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Abstract

The usual assumption in multivariate hypothesis testing is that the sample consists of n
independent, identically distributed Gaussian p-vectors. In this dissertation this assumption
is weakened by considering a class of distributions for which the vector observation are not
necessarily Gaussian or independent. This class consists of the elliptically symmetric laws
with densities of the form f(X,xp) = g(tr(X — M)'(X — M)Z™!). The following hypothesis
testing problems are considered: testing for equality between the mean vector and a specified
vector, lack of correlations among different sets, equality of covariance matrices and mean
vectors, equality between i:he correlation coefficient and a specified number, and MANOVA.
For each of the above hypotheses, invariant tests and their properties are developed. These
include the uniformly most powerful test, the locally most powerful test, admissibility, and
null and non-null distributions. Further, under the assumptions that g(-) is continuous, each
element of the covariance matrix of X is finite, and the null hypothesis is scalar-invariant, it
is shown that the usual normal-theory likelihood ratio tests are exactly robust for the null
case under this wider class (i.e. the likelihood ratio tests, sampling from this general class,
are the same as the usual normal-theory likelihood ratio tests and their null distributions

are the same.)

iv
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Chapter 1

INTRODUCTION

The usual assumption in multivariate hypothesis testing is that the sample consists
of independent and identically distributed Gaussian vectors. In this paper we consider
the more general hypothesis testing problem when the sample observations, not necessarily
either Gaussian or independent, are from the family of multivariate elliptically contoured

distributions.

The elliptically contoured distributions on the n-dimensional Euclidean space R" are
defined as follows. If the characteristic function of an n-dimensional random vector x has
the form exp(it'u)¢(t'E"t), where u : n x 1, £* : n x n, rank(X*) = k, £* > 0, and
¢ € & = {¢]| ¢(-) is a function such that ¢(t2 + -- - + t2) is a characteristic function on
R*}, we say that x is distributed according to an elliptically contoured distribution with

parameters u, £*, and ¢, and write x ~ ECp(p, Z*, ¢).

Elliptically contoured distributions have been extended to the case of matrices by

Dawid (1977, 1978), Chmielewski (1980), and Anderson and Fang (1982b).

Let X, M, and T be n X p matrices. We express them in terms of elements, columns,

and rows as
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X = (i) =(x1,.--,%p) =] : |, x=vecX,

B _
M=("l°i)= (l‘lv-"l‘p) = : ’ l‘=veCM" (l'l)

Hln)

7
t)
T=(t;)=(t1,-..,tp)=] : |, t=vecT,
!
' tw)
where x = vec X' 9&f (x'(l), . e ,xzn)) with the corresponding meanings for s and t.

If the characteristic function of a random matrix X has the form
n
exp [ i) thue | ¢ (Ko Bitays -t Bnti ) » (1.2)
=t
with £;,...,E, 2 0, we say that X is distributed according to a multivariate (rows) ellip-

tically contoured distribution (MECD) and write X ~ MECpxp (M;Zy,...,25;4). In this
paper we consider only the subclass of MECD in which the function ¢ satisfies '

Pty ta) = p(t1 +--- + tp). (1.3)

We continue to denote MECD in this subclass by MECpxp (M;2y,...,Zn;¢) and ¢ by 4.

When "(l) = "(2) = eee = ”(“) = pu and 21 = ees = 2“ = z’ we write X ~
LEC,xp(n,Z, $), and if the density of X exists (in this paper, this is the usual assumption),
then it has the form

IE[73"g (r=7'G) (1.4)
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where G = X7, (x¢j) — #) (x(5) — ).

Let u(? denote a random vector which is uniformly distributed on the unit sphere in
%7 and Q4 ([|t]]?) denote its characteristic function. Schoenberg (1938) pointed out that a
characteristic function ¢ € ®, if and only if ’ '

#(t) = /:o Qg (tr?) dF(r) (1.5)

for some distribution function F on [0, c0).

Throughout X £ Y means that the random matrices X and Y are identically dis-
tributed; rank(A) denotes the rank of the matrix A.

Cambanis, Huang and Simons (1981) obtained the following two properties :

(i) x ~ ECn(n,=*, $) with rank(E*) = k if and only if
x L y+ RD'u®), (1.6)

where R > 0 is independent of u(¥), £* = D'D is a factorization of £* (i.e, Disa kxn
matrix and rank(D) = k) and the distribution function F of R is related to ¢ as in (1.5)
with k substituted for q. For convenience we denote this relationship by R <+ ¢ € &;. Here

x & y denotes that the random vectors x and y are identically distributed.

(i) Write u® = (u{")', u;”)')', where u™ is m-dimensional column vector (1 <
m < n). Then (ui”), u;")) L (R,,,,.u(m), (1- R}’M)%u("—'»)), where Rpn(2 0), ul™), and

ul®~™) are independent, and R, ~ Beta (2, 25™),

Anderson and Fang (1982b) pointed out that X ~ MECnhxp (M;Ey, ..., En; ¢) if and
only ifx = vecX' ~ ECpp(n, V, $) where V is a matrix with diagonal blocks Z;,i =1,...,n,
and off-diagonal blocks 0, and 4 = vecM'. So it is easy to see that if X ~ LEC,x,(p, Z, ¢)
and rank(2) = £ then

X £ 1,4' + RUD, (1.7)

where 1, = (1,1,-++,1), U: nx £, veeU=ul") D: ¢xp, D'D=X,and R — ¢ € 3.
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When £ > 0, X ~ LEChxp(s, Z, ¢) with ¢(t) = exp(—1t) if and only if xi5),3=1,...,n,
are i.i.d. Np(p,E). (This implies that sampling from a multivariate normal distribution is a

special case of sampling from the family of multivariate elliptically contoured distributions.)
There are three definitions to be emi)hasized here :
(i) The Dirichlet Distribution D (p1,°* ) Pm—1;Pm)-

Ky = (y1,"--,¥m) is a random vector with 3}, y; =1 and {y1,***,¥m—1)' has the

density with p; > 0,3 =1,...,m,

(Ef—‘—lr(p..))ﬂ'-"qlt{-' 1(1_ :";‘lt'.). , ift; >0,
i=1’...’m_l’

fm(tla' . ’tm—l) = 9 .
it <1,

=1 -

\ 01 otherwise,
(1.8)

we say that (y1,°* ,¥m~1)' ~ Dm(P1,"** s Pm—-1;Pm).
(ii) The distribution MGpg41(Z; 3, - -, Bk; 254, 4).
KX = (X, ,Xgt1") ~ LECpxp(0,E,¢) with £ > 0, then we say that (W, -+,
Wim) ~ MGpay1(Z; %, -, %5755 4), where Wi = X'X;, i = 1,...,k X, i =
1,...,k+1,isan;x pmatrix,p<n;<n,i=1,...,k ngy; 21, and Z:-’:lln.-= n.
(i11) Majorization (x < y).
For x, y € ®", x < y ( y majorizes x), if
ZLI z < E?:l i, $=1,...,n-1;
(1.9)
iz 7l = i iy
where zj;), i=1,...,n, is the arrangement of z;, s+ = 1,...,n, such that z5} > --- 2 z|,).
In this paper invariant tests, sampling from the family of multivariate elliptically con-
toured distributions, are discussed. Chapter 2 develops some general results in finding the

distributions and power functions of varicus test statistics. Chapter 3 discusses invariant
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tests in multivariate regression models and their properties including admissibility. Chap-
ter 4 studies an invariant test for equality between the mean vector and a specified vector,
shows that the generalized T'2-test is the locally most powerful invariant test under some
regularity conditions and is also the only admissible invariant test, and discusses the mono-
tonicity of the power function of the generalized T?-test. The invariant tests for testing
various hypotheses and their properties are studied in Chapter 5. The following hypothesis
tests are considered : lack of correlations among different sets, equality of cmﬁ@ce matri-
ces and mean vectors, known correlation coefficient, known pa.ftial correlation coefficient,

and zero multiple correlation coefficient.

Anderzon and Fang (1982¢) considered maximum likelihood estimation and the like-
lihood ratio test. In Chapter 6 we assume that X has a continuous probability density
function, each element of its covariance matrix is finite, and the null hypothesis is scalar-
invariant. It is then shown that the usual normal-theory likelihood ratio tests are exactly
robust for the null case under this wider class (i.e. the likelihood ratio tests, sampling from
this general class, are the same as the usual normal-theory likelihood ratio tests; and their

null distributions are the same.)

Anderson and Fang (1982a) derive the distribution of a quadratic form for the central
" case for the family of multivariate elliptically contoured distributions. Chapter 7 evaluates

its non-central distribution.



Chapter 2

GENERAL RESULTS FOR MULTIVARIATE
ELLIPTICALLY CONTOURED
DISTRIBUTIONS

In this chapter two general results for multivariate elliptically contoured distributions,
used in later chapters, are derived. The multivariate normal distribution is a special case
of a multivariate elliptically contoured distribution, but the distribution of a certain class
of specified functions of the multivariatg normal distribution 18 the same as that of the
multivariate elliptically contoured distribution. Based on this fact, if the test statistic is
one of the above specified functions, the power of this test remains the same as in the

multivariate normal case.
2.1. The distributions of certain specified statistics.

Anderson and Fang (1982b, 1982¢) proved that the null distributions of the likelihood
ratio statistics for testing lack of correlation between sets of variates, equality between
the mean vecltor and a specified vector, equality of covariance matrices, equality of several
means, and MANOVA in the family of multivariate elliptically contoured distributions have
the same distributions as in the multivariate normal case. Chmielewski (1980) also showed
that the null and non-null distributions of all invariant statistics for testing the sphericity
hypothesis are the same as in the multivariate normal case. In this section a general result

is given.
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Theorem 2.1.
Let Xnxp ~ MECpxp(M;Ey, ... ,Z1,52, ... 152, «.n ,Eq, ... ,Eg; 4) withn; Ti's,
i > 0, the rows of M are n; p}’s, i =1, ... ,q, 2oL, ni =n, and the density of X ezists.

(i) If M = 0 and if the vector f{X) of statistics satisfics the condition that f(X) = f{cX),
for every ¢ > 0, then the distribution of f{X) does not depend on ¢. :

(55) If the vector f(X) of statistics satifies the condstion that f(X) = f(¢(X + B)), where
the rows of B are n; bl’s, for everyc > 0 andb; ERP, s =1, ... ,q, then the distribution
of f{X) does not depend on ¢. .

