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ABSTRACT

Generalized hyperexponential (GH) distributions are linear . -

combinations of exponential CDFs with mixing parameters (positive and

negative) that sum to unity. The denseness of the class GH with respect

to the class of all CDFs defined on [0,-) is established by showing that

a GH distribution can be found that is as close as desired, with respect

to a suitably defined metric, to a given CDF. The metric induces the

usual topology of weak convergence so that, equivalently, there exists a

sequence {G ) of Gil CDFs that converges weakly to any CDF. The result
n

follows from a similar well-known result for weak convergence of Erlang

mixtures. Various set inclusion relations are also obtained relating

the GH distributions to other commonly used classes of approximating

distributions including generalized Erlang 4G(), mixed generalized

Erlang 4MGE), those with reciprocal polynomial Laplace transforms

those with rational Laplace transforms R-I-) and phase-type "1-P -i

distributions. A brief survey of the history and use of approximating

distributions in queueing theory is also included.

Key phrases: probability distribution; cumulative distribution

function; approximation; convergence in distribution;

weak convergence; denseness; Erlang distribution;

generalized hyperexponential distribution; method of

stages.
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1. INTRODUCTION

The purpose of this paper is to characterize the class of 0

generalized hyperexponential (GH) probability distribution functions and .'-

to justify their use as convenient approximations to arbitrary CDFs.

1.1 Definition

Generalized hyperexponential distribution functions are of the form

n -X.t
F(t) Z a.(1-e )

n
with I a. = 1, a. real, X > 0. They are generalizations of theil 1 1 1 "-

well-known hyperexponential distributions which are of the same form but

with the additional requirement that the coefficients (ai } be positive.

The familiar generalized Erlang CDFs arising as the distributions of a

sum of independent, non-identical exponential random variables are in

GH. A typical example is provided by the CDF .

-t -2t -3tF(t) 3(1-e -t )  3(l-e 2 ) + (l-e - )

Il 3e-t + 3e-2t -3t .

1.2 Organization

In the following, we first discuss briefly the evolution of 0

approximations to CDFs in stochastic modeling, particularly in the field

of queueing theory. Relationships among the classes of approximating

distributions, including Gil, are then developed in Section 2. Section 3 -

establishes that any CDF can be approximated as closely as desired, with " "

......



respect to a suitably defined metric, by a GH distribution. This fact,

together with the attractive numerical and statistical properties of the

class GH, provides a major justification for considering this class of

approximants. Finally, Section 4 contains concluding remarks and some

areas for future research.

1.3 Background

The use of approximating distributions in applied probability

modeling dates back at least to the early part of the twentieth century.

A. K. Erlang used the so-called method of stages to preserve the useful

properties of exponential distribution functions in situations where the

true underlying distributions were not in fact exponential (see, for I

example, Cox and Miller [1970]). By imagining customers in a queueing

situation to progress through a series of independent stages in tandem,

with the time spent in each stage having an exponential distribution, it

is possible to preserve the Markovian character of the queueing system.

The memoryless property of such systems simplifies the resulting

equations governing queue behavior, such as the probability

distributions of customer waiting time and number of customers in the

system. Jensen [1954] generalized Erlang's technique, in part by

allowing the exponential stages to have non-identical parameters.
I

Much of the queueing literature makes use of the theory of complex

variables in the frequency domain which results when Laplace transforms

of the probability distributions of interest are computed. Smith [1953]

noted that the probabilities resulting from the method of stages have

Laplace transforms that are reciprocal polynomials having negative real

2



roots. He extended the concept of stages by defining the class K to be
n

all those distribution functions whose transforms are reciprocal 0

polynomials of degree n with, in general, complex roots. lie then

showed, using Lindley's GI/G/1 formulation, that under mild conditions

on the interarrival and service-time distributions, a service-time

distribution of type K implies that the total equilibrium system timen

(queueing plus service) is also of type K . In particular, if service
n

time is exponential, so is the system time for any distribution of

interarrival times.

Cox [1955] extended the concept of stages further by considering

the class of distributions having rational Laplace transforms. He

showed that the method of stages can still be employed for this larger

class of CDFs if one is willing to tolerate stages having complex roots

and "probabilities" that may be negative. While the fictitious stages

do not therefore correspond to physical entities, the resulting overall

probabilities will be valid. The advantage of such an approach is that -'-.-

the desirable mathematical properties of Markovian systems may be -

retained. Cox went on to provide some justification for restricting

attention to distributions with rational transforms by noting that if

the degree of the polynomials is allowed to be countably infinite, any
S

CDF can be closely approximated by one having a rational transform.

Wishart [1959] used the method of stages and Markov chains to

verify Smith's K result for the equilibrium distribution of waitingn

times in a GI/GIl queue having arbitrary interarrival-time distribution

and service -time distribution characterized by a series of Erlang

stages.

S

3



Kotiah et al. [1969] approximated the GI/G/I queue by assuming that

both the interarrival and service-time distributions were Erlangian,

that is, consisted of a series of exponential stages. They developed

numerical procedures to calculate the mean waiting time for the system

and examined the effect of varying the skewness of the interarrival

distribution.

Schassberger [1970] established the theoretical basis for some of

the earlier work using the method of stages to obtain waiting-time

distributions for the GI/G/1 queue. In doing so he showed how a

sequence of mixtures of Erlang CDFs may be constructed that converge

weakly to any desired distribution function defined on [0,o).

Neuts [1975, 1981] has popularized the class of phase-type, or PH,

probability distributions. These are distributions that arise or can be

interpreted as the time until absorption in a finite Markov chain, and

have rational Laplace transforms. Their major advantage is

computational; instead of differential equations, complex variables and ,.

numerical integration, they admit of matrix-geometric procedures. A

drawback of PH distributions, however, is the nonuniqueness of

representation. Many different combinations of defining parameters lead

to the same CDF and many of these representations are not of minimal

order.

