AD-A155 849 SOFTHHRE MAINTENANCE RELATING TO THE INPUT TRANSLATOR 1/2
D Zg@ REﬂLIZRTION (U) NFWﬂL POSTGRADUATE SCHOOL
HDNTEREV CA R VOGEL M
UNCLASSIFIED F/G 9/2

B

N Ty YT > . Mgy 2 —
N T v GRS % % T
PRSI S IORROME WA T IR A Sy PRESLIC e, Wihe o e N Ml el s

~ W T e Wy ey
S Sl Tl el Mt &, i

EE

EFEE

B
FEEEEEEE
=
B

o
L
iz i nee

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

\Snananan m . sesscusreaaRaas. o L

AD-A155 849

NAVAL POSTGRADUATE SCHOOL

Monterey, California

DTIC

g% ELECTE|
@, JUL3 085 |

THESIS

SOFTWARE MAINTENANCE RELATING TO THE INPUT
TRANSLATOR AND Z80 REALIZATION VOLUME OF
THE COMPUTER SYSTEMS DESIGN ENVIRONMENT

by
Robert Ralph Vogel
March 1985

A. A. Ross
Co-Advisors: N. F. Schneidewind

Approved for public release; distribution is unlimited

..................................

A o I A e e B A e S P opwep—p—— pp——— Fpp————
T T J Toge y Y

REPRODUCED AT GOVERNMENT EXPENSE

.
LTINS

DISCLAIMER NOTICE

g R

THIS DOCUMENT IS BEST QUALITY ;
PRACTICABLE. THE COPY FURNISHED =
TO DTIC CONTAINED A SIGNIFICANT 2
NUMBER OF PAGES WHICH DO NOT ’.
REPRODUCE LEGIBLY.

v

oW
Tt e e T At e A e e AN T e N
..................
..............
A WP WP POV P > P 2

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

L ZA B s e M et el stu Suih Sl et Sune et bt

Sl B e ™ it Pl

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

[T. REPORT NUMBER 26OV ACCESSION 49
Vs

? RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtlfl;)
Software Maintenance Relating to the
Input Translator and Z80 Realization

S. TYPE OF REPORT & PERIOD COVERED
Master's Thesis
March 1985

Volume of the Computer Systems Design
Environment

€. PERFORMING ORG. REPORT NUMBER

I7- AUTHOR(®)

Robert Ralph Vogel

8. CONTRACT OR GRANT NUMBER(s)

9. PERFORMING QRGANIZATION NAME AND ADDRESS

Naval Postgraduate School
Monterey, CA 93943

OGRAM ELEMENT. PROJECT, TASK
EAL W UNIT NUMBERS

11. CONTROLLING OFFICE NAME AND ADDRESS

12. REPORT DATE

Naval Postgraduate School March 1985
Monterey, CA 93943 . Nu'i'zﬁf OF PAGES
T3, MONITORING AGENCY NAME & ADDRESS(I{ different from Controlling Office) | '8. SECURITY CLASS. (of thie report)
UNCLASSIFIED

18a. DECL ASSIFICATION/ OOWNGRADING
SCHEDULE

vy vatre
16. DISTRIBUTION STATEMENT (of thia Report)

Approved for public release; distribution

is unlimited

17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if difterent from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side If necessary and identify by dlock number)

realization, input translator

Computer aided design, controller, CSDE, CSDL, Z-80 Primitive,

20. ABSTRACT (Continue on reverse side if necessary and identily by block number)
System Design Environment (CSDE).

The Translator takes as input, a Computer

(CSDL) problem and generates a primititive list.
is matched to identically named primitive realizations (Continued]

This thesis corrects the discrepancies between the input
Translator and the Z-80 Realization Volume of the Computer

It also demonstrated for the
first time, complete processing of a problem through CSDE.
is a computer-aided design system for real time controllers.

CSDE

System Design Language
Each primitive

DD ,535% 173

EDITION OF 1 NOV 68 1S OBSOLETE
S'N 0102- LF-014- 6601 1

P T S R A e T
e LT e N LT T e e . .

- “.‘»\ .'.-_'. _‘.~_

C e T e et . e e e e e T e T e T T T T i e T T T T T e T T
PR PR PR L PR PG PR PSS IS L PPN 1 G S S WS N e e

SECURITY CLASSIFICATION OF THIS PAGE (When Dete Bntered)

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

| DTIZ TAB
Unannounced O

! J.otification_

ABSTRACT (Continued)

in the Realization Volume.
software listings to implement the initial design.

5~§vce5:icn For :
| 8175 craer M
3

i

Ny

{»Ui:trlhution/

&vail and/op
Special

;A Aviilability Codeé ;

—————

The final outputs are hardware and

S N 0102- LF-014- 6601

I e PO : "‘-._‘.__'.._ RO

2 SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

- S e .
W Sl I I Sl AP . U W4 AP, PRI

...............

Approved for public release; distribution unlimited
Software Maintenance Relsting to the Input Translator

and Z280 Realization Volume of
the Computer Sysatems Deaign Environment

by

Robert Ralph Vogel
Lieutenant, United States Navy
B.S., United States Naval Academy, 1977

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN INFORMATION SYSTENS
from the

NAVAL POSTGRADUATE SCHOOL
March 1985

Author: Mw&% / ’7/'5,@(

Robert R. Vogel

Approved by: azadan d M

Alan‘i: Ross, Co-Advisor

Norman F. Schnefdewind, Co-Advisor

) /10 /]

Willis R. Greer, Jr., Chairman,

Department of Administrati Sciences

Kneale T. Marshall,
Dean of Information and Policy iences

o e e e e e e . S - 5
........ L T e TR eI A T L N AP RS N oY
R N e T e e e T e LT e e e T e N N

.......

...........

ABSTRACT

"
Ca

| This thesis corrects the discrepancies between the input

Tranalator and the 2-80 Realizstion Volume of the Computer

System Design Environaent (CSDE). It also demonstrated, for
the first time, complete procesaing of a problem through
CSDE. CSDE is a computer-ajided design system for real time
controllers. The Translator takes as input, a Computer
System Design Language (CSDL) problem and generates a
primitive list. Each primitive is matc :d to identically
named primitive realizations in the Realization Volume. The
final outputs ara hardware and software 1listings to

implernent the initial design.

1@ ':_,.;'..:'...'.'.'."'..

- e L.
-’ e e *
T PRI .
7 AR ”
o . AR
. - D S .
o ' Lo
. f B .
ot e
. St
‘4 PR

ST
{" ‘l' 'l'
‘a' A
(AR
£

]
L
PO B]

' e
L]
L3

-
e . B
. .y
L BN
oo LA
A MY a
o e e)
Ve .
SN SN N

l"vrc

.
is
v
1
el

>
!

N
Ad ek A

.'.,. ’.- |

e
)
e
s
[N

]
-.‘ 4!

............................... T T T et S T e
"""" MR IR N YO W TR DT L S

YN TN RN N TR T e T M ARG it ettt Jad St € ddC Al AV ML S S RUIL L gL il piis (L VI S et ey
AR R AR . N A e I A T G S S T e R e e T A R i s T

TABLE OF CONTENTS

I. INTRODUCTION ---~-----~--~c-ccccc-ccccccoccm-caco- 8
II. BACKGROUND ~---=---<=---c-cmcccccccccccecscom=coca" 12
A. SYSTEM DESIGN ------=~-------eec-c-c-—-cccc=as 12
B. FOCUS OF THESIS ~-~--~-~c-c-wccccc-ceccmncco—~- 17
III. METHODOLOGY --------=---=-~ececcccccccacccocmnccn~= 20
A. DETERMINING MEANINGS OF NEW PRIMITIVES ----~-- 21
B. COMPUTER SYSTEM DESIGN
LANGUAGE (CSDL) PHILOSOPHY ----------c-c----- 24
C. PRIMITIVE CONSTRUCTION ----------ccccccocc-=- 27
1. Input/Output ----~----c-ccccmccccconoccan- 31
2. S.fixedwait ---~-~--cce-ccccmcccccc-—mnoo-- 37
3. S.call -------cc-~c--cccecccececcocmocoo-~- 38
4. S.equivalenc and S.implicate ------~----- 39
5. S.forcons -~------ e Rttt 39
6. S.whilestart -~-~-=--reccc~crcmccc-ncco-- 41
7. S.in and S.ni ~--~-----e-rnecereccccccoa~- 43
8. S.stboolwait ind S.boolwait -~~~-<c--c---- 43
9. S.waitleast ----~~---ccccrccccccccconcoo-- 46
10. Changes to Smith’s Primitives -~---------=-- 48
1v. TESTING AND DEMONSTRATION --------~cc~cc-coacoco- S1
A. TESTING SEQUENCE AND EXAMPLE ----------=cco=~- S2
B. TRANSLATOR ERRORS --------ccc-cceccccccoccca- 5SS
C. THE CSDE PROGRAM ~~-~-~------cce-cccccacnccn-- 59
V. CONCLUSIONS ----~----=--ceccccccccraccnccccccccan- 63
S

APPENDIX A - PRINMITIVES AVAILABLE FROM TRANSLATOR

APPENDIX B - CSDL TEST PROGRAM --~-----cc-ccceau--
APPENDIX C - PRIMITIVE LIST, APPLICATION TIMING
TABLE AND SYMBOL TABLE PRODUCED BY
TRANSLATOR FROM CSDL TEST PROGRAM --------
APPENDIX D - COMPARISON OF PRIMITIVES --~--wvcecececececo-o
APPENDIX E - REVISED Z-80 REALIZATION VOLUME -----==---
APPENDIX F - WORKING CSDL TEST PROGRAM ~--v-cce—mcccae--
APPENDIX G - SUMMARY OF TRANSLATOR ERRORS ---c-c--vce---
LIST OF REFERENCES ~----w-ceccrerccccccccrcccreccncecnecan--
INITIAL DISTRIBUTION LIST -------c-csccccceccccrccccna=-
R
"
-4
L
.Vd
::J
o
-
6 o
-y
AR
RN
<)
:'.—_1
-y
N
4 e o

LIST OF FIGURES

1. Current Ross Controller Design System------c--——-cw---
2. Syntax Structure Corresponding to ‘s.fixedwait’------
3. Primitive List Segment Containing ’‘s.fixedwait’------
4. CSDL Problem Segment Corresponding to Primitives

in Figure 3--=------ccemrmmccccccccc s e e e
S. CSDL Implementation of Input------c--ccccccccccccanuca"x
6. Changes Required for ’‘s.whilestart’--~-----ccccceccea-o
7. Changes Required for Boolean Wait Primitives---~-----
8. Changes Required for ‘s.waitleast’---------cvcecccw---

9. Realization of Blocks of Code to be

Executed Once Only---~=~---c-ceccecccaconncrcnaracnaa
10. Changes Required for Relational Primitives-----------
11. Contents of Global Variable File---------cccceaca——w-

d AR M Sl B it A it et AT A I el A AC A ISR R AN Sl et S B A S A AP N N AP

I. INTRODUCTION

In the field of computer aystems development, the
current techniques are coming under increased asacrutiny
because of intolerably high coats. Hardware and aoftware
costs make up the two component parts of computer systems
developaent costs. One source projects software to
comprise approximately 90 percent of total system costs by
1985 [(Ref. 1: p. 7]. This trend applies equally to large
automated data processing aystems and to special purpose
microprocessor based systems, also called embedded ayatems.
Total software costs for embedded computer systems, alone,
in the Department of Defense(DOD) are projected to exceed
32 billion dollars by 1990 [(Ref. 1: p. 8) with 40 to 75
percent of this total going to software maintenance. Since
emnbedded computer system expenditures comprise roughly SO
percent [(Ref. 2: p. 45] of all DOD software spending, this
clearly illustrates that ways must be found to reduce these
costs.

Current software/aystens developaent methodologies
generally embody a life-cycle approach with various phases
such as requirements analysis,design, coding, iaplemsntation
and testing. This process is expenaive, time consuming and
flawed meainly because the hardware choices are made early

in the process to insure ha: .ware availability upon

DAL A I Bt e i et SAELEE ML SO et Al i S AP A TR S A ae T T T T T T T T v W YT W W N gy U WYY

commencement of system testing. Consequently, misjudgments
concerning hardware and software integration and the
inability to completely satisfy the original requirements
specification must either be ‘lived with’ at the end of the
project or corrected at great expense.

A >mated design tools of various types seem to hold the

greatest proaise in terms of increasing productivity of

systems designers and programmers. They range in complexity -

R P

. ' o

. R A .
it bttt

]
from single function tools such as compilers, interpreters
and editors to fourth generation languages, s&applications
generators and complete software systems generators [(Ref. 3: i 1
p. 63]. The key point of these latter types is that they e]
greatly reduce the amount of labor required to finish a
system design once the requirements specification has been ;;;ii

completed. Although these toocls may be primarily thought of
as applying to large automated data processing projects, the

principles also apply to embedded computer systems.

Thus, similar tools exist and are being developed to aid

designers of embedded systems, examples of which are real-

time controllers and computers found in weapons systems
guidance packages.

One approach to computer-aided design tools for software
and systems design is rapid prototyping. Rather than going
through the traditional phases of the design process and

hoping that the single final product is on time, on budget,

NN
and satisfies the requireaents specification, rapid SRS

-~ - - P N A S S A R A N A A R
[AT ST T Y - T PSP . UL S-S SV, PSS SR S AR T SR S S TN WAL SO WA SR S B R e M

A Mt A 8 BT A RS Al

S AT

a

PRPIY ee——— (et ey Jer ey e Tt S Janst Mute Baay Steas Jaut e Mg Jgit R M Bt At Jue e Sge dnupe Sl ———

prototyping ellows preliminary designs to be produced
relatively cheaply and quickly. Changeas to a first
prototype can be easily incorporated into a second and the
process continues until the desired results are achieved.
The important point to be remembered is that the first step
in any design, the requirements specification, will seatill
require thorough research by the designer regardless of what
design tools are employed. Rapid prototyping encourages the
consideration of software and hardware simultaneously
throughout the development cycle and should result in the
optinum design of a microcomputer based product at the
lowvest cost (Ref. 3: p. 761.

A computer-aided design tool for rapid prototyping of
microprocessor based real-time controllers has been in
development at the Naval Postgraduate School since 1982,
The Computer Systems Design Environment (CSDE) was
originally implemented by Alan A. Ross [(Ref. 4] in 1978
based on initial research by M.N. Matelan (Ref. Sl. CSDE
has been the subject of several thesis efforts at NPGS, each
examining a different module of the system. Currently, all
components of the system have been completed, but certain
conflicts between some of them required resolution before a
successful demonstration of CSDE could be accomplished. The
subject of this thesis was to identify and resolve the

procedural conflicts that existed between certain

10

......

2y

elapaed. This definition of ‘s.fixedwait’ was confirmad by

LtCol Ross prior to construction of the 2-80 primitive. He

TASK KBINPMAIN:
MENU:=0; ISSUE (MENU):
SENSE (KEYCHAR);
IF KEYCHAR=1 THEN MINTAC :=1:; END IF:
--=> WAIT 10MS: <---
END KBINPHMAIN;
Figure 4

CSDL Problem Segment Corresponding to Primitives in Fig 3

was consulted prior to construction of all other primitives
in question because of his familiarity with Matelan’s
concapts of the CSDL language.

A final asource of information to be checked prior to
actual 2Z-80 primitive construction is one or both of the
other two currently existing realization volumes. For
example, Ross wrote an ‘s.fixedwait’ primitive for his Intel
8080 Realization ~»lume [Ref. 4: p. B-4], This provided an
excellent model ‘'om which to work with good examplea of the
proper placement of CSDE statementa as well as the assembly
language statements that would cause the controller to

execute the function of this primitive.

B. COMPUTER SYSTEM DESIGN LANGUAGE (CSDL) PHILOSOPHY

Before discussing actual primitive construction an
important question needs to be answered. Why only conatruct
primitives in the Z2-80 Reslization Volume to match existing

primitives available from the Translator instead of changing

24

T

. o L ainc D i~ i =~ e e e atiir A NP S e aset - aval ‘AR A “aiul et ek _alie- i ,V_‘,‘T""".“"_‘r'.'."'"_'.','T

as terminals. In this case <PERIOD> can ultimately be a
number and neasure of time ranging from hours to QLLJ
nanosecondas. The syntax for ‘s.fixedwait’ is relatively
straight forward but the format for construction of a
primitive has astill not been made clear. :R j

The next step is to look at the primitive list ~enerated

e

by the Translator from the CSDL test program to £find

bbbk,

‘s.fixedwait’. A segment of the primitive list containing

‘s.fixedwait’ is shown in Figure 3. This primitive list was

33t.generated for: KBINPNAIN ennaanne : -
34s.proc (KBINPMAIN:) L
3Ss.sssign (MENU, @C02:8,8) »
36s.issuevent (MENU:8) R
37s.sensecond (KEYCHAR:8) e
38s.eq (@TO1,KEYCHAR,©2C01:8,8,8) R
39s.3)mpf (@T01,002:8) :kéf
40a.assign (MINTAC,0C01:8,8) - il
41s.loc (@02:) ’

42s.fixedwait (10) €-=-= "

43s.exitproc (KBINPMAIN:?) LEX X T Y EY

--=>

VYV OUOOOVYVOUOUVOU

Figure 3 Primitive List Segment Containing ’‘s.fixedwait’ lv -4

generated for TASK KBINPMAIN in the procedures section of
the CSDL test program, shown in Figure 4. By looking back
and forth between the these two figures one can understand

each CSDL construct and its matching primitive. In the case

of ‘s.fixedwait’, ‘WAIT 10MS’ results in the primitive

h et aaatat

‘s.fixedwait (10>’ and means that when the ‘WAIT’
instruction is encountered no other tasks are to be executed

or contingencies checked until the specified ¢time has

23

e T T e RPN
STy T ;o

e e et e o St e L
PO IR DAL DL DAL PR SPEL A .

AP
1

- pa S St AR S S e el aag gees afes e Sb b Benl i Seul el SSEmmradet Jnul deeh ek S e N L AN e -
Tem T e RPN S e T B . . P .

thesis [(Ref. 8: pp. 47-54). The syntax structure for a
given primitive serves as the basis for development of a new
primitive realization. Newly developed primitivea are
discussed individually in subsection C of this chapter and
the CSDL ayntax atructurea that apply are listed as each one
is discussed.

In most cases, the Backus-Naur syntex structures were
insufficient to determine the meanings of new primitives.
One also had to study the applicable port: n of Carson’s
CSDL test program and look at the corresponding set of
primitives. In this manner one could see the context in
which the primitive was used to better determine its
aeaning. For example, to determine the meaning of
‘s.fixedvait’ first look at its syntax structure in figure

2. Note that a word not enclosed in brackets is called a

<WAIT> ::= WAIT <PERIOD>
/ WAIT <EXPRESSION> : <PERIOD>
<PERIOD> ::= «NUMBER® <TIME MEASURE>

<TIME MEASURE> ::= H/ M /S / MS / US / NS

Figure 2 Syntax Structure Corresponding to ‘s.fixedwait’

terainal and a word that is enclosed in brackets, < >, is
called a nonterminal. Terminals appear in a CSDL problem as
is, while nontersinals are located elsewvhere in the Backus-

Naur description of CSDL until they ultimately are defined

(=14

..............
.....................
..........................
...

available froam the Translator for one to one correspondence.
The net result was that 15 of 39 poasible primitives
available from the translator had no matching primitive in
the 2-80 Realization Volunme. Thuas, the first task was to
write new primitives for the Z2-80 Realization Volume to
natch the outstanding 15 from the Translator.

Smith wrote 68 software primitives for his 2-80
Realization Volume. It would seem to be a fairly reasonsble
task to write 13 more. Some were relatively easy while a

few wvere not constructed for reasons discussed later.

A. DETERMINING MEANINGS OF NEW PRINMITIVES

The general approach to writing a new 2-80 primitive is

’

N A R S
L
'.' 'A R B
R A N
. . T o
S 0
Sy
PR I BT B
A

ot .

efatet e e
L L
A i e L4

nalnliain

to £first examine the part of the CSDL language that the

primitive represents and to understand what it means. Since

no language manual exits for CSDL, one must examine the }Ei?

actual asyntactic structure that corresponds to the
primitive. Carson made this correspondence through the use
of production numbers. Each CSDL primitive 1listed in
Appendix A has a production number which corresponds to the
production number of its syntax structure. The CSDL ayntax .!;1“
structures are displayed in Backus-Naur form which is a :E?é'
stendard representation of the syntax structures of a
computer language [Ref. 10: p. 16). Originally conceived by
Matelan, CSDL was refined by Carson wvhen he developed hias

Translator and is displayed by production number in his

21

¢ i
PR TS
P R

ekl b

r .'
S e
Y

PMRECaatt i Abat Sne Sl e S e e e AR A e e b RIS I N A A Rl St el b v sl atICaN SRE stk S lCaduco e aEE R S SR)

III. METHODQLOGY

The taak of identification and correction of

diacrepancies between output from Carson’s Translator and

primitives available in Saith’s 2-80 Realization Volume is a
difficult softvare maintenance project. The importance of
well documented code and the desirability of a face to face -
turnover betwveen past and current researchers was made pain-
fully clear as w-rk progressed. The primary sources of)
information regarding CSDE were more than adequate with the *ﬁ;
availability of Matelan’s reports, Rosas’s thesis, and LtCol
Ross, hinself. Information regarding Carson’s Translator
consisted of his thesis, a loose sheeat summarizing —;;

Translatoxr produced primitives (Appendix A), and a CSDL test

0
abad

program (Appendix B) designed to produce a primitive 1list

. e
AR AR A
. e WY
o P R
PRI I A M M
o TR
2 s 3 0

(Appendix C) containing all primitives available froa the
Translator. These last two itemas proved invaluable in “3
helping to deteraine the functional meanings of the E
Translator produced primitives. Information regarding

T

Saith’a Z2-80 Realization Volume consisted of his well docu-

hoad ok

nented thesis and a simple but important demonstration

problea written and discussed by Riley (Ref. 9: Appendix

DR
Jala

Initially, a comparison was nmnade between asoftware

primitives in the 2-80 Realization Volume and those

20

LIS

A o
PRI RN SONONLA

R R
‘
.'l'l_l,r.-

..

Once the discrepancies with primitives were corrected,

sanple demonstration problems were run through the entire o
process to test each new primitive and those old Smith

primitives retained in the revised 2-80 Realization Volunme.

The demonstration problems were simple and only proved that

each primitive could be processed by the CSDE system based

on a single set of data. This brings to light the general i;ﬁ
problea of aystems testing within the computer industry. ;:5
Just because one problea was successfully demonstrated in {ff
CSDE does not mean other errors do not exist. However, ;iﬁ
exhaustive testing was not possible during the scope of thia ;;:
research just as it is rarely posaible in industry. %f

19

..........................

primitives that were available for use in the Z-80
i Realization Volunme. For example, the Translator generates
a primitive called ’‘s.sensecond’ which relates to sensing a
condition or testing for a certain flag. There was no

i ‘s.sensecond’ primitive in the 2-80 Realization Volunme.

This did not mean that the Z2-80 Volume lacked primitives
that could implement the function of ’‘s.sensecond’. Rather,
~ the problem may only have existed in the names used to label .

the same macro-instruction. This problem of discrepancies

w
DRGSO V)

between primitives generated by the Translator and those

available in the 2Z-80 Volume caused CSDE to abort an -3

Iy .li

atteapted controller implementation with a 2-80
microprocessor when such a discrepancy was encountered. ?iﬂ

To correct the discrepancies with prismitives, all ——

. 0y
H

primitives available from the Translator were compared to

those present in the Z-80 Realization Volunme. For Transla- e
i tor primitives like ’‘s.sensecond’, which had no matching 2-]
80 primitives, a solid understanding of the function of the
primitive was gained. Then the 2-80 Volume was examined to
see if the function in question was labeled with a different
name or implemented in a different manner. Corrective

actions consisted of modifying old primitives and adding new

sl b oadnd,

primitives to the 2-80 Reslization Volume so that all
primitives produced by the Translator can now be realized

except for ‘s.in/outport’.

W RN
!

18

....................... B N .
. R A S S I ST e DA e - R R A L T A T TR
R I LT WA I TP IR I W S AT WA A A AL AL DA PR U S IR DA R D SRR PR PV LT YN PR S ST S S RN rery |

Translations of software primitives in the Realization
Volume contain references to hardwere primitives, also
contained in the same Realization Volunme. For example, the
translation for a software primitive like ‘s.clockon2S’
(generate & 25 millisecond clock) containas the statement,
*include h.clock’. ’‘h.clock’ is the Z-80 hardware primitive
which details the connections for the counter-timer chip on
the CPU circuit board to produce a 25 wmillisecond clock.
Modifications or additiona to software primitives 4in a
Realizstion Volume must also be accompanied by appropriate
changes to hardware primitives. This insures that a
realjizable controller design, in terms of softwere and

hardware, can still be produced by CSDE.

B. FOCUS OF THESIS

The Translator =aodule of the CSDE system was not
developed by Roas during his initial research. During
subsequent thesis research at NPGS the Translator module was
written by T. H. Carson [Ref. 8). Concurrent to Carson’s
work, the 2-80 Realization Volume was developed by Smith
[{Ref. 6]. A successful demonstration of the complete CSDE,
from input to operatjion, is the subject of this thesis.
Previous discrepancies between these two modules prevented
such a demonstration.

The discrepancies involved differences beatween the

primitives that were produced by the Translator and

17

...............
.-t et " C R PO e e T S T T L P P R R PO R
DN L N S e Tt T T Tt Tt e T e Tt te . L

(Ref. 7). The 2-80 volume, added by Smith [Ref. 6], was
chosen for use during this thesis research because the
prototype computer used for demonstration is currently

configured for Z2-80 operation.

Device Description and Library Update (Figure 1) refer

to the process of adding new Realization Volumes in the

3 s

future as well as updating currently existing volumes. This

]

process is extremely complex because a Realization Volume

Tu
L i__‘ -“ ‘."I""

not only includes software primitives and their assembly
language translations, but also contains hardware primitives

which describe the chips or multi-chip circuit boards

.....,,.."

Vo
RERE

LY e e e S

i T OO S IO I

required to implement the software primitives. In the 2-80 ?j

W
o,
PSP OPT Y

Realization Volume, all hardware primitives refer to circuit

..,...
yy
"'/‘l."'
EREREARN

boards rather than individual chips because Smith designed - iﬁi
his Volume for the Pro-Log computer. The Pro-Log can be
reconfigured easily by installing different boards as
required [Ref. 13]1. An example of a 2-80 hardware primitive
is ‘h.atod’” which calls for an 8 bit analog to digital el
conversion board. The actuasl translation of ‘h.atod’
specifies items like which circuit board to use and which o
jJumper pins should be connected or disconnected.

