
RD-A155 949 SOFTWARE MAINTENANCE RELATING TO THE INPUT TRANSLATOR 1/2
AND Z80 RERLIZATION..(U) NAVAL POSTGRADUATE SCHOOL
MONTEREY CA R R VOGEL MAR 95

UNCLASSIFIED F/G 9/2 NL

mlhEEEElhhhlhE
EIEEIIIIIIIIEE
EIIEIIEIIIIII

*lllEllllllllll
IIIIIIIII_

1111 11 .

1111I2 1111.

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS- 1963-A

00

NAVAL POSTGRADUATE SCHOOL
Monterey, California

DTIC
EECTE

JUL 3 1985J

THESIS
SOFTWARE MAINTENANCE RELATING TO THE INPUT
TRANSLATOR AND Z80 REALIZATION VOLUME OF

THE COMPUTER SYSTEMS DESIGN ENVIRONMENT

by

Robert Ralph Vogel

March 1985

A. A. Ross
Co-Advisors: N. F. Schneidewind

Approved for public release; distribution is unlimited

6 25 44n

REPRODUCED AT GOVERNMENT EXPENSE

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY
PRACTICABLE. THE COPY FURNISHED
TO DTIC CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

L

• , -.- .• ." -. ...' ' .' -- . -" .-.,. "-,. j , 'j ' -'. . -" ---. - .. " .. . -. j " ./ ,.' - " .. j - - - .,, . .- .L

SECURITY CLASSIFICATION OF THIS PAGE (OeR Doe entOOe__
REPORT DOCUMENTATION PAGE RED OMSTRUCTIOSBEFoRE COMPLETING FORM - . -

V. REPORT NUMBER 2. GOVT ACCEJ;IO[. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED 0

Software Maintenance Relating to the Master's Thesis
Input Translator and Z80 Realization March 1985
Volume of the Computer Systems Design 4. PERFORMING ORG. REPORT NUMMER

Environment "_'"_"
7. AUTHOR(*) S. CONTRACT OR GRANT NUMBER(&) . -

Robert Ralph Vogel 0

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS

Naval Postgraduate School
Monterey, CA 93943

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Naval Postgraduate School March 1985
Monterey, CA 93943 IS. NUMBER OF PAGES

121
14. MONITORING AGENCY NAME & ADDRESS(Il dilfeTent from Controllin4 Office) IS. SECURITY CLASS. (of thle report)

UNCLASSIFIED .
ISo. DECLASSIFICATION/ DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of thl Report) • .

Approved for public release; distribution is unlimited
9

17. DISTRIBUTION STATEMENT (of the abetract entered In Black 20. If different from Report)

IS. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side If neceeeary and Identify by block number)

Computer aided design, controller, CSDE, CSDL, Z-80 Primitive,
realization, input translator

20. ABSTRACT (Continue on reveree aide It necescey and Identify by block number)

This thesis corrects the discrepancies between the input
Translator and the Z-80 Realization Volume of the Computer
System Design Environment (CSDE). It also demonstrated for the
first time, complete processing of a problem through CSDE. CSDE
is a computer-aided design system for real time controllers.
The Translator takes as input, a Computer System Design Language
(CSDL) problem and generates a primititive list. Each primitive]
iS matched to identically named primitive realizations (Continued]

D I 1473 EOITION OF I NOV ,5 IS OBSOLETE

S 'N 0102- LF* 014- 6601 1 SECURITY CLASSIFICATION OF THIS PAGE (WhnDetnDae Enw) •

..

" " '_"z " - - - . ' ." -'- - -. .. .- -.... •. " " . " ".. .'. . . . -.-.--.--.. .- -. .. .

SECURITY CLASSIFICATION OF THIS PAGE (UWe. Da.S &"OF*

ABSTRACT (Continued)

in the Realization Volume. The final outputs are hardware and

software listings to implement the initial design.

co';ion For

ID T.TAB E]
unanino-unced F

* J . .tificajtio

P~I bitlon/__

fl-v.1UblltY Codes

0%
Ava11 and/or

S N 0102- LF- 014- 6601

2 SECURITY CLASSIFICATION OF THIS PAG~tfIWIO00 Data EatSQ

Approved for public release; distribution unlimited

Software Maintenance Relating to the Input Translator
and Z80 Realization Volume of

the Computer Systems Design Environment

by

Robert Ralph Vogel
Lieutenant, United States Navy

B.S., United States Naval Academy, 1977

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN INFORMATION SYSTEMS .

from the

NAVAL POSTGRADUATE SCHOOL
March 1985

Author: $/? x4
Robert R. Vog'*7

Approved by:6Q 7 ?
Alan A. Ross, Co-Advisor

Nomn _ Sdhn dewind, Co-Advisor

Willis R. Greer, Jr., C~irman,
Department of Adainistryifu Siences

Kneal* T. Marshall,_\
Dean of Information and Policy Siiences

ABSTRACT

This thesis corrects the discrepancies between the input 6

Translator and the Z-80 Realization Volume of the Computer

System Design Environment (CSDE). It also demonstrated, for

the first time, complete processing of a problem through

CSDE. CSDE is a computer-aided design system for real time

controllers. The Translator takes as input, a Computer

System Design Language (CSDL) problem and generates a

primitive list. Each primitive is matc d to identically

named primitive realizations in the Realization Volume. The

final outputs are hardware and software listings to

implement the initial design.

4m-
K . o

'IL .. .

, 211p

S

'.)'i

I .,. .

4.- -'.• *1
........ ~~~~~~~~~~-

TABLE OF CONTENTS

I. INTRODUCTION--8

II. BACKGROUND-- 12

A. SYSTEM DESIGN----------------------------------2

S. FOCUS OF THESIS--------------------------------2.7

III. METHODOLOGY--- 20

A. DETERMINING MEANINGS OF NEW PRIMITIVES----------21

B. COMPUTER SYSTEM DESIGN
LANGUAGE (CSDL) PHILOSOPHY--------------------- 24

C. PRIMITIVE CONSTRUCTION------------------------- 27

1. Input/Output------------------------------- 31

2. S.fixedwait-------------------------------- 37

3. S-aall-------------------------------------- 38

4. S.equivsienc and S.implicate----------------39

5. S.forcons-----------------------------------39

6. S.whilestazt------------------------------- 42

7. S.in and S.ni------------------------------ 43

8. S.stbooiwait and S.boolwait-----------------43

9. S-wsitl0ast-------------------------------- 46

10. Changes to Smith's Primitives-------------- 48

IV. TESTING AND DEMONSTRATION-------------------------- 51

A. TESTING SEQUENCE AND EXAMPLE------------------- 52

B. TRANSLATOR ERRORS------------------------------ 55

C. THE CSDE PROGRAM------------------------------- 59

V. CONCLUSIONS--- 63

5

APPENDIX A - PRIMITIVES AVAILABLE FROM TRANSLATOR ------ -66

APPENDIX B - CSDL TEST PROGRAM ----------------------- 69

APPENDIX C - PRIMITIVE LIST, APPLICATION TIMING
TABLE AND SYMBOL TABLE PRODUCED BY
TRANSLATOR FROM CSDL TEST PROGRAM -------- 72

APPENDIX D - COMPARISON OF PRIMITIVES ----------------- 77

APPENDIX E - REVISED Z-80 REALIZATION VOLUME ----------- 81

APPENDIX F - WORKING CSDL TEST PROGRAM ---------------- 106

APPENDIX G - SUMMARY OF TRANSLATOR ERRORS ------------- 116

LIST OF REFERENCES ------------------------------------ 119

INITIAL DISTRIBUTION LIST ----------------------------- 121

6

LIST OF FIGURES

1. Current Rose Controller Design System -----------------12

2. Syntax Structure Corresponding to 's.fixedwait' -------22

3. Primitive List Segment Containing 's.fixedwait' ------ 23

4. CSDL Problem Segment Corresponding to Primitives
in Figure 3-- 24

5. CSDL Implementation of Input-------------------------- 32

6. Changes Required for 'a.whilestart'------------------- 42

7. Changes Required for Boolean Wait Primitives --------- 45

8. Changes Required for 's.waitleat'-------------------- 47

9. Realization of Blocks of Code to be
Executed Once Only------------------------------------- 49

10. Changes Required for Relational Primitives ----------- 58

1.1. Contents of Global Variable File---------------------- 62 -

7

I. INTRODUCTION

In the field of computer systems development, the

current techniques are coming under increased scrutiny

because of intolerably high costs. Hardware and software

coats make up the two component parts of computer systems

development costs. One source projects software to

comprise approximately 90 percent of total systea costs by

1985 (Ref. 1: p. 71. This trend applies equally to large

automated data processing systems and to special purpose

microprocessor based systems, also called embedded systems.

Total software costs for embedded computer systems, alone,

in the Department of Defense(DOD) are projected to exceed

32 billion dollars by 1990 CRef. 1: p. 8] with 40 to 75

percent of this total going to software maintenance. Since

embedded computer system expenditures comprise roughly 50

percent CRef. 2: p. 45] of all DOD software spending, this

clearly illustrates that ways must be found to reduce these

costs.

Current software/systems development methodologies

generally embody a life-cycle approach with various phases

such as requirements analysia,design, coding, implementation

and testing. This process is expensive, time consuming and

flawed mainly because the hardware choices are made early

in the process to insure ha- .were availability upon

8o2

. . •

commencement of system testing. Consequently, misjudgments

concerning hardware and software integration and the 9

inability to completely satisfy the original requirements

specification must either be 'lived with' at the end of the

project or corrected at great expense.

h")mated design tools of various types seem to hold the

greatest promise in terms of increasing productivity of

systems designers and programmers. They range in complexity

from single function tools such as compilers, interpreters

and editors to fourth generation languages, applications

generators and complete software systems generators [Ref. 3:

p. 631. The key point of these latter types is that they

greatly reduce the amount of labor required to finish a -

system design once the requirements specification has been -p

completed. Although these tools may be primarily thought of-

as applying to large automated data processing pro3ects, the

principles also apply to embedded computer systems.

Thus, similar tools exist and are being developed to aid

designers of embedded systems, examples of which are real-

time controllers and computers found in weapons systems

guidance packages.

One approach to computer-aided design tools for software

and systems design is rapid prototyping. Rather than going

through the traditional phases of the design process and

hoping that the single final product is on time, on budget,

and satisfies the requirements specification, rapid p

'3°

prototyping allows preliminary designs to be produced

relatively cheaply and quickly. Changes to a first

prototype can be easily incorporated into a second and the

process continues until the desired results are achieved.

The important point to be remembered is that the first step

in any design, the requirements specification, will still

require thorough research by the designer regardless of what

design tools are employed. Rapid prototyping encourages the

consideration of software and hardware simultaneously

throughout the development cycle and should result in the

optimum design of a microcomputer based product at the

lowest cost CRef. 3: p. 763.

A computer-aided design tool for rapid prototyping of

microprocessor based real-time controllers has been in

development at the Naval Postgraduate School since 1982.

The Computer Systems Design Environment (CSDE) was

originally implemented by Alan A. Ross CRef. 4] in 1978

based on initial research by N.N. Katelan CRef. 53. CSDE

has been the subject of several thesis efforts at NPGS, each

examining a different module of the system. Currently, all

components of the system have been completed, but certain

conflicts between some of them required resolution before a

successful demonstration of CSDE could be accomplished. The

subject of this thesis was to identify and resolve the

procedural conflicts that existed between certain

10

.. ,.........-...-.....-. ,--..-............

elapsed. This definition of "s.fixedwait was confirmed by

LtCol Ross prior to construction of the Z-80 primitive. He 0

TASK KBINPMAIN;
MENU:-O; ISSUE (MENU);
SENSE (KEYCHAR);
IF KEYCHAR-l THEN MINTAC :=1; END IF;
WAIT IONS; --

END KBINPMAIN;

Figure 4

CSDL Problem Segment Corresponding to Primitives in Fig 3

was consulted prior to construction of all other primitives

in question because of his familiarity with Matelan's

concepts of the CSDL language.

A final source of information to be checked prior to

actual Z-80 primitive construction is one or both of the
S

other two currently existing realization volumes. For

eaple, Ross wrote an 'a.fixadwait' primitive for his Intel

8080 Realization ilume CRef. 4: p. B-41. This provided an

excellent model -on which to work with good examples of the

proper placement of CSDE statements as well as the assembly

language statements that would cause the controller to

execute the function of this primitive.

B. COMPUTER SYSTEM DESIGN LANGUAGE (CSDL) PHILOSOPHY

Before discussing actual primitive construction an

important question needs to be answered. Why only construct

primitives in the Z-80 Realization Volume to match existing

primitives available from the Translator instead of changing *

24

%S"

as terminals. In this case <PERIOD> can ultimately be a

number and measure of time ranging from hours to

nanoseconds. The syntax for 's.fixedwait' is relatively

straight forward but the format for construction of a

primitive has still not been made clear.

The next step is to look at the primitive list enerated

by the Translator from the CSDL test program to find

's~fxedwit'. A segment of the primitive list containing

4's.fixedwait' is shown in Figure 3. This primitive list was

P 33t.ganerated for: KBINPRAIN
P 34a.proc (KBINPNAIN:)
P 35a.assign CNENU,GC02:8,8)
P 36s.issuevent (KENU:8)
P 37s.sescond CKEYCHAR:8)
P 38s.eq (GTOl,KEYCHAR,CO1:8,8,8)
P 39s.jmpf CSTO1,802:8)
P 40a.aasign (KINTAC.UCO1:8,8)
P 41s.loc (002:)

--)P 42s.fixodwait (10)
P 43s.exitproc (KBINPHAIN:)

Figure 3 Primitive List Segment Containing 's.fixedwait'

generated for TASK KBIMPNAIN in the procedures section of

the CSDL test program, shown in Figure 4. By looking back

and forth between the these two figures one can understand

each CSDL construct and its matching primitive. In the case

of 's.fixedwait', 'WAIT IONS' results in the primitive

's.fixedwait (10)' and means that when the 'WAIT'

instruction is encountered no other tasks are to be executed

or contingencies checked until the specified time has

23

thesis CRef. 8: pp. 47-541. The syntax structure for a

given primitive serves as the basis for development of a new

primitive realization. Newly developed primitives are

discussed individually in subsection C of this chapter and -

the CSDL syntax structures that apply are listed as each one

is discussed.

In most cases, the Backus-Maur syntax structures were

insufficient to determine the meanings of new primitives.

One also had to study the applicable porti n of Carson's

CSDL test program and look at the corresponding set of

primitives. In this manner one could see the context in

which the primitive was used to better determine its

meaning. For example, to determine the meaning of

's.fixedwait' first look at its syntax structure in figure

2. Note that a word not enclosed in brackets is called a

(WAIT),- WAIT <PERIOD),

IWAIT <EXPRESSION> < PERIOD>

<PERIOD> :* NUMBER* <TIME MEASURE>

<TIME MEASURE> ::a H IN /S I S IUS N S

Figure 2 Syntax Structure Corresponding to e .fixedwait'

terminal end a word that is enclosed in brackets, f, is

called a nonterminal. Terminals appear in a CSDL problem as

is, while nonterminals are located elsewhere in the Backus-

Maur description of CSDL until they ultimately are defined
22d.

available from the Translator for one to one correspondence.

The net result was that 15 of 39 possible primitives

available from the translator had no matching primitive in

the Z-80 Realization Volume. Thus, the first task was to

write new primitives for the Z-80 Realization Volume to

match the outstanding 15 from the Translator.

Smith wrote 68 software primitives for his Z-80

Realization Volume. It would seem to be a fairly reasonable

task to write 15 more. Soma were relatively easy while a

few were not constructed for reasons discussed later.

A. DETERMINING MEANINGS OF NEW PRIMITIVES :

The general approach to writing a new Z-80 primitive is

to first examine the part of the CSDL language that the

primitive represents and to understand what it means. Since -

no language manual exits for CSDL, one must examine the

actual syntactic structure that corresponds to the . -

primitive. Carson made this correspondence through the use

of production numbers. Each CSDL primitive listed in

Appendix A has a production number which corresponds to the

production number of its syntax structure. The CSDL syntax 1

structures are displayed in Backus-Naur form which is a

standard representation of the syntax structures of a

computer language CRef. 10: p. 162. Originally conceived by 0

Natelan, CSDL was refined by Carson when he developed his

Translator and is displayed by production number in his .

iL llll'

21 ".'-,

III. METHOD G- Y -

The task of identification and correction of

discrepancies between output from Carson's Translator and

primitives available in Smith's Z-80 Realization Volume is a

difficult software maintenance project. The importance of

well documented code and the desirability of a face to face

turnover between past and current researchers was made pain-

fully clear as w-rk progressed. The primary sources of

information regarding CSDE were more than adequate with the

availability of Hatelan's reports, Ross's thesis, and LtCol

Ross, himself. Information regarding Carson's Translator

consisted of his thesis, a loose sheet summarizing

Translator produced primitives (Appendix A), and a CSDL test

program (Appendix B) designed to produce a primitive list

(Appendix C) containing all primitives available from the

Translator. These last two items proved invaluable in

helping to determine the functional meanings of the

Translator produced primitives. Information regarding

Smith's Z-80 Realization Volume consisted of his well docu-

mented thesis and a simple but important demonstration

problem written and discussed by Riley CRef. 9: Appendix

E.I.

Initially, a comparison was made between software

primitives in the Z-80 Realization Volume and those

20 .

Once the discrepancies with primitives were corrected,

sample demonstration problems were run through the entire

process to test each now primitive and those old Smith

primitives retained in the revised Z-80 Realization Volume.

The demonstration problems were simple and only proved that

each primitive could be processed by the CSDE system based.

on a single set of data. This brings to light the general

problem of systems testing within the computer industry.

Just because one problem was successfully demonstrated in

CSDE does not mean other errors do not exist. However,

exhaustive testing was not possible during the scope of this

research 3ust as it is rarely possible in industry.

I o

I

',/ b °

'S-

L°w- '

.

primitives that were available for use in the Z-80

Realization Volume. For example, the Translator generates

a primitive called "s.sensecond' which relates to sensing a

condition or testing for a certain flag. There was no

"s.sensecond' primitive in the Z-80 Realization Volume.

This did not mean that the Z-80 Volume lacked primitives

that could implement the function of 'a~sensecond'. Rather,

the problem may only have existed in the names used to label

the same macro-instruction. This problem of discrepancies

between primitives generated by the Translator and those

available in the Z-80 Volume caused CSDE to abort an

attempted controller implementation with a Z-80

microprocessor when such a discrepancy was encountered.

To correct the discrepancies with primitives, all

primitives available from the Translator were compared to

those present in the Z-80 Realization Volume. For Transla-

tar primitives like "s.sensecond', which had no matching Z-

80 primitives, a solid understanding of the function of the

primitive was gained. Then the Z-80 Volume was examined to

see if the function in question was labeled with a different

name or implemented in a different manner. Corrective

actions consisted of modifying old primitives and adding now

primitives to the Z-80 Realization Volume so that all

primitives produced by the Translator can now be realized

except for "s.in/outport'.

. .

Translations of software primitive& in the Realization

Volume contain references to hardware primitive&, also

contained in the same Realization Volume. For example, the

translation for a software primitive like "s.clockon25.

(generate a 25 millisecond clock) contains the statement,

'include h.clock'. "h.clock' is the Z-80 hardware primitive

which details the connections for the counter-timer chip on

the CPU circuit board to produce a 25 millisecond clock. --

Modifications or additions to software primitives in a

Realization Volume must also be accompanied by appropriate

changes to hardware primitives. This insures that a -
p-

realizable controller design, in terms of software and

hardware, can still be produced by CSDE.

B. FOCUS OF THESIS .

The Translator module of the CSDE system was not

developed by Ross during his initial research. During

subsequent thesis research at NPGS the Translator module was P

written by T. H. Carson [Ref. 83. Concurrent to Carson's

work, the Z-80 Realization Volume was developed by Smith

[Ref. 6]. A successful demonstration of the complete CSDE,

from input to operation, is the subject of this thesis.

Previous discrepancies between these two modules prevented

such a demonstration. _

The discrepancies involved differences between the

primitives that were produced by the Translator and

17

........ . .-.......................... .

I'-

[Ro. 71. The Z-80 volume, added by Smith [Ref. 61, was

chosen for use during this thesis research because the

prototype computer used for demonstration is currently

configured for Z-80 operation.

Device Description and Library Update (Figure 1) refer

to the process of adding new Realization Volumes in the

future as well as updating currently existing volumes. This

process is extremely complex because a Realization Volume

not only includes software primitives and their assembly

language translations, but also contains hardware primitives

which describe the chips or multi-chip circuit boards

required to implement the software primitives. In the Z-80

Realization Volume, all hardware primitives refer to circuit

boards rather than individual chips because Smith designed

his Volume for the Pro-Log computer. The Pro-Log can be

reconfigured easily by installing different boards as

required [Ref. 131. An example of a Z-80 hardware primitive

is "h.atod' which calls for an 8 bit analog to digital

conversion board. The actual translation of "h.atod'

specifies items like which circuit board to use and which

3umper pins should be connected or disconnected.

The hardware listing produced by CSDE for a given design

is the indirect result of the software primitives generated

by the Translator. As Translator-produced software -.

primitives are successfully mapped to software primitives in

a Realization Volume, .hardware is also specified.

16

..........................

errors in Transistor input, will deposit error messages in

this file CRef. 8: p. 263.

The key aspect of CSDE is how it picks the particular

microprocessor to be used and how It generates the assembly

code listing to make the system work according to the

requirements of the Initial problem statement. The

primitives generated by the Translator are really generic in

nature. To convert them to assembly code, each primitive is

matched to an identically named primitive in the Realization

Volume that applies to the specific microprocessor that has

boon selected to implement the problem. For example, the

Realization Volume for the Zilog Z-40 contains a list of

primitives and the Z-60 assembly code sequence that

implements each primitive. Thus, the Functional Happer

would take the primitive, 's0japf', which had been produced

by the Translator and match It to "s.3mpf' in the Z-80

Realization Volume. The primitive, 'a.3spf', is implemented

or realized with three Z-80 assembly language statements.

This matching process is called functional mapping because

the Translator primitive is mapped into the Z-80 Realization

Volume. Details relating to variables, precision, and

timing are addressed by Ross CRef. 4: pp.79-653.

The Library of Realization Volumes (Figure 1) currently

contains three volumes based on three microprocessors. An

Intel 8080 Volume was developed by Ross during his original

research and an Intel 8086 volume was added by A. J. Catel

15

".-.

microprocessor. An example of a primitive is "s.japf" which

causes a 3ump to a location if a variable is false.

The Timing File, also called the Application Timing

Table, is output in a file named 'IADEFL.DAT'and contains

attributes of the contingency/tosk pairs such as maximum

allowed time duration of each task and contingency and the

relative priority of each pair. This information is stored

in a table format and is used by the Timing Analyzer to

produce a monitor program for the selected microprocessor.

The monitor program (similar to a simplified operating

system) insures that all contingency/task pairs are executed

within the required time constraints as stated in the

original CSDL problem.

The third and fourth output files from the Translator

are named "SYRFILE.DAT' and "TRANSLATE.DAT'. "SYNFILE.DAT"

contains the Symbol Table, also called the Environment

Table. The Symbol Table is a listing of attributes of

variables and constants such as type, precision, and value.

The Symbol Table is actually a subset of the Primitive List

('PRINFILE.DAT'). It's use by the CSDE program Is optional.

If SYMFILE.DAT is available, the Functional Happer will read

the Symbol Table before reading the entire Primitive List

and the CSDE program will execute faster. "TRANSLATK.DAT-

is a text file for user convenience and Is not used by CSDE.

