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Abstract 

The usual assumption in multivariate hypothesis testing is that the sample consists of n 

independent, identically distributed Gaussian p-vectors. hi this dissertation this assumption 

is weakened by considering a class of distributions for which the vector observation are not 

necessarily Gaussian or independent. This class consists of the elliptically symmetric laws 

with densities of the form f{XnXp) = g(tr(X - Af)'(X — AtyZT1). The following hypothesis 

testing problems are considered: testing for equality between the mean vector and a specified 

vector, lack of correlations among different sets, equality of covariance matrices and mean 

vectors, equality between the correlation coefficient and a specified number, and MANOVA. 

For each of the above hypotheses, invariant tests and their properties are developed. These 

include the uniformly most powerful test, the locally most powerful test, admissibility, and 

null and non-null distributions. Further, under the assumptions that g(-) is continuous, each 

element of the covariance matrix of X is finite, and the null hypothesis is scalar-invariant, it 

is shown that the usual normal-theory likelihood ratio tests are exactly robust for the null 

case under this wider class (i.e. the likelihood ratio tests, sampling from this general class, 

are the same as the usual normal-theory likelihood ratio tests and their null distributions 

are the same.) 

IV 



Chapter 1 

INTRODUCTION 

The usual assumption in multivariate hypothesis testing is that the sample consists 

of independent and identically distributed Gaussian vectors. In this paper we consider 

the more general hypothesis testing problem when the sample observations, not necessarily 

either Gaussian or independent, are from the family of multivariate elliptically contoured 

distributions. 

The elliptically contoured distributions on the n-dimensional Euclidean space 92" are 

denned as follows. If the characteristic function of an n-dimensional random vector x has 

the form exp(tV/i)^(t'E*t), where /i :  n x 1, E* :  n x n, rank(E*) = *, E* > 0, and 

<t> € $k — { $ I H') is a function such that $(t\ + Mf) is a characteristic function on 

38*}, we say that x is distributed according to an elliptically contoured distribution with 

parameters ft, E*, and <j>, and write x ~ £?(7n(/i, E*,^). 

Elliptically contoured distributions have been extended to the case of matrices by 

Dawid (1977, 1978), Chmielewski (1980), and Anderson and Fang (1982b). 

Let X, M, and T be n x p matrices. We express them in terms of elements, columns, 

and rows as 
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X= (xij) = (xi,...,xp)= j    :    |,    x = vecX', 

Mi) 

M = (wl) = (/ii,..., Pp)=       i    |,    *i = vecM*, (1.1) 

T = (*,7) = (t1,...)tp)=       :       ,    t = vecT', 

where x = vec X' —'  (xL»,...,xj* J with the corresponding meanings for /i and t. 

If the characteristic function of a random matrix X has the form 

exp (»XXW 1 * (*(i)=i*W.-.*W=-*w) . (1-2) 

with Ei,... ,E„ > 0, we say that X is distributed according to a multivariate (rows) ellip- 

tically contoured distribution (MECD) and write X ~ MECnXp (M; Ei,..., En; 4).- In this 

paper we consider only the subclass of MECD in which the function <f> satisfies 

Hh,---,tn) = <p{h + ••• + *„). (1.3) 

We continue to denote MECD in this subclass by MECnxp (M;Ei,...,E„;4) and <p by <j>. 

When /«(!) = /i(2) = ••• = /i(n) = p and Ei = ••• = E„ = E, we write X ~ 

LECnXp(ii, E, <j>), and if the density of X exists (in this paper, this is the usual assumption), 

then it has the form 

\E\-l*g{trirlG), (1.4) 
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where G = D"=i (*(/) " /*) (*(» - /*)'• 

Let u(') denote a random vector which is uniformly distributed on the unit sphere in 

38* and Qq (||t||
2) denote its characteristic function. Schoenberg (1938) pointed out that a 

characteristic function ^ € <bq if and only if 

*(*)= /°°n9(*r2)(fF(r) (1.5) 

for some distribution function F on [0, oo). 

Throughout X — Y means that the random matrices X and Y are identically dis- 

tributed; rank(A) denotes the rank of the matrix A. 

Cambanis, Huang and Simons (1981) obtained the following two properties : 

(i) x ~ ECn(n, E*, <j>) with rank(E') = k if and only if 

x4=p + RD'ulk), (1.6) 

where R > 0 is independent of u^, E* = D'D is a factorization of E* (i.e., D is a Jfc x n 

matrix and rank(D) = k) and the distribution function F of R is related to ^ as in (1.5) 

with k substituted for q. For convenience we denote this relationship by R *-* <f> € $*. Here 

x — y denotes that the random vectors x and y are identically distributed. 

(ii) Write uM = (uj    , Uj    ) > where u[n' is m-dimensional column vector (1 < 

m < n). Then (U}B), u<n)) t (oM, (1 - i&J *«<»-»>), where «„,„(> 0), uM, and 

„("-»») are independent, and #*,„ ~ Beta(f, *=£*). 

Anderson and Fang (1982b) pointed out that X ~ MEC„Xp (M; Ei,..., E„; ^) if and 

only if x = vec X' ~ ECnp(p, V, <f>) where V is a matrix with diagonal blocks £,-, t = 1,..., n, 

and off-diagonal blocks 0, and /i = vecM'. So it is easy to see that if X ~ LECnxp{n, E, <f>) 

and rank(E) = I then 

X £ inli' + fiUD, (1.7) 

where 1„' = (1,1, • • •, 1), U : nx L, vecU = u<n'>, D : Ixp, D'D = E, and R *-• ^ G $„*. 
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When E > 0, X ~ LECnxp{l*,E, 4) w»*b H*) — e3CP(_2*) ** an<^ on*y ** x(;)> i — *» • • • > n> 

are i.i.d. iVp(/i,E). (This implies that sampling from a multivariate normal distribution is a 

special case of sampling from the family of multivariate elliptically contoured distributions.) 

There are three definitions to be emphasized here : 

(i) The Dirichlet Distribution Dm{pt, • • • ,pm-i;Pm)- 

If y = {Vi,' • • i VmY i» a random vector with 52^1 yt = 1 and (yit • • •,|fm_i)' has the 

density with pt- > 0, t = 1,..., m, 

/ro(*l>* ••,*m-l) — 

U 

* = 1, •••,m-l, 

otherwise, 
(1.8) 

we say that (tfi, • • •,ym-i)' ~ #m(pi, • • • ,Pm-i;Pm). 

(ii) The distribution MG^+^E; ** • • •, **; ^; ^). 

If X = (Xi', • • • ,X*+i')' ~ LECnxp{0,E,<l>) with E > 0, then we say that (W(1), • • •, 

W(m)) ~ MG^E;^,---,^;^;^), where Ww = X,'X,-, • = 1,...,*, X,, .' = 

1,..., ife + 1, is a n,- x p matrix, p < n,- < n, * = 1,..., Jfe, n^+i > 1, and Sfci n» = n- 

(iii) Majorization (x -< y). 

For x, y 6 98", x -< y ( y majorizes x), if 

' E*=i *W ^ E*=i Vtiji    * = 1,. • •, n - 1; 

(1.9) 

where XM, * = 1,..., n, is the arrangement of a,-, t = 1,..., n, such that a^j > • • • > i[nj. 

In this paper invariant tests, sampling from the family of multivariate elliptically con- 

toured distributions, are discussed. Chapter 2 develops some general results in finding the 

distributions and power functions of various test statistics. Chapter 3 discusses invariant 
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tests in multivariate regression models and their properties including admissibility. Chap- 

ter 4 studies an invariant test for equality between the mean vector and a specified vector, 

shows that the generalized T2-test is the locally most powerful invariant test under some 

regularity conditions and is also the only admissible invariant test, and discusses the mono- 

tonicity of the power function of the generalized Tatest. The invariant tests for testing 

various hypotheses and their properties are studied in Chapter 5. The following hypothesis 

tests are considered : lack of correlations among different sets, equality of covariance matri- 

ces and mean vectors, known correlation coefficient, known partial correlation coefficient, 

and zero multiple correlation coefficient. 

Anderson and Fang (1982c) considered maximum likelihood estimation and the like- 

lihood ratio test. In Chapter 6 we assume that X has a continuous probability density 

function, each element of its covariance matrix is finite, and the null hypothesis is scalar- 

invariant. It is then shown that the usual normal-theory likelihood ratio tests are exactly 

robust for the null case under this wider class (i.e. the likelihood ratio tests, sampling from 

this general class, are the same as the usual normal-theory likelihood ratio tests; and their 

null distributions are the same.) 

Anderson and Fang (1982a) derive the distribution of a quadratic form for the central 

case for the family of multivariate elliptically contoured distributions. Chapter 7 evaluates 

its non-central distribution. 



Chapter 2 

GENERAL RESULTS FOR MULTIVARIATE 
ELLIPTICALLY CONTOURED 
DISTRIBUTIONS 

In this chapter two general results for multivariate elliptically contoured distributions, 

used in later chapters, are derived. The multivariate normal distribution is a special case 

of a multivariate elliptically contoured distribution, but the distribution of a certain class 

of specified functions of the multivariate normal distribution is the same as that of the 

multivariate elliptically contoured distribution. Based on this fact, if the test statistic is 

one of the above specified functions, the power of this test remains the same as in the 

multivariate normal case. 

2.1. The distributions of certain specified statistics. 

Anderson and Fang (1982b, 1982c) proved that the null distributions of the likelihood 

ratio statistics for testing lack of correlation between sets of variates, equality between 

the mean vector and a specified vector, equality of covariance matrices, equality of several 

means, and MANOVA in the family of multivariate elliptically contoured distributions have 

the same distributions as in the multivariate normal case. Chmielewski (1980) also showed 

that the null and non-null distributions of all invariant statistics for testing the sphericity 

hypothesis are the same as in the multivariate normal case, ha this section a general result 

is given. 
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Theorem 2.1. 

LetXnxp ~MjECnxp(M;Ei, ... ,Ei,E2, ... ,E2, ... ,E,, ... ,Sg;^) totfAn,- £,• '*, 

E,- > 0, the rows o/M ore n,- p\ '*,*' = 1, ... , g, I3f=1 n« = », «no* the density o/X exists. 

