r, s to be the (discrete) coordinate runctions in the ij directions. I.e.,

r,s: Z -* Z

r: (i, j) ' i

s: (i, j) - j"-

Then the problem or fitting a plane to 14f) in some neighborhood can be thought of as

finding u, v, w E R such that c is minimized in the expression

Lf) = ur + vs + w + e

Since we are using tie ,2 norm with the standard inner product, rinhnizing c in the

least squares sens is the same as rninimizing -(, which happes ir we determine u, v, u

by orthogonal projection or L(O) onto the hyperplane in L(Z 2 ) spanned by the runctions

r, a, 1, where 1 is the constant function. Since we are interested in local fitting, i.e., S

fitting the central planar region discussed above, tile runctions r, s, I must be taken as

the restrictions to the region or interest. Ir this region is symmetrical about the origin,

it's easy to see that r, a, 1 are all mutually orthogonal, so that the parameters u, v, w are -

easily round as

r. L(f) ""-"i

r r
Uo = 1IfI8 (I - .

W 1-

. . . . - . --° . .. _ _'. •. • • • . .. . - -°. . " , "
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structure we propose tosconsider is depicted in the following commutative diagram, Fig.

(*.This will require some technical improvement,;, which we make shortly, but this

simpler picture exhibits the main idcas in an uncluttered way.

3 8- 3

1.1

Fig.()

An cxarnple or functions F1~, F9, for a neighborhood or a familiar embedding or an object E

is presented in Fig. (stereo pair). In this case IP, and P. take their values in R1, which is

represented as brightness, and thc geomectry has been carefully CofLtrolledl to assure that

features will coincide iii a particularly simple way (i.c. thc images are rectifiedJ). 'rhis

pair is best viewed by holding the page aL arm's length, with thc pictures sidc by side,

and crossing one's eyes so as to fuse the 2 imnages into one. This takes some practice.
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We will find it easier insour analysis to think or the equivalent situation of a stationary

observer in a world which moves. This situation is depicted in Fig. (egocentric example),

for a particular choice of object and imaging geometry.

L\

49

Fig. (egocentric example)

We can formalize the egocentric situation in a mathematical structure which covers a wide

range of situations, e.g. different imaging projections. The essence or the iriatheinatical
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6) A law which expresaes the image intensity as a function of all the other characteristics

of the situation.

Fig. (world-o-centric example) is a schematic representation of a possible imaging situa-

tion. The name indicates that we are regarding the world as stationary, while the ob-

server moves, which is the usual way of thinking of a stereo imaging situation. The

nomenclature is explained in detail later, and is unimportant right now.

I

I

Fig. (world-o-centric example)

..

"- " • " :- -"7' *,' . ,' : ' "'- "- .' ' - ." "" " . -"" .""."" " " " " " -. . . .. " " I



Gcometric Methods in Vision The Mathematical Structure 133

The Mathematic§I Structure

Here is the situation we are confronted with. From a 2-dimensional image or set of

images, we want to reconstruct or at least describe the 3-dimensional object that gave

rise to our data. Furthermore, we ultimately want to identify objects independent of

viewpoint. Now if one can reconstruct the 3-dimensional object, then by brute force one

can determine whether 2 data sets (a data set might be a picture, a pair of pictures, a

sequence of pictures) correspond to the same 3-dimensional object. However, nature is not A

profligate in providing us with information, so e.g., one cannot hope to reconstruct the

entire object, even in principle; and in practice, accuracy is limited. It would be helpful

to know, thererore, something about the likelihood that various data sets may have arisen

from the same object, or, more generally, from a single meaningful class of objects. In

particular, it would be helpful to know something about how different viewpoints affect

the geometry or topology of a data set. So what we have is"

1) A. surface or set or surfaces embedded in R 3 .

2) A canonical map rrom R 3 to R 2 (or possibly S 2 ), the perspective projection.

3) A group or transformations or R1, viz. the rigid motions or R", which correspond

isomorphically to the possible ways or viewing an object in R 3 .

4) A runction defined on the surface, which comprises the intrinsic surrace characteris-

tics (e.g. rcflectivity).

5) A fnction l3ined on R3 , expressing the illumination (which may depend on the All!

embedding and intrinsic surface characteristics as well).

*The mathematical notation and sonic related definitions are reviewed in a fine print section in a few
pages. For the inomlenIt, it nay he Ilhprui to know that R" is n-dilnemsion;l Euclidean space; and S" is
the n-dimenional sphere, so 52 is the 2.-dimensional sphere -the surface or a solid 3-dimensional ball.

............................................... ,.....
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derivative at 6 "typicals points in the picture is just enough. That is for a monochrome

picture; in the case of color we show that 3 such points give the same information.

In between the beginning and end of the chapter, there is a middle, in which we apply

some differential topology to study invariant structures in pictures. We mainly focus

attention on the structure of level sets, the picture loci of each intensity value. These

have an invariant tree structure with simple properties given by Morse theory (part of

differential topology). We also consider the behavior of the tree in the presence of noise,

which again is well understood, and propose the structure as a good starting point for

stereo matching. In a later section, we show how the scale space paradigm is one way of

exploring the structure of the level set tree, and we argue that the invariant structure we

propose, including the noise and derormation behavior, is a more complete model for the

scale structure or the image, yet it requires no convolutions.

Along the way, we introduce some ideas we need from differential topology, with an eye

to explaining their significance in our context of vision. A central idea is genericit,

a rigorous definition of "typical," which allows us to ignore the problems or special or

pathological cases. Without this, our theorems would be impossible, as there would be

an endless sries of special caes and exceptions to disposm or; instead we can rocus on

the interesting cases that occur "typically."

I °"
J---
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territory of differential topology. When we add in the group or rigid motions, we have -

differential geometry.

We apply topological methods to study the correspondence problem of stereo vision,
U

which seeks to find corresponding points in 2 pictures taken from different viewpoints; i.e.

matching a point in one picture with the unique point in the other picture that came from

the same point on the object (ir indeed such a point exists). We begin by assuming that

we know nothing of the distortion between the 2 pictures. If we can find this distortion,

then we will have solved the correspondence problem. What we find is the novel result

(tie Two Color Theorem) that this problem is degenerate for monochrome pictures,

but uniquely soluble for color pictures (or 2 or more color dimensions). This means

that in the monochrome case, the distortion cannot be round without making additional

constraints which depend on the properties or the rigid motion group (i.e. the geometry),

the projections (including optics), and the possible relal.ion between the viewpoints. On

the other hand, ror color pictures, we can ignore the geometrical information, or more

practically, consider it independently in an overdetermined system. We also extend these

results to the situation where the contrast and absolute intensity scale or the pictures

may vary, an(d we consider sorie or the effects of noise.

At the end of the chapter we return to the geometry which played only a minor role in

the proor of the Two Color Theorem, the geometry which we now exploit to Snalyze the

motion problem, the differential analog of the stereo problem. We take the view that

our data consists only or pointwise color values in the picture. Since the picture varies

with time, we also have pointwise derivative values. Unlike most previous work, we do

not assume that we know how any individual points in the inage are actually moving .

(the analog of correspondence), nor do we seek to find that motion as an intermediary

to the spatial motion. The question we address, then, is how much of this instantaneous

pointwise data does it take to uniquely specify the motion in space. We apply Lie

algebra methods to show that knowing the picture function, its gradient, and its first time

S'-'°.°
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Introduction

In 1872, Felix Klein was admitted to the faculty of the University of Erlangen. On

this occasion he was required to give an inaugural speech, in which he proposed a

characterization of the study of geometry, which had recently seen the introduction of

non-Euclidean geometries. His proposal came to be known as the Erlanger Progvamm,

and was a unifying influence on geometric thought for the next 50 years or so. The essence

or what he suggested is that a geometry should be viewed as the study of the invariants

or the action of some group. In Euclidean geometry, for example, one studies invaraats

of the group of rigid motions or the plane. One can view various geometrical stud es this

way, e.g. special relativity considers the invariants or the Lorentz group, while topology

studies those of groups or homcomorphisms. In the same spirit, the task or computer

vision can be viewed as finding invariants of picture functions under the rigid motion

group of 3-dimensional Euclidean space.

As an object moves in space, or as we change our viewpoint, the projection of the

object's points to the picture undergoes a deformation which depends on the shape of

the object, the motion, and the projection. Carried along with this deformation is the

picture function, given by the color value at each point, which is a result or intrinsic

properties or the solid object, but which can depend on lighting conditions in addition to

the deformation of tie projection.

Our first goal in this chapter is to make precise what are all these functions, objects,

projections, and motions, and what are their relationships; in other words, to describe

this structure in the language or modern abstract mathematics, giving us something to

attack with rigorous tools. The structure we find, of manifolds and maps, is Lite natural

...
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excursions of the trajectory, as might happen in trying to maximize the integral of 0

a positive quantity (such as p(h(z) I E(z,*))). In maximizing a positive quantity,

lengthening the curve always increases the integral, so e.g. extending the curve always

improves things, and one can have the pathology of improving a curve by taking out a

tiny piece and replacing it by some wild excursion which accumulates more of the positive

goodness. Minimizing a positive quantity (or maximizing a negative one) avoids this, since
there is a shortest path, i.e. one cannot keep minimizing by always shortening the path.

In summary, the outcome is that the Lagrangian picture allows us to reduce the extremal

problem to a local one. Since we can estimate OL/O& (z, ) and OL/Os (z, *), we can find,

numerically at least, the trajectories that solve the Eulcr-Lagrange equations, and this is "

based on local information. The key features making this possible are the existence of

the Lagrangian function defined on the space of (z, i), and the constraint that the only

trajectories or interest in that space are those where dz/dt - I€.

S..

.
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Since exponentiation is monotonic, extremizing the exponential is equivalent to extremis-

ing the exponent. This leads to a simple way to extend this to the continuum, by

generalizing the sum to an integral (as could be done for any product). The condition

then becomes one of maximizing

f ogPh((t)) IE(z(t),*I(t))) dt

which is a negative quantity, or, perhaps more intuitively, or minimizing

- log h(x(t)) IE(x(t),!(t)) dt

I.e., we can choose - log p(h(z) I E(z, i)) as the Langrangian 14z, k).

Integrating the Euler-l.agrange equations requires an initial condition (or possibly a

boundary condition). Since the space in which the equations are set is the (z,*) space,

the initial condition must specify both x and :. In general, different initial values or

i will give different trajectories. That is the price one pays ror getting a completely

local problem. llowevcr, this can be readily dealt with by separately maximizing over

directions or i, or choosing initial k at points or high confidence (seeding). Alternately,

the phase portrait associated with the trajectories can be thought or as a "primal sketch"

of the potential global edge structure or the image. This structure directly represents

simultaneous multiple, even conflicting, interpretations. E.g. there may be more than

one value of i at some z or in some neighborhood, which gives a tenable edge locus. The

orbits, i.e. global edges, have a measure :wigned to them by the ULagrangian inLegral, so

there is a ready way to rank and prune multiple interpretations.

As long as "edgeneas" does not have a canonical definition, we can't avoid a heuristic

aspect to the choice or lagrangian. The particular extremal problem we have.suggested,

however, has the nice property that the integral value cannot be improved by arbitrary

•7 .7.. •-.. . 7 . . . ._. .. -. . *-- . I - °°. -o- ..... . .... ..... ... -
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the magic of the calculus of variations, this can be reduced to a purely local condition on

the trajectories, given by the Euler-Lagrange equations: d/dt (8L/&ci) - 0L/zi =0. I.e.,

the solutions to the variational problem can be found by solving the system of equations

dx

~d 'aL' dL =(Euler-Lagrange)7X,, - 0 iiii
. .-.0

Thus for our situation, all we must do is define an appropriate Lagrangian function 5

L(, i). Or course, this will be related to the local "edgeness" runction. Typically, an

"edgeness" function is the result or applying an operation which measures the degree

to which the image locally resembles an edge. E.g., one might convolve with a family

of optimal filters, such as oriented smoothed steps; the output would be an "edgenes"

function depending on position and orientation.

We describe one candidate for such a Lagrangian function. Suppose that at each point z p
of the image we have computed some inrormation, perhaps by convolving with some set

of operators; call this information h(X). Define E(x, ) o be the event that there is a local

edge or magnitude and direction : at the point x. Then with some assumptions about

the noise process we can estimate p(h(x) I t(he)), pI probability density that h(z)

arose as a "consequence" or Iq(z, z). The function p(. I i(z,.)) is a probability density

on the space or data h(x), for each E(x, i). (Note that we have no a priori estimates

for p(E(x, b)), and that the entire event space need not be U.,,E(z,*).) Then we can

argue that for a set of points along a contour, we want to maximize the resulting joint

probability density for all the points. Assuming independence, this becomes . -

t

for integer t, i.e. a finite set of points. This can be conveniently rewritten as

exp log p(h((t)) E((t), i(t)) .))..

L7..:
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A Variational Principle for Edge Linking

The field of edge detection has seen no particularly successful consideration of global

shape (though see [Marimont 1984] for some recent work in that direction). One can try

to find global edge contours either by solving for global information directly (e.g finding

a level set of some function), or by piecing together data from simple local operators,.

as [Montanari 1970, Montanari 1971, Martelli 1972, Martelli 1973] did. Here we offer a

variational approach for the latter kind of contour finding.

The essence is the observation that there is a formal similarity between optimal edge

linking and Lagrangian mechanics.

Fig. (path)

Consider a trajectory -y I R~ 2 inl tile image, which we think or as anl edge locus. We

can represent a local ideal step (Age at each point -y(t) or y(l) as a vector whosc direction

and miagnitude represent those of the edge. (fly magnitude of edge, we mean the size of

thle step.) This establishes a correspondence between trajectories in the plane and edge

loci.

In the Lagrangian picture of mechanics, the statc space (phase space) is a 2n-dimensional

space of 2n-tuples (z1 ,. P. ,zR,~h, ..,t), and time trajectories through this space must

extremize thle integral f I,(z, *) dl and satisry tile constraint that * k dxfdi. Through

/ .O ...
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to the true and precise location of the real edge giving rise to the data. Local detection

of edges is not an end in itself, but only the first step in the process of contour finding.

The process of assembling the local edges into contours will confront ambiguities where

it is not clear which, if any, contour a local edge belongs to. The coarser the resolution of

the local edge parameters (e.g. position, orientation) the more frequently ambiguities will

arise. As long as we compute the local edge parameters as nonsingular smooth functions

or the true edge parameters, then the computed values will be samples or a continuous

function, and subpixel resolution will serve to decrease ambiguity.

6A
°.-S
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-1 0 1 -4 -4 -4 1 1 1

-1 0 1 -3 -3 -3 1 1 1

-1 0 1 -2 -2 -2 1 1 1

-1 0 1 -1 -1 -1 1 1 1

-1 0 1 0 0 0 1 11

-10 01 1 1 1 1 1 1

-1 0 1 2 2 2 1 1 1

-1 0 1 3 3 3 1 1 1

-1 0 1 4 4 4 11

r 8

to find the parameters ror a vertically elongated region (with analogous operators for

other directions). Square operators could also be used.

These convolutions yield at every point p E Z2 three parameters u(p), v(p), tu(p), deter-

mining a plane given by z - ux + vy + w which is the best fit to the data 14f) in the

translated support or the convolution operators. The position and orientation or the edge,

i.e., the parameters or u-, (ax + by + c), are given by finding the zero crossing line or the

fitted plane, i.e. by solving 0 - ux + y + w.

This operator gave qualitatively good results ror location and direction or edges in

numerous real pictures.

*Subpixel localization

The zero crossing parameters round by the above method give an edge locus to subpixel

precision. For an ideal edge, with sulliciently low noise, this is an accurate estimate. Real

edges are not ideal, and it would be quite fortuitous ir the nonideality occurred in just

such a way as to make the subpixel estimate accurate. Nevertheless, making such an

approximation for subpixel location is useful, even without knowing that it corresponds

.. .:
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Or course, this is only gdod for a region centered at the origin. For a region with arbitrary

center, we can apply the same technique modulo a translation to the origin. Equivalently,

since we are talking about a family of regions congruent under translation, we can consider

u, v, w to be functions on Z2 expressing the parameters of the plane fit in local coordinates

centered at their argument. Then we have

= rL
r * 'Al

88

1 • L(f)
1.1

This permits us to implement the least squares fit as convolutions with the functions

r, 8, 1.

For example, using the lateral inhibition kernel

-1 -I -1 -I -1 -- 1 - -1--

-1 -1 -- 1 -1 -Il--l -I

-1 -1 -1 -1 -1 -1 -1

-1-1-1 8 8 8-1-1-1
-1-1-1 8 8 8-1-1-1

-1-1-1 8 8 8-1-1-1

-1 -I -- 1 -1 -1 -1 -1-1
-1"-1-1-1 -1 -1-1 -1-1

-- 1 -1-1-1 -1-1-1-1

we can use t, s,1J masks

; .. - ; ; .; : --- :. - - .- . -* -. - - - -' I -
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Fig. stere pair

. .... . . . . . S
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Although the diagram Fig.+'i) may at first, appear rather formidable to the non-mathematician, it is
actually fairly simple. Ncverthcless, here is a detailed explanation.