Carson used it as an aid in debugging during the development

of the Translator. Currently, diagnostics which trace

14

'/ • °,o -. • . . - . ..- ° r . ° o -°*° °. ° . . . °-. -% - ° , . .- - . . -% . . "

Currently, three common microprocessors, the Zilog Z-80,

Intel 8080 and Intel 8086, are available for hardware

implementation depending on which microprocessor best

satisfies the design requirements as determined by CSDE.

The following discussion relates to the various blocks

In Figure 1. First, the problem statement or functional

description of the controller is written in the Computer

System Design Language (CSDL). The syntax used by CSDL was

originally defined by Katelan and is summarized by Ross

(Ref. 4: pp. 10-121. A dedicated language manual for CSDL

has not yet been developed. The CSDL problem statement -
I

includes such things as the variables to be used, functions

to be executed and contingency/tak pairs. A contingency/

task pair is simply a statement that describes which

function or task will be executed in response to a

particular condition or contingency. The problem statement

is then input to the Translator which is equivalent to
I

inputting a Pascal source program into a Pascal compiler.

The Translator is a compiler which reads the CSDL

program and generates four output files. Two of these four
J

files are required by the CSDE system and are shown in

Figure 1. The Primitive List is output in a file named

'PRINFILE.DAT" and contains a list of primitives which
I

describe the input problem. A primitive is basically a

macro-instruction which is later translated by CSDE into

assembly language instructions for the chosen
I

13

.

--.-----.------------------,-----•:'. -i'-); ; ' L: i; ;? .':. ; ; ' -;'' ' ;

11. 1&KQUiLD2

A. SYSTEM DESIGN

To better understand what the prQc.wdural conflicts were

and where they specifically existed within CSDE, a review of

the system is essential. Refer to Figure 1 CRef. 6: p. 20]

for a simplified block diagram.

CSDL EV ICE
description description

prottyp imlmna in of th dei piatio n

Volme

(PL:. . . .w

.......r Fucioa Software..

Decito Mapper... .. Desripio

modules of the CSDE system and to complete a successful

demonstration.

Concurrent to this research, two projects related to

CSDE were also completed. Mr. Greg Lukas was hired to

perform extensive software maintenance on the CSDE program

to make it more user friendly and run more efficiently.

LCDR Jim Poole worked on a project to streamline the

physical process of running a design problem through CSDE.

Poole's research attacked a problem, documented by

Smith CRef. 63 and Riley (Ref. 92, in which numerous steps

were required to work within the CSDE environment. The

steps involved the separate uses of the VAX 11/780

minicomputer, ALTOS Z-80 microcomputer, the Pro-Log

microcomputer, and data transfer via modem. Poole

constructed a single Zenith Z-100 microcomputer workstation

from which all CSDE operations could be conducted. This

makes CSDE much more convenient for the user. (Ref. 123

.- 11

.. - % - 'o'- . . '.. . ---. '

........... .,.... ,.... . .. ,. . . .

the Translator to produce primitives to match the ones

originally available in the Z-80 Realization Volume?

The philosophy of CSDL is that the designer should be

able to specify the functional design of a controller

totally independent from the knowledge of any specific

hardware that might be used to build it. The structures

available in CSDL are generic in nature and allow the de-

scription of arithmetic, logical, and input/output

operations that could be applied to any computer-based

controller. Thus, the primitives that are available from

the Translator are a direct reflection of the CSDL language

as originally defined by Matelan. To change the Translator

so it would produce a primitive such as 's.atod' would first

require a change to CSDL. A syntax structure would have to

be added such that a designer could specify an analog to

digital signal conversion during an input/output operation.

Why did Smith include an 's.atod' primitive in the Z-80

Realization Volume?

Smith included many primitives whose functions are not

supported by CSDL. Some, like 's.stod', were written to

provide the capability to use the hardware that was

available to him. In this case, one of the boards currently

available is a Pro-Log compatible analog to digital

conversion board, a Hostek mdx-a/d8 board. Another is

's.clockcons', written to enable use of the 3-channel clock

that is co-mounted with the cpu on the Z-80A cpu board. As

25

it stands now, an analog to digital function can not be

included in a controller designed within the scope of CSDE

and would have to be added externally once the CSDE

controller design was realized.

In addition to hardware specific primitives, Smith also

included specialty primitives such as "s.consfp', 's.varfp',

and 's.fptoieee" to handle internal data represented in

floating point notation. Here too, CSDL does not allow the

designer to be this specific.

The net result is that the modified Z-80 Realization

Volume produced by this thesis research excludes many of

Smith's primitives. If the CSDL language is expanded in the

future some of these deleted primitives night then be

included.

The final reason for not making any changes to the

Translator is the lack of expertise of this researcher in

the area of compiler design and construction. Thi4- also

makes it impossible tc correct a few formatting erroza that

occur in the Translator's output files. These iormatting

errors cause the CSDE program not to accept a logically

correct CSDL problem straight from the Translator. The

specific errors discovered are discussed in Chapter 4 and

summarized in Appendix G.

.....

. .
.

C. PRIMITIVE CONSTRUCTION

Having determined the meaning of the new primitive to be

constructed, the first step in construction was to write the

Z-80 assembly language routine that would accomplish the

desired function. The routine was then tested independently

to eliminate logical and syntax errors prior to inclusion in

the rest of the primitive body. Although the routine could

be tested separately on any CP/N Z-80 microcomputer, it was

easily tested right on the Pro-Log utilizing the Zenith Z-

100 workstation set up specifically for CSDE research.

This workstation consists of the Z-100 connected to the Pro-

log and connected to the VAX 11/780 on which the Translator

and the CSDE program both reside CRef. 12].

To test a routine, it was first written on the Z-100

using an editor or word processor like Wordstar in non-

document mode. It was then assembled and linked using the

procedures set forth by LCDR Jim Pools, developer of the

CSDE work station [Ref. 12]. The starting address specified

at time of linkage must be 4000h since this is where user

addressable RAN starts in the Pro-Log. Once the routine was

linked its resultant hex file was downloaded to the Pro-Log

using the ANDS program resident on the Z-100 and on an EPROK

starting at O000h in the Pro-Log. Detailed procedures are

contained in Poole's thesis. Having downloaded the routine

into the Pro-Log, it was run by pressing the reset button on

the Pro-Log then typing G4000 on the ADR-3 monitor which is

27

- . - 2 A .A. ... ?°.-

.

;lso connected to the Pro-Log. Results were checked by

inspecting the contents of appropriate memory locations,

again using the facilities of the ANDS monitor in the Pro-

Log. This same procedure was used to test programs

generated by CSDE except that instead of creating the

assembly routine on the Z-100, the assembly program output "

from CSDE was downloaded from the VAX to the Z-1O0.

In the case of "s.fixedwait', for example, the assembly

code consists of two down counter loops, one nested inside

the other, that delays the cpu from doing anything else as

its executing the loops. For demonstration purposes, it was

linked to a short routine to display some letters on the

Pro-Log once the software delay had been completed. The

delay was written to handle time in milliseconds vice

microseconds so that the user could see the delay by timing

the Interval with a watch from the time the routine was

started until the letters actually appeared on the Pro-Log

display. The reference for Z-80 assembly language was Zaks'

Programming the Z-80 CRef. 14] and the reference for writing

the letter display routine was the users manual for the Pro-

Log 7303 Keyboard/Display Card CRef. 15: p.3-5].

Once the assembly language routine was written and

tested the rest of the primitive was constructed. There are

very strict formatting requirements for the construction of

a primitive. Detailed instructions ar contained in Ross's

thesis CRef. 4: pp. 79-85.] and particular attention must be

28L

paid to the column dependencies and format for the arguments

contained in the primitive title line. The best way to

understand primitive construction format is to study

previously written primitives by Ross [Ref. 4: Appendix BI

and Smith [Ref. 6: Appendix C3.

When the primitive was finished it was added to the Z-80

Realization Volume. The Volume is normally contained in a

file called RELIZE.NAC although the CSDE program allows the

designer to name the required files anyway he chooses. Its

format is strict in that the first portion of the Volume

must be an index of the primitive title lines in I

alphabetical order. The lest 4 numbers following the second

colon of each title line specify the first occurrence of a

CALC line, the first occurrence of an ATTR line and the
_

beginning and ending line numbers locating the primitive

within the Volume. To make the addition or deletion of

primitives to the Volume easier, a program Is available on

the VAX called FORKAT.EXE. It takes as input 3ust the prim-

itives, stripped of line numbers and with no index. The

primitives must start in column 6 and the last 4 numbers

specified in the primitive title lines can be delineated

simply as spaces or asterisks such as in "e.fixedwait

(tims:O,1275:15,-5,18, , ,I~gegeo)D. If certain values in

a title line are to be left intentionally blank such as in

'h.cardcage (:: , , ,O.O,..r,**)', the blanks must be

present before input to FORNAT or else FORMAT will in3ect an

291
. . o.. °

extra comma Into the primitive title line. The FORMAT

program will create the index, add line numbers, and

correctly fill in the last 4 numbers in each primitive

title line. To use the formatter, type RUN FORMAT. It will

ask for an input file name which is the file containing the

unnumbered primitives. Then it will ask for an output file

name which should usually be RELIZE.MAC. The resultant

output file is ready for use by the CSDE program.

Because of the variation in complexity of the new

primitives, it is important to discuss specific aspects

that make each one unique. This should help future

researchers if CSDL or the Translator is modified and more

primitives need to be added to the Realization Volume. The

following primitives were added to the Z-80 Realization

Volume: a.inputport, a.sensecond, s.outputport, a.issuevent,

s.fixedwait, s.call, s.equivalenc, s.implicate, s.forcons,

a.whilestart, s.in, s.ni, a.stboolwait, s.boolwait, and

s.waitleast. These new primitives along with relevant

primitives from Smith's original Z-80 Realization Volume can

be found in the revised Z-80 Realization Volume in Appendix

E. Each of the constructed primitives is discussed below.

The primitive, Ps.in/outport', was not constructed. The Z-

80 Realization Volume now contains a realization of every

primitive that can be invoked by the Translator except for

'a. in/outport'.

30

....

:-...,-..- .-.-... - ::

1. Input/Output

Five different primitives relating to input/output

(1/O) are produced by the Translator which were not present

in Smith's Z-80 Realization Volume. They are 's.inputport',

"s.sensecond', "a.outputport', 'G. suevent , and

's.in/outport'. A discussion of Natelan's philosophy

towards 1/O is appropriate before describing primitive

details.

Katelon stated that 'type' refers to how date may be

used rather then how it is stored. Traditionally, we think

of types in the latter sense, such as a variable being

specified as type integer or real. CSDL allows 3

transmission types: INPUT ONLY, OUTPUT ONLY, and DUPLEX

(input and output) CRef. 10: p. 183. To understand the

differences a reel world example is presented.

If a controller were to periodically sense the

position of a valve, the valve would need to produce a

proportional analog output signal which would then be

converted to a digital signal by an analog to digital

converter. This digital signal would be available via a

specific line to a specific port which would be uniquely

addressed by the cpu of the controller. This port would be

for INPUT ONLY with date on the current valve position

always available.

A typical hardware I/O implementation for a Z-80

microprocessor might involve using a parallel input/output

31

oI

interface chip (PIO), which provides 2 or 3 ports. A port,

here, refers to an 8-bit connection that may be used for

input or output CRef. 11: p. 1621. A PIO chip is

programmable to set the direction for which the ports will

be used. To provide INPUT ONLY, the software must first

select the port to which the position signal is sent and

program the PIO so that the selected port is set up in the

INPUT direction. Once the port is set up, information can

be read from it as often as the programmer desires with a

simple instruction such as the Z-80 "in a,(n)", where In' is

the port address and 'a' is the accumulator.

The primitive, 's.inputport', comes from the CSDL

syntax, (INPUT SPEC>::- INPUT:4TRANSKISSION BODY> END INPUT,

and the primitive, "'.aensecond', comes from the CSDL

syntax, <DATA INPUT>::= SENSE (<NAME>). Using the valve

example, source to and primitives generated by the

Translator might appear as in Figure 5. The primitive,

SOURCE OBJECT"
(CSDL Problem Statement) (Primitive List)

ENVIRONNENT
INPUT: VLVPOS,8,TTL o.inputport (VLVPOS,TTL:8)

PROCEDURES .
FUNCTION VALVCHEK

SENSE (VLVPOS) s.sensecond (VLVPOS:8)

Figure 5 CSDL Implementation of Input

. .2°

32 - -S-*-

's.inputport', would be used to set up the desired port for

input (i.e. send appropriate control code to the PIO) and

"e.sensecond', would be used to actually get data from the

desired port into the cpu.

Similarly, the controller should be able to send a

digital output signal via a digital to analog converter to

the valve positioning motor. This would be an OUTPUT ONLY

function. The primitive, '.outputport' comes from the CSDL p

syntax, <OUTPUT SPEC>::- OUTPUT:<TRANSNISSION BODY> END

OUTPUT, and 's.issuevent' comes from <DATA OUTPUT>::= ISSUE

((NANE)). The primitive, 's.outputport'. would be used to

set up the desired port for output (i.e. send the appro-

priate control code to the PIe) and 's.issuevent' would be

used to actually send the digital valve positioning signal

to the desired port for output.

The implementation of data transmission type DUPLEX

is more complex. Duplex means the capability of INPUT AND

OUTPUT through a single port with no prior set up.

Theoretically, this might imply using a PIO that did not

require control codes to set up the direction of one of its

ports prior to using that port. Data could be 'sensed' from

or 'issued' to a port defined as duplex without having to

worry if the port was configured correctly. In the event

that duplex was not implemented solely through the use of a

non-programmable PIO, it might be achieved by including code

within the 's.issuevent' and 's.sensecond' primitives

33

,1 -

to change port direction whenever an output or input

was required. Under what conditions would a designer desire

a DUPLEX transmission type? Perhaps there are hardware

restrictions that limit the number of ports available to the

controller and DUPLEX is the only way to satisfy all of the

I/O requirements of the external device being controlled.

The CSDL philosophy is that the designer is not concerned

with hardware when he originates his design. Hardware is

determined by the realization volume, whose software

primitives are written for a fixed set of components

specified by the hardware primitives. If a designer inputs

one design into CSDE with too many INPUT ONLY or OUTPUT ONLY

data transmission types, CSDE might declare the design not

realizable for a given microprocessor type such as contained

in the Z-80 Realization Volume. In the case of the Z-80

Volume, hardware is specifically configured at the board

level and I/O software primitives must incorporate the

programming guidelines of the board manufacturers.

Alternately, if the designer resubmitted his design using

more DUPLEX types in lieu of separate INPUT and OUTPUT

types, the design might be realizable.

There are no PIO devices installed in the hardware

currently allowed by the Z-80 Realization Volume. If a PIO

chip was installed, a DUPLEX data transmission type

primitive could be added to the Z-80 Volume by constructing

the 's.in/outport' primitive such that it emulates the

34

DUPLEX function. One possible scheme might be that when a

DUPLEX type is declared, it is automatically set up to a

default mode of INPUT only. Data may be 'sensed' from the -

referenced port with no change in port setup. If data is

'issued' to this port than a software mechanism must exist I

to reset the port for OUTPUT first and, upon completion of

the data output, reset the port to its default configuration

of INPUT ONLY.

In the case of the Z-80 Realizaion Volume, a single

data port on the Pro-Log keyboard/display card is available

for input or output. A single control port is also I

available to control the mode of display of data once it has

been output from the CPU to the keyboard/display card. Data

sent to the control port controls the output display and not

the data port. Thus, this single date port is DUPLEX in

nature since no control codes are required to configure it

for input or output. However, no DUPLEX function, i.e. an -

s.in/outport primitive, has been added to the Z-80 Volume.

Because of the simple hardware available, it would merely

duplicate the functions of the "s.inputport' and I

"s.outputport' primitives. More importantly, a flaw exists

in the Translator which will not allow data to be 'sensed'

or 'issued' through a variable that has been declared as

DUPLEX.

To demonstrate the concepts of 1/O for this thesis,

the I/0 primitives have been constructed very simply. The

35

I

.

- - .
. ,.,.,

-- - .-............ o....,-... .. ,.... . -.-...- "

7 7 . . *.

hardware they use is the Pro-Log keyboard/display board

which only has one date port addressed at dOh. The value of

the digital signal available at the port can be determined

by inspection of the 8 leds on the board, representing bits

0 through 7 read right to left. The 's.outputport'

primitive creates an output variable used to hold the

output value, clears the led display, and sends a control

code to the board's single control port, dlh, to disable the

alphanumeric display. The s.issuaevent' primitive outputs

the contents of the output variable declared by

"s.outputport' to the data port. The value can then be

determined by inspection of the 8 lads.

The primitive, "s.inputport', creates an input

storage location. No other actions are required because of

the very limited 1/O facilities of the Pro-Log

keyboard/display card. With only one date port available

for input, no control codes are required. When more complex

1/O hardware is available this primitive will require

modification. The primitive, 'aasensecond', is slightly -.-

artificial in that a conversion routine was added to accom-

modate the 2 rocker switches on the keyboard/display card.

These switches directly control the contents of bits 6 and 7

(assumes bits numbered 0 to 7) of the S-bit data port when

it is 'sensed' for input. Thus by masking out all but the

left most 2 bits, 4 possible values can be 'sensed' for

input as directly controlled by the position of the rocker

36

• . . - - • . • • . - , .. - , • • , .

switches. Four possible input values were sufficient for

the demonstration problems attempted. Exact details as to

switch positions can be found in the comment lines of the

primitive in Appendix E.

2. ajjfixedwait ,

The primitive, 's.fixedwait', has already been

discussed in section III.A. There are a few additional

points of interest.
p

This primitive contains an attribute line in

addition to comment and calc lines. Attribute lines are

used when the length of time of execution of a primitive is

directly related to one of its input values. In this case,

the input value is the desired time delay in milliseconds

end also controls the length of execution of the primitive.
p

Normally, the maximum execution time for a given primitive

appears in the primitive title line as the second number

after the second colon. The units are in clock cycles. A

negative number is treated as a flag to indicate that the

actual attribute needs to be calculated at code generation

time. The flag is also the offset value, starting from the

primitive title line, of the line number where the attribute

calculation can be found.

In the case of 's.fixedwait', the attribute line is
p

"attr time =<time)s4000' and means take the input value and

multiply it by 4000, with the result being the real

execution time for this primitive in terms of clock cycles.

37

- . .

7. 7-7z

The factor of 4000 comes from the fact that 1 millisecond

equals 4000 clock cycles with a 4 Mhz clock. The Z-80A

supplied on the Pro-Log cpu board uses a 4Mhz clock.

There is a format error in the way the Translator

produces this primitive. Specifically, there is a missing 0

colon; the format should be 's.fixedwait (10:)' instead of

"a.fixedwait (10)1. Normally the missing colon would cause

a fatal error within the CSDE program but the program has

been modified to accept 's.fixedwait' without the colon.

Informative error messages still result to remind the

designer that the Translator requires modification.

3. - .g:j

The primitive, 's.call', comes from the syntax,

<PERFORM TASK> ::= *ID*, and gives the designer the ability

to execute one task from inside another task without first

having to check the other task's associated contingency.

The Z-80 code to implement this primitive consists of a call

instruction to a label that marks the desired task's

subroutine. Although logically correct, this primitive is

not useful within CSDE because no mechanism exits to account S
for the extra run time that is incurred when a task is

executed in this manner. If "s.call' is used, CSDE will not

have an accurate execution time statistic for a given design

and could falsely generate a realization of a problem that

does not meet the designer's timing requirements.

38

S:::::

As discussed below in section IV.C., the CSDE program

underwent extensive revision to improve efficiency and ease

of use. An indirect benefit of primitive testing for this

thesis was that the revised CSDE program was able to be

debugged. While important to the overall CSDE project this

sometimes caused great frustration when CSDE program errors

slowed down the testing process. Primitive testing also

validated the usefulness of the CSDE workstation.

A. TESTING SEQUENCE AND EXAMPLE

A detailed user's manual for working within the CSDE

environment is contained in Poole's thesis (Ref. 12]. It

specifies the exact command sequences to use the CSDE

program on the NPGS Computer Science VMS Vax 11/780. It

also explains how to use the CSDE workstation to transfer

files between the Z-100 and the VAX, assemble and link Z-80

programs produced by CSDE, and download resultant hex files

to the Pro-Log. The process is summarized as follows.

Once a new primitive realization was written and added

to the Realization Volume as discussed in Chapter 3, a short4

CSDL problem was written to exercise it. Appendix B shows

the proper CSDL format to generate every primitive except

"s.not'. The file containing the CSDL problem was renamed

DAT.DAT. as required for input to the Translator. The

problem was then run through the Translator to generate the

primitive list, application timing able, symbol table, and

52

IV. TESTING AND DEMONSTRATION

The objective during testing was to verify that every

primitive in the revised Z-80 Realization Volume could be

processed through CSDE to produce error free code that

would run on the Pro-Log computer. This applied to newly

constructed primitive realizations as well as those retained

from Smith' Z-80 Volume. All primitives were successfully

tested at least once except for 'a.in', 'a.ni', and 's.not'.

The first two were discussed in section III.C.7. and the

latter was not tested because the Translator would not

generate it. Many unsuccessful attempts were made to

discover the proper syntax for 's.not' since the Backus-Naur

form specified by Carson failed to work.

To minimize the potential for multiple errors within one

test problem only one new primitive was tested at a time.

This involved writing simple CSDL problems for each

primitive usually with only two contingency task pairs. The

testing was not exhaustive. For example, if a primitive

like '&.ge' (checks condition for greater than or equal to)

was tested, not all possible combinations of positive and

negative numbers were submitted as input data. This was

because of time constraints and the fact that Smith already

tested the logic of his Z-80 code during development of the

original Z-80 Realization Volume.

51

inclusion in a controller program. This feature is

available for use, utilizing the global variables linitik'

and larnd'. Figure 9 demonstrates how blocks of code to be

executed once (for initializations) might be realized.

The primitive, 's.monitor', also contained a means of

generating code within a controller program that would only

be executed once before entering the monitor section. This

was different from the method use in "a.main' in that a

boolean flag, '@initial', was checked to cause a jump to

another segment of code that might be used for such things

as initializing variables. This initializing block of code

was realized from two primitives, 's.initalcons' and

's.initalend'. These primitives are not produced by the

Translator and were discarded along with the statements in

'&.monitor', that referred to them. The method available in .

sa.main' for initializations is simple and more flexible.

Initial values of variables are currently set at zero when a

controller program is assembled by use of assembler

statements such as 'defw 0.

Finally, the primitive, "h.clock', was rewritten to

correctly describe all jumper connections required on the

cpu board to implement a I millisecond clock. The original

version of "h.clock' listed only one of the six connections

required to enable channel 0 to feed channel I of the ctc.

50

.- , ,-, .. . • ,9- -. . - .-. --. ' "

not implemented in the revised Realization Volume, such

block& could be realized by modifying existing primitive

realizations with lincil or 'call' statements. These

statements could, in turn, reference other software

primitives whose code would be executed only once upon

Sample Software
Output from CSDE Comments

* Z S

Gaeg :.Code generated from the
* primitive '&.&&i'

--- jp GhO <-- 1This instruction appears in the
* SI-- --- --- realization as 'jp Ui~initlk)'l

* where initially, initlk a 0.
(other code)

-------------This instruction would appear
* I -Kin the realization as

3P I00 <-- 1 jp 6lcarnd)' where initially,
--- SiO: nop Iarnd a 0.