Proof. |
(i) We can write
x =vecX' &£ RD'u("P o (20)
where u("?) and R are independent, D:-D.- = X; >0, and D is a matrix with ny D;’s, ..., n,
D,’s as diagonal blocks and off-diagonal blocks of 0’s.

Define f*(vec X') = f(X), then f*(x) = f'(ex) and £'(RD'u(*)) £ £(cRD’ u(*?)) for
every ¢ > 0. Since the density of X exists, Pr(R = 0) = 0. So £*(rD'u("?)) & £ (crD'ul"?)),
where £*(rD'u("?)) is the conditional random vector at R = r > 0. Then by letting ¢ = r~1,
r(rD'ul?)) L £ (D'u("?)). Since u(") and R are independent, *(x) is independent of R
and f(X) is independent of R. So the distribution of f{X) does not depend on ¢.

(ii) Let B=-M and Y = X — M, then

1(X) = f(c(X — M))
= f(cY).
When ¢ = 1, f{X) =f(Y). So it is true that f{Y) = f{cY), for any ¢ > 0. Then from (i), the
distribution of f{Y) does not depend on ¢. So the distribution of f{X) does not depend on
é. ]

(2.2)
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Corcllary 2.1.

Let Xpxp ~ LECnxp(, Z, ¢) with £ > 0, and the density of X ezssts.

(s) If u = 0 and if the vector f(X) of statsstics satisfies the condition that f(X) = f(cX),
for every ¢ > 0, then the distribution of f(X) does not depend on ¢.

(2) If the vector f(X) of statistics satisfies the condition that f(X) = f(c(X + 1,d')),
for every c > 0, and d € RP, then the distribution of f(X) does not depend on §.

Proof.

It is clear by letting g =1, ; = X, y; = p in Theorem 2.1. ]

The results of Anderson and Fang (1982b, 1982c) and Chmielewski (1980) are easily
obtained from Corollary 2.1. There are a number of other examples in Chapters 3, 4, 5,

and 6.
2.2. Power functions of specified tests.

The previous section consists of general results in distribution theory. In this section,

we will attack the problem of power functions by using the above result.

Theorem 2.2.

(3) Assume Xnxp ~ MECpxp(M;Zy, ... , 51,5, ... , B2, ... ,Bq, ... ,Eg;¢) with
n; I;’s, ;> 0, the rows of M are n; pi's, s =1, ... ,q, and the density of X ezists. For
testing Hy : (M,Zy, ... ,5q) €N vs Hy : (M, Ty, ... ,E4) € Q\ o, of the hypotheses
remain invariant under the group G ={g | g: X — c(x-+ B), where the rows of B are n;
bi’s,¢>0,b;€R?, i=1, ... ,q}, and f(X) is an snvariant test statistic, then the power

Junction of this test with rejection region f(X) € Sy does not depend on ¢.

(3) Xaxp ~ LECnxp(ih, E,9), with £ > 0, and the denssty of X ezists. For testing Hy
: (1w, Z) € Qg ve Hy : (4, Z) € 0\ Qo, if the hypotheses remain invariant under the group
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{9] 9: X ¢(X+1,d"), ¢ >0, d € R}, and f(X) 12 an invariant test statistic, then the
power function of this test with rejection region f(X) € Sy does not depend on §.

Proof.
(i) Since f(X) = f(c(X + B)), by Theorem 2.1, the distribution of f(X) does not
depend on ¢ under both the null and the non-null cases. Therefore the pbwer function of

this invariant test does not depend on ¢.

(if) This is a special case of (i). Using this, we can complete the proof.

Corollary 2.2.

(i) In Theorem 2.2 (i), if Q =B x Q*, Qg = B x 03, 0\ Qg = B x (Q*\ 03), where B
ts the set of parameters M, Q° 12 the set of parameters (£, ... ,E,), and 05 C Q°*, f(X)
12 an invariant test statistic of Ho : (X1, ... ,Eq) € vs Hy : (B4, ... ,Bg) € Q*\ 113,
then the power function of this test with same rejection region S, does not depend on ¢.

(i) In Theorem 2.2 (3), sf @ =B x Q*, (g = B x 05, 0\ g = B x (Q* \ 05), where
B 12 the set of parameters p , 1°* s the set of parameters £, and 1y C OQ*, f(X) 12 an
invariant test statistic of Hy : £ € (1 vs H, : £ € 0* \ 1, then the power function of this

test with same rejection region Sy does not depend on §.

. Prodf.

(i) It is clear that the hypotheses remain invariant under the group {g| ¢9: X~ X+B
where the rows of B are n; bi’s, b; € R, ¢ = 1, ... ,q}. Since under the transformation
X=X, ¢>0,(2y, ... ,Bg) does not change (only ¢ changes) (Since Z; i=1,...,q,
are scale matrix. i.e., for any a > 0, X ~ MECnxp(0; s, ... ,£1,52, ... ,Ba, ... ,E,

. ,Eg;4),then aX ~ MECpxpy(0;Zy, ... ,51,E;, ... ,Bg, ... , B, ... ,Bg¢%), see
Cambanis, Huang and Simons (1981). ) So by Theorem 2.2, the power function of this test

with same rejection region S; does not depend on ¢.

(ii) Similarly, as in (i), we can easily complete the proof. ]
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We will apply this result frequently in the later chapters. In particular, under the same
assumptions as Corollary 2.2, if an iﬁva.ria.nt test for the multivariate elliptically contoured
distribution is UMPI (uniformly mos; powerful invariant test) in the multivariate normal
case, then we can claim that this test is also UMPI in the multivariate elliptically contoured

distribution.



Chapter 3

MULTIVARIATE REGRESSION ANALYSIS

In this chapter, some properties in a multivariate regression model are studied. The
sampling is from the family of multivariate elliptically contoured distributions. Invariant
tests are derived and turn out to be the same as those dealt with in the multivariate normal

case. Admissibility is a desirable property. Admissibility and null distributions are studied.
3.1. Invariant tests and null distributions.

The usual assumption in the multivariate regression model is that the sample consists of
independent and identically distributed normal vectors. Now we consider, the more general
case, the following multivariate regression model sampling from the family of multivariate

elliptically contoured distributions :

Ynxp = anquxp + Enxpy

(3.1)
E~ LECnXp(ov 2’ ¢)’
where X is known, g < p<n,n—q 2 p, rank(X) =¢q,and T > 0.
If the density of Y exists, then the density of E exists with the form of
I=[~5" g(tr =1 (R'E)). (3.2)

Hence the density of Y has the form of

|E[~3" g(tr =~1(Y - XB)'(Y — XB)). (3.3)
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Suppose we partition
B,
B= . X=(X: X, (3.4)
B,
such that By has ¢, rows, B2 has g2 rows, X; has ¢; columns, and X; has ¢; columns. We
wish to test H : By = B} against the general alternative K : By # B}, where B} is a given
matrix.
To find the maximal invariants of the sufficient statistics, we need to find the sufficient
statistics. Since

Y - XB = (Y — XBq) + X(Bq - B), (3.5)

we have

(Y - XB)'(Y - XB)
= (Y - XBg)'(Y — XBg) + (B — B)'X'X(Bg — B) (3.6)
= NZq + (Ba - B)'A(Bq - B),

where NEq = (Y — XBq)'(Y -XBg), Bag=A"!C, Cc=X'Y, and

Ay Ay
A=X'X= .
A2y Ap

From (3.3), the density of Y has the form of
[5|~4" g(6r =[N Eq + (Ba - BYA(Bn - B))). (3.7

By the Factorization theorem, £q, Bg form a sufficient set of statistics for £, B. Thus,
there is an one-to-one correspondence between (Biq, B2,) and (Biq, B2g) and £q, Big, and

B,, form a sufficient set of statistics for £, B. (Note that B,, = Bog + (B1q — B})A2AZ),
where By, = A2} [X5(Y - X3B})].)

We can reformulate the hypothesis as B, = 0 (by replacing Y by Y — X;B;) and the
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problem remains invariant under

(1)Y — Y + X,T,
(3.8)
(2)X; —X,C*, B;—~C 7By,
where C* is nonsingular,
(3)Y = YV,
where V is nonsingular.
Under group(1),
ﬁﬂ e ﬁﬂ: ﬁlﬂ o/ ﬁ10:
. . (3.9)
. By, = By, +T.

So the only invariants of the sufficient statistics are £ and B;q (by letting T = —B,,,).

Under group (2),

£a~ 32, By~ C* !By,
(3.10)
X: - XIC',

where X} = X; — XgA{zlAgl. Let C}A;;.2C] =1 and C; be an orthogonal transformation
such that

cle Bin =T, (3.11)

wheret;, =0,i > v,t; 2 0,and Aj12 = x;'x; = A1 —A12A2-1Ay;. Since T is a function
of T'T = ﬁ'mAu.gﬁm, the only invariants of the sufficient statistics are N¥q (denote as
G) and B A 1.2B10 (denote as H). Under group (3),

G~ VGV, H+~- VHV, (3.12)
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where V is nonsingular. Hence the only invariants (i.e. maximal invariants) of the sufficient

statistics are the roots of
|- 6G| =0. (3.13)

We have the following theorem.

Theorem 3.1.

The respective mazimal invariants of the sufficient statistics for the sample space are

the roots of (3.13).

Since the maximal invariants of the sufficient statistics are same as the ones in multi-
variate normal case, the invariant tests are same as the ones in multivariate normal case.
Let 8; 2> 62 > - 2 0, be the roots of (3.13). Some invariant test criteria are listed as

follows:

(1) Lawley-Hotelling trace:

trHG™! = Zp:o.-. (3.14)
=
(2) Bartlett-Nanda-Pillai trace: l
P .
trHH+G)™ ! = . F'o.' (3.15)
=1
(3) Roy’s maximum root:
0. (3.16)

(4) Wilks’ likelihood ratio criterion:

P
U= clilm = [+ (3.17)

=1

Under the null hypothesis, by Theorem 2.1, the joint distribution of maximal invariants
of the sufficient statistics does not depend on ¢. So the null distribution of an invariant test

is the same for all ¢’s (i.e. it is same as the one in multivariate normal case.)
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Anderson and Fang (1982b) derived that Nq is distributed as MG, s(Z; 252; 1; )
(see page 4.) Next we want to find the null distribution of H. Since

Big = AOX'E, (3.18)

and .
E -i— RIJ"XPDP)(‘”
(3.19)
H =B,gA;10B1q
=E'XAW A, ,AUXE (3.20)
=E'FE,
where F = XAW'A;;,A0X!, D'D=X>0, and
AW

Al = .

