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ABSTRACT qCo,. K O X F t "-
--. \he combination of ab initio calculation of the electroA wavefunctions with a

wave packet calculation of the nuclear motion is used, within the Born-Oppenheimer
approximation, to compute the vibrational and electronic absorption of a polyatomic"_'=' molecule. A particular virtue of this approach is that high as hell as low temperature .

spectra are both calculable. This method is applied to C4i, for, which the Complete
Active Space S t Field (CASSCF) method is used t etermine full Born
Oppenheimer potential surfaces. UsinfjJe assumptio., hat the A( H).- X( 2 +) absorp-
tion can be written as the sum of the ,A(,); - X and A(A) -X absorptions, the spectra

. are determined to 60rnl'resolution at a temperature of 3000K. As a result of the large
. thermal bending amplitude at 300OK, the calculated spectra are-bza and have little

resolved structure. Tw9 bands are resolvable, one' is due t A([' )>- X absorption
and is centered at 55 m , while thle other is dne tp-A& X'}- X absorption and is
centered at 9500/m ". The dramatic'blue shift of tb# A(')- X band results from the
combinat lU arge X state the'mal bending fnplit ue and the high bending fre-
" quency of the A(,") state. We also/determine tV X stae pure vibrational absorption

""--- s rum a sy of much lwer intensity than t]e pure electronic spectrum*=-...

1. INTRODUCTION 4\ - 0o X U)k t & j v
Small polyatomic molecules are often found in high temperature environments such

as flames, stars, and shock fronts. From a knowledge of their cross-sections, we can
learn much about the chemical reaction taking place and the transport processes occur-

*" ring in the system. They are often difficult to observe, however, as the experimental
conditions are harsh and the molecules are often very reactive,for example, free radicals.
Here, we present an ab initio technique, which is within the Born-Oppenheimer frame-
work, for predicting spectra of small molecules as a function of temperature. It uses a
combination of the precise and effiecient Complete Active Space Self Consistent Field
(CASSCF) method for determining electronic wavefunctions, with a fast time-dependent
wa*;ti packet technique to account for the effects of nuclear motion. These techniques
arc generally applicable to a large range of molecules, and may be applied to calculate
sp.ectra of samples at any temperature. Vibrational and electronic spectra of C2 H are
calculated as an example application of this technique.

The ethynyl radical .C= CH is believed to be an important species. Unassigned
spectral lines in the interstellar medium 1.4 have been attributed to C2H; it is thought to
be abundant in carbon rich stars;5.8 and to be important as a chemical reaction inter-
mediate,9 ' 10 especially on Jupiter.11 In the laboratory it is very difficult to produce and

* positively identify C2 H. Common methods of production include photolysis 12 of C2 H2
and electric discharges1 3, 14 either in C2 H2 or over polyacetylene. 15 Recently, a summary
of production methods has been given by Laufer.7 The most important signatures of the
molecule are its four rotational lines near 87.3 GHz' 12, 16, 17 and its CC st tching fun-
damental13, IS at 1848cm - 1. Jacox13 observed the CH stretching fundamental for C2 H
trapped in an inert matrix at 14K to be at 3612cm - 1 . Under similar conditions Graham,
Dismuke and Weltner 1 2 observed the lowest lying electronic transition, A( 2H)4- X( 2 E+),
to be a poorly resolved band in the red near 10000cm -1. This band is strongly solvent

. dependent and in the gas phase is both observed I s and predicted 19 to have its origin
transition near 3600cm - 1. Carrick, Merer and Curl1" have taken high resolution spectra
in the 3600-4200cm - region and have identified five vibronic levels. None of these lev-
els were identified as the ground state CH stretching fundamental ill which was
presumed to be swamped in intensity by the electronic transition. Interpretation of the
high resolution spectra is very difficult as there is strong Renner-Teller coupling in the A
st& Le, strong20 coupling between the A and X states once the molecule bends, and strong

.sp .y:bit coupling.