The hardware listing produced by CSDE for a given design

e »

is the indirect result of the software primitives generated

by the Translator. As Translator-produced software ;;
primitives are successfully mapped to software primitives in ﬁhi
RO

a Realization Volume, . hardware is also specified. e
16 fﬁ?

...

....................................

.....................................

errors in Translator input, will deposit error messages in

this file (Ref. 8: p. 28).

The key aapect of CSDE is how it picks the particular
microprocessor to be used and how it generates the assembly
code listing to make the system work according to the
requirenents of the initial problea stateaent. The
prisitives generated by the Trenslator are really generic in
nature. To convert them t0 ssseably code, each primitive is
natched to an identically nased primitive in the Realization
Volume that applies to the specific microprocessor that has
been selected to implesent the problea. For example, the
Realization Voluae for the Z2ilog 2-80 contains a list of

primitives and the 2Z-80 assembly code sequence that

implenents each priamitive. Thus, the Functional MHNapper
would take the primitive, ’s.)mpf’, which had been produced
by the Translator and satch it to ’s.)mpf’ in the 2Z-80
Realization Volume. The primitive, ‘s.)mpf’, is implemented
or realized with three Z-80 sssembly language statements.
This matching process is called functionel mapping because
the Translator primitive is mapped into the Z2-80 Realization
Volune. Deteils relating to variables, precision, and

timing are addressed by Roass [Ref. 4: pp.79-8351].

The Library of Realization Volumes (Figure 1) currently
contains three volumes based on three microprocessors. An
Intel 8080 Volume was developed by Ross during his original

ressarch and an Intel 8086 volumg was added by A. J. Cetel

15

..

..
...

microprocessor. An example of a primitive is ’‘s.)mpf’ which

causes & jJump to a location if a variable is false.

.. e
: ')i "I_“’_'."'.'.‘ '."..' ‘-.

l."l
J ML B P 4

The Timing File, also called the Application Timing

R

Table, is output in & file named “IADEFL.DAT’and contains

Y
-

L]
WK

attributes of the contingency/task pairs such as maximum

1

allowed time duration of each task and contingency and the A

relative priority of each pair. This information is atored

in a table format and is used by the Timing Analyzer to

CSTIRT, T
L R A
' [JEAE R AL AN -

produce a monitor program for the selected microprocessor.
The monitor program (similar to a simplified operating
system) insures that all contingency/task pairs are executed ?;
within the required time constraints as stated in the

original CSDL problea.

The third and fourth output files from the Translator

are named ‘SYMFILE.DAT’ and ‘TRANSLATE.DAT’. *SYMFILE.DAT’

' "_lr
ofele]

contains the Symbol Teble, also called the Environment

¢
]

Table. The Symbol Table is a listing of attributes of

variables and constants such as type, precision, and value.

GO I 7

The Symbol Table is actually a subset of the Primitive List

C’PRINFILE.DAT’)>. 1It’as use by the CSDE program is optiocnal.
If SYNFILE.DAT is available, the Functional Mapper will read
the Symbol Table before reading the entire Primitive List
and the CSDE program will execute faster. *TRANSLATE.DAT’ Ao
is a text file for user convenience and is not used by CSDE.
Carson used it as an aid in dobuggiﬁg during the development

of ¢the Translator. Currently, diagnostics which trace

14 Ny

...........
................................
--

A e N T Y N T T R N T T Ty L e Y-St il S el e oo bR P S St

Currently, three common microprocessors, the Zilog 2-80,
Intel 8080 and Intel 8086, are available for hardware
implementation depending on which microprocessor best
satisfies the design requirements as determined by CSDE.

The following discussion relates to the various blocks
in Figure 1. First, the problem statement or functional
description of the controller is written in the Computer
Systea Design Language (CSDL). The ayntax used by CSDL was
originally defined by Matelan and is summarized by Roas
(Ref. 4: pp. 10-12]. A dedicated language manual for CSDL
has not yet been developed. The CSDL problem statement
includes such things as the variables to be used, functions
to be executed and contingency/task pairs. A contingency/
task pair is sisaply a statement that describea which
function or task will be executed in response to a
particular condition or contingency. The problem statement
is then input to the Translator which is equivalent ¢to
inputting a Pascal source prograa into a Pascal compiler.

The Translator is a compiler which reads the CSDL
program and generates four output files. Two of these four
files are required by the CSDE system and are shown in
Figure 1. The Primitive List is output in a file named
‘PRINFILE.DAT’ and contains a list of primitives which
describe the input problem. A primitive is basically a
macro-instruction which is later translated by CSDE into

assembly language instructions for the chosen

13

a1

B3 CACATRURERCIEE L BRI PRI S

-,

. T

v e 4 " L eadh Badh Aadl g dd Jdir s dis St gl WA T Arul AU
e S Tt A I AL P ot o b e N i S A S e KAt e Wit i WA A AR NGRS

I1. BACKGRQUND

A. SYSTENM DESIGN

To better understand what the pro.owdural conflicts were

and where they aspecifically existed within CSDE, a review of
the aystem is essential. Refer to Figure 1 (Ref. 6: p. 20]
t; for a simplified block diagranm.
1 I
: cspL EVICE
- description description
#‘ T 1
- Translator > Library
- —_ Update
! r
Primitive Timing Library of
List File Realizatio
y Vol umes

—] O

Haraware |/ Functional Software
Descriptiorny Mapper Description
| Timing /

Analyzer

Figure 1 Current Roas Controller Design System

The basic concept of CSDE is that a designer be able to
describe a controller application functionally in a high
order language, input this description into the system and
obtain software and hardware 1listings that describe a

prototype implementation of the desired application.

12

P T T O LT T RS RPCI RGBT SR S SR S S

PR . - Pl S e - A PN o R L P RIS SR AL N
LTt e T e et VRN A N U Lt e T e DRV . F T A St e A T S R e Y
P T P RS -t - s ot ate et ata L OO S T O A SRS T i T S I e T T Dy o
B S A S S e T A LA LT A L ST WA LR W WA & T W VT S S WA AT Wy e S

.............

modules of the CSDE system and to complete a successful
ti demonstration.

Concurrent to this research, two projects related to
CSDE were also completed. Mr. Greg Lukas was hired to

perform extensive software maintenance on the CSDE program

:1 to make it more user friendly and run more efficiently.
‘ LCDR Jim Poole worked on a project to streamline the
i: physical process of running a design problem through CSDE.

= Poole’s research attacked a problem, documented by
E Smith [Ref. 6] and Riley [Ref. 9], in which numerous steps
i; were required to work within the CSDE environment. The
i. steps involved the separate uses of the VAX 11/780

mf minicomputer, ALTOS 2-80 microcomputer, the Pro-Log

microcomputer, and data transfer via modea. Poole
constructed a single Z2enith Z2-100 microcomputer workstation
from which all CSDE operations could be conducted. This

nakes CSDE much more convenient for the user. [(Ref. 12)

11

LOn am ek ana o a an o e e

the Translator to produce primitives to match the ones

originally available in the 2-80 Realization Volume?

The philosophy of CSDL is that the designer should be
able to specify the functional design of a controller
totally independent from the knowledge of any aspecific
hardware that might be used to build it. The structures
available 1in CSDL are generic in nature and allow the de-
scription of arithmetic, logical, and input/output
operations that could be applied to any computer-based
controller. Thua, the primitives that are available from
the Treanslator are a direct reflection of the CSDL language
as originally defined by Matelan. To change the Translator
80 it would produce a primitive such as ’‘s.atod’ would first
require a change to CSDL. A ayntax structure would have to
be added such that a designer could specify an analog to
digital signal conversion during an input/output operation.
Why did Smith include an ’“s.atod’ primitive in the 2Z-80
Realization Volume?

Smith included many primitives whose functions are not
supported by CSDL. Some, like ‘s.atod’, were written to
provide the capability to use the hardware that wvas
available to him. In this case, one of the boards currently
available is a Pro-Log compatible analog to digital
conversion board, a MNostek mdx-a/d8 board. Another |is
‘s.clockcons’, written to enable use of the 3-channel clock

that is co-mounted with the cpu on the 2-80A cpu board. As

25

it stands now, an analog to digital function can not be
included in a controller designed within the scope of CSDE
and would have to be added externally once the CSDE
controller design was realized.

In addition to hardware specific priaitives, Smith also
included specialty primitives such as ‘s.consfp’, ’‘s.varfp’,
and ‘s.fptoieee’ to handle internal data represented in
floating point notation. Here too, CSDL does not allow the
designer to be this specific.

The net result is that the modified 2-80 Realization
Volume produced by this thesis research excludes many of
Smith’s primitives. If the CSDL language is expanded in the
future some of these deleted primitives might then be
included.

The £finel reason for not making any changes to the
Translator is the lack of expertise of this researcher in
the area of compiler design and construction. Thi: also
nakes it impossible tc correct a few formatting erroxrs that
occur in the Translator’s output files. These iormatting
errors ceause the CSDE program not to accept a logically
correct CSDL problem straight from the Translator. The
specific errors discovered are discussed in Chapter 4 and

sumnarized in Appendix G.

ae

.....................

......

SO PR M T S N S et G L W O R S oS- o NI i - et e e Bt M Sent Mtugs St Shud S Saos S o 1 e
- FEC I Rl RS | s

........................

C. PRINMITIVE CONSTRUCTION

Having determined the meaning of the new primitive to be
constructed, the first step in construction was to write the
2-80 assemndbly language routine that would accomplish the
desired function. The routine was then tested independently
to eliminate logical and syntax errors prior to inclusion in
the rest of the primitive body. Although the routine could
be tested separately on any CP/NM Z2-80 microcomputer, it was
easily tested right on the Pro-Log utilizing the Zenith 2-
100 workstation set up specifically for CSDE research.
This workstation consists of the Z-100 connected to the Pro-
log and connected to the VAX 11/780 on which the Translator
and the CSDE program both reside {(Ref. 12).

To test a routine, it was first written on the 2-100
using an editor or word processor like Wordstar in non-
document mode. It was then assembled and linked using the
procedures set forth by LCDR Jim Poole, developer of the
CSDE work station [Ref. 12). The starting address aspecified
at time of linkage must be 4000h since this is where user
addressable RANM starts in the Pro-Log. Once the routine was
linked its resultant hex file was downloaded to the Pro-Log
using the AMDS program resident on the Z-100 and on an EPROM
starting at 00O0O0Oh in the Pro-Log. Detailed procedures are
contained in Poole’s thesis. Having downloaded ths routine
into the Pro-Log, it was run by pressing the reset button on

the Pro-Log then typing G4000 on the ADM-3 monitor which |is

27

:1s0 connected to the Pro-Log. Results were checked by
inspecting the contentas of appropriate memory locations,

again using the facilities of the AMDS monitor in the Pro-

Log. This same procedure was used to test programs
generated by CSDE except that instead of creating the
assembly routine on the 2-100, the assembly program output
froa CSDE was downloaded from the VAX to the 2-100.

In the case of ‘s.fixedwait’, for example, the assembly .'if
code consists of two down counter loops, one nested inside
the other, that delays the cpu from doing anything else as
its executing the loops. For demonsatration purposes, it was :LL

linked to a short routine to display some letters on the Eif

Pro-Log once the software deley had been completed. The
delay was written to handle time in nilliseconds vice ' fff
microseconds so that the user could see the delay by timing A ﬁéi
the interval with a watch from the time the routine was
started until the letters actually appesared on the Pro-Log E%%

display. The reference for Z-80 assembly language was Zaks’

g Progremming the Z-80 [Ref. 141 and the reference for writing T

the letter display routine was the users manual for the Pro-
P Log 7303 Keyboard/Displey Cerd (Ref. 15: p.3-S5). -
{ Once the assembly language routine was written and ;ii
tested the rest of the primitive was constructed. There are i:;

very satrict formatting requirements for the conatruction of

a priaitive. Detailed instructions ar contained in Rosas’s

thesis [(Ref. 4: pp. 79-85.) and particular attention must be

28 :-::_-:_

.......... e e el e N e e e e e e m et A e e e e a YA TR R I R AP
..............

A e e T T T T T R e e e
e e e e e e

E L

paid to the coluan dependencies and format for the arguments
contained in the primitive title line. The best way to
understand primitive construction format is to study
previously written primitives by Ross [(Ref. 4: Appendix B}

and Smith [Ref. 6: Appendix C).

When the primitive was finished it was added to the 2-80
Realization Volunme. The Volume is normally contained in a ‘
file called RELIZE.NAC although the CSDE prograsm allows the ;{‘
designer to name the required files anyway he chooses. Its A

format is strict in that the first portion of the Volume

. . .
P St e e
[et

RO) PRy PP

must be an index of the primitive title lines in i'
alphabetical order. The last 4 numbers following the second L
colon of each title line specify the firat occurrence of a fgfi
CALC 1line, the first occurrence of an ATTR line and the ;;*;

beginning and ending line numbers locating the primitive

within the Volure. To make the addition or deletion of

3 S0

AP LN

PSRRI
P .

e e e ™y,
RN AN
Tt et .": oo
. LR RAF AN
. 'L)JAA“;_‘ I NN

primitives to the Volume easier, a program is available on
the VAX called FORMAT.EXE. It takes as input just the prim-
itives, stripped of line numbers and with no index. The

primitives must atart in column 6 and the last 4 numbers

L4
o
ach,

specified in the primitive title lines can be delineated
simply as spaces or asterisks such as in ‘s.fixedwait
(time:0,1275:15,-5,18, , ,vsen, swes)’, If certain values in R
a title line are to be left intentionally blank such as in

‘h.cardcage (:2 , , ,0,0,0000 _0eue)’, the blanks nmnust be

present before input to FORMAT or else FORNMAT will inject an T

a9

.............

.....................
.................

oy Bl S D s St e e e Jugh e Fus con ~ B e e e e e ASLAR S A At At B Ao e T e T T e

extra comma into the priaitive title 1line. The FORMAT
prograa will create the index, add 1line numbers, and
correctly £ili in the last 4 numbers in each primitive
title line. To use the formatter, type RUN FORMAT. It will
ask for an input file name which is the file containing the
unnumbered primitives. Then it will ask for an output file
name which should usually be RELIZE.NAC. The resultant
output file is ready for use by the CSDE progranm.

Because of the variation in complexity of the new
primitives, it is important to discuas specific aspects
that mnake each one unique. This should help future
researchers if CSDL or the Translator is modified and =more
primitives need to be added to the Realization Volunme. The

following primitives were added to the 2Z-80 Realization

Volume: s.inputport, s.sensecond, s.outputport, s.issuevent,
s.fixedwait, s.call, as.equivalenc, s.implicate, s.forcons,
sa.whilestart, s.in, ses.ni, s.stboolwait, s.boolwait, and ;;;
s.waitleast. These new primitives along with relevant

primitives from Smith’s original 2-80 Realization Volume can

be found in the revised Z2-80 Realization Volume in Appendix :$ﬂ
E. Each of the constructed primitives is discussed below.]
The primitive, ‘s.in/outport’, was not constructed. The 2Z2- ;ﬁf
; 80 Realization Volume now contains a realization of every =
Y

primitive that can be invoked by the Translator except for

‘s.in/outport’.

30

"T ’ "
RONGROR DAL
[T SN e

L |
A a8 .4 8 8 b WPV W WA T T SR

1. lInput/Qutput

i Five different primitives relating to input/output
E (I/0) are produced by the Translator which were not present
E in Smith’s Z-80 Realization Volume. They are ‘s.inputport’,
i ’ ‘s .senaecond’, ‘s.outputport’, ‘s.issuevent’, and

‘s.in/cutport’. A discussion of MNatelan’s philosophy

towarda I/0 is appropriate before describing primitive

details.

Natelan stated that ‘type’ refers to how data may be

used rather than how it is astored. Traditionally, we think

| RS
N o

e
s N e
P AP R R AN

of types in the latter sense, such as a variable being

specified as type integer or real. CSDL allows 3

"y

f transaission types: INPUT ONLY, OUTPUT ONLY, and DUPLEX

RN
AR
T PN NP

L

i (input and output) [Ref. 10: p. 18). To understand the

differences & real vorld example is presented.

[RERRE)
s 5

[}
Mty

LR
’
»

If a controller wvere to pericdically sense the

.
[
LIRS)

i position of a valve, the valve would need to produce a

7
4k

proportional analog output signal which would then be

converted to a digital signal by an analog to digital

[

Sl et
. ¢ . ‘ i
,.','.4 LA IR

TS AT AP

converter. This digital signal would be available via a
specific 1line to a specific port which would be uniquely
addressed by the cpu of the controller. This port would be
for INPUT ONLY with data on the current valve position
always available.

A typical hardware I1/0 implementation for a 2-80

microprocessor might involve using a parallel input/output

- 31

...
..............................
....................................

........................

T

interface chip (PIOQ),
here, refers to

input or output (Ref. 11:

programnmable to set the direction for which the ports

be used.

select the port to which the position signal is

program the PIO so that the selected port is set up in

INPUT direction.

be read from it as often as the programmer desires with a

simple instruction such as the 2-80 "in a,(n)", where ’n’ is

the port address and ‘a’
The primitive,

syntax,

and the primitive,

syntax, <DATA

example, source to

Translator might appear as in

SQURCE
(CSDL Problem Statement)

ENVIRONNMENT
INPUT: VLVPOS,8,TTL

PROCEDURES
FUNCTION VALVCHEK
SENSE (VLVPOS)

Figure 3 CSDL Implementation of Input l}“

32

....................

which provides 2 or 3 ports.

an 8-bit connection that may be used for

1621.

To provide INPUT ONLY, the software must first

Once the port is set up,

is the accumulator.
‘s.inputport’,
<INPUT SPEC>::= INPUT:<TRANSMISSION BODY> END INPUT,
‘s .sensecond’,
INPUT>::= SENSE (<KNAME>).
and primitives generated by

Figure S.

«inputport

. sensecond

A port,

A PIO chip is
will
sent and
the

information can

comes from the CSDL

comes from the CSDL
Using the valve
the

The primitive,

QBJECT
(Primitive List)

(VLVPOS:8)

......................
................................
: Vs

(VLVPOS,TTL:8) T

[RN

Ve e te
A

o
»

‘s.inputport’, would be used to set up the desired port for Ejié

input (i.e. send appropriate control code to the PIO) and ;;—:

‘s.sensecond’; would be used to actually get data from the

desired port into the cpu. ii&ﬁ

Similarly, the controller should be able to send a

B

digital output signal via a digital to analog converter to
the valve positioning motor. This would be an OUTPUT ONLY
function. The primitive, ’‘s.outputport’ comes from the CSDL i'vj
syntax, <OUTPUT SPEC>::= OUTPUT:<TRANSMISSION BODY> END
OUTPUT, and ‘s.issuevent’ comes from <DATA OQUTPUT>::= ISSUE

(<NANE>). The primitive, ’‘s.ocutputport’, would be used to -

. . PR A
PR T
[P B P
PP VU I G RO R

set up the desired port for output (i.e. send the appro-
priate control code to the Pl10) and ‘s.issuevent’ would be
used to actually send the digital valve positioning signal
to the desired port for output.

The iaplementation of data transmission type DUPLEX

is more complex. Duplex means the capability of INPUT AND

QUTPUT through a single port with no prior set up.

Theoretically, this might imply using a PIO that did not

require control codes to set up the direction of one of its R
porta prior to using that port. Data could be ‘sensed’ from
or ’‘issued’ to a port defined as duplex without having ¢to ‘;ig;

worry if the port was configured correctly. In the event

that duplex was not implemented solely through the use of a
non-programmable PIO, it might be achieved by including code

within the ‘s.issuevent’ and ’s.sensecond’ primitives

33

....................................

.......... T T T rarrT T ooy

to change port direction whenever an output or input
was required. Under what conditions would a designer desire
a DUPLEX transmission type? Perhaps there are hardware
resatrictiona that limit the number of ports available to the

controller and DUPLEX is the only way to satisfy all of the -

I/0 requirements of the external device being controlled.

The CSDL philosophy is that the designer is not concerned

with hardware when he originates his design. Hardware ia =
determined by the realization volusme, whose software ‘ v
primitives are written for a fixed set of components ;
specified by the hardware primitives. If a designer inputs ;i+

one design into CSDE with too many INPUT ONLY or OUTPUT ONLY
data transmission types, CSDE aight declare the design not ;Fi
realizable for a given microprocessor type such as contained i;i
in the 2-80 Realization Volunme. In the case of the 2-80
Volume, hardware is specifically configured at the board ig'
level and 1I/0 software primitives must incorporate the iLq
programming guidelines of the board manufacturers.
Alternately, if the designer resubaitted his design using i(ﬂ
more DUPLEX ¢types in lieu of separate INPUT and OUTPUT :
types, the deaign might be realizable.

There are no PI0 devices installed in the hardware ﬁ]
currently allowed by the Z-80 Realization Volunme. If a PIO
chip was installed, a DUPLEX data transmission type
primitive could be added to the Z-80 Volume by constructing

the ’s.in/ocutport’ primitive such that it enulates the

34

PR T . - . St et e s T ety T et . IR . e e ety et
- m Al Al s et et et Lt e ar et Ve ata e atalatatatatalata st atatatataatadal Pom® e n o nlna

At e aic e A A AR R

DUPLEX function. One possible scheme might be that when a
DUPLEX type is declared, it is automatically set up to a
default mods of INPUT only. Data may be ‘sensed’ from the
referenced port with no change in port setup. If data is
‘issued’ to this port than a software mechanism must exist

to reset the port for OUTPUT first and, upon completion of

the data output, reset the port to its default configuration

of INPUT ONLY. S

»

In the case of the Z-80 Realizaion Volume, a single }fﬁﬁ
data port on the Pro-Log keyboard/display card is available ;iié
for input or output. A single control port is also :"€
available to control the mode of display of data once it has "‘;
been output from the CPU to the keyboard/display card. Data fﬁ;é
sent to the control port controls the output display and not ;L;:

the data port. Thus, this single data port is DUPLEX in

nature since no control codes are required to configure it
for input or output. However, no DUPLEX function, i.e. an ‘;u;i
s.in/outport primitive, has been added to the Z2-80 Volunme.
Because of the simple hardware available, it would nmerely

duplicate the functions of the ‘s.inputport’ and

SR
‘s.outputport’ primitives. More importantly, a flaw exists s
in the Translator which will not allow data to be ‘senaed’ L
or ’‘issued’ through a variable that has been declared as ix

DUPLEX.

To demonstrate the concepts of 1/0 for this thesis,

the I/0 primitives have been constructed very simply. The

35

..................
......

hardware they use is the Pro-Log keyboard/display board
which only has one data port addressed at dOh. The value of
the digital signal available at the port can be determined
by inspection of the 8 leds on the board, representing bits
O through 7 read right to left. The ‘s.outputport’
primitive creates an output variable used to hold the
output value, clears the led display, and sends a control
code to the board’s single control port, dilih, to disable the
alphanumeric display. The ’‘s.issuevent’ primitive outputs
the contents of the output variable declared by
‘s.outputport’ to the data port. The value can then be
detersined by inspection of the 8 leds.

The primitive, ‘s.inputport’, creates an input
storage location. No other actions are required because of
the very limited I/0 facilities of the Pro-Log
keyboard/display card. With only one data port available
for input, no control codes are required. When more complex
I/0 hardware is available this primitive will require
modification. The primitive, ’‘s.sensecond’, is slightly
artificiel in that a conversion routine was added to accom-
modate the 2 rocker switches on the keyboard/display card.
These switches directly control the contents of bits 6 and 7
(assumes bits numbered O to 7) of the 8-bit data port when
it is ’sensed’ for input. Thus by masking out all but the
left most 2 bits, 4 possible values can be ‘sensed’ for

input as directly controlled by the position of the rocker

36

..................................

B T L AT R SV AN L T
PR S SRR P VD L RS R PR Y R PR S RS\ SRR R NP S SR RS S S S L EEUR. SR L RO S NI S

L

At e
“at et ..

Lt . e e e e e
A R]
R M S)

v [N
B . Y
RN et
- TRV

»
PN A

e e e
’" e, N Y,
. . .
P .
PR
e et L

» 4
' A

’
.'. iL

T

.0,]
7’
I REAARS
gl L g

st

»‘.l
it

B
it

e atmlal

switches. Four possible input values were sufficient for
the demonstration problems attempted. Exact details as to
awitch positions can be found in the comment lines of the
primitive in Appendix E.
2. S.fixedwajit
The primitive, ’s.fixedwait’, has already been
discussed in section III.A. There are a few additional

points of interest.

This primitive contains an attribute line in

addition to comment and calc lines. Attribute 1lineas are ';f;j

used when the length of time of execution of a primitive is ;:f;
directly related to one of its input values. In this case, oo]
the input value is the desired time delay in nmilliseconds f?ﬁa;
and also controls the length of execution of the primitive. 11;5

Normally, the maximum execution time for a given primitive
appears in the primitive title line as the second number

after the second colon. The units are in clock cycles. A

negative number is treated as a flag to indicate that the f.i?
actual attribute needs to be calculated at code generation -
time. The flag is also the offset value, starting from the i;iﬂ
primitive title line, of the line number where the attribute ’]
calculation can be found. B
In the case of ‘s.fixedwait’, the attribute line is ;.-5

‘attr time =<time>%4000’ and means take the input value and fﬁﬁi
T

aultiply it by 4000, with the result being the real

execution time for this primitive in terms of clock cycles.

37]

o '.'.A- «* e LT T T e T T T T e T T T e T T T
- Iy -

W PSRRI WU W DV SR i AL WP WY IR WA IPNE SR WL SPRE v Q- WK VR W WL WP LR I WS SOPIE SONE TN SPRT PR WU WSS SO yPWP SR PR SR DN PN WS DU AR IR W IR SR Y _J

A mt B At Sanih Seust Saut Nty O Gl AN Sl et i e ol Sodh AEEL S A SRS ek sl asthsat i Rl SN A Ol Padial SR sl o4

The factor of 4000 comes from the fact that 1 millisecond
aquals 4000 clock cycles with a 4 Mhz clock. The 2Z-80A
supplied on the Pro-Log cpu board uses a 4Mhz clock.

There is a format error in the way the Translator
produces this primitive. Specifically, there is a missing
colon; the format ahould be ‘s.fixedwait (10:)’ instead of
‘s.fixedwait (10)°. Normally the misaing colon would cause
a fatal error within the CSDE program but the program has
been modified to accept ‘s.fixedwait’ without the colon.
Informative error messages still result ¢to remind the
designer that the Translator requires modification.

