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ABSTRACT

" Generalized hypererponential (GH) distributions are linear
combinations of exponential CDFs with mixing parameters (positive and
negative) that sum to unity. The denseness of the class GH with respect

t

to the class of all CDFs defined on [O,w);;; eéfablished by showing that
a GH distribution can be found that is as close as desired, with respect
to a suitably defined metric, to a given CDF. The metric induces the
usual topology of weak convergence so that, equivalently, there exists a
sequence({Gn}c:k GH CDFs that converges weakly to any CDF. The result
follows from a similar well-known result for weak convergence of Erlang
mixtures. Various set inclusion relations are also obtained relating
the GH distributions to other commonly used classes of approximating

distributions including generalized Erlang )GGEJ;BVmixed generalized

Erlang,LMGEf, those with reciprocal polynomial Laplace transforms Q%ﬂt’

those with rational Laplace transforms »lRH)’ and phase-type ,4PHT‘L

distributions. A brief survey of the history and use of approximating

distributions in queueing theory is also included.)

Key phrases: probability distribution; cumulative distribution
function; approximation; convergence in distribution;
weak convergence; denseness; Erlang distribution;
generalized hyperexponential distribution; method of

stages.
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1. INTRODUCTION

The purpose of this paper is to characterize the class of
generalized hyperexponential (GH)} probability distribution functions and
to justify their use as convenient approximations to arbitrary CDFs.

1.1 Definition

Generalized hyperexponential distribution functions are of the form

At
F(t) = £ a (l-e 1
i=1

n
with I ai =1, ai real, ki > 0. They are generalizations of the

i=1
well -known hyperexponential distributions which are of the same form but
with the additional requirement that the coefficients {ai} be positive.
The familiar generalized Erlang CDFs arising as the distributions of a

sum of independent, non-identical exponential random variables are in

GH. A typical example is provided by the CDF

3(1-¢ ) - 3(1-e72%y + (1-e73%

1 - 3e-t + 3e-2t - e-3t.

F(t)

1.2 Organization

In the following, we first discuss briefly the evolution of
approximations to CDFs in stochastic modeling, particularly in the field
of queueing theory. Relationships among the classes of approximating
distributions, including GH, are then developed in Section 2. Section 3

establishes that any CDF can be approximated as closely as desired, with
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respect to a suitably defined metric, by a GH distribution. This fact,
together with the attractive numerical and statistical properties of the
class GH, provides a major justification for considering this class of
approximants. Finally, Section &4 contains concluding remarks and some
areas for future research.
1.3 Background

The use of approximating distributions in applied probability
modeling dates back at least to the early part of the twentieth century.
A. K. Erlang used the so-called method of stages to preserve the useful
properties of exponential distribution functions in situations where the
true underlying distributions were not in fact exponential (see, for
example, Cox and Miller [1970]). By imagining customers in a queueing
situation to progress through a series of independent stages in tandem,
with the time spent in each stage having an exponential distribution, it
is possible to preserve the Markovian character of the queueing system.
The memoryless property of such systems simplifies the resulting
equations governing queue Dbehavior, such as the probability
distributions of customer waiting time and number of customers in the
system. Jensen [1954] generalized Erlang's technique, in part by

allowing the exponential stages to have non-identical parameters.

Much of the queueing literature makes use of the theory of complex
variables in the frequency domain which results when Laplace transforms :_‘J
of the probability distributions of interest are computed. Smith [1953
noted that the probabilities resulting from the method of stages have

Laplace transforms that are reciprocal polynomials having negative real
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roots. He extended the concept of stages by defining the class Kn to be
all those distribution functions whose transforms are reciprocal
polynomials of degree n with, in general, complex roots. He then
showed, using Lindley's GI/G/1 formulation, that under mild conditions
on the interarrival and service-time distributions, a service-time
distribution of type Kn implies that the total equilibrium system time
(queueing plus service) is also of type Kn. In particular, if service
time 1is exponential, so is the system time for any distribution of
interarrival times.

Cox [1955] extended the concept of stages further by considering
the class of distributions having rational Laplace transforms. He
showed that the method of stages can still be employed for this larger
class of CDFs if one is willing to tolerate stages having complex roots
and "probabilities" that may be negative. While the fictitious stages
do not therefore correspond to physical entities, the resulting overall
probabilities will be valid. The advantage of such an approach is that
the desirable mathematical properties of Markovian systems may be
retained. Cox went on to provide some justification for restricting
attention to distributions with rational transforms by noting that if
the degree of the polynomials is allowed to be countably infinite, any
CDF can be closely approximated by one having a rational transform.

Wishart [1959] used the method of stages and Markov chains to
verify Smith's Kn result for the equilibrium distribution of waiting
times in a GI/G/1 queue having arbitrary interdarrivdl-time distribution
and service-time distribution characterized by a series of Erlang

stages.
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Kotiah et al. [1969] approximated the GI/G/1l queue by assuming that
both the interarrival and service-time distributions were Erlangian,
that is, consisted of a series of exponential stages. They developed
numerical procedures to calculate the mean waiting time for the system
and examined the effect of varying the skewness of the interarrival
distribution,.

Schassberger [1970] established the theoretical basis for some of
the earlier work using the method of stages to obtain waiting-time
distributions for the GI/G/1 queue. In doing so he showed how a
sequence of mixtures of Erlang CDFs may be constructed that converge
weakly to any desired distribution function defined on [0,«).

Neuts [1975, 1981) has popularized the class of phase-type, or PH,
probability distributions. These are distributions that arise or can be
interpreted as the time until absorption in a finite Markov chain, and
have rational Laplace transforms. Their major  advantage is
computational; instead of differential equations, complex variables and
numerical integration, they admit of matrix-geometric procedures. A
drawback of PH distributions, however, is the nonuniqueness of
representation. Many different combinations of defining parameters lead
to the same CDF and many of these representations are not of minimal
order.