". . . . . . . . . . . ..... ................ ........ ..... .... ............
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Shih. Peyerimhoff and Buenker have made ab initio calculations of both the verti-
cal electronic spectrum 19 and the emission spectrum 2' of C2H. They predicted that the
origin and center of the A- X absorption band should be around 4000cm- 1 and
5800cm- 1. respectively. Also, they predicted that the band should show a progression in '
the excited state CC stretch vibration V3. The majority of the excited states were
predicted to have long CC bond lengths and bent equilibrium geometries, accounting for
the vast differences observed between absorption and emission spectra.10, 21

The vertical electronic spectral calculations of Shih, Peyerimhoff and Buenker1 9

predict, at OK, the total intensity and band center of the absorption. They give only
qualitative information on the bandwidth and no information on either structure within
the band or on the change of band shape with temperature. Experimentally, only a few
lines in the low frequency tail of the A'- X absorption band have been observed in the
gas phase.15 This paper describes a calculation of the principal intensity distribution of
the A- X absorption band at 3000K. This is shown to be dramatically different from
the OK spectrum. High temperature information is important to combustion7' 10 studies,
as well as to the problem of the heating of a space probe entering the Julian atmo-
sphere.22, 23

We use the Complete Active Space Self Consistent Field 7, 10, 24, 25 (CASSCF)
method to calculate the adiabatic potential surfaces, fitting this data to a functional
form of the potential. Infrared and electronic spectra are then calculated using the time
dependent quantum formalism of Reimers, Wilson and Heller. 26 In order to apply this
formalism we make the assumption that the full A( 2 fl) - X( 2 E ) absorption spectrum
can be written as the sum of spectra calculated for each component of the bent A state,
A(2 A')*- X and A(2 A")4- X. The results show, at low resolution, how the gross features
of the absorption contour change shape with temperature. The main changes in the
intensity distribution with increasing temperature are seen to be a blue shift due to the
very high bend vibrational frequency of the A( 2 A') state and a broadening due to the
considerable anharmonicity of the potential surfaces.

The CASSCF method 24 , 25 is chosen to generate the potential surfaces for the fol-
lowing reasons. First, the method employs a fixed configuration list at all geometries,
thus being capable of high precision. This is an essential consideration when the poten-
tials are to be fitted to a functional form. Second, the method leads to proper dissocia-
tion and tends to treat the surfaces with uniform accuracy even for large displacements
from equilibrium. Finally, the CASSCF method is sufficiently economical to permit a
large number of energy and dipole moment evaluations on both the X and A surfaces.
More elaborate methods of including correlation, such as multi-reference singles plus
doubles configuration interaction, would require a very large number of references to

describe the entire surfaces equivalently. Selection methods, which would make the cal-
culation feasible, tend to reduce significantly the precision of the surface.

Traditionally, spectra would be calculated by first solving the Watson Hamil-
tonian, 27 assuming adiabatic potential surfaces and no spin-orbit coupling. The extra
couplings would then be included in a variational calculation and the observed energies
and intensities calculated. This is an extremely ambitious calculation, as many hundreds
of vibronic states contribute to the 3000K spectrum, and each of these states will have
complicated PQR rotational structures. At the moment such a calculation is not feasible.
Consider, by way of example, the well-studied case of the water molecule. Compared to
C2H, it has relatively low anharmonicity, yet, using conventional normal mode
approaches, it is currently only possible to determine the lowest 20 vibrational levels of
water accurately 28 (though use of local mode basis sets significantly improve this calcula-
tion 29 ).

No vibrational eigenfunctions are required in the approach of Reimers, Wilson and
Heller. 26 Here the spectrum is given as the Fourier transform of the time correlation
function obtained by evaluating the phase space average of the overlap of two gaussian

. ..
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wave packets. One of these wave packets propagates on the ground potential energy
surface while the other propagates on the excited potential energy surface. The frozen
gaussian approximation 26 , 30 to wave packet dynamics is used in all calculations, and a
classical approximation 26 to the temperature operator is used in all calculations at
nonzero temperature. Such a calculation is termed FC: here F stands for "Frozen" and C
stands for "Classical". In view of all of the other approximations used in this calculation,
it is felt that improving upon either of the FC approximations is not justified at this
time.

All of the approximations made are insignificant for band contour calculations as
the contour is determined by only the first few femtoseconds of the time correlation
function. Band contour calculations are also very fast, typically requiring less than a
minute of DEC VAX-780 computer time. The spectra reported here are at 60cm - reso-
lution corresponding to a propagation time of 530fs. Non-adiabatic effects, spin-orbit
coupling, wave packet deformations, etc, all affect the dynamics at long times, causin,
the calculated lines to be split and the intensity pattern to broaden. Clearly, 60cm i

resolution is too narrow (the spin- orbit coupling alone is known to be 52cm - ', for exam-
ple), but it is best to present spectra which are known to be too sharp rather than spec-
tra which are thought to be too broad. A typical calculation at this resolution takes
0.5-2.0 hours of VAX-780 computer time.