The diagramn represents the relationships among various maps between various spaces. To be exact,
the symbols at the nodcs represent spaces, the arrows represent maps (i.e. functions) from one space

*to another, anti the symbols along the arrows namie the inaps. Sometimes a map can also be thought
*of as a point in some other space, but that is not represented in the diagram. Saying the diagram is

commutative means that any path along arrows (concatenated by composition) joining two spaces gives
the same result. E.g. the following diagram

Fig.(comm)

is commutative iff h =g o f. Diagrams which are not commutative are generally confusing.

The prohilem of defining or representing the general surface in, spaces of tuim > 3 is not trivial. That is
because the smirface mnay have a strange con ligu ration, e.g. it umay close on itself like the sphere or torso,
or it may win(] around itself.-

The simles-t cxam pies; of surfaces -are given by equations of tike form z = f (z, V), i.e. as a map
*f R2 t which we can interpret as assigning to each point on the plane a height above time plane.

There is at prettent a (divergence be-tween Lti athematical literature on the one hand, and tile engineering
and( -.ciemtilic literatmitre on time other, with respect to tme notation, musd to represent funictions. Tihis is a

* divergence whicl, has developed during Lte past4 several decadess, p)riflarily lXwC:%1ise Of tIme muathe~naiciankl'
realisations of the~ mecewsity of mnaking explicit Lte existence or a funmctionm (or mnap) as an object in its own
right, as well :vs the reqmiresmenit of ;voidimg varionsa ambiguities which otherwise arise. In the engineering
literature one ofIA-i, sees r(!ereelces, e.g., to

"a function X = /(Z, y)

hFor mnany poirposes, it is clear enough what this nicans. However, to be precise anti avoid conufusions we
will-uadhere to time following notations.

will mean that f is a function which maps points; in the space X to points in the space Y. (By function,
we inean a single-valued fumnction,, or an assignment rule.) Additionally, the notation

* or

f :X-mY

* will mean that f takes the point X E X to the point V E Y, which we will also write as

Note tile difference between, e.g. z avid X, anid espcially Ltme differenit meanings of the 2 types of arrows.
In thin notatiom,, rather thani sayinig

"the funtion a f (a, y)"
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we will say 4

f: R 2 
-~R

(Ilcre R'" is n-dimensional Euclidean space). Here thc function is f, which is a map from R2 to .
f (z, y) is the v~alue of the function f at the point (z, Y) E R'2 . Notice that we might have said, e.g.

:5S2 SI

(5" s te ndimesioal pher gicn y I ~ ,~,where the a, are coordinates in R"+'. 52 is
the 2-sphere (homeoinorphic to the surface of a ball) and SI is the circle.)

We can think of this as a surface by considering the points of the surface as given by the graph of f,
i.e. by {(z. ,z) E R'3 I z = f (z, y)). We can describe the surface as a function ? : 2 - R

3 given by
the formula !(Z, Y) = (z, y, f (z, y)). Unfortunately, most surfaces, e.g. the sphere, cannot be described
thisi way. Most importantly, rio matter where we p~lace the plane, there arc usually either 2 points or
0 points or the sphere above any point or. the plane. One can remedy this by delining the surface an
{ (, y, z) I g(z, y, z) = 0)i for an a~ppropriate function g. l-,.g., ror a sphere of radiuis r one would take
9(z, Y, Z) = z 2 + y2 + Z2 - r2 . It turns out that one can essentially get all surfaces this way, but there
are uanpleasant side effects which cause uts to avoid this; definition. To guarantee a meaningful concept
of dimension, we would have to impose extra conditions. liesidecs, finding the set of points that make up
the surface is hard. Instead, we dehine a surface by observing that a little piece of it is; very much like a
little piece of the plane. We ileline a patch or the surface 1; C R'3 to be a smiooth t-1I map to : U2  R 3
where U2 C R'2 is a neighborrhood (i.e. an open set) in R 2, such that ip- 1,(u2) is also smooth:

A surface is then defined to be a collection of such patches such that for any 2 patches (ip, U), (to, V),
P-I(jp(u) nl o(v)) is an open set in% R

2. This guarantees that our object is uniformnly 2-diniensional and
doesn't have self- interstections. Such a pIatch is Often also called A Chart in) analo1gy tO thDO Charts of the
eartl,'s sphere used by mariners. Similarly, a compatible collection of swIm charts, covering some object,
is known ast an ca"e

By smooth We Riean. ('ontin~iousl8y differentiable siome ninnulr of tiones. In particular, we ruse the notation
C" to represent Lten class of 0-tuvnes continuously dilferentiable functions, i.e. corntiuous- fuinctions; the -
notation Ck for k-tinses continmuously differentiaLble functions; c, for infinitely differentiable functions;
arid C' for analytic functions, i.e. infinitely differemtiable functionis represerItL314e by a Taylor series.
Usually smooth means C", but sometimes it can mean Ch for sonic (Uinite) k. Usually it is immaterial,
but if it matters it will be stated explicitly.

A hoimmorphism is a 1-1 continuous map with a continuous inverse. A C' diffeomaorphism is -a
C' honicomorphisin with a C' inverse. Often we will riot spvcify the degree of smoothniess of a
difff-oinorphisnn, am it may not Ise imiportant or it may lise clear from context. Nearly everything we
cornsider can be thought of as C-, and.we will state whicn this is not so.

49
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Fig. (i)is meant to'capture some of the basic features of imaging geometry. The object

surface we arc looking at, E, sits in 3-dimensional space. That 3-dimensional space has

a standard projection, e.g. perspective projection, to the image plane, a 2-dimensional

space. Our data, i.e. the picture, is not the projection of the object in the image plane,

but rather a color or brightness function defined on that projection. Meanwhile, we can
r-: change our viewpoint, or the object can move. We view this "egocentrically," as we

explain shortly, and take this as a motion or the whole world while we stay put (we are

not considering relative motions of various objects); this motion is g, and the object is

carried along with it, rigidly fixed in 3-dimensional space.

Now we must consider what happens to the picture function. The complete physics or the

situation is that the observed picture changes as a function of the surface orientation, the

lighting direction, and the observer position, as embodied in the image irradiance equa-

tion, in addition to undergoing geometric distortion. We have lumped the photometric

considerations together into a constant effect on the observed image irradiance, to keep

things as simple as possible ror an initial analysis. They could readily be included by us-

ing a sphere bundle over the surface, for example, to account for the relative positions of.

observer, surrace, and light. rhe simplifying as sumption we have mnade, then, is that the

photometric effects or change in viewpoint are negligible in comparison to the geometric

ones. rhis is frequently a reasonable assumption, as is evidenced by the fact that we do

not often experience the retinal rivalry which occurs when the assumption is violated. Of

course, the other extreme occurs with specular reflection, when the photometric effects are

dominant. The consequence of this assumption is that observed data values are carried

along with, the object. All matching systems we are aware of t.) date are also predicated

on this assumption in that they deal only with features rigidly attached to objects. Some

can mitigate some photometric effects by using reatures such as "edges," but edges of -

specular reflections are still disastrous.

We assume, thererore, that the picture function we detect is rigidly fixed to the object

..........................o....°. -. o -o° ..•- . .°o ........-. S * . .. °...... °..=.- .o....°
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surface. This can be thought of as associating picture point values with points on the oh- S

ject surface, although these values are really derived from intrinsic surface characteristics&-' -

and the image irradiance equation. This fixed association is specified by the function F. ..

Then the distortion gr between images tells us how the 2 pictures F1, F. are related. We

want to study the problem of finding the distortion gr and the motion g just from the

data F1, F-.

We now lay this out in more detail. First let's consider just a part of Fig. (), shown in S

Fig(j).

, I. "4. - ".-".-

Fig(j)

Roughly speaking, here is what we are depicting. The surface E is embedded in R'

via i. s is; the imaging projection rroni R' Lo R', the image plane. P1 it; Lte observed

imnage intensity on sme closed set K, or the imnage plane, and F it; the intrinsic surface--

"intensity" giving rise to F1, i.e. F associates observed initensities with points on the

object E. (In what follows, we will assume that a change in viewpoint does, not alter this

association, i.e. that the intensity we observe behaves as if it were an intrinsic surface

characteristic. This slinpliflcation is justiled when the changes in viewp~oint we will be

...................
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considering lead to negl'gible changes in the intensity associated with a given point on the

object being viewed.) This is just the standard imaging situation, slightly generalized.

To be more precise, we consider some surface embedded in R3 as the 2-manirold E

embedded via the injection i. Let w --e R2 be the standard projection onto the

first 2 factors, i.e., w (z, y, z) i-.+ (z, y), also called orthographic projection. Perspective

projection can be defined as a map

Since this map has a singularity at z = -I/k, it is not defined on all or R 3. Thus

to subsume perspective projection, we have to generalize our picture slightly (but really

without changing the essence), as shown in Fig(j).

/rL

P' -

LI_

Fig.

M3 i a ixe 3-imesionl sbse ofR 3 ,and is the domain or definition ror the imaging

projection 7r, which mnaps it to M2, the 2-dimensional imnage space. We require riarther

the physically obvious regu larity. conditLion that w be a C' submersion, i.e. that its

. S -"
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derivative be everywvhere surjective. Usually, M2 C M3 and r is a projection in the .

sense that w2 w. These conditions are all satisfied for ray optics if the rays do not

intersect in the image (as might happen if there were caustics, e.g.), i.e. if an image point

corresponds to a unique ray. For orthographic projection, M 3 = R3 and M2 = R2 . 0

Alternatively, so as not to look in front and behind at the same time, M 3 could be the

upper hair space of R 3 . For the usual perspective projection geometry given above, M 3

can be taken to be the same upper halt space. In this case, the singular plane (containing

the pinhole) is behind the filn plane, M 2 = R2 . Another imaging geometry is interesting

at least theoretically, which we call spherical perspective projection. In this geometry,

the projection can be looked at in spherical coordinates as the map 7r : (r, 9, o) .- , (9, ). .

With our conventions, M 3 
- R 3 - 0, M 2 - S 2, the unit sphere, and 7r is projection

onto the sphere along the line to the center, 0. In this case, it is easy to see, e.g. that the

space of orientations or the camera is isomorphic to the rotations of the unit sphere.

S1 and K, are corresponding visible regions or E and the image space M2, resp. More

precisely, let S, C E be such that i(SI) C M3 and w i(S,)--. M2 is 1-1. Then let

K, = w o i(S). This makes all the pictured maps well-defined, and the diagram Fig.

(-) commutative. -

We assuime that the surface admits a runction F, : -E R" which describes intrinsic

surrace features. E.g., in the situation F : E - R1 (i.e. n = 1), I" can be thought

of as representing an intrinsic sur'ace brightness or luminance. Thus we are presently

ignoring the effect or viewpoint on image irradiance, or, put another way, we are taking

the reflectance function to be constant. To the extent that we deal oily with small

changes in viewpoint, that will usually be a good approximation. One can enlarge the AL---

analysis to include an image irradiance equation, but only with added complexity, so we

do not consider this here. If one wishes, F can be thought of as the intrinsic surface

property albedo,'and assume that our analysis deals with quantities that depend only _

on albedo, to good approximation. For the case n > 2, we have in mind color images:
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normal human cone vision incorporates a function F, K1 - R3 (n -3). Note that

we also subsume cases for a smaller (i.e. n =2) or larger (4 < n < oo) number of

pasabands, or in fact any surface attribute, such as a multi-dimensional texture measure,

which can be thought of as taking pointwise values in some real vector space.0

We now make precise the imaging geometry which gives us the observed image F1 from

the intrinsic surface function F. Basically, we want to say that we see the frontmost

surface of E (given i and wi, i.e.). This may not take up all of the image plane, and e.g. if E

is compact then its picture, 7roi(E) will also be compact. Since 7r is a submersion, ir-'(p)

(for ir E M') is always locally 1-dimensional. We assume that our imtaging projection is

sufficiently simple that rC'(p) is not a circle; this is true if we assume light travels in

straight lines, e.g. .

Here is an example of a map ir: M 3 _. M 2 which conforms to all the requiremnents we have made until
now, but for which wr'(p) is a Circle. Lct M 3 be the solid torus S' X D2, where D' in the unit disk. het
x simply be projection onto thec 2nd factor, i.e. ,r(f,p) -. p. The situation is illustrated in Fig. (Loru)

Fig.(Lorus)

All our regularity asumptionti are clearly satisfied. And wr'(P) PdSt.

We assume further thait M 3 and M" canl be embedded in a product structure Suich that

w is projection on onc of the factors (we have alrcady asumed that thle other factor is a

subset of thle line). Lec., we assu me there is somec manifold A and ernbcddings e1, e2 which

make thle following diagrain commutative:
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II,
PASS

Fig.(prod)

Since we have excluded the circle, x-2 (p) has a well defined order induced by the usual

ordering on tbe line, so we can definc the closest point or some set on any ray as a least

element, so long s the intersection with Lte ray is closcil. [n fact it is, since the singular

set is closed by virtue of being the inverse image or a closed set, while the inverse image of

a regular value is closed, since it is a subinanirold. Using regularity, the ordering can be

extenided to a subfbtnrifold (with boundary). (The underlying theory is presented later.)

Incidlentally, the singular set or v o i is also called the silhouette of E, since it comprises

the points of tangency or the line or sight to the embedding of E.

We are now readcy to discuss Lte miore involved situation or teig. (*.For Lte same reiwons

that we used 10g i) we will replace Fig. ()with Fig.(')

,_S2i;.-

-02:'---

j*..-Ax



Geometric Methods In Vision The Mathematical Structure 146

M_ 2

U

IF
i

Fig. (,W)

The new feature in this picture (beyond Fig. (i)is the effect or change in viewpoint.

A change in viewpoint means that the imaging projection wr changes. Let nro be the

projection ror viewpoint vo and w1i that ror v1, where we loosely define a viewpoint as a

location, direction, arid orientation (we might tilt our head) or looking. Then wl is just

WO preceded by a change or coordinates. I.e., w, = o oo, 0 :R R3 . In other

words we cani describe the change in w using an egocentric view where 7r it; contstarit, but

the world mvoves. Thc world-o-centric picture is:

,I sM o ,

Fig. (world-o-cntric)I

. . . . . . . .. .. ... . . . . . .
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This is really just a cortraction or the egocentric Fig. (*), so we will use the egocentric

model, since it is easier to make things explicit that way. The map g R 3 -- R 3 is the

coordinate change in R 3 (the ambient space in which our objects are embedded). In fact,

since we are restricting ourselves only to coordinate changes resulting rrom a change

in viewpoint, we do not want to alter any metric properties, i.e. we want to preserve

geometry, so a little thought should persuade one that the possible coordinate changes g

are only the orientation preserving isontries of R3 , also known as the rigid motions of

R3, or the Euclidean group E(3). After we have applied the motion g, the new embedding

of E is given by ig - g o i; this just says that the embedded surface got carried along

with the motion.

We now have to take some care with the definitions of Ki, Kg, S1, and S.. If we were

to use just the definitions or 2 copies of Fig. ( ) pasted together, g,, might not be well

defined, since we could not be sure that S, C S,, or equivalently that w o i. : ) -+.M2

is 1-1 on S1, since for many surfaces E, different viewpoints g have different domains of

visibility of E. This is a fancy way of saying that part or what we saw in the picture F.

might be hidden from view when we look after doing g. I lence the regions K1, K, must be

chosen in such a way that g,, is well-delined. For example, having chosen St, S as above,

we call derine S' = So s, nS, and = K w oi(S') and , w o i. (S'). With these

restrictions, g1 is a diffeomorphism K, -+ K. with the property that F(p) = F,(q) =

Fq(g.(p)), which is the same as saying that g, is a deformation of the picture Fj into the

picture F,. Note that this observation is also equivalent to asserting that the diagram is

commutative (for the Fi,g,, F. loop).

Occlusion, the obscuration or one part or surface by another, occurs at the singularities

or the mappings w o i and w o i . . Self-occlusion can occur for many objects, and if we

allow E to have more than 1 connected component, we are able to subsume all cases of

occlusion. The complicating feature then becomes that the domains or smoothness or F1,

F. are bounded by the singular sets, and an important problem then is to understand the

;. ".,', ;._ .. ,..:._' -......... '.,agL_,....-. ........... ... ,..,. ... .. .. ,. .. . .
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singularities. We have rot considered this problem here, but the topology involved has

been well-studied in singularity theory and catastrophe theory (see [Arnold 1984, Arnold,

V.I. 1983] for expositions of the theory by one of the grandmasters, and [Koenderink and

van Doorn 1982, Koenderink and van Doom 19761 for some discussion in the context of

vision).

L

L
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A Catalog of Apjglications

Now that we have established an abstract description or the mathematical setting for

vision, we can indicate how the usual computer vision problems fit into the structure.

We consider these problems:

" Area matching stereo

* General matching

" Motion stereo and optical flow

* Feature based stereo

* Singularity tracking

In subsequent sections, we will prove theorems about general matching and optical flow.

'rue structure we have presented comprises dilferenUiable inappinrgs among various spaces,

and, emulating the Erlanger Programm, a group rigid tnotioiis in 3-space. The inathe-

inatics or these structures is diffcrential topology and differential geometry, so we turn to

the tools or these trades ror our analyism.