3. 3.call

The primitive, ’‘s.call’, comes from the syntax,
<PERFORM TASK> ::= »]ID», and gives the designer the ability
to execute one task from inside another task without first
having to check the other task’s associated contingency.
The 2-80 code to implement this primitive consists of a call
instruction to a 1label that marks the desired task’s
subroutine. Although logically correct, this primitive is
not useful within CSDE because no mechanism exits to account
for the extra run time that is incurred when a task |is
executed in this manner. If ‘s.call’ is used, CSDE will not
have an accurate execution time statistic for a given design
and could falsely generate a realization of a problem that

does not meet the designer’s timing requirements.

38

CHRAC Sy T i e S I Sy T T T T T T T T T T T Y I IOV TR —ETTT T T ,-Y'-~1~—a——:-—_'~:v—v_v~——'-~—_-~.—~.~-.1

As discussed below in section IV.C., the CSDE program

underwent extensive revision to improve efficiency and ease

of use. An indirect benefit of primitive testing for

this

thesis was that the revised CSDE program was able to be

debugged. While important to the overall CSDE project this

sometimes caused great frustration when CSDE program errors

slowed down the testing process. Primitive testing

validated the usefulness of the CSDE workstation.

A. TESTING SEQUENCE AND EXAMPLE

also

A detailed user’s manual for working within the CSDE

environment is contained in Poole’s thesis [Ref. 12].
specifies the exact command sequences to use the

program on the NPGS Computer Science VMS Vax 11/780,

It

CSDE

It

also explains how to use the CSDE workstation to transfer

files between the Z2-100 and the VAX, assemble and link 2-80

programs produced by CSDE, and download resultant hex files

to the Pro-Log. The process is summarized as follows.

Once a new primitive realization was written and added

to the Realization Volume as discussed in Chapter 3, a short

CSDL problea was written to exercise it. Appendix B shows

the proper CSDL format to generate every primitive except

‘s.not’. The file containing the CSDL problem was renamed

DAT.DAT, as required for input to the Translator.
problea was then run through the Translator to generate

primitive list, application timing 3sble, symbol table,

Se

B AR O AL SR N WP, I PR DAL P I APRLIE. WL P WL I, AL SR P WA NP S - PN AL PN S

The

the

and

o

PRPUN B SRS W W

(e e Sian v 4 G A She S SrI i 2 et St S ML Sade Shvie Mintd SRSt - Calui-min sl s AU G Sem Sius e g In dh I Set Sual dat B2l drue Sme Jaary

Iv. T G_AN TIQN

The objective during testing was to verify that every
primitive in the revised Z2-80 Realization Volume could be
processed through CSDE to produce error free code that
would run on the Pro-Log computer. This applied to newly
conatructed primitive realizations as well aas those retained
from Smith’ 2-80 Volune. All primitives were successfully
tested at least once except for ‘s.in’, ‘a.ni’, and ’‘s.not’.
The first two were discussed in section III.C.7. and the
latter was not tested because the Translator would not
generate {t. Many unsuccesaful attempts were nmade to
discover the proper syntax for ’‘a.not’ since the Backusa-Naur
form specified by Carson failed to work.

To minimize the potential for multiple errors within one
test problem only one new primitive was tested at a time.
This involved writing simple CSDL problems for each
primitive usually with only two contingency task pairs. The
testing was not exhaustive. For axample, if a primitive
like ’‘s.ge’ (checks condition for greater than or equal to)
was tested, not all possible combinations of positive and
negative numbers were submitted as input data. This was
because of time constraints and the fact that Smith already
tested the logic of his 2-80 code during development of the

original Z-80 Realization Volunme.

o1

e _Sat et

PO TN W

PR Y L

AN LS A
W °. T v >' . ‘. ‘. " ‘l .
VPSP AP S AP S SOV i oy

1
H

Ko o's o 24

inclusion in a controller progren. This feature is
available for use, utilizing the global variables ‘initlk’
and ‘arnd’. Figure 9 demonstrates how blocks of code to be
executed once (for initielizetions) might be realized.

The primitive, ‘s.monitor’, also contained a means of
generating code within a controller program that would only
be executed once before entering the monitor aection. This
was different from the method use in ‘s.main’ in that a
boolean flag, ‘@initial’, was checked to cause a jump to
another segment of code that might be used for such thingas
as initializing variables. This initializing block of code
was realized from two primitives, ‘s.initalcons’ and
‘s.initalend’. These primitives are not produced by the
Translator and were discerded along with the statements in
‘s.monitor’, that referred to them. The method available in
‘s.main’ for initislizations is simple and more flexible.
Initial values of variables are currently set at zero when a
controller program is assembled by use of assenbler
statements such as ‘defw 0’,

Finally, the primitive, ‘h.clock’, was rewritten to
correctly describe all jumper connections required on the
cpu board to implement a 1 millisecond clock. The original
version of ‘h.clock’ listed only one of the six connections

required to enable channel O to feed channel 1 of the ctc.

S0

.............

Lt oo .
LB G B PSR

S acaded

not implemented in the revised Realization Volume, such
blocks could be realized by modifying existing primitive
reslizations with ‘incl’ or ‘call’ statements. These
statenents could, in turn, reference other software

primitives whose code would be executed only once upon

Sample Software

Output from CSDE Comnents
.z80 B
aseg - Code generated from the

. { primitive ‘s.main’

-=<-=- 3Jp @10 <-- This instruction appears in the

! . e realization as ‘)p @i<initlk>’
: . where initiaslly, initlk = O,

: (other code)

! e This instruction would appear
: . H - i_in the realization as

! Jp @@0 <-- ‘jp 8@<arnd>’ where initially,

-==> @10: nop arnd = 0,

executed once) once. When the monitor starts o
executing by calling contingency R
task pairs,this block will g

(code here ! This block of code is executed L
: [
LY JP ‘11 uom- =

@@0: nop . always be jumped.
. ‘ &
(other code) ! _____ The global variable, initlk, has L;,
. - been incremented so initlk = 1, .

->Q@aspvsr: nop
_ Monitor section.

H
!
(monitor code) H

Jjp Ospver

- -~

-==> = 811:)jp @spvar <-- This instruction comes from ;\5§
‘s.end’ and marks end of blocks .
of code to be executed once.

Figure 9 Realization of Blocks of fﬁiﬂ
Code to be Executed Once Only e

-
et
RN

49

T T e —————r A e iaie i ae Sre o S ar e A Ban o Sua Sede Sy S Gt AN SFE AN A aue e e g ——

serve as a counter for the loop structure produced by -;ﬁ
‘s.waitleaat’, Also, care nrust be taken when picking the ;;‘
values to be inserted in the label arguments so that they ‘ ;fﬂ
are different from label names used elsevhere in the -ﬂﬂ
primitive list. -
10. Changes to Smith’s Primitives

Three of the primitives retained from Smith’s 2Z-80
Realization Volume were revised significently. Many of the ;
others required minor corrections, =most regarding incorrect
byte counts. In a few cases, comment lines were added to
clarify certain points regarding the structure of a "
particular primitive. Generally, Saith was thorough and
the logic of hia Z-80 assembly code routines was flawless.

The primitive, ’‘s.main’, appears in the second line 2

of every primitive list generated by the Translator. The

PP ISP

‘s.main’ realization contains the code that appears at the e
top of every software output from CSDE. Smith included ;;5
statements that would allow a designer to specify a debug -ﬁ}
mode. A controller program produced from CSDE in debug mode :
could be run and tested on a C/PM based aicrocomputer. o

These references to debug mode were eliminated since, with

e
S

the use of the CSDE workstation, testing on the Pro-log is
more effective. Another capability of ‘s.main’ was retained

to generate blocks of code within a controller program that

[I LT
LN e

ot) N
e acia b an ala A

are only executed once before the monitor loop is entered.

Smith referred to this as hardware initializations. Although

48

PSR I SIS Y

...................

ST o TmTe T e N AN e e T T T T T T T T e e ST L
PRLIP PG SRR TR G S S S N R R A S R W A i S A A W S U ML N TS S Al i O - - PR

K -

YT TV WL G

T T T Y T T T Y T T T T T T T S L T e T T T T T R Y X N Y S Y Y TN T N e Y T T T e T T e e T T

‘s.waitleast’ realization required several additional
argunents to be present in the title 1line than those
generated by the Translator. The differences are displayed
in Figure 8 as well as proposed CSDL syntax changes. Note

that editing the primitive list requires more than just

changing the ‘s.waitleast’ title line. An additional

variable may need to be added with an ’‘s.var’ primitive to

Current CSDL Syntax:)
“WAIT SABLE+1: SOONMS"

Proposed CSDL Syntax:

~

"WAIT SABLE+1: SOOMS: 1500MS" !°'f

i__ max time
- pberiod

integer result__:
from this DA
expression S

Sample Output From Translator (unedited)
P 47sa.waitleast (@TO1,8:3500)

Required Format for Input to CSDE Program lu;j
(with argument explanationas) RENN

1 2 3 4 s 6 7
P 47s.waitleast (@T02,@TO1,00S,@06,500,1500:8,8)

- variable to be used for loop counter
- variable containing integer result

- top label

- bottom label

- time period

- max sllowed time period L ..

CADWN -

Figure 8 Changes Required for ‘S.waitleast’

47

........................
..
.....................

..................

T ——————mm——— L — St St s e S i e SRS e i

Thus, there would be no reason to incorporate a polling
routine, knowing the result could never change. The CSDL
syntax and the Translator should be corrected to allow
additional prisitives within the boolean wait routine sauch .]
as ‘s.sensecond’. It would then be possible for the result
of the final expression to change during the specified time
period. The boolean wait reaslizations have been vwritten
accordingly. '
9. S.waitleast A
This primitive - nerates a software delay that |is
computed by multiplying the integer result of an arithmetic
expression by a specified time period. The integer result
is passed to ‘s.wvaitleast’ from primitives that appear above
it. The specified time period appears in ‘s.waitleast’. "1
The syntax for it is <WAIT>::= WAIT <EXPRESSION> : <PERIOD>. j
An example can be found in Appendix B in the task, MSGDSPLY.]
When code from this primitive is incorporated into & f;j

task the execution time of that task becomes variable based }
on internally computed results when the controller progranm
is running. Since these changes in execution time occur
completely external to CSDE, there is no way to achieve
accurate timing statistics when the program is generated
unless the designer can specify some maximum delay in the o

CSDL problem. Additionally, since the integer result passed

to ‘s.waitleast’ is passed via a varisble and not an

absolute number, the loop structure used in the

46 e
q

............

.............. v]

B e LTINS S SN S S e SR SIS T dadh e Sud et sud el dhsh el sl b el b et B SR S e den B e s R A A R RS R N I C e ,}

implenmentation can be found in the comment 1lines for
‘s.setine’ and ’h.clock’ in Appendix E.

The CSDL syntax currently calls for the time period
to appear in ‘s.boolwait’ and not in ‘s.stboolwait’. This

is wrong because CSDE needs the time period at the beginning

of the boolean wait construct to insure accurate timing
statistics are kept. This is accomplished by use of an
attribute line in “s.stboolwait’ as is similarly done in the ;‘.;
primitive, ‘s.fixedwait’. Editing of the primitive list

output from the Translator is required as shown in Figure 7.

. et R
AR et e Lt

M) , e e
PSS AP UPUN L)

Sample Output From the Translator (unedited) '

P 36s.stboolwait(@03:) -
P 37s.eq (@TO1,LIGHT,@C06:8,8,8) N
p 38s.boolwait (@T01,803,@04:8,1700) <-- 1700 is pericd O
in NS i
b
Required Format for Input to CSDE Program Ejﬁd
. ‘._:‘1
P 36s.stboolwait(@03,1700:) <-- time period)
P 37s.eq (@TO1,LIGHT,9C06:8,8,8) here -
P 38s.boolwait (@T01,@903,804:8) L.
Figure 7 Changes Required For Boolean Wait Primitives }
Ny
A logical error exits in CSDL relating to the L

expression primitives that may appear between ‘s.stboolwait’ }f
A

and ‘s.boolwait’. Currently, only one expression may appear

which means that onct* the boolean wait routine is entered
there is no way that the result of the expression could

change while waiting for the apecified period to expire.

45

.......... N T T T e e T T T T e T T T e ._'A ~'._"A_‘.._' RIS TR ..-'_.-'._' ..'.."
T N e e ST S T NN S e N \

=" LT A e e e
DI P SRR A oA AUy LR S AP 0. PTG B S S i o B VP R o P I S RSN AT T G S R U T SO U T ST S P SO

A M AN AME SR SN S a i RN SR A e i e Jasi e e S Sde eSS R A At I T e T e R T T T

expression is checked until either the result is true or the
specified time has expired after which the rest of the task
is executed. An example can be found in Appendix B in the
task, ‘MSGDSPLY’. The syntax for ‘s.stboolwait’ is <WAIT
HEAD> ::= WAIT UNTIL and for ‘s.boolwait’ is <WAIT UNTIL>
:i= <WAIT_HEAD> <EXPRESSION> : <PERIOD>.

The logic of the realization is fairly simple. The
primitive, ‘s.stboolwait’, sets the ¢time to check the
expression by calling another primitive, ’‘s.setime’. This
is analogous to setting a timer, in this case the counter
timer chip (ctec) on the Pro-log cpu board. Then it
establishes a label for the top of a mini polling routine.
The expression primitive would appear between ‘s.stboolwai -’
i and ‘s.boolwait’. Finally, ‘s.boolwait’ completes the

polling loop by first checking the result of the expression

primitive. If the result is true the routine is exited. If

i the result is false, the current time is read from the ctec. vy
A
If the time is expired the routine is exited. Otherwise a o

jJump is executed to the top of the loop. ﬁ?:

The primitive, ’s.setime’, is not generated by the
Translator. It was written as a separate primitive to
maintain the modularity of the Realization Volume and to ?IQ
allow testing of the CSDE ‘call’ instruction in the T
primitive, ‘s.stboolwait’. It seta up the ctc as a

down counter which decrements at 1 ms intervals. Details of

44 i

..

...................

7. 3.4n ond S.ni
These primitives are produced when a timed block is ;ii;

specified. A timed block is a nested set of actions within
a task or function, with its own timing criteria. This
i timing criteria is in addition to any criteria specified for iili
the parent task or function in the application timing table. 4
An example can be found in Appendix B within the function
*TPOLL’. The ayntax for s.in is <TIMED_BLOCK_HEAD> ::= IN : ;
<PERIOD> and for s.ni is <TIMED BLOCK>::= <TIMED_BLOCK_HEAD> ‘
DO <STNT GP> END IN.
g These primitives are in the same format as they :;%
originally appeared in Ross’s 8080 Realization Volume. They
were added to the Z-80 Volume for purposes of completeness

only and cannot be used in their present forna. This is

because the mechanisa by which the CSDE program would §i$
implement a nested timing requirement is not functional. ;i:

No effort was expended to correct this problem because it

T IR
i ¥
1N

was reasoned that if a designer had an inclination to

« ¥ ¥ ¥ ¥

':'..-

specify a timed block he could just as easily take the
actions in question and put them in a separate task or jki;
function.

8. $,9tboolwait and s.boolwajit

These primitives are generated when a boolean wait

3
A
a0
.
)
L,
.

construct is specified. This construct would be specified ;:i
by a designer when he wanted to check the results of an '3§ﬂ
.’_~.:_1

arithmetic expression for a fixed time period. The }fﬁ
T

o

43 ot

".
A
)
o Jo

AR

2l

P
o,

et te v PRI L O AP R I R I e R R R R I PR AL I it
2 2

PR

executed for every repetition of the loop. For correct ﬁ

'
.

]
—nd

timing statistics the execution times for both the

condition checking primitives before ‘a.whilecon’ and the | E?
action primitives after ‘s.whilecon’ be must multiplied by iﬁ
max loop count. This requires that the max loop count value -

appear in ‘s.whilestart’. The primitive realizations have
been written accordingly. Editing of the priaitive list Z;v
output from the Tranalator is required vhenever the while- -

do-loop primitives are generated. Exanples of the changes

’
I R I, W SO

required are shown in Figure 6.

Sample Output From Translator (unedited)
P Sls.whilestart(@03:)
(condition checking primitives) -
P 33s.whilecon (@T01,@04:4) <--- ’4’ is max loop count. '
. Precision of @TOl is
(action primitives) Rissing. -
P 38s.whend (903,004:) sy
> 7
.- L
?' Required Format for Input to CSDE Program =
;ﬁ P 3ls.whilestart(@03,4:) <---Max loop count here. ifﬁ
- . o - - .1
*L (condition checking primitives) -
. L
+ P 33s.whilecon (@T01,004:8) <---Precision of @TO1 -
‘. - .dd.d . --_':‘
(action primitives) o
. ‘“i
38s.vhend (803,@04:) N
Figure 6 Changes Required For ’s.whilestart’ N

42 S

..........................
T PR R N U AN W o WM Lt e e e Lt T Tt
e e e e e Gt T T e e e e
Py

o Te e
>

T T R T T I T I =, (g el S A S e Aol il - el au U eul i st ieedt vl _ad e

available within the priasitive. Consequently, the primitive

realization was constructed to accept the following format: —
s.forcons (COUNT,@8C02,8C04,003,804,120:8,8,8).

The max loop count value also appears in the ‘s.forend’

primitive as generated Dy the Translator. It is not L

required for proper construction of a for-loop and is

ignored. Manual editing of the primitive list output file

vy

from the Translator is required whenever the for-loop I

»
f primitives appear. Othervise a fatal error will result upon ;[
running the CSDE prograns. E;:
i 6. S.whilestart ;".'
: This primitive is wused in conjunction with the i{
E primitives, ‘s.whilecon’ and ‘s.whend’ to construct a while- EE?
‘ do-loop. Its functions are to establish a label for the Ei;
beginning of a while-do-loop and manipulate the max loop 'Q
count using the global variable, ‘reps’. This is similar to .i
the method used in ‘s.forcons’. The CSDL syntax is °“<WHILE> gﬁi
:is WHILE’. Again, there is a problem as to where the max ii?
loop count is placed. ;&
The CSDL syntax currently calls for max loop count ;&
to appear in the ‘s.whilecon’ primitive and not in S
‘s.whilestart’. This is wrong because the condition to be
checked to determine if the while-do-loop should be ;l'
continued appears as other primitives between ’‘s.whilestart’ ADAS
and ‘s.whilecon’. Thus, these primitives, as well as the :
priaitives appearing between ‘s.whilecon’ and ‘s.whend’. .re ?
41

.....

. PR
.......

| i I i I SR P A Pt mas Ml Sou i Stne T e S RS SR A iR Al e A A e Attt (MR st i ave o v S Cal SE S M A A e S R

is the factor by which the execution time of each primitive

is multiplied prior to being accumulated by the timing

rnr' o
; L. L e

analyzer. It is noraally set equal to 1 but in the case of
a loop it is set equal to the value of max loop count

aspecified by the designer. Once the ‘s.forend’ primitive is

encountered, the value of ‘reps’ is reset to the value it
had upon entering the for-loop. Previous values of ‘reps’
are saved and recovered through the use of a stack inside
the CSDE progranm. This stack is only used for the global
variable ‘reps’ and manipulated with the statements, ‘calc
push reps’ or ’‘calc pop reps’. This stack arrangement
allows the construction of neated loops.

The format of the realization title line is

slightly different for the primitive format generated by the

Tranalator because of an error related to the positioning of

the value for =max loop count. Currently the Translator

& output appears as follows:

Fi s.forcons (COUNT,@C02,@C04,@03,904:8,8,8,120).

* The criteria section of the title line (to the right of the

% colon) should contain only values corresponding to the
variables in the argument section (to the left of the

colon). In this case there are 3 variables and 2 labels in

i. the argument section and as such there should only be 3

values in the criteris section. The value, 120, is the

specified max 1loop count and should be in the argument

section instead of the criteria section in order to be

40

...

4. S.equivalenc and S.implicate

Both of these primitives perform logical comparisons
* between two expressions in the same manner as ’‘s.or’ or
‘s.and’. The inputs to them are the boolean results of 2
i expressions, true (ff hex) or false (00 hex). The output is
» a boolean result according to the specified truth table
[Ref. 16: p. 81ll. Truth tables for both primitives can be
: found in Appendix E in the comment lines for each primitive.
! The CSDL ayntax for ‘s.equivalenc’ is ’‘<EXPRESSION> ::=
CEXPRESSION> == <EXP_2>’ and for ’‘s.implicate’ is ‘<EXP_2>
ﬁ t:= CEXP_2> => <EXP_3>’.
S. S.forcons

This primitive marka the top of a for-loop and wvas

already included in Smith’s Realization Volume under the
primitive name ‘s.forstart’. Statements have been added to
properly account for changes in execution time that arise
depending on how many times a for-loop ia executed. Also,

the arrangement of arguments within the title line is

X slightly different from the format output from the
* Translator because of the rules by which primitive
realizations muat be constructed. The CSDL syntax is ‘<FOR

3 HEAD> ::= FOR #ID» FROM <EXPRESSION> TO <EXPRESSION> : <MAX

LOOP COUNT>’.
To accurately keep track of total execution time
during loop operations Ross incorporated the global

variable, ‘reps’, in the CSDE program. The value of ‘reps’

39

.........................
................................

- M :
T

MRS ES Jaaberene

A . - S LU ~ WIRORA e iaes

M et M AR A R T i I I o A = — YT ¥

Translator error file. These files were discuased in
Chapter 2. It was important to view the Translator error
file before inputting the problem to CSDE because this was
the only way to know if the CSDL program contained any
syntax errors. Any manual changes to the primitive 1list
were made using the EDT editor available on the VAX. Next,
the CSDE progrsm, currently named CLIB, was run to produce a
software listing, a hardware 1listing and a debug file.
Different levels of debugging may be selected from the
initial CLIB menu. The software listing was then downloaded
to the Z2-100 microcomputer, part of the CSDE workstation.
On the 2-100, it was assembled and linked to produce a hex
file. The hex file was downloaded from the Z2-100 to the
Pro-Log where it was finally executed.

As mentioned above, different levels of debugging may be
selected when running the CSDE program. When level O is
selected only the actual error message lines will appear in
the debug file. When level 3 is 86 'cted an extensive
chronological record of CSDE program execution is written to
the debug file. In mosat cases it waa easieast to select
level O and if errors developed, rerun the problem with a
more detailed debug level selected. Another point is that
just because the CSDE program flags errors does not mean
that an unsatisfactory realization has been produced. In

some cases, such &8s with ‘es.fixedwait’, only non fatal

S3

LI e

i~ e T e e e e e T e T T T e e e "A“#-'..‘.C P A
I TN S P A Y LI AP S I Wl Wl ThIY T W A.}..hlh it mednnd APUI Pl Wy W VI Wiy Do W Ny W DR N SR L)

woe

informative errors are generated. This was mentioned 1in

section III.C.2. -

A A 3
. PR
L D) . .

An actual test program and all related files are

contained in Appendix F. This CSDL problem waas written to

T, L] ;‘v"
LN
TR P

¥
'

test the primitives associated with a while-do loop. =

Referring to the problem, ‘FUNCTION EACHl’ is a contingency

).
-
) -
L
»

which senses an input value, stores it in the variable,
ARGl1’, and sets the boolean variable, “EACY1l’, equal to -1 ;
if ‘ARG1’ is less than or esqual to 2. The boolean variable
is set equal to -1 because -1 decimal is represented by FF
hexadecimal in twos complement form. A boolean true valus -
is defined as FF hex. The net result is that if ‘ARGl’ is
less than or equal to 2 than the contingency is true. The
CONTINGENCY LIST’ aspecifies that if ‘EACH1l’ is true then .
TASK ONLITA’ must be executed. Both the contingency and
task =muat be coapleted within 1600 milliseconds including

any other blocks of code that are executed during the .

remaining portion of the current monitor cycle.

The while-do loop comprises the bulk of “TASK ONLITA’.
;} The net result of the while-do loop is that the values 1, 3,
S, and 7 will be output at 250 ms intervalas and can be

viewed 1in binary form on the 8 leds of the Pro-log

keyboard/display card. This display will only occur if the
contingency is true, i.e. both keyboard/display card rocker

switches are off or only the right awitch is on.

54 N

...
...

The second contingency taesk pair, ‘EACHS’ and ‘OFFLT’,
causes a8 3500 ms delay with all leds off for any of the four el
possible input values. See the discussion of ’‘s.sensecond’ ;f?‘
in section III.C.1. for more information on the four
possible input values. T

Following the CSDL problem are the three Translator :
output listings used by the CSDE program. They are the
primitive 1list, application timing file and symbol table. ;;i;
The primitive list as shown in Appendix F, was modified from
the original Translator output to position the value for max
loop count as the second argument in the primitive nﬁ?i
‘s.whilestart’. See Figure 6 in section III.C.6 for an
illustration of this change.

Finally, the software, hardware and debug listings are iﬁi
displayed exactly as produced from the CSDE progranm. The
software listing 1isa ready to be assembled and the debug
listing was generated in debug level O, The errors
contained therein are for information only and relate to the .3%;

missing colons in the ‘s.fixedwait’ primitives.

B. TRANSLATOR ERRORS ! .;
During the course of primitive testing, some errors were

discovered in the format of primitives generated by the

Translator. Other Trenaslator errors relate to the manner in %i%

which it handles numbers and deteraineas the precision of

=1

...

- — ——r e
LB a0 At a S S At Ml Jame S Suc S M e g S St o e Ao aste S ISt i Sl St A Rl S e s B S I A I AL A At A i

internally generated variables. All Translator errors are
summarized in Appendix G.

Noast format errors relate to the placement of values for
loop counts or time within the primitive title lines. These
have been documented in Chapter I11.C. and apply to the
following primitives: ’s.forcons’, ‘’s.whilestart’,
‘s.whilecon’’, ‘s.stboolwait’, ‘s.boolwait’, and
‘s.waitleast’. The primitive realization for ’‘s.waitleast’
also contains many more arguments than in the Translator
verasion and nmodification to its syntax in CSDL 1ia also
required. This is detailed in section III.C.9. A f£final
format error is that the primitive, ‘s.fixedwait’, is

generated without the required colon after the value for

time. The functional mapper module of the CSDE program has e
been modified to accommodate this error. When encountered

by the CSDE program, error messages are generated and then :i3

the required colon is inserted in the correct location. All ;ﬁj
errors except for ‘s.fixedwait’ require manual correction by é%
editing the primitive list prior to running the CSDE ;ii
progranm. 55]

Although CSDL syntax rules allow time units as small as
nanoseconds, the Translator correctly generates only time
values accurate to the next lowest millisecond. For ;ii
example, if a CSDL problem contained the statement, ‘WAIT %01
600 US’, the Translator would generate the primitive,

‘s.fixedwait (O)°’, All time values generated by the i F

56

.'l.'."
st t s,
ABIR AP SV]

.................................
B S T UL IR TS Nl

Ny

— R e i S A e oA S il Jrel Jpu Gl pee -ga g e S Beiiatt-Siand S 2hel iadh Bl Sl ieadh Mgl il Siid ——

Translator are in milliseconds and any primitive
realizations that take input values of time must be written
accordingly. Milliseconds are excellent time units when
long delays are required, especially for demonstration
programs that utilize the leds on the Pro-log
keyboard/display board. However, for more flexibility in
posaible controller designa, the shorter time units should
be available for use. This is because some applications,
for example a jet engine start controller, might require
more stringent response times.