Theoretical justification for the use of approximating
distributions has also been provided by work on the continuity of
queues. Kennedy [1972, 1977] and Whitt [1974] have shown that if the
interarrival and service-time distributions of otherwvise identical

queues are close in some sense, then the corresponding performance

e .
LT e L B
et

A B ot RRCIRPCIR DR N LIPS ST ILI NI U T S Dot S0 B ST I S S SR T NI S i‘




SR M T S =2 Lt At el i - R il i SRR S S

,‘a’.l

measures such as queue length and waiting time will also be close in an
appropriate sense. A very demanding technical treatment is needed to
establish these results which requires careful definition of the
underlying spaces, metrics, convergence concepts, and topologies. Both
authors cite the sequence of mixed Erlang distributions, introduced by
Schassberger that converges weakly to an arbitrary CDF. By constructing
a sequence of such general Erlang models for a given GI/G/c queue, where
the actual interarrival and service-time distributions are approximated,
the weak convergence of the two sequences of CDFs impiies the weak
convergence of the corresponding performance measures.

This concept of weak convergence of probability measures has found
widespread application in applied probability modeling. Queueing theory
happens to be the area in which most of the weak convergence results
have been used. Iglehart [1973] has written a useful survey paper that
details the uses of weak convergence in queueing. Discussions on
continuity of queues and rates of convergence are included.

Another interesting survey paper is that of Bhat et al. [1979].
They consider the use of approximations in quecueing applications but
their definition of approximation is somewhat broader than ours.
Besides the use of approximating distributions, which they subsume under
the heading of system approximations, they examine two other classes of
approximations. Process approximations are concerned with replacing the

physical process under study by a simpler one and include the use of

diffusion and fluid approximations. Numerical approximation involves

methods of simplifyiug the avithmetic computations that arisc in solving

yoror g
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the systems model; establishing upper and lower bounds on performance
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measures and using numerical methods to invert analytically intractable

Laplace transforms are examples of this type of approximation. 2

e
This concludes our brief review of the salient developments in the "
use of mixed-exponential-type approximations in applied probability. .“
Although the emphasis has been on queueing applications, the basic '
concepts have wide applicability. While the family of mixed Erlang
distributions has certainly been the most popular class of approximating »
functions, we will make a case in the sequel for considering the
generalized hyperexponential distributions. Besides being of simple
form which facilitates numerical manipulations, GH distributions have a .
unique representation which is desirable for such statistical procedures :'._
as parameter estimation. They extend the familiar hyperexponential V-Y{
class of distributions and enjoy the analytical benefits of having .
rational Laplace transforms. Furthermore, recently developed algorithms .
for fitting hyperexponential distributions to empirical data (see Kaylan ::i_‘.:j.
and Harris [1981) and Mandelbaum and Harris [1982]) can be readily .
generalized to include GH distributions. -
]
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2. RELATIONS AMONG CLASSES OF DISTRIBUTION FUNCTIONS

In this section, families of probability distribution functions
that find wide use as approximations to more general CDFs, for example,
in queueing applications, are defined and related to one another. The
more obvious relations are mentioned with the definitions, while others
are presented in following subsections.

Several of the definitions below are stated in terms of the
one-sided Laplace-Stieltjes transform of a CDF, F. This transform, F¥,
is defined in the ususal way as

Fi(s) =/ e °F dF(t),
0

which is equivalent to the ordinary one-sided Laplace transform of a

PDF, F'(t) = f(t), whenever F(t) is absolutely continuous.

Smith [1953] defined the class Kn to be those distribution
functions whose Laplace transform is the reciprocal of a polynomial of
th . . .
n degree. Of course, not all reciprocal polynomials dre transforms of
CDFs. For instance, the real part of each polynomial root must be
negative. While the roots may be complex, they must occur in conjugate
pairs since the corresponding CDF is real. There are also additional
constraints that are not so obvious. TLukacs and Szasz [1951] have shown

that one of the roots with greatest real part must be real. Therefore,

the simplest member of K having complex roots is of the form
n

-2 2
aa” + b7

Fie(s) = - -~ T, BN
(st [(s+a)” + b7
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distributions. For example, consider the two following distinct

phase-type representations:

-3 1 1
Q= 1 -4 2 . a = (0, 1/2, 1/2)
1 0 -6
and
-2 0
Q' = : a' = (2/3, 1/3)
0 -5
L

Clearly the two representations are different and are not of the same

order. However, each results in the same CDF, namely, F(t) = 1
=2t -5t ,, ) ..
- (2e /3 + e /3). The second representation would be of minimal

order since the CDF is a mixture of two exponentials.

Mixed generalized Erlang distributions also permit multiple
representations. From the notation of Dehon and Latouche [1982] we may
represent the CDF of the sum of n independent rvandom variables, each
exponentially distributed with parameter Xi (1 =1,2,..,n), by Flz. .

This CDF is obtained in terms of the underlying expeonentials by Equation

(2.3.2). But the two CDFs defined by

- P I
F(t) (1/3) Fl + (2/3) }13

and
G(t) = (1/3) Fl + (4/9) qu + 2/ F1°3
are in fact the same. This can be seen by expressing each as a linear

combination of the underlying cxponential distributions. As discussed

above, this representation is unique and yvields

F(t)y = Glu, = (-1/3) Fl + (4/3) FfS

21




2.6 Uniqueness of Representation

For statistical applications, an important property of mixture-type
CDFs is uniqueness of represcntation, or identifiability. Yakowitz and
Spragins [1968] define the identifiability of finite mixtures as
follows. If {Fi} is a collection of CDFs, then the class of finite
mixtures of the {Fi} is said to be identifiable if (he convex hull of

{Fi} has the property that

where <y > 0, I c,

i 1, implies N = M and that for each i (1 € i £ N)

there is some j (1 € j £ N) such that c, = c; and Fi = F;. A necessary
and sufficient condition for identifiability is that the class {Fi} be a
linearly independent set over the field of real numbers. This follows
from the uniqueness of representation property of a basis in a vector
space.

Since any collection of distinct exponentials is linearly
independent, the class of finite mixtures of exponential CDFs is
identifiable. A broader concept of identifiability for generalized
mixtures also applies when the underlying family of CDFs is exponential.
A generalized mixture is one where the mixing parameters sum to unity
but can have any real values, and of course, the GH distributions are of
this form. Again, the uniqueness of the representation of vectors with
respect to a basis for the vector space implies that GH distributions
have unique representations as linear combinations of exponentials.

fmportantly, the other families of CDFs considered in this work do

not share the uniqueness of representation property with the GH

20




and MGE is a proper subset of PH. The results presented in Examples
2.3.1 and 2.4.1 are developed more fully in Botta [1985] where
conditions are also given for GH and PH distributions (with real roots)
to have MGE representations of the same order as the GH representation.
These conditions are readily computed from the given distribution and do

not require solving for the {bi} coefficients.