For general mnatching, the central result is that unique image matching requires at least

2 color dimens ions, unless one has knowledge or imaging geometry. ([itesnikolt 19741

studlied somic relations between color and geometry, but in a quite different context.) The

results for optical flow show how to exploit this knowledge, using the geometry of rigid

motions of 3-space in the form of Lie group theory. We will also discuss the topological

structure or imiages, and ihow how the invAriants can be used for stereo mnatching as well

as image undlerstaning via "scalo space" (Witkini 19831.
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tereg

or the stereo problem, we assume that we are given 2 pictures F, Fg arising from

imultaneous views of a surface in R 3 . There may be some constraint, or even complete

nowledge, of the viewing situations which gave rise to the images, i.e. we may have

iformation about the camera model. We want to find the topography of the surface.

should be evident that the situation is exactly that of Fig. (,), with the restriction

hat K, and K. are projections from the single surface E (we could moot the restriction

y allowing E to have more than I component; however that creates complications, and

ie consider the simpler case). Then

iven

Pi, Fg pictures

Ve want to find

surface ernbedding

9- picture correspondence

intrinsic surface characteristic

,xampis or possible viewpoint constraints are:

1) g E R(3) given camera model cornpletely specified

2) g = gt for some t E R, where viewpoints on a 1-parameter subset

g, is defined by -: R -- E(3), or E(3)

g,(p) = Y(i)(p), P E R3

3) in addition, gt+. gt o g. viewpoints on a I-parameter sub-

group of E(3)

4) gt leaves each of a space-filling viewpoints are combinations of

set of parallel planes invariant translations and rotations such that .

for each t cpipolar lines are well-defined

. ...........

r*..:)i



Pmetric Methods in Vision An Application: Stereo by General Matching 164

a point at which all the siartials of f vanish. The z, here are coordinate functionson M', defined for
e patch V (we omit the precise definition, which can be found in any differentiable manifold book).

N the only boundaryless 1-manifolds are the diffeomorphs of R' and S1 (the circle)

Inor 19651, so in a region where f has only regular values, our picture is essentially

rect. I.e., the level set corresponding to a regular value must be a 1-manifold. Now

need to know that almost all values are regular; then since each value determines a

-1 set, almost all level sets will be 1-manifolds as we are claiming. But so far, we don't

n know that there has to be any region (i.e. neighborhood) free or critical values. In

,, if ,t is a constant map, then clearly all or U, consists or critical points.

eorem (Sard) Let f M' -- M" be a CA mapping between the m,n-dimensional

nirolds M"', M", where k > max(m - n, 0) (for a monochrome picture this means

• 0, i.e. f is differentiable). Then the Lebesgue measure of the set of critical values

M" ) is 0.
initlon In a measure space, almost all means all but a set of measure 0.

nark In a probability space, almost all is equivalent to with probability 1.

d's theorem says, in other words, that almost all values are regular, which is the same

•laims I) and 2) above. Note that it is the critical values that are or measure 0, not

critical points. Thus, ror us, this means that the set or intensity values (but not

essarily picture points) taken at critical points (where a level set is not a l-manifold)

parse. It could still be dense however, e.g. ir there were critical values at all the

onals. 7

rypically, pictures have isolated critical points (i.e. they do not form blobs, lines, or

urnulations)

tunately, we can say more. There are certain nasty types or critical points called

enerate and nice ones called nondegenerate (we'll define them in a moment). One

,he nice things about nondegencratc critical poinL4 is that they are isolated, i.e. a

degenerate critical point has some neighborhood which contains no other critical

7,.. -
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The Jacobian or!f is really difined with respect to some pair of coordinate systems on M' and MO. Let
a patch or the manifold Mm be a smooth 1-1 map p: Urn- M", where U"' C R"' is a neighborhood in
R'm, such that W-1Ip(um) is also smooth. (This is just like our defi nition of a patch of a surface earlier.)
Suppose we're interested in thc Jacobian at a point z E M'. Then let 0 be a similarly defined patch
in M' such that fiz) E 0(17'), i.e. so that f puts z into the right region for 0. Then 0- 1 o f o 9 is a
map R' - R", and we can speak of the classical Jacobian of this map, defined as follows. The Jacobian
matwizof F: R"' - ft at p is the matrix of derivatives afil/Bzj, i.e.

JP(F) I (p)]

Although the Jacobian Itself depends on the coordinate systems chosen for M'm and Mn, its rank does
not (seec.g. lCol.,biLsky and Guillemin 19731). Thus we can speak of the rank of the Jacobian of f above,
even though by definition we just presented, the Jacobian itself depends on the particular coordinate
charts. One can also give a coordinate-free defi nition or Jacobian, where the .lacobian of f is the derivative
or f, a mral) between tangent spaces, and then Lte Jacobian orf Iis a unique, well-defined object. The
interested reader can finid Lte details in any hook explaiining differentiable manifolds, e.g. [Abraham and
Marsden 1978, Golubitsky and (uillemiti 197:1, (Guiillemin and l'ollack 1974, I lirsch 1976). The Jacobian
is nothing more than Lte linear approximnation to Lte map; or it can be thought of as Lte linear term
in tire Taylor series, which is Lte same thing. Thus it gives information on what Lte map does to the--
degrees of freedom its Lte domain space.

Here are sonme related definitions:

Definition. Let f : M- - M", be C'.

1) p E M' is a regular point of f ir the Jacobian of f at p is of maximal rank.

2) p.E M' is a critical point of f if it is; not a regular point, i.e. if thio rank of the jacobian of f at p
is less than maximal.

3) If p E Mtm is a critical point of f, then f(P) E M" is a critical value orf . Note this means that
q E Mn is a critical valuec orf Iif 1 '(q) contains a critical ptoint, even though it may be that
q = f (p') for somec regular point p. Also notice that mountain peak heights are critical values.

4) is E m" is a regular value of f if it is not a critical value. So q is a regular vaine irf -1 '() contains
only regular points, or *If q is not even in Lte range orf1. That's because it's handy to have only 2
typs of points, in M": critical aid( regular.

5) f is an immersionat, p If p is a regular ptoint and dint, Mtm < dlint MO.

6) f in a submeraionat p if p is a regular point and dim Mtm > dlimf MO.

7) 1f f is an im merstion (submhiersion) at every p E MmI, then it is siminply called ant immeraion(submersioij.

8) f is an emsbedding if it is anr immersion and a homeosnorphism onto its image. [A homeornorphiamis
a mapping which is continuotos and hasi a continuious inverse.)

There are numerous versions of Lte implici fugictiou, theorem, which go by various names, the most
common of which is the iniverse futirion theorem. T'he above version is onie of the most general. The
theoreme is freluetly state-d only for Ltme can(e m > na, and the ros~iiion irmay Ibe state'd in terms of
regolarity, rank or siigoilarity (as. a ina;trix or liiieatr omp) of the. .Iarohimi or derivative, tranaversalilwor
f, etc. what all1 these Iettially menc, is that at Lte point in (jumstiomi, f only does ;,. inuch collapsing as
is requiredl to squeeze things into Ltme dimnmsion of Lte range, an. mno more. Notice that mountain Peak
height. are critical values.

In our caste, we are currently dealing with the siuation of I color dinuiension, so we are interested In
F1, F2 : M2 IiR'. Thtus Lte theorem tells us that for a regular value y of F1 (resp. F2), F1 - (y) (reep.
F2 '1(y)) is a I-disitensional suobmanifold of K, = M2 . Note that ror a futiction f :M' R1II the
Jacobian is an n X I matrix, so a critical point p orf Iis one for which

Bf Of
Ox ) (P)

L~z0

J1
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Fig. (rrag)

hlere is the gist of what wc will say in more precise terms.

1) Almiost every level set of a picture is a circle or a line

2) These 1-manirolds account for almost all ofT the brightness values; the rest arc extrema,

or saddles (critical points).,

3) Typically, pictures have isolated critical points (i.e. the critical points (10 not formf

blobs, lines, or accumulations).

1) andl 2) Almost all level sets and brightness values are regular

First we need to know that the contour lines have the simple structure above. To this

end we neced the following version or the

Implicit function theorem (See e.g., (lirocker and Lander 1075, Nitecki 1971,

Colubitsky and Guillcmnin 19731). Let M'- M", be C'. (Where Mk denotes

some k -dimensional manirold.) Then fP'(y) C M"' is a C' submnanirold or dimension

max(m - n,O) (or empty) ir the Jacobian or f is or maximal rank (i.e. rank inin(mn,n))

at eacti z E f -(y).
Note that.I'v cannot be selr-interscting, since it. is a subitianifold.
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differentiable 1-dimensnal objects. That in turn is a consequence of the fact that the

picture is a map from a 2-dimensional object to a 1-dimensional object.

Some differential topology for vision

In the prooF or the first part or the theorem the facts we used from differential topology,

about gradient vector fields, flows, and contour lines, werc elementary enough that we did

not have to go into much detail about the theory behind them. For higher dimensions, in

particular for more color dimensions, the situation is more difficult; and several advanced

idleas are prerequisite to proeeding with the rest oF the proor. Also, the prooF we just

gave for the monochrome case is somewhat technical, so we would like to illuminate the

intuitive ideas with some deeper results. The rest oF this section, therefore, is devoted to a

review of some of the necessary idleas oF differential topology, integrated with establishing

(for the first time in the vision literature) the aspects or vision to which they correspond.

We will use this thcory in later sections as well; moreover, it is basic to the geometric

aspects oF vision.

First, let's see how the proor given above fits into the intuitive scheme presented earlier

for using Fig. (Frag). Then we will worry whcther Fig. (Frag) is a reasonable picture for

the contour lines oF a picture Function. The tr, which we defined above, considered along

the dotted line, is essentially the rotation Function we discussed earlier. We could use a

buip Frunction to make it just. what we want in sone neighborhood o the (dotted line,

and shear could be eliminated by using a p with negative as well as positive values. It

would take a little work, but it could be made to do the right thing.

I_

abou grdiet vcto filds flwsandconourlins, ereeleentry nouh tat e dd . -"

no~bttt hvto go inSto much d etalaotte hoybhn them. lor --- ---- er diesos in. -
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•2 ~ - -0

Fig. (boundary)

By a standard construction (e.g. [Abraham and Marsden 1978]), thcre is a C' function

K, -*R which takes the value 0 outside of U1 and the valuc 1 on U2. Using this "bump"

function 13 K1 - R, we get a vector field f3.Z on Ki which vanishes outside ofUl, hence

its flow never leaves K,, i.e. the flow ipt of the vector field P . Z has the property that

~Pt(p) is defined and lies in K, for all P E K, and -co < t < co. Hlence for any such t,

pt:K, -- K, constitutes a dilleornorphism with contour lines invariant on K1. In fact, it

is easy to see that this famiily of dilfeornorphisms can be enlarged even more. Notice that

Multiplying the vector'ieIld X by a scalar C' function p :K, R does not alter orbits..Je

We can therefore enlarge the class of diffeoinorphisris 'pt by taking all dileonnorphisnis --

'pc,, given by the flows of p./3.Z on K,. Observe that ror any constanta, 'Pa*,,2- p tae

so if p is a constant function, pt,, pt,l = vPl,,t. Thus pt,.) { so by abuse

or notation we will write(po, for 'p,.QED (n = 1).

We have thus far proved our result for the monochrome case. In summnary, we have shown

that in mnatching 2 regions, rree or occlusions, i.e. wheni we havena mmatching dilfeomorphism

between the regions, the match is far from unique. in fact there are essentially as many

matchesas C' functions from such a region to the reals. (One has to factor out functions p

which lead to equivalent tie-one oaps, e.g. those which rotate contour lines by. mul11 tiple.

of 2r.) This steis directly from the fact that the io-brightness loci constitute connected

is asyto e tat hi failyof iffomophsmscanbc nlagedevn mre.Notce ha
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inner product on an oritentable manifold). One might, e.g. define the new vector Rieid

Z on K1 by Z(p) =(-b, a) if VF1 (p) =(a, b). Note that Z - VF1 =0 at all p. Since ~*-

smoothness is defined with respect to coordinates, Z has the same degree or smoothness

as WF1. Furthermore, wherever Z -7 0, it is tangent to the contour lines or F1, so that

the orbits of Z are exactly those contour lines, and the critical points are exactly the

critical points or VF1. We now want to consider the flow Vt K, in K, or the vector

field Z. p

The flow ipt M &%fM of a vector field on the space M is the solution to thc initial value problem
definmed by considering time vector field as it systent or dilfcerential equmaions on M. L~e., rpt is thc unique
niap such that d/dt ipt(p) = ti(p), where p E M and v(p) is Ctec vector ;at p. Thc How nmoves thc space.
along Lte solution lines, which are always tangent to the vector field. Smoothness of the vector field
guarajitees smoothness (and uniqueness) or Lte flow. The time-one inap associated with a flow ip is the5
difleoinorphiemi W,: M - M; i.e. a snapshot of thc flow at one particular instant of timcn. Thc oerbitof
a point (or set) p uinder Cte flow, is the set or all values of jpt(p), for all t, i.e. -00 < t < oo. Notice .-..-

that the flow is a rumnction of time as well as a map on Ltie manifold; this is a alight abuse of the notation -

we are using for functions.

But first we have to deal with a slight problem, viz. that near the boundary or K1 , the

time-one map may not be defined if a conitour line has4 a boundary. To overcome this,

we use the following device to make Z vanish near the boundary or K,. We find open

sets 111,112 such that U2 C U, C U, C K1. U12 can be almost as big asi K,, since we

can choose U, and U2 as follows. Let U, be K, - V., where V, is an c -neighborhood of

the boundary or K,, where by c -neighborhood we mean the union or all open balls or

radius e centered at points of the boundary of K1 . Then, or course, U, = interior U1.

Similarly, U, can be slightly contracted to yield U2. if we assume th~at the boundary of

K, is piecewise smooth (which follows, e.g. if the picture results; from a finite numnber of.

smooth objects) then the measure or U2 can be umade arbitrarily close to that or K1 .
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Fig. (rrag)

Observe first that ir i,- K, is a dilfcomorpliism taking contours or F, to contours

or F1, then g. is a matching function = g~, o ~ is a matching rianction. Define ~ias

follows. As you go along the dotted line

:I-.K, 1 [0(,1]C R
t -1(

in Fig (rrag), slide each contour along itself by an %mount 0(t). As long as 0: 1 -~R is a

dilfeoinorphisrn onto its image, thle mnap 4'will be a (lilfcomorphisin in a neighborhood of

the dotted line. To the extenit that this picture is valid, there will be as many matchings

g. o 1 as there are such maps 0.

Actually, we are going to use a slightly more general inethod to construct a rml

or dilfromorphisms 4'. roughly in 1-1 correspondence with the set or all C, runctions

K1 - R. For this we will use a canonical vector field defined along the contour lines of'

F, , which will tell us how much to slide each contouir line.
First we observe that. the manp P, :K, - R has a canonical vector Gcl asociatedl witlh ft, Lte gradient
vector rwlid VP, which assignis to Pitch point p E K, a vetLor WF,(p). VF, is always orthogonal to the
contour lines or F, (with the usual inner product on K, inmheritedl frain It) anid it is 0 precisely at the
critical points orF?,. In (2-dimiensional) coordinates, vf = (8f/8z,a la/y). Clearly, irf IE C", then
Vf E C'-'. - .

Define a new vector field on K, by rotating each or the local vectors or VF, by +900,

i.e. +90* counterclockwise, (which is uiniquely del'incd because wc have a globally defined
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If n > 3 (i.e. the pictute has at least 3 color dimensions), then generically there will be

a unique g.. which makes the diagram commute.

Once the problem is appropriately formulated, the proof yields to repeated attack by some

standard machinery of differential topology. (An excellent introduction to the subject is

fCuillemin and Pollack 19741, and [Hlirsch 1976] is a good reference.)

Proof (case n 1 ). For the time being, we only consider monochrompe pictures (n=1)6

We will return later to the situation for pictures with more color dimensions.

The idea ror this part of the proof is rairly simple; the difficulty lies in establishing when

it is valid.

The map F1 K, - R can be thought or as a topographic landscape on K1 C R', where intensity is
reprcsentcd by dLtitude. Consider K(z) ==F('(z) for somec intensity z E R. K(z) is an iso-intensity
contour for Ltec intensity x and corresponds to ant elevation contour on a geographic topographic map.

The idea is this. Observe that ifr-F2 o g, (p) r F(p) (i.e. ir Fig (a) is a commutative

diagram) then g(K(z)) F12- (), i.e. gr takes contour lines to contour lines. (Proof:

Suppose P E 1ie''(z) and q = g,,(p). Since lPj(q) = F,(p) and F,(p) =z, q E f2'(

Thus gf("'z)C rij-'(z4 Similarly, since U. is a dilfcomorPhiSm, (g9,'( 1 ('Z)) C

1" (z) whience I''()C g.(l"1 1(;r)).) Conversely, any (Iilfeomor)Iimn h :K 1  K2

which takes contour lines or IFg to contour lines of F'2~ satisfies Lte conditions ror g.. (P1roof:

E ssentially immiediate: We want to show that h(F'C'(z)) = 147'(x) = I'24Ip)) = Fa(p).