There are two other problems relating to the
Translator’s handling of numbers in general. One is that it
only recognizes integers. For example, if a CSDL problem
segment was written as ‘COUNT:=COUNT+10.6°, the number,
10.6, would be passed to the primitive list as simply 10,
The asecond problem involves the criteria used to create 16
bit constants instead of 8 bit constants. For exaaple, if a
CSDL problem segment was written as ’‘COUNT:=128°, the
primitive, ‘a.cons (@C01,128:8)° would appear in the
primitive list. If the value was 129 instead of 128, the
primitive, ‘s.cons (9C01,129:16)°’ would appear. This is
wrong because the largest positive twos complement number
that can be specified in an 8 bit word is 127. Therefore

the decision point for specifying 8 bit or 16 bit constants

should be between 127 and 128, not 128 and 129.

P
'

4
-]
- .'.l
)

e
X
L

AW,

P
NP]
;s

W)

CRAR fea 4 W'—v:v.x‘:,-_?"*"

«
Lo

PR

A

’, i" o ".
PR W R R

..................................

One other error relating to the precision of variables
occurs when dealing with primitives that use boolean
variables. For example, the primitive, ‘s.eq’, has three
arguments and compares the values of the second and third
arguments for equality. Upon completion of the equality
test, the first argument is set equal to FF hex for true or
00 hex for false. Since the first argument is always used

as a boolean variable, an 8 bit precision will always be

sufficient even if the other arguments call for 16 bit f?i
precision. All relational primitive realizations were .
written assuming the booclean argument will always have an 8 ;hj
bit precision. Unfortunately, the Translator generates a 16

bit boolean argument whenever either of the other arguments o

Example Relational Primitive (unedited) ;;*
-
P 30s.eq (T@11,ARG1,CONST:16,16,16) ?}]
i_ 16 bit variable generated v
by Translator to pass b |
boolean result; only needs =
to have 8 bit precision 3
Required Format for Input to CSDE Program :
P 30s.eq (T@01,ARG1,CONST:8,16,16) =
Figure 10 Changes Required for Relational Primitives]
has a 16 bit precision. This results in criteria check -
. .:.f
errors from the CSDE program whenever large numbers f};
=g
B

=1-)

T Y T e T Y W T W W T e e T T e (EA i S A e Sam SUER S S e St e R T —~ ._._.__-1

requiring 16 bit precision are compared within a relational

primitive. Primitive lists containing such errors must Dbe L;Li
corrected before running the CSDE program. An example is gfiﬁ

contained in Figure 10.

The final Translstor error requiring correction is that éli;
if variables are declared as type DUPLEX, any subsequent use
of those variables in a “SENSE ’, or 'ISSUE’ statement
results in syntax error messages. This is wrong becsuse the L?ii
whole concept of DUPLEX type variables involves their use
for either input or output. This was discusaed in section

I11.C.1.

C. THE CSDE PROGRAM

As mentioned in Chapter I, the CSDE program underwent
revision during the course of research for this thesis.
Most changes are transparent to the user and involved
streamlining the CSDE program source code to improve
efficiency. Additional improvements over the NEWCSDL
version used by Smith and Riley include the addition of a
user friendly menu and elimination of the need for the
input file, MONTER.DAT. This file contained the primitives
required to generate the monitor section of a controller
prograna. The monitor primitives were already contained in
the Realization Volume and thus, MONTER.DAT was really not

needed.

59

...
.............

The revised CSDE program, CLIB, was exercised frequently

wvhile developing and testing new primitive realizations.
Many errors that had been introduced during its revision ’ ng
were identified and corrected as teating progressed. The
importance of good communication bestween the user (me) and - |

softwvare maintenance personnel (Mr. Lukas) was made very

R
PO TP SEUS

clear. Despite delays due to errors in CLIB, testing for
this thesis could not have been completed without it. The ;fj
CSDE workstation also proved invaluable in reducing testing
time per priasitive compared to the methods used by Smith. %}!

Realization testing and debugging CLIB uncovered an &“'
isportant idiosyncrasy of CSDE. Specifically, the input
file containing the liast of global variables, usually named Elﬂ
GLOBALS.DAT, has a strict format. Certain positions within - —
the globals file are reserved for global variables used
internally by CLIB. If a new global variable used within a fﬂ
primitive realization is accidentally placed in one of these i;q
‘hard wired’ positions unpredictable errors will be
generated. The current global variable file contains sonme
global variables that are not found in the Revised 2-80 S
Realization Volunme. These variables were added by Saith .
because they were used in some of his primitive realizations .
from the original Z2-80 Realization Volure. Since these
primitives have been deleted from the Revised 2-80 Lo
Realization Volume, some global variables added by Smith

serve no function as far as primitives are concerned.

80

B T TR P
DA R IR
afafatatatat.aaal

However, because of their position in GLOBALS.DAT they might
atill be used internally by CLIB. Thus, global variables
not found in the Revised Realization Volume have been
retained to insure that CLIB runs correctly. If any new
global variables are added in the future they should be
added at the bottom of the file. Also, the number at the
top of the file, indicating the total number of global
variables, should be adjusted accordingly. Figure 11

displays the contents of the current global variable file.

RO
;}fd
Pt
o ’.:‘.':3
U
oy
61 :._::._-':.1
BACR
.ffq
| S

......

Global Variable File

AN i Yt

............

Contents of
Applicable Notes

022
arnd O,
bdos S.
chips O.
clock O.
initlko.
reps 1.
natodeO.
natodpO.
ndtoael.
ndtoapO.
ninouto.
nkey O.
nled -1,
nodgt O.
norom O,
nrockroO.
rasptro.
romptro.
scrtchl.
slot O.
keybrdo.
tablcko.

-
w

. .
o T]

-

% W % % % 9 W W Vv W W WY W e B w

VO AUORDOWVWOWWOWWWUW &N

WOWWWWONNNNMNNNNNNNA ANN-

-

Note Explanations

1 -~ Available for use if initialization
primitives are added. See Figure 9.

2 -- Not used in Revised Z2-80 Realization Volunme.

3 -- Added by Smith, used in original 2-80
Realization Volunme.

4 -- Used internally by the CSDE program, CLIB.
S -- Used in Revised Z2-80 Realization Volune.

6 -- Known ‘hard wired’ position used by CLIB.

Figure 11 Contents of Global Variable File

62

.......................
..................
.................................

-

WP R SRy

yo
S AP AR R
S poa o

v

t
¢

R I
R

i, S R '
[SR SRR NS NEN

—v—w A —— (R I A PUBASE IR A T i “Yiie Jite Sow RN B AE At Abee A dbee 4 T T

V. CONCLUSIONS

The goals for this thesis have besen accomplished. All
but a few discrepancies have been resolved between the
Translator and the Z2-80 Realization Volume. Numeroua test
probleas have been run through the entire CSDE aystem, from
CSDL problem statement to operating program on the Pro-log
microcomputer. These test problems, as implemented on the
Pro-log, can be considered true controller realizations
since changes in input values result in different output
values.

More complex problems should be demonstrated in the
future. This will require the addition of more complex I1/0
hardware with accompanying modification to the I/0 primitive
realizations. 1f, for example, Riley’s jet engine
controller were to be demonstrated, a means would also be
needed of simulating the various parameters to be sensed.
An arrey of potentiometers connected to analog to digital
convertera might be utilized for this purpose. Similarly,
outputs from the controller would need to be displayed
differently than the current method using leds. Complex

problems might require more memory than the currently

available 16k RAN.

)

The Translator errors discussed in chapter IV should be

N

corrected. This would result in complete compatibility

63

et .
e
AR
P S BN

...

Eiad- St Sl Al st e S adt A bl S Bt el andl-Sadic Sadiy

between component parts of CSDE and would eliminate the need
for manual nmodification of intermediate primitive lists.
Another modification to the Translator might be to improve
the clarity of its error messages when CSDL syntax errors
are encountered. Currently, these messages are extremely

difficult to understand since they only point out the

location of a syntax error within a CSDL probleam. Until a
asyntax directed editor or language manual is developed for ; ;
CSDL, the error detection facility of the Translator is the
only aid available for writing correct CSDL problesms.

This thesis research was primarily an exercise in -
softwvare maintenance. The problems encountered and effort lﬁf

expended to solve those problems were invaluable in

demonstrating why software maintenance requires such large e
proportions of government and industry data processing . Siﬂ
resources. For example, the concept of continuity between Eﬁg
developrent personnel became quite clear as many questions iih
arose concerning previous researchers work, Had personnel ~33

such as Carson, Smith, and Riley been avajilable for
consultation, nuch tinme probably could have been saved.
The importance of good communication between users and
maintenance personnel was proven as the revised CSDE progranm
was successfully debugged. This also 1{llustrated the :?ﬂ
difficulties that arise when two components of a system that
affect each other undergo maintenance at the same time.

Errors in the revised CSDE program caused some unanticipated

...-
VRS AN

64

MR SR At ER At i M et Sl it SR Sre e St XAl el S RS avah N vl Uh el ML ek~ SR

e e e e T
T
Al e o A e

delays in the testing of new primitive realizations.
Finally, good documentation is mandatory for a successful

softvare maintenance project.

|- ot e T
ch e e
. PR A RN

65

‘~*.'-".'-. PO . - P . PR - Sl L e . -t Lo .- - . . a® e m T
T A A A L A e e e T T Cv e T S O T TR S Sl S
‘Ca’mt et a*a'aMatate'a"n"a ‘e _ r a"as " a et 24 ... PO S Y IR AR SR SN L WL AP T Sl SO A Sl WU N SO Wl Vi Sl

TN LN T Y W e T W

APPENDIX A

PRIMITIVES AVAILABLE FROM TRANSLATOR

This appendix contains a list of all primititives that
can be produced by Carson’s tranalator. The corresponding

production number can be used to find the Backus-Naur syntax

structure in the listing of the CSDL language in Carson’s

thesis (Ref 8:
primitive is also supplied.

BRIMITIVE = PROD NUMBER

ADD

sSusB

MULT
DIVIDE

LT

LE

EQ

GT

GE

NE

NOT*

AND

OR
INPLICATE
EQUIVALENC
LOC

JHPF
WHEND

WHILECON

47-541.

23
21
23
23
25
25
25
235
25
25
22
27
29
31
33
37
38
39

40

A brief phrase deacribing each

MEANING

Addition

Subtracfion

Multiply

Divide

Less Than

Less Than or Equal To
Equal To

Greater Than

Greater Than of Equal To
Not Equal To

Boolean Not

Boolean And

Boolean Or

Logical Implication
Logical Equivalence
Location in IF THEN
Jump If False

End of WHILE Construct

Test Portion of WHILE Construct

66

------- DU WA W TP VONE RPN WA R WA SPAE ST ST SN SO P P

-g~ .4
. -"
s q
T
L I

ses This primitive is called by ’‘s.stboolwait’. -
wses The Translator produces 2 versions of ‘s.var’ and both .
are compatible with the Realization Volunae. x
??2? This Translator primitive was not generated E
by Carson’s original CSDL teat program and .
subseqent attempts to generate it proved > -
unsuccesaful.
. 4
e
,ﬁ_
.
L A
. .'-‘ .'.‘
80 RO
o |
!
_ » |
e T e e e e b

s.ne (rslt, argl, arg:0,8,0, 16,0,16:)

s. ni (13)
s.not {rslt,arg1:0,8,0,8:)
s.or (relt, argl, arg2:0,8,0,8,0,8:)

5. output port (outnm, tech:0,8:)
S, proc (nam :3)
s.sensecond (innam:0,8:)
s.setise (clktim:0,32768;)

. stboolwait (top, maxtmss)

8. sub (rslt,argl,arge:0,8,0,8,0,8:)

s sub (rslt,argl,arge:0, 16,0, 16,0,16:)
s, tabacep? (::)%

s.tabend (13 ¥

s.tabent (fnc,task ::)¥
s.var (name30,8:)
s.var (name:0,16:)

s.waitleast (indx,upr,top, bot,per,max:0,8,0,8:)
s, whend (top,bots:)}
s.whilecon (rsit,bot:0,8:)

s.whilestart (top, Ipcts:)

s.ni
s.not

s.or

s, outputport
S. proc
. sensecond

s.stbooluait

s.sub

s, var
s.var
s.maitleast
s. whend

s. whilecon

s.whilestart

7"

(@701, 8701, 0T02:8,8, 8)
(MENU, TTL:8)
(KEYINMAIN:)

(KEYFLE:1)

(@09:)

(€701, 8001, 0002:8, 8, 8}

(KEVINMAIN:8, 0) 3%
(0701:8) #444

(8701, 8:500)
(017,018:)

(701, #1814)

(@17:)

These primitives are used by the CSDE system to
construct the monitor section of the generated

controller progranm.

Although they must be present in

the Realization Volume, they are not produced by the
Translator because the monitor strategy is not
controlled by the designer who writes the CSDL

problenm.

s» These primitives were added to the Realization Volume
for completenesa but are not useable aa currently
isplemented.

-

...................

s.equivalenc(rsit, argl, arge:0,8,0,8,0,8:) s.equivalenc (8701, 0701,8702:8,8,8)
s.exitproc (nam 33) s.exitproc (KEYINMAIN:) "‘*“
s. fixedwait (time:0,1275:) s.fixedwait (10)
s.forcons (indx, 1wr, upr, slab, elab, val:0,8,0,8,0,8:) s. forcons (COUNT, 8001, 8C05, 811, 812:8, 8, 8, 4) i
s.forend (indx,slab,elab:0,8:) s. forend (COUNT, 011, 01218, 4 R
g
s (rslt, argl,arg2:0,8,0,8,0,8:) s.ge (6701, AC3, 6C02:8, 8, 8) f
sqe (rslt, arg!, arg210,8,0, 16,0, 16:) if
st (ralt, argl, arg2:0,8,0,8,0,8:) s.qt (0701, ACA, €C02:8, 8, 8) fl
sqt (rslt, argl,arg2:0,8,0,16,0,16:) :?

s. inplicate (rslt,arql,arg2:0,8,0,8,0,8:) s.implicate (701, 8701, 0702:8,8,8)
s in (33)I s. in {1800000) - :
s.infoutport (MSGVDT, TTL18) Ef
s.inputport (innam, tech:0,8:) s.inputport (KEYFLS, TTL:0) _1
s, issuevent (outrms0,8:) s. issuavent (MENY:8) | "'""i
s.oef (val,loc 10,8:) 5. Jupf (8701, 801 18) , j;‘
Sle (rslt,argl,ang2:0,8,0,8,0,8:) le (#701, AC2, 000218, 8,8]
sle (rslt, arql, arg2:0,8,0, 16,0, 16:) jﬁ
s. loc (loc 13) s. loc (€01:) .
s.lt (rslt, argl, arg2:0,8,0,8,0,8:) s.lt (€701, AC1, 0C02:8, 8, 8) i
it (rslt, argl, arg210,8,0, 16,0, 161) T
s.min (1)* o

s.monitor (33 ¥

s.mit (rslt, argl, arg2:0,4,0,8,0,8:) s.mult (8701, ACNLM, 8C07:8, 8, 8)
s.mlt (rslt, argl,arg2:0, 16,0,8,0,8:)

s.mit {rslt, aryl,arg2:0, 16,0, 16,0, 16:)

s.m {rsit,argl, arg2:0,8,0,8,0,8:) s.ne (@701, RCO, @C02:8, 8, 8)

78 S

..

APPENDIX D

e d
ST d
COMPARISON OF PRIMITIVES e *

This appendix displays a comparison of the primitives
available from the Revised 2-80 Realization Volume (Appendix
E> and the primitives available from the Translator. S
Primitives from the Revised Volume are in the same format as R
they appear in the index in Appendix E except that the seven -
numeric values following the second column are not shown. e A
Primitives from the Translator are in the same format as they ol

el
appear in the primitive listing that is generated by the ,-_‘-__-'-_.h
Translator when Carson’s CSDL test program (Appendx C) is run BRSRY
through it. Differences in the arrangement of arguments _—
between aome Realization and Translator primitives are due SR

errors in the Translator (summarized in Appendix G). The
primitive, ‘s.in/ocutport’, was not added to the Realization R

Volune. -‘"f'.-‘
5. add (ralt, argl, arg2:0,8,0,8,0,8:) 5. add (6701, 8701, KEYCHAR:8, 8, 8)
5. add (rslt, arg1, arg210, 16,0, 16,0, 16:)
s.and (rslt, argl, arg2:0,8,0,6,0,8:) 5.and (8701, 8701, 870218, 8, 8) :_:
s.assign (var,data:0,8,0,8:) S. 3ssign (KEYINMRIN, €C01:1,8) 4
s.assign (var,datai0, 16,0,161)
s. boolmait (rslt, top, bot:0,8:) s.boolmait (€T01,009, 010:8, 10) f T
scall (namsz) s.call (@LITA) j
5. cons {nam,val, :0,8:) s. cons (€C01,1:8) '..‘A-:%
s.cons (nam,val, 10,16) 1
s.divide (rslt,srgl,arg2:0,8,0,8,0,8:) s.divide (701, 8701, KEYCHAR: 8, 8, 8)]
s.divide (rsit,aryl,arg2:0,16,0,16,0,16:)

s.end (s3)? .41
.09 (relt,argl,arg2:0,8,0,8,0,8:) s.0q (@701, KEYFLS, #C01:8, 1, 8) .
.0 (rslt, argl, arg210,8,0, 16,0, 16:) ;3;331:1.-

77

——————_—vy

S.VARIABLE
S.VARIABLE
S.VARIABLE
S.LOC
S.LO0C
S.LOC
S.LOC
S.LOC
S.LOC
s.LOoC
S.LOC
S.LOC
S.LOC
8.LOC
S.LOC
S.LOC
S.CONS
S.CONS
S.CONS
S.CONS
S.CONS
3.CONS
S.CONS
S.CONS

..............

(NEXTAC:8,0)
(TPOLL:1,0)
(COUNT:8,0)
(@01:)
(@02:)
(@03:)
(@04:)
(003:)
(006:)
(007:)
(008:)
(0132
(@14:)
(@15:)
(@16:)
(@21:)
(@C01:1,8)
(8C02:0,8)
(@C03:2,8)
(@C04:3,8)
(@C05:4,8)
(@C06:30,8)
(@C07:5,8)
(@C08:10,8)

76

VUVUUYUUUOUVUDUUOUYOUOY

>>>

......

139s.mult (@TO1,ACNUN,@C08:8,8,8)
140s.divide (@T01,8TO01 ,KEYCHAR:8,8,8)
141as.a88ign (ACNUM,90T01:8,8)
142a.forend (COUNT,919,820:8,4)
143s.0q (@TO1,ACO,ACNUN:8,8,8)
144s.mpt (0T01,021:8>
145a.asaign (AC0O,8C02:8,8)
146s.1l0oc (@21:)
147a.exitproc (LOGOUT:)
148t .generated for: SYSTENM
149a.cona (9C01,1:8)
150a.cons (9C02,0:8)
151s.conas (@9C03,2:8)
152s.cons (9C04,3:8)
153s.cons (8C05,4:8)
154s.cons (0C06,30:8)
155a.cons (@C07,5:8)
156s.cons (@C08,10:8)
157s.var (@TO01:8)
158s.var (@T02:8)
IADEFL .DAT
1 ¢tKBINPMAIN :NS: 100, o,
2 tKBINPMAIN :MS: 20, o,
3 :KBINPMAIN :MS: 300, o,

SYNFILE.DAT

S. INPUTPORT(KEYFLG,TTL:1)
S. INPUTPORT(KEYCHAR,TTL:8)
S. INPUTPORT(ACNUM,TTL:8)
S.OUTPUTPORT(MENU,TTL:8)
S.QUTPUTPORT (POLL,TTL:8)
S.IN/OUTPORT (MSGVDT,TTL:8)

S.VARIABLE
S.VARIABLE
S.VARIABLE
S.VARIABLE
S.VARIABLE
S.VARIABLE
S.VARIABLE
S.VARIABLE
S.VARIABLE
S.VARIABLE
S.VARIABLE
S.VARIABLE

(KEYINMAIN:8,0)
(MINTAC:8,0)
(MMSGDSPLY:8,0)
(AC0:8,0)
(AC1:8,0)
(AC2:8,0)
(AC3:8,0)
(AC4:8,0)
C(INTPERIOD:8,0)
(MSGO:8,0)
(MSG1:8,0)
(MSG2:8,0)

75

o,
o,
o,

o,
o,
o,

00O

T
S
=g
._‘--' SER
! h

P 88s.eq (@TO1,MMSGDSPLY ,@C02:8,8,8)

P 89a.boolwait (0T01,809,9010:8,10)

P 90s.exitproc (MSGDSPLY?)

P 9it.generated for: LOGIN REBAARNARRRRBARRRN

P 92s.proc (LOGIN?)

P 93s.assign (ACNUN,@C02:8,8)

P 94s.forcons (COUNT,@C01,@C05,911,@012:8,8,8,4)

P 95a.sensecond (KEYCHAR:8)

P 96a.sub (@TO01,ACNUM,©9C07:8,8,8)

P 97s.assign (ACNUN,8T01:8,8)

P 98s.mult (@TO1,ACNUNM,@C08:8,8,8)

P 99s.add (@T01,8TO1,KEYCHAR:8,8,8)

P 100s.asaign (ACNUNX,9TO01:8,8)

P 10ls.forend (COUNT,@11,012:8,4)

P 102a.eq (@TO1,NEXTAC,©8C02:8,8,8)

P 103a.eq (0TO02,AC0,0C02:8,8,8)

P 104a.and (8T01,0T01,0T02:8,8,8)

P 105a.3mpf (0T01,013:8)

P 106s.asaign (ACO,ACNUN:8,8)

P 107a.l0oc (@132) B

P 108s.eq (@TO1,MEXTAC,@2C01:8,8,8) .

P 109s.eq (@TO02,AC1,8C02:8,8,8) Q%A

P 110a.or (@TO01,0T01,0T02:8,8,8) e

P 111s.3jmpf (06T01,014:8) S

P 112s.assign (AC1,ACNUN:8,8) v

P 113s.l0c (0142) R |

P 114s.eq (@TO1,NEXTAC,@8C03:8,8,8) . .

P 11Ss.eq (@T02,AC2,@C02:8,8,8) e

P 116a.implicate (9T01,@T01,0T02:8,8,8) ij

P 117a.)mpf (8T01,015:8) e

P 118a.assign (AC2,ACNUN:8,8)]

P 119a.loc (@15:) :i;

P 120s.eq (@TO1,NEXTAC,@0C04:8,8,8) .-

P 121s.eq (@T02,AC3,@C02:8,8,8) o

P 122s.equivalenc(@TO0l1,9T01,@T02:8,8,8) e

P 123s.3jmpf (€T01,@16:8) RO

P 124s.assign (AC3,ACNUNM:8,8) N

P 1235s.l0c (@16:2) R

P 126a.whileatart(017:) ;ﬂ

P 127s.eq (@8TO1,ACNUN,©C01:8,8,8) DR

P 128a.whilecon (@T01,818:4)

P 129a.assign (AC4,8C05:8,8) o

P 130s.add (@TO1,ACNUN,@C01:8,8,8) N

P 131s.assign (ACNUN,@TO01:8,8) e

P 132s.vhend (817,09182) -

P 133s.exitproc (LOGIN?:) -j

P 134t.generated for: LOGOUT SRNARsARERRRERAR. s

P 138as.proc (LOGOUT?) o

P 136s.as8ign (ACNUN,9C02:8,8) L

P 137s.forcons (COUNT,@C01,@C05,@19,9020:8,8,8,4) oy

P 138s.sensecond (KEYCHAR:8)) 2,1

74 0

o
S

VUVOVUOVOTVOVIOVOVVTVUVVOV VUV VUUYOVUUUYUD VYUYV UYUUYUYUU DO YUY VYUDODD

37s.sensecond (KEYCHAR:8)

38s.eq (8TO1,KEYCHAR,@C01:8,8,8)
39s.)npf (0TO01,002:8)

40a.assign (MINTAC,@C01:8,8)

41s.l0c (@02:)

428 .fixedwait (10)

43a.exitproc (KBINPMAIN:)

44t .generatad for: MANUAL RRRRARANRRNR NN RPN
45a .proc (MANUAL?)

468 .ne (0TO01,AC0,0C02:8,8,8)
47a.Impf (0T01,003:8)

488 .a8a8ign (POLL ,0C02:8,8)
49a.issuevent (POLL:8)

S0a.loc (003:)

Slis.1lt (@TO01,AC1,@C02:8,8,8)
S2a.)mpf (8T01,804:8)

S53a.asaign (POLL,9C01:8,8)
S4a.issuevent (POLL:8)

3S5s.1l0c (@04:)

S56s.le (8TO01,AC2,8C02:8,8,8)
S57a.)mpf (0TO01,005:8)

S8s.assign (POLL,@C03:8,8)
59s.issuevent (POLL:8)

60s.loc (@03:)

6ls.ge (@TO01,AC3,08C02:8,8,8)
62s.3mpf (0T01,@06:8)

63s.a88ign (POLL ,@C04:8,8)
64s.issuevent (POLL:8)

639s.l0c (@062

66a.gt (0T01,AC4,0C02:8,8,8)
67s.)mpf (8T01,0807:8)

68sa.as88ign (POLL,0C05:8,8)
69a.issuevent (POLL:8)

70a.loc (@073)

71a.exitproc (MANUAL:)

72t .generated for: TPOLL ARNBANRRANRRARRRRRN
73a.proc (TPOLL:?)

74s.eq (@TO01,INTPERIOD,@C06:8,8,8)
75s. Jmpft (@T01,0808:8)

76s.1in (1800000)

77s.as8ign (TPOLL,@C01:1,8)

78a.ni4 s

79a.loc (@08:)

80s.exitproc (TPOLL:)

81t.generated for: MSGDSPLY fRANEANRNNRRRNNNR
82s.proc (MSGDSPLY?)

83s. call (KBINPNAINZ)

84a.assign (MNSGDSPLY,@C02:8,8)
8%s.add (@TO1,MMSGDSPLY,@C01:8,8,8)
86s.waitleast (@TO01,8:500)
87a.stboolwait(@09:)

............

73

................
.................
......

....................

. o e e 2 - Beawt - Srauc i e se dadue S Sose b e ene ehe S e AR ea i@n IRae e e Sa Ryes Shath I Aol -t S-Sk ot i Shath Ahdut St lautt Mt Bagl gt il Al e daash
T I At S A " PARCIM s g . Kt . - A T A e R T . ST .