If R? ~ xﬁp (i.e., E has a multivariate normal distribution), then H = E'FE ~
Wo(Z,q,). From Cochran’s Theorem for multivariate normal distributions, we have F2 = F
and rank(F) = ¢;. Then by Cochran’s Thecrem for multivariate elliptically contcured
distributions (Anderson and Fang (1982b)), H ~ MG, »(X; 4; 231; 4).

3.2. Admissibility of invariant tests.

In multivariate normality, one way to approach admissibility is to apply either Stein’s
Theorem or Schwartz’s Theorem (Section 8.10 of Anderson (1984)). In this section, we
discuss the problem of admissibility and make an extension of Schwartz’s Theorem to mul-

tivariate elliptically contoured distributions.

Theorem 3.2.

Azsume that (Y, m,Q*, P*) i a family of distrsbutions and (Y, m,Q, P) s a subfamily
of (Y, m,Q*, P*) such that for any bounded function f, E,f(Y) = 0 Yw € Q smplies f(Y) =
0 a.e. m. Suppose 1y and Qg are the nonempty proper subsets of 1* and (1, respectively,
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such that Qg C Q) and Q\ Qo € Q* \ Qg. If the test with acceptance region B s admissible
for testing the hypothesss that w € Qg agasnst the alternative w € O\ Qg , then the test
with acceptance region B is admissible for testing the hypothesis that w € (1) against the
alternative w € Q* \ Q3. ‘

Proof.

The critical function of the test with acceptance region B is ¢p(y) =0, y € B, and
¢8(y) =1, y ¢ B. Suppose ¢(y) is the critical function of a better test, that is

[swanw < [sswarie),  wens,
(3.21)
[ 2 [semarin,  wea\ag,
with strict inequality for some w; we shall show that this assumption leads to a contradiction.
Now we restrict the above inequalities to {}; we have
[6w) - s dnm) <0, wens,
(3.22)
[66)- b)) 20, wearae

Since the test with acceptance region B is admissible for testing the hypothesis that w € Qg

against the alternative w € 1\ o,
E,jo(Y)-¢8(Y)=0 Vweq. (3.23)
So ¢(Y) = ép(Y) a.e. m. This leads to a contradiction. [ ]
Now we go back to the problem of the multivariate regression model. Since p > ¢,
there are p — g; roots of (3.13) identically 0. It seems reasonable that if a set of roots § =

(01, ... ,84) leads to acceptance, then a set of roots 8* = (47, ... ,87 ) such that 8] < 4;,

f=1,...,q1, should also lead to acceptance. Such an acceptance set is called monotone. A
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point § = (04, ... ,0g,)' is in the extended region A* if the point 6, = (6;1), ... ,0i(q,))',
where 4(1),...,4(q) is a permutation of 1,...,q; such that f;;) > --- > 8y, is in A. The

following theorem is a generalization of Schwartz’s Theorem.

Theorem 83.8.

Let (Y, m,Q*, P*) be the famsly of multivariate elliptscally contoured distributions and
m be the Lebesgue measure. If the acceptance region A sn the set 12> 0y > --- > 85, >0 18
montone and if the eztended region A® 1s closed and convez, then A is the acceptance region

of an admaisssble test.

This theorem is proved using the following corollary from Theorem 3.2, and Theorem

3.4.1 of Ferguson (1967).

Corollary 3.1.

Let (Y, m,Q*, P*) be the family of multivariate elliptically contoured distributsons and
m be the Lebesgue measure. If the acceptance region A sn the set 1> 0y > --- > 0, >0 1
montone and sf the eztended region A* s closed and convez, then A 1s the acceptance region

of an admissible test among the class of tests based on the sufficient statistics (£q, Bg).

Proof.

Let (Y, m, 1, P) be the family of multivariate normal distributions. It is clear that
(£q,Bgq) is the complete sufficient statistics. Then this corollary follows from Theorem 3.2.
1

Next let us state Theorem 3.4.1 of Ferguson (1967).

Theorem 3.4.

Consider the game (0, A, L) where the statistician observes a random vector X whose

distribution depends on 8. If T is a sufficient statistic for 0, then the set Dy of decssion
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rules in D, which are based on T', forms an essentially complete class in the game (O, D,

).

Note :

© 1s the parameter space; A is the space of actions; L is a loss function; D is the space

of all behavioral decision rules; and R is the risk function (see Ferguson (1967).)
Proof of Theorem 3.3. |

For every fixed density g (see (3.2)), from Corollary 3.1, A is the acceptance region of
an admissible test among the class of tests based on the sufficient statistic (£q, Bg). But
(£q,Bq) is the sufficient statistic for (X, B). Then, from Theorem 3.4, A is the acceptance
region of an admissible test for this fixed g. So A is the acceptance region of an admissible

test. [ |

From Theorem 3.3, we conclude that Wilks’ likelihood ratio test, the Lawley-Hotelling

trace test, the Bartlett-Nanda-Pillai trace test, and Roy’s maximum root test are admissible.



Chapter 4

TESTING HYPOTHESIS FOR MEAN VECTOR

‘In this chapter an invariant test for equality between the mean vector and a specified
vector is derived; other optimum properties derived in Chapter 3 are studied. In the mul-
tivariate normal case, the generalized T2-test is the uniformly most powerful invariant test
(UMPI), but in the multivariate elliptically contoured case, a weaker property called locally

most powerful invariant test (LMPI) is derived in section 4.2.

4.1. Invariant test, null distribution, and admissibility.

Suppose Xpxp ~ LECpyp(p, £, ¢), with £ > 0, unknown, n > p, and the density of X
exists. We wish to test H : p = pgy against the general alternative K : p # po, where yq is
a known vector. We can reformulate the hypothesis as # = 0 (by replacing X by X — 1,4})

and the problem remains invariant under the following group :
X —+ XC, (4)
where C is p X p nonsingular.

This problem is a special case of multivariate regression model, so we have the following

corollaries.
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Corollary 4.1.

The respective mazimal snvariant of the sufficient statistics for the sample space is

T? = n(% — po)'S™} (X — po) where x = 2X'1, and 8 = 25 (X - 1,%') (X — 1a%).

Corollary 4.1 implies that the T2-test whose acceptance region is T2 < ), a constant,

is an invariant test.

Corollary 4.2.

For the null case, the distribution of T? does not depend on the distribution of the

radius R. That i, the null distribution is unique for any ¢.

Corollary 4.3.

T?-test 38 admissible.
4.2. Locally most powerful invariant test.

In this section, we want to derive a nice result that the T2-test is a locally most

powerful invariant test. First we need to find the non-null distribution of T2.

K Xpxp ~ LECnxp(n, E, ¢), n 2 p > 1, and the density of X exists, then

X £ 1,4’ + RUpxpDpxyp, (4.2)
and
%= lx’1,.
n
Ly %RD’U’I,., (4.3)

where D'D = ¥, R ~ F and independent of U. So
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T2
n—1

= (= uo)'S MR — o)
L n[(p— po) + %RD’U'I,,]'[RzD'U'(I - %1,.1:,)UD]-l

x [(s — po) + %RD’U’l,J

= ['_'Rf(n")'(u — 1) + ;I;U'In]'[U'(l - %1,.11,):1]"

1 . (4.4)
x [ (07 (e — o) + §U'1a].
na
The last equality of (4.4) is true because of Pr{R = 0} = 0.
Let
n3 1
Y =2 (D7) (4~ o) + UL, (4.5)
n
and Q be a p x p orthogonal matrix with the first row WY’. Define
2
V=QY
(Y'Y)3
(4.6)
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and
] 1 ! !
B=QU'(I- ;lnln)U]Q
( byy Blz)
Ba Bn/’
then
2
T dypiy
n—1
=Y'yi'!
_yy
by’

where b'!-is the (1,1)th element of B~! and byy.2 = by; — By2B;,; By -

Let E be a n x n orthogonal matrix with nth row -1/, and
n3

EU=| : |4y,
then

B =QU'UQ - %QU'I,.I:,UQ'
= QU'(E'E)UqQ’ - -'I;QU'inI:,UQ'

= Q(_Zu.-ui-)o' - Qu,u,Q'
n-1
=Q(D_um})q',

=1

(4.7)

(4.8)

(4.9)

(4.10)
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and

1
n3,__
Y= —RT(D 1)'([‘ - #o) + Up. (4.11)
From lemma 2 due to Cambanis, Huang and Simons (1981),

- R%)3
ud ((l ko) U'), | (4.12)

R;u"

where Ry (2 0), Uy ((n -'l) x p) and u* (p x 1) are independent, and R} ~ Beta(2, @:}2).
Thus

B (1- Rf)Quiu,qQ’

=B(R, R, Up,u*), ' (4.13)
and
ni
Y4 ‘E(D-l)'(ﬂ ~ po) + Ry’
=Y(R,R;,u’). ' (4.14)
Consequently

Pr{T?< z} =Pr {

Y"(R, Rl,u‘)Y(R, Rl,u‘) < z
bi2(R,Ry,Up,u*) " n-1

=/°°/1Pr Y'(},v%,u‘)Y(r,v%,u‘)< z
0 0 bu.z(r,v%,Ul,u‘) “n-1 (415)

x B(0; 2, 218 gy ary),
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where B(- ;a,b) is the density function of Beta(a,}).

Conditioned on u®* = u in B(r,v%,Ul,u‘), Q is a constant orthogonal matrix. So

| B('r”%,ﬁlru) = (1 - ”)Q‘J'IUIQ'

i (1-v)uyu,

(4.16)

does not depend on u. Hence B(r,v%,Ul,u‘) and Y'(r,v%,u‘)Y(r, v%,u‘) are independent,

as are bu.z(r,‘v%,Ul,u‘) and Y'(r, v%,u‘)Y(r,v%,u‘)‘.