Theoretical justification for the use of approximating

distributions has also been provided by work on the continuity of
-

queues. Kennedy [1972, 1977] and Whitt [1974] have shown that if the

interarrival and service-time distributions of otherwise identical

queues are close in some sense, then the corresponding performance

4



measures such as queue length and waiting time will also be close in an

appropriate sense. A very demanding technical treatment is needed to

establish these results which requires careful definition of the

underlying spaces, metrics, convergence concepts, and topologies. Both

authors cite the sequence of mixed Erlang distributions, introduced by

Schassberger that converges weakly to an arbitrary CDF. By constructing

a sequence of such general Erlang models for a given GI/G/c queue, where

the actual interarrival and service-time distributions are approximated,

the weak convergence of the two sequences of CDFs implies the weak

convergence of the corresponding performance measures.

This concept of weak convergence of probability measures has found

widespread application in applied probability modeling. Queueing theory

happens to be the area in which most of the weak convergence results

have been used. Iglehart 1973] has written a useful survey paper that

details the uses of weak convergence in queueing. Discussions on.

continuity of queues and rates of convergence are included.

Another interesting sutvey paper is that of Bhat et al. [1979].

They consider the use of approximations in queueing applications but

their definition of approximation is somewhat broader than ours.

Besides the use of approximating distributions, which they subsume under

the heading of system approximations, they examine two other classes of

approximations. Process approximations are concerned with replacing the

physical process under study by a simpler one and include the use of

di ffus ion and f luiid dpplroX imaIZ t i oins. Ntim r iu.a approximat ion involves

methods of s implifying the arithmetic computat ioils that arise in solving .-

the systems model ; establish ing upper and lower bounds on performance
p

5
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measures and using numerical methods to invert analytically intractable

Laplace transforms are examples of this type of approximation.

This concludes our brief review of the salient developments in the

use of mixed-exponential-type approximations in applied probability.

Although the emphasis has been on queueing applications, the basic

concepts have wide applicability. While the family of mixed Erlang

distributions has certainly been the most popular class of approximating

functions, we will make a case in the sequel for considering the

generalized hyperexponential distributions. Besides being of simple

form which facilitates numerical manipulations, GH distributions have a

unique representation which is desirable for such statistical procedures

as parameter estimation. They extend the familiar hyperexponential

class of distributions and enjoy the analytical benefits of having

rational Laplace transforms. Furthermore, recently developed algorithms

for fitting hyperexponential distributions to empirical data (see Kaylan

and Harris [1981) and Mandelbaum and Harris [1982]) can be readily

generalized to include GiH distributions.

6 I

6 I
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2. RELATIONS AMONG CLASSES OF DISTRIBUTION FUNCTIONS

In this section, families of probability distribution functions

that find wide use as approximations to more general CDFs, for example, .

in queueing applications, are defined and related to one another. The

more obvious relations are mentioned with the definitions, while others

are presented in following subsections.

Several of the definitions below are stated in terms of the

one-sided Laplace-Stieltjes transform of a CDF, F. This transform, F*,

is defined in the ususal way as

-St.
F*(s) = f e dF(t),

0

which is equivalent to the ordinary one-sided Laplace transform of a

PDF, F'(t) = f(t), whenever F(t) is absolutely continuous.

2.1 Definitions

K Class
n

Smith [1953] defined the class K to be those distribution
n ?-

functions whose Laplace transform is the reciprocal of a polynomial of

th"
n degree. Of course, not all reciprocal polynomials ire transforms of

CDFs. For instance, the real part of each polynomial root must be

negative. While the roots may be complex, they must occur in conjugate

pairs since the corresponding CDF is real. There are also additional
-

constraints that are not so obvious. Likacs and Szasz [19511 have shown

that one of the roots with greatest real part must be real. Therefore,

the simplest member of K ha ving complex roots is of the form

F*(s) . . ._ ( - +  - - -

2 7
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distributions. For example, consider the two following distinct

phase-type representations:

-3 1 

"Q = 1-4 2 a = (0, 1/2, 1/2)
1 0 -6"""

and

-2 0

Q [' - 1(2/3, 1/3)
0 -5

Clearly the two representations are different and are not of the same

order. However, each results in the same CDF, namely, F(t) = 1
-5t/

- (2 e-2t/ 3 + e /3). The second representation would be of minimal

order since the CDF is a mixture of two exponentials.

"Iixed generalized Erlang distributions also permit multiple

representations. From the notation of Dehon and Latouche [19821 we may

represent the CDF of the sum of n independent random variables, each

exponentially distributed with parameter ) (i = 1,2..,n) by F 1 2

This CDF is obtained in terms of the underlying exponentials by Equaition

(2.3.2). But the two CDFs defined by

F(t) = (1/3) F1  + (2/3 1 13

and

G(t) (1/3) F I + (4/)) FI2 + (2/9) F 123

are in fact the same. This can be seen by expressing each as a linear I

combination of the underlying exponenti a distributions. As discussed

above, thi is represeILtat ion is 1111 i ieldsd Y ids

(t t, = (-1 3) F + (4/3) F,

21



2.6 Uniqueness of Representation

For statistical applications, an important property of mixture-type 0

CDFs is uniqueness of representation, or identifiability. Yakowitz and

Spragins [1968] define the identifiability of finite mixtures as

follows. If (F.) is a collection of CDFs, then the class of finite

mixtures of the (F.) is said to be identifiable if Lhe convex hull of1

(F has the property that

N M1 ,,

E c.F. = Z c.F.

i-Ii=l ' '

where c. > 0, Z c. = 1, implies N = M and that for each i (I i < N)I I

there is some I (I < j < N) such that c. c. and F. = F.. A necessary1 J I j

and sufficient condition for identifiability is that the class (F.) be a

linearly independent set over the field of real numbers. This follows

from the uniqueness of representation property of a basis in a vector

space.

Since any collection of dist;ict exponentials is linearly

independent, the class of finite mixtures of exponential CDFs is

identifiable. A broader concept of identifiability for generalized

mixtures also applies when the underlying family of CDFs is exponential.

A generalized mixture is one where the mixing parameters sum to unity

but can have any real values, and of course, the Gi1 distributions are of

this form. Again, the uniqueness of the representation of vectors with

respect to a basis for the vector space implies that Gi1 distributions

have unique representations as linear combinat ions of exponentials.