(co here IThis block of code is executed
executed once) K- once. When the monitor starts

* I executing by calling contingency
3P O il <---- task pairs,this block will
$Go: nap 1 _1 always be jumped.

I(other code) I------The global variable, initik, has
* - been incremented so initlk 1l.

-)Sspver: nap I
KMonitor section.

I (monitor code)

jp Gapvsr

O il: 3p Uspvar <-- This instruction comes from
's.end' and marks end of blocks
of code to be executed once.

Figure 9 Realization of Blocks of
Code to be Executed Once Only

49

serve as a counter for the loop structure produced by

"s.weitleast'. Also, care must be taken when picking the

values to be inserted in the label arguments so that they

are different from label names used elsewhere in the

primitive list.

10. Changes to Smith's Primitives

Three of the primitives retained from Smith's Z-80

Realization Volume were revised significantly. Hany of the

others required minor corrections, most regarding incorrect

byte counts. In a few cases, comment lines were added to

clarify certain points regarding the structure of a

particular primitive. Generally, Smith was thorough and - -

the logic of his Z-80 assembly code routines was flawless.

The primitive, '&.main', appears in the second line

of every primitive list generated by the Translator. The

's.main' realization contains the code that appears at the

top of every software output from CSDE. Smith included

statements that would allow a designer to specify a debug

mode. A controller program produced from CSDE in debug mode

could be run and tested on a C/PH based microcomputer.

These references to debug mode were eliminated since, with

the use of the CSDE workstation, testing on the Pro-log is

more effective. Another capability of "s.main' was retained

to generate blocks of code within a controller program that

are only executed once before the monitor loop is entered.

Smith referred to this as hardware initializations. Although

48

'4S.waitleast' realization required several additional

arguments to be present in the title line then those

generated by the Translator. The differences are displayed

in Figure 8 as well as proposed CSDL syntax changes. Note

that editing the primitive list requires more, than just

changing the 'a.waitleast' title line. An additional

variable may need to be added with an 's.varl primitive to

Current CSDL Syntax:

"9WAIT SABLE+1: 50ONSOO

Proposed CSDL Syntax:

"WAIT SABLE+1: 500NS: 150ONSOO

A : max time
integer result__:SI. period
from this
expression

Sample Output From Translator (unedited)

P 47s.waitleast (GTO1.8:500)

Required Format for Input to CSDE Program
(with argument explanations)

1 2 3 4 5 6

P 47s.waitleast (6T02,STO1,,606O,500,1500:8,8)

1 - variable to be used for loop counter
2 - variable containing integer result
3 - top label
4 - bottom label
5 - time period
6-maex allowed time period

Figure 8 Changes Required for 'S.waitleast'

47

Thus, there would be no reason to incorporate a polling

routine, knowing the result could never change. The CSDL

syntax and the Translator should be corrected to allow

additional primitives within the boolean wait routine such

as ".asensecond'. It would then be possible for the result

of the final expression to change during the specified time

period. The boolean wait realizations have been written

accordingly.

9. LS~watl~asa

This primitive - nerates a software delay that is

computed by multiplying the integer result of an arithmetic

expression by a specified time period. The integer result

is passed to "s.waitleast' from primitives that appear above

it. The specified time period appears in "s.wattleast'.

The syntax for it is <WAIT>::= WAIT <EXPRESSION) : <PERIOD).

An example can be found in Appendix B in the task, NSGDSPLY.

When code from this primitive is incorporated into a

task the execution time of that task becomes variable based

on internally coaputed results when the controller program

is running. Since these changes in execution time occur

completely external to CSDE, there is no way to achieve

accurate timing statistics when the program is generated

unless the designer can specify some maximum delay in the

CSDL problem. Additionally, since the integer result passed

to 's.waitleast' is passed via a variable and not an

absolute number, the loop structure used in the

46

. ..

implementation can be found in the comment lines for

asetime' and 'h.clock' in Appendix E.

The CSDL syntax currently calls for the time period

to appear in 's.boolwait' and not in 's.stboolwait'. This

is wrong because CSDE needs the time period at the beginning

of the boolean wait construct to insure accurate timing

statistics are kept. This is accomplished by use of an

attribute line in 's.stboolwait' as is similarly done in the

primitive, 's.fixedwait'. Editing of the primitive list

output from the Translator is required a shown in Figure 7.

Sample Output From the Translator (unedited)

P s.stboolwait(U03:)
P 37aseq (ST01,LIGHT,SC06:8,S,8)
p s.boolwait (UTO1,s03,604:S,1700) <-- 1700 is period

in HS

Required Format for Input to CSDE Program

P 36s.stboalwait(s03.1700:) <-- time period
P 37s.eq (*TO1,LIGHTGCO6:8,8.8) here
P 38s.boolwait (@TO1,*oa,G04:8)

Figure 7 Changes Required For Boolean Wait Primitives

A logical error exits in CSDL relating to the

expression primitives that may appear between 's.stboolwait'

and 's.boolweit'. Currently, only one expression may appear.

which means that onci the boolean wait routine is entered

there is no way that the result of the expression could

change while waiting for the specified period to expire. i

45

expression is checked until either the result is true or the

specified time has expired after which the rest of the task

is executed. An example can be found in Appendix B in the

task, 'KSGDSPLY'. The syntax for 's.stboolwait' is <WAIT

HEAD) ::- WAIT UNTIL and for "s.boolwait' is <WAIT UNTIL>

.:: <WAITHEAD) <EXPRESSION) : <PERIOD).

The logic of the realization is fairly simple. The

primitive, 's.stboolwait', sets the time to check the

expression by calling another primitive, 'a.setime'. This

is analogous to setting a timer, in this case the counter

timer chip (ctc) on the Pro-log cpu board. Then it

establishes a label for the top of a mini polling routine.

The expression primitive would appear between "s.stboolwai"

and 's.boolwait'. Finally, 'a.bolwait' completes the

polling loop by first checking the result of the expression

primitive. If the result is true the routine is exited. If

the result is false, the current time is read from the ctc.

If the time is expired the routine is exited. Otherwise a

jump is executed to the top of the loop.

The primitive, "6.setime', is not generated by the

Translator. It was written as a separate primitive to

maintain the modularity of the Realization Volume and to

allow testing of the CSDE 'call' instruction in the

primitive, "s.atboolwait'. It sets up the ctc as a

down counter which decrements at 1 ms intervals. Details of

44.

.

7. S.in and Sni

These primitives are produced when a timed block is

specified. A timed block is a nested set of actions within

a task or function, with its own timing criteria. This

timing criteria is in addition to any criteria specified for

the parent task or function in the application timing table.

An example can be found in Appendix B within the function

'TPOLL'. The syntax for s.in is <TINEDBLOCKHEAD> ::= IN

<PERIOD> and for s.ni i& <TINED BLOCK>::= <TIMEDBLOCKHEAD>

DO <STNT GP> END IN.

These primitives are in the same format as they

originally appeared in Ross's 8080 Realization Volume. They

were added to the Z-80 Volume for purposes of completeness

only and cannot be used in their present form. This is

because the mechanism by which the CSDE program would

implement a nested timing requirement is not functional.

No effort was expended to correct this problem because it

was reasoned that if a designer had an inclination to

specify a tined block he could just as easily take the

actions in question and put them in a separate task or

function.

8. S.Stboolwait and a.boolwait

These primitives are generated when a boolean wait

construct is specified. This construct would be specified

by a designer when he wanted to check the results of an

arithmetic expression for a fixed time period. The

43

.... *~.

executed for every repetition of the loop. For correct

timing statistics the execution times for both the

condition checking primitives before 'e.whilocon' and the

action primitives after 's.whilecon' be must multipliad by

max loop count. This requires that the max loop count value

appear in 's.whilestart'. The primitive realizations have

been written accordingly. Editing of the primitive list

output from the Translator is required whenever the while-

do-loop primitives are generated. Examples of the changes

required are shown in Figure 6.

Sample Output From Translator (unedited)

P 31s.whilestart(803:)

(condition checking primitives)

P 33s.whilecon (ST01,604:4) (--'4' is max loop count.
Precision of OT01 is

(action primitives) missing.

P 38a.whend (603,604:)

Required Format for Input to CSDE Program

P 3ls.whilestart(G03,4:) (---WMax loop count here.

(condition checking primitives) 7-

P 33s.whilecon (ITOl,604:8) (--- Precision of GT0l
added.

(action primitives)

P 3ie.whend (903,004:)

Figure 6 Changes Required For 's.whilestart'

42

I

available within the primitive. Consequently, the primitive

realization was constructed to accept the following format:

s.forcons (COUNT,6C02,C04,003,604,120:8,8,8).

The max loop count value also appears in the "s.forend'

primitive as generated by the Translator. It is not

required for proper construction of a for-loop and is

ignored. Manual editing of the primitive list output file

from the Translator is required whenever the for-loop

primitives appear. Otherwise a fatal error will result upon

running the CSDE program.

6. S.whilestart

This primitive is used in conjunction with the

primitives, 's.whilecon' and 'a.whend' to construct a while-

do-loop. Its functions are to establish a label for the

beginning of a while-do-loop and manipulate the max loop

count using the global variable, 'reps'. This is similar to

the method used in 's.forcons'. The CSDL syntax is '<WHILE),

::a WHILE'. Again, there is a problem as to where the max

loop count is placed.

The CSDL syntax currently calls for max loop count

to appear in the 'a.whilecon' primitive and not in

"a.whilestart'. This is wrong because the condition to be

checked to determine if the while-do-loop should be I

continued appears as other primitives between 's.whilestart'

and "s.whilecon'. Thus, these primitives, as well as the

primitives appearing between 'a.whilecon' and 'a.whend'. .re

41

I

is the factor by which the execution time of each primitive

is multiplied prior to being accumulated by the timing

analyzer. It is normally set equal to 1 but in the case of

a loop it is set equal to the value of max loop count

specified by the designer. Once the 'a.orend' primitive is

encountered, the value of 'reps' is reset to the value it

had upon entering the for-loop. Previous values of 'reps'

are saved and recovered through the use of a stack inside

the CSDE program. This stack is only used for the global

variable 'reps' and manipulated with the statements, 'calc

push reps' or 'calc pop reps'. This stack arrangement

allows the construction of nested loops.

The format of the realization title line is

slightly different for the primitive format generated by the

Translator because of an error related to the positioning of

the value for max loop count. Currently the Translator

output appears as follows:

a.forcons (COUNT,GC02,6C04,103,604:8,8,8,120).

The criteria section of the title line (to the rLght of the

colon) should contain only values corresponding to the

variables in the argument section (to the left of the

colon). In this case there are 3 variables and 2 labels in

the argument section and as such there should only be 3

values in the criteria section. The value, 120, is the

specified max loop count and should be in the argument

section instead of the criteria section in order to be

40

.. ..S.....

4. S.eauivalenc and S.imolicats

Both of these primitives perform logical comparisons

between two expressions in the same manner as 's.or' or

"s.and'. The inputs to them are the boolean results of 2

expressions, true (ff hex) or false (00 hex). The output is

a boolean result according to the specified truth table

CRef. 16: p. 81]. Truth tables for both primitives can be

found in Appendix E in the comment lines for each primitive.

The CSDL syntax for 's.equivalenc" is '<EXPRESSION) ::=

<EXPRESSION) as <EXP_2)'" and for "s.implicate' is '<EXP_2>

::a <EXP-2> a) IEXP 3)'.

5. L.fgrscna
This primitive marks the top of a for-loop and was

already included in Smith's Realization Volume under the

primitive name 's.forstart'. Statements have been added to

properly account for changes in execution time that arise

depending on how many times a for-loop is executed. Also,

the arrangement of arguments within the title line is

slightly different from the format output from the

Translator because of the rules by which primitive

realizations must be constructed. The CSDL syntax is '<FOR

HEAD) ::= FOR *lD* FROM <EXPRESSION) TO <EXPRESSION> : <MAX

LOOP COUNT>'.

To accurately keep track of total execution time

during loop operations Ross incorporated the global

variable, 'repe', in the CSDE program. The value of 'reps'

39

" , ," w ..-'". .. ; ... ' ," - ' : f'''' - "

Translator error file. These files were discussed in

Chapter 2. It was important to view the Translator error

file before inputting the problem to CSDE because this was

the only way to know if the CSDL program contained any

syntax errors. Any manual changes to the primitive list

were made using the EDT editor available on the VAX. Next,

the CSDE program, currently named CLIB, was run to produce a

software listing, a hardware listing and a debug file.

Different levels of debugging may be selected from the

initial CLIB menu. The software listing was then downloaded

to the Z-1OO microcomputer, part of the CSDE workstation.

On the Z-100, it was assembled and linked to produce a hex

file. The hex file was downloaded from the Z-lO to the

Pro-Log where it was finally executed.

As mentioned above, different levels of debugging may be

selected when running the CSDE program. When level 0 is

selected only the actual error message lines will appear in

the debug file. When level 3 is se .cted an extensive

chronological record of CSDE program execution is written to

the debug file. In most cases it was easiest to select

level 0 and if errors developed, rerun the problem with a

more detailed debug level selected. Another point is that

3ust because the CSDE program flags errors does not mean

that an unsatisfactory realization has been produced. In

some cases, such as with 's.fixedwait', only non fatal

53

..

p7

informative errors are generated. This was mentioned in

section III.C.2.

An actual test program and all related files are

"K. contained in Appendix F. This CSDL problem was written to

test the primitives associated with a while-do loop.

Referring to the problem, 'FUNCTION EACHi' is a contingency

which senses an input value, stores it in the variable,

'ARGi', and sets the boolean variable, 'EAC41', equal to -1

if "ARGt' is less than or equal to 2. The boolean variable

is set equal to -1. because -1 decimal is represented by FF

hexadecimal in twos complement form. A boolean true value

is defined as FF hex. The net result is that if "ARG.' is

less than or equal to 2 than the contingency is true. The

'CONTINGENCY LIST' specifies that if 'EACH1" is true then

'TASK ONLITA' must be executed. Both the contingency and

task must be completed within 1600 milliseconds including

any other blocks of code that are executed during the

remaining portion of the current monitor cycle.

The while-do loop comprises the bulk of 'TASK ONLITA'.

The net result of the while-do loop is that the values 1, 3,

5, and 7 will be output at 250 as intervals and can be

viewed in binary form on the 8 leds of the Pro-log

keyboard/display card. This display will only occur if the

contingency is true, i.e. both keyboard/display card rocker

switches are off or only the right switch is on.

54

The second contingency task pair, 'EACH5' and DOFFLTP,

causes a 500 me delay with all lode off for any of the four
p

possible input values. See the discussion of '.asnsecond'

in section III.C.1. for more information on the four

possible input values.

Following the CSDL problem are the three Translator

output listings used by the CSDE program. They are the

primitive list, application timing file and symbol table.

The primitive list as shown in Appendix F, was modified from

the original Translator output to position the value for max .-- ,

loop count as the second argument in the primitive

's.whilestart'. See Figure 6 in section III.C.6 for an

illustration of this change.

Finally, the software, hardware and debug listings are
L.

displayed exactly as produced from the CSDE program. The

software listing is ready to be assembled and the debug

listing was generated in debug level 0. The errors .

contained therein are for information only and relate to the

missing colons in the 's.fixedwait' primitives.

B. TRANSLATOR ERRORS

During the course of primitive testing, some errors were

discovered in the format of primitives generated by the

Translator. Other Translator errors relate to the manner in

which it handles numbers and determines the precision of

55

.-{ '- i- -.-" -. -" o' -. .- " -'.- .-: :. --.-. .- -. , } " } ' .- -" " -".i- .i L "- " -". ..-' .- "-- . .. " .-- .. -..' .. - .- -. ': --

internally generated variables. All Translator errors are

summarized in Appendix G.

Most format errors relate to the placement of values for

loop counts or time within the primitive title lines. These

have been documented in Chapter III.C. and apply to the

following primitives: "s.forcons', 's.whilestart',

Ps.whilecon'', "s.stboolwait', "s.boolwait', and

's.waitleast'. The primitive realization for 's.waitleast'

also contains many more arguments than in the Translator

version and modification to its syntax in CSDL is also

required. This is detailed in section III.C.9. A final

format error is that the primitive, 's.fixedwait', is

generated without the required colon after the value for

time. The functional mapper module of the CSDE program has

been modified to accommodate this error. When encountered

by the CSDE program, error messages are generated and then

the required colon is inserted in the correct location. All

errors except for 's.fixedwait' require manual correction by

editing the primitive list prior to running the CSDE

program.

Although CSDL syntax rules allow time units as small as

nanoseconds, the Translator correctly generates only time

values accurate to the next lowest millisecond. For

example, if a CSDL problem contained the statement, 'WAIT

600 US', the Translator would generate the primitive,

's.fixedwait (0)'. All time values generated by the r

56

- "

I

Translator are in milliseconds and any primitive

realizations that take input values of time must be written

accordingly. Milliseconds are excellent time units when

long delays are required, especially for demonstration

programs that utilize the leds on the Pro-log

keyboard/display board. However, for more flexibility in

possible controller designs, the shorter time units should

be available for use. This is because some applications,

for example a jet engine start controller, might require

more stringent response times.

There are two other problems relating to the

Translator's handling of numbers in general. One is that it

only recognizes integers. For example, if a CSDL problem

segment was written as 'COUNT:=COUNT10.6', the number,

10.6, would be passed to the primitive list as simply 10.

The second problem involves the criteria used to create 16

bit constants instead of 8 bit constants. For example, if a -

CSDL problem segment was written as 'COUNT:=128", the

primitive, 's.cona (ICO1,128:8)- would appear in the

primitive list. If the value was 129 instead of 128, the

primitive, e.cons (6C01,129:16)' would appear. This is

wrong because the largest positive twos complement number

that can be specified in an 8 bit word is 127. Therefore

the decision point for specifying 8 bit or 16 bit constants

should be between 127 and 128, not 128 and 129.

L

57

.-...-. . ,

One other error relating to the precision of variables

occurs when dealing with primitives that use boolean

variables. For example, the primitive, "s.eq', has three

arguments and compares the values of the second and third

arguments for equality. Upon completion of the equality

test, the first argument is set equal to FF hex for true or

00 hex for false. Since the first argument is always used

as a boolean variable, an 8 bit precision will always be

sufficient even if the other arguments call for 16 bit

precision. All relational primitive realizations were

written assuming the boolean argument will always have an 8

bit precision. Unfortunately, the Translator generates a 16

bit boolean argument whenever either of the other arguments

Example Relational Primitive (unedited)

P 30s.eq (T@1l,ARG1,CONST:16,16,16)

16 bit variable generated

by Translator to pass
boolean result; only needs
to have 8 bit precision

Required Format for Input to CSDE Program

P 30s.eq (TSO1,ARGI,CONST:8,16,16)

Figure 10 Changes Required for Relational Primitives

has a 16 bit precision. This results in criteria check

errors from the CSDE program whenever large numbers

58

• ° ...-

requiring 16 bit precision are compared within a relational

primitive. Primitive lists containing such errors must be

corrected before running the CSDE program. An example is

contained in Figure 10.

The final Translator error requiring correction is that

if variables are declared as type DUPLEX, any subsequent use

of those variables in a 'SENSE ', or 'ISSUE' statement

results in syntax error messages. This is wrong because the S

whole concept of DUPLEX type variables involves their use

for either input or output. This was discussed in section

IZI.C.t. ""

C. THE CSDE PROGRAM

As mentioned in Chapter 1, the CSDE program underwent

revision during the course of research for this thesis.

Most changes are transparent to the user and involved

streamlining the CSDE program source code to improve

efficiency. Additional improvements over the NEWCSDL |

version used by Smith and Riley include the addition of a

user friendly menu and elimination of the need for the _

input file, MONTER.DAT. This file contained the primitives .

required to generate the monitor section of a controller

program. The monitor primitives were already contained in

the Realization Volume and thus, MONTER.DAT was really not

needed.

59

°'1

.°,.o .° ° .. . *..° ,. .* , " o -. . . . ,. .-. ,... . ' • , .. o, . °

,, •- -m "-- -" .i

The revised CSDE program, CLIB, was exercised frequently

while developing and testing new primitive realizations.

Many errors that had been introduced during its revision

were identified and corrected as testing progressed. The

importance of good communication between the user (me) and

software maintenance personnel (Mr. Lukas) was made very .-

clear. Despite delays due to errors in CLIS, testing for

this thesis could not have been completed without it. The

CSDE workstation also proved invaluable in reducing testing

time per primitive compared to the methods used by Smith.

Realization testing and debugging CLIB uncovered an

important idiosyncrasy of CSDE. Specifically, the input

file containing the list of global variables, usually named

GLOBALS.DAT, has a strict format. Certain positions within

the globals file are reserved for global variables used

internally by CLIB. If a new global variable used within a

primitive realization is accidentally placed in one of these

'hard wired' positions unpredictable errors will be

generated. The current global variable file contains some

global variables that are not found in the Revised Z-80

Realization Volume. These variables were added by Smith

because they were used in some of his primitive realizations

from the original Z-80 Realization Volume. Since these

primitives have been deleted from the Revised Z-80

Realization Volume, some global variables added by Smith

serve no function as far as primitives are concerned.

60 :''
so.. .. .

A, ",.

I

However, because of their position in GLOBALS.DAT they might

still be used internally by CLIB. Thus, global variables I

not found in the Revised Realization Volume have been

retained to insure that CLIB runs correctly. If any new

global variables are added in the future they should be I

added at the bottom of the file. Also, the number at the

top of the file, indicating the total number of global

variables, should be adjusted accordingly. Figure 11-

..

° .

61..

Contents of
Global Variable File Applicable Notes

022
arnd 0. 1,2,3
bdos 5. 2,3
chips 0. 2,4
clock 0. 5
initlkO. 1,3,5
reps 1. 4,5,6
natodeO. 2,3
natodpO. 2,3,6
ndtoaeO. 2,3
ndtoapO. 2,3
ninoutO. 2,3
nkey 0. 2,3
nled -1. 2,3
nodgt 0. 2,3
norom 0. 2,3
nrockrO. 2,3
ramptrO. 3,5
romptrO. 3,5
scrtchO. 3,5
slot 0. 3,5
keybrdO. 3,5
tablckO. 3,5

Note Explanations

1 -- Available for use if initialization
primitives are added. See Figure 9.

2 -- Not used in Revised Z-80 Realization Volume.

3 -- Added by Smith, used in original Z-80
Realization Volume.

4 -- Used internally by the CSDE program, CLIB.

5 -- Used in Revised Z-80 Realization Volume.

6 -- Known 'hard wired' position used by GLIB.

Figure 11 Contents of Global Variable File

. . . - .o. .

V.~ CONCLUSION

I

The goals for this thesis have been accomplished. All

but a few discrepancies have been resolved between the

Translator and the Z-80 Realization Volume. Numerous test

problems have been run through the entire CSDE system, from

CSDL problem statement to operating program on the Pro-log

microcomputer. These test problems, as implemented on the

Pro-log, can be considered true controller realizations

since changes in input values result in different output

values.

More complex problems should be demonstrated in the

future. This will require the addition of more complex 1I/

hardware with accompanying modification to the I/O primitive

realizations. If, for example. Riley's jet engine

controller were to be demonstrated, a means would also be

needed of simulating the various parameters to be sensed.

An array of potentiometers connected to analog to digital

converters might be utilized for this purpose. Similarly, I

outputs from the controller would need to be displayed

differently then the current method using leds. Complex

problems might require more memory than the currently

available 16k RAN.

The Translator errors discussed in chapter IV should be

corrected. This would result in complete compatibility

63

between component parts of CSDE and would eliminate the need

for manual modification of intermediate primitive lists.