Let
UU =E
(611 1'312)
E2; Ex ’
and

U, = (u;‘ U2):
where uj is (n —1) x 1, Uz is (n — 1) x (p — 1), then

(i U2)d(Rvi (1-RE)3Vy),

where R2(>0), v; and V are independent, and R} ~ Beta(%3%, M)i(t—ll) So

e112 = €11 — Ep2Ex Egy
= uj'uj - uj'Uz(U3U;) " Ubu;
L RIvivi — R3viVa(V3V2) "' Viv,

= RIVY(I - V2(V4V2) Vi,

(4.17)

(4.18)

(4.19)

(4.20)
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Since n > p > 1, V4,V is nonsingular with probability one. A =1 - V,(VLVe)~! V)
conditioned on V3, is a constant symmetric matrix, A = A? and rank{A) = (n—1)—(p—1) =
n—p. By Corollary 1 due to Arderson and Fang (1982a), v{Av; ~ Beta(“32, 2;—l) does not
depend on V2. So v} (I-V2(V3V2)"1Vi)v; ~ Beta("52, 231) and €1y, ~ Beta("32, m;—Q)
Then

Pr{T? < -"} / / / Pr {Y'(r,vz u*)¥(r,v3,u") < 2(1 v)w}

1
(4.21)
x B(w; n—;—g, ip_z—_l)) dwf(v; ‘—2,, Q‘-—-_—zﬂ) dv dF(r).
Let y = zw, then
o rl z
Pr{T253}=‘/0 /0 /; Pr{Y’(r,v%,u‘)Y(r,vé,u)<y(1 1)}
D) omse ecely ) _wyseon 4.22
ey’ T T T )

x B(v; g, (n _2 l)p) dv dF(r).

The density of T2 is

fr(z) = /:o/;l /: Pr {Y'(r,v’i,u‘)Y(r,v%,u‘) < g(;lt_ll)}

r(3e) [

n—p _n—p_ 4 n~p_, y,nle-1) _,
X - 3 3 1-—-- 3
r(e2)r(ee) U2 v

+(n(p ) “1)2— 3 g2 —2(1 z)Ju-zl ) ﬁ( ’ (n l)p) dvdF(r)
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/) //P’{Y'('wu)v(r,m g Hlzsle]

n-— p n(p - 1) .n—p n(p-1) '
[ﬂ( w; + 1, ) - l) - ﬁ(wa —2"7 ) )l dw (4'23)

x B(v; g, Ln——z—l)g) dv dF(r).

We have the following theorem

Theoram 4.1.

If Xnxp ~ LECnxp(pt,E,9), n 2 p > 1, and the density of X ezists, then the deonsity
of T? has the form (4.23).

Next we want to attack the problem of LMPI by using Theorem 4.1. First let us define
LMPL

Definition 4.1.

A level a test o 1s said to be locally most powerful if given any other level a test ¢,
there ezists § such that the power of g 18 bigger than the power of ¢ (i.e. Py (0) 2 Py( 0)
for all 8} with 0 < d(0) < &, where d(0) 12 a measure of the distance of 0 from Hy.

Definition 4.2.

A level a test 1o 18 said to be locally most powerful invariant (LMPI) if the test 1s

locally most powerful among the family of cll invariant tests.

Theorem 4.2.

Assume Xpxp ~ LECnyp(1,E,4), n > p > 1, and that the density of X exists. For
testing Ho : p = po vs Hy : p # po, the T?-test 13 LMPI.
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Proof.

Since, from Theorem 4.1, the non-null density of T2 has the form (4.23),

"f'(z) //arPr{Y'(szu)Y(sz )<z(1 ';)"’}

x 2 Plp(w; 22 4, MOy g 2R 2Dy,

2 (4.24)

xp(w; 2, 0= 1ty g

But

Y'(R, i ,u')Y(R, v3,u* -I—z—z- + Z(n:z) (= po) D™ u* + v, (4.25)

where 72 = n(p — ptg)' S~ (s — py). There exists a p x p orthogonal matrix Q, with first row
my~-1
"*—i‘—_—'fﬁin— such that

(4.26)

where Pr{B = 1} = } = Pr{B = -1}, Z; ~ Beta(}, 221) ' and B, Z; are independent. So
Y'(R,v%,u‘)Y(R,v%,u') 4 —Izz— +2— (le)BB +v, (4.27)

and
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Pr {Y'(R,v%,u‘)Y(R,v%,u‘) < f_(%?ﬂ}

1-—-
cre (D aLiomtn o< 200

-1
(4.28)
/ $8(z 1,l,p )[ {“""2 (021)’+”<z(:‘ ';)w}
+Pr{R2 2— (vzl)z +v< f—(:‘;_';)g}] dzy,
where0 < v,w <1l
Since, under 0 S v;w,z; <1land Pr{R >0} =1,
R2 +2 (vzl)z +v < E%—:—%M
& (I—’a +(v21)3)2 + (1 - 2) < i‘%’;)l'i
#0< (E+ a2y )
(4.29)
§0<( + (v2y)3 )<[E-(l—)—— v(l-zl)]ﬂ and
s0< L R_ Egi%?g—v(l—zl)]%—(vzl)% and

and
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r? z(l-v

i -2 (vz)=+v<_(:-ll£

o (£~ (oz)}) +o(1 - 5y) < 22000

e SR (BEVL RS BN L e - a)l, (4.30)
Z(:‘__t;)w 2o(l-z)

o e AN PP YO Y oL LRI )
TP 2=,

Pr {Y'(R,v%,u‘)Y(R, o}, ut) < EE_‘_”)_“’}

n-—1

11y ,
—‘/" [EIAnF (P { [M—”(l—zl)]%_(”zl)%}

T 1
* P'{ TR - o1 - )5+ (va)t }) *3lne

n~1

Pr T - . SRS : = r :
" {["LEE = o(1 - z)]7 + (vz1)3 (vz)5 — [2220® _ y(1 - z))3 }]

1 p-1
X ﬂ(zl;E’T) dz,

(4.31)
where A = {ﬂ%?“! > o(l- zl)}’ F= {[ﬂf':?! —o(1 —zl)]% > (vzl)i},
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and 0 <v,w <1l
We have, from (4.23),

3]‘,-(3) I

r=0

=5 pl/ //[ anr ([ﬂ‘;"’l—v(lilzl)la-(vq)%’”

1
T - a ))

n-1

1 1
+31 ¢ 1 s(1—v)w 1
24Nk ((vzl)a—[i—l— v(l—zl)laf =

n-—-1

1
T EEE ez e ’)]

x Blz1; %, p%l) dzy[B(w0; = ; LY n(pz_ n_ 1) - A(w; n—;g, ﬁ%_—l))] dw

< B(v; 2, 2212,

_ulf(o)///I (ﬂ‘;‘_—"lﬁ—v(l—z,)),

1_
3 0' -y

x Blei 5 25 dalp(o 2 B 1, MEZ Y gy g R R D)y

x Bo; 2,22 10) g,

(4.32)
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where f(-) is the density function of R.

a1

r{z)
Thus ﬁﬁ!—l('fy‘l does not depend on the density of R. Since f(0) is constant and ,under

multivariate normality, the T'2-test is LMPI, the T2-test is LMPI in multivariate elliptically

contoured case. 1

Kariya (1981a, 1981b) has derived that T%-test is UMPI under a subfamily of multi-
variate elliptically contoured distribution (g (see (3.2)) is nonincreasing convex function.)
For the more general case as the one in Theorem 4.2, the property of UMPI is still an open

problem.
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TESTING VARIOUS OTHER HYPOTHESIS

In this chapter, invariant tests for testing various hypotheses #re studied. There are
five sections in this chapter. In each section, the invariant tests and their properties in
different hypothesis testing are derived. The order of these problems are test for lack of
correlations among the sets, test of equality of covariance matrices and mean vectors, test
for known correlation coefficient, test for known partial correlation coefficient, and test for

zero multiple correlation coefficient.
5.1. Criteria for testing lack of correlations among the sets.

Consider Xpxp ~ LECpyxp(p, E, ¢), with £ > 0, and n > p. If the density of X exists,
|
then the density of X has the form of

27" g(r BT (X ~ 1) (X - 1)), (5.1)

where 1), = (1,---,1).

Suppose we partition

Zn Iy
E=| : B IS (5.2)
Za - Dey

such that ;5,4 =1,...,¢q,7=1,...,qis p; x p; matrix and 2%, p; = p. We wish to test
Hy : E;; =0, { # 7 against the general alternative H; : Z;; # 0 for some ¢ # j. First we

have to find the sufficient statistics. Since
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(X = 1,4") (X ~ 1)

= (X - 1,%)'(X = 1n%) + (1 (% = #)')' (1n(% - 1))

(5.3)
=A+ n(i - ”)(i - ”)'7
the density of X has the form of
£ g(tr 27 (A + n(z - )(x — #)]), (54)

where x = %X’l,. and A = (X — 1,x")(X — 1,¥'). By the Fac,torization'theorem, A and %

form a sufficient set of statistics for £ and g. This problem remains invariant under

()X +—=X+1,d,

(2)X ~ XC, (5.5)

where C is a matrix with nonsingular diagonal blocks of C; with order p;, 1 =1,...,q, and

off-diagonal blocks of 0’s.

Under group (1),

A—A x+—x+d ’ (5.6)

So the only invariants of the sufficient statistics are A (by letting d = —%.) Under group

(2),

ClAuC; -+ ClA1Cq
A S S 6
ClAnC: -+ ChAgCq
Ay - Ay
where A= | : : | and Ay is p; X p; matrix. Let Ag be a matrix with diagonal

Ay - A
blocks of Ag, ¢ =1,...,q, g%d off-diagonal blocks of 0’s, B be a matrix with diagonal blocks
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of B;, ¢t = 1,...,q, and off-diagonal blocks of 0’s such that B!A;B; =1,i=1,...,q, then

B'AjB = 1. The invariants of the sufficient statistics are

1 BllA,,ZBz e B;Aquq

B)A2 B, I c++ BhAgB,

B'AB = (5.8)

B{A;B; BA;zB; - I
So Q'B'(A — Ag)BQ is invariant with respect to group (2), where Q is a matrix with
orthogonal diagonal blocks and off-diagonal blocks of 0%s. Hence we conclude that the
invariant tests for the multivariate elliptically contoured distributions are same as the ones

in multivariate normal case.
Some invariant test criteria are :
(l)l Likelihood ratio criterion :
|B'(A-Ag)B+1]. (5.9)
(2) lNagao’s criterion :
%tr[B’(A ~ Ag)BJ%. -0 (5.10)
Since the likelihood ratio criterion is admissible in the multivariate normal case, from

Theorem 3.2 and Theorem 3.4, we know that the likelihood ratio criterion is also admissible

in the multivariate elliptically contoured case.

