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STATEMENT OF PROBLEM: Utauinounced .-
Justificatio

Let x: a =x<x<--- < xN=b DI ,....</..-
y: c = y1 y2 -- <y = dDstr.buton/ 

,..,.'

y: c 2 -a1ability Codes

and R2 = [a,b] x [c,d] • sal and/or OrI_

Given (probably noisy) data i"copy

fij = f(x 'y) + i,j_- N

let O<e <1, and let wij 0 ..
minimize

jy(x_,yj 12 i+(l)I[() g(x~y) dxdy
i=lj a xk ym-k

over appropriate smooth functions g.

SUMMARY OF RESULTS:

The investigation of the problem has included the work of

1,2 , 3, 6,7] -.

As in the one dimensional case, Chui points out that it is

sufficient to minimize the auxiliary expression

bd mm -

f _ 

.. ,-k

a c k = O ax ay 

'-m' "

over appropriate smooth functions g.

As analyzed in[6,71 a proper abstract setting for a natural

2-dimensional setting of this optimal problem and results is

provided by the Beppo Levi space X = BLm(R2 ) of order m over

R (m an integer greater than or equal 1). Defined as

X = gfD': ZrgL 2 for j<le = mJ,. (2)

where cO,.= (,E1 , -- ,n n and Io<1 =c, 1 +0 n

X is thus simply the vector space of all the (Schwartz)

• • o • ° o ~~~. . . . . . .
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distributions (i.e. continuous linear functionals on the vector

space of infinitely differentiable functions with compact

support in R2 , provided with the canonical Schwartz topology)

for which all the partial derivatives (in the distributional

sense) of total order m are square integrable in R 2  X is

naturally equipped with the semi-inner product (.,-)m correspond-

ing to the rotation invariant seminorm

a m m  12
Igim k) k -kC~y xy 3

k a lx a Ym _k d

the Kernel of I"Im is known to be simply the vector space

P -Pm- of dimension

M =(m+l) M = ~(4),---

of all polynomials over R of (total) degree m - 1. It should
2be noted that Iglm may be physically interpreted (at least if

m = 2 and under some simplifying assumptions) as the bending

energy of a thin plate of infinite extent, g denoting the

deflection normal to the rest position. As they define the

equilibrium position of infinite extent that deforms in bending

only (under deflections specified at a number of independent

points), the solution of the optimal interpolation problem can

be appropriately termed surface splines.

Originally introduced for interpolating wing deflections

and computing slopes for aeroelastic calculations by (51, this

ingenious device proves most interesting to analyze mathemati-

cally; in this connection, various deep results have been ob-

tained in[21. However in£6) a more constructive approach is
taken, where a prominent role is played by representation

formulas in function and distribution spaces, these comple-

mentary results being obtained by resorting to such basic

..... .. ~. . . . . . - . . . . . . . . . . .. "-, .



mathematical tools as convolutions and Fourier transforms of
distributions. For a more concrete presentation stressing the

significant properties of the optimal interpolation process of

surface spline interpolation at the algorithmic level we present

the approach of Meinguet (7 3.
Meinguet formulates the optimal problem as follows:

Let there be given:

A finite set A = (ai)i I of distinct points of R contain-
ing a P -unisolvent subset, by which we mean a set B = (aj) j(j

of M points of A, M being defined by (4), such that there exists

a unique p(P satisfying the interpolating conditions

p(aj j J
for any prescribed real scalars cj., V j F J.

A set of real scalars (o6i)iEI, or equivalently provided L

that m>n the linear variety:

V - JgC.X: g(ai) i  L V ; (

whenever oCi = f(ai), ViEI, where f denotes a function
defined (at least) on A, V can be interpreted as the set of

X-interpolants of f on A. Thus our problem is to find hF6V

such that

IhIm - kfgm" (7)

By virtue of the P -unisolvence of the subset B of the given

set A of interpolation points in R2, there exists in P="'"

a unique basis (pj) 3 j that is dual to the set of shifted

dirac measures (,,)ijej (in the sense that Pi(aj) = , i,j J

wherei ij is the Kronecker symbol). For every geX, m>1, the
P-interpolant P of g on B is given by

g
Pg= T g(a i )p j ; (8)

owing to this definition, the mapping P: X-4X is a linear

projection of X with range P=Pm-1 and Kernel
r

.',.' ... ' .. ° ..- . , ... . .. . .......... .........'•.. . . .' . .' - ..- -, .. .- .-. .. .. . . . .
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X 0 = (geX: g(a~= 0, i J, (9)

so that

X = rm-1 o(10)

equipped with the seminorm "Im_ , Xo is a Hilbert space.