Importantly, the other families of CMIFs considered in this work do

not sia re the un i quees s of representat ion property with the Gil

20 6
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and MGE is a proper subset of PH. The results presented in Examples

2.3.1 and 2.4.1 are developed more fully in Botta [1985] where

conditions are also given for Gil and PH distributions (with real roots)

to have MGE representations of the same order as the GH representation.

These conditions are readily computed from the given distribution and do I

not require solving for the {b. coefficients.
I

2.5 Summary of Set Inclusion Relations I

The results of the foregoing subsections yield the following set of

relations among the classes of distribution functions:

(1) GECK CR
HI f I.

2) GE ' IGE C GI C R

(3) GE C 'IGE C PHT C R

11111 oII 1 l

"Ihp, ; ' ',' n , ,,'.i-r ' in the f-ollot, ing Vonn diagram.

OH
II II U p l

• ,I

GEHP

Rn

19 I
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I

in the subsection on uniqueness of representations, that it may be

possible to obtain a MGE representation by embedding the problem in a

higher order space even when there is no valid MGE representation in the

original space.

I

2.4 .MIGE and PH

We established in subsection 2.1 that all MGE distributions are

phase type. Since PH distributions may include trigonometric terms, it

is clear that the MGE distributions are a proper subset of PH. But what

if the PH generator matrix is allowed to have only real eigenvalues? Is

the resulting subclass of PH distributions contained in MGE? The answer

is no. We obtain this result by way of a counter example.

Example 2.4.1 The PH distribution given by

(I-4.846t -4.1948t -959t)

F(t) - 1 - (1.293 e t 343 e + .050 e

was obtained from the generator matrix

-5 0 1/8 .
Q 4 -4 0

0 1 -1

with a (1,0,0). As before, equating F(t) to b 1 F 1 (t) + b 2 F 1 2 (t) +

b 3 F 1 2 3 (t) and solving for the (bi yields the result that b = -. 0369.

Since each b. must be nonnegative, we do not have a valid MGE

representation. Thus, PH distributions with real1 roots do not

nocessarily belong to MGF. In other words,

PH (real roots) t- MGE

18



By substituting (2.3.2) in (2.3.3), a triangular system of linear

equations relating the {a.} and (bi} coefficients is obtained. This1 1

system of equations is readily inverted to yield the {b,) in terms of
I

the (a.). For the case of n = 3, it turns out that b and b are always
1 3

nonnegative for any choice of (a.} corresponding to a GH distribution.

The nonnegativity of b 2 requires that

a > 3 (X1- X3) a
2 X 2 a (2.3.4)3D

The next example shows that GH distributions exist for which

(2.3.4) is violated.

Example 2.3.1 Consider the GH CDF

- 4t -3f 2
F(t) 1 - (6e -13e + 8e - )

Here

a, 6, a2 =-13, a= 8

X 4, X = 3 X 2.
1 2 '3"

Therefore

)3 1) 1)3 )  32
(X 1-)2a 3 = -3":."

Since a2 < -32/3, we see that (2.3.4) is violated and thus that no MOE

representation exists for F(t). This example establishes that

GH~- ME

,ind that the class of MGE distributions is thus a proper subset of the

class of GH distributions.

The above result holds when the order of the MIGE representation

must be the same as that of the Gil distribution. We demonstrate below,

17
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where the A. are real. Any mixture of such distributions has a.]1

transform of the same form. Therefore any mixed generalized Erlang

distribution is in Gl{ and

MGE CG1 . (2.3.1)

Based upon results in Dehon and Latouche [1982], we next

demonstrate the existence of GI1 distributions that cannot be represented

as MGEs of the same order. They show that any GE distribution

constructed from a subset of exponential distributions, (Fi}, can be
1

expressed as a random combination of the GE distributions FI, F

F where F . is the distribution of the sum of the first iFl2.. .n 1l2.. .1 i

independent exponential random variables. Each such distribution

function can be written as

F 12..i(t) 1 f 1 ) F.(t , (t - 0) (2.3.2)
j=1 k=l hj -

k# j
-X .t

where F.(t) = 1-e . (It has been assumed without loss of generality

that X1 > X2 >...> X .) Since the {Xj are constants, (2.3.2) is in the

form of a GH distribution whose coefficients are determined by the (X},

which agrees with (2.3.1). In order for a GH distribution,

F(t) 1 - E a.e , to have a MGE representation, there must exist a
i=l

set of nonnegative numbers (b., i 1,2,... ,n) which sum to one and
1

satisfy the equation

- p

n -X.t n
1 a,e = E b F (t) (2.3.3)

i~~ 12 ..-

I

16
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Because of the trigonometric terms, F(t) is clearly not in GH. So

PH fGH -

But does every GH distribution have a PH representation? The

answer is no. As mentioned earlier, the density function corresponding

to any PH distribution is strictly positive for all t > 0. The

following example exhibits a GH distribution that violates this

condition.

Example 2.2.2 Consider the OH distribution defined by

F(t) = 1-(4e
-t - 6e 2t + 3e- 3 t )

with corresponding density

f(t) = F' (t) = 4et - 12e-2t + 9e
- 3t

It can easily be shown that f(t) = 0 for both t 0 and t = In (3/2) and

that f(t) > 0 for all other values of t. Therefore, F(t) c PH and

-PH.-

2.3 MGE and Gil

Recall that the generalized Erlang (GE) distributions have Laplace

trans forms

n

s+X.i=l i

where the X. are distinct. Using a partial fraction expansion, this

transform can be written as

n A.
+

i=l

-- , " .. ,."...



boundary equation can be easily used to determine if a candidate

exponential sum is in fact in GH. For sums of more than three

exponential terms, the boundary equation could be determined in similar

fashion but would be very involved and still not of much practical use

in determining membership in Gil.

We next develop some additional relations between the classes Kn,

R, GE, MGE, PH, and Gil.