Another modification to the Translator might be to improve

the clarity of its error messages when CSDL syntax errors

are encountered. Currently, these messages are extremely

difficult to understand since they only point out the

location of a syntax error within a CSDL problem. Until a

syntax directed editor or language manual is developed for

CSDL, the error detection facility of the Translator is the

only aid available for writing correct CSDL problems.

This thesis research was primarily an exercise in

software maintenance. The problems encountered and effort

expended to solve those problems were invaluable in

demonstrating why software maintenance requires such large

proportions of government and industry data processing

resources. For example, the concept of continuity between

development personnel became quite clear as many questions

arose concerning previous researchers work. Had personnel

such as Carson, Smith, and Riley been available for

consultation, much time probably could have been saved.

The importance of good communication between users and

maintenance personnel was proven as the revised CSDE program

was successfully debugged. This also illustrated the

difficulties that arise when two components of a system that

effect each other undergo maintenance at the same time.

Errors in the revised CSDE program caused some unanticipated

64

delays in the testing of now primitive realizations.

Finally, good documentation is mandatory for a successful

software maintenance project.

65p

APPENDIX A

PRIMITIVES AVAILABLE FROM TRANSLATOR

This appendix contains a list of all primititives that
=an be produced by Carson's translator. The corresponding
production number can be used to find the Backus-Naur syntax
structure in the listing of the CSDL language in Carson's
thesis CRef 8: pp. 47-54]. A brief phrase describing each
primitive is also supplied.

ADD 23 Addition I

SUB 21 Subtraction

MULT 23 Multiply

DIVIDE 23 Divide I

LT 25 Less Than

LE 25 Less Than or Equal To

EQ 25 Equal To

GT 25 Greater Than

GE 25 Greater Than of Equal To

NE 25 Not Equal To I

NOT* 22 Boolean Not

AND 27 Boolean And

OR 29 Boolean Or I

IMPLICATE 31 Logical Implication

EQUIVALENC 33 Logical Equivalence

LOC 37 Location in IF THEN I

JNPF 38 Jump If False

WHEND 39 End of WHILE Construct

WHILECON 40 Test Portion of WHILE Construct "

66
p'i •-

m.This primitive is called by 's.stboolwait'.

m.The Translator produces 2 versions of 's.var' and both
are compatible with the Realization Volume.

??? This Translator primitive was not generated
by Carson's original CSDL teat program and
subseqent attempts to generate it proved
unsuccessful.*

soS

S., (o rsltjar,1,ar2:0j8,0,16,0,l6:)

S.not (rsltjarg1:0,,0,8: S. not ??

SmO (rSlt, an',wgr2:0,80, 8, 3 S. sor TO, OTO, U02:81 8, 8)

auOItPutPart(mitre, tuc:0:) s. output port (MJ, 11:8)

S. OC (no 1: 3S.Proc (KEYIF(AIN:)

S.Uwmbaaw (Miwman0,: s. swuaond (KEYFL: 1)

s. t im (cktimt0,32768: 3'"*

sub (rslt,arq1, wg2:0, 6,0,6,0,8: S. sub W#TO10,QC, :8,8, B)

S. sub (rslt,argl,arV2:0, 16,0,16,0,16:

S.tabCeli U:

S. tabid 1a)0

S.tamnt (fretask a

S. Va (na:nO,6 3s.Var (KEYININUN:8,)""

16 Va 1nmu0, 161 S. .. ' (ITOl:8)"

n~uit lent (irmxupr,topbot,phs,.ax0l,,0,8) LWaitleast TOI, 8:500)

LSiiuW (topbots: S.idi (417,@18:)

S.Milji'ds (rultjbot:0,#: 3S.Whilaco MT01,1B,0)

siwhiletat(top, lpetto swdilustart (I17)

These primitives are used by the CSDE system to
construct the monitor section of the generated
controller program. Although they must be present in
the Realization Volume, they are not produced by the
Translator because the monitor strategy is not
controlled by the designer who writes the CSDL
problem.

*. These primitives were added to the Realization Volume
for completeness but ore not useable as currently
implemented.

79

Luquivalwoc(rslt,aru1, argesO,8, 0, 8,0,8: s. uquivalenc MT01, IT0, T0:8, 8,8)

Lmlxitpoc (M :1 Luxitproc (I(EYIt4AIN:)

LfiuWait (tium:0,12: L f. 1 jdwait (10)

L. foreans (indx, lr, up, slab, vlab val:0, 8,0,89 0,80 L. forcor.. (CCW, KI, CO5,111,012-.8,8,814)

L~oua fin,lxslab, elab:0,B8: S. foru (COMi,011,012:8,4)-

L P (rs~t'ar~1,arg:0,8,0,8,0,8:-). 1. (fT01,Ac3,UcW:8,S,8)

1.91 (rslt, ell, arg2:0,8,0,16, 0, 16:

gut (rult,aril, ar2:0,8,0, 8,0,B8: L g.t (#TO,AC4,10e:8,8,8)

L. implicate (sit, arjl,arge:0, 8,0,,0,8:) S. iplicate WTO1,QTO1,fT0e-:8,8, 8)

s. in/outport (NSMYT, TTL:8)

L inpuport (innmtoMh:0,8 L ainptOrt (KEYFLDTTL:8)

S.iwsuivt (outw:0,8: L a iSSUewn (~MM38)

S. japf (Val,iaoc :0, 8: s .jmpf (OTOI,90i:8)

L It (rsIt,arul,arg2:0,8,0,8,0,8: LI Mi T0,AC2,ce:8,i%$)

L It (nuit, ar1, arg2:0,8,0, 16,0, 16:

L IOC (boc :3 .Ioc (90h:)

Lit (nait'argl, aru:0,8,0,,0, 8: L ait (STOl, ACi, 1c:8, 8,8)

Lit (rsItj rgI, ari2:0,8,0,16,0,16:

L "in :3m

L~mnitor (t:

So alt (r~n'i,lwu20,,0,$,0,S1 3amLOU (@T0,FDC%1W7:8,8,8)

sLmIt (nslt,aqi,aru:0,l6,0,8,0,8:

LOit (nslt, av1, 010, 16, 0, 16, 0, 16:

Lff (rsIt,aru1,ag,9,0,S,0,$: 3LMl (#TO,ACO,1cM:8,G,8)

78

APPENDIX D

COMPARISON OF PRIMITIVES

This appendix displays a comparison of the primitives
available from the Revised Z-80 Realization Volume (Appendix
E) and the primitives available from the Translator.
Primitives from the Revised Volume are in the same format as
they alpear in the index in Appendix E except that the seven
numeric values following the second column are not shown.
Primitives from the Translator are in the same format as they

a ppear in the primitive listing that is generated by theTranslator when Carson's CSDL test program (Appendx C) is run
through it. Differences in the arrangement of arguments
between some Realization end Translator primitives are due
errors in the Translator (summarized in Appendix G). The
primitive, "s.in/outport', was not added to the Realization
Volume.

WVISED 1-WO VMI M EE

s.add (rflt, arg1,a*:0,8,0,8,0q8: s add (TO1,KTOEYM:8, 8)

sLad (r5lt, ilamJ2:0,16 O, 16 O, 18") *>

audip (var, data: O, ,0, a: S. Asi In (KEYIMINI, T OI :1,8)

s.Mig (var, datasO, 16,0,16:

Sboalait (rlt, t0pbts0,$1) S.bol"Ait (T01,909,110:8, 10)

S.call (m::) s.call (OLITA:)

S.eaM ("mHval, :0,81) S.COm (9COI, 1:8)

s.com (nm~val, :0,161

s. divide (ISlt, wll,wu2:0,80,8,0,8:) sdivide (FT01, T01, KEYDIA:8,8 61)

L.divide (rslt,argl,arg2,16,0,16,0,16:

S.Lnd :s)

Sq (rlt, arul,& 80,,0,8,0,8,) iq (@T01, KEYFL6, K0!:8,1, 8)

s q (rslt,ar , , O).:0,8,0,16,0,16:

77

-. - - -- --

* .,•,,*-.-

S.VARIABLE (NEXTAC:8,O)
S.VARIABLE (TPOLL:1,0)
S.VARIABLE (COUNT:8,O)
S.LOC (601:)
S.LOC (602:)
S.LOC (603:)
S.LOC (604:)
S.LOC (605:)
S.LOC (606:)
S.LOC (607:)
S.LOC (608:)
S.LOC (613:)
S.LOC (614:)
S.LOC (615:)
S.LOC (616:)
S.LOC (621:)
S.CONS (6C01:1,8)
S.CONs (6C02:0,S)
S.COms (GC03:2,8)
S.CONS (6C04:3,S)
S.CONS (6C05:4,S)
S.CONS (6C06:30,S)
S.CONS (6C07:5,8)
S.CONS (6C08:10,8)

76

P 139s.Rult (GTO1,ACNUN6@C08:8,8,8)
P 140a.divido (OT01,IT0l,KEYCHAR:8.8,8)
P 141..asign (ACNUM,GT01:8,8) P,
P 142a.forend (COUNT,I19,920:8,4)
P 143&.eq 6GT02,ACO,ACNUM:8,8,$8
P 144&.japf (STO1,621:8)
P 145s.assign (ACO,GCO2:8,8)
P 146a.loc (621:)
P 147&.exitproc (LOGOUT:)
P 148t.gonerated for: SYSTEM
P 149a.cons (UCO1,1:8)
P 150a.cons (GC02,0:8)
P 152A.Cons (UCO3,2:8)
P 152&.cons (SC04,3:8)
P 153s.cons (OC05,4:8)
P 154&.cons CCO,30:8)
P 155a.cons (OC07,5:8)
P 156a.cons (GC08,10:8)
P 157&.vaz (GTO1:8)
P 158a.var (GT02:8)

IADEFL.DAT

A 1I :KBINPHAIN :MS: 100, 0, 0, 0, 0
A 2 : :KBINPMAZN :14S: 20, 0, 0, 0, 0
A 3 : :KBINPMAIN :MS: 300, 0, 0, 0, 0

SYNFILE .DAT

S.* INPUTPORT (KEYFLG.TTL: 1)
S.* INPUTPORT (KEYCHAR, TTL :8)
S. INPUTPORT(ACNUU,TTL:S)
S .OUTPUTPORT(NU,TTL:8)
S.OUTPUTPORT (POLLITTL :8)
S. IN/OUTPORT(MSGVDT,TTL:8)
S.VARIABLE (KEYINMAIN:8,O)
S.VARXABLE (NINTAC:8,0)
S.VARIABLE (NISGDSPLY:8,0)
S.VARIABLE (ACO:8,0)
S.VARIABLE (AC1:8,0)
S.VARIABLE (AC2:8,0)
S.VARIABLE (AC3:8,0)
S.VARIABLE (AC4:8,0)
S.*VARIABLE C INTPERIOD :8,0)
S.VARIABLE CMSGO:8,0)
S.VARIABLE (NSG1:8,0)
S.VARIABLE (145G2:8,0)

75

P 88a.*q S@TO1,NNSGDSPLY,@C02:8,S,8)
P 89a.boolwait cITO1,0O9,U1O:8,1O)
P 90a.exitproc (MSGDSPLY:)
P 91t.gonerated for: LOGIN
P 92a.prac (LOGIN:)
P 93a*sasjgl (ACNUN,O002:8,8)
P 94a.forcons (COUNT,6C016GC05.6ll.UlZ:8,8.8,4)
P 95a.sonsocond (KEYCHAR:S)--
P 9S&aub c6T01,ACNUN19C07:8,8.8)
P 97s.assign (ACNUN,6FOl:8,8)
P 98S.Rult c6T0l,ACNUK,@C08:8,8,8)
P 99&.add (ITO1,*TO1,KEYCHAR:S8,8)
P 100a.assign (ACNUN,STO1:8,8)
P 101s.forend CCOUNT,611,12:8,4)
P 102&.eq CUTO1,NEXTAC,6C02:8,8B8)
P 103a.eq C6T02,ACO,6C02:8,e,s)
P 104a.and (UTO1,@TO1,@T02:8,S,8)
P 1O5m.3upf (GTOl1613:a)
P 1O6&.aaaign (ACO,ACNUN:8,8)
P 107&.loc (813:)
P 108*.eq (6T0l,tEXTAC,@CO1:S888)
P 109a.eq (@T02,AC1,@C02:8,S,8)
P 110&.or (6T01,6TO1,6T02:8,8,8)
P 1114.jmpi (GT01,614:8)
P 112a.assign (ACI,ACNUN:8,8)
P 113a.loc (614:)
P 114.q U@TO1,NEXTAC,6C03:S8,,8
P 115a.eq (@T02,AC2,@C02:S,8,S)
P 116a.Jiaplicete (@TO1,UTO1,@T02:8,8,8)
P 117m.japf (UTO1,015:8)
P ll86.4agn (AC2,ACNUN:8,8)
P 1194.10C (615:)
P 120a.eq (STO1,NEXTAC,@C04:8,8,8)
P 121a.*q (@T02,AC3,@CO2:S,8,a)
P 122a..quiv.1.nc(UTO1.UTO1,6T02:8,8,S)
P 123.mpi (ST01,016:8)
P 124a.assign (AC3,ACNUM:8,8)
P 1256.1oc (616:)
P 126a.whilestart (617:)
P 127s.oq (@TO1,ACNUN,6CO1:S,8,8)
P 128a.whilcon (UTO1,61S:4)
P 129m.assign (AC4,SC05:8,S)
P 130a.add (@T01,ACNUM.C0:888)
P 131a.assign (ACNUK,6TO1:8.8)
P 132a.whend (017,016:)
P 133o..xitproc (LOGIN)
P 134t.goneratod for: LOGOUT
P 135a.proc (LOGOUT:)
P 136a....cgn (ACNUN,6C02:8,S)
P 137a.forcons (COUNT,ICO1,6C05,619,U20:8,8,8,4)
P 136a.sonsecnd (KEYCHAR:8)

74

P 37asensecond (KEYCHAR:S)
P 38a..q (@T01,KEYCIAR,C01:S,8,8)
P 396.jmpf (DTO1,002:8)In
P 40&.aasign (MINTAC,O001:8,8)
P 41a.loc (002:)
P 42a.fixodwait (10)
P 43a.exitproc (KBZNPMAIN:)
P 44t.goneraed for: MANUAL .-

P 45a.proc (MANUAL:)
P 46a.ne (GT01,ACO,6C02:8,8,8)
P 47&.jmpf (OTO1,603:S)
P 48a.asgn (POLLpOC02:8,a)
P 49s.imauevent (POLL:8)
P S0alIoc (603:)
P 51m.1t (GTO1,AC1,*C02:8,8.8 S
P 52a.jupf (IT01,6104:8)
P 53a.aaaign (POLL,OCO1:8,8)
P 54s.issuevent (POLL:8)
P 556.1oC (004:)
P 56a.le (@TO1,AC26OC02:8,8,8)
P 57n.jupf (ITO1,005:8)
P 58a.eign (POLL6OC03:8,8)
P 59s.issevent (POLL:8)
P 60a.loc (605:)
P 61a.ge (UTO1,AC3,6C02:8,8)
P 62s.jupf (ITO1,006:8)
P 63a.easgn (POLL,OC04:8,8)
P 64s.ieauevent (POLL:8)
P 65a.loc (606:)
P 6Ea.gt (@T01,AC4,6C02:8,8,8)
P 67&.japf (STO1,007:8)
P 68a.eaaign (POLL,6C05:8,8)
P 69&.iaauevent (POLL:8)
P 70a.loc (607:)
P 71a.exitproc (MANUAL:)
P 72t.gonerated for: TPOLL eu*w.eu.
P 73a.pzoc (TPOLL:)
P 74s.oq (GT01,INTPRRIOD,@C06:S,8,8)
P 75a.3mpf (OTO1,008:8)
P 76a.in (1800000)
P 77a.assign (TPOLL,QCO1:1,8)
P 78s.nJ ::
P 79a.loc (008:)
P 80a.exitproc (TPOLL:)
P 81t.generated for: MSGDSPLY
P 82a.proc (MSGDSPLY:)
P 836. call (KBINPRAIN:)
P 84a.assign (MNSGDSPLY,6C02:88S)%
P 85aedd (STO1,MMSGDSPLY,GCOI:8,8,8)
P 86a.weitleast (GT01,8:500)
P 87&.mtboolw*It (609:)

73

APPENDIX C

PRIMITIVE LIST, APPLICATION TIMING TABLE AND SYMBOL
TABLE PRODUCED BY TRANSLATOR FROM CSDL TEST PROGRAM

This appendix contains the unedited output from the
Translator that results from the CSDL tost program in
Appendix B. The first item is the primitive list that come
out in the file PRIMFILE.DAT, the second item is the F
application timing table that comes out in the file
IADEFL.DAT, and the last item is the symbol table that comes
out in the file, SYMFILE.DAT.

PRIMFILE.DAT

P 2s.MAIN ::
P 3d:FIRST * :1:
P 4s.inputport (IEYFLGTTL:1)
P 5a.inputport (KEYCHAR,TTL:8)
P 6s.inputport (ACNUM,TTL:8)
P 7s.outputport CMENUTTL:8)
P So.outputport(POLL,TTL: 8)
P 9s. in/outport CMSGVDT, TTL :8)
P 10a~er (KEYINNAIN:8,0)
P lls.ver CMINTAC:8,O)
P 12s.var (NMSGDSPLY:8,0)
P 13s.var CACO:8,O)
P 14a.var (AC1:8,O)
P 15s.var (AC2:8,O)
P 16s.var (AC3:8,O)
P 17a.var (AC4:8,O)
P 18s.var (INTPERIOD:8,0)
P 19s.ver CMSGO:8,0)
P 20*.var CMSG1:6.O)
P 21*.var (N5G2:8,O)
P 22s.var (NEXTAC:8,O)
P 23s.var (TPOLL:1,0)
P 24s.ver (COUNT:800)
P 25t.goeratod for: KEYINMAIN
P 26m.proc (KEYINNAIN:)
P 27s.sonsecond CKEYFLG:l)
P 28a.eq (@TO1,KEYFLG,@C0l:8.1B8)
P 29s.3mPf CITO1,601:8)
P 30s.assign (KEYINMAINGC01:1,8)
P 31s.loc (001:)
P 32a.exitproc CKEYINMAIN:)
P 33t.ganorated for: KBINPHAIN
P 34m.proc CKBINPNAIN:)
P 35a.ssign (MENU,SC02:8,8)
P 36s.issuavent (MENU:S)

72

IF NEXTAC=O AND ACO=O TKEN ACO:=ACNUN; END IF;
IF NEXTACul OR AC1=O THEN ACI:=ACMN; END IF;
IF NEXTAC=2 *) AC2=O THEN AC2:=ACN; END IF;
IF NEXTAC-3 muAC3=O THEN AC3:UACNUK; END IF;
WHILE ACHUN I : 4 DO

AC4 := 4;
ACU UM ACUN + 1;

END WHILE;
END LOGIN;

TASK LOGOUT;
ACNUN:80;a
FOR COUNT FROM 1 TO 4:4 DO

SENSE (KEYCHAR);
ACMN:w-(ACNUM*10) /KEYCHAR;

END FOR;
IF ACOsACMUM THEN ACO:=O; END IF;

END LOGOUT;

CONTINGENCY LIST
WHEN KEYINMAIN :100 HS DO KBINPMAIN;
EVERY 20NS DO KBINPNAIN;
AT 300KS DO KBINPMAIN;

END

71

.7-w- 77 7

PROCEDURES

FUNCTION KEYINNAIN:
BINARY, 1;
SENSE (KEVFLG):
IF KEYFLG-. THEN KEYINMAIN:=1; END IF;

END KEYINNAIN;

TASK KBINPKAIN;
KENU:wO; ISSUE (MENU);
SENSE (KEYCHAR);
IF KEYCHARzl THEN NINTAC :wi; END IF;
WAIT IONS;

END KBIVPNAIN;

TASK MANUAL;
IF ACO/wC THEN POLL:=O; ISSUE (POLL); END IF;
IF ACl<O THEN POLL:ul; ISSUE (POLL); END IF;
IF AC2<=0 THEN POLL:m2; ISSUE (POLL); END IF;
IF AC3>=O THEN POLL:=3; ISSUE (POLL); END IF;
IF AC4>0 THEN POLL:m4; ISSUE (POLL); END IF;

END MANUAL;

FUNCTION TPOLL:
BINARY, 1;
IF INTPERIODw3O THEN IN 30 N DO TPOLL:wl; END IN;
END IF;

END TPOLL;

TASK KSGDSPLY;
KBINPMAIN;
KNSGDSPLY: -0;
WAIT NNSGDSPLY+l: 5OKS;
WAIT UNTIL NNSGDSPLY *0: IONS;

END KSGDSPLY;

TASK LOGIN; 9
ACNUN: .0:
FOR COUNT FROM I TO 4:4 DO

SENSE (KEYCHAR);
ACNUK:uACNUN-5;
ACNUK:=u(ACNUW*10) eKEYCHAR;

END FOR;

70

.

APPENDIX B

CSDL TEST PROGRAM

This appendix contains Carson's CSDL test program to
exercise the Translator to produce all possible primitives.
As originally written, it did not contain the CSDL
structures to produce the primitives, '&sub', '&.not',
'&.call', and 's.waitleast'. Structures have been added to
produce all except '&.not'. Also, the structure, 'DO MANUAL
4;', originally found in the contingency list, caused the
Translator to produce an error message even though it
appeared to be correct according to CSDL. This structure
was deleted. The resulting primitive list and application
timing table are contained in Appendix C.

DESIGNER :"HILL CARSON/ MODIFIED BY BOB VOGEL"
DATE : "105-31-84/02-20-850"
PROJECT :',TEST PROGRAM TO EXERCISE TRANSLATOR"

DESIGN CRITERIA
METRIC FIRST;
VOLUMES 1;
MONITORS 1;

ENVIRONMENT

INPUT:KEYFLGl,TTL; KEYCHAR,S,TTL;
ACN UN,8, TTL;

END INPUT;

OUTPUT: MENU,S,TTL;POLL,8,TTL; END OUTPUT;

DUPLEX MSGVDT,8,TTL; END DUPLEX;

ARITHMETIC: KEYINMAIN,8; MINTAC,B; MMSGDSPLY,8;
ACO,8; AC1,8; AC2,8; AC3.8; AC4,8;
INTPERIOD,S; MSGO,8;
MSGI.8; MSG2,8;
NEXTAC,a; TPOLL,l; COUNT,a;

END ARITHMETIC;

69

2. -. e- .7 . . .

generate a 'NOT' primitive, atterpts to do so were.
unsuccessful.

68S

WHILESTART 41 Beginning of WHILE Construct

FOREND 42 End of FOR LOOP

FORCONS 43 Condition Tested in FOR LOOP

CALL 44 Generate a Pocedure Call

ASSIGN 49 Assignment Statement

SENSECOND 50 Sense a Condition for Data Input

ISSUEVENT 51 Date Output

NI 61 End of IN Construct(Timed Block)

IN 62 Beginning of IN Construct

FIXEDWAIT 63 Timed Software Delay

WAITLEAST 64 Minimum Wait

BOOLWAIT 65 Body of Boolean Wait Constuct

STBOOLWAIT 66 Wait Until (Start of Boolean
Wait Construct)

INPUTPORT 86 Input Specification

OUTPUTPORT 87 Output Specification

IN/OUTPORT 94 Duplex (input or output) Spec

VAR 105 Variable Assignment

EXITPROC 146 Marks Exit of Procedure,
Function, or Task

PROC 145 Marks Beginning of Procedure,
Function, or Task

SYSTEM 190 Generates System Title

* 102 Generated by Translator as
Location Assignment Place
Holders

CONS 190 Constant

* Although the Translator is supposed to be able to

67

.