(i) IfM = 0 and if the vector f(X) of statistics satisfies the condition thatf(X) — f(eX), 

/or every e > 0, tAen the distribution o/f(X) doe* not depend on$. 

(it) If the vector f(X) of statistics satifies the condition thatt{X) = f(c(X + B)), toAere 

fAe row* o/ B are n,- bj '*, /or every e > 0 and bj € SP, t = 1, ... ,g, tAen tAe distribution 

o/f(X) (foe« not depend on $. 

Proof. 

(i) We can write 

x = vecX'£tfD'u<np>, (2.1) 

where u(np) and R are independent, Dj-D,- = E,- > 0, and D is a matrix with n% Di's, ..., ng 

D,'s as diagonal blocks and off-diagonal blocks of O's. 

DeEne f(vecX') = f(X), then f(x) = f{cx) and r(J2DVn*)) 4: r(cßDJ BW) for 

every e> 0. Since the density of X exists, Pr(Ä = 0) = 0. So f (rD'^"')) 4= f(erD'u<n'')), 

where f*(rD'u(np)) is the conditional random vector at R = r > 0. Then by letting c = r-1, 

r(rD'u<np)) ^ t(&vSnt*). Since u<np) and R are independent, f*(x) is independent of R 

and f(X) is independent of Ä. So the distribution of f(X) does not depend on <f>. 

(ii) Let B = -M and Y = X - M, then 

f(X)=f(C(X-M)) 

-      x (22) 
= f(CY). 

When c = 1, f(X) = f(Y). So it is true that f(Y) = f(eY), for any e > 0. Then from (i), the 

distribution of f(Y) does not depend on ^. So the distribution of f(X) does not depend on 

4>- I 
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Corollary 2.1. 

Let X„xp ~ LECnxpil*, E, 4) with E > 0, and the density o/X exists. 

(i) If ft = 0 and if the vector f(X) of statistics satisfies the condition thatt{X) = f(eX), 

for every e > 0, then the distribution o/f(X) does not depend on $. 

(ii) If the vector f(X) of statistics satisfies the condition that f(X) = f(e(X + lnd')), 

for every c > 0, and d € 92**, then the distribution o/f(X) does' not depend on <f>. 

Proof. 

It is clear by letting q = 1, Si = E, /ix = ft in Theorem 2.1. | 

The results of Anderson and Fang (1982b, 1982c) and Chmielewski (1980) are easily 

obtained from Corollary 2.1. There are a number of other examples in Chapters 3, 4, 5, 

and 6. 

2.2. Power functions of specified tests. 

The previous section consists of general results in distribution theory. In this section, 

we will attack the problem of power functions by using the above result. 

Theorem 2.2. 

(i) Assume X„Xp ~ MECnxp{M;'Ei, ... ,Ei,E2, ... ,E2, ... ,E„ ... ,E,;^) with 

n,- E,- 's, E,' > 0, the rows o/M are n,- ft\ 's, i = 1, ... ,q, and the density o/X exists. For 

testing H0 : (M,Ei, ... ,E,) € ft0 vs Hi : (M,Et, ... ,E,) € ft \ fto, if the hypotheses 

remain invariant under the group G = {g | J:XH» C(X + B), where the rows ofB are n,- 

h'{ 
fs, c > 0, b,- G 3P*, t = 1, ... , q}, and /(X) is an invariant test statistic, then the power 

function of this test with rejection region /(X) € Si does not depend on <j>. 

(ii) X„xp ~ LECnxp(fi,H, <f>), with E > 0, and the density o/X exists. For testing HQ 

: (/i,E) € fto vs Hi : (ft, E) € ft \ fto, if the hypotheses remain invariant under the group 
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{g | J:XH C(X + ln<l'), c > 0, d € 38*"}, and /(X) is an invariant test statistic, then the 

power function of this test with rejection region /(X) € Si does not depend on <ß. 

Proof. 

(i) Since /(X) = /(c(X + B)), by Theorem 2.1, the distribution of f(X) does not 

depend on <j> under both the null and the non-null cases. Therefore the power function of 

this invariant test does not depend on <j>. 

(ii) This is a special case of (i). Using this, we can complete the proof. 8 

Corollary 2.2. 

(i) In Theorem 2.2 (i),ifil = Bxn*,Q0 = Bx f]$, Q \ Q0 = B x (O* \ flj), where B 

is the set of parameters M, fl* is the set of parameters (Ei, ... , E,), and fljj C fl*, /(X) 

is an invariant test statistic of Ho : (Ei, ... ,E,) G fij vs Hi : (Ei, ... ,Eg) € 0* \ QjJ, 

then the power function of this test with same rejection region Si does not depend on <j>. 

(ii) In Theorem 2.2 (ii), ifQ = B x fl*, O0 = B x flj, Q \ Q0 = B x (Q* \ fl*,), where 

B is the set of parameters p , Q* is the set of parameters E, and fljj C Q*, f(X) is an 

invariant test statistic of Ho : E G fljj vs Hi : E 6 0* \ flj, then the power function of this 

test with same rejection region Si does not depend on <f>. 

Proof. 

(i) It is clear that the hypotheses remain invariant under the group {g \ g : X»-» X + B 

where the rows of B are n,- b|-'s, b,- G 5RP, t = 1, ... ,q}. Since under the transformation 

X •-• cX, c > 0, (Ei, ... ,E,) does not change (only ^ changes) (Since E,-, i = l,...,q, 

are scale matrix, i.e., for any a > 0, X ~ M£<7nXp(0;Ei, ... ,Ei,E2, ... ,E2, ... ,E9, 

... ,E,;^),then oX ~ M£7Cnxp(0;Ei, ... ,Ei,E2, ... ,E2, ... ,S„ ... ,E,;^*), see 

Cambanis, Huang and Simons (1981). ) So by Theorem 2.2, the power function of this test 

with same rejection region Si does not depend on ^. 

(ii) Similarly, as in (i), we can easily complete the proof. 1 
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We will apply this result frequently in the later chapters. In particular, under the same 

assumptions as Corollary 2.2, if an invariant test for the multivariate elliptically contoured 

distribution is UMPI (uniformly most powerful invariant test) in the multivariate normal 

case, then we can claim that this test is also UMPI in the multivariate elliptically contoured 

distribution. 



Chapter 3 

MULTTVARIATE REGRESSION ANALYSIS 

In this chapter, some properties in a multivariate regression model are studied. The 

sampling is from the family of multivariate elliptically contoured distributions. Invariant 

tests are derived and turn out to be the same as those dealt with in the multivariate normal 

case. Admissibility is a desirable property. Admissibility and null distributions are studied. 

3.1. Invariant tests and null distributions. 

The usual assumption in the multivariate regression model is that the sample consists of 

independent and identically distributed normal vectors. Now we consider, the more general 

case, the following multivariate regression model sampling from the family of multivariate 

elliptically contoured distributions : 

*nxp = XnxgBflrxp + EnXp, 

(3.1) 

E~L£C7„xp(0,2^), 

where X is known, q<p<n, n — q>p, rank(X) = q, and E > 0. 

If the density of Y exists, then the density of E exists with the form of 

|Eri"f(trS_1(lrt!)). (3.2) 

Hence the density of Y has the form of 

|Er*"j(trE-I(Y-XB)'(Y-XB)). (3.3) 
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Suppose we partition 

B= I        ),        X=(Xi    X2), (3.4) = (       j.        X=(Xi    X2), 

such that Bi has 91 rows, B2 has 92 rows, Xi has q% columns, and X2 has 92 columns. We 

wish to test H : Bi = BJ against the general alternative K : Bj ^ BJ, where BJ is a given 

matrix. 

To find the maximal invariants of the sufficient statistics, we need to find the sufficient 

statistics. Since 

Y-XB = (Y-XBn) + X(BQ-B), (3.5) 

we have 

(Y - XB)'(Y - XB) 

= (Y - XBn)'(Y - XBn) + (Bn - B)'X'X(B„ - B) (3.6) 

= Ntn + (Bn - B)'A(Bn - B), 

where JVtn = (Y-XBn)'(Y-XBn),    Bn = A^C,    C = X'Y,     and 

(An    A12 \ 

A21    A22 / 

From (3.3), the density of Y has the form of 

|£|-*n g(trJl-l[Ntn + (Bn - B)'A(B„ - B)]). (3.7) 

By the Factorization theorem, En, Bn form a sufficient set of statistics for E, B. Thus, 

there is an one-to-one correspondence between (Bm,82«) and (Bin, B2n) and En, Bin, and 

B^ form a sufficient set of statistics for E, B. (Note that 1*2« = B2n + (Bm — BJJA^A^1, 

where 62« = A^X^Y - XiBj)].) 

We can reformulate the hypothesis as Bi = 0 (by replacing Y by Y — XiBj) and the 
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problem remains invariant under 

(l)Yt-*Y + X2r, 

(2)Xi H» XtC*,        Bi H-» C*"^!, 

where C* is nonsingular, 

(3.8) 

(3)Y H* YV, 

where V is nonsingular. 

Under group(l), 

En *-* Sn,       Bin •-• Bm, 

B2u» *-* B2(j + r. 
(3.9) 

So the only invariants of the sufficient statistics are En and BJO (by letting r = — Bj«). 

Under group (2), 

En^Sn,       BmHC'^Bm, 
(3-10) 

Xj *—* X^C j 

where XJ = Xi — X2A2"2
1A2i. Let CJA11.2CJ = I and CJ be an orthogonal transformation 

such that 

C^Cl^Bm = T, (3.11) 

where *,-„ = 0, t > v, tu > 0, and Au-2 = XJ'XJ = An — Ai2A22~1A2i. Since T is a function 

of T'T = BinAii.2Bm, the only invariants of the sufficient statistics are iVEn (denote as 

G) and BinAn-2Bm (denote as H). Under group (3), 

G •-» V*GV,        H >-+ VHV, (3.12) 
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where V is nonsingular. Hence the only invariants (i.e. maximal invariants) of the sufficient 

statistics are the roots of 

|H - 0G\ = 0. (3.13) 

We have the following theorem. 

Theorem S.l. 