2.2 GH and PH

From the preceding subsection we know that all PH distributions are

in R . But if the roots of the denominator polynomial are complex, then

corresponding distribution will not belong to GH. The following example

displays such a PH distribution.

Example 2.2.1 Consider the 3x3 generator matrix

-1 1 i0 -".

Q = 1 -2 1-" -
1 0 -3 -iiI

The eigenvalues of Q, which are equal to the roots of the denominator
Qt

polynomial of the Laplace transform of , are

X1 = -.2307 ; X2)X =3-2.8846 ± .5897 i

where i = V-1. The resulting Pit distribution corresponding to an

initial state vector a = (1,0,0) is
-.2307t

F(t) 1 1 - 1.29 e10

-1 8846t
[.1729 cos .58)7t + .38b8 sin .5897t] e .

14
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Note that, unlike the usual hyperexponential distribution, we do not

require that each a be nonnegative. This added freedom makes the GH

distributions extremely versatile. Indeed, in the following section, we ".-

derive the critical characterization that any CDF on [0,-) can be

approximated as closely as desired with respect to an appropriate metric

by a member of G1l.

The Laplace transform of a GH distribution has the form

n a.X. 0

s+X.

so we immediately note that

Gil CR (2.1.7)

Of course, not all linear combinations of exponentials of the form

n -X.t n
- I a. e with X. > 0 and E a. =I are GH distributions.i =I  1 1 i= I

n
For example, the monotonicity condition requires that E aiX. 0

Also, assuming X to be the smallest of the Xi, the corresponding
n .

coefficient a must be positive to insure proper asymptotic behavior as ,
n

t . Bartholomew [1969] has established a number of sufficient

conditions for a linear combination of exponentials to be a Gi1

distribution, but no simple set of conditions that are both necessary S

and sufficient is known. Dehon and Latouche [1982] have recently

characterized the class of GH distributions by deriving a parametric

equation of the boundary of the convex region constituting GH for the - S

case n = 3. The geometric representation is obtained by choosing a set

of basis vectors from the class of all Gil distributions composed of

linear combinations of three exponentials. It does not appear that the

13
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yields rational expressions for each component of V*(s). Therefore, the

probability distribution of each state belongs to R as does the

distribution of the time until absorption. We have, therefore, the

relation

PHC R (2.1.6)
n

Phase-type distributions can easily be constructed with Laplace

transforms which are not reciprocal polynomials, so that PHIK n . But
n

is it possible that every K distribution has a PH representation? Then

answer is no. Corollary 2.2.1 in Neuts [1981] establishes that any

non-trivial PH distribution has a corresponding density function that is

strictly positive for all t > 0. The PDF given earlier as (2.1.1) has a I

reciprocal-polynomial Laplace transform but.the density function is zero

wherever cos bt = 1. Therefore, the corresponding distribution function

is not in PH. We have then that K n PH which implies that R nPH and

that PH is thus a proper subset of R
n

It should be noted that, given an aribtrary CDF, there is no easy

way to determine if it is in PH. One must search for a suitable

generator matrix and set of initial conditions that will yield the

desired distribution.

GH Class

The generalized hyperexponential distributions are CDFs of the form

n -X.t
1 a. e

i= 1 l . .

n
with Xi > 0 and real, E a. 1 and a. real.

12 "
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It should be noted that PH representations are not unique. That

is, there may exist many different generator matrices of different

orders that lead to the same CDF. Examples are given below in

subsection 2.6. The problem of finding minimal representations of PH

distributions, that is, where the order of Q is as small as possible,

has not been solved. Neuts [1981] established that the class of PH

distributions is closed under convolution and finite mixtures, though in

general, infinite mixtures of PH distributions are not of phase type.

However, if the mixing probabilities are discrete phase type, then the

infinite mixture is also of phase-type.

From the preceding discussion it follows that MGE distributions are

phase type, i.e.,

MGE C PH.

The representation (2.1.4) of a PH distribution was obtained from

the distribution functions, v(t), of the individual states of the

underlying Narkov chain which are the solutions of

dv(t) - v(t)*Q (2.1.5) p
U dt -

The solution to this equation is v(t) = v(O)eQt eQ Taking the

Laplace transform of (2.1.5) yields

sV*(s) v(O) = V*(s)OQ

so that

V*(s) (sI-Q) = v(O) =
I- p

or

V*(s) =a (sI-Q)-1

-l QtThus (sI-Q) is the Laplace transform of e t
, and each term in the

inverse matrix of sl-Q is a rational expression. Multiplication by a

m1



-ql ql2 " 'qn (q > 0; qij > 0, i j
n

q 2 1  q22" q -q -ii + Zqij S 0, i= 1,2,..,n). 5

qn qn2"qnnii!

1 S n

This generator matrix corresponds to an (n+l)-state Markov chain with

state (n+l) being the absorbing barrier. The vector a = (aI, a,,... ,a

is the vector of initial state probabilities at t = 0, and the vector e

is an n-dimensional column vector of all ones. The entries, qi:' in the

generator matrix represent the instantaneous rate of the transition from

state i to state j. Two examples of distribution functions with PH

representations follow.

Example 2.1.1 The GE distribution of order n with parameters

XlIX 2 .. ' has the representation a = (1,0,0,.. ,0) and
1'2' n

- X 1 0 ........... 0

0 -X X0Q 2 * ." .