Next we want to find the null and non-null distributions for the above criteria. From

Corollary 2.1, we have the following corollary.

Corollary 5.1.

For both the null and non-null cases, the distribution of B'(A — Ag)B does not depend
on any particular underlying elliptically contoured dsstribution, s.e. the null and non-null

dsstridbutions are same as the ones in the multivariate normal case.
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From the above corollary, we know that the distributions of likelihood ratio criterion
and Nagao’s criterion are the same as the ones in multivariate normal case. So their

asymptotic distributions are the same as the ones in multivariate normal case.

5.2. Testing of equality of covariance matrices and mean
vectors.

Consider

(’ffx\

x'lﬂl
X= NMECnxp(M;Ex, oo ,21,22, e ,22, ,Eq, ene ,Eq;¢)

.
qu

\ %, /
with n; 2’8, 2, >0, mi > p,i=1,...,q, L ni=nx55=1,...,n;,s=1,...,q, are
p X 1 vectors, the rows of M are n; (‘[u:-)’s, 1 =1,...,q, and the density of X exists. Then
the density of X has the following form

] ]
([II=d=5")9(Xtr=7ta)), (5.11)
i=1 =1 ,

where

Gi=S oxs — )i — )
J=1

= A; + ni(%: — ) (R — )’

As= 3 iy — %)~ 5,

=1

and
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1
Xi= — Z"‘i'
ng i=

' By the Factorization theorem, A;, X;, t = L...,q form a sufficient set of statistics for =,
#i, $=1...,9. Now we wish to test Hy : y; = -+ = py and £; = .-+ = ; against the

general alternative Hy : p; # p; for some ¢ # j or T; # L; for some 1 # 3.

The problem remains invariant under

(Uxij —xiy +d, Wi, 5,
(2D~ DC*"!, B~ C'B,

(5.12)
(3)xi) L/ cxs'ir Vir jr '

where C* and C are nonsingular, D = (g, —Hgs s Bgy —uq), and Bis a (q-' 1) x n matrix

with (i, j)th element 1 when E;;__ll ng<j3< Zi=l ng, 0 otherwise.

Under group (1),

A A, Zi X+ d, Vi. (5.13)
Hence the invariants of the sufficient statistics are (Ay,---,Ag) and (%) —Xq, -+ ,Xg—1 —Xq).
Under group (2), as in MANOVA, the invariants of the sufficient statistics are (Ay,---,Aq)
and '
H= (il -im e 1’_‘1—1 - iq)E(’_‘l - iqr sie s 1iq-l -iq)'r
where E = (e;) is a (g — 1) x (g — 1) matrix with the element ¢;; = §;jn; — 1n;n;. Since
g n
A=Y (xi —%)xi; — %)
=1 §=1

q
=H+) A,

i=1

(5.14)
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where x = 2 307 Z;‘_‘_:l x;;, the invariants of the sufficient statistics are A, A;,---,A,.

=

Under group (3),

A~ CAC, A;~CAC', Vi , (5.15)
where C is nonsingular.

Let CAC' =1, then QCA;C'Q’, i = 1,...,q, is invariant with respect to group (3),
where Q i3 an p x p orthogonal matrix. Therefore we conclude that the invariant tests in
multivariate elliptically contoured distribution are'same as the ones in multivariate normal

case.
Some invariant test criteria are :

(1) Likelihood ratio criterion :

q 3mi
i 1Al2 |‘:"|’ , (5.16).
|A|3"
(2) Bartlett modified likelihood ratio criterion :
q 13(ni-1)
= A (5.17)

A i(n-9)

For dealing with the null distribution we have the following corollary from Theorem
2.1.

Corollary 5.2.

Under py = -+ = py, the joint distribution of CA;C', i =1,...,q, does not depend on
any particular underlying elliptically contoured distribution, s.c. st 18 same as the one in the

multivariate normal case.

From the above corollary, the null distribution of the invariant test criterion in the
multivariate elliptically contoured distribution is the same as the one in the multivariate

normal case.
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5.3. Test of Hypothesis about correlation coefficient.

Assume Xpxp ~ LECnyp(p, Z, ¢), with © > 0 and n > p, and the density of X exists,

Eu T2\ oy  pO102) | . .
where X = | - , B = is a 2 X 2 matrix. We wish to test Hy :
221 222 po102 022, .
p = po, where | po | < 1 is a given number.
Izx2 )
Let B = be a p x 2 matrix, then from Corollary 1 of Anderson and Fang
1

(1982b), XB ~ LEC,;xz(pB,Eu,¢‘) with ¢‘ € &, ~ R* = Rbn,%"(p_z), 6'2"_;_"(’_2) ~
Beta(n, 1n(p — 2)). So ,without loss of generality, let p = 2. i.e. Xpxz ~ LECpx2(p, E, ¢),

. . . oy P0102
with £ > 0, and n > 2, and let the density of X exist, where & = ( , ) . The

£7102 o5
density of X has the form of
[E|"3" g(tr=1G), (5.18)
. where
G=(X-1')(X - 1,4')
= A+n(% -~ p)(%~p),
X = lx’1,,,
n
and

A= (X -1,%")'(X - 1,%)

(Gn 312 ) (5 19)
321 G22 .

By the Factorization theorem, A and % form a sufficient set of statistics for £ and u.

The problem remains invariant under
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(1)x =X 4 lnd',
(2)X — XC, (5.20)
c1 0
where C = , and ¢3,¢2 > 0.
0 e

Under group (1),
A A, x> x+d, (5.21)

and the only invariants of the sufficient statistics are A (by letting d = —%.) Under group

(2), ,
€id11 C102812
A ( ) . (6.22)
€102821 cgazz

The only invariant (i.e. maximal invariant) of the sufficient statistics is ri2 = —f12- (by
011023
-1 -1
letting ¢y = a,,%, ¢2 = a,,°.) We conclude that the invariant tests in multivariate elliptically

contoured distribution are same 23 the ones in multivariate normal case.

For finding the null and non-null distributions of r;2, from Corollary 2.1, we have the
following corollary.

Corollary 5.3.

For both the null and non-null cases, the distribution of ria does not depend on any

particular underlying multivariate elliptically contoured distrsbution.

From the above corollary, all the optimum properties of r;2 for multivariate normal
case is fulfilled for multivariate elliptically contoured case, such as : asymptotic normality,

and “Fisher’s 2” test. From Corollary 2.2, ry; is UMPI against alternatives p > po .
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5.4. Test of hypothesis about partial correlation coefficient.

Assume Xpxp ~ LECnxp(p,Z,4), with £ > 0 and n > p > ¢, and the density of
Zn X2

X exists, where © = , and B;; i3 a g x g matrix. We wish to test Hp :
Ea D22

P12.g+1,--p = Po, Where | po | < 1is a given number. Without loss of generality, assume that

g = 2 (by the same technique as in section 5.3.)

Let X = (X1, X32), where X; = (x1, x2)isnx 2, Xz2is n x (p— 2), and x;, x; are

n x 1 vectors. The density of X has the form of

|B[~3" g(tr £71G), (5.23)

where
G = (X - 1,4')'(X — 1np')
=A+nx—p)(%-n),
1
i = —'x'ln,
n
A= (X-1,%)(X-1,%")
(5.24)
(Au Alz)
A2y Az
a1 G612\ | .
andAu=( )lsazxzmatnx.
az21 @22

By the Factorization theorem, A and % form a sufficient set of statistics for £ and p.

The problem remains invariant under
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(DX~ X+1,d,

10
(2)XHX( ),
0 C

10 (5.25)
(3)X+—X (B 1) ,

by 0
(4)x1 — x1 y
0 b,

where C is a (p— 2) x (p — 2) non-singular matrix, B is a (p — 2) x 2 matrix, and b, > 0.
Under group (1),
A A, g x+d (5.26)

So the only invariants of the sufficient statistics are A (by letting d = —%). Under group

(@),

Aj A,;,C
A : (5.27)
C'A;; C'AxnC

Hence the only invariants of the sufficient statistics are A;;, A;2C (by letting C'A3;C =1.)
Under group (3),

A — A+ B’C’Azl + Alch + B’B,

A;2C - Aj,C+ B (5.28)

The only invariants of the sufficient statistics are
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A2 = Ay — ApAZtAgy
( a11.8,-.p alz.s’...‘p)
213, p G223,
(by letting B' = —A;2C.) Under group (4),

bfau.s,...‘, 6162012.3,...4,
Au.z — 2 . (529)
6162021.3,... ) 62022.3’... s

Thus the only invariant (i.e. maximal invariant) of the sufficient statistics is ri23,..p =

-1 .
——gu—%-"i— (by letting b; = a3 ., § = 1,2.) We conclude that the invariant test in
6131.3,..-,0922.3,--,p '

multivariate elliptically contoured distribution is same as the oze in multivariate normal

case.

Next we want to find the null and non-null distributions of ry2.3,...p for multivariate

elliptically contoured distribution.

Corollary 5.4.

For both the null and non-null cases, the distribution of r123,..p, does not depend on

the underlying multivariate elliptically contoured distribution.
Proof.

Clear from Corollary 2.1. [}

From the above corollary and Theorem 4.3.5 due to Anderson (1984), the distribution
of a sample partial correlation coefficient, r12.3,..p, based on Xpxp with population partial
correlation coeflicient pj2.3,.., equal to a certain value, p, is the same as the distribution
of an ordinary correlation coeflicient based on X{n—(p-g)]xp With corresponding population
correlation of p. Also the asymptotic normality and “Fisher’s z” test are fulfilled for the

multivariate elliptically contoured case. Obviously, r123,..p is UMPI against alternatives

P12:3,-p > Po-
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5.5. Test of hypothesis about the multiple correlation
coefficient.