The respective maximal invariants of the sufficient statistics for the sample space are 

the roots of (S.1S). 

Since the maximal invariants of the sufficient statistics are same as the ones in multi- 

variate normal case, the invariant tests are same as the ones in multivariate normal case. 

Let $i > $2 > ••' > dp be the roots of (3.13). Some invariant test criteria are listed as 

follows: 

(1) Lawley-Hotelling trace: 
p 

trHG"1 = £*.•• (3.14) 
•=i 

(2) Bartlett-Nanda-Pillai trace: 

P      a. 

trHfH + G)-1^—^-. (3.15) 

(3) Roy's maximum root: 

8X. (3.16) 

(4) Wilks' likelihood ratio criterion: 

i7"]c?H[-n(i+«-1- (3i7) 

Under the null hypothesis, by Theorem 2.1, the joint distribution of maximal invariants 

of the sufficient statistics does not depend on <j>. So the null distribution of an invariant test 

is the same for all ^'s (i.e. it is same as the one in multivariate normal case.) 
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Anderson and Fang (1982b) derived that JVEn is distributed as AfGj,,2(E; ^J2; |;^) 

(see page 4.) Next we want to find the null distribution of H. Since 

Bin = A^X'E, (3.18) 

and 
E * fiU„xpD„Xp, 

(3.19) 

H = BmAn^Bm 

= E'XAW'Au.aA^X'E (3.20) 

= E'FE, 

where F = XAWAU-JAWX?,    D'D = E > 0,     and 

'AW 
A" -a- 
If R2 ~ XnP (i-e-> E has a multivariate normal distribution), then H = E'FE ~ 

Wp(E,qi). From Cochran's Theorem for multivariate normal distributions, we have F2 = F 

and rank(F) = qi. Then by Cochran's Theorem for multivariate elliptically contoured 

distributions (Anderson and Fang (1982b)), H ~ MGp,2(E; »•; 2=^; <f>). 

3.2. Admissibility of invariant tests. 

In multivariate normality, one way to approach admissibility is to apply either Stein's 

Theorem or Schwartz's Theorem (Section 8.10 of Anderson (1984)). In this section, we 

discuss the problem of admissibility and make an extension of Schwartz's Theorem to mul- 

tivariate elliptically contoured distributions. 

Theorem 3.2. 

Assume that (y,m,il*,P*) is a family of distributions and (y,m,Q,P) is a subfamily 

of{y, m,fT, P*) such that for any bounded function f, Euf(Y) = 0 V« € Q implies f{Y) = 

0 a.e. m. Suppose flj and Oo are the nonempty proper subsets ofQ* and Q, respectively, 



16     Section 8.2: Admissibility of invariant tests 

such that fto C ftjj and ft \ fto C ft* \ nj. J/ *Ae te*t w*fA acceptance region B is admissible 

for testing the hypothesis that u 6 O0 opoin«* *Ae alternative u> € ft \ ft0 , then the test 

with acceptance region B is admissible for testing the hypothesis that u> € ft*, against the 

alternative w € ft* \ ftj|. 

Proof. 

The critical function of the test with acceptance region B is 4>B(V) = 0, y € B, and 

^B(V) = 1) V $ B- Suppose 4>(y) is the critical function of a better test, that is 

/ ttv) dp'Jv) < f My) dpl(y),     u € n;, 

(3.21) 

/ M dp'Ay) > j My) dpl(y),     « e n* \ n;, 

with strict inequality for some w; we shall show that this assumption leads to a contradiction. 

Now we restrict the above inequalities to Q; we hare 

{ttv)-Mv))dpM<0,        «€ß0, 

(3.22) 

iHv) - Mv)) dpAv) > o,     w e n \ n0. 

/' 

/« 

Since the test with acceptance region B is admissible for testing the hypothesis that « € fto 

against the alternative u) € ft \ fto, 

Ea[<t>(Y) - MY)] =0       V« € ft. (3.23) 

So <f>(Y) = 4>B(Y) a.e. m. This leads to a contradiction. | 

Now we go back to the problem of the multivariate regression model. Since p > q1, 

there are p — qi roots of (3.13) identically 0. It seems reasonable that if a set of roots $ = 

($i, ... ,0qi)' leads to acceptance, then a set of roots 0* = (0J, ... ,$*t)' such that 0* < 0,-, 

t = 1,..., qi, should also lead to acceptance. Such an acceptance set is called monotone. A 
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point 0 = (0i, ... , 0qi)' is in the extended region A* if the point 0P = (0,-(i), ... , 0i(qt))', 

where i(l),...,i(qi) is a permutation of l,...,qi suchthat 0^ > ••• > 0,-(gi), is in A The 

following theorem is a generalization of Schwartz's Theorem. 

Theorem 3.3. 

Let (y, m, Q*,P*) be the family of multivariate elliptically contoured distributions and 

m be the Lebesgue measure. If the acceptance region A in the set 1 > 0\ > • • • > 0qi > 0 is 

montone and if the extended region A* is closed and convex, then A is the acceptance region 

of an admissible test. 

This theorem is proved using the following corollary from Theorem 3.2, and Theorem 

3.4.1 of Ferguson (1967). 

Corollary 3.1. 

Let (y,m, W, P*) be the family of multivariate elliptically contoured distributions and 

m be the Lebesgue measure. If the acceptance region A in the set 1 > 0\ > • • • > 0qi > 0 is 

montone and if the extended region A* is closed and convex, then A is the acceptance region 

of an admissible test among the class of tests based on the sufficient statistics (En, Bo). 

Proof. 

Let (y,m,il,P) be the family of multivariate normal distributions. It is clear that 

(En,Bn) is the complete sufficient statistics. Then this corollary follows from Theorem 3.2. 

I 

Next let us state Theorem 3.4.1 of Ferguson (1967). 

Theorem 3.4. 

Consider the game (S, A, L) where the statistician observes a random vector X whose 

distribution depends on 0.  If T is a sufficient statistic for 0, then the set Do of decision 
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rules in D, which are based on T, forms an essentially complete class in the game (&, Ü, 

R). 

Note : 

6 is the parameter space; A is the space of actions; L is a loss function; P is the space 

of all behavioral decision rules; and R is the risk function (see Ferguson (1967).) 

Proof of Theorem 3.3. 

For every fixed density g (see (3.2)), from Corollary 3.1, A is the acceptance region of 

an admissible test among the class of tests based on the sufficient statistic (EQ.BQ). But 

(En,Bn) is the sufficient statistic for (S,B). Then, from Theorem 3.4, A is the acceptance 

region of an admissible test for this fixed g. So A is the acceptance region of an admissible 

test. I 

From Theorem 3.3, we conclude that Wilks' likelihood ratio test, the Lawley-Hotelling 

trace test, the Bartlett-Nanda-Pillai trace test, and Roy's maximum root test are admissible. 



Chapter 4 

TESTING HYPOTHESIS FOR MEAN VECTOR 

In this chapter an invariant test for equality between the mean vector and a specified 

vector is derived; other optimum properties derived in Chapter 3 are studied. In the mul- 

tivariate normal case, the generalized T2-test is the uniformly most powerful invariant test 

(UMPI), but in the multivariate elliptically contoured case, a weaker property called locally 

most powerful invariant test (LMPI) is derived in section 4.2. 

4.1. Invariant test, null distribution, and admissibility. 

Suppose X„xp ~ LECnXp(tt, E, <f>), with £ > 0, unknown, n>p, and the density of X 

exists. We wish to test H : ft = /i0 against the general alternative K : /i ^ /i0, where (t0 is 

a known vector. We can reformulate the hypothesis as ft = 0 (by replacing X by X - lnt*o) 

and the problem remains invariant under the following group : 

X H-* XC, (4.1) 

where C is p x p nonsingular. 

This problem is a special case of multivariate regression model, so we have the following 

corollaries. 
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Corollary 4.1. 

The respective maximal invariant of the sufficient statistics for the sample space is 

T2 = n(x - PoYS^ix. - n0) where x = ±X'l„ and S = ^(X - l„x')'(X - l„x'). 

Corollary 4.1 implies that the T2-test whose acceptance region is JP2 < Ai, a constant, 

is an invariant test. 

Corollary 4.2. 

For the null case, the distribution of T* does not depend on the distribution of the 

radius R. That is, the null distribution is unique for any <f>. 

Corollary 4.S. 

T2-test is admissible. 

4.2. Locally most powerful invariant test. 

In this section, we want to derive a nice result that the Tatest is a locally most 

powerful invariant test. First we need to find the non-null distribution of T2. 

H X„xp ~ LEC„xp{p, S, $), n > p > 1, and the density of X exists, then 

X * intt> + fiUnXpDpXp, (4.2) 

and 

* = -x'i„ n 
^ß+-RD'lfln, (4-3) 

n 

where D'D = E, R ~ F and independent of U. So 
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7»2 n 
n-1      n-1 

(«-w.ys-^Ä-no) 

^[(,-,) + >WW(i-iy')UDr 

x[0*-/io) + -AD'U'l,J] n 

[^(D-1)'^ - *) + Au'l„]'[U'(I - il„l^)U]-1 

it nä n 

x(!^(D-1)'(A«-/io) + JrU'l„]. 

(4.4) 

The last equality of (4.4) is true because of Pr{fi = 0} = 0. 

Let 

Y=^(D-1)'(,i-/i0) + -irU'ln, 

and Qbeapxp orthogonal matrix with the first row —-*—rY*. Define 
(Y'Y)i 

V = QY 

(4.5) 

/(Y'Y)i\ 

0 

V    o    ) 

(4.6) 
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and 

B = Q[U'(I-ilfll»)U]Q' 

VB21    B22/ 

then 

7»2 
± v»B-iv 

n-1 

= Y,Y6U 

Y#Y 

&11-2' 

where 611 is the (l,l)th element of B-1 and 6n-2 = bn — BIJB^BJI 

Let E be a n x n orthogonal matrix with nth row ~xlj, and 

«i 
± 

then 

«f. 