H. CALCULATION METHODS

A. Ab lntio Calculations
All of the X, A( 2K) and A( 2A") surfaces are calculated over a large geometry range

using the CASSCF method. The X state is defined over the range accessible thermally
at a temperature of 3000K, while the A( 2A) and A( 2A') surfaces are defined over the
entire energy range accessible to trajectories starting vertically above this ground state
distribution.

The CASSCF potential energy surfaces are generated using a double-zeta plus
polarization (DZP) basis set of cartesian gaussian functions. For carbon we use the
[4s 2p I contraction 3' of the 19s 5p I Huzinaga set,3 2 augmented by a d function with an
orbital exponent of 0.75. For hydrogen, we use the 13s I contraction3 3 of the 15s] Huzi-
naga 32 set, multiplied by a scale factor of 1.2 and augmented by a p function with an
orbital exponent of 1.728.

In our CASSCF calculation the seven outermost valence electrons are correlated in
seven active orbitals - five of i symmetry and two of a" symmetry. All calculations
(even at C2, geometries) are carried out in C, symmetry to ensure that no discontinuities
arise on the A surfaces upon bending. Making all possible arrangements of the seven
electrons in the seven orbitals consistent with spin and symmetry restrictions results in
404 configurations for the A( 2 A) state and 380 configurati ms for the A( 2A) state. Cal-
culations with both smaller and larger active spaces indicates that these CASSCF calcu-
lations are reasonably well converged.

The CASSCF dipole moment surface is used to compute the infrared spectrum of
the X( 2 +) ground state. Analogous CASSCF calculations on the ozone molecule3 4 pro-
duce intensities for the fundamental and lowest combination and overtone bands that
are in excellent agreement with experiment. Further improvement in the dipole moment
function would require the inclusion of a diffuse d function in the basis set, as well as a
more extensive treatment of the electron correlation.

Since the CASSCF wavefunctions for the X and A states are defined in different
orbital bases, we can not use these wavefunctions to deduce the electronic transition
moment functions. Instead we use transition moments based upon Cl wavefunctions
defined in terms of the ground state Hartree-Fock orbitals. The transition moments are
rather insensitive to electron correlation owing to the fact that the dominant
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configurations of the X and A states differ by one spin orbital. Hence, the transition
moments are calculated using only small CI wavefunctions with selection based on the
magnitude of the diagonal hamiltonian matrix elements. The calculated oscillator
strength at the equilibrium geometry is in excellent agreement with more extensive sin-
gles plus doubles Cl treatments as well as with the results of Shih Peyerimhoff and
Buenker.1 9 Note that in this calculation only three cuts through the full transition
moment orofile are determined.

B. Spectroscopic Analysis
The spectroscopic programs are very general and can be written in a variety of co-

ordinate systems. Typically they are written in cartesian co-ordinates. These are concep-
tually the simplest and require no separation of rotational and vibrational variables. For
proteins, liquids and moderate sized molecules they are clearly the best possible co-
ordinates but, for triatomic molecules, they have the disadvantage of containing three
times the number of variables that a purely vibrational set of co-ordinates would con-
tain. Initially we planned to run thawed gaussians, 6 " 3 for which this problem is
accentuated as the second derivatives of the potential surface are then required. Also
thawed gaussians require special treatment to include rotational degrees of freedom. 36 , 37

Finally, cartesian co-ordinate potential functions require a large number of square root
and trigonometric function evaluations, which significantly slow the programs.

A common alternative to cartesian co-ordinates is valence co-ordinates (bond
lengths and angles). Their use introduces the rigid rotor approximation. The potential
energy then takes a much simpler form, at the expense of complicating the kinetic energy
operator. Another approach is to use normal co-ordinates. They again restore the
kinetic energy operator to a simple form but are usually regarded as poor variables in
which to expand a potential surface. Here a simple non-linear transformation is used to
construct, from the normal co-ordinates, a new set of co-ordinates which closely resemble
the valence co-ordinates. The spectroscopic programs can thus be written entirely in
normal co-ordinates. In this approach a large part of the anharmonicity of the spectra is
attributed to the intrinsic curvilinear nature of the molecular potential surface. This is "7
equivalent to the unphysical concept of "kinetic energy anharmonicity", which is com-
monly referred to in the literature of calculations that use valence co-ordinates.