APPENDIX C

PRINITIVE LIST, APPLICATION TIMING TABLE AND SYMBOL
TABLE PRODUCED BY TRANSLATOR FROM CSDL TEST PROGRANM

This eppendix contains the unedited output froa the
Translator that resulta from the CSDL test program in
Appendix B. The first item is the primitive list that comes
out in the file PRIMFILE.DAT, the second item is the
application timing table that comes ocut in the file
IADEFL.DAT, and the laat item is the symbol table that comes
out in the file, SYMFILE.DAT.

PRIMFILE.DAT

P 28 .MAIN (:3)
P 3d:FIRST H 1: 1:
P 4s.inputport (KEYFLG,TTL:1)
P Ss.inputport (KEYCHAR,TTL:8)
P 6s.inputport (ACNUM,TTL:8)
P 7s.outputport (MENU,TTL:8)
P 8a.outputport (POLL,TTL:8)
P 9s.in/ocutport (NSGVDT,TTL:8)
P 10a.var (KEYINMAIN:8,0)
P 1lis.var (MINTAC:8,0)
P 12a.var (MMSGDSPLY:8,0)
P 13s.var (ACO0:8,0)
P 14a.var (ACl1:8,0)
P 15s.var (AC2:8,0)
P 16s.var (AC3:8,0)
P 17s.var (AC4:8,0)
P 18s.var (INTPERIOD:8,0)
P 19sa.ver (MSG0:8,0)
P 20s.var (NSG1:8,0)
P 21s.ver (NSG2:8,0)
P 22s.var (NEXTAC:8,0)
P 23s.var (TPOLL:1,0)
P 24a.var (COUNT:8,0)
P 25t.generated for: KEYINMAIN fRABRENNERRRRRNNE
P 26s.proc (KEYINNMAIN?)
P 27s.sensecond (KEYFLG:1)
P 28s.eq (@TO1,KEYFLG,@8C01:8,1,8)
P 29s.)mpf (0T01,801:8)
P 30s.assign (KEYINMAIN,@®CO01:1,8)
P 3i1s.loc (@01:)
P 32s.exitproc (KEYINMAIN:)
P 33t.genersted for: KBINPMAIN NENABANNBRANRRNRN
P 34s.proc (KBINPMAIN?)
P 3%s.assign (MENU,@C02:8,8)
P 36s.issuevent (MENU:8)

72

- < “
..........................
................

.....

..........

‘,-wl“-‘ -------- R Mt "Bt S B 4 w o Y ML S “»“ﬁ el T "'Tff-‘."’
_
. 3
A
IF NEXTAC=0 AND ACO=0 THEN ACO:=ACNUM; END IF;
IF NEXTAC=1 OR AC1s0 THEN AC1:=ACNUM;: END IF;
IF NEXTAC=2 => AC2=0 THEN AC2:=ACNUM; END IF;
IF NEXTACs=3 == AC3=0 THEN AC3:=ACNUM; END IF;
WHILE ACNUM = 1 : 4 DO
AC4 := 4;
ACNUN := ACNUM + 1:;
END WHILE;
END LOGIN: »
L]
TASK LOGOUT: SR
ACNUN:=0; »
FOR COUNT FROM 1 TO 4:4 DO]
SENSE (KEYCHAR): RS
ACNUMN: = (ACNUM=10) /KEYCHAR; SO
END FOR: i
IF ACO=ACNUM THEN ACO:=0; END IF; S
END LOGOUT: . ..
CONTINGENCY LIST
WHEN KEYINMAIN : 100 MS DO KBINPMAIN;
EVERY 20MS DO KBINPMAIN:
AT 300MS DO KBINPMAIN:
END
»
badl ‘._.:'_1
S
-:}_:?_::j
"4
RNy
L.
RN
oo
! -
|
....... J

PROCEDURES

FUNCTION KEYINMAIN:

BINARY,1;

SENSE (KEYFLG);

IF KEYFLG=1 THEN KEYINMAIN:=1; END IF;
END KEYINMAIN;

TASK KBINPNMAIN;
MENU:=0; ISSUE (MENU);
SENSE (KEYCHAR);
IF KEYCHAR=1 THEN MINTAC :=1; END IF;
WAIT 10MS;

END KBINPMAIN: o |
4

TASK MANUAL:; T
IF ACO/=0 THEN POLL:=0; ISSUE (POLL); END IF: ;3;;?

IF AC1<0O THEN POLL:=1; ISSUE (POLL); END IF; [I

IF AC2<=0 THEN POLL:=2; ISSUE (POLL): END IF;]

IF AC3>=0 THEN POLL:=3; ISSUE (POLL); END IF: el

IF AC4>0 THEN POLL:=4; ISSUE (POLL); END IF; RN

END MANUAL:;

FUNCTION TPOLL:
BINARY,1;
IF INTPERIOD=30 THEN IN 30 M DO TPOLL:=1; END IN;
END IF;

END TPOLL;

.
L S
2l e

TASK MSGDSPLY; B
KBINPMAIN; e
MMSGDSPLY:=0;
WAIT MMSGDSPLY+1: SOOMS; °
WAIT UNTIL MMSGDSPLY = O: 10MS;]
END MSGDSPLY;

TASK LOGIN;
ACNUN:=0;
FOR COUNT FROM 1 TO 4:4 DO
SENSE (KEYCHAR);
ACNUM:=ACNUM-S;
ACNUN:=(ACNUM»10) +KEYCHAR;
END FOR;

70

...
..
.......

APPENDIX B
CSDL TEST PROGRAM

This appendix contains Carson’s CSDL teat prograa to
exercise the Translator to produce all possible primitives.
As originally written, it did not contain the CSDL
structures to produce the primitives, ‘s.sudb’, ‘s.not’,
‘s.call’, and ’‘s.waitleast’. Structures have been added to
produce all except ‘s.not’. Alsoco, the atructure, DO MANUAL
4:’, originally found in the contingency liat, caused the
Tranalator to produce an error message even though it
appeared to be correct according to CSDL. Thias structure
was deleted. The resulting primitive list and application
timaing table are contained in Appendix C.

DESIGNER : "HILL CARSON/ MODIFIED BY BOB VOGEL"
DATE : "05-31-84/02-20-85"
PROJECT :“TEST PROGRAM TO EXERCISE TRANSLATOR"

DESIGN CRITERIA
METRIC FIRST;
VOLUMES 1:;
MONITORS 1;

ENVIRONMENT

INPUT:KEYFLG,1,TTL; KEYCHAR,8,TTL;
ACNUN,8,TTL;
END INPUT;

OUTPUT: MENU,8,TTL;POLL,8,TTL; END OUTPUT;
DUPLEX MSGVDT,8,TTL; END DUPLEX;

ARITHNMETIC: KEYINMAIN,8: MINTAC,8; MMSGDSPLY,8;
ACO,8; AC1,8; AC2,8; AC3,8; AC4,8;
INTPERIOD,8: MSGO,8:

NSG1,8; MSG2,8:;
NEXTAC,8; TPOLL,1; COUNT,8:

END ARITHMETIC:

69

..

PP I L

1
'
.

L
f
’

B s Py
: i

. ‘l ‘I v' 'r'l'l‘l
L SRR] -
L A
* 3 LI B At]
S, TN

Fac i it Aten A ARCiien. Sttt Snte e Jee S A koo A WM She BPvn A e i g e T

generate a ‘NOT’ primitive, attempts to do so were
unsuccsasful.

Mg aaon e ag e oo e

Ry
w3
.
|

Ty Re——

"-', “-!. e

vl
2

e
F -
|

68

. -t e . DI L. . R e ST . . LT .. L . R
T TS A e P T T P T TP L L P EURAE T IR B} S et e ALt et e - « .
R P T I I F i A N IR i T A R T P S IS L N S ST S ST L P e UL I PR N - ~ ¢
WP TIPS AP RPN TP ST AL P WO S PR P S A R WU S G vl W i W i WE R Ry W W R g W P e T P e S P, P - ek

»»»»» L un e o s iags A Dt e e B A A e PR B i A iente bt Jen St L JMEECIL S e s Sae oI re Jren Jeme Se e it o/un M Smn 2o 2ad -t ocii-ane -niae]

WHILESTART 41 Beginning of WHILE Consatruct

FOREND 42 End of FOR LOOP u

)
FORCONS 43 Condition Tested in FOR LOOP 8
CALL 44 Generate a Pocedure Call ;
ASSIGN 49 Assignment Statement S
SENSECOND S0 Sensae a Condition for Data Input
ISSUEVENT 51 Data OQutput
t NI 61 End of IN Construct(Timed Block) :
IN 62 Beginning of IN Construct
g FIXEDWAIT 63 Timed Software Delay
WAITLEAST 64 Minimum Wait g
BOOLWAIT 65 Body of Boolean Wait Constuct ‘5
STBOOLWAIT 66 Wait Until (Start of Boolean E
Wait Conatruct) .
INPUTPORT 86 Input Specification -
g OUTPUTPORT 87 Output Specification !
. IN/OUTPORT 94 Duplex (input or output) Spec
F VAR 105 Variable Assignment ;
g EXITPROC 146 Marks Exit of Procedure, :
[Function, or Task
? PROC 145 Marks Beginning of Procedure,
+ Function, or Taak -
! SYSTEN 190 Generates System Title
& @ 102 Generated by Translator as
Location Asaignment Place .
K‘ Holders -
CONS 190 Constant

Although the Translator is supposed to be able to

67

.................

T WY TV TN CaANC e adr Sl e e it SN S St A R A it - S IR PR RIS St S

APPENDIX E
REVISED Z-80 REALIZATION VOLUME
This appendix displays the revised Z2-80 Realization

Volume. It contains primitives retained from Smith’s
original Z2-80 Volume plus newly constructed primitives.

v0000 280 cpu : clpper=0.25 : mendly=0.25 : moncst=10:
v047eh. cardcage (:: , , ,0,0,872,876)

v1005h. clock (s2 4 , »0,0,1005,1028)

vi02%. keydisplay(:: , , ,6,8,1029,1048)

vO87th.memory (3@, , ,2,3,877,897)

v0847h. processor (:: , , ,2,3,847,871)

v0B98h. tcardcage (:: , , ,0,0,898,904)

vi228h, uart (::, 4 0,0, 1228, 1242)

vi206s, call {nam 1::3,17,5,7,0, 1206, 1213)

v0354s. add (rslt,argl,arge:0,8,0, 8, 0, 8:23, 78, 26, 14, 0, 354, 368)
v0353s. add {rslt,argl, arg2:0, 16,0, 16,0, 16:31, 126, 37, 18, 0, 553, 571)
v0110s. and {rslt,argl,arge:0,8,0, 8, 0, 8: 11,47, 14, 10, 0, 110, 120)

v0572s.assign (var,data:0,8,0,8:6, 26,8, 7,0,572,579)

v0380s. assign (var,data:0, 16,0, 16:6, 32, 10, 7, 0, 580, 587)

v1182s. boolwait (rslt,top, bot:0,8:22,93, 26, 23,0, 1182, 1205)

v0396s. cons (nam, val, :0,8:1,0,0,6, 0,596, 602)

v0677s, cons (nam,val, :0,16:2,0,0,6,0,677,683)

v0%03s.divide (rslt,argl,arg2:0,8,0,8, 0, 8:55, 504, 129, 41, 0, 305, 946)
vO34Ts.divice (rsit,argl,arg2:0,16,0, 16,0, 16:80, 1465, 376,57, 0, 947, 1004)

v0700s. end {213, 10, 3, 8, 10,700, 710)
v02ehs. &g (rslt,argl, arge:0,8,0,8,0,8:16,70, 20, 13, 0, 228, 24!)
vO4éls, eq {rslt,argl,arge:0,8,0, 16,0, 16118, 91,26, 13,0, 441, 454)

v0148s. equivalenc(rsit, argl, arg2:0, 8, 0, 8,0, 8:12, 51, 15, 17,0, 148, 165)

v0670s. exitproc (nam ::1,10,3,6, 0,670, 676)

vi049s. fixedmait (time:0,1273:15,-5, 18,6, 0, 1049, 1068)

v039s. forcons (indx, 1w, upr, slab, elab, val:0, 8, 0, 8, 0, 8:17, 70, 21,6, 0, 396, 413)
v0313s. forend {indx,slab,elab:0,8:7,27,8, 3,0, 315, 324)

v0286s. ge (rslt,aryl,arg:0, 8,0, 8, 0, 8: 42, 108, 31,28, 0, 286, 314)
vOhlés, ge {rslt,argl,arg2:0, 8,0, 16,0, 16:46, 118, 34,26, 0, 414, 440)
v0080s, gt (rslt,argl,arg:0,8,0, 8, 0, 8:45, 118, 34,29, 0, 80, 109)
v0482s. gt {rslt,argl, arg2:0, 8,0, 16,0, 16:46, 118, 34,26, 0, 482, 508}
v0166s. implicate (rslt,argl,arge:0,8,0,8,0, 8:14,57, 17, 16,0, 166, 182}
vi2lés. in {ts 4 4 +9,0,1214,1223)

v1104s. inputport (innam,tech:0,8:0,0,0,12,12,1104,1125)
v1069s. issuevent (outrm:0,8:5,24,7,8,0, 1069, 1077)
v07i1s, jupf {val,loc :0,8: 9,30,8,8,0,711,719)

v0325s. le (rslt,argl, arg2:0,8,0,R 0,8:42, 108, 31,28, 0, 325, 353)
vOASSs, le {rslt,argl, arg:0,8,0, 16,0, 16:46, 118, 24, 26, 0, 435, 481)
v0693s. loc {loc ::1,4,1,6,0,693,699)

v0242s, It (relt,argl,arg2:0,8, 0, 8, 0, 8:43, 118, 34,29, 0, 242, 271!

=

............. . - - . - ~ et . B . N - - ~
. - R S S T L L N R | P e R T Y P . -
e . ol PR VPRSP WG W o s WOl wog - I Py WP S P R JR T VO NPT, VLS. S I S U S SIS 2P Y

I
DR I A
v

L

DR DAL AC LN A SR SR N At N i i Sa A S N T e Y W T YUY Y Yy v v~y

v0369s. 1t (rslt,argl,arg2:0,8,0, 16,0, 16:46, 131, 38, 26, 0, 369, 395)
v0309s. main (2:7,24,7,21,23, 509, 52)

vW720s. monitor (:11,4,1,7,0,720,727)

v0735s. mult {rslt, argl, arg2:0, 8,0, 8,0, 8:35, 528, 138, 22, 0, 735, 757)
v0758s. mult (rslt, argl, arg2:0, 16,0, 8, 0, 8:34,527, 138, 21, 0, 758, T79)
v0780s, m1t (rslt,argl,arg2:0, 16,0, 16,0, 16:39, 1105, 289, 22, 0, 780, 802)

v0272s, e (rslt,argl, arg2:0, 8,0, 8, 0, 8: 16, 71, 20, 13, 0, 272, 285)
v0833s. ne (rslt,argl, arg2:0, 8,0, 16,0, 16:18, 91, 26, 13, 0, 833, 846)
vi224s. ni (22, , 43,0, 1224, 1227}

v0219s. not {rslt, argl:0, 8,0, 8:7, 30,9, 8, 0,219, 227)

v0069s. or (rslt,argl, arg2:0,8,0, 8,0, B: 11,47, 14,10, 0,89, 79)

v1078s. outputport (outnm, tech:0,8:6, 29,8, 14, 13, 1078, 1103)
v0588s. proc (nam ::1,4,1,7,0,588,59%)

v1126s. sensecond (innam:0, 8:56, 129, 37, 44, 0, 1126, 1170)
V01835, setime (clktim:0,32768:37, 166, 46, 12, 13, 183, 218)
v1171s. stboolwait (top, maxtm::1,-5, 1, 10,6,1171, 1181)

- v063%s. sub {rslt,argl, arg2:0,8, 0,8, 0, 8:23,87, 26, 14, 0, 635, 649)
b v0650s. sub (rsit,argl,arge:0, 16,0, 16, 0, 16331, 126, 37, 19, 0, 650, 669)
- vb14s, tabaccp? (:: , , ,0,0,614,625)
v0728s. tabend (3 3,10,3,6,0,728, 734)
F. v0603s. tabent (fnc,task ::10,51,15,10,0,603,613)
. v06268. var {nawe:0,8:0,0,0, 3,0, 626, 634)
- v0GB4s, var (name:0, 1620, 0,0, 3,0, 684, 632)
:f; : v012is.waitleast (indx,upr,top, bot, per,max:0,8,0,8:23,-10,27,26, 20,121, 14T)

voR24s.whend (top, bot::3, 10,3, 4, 0, B24, 832)

v0815s.whilecon (rslt,bot:0,8:7,27,8,8,0,815, 823)

E vO803s. whi lestart (top, Ipct::1, 4, 1,6, 0, 803, B14)

g vO068 .erd index

v0069s. or (rslt,argl,arg2:0,8,0, 8,0, 8: 11,47, 14,10, 0,69, 79)

N v0070cos primitive to perfors logical or

X v0071com list=result,argument 1, argusent 2 ::stor,time,ext,c,i,addrs
- v0072begin stext

v0O0731d a,({argl}) ;4 13t 3b rslt = argl .or, arge
v00741d b, a) U 1b Do
vOO0T5ld a, ((arg2)) s4m 13t 3b

v00760r b e & 1b L
vOOTTld ((rslt)),a j4m 13t 3b L
v0078endtext I
v00T9calc roaptreromptr+! =
v0080s. gt (rslt, argl, arg10,8, 0, 8, 0, 8:45, 118, 34, 29, 0, 80, 109) .

v0081com primitive to perform comparision between 2 B8-bit numbers
v0082com list=result,argument 1, argusent 2 ::stor,time,ext,c, i,addrs
v0083begin stext

v00B4ld a ((arg2)) ;4w 13t 3b if arg2 1t argl then rsit=ffh
v0083ld b, a e 4t b bearg2

v00861d a, ((arql)) ; 13t 3 o
v00871d ¢, a T I 4 1b c=argl

v0088and a s M 1b set sign flag of argl

r
» “ T . .
PP | SRR B

et

T e
D M ., .

A P

v00893p p,$400ch 33 10t 3 jump if argl is positive «
v00%ld a, b U b argl =-)
vo091and a e A 1b set sign flag of arg2 g
- 4
az :
-
e et D LT L T e S Lt s e e e e e e e e e e

PRV R P P O OO Pt ‘L..-!“IJV‘ - S R R .

AU LT

v

vo03Rld b, ¢ s M
v00333p m, $+01lh ;3a 10t
vo0%ld a, 0 s Tt
voOSy)r &2 a1t
v00%ld a, b (i At
v0037and a iz A&
v0038ld a, c s &
v00993p p, $007h j3a 10t
v0{001d a,iililiitbsom 7t
vo101)r $412 = 12t
v0102cp b ila 4t
v01031d a,00000000bj2m 7t
vo1043p z, $47 ;3a 1Ot
vO105)p », 8+ :3a 10t

arg2 .oaap. argl
arge = - argl = - comp backwards
arge = + argl = - false

set sign flag of argl
restore argl to accumulator
arg2 =+argl s ¢+

argd = - argl = + tree

result false arg2)= argl

Y- ERERRPEYEEERRES

v0106cpl U result true arg2 1t argl
vO1071d ((rsit)),a 4 13t

v0108endtext

v0109¢calc romptreromptr+43

v0110s. and (relt, argl, arg2:0,8,0,8, 0, 8: 11,47, 14, 10, 0, 110, 120)

v0iiicom primitive to perform logical and

v0112com listsresult,argument 1, argument 2 ::stor,time,ext,c,i,addrs
v0113begin stext

vOl14ld a,((argl)) sém 13t 3b rsit = argl .and. arg2
v0115ld b, a iin M ib

vO116)d a,((argd)) j4 13t b

v0li7and b iim A ib
v0118ld ((rsit)),a ;4 13t 3b
v0119endtext

v0120calc rosptreromptr+il

v0121s. waitleast (indx,upr, top, bot, per,max:0, 8, 0, 8:23,-10,27, 26, 20, 121, 147)
v0122com primitive to gemerate a software wait based on the results of
v0123com of an aritmetic expression whose integer result is passed to
v0124com waitleast in upr the value in upr is the number of times
v0i2Scom fixedwait will be executed similar to a for loop fivedwait
v0126com will be fed the time in the variable per top and bot
v0i27com are labels max is the max time allowed specified by the
v0128com designer for all possible cosbimations of upr and per

v0129com per and max are in 85 to the nearest Sms the sax allowed value
v0130com for per is 1273ss and the max allowed value of upr is 127
vO13lattr time=(max) #4000

v0132begin stext

v01331d a,1 i2m 7t 2b counter always starts at one
v0i34(top) 11d ((indx)),a jém 13t 3b update (indx) with latest value
vO1351d a, ((upr)) (13t 3

v01361d b,a jim 4t 1b

v0.3714 a, ({indx}) i 13t b

v0138cp b jim 4t 1b compare to upper limit
v0139)p 2, (bot)+3 33m 10t 3b Jump out of loop on indx=upr
v0140endtext

v0léicall s, fixedwait ({per):)

v0lé2hegin stext

a3

. R R . N e St B S el Wt gl Magh et Sendt el MR SRR MRty Ppiinr-Sitn: Stiec-Aune - Sha Jive N RN S IS S A At et Hat At it i e

v01431d a, ({indx}) j4n 13t 3b get current indx value

vOl4dinc a jim 4t tb crank indx
v0145(bot) 1 Jp (top) 13m 10t 3b Juspt to top of loop
vOl4bendtext

v0147calc romptr=romptr+23

vO148s. equivalencirslt, argl, arge:0, 8, 0, 8, 0, 8: 12,31, 15, 17, 0, 148, 165)
v0149com primitive perfore to the logical equivalence relation
v0i30com the truth table is as follows

v013icon arqgl arge rsit
v0152com false(00h) false truelffh)
v0133com false true false
v0154con troe false false
v0135con true true true
v0i56com equivalence is simply the opposite of xor
v0157begin stext

vO1581d a, ((argl)) sém 13t 3b rsit = argl .equiv. arge
voiS9ld b, a e & b

v01601d a, ((arge)) s4a 13t 3b

v0i6ixor b sim & 1b

v0162cpl sis 4t 1D

v01631d ((rslt})ya 4m 13t 3b

vO16Aendtext

v0165calc romptreromptr+i2

v0166s. implicate (rslt,argl,arge:0,8,0,8,0,08: 14,57, 17, 16,0, 166, 182)
v0167com primitive to perform logical implication check
v0i68com truth table is as follows

v0169com argl arge rslt

v0170com false(00h) false true{ffh)
v0i71com false true true

v0172com tree false false

v0173com true true true

vO174begin stext

vOI751d o, ({argR}) j4m 13t 3d rsit = argl .implicate. arg2
vOiT6and a sdm 4t 1b set zero flag

vO1773p n2,$+7 i3 10t 3b if arg2strue them rsli=true
vOiT81d o, ((argl)) 3ém 13t 3b if arge=false then get argl and cpl it
v0179cpl tilm 4t 1b rsit= .not. argl

v01801d ((rsit})ya jm 13t 3

vOi8lendtext

v018calc romptreromptr+lé

v0183s. setime {(clktim:0,32768:37, 166, 46, 12, 13, 183,218)

v0184com primitive to set channel | of ctc to some initial value

v0185com clitim is initial time decimal in milliseconds

v0186com becawse channel O serves as the clock input to channel 1

v0187com with 1 willisecond pulses there would be a latent delay in

v0188com resetting channel 1 because new values for the downcounter

v0189com are rot transfered from the load register to the downcounter
v0190com until a new clock pulse is sensed therefore this primitive
v0191com also short times the channel 0 clock to generate an cutput pulse such
v0192com that chammel | is immediately reset to the value passed through the
v01%com argummt clhtin

84

..............................

vO194if clock .ne. O skip 2
v0193cale clock=t

v019%inc] h.clock {z3)
vO197begin stext

v01981d &,01110001b ;2 Tt counteritload Isb then ssb+moded+hex

v01%%0ut (0f3h),a X T B set mode control

v02001d hl, (clktim) 33w 10t get tise period

v0R011d a1l jla At ish of clktim

v02020ut (0fih),a 3 11t load 1sb to ctc chamel 1
v02031d a,h e &t msb of clktis

load wsb to ctc channel 1
countr0+load 1sb then msbtmode2+bed

vo20dout (Ofth),a ;3 11t
v020S1d 2,001101000 som 7t

v0206out (0f3h),a 3 11t set mode control
v02071d a,02h & T 1sb of 0002 bed
v0208out (0fOh),a 3 1t 02h in load reg lsb
v02091d a,00h 0 Tt asb of 0002 bed

v0210out (0f0h),a i 11t
viRllld 2,00110100b ;2 7t

00h in load reg ssb
contrO+load 1sb then wsbimode2+bed

peoRPRRRRRPERERRREREYERD

v0212o4t (0f3h}),a o 11t set sode control
v02131d a,00h i Tt 1sb of 2000 bcd
v0214out (0fOh),a 3 11t 00h in load reg Isb
v02151d a,20n i Tt usb of 2000 bed
v0216out (0f0h),a g3 11t 20h in load reg msb
vi21 Tendtext

v0218calc romptreromptr+37

v(219s. not {rslt,argl10,8,0,8:7,30,9,8,0,219,227)

v0220com primitive to perform logical mnot, complement

v022icom list=result,argusent 1, argusent 2 ::stor,time,ext,c,i,addrs
v0222begin stext

v0223ld a,{{argl)) j4m 13t rsit = not argl

v0224cpl jin & 1b

v0225ld ((rsit))yasém 13t 3

v022bendtext

v0227calc romptreromptr+?

v0228s. g (rslt, argl, arg2:0, 8,0, 8, 0, 8: 16, 70, 20, 13, 0, 228, 24{)

v022%om prinitive to perfors comparision between 2 8-bit numbers
v02X0com list=result,argument 1, argument 2 ::stor,time,ext,c,i,addrs
v0231begin stext
v02eld & ((argl)) 34a 13t 3 if argl = arg2 then rslit=ffh
v0233ld b, a sln A ib
v02Ald o ((argd)) séa 13X D
vie¥cp b s M 1b
v0R36ld & 1111111thi2e T &b
&

vi&3lr 2, $43 a1t result equal

v0&38cpl in M b result not equal

v02391d ({rsit)),a 4@ 13t D

v0240endtext

v02Acalc romptraromptr+16

v0242s. 1t (rslt,argl, arg210, 8,0, 8, 0,8:45, 118, 34, 29,0, 242, 271)

v0243com primitive to perform comparision between 2 8-bit numbers
v024con list=result,argument 1, argument 2 ::stor,time,ext,c, i, addrs

85

......

v02ASbegin stext

v02461d a,flargl)) 4@ 13t 3 if argl 1t arg2 then rslt=ffh
v0247ld b, a jla At 1b beargl

vORMOld a3 ((argd)) jhm IRt 3b

vesdld ¢, a ilm & ib c=arge

v0Z30and a il & 1b set sign flag of arg2
vo23l)p p,#400dh ;3 10t 3 Jump if arg2 is positive
vozield a b i At ib g = -

w&Sand a jl &t 1b get sign flag of argl

vo2&4ld b, © s 4t ib argl .swap. argd

v02SSip w,$401th 3 10t 3 argl = - arg2 = - cosp backwards
v0Z56ld a O & Tt e argl = + arg? = - false
v0237;r $+016h ta 12t &

v0258ld a, b iim At ib

v025%and a sl A 1b sat sign flag of argl

vo60ld 2, ¢ in 4t b restore arg2 to accusulator

v026ip p##00Th 3m 10t 3 argl = +arg2 =+

v0262ld a, 1111111102 Tt b argl = - arg2 = + true
v0283;r $+00ch = 12 &

v0264cp b e & 1b

v02651d 3,00000000b;2m 7t L] result false argl)= arge
vo2B6ip 2, 7 3= 0t 3

vo267jp 8 $4 I 10t B

v0268cpl iin A tb result tree argl 1t arg2
v02691d ((rslt}),a 4@ 1t D

v0Z70mdtext

v027icalc romptreromptr+d

v02Tes. re {rslt, argl, arg210,8, 0, 8, 0, 8216, 71, 20, 13, 0, 272, 285)

v0273com primitive to perform comparision between 2 8-bit numbers
v0274com list=result,argument 1, argusent 2 sistor,time,ext,c,i,addrs
vO2TSbegin stext
v0276ld a,({argl)) @ 13t 3 if argl = arge then rslt=ffh
vi27ld b, a s & b
vO2781d a,({arge)) 34 13X 3
v027%p b iin &t ib
v0280ld & O o Tt &
&

vi28igr z, %003h (m 13t result not equal

v0282cpl iin At 1b result equal

vi2a3ld (Grslt)),aém 13X D

v02BAendtext

v(283calc romptrarosptr+16

v0286s. ge (rslt,argl, arg2:0, 8,0, 8, 0, 8242, 108, 31, 28, 0, 286, 314)

v0287con primitive to perform comparision between 2 8-bit numbers
v0288con list=result,argusent 1, argument 2 ::stor,tiwe,ext,c,i,addrs
v02B%egin stext

v020ld o (largd)) 340 13t 3D if arg2 le argl then rslt=ffh
v029ild b, a ilm At 1b beargd

v02RId a flargl)) jéo 13t 3

v0eRld o, a tln & 1b c=argl

v029%and 2 e & b sat sign flag of argl
v0295)p p,#00ch 3 10t 30 jump if argl is positive

-1

......