B = QU'UQ' - -QU'l„l^UQ' 
n 

= QU'(E'E)UQ' - -QUi„l^UQ' 
n 

(4.7) 

(4.8) 

EU = I   :   I * U, (4.9) 

= Q(]£ «X)Q' - Qun«'„Q' (4.10) 

=Q(X>X)Q', 
«=i 
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and 

i 

Y=^-(D-1)'(^-/'o) + Un. (4.11) 

From lemma 2 due to Cambanis, Huang and Simons (1981), 

"-(   *<-   )• ,412) 

where Rx (> 0), U! ((n - 1) x p) and u* (p x 1) are independent, and R\ ~ Beta(f, ^^). 

Thus 

B ^ (1 - iJfjQUlUxQ' 

sB(Ä,Äi,Ui,«'), (4.13) 

and 

Y^fD-^-^ + V 
= Y(Ä,Äi,u*). (414) 

Consequently 

ri     "   >_   'I      »iw(Ä,fli,Ulf«-)       -n-l/ 

Jo   Jo       \     bn.2(r,vi,Vi,n*) »-1/ (4. 15) 

xß(v;P-,{-^)dvdF(r), 
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where /?(• ; o, 6) is the density function of Beta(a, 6). 

Conditioned on u* = u in B(r, v5,Ui,u*), Q is a constant orthogonal matrix. So 

B(r,»»,Ui,u) = (1 - t/jQUiUiQ' 

i-(l-.)UiUi, (4.16) 

does not depend onu. Hence B(r,v«,Ui,u*) and Y'(r,üä,u*)Y(r, wä,u*) are independent, 

as are &n.2(r,'»»,Ui,u*) and V(r,«5,u*)Y(r,t;ä,u*). 

Let 

UiUi = E 

(«11     Ei2 \ 

E21    E22 / 

and 

Ui = (uJ    U2), (4.18) 

where uj is (n — 1) x 1, U2 is (n — 1) x (p — 1), then 

K    U2)^(fi2V!        (l-j£)W2), (4.19) 

where Ä2(> 0), vi and V2 are independent, and F% ~ Betaf^f1, t""1^-1)). So 

«11.2 = en — E12E22 ®2i 

= uJ'u;-uI'U2(U2U2)-
1U2uJ 

* i?|vivi - J^viVatViVaJ-VaT! (4.20) 

= 12|vi(I - V2(V2V2)-
1V2)vi. 
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Since n > p > 1, V2V2 is nonsingular with probability one. A = I — VjfVjVa)""1 V^, 

conditioned on V2, is a constant symmetric matrix, A = A2 andrank(A) = (n—1)—(p—1) = 

n —p. By Corollary 1 due to Anderson and Fang (1982a), v'jAvi ~ Beta(2^e, ^) does not 

depend on V2. So vifl-VjfV^)"1^! ~ Beta(2=*, *=±) and eu.2 ~ Beta(2=2, =^). 

Then 

PT{T
2
 < x} = 1°° J   f Pr|Y*(r,i;iu*)Y(r,t;t,u*)<^—^| 

-.     n-p n(p-l). p (r»-l)p. 
x /?(«»; -yS       ^    ') <*«/?(«; |,       -  /y) dv dF(r). 

Let y = xw, then 

Pr{T2 <x} = 1°° f   rpr JYV,t4,u*)Y(r,i;i,u*) < ^fy^ } 

x^(.;f,^P)*^r). 

The density of T2 is 

/rW = jH jT jT* {V(r,Vi,u*)Y(r,a,u*) < *£-^} 

r(^) 

(4.21) 

*       »-»Jnfe-lh*     '  *  '       f1-;)    ' ^ (422) 

r(S=ijr(!!ltilj [2 
v       *' 
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x uff«.-. ^ +1, =fef^ -1) - Urn ==2. ^)i j. (4.23) 

We have the following theorem 

Theorem 4.1. 

//Xnxp ~ iJECnXp(/i,E,^), n > p > 1, and the density ofX exists, then the density 

ofT2 has the form ß.2S). 

Next we want to attack the problem of LMPI by using Theorem 4.1. First let us define 

LMPI. 

Definition 4.1. 

A level a test $o is said to be locally most powerful if given any other level a test i/>, 

there exists 6 such that the power o/^o w bigger than the power of $ (i.e. P+o{0) > P$( 9) 

for all 0) with 0 < d($) < 6, where d($) is a measure of the distance of$ from HQ. 

Definition 4.2. 

A level a test if>o is said to be locally most powerful invariant (LMPI) if the test is 

locally most powerful among the family of all invariant tests. 

Theorem 4.2. 

Assume X„xp ~ LECnXp(u,1^,(fi), n > p > 1, and that the density ofX. exists. For 

testing Ho : /i = /i0 vs Hi : p^ /i0, the T2-test is LMPL 
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Proof. 

Since, from Theorem 4.1, the non-null density of T2 has the form (4.23), 

dr 'p-üi:i*{•*•*«**&} 
2    ^V        2 2 '      v        2    '      2      " (4.24) 

x/J(.;|k^P)*. 

But 

V(i2,t;*,u*)Y(/?,«,i,u*) = ^ + 2^fci -^J'D^u* + », (4.25) 

where r2 = n(j* — ^o)'S 1((* — i*o)- There exists apxp orthogonal matrix Qx with first row 

"*WD" such that 

»•" ("') 
(4.26) 

4«W, 

where Pr{B = 1} = | = Pr{£ = -1}, ^ ~ Beta(|, «fi) , and B, Zx are independent. So 

V(Ä,»*,u*)Y(£,t/*,u*)^ + J^(«J1)iÄ + v, (4.27) 

and 
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n   f r2     „ r .  _.i_        ^ x(l — «)t»l 

„   f r2        r,     .i z(l-u)wll   „ 

where 0 < v, to < 1. 

Since, under 0 < v, v>, z\ < 1 and Pr{.ß > 0} = 1, 

r2     „ r .     .i _ %(\ — v)w 

*» 0 < (-^ + (i>«t)») < [X{1 - V}W -v{l- gl)]
l2     and 

it n — 1 

  > V(l-Zi) 
n- 1 

o 0 < ^ < [— " ")t0 - t>(l - zS ~ (P«I)»     and Ä n — 1 

— -p— >»(l-«i), 
n— 1 

(4.28) 

(4.29) 

and 
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r2        T .     .1 z(l-t;)a> 
^-2-(^1)»+«,<-^3I- 

<» (jjj ~ (»«!)«)   + "(1 ~ *l) ^ •   n _ / 

ra;(l —w)t»        ., ,,i   . r      .      .i ^ ,x(l — v)w       ., ,,i 
* -[    „_/    ~ «(1 ~ *i)l8 ^ £ " (^i)8 ^ [    w-1     ~ "(1 ~ *i)K (4.30) 

s(l - v)w       . . 

,     .i     .zfl —v)t»       . ..t  _, r   . .     .i     fi(l —o)t»       ,.        ..i 
«• (»*i)a " [   w-1    "«(1" *i)]» < ^ < (»*i)a + [   „_/   " «(1 ~*i)K 

x(l - v)w . . 

Pr|V(Ä,.*fu-)Y(Ä>.*,n-) < X{1
n~_^W} 

+ Pr 

x Pr / l <Ä< r 1 

*P(zi>2>?~T~ )dzu 

(4.31) 

whereA={^=^>V(l-^x)}^={[?1^-v(l-zi)]i>(^)5}) 
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and 0 < v, w < 1. 

We have, from (4.23), 

»AW, 
dr lr=0 

/(0) 

/(0) 

= n-pi f1 r il fij   ( -i  
2    x J0 J0 J0   [2 

A0F \[*l£b> - „(1 _ Zl)\h - („^ 

-[^^.ü(1!,l)]i-^^i/(o)J 

"  l5^—(1—k)]* + ("i)*/(0)JJ 

* «^.^Wte^ + i. ^-!>-«•; V'5^" *• 

"tof,^)* 

»-Pl«n»   /*   /'   /',   -(Xj££-«(l-**))' >)/77/. 
z JO   JO   Jo •(I-«)» 

n-1 

.,     1 p-1, .   ...    n-p     . t»(p —1)     ..     „.    n —p n(p —1)., , 
* M*1"' 2'    J   > ^W"'    2    + *'      2       "J)" ^*;    2   '      2      )] dw 

x/J(.;f,^4^)A, 

(4.32) 
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where /(•) is the density function of R. 

Thus -/fo)/0M° does not depend on the density of R. Since /(0) is constant and ,under 

multivariate normality, the 72-test is LMPI, the T2-test is LMPI in multivariate elliptically 

contoured case. I 

Kariya (1981a, 1981b) has derived that T2-test is UMPI under a subfamily of multi- 

variate elliptically contoured distribution (g (see (3.2)) is nonincreasing convex function.) 

For the more general case as the one in Theorem 4.2, the property of UMPI is still an open 

problem. 



Chapter 5 

TESTING VARIOUS OTHER HYPOTHESIS 

In this chapter, invariant tests for testing various hypotheses are studied. There are 

five sections in this chapter. In each section, the invariant tests and their properties in 

different hypothesis testing are derived. The order of these problems are test for lack of 

correlations among the sets, test of equality of covariance matrices and mean vectors, test 

for known correlation coefficient, test for known partial correlation coefficient, and test for 

zero multiple correlation coefficient. 

5.1. Criteria for testing lack of correlations among the sets. 

Consider X„xp ~ LECnxp{t*,12, <f>), with E > 0, and n > p. If the density of X exists, 

then the density of X has the form of 

|E|-*n -KtrE-^X - l„/i')'(X - !„„')), (5.1) 

where l'„ = (1,    -,1). 

Suppose we partition 

(En   •••   Eif\ 

: :    I, (5.2) 
S«l     - * *     EOT / 

such that E#, • = 1,..., q, j = 1,..., q is p,- x py matrix and £*=i Pi = P- We wish to test 

HQ : E,y = 0, i ^ j against the general alternative H% : E,-y ^ 0 for some * ^ j. First we 

have to find the sufficient statistics. Since 
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(X-1„MT(X-W) 

= (X - l„x')'(X - l„x') + (l„(x - AI)')'(1„(X - ix)') 
(5.3) 

= A + n(x-fi)(x-p), 

the density of X has the form of 

|E|-"n *(tr E-J[A + n(x - /i)(x - „)']), (5.4) 

where x = £xfl„ and A = (X — lnx')'(X — lnx'). By the Factorization theorem, A and x 

form a sufficient set of statistics for E and ft. This problem remains invariant under 

(1)X *-* X + l„d', 

(2)X *-* XC, (5.5) 

where C is a matrix with nonsingular diagonal blocks of C,- with order p,-, * = 1,..., q, and 

off-diagonal blocks of O's. 