Choose p E K1 , and let z = Ft(p) so that p E FJ'l(z). By hypothesis, h(p) E F2i'(z),

so IY2(h(p)) =z =e F(p). QED)

Thus far we have shown that any gr taking contour lines to contour lines %ill solve our

local matching problem. But how many such gr 's can there be? Assume for the moment

that a typical contour map contains a dilteomnorphic image of the fragment represented

by the solid lines below

-A. ''.-:4
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confine our attention oily to a diffeomorphism g,, K - K2 where K1 ,K 2 are both

connected.

The 2-color theorem

Theorem (2-color theorem). Stereo requires at least 2 colors or 3 dimensions. I.e., for a

monochrome picture, general matching has infinitely many solutions, but for 2 or more

color dimensions, it is generally unique. Hence the monochrome case requires knowledge

of the imaging situation to constrain the problem.

More precisely, consider the commutative diagram

KI K2

Fig. (a)

where g, is a C' diffcomorphism , r,F2 are C', and KI, K2 are compact.

Ir n I l (i.e. the picture is monochrome), then 3 an infinite-dimensional family of C-

diffeomorphisms {h,} such that replacing g. by h, also results in a commutative diagram

(i.e. it a solution). The ramily h. is parametrized by (at least) the continuous functions

KI -. R, and contains an isomorph or a neighborhood of the identity.

If n = 2 (i.e. the picture has 2 color dimensions), then generically there will be a finite

number or g, which make the diagram commute (note we have assumed that such a g,'

exists). If we take KI, K2 to be rectangles or discs (as in a usual picture) then generically

there is a unique g,.

..... ......... ,.................. ,.... .,.... ...... L.......,,.. .... .. : :...iiil
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al. 19831). The epipolae geometry consists of known foliations of K, and K2 by curves,

with the image of each such curve under g, also known. This information is derived from

sources other than general matching; e.g. from singularity matching, or interactive (i.e.,

human) guidance, used along with assumptions about imaging geometry, such as optical

characteristics. Part oi our purpose is to understand how this information provides a

constraint, and ultimately to see how much of it can be found in an integrated process.

We are not proposing here to use exact equality of point brightness values as a matching

criterion for stereo vision programs, nor to ignore imaging geometry. Rather, we are

investigating the consc."accs of the idea that there is some function describing surface

character, maybe not the data itself, which manifests itself in 2 different distorted pic-

tures. We want to know what it takes to find that distortion in principle. We see this as a

first step to understanding what it takes in practice, where there are further complicating

factors. We consider some of these in later sections.

The following question then arises:

Problem (Uniqueness of General Matching). If we are looking for an arbitrary (piecewise)

C' diffeoinorphisin g. to make Fig.(GM) commute, under what conditions are we .

guaranteed a uniqc solution to the natchin|g problem?

E.g., if I,, 1'2 are both constant functions, i.e., we have uniformly gray pictures, the

problem is completely degenerate, and any diffeomorphism gr is a solution. •

Since there may be occlusion, KI and (2 may not be connected regions. We don't

consider the (important) problem| of determtining the connccted components of K, and

K 2 , i.e. determining the occlusion-free regions. Suppose, instead, that some g, exists

fulfilling the above criteria. We will be concerned only with regions where g, is smooth,

i.e., a C diffeomorphism. These are regions containing no occlusions or points where the

surface is tangent to the line of sight. Furthermore, we do not consider the problem of b
determining which are the corresponding connected components of the 2 pictures. We

. * .. . . . . .. . . . . . . . . . . . . . .
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This means that every point in one region is matched to a corresponding one in the other,

in such a way that the 2 picture functions give identical brightness or color values on cor-

responding points, while keeping the distortion continuous and differentiable, i.e. main-

taining the region topology. This automatically guarantees matching of context. Only

after the matching function is found is the surface embedding computed by associating

relative depth with relative disparity at each point or (say) K1 . In this approach the

matching proceeds without any knowledge of the 3-dimensional structure represented by

Fig. (*). Stereo matching programs rarely actually try to solve the problem in this pure

form, for a number of good reasons. In the first place, geometric inrormation is usually

available, and some of it is often used to constrain the matching. In fact, as we will

show, this is necessary to achieve any success for unique point correspondence. Secondly,

programs do not usually use simple equality of brightness values as a matching criterion

(though see [Baker 1981] for a use or essentially that criterion as an interpolation method

for regions between known corresponding points). There are several reasons for this.

Various sources or noise, including digitization as well as electronics, make it impractical

to look for exact values or brightness. There can be variations between 2 images, such as

camera settings or ihm. properties, as well as photometric changes. In approaches which

use area matching (e.g. [(ennery 1980]) one rrequently uses sonie measure or similarity

of context as a matching criterion; one family of these is derived from cross-correlation.

Part of the art of these measures is to compensate for the imperfections we have just

mentioned. Nevertheless, there is generally the assumption that there is some underlying

function which transforms according to Fig.(GM); although this function may not be

identical with the data, it gives rise to it.

Frequently one assumes that the 2 images F1,F 2 are rectified, i.e. that g, takes scan

lines to scan lines in a known way: gr(z,y) = (,(z,y),y) ror some : K, -. R. This

very strong constraint on imaging geometry is rarely valid in practice. Instead, one can

rely on knowledge of epipolar geometry for an additional constraint (see, e.g., [Baker et

.V- .,
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An Application: Stereo by General Matching -

As an application of the abstract viewpoint we are proposing, we show that for

monochrome images, the general matching problem is insoluble. We exhibit the

degeneracy, and show that additional color dimensions allow unique solution.

The problem

A common goal of stereo matching is to solve the correspondence problem ror some region,

i.e. to pair corresponding points between 2 pictures within some region. A pair of points

in 2 pictures correspond ir they arise from a common single point in the scene. The

correspondence must be inferred from the picture functions. There have been many

approaches taken to do this, and geometric information as well as a point's picture context

have been used in many ways to make the inference. One or our ultimate goals is to build .-

a theory which gives a coherent view of the problem and the methods which have been

used to attack it.

A basic need is to understand what the roles or geometry and context are in this problem:

how much can you tell just from picture distortion, and how much do you have to

know about the way the image was formed? To shed so me light on this, we look at

the stereo problem as the general matching problem. Le., given 2 picture functions

I,F2 : " R", one finds regions K 1,K 2 C M2 and a 1-1 matching function

g, :K K 2 such that the diagram Fig. (CM) commutes. -

'L__

Fig. (CM)

________ . . . . . . . ... : .. ..
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neighborhoods Ki. So,oe.g. the assumption of rectified images could be stated as the

requirement that g, take horizontal straight lines to horizontal straight lines.

Motion stereo

Instead or a single g E E(3), we have a -parameter family {gt}, given by

I- E(3)

t -+g

* such that go 1 (the identity in E(3)), where I - [, t] C R. Given is a corresponding

family or pictures Ft.

" It's common to consider a sequence of pictures related by a sequence or transformations

"' {9j i = 0, 1,...}, with the corresponding ramily or pictures Pi. This can be thought of

as a special case of the above, where the transformations are parametrized by a discrete

. set:
Z+  E(3)

i -"

Although this reflects the discrete character of what happens in practice, the former

(conltinous) representation makes it eaicr to exploit the temporal smootlhness properties

or the image.

Fig. (*) illustrates the situation for only 2 gi 's.

- .. - - .". . - . ." ~. . -
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5) gt is a translation for each t the simplest case for epipolar lines

These constraints consist of focusing attention on subsets or E(3) having particular

properties.

Area matching stereo

To differentiate from feature-based stereo, we define area matching stereo by requiring

that the stereo problem be solved for a rull-dimensional part or *the surface, i.e. a

neighborhood. This bears an implicit assumption that area-supported functions Ft,F.

are used directly, and that sonic intrinsic area-supported runction F can be round. An

example is matching of areas based on the cross-correlation runction between the 2 picture

functions on those areas. Feature-based stereo, by contrast, depends on lower-dimensional

objects, such as edges or critical points (precisely defined later).

General matching

This we define to be area matching stereo without any knowledge or inmaging, described

by the diagram:

Fig. (CM)

Here we are only given FIl'2j and the problem is to find K 1 ,K 2 , g, such that the

diagram commutes. There may be constrainUs on g, equivalent to those for stereo, except

the constraints can only, or course, be stated in terms or the diffeomorphisms between

• ..
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points. If we're talkingeabout a region contained in a compact set, that implies a finite

number or nondegenerate critical points and a minimum spacing between them. Similarly$

there are nice functions which have all their critical points nondegenerate; these are

known as Morse functions (after Marston Morse). And finally, almost all C' functions

are Morse functions (we'll have to specify what we mean by "almost all"), so that we have

a justification for acting as if all our critical points are nondegenerate. Now, here's what

all this means in terms of our illustration or level sets or the intensity map (Fig. (rrag)).

Choose a picture at random. (Say the picture is bounded by a rectangle R with interior

V .) ir it has no critical points, then all the level sets are dilfTeomorphic to (disjoint unions

of) line segments (and not circles, which are the only other possibility by Milnor's result,

cited above). (Proof: By contradiction. Suppose f -(a) C V is diffcomorphic to a circle,

so that it bounds a disk in V. The closed disk is compact, so f must take a maximum

and minimum on it. if one or these is not on the boundary, f- 1 (a), it is a critical point

of V. If both are on the boundary, then the entire disk consists of critical points, since

the maximum and minimum are both a. QED.) Suppose the picture does have critical

points. Then "generically" the critical points are isolated.

First let's see what happens near such a critical point, Ily Morse's l,emma (stated

completely below) we know that there is a coordinate system (u, v) in a neighborhood of

the critical point p such that f - 1(p) U 2  v2. The possible signs correspond to a

maximum (--), a minimum (++), and a saddle (+-). So for an extremnum, it's easy to

see that the level sets are just a point surrounded by circles.

7,--
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Fig. (extremum)

For a saddle, the level sets are the Sets U2 _,V2 =const, which took like

Fig. (saddle)

* Note that the critical point is isolated (rrom other critical points), though it in not isolated

as part or a level set.

The Morse inequalities tell uts thai, the Etialer characteristic is relatedl to the number and .

type or critical points. In our case, ir we assumne that the whole region or interest lies

* within a single circular lcvel set, this mecans that the numnbcr or extrerna must be I more

than the number or saddles. IJ, Fig. (rrag), ror the rotation directions or thc levcli sets to

be consistent with the way we proved the first part or the theorem, we !nust assuine that
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one of the critical pointo is a maximum and the other a minimum. But from the Morse!

inequalities, there must be a saddle somewhere, too. In fact, the larger picture looks like.

I, Fig. (dimple)

When there are two maxima (or minima, in Australia), the picture is

Fig. (pass)

Now we mnake this precise. [We p~resent the inaterial here in the reverse of the usual order,

i.e. we p~resenit the main theorem first, anid then the (leinltions requiredl to understanid

*it, since that is -the order in which one actuailly tries to understand the idea.]J

Theorem. (see e.g. [hlirsch 19701) For any manifold M, Morse functions form a, dense

open set in C" (M, R), 2 < r <_o

Note that in our case, M is thc 2-dimnensional support of the picture.
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Definition. C' (M, N> is the space or all r times continuously differentiable functions

M -. N, with the so-called strong topology. We omit the definition of this topology, but

only mention that it is based on the closeness of all derivatives from the 0th (i.e. the

value of the function itself) through the rth.

Definition. A Morse function is a Function f M -*R which has only nondegenerate

critical points.

Proposition. Nondegenerate critical points are isolated. L~e., a nondegenerate critical

point has a neighborhood in which there are no other critical points.

Definition. A novadcgenerate critical point is one where the Hlessian matrix is nonsin-

gular. This basically means that thc graph or the function is not flat at the critical

point.

Definition. The Hessian matrix or a runction g: R" -. R at a point p is the matrix

[a2  (]

Theorem (Morse's Lemma). Let p E M" be a nof degcricrate critical point of index k of

a Cr+2 map f -. R, with I < r < w. Then there is a C' chart (p, U) at p such

that

i-1 i~k+1

Definition. p E M" is a nondegenerate critical point oF index k or a map f: M" R

if the Ilessian or at p has k negative cigenvalues (counting multiplicities).

Theorem (Corollary or Morse inequalities and Theorein oF i lop r). L'et f: M3 
- R be a

Morse Function on a compact manirold without boundary, with tmi, critical points of index
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k,O .k<n. Then

k-0

where X(M") is the Euler characteristic of M".

Open dense, usually, generically, almost all, typically

The key result or the theorem above is that the Morse functions are open dense. This -

allows us to restrict our attention only to pictures whose critical points are isolated and

thus to avoid considering pathological behavior.

Here's why. Instead or discussing only pictures and Morse functions, we will talk about

dense open subsets of Cr(M, N) generally, since the scope then includes things like general • .

position as well as other properties, with no extra difficulty. Suppose some open dense

set consists of Functions which all have some nice property. (We will call such a property

generic. Often generic is defined with respect to a countable intersection of open dense

sets, but for us open dense is enough.) Then, as a consequence or density, any function

in C'(M, N) is arbitrarily close to a nice one, hence can be arbitrarily well approximated

(with respect to all r (ierivatives) by a nice one. or course, we n ed more than density

to be justified in mLying "most." Dense sets can have measure 0. lFor examlple, both the

rationals and irrationals are dense in R, yet we don't want to say that most numbers are

rational. Requiring that the set be open (lense solves this problem (although note that

the irrationals aren't open either, though they are a countable intersection of open dense

sets (viz. nfqQ(R - q), where Q is the rational numbers)).

Actually, it does much more. For one thing, it allows us to completely neglect any

l',nctions which aren't nice: Suppose we decide that Functions having a nice property are

open dense. Then we decide that the same is true or some other nice property. We'd -.

like to have both properties, or course, which cannot be guaranteed on the basis oF only

density. ilut the intersection or a finite number or open dense sets is open dense. We ..-
. ..
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don't use probability because there is no natural measure for CI(M, N), and no natural

probability distribution. We would like to say that in a measure space of total measure 1,

an open dense subset is also of measure 1, but strangely enough, even though open dense

sets are very dense indeed, this does not have to be so. For example, one can remove

a Cantor set of positive measure from the unit interval, leaving an open dense set of

measure less than 1.

Also gencricity is related to stability. There are numerous definitions of stability; we

are concerned with structural stability. A function f E Cr(M, N) is structurally stable

with respect to some equivalence relation (e.g. topological equivalence) if all sufficiently

small perturbations of f (relative to the C'(M,N) topology) result in an equivalent

function. In other words, f is not a freak, destroyed by the least perturbation. With

respect to the equivalence determined by possessing the generic property, the openness

of generic sets makes a function with a generic property structurally stable. In other

words, small perturbations of f do not affect the presence of the generic property. And

with respect to some other equivalence, the density guarantees that a structurally stable

function will be equivalent to a generic one. Usually, structural stability is defined

with respect to some topological equivalence relation. E.g., we can define 2 functions

f, g : M -+ N to be topologically equivalent if there is a homeomorphism h : M -+ M --

such that f = gh. This is the situation or Fig. CM. Notice that topological equivalence

guarantees that topological properties will be shared, e.g. h takes level sets of f to

those of g, so the structural stability (with respect to this topological equivalence) of

f would guarante that the level set structure topologically remainti unchanged under

small perturbations. Now the perturbation could also be derived fro,: motions of the

observer, and we might be interested in some other feature, e.g. a derived boundary.

For th, purpose of analyzing the picture, we would probably want to focus attention on

boundaries whose topological structure didn't change with small changes in viewpoint,

or in the picture (e.g. noise), hence we would want to focus attention on generic pictures

S.-
•

.-
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and structurally stable features. Of course, we are interested in more than just topology

in analysing a picture, so that is not all we would have to consider, but it is a first cut

at separating wheat from chaff.

Multiple color dimensions: the cases n > 2

We now carry on with the proof of the 2-color theorem for higher dimensions

Let f M I --* M", be Ct and regular at p. The analysis is based on the fact that

at a regular point, if there is enough room in the range space, f is a diffeomorphism

from a neighborhood U of p to f(U). This is yet another version of the implicit function

theorem. The idea of enough room can be made precise simply by requiring the Jacobian

to be 1-1. This is the case for a regular point if the dimension of. the range space is at

least that or the domain space, i.e. if m < n, which is the situation for us if there are at

least 2 color dimensions. AR

As before, the possible maps g,, which solve the matching problem are exactly those which

take level sets to level sets. Since the g, are diffeomorphisms, we can just study the maps

of the level sets or, say, Pl, since they are equivalent by a given g, to the set of all g.