..........
.............

PR
SEa e e g e

it

T T —ywe

v0R9%ld a, b s & ib agl = -
v0297and a iin At b sat sign flag of arg
veNld b, ¢ ia & b arg2 .swap. argl
v0e9p w $0llhjds 10t 3 arg? = - argl = - cosp backwards
v0300ld a, O i 2 arg2 = + argl = - false
v001r $01h i 12 2
vOXRld a, b s A 1b
v0303and 2 iin &t 1b set sign flag of arg2
v0304ld a © T I ib restore argl to accumulator
vX5;p p, #4007 ;3@ 10t 3 arge =+ argl = +
v0X0bld a,11111111bs2m Tt & argd = - argl = + true
v007)r #00%h = 12t 2
v0Xicp b jin At ib
v0309)d a,l1111811b2e Tt 2 result false arg2)= argl
vo3l0)p py, ¥ = 10t D

ib

D

v03ticpl a4t result true arge 1t argl
vo312ld ((rsit)}),a 4@ 13t

v031 Jandtext

vi3idcalc romptreromptrei2

vO313s. forend (indx,slab,elab:0,8:7,27,8, 3,0, 315, 324)
v0316com primitive to end a for loop
v0317com list=index,start label,end label

v0318calc pop reps

v031%egin stext

v0320ld a,((indx})) j4a 13t get value of index at top of loop
viRlinc 2 n At b crank index

v0322(slabl3)p (slab) ;3 10t 3b Jump to for loop test
v0R3endtext

v0324calc romptreromptrs?

v033s. Je {rslt, argl, arg220, 8, 0, 8, 0, B:42, 108, 31, 28, 0, 325, 353)

v03260com priwitive to perform comparision between 2 8-bit numbers
v0327com list=result,arqueent 1, argusent 2 ::stor,time,ext,c, i,addrs
v0328beyin stext

v03291d a(largl)) 348 13X D if argl le arg2 then rslt=ffh
vO30ld b, a s & 1b beargl

vO3ld a,({arg)) j4a 13t b

voiRld c, a s & b crarge

v0i3land 2 fla & 1b set sign flag of arg2
vOX343p py 8413 = 1t 2 Jump if arg? is positive
v33Bld a b s A&t 1b R = -

v0X6ad 2 jla 4t 16 set sign flag of argt
vwTd o ¢ il & 1b restore arp2 to accumulator
vollp o $417 = I8 argl = - arg2 = - comp baciwards
vXNld o O & R 2 argl = + arp2 = - false
vO3A0 e 9413 a1

voMld o b idn At 1b

vON2and a e & ib set sign flag of argl
vo3ld a, ¢ s M ib restore arg to accusulator
vOlMgp o, 47 1 I8 D gl etarges

vOASld o 1151111102 T & argl = - arp2 = + true
vOU6r 49 ta 12 &

-¥4

v0A7cp b in At 1b .
vOMOld a, 11111111052 ¢ 2d result false argl)= arg2 ___‘
vOU3)p p, S I 10t D
vOX30cel jla At 1b result true argl It arg2 . N
vO3Stld ((rslth),a e 13t B s
vOZoendtext =
v0353cale romptreromptrs2 ey
vO354s. add (rslt, argl, arg2:0,8,0, 8, 0, 8:23, 78, 26, 14, 0, 354, 368) :]
v03S5com primitive to add argl and arg2 and store in rsit e
vO356com listerslt,argl,arg2:precisions:s,t,e,c, i, addr Vg
v0357begin stext T
vO3581d 2, ((argl)) 3§13t 4w 3b store argl in accumulator T
v03%1d hl, (arg2) ;10 3w 3b have hl point to arg2 byte T
v0360add 2, (h1) 7t 2w 1b add accumulator with arg2
v0361jp po ,$#13 ;3= 10t 3b if no overflow store result "
vE2pc 8 3 10t 3b if carry the maximize mirus rslt -]
v03631d a,01111115b;2m 7t 2d put in largest positive value o '.;-j
vw3BA3p #3 3 10t 3D o
v03651d 2,100000000 ;2 7t 2b put in largest negative value
v0X61d ((rsit)),a 313t 4m 30 save result of add in rslt '_-.;»_:
v036Tendtext =
v0368calc romptreromptr23 L]
v0369s. It (rslt, argl, arg2:0,8,0, 16,0, 16:46, 131, 38, 26, 0, 369, 395) S
v0370cos primitive to perform cosparision between 2 16-bit nusbers]
v0371icom listaresult,argument 1, argusent 2 ::stor,time,ext,c,i,addrs ,_::_y
v0372begin stext __4
v03731d de, ({arg})) j6m 20t 4b if argl It arg? then rslt=ffh de=(argl)
vO3741d hl, ({argd)) 15m 16t 3 hiz{arg2) ’j
vo3751d a h iim At 1D g
v0d76and a jilnét 1b set sign flag of arg2
vO3713p py$+13 $3m 10t 3B Jump if arg2 is positive ;
vO3neld a, d timdt 1b g = -
v037%nd » (w4t 1b set sign flag of argl .
v03803p m,#+18 ;M 10t 31 argl = - arg2 = - comp backwards DR
v03Bild a O 2T 2 argl =+ arg = - false o
v0382)p 424 13 10t D T
v0383ld a d tin At 1D]
vO3and 2 jim4t 1b set sign flag of argl T
v038S3p p, 048 ot b arplzearge=+ -
vO3B6ld a,iiifilibi2a R’ 2b argl =-arg2 = + tree R
v0373p %14 s 10t 3b R
v0388sbe hl,de ISt 2]
vO8ld a,00000000bs2m Tt 2 result false argl)= argR]
vo3%0)p 2, 7 10t D]
voB1p o, 4 jm10t 3 IR
v03%2cpl jlmét 1b result true argl It argR “"}
v03931d ((rslt)),a j4m 13t B0
v03%calc romptr romptridé A
v0396e. forcons (indx, lwr, upr, slab, elab, val:0, 8,0, 8, 0, 8:17, 70, 21, 6, 0, 396, #13) -::.: 1
v03%7com primitive to set up a loop with constant bounds o
Y] A .J
n..--*
R
-
-9

................................
....................

[t Mt S g M s St g S ic I 0 e e ~ T T A8 W0 e Jbane Soenut e Gres S oea] T T Y Y Y T e T Y T W T T T W W e R TR W W I
................ -~ o, 7 R R T WLt T e s e e . R A . B -

v03%con list=index, lower bound, upper bound,start label,end label
v03%o0m max allowed value of indx, lw,and,upr is 127
vOM00com because the translator calls for 16 bit precision if a
vOi0lcom greater number is specified (val) is max loop count

vOAO2ralc push reps

v0403calc reps=(val)

vOAQAbagin stext

vOA0Sld a, ((lwr)) j4a 13t 3b lower bound of counter
vOMOG(slab)11d ((indx}),a j4m 13t 3 update (indx) with latest value
vOA071d a, ({upr}) jha 13t D

v0A081d b,a jim 4t 1D

v04091d a, (¢indx}) j4m 13t 3b

v0Ai0cp b tla & 1D cospare to upper limit
vOM11p 2, (wlab)+3 $3m 10t 3b Jump out of loop on index=upr
vOti2andtent

vOAi3celc romptreromy =17

vOAids. g (rslt,argl,arg210,8,0, 16,0, 16:46, 118, 34, 26, 0, 414, 440)

v04{Scom primitive to perform comparision between 2 16-bit numbers
vOAl6oom listsresult,arquaent 1, argument 2 :i:stor,time,ext,c, i,addrs

v0A{ Tbagin stext

v04101d de, ((argl)) ;6m 20t 4b if arg2 leargl then rsltsffh de=(arg2)
vOMIld hi, ({argl)) 33m 16t 3D hl=(argl)
v0A20ld &, h sin & 1D

vOi2land a s & 1t set sign flag of argl

vOAZ23p p,#+13 3 10t B Jump if argl is positive
voA23ld a, d i M 1b agl =~

v0i24and 2 it M 1b set sign flag of arg2

voAS)p w8418 a0 10t arg2 = - argl = - comp backwards
vOAbld a, O &= N e arge s ¢+ argl = - false

voA2lp W26 {3 10t

vo428ld o, d jim 4t 1

vOA2%and a e & ib set sign flag of arg2
vOA303p p, 48 3 10t 3B arge = +argl = ¢

vOA3Lld a,iifll1ilbi2e Tt] R = - argl = ¢ trme
VARgp 14 130 10t 3b R
vOAZdshc hlde j4e ISt 2b =
vOA3Ald &,00000000b52m Tt 2 result false argd)= argl 7
voAli)p o, 847 @ 108 D o1
VAG)p B, S+ 10t B -
vOA37cpl s & 1b result treearg2 1t argl —
voOAMld ((relt)),a 4 13t 3
vOARSendtext -
vOMOcelc romptrerosptr+ié Ny
vOMis, oq (rslt, argl, arg2:0,8,0, 16,0, 16:18, 91,26, 13, 0, 441, ATA)
vOM2nom prisitive to perform comparision betwesn 2 16-bit nusbers T
vOMdcon listsresult,argueent 1, argueent 2 ;:stor,time,ext,c,i,addrs ~—1
vOMAbegin stext -]
vOMS31d de, ((argl)) ;6 20t 4b if argl = arg2 then rsltsffh de=(argl))
vOME1d hi, (larg2)) 13w 16 b hl={argd) b
vOM7and & {in 4 ib clear carry flag .j-:ﬁ;
vOddlabe hl,de {15t 2 1
e
89 N
.._i
L e T e e e T e]

voM9ld a,il0110110i2e Tt 2
vou0 e 2, $43 ihi2h 2 result equal

vOASicpl iin At 1D result not equal

vOMRRld ((rsit)),a jém 13t 3b

vOASdendtext

v0ASAcalc romptrerosptr+l8

vOASls. le (rslt, argl, arg2:0,8,0, 16,0, 16346, 118, 34, 26, 0, 455, 481)

vO4S6com prisitive to perform comparision between 2 16-bit numbers
vOASTcom listaresult,arqueent 1, argument 2 :istor,time,ext,c, i,addrs

vOAShbegin stext

VOSTILd de, ((argl)) j6m 20t 4b if argl learg2 then rsit=ffh de=(arp1)
vO460Ld hl, ({arg2)) ;5m 16t 3b hl=(argd)
vO46ild 3, h iis At 1b

v0AG2and a a4t 1b set sign flag of arg2

vOde3p p, 413 3 10t 3d gusp if arg? is positive
vOWAld a, d in & 1] R = -

vOAGland a sin A& 1b set sign flag of argt

vOARR3p m, 0410 = 10 B argl = - argR = - comp backwards
vO6Tld a O & -] argl = + grgR = - false

vOAElyp $424 10t B

vO9ld », d $in At 1b

vOA70and a jla & Idb st sign flag of argl

vOA713p p,oHe w1t D arglsragR=e

vOATRld o lilMiMt10;2m T D agl=z=-argl=+tre

VOAT3)p 414 1310t B

v0ATAsbC hl, de 1St 2 EESR
VOATSId 2,000000000;20 Tt 2 result false argl gt argd '!’“"“
A% 8 $47 10t B R
VOATTIp 8, %4 3 10t D =
v0AT8cpl jla & 1b result true argl le arg2 ol
vOA7IId ((rslt))ja 348 I D A
vOAOendtent --'.:--jj-]
v0d8lcalc romptreromptre4é)

v0Al2s, gt (rslt, argl, arg210, 8,0, 16,0, 16346, 118, 34, 26, 0, 482, 508) T *
v0Aldcon prisitive to perforw comparision between 2 16-bit numbers T
v0A84com listeresult,argusent 1, argument 2 1:stor,time,ext,c, i, addrs

vOAMSbegin stext SN
VOABE1d de, ((arg2)) (6m 20t 4b if arg 1t argl then rsit=ffh de=(argd) R
vOAST1d hl, ({argl)) ;5m 16t 3b hl=(argl) L]
voMSld 2, h a4t 1b ca
vOA%end & s & 1b et sign flag of argt]
vo¥303p p,$413 i@ 10t 3 gump if argl is positive R
vonlle o d s & b argl =- RO
vOVi2and o e At 1b et sign flag of argR RSO
VoM a8 i 10t 3 argR = - argl = - comp backwards L]
VoAUl a O & T’ D arg2seargls- false D
voARS)p 424 110t B RS
v0V6ld o, d jis &t 1b SN

v097and a ils & Ib set sign flag of arg2 e
vOM3)p p, 640 = 10t B s gl =4 Ty
vOASSId &, 11111001012 Tt 2 argl = - argl = ¢ tree N

90

!
-
-3

<2

.

.........
e e T e T e T e e T e T T T T T

v03003p 414 im0t D
v0301sbe hl,de w1t 2

] result false argd gt argl
vo3033p 2, 7 m 10t D
V043 o 4 B 10t D

v0305cpi jla M 1Ib result true arg2 le argl
v03061d ((relt)),a sé 13t 3

v030Tendtext

v0308calc rospireromptr+4b

v0509s. main (3:7,24,7,21,23,509,352)

v0S10com primitive to define controller setup and initialization
v03licom list = empty : empty : storage, tise, ext, cale, incl, addr
v0312com the rom pointer is set to start at 16384 or 4000h since this
v0513com is the beginning of user addressible mewory in the pro-log
v0314com it is called rom because ultimately the controller's operating
v051Scon program would be burned into rom the ram pointer starts
v0316com at 3273 which is 32 bytes below the top of usable memory
v0317con on the pro-log to allow a 32 byte stack the top of user
v0316con addressable memory on the pro-log is 32767 or 7ffth

v051%om all initializations will be done through the use of global
v0320com variable initlk and linked labels

vORicom fo. lowing the initializations program will jump to the top of the
v0322rom polling loop for the task comtingency pairs.

v0523com to allow the use of a debug prom developed at the naval
v0324com postgraduate school electrical engireering departsent the
v0323com starting location is changed to 4096 to allow a the system
v03R6com to asto boot and to allow loading of memory from another
v05ZTcon computer via the dual vart card. the loading prom inhibits the
v0328com wee of the reset location because of the location of the code and
v0529c0m the interrept loactions used in a debugger for the prolog system
v0330calc roaptre16384

vol3icalc ramptre327

v0332incl h. processor (3:3)

v0533incl h.cardcage (1:)

v0334begin stext
vO533;
v03363 2ilog z-80 based system

v05ASorg (ramptr) {ram pointer is pointing to top of memory - stack
vOSAGistakidefs 32 $ 32b define stack area
v03A7orgy (romptr) jbegin code after reserved intervupt area
vOSABRcoldsld sp, Ostake32 10t 3 initialize stack pointer
vOSANSi s & 1 disable maskable interrupts
v0S30;p @ (initlk) = 10t D do hardware initializations

91

...................................

..

vOB lendtent

vOX52alc rosptreromptr+?

w0353, add (rslt, argl, arg210, 16,0, 16, 0, 16331, 126, 37, 18, 0, 953, 571)
v034con primitive to add argl and arg2 and store in rsit

vOXSShegin stext

vOSId hl, ((arg1))i5e 16t 30 load argl in hl pair

vOS571d be, (largd))i6m 20t &b load argR in be pair

vo358ld a, 1 idn A 1b
vOX%dd a, ¢ il 4t 1b aod lsb
v360l1d 1, a iz 4t b
vO361ld a, h il & ib
v03E2xdc 2, b jis At 1h add msb

vo363ld h, a T I b

v0S64)p po ,$413 (3m 10t 3b if no overflow store result
v0S5833p ¢ 49 3= 10t 3d if carry the maximize minus rsit
v03661d hl, 7ffth 33 10t 3b put in largest positive value
X .
3
3

v0367)p 946 10t

v03681d hl, 0000h ;3m 10t put in largest negative value
v0S691d ((rsit)),hlj3m 16% save result

v0570endtext

vi371calc romptreromptr+3l

vO572s. assign (var,data:0,3,0, 316, 25,8, 7,0, 572, 579)
v0373con primitive to assign a value of one variable to another variable
v0574com listsvar,data-varivar-prec,data-prec:stor, tise, ext, calc, incl, addr

v0S73begin stext

vO576ld a,((data)) ;4@ 13t 3 assign (data)
vo377ld ({var})sa @ 13t Db to {var)
v0S78endtent

v0379%alc romptr =romptr + 6

v0580s.assign (var,data:o, 16,0, 1616, 32, 10, 7, 0, 580, 387)

v03Bicom primitive to assign a value of one variable to ancther variable
v0382vom listavar, data-varivar-prec,data-prec:stor, time, ext, cale, incl, addr

v0383begin stext

vO3Ald hl,((data)) ;S 16t 3b assign {data)
vO3851¢ ((vard),hl 35 16t 3 to {var)
v0SBGendtext

vOS87cale romptr sromptr + 6

v(380s. proc (nam 311,4,1,7,0,388, 595)
v058%om primitive to define procedure entry poinp T
v03%0cow list=proc-nase ssmpty:storape, time,ext,calc, incl, addr -4

v 1begin stext]
v procdure (nam) S
v naw): nop ;im At b entry point for (nam)
v03%calc romptreromptr+l -

v033%s. cors {nam, val, 10,8:1,0,0,6,0,59, 602) - -4

v07c0om primitive to define data

v0390con listdata-nase, valuwivalue-prec, stor, time, ext,c, i, addrs

v039%egin stunt

v0i00(tnam): defb (val) {reserve one byte for data <

92

"
-k—ui
vOi02calc romptreromptr+t S
v0603s, tabent (fnc, task ::10,31,18S,10,0,603,613) -—J
v060Acom primitive to add one entry to monitor table -
v060Scom list= func-name, task name:empty:s,t,e,c, i, address .
vOi06begin stext -
v0i07call ®(fac) ;5@ 17X 3 test for contingency (fnc) S
v06081d a,((fnc)) 4 13t 3b get contingency result]
v0B09cp 11011511b jim 4t b check if result true o
v0610call z,@(tasi) 1Sm 17t 3b if true execute task .
v0611 jif not true get next tabent or taberd to loop o
v0bi2endtent S
v0613calc romptreromptr+10 -
v0B13com this is a dumey primitive to allow compatibility with the 8080 E
v0bi6com library. the functions that would be performed in this primitive -
v0617com are all located in s.tabent. this has the effect of eliminating <
v0618com intersediate table and increasing execution speed. if there are
v0619%com wide variations in contingency/task speeds more memory will be o
v0620com than in the 8080 primitive. note s.main is also changed because o
v0621icom of the elimimation of the intermediate table T 1
v0622rom list= func-name, task name:empty:s,t,e,c,i,address -
v0623begin stext 1
v0i24 | this space is deliberately void. this is a dummy primitive. T
v0E2Sendtent RS
v0626s, var (name30, 820, 0, 0, 3, 0, 626, 634) e
v062Tcom primitive to define storage for B bit variable integer or logical D
v0628com list=data-name, value:value-prec, stor,tise, ext,c, i, addrs e
vo62%alc raspireramptr - | v
v0830begin stext X
v0&3lorg (ramptr) 18 bit variable (nase) in ras S
vOR32(rame): defd 0 0= O 1b s
v06330rg (romptr) T
vObAendtext iy
v0633s. subd {rslt, argl, arg2:0,8,0, 8,0, 8:23, 87, 25, 14, 0, 635, 649) -
v0B36com primitive to subtract arg2 from argl and store in rsit R
v0b37com list= relt,argl,arg2iprecisions:s, t,e,c,i,a -
v0638begin stext
v06391d a, (Cargl)) 4 I3t 3 load arg! in accumulator
vOBAOLE M, Garg® 13 10t 3b point hi to arg2 o
v06Atsub (hl) @ T tb argl -arg -4
v06ARlp 9o 9413 ;3 10t 3b if no overflow store result o
vy c 08 13 108 3b if carry the saximize minus rsit
vOEAMd o,01311115052s 7t 2d put in largest positive value
vORA)p 45 3 10t 3
vORAG1¢ 4,100000000 s2¢ 7t 2b put in largest negative value
v0BATId ((rslt)),a 13t 4m 3d save result of add in rsit =
vOSAlendtent
v06Aicalc romptrere ptre2d
vO&30s. sub (r11t, argt, arg210, 16,0, 16,0, 16131, 126, 37, 19,0, 650, 669)
vOiSicon prisitive Lo subract arg2 from argl and store answer in rsit
vOE52com listorsit, argl,arg2:precisions:s, t,e,c, i, addr
L
93 o]
SR
T
oo

. 'i
71
.-:Z'I-']

v0ES3bagin stext

vwESAld hl, ((argl)) 15 168 b load argl in hl pair
vOEXSld bc, (largd)) 6@ 208 4 load arg2 in be pair
visld a) in & b
vOiiTseb ¢ i A ib subrtract 1sb

voiS8ld 1, a iin A 1b

vo6Nld a, h s & 1b

v0G60sbe 2, b il & 1b subtract msb

v06bild h, a ils & ib

v06623p po (#4153 10t 3b if no overflow store result
v06E31p c 89 = 10t 3 if carry the maximize sinus relt
vOG6Ald hl, 7fffh 33 10t 3b put in largest positive value
v0EE35p $46 10t D

vOGE61d h1, B000h ;3 10t 3b put in largest negative value
vO6671d ((rslt)),hl ;3@ 16 3b save result

vO660endtext

v0669calc romptreromptr+df

v0670s. exitproc (nam 121, 10,3, 6, 0,670, 676)

v0871com primitive to close proc

v0672com 1ist=proc-nam, contnamsempty: storage, time, ext,calc, incl, addr

v0673begin stext

v0674ret (3 10t 1b return to monitor,exit (nam)
v0673endtext

v0676calc romptreromptr+!

v0677s. cons (nam, val, :0,16:2,0,9,6,0,677,683)

v0678com primitive to define data for 16 bit integer

v067%0m listadata-nase, value:value-prec, stor, tine,ext,c,i,addrs
v0680bagin stext

V0681 (nam)s defw (val} jdefine a two byte integer
v0682endtext

v0683alc rosptreromptred

v0blAs. var (name10, 1610, 0, 0, 3,0, 684, 692)

v0685com primitive to define storage for 16 bit variable integer
vOE86con 1istadata-name, valwesvalue-prec, stor, time,ext,c, i,addrs
vOkB7calc ramptrevamptr - 2

v0608begin stext

v068%0rg (ramptr) 316 bit variable (name} in rams
v0690(name)s defw 0 jOm Ot &

v069iorg (romptr)

vOsSRemdtext

v0693s, loc (loc :11,4, 1,6,0,693,699)

v06%com prisitive to defire a lable (location)

v0ESScos 1ist=label-name :empty: storage,time,ext,calc, incl,addr
vOE%begin stext

v0897(loc)s nop ; define location (loc)
vO690endtent .
v0£9%calc romptrevomptr+i
v0700s. ond (233,10, 3,8, 10,700, 710)

v070icom primitive to end softuare listing and complete inplementation
v0702com list=smptysempty:stor, time, ext,calc, incl, addr

v0703begin stext

94

. RD-A155 849 SOFTWARE MAINTENANCE RELATING TO THE INPUT TRANSLATOR 2/2 .
’ AND 280 REALIZATION. . <UD NFWRL POSTGRADUATE SCHOOL
MONTEREY CA R R YOGEL MAR
UNCLASSIFIED F/G 9/2

g v S B g B
- e LWL PPN T
o ae S e bvh\,“/—z

j .
| %
P
!
S i
[T5 I2.8 25 | i v
e l O 5 ! ! K
< . ! ! }
—— L:‘l I3,2 “H2'2 y | \
™
T O mﬂz.o
- Wi
= mﬂ 1.8
=
1S flis fis
E=— == =
MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A
Vel
!
Cen T
.
L
‘Y -_-.',-_-.‘.-_D. i S S P T T S o .]
y SOl WPty s P RS W N W WS WPk W TS T ¥ J.;w< o vl L-..:.'_L._'.).- ‘- et -_..-‘.- :. .