Under group (1), 

AH-» A,        xi-»x + d. (5.6) 

So the only invariants of the sufficient statistics are A (by letting d = —x.)  Under group 

(2), 

(Cj AnCi        •    C^AiqCq ^ 

i       ' i (5.7) 

C^AjiCi    •••    C^C,, 

(An    •' •    Ai, \ 

I and A»/ is p,- x p/ matrix. Let Ao be a matrix with diagonal 

Agl AM / 
blocks of A««-, t = 1,..., q, and off-diagonal blocks of O's, B be a matrix with diagonal blocks 
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of B,-, t = 1,...,q, and off-diagonal blocks of O's such that B(A,-,-Bj = I, t = l,...,q, then 

B'AQB = I. The invariants of the sufficient statistics are 

B'AB = 

I BiAwBj    •••   BiAx„B^ 

B'oA^B! I •••   B'2A2,B, 
(5.8) 

VB'^iBi    B^Ba    ••• I       J 

So Q'B'(A - Ao)BQ is invariant with respect to group (2), where Q is a matrix with 

orthogonal diagonal blocks and off-diagonal blocks of O's. Hence we conclude that the 

invariant tests for the multivariate elliptically contoured distributions are same as the ones 

in multivariate normal case. 

Some invariant test criteria are : 

(1) Likelihood ratio criterion : 

|B'(A - Ao)B + Ij. (5.9) 

(2) Nagao's criterion 

^tr[B'(A-Ao)B]2. (5.10) 

Since the likelihood ratio criterion is admissible in the multivariate normal case, from 

Theorem 3.2 and Theorem 3.4, we know that the likelihood ratio criterion is also admissible 

in the multivariate elliptically contoured case. 

Next we want to find the null and non-null distributions for the above criteria. From 

Corollary 2.1, we have the following corollary. 

Corollary 5.1. 

For both the null and non-null cases, the distribution o/B'(A — Ao)B does not depend 

on any particular underlying elliptically contoured distribution, i.e. the null and non-null 

distributions are same as the ones in the multivariate normal case. 
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From the above corollary, we know that the distributions of likelihood ratio criterion 

and Nagao's criterion are the same as the ones in multivariate normal case. So their 

asymptotic distributions are the same as the ones in multivariate normal case. 

5.2. Testing of equality of covariance matrices and mean 
vectors. 

Consider 

/ x'a A 

lim 

X = 

V 

v>w 

MEC„xp(M;Ht, ... ,Ei,E2, ••• >^2> ••• >E,, ••• >Etf;< 

with n,- E,-'s, E,- >Oln,->p,i = l g, £Li «f = n, x#; ; = 1 n,-,i=l g, are 

p x 1 vectors, the rows of M are r*,- (w|-)'8> * = 1» • • • > 9i «nd the density of X exists. Then 

the density of X has the following form 

(niS.rin')5(EtrEr»G,), (5.11) 
•=i t'=i 

where 

= Ai + nt(x,- - AI,)(X,- - ßi)', 

n,- 

A,' = / ..(x,'/ — x,-)(x;y — x,-) , 
y=x 

and 
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1   "' 

By the Factorization theorem, A,-, x,-, t = 1,..,,q, form a sufficient set of statistics for £,-, 

{i,-, t = 1... ,q. Now we wish to test Ho : /ix = • • • = pq and Ei = • • • = S9 against the 

general alternative H\ : /it- # /*,• for some « ^ j or £,• 9^ E/ for some i ^ 3. 

The problem remains invariant under 

(i)x,-,-1-+ xij+d,     v«,/, 

(2)D •- DC*"1,        B (-• C*B, 
(5.12) 

(3)x,y H* Cxi,-, Vt,j, 

where C* and C are nonsingular, D = (/ij — pg, • • •,ßq_i — pq), and B is a (q — 1) x n matrix 

with (i, j)th element 1 when £j£L\ n* < 3 < 53*=i n*> 0 otherwise. 

Under group (1), 

i 

A,- »-* A,-,        x,-1-» x,- + d,        V*. (5-13) 

Hence the invariants of the sufficient statistics are (Ai, • • •, A,) and (xi — x,, • • • ,Xq-i — x,). 

Under group (2), as in MAN OVA, the invariants of the sufficient statistics are (Ai, • • •, A,) 

and 

H= (x! -x,,--,x,_1-x,)E(xi-x„--,x,_i-xg)', 

where E = (e#) is a (g — 1) x (q — 1) matrix with the element e;/ = £;/n,- — ^n,-ny. Since 

9   «•• 

.=1 y=i 
« 

=H+EA" 
(5-14) 

1=1 
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where x = £ SJLi S/ii*»;» tne invariants of the sufficient statistics are A, Ai,---,A,. 

Under group (3), 

At-^CAC',        A, •-• CAfC',        Vt, (5.15) 

where C is nonsingular. 

Let CAC* = I, then QCA,C'Q', » = l,...,q, is invariant with respect to group (3), 

where Q is an p x p orthogonal matrix. Therefore we conclude that the invariant tests in 

multivariate elliptically contoured distribution are same as the ones in multivariate normal 

case. 

Some invariant test criteria are : 

(1) Likelihood ratio criterion : 

nuw 
,i. 

|A|»B 

(2) Bartlett modified likelihood ratio criterion : 

(5.16) 

lh=iM  (5.17) 

For dealing with the null distribution we have the following corollary from Theorem 

2.1. 

Corollary 5.2. 

Under /ij = • • • = pq, the joint distribution o/CAiC*, * = 1,... ,q, does not depend on 

any particular underlying elliptically contoured distribution, i.e. it is same as the one in the 

multivariate normal case. 

From the above corollary, the null distribution of the invariant test criterion in the 

multivariate elliptically contoured distribution is the same as the one in the multivariate 

normal case. 
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5.3. Test of Hypothesis about correlation coefficient. 

tume A„Xp ~ Li£n;nxp\it,zi,q>), wun ü > u ana n £ p, ana ine aensity 01 A. exists 

= | ], £n = I is a 2 x 2 matrix. We wish to test 270 

\E21    £22/ V^i«*      ff|   / 

Assume Xn*p ~ LECnxp(i*,E,<t>), with £ > 0 and n>p, and the density of X exists, 

where £ 

p = po, where j po \ < 1 is a given number. 

(I2x2 \ 
} be a p x 2 matrix, then from Corollary 1 of Anderson and Fang 

0   J 
(1982b), XB ~ LECnx2{liB,Eu,P) with ^* € *2„ «-» fi* = Ä&n,in(p_2), &*,in(j,_2) ~ 

Beta(n, |n(p - 2)). So .without loss of generality, let p = 2. i.e. X„x2 ~ £jECnx2(**>2>^)> 
(<rj      /»o-iff2 \ 

J . The 

density of X has the form of 

|£rin0(trE-lG), (518) 

where 

G = (X-l„/i')'(X-l„*i') 

= A + n(x-p)(x-ji)', 

3C ^      A. l|)f 
n 

and 

A = (X - l„x')'(X - l„x') 

«11     «12 («11     «12 \ 

«21     <*22 / 
(5.19) 

By the Factorization theorem, A and x form a sufficient set of statistics for £ and p. 

The problem remains invariant under 
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(l)XHX + l„d', 

(2)X»-»XC, (5.20) 

fd    0\ 
= | ], and ci,C2 > 0. 

\0    e2J 

( elan     c1c2oi2\ 
A •-* I . (5.22) 

where C 

Under group (1), 

A •-» A,       xwx + d, (5.21) 

and the only invariants of the sufficient statistics are A (by letting d = —x.) Under group 

(2), 

\ 6162*121      e|o22  / 

The only invariant (i.e. maximal invariant) of the sufficient statistics is rn = -f"i  (by 

letting 61 = an*, e2 = tf22* •) We conclude that the invariant tests in multivariate ellipticaliy 

contoured distribution are same as the ones in multivariate normal case. 

For finding the null and non-null distributions of ri2, from Corollary 2.1, we have the 

following corollary. 

Corollary 5.3. 

For both the null and non-null cases, the distribution of r12 does not depend on any 

particular underlying multivariate ellipticaliy contoured distribution. 

From the above corollary, all the optimum properties of rj2 for multivariate normal 

case is fulfilled for multivariate ellipticaliy contoured case, such as : asymptotic normality, 

and "Fisher's z" test. From Corollary 2.2, rj2 is UMPI against alternatives p > p0 . 
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5.4. Test of hypothesis about partial correlation coefficient. 

Assume X„xp ~ LECnXp{n,'S,<l>), with E > 0 and n > p > q, and the density of 
(Sii    Eis \ 

I, and En is a g x g matrix.   We wish to test Ho : 
E21    E22 / 

Pi2-q+i,-,p — P01 where | po \ < 1 is a given number. Without loss of generality, assume that 

q — 2 (by the same technique as in section 5.3.) 

Let X = (Xi,    X2), where Xi = (xi,    X2) is n x 2, X2 is n x (p — 2), and xi, X2 are 

nxl vectors. The density of X has the form of 

\H\-*m l{trXTlG), (5.23) 

where 

G = (X-l„/i')'(X-l„/i') 

= A + n(x-/i)(x-**)', 

_ 1   , 
n 

A = (X - l„x')'(X - l„x') 

= /An    A12\ 

\A2i    A22/ 

(5.24) 

(ttll     «12 \ 
is 

«21     «22 / 
and An = I j is a 2 x 2 matrix. 

\ «21    «22 / 

By the Factorization theorem, A and x form a sufficient set of statistics for E and ft. 

The problem remains invariant under 
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(l)Xi->X + lnd', 

-c :)• (2)Xi 
\o  c/ 

(5.25) 
(3)X "x(ä ;)• 
(4)Xi 

where C is a (p — 2) x (p — 2) non-singular matrix, B is a (p — 2) x 2 matrix, and b\t 62 > 0. 