.

t' " ":-.. - , . , " : " : : : " :" " - /'' ." : " . ." " " " " -" . -" ' . - ,.. ".... , ...-..

APPENDIX E

REVISED Z-80 REALIZATION VOLUME

This appendix displays the revised Z-80 Realization
Volume. It contains primitives retained from Smith's
original Z-80 Volume plus newly constructed primitives.

VOOOO Z80 CPU : clpperz0.25 : mly=0.25 boncst=10:
406M8.cardcage ... 0 ,0,872J876)
vlO5h.clock ... , ,,011005, 1028)
v1029.kaisplay(:: .. , 6,8,1029,1048)
vO7h..mory ... 2,3,877,897)
vO847h. pocussor ... , 2,3,847,871)
vO898ih.tcardcage ... , 0,0,898,904)

v1206s. call (na. :: :3,17,5,7,0, 1206, 1213)
vO354s. add (rslIt, arg1, ar g2.0,8, 0, 8,0, 8:23,78, 26,14,0,354,368)
vO553s. add (rslt, argI, arg2:0, 16,0,16,0,16:-31,126,37,1810,553,571)
V0110s6and (rslt, argl, arg2:018,018,0, 8:11,47,14,10,0,110,120)
v0572s. assign Wvar, data:0, 8, 0, 8:6,26,8,7,0,572,57M)
VOSB0s.assign (var, data:O, 16,0, 16:6,32, 1,7,0,580,587)
v1182s. boolait (rslt, top, bot :0, 8:22, 93,26,23,0,1182,1205)
V0556scMn (naumval, :0,8:1,0,01610,596,602)
v0677s. cons (namval, -.0,16:2,0,0,6,0, 677,683)
v0905s. divide (rslt, argi, arg2:0,8, 0,8,0, 8:56,504,129,41,0,905,946)
v0947sdivide (rslt, argi, arg2:0, 16,0,16,0,16:80,1465,376,57,0,547,1004)
v0700s.mend (::3, 10,3,8, 10,700,710)
V0228s. eq (rslt,argl,arg2:0,8,0,8,0,8:16,70,20, 13,0,228,241)
vO4ls.eq (rslt, arg1, arg2:0, 8,0,16,0,16:18,91, 26,13,0,441, 454)
v0148L equiva lenc (rslt q argi1, arg2:0, 8,0,8,0,8:12,51, 15,17,0,148,165)
v0670sneitproc (nn ::1,10,3,6,0,670,676)
v1049s.fixedwait (t ime:0, 1275.,15, -5, 18, 6,0,1049,1068)
v0396s. forcons (ivwdx, lwr, upr, slab, elab, val: 0, 8, 0,8,0,8:17,70,21,6,0, 396,413)
v0315s. formnd (indx, slab, elab:0, 8:7,27,8,3,0,315, 324)
v028s. ge (rslt, argi, arg2:0, 8,0,8,0, 8:42,108,31,28,0,286,314)

* v0414s. po (rslt, argi, arg2:0, 8,0,16,0,16:46,118,34,26,0,414,440)
VOOO6 It (rslt, argl, arg2 :0,8,0,8,0,8:45,118,34,29,0,80,109)
v49s. lt (rslt, argl, arg2:0,8,0, 16,0,16:46,118,34,26,0,482,508)
Y0166s. implicate (rslt, argl, .rg2:0, 8,0,8,0,8:14,57,17,16,0,166,182)
v1214. in .: ..,9,0,1214,1223)
4i104%. inptport (jimam, tech:0, 8:0, 0, 0, V!, 12,1104,1125)

* v1069s. issuemut (outnm:0, 8:5,24,7,8,0, 1069,1077)
v07Is. japf Cval, loc :0,8:- 930,8,8,0,711,719)
v0325s. I* rslt, arg1, arj2-.0,8, 01 ,O,8:42, 108,31,28,0,325,353)
V0455S. It (rslt, aril, argW:,8,t0, 16,0,16:46,118,34,26,0,455,481)
v0693s. lc (icc ::1,4,1,6,0,693,699)
v024&s It (rslt, argl,arg2:0,8, 0,8,0,8:45,118,34,29,0,242,271:

V0369s. it (rslt,arg1, arg2:0, 8,0,16,0, 16:46,131,38,26,0,369,395)
vCoOgmaift 0:7,24,7,21,43,509, W)
vO720monitor (: tl,4,1,7,0,720,727)
v0735mLwt (rslt,argl, ar2:O 8,0, 8,0,8:35,528,38,22,0735,757)
v05sim mlt (tilt, all, ar2:0, 16,0,8,0,8:34,527, 138,21,0,758,779)
vO780s~mlt (rslt, argl, arIM:, 16,0,16,0,16:39,1105,289,22,0,780,802)
vWe72s ne (rslt, argl, arg2:0, 8,0,8,0,8:16,71,20,13,0,272,285)
v0633L re (rslt, argl, arg2:0, 8,0,16,0,16:18,91,26,13, 0,33,846)
V1224L "i 0:: 1 3,0,1224,1227)
'VWS. not (rslt, argl:.0,8, 0, 8:7,30,98,0,219,227)
V0069mLOr (rslt, argl,arq:, 8, 0,N 0, 8: 11, 47, 14,10,0,69,79)
vl07Ss&otputport (outw.,tuch:0,8:6,29,8, 14,13,1076,1103)
V0586L proc (film ::1,4,1,70,58595)
A1126L sgnuecond (ivmm:0,8:%6,129,37,44,0,126,1170)
V0183s. "t in (clktiu:.0, 32768:37,166, 46,12,13,183,218)
A 171Ls tboolvait (top, maxtm:: 1, -5, 1, 10, 611171, 118 1)
vw'635s. sub (rslIt, argl1, arg2:0, 8,0,8,0,8:23,87,26,14, 0, 635,649)
V06sub (rs It, arg1, arg2:0, 16,0,16,0,16:31, 126,37,19,0650,669)
vO614s. tabaicp2 U:: . . .,0,0,614,625)
v0728..taband C :3,10,3,6,0,728,734)

* v0603s. tabent (Thc, task : :10,51,15, 10,0,603,613)
vO6ffi& var (nab:,8:0, 0, 0,3,0,626,634)
iV684S.Var (nmu:0, 16:0,0,0,3,0,684,692)
v0l2ls.uuait least (iwuh, upr, top, bot, per, max: 0, 810, 8:23, -10,27,26,20,121,147)
vO84s. Aw4d (top, bot *:3,10,3,4,0,824, 32)
vO1shai lien (rslt, bot :0,8:7,27,818,0,815, 823)

v0068 .mn iindex
V0069m60r (rslt, argi, arg2:0,8, 0,8,0,8:11,47,14,10,0,69,79)
vw07com primitive to perform logical or
vO07cou listresult,arumunt 1, argument 2 ::stor,tiue,ext,c,i,addrs
vOO72bqin stext
v00731d a, ((argi)) ;4m 13t 3b rsut =argi .or. arg2
vO074ld b, a Inm 4t lb
vO0751d a, ((arg) 14m 13t 3b
vO076or b ;Is 4t lb
vO0771d ((rult)),a 14m 13t 3b
v0078P~utext
v0Th9alc romptrwrop rI11
wOOS, gt (rslt, argi, arg2:0,8, 0,8,0,8:45,118,34,29,080,109)
0O61om primitive to perform comparision between 2 8-bit numbers
4O80co. listresult, arguuent 1, argument 2 ::stor, time, ext, c, i,addrs
V003bqin stout
vOOS41d a, ((arg2)) ;4m 13t 3b if arg2 It argl then rslt=ffh

*1 v0O81d b, a *Is 4t lb bcarg2
v006d a, ((arg) ;4m 13t 3b
v00671d c, a ;In Rt lb czargi
V06BuuId a ;15 4t lb set sign flag of argl
vO069jP p, S4"~ ;3m lot 3b jump if argi is positive
vOO901d a, b inm 4t lb aril z
vOO9land a ;11 4t lb set sign f lag of arg2

82

409214 b, c JIM U lb arg2 .wmp. arol
403JP me 4Ollh ON 101; 3b a -arl - comp bacwards
vOO941d a, 0 1& ?t 2b arg2 +arla- false
4OMP so& 13n 12t 2b
v0951d a, b Ile 4t lb
v4OWnd a JIM Ut lb set sipnflag of arI2
409614 a, c "to Ut lb restore argi to accumulator
v099jp p, PW40h; l3 1t 3b ar92 = +argl z
410014d aNl1lllb;,2 7t 2b a*g a - argI = + true

v0103 1 2 ag7t00ba 2b result false arl2)argi

vOlO4jp z, $+ 3m l0t 3b
v4105jp, $. 4 13m 10t 3b
4lO6CPl 1.m 4t lb result true arg2 It argi
4010714 ((rslt)),a ;4m 13t 3b
4lftradext
4lO09calc rcupt.romr+~r43
40110S."i (rslt, argl, arg2tO,8,0, 8, 08: 11, 47,14,10,01109,120)
4111lcc. primitive to perform logical and
v4112cc. listuesult,argumnt 1, argument 2 ::stor~tium1ext,cqi,addrs
vOli~b@2in stext L
411414d a, (Wrl)) ;4m 3t A rslt = agi .and. arg2
41l151d b, a IN 4t lb
411l614 a, ((arp2) ;4m 13t 3b
vOll7and b Jim Ut lbj 411814 ((,'slt)),a ;4m 13t 3bL
4llsmmdtextL
v0l2Ocalc romptrwrcmptr~ll
v4121swaeit lout (indx, up, top, but, per, .ax:0, 8, 0,8: 23, -10,2Z7,26,20,121,147)
vOl20cc primitive to generate a software wait based on the reults of
4123cc. of anariturtic expression whiose integer result is passed to
v4124cc. witloast in upr the value in up is the number of times
40125cc. fixeduait will be executed similar to a for loop fixedwait
v4l2com will be fed the tim in the variable per top and bot
40127cc. an labels max is the max tim allowed specified by the
40129cc. designe for all posible combinat ions of upr and per
40129cc. per and Max am in n to the nearest 5a the sax allowed value
40130cc. for per is 1275m and the max allowed value of upr is 127
v4l~lattr tim(ax)o400
vlt3bqin steut
41I3314 a, 1 ;2m 7t 2b counter always starts at one
v0134(top)ild ((indx)),a 14m 13t 3b update (mndx) with latest value
v01ld a, ((upr)) 14u 13t 3b
vO.11d 6, a its 4t lb
4.,371d a, ((imdx)) ;Am 13t 3b
vOli31p b Ila 4t lb compare to upper limit
v4139jp zq (bot)+3 ;3m l0t 3b jump out of loop on indxzupr
V40mntext
V0l4lcall Sfixmihiait ((per):)
V0lA0bein stext

vO1431d a, ((idx)) li 13t 3b get current indx value
v0144inc a -Is 4t lb crank indx
vOl45(At)sjp (top) ;3m lot 3b jumt to top of loop
vO146*dmt
v0l47calc romptwrutr4Q3
iOl4. equivalncrslt, arglarg2:08, 0,8,0,8:12,51,15,1710,148,165)
vO149co primitive perform to the logical equivalence relation
vO15,cs the truth table is as follow
01SI3M arwl ar rslt

V01com false(O0b) false true(ffh)
Vl0S3COM falso true false
vOl I4m true false false
vO13coM true true true
v015w om equivalence is simply the opposite of xor
vOlSibrgin ste t
vOlild a, ((rIl)) Ie 13t 3b rsit = gl .equiv. arg2
v01 1d b, a ;tl 4t lb
vOlOld a, ((r0) ;4m 13t 3b
vOl61xor b ;1 4t lb
'w0162cp1 I@ 4t lb
vOi631d ((rslt)),a I t4 13t 3b

vOl6Scalc rompt ptro l '.-
v0166u. implicate (rsltarglar2:0,OO,8,0,8:14, 57,17,16,0,166,182)
vO167cou primitive to perform logical implication check
vOl6lkm truth table is as follows
vO169coI argl arg2 rslt
wOl70com falm(OOh) false tre(ffh)
vO71lco false true true
vO7 7&m true false false .-.-
vOI73com true true true

OAT4bein stext
'wOlild a, ((alp) ;4m 13t A rsit argl . implicate. arg2
vO76•i1a ;to 4t lb uet zero flag
v0177jp nz,07 ;3m 10t 3b if aIrg~tu then rslt--true
vOlITld a, (al)) ;4m 13t 3b if argafalse then get argl and cpl it
vOl7Icpl Ilu 4t lb rslt .not. argi
vOlOld ((rslt)),a 14 1Ot 3b
'wOSIVeNdtext
vOlIScale romptrarot"4l4
v'083I.tim (clktial0,32768:37, 166,46,12,13,1 3,218)
vOIM= primitive to set channel I of ctc to so initial value
MwON=ca clktim is initial tine decimal in milliseconds

vOlMaoI becaume channel 0 serves as the clock input to channel I
vOl~com with I millisecond pulses there would be a latent delay in
vOIkam ruetting channel I because new values for the doncounter
vOI9me ame not transfered from the load register to the dowmcounter
vOlO e until a new clock pulse is sensed therefore this primitive
vOlglcom also short times the channel 0 clock to generate an output pulse such
vOlgba. that channel I is immediately reset to the value passed throuh the . .
'w0193cm argument clktim

84

._ .,.,' - . - . .. " ,...........

vOI~if clock now. 0 skip 2
vOlitmic clock-l
vOI%incI helack 1::)
Volginbin stout
vOISId a,@lllOO0lb -92 it 2b countel~load lsb then bsud0hx
vlIhut (Of3h),a ;3m lit 2b set mode control
vOODOld hi, (clktiu) 13m l0t 3b got time period : .~

v0Oild a,i I. -,n lb lab of clktim
voSOIent (Ofih),a ;3a lit 2b load lob to etc channel 1
v0S31d alh its 4t lb nub of clktiu
42040td (Ofih),a i3a lit 2b load usb to ctc channel I
vOM05d aOO1101O0b ;& 7t 2b countr04load Ib then usb~uode24bcd
VOOOut (Of3h), a 13m lit 2k aet mde control
vOE01d aOeb I& Rt 2b Isb of 0002 bcd
voQmokt ONh, a 13m lit 2b Cli in load rag 1mb-
vMI~d ,00h 7~ t 2b ub of 0002 bcd
voelOwAt (Of0ti),a ;3m lit 2b 00h in load rag sub
vOllli a,O0ii0lO0b ;Om 7t 2b contrOload lob then uhb~oode24bcd
vCelbout (Of3h) ,a ;3M lit 2b set mde control
vEM31d a, 00h ;b 7t 2b 1gb of 200 bcd
V0214out ON ha 13m lit 2b 00h in load reg lob
vCei~lda&,ft 2m Rt 2k nub of 200 bed
vOei~owt 4Of~h), a 13a lit 2b 20k in load reg nub
voeliwmdtaxt
voelcaic ruptv.raoptl437
ABU hnot (rslt,arglsO,S,,St7,30,%SB,0,21%22i)
vOIROci primitive to perform logical not, complument
vCQMicam listureualt,arguount 11 argument 2 :tsto.,tiueoxt,c,i,ddrs
voQe2ftqin stout
'v02231d a, ((argi)) 14mu 13t 3b rsut not argl
VOQ24cPl its U lb
'v022d ((vslt)),& i$1 1t Ak
'Voeffendtest
vO22icalc rowptrvrctr+7
VOWeQ (rslt,an arge:u,S,0,8,0S:16,70,20,13,0,29241)
'vOQ9co. primitive to perform comparision between 2 H-it aubers--
v0230co. listureslt,argumn I, argument 2 ::stor,tiwext,c,i,addrs
v0231begin stout
'vCQed2d a, ((arqi)) 14a 13t 3b if erg! w arg2 then rsltzffh
'v02331d b, a Ile Rt lb
vOM3~d ap ((ari))$; 1m t 3b
v0I~cp b *I@ 4t lb
MAN361 aliiiiiib;2k it 2b

vte37jr z, *.3 13s 12t 2b resultuqual
voekpl elm Ut lb result not equal
vl3M1d ((rslt)),a 14m 13t 3b

wCQelcalc romptromaptP+16
vowsh.It (slt, antl,arg:Ol ,S0,A0, :45,11,3429,0,2A22il
vCSekum primitive to porfors cumparislon bttwen 2 Hit nubers
wCI44cou llstureuult,araument 1, arpuent 2 ::stor,tiui,ixt,c,i,addrs

v0eftegin steut
wCSWd a, I (argi) ;4@ 13t 3b if argi It arg2 then rsltzffh
V02fld b, a It@ 4t lb bwagl
VWWd a, Wro) ;4v 13t 3b
vaeaSd e, a Ile Ut lb caw*
v85eiinda tim At lb set sip flag of arg2
vW85jp 0,4fti s INt 3b jump if arg2 is positive
vC852ld a, b JIM R lb arg2 -

v Samlda ;I I 4t lb set sign flag of argl
v08541d b, c Ie Rt lb argil snp. arI2
vjp u,$011h ;3n l0t 3b ariIa- arg2 =- comp backwards
'v02561d a, 0 12m 7t 2b a + ar22 -false
407jr $#Olfh 13m 12t 2b
vO8Sld a, b ;iM Ut lb
vOMnd a ;In U lb et sign flagof agi
vOffild a, c JIM 4t lb restore arg to accumulator
vOffljp p, S#07h ISb l0t Ab argl:a+&a ~+
vOS2ld a,1ll11lllb;2@ It 2b arni a ag2 * tre
vOff3jr SaC0ch JSb 12t 2b
vOB~kp b 'Its 4t lb
vO8G51d &,OOOOOOO0b;2u 7t 2b result false argl)z a*g
vO266jp z, S+7 ;3m l0t Ab
vOO67jp a, $+4 Ila l0t 3b
vofffti JIM 4t lb result trueargi it arg2
v029ld ((rslt)),a ;4e 13t Ab
V027Omdt@Kt
vOeilcale 'mptiuromptr+45

w0272swii Istarglar230, 8,0, 8,0,8:16,71,20,13,0,272,285)
vOV73cm primitive to perform coeparision between 2 8-bit numbers
vOe74cam iistaresult,ariment 1, argument 2 :sstarjtimejext,c,i,addrs
WOel~hegin Steut
v02761d a,((argl) ;4m 13t 3b if argi a arj2 then rsltzffh
vOWl~d bp a Ile R% lb
v02781d a; ((a*g)) 14m 13t 3b
vOV79cp b JIM 4% lb
vOBOlda, 0 12m 7t 2b
vO8Sljr zj S4003h 13m 13 2b result not equal
WNWcp ;I@ U lb result equal
vO2B31d ((rslt)), a ;4e 13t 3b
v026endteut
v0o8cale rcmptw, ampt"16
vOffisip (rslt, antl,arg2:0, 810,Os 0B42,10,31,2%,0,26,314)
vOom primitive to perform comparision between 2 "-it numbers
AM=er listaresut,arumt 1, argument 2 ::stor,timejext,c,i,addrs
Vclbq"in stout
vOflld a, ((arg2)) ;4@ 13% Sb if arg2 ii argl then rsltffh
vOallid b, a ;Is 4t lb b-arg2
vOMId a, I(mwgl)) Ift m 1 3% b
vOBMld c, a Ile 0 lb cmarg
vMitmi a ;IM 0t lb set sign flag of argi
vOfljp p, WOO ;3m 10t Sb jum if argI is positive

86

vOe961d al b ,I@ Ut lb antl.
4Uwwu a Its 4t lb met sip flagofag
V4014l bi e JIM U1 lb a* .smap, argi
VOe99X N 1.Ollh 132 101 Ab we a=- gl-copbckards
VOlOOld as 0 12m 7t 2b arg2 + arl= false
v0O01jr b.Ot3h 13m 12t 2b
vO3Wtd a, b ilu Ut lb .4

V03ONinda Ile 4t lb et sip flq of arg
vOlO4ld a, c ;I@ Rt lb restore argi to accuulator
w0305jp , 1h $ h 13m 10t 3b arg2 + wgl z
vO3O6ld a, 1lllllllbl& 7t 2b m2 -argl a + true
v0307jr SOMI ;3m 12t 2b
V0OkP b ;lu 4t lb
v03091d N llllllllb;2m 7t 2b result false ag2)z argi
vO3lOjp pj 1.4 ;3m 10t 3b
v03ltcp1 JIM 4t lb result true argE It argl
vWl2ld I((rslt)), a 14m 13 3b
v03l3mitaxt
V03l4cale iauptr.pr+42
V03Lk folu (indx, slabelab:0, 6:7, 27,8,3,0,N315, 324)
vO31cm primitive to end a for loop .
vO3l7cou listaindex, start labnl,end label
vO3lkcalc pop rep
v0319!eqln stext
MOM~l a,((indx)) ;4m 13t Ak get value of index at top of loop
vO32in a -In Ut lb crank index
vOMl(elaW :jp (slab) ;3m 10t Ak jumnp to for loop test

42calc romptratopt07
vows. it (rsltjargl, arg2:0,B8 0 l61:429,106,31,26, 0,32A,353)
vkom primitive to perform caqiarisiank between 2 6-bit numbers
v037m listWUrslt,arguunt 1, argument 2 ::stor,tiuext,c, i,addrs
vAbqln stext
vOR91d al I(argl)) ;4s 131 3b if argl I@ &*g then rsltr-ffh
v03301d b, a 12 Ut lb bwau
vOlld al ((Arg) 14w 131 3A
OWN c, a Its 41 lb cm*g
V03ud a ;la 41; lb uet sip flag of arg
vOI~jp, p,.+13 13m 10t A jump if ar2is positive
vO=d a, b ilu 41 lb ug~u
voilinia a It t lb set sip flqof argl
iODWU a, c JIM 41 lb restore a* to acuhulator
Av jp %, S#17 13m 101 Ak al a ar92 a- compbaclWuds
iV ild a, 0 12m 7t lb rgl a aa- false
v=jr 11+3 13m 121 2b
vO4ldi% a, b is 4t lb
v03mada Ile U1 lb met sipnfla2ofaglt
vO3lUld a, c its Ut lb restore arq2 to accumlator
v0344jp p, SO7 13m 101 Ak aglm argwe +
vO3i5ld a, llllllb~f 7t 2b an1 a g true
vOU6jr 6+9 131 let l

87

v0347cp b It@ 4t lb
vO36li &IIll1l1llb;m 7t 2b result false mrl)z arI2
V039jp pt $44 13 l0t 3b
vonkpl 1.m 4t lb result true arll t arg
v0ll1d ((rslt))qa 14m 13t 3