2.5 Summary of Set Inclusion Relations

The results of the foregoing subsections yield the following set of
relations among the classes of distribution functions:

(1) GEC K CR

n n.o
(2) GE T MGE C GH C Rn
{3) OGE CMCGE CPHC Rn
(4) PHEK K“¢ PH i\‘nd: PH
t5)Y P @ GH . GH Q: Py

(o OGH C/t R ottt same order)

These relations o an be depicted in the following Venn diagram.

19
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in the subsection on uniqueness of representations, that it may be
possible to obtain a MGE representation by embedding the problem in a
higher order space even when there is no valid MGE representation in the

original space.

2.4 MGE and PH

We established in subsection 2.1 that all MGE distributions are
phase type. Since PH distributions may include trigonometric terms, it
is clear that the MGE distributions are a proper subset of PH. But what
if the PH generator matrix is allowed to have only real eigenvalues? Is
the resulting subclass of PH distributions contained in MGE? The answer
is no. We obtain this result by way of a counter example.

Example 2.4.1 The PH distribution given by

— 7 - 7 - -
1 - (1.293 o 4840 | 5y A 19980 50 o7-999T,

F(t)

was obtained from the generator matrix

-5 0 1/8
Q= 4 -4 0
0 1 -1

with a = (1,0,0). As before, equating F(t) to blFl(t) + b (t)y +

2F12

b (t) and solving for the {bi} yields the result that b, = -.0369.

F
37123 2

Since each bi must be nonnegative, we do not have a valid MGE
representation. Thus, PH distributions with real roots do not

necessarily belong to MGE. In other words,

PH (real roots) & MGE
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By substituting (2.3.2) in (2.3.3), a triangular system of linear
equations relating the {ai} and {bi} coefficients is obtained. This
system of equations is readily inverted to yield the {bi} in terms of

the {ai}. For the case of n = 3, it turns out that b1 and b, are always

3
nonnegative for any choice of {ai} corresponding to a GH distribution.
The nonnegativity of b2 requires that
DY
a, > - §§%il?X§;_ a, (2.3.4)
2 71 "2 ’
The next example shows that GH distributions exist for which
(2.3.4) is violated.
Example 2.3.1 Consider the GH CDF ’
- -3t -7 ,‘
F(t) = 1 - (6e *F 1372 + 8e™2%) :
Here 1;:j
= = - = ; )
a1 6, a2 13, a3 8
kl =4, Xz = 3, XS =2 e
Therefore [
) A3 Ay) A = .32 N
O %3 3 )
'
Since a2 < -32/3, we see that (2.3.4) is violated and thus that no MGE T
representation exists for F(t). This example establishes that o
GHQ MGE , B
-
and that the class of MGE distributions is thus a proper subset of the g J
class of GH distributions. N .t
O
The above rvesult holds when the order of the MGE representation ‘::'?-:
.~ e
must be the same as that of the GH distribution. We demonstrate below, o
'

17
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where the Ai are real. Any mixture of such distributions has a
transform of the same form. Therefore any mixed generalized Erlang
distribution is in GH and
MGE C GH . (2.3.1)
Based upon results in Dehon and Latouche [1982], we next
demonstrate the existence of GH distributions that cannot be represented
as MGEs of the same order. They show that any GE distribution
constructed from a subset of exponential distributions, {Fi}, can be

expressed as a random combination of the GE distributions F F

IREVIERE
F where F ., is the distribution of the sum of the first i
12...n 12...1
independent exponential random variables. Each such distribution
function can be written as
i i Xk
F () = 1 i\ (—) F.()\, (t 2 0) (2.3.2)
12. .1 5=11 k=1 Xh Xj j
k#j
-\t
where Fj(t) = 1-e J . (It has been assumed without loss of generality

that Xl > Xz >.,.> Xn.) Since the {Xj} are constants, (2.3.2) is in the
form of a GH distribution whose coefficients are determined by the {Xj}.

which agrees with (2.3.1). In order for a GH distribution,

n -\t
1 . .
F(t) =1 - L ae , to have a MGE representation, there must exist a
i=1
set of nonnegative numbers (bi, i=1,2,...,n} which sum to one and

satisfy the equation

n n
1 -%a.e =3%b,F () . (2.3.3)




Tt

Because of the trigonometric terms, F(t) is clearly not in GH. So
PHE GH . -
But does every GH distribution have a PH representation? The
answer 1is no. As mentioned earlier, the density function corresponding
to any PH distribution 1is strictly positive for all t > 0. The -
following example exhibits a GH distribution that violates this
condition.
Example 2.2.2 Consider the GH distribution defined by
F(t) = 1-(4e b - 6o 2t + 36731
with corresponding density
£(t) = F'(t) =4e = - 12¢ ° + 9e
It can easily be shown that f(t) = 0 for both t = 0 and t = ln (3/2) and

that £(t) > 0 for all other values of t. Therefore, F(t) € PH and

GHG PH . AR

2.3 MGE and GH
Recall that the generalized Erlang (GE) distributions have Laplace ;"Jt:T

transforms

n Xi
n —
. s+,
i=1 i
where the Xi are distinct. Using a partial fraction expansion, this
transform can be written as
n A, )
b
s+)
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boundary equation can be easily used to determine if a candidate
exponential sum is in fact in GH. TFor sums of more than three
exponential terms, the boundary equation could be determined in similar
fashion but would be very involved and still not of much practical use
in determining membership in GH.

We next develop some additional relations between the classes Kn’

Rn’ GE, MGE, PH, and GH.

2.2 GH and PH

From the preceding subsection we know that all PH distributions are
in Rn. But if the roots of the denominator polynomial are complex, the
corresponding distribution will not belong to GH. The following example
displays such a PH distribution.