Using normal co-ordinates, the basic formalism2 6 for the infrared or electronic cross
section 9 T (w), at temperature T, becomes the Fourier transform

(rT= 3rc (I - e ) c (t)e 'w dt (2.1)

of the time correlation function
00

CT(t) Q-' f0 d' qodpo (Xqopo 0 i e-" et"1  r°e A C -" f'/A ru X.qp) (2.2)

where = (kT)-, k is Boltzmann's constant, c is the speed of light, Q is the quantum
partition function,

f00Q f d 0 dp 0 (Xqgopu e Xp0q0), (2.3)

Xpq. is a gaussian wave packet initially centered at position q0 and momentum Po, p
is the dipole or transition moment operator, and Hi and H f are the initial (X) and final
(A) state hamiltonians, respectively. Here we take q0 as a vector of dimensionless nor-
mal co-ordinates and Po as their conjugate momenta. The classical temperature approxi-
mation2 6 replaces the operator e by the number e-DE, where E is the classical

• : ... ,..: -...: .. ..-. .. -,- - - , .... . ,..... ... . . ,-- : . . . . .. .. . ., , -. .. .. ... - . - -° . ,
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energy of the trajectory. This approximation arises by making a Taylor expansion, in
powers of 6, of the effect of the quantum operator on the wavefunction and then retain-
ing only the leading term. It reduces the full partition function to the classical partition
function,

00-fE
Q = d q0d" Po e (2.4)

and allows the integrand in equation (2.2) to be written as Boltzmann weighted overlap
e - p E (4% I @f )where

S ) =, I Xqp,,o) (2.5)

and

= C-It 111 I Xq.p) . (2.6)

Equation (2.5) is interpreted as propagating the wave packet on the initial (X) potential
surface to time t and then then operating upon the wave function with the dipole
moment operator, while equation (2.6) is interpreted as propagating, on the final (A)
state, the result of the dipole moment operating on the wave packet.

In this paper we use the frozen gaussian approximation 30 to propagate the wave
packets. This constrains the width of the gaussian function to be constant in time. The
center of the gaussian, initially Po and q 0, then moves according to Hamilton's equations
of motion, and the wave packet's phase contains a term reflecting the classical action as
well as a zero point motion correction term. It is thus no more difficult to implement
than is classical molecular dynamics and yet is an approximation which retains most of
the essential features of quantum mechanics. Tunneling can not be directly accounted
for as this demands that the wave packet splits into pieces. Features that are retained
by this approach include barrier penetration, the Heisenberg uncertainty principle, zero
point motion, interference effects and basic operator commutation relationships.

For linear triatomic molecules such as C2H, there are eight phase space (position
and .,iomentum) variables to integrate over in equations (2.2)-(2.3). These integrals are
eval.*ted numerically using a product Gauss-Hermite quadrature. 8 This quadrature is
accelerated by only running trajectories with significant weight and by transforming to
variables which better reflect the X potential surface.

The high temperature formalism presented here requires no adaptation to calculate
spectra at OK. At this temperature the classical phase space available is just one point,
and the gaussian wave packet centered on this point is just the harmonic approximation
to the ground state wavefunction. This formalism thus reduces to the eigenstate formal-
ism of low temperature wave packet d 'namics. 39 The classical approximation is thus
accurate at both low temperatures (kT/N-w < 0.5) and high temperatures ( IT/f"w >
5). At 3000K, the vibrations of C2H fall into the intermediate region with kTl --- =

0.6, 1.1 and 4.2 for the bend (1/2), CC stretch (Y3 ) and CH stretch (ml) vibrations,
respectively.

I. FITTING THE AB INITIO DATA

A. Functional Form of the Potentials
The CASSCF data for each state S - X, A( 2A') or A( 2 A') are fitted to two poten-

tial functions. Both of these functions have the same form but they are written as func-
tions of different position variables. One function, V ISI(Ar), is a function of
Ar = {Arc, ,,Arcc }, the change in the valence co-ordinates r = {rC ,6,rcc ) from %%
the X state equilibrium geometry rx {ll,?r, 1XI}, where tc. and rcc are the CH

.--...
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and CC interatomic distances. respectively, and 0 and 7r are the CCH bond angle and
its equilibrium value, respectively. The other function. VTA' (q). is a function of q, a set
of dimensionless normal co-ordinates of the X state, q = {q,q 2,q} where q, is predom- p
inately the CH stretch, q2 is the bend and q3 is predominately the CC stretch. Since
C2H is linear, the bend co-ordinates A and q2 have two degenerate components. If 0 is
an angle which specifies the angle between the platte of a bent molecule and the plane -.. -

perpendicular to the original molecular axis then we take these components as the carte-
sian co-ordinates

z -_ AO, = sinA0 coso and y A9b = sinA~sino (3.1)

and the normal co-ordinates

q2a= q, cos and 92b q2 sinO . (3.2)

Note that the potentials are cylindrically symmetric and independent of q. The poten-
tials VISl(Ar) are written as functions of AO rather than sinA0 as AO has superior boun- s
dary properties at large 0. Only V lSl(q) are used in trajectory calculations. The
V,1 I (Ar) surfaces are presented for comparison.