VO353calc rompt.rurfe44
vOZ4& add (ru~t, a"11l&wn2s,,, 0, 8, 0,8:23,7621614, 0,M4,36)
v033com primitive to add arli avi arg2 and store in sIt
'wOkM= listurslt,argllarg:precisionsst,oegi,addr
vO357bhqin stout
'wO581d a, Wrgi)) 113t 4m 3 store argi in accuulator
vOU9ld hl, (arp2 I;10t 3a3A have hl point to arg2 byte
0360Wad a, (hl) 171t Zm lb add accumulator with arg2
v0361jp p. j$+13 I;3 lot 3b if no overflow store result
V0362jp c 9$4 13 10t Ab if carry the maximize minus sit
wOllIld aOlllllllbift 7t 2b put in largest positive value
'w0364jp W 13m 10t Ab
vOSIid ag 10000000 b t 2b put in largest relative valve
'w03661d (frslt)),a I- IN 4. A sae result of add in sIt

vO3Gkae -op r2
459.5. it (rslt, angl, arg2zO, 8,O0, 16,0,16:46,131, 38,26,0,369, 395)
vO37c. primit ive to perform camparisian between 2 16-bit nubers
'w0371co. listuresalt,argummi 1, argument 2 ::storstimesext,cli,addrs
wOMi~bin steut
'w03731d AN ((argi)) 16m PHt 4b if antl It arg2 than rslt--ffh dez(argl)
vOa141d hl, Uarg2b) ;5ml6tb Al~r2
'w037!d a, h Inu Utlb
v36huia to 4t lb aet sip flagof ri2
'w0377jp pq S+13 13 l0t A jumnp if arg is positive
vOMiId a, d Its 4t lb argeu
'w39and a ;lu 4t lb aet sign flag of argl
'wO3Sjp i%*41S 13 lot; 3 angl - - argS a - coop bacbwds
'wOllIld a, 0 12 t Sb arg a+w'g r - false
v03jp $Q4 13m 10t Ab
v01131d a, d Its 4t Ib
'O5lod a JIM# l b et sign flag of ag
vOu jp h*84 ;310t3 mrjIl* +aVg a +
vwOM6d a,1l1IIbI& 7t 2b anl a - arg2 - true
w0357jp 4+14 13 lot 3
vOIMde hlde 4 5to 2b
'wOlIld agOOOOOOOb;2b ?t 2b result false arg) ag
v3gjp z, *47 1310;
'w039jp @# 1+4 13101;3
vW3Ikpl *to 4t lb result true argl It argE -

v03931d ((rslt)),a Ift 131; 3
v039.undtaxt
v3calc roaptrromtr4
v0396u fons (iwufx, 1w, upr, s1ab #1abval:0, 8, 0,8, 0,8St17,70,21,6,0, 396,413)
vO39iai primitive to set up a loop with constant bons

88

v03Ucum list-indoeu, we bund, upper bound, start label,andi label
vika. ma allowed value of irdx,lw,and,upr is 127
vOW= became the translator callsi for 16 bit precision if a
vOW= greaer number is specified (val) is max loop count
V040ftle pusu rep
V00uMC rapw (Val)
vowo~bin steut
vOW~d a, ((w)) 14m t3t 3b loserbound of couter
vOW6(slab):ld (findx)),a -9u 1St Ab update fiuiiu) with latest value
w4Old a((qpr)) 14m Ot 3b
vOWNi b~a Ism R lb
v04091d a, M(ndx)) 14m 13t 3b
V0410cp b Il Is tUlb compare to upper limit
vO4lljp z. felah) +3 13m l0t 3b jump out of loop on iulex-u

v01kule romoawro417
vO4l4s. p (rslt, argl,arg0, 8, 0,169,0,16:46, 11S, 3,6,0, 414,440)
4O415=u primitive to perform cosperision between 2 16-bit nubers
006lco. listurmult,argint I, argument 2 ::stor,time,ext,c,i,addrs
MOW&el steut
vO4l8ld do,(Iw12)) 16s 20t 4b if argE leargi then rsltffiu dez(arg2)
vO41l1d hl, ((rgl) -,5 It Ab hl=(argl)
vOWS~d a, h ;tlU Itb
vO4lari a Ila U4 lb set sipn flag of argi
vQ42Pjp p, S+13 ;Sm 10t 3b jump if antl is positive
v231d a, d Ila 4t lb arl=
WOW4i a its Ut lb set sign flag of arg2
vON~jp .,*112 13m 10t 3b w arg I -rg - comp bawrds
WOW~l a, 0 1& 7R 2b arg2 z argl- -false
Won2j 11Sm 10t Ab
vOMMld as d its U lb
VO42%mda *,to R tlb set sign flqgof arg
WonIj 14*8 On 10t Sb ar2 a +wg1.a
vO~lld aqIllllllbI& 7t 2b are a - ant a + true
VOWIJP 0+14 13m 0t 3b
003ft hlgde 14 5t 2b
vO$31d a, 0OOOOOO0b;n A% 2b result false)r2a argl
vOZjp.,$167 13m l0t 3b
wO4jp. % S4 13m lot Sb
vO3epi Ile 4t lb result true agS2 It argi
WONl f(ult)),a 14u IN3% b

VOMMksC raptorap
i04lS.q rl44lag:,,O 60 61,9,6 13,01441,k%4)
vO4O. primitive to perform ceeparision between 2 16-bit nmers
v044ko liutaresult,argumont I, argumn 2 &:stor,tiue,@xt,ci,addrs

vOiMd do, Iargl)) 16m 2H% 4b if argi a arg2 then rsltffh deintg)
vOt4~ld hl, (atwo); 15m Sf b hla(arg2)
MOWi a Its 4t lb clear carry flag
v4hbchl,dm 4 1blt 2b

VOW41d a4111111llbib 7% 2b
vOMP 2, $63 On l2b 2b result qua!
VOMW~p Ia R% lb nmslt not equl
VOI~ldI (frslt)), a 14u 13t Ab

iOMICl barwptrez+6
V4ML I (rsltl antuw0:01,,0, 1690916:46, 11%34,2610,4A5481)
vOm . primit ive to perform comparisian betum a 16-bit nm.bes U
V0457M list'rmslt,WPwNlt 1, arpunt 2 ::stortiulxtlc,i,addru
vowbogln Stut
WOWUl don, ((all)) Ow. 20t 4b if alt lea*g then rsltffh dum(argl)
v060ld hl,((Mr)) 15m 16t Ab hI=(arg2)
V04611d a, h Ito 4t lb
vO462umula 118 U% lb uatsip flav ofarv2
VO4I3JP 110+13 ;31 10t 3b jumpifar$g is positive
v04641d a, d 112 4t lb &* a - I
vO65ud a Onm 4% lb ue sip fl"of ant
v6jP ,46 130 10t 3b ant : ar - tomp baclowds
v04671d a, 0 ;b It 2b%~ a +ru rg m false

VOIM ~lp 104jblt Ab
v0489ld a, d its # lb
vO47Omuia 1la 4t lb set sip flagof arl
vO471jp p, 64 Oni 10t 3b wil w + wo a
v04721d 41llllllllblb 7t 2b argi x awg + true
v0473jp 6+14 13m 10t 3b
v0474eto hlde 14m 15t 2b
v04731d At OOOOOO Ib& 7t 2b result false arlt qt weg
vO4l6jP a,$ SO 13 10t]b
v0477jp a, $04 13m l0t 3b
vOtlkpl 112 U% lb Melt true ani I@ ar2
vO'791d ((relt)),a 14m 13% 3b

V0i40emle romptrwmptr446
44E. it (rsIt,arglqwg2:O,,0, 16,0, 16:46, 118,34,26,,42,506)

v0463oo. pimit ive to perform campeiuion betieen 2 16-bit nub.,s
4044M liswuult,argumt 1, arguEnt 2 ::starqtin;eut,c, i,addrs
Cuoiqin stout

VOIld de, (tw) 16m 20% 4b if arg It argi then rslt,.ffh du.(arp2
Cu~id Us,((Ugl) Ila 16% 3b hl:-(agl)L

vOu~ld a, h 1l. 4tlb
vow%"a Ila U% lb atsip flagof arg
W~JP h,4+13 13a 10t 3b jop if arul is positive

VM Id a, d Jim Rt lb argia
m a Ito R lb set slip flaof arg

V0493JP %0$418 13 10t 3b w a =- gl - compuaclowds
0*1d a, 0 lea 7t 1% aria u +arel a- false

04V1 a, d ImI 4t Ib
v0497nd a Jim 4% lb at sipn flag of arg
CujPp$ Ris O 10t% 1 w* arg t a +a

vOWNl &,llllllllbl& 7t a2b 2 argian a + trap

90

Vls hi,d. 14s 15t 2b
vO aODMoooo~ ?t 2b result falsea&P2It arli
1%3V t, 9.7 13m 10t 3b
vU~j p 04 Psb 10t Ab
Vtp0 I its 4t lb result truearg Is argl
vOOO61d firlt)),a 14s 1t Ab

'VOMMkic romptwroqtrMA
V055Lualn 4:7,2%,,23,924MMV)
vO5lkeu piitive to def ine controller setup and initialization
vO5llcou list a emty : empty : storage, tin, ext, caic, Well addr
vC5lkau the vom pointer is at to start at 16384 or 4000h since this
v05l3= is the beginning of user addressible mommy in the pro-log
v0514csm it is called rae because ultimately the controller's operating
'vG55ca prngram weld be buru into ron the ram pointer starts
w~l~cam at 3EM which is 32 bytes below the top of usable memory
'v5lcaeonthe pro-log to allow a32 byt stack the top of user
'v051ka. addeeable mumm y on the pro-log is 32767 or 7ff fh
v051*com all initializations mill be damw through the use of global
MvOO= variable initik and linked labels

WWI=ca fo lowing the initialization progr. w11l jump to the top of the
'VOW=c polling loop for the tagk contingency pairs.
vOQ k. to allow the use of a d"o pro. developed at the naval
'vOUM4= postgraduate school electrical engineering department the
vcau= starting location is changed to 4096 to allow a the system
vOoM= to auto boot and to allow loading of mamry from another
'v0517 mpter via the dual uart card. the loading pro. inhibits the
WEI=ken of the rese Iodat ion because of the location of the code and
vO29=. the interrupt loect imw used in a debugger for the prolog system
vWOIlc romptv l6314
VOUlcalc ramtss32T
'VO2Irel hpocnssr (t

v5331nc h.cardcage (W:
wO53fein Stext

'V05IB zilog z-80 based system

AMES Rdee
v0891 fidsect

V054@;ide

'VG5"o (ruptor) yin pointer is pointing to top of mmry - stack
w5WkAabdefs 32 ;32b defiune stack area
'v57onr (ronptr) ;begin cade after reseved interiup area
vw5Ufteldild 9stAk32 ;km 10t 3b initialize stack point.r
w59I 1.@ 4t lb disable easkable interrupts -

vO~jp ftfisitlk) ;36 10t A do hardware initializations

91

vOW40M primitive to ag end w a*2 ad store in rsit

v ld hi, (Q"D1);5m l~t 3b load "g in hi pair
vOM7ld be, (C12));6. 20t 4b load weg in be pair
VCU~ld a, 1 ;IN 4t lb
'V*Mhi14 c its 4 tlb add Isb
VOS60ld 1, a 1Iu Ut lb
vO561id a, hi Ile U lb
v0552a a, b le Ut lb add ab
vOU d h,a its 4t lb
vw56jp p0 S+l5 ;3m l~t Ab if no overflow store reslt
V45ftj c 109 13 lot Ab if carry the aaxisize sinus rsit
vu566ld hi, 7ffh 13m 10t 3b put in lariast positive value
vCUljp $46 13 l0t 3b
WOSWi hi, 600 ;3@ 10t 3b put in largest negative value
vO5691d Afst),l~ lt A save result

vO57lcale rampt wa" r+31
i0572.mip (vardata:0, 8,0,8:6,,8,70,572571)
vCFlkuin primitive to asiu a value of ame variable to another variable
vO574eau listuvwsrdata-var:var-peedata-pe:stor, tim, t,cer eladdr
VC5l58qif stunt
v05761d a,((data)) ;4m 131 3b assign (data)
vC7Tld M(a)),a 14m 13% Ab to (var)
VOSIlut
vi579aie romptr xraqptr # 6
vOU=hLiip (var, data :0,16,0,16:6,AZ 1,7,0,560,58)
vO6Sleai primitive to assign a value of one variable to anothier variable
v45M=u listvarldata-vartv-pvsedata-pre:stor tin, ext, cal, inei, addr
'vOM~begis steut
WSWl hl,(Mdatas) I~ lf1t Ab assign (data)
v055Id ((var)),hl I& 16t 3b to (var)
V05Oredtt
vOM5Slc~ Poor uraptr. 6
V05NLPVe (no sl,4%I,7,05IB,5=
v0589c. primitive to define poeedure entry poinp
vW4ks llstaproc-nin zeqtyistorgetimoext,ealirinl,addr
4Ulbqmn stext
vaim ;ow (me)
4U11(,: no, I t lb entry point for (nau)

WOMie naotrwroeptr+1
VOMCUMci (nmvai, :01Silg,016,0,596,60e)
vCUWmi primitive to define data
v~IAu listudatai, valuvivalu-pec, stop, tim,ext, c, i, addns
VOU9sein dt
v06006mm): deft (vai) ;reseve one byte for date

vowt92

V050MalC remptvaomptr"l
v060s.tkte Iff, task :l0,51,,l0O,9603#613)
v0 eIn primitlvi to add oe entry to monitor table
AM= lists fu-nme task Inm lpty*stSec, iaddress
ANN&bql stext
wO5O1call *(ffnc) 9;5 P7t Ab test for contingency Ifnc)
v0lO0id a ((fnc)) ;4m 13t 3b got contingency result
v06ftp lil11b *Ii 4t lb check if result true
vO61Ocall z,@(tasW 15s 17t 3b if true execute task
vO61l ;if mt true get next tabent or tabed to loop
vO6lmdteuat
vO613alc trm ptr l -.
W4.tabcc Il , , ,0,614,625)

vO6lke this is a duimy primitive to allow compatibility with the OM0
v0llcm librry. the functions that mld be performed in this primitive
v617bm am all located in s.taMt. this has the effect of eliminating
v6lkm intorediate table and increasing execution speed. if there are
v0619=s wide variations in contingency/task speeds more mory will be
vOlOc= than in the M primitive, note .main is also changed because
vIM of the elimination of the intermediate table
vOM= list- func-nem task ninsepty:steci,addrss
vOER3kgin stmet
vi014 I this space is deliberately void. this is a dumy primitive.

eISs.var (nm :o,8:0, o, , 3, 0, 634)
vO6V= primitive to def le storage for 8 bit variable integer or logical
v06uM listudata-i vales:value-prc, stor, t ise, ext, c iaddrs
vOS2aelc rItramptr - 1
vo3 ibeln stext
vI3torg (rmptr) ;G bit variable (nIm) in rm
vO3It(ns)t deft 0 10m Ot lb
vOU (rmptr)

VE5. Sub (rsltj n arg, 089 0, 80,83,7,26114,0,635, 649)
v%36m primitive to subtract we fro ant ard store in rslt
vO63Twm lists rslt,wglarwgsprecisions:st~ec, ia
vOU lbqin stet
vO391d a, ((anl)) ;4m 13t 3b load argIl in accumulator
vOWOld hl (ara 13m lOt 3b point hi to arg2
vOS4Iub Ihl) ;2m 7t lb arl -arV2
v60Ijp p ,$13 ;3 lOt 3b if no overflow store result
vO*Ipc o4 ;3 lot 3b if carry the mximize sinus rslt
vM441d &,@lllllb;b 7t 2b put in largest positive value
vOMI p 3 ;s lot 3b
vO,4Bld 44l1000000 I& 7t 2b put in largest negative value
vO647d 4(rslt)),a ;13t 4m 3b save result of add in rslt

vOWMulc ramptrart ,tr+23
v15h sb (r ilt, argl, arje:O, 160, 16,0116:31, A,37, 19,0,650,669)
45lcom primitive to sabrct aro fro arll and store animu in rsit
v06b ltstqsltai1argsprecisions:s,tc iaddr

93

'-1
-..,..

......."....

vmitd hi, (Cul) ism lit Ab load argi in hi pair
iinld We (two2) jIm W0t 4b load a*g in be pair
V=Id a. I jim 4t lb
VOSON6c ;In Ut lb subrtrat Isb
vOld 1, a its 4t lb
vwol9d as h its Ut lb
v0660he as b its 4t lb subtractmb
vO61lIi h, a it@ RI lb
vO62jp po, 6+5 13s 10t Sb if no overflowstore result
wO663jp c 6*9 13a 10t 3b if carry the maximize sinus rslt

O641d hi, 7fffb 13 10t 3b put in larghst positive value
vwMjp lE ;]a l0t 3b
vO6661d hi, SM 13m 10t Sb put in largest negative value
vOM671l (frslt)),hl ;So 16t SA save result

vO669cule roprrouptr431
vOS70s.xitproc (noe ::,1013,,61,670,676)
vO7lu. primitive to clano proc
vlAM list-prc-nam, cantnmeshmpty: storage, tie, out,calc, inclqaddr
'vci73bqgin stout
vO674rot 13m 10t lb return to monitor, exit (flm)
vO75w~is
vO76culc ,samprrompti
v0677s. com (uamval, :0,15,2,0,0,6,0677,685)
vOi78=e primit ive to defirm data for 16 bit integer
vO679wm litdt-mvlSvlepr, star, tin, oxt, cl is addvs
vO680beii stout
vOI (ram): i fo%(vet) idefine a two byte integer

vO6lkaic ramptvroptr+2
'vN60%.var (namesO, 16,0,0, 0, 3t0, 684, 692)
vOieM= priuit ive to defin storage for 16 bit variable integer
vO6K1m listudat-nw, vaivaue-pre, star, timeut, c,i, addrs
v4lSfcalc ramtr-ruptr - 2
vOllUbuia stu
vOB~or2 (ramtr) 116 bit variable (name) in ram
v0600(ine)m defN 0 10m Ot 2b
vO6lorg (ramptr)

V0693L Ic Mec :u0,4,,6,0699)
vO6lum primitive to deflin a table (location)
vO9ci listalael-nme timplys storage~time,ext,calc,inellddr
-MUbmmin stout
467(1cc)I nop define location floc)

4Uk99aic VOMqLtromptri I
v$0M~wd (t:3# 10, 311610,700,710)
4701cm primitive to ad softmwe listing mwd complete implementation
v40k liuu~yiwOm yistortlinwutlcalc, mci, ad*r

94

L D-I55 849 SOFTWARE MAINTENANCE
RELATING TO THE INPUT TRANSLATOR 2/

AND Z86 REALIZATION..(U) NAVAL POSTGRADUATE SCHOOL
MONTEREY CA R R VOGEL MAR 85

UC LASSIFEED G 9/2 L

EME~EE~h

1.0 ~ ~ MI
.j ~ -g

M22

1.25 1111.

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS, 1963-A

vO7Ot1iitlh):p lowu 13a 10t Ab initialization of hardmvr is couple
vom I start top of main Moitor loop

Vr~lud led of software listing rdly for asuumbly

iemao roaribeptw43
Spt in =my No"u for impiemetat ion in ruad tOWrm

wo7uI.Jopr (valflov 10,81 AO,1481,71g9
ViOIbs primitive to branch an false condition
V07lkin ltsdavaluehju-loct valum-pre, :storage t ims, t, Cal, incl, addr
tv71"bin sa
vOlISli ag ((vel)) 14 1St Ab Inuich to (Ice) if (val) is trum
V07kp 0 1& ?t 2b
v0717j ;, (lot) s 10t Ab

vW119e romptrurmptr46
*.v0780moumitor I ua1, 41117,0,720,217)
* vO7lleum primitive to diV ins p2 Monitor as costroller supervisor

vO7Ws. list u tpupqty: storaphtioet,calceint,addr
vllfhmim stut

- v02I 'monitor sections.
WWfhpwinop JIM Rt lb mark top of the polling loop
vO7fmdtMs

WO7Umtabmi i 36iOS,6,0,71S4)
v729cu. subroutine to defire and of Monitor table
vO7lku lists uqsysyastoesclijaddr)
v073ibegin sta
vO7Itjp bpwu lp to the top of the polling loop of sonitor table
O7ISbudb

vO736cmc rwuprwrt3
vOI3mLmit (rsltwai,0,O,8s,5l3,2,O,73,757)
v76=u blusry Mltiplication primitive
WO77begin ftext

vO7SS1d a , ((Uj)) 13M 13t SA Put argi in I
veld % a its ft l1b
v07401d al((i U ;S)b 13t Ab load a*g
v074i11 hi, 0 Ila 10t Ab clear relt
v0lilid dg h Its 4t lb clear dfor sifts
vD7431d b, 7 120 7k 2b set couter to 7bits
vO7Vmw Its 4% lb
v0?4qjp n. 6 ;3n 10t 3b
v0746@0 his de 131 lit lb

v@74fr1 d I& A 2b
vO7WjwH S-9 13W 3 2b#7 +2Wt on lasttie
vOl7b'r Jim U lbI
v0751jp ac, W 136 10t Sb
vOda JIM 4% lb .

v0?ebchljdo 14m 13t 2b
vOIlid a, I is 4t lb truncate result to a bits

..

.