Example 2.2.1 Consider the 3x3 generator matrix

o

H
—

1
ON =
w = o

The eigenvalues of Q, which are equal to the roots of the denominator

polynomial of the Laplace transform of th, are

= -7 . = =7 H + i
N[ = --2307 3 Ay, = -2.8846 % 5897 i

where i = ¢-1. The resulting PH distribution corresponding to an

initial state vector a = (1,0,0) is

-0 -0
F(t) =1 - 1.1729 ¢ =207¢ -]

Cy ansn Oty
= [.1729 cos .5897t + .3868 sin .5897t] e _'beOt. AR

14 ’




Note that, unlike the usual hyperexponential distribution, we do not
require that each a, be nonnegative. This added freedom makes the GH
distributions extremely versatile. Indeed, in the following section, we
derive the critical characterizacion that any CDF on [0,«) can be
approximated as closely as desired with respect to an appropriate metric
by a member of GH.

The Laplace transform of a GH distribution has the form

so we immediately note that
G}{CRn . (2.1.7)

Of course, not all linear combinations of exponentials of the form

n -2t n
1 - I a, e 1 with Xi >0 and L a, = 1 are GH distributions.
i=1 i=1
n
For example, the monotonicity condition requires that aiX. >0
i=1

Also, assuming Xn to be the smallest of the Xi, the corresponding
coefficient a, must be positive to insure proper asymptotic behavior as
t ?* «. Bartholomew [1969] has established a number of sufficient
conditions for a linear combination of exponentials to be a GH
distribution, but no simple set of conditions that are both necessary
and sufficient is known. Dehon and Latouche [1982] have recently
characterized the class of GH distributions by deriving a parametric
equation of the boundary of the convex region constituting GH for the -
case n = 3. The geometric representation is obtained by choosing a set
of basis vectors from the class ot all GH distributions composed of

linear combinations of three exponentials. It does not appear that the
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yields rational expressions for each component of V¥(s). Therefore, the
probability distribution of each state belongs to Rn as does the
distribution of the time until absorption. We have, therefore, the
relation

PHC:Rn . (2.1.6)

Phase-type distributions can easily be constructed with Laplace
transforms which are not reciprocal polynomials, so that PHgt}%f But
is it possible that every Kn distribution has a PH representation? The
answer is no. Corollary 2.2.1 in Neuts [1981] establishes that any
non-trivial PH distribution has a corresponding density function that is
strictly positive for all t > 0. The PDF given earlier as (2.1.1) has a
reciprocal-polynomial Laplace transform but.the density function is zero
wherever cos bt = 1. Therefore, the corresponding distribution function
is not in PH. We have then that KnGZPH which implies that RHCZPH and
that PH is thus a proper subset of Rn.

It should be noted that, given an aribtrary CDF, there is no easy
way to determine if it is in PH. One must search for a suitable
generator matrix and set of initial conditions that will yield the
desired distribution.

GH Class

The generalized hyperexponential distributions are CDFs of the form

n
with Xi > 0 and real, I a, = 1 and a, real.

12




It should be noted that PH representations are not unique. That
is, there may exist many different generator matrices of different
orders that lead to the same CDF. Examples are given below in
subsection 2.6. The problem of finding minimal representations of PH
distributions, that 1is, where the order of Q is as small as possible,
has not been solved. Neuts [1981] established that the class of PH
distributions is closed under convolution and finite mixtures, though in
general, infinite mixtures of PH distributions are not of phase type.
However, if the mixing probabilities are discrete phase type, then the
infinite mixture is also of phase-type.

From the preceding discussion it follows that MGE distributions are
phase type, i.e.,

MGEC PH.

The representation (2.1.4) of a PH distribution was obtained from

the distribution functions, v(t), of the individual states of the

underlying Markov chain which are the solutions of

dv(t) _ .
4 - v(t)*Q . (2.1.5)
. . . . Qt _ Qt ,
The solution to this equation is v(t) = v(0)e = ae . Taking the

Laplace transform of (2.1.5) yields

sV*(s) - v(0) = V¥*(s)*Q ,
so that

V¥(s) (sI-Q) =v(0) = a
or

V#(s) = «a (sI-Q)-l.

Qt

Thus (sI-Q)_1 is the Laplace transform of e* , and each term in the

inverse matrix of sI-Q is a rational expression. Multiplication by «a

11
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-qll q12 qln (Clii > 0; qu 20, i # Js
n
Q=1 9y "5 %y, "9t .zlqij €0, 1=1,2,..,0)
..... 1=
91 %2 "9

This generator matrix corresponds to an (n+l)-state Markov chain with

state (n+l) being the absorbing barrier. The vector a = (@), @yy..0s0 )

< n

is the vector of initial state probabilities at t = 0, and the vector e

is an n-dimensional column vector of all ones.

The entries, qij‘ in the

generator matrix represent the instantaneous rate of the transition from

state i to state j. Two examples of distribution functions with PH
representations follow.
Example 2.1.1 The GE distribution of order n with parameters

kl,kz,...,kn has the representation o = (1,0,0,..,0) and
-Xl Xl O..vvvvvnn.. 0
O =X, A o, 0
2 727
Q =
0 00..... -xn-l xn-l
0 00...... 0 -\
L n J

Example 2.1.2 The mixed

).t
i

has the representation a =

10




When combined into a single fraction, this becomes the quotient of two
polynomials, the degree of the denominator being n and the degree of the
numerator n-1. This motivates the definition of Rn as the class ofr
distributions whose transforms are rational, with n being both the
degree of the denominator polynomial and the maximal degrece of the
numerator polynomial. We have therefore established that the class of
mixed generalized Erlang distributions, denoted by MGE, is contained in
Rn' Cox [1955] points out that both the convolution and the mixture of
any pair of distributions in Rn yields another disgribution wich
rational Laplace transform. Furthermore, all distributions in Rn are
continuous except for possible atoms at the origin and the corresponding
density function is positive everywhere in (0,) except at isolated
points. Finally, it is obvious that
KnC:Rn . (2.1.3)
PH Class
Neuts [1975, 1981]) has popularized a c¢lass of distribution
functions that he refers to as phase type, or PH, distributions. A CDF
is said to be of phase type if it arises as the time until absorption in
a finite-state continuous-time Markov chain. That is, F, is phase type

if it can be written as

F(t) = 1 - aveltoe (2.1.4)

where Q is the generator matrix and has the form
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corresponding to the PDF