The valence co-ordinate potentials VIs(Ar) are written in a form containing 27
free parameters. Removing the superscript IS] for clarity, this form is written as

v'Sl' (Ar) - V0 + D. + DCz + De2 + D'(sb-I) + E 8 (X-'-l) (.3)

where

Xh = 1 - exp(-aH .H) , (3.4)

zc = 1-exp(-accC) , (3.5)

Xb = exp(as b2) (3.6) 1.

an = + a "h + ac + a' b  (3.7)

0c H C B h ace -acb , (3.8)

a, 0k + a,,"h + a"c + a8 b, (3.9)

,, = h 4D h + D c c + b b (3.10)

= c + 6,h + D,, c 6 c (3.11)

E : Ef + Ecc + E'8c 2 , (3.12)

and the displacements from the equilibrium geometry of state S are given by

h = ArC [ - (r l-rI). (3.13)

Arcc - (r!S1'-rC[X) , (3.14)

and

b (AG) 2  (3.15)

where rJS? and rc! are the equilibrium bond lengths of state S.
The stretch potentials are basically Morse functions. Due to symmetry, the bend

potential must be an even function of AO and we find it convenient to write this as a
function of (AB) 2. The basic form used for the bend potential is a combination of a
gaussian and a rising exponential. It is flexible enough to allow the equilibrium
geometry to be non-linear, if necessary, and fits the C2H surfaces much better than does

:I ?
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potential surfaced based upon Taylor expansions. Other terms are added to these basic
functions to allow them to change curvature slightly at locations away from equilibrium.

Many other functional forms of this potential have been tested and found to be
unsatisfactory. Taylor expansion type potentials, including the potentials of Carney,
Curtiss and Langhoff28 (an expansion in the Simon-Parr-Finlan coordinate40 Ar /r) and
a generalized Hoffaker potential41 (an expansion in the Morse variable 1-e -A") are too
flexible. They are difficult to control as their basic shape can change rapidly over short
distances producing nasty saddle points at relatively low energies. The function used
here is not as flexible as these forms and its saddle points tend to be at high energies and
outside the region of the potential being fitted. It still has sufficient flexibility to inter-
polate the potential surface accurately.

Valence co-ordinates reflect the shape of the potential surface much better than the
normal co-ordinates, which are just the tangential components of the valence co-
ordinates at the equilibrium geometry. The transformation from normal to valence co-
ordinates has been specified up to third order by Hoy, Mills and Strey. 42 Our approach
is to include only the linear and dominant non-linear terms thus generating from the
normal co-ordinates a new set of co-ordinates s ,as ,s } (where again sA = s, cos.
and se = s, sino ) that closely resemble the valence co-ordinates Ar. These are also a
good set of variables in which to expand the potential, and are defined as:

s, Lm, q1 + Lmc q3 + LHss q2
2 + LHDSB q2

4 , (3.16)

La, q, + Lcc q3 + Lees q2
2 + Lessee q2

4  (3.17)

SB 2 LBB 2q2
2 + Lesse e q2 . (3.18)

The normal co-ordinate potentials V,,ISl(q) are defined in an identical fashion to the
valence co-ordinate potential, except that sM, s 2 and Sc replace Arcs, (AO) 2 and Arcc,
respectively, in equations (3.13)-(3.15).

In the equations (3.16)-(3.18) the five non-linear L terms are treated as free param-
eters and are refined along with the potential constants. The five linear L terms define
the direction and length of the dimensionless normal co-ordinates q. If q are to be the
normal co-ordinates of V.IX](q), then the linear terms are dependent upon the other force
constants.

B. Fitting the Potential Co-efficients

The potential coefficients are obtained by refining their values to minimize the error
in the fitted potential V,,r according to

X2  - (3.19)
VCASS 7 + 10cm -

where the sum is over the ab initio CASSCF data points. This form of the error func-
tion is superior to a least squares form as it does not over emphasize the high energy
points. For the X state potential energy surfaces all of the force constants are adjusted
simultaneously to fit all of the CASSCF data. For the A state surfaces a different
approach is taken and the stretch-only force constants are fitted to the linear data points
only. All of the A surfaces thus have the same stretching potential. There are four dif-
ferent bending potentials: for each of the two components of the A state there are two
functions generated, one in the valence co-ordinates and the other in the normal co-
ordinates.