(To wee this, consider Fig. (equiv). Let h be a diffeomorphism which takes level scts to

level sets, i.e. which makes the diagram commutative, and define g = g, o h, so that

any h gives us a g,. Likewise given such a d, define h - g; o g,.) S

Ki K2"- -

Ki -

FF\

Fig. (equiv)

... . - -. °..-, . .-.... o........................o....o.......................-........ o -. o. .'-°

_"-'"-7/--:- ; " "" ... ..... ""................... ""'"..... "....... """
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So, without any loss of generality, we can restrict our attention to the part or Fig. (equlv)

shown in Fig. (equiv'), where we hove replaced tbe notation Ki by M2 to help keep In

mind that we are considering a 2-dimensional region:

Rn

Fig. (equiv')

We pointed out earlier that any At which satistfies our conditions must take level sets to level sets. ir P,' is L
[-I for some point q E Rn, then the level set for that point is just a single point, and there is no choice
in what At can do: following the lefthand F1 arrow backwards, and likewise the righthand one, we am
that h must take Lte single point p = F-j1(q) to itse~r and no other. So the question of the uniqueness
or h becomes one of studying how F1 can fail to be 1-1.

First, let's look at how many points can be in Pj'(p). fly the implicit rtinction theorem,

since t~he dimension or the range (i.e. the color space) is at least that or the domain, the

levcl set or a regular value is at most a discrete get or points. Since we are restricting

ourselves to compact pictures;, the level set iust be a finite set (to avoid an accumulation

Point). lhence on a level set, g, is; constrained to be one or., finite nuimber or permutations

or the finite level set. Furthermore, since IPa is a local dilfeornorphism at a regular value,

the permutation cannot jump around wildly amiong neighboring points, so that in fact g.

is a permutation of "sheets." L~e., let p be a regular value of 14. Trhcn Fj'l(p) =qi, i E Z.

And there is some neighborhood U or p such that P-1 (u) =Vi, qi E Vi, arid the Vi are .-

disjoint. The Vi are then said to [)elong to dlifferenit sheets, and the effect or g, 1s to

permute the Vi.' It may happen that there is a path of regular points joining qi to qk,

so that there is no global sheet ats a set or points, although one can muake an arbitrary

partition (as is the case for the famniliar integral power ruinction in the complex plane).

The sheets may be separated (and conceivably puncturedl) by critical points. Thus we

are led to consider the topology of Lte critical sets, and the cardinality or the level sets.
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Fortunately, others, notably Thom, Boardman, Mather, and Whitney were led to consider -

the same questions, beginning in the 1950's, and we now proceed to use some or their

results. As it turns out, the higher dimensions are easier to deal with in our context, so -:

we will start with them. -0

Regular points when n > 3

We are interested in studying how F, can fail to be 1-1. We know from the implicit

function theueem that because n > m, F, is locally I-I at regular points. In other words,

F/ is a local embedding oF its regular set into R". lBut it may not be a global embedding,

since the image may be self-intersecting. It is precisely at these sel-intersection points

that F fails to be 1-1 on the regular set. For a regular p, F-'l(p) consists of isolated

points, so we can consider intersections of regular neighborhoods. What do these look

like?

Theorem. (see e.g. [llirsch 19761) Let M, N be embedded submanifolds of RU. Then

generically, dim M + dim N - n = dim M nl N, where a negative dimension means the

intersection is empty.

We are interested in the case where M and N are the images in R" of regular neigh-

borhoods in M ' , so din M = dim N - 2. From the above theorem we see that the

intersection is generically oF dimension 2, 1,0, and empty For n = 2, 3, 4, 5 resp. Thus

iF n > 3, the intersection set is generically oF lower dimension in the embedded regular S

sets. h must be the identity other than on the intersection (since elsewhere F1 is I-I),

and since removing a lower-dimensional subset leaves a dense set, h is generically 1-1 on

a dense subset oF the embedded regular sets. The continuity or h then guarantees unique

continuation to the intersection, and there is again no choice in tle behavior oF h: it must --

be the identity. So for the regular points, we have disposed of all the cases oF 3 or more .-

color dimensions. Now we look at the critical sets, and their dimension.

The genericity of Morse functions can be generalized as follows.

. . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . .
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Theorem(Critical set dimension). For an open dense subset of C'(Mm , M"), the set

or points of M ' where the Jacobian of f is of rank r

1) comprise a submanifold of M"'

2) = o if (m - .)(n - ,' > m

3) is or codimension (m - r)(n - r) in M- if (m - r)(n - r) m
(X is of codimenaionk in Y if dimX + k - dimY.)

Before we get involved in studying the critical sets for various color dimensions, we state

2 more closely related theorems which allow us to immediately understand the situations p

for 4 or more color dimensions. An immediate consequence of the critical set dimension

theorem is the

Theorem (Whitney Immersion Theorem). If X, Y are smooth manifolds, with dim Y >

2 -dim X, then maps with no critical points are open dense in C (X, Y).

For a picture, dim X = 2, so the above theorem applies when there are at least 4 color

dimensions. In that caie, it states that the typical picture won't have any critical points

at all. lhence, typically there is only one "she et and no folds.

A further result is the

Theorem (Whitney 1-1 Immersion Theorem). If X,Y are smooth manifolds, with

dimY > 2. dimX + I, then 1-I maps with no critical points are residual (i.e. generic)

in C X, Y).

So with at least 5 color dimensions, we can assume no color is used twice.

Returning to the critical set dimension theorem, in our case, m = 2,. so what the

theorem tells us is that the dimension of the critical set is respectively 1, 0, and empty

for n = 2,3,4.

. . . . ..... -
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By reasoning as we didoror multiple points of the regular set, h, the diffeomorphism of

Fig. (equiv') which leaves the picture invariant, has unique continuation to the critical

set for n > 3, yielding the conclusion that h is generically unique when n > 3 (for n 2

the 1-1 set need not be dense, so the conclusion wouldn't follow).

To summarize, we have thus far shown that h must be the identity for n > 3, and is at

worst one of a discrete set of sheet permutations for n = 2. Now we will pursue the case

n -2 a bit further.

If we allow the support of a picture to be all of R2 or S2 , that is all we can say. (Consider,

e.g., the function z -. zk (for some k > 2) on the complex plane for the picture runction.

Then the sheets can be permuted leaving the picture invariant.) But a real picture must

be finite in extent, so if we are considering subsets of the plane, a rectangle (i.e. a disc)

is an appropriate domain to consider. If we are thinking about the sphere, then since

we are restricting ourselves to occlusion-free regions, using the entire sphere would imply

Lhat there were no observable occlusions, which could only happen in the improbable

events that only one object was illuminated, or that the observer could only see an object

which completely enclosed him. Itight now we are only concerned with the genericity of

malpisngs or tLs plane, since we are in the context of general matching, so we will [nake

no claims regarding the genericity or occlusion or illumination, though such an analysis

is possible.

Let us now assume that the picture support we are considering is topologically a (Isc.

Then h, being a homeoinorphitm, imist map tle boundary of the disc (it circle S) to

itself. If f is 1-1 then h must be the identity. If not, then consider what must happen .--

on this circle. h must be continuable along S, so for p E S, f-(p) must contain a

constant number of points. This excludes the possibility of transverse crossings of f(s).

But transverse crossings for such a map are generic, so h must therefore generically be

the identity. QED I

,'...----..'
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t doe. the 2-Colpr Theorem realUy mean?

ight seem that we have shown that monochrome stereoscopic vision is impossible. But

y people with normal binocular vision have experienced stereoscopy with monochrome

ires such as aerial surveys, stick figures of molecules, random-dot stereograms [Julesz

Julesz 1971], etc. What is more, there is evidence that color is not important

uman stereopsis [Gregory 19771. Machine stereo systems have been confined to

ochrome pictures, and though they have not approached human performance, they 6

been succesrui in extracting usable depth information.

t led to the 2-Color Theorem was the observation that a change in viewpoint leads

complicated- distortion or an object's picture. This distortion depends on surface

*e, viewpoint change, and imaging geometry and optics. The problem was to deduce

Eistortion front the data, i.e. to solve the correspondence problem. What we studied

the degree to which this problem can be solved purely from the topology, without 0

idering the extra complexities or many possible geometric constraints. We confined

attention to open sets free of singularities, i.e. areas without occlusions, which is of

se only a part or the stereo vision problem. "i>.

were able to show that generically the mnonochronic problem is highly degenerate,

we characterized the degeneracy. For the color 3roblem, however, it turned out that

ly topological considerations were enough to (generically) solve the problem, and that

5ometric information was therefore redundant. The conclusion is that there is a big

rence between monochrome and color stereo; monochrome stereo requires and must

rully incorporate geometric constraints to succeed in m.atching, while color stereo is

ible without this, and can therefore use the imaging geometry in a diflerent strategy.

iave considered generic properties, so there can be infinitely many exceptions. But

our results are ror a generic subset or functions, they remain valid for small per-

ations, and since generic sets are dense, every function can be approximated by a

.. . . . ... o
* - - ... . .
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generic one to arbitrary, precision. The results are about degeneracy, and the exceptions .,

are invariably more degenerate. (This is simply because the exception sets arc the inverse

images or closed sets, e.g. places where a determinant is 0.) This means there are no

special cases of monochrome pictures that are less degenerate. But it i8 possible to find

more degenerate cases, so of course color pictures do not have to be uniquely matchable

in special cases, the simplest of which is a region of constant color. Actual data contains

noise and nonidealitics, and digitization introduces degeneracy, so of course even with

color one cannot expect perfect matching in a real world program, and surely one would

still want to use constraints or imaging geometry to help the solution.

On the other side of the coin, a generic monochrome picture has isolated critical points, S

and a finite number or them for a bounded region. Since critical points must match

critical points, finding this match is a combinatorial problem, which is made easier since

the critical points have other attributes which are invariant, as we have discussed in 0

the earlier section on differential topology for vision, and as we will discuss later in the

section on topological invariants or the picture function. One can say essentially the same

thing about level set, nutatis mutandi. For a stereo pair or stick figures, then, most of

the natching is between singular points associated with placcs such as branchings and

terminations. The sticks themselves are individual level sets. Along those level sets, any

stereopsis must come either rrom special knowledge or imaging geometry, i.e. the epipolar

geometry relating the 2 retinas For a given state or convergence, interocular distance,

focal length, eye rotation, retinal position, and rocus, or additionally rrom gestaltist

assumptions made by the visual system, such as an :assumption or maximal simplicity.

E.g., 2 horizontal black lines or different lengths presented one to each eye give no relative

depth information about the region between endpoints, aside from continuity. However,

this stimulus invariably gives a sensation or a straight line receding in space at some fixed

angle. Similarly, a random-dot stereogram is asumed to be rectified, so the. geometric

constraint is known and easily used. There are a finite number or (lots in each line, so the

• ~~~~~~.....................•.......... :......-.......-.. .....-................ ,,.,.
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is combinatorW, and there is no attempt to match the area within individual

hich is completely degenerate. The degeneracy is ignored through an assumption

licity in interpolation, i.e. it is assumed nothing new is happening within the dots,

only true that nothing knowable is happening. More generally, we are concerned

eas of maximal dimension taking values in a space of maximal dimension, in other

in 2-dimensional patches that have a range of brightnesses or colors. The results

almost entirely on these dimensions, so if we consider situations involving different

ions, we must expect different results.

sons for machine stereopsis are, as we said above, that monochrome stereo must

rerul attention to correctly using geometric constraints, while the topology is-.

Le to find a match between level set structures of some appropriate measurement

ce characteristic. On the other hand, color may offer a way to avoid this problem.

s a large literature on machine stereo vision, and we will not attempt a review here. S

epresenLative works are [Arnold, 1.1). 1983], [Baker 1981], [Baker ct al. 1983],

-d and ,'ischler 19821, [(Cennery 1977, (ennery 1980], [Crimnson 1980], [[lannah

Ohta and Kanade 1983], [Marr 1982], [Marr and Poggio 1976, Marr and IPoggio

Moravm. 1977, Moravec 1980], [Nev:tLia 19761, [l'anton 19781, [Quanm 1971]. F.'or

at part, the effects or geornetry are not carerully considered; usually it is assumed

iages are rectified, and no account is taken or possible distortion in the support

ators used in the matching process. Using roughly vertical edges, i.e. places of

,risonkal gradient but small vertical gra(Jient, renders sorre immunity, since these

imally changed under the distortions or tyl)ical imnaging situations. [Arnold, Il).- "

,udied how the distribution or edge angles is related to geometry. [Illaker 1981] did

Wine interpola,ion, but assumed rectified images; this is improved in [Baker et al.

vhere epipolar geometry is explicitly considered. The epipolar geometry, however, - -

rmined by a previous process or camera solving involving known interest point

ondences. This permits epipolar line correspondence, but no correction ig made

................................. .o....
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for distortion of operatsr supports. [Panton 19781 made some use of epipolar constraints,

and shaped the window, but doing this involved already having estimates of depth and

surface shape. [Grimson 19801, following in the footsteps of [Marr and Poggio 19771,

assumed rectified images, but found that this was not a reliable assumption and resorted

to a vertical search to compensate for geometric factors. [Gennery 1977, Gennery 1980

was able to deal with imaging geometries, but did little about operator support distortion.

flow does the constraint provided by epipolar geometry fit into the theory we have been

developing? The epipolar constraint is quite analogous to the general matching constraint-

1-dimensional objects must be matched to corresponding I-dimensional objects (we are

confining ourselves now to monochrome pictures). For general matching the 1-dimensional

objects are level sets. For epipolar matching, they are the epipolar lines. We do not study

this in detail, but in the generic situation, one would expect these 2 families of curves

to intersect each other transversely, and therefore give a discrete set or solutions for

each point to be matched. It remains, however, to study what the degeneracies of this

situation are. This is quite independent of the basic problem or determining the epipolar

geometry. Generally this must be done by some combination or knowing the imaging

parameters and solving a correspondence problem. Machine systems have relied heavily

on the latter, so the problem is more subtle than may appear at first.

When is this analysis useful?

The F1 and F. or Fig. (,') and the F1 and F2 or Fig. (CM), i.e. the "picture" functions

we have considered in the general imatching problem are assumed to be intrinsic to the

object that is imaged. In practice, the absolute intensity levels or colors which one has .

available in a set or images are not completely precise, reliable, or consistent. E.g., they

are likely to differ in bias (reference 0 level) and gain (measuring scale), suffer the effects

or change in viewpoint and lighting on image irradiance, and contain digitization noise.

Such considerations have discouraged people from using programs that try to match raw

- .. , . . -o . ..- - - - - - - - - - -" o .. . . . . . . . . . . ....-.. . ...O° o. .. . .. -o '. ° Oo -° .o. .-.. -, . . . .. .. '
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measured intensity values directly, and instead have led to the use of derived values which

are felt to be more stable.

Our results are not just statements about so-called intensity matching. The above

theorems about matching are statements about intrinsic surface characteristics associated

* with points in images. They remain true even if the Images themselves are not directly

matchable; i.e. if our goal in matching is to match points that have the same value

of an intrinsic function, then our theorems will govern the uniqueness of the match,

regardless of how the actual- images must be manipulated, or how they came about. If

a derived function, truly intrinsic to the object, is to be matched, our results are just as

applicable, providing, or course, that the new function is not computed in some degenerate

way, destroying gencricity (which would lead to even greater degeneracy in the solution).

E.g., the digitization process cannot decrease the ambiguity, since it is a projection to

a lower dimensional space. Since this mapping cannot be 1-I, it is unavoidable that the

ambiguity will be increased, unless very special conditions occur. We have not studied

the degradation imposed by digitization systematically here.

Extension to unknown bias and gain settings V
What hal)pens ir we try to apply our analysis to runctions which are not intrinsic to

the surface? For certain kinds or ambiguity or lack of calibration, we would like to

know that the data we get still allows the same uniqueness or degeneracy or mateh as

with an intrinsic function. As an example of such a situation, we analyze what happens

when gain and bias values ae unknown. We have chosen this example because it Is

commonly believed that the uncontrollability or these parameters is a major impediment L

to intensity-based matching. We show that these extra degrees or freedom have no effect

on the degeneracy or uniqueness or the matching problem. The extra ambiguity does,

however, pose a greater challenge for a mAnkhing algorithm.

Before, we were concerned with the problem or Fig. (a): flinding 9. such that F1 -- Fog.

_

• .- .. ,
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9.9

Fig. (a)

a mneasurement of the variable z yields the value ax + b, then a is called the gain And

b is called the bias.

r

Suppose that we observe the runctions F, and F2 as before, but now the bias and gain

settings may be different between the observations, so we must first correct ror the different

settings before matching. This correction can be compressed into a single linear runction,

giving the new situation shown in Fig. (a-bias).

FN\ /4L re

Fig. (a-bias)

The mnatching p~roblem then becomes to find g, such that (arov + b) o g. Pt ror some

a E R, bi E R", and we are concerned with the question whether such a gr is unique; I.e.

whether there exists some other g. which makes the diagram commute ror perhaps some

other values or a, b. Following the same reasoning as earlier, this is the same as asking ror

a diffeomiorphism h which makes Fig. (equiv-bias) commute ror some values of. a, b, c,d.S
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K 1 - K 2

Fig. (equly-bias)

We now will prove

Theorem. The coniclusions or the 2-color theorem remain unchanged even rot unknown

hims and gain diffcrences between pictures.

iwe try to find h only ror the situation that c =I and d =0, we have exactly the

probicem we considered berore, without gain or bias. So any h which satisfies our old

conditions will also work ir there is gain and bias error, although or course there may be

even more h's fr other values or c,d. Thus, the gain and bias matching problem is at

least as degenerate as we have proved earlier ror the "pure" problem.