0 00 .....0 0 . n- Xn-1

0 00 ...... 0 -X
n

Example 2.1.2 The mixed exponential distribution

n -X.t
F(t) = I a.(1-e )

i=1
has the representation a = (aia 2 .... a ) and

t- S
-X 0 ...... 0

1

0..°_.-

0 0 ...- X
n

10 S
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When combined into a single fraction, this becomes the quot iit of two

m polynomials, the degree of the denominator being n and the degree of the

numerator n-l. This motivates the definition of R as the class of
n

distributions whose transforms are rational, with ii being both the

degree of the denominator polynomial and the maximal degree of the

numerator polynomial. We have therefore established that the class of

mixed generalized Erlang distributions, denoted by MGE, is contained in

R . Cox [1955] points out that both the convolution and the mixture of
n

any pair of distributions in Rn yields another distribution with

rational Laplace transform. Furthermore, all distributions in R aren

continuous except for possible atoms at the origin and the corresponding

density function is positive everywhere i.n (0,o) except at isolated

points. Finally, it is obvious that

K nCR (2.1.3)n n

PH Class

Neuts [1975, 1981] has popularized a class of distribution

functions that he refers to as phase type, or PH, distributions. A CDF

is said to be of phase type if it arises as the time until absorption in

a finite-state continuous-time Markov chain. That is, F, is phase type

if it can be written as

QtF(t) = 1 - ae Se (2.1.4)

- pwhere Q is the generator matrix and has the form

o• .. ..
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corresponding to the PDF

f(t) = ab- 2(a2 + b2) e (I - cos bt) (a > 0). (2.1.1)

Clearly, the ordinary exponential distribution belongs to K . Since the
n

Laplace transform of the distribution of a sum of independent random

variables is the product of the Laplace transforms of their individual

distributions, it follows that the generalized Erlang CDFs corresponding

to a sum of independent, exponentially distributed random variables with

distinct parameters are also in K . These generalized Erlangs, denoted
n

GE, have transforms of the form

n X.

i 1 X10
l s+X ( >O

where Xi/(s+X.i) is the transform of an exponential CDF having mean 1/X..1 1 1

If all the random variables are identically distributed, the resulting

3 distribution is the (simple) Erlang of degree n, E (M), and its Laplace
n

transform is just Xn/(s+X)n . Therefore we see that E (X) E K and

GEC K (2.1.2)n

R Class
n

While K contains GE, it does not contain mixtures of GE CDFs, i.e.,n

n n
distributions of the form Z a. F. with a. 2 0, Z a. = 1 and F. e GE.

i=1 1 I 1 i=l I  I

For example, suppose each F. is exponential. By the linearity of the1

n
Laplace transform, the transform of X a. F. is -

L .

i=l

n X.

, 1i

-. 8



As in the PH example, one of the MGE representations is not of minimal

order.

For most applications, such as curve fitting, non-uniqueness of

representation is a disadvantage. We now discuss a situation, mentioned

in subsection 2.3, where obtaining a representation of non-minimal order

may be useful. Suppose we have a GI{ distribution that does not have an

MGE representation of minimal order. It may be possible to embed the

distribution in a higher order space in such a way that an MGE

representation is obtained. We illustrate the procedure via an example.

Example 2.6.1 Consider the GH distribution

1 -13 -7t 77 -4t 35 -3t 21 -2t
F(t) e + e +-e )15 12 4

Here XI = 7, X2 = 4, X3 = 3, X4 = 2. Dehon and Latouche 11982]

established that an MGE representation exists if, and only if, there

exists a set of coefficients {bi, i = 1,2,3,4) such that

F(t) = b 1 F 1 + b 2 F 12 + b 3 F12 3 + b4 F 1 2 34

with each b. nonnegative and their sum being one. It can be shown that
1

such a set of coefficients does not exist (b 3 is negative). Let us now

-6tadd an additional exponential term, e and write

F 13 -7t -6t 77 -4t 35 -3t 21 -2tF(t) 1 (- - e + 0 e + - e - - e + - e )
15 12 4 5

I I I I I

Here, Xi 7, X2 = 6, X 4, X 3, X =2.
13 4 5

22



We must now solve for the coefficients (b.} from

* S

F(t)= b F + b 2 F + b F + b F + b F
12 3 123 4 1234 5 12345

where the primes indicate that the corresponding terms are defined with 9

respect to the (Xi). It turns out that there is a solution for the {b.}

that results in the representation
- i 1 1 1 1

F(t) i1F + F + I-F +-F F
41 3 2 24 123 + -4 F1234 3 F12345

Not only does this give us an MGE representation, it also confirms that

the original F(t) is in fact a valid DF since it can be expressed as a

mixture of CDFs.

This example raises the question of whether it is possible to

a obtain an MGE representation for every GH distribution. The answer, of

course, is no since all MGEs are of phase type and we have seen that

there exist GHs that are not memberg of PH. A fuller discussion of the

representation of Gi distributions as MGEs, including a set of necessary
UF

and sufficient conditions that do not require solving for the {b."

coefficients, is contained in Botta [19851.

The uniqueness property provides a strong rationale for our

interest in the GH class of distributions. We turn next to an

examination of their suitability for providing approximations to

arbitrary distribution functions.
- p
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3. DENSENESS RESULTS FOR 6H DISTRIBUTIONS

In this section we establish a major justification for our interest

in the class of generalized hyperexponential distributions by showing

that GH CDFs are dense in the class of all cumulative distribution

functions on the nonnegative real line. That is, any CDF can be

approximated arbitrarily closely (with respect to some metric) by a

member of G1{. The result eventually follows from a similar result for

Erlang mixtures (see, for example, Schassberger [1970], Whitt [19741,

and Kennedy [19771). A theorem from functional analysis concerning the

approximation of a continuous function by an exponential sum is first

extended to show that a certain class of probability density functions

can be approximated by a GH density. Several intermediate results then

lead to the desired denseness property of the class GH.

U 3.1 Denseness of Erlang Mixtures in the Topology of Weak Convergence

Consider an arbitrary CDF F(t) on [0,-). Define a sequence of

general Erlang CDFs by

U p.

F (t) F(O) + E [F(-) - F (-)] E (t) (t>O) (3.1.1)
n k 1l n nk=1"

kwhere E (t) is the k-fold convolution of the exponential CDF with
n

mean 1/n. Schassberger [1970], Whitt [1974], and Kennedy [1977] state
that the sequence (F } converges weakly to F. That is, F (t) converges

n n

to F(t) at each continuity point of F.

The notion of weak convergence induces a topology on the space of

CDFs. The resulting topological space can also be generated by a number

of metrics that measure the distance between any pair of CDFs.

Convergence with respect to these metrics is then equivalent to

24
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topological convergence. The resulting convergence in distribution,

though weaker than the classical concepts of pointwise and uniform

convergence, is useful for probabilistic modeling in situations where

the stronger notions of convergence often fail. This occurs, for

example, when the CDFs of interest have points of discontinuity.