V07Mi Ifrslt))a4. 13*O Meb aremlt

WMISMh vatiply 2 8 bit nube aad Pt 16 bit ,muit
v@7Ubqia otut
v*Mld a 9 ((Ug));h 13t Ab put rot inI
volw lllh a Ila 4* lb
vOX~ll a# ((a'o)b 13N Ab load uio
AM064d hi, 0 13m 10* 3b cluwv sIt
W065d do h Ila 4t lb clewnrdfor shifts
vOR61d h, 7 1& 7% ft utomte to 7bits
v0761pra 11u 4* lb
iPIfjp mt,04 Ps 10t 3b
W01IMi hi, do 13m Ilt lb

w077fra lb 3 t# ftAa a i

v074jp it,4 ft 13 10t lb,
viT7mda Jlu 4t lb
Wx7N is ldo 14m 15* 2b

v0777I ((mit)),hith 16t 3b no vaut

* ~~~vOMal ioidftd p~4

v0~m ultiply 2 16 bit nubuu aid pt 16 bit ravmit
iiqustut

v0783ld d,egl))M Om 1St b put wgl in ds
vM7161i be(WOg)) 16m 0I 4b load we2
vem~d a, b JIM 4t lb split arV to ale
wo7Sld hi, 0 ;3a 10t lb ciwnirst
v767d 6, 1IN I& ft 2b at ouite to 7bits
iVllba Ila 0* lb,

0mm c I& a lb
vOl~jp mc., *# Om 10t 3b
WNWlad hi, do 3 lb It lb
V07lfla I& A* 2b
v0?9rld I& at lb
vO?$Wdjn -M 13m 13* f #b7 .0Itan Iat tie -

V07ba its 4t lb
vffIun'c I& A 2b,
vW17Pm, it 0 P 10* lb

vom aIl 4t lb
WWII~Chil 6 14a 15t lb .

vOWNl ((rslt)),hllm IN* lb an muit

VlOui*c 01of v"r39
Oh. dusilustawt (top, ipet Iill 41,o6400 0,814)

vOSO~M pritiw to ustablish Iadul for* top of a %hiim-do loop
v60kin cuditios to be tsted immediately follow this laMI

96

777 -.7 - 7-77; 7- .-- 75,w U -- ..

AM=ci reps is global variable and to account for timing during
V~OWAM mltiple loops
AM=~k Ipet is =a lop cunt supplied by designer

4OItsl -N rep
repklcnsulpct)

4Sutbegivs text
4612(t~op its U% lb top of whlle-do-loop

VOl40alc rompyep~ol,
46Osuh.dilcon (tilt, bot 0O4:79,27,SS0BlSM)
v4616mm primitive to decide westher to jup out of while-do loop baued
v1?..o on boolemn value pasted to rslt but is loop botto, label
4Bllbugn stmit
v015l1d a, ((tlt)) 14m 13t A get boolua veto
AUomft a its 4t lb ch"i if true(ffh) or false(O0h)
vOI~jp, z, (bst) 3a; lot 3b if false jum out of while-,do loop

viO13cle romptwroqstrl7
vUIs~dein (top, botu: 36lO,3,4,~g%4,3
ukuIM primitive to mark and of statemris to be executed in a while-
v'Wlom do-loop global variable rep is neat to value existing
v4mV= befor for-loop started
vkoale pop rep
VOMMIbgn staxt
v0630(batjp (top) 13m lot Ab jump to top of while-do loop

Vflksle vaoroqzti43
4hM~r (ralt, arg,ar~i0,l,0, 16,16:18I,91921%136Og W4 846)
v0634c priitive to pamfar cumparislon between 2 16-bIt nmesrs
00Ucom listreultgargumt 1, arguint 2 :tstarjtlu.,ext,c, ig~drs
vommqI. dstt
vOUnld de, ((argi) 16. 20t 4b if angt a wog then rsltaffli dom(argl)
v0SlBldl, (WOl) ;So 643b hlm(arg2
V0139ik a Ila 4t lb nut carry flag

4mlld ago 12b ?t f
v0W~j z. SQ 13 I2b nuult equal
u0S"p Ila At lb result not equal
vOS4%ld I(rslt)3,a 14m 13t 3b

4iak ac N rup mwotrl I

4Sk.. primitive to include z-40 cpu boad 4 whm
4Sltele slat a slot + I
VOINUMI h~tcordcag (Wm

AM put z-60 CpU board in slot (slot)
VOIS uevn high
vow at Jumpers in the following pattern
VOI Jme pattern

97

.9K5 .3 001
.9M 010

vow 001
vow .7 01
vow1 US 110

I160 10 1
v12 101010
v6 vi3 10
v9617 14 o10
vow .15 01
.91 note nubelg is from left to right and fros top to bottm.-

.967 ub fit. 0000-if f

4173000 primitive to iflie cud cae md powr apply far cotrollir

0175 So ort pmrsupply to card cap

. .m1m7y (s, , ,$293,77,7)
7k. priuitive to Include reuired sory

V07kalc slat slot + I
.9Oiseml Ihtcsrlcqle (tsl .- "

v. 1if rmptr .lt. raptr skip 5
v0bllin hteut
v9113 the pqrr pqwe and the variable space have colidid
VOW you do not have nouuh iry to execute your W...
.96K you minmuy is limitud to Ilk

.9Urhqln htext
vMO pat lk amy boad in slat (slot)
v.96 at jprs in the following patten
v90 jume patternvo 0l 11111111-:i.

vow3 19 10
Von W3 0
VOWS A1 01

M adres rine for mwd is .000-fff

M9~~tw~ t n 00,SI

. lft / pitiv to limit the wibn of slots in card cag to 8
diMif slat .1.. A skip 4

.96 yea hew a the aim rn of allomable slots in the
v9W wd cage it is limited to L.

vM~bdivide Iit rla3:,,,S0,s,0 5 10I5ll
.9X= rutine to divide aII by weg md store is rlt
vO9O01m ta feu zoe p 137

98

.

w0o0Ibin stout
vO6Sld a, ((ari)) 1@4 W1 WI pt dividend

vW daIle 4t lb
vild mO 1& 7t; 2b
vOlitp p, 13 l0t 3b
V041p JIM 4t lb
v09141nc a Its 4t lb
woni5dh,~ 14 I& t Ob
ARM61 as a let t0 hi
v4171d a, ((u1)) I t13 W3 pt divisor
4ilsuiofa JIM 4t lb
i09ijp pt .4i 1;0 l0t 3b
WSWp gIa Ut lb
4oiuca its 4t lb
VOR d a, a ~i 0t lb,
v49id a, OB I& 7t 2b
voluurwhgi its lb
v92 ib , a i.s 4t lb
4O61d aC Il 4t lb
4f9Vid ce a loiti hib
MOW ra lti 0 clewaaulato

vMlIid b, A lo t V 2 le at loop counter
OEMb a Ise to W2 rotate,
4D31la jui 04 hi
4Ivoto e jet H4 bI trial subtract
wm~3r cs.3 ia 612 be subtract ok
453934d a, c gl t4 hi restoe acinsit cy
vO~~jw *-7 ga til b me gtoan last loop
4511b a guiti hi bt Pt remainder in b
i0137d a, a pit 0 hI pt quitmnt
Worki l tH bl shift in last result bit
vogUapl giti hib coqulawost bits
4StWbit7, h I& St 2b
45uijp ;*5 ;3W 10t Ab
WNWp I.s Ut lb
V09isc a JIM it lbI
v0941d f(reit)),a go4tI63 b3 store quotient in~ relt
m90ndtoxt:

vWHkaIc raqibwcqtr
vOW16edivide (rsltgig*s0, H4,0,16 0,1660, 1465,3N% 57, ,917j 1004)
vO9*gu primitiva to divide ant by w12 and store in rslt

4Uiid hi, ((agi))g lit 1 lb load aiin hi pair
4Ubit 7.h gb It 2b
v1=d IN0 1& 7t lb&
45I~jp z,I it g lo t 10; lb
vWd a, h Ile Ut lb
4U~sw Ie it lb
iU~id 14a Ile it; lb
4MId a,i g It t 0 ib

99

VOMkPl Ile 0t lb
VMNd Isa Ile At; lb
4U"limehi Ila Qt lb

v0113d da ((u0V)1. St% 4b load a in kc pair -

vM4bt 7d fib at ab
voold a, 0 & 2

vO4 i t Sp,12 ;3# l0t 3b
vU ld a d Ile 0t lb
eOI68kpl Ile Ut lb
vOUWd da Ile 4t lb
VO@WI a 0 ;1. At lb
VOl7Icp1 Ile Mt lb
vO1d 94, a its Ut lb
wOI73ac do ;ia Qt lb
iiOP1d a, O80h I& Rt 2b
vO7lsrb Ile Ut lb
vowlaf af' f Il At lb saesip of rslt
VOM at Il Ile 4t lb
vOPSId &ph its U thl

vO1Nd hs0 1& 10t 3b
vUMrl Cb 0%t lt b loop
VO501a i 4t lb
vOllwkthit hi Ifm 15t lb
W4fthe hl,dn ;4n 1St lb
iv ljr c,3 SQ 1 Itlt 2b ub waak
WA6&V hi do 13m lit lb imutoreswaumlator
voIwcef Ile At lb calecrusalt bit
vOUAip. S-11 j 13 lt b On ton 0
VOW lc I& t lb
v0Ubla Ile At lb
v0 ld 14a Ila At lb
sOUId 19 c is A1; lb

V090" aft aft Ilu At lb restore sip of tilt
iO10jp p, 0+0 13m 10t 3b
VOWl5d a h Its 4; lb
voggepl Ile At lb
wOWId 14a Ile At lb
vOWIlda 1h I la At lb
'vOM p Ile At lb
VIOoli It a Ile At lb
violime hI Ila 6t lb
vIONId (Orslt))ghl;ff 16t 3b saw result
0v03mmitsut
VIOD40Ccrqtwt4
vlOI~clock (1: 1 1, 00, 0ON 1026)
vlOO6com primitive to catde an clack in the etc chip of the A80 cpa board --

VlOO7bugln htint
VICOS thu. additional cammetions on the cpu board ae required to
V1009 stll= 2 of the 3 dwmls of thutc chip the ecchip

100

v1010 operates at 2 ohs vice 4 cIf for the :4ka CPU the fol lowing
v8U jaern will case dal 0 to be wv by the internal Ma '

viOlU clock al damel 1 to be sre by the output from charnel 0
vio3 tei for ample if dr l 0 is st up to gamarte a pulse
viol4 erey O0 internal clock cycles and this puls become the input
vIOlS clock sigal to dcmal I then the rat result is channl I is a
vl& duacoune. supplied with a khz clock signal
v1017 caek jI-O to jl-12 this corects chaowl 0 output to chaw l 1
viol0 input clock
viOl9 jl-15 to jl-16 gate of chanl 0 tied to ground so dosm
vim3 couter will work
vI1 jI-9 to j-lO gat ofehmel i tied to groud so domn
viN Counter will work
vIOUP C oept an w12
vO4 1-e iWrnal clock signal supplied to cha l 2
vIM 7-4 mternal clock signal supplied to aml 1
viOe (actually the otput from chumsl 0)
viOV0 9-10 internal clock signal supplied to chml 0
vilihawtmt-v--

vi0GM.tyieplay(s , I 108,iO9,iO44)
vi3lOnm primitive to add the 7303 iMybomd display card this primitive
vIO3icm is called by outputport and iwputport the keyboard and
vlOQ3 m digital display featres ar not used only the rocker withce.n
vlIO m are med to control input and the leds to display outpet
vl1if keybrd eq. 1 skip 14viOlnmlc km " v-.

v1l31cale slot a slot + I
vi3incl h.tca cqa (:)
vlOibelin htut :--;

viO39 put first prolog std 7303 keyoard/display card in slot (slot) -
vIltO coet the following jaer pins
v1041 A
v104 y
v1043 zo
V1044 it
vIO discumrn the following jusper pins
v1046 all others
vi047 addres space 10oo0o, 0ioo000'

vl0aftfivinit (tiesOl1 slo-So 1o(60, 1049,1068)
v4kOm retive to delay a fixed period of tim in incrumuts of Sul
v45lo mx alloud input value is 1275m,
vIMM a cretly coded them may be up to a 10% ero in actual
vii45m elapsed tim when caped to the input value
viO5% r tim a(tim)4000"
vlOclc sertch -(tiro)/5
vlOblin O st-t
v0571
vi; wait (tim) a (for z8Oa 4 shz clock)
viO09 *"-"-'

vIOlOld Ib (crtch) I& 7t 2b et value of outer loop counter
I

101 -- "

-

vISild d,-l 13m lot b value by uAich imer loop is dscrinate d
vlOEd hlUO 1h 10t b starting cosetr vale for inner loop
Vifaw ilde i3 lit lb decrment inner loop
vOsop ;I@ 4t lb dumy inst. to sake imer loop zrt_
viO63jp c," 13n 10t 3b jump to of inner loop until hlO
vlOidju 6-6 ;,, 131 2b decremnt outer loop counter until bO

vlOiIcalc romptrurmor + 15
v0l6s. iseevent (outem:O, :5,24,7,6,0,1069,10Th
vl07cm outputs contents of outm to data port of prolog 7303 keyboard
vlOlom card data port is dOh value of data sent can be seen by
vlT070m examining 8 leds on 7303 card, one led for each of 8 bits
vlO73bein stext
vlO741d a,((otm)) ;4 13t Sb get contents of output variable
vlOl&at (Od~hia ;3m lit 2b output to data port of 7303 cardvlO75umdtuut-

viO77calc romptravomptr + 5
vlO78.outpetport (oulm, tech:0,6:6,29,,14,13,107,1103)
vlO7k.m tech is a hold-ovw from the original cde design
viMika it is not ed hers because the output type of signal
vlOlcom is predetermined by the hardware available, prolog boards
vI4lkam bMed is a boolso flag indicating if the prolog 7T303 board has
vl0com ber Included alredy this primitive sets up the 7303 card
vikm so tVat contents of outm will be output to the single data
vlhu.m port, dO1 to do this the variable must first be created then a
viOlim awnrol code sent to port dlh to wits inhibit the digit displays
vlS7 c my data velue that is output will be men only on the 8 lids
vI00E m ol aid offO for itch of 8 bits of the output data value
vlhN= the Iss we cleared first in preparation for display of ne data
vl05Of Mot .e. 0 skip 2
vl0Xincl h.k isplay(is)

TIOMM"ivifikal bebr u beybrd4 £ .

vIODc ror re-ptr - I
vl@3tbqln sh~eat

vift sets p 7303 card so that the contents of (out,.) will be output

AM07(gt,) I deft 0 -

viIOUld al 0 1b t 2a wits inhibit the alpha'umic display
vllOOut (OdIlh)a 1 h lit a send it to control port
vtll1t (0Ah),a ; 3 lit 2b Clow all lid

vt0i el romptr a raptq r 6
vilOO. luptport (linu tchOSls0,O, 13,12110% I1125)
vildbom teds is a hold-ov, fro the original cad design it is not eed
vll hers, because the int type of slgnal is predetmrined by the
wllO71om 7303 Mybr ldisplay berd i, a single 6-bit data port since
vIlOkm no cArol code is reired only the inut storage location is
v109m osted by this primitive dn o complex i/o hardware is
villOum wailable this primitive will require modification
villicam irnam is dime the value available at the single data port, dMh,

102

.- ..

viltk ill t .11 ltdu
v llh. hbd is a oolum flq indicating it thu polq o7M crd has
VUI e. aldy ham moelde
viU tif ky r.& 0 skip 2
vtllitmel h.eydiplay(W)

vIlikllc rptr ramtr -1
vll9begin st .t
v1lO1 uts up 7303 card so that value at data port can he
v1lil1 rad into (imm) by the primitiv gemecum S
vilM" rmptr)
vlM (iml a det 0
vllsk" tromert

vIt um (imnus0,8: S 2 IA37^ , 1,N 1170)
vlllm pupa is to duostrate ability to input data S
vikm inn. is the variable that would normally be the depository
v lM oft1i value pm at the silngle data portI dOh, on the
vlLk0m 7303 Iuyboind cad for dommstration purposes only the 2
vl1m realm witches m the 7303 card arm used to control input
v14&n= and since they only comtrol bits 6 and 7 of the 8 bit (0-7)
vlIlom data part, a rll conesio rautim has bm added such that S
v3c of 4 values will be plced in inmam dp iglon the
vll35 positiom of the 2 rock mitches the following table
v13lcom applies ulilaft) ilright) value put in inn.
vllM on(up) on 04h
vi13kom on off (dom) 03h
v1l1k00 off on p..
v1140oa off off Olh
vi4alsm this allom an input choice of 4 diffurnt values via the
vll4ftm prIlol rcku witches on the 7303 keybowd display card
vl143"bis steut
vlI44in a(gOh) 3m lit 2b data ported for input
v1t5ld INa Is t lb save value in b for later
vll46Id llO000 b O A t b mask for both witches on
vll47cp IlO000b I ft t b check far both witch s on
vlI46jp zO7 I lb 10t l if both on then jup doun
vllld %b I t lb pt orilinal value again
vllbu IOM O U0OM I B 7t 2b ms for left witch on only
vl1"l S 00000k ;l 7t b ch"k for left wltch on only S
VIlNN:,W 7 3m lot A1 if left on then jmp down
vll i I 1 l 0 lb et origimal value sgain
VIn *1o%01I lb 7% lb " kfa rlht witch on only
V11" 1Nb B 7t UI dhiu foart witc a only
%41%p 34V 3m lot 3b if tA on th jump down
vlMldap t lb 7t lb b sithdm st be off
vi d ((imi) 4 13t lb both off, (mm a Olh

ll ~jpl 3b lot b jul to ad of ra.tim
VllIfd 44 1 Me 7 lb both witchesmt b 'n
VUNl M(iuninH4 1 4. IS lb both W4, Hine) a 04h
VIWJP~ 14 1b 31 1t Ab pptod of rodtire

Ip

103

A*.. . . .

.-...

vllulial3 1 fb 7it 2 left witch an only
vllt6ld ((imnm)),a 1 4m 13 3 left of (imam) s 03h
Vus 4 3 10t 31 jm to nd of rotin-
vi il, 42 f 7t 7 b right witch nonly
vll"ld (lmM)a 4 13 3b rilht on (innm) a O*
vItIhap ; L 4t lb and of input conversion routine

vlITM Ic roqtrs.r"tr + S
v117ts.dbamlmit (tqh xt s l, -Alo 10, rN 17 lIll)

vlliame primitive to mark top of boolean wit strvctwe
vllThm top is label for bheimnir of boolman wait
vll74cm mate is mx tim in sillimconds alloved to check conditions
vll7am Innmn sstboolit and sboolait
vll76attr tiw(uxtV400
vii77call setim ((maxm):)
v l7ITqin stext
v179(top) tnop -,Is 4t lb mark top of boolean wit loop
vlflw0dtt
vlfilcalc romptru r+ -.
vllS~s.boolmait (rslttopbot:O,8S 225ll23,, 118,1205)
vllI3cou primitive to check for booluman condition(if true then exit) ad
vll'8cou read current tim from chauml I of ctc since clock
vllSco continues to downcount past 0000h tim interval expiration
v1186co is determined by checking the sign bit of the ab of the 2 byte
vl187com clock tim if it is I then tim has expired and the boolean
vll88com structure is exited rsIlt is boolean value passed from
v1189com condition being checked top and bot are labels
v110begin stext
vll911d a, ((rslt)) ;4m 13t 3b get boolean value
vl192and a -In 4t lb check if true(ffh) or false(OOh)
vl193jp nz, (bot)+3 ;3m 10t 3b if true jump out
vll191d a,Ol00000lb R- 7t Rb charmll+latched readmode@Ohex
vll95out (Of3h),a ;3m lit 2b send to control code port
vlli6in a, (Oflh) ;3m lit 2b read lab
v11971d la ;Im 4t lb save lsb
vll98in a, (Oflh) ;3m Ilt 2b read msb
vl1991d h,a ;In 4t lb save osb
vlRO0bit 7,h ;2u Bt 2b check if counter value has passed
v0l zero ie, become negative
vlRO(bot) :jp z, (top) ;3m lOt 3b if counter value still positive
vlRO3 ; ie, bit 7 0 then go to top
vl20Aendtext
viRO)calc romptramp r+22-
vL206s, call (na ::3,17,5,7,0,1206,1213)
vl207com primitive to call another procedure
v12O8com I ist=proc-wame:empty:storage, tim, ext, calc, incl, addr
v1209begin stext
v1210; call procedure (na)
v1211call @(naa) ;5 17t 3b
vl2Ier.dtext
v1213calc ptr=-r ptr+3

104

. . . . " ."

vl214s.in 0: , ,,0,12l,12.
v1215com primtive to at the timed block flq
vl2lfcom it is modeled exactly aftr Itcol Poess s.in in the W
vl217com rulization volm and is includ for cmpleteness
vl2kom it does not confore to carsons trumlator output form.
vl2%low aW is not uable in its present form
v122com the global variable tmblck is supposed to be a flq to indicate
vl22lco to the cob pqrrm that the followin primitives constitute
v1Iao a timed block within a task
v123calc toblck-1
vl224s.ni (:: , ,3,0,1224,1227)
vI2Ea. primitive to clear the timd block flag
vi2Io same coments as in s. in apply
vl227calc tmblczO
vl22 .,-rt .: . .,090, 12B,1QR)

v129be~in htext
v230 this is a dumy primitive to remind yov to put in the dul vt cad
v1231 if you wish to -s the nps loadin rom. the require settin ame as
v1232 follows.-
v1233 set jwes in the following pattern
v1234 jumper pattern
v1235 oi 01
v1236 .2 01
V1237 *3 10
v1238 sx 0001
v239 sy 00001000
v240 address space eO thre s7
vl24 lendtext
vl242com this has to be the last line

1

105 """-

.1

.S

APPENDIX F

WORKING CSDL TEST PROGRAN

This appendix contains a problem to test the primitives
that generate a while-do loop. This problem was completely
run through CSDE. from CSDL problem statement to operating
program on the Pro-log microcomputer. The files listed
below are unedited except for the primitive list, where the
value of max loop count was moved from 's.whilecon' to
"s.whilestart'. They are, in order, the CSDL problem,
primitive list, application timing file, symbol table, CSDE
software output, CSDE hardware output, and CSDE debug file.

CSDL Problem

IDENTIFICATION
DESIGNER : -BOB VOGEL-
DATE : *02-07-85"
PROJECT : "WHILE DO CONTRUCT TEST"

DESIGN CRITERIA
METRIC FIRST;
VOLUMES 1;
MONITORS 1;

ENVIRONMENT

INPUT: ARGI,S,TTL; END INPUT;

OUTPUT: LIGHT,8,TTL; END OUTPUT;

ARITHMETIC: EACH1,8; EACH5,8;
END ARITHMETIC;

PROCEDURES

FUNCTION EACHI:
BINARY.1;
EACHI:-O;
SENSE (ARGI);
IF ARGI<-2 THEN EACH1:--1; END IF;

END EACHI;

106

.........

13. Pro-Log Corporation. STD Bus Technical Manual and
Product CAtalo. August 1982.

14. Zaks, R.. Proaramnina the Z80, Sybex, 1982.

15. Pro-Log Corporation, 7303 Keyboard/Displav Card User's

sMauel, 1981.

16. Lipschutz, S., Essentiel Computer Mathematics, McGraw-

Hill, 1982.

1

.S2

•p

120 .:---

:) ::: :i::. : : : :::::;" : ::::::: :: : , ;:,i:::: -: : :: :-:::_ :::::: ::::::J: :: i :: : :, _: ::: ::i :: : ,: i.i:S .

LIST OF REFERENCES

1. Booch, G., Softgare Engineering With ADA, Benjamin/
Cummings Pub. Co., 1983.

2. Boeha, B. W., "Software Engineering: R & D Trends and " -

Defense Needs," Research DirectLons in Software

Technalggy 1977.

3. Altman, L. and Scrupski, S. E., editors, Applving
Micronrocessor. McGraw-Hill, 1976.

4. Ross, A. A., ComPuter Aided Dosiazi of Microorocassor-
Based Controllers Ph.D. Thesis, University of
California, Davis, 1978.

5. Lawerence Livermore Laboratory Report pre-print UCRL-
78651, Automatina the Design of Dedicated Real Time
Control Sytems by N. N. Matelan, 21 Aug 1976.

6. Smith, Jr., T. J., Imolementation of a Ziloq Z-80 Ba*
Realization Library for the Computer Systems Desian
Environment, M.S. Thesis, U.S. Naval Postgraduate
School, Monterey, California, March 1984.

7. Cetel, A. J., Igmlementation of an Intel 8086-Based
Realization Library for the Control System Design