Assume Xpxp ~ LECnxp(p,E, ¢), with £ > 0 and n 2> p, and the density of X exists,

En Zp
where © =
Ea 2/

against the general alternative H; : Ry.g41,..p > 0. So ,without loss of generality, assume

, and By i8 a ¢ x ¢ matrix. We wish to test Hy : Ry.g41,.-p =0,

that ¢ = 1 (by the same technique as the one in section 5.3.)

!

' o o A >R PINY

Let © = ( “’), then Ryg.p = COZBIOT _ g4g, 0 — 6. The test is
o) Xo2 ol

same as Hy : a(l)(; 0 against H; : o) # 0. This ilsl a special case of testing for lack of

correlations among the sets. Then, by the result in section 5.1, B'za(l)bl are the invariants

i
311 &
of .the sufficient statistics, where B4A22B2 = I, b2a;; = 1, and A = @) . Since
2 1

a(1) ?22
‘ 0
the problem remains invariant under the group {Q | X + XQ, where Q = 8 and
T 1
Q, is (p - 1) x (p — 1) orthogonal }. Under this group,
B:'a()b; — Q}Bz'a(y)bs. (5.30)

The only invariant (i.e. maximal invariant) of the sufficient statistics is b; (a'(l)Bzﬂga(l))% =

(', Asrag)?

—-U—‘—— = R (by letting the first column of Q, is Bja;).) Also ,by Corollary 5.1,
%51 ‘ =

we claim that the null and non-null distributions of R in multivariate elliptically contoured

distribution are same as the ones in multivariate normal case. So R is UMPI. Also, the

invariant test is same as the one in multivariate normal case.
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MAXIMUM LIKELIHOOD ESTIMATES AND
LIKELTHOOD RATIO TESTS

In this chapter maximum likelihood estimates (MLE) and likelihood ratio {ests (LRT)
for the multivariate elliptically contoured distribution are derived. We first give the result

for a special case, then some examples, and finally the general theorem.
6.1. The result for a special case.

Anderson and Fang (1982c¢) attacked the problems of MLE and LRT and gave some
conditions for finding MLE. In this section, more precise and weaker conditions are given.

The following lemma contains the general idea for constructing the weaker conditions in

finding MLE.

Lemma 6.1.

Assume that g(-) is a continuous function such that g(z2 + - - - + z%;) i3 the denasity of

ECx(0,1,4) and E(R?) < co where R « ¢ € &y. Then the function
h(z)=z7g(z), =220, (6.1)

has a mazsmum at some finite 2y > 0.
Proof.

Since, from Cambanis, Huang and Simons (1981) (or Lemma 13.3.1 of Anderson
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(1984)), the density function of R? is

@) = gyt ota),

(6.2)

( )

h(z) = —x~2f(2).

From E(R?) < oo, limgco h(z) = 0. Furthermore h(0) = 0. (If not, there exists € > 0,
zf(z) > eVz > 6,80 1 > f: f(z)dz > f:id:p = oo which is a contradiction.) Hence

h(z) > 0 Vz > 0, and A(-) is continuous. The assertion of the lemma follows. |

The following theorem is the main theorem in thié section and let us define the as-

sumption for this theorem.

Asgsumption A.

X ~ MECu (M), ... =) . @ . ¥ 4) withn; 0% n; > p,
i=1,...,q, and 2:’_1 n; = n. The rows of M are ny L A ng pD s, successively,

where ) = diag(Eg?, E;:Z), 1 < k < p. The denasity function of X 1

[ﬁfll”“ ’"'] (ZZ“E(?_IG@)’ (63)

=1§=1 =1 j=1

o - of
where G; = 2;’;'3.--#1("(1') - p("))(x(,-) - uy = . : with fig = 0, A; =

() 0]
e ... ¢
ny+--+ny;. L k&

Theorem 6.1.

Under the assumption A, if f(A) = z\'%""g(f\’—) attains its mazimum at some finite
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Amax(g), then the MLEs of p and =) are

A0 = x0
(6.4)

= dxag(Eu, LED, ‘
i=1,...,q, vhere £ = (l)A w@WD, i=1,..,q,i=1,....k. W is obtained
from G(') by substituting p®) with x() = L 2 =i +1 X0) and the corresponding mazimized
likelthood s

sortn (L[ R e

Proof.
max L(”(l) ,“(Q);Z(l)’ S 2(1))
”(.)z(')
— ma.xmaxL(u( ), @ s® ,2(9)), (6.6)
PERS0)
where i

L EL(,;(‘), . ,”(q);g(l), 2(9))

_ [ﬁfl =9 ,...] (EZ"’”‘Q Gm), (6'%);

=1 j=1 =1 j=1

First we want to maximize L with respect to ), s =1,...,q. Since G(-"-) >0,s=1,...
7 =1,...,k, with probability one, there exist nonsingular matrices C;; such that C; C'
G}? and orthogonal matrices I';; such that

I4iC5 B¢y 7'y = Ay

= diag(A{J,-.-,2%)),
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with positive ,\”, a=1,...,p;. Therefore

- [ﬁfl(lc"’lnx"’) ’]a(iii’iwﬁﬂ)- ©9

=1 j=1 a=1 =1 j=1 a=1

It is a symmetric function of A w(7=1,...k,a=1,...,pj)fori=1,...,q. Hence

M) =20, =1, ,ka=1,..,p;,20d

[(HH el ’m) 16" 'w] ( g,\%) (6.9)

=1 =1

Let
RN

pYON

i
[ 3

S| b
"
l"l~

~ (6.10)

A .
ﬂj‘:ma 1=1...,9-1

So maximizing L with respect to £V, i =1,...,q, is the same as maximixing L with respect

tod, Bj,i=1,..,9-1

Now

oo (™) () (5 56)

- (i) [ ({a) (- £8) )

(6.11)

=1jy=1 =1

So

maz L
xvpl v"vﬂq— 1

_HHIG(O

=1 j=1

“le (B) (-9 ),

=1
(6.12)
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L attains its maximum at A = Amas(g), fi=,4=1,...,g—1 and

L' =max L
»H

= Amax(9) 3" ( ,\mi(g)) ;[:],: [(%)-%mjlj:l Ic'g?

Since G; = W; +n;(x) — u)(x) — 4@) maximizing L* with respect to u?, i =1,.

. ] (6.13)

shows that L attains its maximum at p( = x¥). This completes the proof. 2
Combining the above lemma and theorem, we have the following corollary.

Corollary 6.1.

Under the assumption A, if g() is continuous and E(R2?) < co where R — ¢ € 2pp,
then the MLEs of 4 and £ are

A = x0
(6.14)
£ = diag(£]), ..., £1),

i=1,...,q, where ﬁ” = (L )Am(g)w(') t=1,...,q,5=1,...,k, and the corresponding

mazsmum of the likelthood function is

Amaz(9) 5"y (,\ m‘: (9)).-1511 [(nﬁ.)-l 1! ] . (6.15)

Under some conditions, Theorem 6.1 and Corollary 6.1 show that the maximum of the

likelihood function for the multivariate elliptically contoured distribution is proportional to
that of the multivariate normal distribution. So the following likelihood ratio criteria in
the multivariate elliptically contoured distribution are the same as those in the multivariate

normal case:

(1) The criterion for testing for lack of correlation among the sets (g = 1):

Aad

n=_—4—.
i=1 Wil

(6.16)
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(2) The criterion for testing the hypothesis that a mean vector is equal to a given vector pg

(g=k=1):

(Wi

p=—
{Wol

- 1 (6.17)
1+T2%/(n-1)"
where Wo = 327, (x(;) = #o) (x(j) — o)’ and T2 is the Hotelling T?-statistic (see Chapter
4)

(3) The criterion for testing the hypothesis of equality of covariance matrices (k = 1):

1| () @) 019

J

(4) The criterion for testing equality of several means (k = 1):
=V
IE;:I WJI

(5) The criterion for ttlasting equality of several means and covariance matrices (k=1):

=1 ()™ 620

(6)The criterion for testing the hypothesis that a covariance matrices is proportional to a

(6.19)

given matrix £y (g =k = 1):

=5 W]

CETWIF (6.21)

Te =
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6.2. Examples.

Section 6.1 gives six examples for finding LRT. In this section, three examples that
do not fulfill the assumptions in Theorem 6.1 are given. From the results of these three
examples, we gét the idea of general theorem in section 6.3. The following three examples

satisfy the assumption that f(-) attains its maximum at Apnax(g).

Example 1. Tests of hypotheses concerning subvectors of u.

u
If Xpxp ~ LECaxp (| ' ),5,4) with £ > 0 and n > p. We wish to test Hy :

B2
p; = 0. The likelihood function has the following form :

-1 =
L(l‘lyl‘mz) = IEI ’”g(trz IG)v (622)

e (e (7)) (- ()

Let @ = {(#,Z) | £ >0} and w = {(s,X) | #; =0, £ > 0}. It is clear that

max L(py, iy, E) = A ~4ne ( L2 ) w|-i", 6.23
ax L{py, #z, E) = Amax(9)73"g Yo (0) Iw| (6.23)
where W is obtained from G by substituting u; with %; ¢+ = 1,2. Since

max L(py, p3, ) = maxmax L(0, p2, T), (6.24)
w s X

using a similar argument as the proof of Theorem 6.1, we get

max L(0, 5, %) = dmas(s) 400 ( A..,:(g)) e, (6.25)

where
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- (o (2)) (e (2))
w2 ()

Thus
1 e ' 1 (= PR pe—"| I wl-llwn
("1, (xz - l‘z) ) = ("1, (xz = I‘z) ~ %, Wn le) 0 1 ’ (6-26)
I Wilw,\ ! I -wWilw,,
11 _ 1 ’ (6.27)
0 1 0 1
and

( I o) (wn wl'z) (1 —w;}wu) (w11 0 ) 638)
= , 6.28
~WaWi! I/\Wa Wi/ \0 1 0 Wi,

impiy that

H| =

X1 X1 !
W4+n
X2 — #2 X2 — ua

-

st ()]

X2 = 2

3

g -1
0
. = = 11
=3 IWI 1 -+ n(i'l, (XZ - ﬂz)' --x'IWuqu) ( -1 )
| Waz
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x -1
(iz - 1‘2) - w21wu X1

= [W][1 + n{Z{ W%, + [(Re — po) — Wy W', |'W5 (6.29)

X [(%2 = pz) — WaWi'zi]}] ,

Wu Wy - . o
where W = and Wapq = Wa2 — W W' Wys. The maximum likelihood
W2 W2
estimate ji, of p, is
fig = X3 — Wy W '%;. (6.30)
So
L(py, 83, 5) = Amax(9) "3 [ 2 ] IW] 73" (1 4+ n®, Wizy) 3" 6.31
max (#1;82,Z) = Amax(9) g Amal9) ad! (1 + nxy Wi %) 2", -(6.31)
and the likelihood ratio criterion is
1
ma'xw L(I‘ul‘z,z) = lWl’"
maxa L{py,p2,B) W™ (14 ne) Wi, ) 3"
(6.32)
()
T \l+nx\Wilk,)

Example 2.