In Table I the potential constants are given and in Table II the accuracy of the fits
are summarized. Table I gives, for each of the seven fits made, the total number of

-........... . . -....
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E I. Potential Coefficients.

aonstant V.,Ixl(q) I/I(A)(q) vIA°)(q) V& x(~ )  vIp°I(~) VI(A°ILr).

TCH/A 1.056180 1.059800 1.059800 1.056180 1.059800 1.059800

rcc  1.232760 1.314430 1.314430 1.232760 1.314430 1.314430

L,,, -0.148763 -0.380053 0.068499

IHB B -0.049642 -0.052920 -0.330783
Lc,B/A -0.004142 -0.005807 -0.008128

ICsBBE/A 0.001944 -0.002816 -0.003152
LBRBBB  0.011084 -0.003409 0.005216
H/ A -1 1.995370 1.790790 1.790790 1.737230 1.790790 1.790790
N/ ( -2 0.383248 -0.001382 -0.001382 -0.047890 -0.001382 -0.001382

-V/! 2 -0.292976 0.190334 0.190334 -0.045747 0.190334 0.190334
i/x -I -0.906130 -0.746859 -0.755775 -0.071663 -0.015817 -0.053669

oc/A - 1.848800 1.973590 1.973590 1.918900 1.973590 1.973590

a 2/ - 0.023466 -0.475799 -0.475799 0.016937 -0.475799 -0.475799

aC/A -2 -0.191945 -0.018958 -0.018958 -0.102989 -0.018958 -0.018958

DBC 0.841101 -0.308327 -0.155382 -0.728090 -0.441608 0.136459
B  0.289789 1.867800 0.165656 0.274980 2.074430 0.702795

-0.009747 -1.091110 -0.316241 0.042571 -1.886850 -0.042457E
B 1.323840 2.139090 -1.191640 -0.378518 4.616360 -1.145650
B 0.046013 0.469322 0.557571 0.022000 -0.044138 -0.110016,BB

D.. -0.040104 -0.002121 -0.002121 0.009888 -0.002121 -0.002121

DHc 0.137949 -0.020134 -0.020134 -0.026061 -0.020134 -0.020134

8,A -0.179276 0.119968 -0.381256 0.018716 -0.008092 0.010861

H -0.001134 0.050000 0.050000 -0.027138 0.050000 0.050000

Dcc 0.024080 0.003973 0.003973 0.003405 0.003973 0.003973

OR -0.053271 0.104576 0.201632 0.068520 0.116599 -0.033598
V0 cin 1 0 3600 3600 0 3600 3600

D. /crm-  41671.5 54287.8 54287.8 60039.8 54287.8 54287.8

Dc /crn 11344.8 3228.6 3228.6 -11482.3 3228.6 3228.6

C/cm- 'A -' 114035.0 66573.4 66573.4 100870.0 66573.4 66573.4

/Cm-n/ -1 11056.6 153.6 8272.9 10591.4 75.0 5341.3

E '. /cm - ' 248.1 -7386.5 -9076.4 0.0 -6961.1 0.0
EB/cm- ' 362784.0 -62222.6 49633.0 5227.4 -46671.6 43236.5

Ec/cm -486440.0 53941.5 -20208.9 -409647.0 29038.2 7901.8

.................................................................... ..



TABLE II. Summnary of the Fits of the Potential Surfaces.

Number of --- Error of Fit --

Potential Data n Unknowns x2 % largest

(cm- 1 ) (Cm 1)

V.[X(q) all 73 32 22 .60 157

VIlXI(&r) all 70 27 40 .78 207

1,' Al= V7 Al linear 28 16 5 .33 122

I (q) bent 29 16 20 .56 284.

n (Z')(q) bent 33 16 24 .61 232

V"lA(-2Af(AIr) bent 29 11 25 .59 331

V, /JA( 2A)i(A1 . bent 33 11 4 .25 147
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lata points, the number of adjustable parameters n, the final value of X2, the average
tbsolute error as a percentage of the average energy, and the largest recorded error.
Aore detail and the CASSCF data points used are available on request from the
Luthors. Most of the data points are within 10000cm - 1 of the minima of the potential
;urfaces, though there are some points on each surface in excess of 15000cm- energy.
,eometries with CCH angles as low as 100 are included in this data. Both forms of
.he potential surface fit the data well. The distribution of the errors in the fits are ran-
Jom and there is little correlation between corresponding normal and valence co-ordinate
;urface errors. Typically the functions fit the data to a tolerance of 0.5%, with the S
greatest error observed for any one point being 331cm -1 .