Under group (1), 

At-» A,        xi-*x + d. (5.26) 

So the only invariants of the sufficient statistics are A (by letting d = —x). Under group 

(2), 

.   An        Ai2C  \ 
A-       . . • (5.27) 

/An 

\CA21 &A22CJ 

Hence the only invariants of the sufficient statistics are An, A12C (by letting C'A2iC = I.) 

Under group (3), 

An *-* An + B'C,A2i + A12CB + B'B, 

Ai2C *-> A12C + B'. (5.28) 

The only invariants of the sufficient statistics are 
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Au-2 — An — A^AJJ A21 

<*21-3,~,p     022-3,-,p / 

(by letting B' = -A12C.) Under group (4), 

,2 )' (529) 

*i*2<»21-3,-j»       &2°22-3,-,i>   / 

Thus the only invariant (i.e.  maximal invariant) of the sufficient statistics is r12.3 „.j, = 
_ X 

x 
ai8'i-»y  (by letting 6,- = o^-.J, * = 1,2.)  We conclude that the invariant test in 

•111, •,»"»•*, -,p 
multivariate elliptically contoured distribution is same as the one in multivariate normal 

case. 

Next we want to find the null and non-null distributions of ri2-s,-j» for multivariate 

elliptically contoured distribution. 

Corollary 5.4. 

For both the null and non-null cases, the distribution of rj2-3,-^ does not depend on 

the underlying multivariate elliptically contoured distribution. 

Proof. 

Clear from Corollary 2.1. I 

From the above corollary and Theorem 4.3.5 due to Anderson (1984), the distribution 

of a sample partial correlation coefficient, ri2-3,-j>, based on X„xp with population partial 

correlation coefficient pns,..-# equal to a certain value, p, is the same as the distribution 

of an ordinary correlation coefficient based on X\n-(p-q)]xp w^h corresponding population 

correlation of p. Also the asymptotic normality and "Fisher's z" test are fulfilled for the 

multivariate elliptically contoured case. Obviously, ri2-s,-j> is UMPI against alternatives 

Pi2i,-# > Po- 
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5.5. Test   of hypothesis  about  the  multiple  correlation 
coefficient. 

Assume X„xp ~ LECnXp(p, E, <f>), with E > 0 and n>p, and the density of X exists, 
(En    Ei2 \ 

I, and En is a g x g matrix. We wish to test Ho : Rvq+1,...# = 0, 
E2i    E22 / 

against the general alternative Hi : Riq+i,.. •# > 0. So »without loss of generality, assume 

that q— 1 (by the same technique as the one in section 5.3.) 

Let E = ( an    ff(l) ), then Rx.2,...# = ^ill^HlJ    = 0 iff ff(1) = 0.  The test is 
\*(i)    E22/ »A 

same as flo : <r^i) = 0 against Hi : <r(j) 5^ 0. This is a special case of testing for lack of 

correlations among the sets. Then, by the result in section 5.1, B'2&(i)bi are the invariants 

of the sufficient statistics, where B2A22B2 = I, bjau = 1, and A = I I. Since 
\*(1)     A22/ 

\o  Qi/ 
the problem remains invariant under the group {Q | XH XQ, where Q = ( j and 

Qi is (p — 1) x (p - 1) orthogonal }. Under this group, 

B2'a(i)6i»-»QiB2'a(i)6i. (5.30) 

The only invariant (i.e. maximal invariant) of the sufficient statistics is ^(aj^I^Bja^)) a = 

(1) *?—-— = R (by letting the first column of Qt is B'2a(!).) Also ,by Corollary 5.1, 

we claim that the null and non-null distributions of R in multivariate elliptically contoured 

distribution are same as the ones in multivariate normal case. So R is UMPI. Also, the 

invariant test is same as the one in multivariate normal case. 



Chapter 6 

MAXIMUM LIKELIHOOD ESTIMATES AND 
LIKELIHOOD RATIO TESTS 

In this chapter maximum likelihood estimates (MLE) and likelihood ratio tests (LRT) 

for the multivariate elliptically contoured distribution are derived. We first give the result 

for a special case, then some examples, and finally the general theorem. 

6.1. The result for a special case. 

Anderson and Fang (1982c) attacked the problems of MLB and LRT and gave some 

conditions for finding MLE. In this section, more precise and weaker conditions are given. 

The following lemma contains the general idea for constructing the weaker conditions in 

finding MLE. 

Lemma 6.1. 

Assume that g() is a continuous function such that g(x\ + ••--¥ x^) is the density of 

ECN(0, I, <f>) and E(R2) < oo where R «-* ^ € &N. Then the function 

h{x) = xTg(x),        x>0, (6.1) 

has a maximum at some finite XQ > 0. 

Proof. 

Since, from Cambanis, Huang and Simons (1981) (or Lemma 13.3.1 of Anderson 



Chapter 6: Maximum likelihood estimates and likelihood ratio tests    45 

(1984)), the density function of R2 is 

M*-jjEft^lit*)' 

h(x) = ~^xf(x). 

(6.2) 

From E(R2) < oo, lim^oo h(x) = 0. Furthermore A(0) = 0. (If not, there exists e > 0, 

xf(x) > e Vx > 6, so 1 > /„ f(x) dx > J0 | dx = oo which is a contradiction.) Hence 

h(x) > 0 Vx > 0, and h(-) is continuous. The assertion of the lemma follows. | 

The following theorem is the main theorem in this section and let us define the as- 

sumption for this theorem. 

Assumption A. 

X ~ MECnXp(M;i:W, ... ,£(*>, ... ,£<«>, ... ,E<«);^) with n,- IjW 's, n,- > p, 

i = l,...,q, and J2i=i ni = n- Tne rowa o/M are f»i p^ 's, ..., nq yS^'s, successively, 

where E^ = diag(E$,..., EJ."]), I < k < p. The density function ofX is 

nrtN'irä"' a 
i=ij=i 

(£t«r«ff) (6.3) 

where G, = Eyi(ll.1+1(x(>) - /i«>)(*(/) - I««)' = 

«l H 1- n,-. 

.0 

G*i 

«SA 

«8/ 
witA «o = 0, n(- 

Theorem 6.1. 

Under the assumption A, if f(X) = X~*npg(%) attains if* man'tnttm at some finite 
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*max(g), then the MLEs of p® andü® are 

*«-*«, 

EW = diag(±i?,...,±2), 
(6.4) 

i= l,...,q, where £}/ = (^r) Aa«(j)wjy, i = l,...,q, j = l,...,k. W$ is obtained 

from Gy*- by substituting JJW toitA x^ = ^ X)yiBt._1+1 x(/) OB^ *^e corresponding maximized 

likelihood is 

«-•^ft ferfiwr (6.5) 

Proof. 

max  L(nW„..,nW;EWf...,EW) 

= mamaxI(/i'1),...,^»;E<1',...)E'»>), (6.6) 

where 

£=£(<.<•>,..., I-,«>;S|,> =«) 

ftni^M»(i:£:«fl~,«8) (6.7) 

First we want to maximize L with respect to E'*', i = 1,... ,q. Since Gy'- > 0, t = 1,... ,q, n 
j = 1,..., k, with probability one, there exist nonsingular matrices C*/ such that C./Cj- = 

GJ-y and orthogonal matrices r,y such that 

1 «Si *"// ^»/    A '' ~ A,l 
iW        \W = diag(A}V,...,A^), 
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with positive AJ-^, a = 1,... ,py. Therefore 

*- nnfwn^) •» SELVES • (6.8) 

i(0i,- = It is a symmetric function of Ajj (j = 1,..., A, a = 1,... ,pj) for t = 1,..., g. Hence 

xjl = A<0' J = 1. •••,*»« = 1, • • ,P/, and 

*-[(Ssww*)S^'(4*) (6.9) 

Let 

(6.10) 

#| = ^(yj> J = 1. • • •»9 -1- 

So maximizing L with respect to S W,» = 1,..., g, is the same as maximixing L with respect 

to A, ßj, j = l,...,q-l. 

Now 

'•(finwr)(jft^).(4Ä) 
(6.11) 

So 

max     £ 

=nnK 
«=i y=i 

9-1     \ • »»«?] 

ä.(S^) {'-£*) maxX~»npg (I)] 
(6.12) 
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L attains its maximum at A = Amax(ff), ß% — 7*, * = 1,..., q — 1 and 

L* = max L 

= A, ^(sfejfiteri St 

(6.13) 

Since G,- = W,- + B,-(XW - /iW)(xW - JIM)\ maximizing L* with respect to /|W, ii = 1,..., g, 

shows that £ attains its maximum at /tM = x'*'. This completes the proof. 1 

Combining the above lemma and theorem, we have the following corollary. 

Corollary 6.1. 

Under the assumption A, if g(-) is continuous and E(R2) < 00 where R <-+ ^ € ®np, 

then the MLEs of jiW and E^ are 

AW _ J-./AM        A(0\ 
(6.14) 

i = 1,..., q, where EJ-y = (^JAmaxtoJWv?, t = 1,..., q, j = 1,..., k, and the corresponding 

maximum of the likelihood function is 

— In.»   * <"-K^)S (srgwr (6.15) 

Under some conditions, Theorem 6.1 and Corollary 6.1 show that the maximum of the 

likelihood function for the multivariate elliptically contoured distribution is proportional to 

that of the multivariate normal distribution. So the following likelihood ratio criteria in 

the multivariate elliptically contoured distribution are the same as those in the multivariate 

normal case: 

(1) The criterion for testing for lack of correlation among the sets (q = 1): 

|W| n = 
iCilWi/l 

(6.16) 
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(2) The criterion for testing the hypothesis that a mean vector is equal to a given vector #0 

(g = * = l): 

TS = 
m 
|Wo| 

l + r2/(n-l)- 
(6.17) 

where Wo = Z)y=i(x(/) ~Po)(x(/) ~ VoY a1"* T2 tt *^e Hotelling T2-statistic (see Chapter 

4.) 