In view of the direct sum decomposition (10), the restrict-

ion of the associated projector I- P to the linear variety VGX

defined by (6) is clearly an injection. Therefore, finding he V

such that (7) holds amounts strictly to finding an element w of

minimal norm I •I in the image of V under I-P, which is the

linear variety,

W =(gXo: g(a k) =4 ,VkrK I , (11)

where

K-I-J = [kC-N: 1_k<-N=card (K)} (12)

for definiteness, and

c k = 1- e jI- pj(ak) ,k eK. (13)

The unique solution h of the problem is given by
=-w ; (14) .

depend continuously on the data ('i)i I , where

w = KQ , (15)

Ka denotes the Frechet-Riesz representer of the a shifted
Di~ac measure a real coefficients satisfying the Cramer

k
system of linear equations

N
£ K(ai,ak)Tk =O k , 1 _k N. (16)

k=1
in fact Ka involves no functions more complicated than logarithmnsk
and is easily coded. The set (Kx- GR is the so called

reproducing kernel of the Hilbert function space Xo; it can be

regarded equivalently as the real-valued continuous function

(x,y)-.K(x,y) = Kx(Y) on R2 xR2 .

Two dimensional interpolation by radial basis functions.

The "thin plate spline" is among the radial basis functions for

.. . .. . - -----
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surface interpolation which were found to be most successful [4].

The drawback in using these basis functions for interpolation is

the need to solve large full systems of linear equations which

become very ill-conditioned as their order, namely the number of

data points, increases. However, the above basis function share

the property that

zmw(r)-, O as r increases - -.

and &mw(r)-c. as r->O , (r 2 = x+ y 2 ) (17)
x2 2

where ims the r-iterated Laplacian,a= 2+ 2
2x a 2

This property of the basis functions enables us to apply a pro-

cedure by which most of the interpolation equations become

diagonally dominant.

As pointed out in [ 31, the major application of the above

radial basis functions is for interpolation of scattered data.

This presentation considers data given on a square grid, where

the discrete analogues of the operators m are well known. A

method for defining the discrete analogues of Am for general

domain is being investigated.

Let the data fkl = f(xkyl) be given on the square grid:
(xi~yj) = ((i-1)h,(j-1)h), 1 4i, ji-N (18) :-

The system of interpolation equations becomes

7 jw(rij) = fkl i~k,lN (19)

i,j=1

where rkl ) 2 +(yjy 1 ) 2
ii '-'." "x

We would like, by row operations, to form a finite difference

approximation to the iterated Laplacian of w(r), and thus to

generate diagonal dominance in the system (19). The central

difference operator S 2 is replaced here by the 5-point
difference approximation to the Laplacian .*. -.

&hfkl = fk+1,l + fk,l+1 + fk-1,1 + fk,l-1 - 4 fkl

..................................-...... ".....°....
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Operating with A (with respect to the indices k and 1) on

(19) we obtain S
N z 1  kl) = m ~~~ Nm ""

ij i w(rij fkl ' 1- :-'-=-"

i,j=1

By properties of (17) we expect that ahw(rij) decreases as rj..

increases and that the diagonal element becomes large. Further-

more we expect to achieve diagonal dominance in the transformed

rows, i.e. ,

N m= 1 k, 1:!r:N-:
(i,j )*(k,l)

The remaining equations cannot, in general, be made diagonally

dominant. Therefore, even if the major part of the system (19)

can be transformed into a diagonally dominant system to be solved

by iterations, there is a substantial part of the system which

must be solved directly by each iteration. A way of overcoming

this difficulty, by using special differencing of (19) near the

"boundaries" of the system, is presented.

Iterative construction of "thin plate splines" TPS, on

a rectangular grid.

We consider TPS with m=2; this surface corresponds to an

infinte extent thin plate of rhinimum bending energy clamped at

the data points E33. For this case the basis functions are

fundamental solutions of the biharmonic equation 2w 0, i.e.,

w(r) = r2log r

augmented by the monomials 1,x and y. The interpolation equations

for data given on a square grid (18) are

N
Z (rJ) + a + bxk + cyI  f 1 (20)= fkl

i,j=1

• k',.. ......... " . ......... .. • .. " '
,,.? . ' ,' . '..; . .-. ,., . .,,.-.* ,. ,._ '.'_. , .' -" ," .'-". . ,.., ''' I.I ":.' . '/ ' ' S .'-.. . .":'''.,_.'"_ " /



with the constraints

N N N

7~kl= Z kl~k Z S,~y1  0.(21)
k,l=1 k,l=1 kl=•

2

Since A ~w(r.ij) = cr(rij), it is expected that the difference....".

operator A1 is appropriate for generating diagonal dominance.