All energies reported in Table I and elsewhere are with respect to the minimum
energy of the X state which is calculated to be -76.2636 Hartrees. The calculated spac-
ing between the minima of the X and A states, VJ A I , is 5835cm - 1 , in contrast to pure
SCF calculations which actually place the A state at a little lower energy than the X
state. Experimental results 15 place VJAI near 3600cm - 1 in reasonable agreement with a
multi-reference singles plus double Cl results. 19 Apparently the CASSCF treatment with
five active a orbitals and two active a" orbital provides a somewhat better description of
the X state than of the A state. We have computed VJAI using Cl wavefunctions
(including all singles and doubles replacements from the Hartree-Fock reference) in both
our DZP basis and an extended van Duijneveldt gaussian basis 43 ([13s 7p 2d I contracted
to [7s4p2dj). At the Cl singles plus double level, VJAJ is 2173cm - 3 and 2462cm - 1 for
the DZP and extended bases, respectively. These energies increase substantially to
2882cm - 1 and 3046cm - 1 when a correction is applied for quadrupole excitations. 4 4

Hence, as more of the valence correlation energy is recovered, a larger proportion of the
differential correlation is recovered as well. It is likely that a fully converged Cl calcula-
tion will produce a VJ A I in good agreement with the experimental observation of near p
3600cm-i, so we use this value in our calculations instead of 5835cm - .

From the valence co-ordinate potential vlX!( j.) the dimensionless normal co-
ordinates q are deduced. These co-ordinates have the frequencies
V1 = 3623cm ' , V2 = 486cm - ' and v 3 = 1971cm - 1, where v i = w, /27r c. Dimensionless
normal co-ordinates are pro;,uced in the usual fashion by weighting the dimensioned nor-
mal co-ordinates by (rw,) i. The direction and length of these co-ordinates are then P
obtained 4 5 from the eigenvectors of the matrix of the mass weighted second derivatives
of V jI(A.r), expressed in cartesian co-ordinates. This information is contained within
the parameters L, = 0.099548A L, , = 0.013497A , = -0.011555A
Lcc = 0.051046A and L,, = 0.288801. All of the normal co-ordinate potentials are
written in terms of these dimensionless normal co-ordinates. Note that as all of the
potential constants are refitted to the data when VISI(q) are generated, the normal co-
ordinate potentials need not have the same vibration frequencies as VvXI(Ar).

C. Dipole and Transition Moments

Equation (2.6) requires the result of the dipole moment operating on the gaussian
wave packet to be propagated on the excited potential surface. This can be propagated
without further approximation 26 , 46 if pj can be expanded as a power series in the dimen-
sionless normal co-ordinates q. In principle, all terms in the expansion can be accommo-
dated but at present only constant and linear terms are included in the spectral pro-
grams. When higher order terms are small in comparison to these terms (this does not
apply to the CC stretch component of the X state dipole moment), their effect may be
approximated by locally expanding p as a linear function. 3

Vibrational transitions to levels with E* symmetry are polarized parallel (1) to the
molecular axis. The associated dipole moment, P., is an even function of the bend coor-
dinates. Conversely, transitions to levels with H symmetry are polarized perpendicular

to the molecular axis and the dipole moment u. is an odd function of the bend co-

m
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TABLE III. Transition Moment and Dipole Moment Coefficients, in Debyes.