£(t) =ab 2(a® +b%) e A (1 - cos bt) (a>0). (2.1.1)
Clearly, the ordinary exponential distribution belongs to Kn' Since the
Laplace transform of the distribution of a sum of independent random
variables is the product of the Laplace transforms of their individual
distributions, it follows that the generalized Erlang CDFs corresponding
to a sum of independent, exponentially distributed random variables with
distinct parameters are also in Kn. These generalized Erlangs, denoted

GE, have transforms of the form

n X,
i

S+X .
1

(X, >0)
i=1 '

where xi/(s+xi) is the transform of an exponential CDF having mean I/Xi.
If all the random variables are identically distributed, the resulting
distribution is the (simple) Erlang of degree n, En(X), and its Laplace
transform is just kn/(s+k)n. Therefore we see that En(k) £ Kn and

GEC Kn (2.1.2)

R Class
n

While Kn contains GE, it does not contain mixtures of GE CDFs, i.e.,

n
distributions of the form £ a; Fi with a; 2 0,
i=1 i

[ =]

a, =1 and F, ¢ GE.
L & i

For example, suppose each Fi is exponential. By the linearity of the

n
Laplace transform, the transform of I ay F, is

T Y Y Y

B RN




As in the PH example, one of the MGE representations is not of minimal
order.

For most applications, such as curve fitting, non-uniqueness of
representation is a disadvantage. We now discuss a situation, mentioned
in subsection 2.3, where obtaining a representation of non-minimal order
may be useful. Suppose we have a GH distribution that does not have an
MGE representation of minimal order. It may be possible to embed the
distribution in a higher order space in such a way that an MGE
representation is obtained. We illustrate the procedure via an example.

Example 2.6.1 Consider the GH distribution

Here Xl = 7, A, = &4, X, = 3, )\, = 2, Dehon and Latouche [1982]

established that an MGE representation exists if, and only if, there
exists a set of coefficients {bi’ i=1,2,3,4} such that

F(t)=b F1 + b2 F..+b, F b, F

1 12 ¥ P3 Frag v by Fiagy

with each bi nonnegative and their sum being one. It can be shown that

such a set of coefficients does not exist (b3 is negative). Let us now
. . -6t ;

add an additional exponential term, e and write

— 4 _ (.13 -7t -6t 77 -4t _ 35 -3t 21 -2t
F(t) =1 T + 0 e + 12 © L © + s e )

22
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]
We must now solve for the coefficients (bi} from

! 1 1

F(t) = b1 F1 + b2

! |l t 1 1

1
Fio ¥ by Frog v b, Frog, #bs Fioass

where the primes indicate that the corresponding terms are defined with
1] 1
respect to the {Xi}. It turns out that there is a solution for the {bi}

that results in the representation

1 s

1] ] 1 1]
1 1 1 1 F . »

F(t) =+ F, + F + — F + F

1
s 173 Yo Fros o4 Frose Y3 Frasss

Not only does this give us an MGE representation, it also confirms that
the original F(t) is in fact a valid CDF since it can be expressed as a -
mixture of CDFs. . .}}f

This example raises the question of whether it is possible to

obtain an MGE representation for every GH distribution. The answer, of ol
course, is no since all MGEs are of phase type and we have seen that
there exist GHs that are not members of PH. A fuller discussion of the el

representation of GH distributions as MGEs, including a set of necessary ‘.

and sufficient conditions that do not require solving for the {bi} e
coefficients, is contained in Botta [1985]. e
The uniqueness property provides a strong rationale for our RS

[
interest in the GH <class of distributions. We turn next to an -
examination of their suitability for providing approximations to o
arbitrary distribution functions. o

- "
Y

»
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3. DENSENESS RESULTS FOR GH DISTRIBUTIONS

] In this section we establish a major justification for our interest

(o]

in the class of generalized hyperexponential distributions by showing

that GH CDFs are dense in the class of all cumulative distribution

functions on the nonnegative real 1line. That is, any CDF can be
-

approximated arbitrarily closely (with respect to some metric) by a

member of GH. The result eventually follows from a similar result for
- Erlang mixtures (see, for example, Schassberger [1970], Whitt [1974],

and Kennedy [1977]). A theorem from functional analysis concerning the

approximation of a continuous function by an exponential sum is first

extended to show that a certain class of probability density functions
can be approximated by a GH density. Several intermediate results then

lead to the desired denseness property of the class GH.

3.1 Denseness of Erlang Mixtures in the Topology of Weak Convergence

Consider an arbitrary CDF F(t) on [0,«). Define a sequence of

general Erlang CDFs by

- T rky g (kolyy gk
F_(t) = F(0) +k§1 (F(3) - F (51 E (1) (£20) (3.1.1)

where Eﬁ(t) is the k-fold convolution of the exponential CDF with
mean 1/n. Schassberger [1970], Whitt {1974}, and Kennedy [1977] state
that the sequence {Fn} converges weakly to F. That is, Fn(t) converges

to F(t) at each continuity point of F.

The notion of weak convergence induces a topology on the space of
CDFs. The resulting topological space can also be generated by a number
of metrics that measure the distance between any pair of CDFs, S

Convergence with respect to these metrics 1is then equivalent to ’ 4




topological convergence. The resulting convergence in distribution,
though weaker than the classical concepts of pointwise and uniform
convergence, is useful for probabilistic modeling in situations where
the stronger notions of convergence often fail. This occurs, for
example, when the CDFs of interest have points of discontinuity.

A useful example of a metric defined on the space of CDFs is
provided by the Levy distance. If F(t) and G(t) are two distribution
functions, the Levy distance between them, denoted as L(F,G), is defined
as |

L(F,G) = inf {e| for all t, F(t-g)-g < G(t) < F(t+e) + g}.