T T YTy Iy

-
e
&

L}
.-P
" e

SN0, I
fae ML Cetatal

vO70401 {initlk) 1 Jp OGspvar ;2m 10t 3b initialization of hardware is complete
voNs

} start top of main monitor loop
wWiéend yend of software listing ready for assesbly
vTendtext
v0700calc rompirevomptrs3

v070%0n put in semory meeded for implamntation in ram and rom
vO710incl homawory (11)

vO711s. Jpf {val, loc 10,8: 8,30,8,8,0,711,719)

v07i2com primitive to branch on false condition

v071300m listavales, jump-loc: valus—prec, :storage, tise, ext,cale, incl,addr
viTidbegin stext

vOTISld a, ((val}) 34a 13t 3b branch to (loc) if (val) is tree
v0716cp 0 ianta

vO7i73p 2, (loc) 2m 10t 3b

vO718endtext

v071%calc romptreromptr+d

vO720s. monitor (231,4,1,7,0,720,727)

v072icom primitive to define p2 monitor as controller supsrvisor
v0722com list = emptytempty: storage,tise,ext,calc,int,addr
vO723begin stext

V07244 sgonitor section=

vOT2epverinop sim A 1b mark top of the polling loop
vOTebendtent

v0727calc rompirevomptirs]

vitle.tabend (13 3,10,3,6,0,728,734)

v072% 08 subroutine to define end of sonitor table

v0730com 1ist= euptyiempiyss, t,e,c, i,addr)

vO731begin stext

vwTR)p Gspvar 300 to the top of the polling loop of momitor table
vO73endtent

v0734celc rompirarompir+3

0738 mult (rslt, argl,arg2:0,8,0, 8, 0, 8: 35, 528, 138, 22,0, 735, 757}
v073con binary multiplication primitive

T3 T0egin stext

wi3sld a , (Garglii IX B put argl in e

wWisld o 2 s & b

i0ld (g2t I D load arg?

v0741ld W1, 0 t 10t 3 clesr relt

vO742ld d, M s & ib clear d for shifts

vwilld b 7 i " 2 set counter to Thits

Wierra jle &t b]
WIS nc,td 10t B :
v0746add h], de » 1t 1w 4
wWiiTsla @ i & & 3
vO7abrl ¢ o & & BRE
vol49d e -9 13 1t 2h a7 +2a Bt on last tim —
vOTS0rrs s & b -]
vOrsip ne, 46 10t 3 -
vO752and a ila 4t b ;

vO733sbe hl, de i It
vOTSAld o, | 1 I b truncate result to 8 bits

95

wOISW (sit))ajte 12X D save result
vOTendtext

viTSlcalc rompireronpters3S

vO7Shs. sult (ralt, arql, arg210, 16, 0, 8, 0, 8234, 327, 138, 21,0, 758, 779)
v079%0m multiply 2 8 bit musber and get 16 bit result
vO760begin stext

WNBIG a,(Grgl))jds 1% 3> put argline
v2ld e, a ta & 1b

wWElld allwrg)im 13X D load argd

vOT6A1d), O i 18 B clesr rslt

wksld d, h = 4 1b clesr d for shifts
VWNEld &7 @& T 2 et cownter to Tbits
v%Trrs s & B

Wikl o, 1 18 D

v0%%dd hl, du s It B

vT0sla @ 11- T .]
voTitrl d i & D
vy 9 i IR 27«28 on last tim
v0T73rra fle & 1b
Wiy m, 96 @ 18 D
vOT75and 2 s & 1]

vOTNebe hl, de i« I &
w7TTld ((rsit)),hljde 16t 3b save result

vOTT0endtent

v0TTcale romptrevomptre3s

vO7T00s. sult (relt, argl, arg2:0, 16,0, 16,0, 16339, 1105, 289, 22, 0, 780, 802)
v(781con mitiply 2 16 bit nmbers and get 16 bit result

v07T02begin stext

vO7831d de, ((argl))ifm & put agl inde

vOTRAld e, ((arg2)) iém 4 load arg?

willd b] ib split g2 to alc

vO785ld hl, O = 3d cler rsit

wWilld b 14 2= 2 sat comter to Thits
vTrre iin ib

it ¢ & &

T ne, % 1 »

v0791add hl, de 1> 1b
v0T9sla ¢ -] -]
w793l d T] &
vOT9dgm 9-00bh 3m 2b 37 +2n &t on last tim
wWOiers in 1b
7% ¢ T | &
i w, 46 k]
vOT%end & {is b
vOT9%bc hl, de L]]

TRIIVRPRBSRXIZEE

v08001d ((rsit)),hi;Se 3» save remilt

vOBOiendtext

v0B02calc romptrerouptr+39

v0003s. whilestart (top, Ipetssl, 4, 1,6, 0,003, 814)

v0804com grimitive to establish label for top of a while-do loop
vOB03com condition to be tested immediately follows this label

96

.................................

- -
...

- -

TaTeTa e

A ARSI
I"‘l'll ..
AR .

o -
AP
b

I’ O'.

e rY
. "',','.,’
a1

s

'y

IR

v
2 "y,

1

...................

...............

........
.......

v0806con reps is global variable used to account for timing during
v0807con multiple loops

vO80Bcom lpet is wax loop cownt supplied by designer

vii0icaic push regs

vOBi0cale reps=(lpct)

vOBlibegin stext

vOB12(top) :nop in At 1b top of while-do-loop

vOS1 dendtext

vOiiécalc rosptrevomptr+]

v0813s.uhilecon (rsit,bot:0,8:7,27,8,8,0,815, 823)

vOdibcom primitive to decide whether to jump out of while-do loop based
v0B17com on boolean valee passed to rsit bot is loop bottom label

v0818begin stext
v08191d a, ((rslt)) 4 13t 3b get boolean value
v0820and a s & 1b check if trus(ffh) or false(OON)

volRlgp z,(bot}+3 3m 10t 3p if false jump out of while-do loop
vole2endtent

vOiE3calce roaptrevomptr+?

vOB24a. vhend {top, bot 333, 10, 3, 4, 0,824, 832)

v0i23com primitive to mark e of statements to be executed in a while-
v0i26com do~loop global variable reps is reset to value axisting
v0A27con before for-loop started

vOS2icale pop reps

voi2%egin stext

vOR0(hot) s3p (top} 33 10t 3b Jump to top of while-do loop
vOi3iendtext

v0832ralc rosptrevomptr+3

vOiXds. e relt, argl, arg210,8,0, 16,0, 16:18, 91,26, 13, 0, 833, 846)
v0l3Acon primitive to perfors comparision between 2 16-bit numbers
vO&Ticom list=renult,arguaent 1, argueent 2 :istor, time,ext,c, i, addrs

vORdGhegin stext

vORI71d de, ((argl)) 6m 20t 4b if argl = arg2 then rslt=fth de=(argl)
vOhaBid h), { (arg®)) ;5m 16¢ 30 hl={argd
vO&3%nd & tin A 1b reset carry flyg

vOBAOsbe hl,de it d

vOBAlld o0 - K-]

M2 2, $43 (12t result equal

vOlAdepl e & 1D result not equal

vobMld ({rsit)),a M It D

vOM4Sendtent

vOBAbcalc romptreronptr+18

vOMAh, proceseor (33 , , ,2,3,047,871)

vOMMicoa primitive to include 2-80 cpu board 4 mhz
vOi%calc slot = slot ¢+ §

vO0incl h. toardoage (21)

vORSihegin hext

vOlR2 pet 2-80 cpu board in slot (slot)
voiS3 semex high

vOIS4 st jumpers in the following pattern
voss Juper pattern

voiSe e 010

97

P
PN

vois7 wl 001
voiSe w 010
v U] 1
) w 001
vo8s1 w 01
vOl52 w 110
v0ss3 W 1111
vOBBA w0 1
vOES wi2 101010
vObEé wil 10
voBE? wl4 10
voiss il ol

v0B69 note numbering is from left to right and from top to bottos.
voO70 adévess space 0000-7fff
vOi7 lendtext

vObTh.emmory (13, , ,2,3,877,097)

vOiTicon primitive to include required wswory

vO87T3%alc slot = slot + 1

vOR80incl h. tcardoage (1)

v08B1if rosptr .1t. ramptr skip §

vObi2hegin htext

vOlA3 the program space and the variable space have colided
vobA you do not have enowgh mmmory to execute your program
volSS yowr mmmory is limited to 16k

v0SGendtext

vORBThegin hext

volBl put 16k mmory board in slot (slot)
vOl89 set Jepers in the following pattern
v08%0 Jwper pattern

voist ul 11

vobee 2 10

v0is3 w3 0

voié wh o1

vl s |

vOI%% adévess range for cerd is 4000-7fff

vOlO\ tcardcage (33 , , ,0,0,898,904)

vOi9%om prisitive to limit the mmber of slots in card cage to 8
vO%00if slot .le. 8 skip 4

v001begin htext

v0302 you have exceeded the maxisus musber of allowsdle slots in the
v0%3 cord cage. it is liwited to &

v0904endtont

v0%00e.divide (rslt,argl,arg2i0,8,0,8,0,8: 36,304, 129, 41,0, 305, M6)

v0%06con rosting to divide argl by arg2 and store in rsit
v0%7con tahen from zeks p 137

98

.........................

..........

vO%8begin stext
vd a (Gargl)) joé 13 b3 get dividend

voi0end 2 jla & 1b
vO9i1ld b0 i R &
vO9i2sp o, $+7 i 10t D
v Xpl ila & 1b
v0914inc a tle & b
v091SId h, 080K & | 2
vOitbld o, a mt th bt
vOuTld a ((argd) s 13 B3 get divisor
v0Nland a iln & b
vO5i%p p, 40BN 3 10t 3
v0320cp] U b
v0Rlinc a il & 1]

vOseld ¢, a iia & 1b
vR3ld a 080h 22 &
v0%Rdaor h {ls & b
vwR3ld b, a e At 1b
v032ld a ¢ tls 4t ib
vRNd ¢, a ol tA bl

vO%Buor 2 ot bl clear accumlator
v3291d b, 8 2 7 4 set loop counter
v030r] e = th b2 rotate

vBirla i 4 bl

v0330aub ¢ |t bl trial subtract

vi3r o 3 w3 t12 b2 subtract ok
v0%4add 2, ¢ il ot b1 restore accem, et cy
i3S ¢7 w3 13 R 2 t8 on last loop
v03%ld b, a) N £) bl put resainder in b
vO3371d 8 ¢ il t4 [} gt quitent

wWirla H S 1} b1 shift in last result bit
v0%3%pl s n complement bits
v0obit 7, h i B &

vOM p 2,948 = 1t 3

v0942epl s & ib

vO3inc 2 s & ib

vOS4bld ((rslt)),a 1sé¢ $13 b3 store quotient in rslt
vO4Sendtext

v0946calc

vONTs. divide (rslt,arqgl,arg2:0, 16,0, 16,0, 16180, 1465, 376, 57,0, 947, 1004)
vO%con primitive to divide argl by arg2 and store in rsit

v0Wicom listerslt, argl,argliprecisions:s, t,e,c, i, addr

vOS0bagin stext

vORS1ld), ((argl));Sm 16t b load argl in hl pair

vORRNit 7, h & 8]

vO3331d b0 &= R -]
vOTAp 2, W12 tw 16 D
vORSld o b s & 1b
v0R%cpl e & ib
v557ld by a s & 1
vORSlld o, | s A& fb

99

.................................

............
...........

b e g

vO33cpl jin & ib

v09%60ld 1, a ia & 1

vi%5line b1 T I - 1b

voRi2ld b, 080K = R &

vO9E3ld de, ((arg2))j6m 20t &b load arg2 in be pair

vOIGAbit 7, ¢ 7. I &

v06S1d a, 0 ia N &

vO%86)p 2, $+12 = 1t B

v09%71d a, d s M ib

v0368cpl s A& b

vO969d ¢, a s & 1]

097014 &, # s & b

v097icpl jla & 1b

iRkl e, 2 tle At 1

v0973inc de a6 1b

v097Ald a, 080h &= R]

v0aTxor b s & 1b

vOIT6ex of,af? e &] save sign of rslt

o977l ¢,) s & ib

v09781d a0 jla & ib

vO379l b, 164 &= .

v0%014 hl, 0 i 1t B

vOMLIrl ¢ & 8 [] loop

v0%2rla jle &t Ib

v0983ade h], bl s It &

vO304sbe hl,de i« 1% @

voOOlSr no, 843 s It 2 subwas ok

v0906add hl, de a1t 1 restore accumlator

v09/ccf s & b calc result bit

v0%Bdmz ¢-11 i I 2 mbtonw

vl ¢ i & .

v0990rla sin & b

vo99ld h, a s 4t b

vl I, c a4 15

v09%3ex af,af" e & 1 restore sign of rsit

vO9Ip by $410 3 10t 3

v09%51d a, h jla & ib

v09%6cpl in At i

vo937ld b, a fn & 1b

v099ld &, 1 s 4t 1

vO¥icpl e & ib
vi000ld 1, a jim At 1b o
vi00finc hl {im 6 1b
vi00Bld ((rsit)),hls3s 16t 3b save result o
vi003andtext kg
vi00icalc romptreromptr+80 =~
v100%h, clock (s34 4 40,0,1005, 1028) J

vi006com primitive to create an clock in the ctc chip of the 280 cpu board

v1007begin htext]
vi008 these additional conmections on the cpu board are required to SN
vi009 wtilize 2 of the 3 channels of the ctc chip the ctc chip N

100 :::

A I e MR S e e ATl -2 AL A St i aed i A b Y !-v;-_ DA e PR AR Mt Bae JRte Sian e 4 S e i Bdh T o |

v1010 oparates at 2 shz vice 4 mhz for the 2-80a cpu the following
viol Jumpars will cause channel 0 to be served by the internal 2eh2
vi012 clock and channel 1 to be servad by the output from chamnel 0
vi01l thes for example if charmel O is set up to gemerate a pulse

vi0l4 every 2000 intevmal clock cycles and this pulse becomes the input
vi0lS clock signal to channel 1 then the ret result is charvel 1 is a
vi0l6 downcountar sepplied with a 1khz clock signal

vi017 comnmct J1-20 to ji-12 this comnects channel 0 output to channel |

v1018 inpet clock

v1019 J1-15 to j1-16 gate of channel 0 tied to ground so down
v1020 counter will work

vioes J1-9 to ji-10 gate of channel 1 tied to ground so down
vi022 couter will work

vite3 comnect on wi2

vioed 1-2 internal clock signal supplied to channel 2
v1023 -4 external clock signal supplied to chamnel 1
vites (actually the output from channel 0)

vioe? 910 intermal clock signal supplied to chawnel 0
vi(@Bendtent

vi08%h, keydisplay(ss , , ,6,8, 1029, 1040

vi030com primitive to add the 7303 keyboard display card this prisitive
vi03icom is called by outputport and ingutport the keyboard and
vi032rom digital display featwres are not used only the rocker swithces
vi033com are wsed to control input and the leds to display outpet

viOif heydrd .eq. 1 skip 14

vi033cale heybrd = 1

vi036cale slot = slot + 1

v1037inc] h.tcardcage (32)

vi03fbegin htext

vi039 put first prolog std 7303 keyboard/display card in slot (slot)
viod) conmect the following jusper pins

vi0Ml v
vioe2) ol
vi043 20
vi04h 3

vi0AS disconmact the following jumper pins

vi046 all others

viOA7 address space 11000000, 11000001

viOAdendtent

viOA9s. fingdwait (time:0, 1273113, -5, 18,6, 0, 1049, 1068)

v1050com rostine to delay a fixed pariod of time in increments of Ses
vi0Sicon sax allowed ingut value is 127%es

vi032com as cerrently coded there say be up to 2 10% error in actual
vi0S3rom elapsed time when compared to the input value

vi0SAattr time =(tine) 24000

vi0Sicalc sertch =(time} /3

v1036begin stext

vi057} i

vi088; wait (time) @ (for 2B0a 4 mhz clock) O

] R

vi060ld by (scrtch) (2@ Tt 20 et value of outer loop counter . g
101 -

. ,

Can e eos iy cuse dine Mt aagt Jece duvec S it Jmse fece dnecJige Shavi Anst et tau g Jiest Siet Jue hgu et Jiaiiedn Sinit St Shest e it S, R Bl

vi0811d de, -1 13 10t 3b value by which inmer loop is decremntd

vi0621d h1,800 13 10t b starting couter value for inner loop
vi0&3ad hi,de 3» 118 1b decrement inmer loop

vi06Anop jim At 10 dummy inst. to make inner loop =23t
vi0633p ¢, 42 13n 10t 3b jJusp to of inner loop until hls0
vi066d nz $-8 132 13t8 2b decremsnt outer loop counter until b=0
vi067endtext

vi06Beale romptreromptr + 13

v1069s. issumvent (outnm:0, B:5, 24,7, 8,0, 1069, 1077)

v1070com outputs contents of outra to data port of prolog 7303 keyboard
vi07lcom card data port is dOh value of data sent can be seen by
vi072com examinimg 8 leds on 7303 card, one led for each of 8 bits
vi073begin stext

vi074ld a, ({outrm)) j4a 13t 3b get contents of output variable
vi0730ut (0dOM),a s3m 11t 20 output to data port of 7303 card
vi076endtext

vi0Ticale romptreromptr + §

v1078s. outputport {(outrm, tech:0, 816,29, 8, 14, 13, 1078, 1103)

vi079%on tech is a hold-over from the original csde design

vi080cos it is not used here because the output type of signal

vi08icom is predeterwined by the hardware available, prolog boards
viol2com heybrd is a boolean flag indicating if the prolog 7303 board has
vi0B3com besn included already this primitive sets up the 7303 card
viOBicon 90 that contents of outrm will be output to the single data
viOllicom port, d0h to do this the variable sust first be created then a
vi0B6com comtrol code semt to port dih to write inhibit the digit displays
vi087com any data value that is output will be seen only on the 8 leds
vi0licom o=t and off=0 for each of 8§ bits of the output data value
vi00%com the leds are cleared first in preparation for display of new data
vi0%0if heytrd .ne. O skip 2

v109tincl b heydisplay(ss)

vi0O%ecaic heybrd = heybrd + 1

vi0iiaic resptr = rasptr - §

v10%hegin stext

vi0%Wyeets wp 7303 card so that the contemts of (outmm) will be output
vi0%ory (remptr)

vi097 (oxtra) 1 defd 0
vt0%org (romptr)

vi099d o, 0 i &
vil00out (Odib)ga 2w 1
vilOlowt (OdOMN) .0 3t 2w 1
vil0Bamdtent

viiOdeslc romptr = roaptr + 6

v1106a, inputport (inmam, techi0,810,0,0,13,12, 1104,112%)

vi103com tech is 2 hold-over from the original csde design it is not used
vi106com hore bacause the input type of signal is predeterwined by the
v1107com 7303 lmyboerd/display bosrd ie, a single 8-bit data port since
vi108com no control code is required, only the input storage location is
v110%cm created by this prisitive when sore complex i/o hardware is
vi110com evailable this primitive will require modification

viiiicom innem is where the value available st the single data port, dOh,

R’ & write inhibit the alghanumeric display
it 2> eend it to control port
it 2 clesr all luds

102

viii2oom will be latched

viiidom heybed is a boolean flag indicating if the prolog 7303 card has
villdcon already besn included

vilISif heybrd .ne. O skip 2

vii16inc] h keydisplay(ss)

viliZeale heybrd = Jaybrd 41

villlcalc ramptr = ramptr -1

vi1i%egin stext

vi120; sets wp 7303 card so that value at data port can be

vii2l) read into (inmam) by the primitive s.sensecond

vii2Zory (remptr)

vii&B3(innami: defd 0

viiorg (rosptr)

viiZiandtent

vii26s. sensecond (innam30, 8:35, 129, 37, 44, 0, 1126, 1170)

vi127com pwrpose is to demonstrate ability to ingut data

vii2icom innge is the variable that would normally be the depository
vi129%com of the value present at the single data port , dOh, on the
vi130com 7303 heyboard card for desonstration purposes only the 2
vi13icon rocker switches on the 7303 card are used to control input
vii32com and since they only comrol bits 6 and 7 of the 8 bit(0-7)
vil33cos data port, 2 sms]l conversion routine has been added such that
vil3dcom | of 4 values will be placed in innas depending on the
v1135com positions of the 2 rocker switches the following table

vi136com applies s2(left) sliright) value put in innam

vi137con onlup) on]

vi138com on of f (down} 03h

vi13%om oft on]

vi140con of f off 0th

vildlcon this allows an inget choice of 4 differnt values via the

vijA2ron pro-log rocker switches on the 7303 keyboard display card

v1143begin stext

viléAin a, (OdON) i ™ it 2 data port read for input

viiA3l¢ b2 1 Ia & (b save valwe in b for later

viléGand 110000000 {t & T 20 sask for both switches on

viié7ce 110000000 {t & T 2 check for both switches on

vilelgp z2,8027 § 3 10t 3b if both on then jusp down

vi191d a,b t Ia & 1b get original value again

vit30and 100000000 {20 T 20 msk for left switch on only

viiSice 100000000 12 Tt 2 check for left switch on only

viiiRgp 2,047 i d 108 3B if left on then jump down

vil3lid a0 $ Is & 1b get original value again

viiSAand 010000000 1 & T 2> mask for right switch on only

vi1S3cp 010000000 {1 2@ T 2 check for rt mitch on only

il 2,07 t 3= 10t B if vt on than Jup down

viiSid a1 1 & T 2 both mitches must be off

viiold (innam)),a $ m 13t b doth off, {immam} = Olh

viiTp ¢ t 3 0t 3 jwmp to end of roxtine

viliold a4 {8 Tt b both mitches must be on

vilbild (limmemd),a § W 13t B both on, (innam) = OMh

vilid)p #*16 13 108 B Jwp to md of rotine

103 RN

A
?

1

ta a'a'aed

L SRSt i Jeeve e SviJanti SE i et el Mtk gt SEats St Ak g

V116314 8,3 j & Tt 2 left switch on only

viibAld ((innam}),a t @ 1R 3D left on, {innam = 03

viiip 1 3 10 3 Jup to end of routine

vitibld 8,2 {aa T 2 right sitch on only

vilffld ((imem)),a § 4@ 13t 3 right on, (inmam) = O2h
v1168n0p {Is & 1b end of input conversion routine
vii6endtext

viiTcelc romptrevomptr + 5%

vil71s. stboolwait (top,maxtms 1, -5, 1,10,6, 1171, 1181)

vii7econ primitive to mark top of boolean wait structwre

v117300m top is label for begimning of boolean wait

viiTécon maxts is max tise in milliseconds allowed to check conditions
vi175con betwmen s stboolwait and s.boolwait

vii76attr times(maxtm) #4000

viiTlcall s.ontine ((maxtm):)

vi178begin stext

vi179(top) snop) CJI S) wark top of boolean wait loop
vi180endtext

vil8icalc romptreromptr+]

v1182. boolwait (rsit,top, bot:0,8:22, 13,26, 23, 0, 1182, 1205)

v1183com primitive to check for boolean condition{if true then exit) and
viiBicom read current tise from charmel i of ctc since clock
vi183com continues to downcount past 0000h time interval expiration
vi186com is determined by checking the sign bit of the msb of the 2 byte
vi187com clock time if it is 1 then time has expired and the boolean
vi188com structure is exited rslt is boolean value passed from
v1189com condition being checked top and bot are labels

v1190begin stext

vi1911d a, ((rsit)) DT & get boolean value

vii%and a sl 4 b check if true(ffh) or false(00h)
v1193;p nz, (bot)+3 a1t 3 if true jump out

vi194ld a, 01000001b o Tt channeli+latched read+mode(+hex
vi1950ut (0f3h),a 3= 11t 2 send to control code port
v1196in a, (0f1h) 13a 11t 2b read 1sb

vi1971d l,a iim & 1b save 1sb

v1198in a, (0fth) 30 11t 2b read msb

viinld hya i A b save msh

vi200hit 7,h o= Bt 2 check if counter value has passed
vi20{ H zero ie, become negative
vi202(5ot) s3p z, (top) 3a 10t 3b if counter value still positive
v1203 H ie, bit 7 = 0 then go to top
vi20Aendtext

vi205calc romptreromptr+22

vi206s. call (nam ::3,17,%,7,0, 1206, 1213)

vi207com primitive to call another procedure

vi208com list=proc-nase:espty:storage, time,ext,calc, incl, addr
v1209begin stext

vi2iC; call procedure (nam)

vi2licall @{nam s e 1M B

vi2i2endtext

vi2i3calc romptr=roaptr+3

104

e e e s T N e e T s RN e]

S T e e T . LT . .‘ . . - . .
il LA LA I I P i . W S k‘q.\-‘q:;-s.q_i_s.k-n_~ LI L R VL. LR TN LI . RS e e |

vi2l4s, in {23, 4 49,0,1214,1223)

vi215com primitive to set the tised bleck flag

vi2l6com it is modeled exactly after ltcol ross's s.in in the 8080
vi2i7com realization volumn and is included for cospleteness

vi2ifcom it does not conform to carson's translator output format
vi2i9%om and is not usable in its present form

vi220com the global variable tmblck is supposed to be a flag to indicate
vi22icoms to the cede program that the following primitives constitute
vi222com a timed block within a task

vi23calce tmblok=!

vi224s. ni (s34, , ,3,0,1224,1221)

vi223com primitive to clear the timed block flag

viZ26com same comments as in s.in apply

viZTcale tmblck=0

vi228h, vart (2, , ,0,0,1228, 1242)

vi22%begin htext

vi230 this is a dumsy primitive to remind you to put in the dual uart card
vi23l if you wish to use the nps loading rom. the require setting are as
vi2® follows.

viZ33 set jumpers in the following pattern

vid3h Jumper pattermn

vi233 wi 01

vi23b w2 0

vied? w3 10

v1238 3] 0001
vi239 sy 00001000
vi2d0 address space €0 thru o7
vichiendtext

vi2écom this has to be the last line

105

PP LR A SV Ul YA W S W Y IR TR S THD SR G S N s TN A S S S-S e

‘o .

T p—

APPENDIX F

WORKING CSDL TEST PROGRANM

Thie appendix contains a problem to teat the primitives
that generate a while-do loop. This problem was completely
run through CSDE, from 7<SDL problem statement to operating
program on the Pro-log microcomputer. The files listed
below are unedited except for the primitive list, where the
value of max loop count was moved from ‘s.whilecon’ to
‘s.whilestart’. Thaey are, in order, the CSDL problen,
primitive list, application timing file, symbol table, CSDE
software ocutput, CSDE hardware output, and CSDE debug file.