A useful example of a metric defined on the space of CDFs is

provided by the Levy distance. If F(t) and G(t) are two distribution

functions, the Levy distance between them, denoted as L(F,G), is defined

as

L(F,G) = inf {ej for all t, F(t-c)-s :S G(t) < F(t+c) + E).

C>0

This analytic definition has an intuitive geometric interpretation. In -

the graphs of y= F(t) and y = G(t), vertical line segments are drawn at

the points of discontinuity to produce two continuous curves. Let P and

Q be the points on these curves that form the intersection of the curves

with the line t + y = c. This is illustrated below.y " +-.

Y

I0

F(t Gt

rG\

0 c

C0

25



Denoting by PQ the Euclidean distance between P and Q, the Levy distance

can be expressed as

PQL(F,G) = sup i
c

This definition illustrates that two CDFs can be close in the Levy sense

if their points of discontinuity are close "horizontally" (i.e.,

It1 - t2j is small), even though they may not be close "vertically,"

that is, with respect to the usual sup metric which requires that 0

IF(t) - G(t)I be small for all values of t.

The connection between weak convergence and convergence with

respect to the Levy metric is established by the following theorem from 0

Lukacs [1975] which is stated here without proof. The geometric

interpretation of L given above is from the same source and a proof of

the theorem appears there as well.

Theorem 3.1.1: The sequence of CDFs {Fn(t)F converges weakly to the
n

CDF F(t) if, and only if, lim L(F nF) = 0. P

It is important to note that the common statement that "a class of

CDFs is dense in the class of all CDFs" generally is taken in the sense
I

of the usual topology of weak convergence. That is the manner in which

the Erlang mixtures of (3.1.1) are dense in the class of all CDFs with

support on the nonnegative real line.
-

3.2 Approximating with E xponent i,i Sums

In this subsection we establish that a continuous function on [0, -) "'-

that vanishes at infinitv can be iiniformly approximated by a sum of

exponential terms of the form

F a- 0)

26
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The result follows from the extension to an infinite domain of the

famous Weierstrass polynomial approximation theorem. We present first

the case where the X. are integers and then a generalization to
1

arbitrary ,.. The following lemma from Apostol [1974] is stated without

proof.

Lemma 3.2.1 If f is continuous on [0,-) and if f(t) a as t - ,

then f can be uniformly approximated on [0,o) by a

-tfunction of the form g(t) = p(et), where p is a

polynomial.

We now show that if the continuous function being approximated vanishes

at infinity, the constant term in the approximating exponential sum can

be set equal to zero.

Lemma 3.2.2 If f is continuous on [0,) and if f(t) 0 as t .

then f can be uniformly approximated on [0,-) by an

exponential sum of the form

n -kt,
E ae

k= ik

Proc, : By Lemma 3.2.1, f can be uniformly approximated by the sum of

the form

n -kt" -

a + E ak e.
0 1

Thus we have only to show that a may be chosen to be zero. For c 0,
0

let

11(E) -kt

f E a 0(E) + Z a (c) e
k=l

27
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uniformly approximate f, that is, If - E I s for all t E [0,,).S

Now consider S

~ kt) -kt
lao(s) = 'f " Z ak E)e = 5 - f + f Z Z ak(E)e-t.
0k=i k= 1

Thus

la (E)l 5 - f + if + I ak( )  kt 1

k=l

n( ) -ktBut lir f(t) = 0 and clearly lir akk()e O.

t -  t-- k=l

Therefore, for any a > 0 there exists a value T such that t > T implies

n() -kt

that If(t)I S a and I E ak(c) e kt[ a. We then have

k=1

la () I - I E - f I + 2a <_ E + 2a

Since a was arbitrary, it follows that

la (F)l E . "
0 - .

But now consider the modified approximant

n(s) -kt

f - a (E) = I ak(E)e
5 k= 1

For any value oft

If - fI = If - E + ao(E)I - if E I + lao(E)L < 2E.

Since E is arbitrary, a uniform exponential approximation to f having a

zero constant term can always be found.

Q.E.D.

We now state without proof a generalization of this result that

permits the coefficients of t in the exponents of the approximating - S

function to be non-integer. The lemma is found in Kammler [197b] and is

based upon the >luntz-Szasz theorem (see Cheney 1196b)).

S

28
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Lemma 3.2.3 Let 0 < X < XI2 <... and assume that Z (1/X.) diverges.
i=l 1

Then the set of exponential sums that may be written as
-X.t1

finite linear combinations of the functions e , i

1,2,..., is dense in the space of continuous functions on

[0,-) that vanish at infinity. In other words, a

continuous function on [0,-) that vanishes at infinity

can be uniformly approximated by a linear combination of

exponentials where the coefficients of t in the exponents

need not be integers.

3.3 Approximating PDFs with Exponential Sums

We wish to develop an exponential sum approximation to a

probability density function. For a particular class of PDFs -- those

whose tails decay at least exponentially fast -- the results of the

preceding section can be applied to show that the class GH is dense with

respect to the PDFs of interest. That is, we approximate a PDF with an

exponential sum that is also a PDF.

Theorem 3.3.1 Let f be a PDF continuous on [0,-) and let f 0
t

exponentially fast as t . That is, lim f(t)e 0 P

for some X > 0. Then f can be uniformly approximated on
0

[0,-) by a generalized hyperexponential PDF.

Proof: The proof consists of three parts. First we find an

exponential sum approximation; next, we modify the approximation so that

it is nonnegative; finally, we normalize the approximation so that its

area is unity.

29
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X t
(i) Let g(t) f ft) e 0 By Lemma 3.2.3 we can approximate -(t) by a

function of the form

n tk

k=1k

such that Ig -'j EI for all t c [0,-). Thus we may write

I- -- If(t)e - e 0 Z ak0 o k

or

e 0 f(t) X a e o(X+kt I < E

Therefore

(X +X )t -

This shows that f I ake Ok uniformly approximates f. Of course,

f may be negative for some values of tand so may not be a valid PDF.