So far the process of differencing the equations is limited

to the interior equations with 3tk,l N-2. The application is

extended to the "boundary" equations, i.e., with k or 1 equal to

1,2,N-1,N by defining the difference operator on the

boundary points of the domain in such a way that 0 = on all

grid points if and only if f is a linear grid function of the

form fkl = a + bxk + cyI, 1!k,l N.

This property guarantees that the polynomial part in (20)
2

vanishes with the application of 2 to (20), and can be restored

from the solution c of the derived system:

,A ...f- )Oij kl = 0, 1 ,' k, 1 N. (22)

i, j='

To obtain the right form of 2 we use the discrete analogue of

the iterated Green's formula:

a(f,g)A( fxxgxx+2fxygxy+fyygyy)=f g(4A2f)+ boundary terms.

The null space of the functional a(ff) is the space of linear

polynomials. We define a discrete analogue ah of a, so that the

null space of ah(f,f) is the space of linear functions:

N N-2 N-ia- 2 2 +2 ~fi(Y x ~ k !i

_(fig) (xf)Ik(Sxg)Ik + .. l

+N-2 N (2f , (23)

where V = fl+1,k- flk' (&yf)lk = fl,k+1- flk
....

. . . . . . . . . . . . .. . . . . . . . . . . . . . . . .
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Hence, the desired property of is guaranteed by formally

defining a 2 via the summation by parts of (23), namely by the S

identity 2

ah(fg) = gkl( f)k. (24)

The following Lemmas are proved inr3 1 :

Lemma 1. Let the difference operator 2 be defined by (23) and

2
Then A-.f = 0 if and only if f is a grid function of the

form fkl = a + bxk+ cyI , 1 kk, 1! N.

Lemma 2. The matrix A is symmetric, nonnegative definite of

rank N2 -3, where A is a matrix representation of the difference
N2

operator on grid functions, regarded as vectors in R

As direct conclusions from Lemmas 1 and 2, we have:
N

Corollary 1. klwkl '(a + bxk + cyl ) = 0 , for any a,b,c if
k,l=1

and only if w - f for some grid function f.

Corollary 2. Theco-component of the solution of (20) and (21)

is a grid function of the form
( 2 1,k, -'- -N,

(kl h (h.)kl 1 k,l N,
for some grid function .. 2

The system (22) obtained by the application of4h to (20) can

also be written as

h = w(ri')kl(ij = (1hf)kl' 1!k,lCN or (25)

.AAo< =.f,-

where A is the N xN matrix with entries w(r_. ), ordered in

accordance with the vector form of the grid functions. The sys-

tem (25)is singular, by Lemma 2. More precisely we have: -

Corollary 3. The matrixAA of the system (25) is of rank N2-3.

Due to the symmetry of/., the system obtained from (20) by .-

the substitution 0(= 2

N &m-/2 ,kl\ i =Ij~ (6 --i h w(rk " . ij + a + bxk + cyI  f kl, --kl N, (26)

...



corresponds to the representation of the solution in terms of the

new basis functions

(x,y =[ w(r)] ij
ii

which are bell-shaped for 3A i,jAN-2. This system of functions

is of dimension N2 -3, by coiollary 1.

In particular:

N N N
i B. (xy) x - x.B i j (xy) Y 0.= i~j= =

The solution of (25) constitutes a three-dimensional subspace

of N- vectors by corollary 3. In order to obtain that solution of

(25) which satisfies (21), we present an iterative scheme for the

2
solution of (25), in which each iterant is of the formAhw, and

therefore satisfies (21) in view of corollary 1.

The iterative scheme is:

o,(0) =0 1 . k,l N (27)

for n = 0,1,2, --- , (

(n) n kl
e f - 1 C j w(rij), I !Sk,lt_ N (28)= fk1 i, j=1 °'' "".

,,(n) w&2 e(n) 1 , 1 !l4N. (29)
kl - kl Lh k

The first iterants in procedure (29) provide smoothing

solutions for noisy data [ kl L

The development throughout this presentation has been

restricted to square grids. However, the application of these J

Ideas to triangular grids of general form is now being investi-

gated. In addition we plan to continue the investigation of the

smoothing technique.

| _
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