If Xnxp ~ LECnxp(, £, §) with £ > 0 and characteristic roots A;, 4 = 1,...,p, with
AL 2 A22--2Xp > 0. We wish to test Hp : Ajy1 = = Aj4x, $ + £ < p. Since T > 0,
there exists an orthogonal matrix I such that £ = I'AI" where A is an diagonal matrix with

the (£, £)th elements A¢, £=1,...,p and the likelihood function has the form

P
L(n,T,0) = [[ 37 "g(tra~'m), (6.33)
J=1
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where H =I'GrI.

Let Q= {(n,X) | E>0} and w = {(1,E) | Aig1 = *** = Ai4x}. It is clear that

max L(p,E) = A ~3re ( L4 )w-%”. (634
2% 20, %) = dmasls) 570 (5275 ) W1 (6:30
Since
max L(p,2) = max L(uT,4A), (6.35)
5 w ”I‘ P
AGM(FJ'*)

where O, is the class of p-dimensional orthogonal matrix, and Mp;x) = {A [ 0 < )y <
co € Mighi1 < Aigk = =M +1< ) <+ < )}, by Theorem 6.1,

. ) ' ~1n
k
1
max L(u,T,A)=2A —';'”Pg( p ) = I T hi:
AeMeprn) ( ) max(9) Amac(9) k,-=1 45 045 i+k-!':Is,'5p 55
‘ L 15,55
‘ , » [ . k . k
=2 —3"P ( ) = YT e L
REt
I ey :
i+R+1<i<p
1€5<
(6.36)

where H = (hj) = (v}Gv;), T = (71, "+, %), and App < Bp_g p—y < -+ < hyy. Therefore

G=W+nx—p)x—pn), (6.37)
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hij = 4Gn;
=W+ n(& - p)(&—p)')y;
=Wy + & - )R- p)y; (6.38)

2 '1;'W’1",

and

' k
k
‘ _1, p 1 Z
m‘;xx)\m(y) 3"y (r—m,x(y)) (I i=1 ":'+iG’7-'+i) I Aoy ;

i+k41<i<p
18580

imply that

_ 1
k k "
1
=) —%ﬂp (_P____) —_ 7'. W i+ q'-W'y- .
mx(g) g Amax(!]) E E i+5 Y Vit i+k+]‘.:£55p J J (6.39)
] 1$58é

Let F = I'WT = (4/G7;) = (fij) fop £ -+ < fu, and 0 < rp € -+ < 1y be the
characteristic roots of W. Then, by Theorem 9.B.1 due to Marshall and Olkin (1579),
f <r (r majorizesf)on D), = {x € RP : x1 > --- 2 xp}, where £ = (fu1," -, fpp) and
r=(ry, +-,rp). Define

k
3
$(x) = (%Eziﬁ) I = (6.40)

=1 i+k+1<7<p
1<5Si

where x € R?. Then ¢ is continuous on J, and continuously differentiable on the interior

of D,. Since



Chapter 8: Mazimum likelithood estimates and ltkelihood ratio tests B35

wule) = 22

4 k ' .
. Kk
(%Zz;.ﬁ) H zi t+k+1<L8<p or 1<UL<s

i=1 i+k41<5<p
1€5<i

i#e (6.41)

k-1 '
k
(%Zz"ﬁ) H z; t+1<L¢<i+k

§=1 i+k+1<5<p
\ 1€5€i

- i8 decreasing in £ =1,...,p, by Theorem 3.A.3 due to Marshall and Olkin (1979),

, . A ~1n
_1 P 1 ;
max A anp ( ) = S+5 4§ 7]
JepS Sy max(9) . Amaz(g) (k §f+’ -H) i+k411$i51? L
1580
(6.42)
k —3n
1 p 1¢
= Amax(g) 73"y (/\ ( ) k Zr""‘l' H T )
max(9) j=1 i+k+1<i<p
1€5€i
Thus the likelihood ratio criterion is
. 3"
max, L(g,E) H$=1 Ty
L(p,=T) ]
maxq L(p, E) (% Efm r,-+,-) Hu,,;g_gs, ri
(6.43)

k "
H,'=1 Fits

E
1 ok
(3 Shoiriai)
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Example 3. Circularly symmetric model

 Xpxpk ~ LECpxpr(p,Z,4) with £ > 0 and n > pk. Consider the following four

hypotheses :
Hl r E= diag(EO’ e 520))

‘ (Eo y - 5 21\
Ty B - 5 I,
H:z=|: : A I
B B o B 5
kEl L - B EoJ

((Bo T - Dpg Bp)
Ep-1 Do Ep-3 Zp-2

Hsy : &= : ,
B2 By -+ Do I

\ 51 B - Tpa  To /

H4 . E)O,

where ;,2=0,1,...,p — 1 are k x k symmetric and ¥ is pk x pk positive definite.

I ¥ is circularly symmetric, then

E=(Wo®Z)+(W1®Z))+ -+ (Wpo1 @ Zp_1), (6.44)
0 I . .
where Wo =1, W; = . 0 ) i=1,...p—1, and W; = Wy, From the theorem in
]

Olkin (1972), there exists ' € Op, with elements r;j; given by
rig = p—% {sin (21(—"—:—1);—,‘:——11) + cos (23'(—‘1—:—1);—,‘:—11) } , (6.45)

such that (T@I)=(I' @ 1) = diag(¥,,-:+,¥,) = Dg where ¥;, § =1,...,p, are k x k positive
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definite. The parameter space for each of the hypotheses H,—H; becomes

wl={DW l wl="'=wp>0:givenwj=wp—f+2r J.=2""7p}: .

w2={Dg I ¥ >0, \Ilz-=---='l',,>0,given\?j=\l’,,.j+2, Jj= 2,--~,p},

wy={Dy | ¥1>0, ¥;j=¥,_;1,>0, j=2,---,p},
we={S| E>0}.

Let V=(T@IS(I'®I) = (Vij),i=1,...,p,i=1,...,p.

When p & 2m,
(Vi Vemt1) = (V11, V22 + Vip, .-, Veam + Veni2 m+2, Vi1 m+1),
ivk;ile p=2m+1,
(Vi,-**, Ve41) = (V11, V22 + Vip, -, Vit mt1 + V2 m2),

where V; = V,_;42, 7 =2, ...,p,and 8 = (X = 1,%")'(X - 1,X).

Under wy, wg, ws, the likelihood function has the form

b 4
L(p, %y, ,%,) = [[ 1®:{~1" o(tr D3 r @ D)G(I" @ 1)),

=1
using a similar argument as the proof of Theorem 6.1,

1 } 4
;ZV.';

=1

!!‘1"!'1! L{p, ®y,- - ’\Pp) = z\mu(y)-%npkg (,\:(9))

b

67

(6.46)

(6.47)

(6.48)

(6.49)
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—3n—-1)
~Llnpk pk v -1p 1 2 v ?
000 P s — .

n:’a’x L(”’ ‘I,l! 1"]’) )‘mn(g) 2 g (Aw(g)) I lll p‘_ 1 g "' )
(6.50)
max L, ¥1, -, ;) = Amae(g)~ 370y [ —EF ) 22ht-m—1) f[ [v;|"3" (6.51)

ps ", ¥, ) ¥p max )‘max(g) o H ’ i

- k -1 '

n:,;:x L(p, ¥y, '1‘1'1») = Amax(g) %m’bg (ﬁ(—!ﬁ) M "”’ (6.52)

and the likelihood ratio criterion is same as the one in the multivariate elliptically contoured

case.
6.3. General theorem.

From three examples in section 6.2, we can derive the general theorem for finding

MLE. First, let’s generate the assumption for this general theorem.

Assumption B.

Let xnx1 have the density IEI'% g((x = p)'T(x = u)) for Enxn positive definite and
By Let wo = wp X we, where wy CRY and w, is a subset of positive definite metrices
such that if T € w,, then aX € w, for every a > 0. Suppose that the MLE’s under normality,
it € W and £ € w,, ezist, are unique. T is positive definite (with probability 1), and let the
mazimum of likelihood function be L.

Theorem 6.2.

Under the assumption B, if f(A) = A~3Ng (3) atttasne its mazimu:n at some finste

Amax(9), then i = i and £ = NAmax(9)E are mazimum likelihood estimates for g(-) and
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the corresponding mazimum of likelihood function ss

dmae(9) 39 (32257 ANE,

6.53
N (an) (6:52)
Proof.
By definition, the likelihood function has the form
L=L{u%5) = |53 g(tr=1G), (6.54)

.where G = (x — p)(x — p)'. Since £ > 0, there exists an orthogonal matrix I such that
B = TAIY, where A is a diagonal matrix with diagonal elements );, + = 1,...,N, and

A 2 X2 > -+ 2 An > 0 are the characteristic roots of . Therefore

L= [‘IZ'[1 A %] g (EN: A,.-lh.-,-) , | (6.55)

=1
where H = T'GI" = (h;;).

Let } = T, A7 hi, fi =25, 7 =1,...,N -1, then

Define w3 = {(I',f1,"--,An-1) : B € w}. Let * = a¥, a > 0, then A} = a);,

i=1,...,N and A* = a). Therefore the range of A is (0, co) and w} does not depend on
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A (defined as w*). So
pax L(u, B)

Eeu,

(r,ﬂ‘ !"'ipN_l)e""

='\“"(’)—%N’('\mﬁ(g)) e ﬁ(ﬂ) ]( hNE—’l ) E

(rvpl BN~ EW® =1

17 £, S N-1,\ "3

Since max Bewm [ Al (7‘:—"-) ’] (1 z,.:NN ﬂ') does not depend on g, and un-
' (r!‘lf"iﬂN—‘)ew. N R

der normality, g(z) = (21r)'2 -3* and Amax(9) = %, it is clearly that 4 = 4, & =

Nmax(9)E, and the corresponding maximum of likelihood function is

O] i) VO

NiN(2x)~3N

(6.58)

Combining the above theorem and Lemma 6.1, we have the following corollary.