The situation or Fig. (a-bias) can also be represented as



Geomctric Methods in Vision An Application: Stereo by General Matching 183

Fig. (a-bias')

where we have now included the unknown gain and bias parameters in a map

y - ay + b

(Incidentally, one can take a to be some n X n matrix, to allow for different gains in

different spectral bands, including linear crosstalk. In the absence or crosstalk, a is a

diagonal matrix.) Then the analog or Fig. (equiv-bias) is Fig. (equiv-biaa').
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K,

F ig. (equiv-bias')

F ig. (cquiv'-bias')

We see from this, as we earlier saw from Fig. (equiv) that the problem of. uniqueness is

equivalent to finding ha such that the diagramn in Fig. (equiv'-bias') commutes. for some

T.
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When T is the identitf, we have the problem which we analyzed earlier, so we are "

interested in what happens for nontrivial T. Using the same reasoning as before, we see - .

that a necessary and sufficient condition for commutativity is that VY E R" h(FP'(p)) = c-. . -

FT1 (T(y)) which we can write h: F' 1(y) o-- F1 1(T(y)). (Note that the inverse images 0

are sets, not points, as Fl may not be 1-1.) But there isn't any guarantee that T(y) E

Range(Fj), even if y E Range(F1) ! Since h is a diffeomorphism, whatever we say about h

also goes for h-1, so the first prerequisite for the existence oF h is that T(Range(F-)) -

Range(F). Suppose that Range(F1 ) is bounded. This must be so if K is contained in a

compact set; and in any case any real image would have a bounded range or values. Then

it is easy to see that for scalar gain or no crosstalk, this cannot be the case for a nontrivial

T. For the more general case when T has cross terms and/or Range(F1) is unbounded, "

it seems likely that T and FI would have to be very special, and hence not generic, for

the range condition to hold. We illustrate the ready failure of the range condition for

monochrome images in the following figure:

-

Fig. (flange condition) A-2-

.............
"-".°" .'
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The 2 humps representoa part of F1, before and after the bias/gain change T. For the

value represented by the plane slice, there may well be no corresponding value in the

bias/gain-changed image.

Thus we have shown that even if we allow for the possibility that there may be unknown

bias/gain changes between corresponding images, so that we are Forced to do matching

of values corrected for arbitrary bias/gain, our results remain unchanged. Furthermore,

we have shown that for reasonable T's, T is unique; i.e., there is only I possible bias/gain

transformation which allows matching. QED -

So far, though, we haven't addressed the question of discovering the correct T. Let's

consider only the monochrome case, so that the bias/gain parameters a, b are both scalars,

and assume that Range(F 1) is bounded. If the upper and lower bounds are known ror

both F1, F2, then it's clear that there is a unique T which takes corresponding bounds to

each other (assuming a > 0, i.e. one image is not a negative or the other). Unfortunately,

this would not work very well for real images, since noise and inconsistencies between

images might result in meaningless end points for the ranges. Ideally, we would want to

match topological re'atures stably in the presence or noise, without the requirement for r
finding tihe bias/gain reltion independently.

ReFerring to Fig. (a-bias'), we can state the matching problem in the presence of noise as

follows. Looking for the beet match means trying to find mappings g,, T. which optimize

the value o(F2 o g,,,Tg o FI) or some similarity measure a : C'(KI) X C'(KI) -, R.

(Candidates: L2 distance, cross-correlation, etc.) The measure should be chosen in such

a way that the optinal g,,T are in fact the most probable, given information about

the statistics or the noise, the statistics of g. and 7',, and the statistics of images, i.e.

some "probability" distribution on C'(Ki). Tihe quotes are there because it is a difficult

problem to define even a measure on an infinite-dimensional space; e.g. such spaces do

not adlmit. translation invariant measures. Also the optimization must be carried out over .
..-..-. -.--. . . ... ,-,-.,. . . . -. ... ...-.v ..- . ... ., ... ....... .. ................. .,... i::
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the infinite-dimensional space of diffeomorphisms between K, and K2 . This suggests the

use of a variational principle. or course, simplifying assumptions can be (and are) made.

It's important to notice that the addition of noise does not change the applicability of our

results. For if we are seeking the "true" g,, i.e. the one which specifies the correspondence . -

between the unadulterated images, then any equivalent g , that may exist as a consequence . -

or our results will match the identical unadulterated images, hence will be just as good as , . :

g. under any measure of the form of o. Of course, the corruption of the noise may lead to

rurther degeneracy. One expects that the similarity measure can be designed so that the

matching process is stable. i.e., small amounts of noise should lead to small uncertainties -

in the match (modulo the topological ambiguities we have shown), and sufficiently small

amounts of noise should not disturb topological properties of the solution.

Rather than tackle this difficult problem now, we sketch a possible (though simple-

minded) way or finding 7 independently. In tile presence of noise, some averaging method AA

is called ror. Instead or trying to match only extreme values [note that finding T is a '--

matching problem in the range spacel, we might try to somehow mat.h some kind or

average ranging over all values. Fig. (Range condition) suggests one approach, which

is reasonable if g, is approximately an isometry (which is often the case in practice).

The idea is that for each y E Range(I,), the measure us or h P1 1(y) should be the

same as that or r2r(7'(y)). if we picture the slicing plane in Fig. (ltange condition) as

moving up and down, then what we are saying is that corresponding slices in the 2 images

should have Clual total arc length. We already know that generically, these slices will be

I-maniolds, so we are justified in using arc-length as our measure. Let S o(y) be Lte total

arc length or F- (Y), for i = 1,2. Then we can plot S, and S2 as functions of the real

variable y. Note that these are continuous, but will have discontinuities in derivative,

corresponding to critical values of F,. The graphs will look something like those in Fig.

(Range). A

0i)i)i

. ,-.-.T.
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PIS

R&A-1

Fig. (Range)

ir"'P is ,,onotouic (which is or course the case ror the 2-8calar biaw/gain), Lheii our problem

is to match S, with S2 by a linecar inap. In practice this wouIld mcaii mmatlchiiig histograms

or gray values. Since the search space is only 2-dimensional, this could be (lone by a brute

rorce method. Alternatively, techniques exist for maximizing such matches, e.g. time-

warping. This technique, like histogramuming methods iii general, ignores topological and

geometrical relationships. I

. . . . . . .. . . . . . . . . . . . . . . . . . .. ..
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Topological Invariants of the Picture Function

Introduction

It is well-known that computer scientists are fond of graph-theoretic. approaches, so it is

pleasing that the diffeomorphic invariants or (monochrome) pictures are well-represented

as graph and tree structures. In this section, our goal is a representation of the picture

topology to bc ,ised in the service of the matching problem. This requires us to present

the applicable theory rrom differential topology, adapt it to our purposes, and allows us

to make some observations along the way.

We review the definition of Smale diagrams, and establish the topological properties of

level set trees. [Koenderink and van l)oorn 1979] independently proposed level sets as

topological invariants, but put them to different use, mainly as means to compute features - ..

or individual images, such as metrons and aperture spectrum. [Krakauer 1971] used a re-

lated structure for experiments in image analysis. fie was interested in characterizing the

shapes of the level sets at all image intensity values as a method of object classification, lie

used measures like eccentricity, region area, and scatter digrams in an effort to identify

various fruit, a fiLting goal for a tree approach. lie (lid not consider topological questions;

the work was an attempt at direct interpretation from region-based descriptions, with

little analysis of the nature of the image intensity function.

We, on the other hand, are concerned with the topology or the tree, its deformations and

bifurcations as we move through the space or pictures, and the use of the bifurcations

in handling noise. In general, we are concerned with using the level set tree as a o

representation, considering its generic behavior over the entire class of pictures, and using

it in the matching problem. In a later section, we apply this structure to understanding

scale space [Witkin 19831. We also make some observations about the stability or zero-

crossings. These applications are all new.

.---. _- i.--" - - -i- . ..- " - .-.--- .- - - .--.-- - - . - - - - - . .-.. . .- . ,,. . .- -, . - i
.. . .. ... . . . . . . . . .... ." " " '-" " " , - : " ' "' ' '' ". '. r-,.'''-i .. _, ' ., .:""' . ". .
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Smale diagrams and level set trees

We can formulate the general matching problem as a finite graph-matching problem. The

nodes of the graph are to be the critical points of the image function Fl, and the (graph)

edges are the gradient paths between the critical points. As we saw earlier, Morse theory

tells us that generically the only critical points are maxima, minimna, and saddles. More

formally,

Definition. Let f E C7(M',R) be a Morsc function. Foor each critical point P E M',

define the stable and unstable manifolds, resp. or p as rollows.

W+(p) = Ix E M' I Lte uphill gradient line or f leaving x converges to pi
.W-(P) = {x E M' the downhill gradient line or f leaving x converges to pi

Deline a partial order < (and hence a directed graph) among the critical points by q :5 p

ir W+(p) nl W-(q) 34 0.

Colloqjuially, q :5 p mecans you can get fromi p to q by going dJownhlill along gradients (thle

scn-m! or the partial order is choseni to rellect f(q) <5 f(p)).

The Smale diagram (Smvale 10671 or f is the ordered graph obtained by refining the

precedinig partial or.ler so that p -+q ir q < p and there is no r between p and q, i.e. such

that q ! r < p. A generalization or Lte samei idea is known a~a Smale quiver [Abraham

and Marsden 19781.
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spatial extent of tle ignored features. These are the 2 parameters which are linearly

combined in a linear smoothing operation, but here they are completely separable, and

therefore accessible to reasoning machinery. Each subtree has its own characteristics,

so a structure like this can be made as "adaptive" as you want; e.g. twiddles on very

big humps might not mean too much, while the same twiddles on little humps might be

quite important, though linear measures of local variation could be identical. This really

has a philosophical basis in the principle of least commitment and in the AI paradigm of

symbolic (thus nonlinear!) reasoning.

Not every bifurcation, and therefore not every smoothing, amounts to lopping off a

subtree. As we saw before, we can also pass through a saddle connection. This implies

that using the tree data structure requires some added sophistication, viz., keeping track

of where saddle nodes are relative to each other. More generally, therc must be a notion

of measure of stability-how far it is (in the function space) to a bifurcation.

We have described all the generic bifurcations or the level set structure. A generic scale

space operator (i.e. a 1-parameter family of sinoothers, whose t = 0 member is the

identity) can therefore have only these bifurcations. A particular operator, however,

might not have generic bifurcations; e.g. it might impose some special constraint that

only allows special behavior. R.g., never creating zero-crossings is not a generic property

for scale space smoothers (though it says nothing about the bifurcations of critical points).

We have been able to show, thouigh, that the generic c'itical point bifurcations of Gaussian

scale space are not special, i.e. are the same as for generic perturbations, and are therefore

among those we have described [lilicher and Omohundro 1)841. It remains to study which

of these actually occur, and what are the unfoldings of the zero-crossing level set.

Now we can make some comparisons between Gaussian scale space and the level set

topology tree. We have seen that zero-crossings are not stable, e.g. near a saddle in

the picture. It is not clear whether the range of scales can ix this, for this depends on
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the entire scale space 16 R 3, and codimension 1 manifolds are surfaces. The locus of .

zero-crossings in scale space is one of the level sets of h.

To understand this level set of h is to understand zero-crossings in scale space. [Yuille

and Poggio 19831 state that the Gaussian is the unique convolution kernel which does

not create new zero-crossings with increasing t, under a number of re6,'larity conditions.

[Babaud, Witkin, Duda 1983] and [llummel and Gidas 1984] also study this question..

We saw that the level set topology tree is a stable description or the level sets or f, and has

simple, well-understood bifurcations. The nesting structure gives us an intrinsic, global

criterion of relative scale, for if node z nests in node y, we know that z is a "twiddle"

of V, and likewise for any sub-sub-nodes. Here's a way to think of this. Consider Fig.

(topo) again. The saddle f is the 2nd type from the + column of Fig. (level). That means

that we can take the stuff that sits above it on say the left side, cut it off at the f saddle

level, and replace it by a simple cap. This could be done smoothly by some bifurcations .0

(critical point annihilations) inside that side of the Iigure-8 orff. This is; smoothing; highly

nonlinear smoothing, however. or course the exact single maximum cap that we get isn't

uniquely defined, but why should it be? The picture doesn't have one cap or another;

it hais sonme complicated structure. The only justification for choosing a particular cap

would be that it was somehow special. In the tree structure, what this amounts to is

simply contracting a subtree to a single node. In a real picture, the tree structure is apt to

be quite complicated, with, great numbers of nodes. There will be an enormous number o!

ways to contract nodes tA achieve grosser (smoother) representaLions. Actually, it may be

beLer to consider the problem not one or multiple repre.ent.LIions, b1111I one: of intl.ligent

use or the single tree relresentatio, as a data structure. Prom that viewpoint, depth in

the tree corresponds to degree of deta.il. Hlowever, that information mnust include more

than nesting depth: there must be a measure of the significance or the ignored subtree.

This can come from 2 things--the size of the up and down excursions in the subtrce "

(i.e. the range or leaf heights), and the size of the support of the subtree nodes, i.e. the

.-.- °'.° . •.-.o................ .... .. .-- .- -. •..............
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Scale Space

In our discussion of the works of Marr, Hildreth, Canny, and others, we saw that an

important problem is the description of the picture at various scales. Small scales have

the advantage of precision, and can pick out small features, but are susceptible to noise.

Large scales can see large features that aren't visible in a small peephole, and can have

good noise immunity thanks to averaging, but large linear operators confound space and

intensity-they blur things.

[Koenderink and van Doom 1979] proposed an aperture spectrum or an image be computed

by convolving with a -parameter family of window functions. The aperture spectrum is

the set or bifurcation values of the control parameter, in the usual parlance of bifurcation

theory. [Crowley 1982, Crowley and Parker 1984, Crowley and Stern 19841 searched for

some geometric features in data resulting from a sequence of convolutions with Caussians,

but did not consider geometric or topological theory. [Witkin 1983) also convolved

with a 1-parameter family or Caussians, and considered the bifurcations of zero-crossing

topology in the combined control-behavior space (see [loston and Stewart 19781), i.e. the

product space of the parameter and image, which fie calls scale space. This is the usual

ap)roach or bifurcation theory, but (WiLkii 1983] did not consider topological theory.

The scale space operation is

h(t,,x) = fz) f(-)
I

where f is the image, and C¢ is a parametrized kernel. For scale space, a second derivative

oilwration is required, so either f is the laplacian or the image and Gi is a family of

Caussian,, or f is the image and G is a family of laplacians of caussians (z is a point

in the picture space R"). Under these conditions, the object or interest is the locus of

zeroes or h. When (t, z) is a regular point of h, the inverse function theorem tells us

that h-i(0) is or codimension I near (t, x). This allows tying together zero-croasings at

different sales, which was a major obstacle for many edge friders. For a picture on R2,

...... o . . ..... °.......o-. ..-.... o-..,*,o%°.•-
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critical point) along'the'section of the tree on which it lies. When 2 nodes in the tree come .

together this way, giving 3 offspring or the combined node, we have a saddle connection.

Also, buds can form anywhere (but generically away from other nodes), creating critical.

points, and lear nodes can atrophy to nothing, annihilating critical points.

For a generic path like this, critical points can only be created or annihilated in pairs, for

it is easy to construct arbitrarily small perturbations which separate the critical points

into pairwise events. Recall that the Morse inequalities tell us that (with good behavior S

at the boundary), the sum

k-0

must remain unchanged, so new critical points can only be created or annihilated in

extremum-saddle pairs (the saddle-node bifurcation).

In the presence or noise, then, the level set structures of the 2 images may not be the same.

They will differ by some sequence of the above bifurcations, which have simple effects on

the level set tree. Equivalently, the 2 images will be connected by a path in runction space

which crosses some number of bifurcation rrontiers. The matching problem can then be

reduced to a minimal path or optimal tree matching problem (with labelled trees). The.

path to he minimized can be viewed as a sequence of levcl set topologies, equivalent to a

sequence or bifurcations, or as the path in the function space itself. We have not studied-

the optimization criterion, but measures which could be taken into consideration are the

number or bifurcations and the size or perturbations (in view or knowledge about the

noise).

Occlusions result in localized but large differences between images. Globally, they could

be handled by excision and pasting of tree parts (grafting?). This is delicate, however,

since one must first study the global effects of excision and pasting. Another approach ia-

to use a number or local analyses, for example for a number of regions selected by bump.

functions (which go from I to 0 smoothly to all orders in a finite space).

.......................................
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F.ig. (sAddle-connection)

Thc top part or Fig. (saddle-connection) shows; a gencric level set structure with 3 maxima.

We can smoothly increase thc height or thc lower saddle until it is precisely at the-same

level as the other saddle, at which point the topology abruptly changes to thc middle

picture, called a saddle connection. As we continue raising the level or the saddle, we

immediately get the bottom picturc, which is again stable. A similar situation occurs

when thc othcr kind or saddle is involved.