£>0
This analytic definition has an intuitive geometric interpretation. In
the graphs of y = F(t) and y = G(t), vertical line segments are drawn at
the points of discontinuity to produce two continuous curves. Let P and
Q be the points on these curves that form the intersection of the curves

with the line t + y = ¢. This is illustrated below.

vt
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Denoting by PQ the Euclidean distance between P and Q, the Levy distance

3 can be expressed as

L(F,G) = sup
c

RIS|

- This definition illustrates that two CDFs can be close in the Levy sense
if their points of discontinuity are close "horizontally" (i.e.,

le, - t

1 2| is small), even though they may not be close '"vertically,"

that is, with respect to the usual sup metric which requires that
{F(t) - G(t)| be small for all values of t.
The connection between weak convergence and convergence with
l respect to the Levy metric is established by the following theorem from
Lukacs [1975] which is stated here without proof. The geometric
interpretation of L given above is from the same source and a proof of

I the theorem appears there as well.

Theorem 3.1.1: The sequence of CDFs {Fn(t)} converges weakly to the

!. CDF F(t) if, and only if, lim L(Fn,F) = 0.

n-~>eo

It is important to note that the common statement that "a class of
CDFs is dense in the class of all CDFs'" generally is taken in the sense
of the usual topology of weak convergence. That is the manner in which
the Erlang mixtures of (3.1.1) are dense in the class of all CDFs with

- support on the nonnegative real line.

3.2 Approximating with Exponential Sums

In this subsection we establish that a continuous function on [0,«)

M that vanishes at infinity can be unitormly approximated by a sum of

)
Y

exponential terms of the form LT

'
N .
e ot b A

A :l,u-xiL (. >0) . _
i i
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The result follows from the extension to an infinite domain of the
famous Weierstrass polynomial approximation theorem. We present first
the case where the Xi are integers and then a generalization to
arbitrary Xi. The following lemma from Apostol [1974] is stated without

proof.

Lemma 3.2.1 If f is continuous on [0,») and if f(t) *a as t * =,
then f can be uniformly approximated on [0,~) by a
function of the form g(t) = p(e-t), where p is a

polynomial.

We now show that if the continuous function being approximated vanishes
at infinity, the constant term in the approximating exponential sum can

be set equal to zero.

‘ Lemma 3.2.2 If f is continuous on [0,») and if f(t) > 0 as t 7 o,
then f can be uniformly approximated on [0,=) by an

exponential sum of the form

Proci: By Lemma 3.2.1, f can be uniformly approximated by the sum of
the form

n

a +%ae
o k=1 k

kt

Thus we have only to show that a, may be chosen to be zero. TFor £ > 0,

let

~ n(e)
f =a(e)+ T a . (g) e
£ o k=1 K

-kt
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uniformly approximate f, that is, |f - EEI < e for all t g [0,=).

Now consider

n(e) n(e) .
lao(s)l = t?s - I ak(s)e-ktl =1f - f+f- % ak(s)e l\tl
k=1 k=1
Thus
N n(e) Kt
la (e)l €| € - f 1 4+ 1fl +] ¥ a (e)e I
l¢] € k
k=1
n(e) Kt
But lim f(t) = 0 and clearly lim ak(s)e = 0.
tre t?e k=1

Therefore, for any ¢ > 0 there exists a value T such that t > T implies

n(e)

that |f(t)| € « and | I ak(s) e-ktl € a. We then have
k=1
< |t - + 2a < 2
lao(s)l_l fg £ | a <g + 2¢a

Since a was arbitrary, it follows that

Iao(s)l <e.

But now consider the modified approximant

_ n(e) R
f= ?; - ao(s) = I ak(e)e kt.
k=1
For any value of t
-_ = -A -A |<
|f - f| | £ £+ ao(s)l < |f fsl + Iao(e)‘ < 2.

Since £ is arbitrary, a uniform exponential approximation to f having a

zero constant term can always be found.
Q.E.D.

We now state without proof a generalization of this result that
permits the coefficients of t in the exponents of the approximating
function to be non-integer. The lemma is found in Kammler [1976] and is

based upon the Muntz-Szasz theorem (see Cheney [1966]).

28
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Lemma 3.2.3 Let 0 < Xl < A, <... and assume that I (1/Xi) diverges.

2
i=1
Then the set of exponential sums that may be written as
-X.t
i .o
» 1 <

finite linear combinations of the functions e
1,2,..., is dense in the space of continuous functions on
{0,») that wvanish at infinity. In other words, a
continuous function on [0,«) that vanishes at infinity
can be uniformly approximated by a linear combination of

exponentials where the coefficients of t in the exponents

need not be integers.

3.3 Approximating PDFs with Exponential Sums

We wish to develop an exponentiai sum approximation to a
probability density function. For a particular class of PDFs -- those
whose tails decay at least exponentially fast -- the results of the
preceding section can be applied to show that the class GH is dense with
respect to the PDFs of interest. That is, we approximate a PDF with an

exponential sum that is also a PDF.

Theorem 3.3.1 Let f be a PDF continuous on [0,») and let £ * O
At
exponentially fast as t * ». That is, lim f(t)e ° = 0
tre

for some Xo > 0. Then f can be uniformly approximated on

[0,») by a generalized hyperexponential PDF.
Proof: The proof consists of three parts. First we find an -
exponential sum approximation; next, we modify the approximation so that
it is nonnegdative; finally, we normalize the approximation so that its

area is unity.

29
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At
(1) Let g(t) = f(t) e °, By Lemma 3.2.3 we can approximate g(t) by a

function of the form

n -th
'§=Zake O > 0
k=1
such that |g - 8| € ¢ for all t ¢ [0,»). Thus we may write
At At -(A A )t
lg - gl = |f(t)e °© L% % a e o 'k | < ¢
or
Xt -(x X))t
e°1f(t)-zake o KT ¢
Therefore
-(X # t -\t
[E(t) - £ age °© kK cee © <. (3.3.1)
-(XO+Xk)t
This shows that £ = I a, e uniformly approximates f. Of course,

k

f may be negative for some values of t and so may not be a valid PDF.

(More on this subsequently.)

(ii) From (3.3.1) we have
- -t
[£(t) - f(t)| <ee © (3.3.2)
-2t

so that 0 < f(t) < ?(t) + ge ° , where the first inequality follows

from the fact that f is a PDF. Define the right-hand side to be

-2t
£ = f(t) +ee © 2 () 20. (3.3.3)

Then - 9

_ - -Xot N -\t R

(£ - £l = {f - f - ce LS [f - 1] +ce

or S
B At -AE -\t DI
£ - f] See © +ee =2ee O <26 (3.3.4) ’
30 LA
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Therefore, f is a nonnegative exponential sum that uniformly

approximates f. However, f2f from (3.3.3), so that

J f£de 27 fdt =1
0 0

and f may not be a PDF.