(Miore on this subsequent ly.)

(ii) From (3. 3. 1) we have
-X t

If (t) - f(t) I C e 0 (3.3.2)

so that 0 5 f(t) 5 f(t) + Ee , where the first inequality follows

from the fact that f is a PDF. Define the right-hand side to be

-X t

f f (t) + r e ? f f(t) 0. (3.3.3)

Then -
-X t tx

If fl if f~~ 0E f + C e 0

or

- i C-t + -t Xt

f 5E 0 +E CV < 2E (3.3.4)
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Therefore, f is a nonnegative exponential sum that uniformly

approximates f. However, f > f from (3.3.3), so that..

I f dt > f f dt =1
0 0

and f may not be a PDF.

(iii) To produce an approximation to f that is indeed a PDF. we must

normalize f so that its area is unity. Let

A=f fdt> 1.
0

If A = 1, then f is a PDF and we are finished. If A > 1, define

f'= f/A, so that J f'dt = 1. It remains to show that f' uniformly
0

approximates f on 10,-). From (3.3.2) we have

-x t

7(t) ! f(t) + ce o

Using (3.3.3)
-X t -X t

f(t) = f(t) + ce < f(t) + 2e 

Therefore

0 2E (3.3.5)"
A= f dt f dt+ I 2ce dt= 1 + T-

0 0 0 0

Now consider

If - f'I = If - fl = I Af-fi
A A

= AC f f + C - j I (A-l)f + f-

A-1 I . -

_ -- Cf, (A-1) If + f-fjI1% + A

31 S
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The last inequality follows from (3.3.5). Finally, from (3.3.4) and

(3.3.5), we obtain

f-f' : - fj + 2- !5 [f + 2E. (3.3.6)
0 0

The second of these inequalities follows from the boundedness of f,

which in turn is a consequence of the continuity of f and the fact that

f 0 as t (see, for example, Boas [1972], p. 78). Since the RHS of

(3.3.6) can be made as small as desired by an appropriate choice of E,

f uniformly approximates f, is nonnegative, and integrates to unity and

therefore is a valid PDF. Furthermore,

-X t n ak -(Xo+Xk)t n ak Xkt (X > 0)f, =A e o + I - e E Y- e k
A k=1 A.k=O k

where a = c. Therefore, f' c GH.0 5

Q.E.D.

Let us now considar the class R of PDFs having rational Laplace
n

transforms, where n is the degree of the denominator polynomial.

The roots of the denominator each have negative real part so that

when a partial fraction expansion is formed and the inverse

transform taken, there are at most n terms, each of the form
k -at 0

t e (A cos bt + B sin bt). Therefore, the PDF goes to zero

exponentially fast and is continuous. In other words, all PDFs that

are in R satisfy the conditions of Theorem 3.3.1. We have then then "

following corollary.

Corollarv: Every PDF in R can be uniformly approximated on [0,-) by
n

a generalized hyperexponential density. That is, Gil PDFs

are dense in R
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3.4 Approximating CDFs with Exponential Sums

In this subsection we wish to extend the exponential sum

approximation to cumulative distribution functions (CDFs). We begin by

showing that if two PDFs are close in some sense, then their

corresponding CDFs are also close. It then follows that anv finite

mixture of Erlang CDFs can be approximated by a generalized

hyperexponential CDF. The results of subsection 3.1 are then used to

show that any CDF can be closely approximated by a generalized

hyperexponential CDF.

Lemma 3.4.1. Let f be a PDF continuous on [0,-). If another PDF, g,

t S
uniformly approximates f, then the CDF G = 6 s(x) dx

0
t

uniformly approximates the COF F = I f(x) dx on [0,).

0

Proof: For any E > 0 there exists a value t such that for t - t
0 0

F(t) I 1- - This follows from the existence of the integral

I f(x) dx = F(-) 1 by the Cauchy criterion (see, for example, Bartle "
0
[1964], p. 345). Let g be such that If - < E/2t for all t E [0,-)

0

where, for the moment, we assume t 0 0. We now examine [F -G on the
0

intervals [O,t 0 and [to,w). 0

(i) [O,t

t t t 0
IF -Gf f dx - g dx= I (f -g) dxi

0 0 0

t t

if gj dx S J o - g dx E "
0 0

33 0
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(ii) [t ,)

0S

From (i) F(to) G(t) :5 e/2, so that G(to) > F(t ) - / > 1
0 0 0 0

- F/2 - E/2 = I - c. By the monotonicity of G it follows that G(t) - G

(t ) 2 1 - E for all t 2! t . Therefore, on [to, c) F - G 1 - C/2 - P0 0 0

-> - e/2 since G(t) 1 1 for all t. Also F - G _ 1 - G :- 1-(l - ) = .

Therefore, F - G1 - E. Combining the results from (i) and (ii) we have

that IF - GI! :- E on [0.-), so that G uniformly approximates F.

The only way that t could be zero is if E/2 2! 1. However,
0

F - G < IF! + GI 1 1 + 1 = 2 < E; so again G uniformly approximates

F.

Q.E.D.

At this point, we pause to note that we have established the

desired denseness property of the class GH with respect to a subset of

CDFs. In particular, if F is an absolutely continuous CDF on [0,o) and

its derivative is continuous and has an exponentially decaying tail,

then it follows from Theorem 3.3.1 and Lemma 3.4.1 that there exists a

Gil CDF that uniformly approximates F. In other words, we can find a

G E Gil with the property that IF(t) - G(t)j < E for all t E [0,).

Continuing with our general development, we note that an Erlang PDF

is defined on [O,-) and has a Laplace transform of the form (X/(X + s)) 
n

where X is a positive real number. Consequently the Erlang PDFs belong

to R and, from the corollary to Theorem 3.3.1, we obtain the following
n

corollary to the preceding lemma. -
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Corollarv: Every Erlang CDP can be uniformly approximated on [0,-)

by a GH CDF.

k
Recall that E (t) is the Erlang CDF obtained by taking the k-fold

tt
convolut ion of the exponential CDF I-e Let us use the notation

C kt) to represent a Gi CDF that uniformly approximates E (t) On [0,o).