If we think or the path through runction space as a homotopy or maps to level set tree

spaces, it is easy to visualize how the tree can change. Changing the height or a saddle

corresponds to sliding a saddle nodec (a node in the tree, not the same as a saddle-node

-1|
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talk about what a singld noise signal can do to the topology; we are not going to attempt

here a statistical study of these effects, so we will not consider, e.g., what the average " .

effect on topology will be. It is, however, possible to do such a study; the ensemble

properties must be considered over an appropriate space of control parameters, of course. 0

E.g., these could be taken as parameters in the equation of a smooth surface. Examples of

statistical yet topological studies of smooth functions are [Longuet-Higgins 19601, [Berry

1977], [Berry and Hannay 1977]. -.

Think of a knob we can turn that gradually adds the smooth noise signal that has

contributed to the function we are observing; this corresponds to a path in function space -

whose parameter is the amount the knob has been turned. Let t - 0 correspond to the

unadulterated picture, and t 1 to the picture with the noise we are-actually observing.

E.g., we could let IN(t) = to + tN, where to is the unadulterated picture, N is the noise,

and fN(t) is the adulterated picture at knob setting t. What happens to the level set

topology as we turn our knob? Since it is stable, the topology changes at places where

the function is not generic. These changes are called bifurcation, or catastrophes and'are

completely classified by sin gularity, or so-called catastrophe, theory .[e.g. Arnold 1984,

l'oston miid Stewart 1978, (how and I lae 1982, looss and .io5eph 19801, providing simple

rules which specify how the topology or f can (locally) change unider such perturbations.

For our case, I-paraineter families on R 2 , the situation is especially simple. Generically,

there are only 2 ways this process can change the level set topology:

" Passing through a saddle-connection.

" Creating or annihilating critical points.

a .. ~ . - . . .-' 2
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zero-crossing contours. Of course, one wants ultimately to segment the image, and the

level set topology does not do that. We have argued that reliable segmentation can only

be done after first getting a qualitative global understanding or the picture function, the

type of understanding in which the level set topology is one element, and a beginning

one. We wouldn't advise, therefore, to attempt segmentation at this stage. Nevertheless,

if one insists that it is approzimately the zero values one is interested in (we do not

necessarily contend they are the correct thing to be interested in), then if one knows

which critical points have values near 0, there are then a finite number of zero-crossing

topologies depending on whether any givenI critical point has a positive or negative value.

One could then use a constraint propagation procedure based on other information to

select a particularly interesting subset of topologies.

Noise and bifurcations

Let's come back to the problem of noise changing the level set topology or the Smale

diagram.

What kind of a model are we going to use for noise? We are working in the domain of

smooth functions, so we are going to take any noise signal to be a smooth function, in

keeping withl the premise that Lite image irradiance is a smooth runction. The statistical

analysis of noise involves computing integrals, so a natural setting for statistics is in L,

a space which contains mainly non-smooth functions, There are several reasons why we

are justified in nonetheless taking our noise signal to be smooth. While it is convenient

to do integration in , s , physical signals are in reality bandlimited. Any imaging situation

is well-modelled by a process that includes convolution with a smooth kernel, e.g. a

Caussian, i.e. it is impossible to avoid some amount of blurring. As we stated in detail

earlier in the section Edge Localization in Both 9 and z of the chapter Contributions

to Edge Detection, a standard theorem [Lang 19691 tells us that the result of such a

convolution is as smooth as the kernel, even if the signal is only in Lt.We are going to

S- .--.-.. ....:.'".........--.....-:--.-':.: ..-- :.-.-..-..-..>.....,,..-,--;-.<-..
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is evident in zero-crossing edge finders when the connectivity shown in Fig. (Conn-a) Is

found in one image, while the connectivity or the corresponding region in the other image . .

is round to be as in Fig. (Conn-b).

o • ./O.

Fig. (Conn)

leferring back to Fig. (saddle), it is easy to see how this can happen with only a

.small amount or noise (or inexact mask-region correspondence between the images in

a convolution). Suppose that the function whose zero crossings one is seeking looks like

a saddle, with the critical value near 0. Then it is easy to imagine that in one image the

zero plane would slice the saddle a little below the critical value, while ir the other image

ha- slightly smaller values, the slice would be above, yielding the grossly different (i.e.

topologically different) connectivity patterns.
.° ..- .

We stress that in this case, even though the zero-crossing connectivity is unstable, the"..

level set topology and the Smale diagram are unchanged. Topologically, at least, the level

set tree and the Smale diagram ape more robust representations oF the function than the -

A _.. ... .. ....
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nesting diagram only chltsifles the coarser space of level sets. For example, in Fig. (topo),

the 2 parts of the figure-8 of saddle d can be essentially interchanged by a 1-parameter .-. -

family of diffeomorphisms, viz., by shearing in a neighborhood of some level set just below

d, just as in the proof of the 2-color theorem. In other words, choose a regular (circular)

level set between d and f, grab the stuff above it, and rotate that stuff 1800, sliding along

the level set. That can be made smooth by shearing in a neighborhood and splicing with

a bump function. This doesn't change the level set topology, but it does interchange the .

roles of the components of the figure-8 in the Smale diagram.

Stability

The Smale diagram and the level set topology are stable for generic functions (i.e. Morse

functions), i.e. they do not change under small perturbations. That means they are

good ways to characterize the Morse functions, since the space of such functions is then

partitioned into open regions (the boundaries are non-generic). Notice that stability is

a criterion for robustness, in that it means that there is some latitude for error which

leaves the description unchanged. Right now we are interested in the level set structure

of I raller than the .topology of Vf, so we will only discumss tile. level set topology.

Unrortuately, tile stability above, by itself, is not quite good enough for a practical

system. What "small perturbations" really means is that the diagram will not change

if the perturbation is small enough (values or derivatives are included in the measure).

The problem is that there is no guarantee that noise corrupting the images will be small

enough. Iturthcrmore, for any given size of nontrivial noise, one can ind a Morse function - -

with a critical point s) delicate, that the level mt topology will be changedi by the noise

(though not by i times the noise for some e, thus adhering to tile stability theorem).

Thus, a node (extremum) and a saddle might be introduced.

Instability of sero-crossinp

A shnpler cousin or this effect, not even changing tile level sct topology or Smale diagram,
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Fig (tree)

& ..-...--..- :

Fig. (tree) shows 2 representations or the level set space for the image fragment in Fig..'-..".,

(tope). The tree on the left is drawn to show the nesting structure, relative height, and... "-';

extremuin type or the critical points: the absolute height or each node in the tree is meant ..

to correspond to the value or its corresponding critical point in the image, and the arrow

is to be read "nests in." The right hiair or the figure shows just the bare tree, where a '-

subnode nests in its parent node. Node a is the global maximum, and w is the global _

minimum, in the following sense. For a compact in".nifold without boundary, a andw

are always critical points, but when there is a boundary, they correspond to the maximal---'".

and minimal closed level ets. This can be improved ir the gradient is always transverse //

to the bou|ndary, or smoothing with bumps can allow extension to the sphere."--.

The important difference between the level set tree and the Smale diagram for runctions --,,.

on 2-manifolds is this. Functions with the same level wet topology can have different Smale __

diagrams, I'or the Sinale diagram classifies the gradient nlow or the function, while the .-;]: '

. .. .. " ..

.. .

... . . .. . . . . .. . .. .. . .. .. .".Q"

. _. , -t _ " -" . . .--' " .• ' -,Z ' . ' ' .- _ .._-.- ' .. ' . " . . . " ."b. " S' . ° .% " ' " i;m .=
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r

Fig. (level)

The generative rule is that any '+' can be replaceed by anything rrom the '+' column, and

similarly for '-'. The symbols represent a maximum and minimum, respectively. The

2 types or figure-8's are saddles (or more precisely, they are the separatrices associated F77
with the saddle at tLie crossing). This leads to a representation or the topology or f as a

tree, where the branch nodes are saddles and the leaves are exLrerna. In ract,

Lemma. As a topological space, the level set tree is homeomnorphic to the space or level

sets.

Proof. The topology is given by the local metric inluced by the level values. It is easy

to check that this is well-defined.

This structure is very similar to the Smale diagram, and the problem or matching 2

(monochrome) images is now equivalent to finding tree isomorphisms between the level

aet topologies (which preserve the image values at the nodes).

.......................... . .............................................
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like drainage basins for'lakes). The basins of attraction are separated by 1-dimensional.

boundaries (like the continental divide). Clearly every non-critical point must be In a-

basin or on such a boundary. If we turn things upside-down, the new basins of attractio.

are now basins of repulsion for the right-side up picture. [Nackman 1982, Nackman 1984].

catalogs some of the behavior of functions on R2 which can be deduced from the partial

order used to define the Smale diagram. (lie calls this partial order the critical point.

configuration graph). Some examples of the modern mathematical approach to these

features can be found in (Abraham and Shaw 1981, Gilmore 1981,Thom 1972, llirsch

and Smale 1974, Abraham and Marsden 1978, Smale 1967).

The Smale diagram is a diffeomorphic invariant of the vector field Vf. The matching

diffeomorphism g,,, however, carries with it the values of I, not of V/. And diffeomorphic

equivalence or f and h is not enough to guarantee diffeomorphic equivalence or Vf and

Vh, except for sufficiently small perturbations. ir g, is not too extreme, though, the

problem or matching 2 (monochrome) images is equidvalent to finding an isomorphism

between Lte Sinale diagrams of the images.

Instead or considering the topology or the Smale diagrain, which classilies the gradient

vector fields, we can consider the topology of the level sets or f. As [Koenderink and

van Doorn 19791 have observed, these level sets observe simple rules in their nesting,

which define a generative grammar. In fact, the only possible structures are shown In

,ig. (level).

.. .

. . . ... ,
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)--.4

* t I

Fig. (partial order)

• .-. b c. e i: .

Fig. (Sinale diag)

Fig. (topo) is an example or a level set structure one might find in an image. The partial

order we have defined among its critical points is shown in Fig. (partial order), and'

the refinement to a Smale diagram is shown in Fig. (Sinale diag). The dashed arrows'

represent partial order relationships which might exist with other critical points ir we had

extended the picture rarther.

The entire topological structure or V$ is given by its Sinaie diagram (possibly along

with some orientation information) [Peixoto 19731. Ir we know the Smale diagram, then

we know how the critical points are connected, which lets us make deductions about

the topology or the level sets between them. E.g., each critical point h.s a bin of

attraction, the set or all points whose gradients eventually lead to that critical point (just

. . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . .
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Fig. (topo)
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the behavior of the smoothing near saddles. The level set topology, however, ia stable.

A case has been made that scale space allows tracking zero-crossings from coarser to

finer resolution. The level set tree requires no tracking; the coarseness is established

by depth in the tree (in the above sense) and the level sets at that depth are already

precisely located. Gaussian scale space contains metrical information, for the result at

a particular scale says something about extent. However, this metrical information is

confounded with intensity information, as we have seen, so it is of limited value. The

level set tree allows separating space and intensity. There is a double confounding of the

metrical information, actually, because if we lift the Gaussian kernel to the surracc that

is projected to the picture, the nature of the kernel depends on the shape and orientation

of the surface. This means that a change in viewer position, e.g., will give different

results For the convolution, and while the zeroes of the Laplacian of the raw image are

invariant, the zeroes of the smoothed version are not. The level set topology, of course,

is invariant. Gaussian scale space is a particular class of bifurcations of the level set

topology, a particular set or paths through function space, and so a specialization of the

structure we. are proposing. But the question is, why should the image values resulting

from this particular suloothing be special?

...............
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P Motion, Optic Flew, and Lie Algebras*

Ind -top.

For the past several years, many researchers have been investigating problems oF movingp objects and observers (see e.g., [Tsai and Huang 1984], [Prazdny 1981], [Prazdny 1983],

[Buxton and Buxton 1983), [Nagel 1983], [Horn and Schunck 1980], [Tsai 1983a], [Tsai

*1983b], [Prazdny 19801, [Bruss and Iorn 1983], [Ulhman 19791). The paradigm of this

research is based on the fact that a point moving in space projects to a point moving

• in the picture. The problem is then usually approached in 2 steps. First, to find the

- motion in the picture, the opticalflowu, you find corresponding points in 2 or more frames.

Then, given this set of correspondences, either for a Few or for many points, you solve

some set or equations which yields the motion in space. These 2. subproblems have

-- generally been approached separately; thus there are 2 classes or results: how to match

points (correspondence), and how to compute motion from matches (e.g. how many

corresponding points it takes). The correspondence problem, unfortunately, is subject

to degeneracies, as we have shown above. E.g. at a single point, the image function

and its Lime derivative tell us nothing about motion perpendicular.to the gradient or

the image function. Ir possible, then, it would be better to consider the problem as a

*i whole, and avoid new difficulties created by a particular choice or subproblems, For, as

* we showed above, the correspondence problem is much harder without knowledge about

the 3-dimensional changes that underlie the differences between pictures.

All the information which we have about the scene is contained in the time-varying

picture, which is a function on some 2-dimensional space, as we said in more detaU earlier.

Our final goal is to deduce the shape, position, and motion of the 3-dimensional objects

" that give rise to this function. We want to approach this by looking only at the Function

• "itself, i.e. the time-varying image, and without the constraint that our intellectual path

*This work was done with the collaboration or Stephen M. Omohundro.

.-... .. . ... ....,- .- ," . . . ...................... *"- .". *-. . * * * .- .- -" -" . . ._ . ., ." - .' " . " . " . * " . . . .... . . ." "
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go by way or first finding some point motions in the plane.

The situation is this. Some rigid object is moving in space. Our imaging of it gives us

a function, the image intensity function, which undergoes continuous distortions most -

everywhere. These distortions are a result of the motion and of the shape and position

or the surface. The problem is to separate and quantify the sources of what we see.

The whole time course of the image has a vast amount of information in it, so it is easier

to consider only parts of the information at once. One can look at what is happening

over whole chunks or timne, or only at a single instant. For differentiable situations, the

differential theory is usually the easier, transforming nonlinear problems into linear ones,

so that is where we start.

We prove some new theorems establishing how much picture information is necessary

and sulficient to specify object motion. An important feature is that we do not assume

that we can track individual points in the image, nor that we are given any of their P

velocities (i.e., the optic flow). The major result is the 6 point df/dt theorem, showing

that genrically* the values of dIdi at 6 points of the monochrome image f are necessary

and sufficient to specify the motion of.a given object. mo we add color, we find that for 2 "

or more color dimensions, dfIdt need only be known at 3 non-collinoar points. Also, or

2 or more color dimtensions, the optic flow is generically uniquely specified, in contrast to

the monochrome case, where there is a 1-dimensional degeneracy.

We are going to use the notation of modern abstract geometry: Lie groups, Lie algebras,

tangent planes, vector fields and bundles, etc. This lets us say things very compactly

oand simply, once the oeinitions are understood. Everything could also have been done

without these abstractions (except maybe the use or genericity), solely in the language

of classical calculus: vectors, rotation matrices) coordinate systems, etc, just as any

Recall rron our discussion or the 2-Color Theorem earlier in this chapter, that a eneric property is one
which in, true ror 14 typical element or a space, ime ror a vcry denise subset or the space. For this section,
we take this to ean an open dense subset.

•

................................ oi..... importat..eature...th.t.we.d.not ..ssume. . -.
.................................................... e........n.....r thir ...veoctis i~.,th ptc lo ).Th m jo es ltisth 6 pon d.dtth o em s own .'-.
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computer program canbe written in machine language, using absolute addresses. It Is

easier, though, to understand one written in a more abstract notation, especially if you

don't happen to be its author. Instead of a maze of calculations, the reader is presented

with simple (but rigorous) descriptions. Abstract mathematical treatment actually does

more-it lets you understand a whole class of problems at once. Incidentally, this is really

more than just analogy; the process of specifying concrete objects for abstractions can be

automated into a compilation, so abstract notation can actually be used as a high-level L

programming language.

The mathematical structure

The situation is again that of Fig. (,1), except now the nature of the transformation g

will be paramount.

R3  R3

M3  M3

is thn gien b

C/ 0 --

IFI

. . .. . . . . . . . ..

M2 g 1,) 2

iKl --.'-'.,
94.

Fig. (0

-,- .W are intrete i..- rigid..mot.-...s ,-n-.1, sov -... ... ." E..3 . ...e time evolution of th.e'.'..., ..mot..i.o.nZ.2 2:ix
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i.e., as a path in the ti'nsformation group. In fact, -y defines a 1-parameter family of

transformations. Since we arc interested only in small changes from the current state, we

take -1(0) = I, thc identity in E(3) (we could have done this anyway by using the group .

structure to translate back to the identity). For every t, -7 gives a rigid motion of R ,

since we arc Identifying E(3). with the rigid motions of RS

,1(t): t3  R 3

E ach point of R 3 is carried along with this motion, and describes a path in 10. In

particular, every point of our surface or interest, embedded in R 3 , has such a path. Now

apply the imaging projection, and restrict attention only to the visible surface or -the

embedded object. By cpmnposition, this leads to a path through each point that gets hit 16

A,-.
in the imiage. Now consider only a single ine, t =0. The structure wc have presented .-

thus rar is summarized in Fig. (Nlow).