(iii) To produce an approximation to f that is indeed a PDF, we must
normalize f so that its area is unity. Let

oo

A=1J f£dt 2 1.
0

If A=1, then f is a PDF and we are finished. If A > 1, define
f' = f/A, so that J f'dt = 1. It remains to show that f' uniformly
0

approximates f on [0,»). From (3.3.2) we have

. -\t
f(t) € f(t) + ce
Using (3.3.3)
. ~ -Xt -\t
f(t) = f(t) + ce O < f(t) + 2ce
Therefore
® _ L o =Xt .
A= J fdt €/ fdt+/2ee © de=1+3° (3.3.5)
0 0 0 °
Now consider
- f'] = 1l = 1 _7
£ - £'] = 1f - 5 £ =3 | Af-f]
=L LA - £ 4 f - = (A + £-F | A
A A .‘
< Ail f+ % £-f S (A-1) [f] + Vf-F]. }f
o
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The last inequality follows from (3.3.5). Finally, from (3.3.4) and

(3.3.5), we obtain

[f-f'] < . Lfl + 2¢ < €
X! X
[o] (o]

iEll + 2e. (3.3.6)

The second of these inequalities follows from the boundedness of f,
which in turn is a consequence of the continuity of f and the fact that
f *0 as t > » (see, for example, Boas [1972], p. 78). Since the RHS of
(3.3.6) can be made as small as desired by an appropriate choice of &,
f' uniformly approximates f, is nonnegative, and integrates to unity and

therefore is a valid PDF. Furthermore,

-\t

a -(x0+xk)c k

Kk noay
— e = ¥ — e
p A k=0 & -

Oy > 0)

where a =ce. Therefore, £' ¢ GH.
Q.E.D.
Let us now considar the class Rn of PDFs having rational Laplace
transforms, where n is the degree of the denominator polynomial.
The roots of the denuminator each have negative real part so that
when a partial fraction expansion is formed and the inverse
transform taken, there are at most n terms, each of the form
tke-at (A cos bt + B sin bt). Therefore, the PDF goes to =zero
exponentially fast and is continuous. In other words, all PDFs that
are in Rn satisfy the conditions of Theorem 3.3.1. We have then the

following corollary.

Corollary: Every PDF in Rn can be uniformly approximated on [0,«) by
a generalized hyperexponential density. That is., GH PDFs

are dense in Rn'
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3.4 Approximating CDFs with Exponential Sums

In this subsection we wish to extend the exponential sum
approximation to cumulative distribution functions (CDFs). We begin by
showing that if two PDFs are close in some sense, then their
corresponding CDFs are also close. It then follows that any finite
mixture of Erlang CDFs «can be approximated by a generalized
hyperexponential CDF. The results of subsection 3.1 are then used to
show that any CDF can be closely approximated by a generalized

hyperexponential CDF.

Lemma 3.4.1. Let f be a PDF continuous on [0,~). If another PDF, g,

t
uniformly approximates f, then the CDF G =/ 4(x) dx
0

t
uniformly approximates the CDF F =/ f(x) dx on [0,«).
0

Proof: For any € > 0 there exists a value t0 such that for t 2 t _,
£ . . . .
F(t) 2 1- 3 This follows from the existence of the integral

J  f(x) dx = F(«) = 1 by the Cauchy criterion (see, for example, Bartle
0
[1964], p. 345). Let g be such that |f - g| <€ /2t _ for all t & [0,=)

where, for the moment, we assume to # 0. We now examine |[F - G| on the

intervals [O,to] and [to.w).

(i) (0,t ]
t t t -~

fF -Gl =] J fdx -/ gdx; =1/ (f - g) dx]

0 0 0 S
t t, . :Jf?t@
<J if - g dx g f f =~ gl dx < = 7 )

0 0 - :

)
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(ii) [tO'”)

v
[

From (i), %F(to) - G(to)i < g/2, so that G(to) > F(to) - g/2

v
[op]

- €/2 - g/2=1-¢. By the monotonicity of G it follows that G(t)
(to) 21 - ¢ for all ¢t 2 to. Therefore, on [to, ), F-G=21-¢/2 -G
2 - ¢/2 since G(t) €1 for all t. Also F - G £ 1 -G £ 1-(1 - g) = €.
Therefore, F - G} € ¢. Combining the results from (i) and (ii) we have
that |F - G| £ ¢ on {0,»), so that G uniformly approximates F.

The only way that to could be zero is if g/2 =2 1. However,
[F -Gl £ |Fl +!G] £1+4+1=2¢%<¢; so again G uniformly approximates

F.
Q.E.D.

At tnis point, we pause to note tﬁat we have established the
desired denseness property of the class GH with respect to a subset of
CDFs. In particular, if F is an absolutely continuous CDF on [0,») and
its derivative is continuous and has an exponentially decaying tail,
then it follows from Theorem 3.3.1 and Lemma 3.4.1 that therc exists a
GH CDF that uniformly approximates F. In other words, we can find a
G ¢ GH with the property that |F(t) - G(t)]| <& for all t & [0,e).

Centinuing with our general development, we note that an Erlang PDF
is defined on [0,=) and has a Laplace transform of the form (A/(\ + s))"
where X is a positive real number. Consequently the Erlang PDFs belong
to Rn and, from the corollary to Theorem 3.3.1, we obtain the following

corollary to the preceding lemma.
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Corollary: Every Erlang CDF can be uniformly approximated on [0,e)
bv a GH CDF.
K . . .
Recall that hn(’t) is the Erlang CDF obtained by taking the k-fold
. . -nt .

convolution of the exponential CDF 1-e " Let us use the notation
k . , k.
Gu\t) to represent a GH CDF that uniformly approximates Eu(t) on [0,«).
We now use the result stated in subsection 3.1 to show that any CDF on
[O,«) can be approximated arbitrarily closely by a generalized

hyperexpouential CDF.