We iow use the result stated in subsection 3. 1 to show that any CDF on

0,oI can he approximated arbitrarily closely by a generalized

hypere xpo: t in ai CDF.

Theorem 3i.4. 1 Let F be an arbitrary CDF defined on [0,-). Then a

generalized hyperexponential CDF can be found that

approximates F arbitrarily closely in the topology of 5

weak convergence. In other words, the set of generalized

hyperexponential CDFs is dense in the set of all CDFs

defined on [O,o). 6

Proof: From Equation (3.1.1) the sequence of CDFs defined by

F= F(O) + IF(-) F k-I)] Ek (3.4.1)

k=l n 
.1

converges to F at each continuity point of F. By the corollary to Lemma

3.4.1, there exists a Gil distribution that uniformly approximates Ek on S
n

k
[0,-), call it Gk

. Therefore
n

*k k
IE - G - on [0,oo. (3.4.2

n n -
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Let F( k F(---) b and define H asn n n n

k kH =F(O) + Z b G .(3.4.3)n k~l n 11

The existence of H can be characterized as follows. Since G k is a ODF
n 11

it never exceeds unity. Therefore,

Z b kG k Z b k 1- F(O)
kln n k1n

k ~ k k

by the definition of b Since both G nand b nare nonnegative, the

sequence of partial suns

K k k
Z b G

k=1 n n

is bounded above and monotonically increasing with K, and so it has a limit.

IAt each continuity point t of F we have that lrn F n(t) =F(t). That is,

for E > 0 there exists an N(c,t) such that for all n 2t N, IF (t) -F(t)!

n

:5 E. We are now ready to show that H n(t) approximates F(t).

H(t) - F(t)I =IH (t) - F (t) ±F (t) - F(t)In n n n

:5 H n(t) - F 11(t)I + IF n(t) - F(t)I

!5 H n(t) - F n(t)I + E. (3.4.4)

From Equations (3.4.1) and (3.4.3),

(t) F (t)I= I b (Gk (t)- Enk (t)n n k=1n n n

k k k
:S Z b IG (t) -E (t)I.

k11n n nl
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By Inequality (3.4.2), this becomes

H(t) - F (0j 5 E E b k <9
k=l

Substituting in (3.4.4) yields

Illn(t) - F (t)I 2e , n 2! N (E,t) . (3.4.5)

nn

approximates F as closely as desired. Each approximant, H n (t), where n

depends upon t and c, consists of an infinite sum of GH CDFs. We now

show that the infinite sum may be replaced by a finite sum.

It follows from the definition of b kthat there exists a number
n

K (n) such that for all K : K (n),

Ebk <1.

k=K n1 n

Now define

HK(n K (b)-1k k k
H F()t) b G + I b . (3.4,6)

k=1 =

Next, consider the sequence of functions (H K i)* For each E > 0,n

there exists N( , t) such that for all n : N, HI (t) -F(t)j I S by

(3.4.5). Now choose n (e,t) max (N,l/c). Therefore, for all n -> n

we have

HfK0 (t) H KF n(t) IfH (t) + H1 (t)- F(t)

H(t) I t + H (t) F F(t) (3.4.7)

< +
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The last inequality holds since n 2 n* N. Now from (3.4.3) and

(3.4.6),

K (n ) k H kt)HK (t) H ( I E b Gk ) W Z bk
n 1k=K* (n) n n k=K*(n)n

k k
=I E b (G (t) -1)

n0 n

k=K* (n) "'

nn n

(3.4.7) yields

K (n)IlH (t) c ~) + z 2F 2, n n*. (3.4.9)

By the way 1  n was constructed, it is a CDF and (3.4.9)
n

esalihs tht {K (n) K (n)
esabise tht { converges weakly to F. Each H Lt

contains a finite linear combination of CDFs each of which is GH. In

the event that F(O) 0, H is a (finite) convex combination of

these GH CDFs and so is itself GH. When F(O) > 0, we can write HK (n

as the mixture

KH() K (n) -1  I t)k±K'(n) -1 k

where

kk
P1  F(O) + Z b ," p E, bk

k=K" k=1 n
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and U(t) 1 is the CDF of an atom at t = 0. From the definition of the

(bk, p1 + P= 1. If the atom at t = 0 is thought of as an exponential
n•

distribution with vanishingly small mean, HK (n) can be viewed as a GH
n

CDF for any value of F(O).

To recapitulate, we have demonstrated the existence of a sequence S

K (n)of GH CDFs, (Hn ), that converges to a given CDF, F, at each of its

continuity points.
Q.E.D.

If the limiting CDF is continuous, then weak convergence becomes

pointwise convergence. A result due to Polya, cited on p. 86 of Chung

[1974], establishes that the convergence is in fact uniform in this
O

case. Therefore, any continuous CDF with support on the nonnegative

real line can be uniformly approximated by GH CDFs.

39
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4. CONCLUDING REMARKS

We have made a case for considering generalized exponential p

mixtures to approximate any CDF defined on [0,-) by demonstrating that

the class GH is dense in the class of all CDFs, i.e., any CDF can be

approximated as closely as desired by a member of GH. Therefore, G11

joins other known dense classes of probability distributions such as

those of phase-type and those having rationil Laplace transforms. In

addition to the denseness property, GH distributions have a unique

representation; this property is not shared by all dense classes of

distributions. We also presented a set of relations positioning the GH

class among other often used classes of distribution functions. The

properties of the GH class of distributions make it attractive for both

numerical and statistical computations.

This work has focused on theoretical results and does not discuss

the important area of how to construct an approximating GH distribution.

Recent work, however, has extended to generalized exponential mixtures a

maximum likelihood-based algorithm for fitting mixed Weibull

distributions to empirical data. Questions that remain for future

investigation include determining the number of terms required for a

finite mixture to be "good enough" and the related question of the

minimum achievable distance between a given CDF and the class of GH

distributions having a fixed number of terms.

-9
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