(3) The criterion for testing the hypothesis of equality of covariance matrices (Jfc = 1): 

»=n 
•=i 

( iw»i V"VnVp'" (6.18) 

(4) The criterion for testing equality of several means (k = 1): 

|W| 

|£/=iwi| 

(5) The criterion for testing equality of several means and covariance matrices (Jfc = 1): 

(6.19) 

-öGsffför- (6.20) 

(6)The criterion for testing the hypothesis that a covariance matrices is proportional to a 

given matrix Eo (? = * = 1): 

r« = 
IVw| 

(trEj^W/p)' 
(6.21) 
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6.2. Examples. 

Section 6.1 gives six examples for finding LRT. In this section, three examples that 

do not fulfill the assumptions in Theorem 6.1 are given. From the results of these three 

examples, we get the idea of general theorem in section 6.3. The following three examples 

satisfy the assumption that /(•) attains its maximum at Amax(^). 

Example 1. Test» of hypotheses concerning subvectors of p. 

(OH"* 

where G = 

If X„xp ~ LECnxp I I       J ,E, ^ I with E > 0 and re > p.   We wish to test H0 : 

ßi = 0. The likelihood function has the following form : 

L(^,/i2,S) = |Ep*" j(trE-*G), (6.22) 

Let Q| = {(/*,E) | E > 0} and w = {0*,E) | ßl = 0, E > 0}. It is clear that 

max%,^,E) = Xmax(g)->npg (j^^j) IT*" . (6-23) 

where W is obtained from G by substituting /*,• with x,- * = 1,2. Since 

maxL(/ilt/i2,E) = maxmaxL(0,/J2,E), (6-24) 

using a similar argument as the proof of Theorem 6.1, we get 

mwi(0,/i2,E) = A^fjl-i-'j (ä^)) |H|~*B ' (625) 

where 



Chapter 6: Maximum likelihood estimate» and likelihood ratio testt    51 

Thus 

(xi,(x2-/i2)') = (xi,(x2-/i2)'-*iwr1
1W12)[ ^        1, (6. 26) 

and 

/i w'/w^r1 _/i -w^w12\ 
(6.27) 

V-WjiWf/    1/ \W21    W22y Vo I        /      V   0      WSM/ 

imply that 

H| = w + 

= |W| 

-|W| 
. 

\X2-A«2/   \x2-/*2/ 

l + n(xi,(x2-^2) 
\«a-^/J 

1 + 
/wr,1     o   \ 

nCxi.fe-^J'-xiwr/Wxa) 
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(        *        )} V(*2-/'2)-w21wr1
lx1y. 

= |W| [1 + »»{xiwr/xx + [(x2 - /i2) - WjjW^Xil'W^ (6 29) 

Mfe-^-WnWr/x,]}], 

/Wu    W12\ 
where W = [ ) and W22>1 = W^ - W2iW7jW12. The maximum likelihood 

\W21   w22y 
estimate [t2 °f **2 's 

/i2 = x2-W2iWri
1x1. (6.30) 

So 

mu£(fillfis,E) = Am„(j)-Wff (x^)) IWr^U + nxiwn1*!)-^, (6.31) 

and the likelihood ratio criterion is 

max., £(in ,p2, E) |W|i"  

maxn I-K,/i2)S)      |w|*" (1 + nx,
iWri

1x1)i
n 

= f 1 V" 
Vl + nxiW^xi/ 

(6.32) 

Example 2. 

If X„xp ~ LECnxp(p,TZ,<f>) with E > 0 and characteristic roots A,-, t = 1,... ,p, with 

Aj > A2 > • • • > Xp > 0. We wish to test HQ : A,-+i = • • • = \t+k, t + k < j>. Since E > 0, 

there exists an orthogonal matrix T such that E = TAT' where A is an diagonal matrix with 

the (L, l)th elements A<, I = 1,... ,p and the likelihood function has the form 

£(/*,r,A) = JI A7""'(trl",H)' <6-33) 
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where H = r'GI\ 

Let 0 = {(it, E) | E > 0} and w = {(/i, E) | A;+1 = • • • = Xi+k}. It is clear that 

max£(fi,E) = Xmax(g)~3 §,*fVJL«(f)j W|-in. (6.34) 

Since 

maxü(/i,E)=     max    £(p,r,A), 
« jijeo,, 

Ae**(p,i.k) 

(6.35) 

where 0P is the class of p-dimensional orthogonal matrix, and Mfo^) = {A  | 0 < Ap < 

• • • < A,+*+i < A,+* = • • • = At + 1 < A,- < • • • < Aj}, by Theorem 6.1, 

max    L((t,r,A) = Xmax(g)-3* a . 
A6X(p,,>k) \<*maxl0h Wdra) ( /   •+*+i<y<p 7       «<><• y=i 

-in 

= Amajt(y)" *-*(dra)f(i£*^)' 

n **-• 
•+*+i<i<p 

-§n 

(6.36) 

where H = (A#) = (7JG7/), T = (71, • • •, 7P), and Aw < äP_J P-I < • • • < AM. Therefore 

G = W + n(x-^(x-/i)', (6.37) 
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= 7;(w + n(x-/i)(x-*i)'hy 

= 7yW7y + n7/(x - ^)(x - fifty (6.38) 

and 

maxAma3 ^•(as)[(^*^*)1jL^' 
imply that 

= Am*z(</)" 

. 7 »S/'S» 

-in 

(6.39) 

Let F = r'WT = [i'jGij) = (fa), /„<•< fa, and 0 < rp < ••• < n be the 

characteristic roots of W. Then, by Theorem 9.B.1 due to Marshall and OIkin (1979), 

f -< r (r majorizes f) on D9 = { x € 5RP : Xj > • • • > xp}, where f = (fa,•••, fpp) and 

r= (ri,-",rp). Define 

(6.40) 

where x € 3JP. Then $ is continuous on Z^> and continuously differentiable on the interior 

of Pp. Since 
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iMx) = 
dxi 

t' + £ + l</<P    or    1 < £ < * 

(6.41) 

i *   V"1 

/=i   /  t+*+i<i<j> 

*'+l<£<l + * 

is decreasing in I = 1,... ,p, by Theorem 3.A.3 due to Marshall and OIkin (1979), 

k 

, fi+t i+j max     Amax(j?)  5' 
fpp<-<fu V^marU), Sdra) [(i^ JL*]"" 
= >max(p)   »' 

vAmax(^) 

Thus the likelihood ratio criterion is 

max« £(/*,£) ns^r, 
maxnZ-(«,E) Ari \*n 

(I Ey=i r«+y) 

(6.42) 

(6.43) 
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Example S. Circularly symmetric model 

If Knxpk ~ LECnXpk{tt,H,<f>) with E > 0 and n > pk.  Consider the following four 

Hi  : E = diag(E0,---,Eo), 
hypotheses : 

H2  : E = 

Hs  : E = 

/Eo Ei •• Ei Ei\ 

Ei Eo Si Si 

Ei Ei •• Eo Ei 

> 

VEI EI •• Ei EQ> 

/ Eo  Ei • * Sp_2 Sp_i > 

Ep_i Eo Ep_s  Ep_2 

Ej  E3 Eo   Ei 

V Ex  E2 ••• Sp_i Eo J 

Äi  : E>0, 

where E(-, i = 0,1,... ,p — 1 are A: x Jfe symmetric and E is pi x pk positive definite. 

K E is circularly symmetric, then 

E = (W0 ® Eo) + (Wi ® Ei) + •  • + (Wp_i ® Ep_i), (6.44) 

where W0 = I, W.- = I ), j = 1,. .p — 1, and Wy = Wi'. From the theorem in 

Olkin (1972), there exists T € Op, with elements ry* given by 

,,, = p-S {sin (»tf - '*» -D) + c, („tf - IX* - D) },        (6 45) 
P / \ P 

such that (r ® I)E(r' ® I) = diag($i, • • •, 9P) = D# where »y, j = 1,..., p, are k x k positive 
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definite. The parameter space for each of the hypotheses H\-H\ becomes 

ui = {D# | 9i = • • • = *p > 0, given *y = *p-y+2, 3 = 2, • • • ,p}, 

u2 = {D# | »j > 0, *2 = • • • = », > 0,ghren*y = 9p-i+2, 3 = 2,• • • ,p}, 

w3 = {D* | »! > 0, *y = *p_y+2 > 0, j = 2, • • • ,p}, 

w4 = {E | £ > 0}. 

Letv = (r®i)s(r'®i) = (v,y),« = i,...,p,y=i,...,p. 

When p = 2m, 

(Vi,--,VOT+i) = (VU,V22+VOT,,•••,VmTO + Vm+2m+J,Vm+i m+i), (6.46) 

i 

while p = 1m + 1, 

(Vi,  • •, Vm+1) = (V„, V22 + VW) • • •, VTO+1 m+1 + VTO+2 m+2), (6.47) 

where Vy = Vp_y+2, J = 2,... ,p, and S = (X - l„x')'(X - l„x'). 

Under wi, W2, wj, the likelihood function has the form 

L(/i, •,,..-, *p) = U|»,|-»,,ff(trD;1(r«I)G(r'® I)), (6.48) 

using a similar argument as the proof of Theorem 6.1, 

max 
«1 

*<,,«„•••,.,) =w,)-*-", (^) |igv, 
-J»V 

(6.49) 
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max i(,,»„-,.,)=A_(ä)-J^(^)|V,1|-l»p4Igv,. 
-|n(p-X) 

i 

(6.50) 

max L(n,•,,..-,»„) = A»,(f )-*•*•# (ä^)) Z2^-"-1) Ö IV.r»" , (6.51) 

max Lfot»,-,!,) = A^dJ-^f (j^j) M"*". (6.52) 

and the likelihood ratio criterion is same as the one in the multivariate elliptically contoured 

case. 

6.3. General theorem. 

From three examples in section 6.2, we can derive the general theorem for finding 

MLE. First, let's generate the assumption for this general theorem. 

Assumption B. 

Let xjvxi have the density |E|~* g({x — p)'E_1(x — p)) for HNXN positive definite and 

PNxi- Let o/o = u>m x uo where um C dtN and ute is a subset of positive definite matrices 

such that t/E € ue, then aE € uie for every a > 0. Suppose that the MLE's under normality, 

jt € um and E € u)t, exist, are unique. E ** positive definite (with probability 1), and let the 

maximum of likelihood function be L. 