Theorem 3.4.1 Let F be an arbitrary CDF defined on [0,«). Then a
generalized hyperexponential CDF can be found that
approximates F arbitrarily closely in the topology of
weak convergence. In other u:ords, the set of generalized
hyperexponential CDFs is dense in the set of all CDFs

defined on {0,=).
Proof: From FEquation (3.1.1) the scquence of CDFs defined by

- < Ky _p (kolyy gK 5
F = F(0) + i [F() - F (o) B (0 (3.4.1)

k=1

converges to F at each continuity point of F. By the corollary to Lemma
3.4.1, there exists a GH distribution that uniformly approximates En on

[0,»), call it GE. Therefore

42}
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IA

™

on [0,e). (3.4.2)
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Let F(E) - F(E:l) = bk and define H as
n n n n
H =F@) + £ b5 6°. (3.4.3)
n k=1 M 1

The existence of Hn can be characterized as follows. Since Gﬁ is a CDF

it never exceeds unity. Therefore,

by the definition of bi. Since both GE and bs are nonnegative, the

sequence of partial sums

is bounded above and monotonically increasing with K, and so it has a limit.

At each continuity point t of F we have that lim Fn(t) = F(t). That is,
n7e

for £ > 0 there exists an N(g,t) such that for all n 2 N, IFn(c) - F(t)!

< £. We are now ready to show that Hn(t) approximates F(t).

[H () = F(&)] = |1 () = F (£) +F (t) = F(t)|

IA

IHn(t) - Fn(t)l + IFn(t) - F(t)|

IA

IHn(t) - Fn(t)l + €. (3.4.4)

From Equations (3.4.1) and (3.4.3),

o . ek ok k
[H (t) - F ()] =] Ib> (G (t) -E (t) |
k=1
< 1t !Gk (t) - gX (e)!.
k= 1 n n n
36
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By Inequality (3.4.2), this becomes

H (t) - F ()] £¢ Ibd <e.
n n n
k=1
Substituting in (3.4.4) yields
|Hn(t) - F(t)] £ 2e, n2N(s,t). (3.4.5)

Since & is arbitrary, for every value of t the sequence of CDFs {Hu}
approximates F as closely as desired. Each approximant, Hn(t), where n
depends upon t and &, consists of an infinite sum of GH CDFs. We now
show that the infinite sum may be replaced by a finite sum.

It follows from the definition of b: that there exists a number

Kw(n) such that for all K 2 Kw(n),

) bE < %
k=K
Now define
2 K (n)-1 -
X (M ko) + T bX 6 (¢) + bt . (3.4.6)
n k=1 n n % n
k=K (n)

) . K (n)
Next, consider the sequence of functions {Hn }. For each £ > 0,
there exists N(g£,t) such that for all n = N, IHn(t) - F(t)| € & by
(3.4.5). Now choose n”(s.t) = max (N,1/¢). Therefore, for all n 2 n“

we have

K (n) K,
an (t)| = o (t) - H (1) +H (t) F(t)l
K () - Y -
< .nn (t) - un(c)| + ]Hn(t) F(t)| (3.4.7)
; K”(n)v, -
< .}{n (t) un(t)l +¢.
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The last inequality holds since n 2 n* 2 N. Now from (3.4.3) and

(3.4.6),

- k .k - k
| E biG(e) - R

K*(n) _
IH (t) - H ()]

k=K* (1) k=K*(n) "
=] I @l - |
k=K*(n)
o0 k L
< L b<=<¢
k=K*(n) * T

since IGE(t) - 1] €1 and n 2 n* > 1/e. Substituting (3.4.8) into

(3.4.7) yields

IHE (n)(t) -F(t)| £€+¢&=2e, n2n*. (3.4.9)

{R (n)

By the way In was constructed, it is a CDF and (3.4.9)

K:‘: (n)

establishes that {HE (n)} converges vweakly to F. Each Hn

(t)

contains & finite linear combination of CDFs each of which is GH. 1In

the event that F(0) = O, HE (n) is a (finite) convex combination of

N

these GH CDFs and so is itself GH. When F(0) > 0, we can write HE (n)

as the mixture

o K (n)-1 K (n)-1
Hﬁ My = p, Ut) + p, z bE GE Ly, % bf
k=1 k=1
where o

“ K -1
py=F(O)+ £ b p,= £ b
k=K* “ k=1 n
38
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and U(t)

1 is the CDF of an atom at t = 0. From the definition of the

k

{bn}, P, + P, = 1. If the atom at t = 0 is thought of as an exponential

distribution with vanishingly small mean, Hﬁ (n) can be viewed as a GH
CDF for any value of F(0).
To recapitulate, we have demonstrated the existence of a sequence

of GH CDFs, {Hﬁ (n)}’ that converges to a given CDF, F, at each of its

continuity points.
Q.E.D.

If the limiting CDF 1is continuous, then weak convergence becomes
pointwise convergence. A result due to Polya, cited on p. 86 of Chung
[1974], establishes that the convergence is in fact uniform in this
case. Therefore, any continuous CDF with support on the nonnegative

real line can be uniformly approximated by GH CDFs.
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4. CONCLUDING REMARKS

i We have made a case for considering generalized exponential
miXtures to approximate any CDF defined on [0,») by demonstrating that
the class GH is dense in the class of all CDFs, i.e., any CDF can be
approximated as closely as desired by a member of GH. Therefore, GH
joins other known dense classes of probability distributions such as
those of phase-type and those having rationil Laplace transforms. In

- addition to the denseness property, GH distributions have a unique
representation; this property is not shared by all dense classes of
distributions. We also presented a set of relations positioning the GH
class among other often used classes of distribution functions. The
properties of the GH class of distributions make it attractive for both
numerical and statistical computations.

I This work has focused on theoretical results and does not discuss

the important area of how to construct an approximating GH distribution.

Recent work, however, has extended to generalized exponential mixtures a

maximum likelihood-based algorithm for fitting mixed Weibull

distributions to empirical data. Questions that remain for future

investigation include determining the number of terms required for a SR
finite mixture to be '"good enough'" and the related question of the
minimum achievable distance between a given CDF and the class of GH S
]
<

distributions having a fixed number of terms. ST
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