Environment, M.S. Thesis, U.S. Naval Postgraduate
School, Monterey, California, June 1984.

8. Carson, T. H., An Input Translator for a Comnuter-
Aided Desian System, M.S. Thesis, U.S. Naval
Postgraduate School, Monterey, California, June 1984.

9. Riley, R. P., Control Saystem Desin Lanauaae -
Implementation of a Gas Turbine Starting Controller,
M.S. Thesis, U.S. Navel Postgraduate School, Monterey,
California, June 1984.

10. Lawrence Livermore Laboratory Report UCID-17318,
Nethodologay and Plannina for a Hicroprocessor-Oriented
Real Time Controller Design Automation System, by K.N.
Natelan and R. J. Smith,II, 4 November 1976.

11. Zeks, R., From Chips to Systems: An Introduction to
Micronrocessors, Sybex, 1981.

12. Poole, J., The CSDE Network, M.S. Thesis, U.S. Naval
Postgraduate School, Monterey, California, March 1985.

.- . , -

,- *1.
11 ..- '

9. Syntax error messages, must be made easier to understand.
An example is the message "expected symbol list
follows"m , where the expected symbol list that follows is
a meaningless string of letters and other characters.

10. CSDL end the Translator should be modified to allow more -
than one expression between s.stboolwait and a.boolwait
when a boolean wait construct is specified by a
designer. This would make it possible for the
condition being checked during a boolean wait, to
change.

lie

.

section and precision for integer variable
must be moved from argument section to
criteria section

current: L
a.weitleast (ST01,8:500)

should be:
a.waitleast (CTO2,OTO1,0O5,606,500,l500:8,6)

1 2 3 4 5 6

I -- variable to be used for loop counter
2 -- variable containing integer result
3 -- top label
4 -- bottom label
5 -- time period
6 -- max allowed time period

2. Translator code should be modified to handle time units
less than milliseconds since CSDL allows time units as
small as nanoseconds.

3. Consideration might be given to modify the Translator to
handle fractional numbers vice 3ust integers.
Primitives in the Realization Volume would also require
modification if this were implemented.

4. The Translator's decision point for specifying 16 bit
constants vice 8 bit constants should be between 127 and
128, not the current 128 and 129.

5. The Translator should be modified to always specify an 8
bit precision for the boolean variable in a relational
primitive, such as s.eq, regardless of the precisions
specified for the other arguments.

6. Variables specified as type DUPLEX must be usable in
the CSDL statements, SENSE or ISSUE. Currently the
Translator generates syntax errors if this is attempted.

7. The primitive, s.not, can not be produced by the
Translator even though it is a valid primitive according
to Carsonp author of the Translator.

S. If the CSDL statement for a <SIMPLE DO) is placed in the
contingency list section of a CSDL problem, the
Translator generates syntax errors. An example is
'DO MANUAL 4', which means the task MANUAL, is fourth in
priority relative to other taks listed in the
contingency list section of a CSDL problem.

117

. - - . .V 2TLL

APPENDIX G

SUMMARY OF TRANSLATOR ERRORS

This appendix contains a summary of Translator errors.
These errors are discussed In detail in section III.C. and
section IV.B. If the Translator undergoes maintenance in
the future, manual editing of primitive lists can be
eliminated during the course of developing controller
realizations.

1. Format errors relating to specific primitives:

s.fixedwait -- colon must be present after time value
current:
s.f ixedwait (100)

should be:
s.fixedwait (100:)

s.forcons -- value for max loop count must be moved
from criteria section to argument section

current:
a.forcons (COUNT,6C02,UC4,003,04:8,8,8, 120)

should be:
a.forcons (COUNT,C02,C04,03,04,120:888)

s.whilestart and a.whilecon -- value for max loop count
must be moved from s.whilecon to s.whilestart
and correct precision placed in a.whilecon

current:
a.whileatart(003:)
a.whilecon (UTOl,604:4)
should be:
s.whilestart(003,4:)
a.whilecon (6701,604:6)

s.otboolwait and s.boolwait -- time period should be moved

current: from s.boolwait to s.stboolwait

a.stboolwait(003:)
a.boolwait (ITO1,603p@04:8S1700)
should be:
a .stboolweit(003. 1700:)
a.boolwait (GTOl,003,004:S)

a.vaitloet -- many now arguments should be added and CSDL
requires modification; time period must be
moved from criteria section to argument

116

I

u15 01 .. 17
nte WMm*q is fro left to riiht and from top to botOm t 1"
ai s" 0000-7fff ; 19
c IIct pmmrsply to card cagp 20
pit first Proloo std 7303 kwbuddisplay ewd in slot 2 ; 21
Pemet the followiqn Jqm pin 1 22

z6 1 23
A 1 24

to 1 25 -

disIomctthe folloing r pis I "
all othrs Be-

mom spec 11000000, 11000001 1 29
pt Ilk ry boar in slot 3 I"
at jiqus in the folloing patten 31

jawr pattern 1 .
ul 11111111 l 33 i

S 10 -- -

S3 0
01 36
i ; 37 '

udruM rae for card is 4000-7fff ; I
I this relization cis 0.000 watts of po.
contains 0 Chipe-

CADBO, Version 1.3f, Feb. 8, 1985
errort funmep detected no colon in primitive
37s.fixedweit (250)
funmap forcing colon into primitive
s.fixedweit (250:)
errort funmap detected no colon in primitive
44s.fixedweit (500)
funiap forcing colon into primitive
s.fixdwait (500:)

1 this realization consumes 0.000 watts of power
and contains 0 chips.

2 error* in cadS0, result - 0

I

.... * . . ." . %..

_. . . .P . . .-

k : defb I Irmerve an e for data
1c04a darfh 4 mrv mm w e" for data 27
kO5i deft 7 ;reemon yte for data s4
ar mu 18 ; bit variable IM0 in ma 1 241
0t01: defb 0 IN Ot lb I 25D
o 1681 m251

qmitor sctom -122
slp amu p its 4t lb wk top of the polling loap 1 253

call 0NcI ,5 17t 3b tust for omtiqmy suhl 1 "

Id a techil) ; 4a 3b et cont iqmy rmit I w
cp Illll11b In 4t lb dhck if remlt true ;-.-,
call zotelita ,l 17t 3b if true xce, task 157.

;if not tru get rmt tabet or taed to loop 1 2.
call hadiS5 15m 17t 3b teat far Cautianuy sowi ; 251
Id a, (each5) ;Au INt A pet contingency result I 260
cp l1lllllb ila 4t lb dock if remlt tra II --
call zofflt 1-95 17t 3b if true oedt task I22

;if not true pt next taMit or tabeu to loop 1 253
call mch S ;S 17t A test for cmtinqecy eh 2.
Id a, (each5) 4m 13t get contingenmy rmat I f"5
cp llllllllb Ila t lb check if emlt true I 265
call z,1offlt Il, 17t A if true amete task 27

;if not true get net tabot or tabed to loop I M5.
p Ipwv Igo to the top of the pollinq loop of emitor table I 9

p this space is deliberately void. this is a d y primitive. I 270
I this space is deliberately void. this is a dlmy primitive. I 271

iO:jp spvsr ;3m lot 3b initialization of hadiwe is coeplete 272
I start top of "in re tor loop 7 3

Mi pa;d of softare listiq ready for aue l 24

Hardware lis

CR160, Vrsion 1.3f, Feb. 6, 1I
put z-10 cps bord in slot I 1
nx hii ."

set jumpes in the followinq patter 3
ji r Pattern 4

le 010 5
*3 001 6

010 7

A 001 9I
*7 01 tO
d 110 11
69 lill 12
10 1 13

.12 101010 1 14

.13 10 1 15
.14 10 1 16

114

Id aIlillib;ft 7t 2b reuilt fai a11I)a we i 1.-
jp P ,.4 ;32 lot 3 I I
CO ;1i4 4t lb remult true rll It w -19
Id ItO),a 14a 1A A 11
Id asMOD ;4m 131 A1 gt blsIm vlu 13
and a ;In 4t lb dock if tru(ffh or falm(O0h) 1800
jp z,0I3 131 10t 3 if falm jmp out of wAill-do loop 1201
Id ag (ligt) 14m 13t 31 get coolamAs of output variable I M"
out (Od h),a 13a lit 2b output to data port of 7303 card 203
Id aq (light) ;13t 4m1 A1 tore " J in wImmltor IO am..

Id hlIcjk ;1Ot 3m 3 ha v h point toarg byte M '..
add al (hi) 17t On lb add acemulator with we 1206
jp po S+13 3m 10t 31 if novumflo store rult I27
jp c 'm 13m 10t 3b if carry the muiie limu rsit I-
Id aOllllillb;2m 7t 2b put in largest positiw value 09
jp5 ;31 10t 3b 1210
ld &lO00000b ;b- 7tb put in llst mgativ vale I21I
Id (ftO)a ;13k 4m A saw reult of a in rslt
Id a, (MO) ;4m 13t A assign tOl 13
ld (ibhtia j m 13 3 to ligt 1 214
I ;215

wuit M a (for zle 4 az clock) j216
1 1217
Id b, I& 7t 2b set value of se loop causo I2l.-
Id d.-I 13 10t A value by wich imm' loop is dmxusd; 219
Id hIlSO 31 10 31 starting couer value for immr loop 1 220
add hId. 31 lit lb m t imw loop 2
SOP its 4A lb dMay imt. to mi irm loop 251 1 22..
Jp co- ;31 10t 31 jp to of imw loop until himG I 223
djm H- 1318 2b dmmit eter loop at mtil a0;I 24

4i'jp 103 131 lot A jap to top of sll-do loop 1 M--
mut ;31 101 lb retun to amitworlit onlita 12-.
;p'ocmds offit I W
toffltnop Ila 4 lb nty oint for oflt I
Id a, (kO) ;4m 13t A s emiu ko 2Y
Id (1i0,t),& ;4a 13N A to light I 3
Id at (light) ;4 1@ 3 et cotnts of output variable 1231
out (OdO),a ;3m lit 2b output to data past of 7303 card I 222
1 1233

I wait 500 a (for ik 4 riz clock) 1M3

Id IN I00 lb R 2 at valu of ota lop c ws' 23.
Id dep-1 ;35 101 A value bywhich inne lop is dm r d; 237
Id h1,800 13a 10t A startig Aier value for im'r loop 23
m hIbde 3m 11- lb decimt i" loop I239
p ;In 4t lb dMy inst. to ml immw loop ,t 1240

jpC" ;,3m 10t 3 jup to of ine loop mtil hImO 1241
djnz H- 13 16 b doomt outer loap mauter miii W0; 2 .- W
rat 13a 10t lb retun to mitoremit offit I L43
IkOl: difb 0 io m we o by t for data i . .
kOs dfb 2 ;rew wv ar. bte for date 245.

113

Z......

Id ab ;I 0M 111 1 10
ada Ile 4t lb at sip flq of NI 1 145
Id ac ie # lb mtw ra*etoindaiv i1t
JP Po 07 lo A b o a a-1 147.'.
Id ao1111l111blb 7t aS wla--...+tre 16
j7 9 lb let ft1
cp b Ila 40 lb 1.-'
Id a ,lllllIlbib 71 rsult fals #31)a vp 1I
jP Po 4 13m lot A 1ff
epi Ila 0; lb vrudt trowofIt we2 ;W
I WtOl),a 14i Ut ,A It.
ld ap)l l 4m 13 A km to W ift W ts trIU
ep 0 1&7t b Its
P Is M 1) Ilot a Ila
ld hIe O0l1) 1 Al I ailnt is ;II -la
Id hlok#l l;3m 1 A Pint bi to NO•

jPP91 13 l 1I IOtl " modi 16ml1
jp c ,04 $ I lot b ift a we lMi im raft its
Id allllllllblb ?k t * pitappepi tive vIn gI
jp 1 lI IA 1 16s"
Id alOOOO0b 1& 71; f ptinularponaivelwut gl
Id (0%1,a ;114 4 A so remlt of min voflt Il
ld a(0%0lolu 1i8 lb A mIM 11it ; 7
Id (@alI ;4 13t lb to U Ila
oNu mp I ofin lw ism I I
m 131 lot lb ruorm to unlturit 1170
1procodwr ulita I 1?I
Omlits op ;Is 0 lt etry pint for ulit 172T
ld a(03)4 Om lA mip *6 1173
Id (liIt),a 1 It lA to IIgt I -7
03iop itm 0 lb top of iIl.lelop 1 .75
Id aq iget) ;m 131; l if arl s I@ar Um lultuf fix
Id b, a Ila 4t lb "1r~ 1177
Id a, (k) 14m IN A 117-"
Id c, a Il 4 lb c I; -17,
Aud a In t lb ut sip flq of a&I I to
jp I1413 13 lot b A j"if Wi is ositlve I In
Id 4 b Its 0 lb i - I
ada Ile t lb I t sip fla ofan tIla.
Id a, c Ile 4t lb restrewe to ammitor 1184
ip mg 1117 13 10t A rlu-32"- pclhmw d I--
Id al 0 N 7 2b ant *+ w m- false 1i'
jr +13 13 tt 0 lb IV
ld a b Ia U% lb Ils
a;d IS 41 lb let tip fla ofwl atI IN
Id a, c I1 U% lb rutmo W to aimmulator 110.
Jp 17 Om 101 l b l - + w + l,.1191
Id aollllllllblab 7t b w2 l - &V a + trw -,
jr0 19 3m 12 b "193
cp b jI8 0% lb gltt

"°" " ""'"'" "'":': ".. "..'... . .. ,.... . .. ,., , .,

jp po ,t3 Il lot b if no Overflow un r kslt u
jp c , - lot 3b if awry thell min minsm rlt 9
Id avO,11111bIh ?t 2b put In lagst positive vi 1-
jplt Ilbl Otb StI-.-

ld a,10000 b I& 7t2b put in largest magtivl valv
IlMOl),& I* 4u A av reult of add in rslt 1O
Id aq (OtOl) 14m I b asip Ol 1 99
Id (euhl),a If 13 lb to nl 1100
601 t up I defli locatim 101 1101
rut 1l3 lot lb return to init.,mit usahi 1101
IP,'Wm d d 1 10

hem rep its U lb entry point for mh 1 104
Id a, (Ol) 4u 13 l mip Ol 105
WdimW h5, a If 13t Ab to eadd 106
in a (Oft) I 3m lit 2b data port W fort in 1107
Id ta I 1 4 lb sae valuu in b for later 1106
aid l lOOOO b I B 7 lb msk for both mitcs a 1109
cp l100000b I am 7 2 check for kbot itchea 1 110
ipzP27o 1 m 10t A if both o tha jumpi drm 111
Id ab I to U% lb et originul valeagui. 1 11*
ad lO00000b I B 7 lb uk fo left witch om oly 1113
cpl O0000b I B R l chk for left witch m mly 1114
jp z,07 1 3m lbt A if left a thU jump dam t115
ld ab I In. 4t lb % ortinal vetu in 1116
ndlO1000000b 2 7 olb mukar rigt itcl an oly 117

cp Ol0000M I 7 lb duchk for A witch anmonly I18
jp z7I s 10t lb ifr onthan jdp mm ;1119
ld a1 l 7t 2b both uichme t ne off
Id (anl), a 1 4m 1 l both off, rll a 01h 111
jP4 13 lot A0 Jeb j tod of roatift I I
ld &14 ? t 7% lb both iW'umd be an 1 123
Id (Cal),aI 14m 13t A both on la 1 124
jp 016 1 3 10t Ab jup toind of rwtiIu 115
Ida,3 I b R lb loft witchm y 1t5
ld (argl)a 1 4m 13 b leftm o gl Ont 117
Jp 3m 1 At l * Jlto nd of outim IIn
ld al I Al 7 lb rigt itdl on ly 1129

ld(arl),a 1 4. 1X l rightmn, t 09110

op I to 4 lb and of ipt camuion routim 1131
Id a (alt) 14 13% lb if al le a* tha rsltuffh I IN
Id b, a I@ U% lb Iw 1g
ld a#10M) ia4 13t l1 b134
Id ev a its 4% lb cwp 135
ada ;I ft lb ... sipfof a lS
jp pj*13 l3 10t l jup if uj is positive 137
Id a b Its U lb w "13- -.-.
eda 1. U lb at sip flag ot wgl 139

Id at i1s 4 lb rotors w to acuulator 140
jp , 11+17 lm 10t l b ll a - * om-pa bc urd 111"
Id a, 0 1b 7 lb arglw a •-false 142
p S+l3 13 12t lb 143

- a % - -

1..,- r..r ' -

cp11000b 2 7t 2b dock for both mitchm on 42
jp zOm00 ! lot 3b if both an then ju dam 43
Id aNb t 1. 4t lb get original val again 1 44
adOOOOOO~b On 2. t 2b sekfor left uitch ancnly ;45
cp lO00OO0b 2 m 7t 2b chek for left Mitch an oly 46
jp z,$17 1 3m lot 3b if left an then jp dom 1 47
Id aqb Ito 4t lb gt original valm &aln 48
ad OlO00000b ; 2o 7t 2 ask for rigt mitch o only ; 49
cp OlO00000b ; 2 7t 2b chuck forrt nitch on only ; 50
jp z, 27 ; 3 10t b if r on than jump dam ; 51
ldal l. 7t 2b both witch maut be off 32
Id (arql),a ; 4. 1St 3b both off, arl u Olh 5 55
Jp$ 4 3m 10t 3b jM to nd of rotim 54
ld a,4 2s 7t 2b both witchs mt be on 55
Id (awgl),&a ; 4m 13t 3b both on, arlu= h a 04h
jp *1G ; 3m lOt 3b jm to ad of ro tiom 57
lda,3 ; Be 7t 2b left itchononly S.
ld (ar1l),a ; 4 1St 3b left o% anl u 03h 9
jp $4 ; m lot b jump to aml of rtim 0 ..
Id a,2 ; 2s 7t 2b right witch on only 61
ld (arl),a ; 4m 1St Sb right on,w a S Ob 62
hop ; In ,t lb end of input comrsim routim 1 63
Id a, (argl) ;4 13t 3b if al Itrg2 than rsltsffh 64
Id b, a IM 4t lb buargi 1 65
Id a, *(C0) ;,4 13t b 66
Id c, a JlI R lb c~r0 ; 67
and a ,in 4t lb at sin flag of"- I Q
jp p,$+13 ;n lot b jmp if is poitiw 1 69
lda,b ;to 4t lb : 70
and a ilt U lb aut sig flq of agl; 71
Id a, c JIM 4t lb reitorm are to - ulator ; 72
jp m, +17 ;3m lot b urll w ca-u p b1i 73
Id a, 0 ;& 7t 2b ant =+&a - false 1 74
jr $+13 ;3S 12t 2b 1 75 ..
ld a, b JlI 4t lb 7.
and a JI 4t Ib at Sir fla of ant 77
Id a, c ;In 4t lb rutor e to acilator 76
jp p, 0+7 13m lot Sb arlut wo 79
Id agllllllllbib t 2 anl -wg trum 1 80
jr 45 13a m 2b I 11
cp b Is 4t lb U
ld allllllllbl It 2b rmeult false ant)a 83
jp p, 14 13m lot Sb -
cpl lie 4 lb reult true allt 2 ; .

Id (#tOl),a Im 1St Sb 86
Id a, (tOl) m 13t 3b branch to 01t if 8101 is tr 87 --
cp 0 ;2m 7t 2b
jpz, I01 ;3slOt
Id a, (Ol) ;4m 1St Sb load ant in accumlator 0
ld hlUcO ;3n lot Sb point hi to * 1 91
sub (l) 18n 7t lb arl1 -a* I l

110

S.COKS (0o01:0,8)
S.COiS (0C02:2,8)
S.CONS (0C03:108)
S.CONS (6004:4,8)
S.CONS (OC0 :7.S)

Software output.

zilog z-Vbadsystm ; 2-

I4

;6

; --10
l 3273 Irs pointe is pointln to top of Iory - stack I It
takidef -2 32b defiu stack ; 1arm

WI 16314 lqin code after mvud int er we 1 13
1coldild spbta.32 136 lot b initialize sta point 14

di ;la 4t lb disable imskble intrrslp 15
jp NiO ;3m 10t Sb do hardme initializatiom 16
;ts up 7303 card so that value at data port can be. 17
Sread into "l by the limitive s.uuucml 1 0,

org EM 1 19
rgli defb 0 0
oW 16391 1 21
;sets up 7303 card so that the =ntut of light will be output I 22
org 2SM 1 23
light: defb 0 1 24
oWI 16391 .
Id a, 0 an 7t 2b write inhibit the allwmaric diplal 26
out (Odlha S 1 lIt 2b M it to control port 27
out (OdCh),a 1 3, lit 2b clea alleds lt 2
oWI R7 16 bit variable eafil in no 29
radi: defb 0 10m Ot lb 30
WI 167 1 31
ore 2731 ;8 bit variable e@ in m 32
uch: defb 0 10 Ot lb 33
r l137 16"4

;procudwe fadii 3
bachlz mop Ila 01 lbentry pint fru sih 1 3
Id a,(SOl) ; 13 1 S assiI ukOl ; 37
Id (eail),a 14e 13t b to @**1 1 3-
in a, (OdCh) 3m, lIt 2b d ta rt read forint i 39
Id b, a I to 4t lb sawvluein b for later 40
aMd lo00000 I 7t 2b nsk for both ltesam 41

109

- .- ,... ...- "..'-. ." .' ,"." .' " -. ,. , ., • ., .. , . ,, ,. .• . -..

P 190. proc CEACRS:)
P 20a.*eeign CEAC5,OC1Z11.)
P 21a.sonecond (ARG1:S)
P 22a.1. (OTO1,ARGlo*C04:8o,8)
P 23.3~apf M0T1,002:8)
P 24.ub 6@T01,6001,'q03:8S,8)
P 25a.assign (EACHS,@To1:1,8)
P 26a.loc (902:)
P 27a..xitproe (EACH5:)-
P 28t.gonerstod for: ONLITA
P 29*.proc (ONLITA:)
P 30.e.ign (LIGKF.6003:8S)
P 31a.whilestart(603.4:)
P 32a.1. (@T01,LIGHr.6005:8,8,8)
P 33m.whilecon M0T1,04:6)
P 34a.issuevont (LIGHT:*)
P 35.dd cSTO1,LIGHT,6C02:8,8,S)
P 36a.assign (LIGHT,@TO1:8,8)
P 37a.fixedwait (250)
P 3as.whend (003,604:)
P 39.xitproc (ONLITA:)
P 40t.gonerated for: OFFLT
P 41a.proc (OFFLT:)
P 42....gn CLIGHT,cMl:6,8)
P 43a.iaueweut CLIGHT:8)
P 44a.fixedwait (500)
P 45*.exitproc (OFFLT:)
P 46t.geniorated for: SYSTEM No~~~ea*
P 47a.cons (001, 0: 8)
P 48s.cons (OC02,2:8)
P 49a.cons (SC03,1:6)
P 50a.cons (6004,4:8)
P 51a.cons (@M057:6)
P 52a.ver (Sf01 :6)

Annlcatientiming il

A 1 :EACH1 :ONLITA m: S:1801 0, 0. 0. 0
A 2 :5ACH5 :OFFLT :NS:1600, 0, 0, 0, 0

Sysbol table

S. IMPUTPORT(ARG1,TTL:G)
S.OUTPUTPORT(LIGHTaTTL:S)
SO VARIABLE (BACN1:8,0)
S.VARIABLE (BACH5:800)
S.LOC (001:)
S.LOC (002:)

108

FUNCTION EACH5:
BINARY,1;
EACH5: .0;
SENSE CARGi);
IF ARG14U4 THEN EACH5:n-1, END IFt

END EACH5;

TASK ONLITA;
LIGHT:nl;
WHILE LIGHT <a 7 : 4 DO

ISSUE (LIGHT);
LIGHT:wLIGHT + 2;
WAIT ZSONS;

END WHILE;
END ONLITA;

TASK OFFLT;
LIGHT:=O; ISSUE (LIGHT);
WAIT 500NS;

END OFFLT;

CONTINGENCY LIST
WHEN EACHI : 16003N5 DO ONLITA;

EDWHEN EACH5 : 160036S DO OFFLTg

Primitiva list

P It.genorated for: SYSTEM
P 2&.NAIN C:
P 3d:FIRST : :1
P 4a.inputport (ARG1#TTL:;8
P 5 a.outputport(LIGHTDTTL.:8)
P 6asver (EACH1:Sv,0
P 7&.var (EACH5:e,o)
P St.goeraed for: EACN1
P 9&.proc (EACHIZ)
P 1Oasseign (EACH1,01:1,8)
P 118.6eUscofld CARGI:8)
P 12*.le (@TOloARG1.eC2:8e.B8)
P 136.3upf (UTO1.S01:8)
P 14a.sub (4TO1,9CO1D0CO3:S,,8~)
P 15a.assign (EACH1FFTO1:1,S)
P 16a.Jloc (001:)
P 17s.exitproe (EACHI:)
P 18t.gonoratod for: EACH5

107

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22314

2. Library, Code, 0142 2
Naval Postgraduate School
Monterey, California 93943

3. LTC Alan Ross, Code 52R5 4
Naval Postrgraduate School
Monterey, California 93943

4. Prof. Herschel H. Loomis, Cod* 62LN 1
Naval Postgraduate School
Monterey, California 93943

5. LT Robert R. Vogel 1
C/O Fowler
2483 Trentwood Blvd.
Orlando, Florida 32812

6. Computer Technology Programs Office I
Code 37
Naval Postgraduate School
Monterey, California 93943

FILMED: :
S' .

S

S.

•S:::2

DUG".-
9O