Corollary 6.2.

Under the same assumptions as Theorem 6.2, if g(-) 18 continuous and E(R?) < oo
where R ++ ¢ € Oy, then i = ji, £ = NAmax(9)E, and the corrcsponding mazimum of
likelihood function is (6.58)

Corollary 6.8.

Let p € 0 C RY and T € O, satisfying the conditions of Theorem 6.2, and let the
null hypothesis H be p € wyy C 1y and £ € w, C Q.. Then the likelthood ratio criterson 13
sndependent of ¢.
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Proof.
The LRC is
(ﬁ‘i = (5‘1 , " (659)
Lqg Lo '
from Theorem 6.2, which does not depend on R (i.e., ¢.) |
Remarks :

(1) For every random matriz X distributed as multivariate elliptically contoured distrs-
bution, we can write it in a vector form which has an elliptically contoured distribution and
a density function same as the one in Theorem 6.2. Hence Theorem 6.2 is more general

than Theorem 6.1. and the three ezamples in section 2 also follow from Theorem 6.2.
(2) Since, from (1.6), |
Cov(x) = E(R?D'u™u™ D)
= E(R*)D' Cov(u®™)D, —

E(R?) < oo iff each element of Cov(x) 15 finite. So the assumptions in Corollter 62—R

has finite second moment and g(-) is continuous — are quite reasonable assumptions.



Chapter 7

NONCENTRAL DISTRIBUTIONS OF
QUADRATIC FORMS

(1)
In usual multivariate analysis, we know the distribution of x(‘)'x(‘), where x = ( @) )
x

B
~ Npn ( l) ,1]. Anderson and Fang (1982a) derive the distribution of x("'x(!) where
1)

I
x = ( @ )) ~ EC, (( l) LI ;¢), under the condition that 4, = 0. In this chapter,
X B2 .

we derive the distribution of x(V'x() when ™ # 0.

x(1) s
I x = ( (2)) ~ EC, (( 1) 8 | ;¢), where x() is k-dimensional vector, then
x ] U(")

x & u+ RU, where R (> 0) is independent of UM = ) land x() & 4, + RU(")

(n)
U,

From Lemma 2 of Cambanis, Huang and Simons (1981), U(") € R, U where Ry, (=2 0)
and U® are independent and R}, ~ Beta(" ""‘) Thus x(¥) & L 4 + RR,G® and the

distribution of x(!)'x( is

Prob{x!)'x) < z} = Prob{(RRinU® + p,)'(RREnU® + ;) < 2z}

= Prob{R?R}, + 2RRea UM s, + ||, || < z} _—
71
= Prob{V + 2V%U(")'ﬂ1 + “1‘1“2 <z},

where V = R?R? . By making an orthogonal transformation, we get U® 'y, £ uylly, ||,

u
where UK = . Since we know the distribution of V and u; (see Anderson and Fang
Uz
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(1982a) ),

Prob{x(l)'x(l) < z} = Prob{V + 2V, llagll + lleg I < 2}

] - 2
= / Prob {u; < E-MI——"} g(v)dv
0 209y |

(1.2)
oo [ 5 A=t
=/ / (f) I (1= &?) 5 "y 1) du g(v) do,
0 I(&2)xa
where b= "'_’:”_’ixﬂ’_‘_",
205l
r('z_') lk-l/ -(n-z) -1
9(v) = = —F=—-v3 r?—v)" dF(r),
)= (s Ly T TR
and R~ F.
Forz>0and v >0,
- 2_
z ||I|—‘1|| v <1
203 ||, |
&z < (03 + [lmy))?
(7.3)

& 23 = ||uy|| < 03

1
# (1=’ <v or z< P
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and

z— lml*-v > _
1,
203 |, |

1
@22 (v~ [m])?

(7.4)
@2+l 205 and ol >l -2}
& 5+ ml)?2v and (v2(lmll-23)? or 22 |n?).
Let A= {=liplloe <1y p = (llloe 5> 1y 4 = (23 - l)? < 0},
ot < 2= 1500 b A= {(23 = |m]l)* < v}
By = {z < 1%}, and Gy = {(z7 + [l [[)? 2 v}. Then
ANB=4a()C
We have, from (7.2),
1] k
obfx®)'5 @) Y b L(2) 4 _ 2kt
Prob{x'")'x Sz}-/o [/—eol‘("—;—l-)x%(l u®)"s (IAnB-i-IAc)du g(v) dv
e o pky vt
= —2 _(1-4?)7 Ydu d
f(s*-uu,u)' /-1 r("—;l)x%( ) g(v) dv (1.5)

(a2 (i, 17
+ a2y 17} /o 9(v) dv.
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So, from Leibniz’s rule for differentiating an integral, the density of x()'x () s

(a3 +1lw,1? e o1 T(E) nbsio
/(z*—"pl")z (20 Heex 1D I'(k"l) 1( - b%) g(v)d

ad+un, )
f(( V20 2ub )+ o - (o~ )

sl )2 D(E5)x3

k-3 7.6
x [(z + g I)? = o]} 5 g(o) do (7.6)
/(=%+uu,m= 1
(3=t s D(EL)D(L) (20 )*-2255
x {[v = (21 = N )]{(23 + g })? = o]} 5" e~ 3°h(v) dv,
where
r(k)23t
o) = T gt
| ‘
Let d =z + ||, |%, ¢ = 223 ||, ]| and w = 2=9. The density of x(1)'x(® i
k2, ~1d
= ( ~ w?)* e z"h(cw+d)dw
T(552)r(2)(2ln, ))e-2235*
(1.7)
zE=1,~ 1+, )
r&A)rd)2:
where I* = [! (1 - w?)"3 ¢~ 3 h(cw + d) dw. And
1 o\ k=3 _ 1 X 2\ k=2 1
I‘=/ 1-w®)7e 2"'fh(cw+d)dw+/ (1 —w*)7 e3**h(—cw +d)dw
0 1]
(7.8)

- / 1(1 - w?)5 [c-%wh(m +d) + 3 Th(—cw + d)] dw.
1]
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. 1
Now we make a transformation w = a3,

1 k-3 1 1
r= f (1-8)3 [e'%“%h(cﬁ +d)+ ei”%h(-—cai + d)] .l.,-'-
0 » 2

--/ (l-—a)_ [Z( 2“)h( 2+d)+2(2c )h( ca=+d)]a'?da

§=0

B k=3 1 ‘_‘_ €0 _l_
=%j; (1-4)73 {[h(cai+d)+h(—-caa +d)]§ 2¢

(7.9)
Lead)titl 1
[h(-—cu + d) - h(cu + d)] Z ((2 _31,)' } 8" 3ds

> c83 2 1
I'(l)/ (1-29)% {[h(caz +d)+h(—-ca=+d)] [ 52’—(;'1,7)_%5] P

1 L ¢ Lcat)ti
+ [h(—cﬁ! + d) — h(ca3 +d)] 5,;0 .(2. )., } ds

2%+151T(5 + 3)
= ——r(i)C% j:(l - a).“;_!a'% {[h(ca% +d)+ h(—-ca% + d)] I"% (%a%)
+ [B(=ea® + d) - h(e? + )1, (%a;)} ds
I‘( )z i% lh" f 1- a) 3 84 {[h(ca’ +d) +h(—cn +d)] I_ 1 (m",u,"aa)

+ [h(—caa +d) - h(cas + d)] I% (z'alllullla%)} ds,
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where I,,, is the modified Bessel function of the first kind and order m.
Hence the density of x1)'x(® is

z"i:" -‘(3+liul"’)"”1" 2
TCares

/1(1 ~ a)‘—;ia-% {[h(cs% +d) + h(—ca? + d)] ‘

(7.10)
X I—% (z%"“ln"%) + [h(—cs% +d) - h(cs% + d)] I_;_ (z%"ulng%)} ds,

where

] -‘-b
Bo) = o mra(o)

d=z+|u)? ¢ =223 |ul, and In is the modified Bessel function of the first kind and

order m.

Two examples are given in the following :.

Example 1. Multsvarsate normal distribution.

x(1) M
fx= ( (2)) ~ N, (( 1) ,I) and x() is k-dimensional vector. When py =0, the
x Ha

density of x(!)'x(¥) s

1
k-l e- ;v .

g(v) = r ) o1%
If 4y # 0, then, from (7.10) (A(v) = 1), the density of x()'x() ig

k-

e3P 1 12 -
z 1 e”3 1 l‘l"’ _ (k2o 1 1
P, 00t (i) a

(7.11)

1
1 z i(k_z) i l 2
-3 (52R)" Do () e [0t + 2],

where I, is the modified Bessel function of the first kind and order m.
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Example 2. Multsvariate t-distribution.

L 41

From Anderson and Fang (1982a), if y, = ) bas n-dimensional multivariate t-

Y2
distribution with £ degree of freedom, where y, is k-dimensional vector and yu; = 0, then

+¥,'y; has F-distribution with degrees of freedom k and £ and the density of y,'y, is

(%)
r(%)r%)

kit
2

g(v) = 55 (1 + %)

K 4, # 0, then, from (7.7), the density of y,"y, is

ch-2 /1 T -

TENTE) w2 ) )T

dw
[TY]
ST

_ Ziir(Ae
T r(Ere)ri)

1
/ (1-0)'5 (co+d+ 0T dv

Eipcktypt 1 E kit ke
e s v L / (1-24)"5 [(cai +d+t) ’ +(—ca§+d+t) ’ ]%a'% ds
A .

T r(ré)r)

_ BTr(A)E T3 +2))
r(:Y)r(G)N(E) = T(9)(2)!

(d+ l)"b:tg'z’. /ol(l - a)h_;" (“_;_)2;' a3 ds

_ oG & (A +2)r()

= )l L b Mk a1 8 re_y; ;TG + T3
P(53})T(3IT(3) o T(5F4)2%500 (5 + 3)

(3 +7)

(d+ 8~

_ 2371 & D(4E + 25) 2 [, |
T(3) =5 e+ lell? + 0543 T(% + 5)

(1.12)
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