Theorem 6.2. 

Under the assumption B, if /(A) s \~*Ng (j) atttains its maximum at some finite 

Amsz(^); then it = it and E = ^VAmM(<;)E are maximum likelihood estimates for g() and 
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the corresponding maximum of likelihood function is 

iN^-i* el    L- ^ 

Proof. 

By definition, the likelihood function has the form 

I = L(it, £) = |E|_* g(tt E^G), (6.54) 

where G = (x — p)(x — ft)'.  Since E > 0, there exists an orthogonal matrix T such that 

£ = TAT', where A is a diagonal matrix with diagonal elements A,-, i — 1,...,N, and 

Ai > Aj > • • • > XN > 0 are the characteristic roots of E. Therefore 

L = n*r*]'fe*rX*«)' (6.55) 

where H = TGr' = (A,/). 

Let I = ££a Af1*«, ß,=\%f,j=l,...,N- 1, then 

Define wj; = {(T,ßi,---,ßN-i)    :    E e we}.   Let E* = aS, a > 0, then AJ = aA,-, 

i = 1,..., N and A* = aX. Therefore the range of A is (0, co) and wj( does not depend on 
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A (defined asw*). So 

max L{ft, E) 

max 
fl£»ffl scaip^r.*^© (6.57) 

= A, ^•(i), e   EGO"1] (***)' 

Since max        /ie«m [Oi^JI1 (j^r)   *   ( — j£^—L I      does not depend on g, and un- 

der normality, g(x) = (2ic)~*Ne~** and Anuufa) = jf, it i3 clearly that A = /*, E = 

i^Amsi(j)E, and the corresponding maximum of likelihood function is 

•iJVr 

I 

ei^L. (6.58) 

Combining the above theorem and Lemma 6.1, we have the following corollary. 

Corollary 6.2. 

Under the same assumption» as Theorem 6.2, if g(-) is continuous and E(R2) < co 

where R «-» <f> € $N, then ft = it, E = iVAmax(<?)E, and tAe corresponding maximum of 

likelihood function is (6.58) 

Corollary 6.3. 

Lei /i £ ilm C 5R^ anci E G Qe, satisfying the conditions of Theorem 6.2, and let the 

null hypothesis H be /J 6 wm C Qm and E 6 we C fle. TAen tfte likelihood ratio criterion is 

independent of $. 
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Proof. 

The LRC is 

(*)-(*)• 

(6.59) 

from Theorem 6.2, which does not depend on R (i.e., <f>.) 

Remarks : 

(1) For every random matrix X distributed as multivariate elliptically contoured distri- 

bution, we can write it in a vector form which has an elliptically contoured distribution and 

a density function same as the one in Theorem 6.2. Hence Theorem 6.2 is more general 

than Theorem 6.1. and the three examples in section 2 also follow from Theorem 6.2. 

(2) Since, from (1.6), 

Cov(x) = E{R2B'uWuWr>) 
(6.60) 

= E(R2)D'Cov(uW)D, 

E(R2) < oo iff each element of Cov(x) is finite. So the assumptions in Corollary 6.2 — R 

has finite second moment and g(-) is continuous — are quite reasonable assumptions. 



Chapter 7 

NONCENTRAL DISTRIBUTIONS OF 
QUADRATIC FORMS 

In usual multivariate analysis, we know the distribution of x*1' x^, where x = i I 

~ 2V„ I j       j ,1 j. Anderson and Fang (1982a) derive the distribution of x*1' x^, where 

x ~ I      \ ) ~ ^^n II       ) '*   ' ^ I' un<^er *^e condition that px = 0. In this chapter, 

we derive the distribution of x'1' x*1' when px ^ 0. 
/x«\ {{»x\ \ 

If x =  I J  ~ ECn [ j       J , I    ; <(> J, where x*1' is ^-dimensional vector, then 
W2)J \\f2J J ,. 

(IT '\ 
J» ljandx^^^ + fiuj"). 

u«nV 
From Lemma 2 of Cambanis, Huang and Simons (1981), u[n) ^= ßfc„uW, where £*„ (> 0) 

and U<*) are independent and R\n ~ Beta(|, 2f*). Thus x<l> ^= /*x + J2i?i„uW and the 

distribution of x^ x^ is 

Prob{xW'xW < x) = Prob{(i2Äfcf,U<*> + px)'(RRknvW + ttx) < x} 

= ?vob{R2R2
kn + 2RRtnulk)'l*i + HMIII

2
 < *} 

(7.1) 
= Prob{v + aviuW'nj + H^ll2 < z}, 

where V = ß'-ß2.,,. By making an orthogonal transformation, we get U^ IIX 4= «i|!/*i||, 

where UW = I        J. Since we know the distribution of V and ux (see Anderson and Fang 
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(1982a) ), 

Probfx*1» xW < x} = Prob{V + 2V*u1||/i1|| + ||nx||
a < x} 

Jo       \       n*M   r' 

where 6 s-llM.II'- 
«••IIM.II 

ff(tf) - r^i^r*"1 jy~(n~2){'2"tf)^"1 rfi>(r)' 

and Ä ~ F. 

For 3 > 0 and « > 0, 

g-llMill2-» <t 

2«,ijM 

<» x < (v5 + H/IJII)2 

*>*' -IM! <»« 

^M-||Mi||)2<«   or   *<|Ma, 

(7.2) 

(7.3) 
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and 

g-lkll2-» 
2»» IK II 

>-l 

o*>(«»-lkll)2 

o x* + ||px|j > »«    and    t>» > ||fij|| - as» 

(7.4) 

<M*' + IKH)2>u    and   («/> (IM - s*)2    or    x > \\ßlf). 

Bi = {* < IN!2}, and Ct = {{xh + IM)2 > «}. Then 

AnB=^n^ 

We have, from (7.2), 

Pr oboc-v» **> - f [/I FiSff(1" "2)iil"',J"n*+w* <j(v) dv 

•(»*+||/*t||)»   r*      r(|) 
/i /     If  A(i-u»)V-> &,(„)& 

(7.5) 

/•(**-IIP,II)* 
+ I{*>\M') S(v)dv. 

Jo 
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So, from Leibniz's rule for differentiating an integral, the density of x^ x^ is 

/•(»UM»    , r(|) _ 

- / i        z7rffr(2«''IKII)-(*-2,{[«'-(•* -IM)21 
•M-II^ID" r(*=i)jri 

xlM + In.H"-.]}*»1!«* (7"6) 

C«*-HIM,IU* i 

A 

where 

M-iw r(*fi)r(|)(2||/i1|)*-22i* 

x {[„ - (.i - |fo||)«][(.i + |k||)2 - iB^ri'Mi) A, 

r(|)2l* 
M") =     At-,   _l-g(p)- »>     e  » 

Let d = x + |K||2, c = 2X»||AI1|| and w = «=*. The density of »W xW is 

t,      ,      n: /   (1 - w2) " e~»ewh(ew + d) dw 
r(*fi)r(|)(2||/i1||)*-22i'y-i 

~ r(^)r(i)2ä*    ' 

where J* = /^(l - w2)*? e~ie" k(cw + d) dw. And 

r = / (l-t02)**V»",'A(«0+ <*)<*«> + / {l-w2)¥c5«»h(-cv> + d)dw 
Jo Jo 

= / (1 - w2)*^ [e-'ewh(ew + d) + ele"h(-cw + d)] dw. 

(7.7) 

(7.8) 
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Now we make a transformation to = «a, 

r = / (1 - «)T* [B-»"*M"» + <*) + e»"4Ä(-c*i + d)| L~* rf« 

s  * ds 

+ [*(-«* + J) - A(«i + d)] f) (^*y^' 1 ."a J. 
(7.9) 

i 

+ [M-M*| + rf)-M«U4)]fgsJLB 

+   A(-ea» + d) - Ä(c*a + d)l Ix (I**)} da 

+ [M-C*' + rf) - M«» + <*)] /i (a» Ikll«») } da, 
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where Im is the modified Bessel function of the first kind and order m. 

Hence the density of x^ x^ is 

rB^e-i^+IM'Jil/jJli   r1 *-«    i rr       i i        l 
fkl'bti

]M   / (i-•)v*"*{[*(«* + -0 + M-«* + <0 

(7.10) 

x J_i (a:» ||A*II|**) + [&(-«« +d)- Ä(c«» + d)| Ii («'IMI«*) } cfc, 

where 

rf*tea* 

v»      e  » 

d = z+ \\ßi\\2, e = 2x»\\ßi\\, an(i •£» »* the modified Bessel function of the first kind and 

order m. 

Two examples are given in the following : 

Example 1. Multivariate normal distribution. 

Ifx={ 1 ~ Nn I |       J,lJ and x^ is jfc-dimensional vector. When px = 0, the 

density of x^1' x^ is 

r(|)2i* 

If Aix £ 0, then, from (7.10) {h(v) = 1), the density of xW x<*> jg 

r( 2 )2 » •'o » \ / 

(7.11) 

= £ (ji^jp) *     7i(*-2) (*'IMl)«P [-^(Ikll2 + «)] , 
i(*-2) 

where /TO is the modified Bessel function of the first kind and order m. 
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Example 2. Multivariate t-distribution. 

From Anderson and Fang (1982a), if y„ = I ] has »-dimensional multivariate t- 

distribution with t degree of freedom, where yx is lb-dimensional vector and ftt — 0, then 

|yl'yi has F-distribution with degrees of freedom k and I and the density of yjVi a 

_*±* 

If Pi # 0) then, from (7.7), the density of yt'yi i* 

c*~2 z1       2 fci     r(*±*)H 
r(*fi)r(|)(2|K||)^y_1

1    w j ' r(j)(1 + ap)*F w 

a!i-ir(*±/)^ •   r(*±« + 2y)r(|) 
n^mjjrd) 

f* r(^ + 2j)r(|) i±,t.2i-2Jr(J + |)r(^) 
£r(¥)«*jirü+ir+) r(|+i) 

x*-_^f_    r(*±* + 2y)x»'IM* 
«X   Z- ... r(|) UjH* + M* + Qt&*T(i+J)' 

(7.12) 
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