GSDL _Problem

IDENTIFICATION
DESIGNER : "BOB VOGEL"
DATE : "02-07-85"
PROJECT : "WHILE DO CONTRUCT TEST"

DESIGN CRITERIA
METRIC FIRST;
VOLUMES 1;
MONITORS 1;

ENVIRONMENT
INPUT: ARG1,8,TTL; END INPUT;

OUTPUT: LIGHT,8,TTL; END OUTPUT;

ARITHMETIC: EACH1,8; EACHS,S8;
END ARITHMETIC;

PROCEDURES

FUNCTION EACH1:

BINARY,1:;

EACH1:=0;

SENSE (ARG1):

IF ARG1<=2 THEN EACH1:s-1; END IF:
END EACH1:;

106

S
[PPSR

..................

.......

13. Pro-Log Corporation, STD Bus Technical Manual and
Broduct Cetalog, August 1982.

14. 2aks, R., Programming the 280, Sybex, 1982.

135. Pro-Log Corporation, 7303 Keyboard/Display Card Uger’s
Hanual, 1981.

16. Lipschutz, S., Essential Computer Mathematics, McGraw-
Hill, 1982.

@
A !
IR R I A B
y

.‘.'- 1] Al

120

.;“ .'.l'-.'.'..' .

e . e T B T T I TP T N L IS S NP VO TR L et .
i 2 e R I O RS LIPS SR VP L Vi WP SR il il il WP S WAE WSl oo WAT Wl DR, R P WA W WA L S W “

10.

11.

12.

LIST OF REFERENCES

Booch, G., Software Engineering With ADA, Benjamin/
Cuamings Pub. Co., 1983.

Boeha, B. W., "Software Engineering: R & D Trends and

Defense Needs," Research Directions in Software
Iechnoloay, 1977.

Altman, L. and Scrupski, S. E., editors, Applying
Microprocessors, McGraw-Hill, 1976.

Ross, A. A., Computer Aided Desiqn of Microprocessor-
Based Controllers, Ph.D. Thesis, University of
Cealifornia, Davis, 1978.

Lawerence Livermore Laboratory Report pre-print UCRL-

78651, dicated R T
control Sytems, by M. N. HMatelan, 21 Aug 1976.

S.ith, J!‘., T. Jo' a t - 0

M.S. Theais, U.S. Naval Postgraduate
School, Monterey, California, March 1984.

c.t..l, Ac J.. (=) 8 - d

Realization Library for the Control Syvstem Design
Environpent, M.S. Thesis, U.S. Naval Postgraduate
School, Monterey, California, June 1984.

Carson, T. H., An_Input Translator for a Compuyter-
M.S. Thesis, U.S, Naval
Postgraduate School, Monterey, California, June 1984,

Riley, R. P., Control Jystem Design lLanguage

Inplepentation of a Gas Turbine Starting Controliler,
H.S. Thesis, U.S. Naval Poatgraduate School, Monterey,
California, June 1984,

Lawrence Livermore Laboratory Report UCID-17318,

Nethodology and Plenning for e Microprocessor-Orjented
by M. N.
Hatelan and R. J. Saith,II, 4 November 1976.

Zaka, R., H
Microprocessors, Sybex, 1981,

Poole, J., The CSDE Network, M.S. Thesis, U.S. Naval
Postgraduate School, Monterey, California, March 1985.

119

e ISR
Sor e

e
. .:v". N . t
et !

ey
s

a1
. e

D e A A

[UG S LIPS G Wy

10.

Syntax error messages must be made easier to understand.
An example is the message “expected symbol list
follows*, where the expected symbol list that follows is
a meaningless string of letteras and other characters.

CSDL and the Translator should be modified to allow more
than one expression between s.stboolwait and s.boolwait
when a boolean wait construct is specified by a
designer. This would make it possible for the

condition being checked during a boolean wait, to
change.

118

section and precision for integer variable
nust be moved fros argument section to
criteriea section

current:

s.waitleasat (©T01,8:500)

should be:

a.waitleast (@T02,0T01,805,806,500,13500:8,8)
1 2 3 4 S 6

-- variable to be used for loop counter
-=- variable containing integer result
-- top label

bottom label

-- time period

-- max allowed time period

CABWN-
'
'

Translator code should be modified to handle time units
less than milliseconds since CSDL allows time units as
small as nanoseconds.

Consideration might be given to modify the Translator to
handle fractional numbers vice just integers.

Primitives in the Realization Volume would also require
modification if this were implemented.

The Translator’s decision point for specifying 16 bit
constants vice 8 bit conatants should be between 127 and
128, not the current 128 and 129.

The Translator should be modified to alwaya specify an 8
bit precision for the boolean variasble in a relational
primitive, such as s.eq, regardlesa of the precisions
specified for the other arguments.

Variables specified as type DUPLEX must be usable in
the CSDL statements, SENSE or ISSUE. Currently the
Tranalator genearates syntax errora if this is attempted.

The primitive, s.not, can not be produced by the
Trenslator even though it ia a valid primitive according
to Cerson, author of the Translator.

If the CSDL statement for a <SIMPLE DO> is placed in the
contingency list section of a CSDL problem, the
Tranalator generates ayntax errors. An example is

‘DO MANUAL 4’, which means the task MANUAL, is fourth in
priority relative to other tasks listed in the
contingency list section of a CSDL problenm.

117

D s o e e e e e B e e e s S M T S A S e Al S e e e Ak R Ak Sub ou Sne Sae AN M s S

APPENDIX G
SUMMARY OF TRANSLATOR ERRORS

This appendix contains a sumnary of Translator errors.
These errors are discussed in detail in section III.C. and
section IV.B. If the Translator undergoes maintenance in
the future, manual editing of primitive lists cen be
eliminated during the course of developing controller
realizations.

1. Format errors relating to specific primitives:

s.fixedwait -- colon muat be present after time value
current:

a.fixedwait (100)
should be:

s.fixedwait (100:2)

s.forcons -- value for max loop count must be moved

from criteria section to argument section
current:

sa.forcons (COUNT,@0C02,8C04,903,904:8,8,8,120)
should be:
s.forcons (COUNT,9C02,9C04,903,004,120:8,8,8)

s.whilestart and s.whilecon -- value for max loop count
aust be moved from s.whilecon to s.whilestart
and correct precision placed in s.whilecon
current:
s.wvhilestart(#03:)>
s.whilecon (@TO1,@04:4)
should be:
s.whilestart(€03,4:)
s.whilecon (0T01,904:8)

s.stboolwait and s.boolwait -- time period should be moved
from s.boolwait to s.stboolwait

current:

s.stboolwait (003:)

a.boolwait (@T01,803,804:8,1700)
should be:

s.stboolvwait(903,1700:)
s.boolwait (@TO01,003,804:8)

s.waitleast -- many new arguments should be added and CSDL E?ﬁi
requirea modificetion; time period must be e
noved from criteria section to argument

116

1 h] ot

note mmbariag is from left to right and from top to bottos.

address space 0000-7f
connact poarsupply to card cage

put first prolog std 7303 keyboard/display card in slot 2

connect the following jusper pins
xb
y4
20
2
disconnect the following jumper pins
all others
address space 11000000, 11000001
put 16k memory board in slot 3
set Juspers in the following patterm

Jusper pattermn
)| 11111
L 10
w3 0
w 01
] 1

address range for card is 4000-7fff

Y8 UR28BBPIRRPERDY

1 this realization consumes 0.000 watts of power

contaings O chips.

Debug file

CAD80O, Version 1.3f, Feb. 8,

1985

error! funmap detected no colon in primitive

37s.fixedwait (250)

funmap forcing colon into primitive

s.fixedwait (23502)

error! funmap detected no colon in primitive

448 .fixedwait (S00)

funmap forcing colon into primitive

s.fixedwait (S0032)
1 this realization consunes
and contains O chips.

2 errors in cad80, result = O

115

0.000 watts of powver

PRI TR

&03: defd ! jreserve one byta for data
@04t defd & ;resarve one byte for data
€03t defd 7 jreserve one byte for data
org BTN 18 bit variable ®t01 in res
ROi: defd 0 om O 1b
ory 16828
$ sgonitor sactions
Ospvarinop iie &t 1b mark top of the polling loop
call feach! % I test for contingency sachi
1d a,(eachi) 4 13t get contingency result
cp 111111150 im & 1b check if result true
call z,fonlita ;5@ It 3 if true sxecute task
$§if not true get next tabent or tabend to loop
tall Goachl 5w IR 3 test for contingancy eschd
1d a,(eachd) ;@ 13t 3 get contingency result
cp HMIIILD jim A ib check if result tree
call z,foffit 5 I b if true exscute task
$if not true get next tabent or tabend to loop
call GeachS (5 I test for contingency sachd
Id a(eachS) jam 13t 3 get contingency result
cp 11111111b jlm 4% 1b check if result tree
call 2,0offlt ;5@ It b if tree execute task
$if not true get next tabent or tabend to loop
Jp Sspvar 380 to the top of the polling loop of sonitor table
§ this space is deliberately void. this is a dumsy privitive.
3 this space is deliberately void. this is a dumsy primitive.
8i0:Jp Gspvsr ;3m 10t 3b initialization of hardware is complete
3 start top of main momitor loop
end send of software listing ready for assemby

SINNTERURRCRREBYBUNDORRIBEIEITE

Hardvare list
CRDBO, Version 1.3f, Feb. 8, 1965

put 2-80 cpu board in slot 1 s 1
memex high 1 2
set Juspars in the following pattern $ 3
Juper pattern 4
e 010 ;3

LY 001 ;] 6

w 010 3 7

] 1 1 8

w 001 t 9

wl o ;s 10

w 110 s 1

) im ;12

w0 | 1 13

wi2 101010 } 14

w3 10 ;19

ni 10 1 16

114

Id & lii118iths2m 7%

P h W
cpl iin
Id (#t01),2 (4

1d &, (R01) ;m
ad a

Jp1,0M3

iin

2 result falme argl)= arg2

it

L b result tree gl 1t a2
x D
13t 3 get boolean valwe

4t 1b chack if treeiffh) or false(O0h)
106 3b if false jusp out of while-do loop

1d a, (light) j4a 13t 3b get contents of output variable

out (0dOh),a

1d a, (light) 13t
1d hi, 002 ;10
add 3, (h1)
P03 i
e ¢8
1d a,01111111h;2n
p #5 i3
1d a,10000000b ;2
1d (#t01),a ;13
1d a, (0t01) jém

1d (light),a jéa

i3 11t 2b output to data port of 7303 card

4n 3b store argl in accusulator

3a 3b have hl point to arg2 byte

om 1b add accumulator with argd
10t 3b if no overflow store result
10t 3b if carry the saximize sines rsit
Tt 2b put in largest positive value
10t 3b
T 2h put in largest negative value
40 3 save result of add in rsit
13t D asign RO1

13 3 to light

BESRA

W WO DO WS WO WO WY WO P DS B We WO WE WO W WS me

}
1 wait 2350 s (for 200a 4 shz clock)

]
WHS @23 Tt 2 set valus of owter loop cownter

BEREREREEEEERETEREE

14 de,-1 j3a 10t 3 value by which inner loop is decremmtd; 219
1d h1,800 3 10t X starting couter value for inner Joop § 220
add hl,de i3 i1t 1b decresant immer loop § 21
~op i & 1b dumsy inst. to make inmer Joop 223 ; 222
Jp o, 8-2 3 10t 3b Jemp to of inner Joop until hlw0 } 223
dnz -8 (32 13t 2> decremert outer loop comvter wntil be0; 224
Whp®3 ;3 10t 3b jump to top of while~do loop § 225
ret 10t b retwn to sonitor,exit onlita ; 26
sprocedure of fit K44
fPoffitinop jla & 1b entry point for of flt] 28
Id 2,(0c0) (@ 13t assign 0c01 129
Id (light),a 48 13t 3b to light ;1 20
1d a,(light) ;4= 13t 3b pet contents of output variable } &3
out (0dOh),a 13n 11t 2 outpet to data gort of T3 card y 2%
i j 283
3 wait 500 ss (for 2802 4 mhz clock) $ 234
} 1285
ldb,100 2» 7t 2b set valee of owter l00p comber } 236
1d de,-1 13 10t 3b value by which inner loop is decremntd; 237
1d h1,800 (3 10t 3 starting couter valee for inmer locp ; 238
add hl,de 3 11t 1b decremant imer loop 1 239
nop tila 4% 1b dummy inst. to make inmer loop =25t ; 240
Jp g, 82 3 10t 3 jump to of imer loop wntil hiv0 } 24
djnz ¢-8 $3m2 13t8 2 decremat outer loop cownter wntil bm0; 242
et 3 10t 1b return to sonitor, it offit 1 23
&01: defd O ¢reserve one byte for data § &M
002: defd 2 jreserve one byte for deta L]

113

...

..
..................................

...

1d a b e & b 1%
ada fla & 1 st sign flag of aryl -]
4 a ¢ s & 10 restore argl to accumlator 146
KB = I D wplreggse W
1 ailiitiligee W & wglc-agd=etree 149
r e i 122 B

cp b i & 1

Id aitiiitiien N B remit falee oyl)= g

o ™ 2 16 B

opl e & I remit tre gl It g

Id N0}),ate IR B

1d a, (0t01) j4m 1R 3> branch to 002 if M1 is tre
cp0 i@&a nRd

w0 BRIk D

Idaiicol) @ IR B losd argl in cooumlster
Idhl,e03 0 18 B point bl to argt

seb (h]) 1> "R 1t oyl - o

Wpo,03 a 18R 1° 0o everflen slere resuit
Jbeo 0 1@ 10t X if corvy the anisize sims relt
Id &0111111102n N 2 put in lorgast positive valw
» 3 10t »

1d 2,100000000 22 7t 2 put in lorgest vepetive vale
1d (M01),a 1R 4 D save remit of ald in relt

Id 2,(0t01) ;@ 1R B asign 0401

Id (sachS),a (@ 11X B te ol

02: nop § afine locetion 002

ret (i 10t 1 retem to semiter,euit eachS
jprocedure onlita

fonlitaz nop ln & ib entry point for omlita

Id 4,(0c03) (0 I1X D asign 0003

Id Qight),a @ 1% B to lignt

03:n0p jla 4t 1b top of vhile-do-loop

Id allight) @ 1R D if argl lo arg2 then reltstth
b a s M 1 eergl

1d 2,(0c08) 4 I1X

Id ¢ a i & 1 cuarg?

and 2 sla & 1b st sign flag of arg2

b p#13 (i 10t B jwp if arg2 is positive

Id & b fin & 11 agRs-

and a e & 1 oot sign flag of argl

Id & ¢ il At ib restore arg2 to accwmiator
oo 7 3= 10t argl = - arg = -~ conp baclenrds

W WP e WO WO WO NP WE GO B @O B GBS W@ @O GF GO WP @GP GO @S A @GP WO @ GO @6 AP G0 W @ W @ WS G5 6 G W @0 GO W0 G G G
BPEREEBIFITIANIFINSIECERETERECEUGNOPEREES

Id a 0 7. B D wglsraps-filn 1%
r #13 o 12 2 187
1d %4 b jis 4 i] ; 108
and a s & 1b sat sign flag of ary) 1 109 AR
d s ¢ jin 4t b restore arg2 to acowmlator 1 19 A
o B 3 1t D aglzrap@se 1 19 SN
1d ailliitiibim 7t & mls-wRs=+trm ;1R -.'_'_-.::
r e i 12t & 193 AR
b s & b § 1% .
112 o
R

e, e
»e 13
1d a,01111111b2m

» &3 x|
1d a,100000000 ;2»
1d (R01),a 1R
1d & (0401) ;4
1d (eachi),a ;éa
®l: nop

ret 3=
{procedure eachd
GeachS: nop iis
14 a, (0c01) j4m
Id {eachd),a jéa
in a, (0dOR)

Id bya

and 11000000b

cp 11000000b

0 2,027

Id ad

and 10000000b

cp 10000000b

I 2,4

1d a,b

and 01000000b

cp 01000000b

Ip 2,027

id a1

1d (argl),a $
Ip 24

Id a)4

Id (argl),a H
Jp $+16

Id 2,3

1d {argl),a {
Jp $4

1d 3,2

1d (argl),a 1
nop

1d a largl) j4a
Id b a jla
10 a (0c04) jéa
e a in
ad sis
» a3 =
Id a b jle
ad a tle
da c $in
8 #7 =
Id o O e
r i3 x|

10t 3 if no overflow store result

108 3b if carry the muisize simes rslt

7t 2b pet in largest positive valwe

10t 3

Tt 2d put in largest regative valwe

4 3b save result of add in vslt

1 assign ®01

13t D to machi
3 define location €01

10t 1o return to sonitor,exit eachi

L 1b entry point for sachS

1x assign 001

13t to eachd

data port read for inpet

save value in b for later

mask for both switches on

chack for both switches on

if both on then jump down

ot original valwe again

mask for left switch on only

check for left switch om only

if left on than jJump down

gt oviginal value apain

mask for right suitch on only

check for rt switch on only

if rt on then jJump down

both switches wust be off

3b both off, argl = 01h

Jusp to end of routine

both switches sest be on

132 3 both on, argl = 04

Jump to end of rowtine

left mitch on only

1% 3 left on, argl = 0N

—
—
-

-

S ISINISIIETINZ

PRSP RPEFRFDPDPER
PR RBFYDBED

13

P
38 =3
LX)

ey

b el bl S
v

3 10t D jwmptoend of rostine
&a T 2 right sitch on only
1% D right on, argl = 0@

fs & 1b end of input conversion routine
1 » if argl lo g2 then rslt=ffh

® 16 bmargl
13t B

it b cearg2

L] ib sot sipn flag of arg2

I D yep if arg? is positive

] b s -

L ib set sign flag of argl

® b restore arg2 to accumulator

et argl = - arg = - comp backwards

n 2 gl =+ R = - falme

it a

111

288893RALY

b Qi G puis guin
e8R

$ 105

ROTCHRCCEEBSROBERESE

23Ed

@O GO WS GE W wa WO WO WO WS WO WO WS W BDE We WE Wo WP We WO WG WE W
»
=3

b gt Pub gua It gua Pt pub PP Gun D=0 Gun NS Gua Bun

&R

P P ey vy LS Sl S bh Ml T s o e et TR Y

cp 11000000b aa Tt 2 check for both switches on
I 2,087 3 10t 3 if both on then jump down

1d a,b im 4 1b get original valee again

and 10000000b 2a Tt 2b wmask for left switch on only
cp 10000000b &2 Tt 2 check for left switch on only
ip 3,927 3 10t 3b if left on then jump down

Id a,b is &t b get original value again

and 01000000b 22 T 2b smask for right switch on only
cp 01000000b Tt 2 check for rt switch on only
Jp 2,7 10t 3 if rt on then jump down

Id a,! 7t 20 both switches must be off

1d (argl),a H
Ip $24
Id a4
1d (argl),a H
Jp #+16
1d 3,3
Id (argl),a 3
Jp 48
Id a2
1d (argl),a 3

13t 3b both off, argl = Oth
10t 3b Jusp to end of routine
Tt 2b both switches must be on
13t 3 both on, argl = Odh
10t 3b jump to end of roxtine
T 2b left switch on only
13t 3b left on, argl = 030
10t 3b jusp to end of routine
Tt 2b right switch on only
13t 3b right on, argl = 02
nop la & 1b end of input comversion routine
Id alargl) 4@ 3¢ 3 if argl le arg2 then rslt=ffh
Id b, a i A 1b b=argl
Id a,(0c02) 4 13t 2
Id ¢, 2 e &t ib crarge
ad 2 sl 4t ib sat sign flag of arg2
I P13 = 10t Jump if argR is positive
1d a b iin & ib g = -
ad 2 s & 1b set sign flag of arql
d & ¢ im A 1b restore argR to accumlator
Jpom 7 3 100t argl = - arg2 = - comp bacimerds
1d a 0 & Tt] argl =+ g2 = - false
Jr #13 i 12t
1d a, b i & 1b
ad 2 in M 1b sat sign flag of argt
1d a ¢ in M |] restore arg? to accumlator
o #1 m 108 b s argR=e
1d aftl1111ttdbi2e R & argl = - arg2 = + trus
jr 9 i 12t &
cp b HU 1b
&
3
]

-.‘-.-- ‘----‘..-- ‘-.-.-....-..-....--..-o-
Py P P _PF¥FP

Id a11511151bs2m Tt

P phH W @ 10
epl s M

Id (MOl),asém IX 3
1d a, (M01) ;4m 13t 3b branch to 001 if @01 is tree

cp 0 i Tt 2

i 01 ;ait

1d 2,(001) @ 13X B load argl in accumlator
ldhl,0c03 m 10t I poinmt hl to arg

sub (hl) ton nt 1 argl - argR

result false argl)= arg

result true argl 1t arg2

28BS RAPERESUASIFIAIANNICEARETERSIEARVUPITBL2SSEIE&EEER

110

S.CONS (€8C01:0,8)

S.CONS (0C02:2,8)

S.CONS (8C03:1,8)

S.CONS (8C04:4,8)

S.CONS (8C05:7,8)

sScftware output

i i
H zilog 2-80 based systemm i
i i
i i
i L
i i
i i
i i
.20]
aeg }
org 32735 jram poimter is pointing to top of memory - stack §
Ostaldefs 2 1 32b define stack ares }
ory 16384 thegin code after reserved interrupt area]
fcoldsid sp, Outaksd2 = 10t D initislize stack point;
di s At 1b disable saskable imterrepts)
Jp 0 3= 10t do hardware initializations 1

1 sats up 7303 card so that value at data port can be

3 read into argl by the prinitive s.sensecond

org 32734

argls defb 0

org 16391

ssets up 7303 card so that the contents of light will be output
org 32733
light: defb 0
org 16391
lda, 0 -
out (Odth),a ¢ 3= It 20 send it to control port
out (0d0h),a 3@ 11t 20 clear all leds

org 7R 18 bit variasble eachi in ram

sachi: defb 0 0m OF 1b

org 1639

org 32731 38 bit variable sach3 in ram

oachS: defb 0 0m Ot 1b

org 16397

sprocedure eachi

Geachis rop ln & 1b eniry point for sach!

1d a,(0c01) $hm X 3 assign €01

Id (eachl),a 4@ 1% 3 to euchl

in a, (0d0h) i 3 11t 2b datas port read for input
id b,a § Im & b save value in b for later

and 11000000 {t & Tt 2 weask for both switches on

109

" 20 write inhibit the alphanumeric displa

ZZPEYPBLERLSEIBIRRZIBBES

BRESvavocasrwm -

19s.proc CEACHS?)
20s.as8ign (EACHS,0C01:1,8)
21s.sensecond (ARG1:8)

22s.le (@TO01,ARG]1,8C04:8,6,8)

23s.Japf (@8T01,802:8)

24s.8udb (@T01,0C01.9C03:8,8,8)

25s.assign (EACHS,8T01:1,8)

26s.l0c (802:)

27z .exitproc (EACHS:)

28t .generated for: ONLITA RN RNNNNNNENNNNNS
29s.proc CONLITA?)

30s.assign (LIGHT,€C03:8,8)
3ls.whilestart(€03,4:)

32s.le (@TO1,LIGHT,9C05:8,8,8)
33s.whilecon (8T701,804:8)
3¢s.issuevent (LIGHT:8)

3%s.add (OTO1,LIGHT,9C02:8,8,8)
36s.as8ign (LIGHT,8T01:8,8)
37s.fixedwait (250)

388 .whend (003,004:)

39s.exitproc (ONLITA:)

40t .generated for: OFFLT YT YT Y YYY
41s.proc (OFFLT?)

428 .8s8ign (LIGHT,€C01:8,8)
43s.issuevent (LIGHT:8)
44s.fixedwvait (300)
4Ss.exitproc (OFFLT?)

YOOV OUTOUTUTUY VYUV OOUUUVUUUY VYU ODUTY

46t .generated for: SYSTEN SENSEEBSNNENNEENS
47s.cons (9C01,0:8)

48s .cOns (8C02,2:8)

49s .cons (@C03,1:8)

S0s.cons (8C04,4:8)

Sls.cons (@C0S5,7:8)

S2s.var (0T01:8)

Applicatijon timing file
A 1 :EACH2 SONLITA tNS:1600, o, 0, 0, o
A 2 SEACHS sOFFLT :NS:1600, 0, 0, 0, ()
Syabol table

3. INPUTPORT(ARG1,TTL:8)
S.OUTPUTPORT(LIGHT,TTL:8)
S.VARIABLE (EACH1:8,0)
S.VARIABLE (EACHS:8,0)

S.LOC (@8012)
S.LOC (@9023)
108

ety S et e e
wnibntusinainfulnddaiiatningalnte:

W W T W T T W

WOOVUVVOVUVUVVVOUVOVUOY

W Ry~ Pt il I S R S-S0 g A A A}

FUNCTION EACHS:

BINARY,1;

EACHS:=0;

SENSE (ARG1);

IF ARG1<=q9 THEN EACHS:=-1; END IF:
END EACHS;

TASK ONLITA;
LIGHT:=1;
WHILE LIGHT <= 7 : 4 DO
ISSUE (LIGHT);
LIGHT:=LIGHT + 2;
WAIT 250KMS;
END WHILE;
END ONLITA;

TASK OFFLT;
LIGHT:=0; 1ISSUE (LIGHT);
WAIT SOONS;

END OFFLT;

CONTINGENCY LIST
WHEN EACH1 : 1600MS DO ONLITA;

WHEN EACHS 1600MS DO OFFLT:
END
Brimitive list
lt.generated for: SYSTEM (XTI YT Y Y Y VY Yy Yy
28 .MAIN (s:
3d:FIRST : 1: 1:
48.inputport (ARG1,TTL:8)

Sa.ou
6s.va
7a.va
8t.ge
9s.pr

tputport (LIGHT,TTL:8)

} o (EACH1:8,0)

5 (EACHS:8,0)

nerated for: EACHL (I XXX YYYYYY Y
-1 (EACH1?)

10s.assign (EACH1,0C01:1,8)

lls.sensecond (ARG1:8)

12s.1le (@TO01,ARG1,@C02:8,8,8)

13s. mpf (@TO1,901:8)

l14s.sud (@T01,8C01,0C03:8,8,8)

15s.assign (EACH1,@8T01:1,8)

16s.1loc (@01:)

17s.exitproc (EACH1:)

18t.generated for: EACHS ShRNunEnnsannaen.

107

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexandria, Virginia 22314

Library, Code 0142
Naval Postgraduate School
Monterey, Californisa 93943

LTC Alan Ross, Code S2RS
Naval Postrgraduate School
Monterey, California 93943

Prof. Herschel H. Loomis, Code 62LN
Naval Postgraduate School
Nonterey, California 93943

LT Robert R. Vogel

C/0 Fowler

2483 Trentwood Blvd.
Orlando, Florida 32812

Computer Technology Programs Office
Code 37

Naval Postgraduate School

Monterey, California 93943

121

No. Copies
2

e o e

. -
— -

- -