S7
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o

o aG(S) a,

,ig. (low)

Each such path in the picture has a velocity vector, and each point in Lte image has a

path, so there is a vector Hield defined on the image. This is what is usually referred to as

the optic flow, though it would be more consistent with mathematical termlinology to call

its isitegral, i.e. Lte paths in the image, Lte optic flow. We will reserve tile terml optic flow

for this integral, i.e. the map p, U -R
2 which spccifles the paths of corresponding .

points in the picture with initial points in the region U, while using optic velocity field or

optic vector field ror its instantaneous velocities, the vectors dfpc/dt. Similarly, the paths

in R3 define a vector field on R3, and the path -1 irn E(3) defines a tangent vector at the

identity in E(3).

. .... . . .

. . . . . . .. . . . . . . . . . . . .. . . . . . . . . . . . . . . .
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0S

I
.0.

it'

Fig. (vector fields) -:-

The available data, however, is not the optical flow or vector field, but the time-varying '-'

picture runetion fl which is just the projection or the intrinsic surrace runetion F, under

the same approximations we used in choosing a mnatheinatical structure at tile beinning

or this chapter. Since we are considering only tile differential theory, we regard our data"

as telling us only the instantaneous value Jo, and all the time derivatives at t -" 0. This

is the same as knowing the Taylor series for ft. We will only use the 1st derivative for .- :-

now. At a point p of' the image, call the optic flow vector v;. Then in a [rams with velocity.--.- "

v; at p in the image, ft does not appear to change; the optic flow specifics the motion or'I

corresponding points. Thus ir we leave the frarre fixed, we see that :::::

_____._-_._-_.S
,. .--.

; ' ''' '" ""'" " - " " " " '" "" ,'" "" " k . . . "" " "" ' "" " " " " " " " " . . . . . . . . . . 'p
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d
fe,(p) =

where D. means differentiation by the vector v, equivalent to v . V, so that

(The more Formal version or this theorem can be found on p. 91 of [Abraham and Marsden

19781, and was stated by Marius Sophus Lie in 1890. It is well-known in the context of

optic flow; see e.g. (1iorn and Schunck 1980, Ballard and Brown 19821.) Equation (,)

shows how it is that we only have partial information about v: we only know I component.

We can immediately see, also, that ir f had multiple dimensions, i.e. if there were more *0

than 1 color dimension, we would have information about multiple components, and v

would be uniquely determined for generic f. This is the differential version of the 2-color

theorem we proved earlier. Finding optic flow, like matching, is much easier with color.

We formalize this in

Theorem. (2-color theorem for optic flow) For a generic time-varying image function

M 2 - R", the optic flow vector is uniquely specified at a generic point or the image

ir n > 2, i.e. for 2 or more color dimensions.

When we fix t 0, each side of equation (*)is just a number, so for each p we have a

map

D(f)(p): v Ia real number

We have thus defined a string or linear mappings (v.f. stands for vector field, v.b. for

vector bundle): S

tangent vector on E(3) i-. v.b. section on object

i-. v.f. on image t-+ vector at p ' real number

(We must consider sections or a vector bundle on the object rather than vector field s0

(sections or the tangent bundle) because the vectors we are interested in are tangent

....
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vectors to paths in R3  going through points or the object. Since the paths generally do .0-

not lie in the object, their tangent vectors needn't be in the tangent space of the object,

but rather are merely tangent vectors in R3 .)

A 1-Jorm is a map which takes a vector field and spews out a scalar field, linearly at each point. Le.
at each point it linearly maps vectors to numbers. Thus it is dual to the notion or a vector field. A
function f has a canonical 1-rorm, df associated with it by looking at how the function changes along
paths. Consider a vector v" at the point p. To define dl at p, we must specify a number to which it will
send v. v can be thought of as the tangent vector to some path, say "/:I --. M, so that v -y'(0). Then
we can define 4' by

df is sometimes called the differential of f. The space of all tangent vectors at a point is called the
tanres space. A linear map rrom a vector space to the reals is called a dual vector, and the space of
such maim, the dual space of the original vector space. ne dual space or the tangent space is called the
cotoaett space, and its elements covectora The disjoint union or the tangent spaces at all the points of
a manifold is called the tangent bundle, and that or cotangent spaces, the cotangent bundle. The manifold
that the vectors were originally tangent to is called the base space. oth bundles have natural structures
as manifolds of dimension double that of the base space. A np,:4 which assigns to each point or the
base manifold an element or its (co-)tangent space at that point, is called a section or the bundle. in the
context of bundles, the jber over a point is the (co-)tangent space of the original manirold at that point.
A section chooses a point in each fiber. The Langent space at a point p or m is written TpM, the tangent
bundle TM, tIe cotangent space at p is T;M, and the cotangent bundle T*M. Thus d in a section of .-
the cotangent bundle T M. VJ, however, is a section or the tangent bundle, since it is vector-valued. It
can only be delned if there is a canonical isomorphism between the tangent and cotangent bundles, e.g.
ir a metric is defined, or equivalently, a dot product. We will be confining our attention mainly to CV.
Instead of tising tangent spaces to make a bundle, we can replace the role of the tamigent space with an
arbitrary vector space, yielding a vector bundle. A Lie group is a ma.irold which also has a group structure
such that the group operation is a smooth Inap. Kxamples are matrices of nonzero determinant, and
rotation groups. Like any other mnniifold, a Lie groump has a tamment space at earh point. Beause of -'

the group structure, though, vectors at the identity element or the Lie group cai be moved around the
manifold by the group action, so it is enough for most pmrposes to consider only the tangent space at
tile identity. This space is called tme Lie algebra associated with tie Lie group. It is an algebra because
in addition Lo the vector space Amructmmre, there is M 11nutiplicatiom, called tive Lie bracket, The biracket .-

measmres what the Lie group does to ome vector am it noves it along in the direction specified by the
other vector. The Lie algebra captures the iiitinnal behavior of its mssociated Lie group.

The Lie algebra g or a Lie group ( is a vector space which can be identified with the

tangent space of C at the identity. E(3) is a Lie group, and therefore Mssociated with it

is the Lie algebra 9(3); and since R_,(3) is a 6-dimensional mnirold, t(3) is a 6-dimensional

vector space. The tangent vector y'(0), which is the insmmtantcous motion, can therefore

be thought or as an element or the Lie algebra t(3).

We can do this for every path y, hence for every element or t(3), giving us a homomorphism

from the Lie algebra C(3) to sections of the vector bundle on the object, and likewise

again to a Lie algebra or vector fields on Lhe image or the object in the iage plane. The

. .. .... .... .... .... ... ..

.......... . . .. . .. . ...... .
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composition of these is ^ Lie algebra homomorphism. The sequence of linear maps can

therefore be written

Lie algebra e(3) -- v.b. sections on object

-- v.f.'s on image -. vectors at p -e real numbers

This defines a map e(3) -- R, i.e. an element of t*(3), the dual -of e(3).

Now we have enough machinery to attack some questions. The first question is whether

there is enough information in di/dr to uniquely specify the instantaneous motion, for

generic f. The instantaneous motion is an element of e(3). As we just saw, for each point

p of the image, the geometry defines an element of t*(3). The question then becomes

whether we can span all of ¢'(3) by ranging over all points of the image, for knowing the

value or applying a dual basis in e€(3) uniquely specifies the original vector in e(3). c*(3)

is 6-dimensional, so if this is possible, it is possible for 6 points corresponding to a dual

basis. This doesn't say anything yet about finding the shape or position of the object; we

only want to know whether we can recover the motion for fixed shape and position.

Theorem (6 point df/dt theorem). Lot

J:IXU-*R,.-'.'
1, A) Aft, A)"'':+:

be a time-varying picture for soe time interval I around 0, and mine neighborhood U in

the image plane of regular values of the imaging projection of some 2-dimensional object

embedded in R3 . If J comes from the projection or a generic intrinsic function on an

object undergoing rigid motion in Ra, then the values of

a.
T( (,pA

at 6 generic points p E U are necessary and sulflcient to uniquely specify the instantaneous

motion of the object.

.+..,.. ... .+.+..... .. +-+---,,........ ...... , .......... .. . .. -, ,.+,.. ,.. . : .. - ..-. ....... :..,i-
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Proof. We are in effect measuring the optic velocity field with our image function; this

is what equation (s) says. To be able to tell the difference between different elements of

e(3), i.e. different motions, the mapping from e(3) to velocity fields on the picture must

be 1-1. Since the mapping is a vector space homomorphism, this is the same as saying it.•

has no (nontrivial) kernel. The homomorphism

e(3) . v.b. sections on object

has no kernel, because any kernel would leave the entire object fixed, but a rigid motion

or R3 can leave at most a line fixed. So e(3) is mapped i-1 to sections of bundles on the

object. Now we must show that the kernel of the homomorphism

v.b. sections on object -- v.r.'s on image

doesn't contain anything that comes from the previous map from e(3). The kernel or

the current map is just the sections whose vectors lie along the rays of projection to the _

picture. For orthogonal projection, vertical translation would or course be in this kernel,

but we are aRsuming a projective projection, i.e. that the rays all meet at a point; for a

planar retina this is the usual perspective projection.

. . .....

-. . . . . . . . . .. . . . . . . . . . . . . . . .
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Fig. (kernel- rays)

We have to show that any Such motion, where points mfove only along rays, cannot come

front a rigid motion. This is easy to see; take 3 points on Lte object not all on the same

line in R3:
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Fig. (3 points)

Since a rigid motion or R3 can only leave a single line axis (or nothing) fixed, at least I

or the poinlts must move, say a. if a moves dtown, b must move up, to keep their distance

constant (rigid motion). Since b it; moving uip, c must move down.. But then a and c

are bo0th moving (lown andi therefore narrowing their distance, showing that the motion

cannot be a rigid inotion, i.e. the kernel of

v.b. sections on object -~v.f.'s on image

is not in the image or

r(3) -. v.b. sections on object

(except ror 0, or course).

So we know that the composition

e(3) . v.r.'s on image
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has no kernel, i.e. is 1-1, This means that every rigid motion gives a unique optic velocity,

field, and the vector space of such fields is 6-dimensional.

Actually, we showed more than that. We showed that a generic set of 3 points cannot --

stay fixed in the image-we didn't even have to consider the whole vector field. The set

of vectors at 3 such points in the image make up a 6-dimensional vector space, so what

we showed is that the map

e(3) -. vectors at 3 given points in image

has no kernel, i.e. is 1-1.

That means that to specify a motion, i.e. an element or c(3), we only have to figure out

the optic velocity vectors at 3 points. A generic function, via equation (.), tells us I

component of each of the vectors (by genericity, the gradient is nonzero at all 3 points).

If we had 2 generic functions, then we could recover both components or each of the 3

vectors by using equation (*) for both fuinctions (generically, the gradients will be linearly

independent, i.e. in dilerent directions at the 3 points). P'arenthetically, we have just

proved

Corollary (2 colors, 3 points). F"or generic f Lking values in 2 or more color dimensions,

the values or 1f/7t(0, p) at 3 noncollinear points p E U are necessary and sufficient to

uniquely specify the instantaneous motion or the object.

Now we muist show that I component at each or 6 points is w-4 good as 2 components at

cach or 3 points.

We saw earlier that df defines an element of e*(3). Thus the geometry defines a map

*"R -'(3)

. .-.
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We haven't finished with the regular points, either. The Lie algebra analysis we began

can be extended to analyzing the problems of finding the shape and motion of moving

objects. The questions of what information is necessary should be resolvable.

We have thus far mainly ignored the problems of photometry. [Koenderink and van Doorn

19801 have pioneered in applying geometric methods here. The Lie algebra approach can

be extended to include photometry by considering not just the object in space, but. a

double sphere bundle over it, describing the directions of light and observer. Part of

this is already implicit in the Gaussian sphere approach, ror example. There are many

interesting results that may be or use. Lines of principal curvature seem to be important,

but it is only recently that the topology or the lines or principal curvature, i.e. how they --

fill out the surface, has been thoroughly understood [Sotomayor 1984).

All this geometry must be brought to bear to get local and global understanding of the

image intensity function, the right type of understanding to make deductions about the

physical situation that produced it. We have been arguing that an important element is

qualitative, i.e. geometric understanding, rather than quantitative. A picture is not a C'

function, so there is a problem or how to derive this information. The data results from

a map from an infinite-dimensional space or smooth functions to a linite-dimensional one

or values on a grid, and indeed to a (nite set or digitized values. The relation or these

maps to the smooth theory has to be looked at carefully. Probably the most direct way

to apply theory for smooth functions to this data is to choose some smooth function to -

represent it, i.e. fit the data. How to do the fit? There are many choices: polynonials,

Fourier interpolants, spheroidal harmonics, etc. The inathematics or (iting is partially

independent or *what is being fit, so it should be possible to obtain a theory without

making a choice or basis at the outset. The same philosophy should be transferable to

implementation: the program could be designed to take the basis as data.
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Postscript

It's customary to conclude a thesis with a compendium of "future research directions,"

the research that should have been, but wasn't, done for the present work, but will be

sometime soon. In adhering to this tradition, I present here a sketch or a program of

research that continues what was started here.

The imaging projection has regular points and singular points. Interesting edges occur

at the singular points (which are generally limbs), but our geometric analysis has been

confined mostly to the regular points, mainly because it's easier. We still had to consider

singular points, but they were or lower dimension. A large theory exists for singularities of

stable mappings; it is waiting to be applied. [Koenderink and van Doorn 1976, Koenderink

and van Doorn 1980, Koenderink and van Doorn 19821 have begun some or this work.

First you have to clasify the singularities which can occur. There are only 2 singularities

ror generic iaps from the plane to the plane: the fold and the cusp. In a masterly work,

(Arnold, V.I. 1983] suggests, however, that the right setting is singularities or a projection

rrom a generic embeddi ng. This is not quite the same as a generic iuap betwe.n surfaces,

and Arnold and his coworkers have round that there are exactly 14 types or singularities . -.

in this setting.

We have stressed that picture data only reveals geometry via the measuring device of

the image intensity. It is therefore necessary to go beyond the projection singularities

themselves, and study how they may be inferred from the image function. This is the
I

generalization of the edge detection intuition: "look for .discontinuities."

To all this, we can add time. This leads to the study of unfoldings of singularities, and

again the time-varying image intensity is the telltale, and the Lie group and Lie algebra

of the motion will be the instruments of analysis.
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Fig. (6 vector points)

ir we remove a vector rrom one or the 3 original points (i.e. remove a point from the set in

T*R2), this Ieaves us With a 1-dlimnsnional kernel in e(3). If wc go to one or thc new points,L

the spanning lemma tells us we can again measure the kernel, perhaps after an arbitrarily

small perturbation. This can be repeated, andI 2 more ineamremnts moved the same

way, to get 6 vectors at 6 points, corresponding to Vf, perhaps silightly perturbed.



Geometric Methods in Vision Motion, Optic Flow, and Lie Algebra. 221

Now we can see what happens when we choose 6 points in the image. df gives us 6

points in T*R2 . We can perturb these points to guarantee that df 34 0. Now since every

neighborhood of each point maps to a spanning set of e*(3) (local spanning lemma), we

can always perturb the nth point so that it is mapped to something outside the span of

the first n- I points (at least through n - 6, anyway). This gives a perturbation of the 6

points which maps to a spanning set. Since spanning sets are open, these points will still

span under sufficiently small perturbation. (In general, one might need a perturbation

of both the location of the points and or f to guarantee a spanning'set. The degenerate

situation occurs when the optic velocity vector is in the direction or constant f.) QEDI

Here is a more concrete way or looking at the last part or the proof. We already saw that

if we had 2 generic functions then we would be finished with 3 generic points. This is the

situation of Fig. (3 fibers). It can be pictured in the image as in Fig. (vector points).

xp

Fig. (3 vector points).

Each vector represents a direction in which the optic velocity vector can be measured,

i.e. a value or vf for one or the functions. We want to get rid or one or L,-Re. at each

point, and substitute meauurements at 3 new points that have been given to us.

S. . .,.•...
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Fig. (local spanning)

Proof. Choose a point and neighborhood in T'R2. It projects to a neighborhood or. R2,

in which we can choose 3 generic points. We can then choose 6 points in T*R2, 2 to a

* fiber, by the 3 fiber lemma. QED (local spanning).

Fig. (6 points)
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What we saw earlier is.

Lemma(3 fiber lemma). If we choose 3 generic points in R2, and 2 linearly independent

covectors in each fiber over those points, the 6 resulting points of T*R 2 are mapped to a

spanning set in t*(3).

T*R 2 is 4-dimensional, so it is a little hard to draw. We represent the situation schemati-

cally in Fig. (3 fibers).

Fig. (3 fibers)

What we will now show is that we can choose any 6 generic points in T*R2 , i.e. 6 generic

points in the inage, and 6 generic values or d" at tho e points (i.e. a generic f). This

is pretty easy by mnaking use or the :1 fiber lemma. The nima still applies for any

neighborhood or R 2 , i.e. we (;I choose the :3 points arbitrarily close together. This gives

us

Lernma(local spanning). Fvery neighborhood or every point in T*R contains 6 points

which are nmapped to a spanning set in e*(3).

. .....-. ......... ... ... . .....-. --... .. .. -.......- _...... ... -'-......... - -.... . . . -.-- . ...
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