Constant X A( 2 A) - X A( 2A)- X

AO 0.725579 0.549164 0.549164

PH 0.089610 0.008069 0.008069

Pc 0.026924 -0.024602 -0.024602
P Hn -0.001546 -0.000791 -0.000791

P c 0.007610 0.000451 0.000451

Jcc 0.000474 -0.001439 -0.001439
PB 0.014547 -0.032514 0.007478

PBB -0.002859 0 0

P CBB 0.023797 0 0

PHHBB 0.000146 0 0

1jHCBB 0.001957 0 0

/
1 cCCB -0.001607 0 0

P BBB -0.002209 0.001615 0.000713

PB 0.168037 0.319952

P HB 0.006908 0

P cB -0.030209 0

P HHB 0.003773 0
P HCB -0.003326 0
P CCB 0.000769 0
P BBB 0.005092 0.000382

P HHB 0.000198 0

P HHCB -0.000189 0

P iCCB -0.000041 0

P cccB 0.000560 0

P HBBB 0.001286 0

P CB 0.000629 0



C2H X VIBRATIONAL ABSORPTION

30-
AC FULL p. 3000K

)20-
AC LINEAR p.3000K

10
FC LINEAR A. 3000K

0 12 3 4 5

1000CNP 1

Figure 5. Vibrational Absorption Spectrum calculated using either the FC or
AC methods and either the full dip~ole moment or only its linear components. -
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large number of vibrational states which contribute to the spectrum. in contrast to the
previous room temperature calculation of the water molecule infrared and Raman spec-
tra. 5 1 We thus calculated the vibrational spectrum at 3000K using classical linear
response theory. 52 as formulated by Berens and Wilson. 53 In this approach the classical
autocorrelation (AC) of the dipole moment is computed and Fourier transformed to give
the infrared spectrum. At the harmonic level this approach gives the correct quantum
intensities for the fundamental vibrations at non-zero temperature. 53 Non-linear com-
ponents of the dipole moment are easily included in this calculation. It has the disad-
vantages, however, of incorrect detailed balance for overtone and combination bands, of
an incorrect represention of the anharmonic coupling, and it can not be applied as T - 0.

Figure 5 gives the spectrum calculated usi.,!" both the wave packet (FC) and classi-
cal autocorrelation (AC) methods at 3000K. The results for the linear dipole are
remarkably similar for seven of the eight observed bands, but the intensity profile of V,'1

is reduced by a factor of four in the AC calculation. These calculations have been
repeated using a single harmonic oscillator and the results compared to exact quantum
calculations. 26 The full quantum and AC results are almost identical and have an inten-
sity of only 75% of the FC result. This discrepancy is due to the reduced temperature
kT/lrw, which for this vibration is 0.6. in the intermediate region where the classical
temperature approximation is least appropriate. This intensity is also three times larger
than the intensity calculated using the AC technique on the full potential. In Figure 5,
most of the CH stretch intensity is dispersed by the anharmonicity, appearing in both
the combination and overtone bands and in the elevated base line. Such a dispersion is
unrealistic and the FC calculation gives a better description of the overtone and combi-
nation band intensities.

Classical autocorrelation function calculations may also be performed using the full
dipole moment profile, and the results are also given in Figure 5. The most striking
feature of this spectrum is the five fold increase in intensity of the CC stretch, v3.
Crude time-independent calculations using harmonic potentials and only the Pc and

O terms from the dipole moment expansion give results in excellent agreement with
this result. The extra intensity arises from many hot bands which are not resolvable
from each other at 60cm - resolution. High-resolution high-temperature spectra are
expected to be very complicated.

B. Electronic Spectra

Calculated spectra over the temperature range 0-3000K are given in Figure 6 for
the A( 2A")- X transition. The results are easily understood in terms of a standard
eigenstate picture. At OK we see a typical Frank-Condon progression based on the an
allowed (perpendicular) origin at 3400cm - 1  This frequency is less than the energy
difference between the potential minima (3600cm - 1) because of the zero point energy
decrease in the A( 2A") state. Normally a frozen gaussian calculation would not correctly
detect this change (as a thawed gaussian calculation would) and here it has been added
in an ad hoc fashion before Fourier transforming. In reduced units the A( 2A") potential
minimum is displaced by q 1 = -0.15 and q3 = 1.58 from the X potential minimum. The
progression in v3 thus has some length and the line spacing seen in the spectra is
1620cm - , very close to the harmonic A state CC stretch frequency of 1655cm - 1. Just to
the blue of the third strong peak is the first. line of a progression corresponding to an
excitation of one quanta in the CH stretch v1 . Most of this intensity comes from the 1:2
Fermi resonance between the stretching motions. The tiny peaks at 1900cm - and
3800cm - ' are artifacts due to the approximate propagation methods used.

As the temperature is raised to 1000K, hot bands in the CC stretch vibration
appear. A transition from vibrational level i to vibrational level r of the n th vibration
is labeled as ,'n. The origin of this hot band is thus labeled as 3, and the progression
based upon it is 350cm to the red of the t -old" lines based upon the origin 0 (0192 3).

S.. " .-.. . . .-....-..



C2H X VIBRATIONAL ABSORPTION

40-

8aI/dQ1 ONLY 3000K
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Figure 4. Vibrational Absorption Spectrum calculated using the F method
and either all or part of the linear dipole moment derivative terms.
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It, is also possible to approximate the center of the absorption band by examining
what difference contours lie above the most probable regions. At T = 0 this gap is
5630cm - 1. At 3000K the most probable region for the A( 2AX,')- X transition lies on simi- .
lar energy contours and so the absorption band is expected to broaden but not shift in
band center. Due to the repulsion of the A( 2A) surface, the energy gap in the probable
140 o -160 * range of bond angle is 3-4000cm - 1 larger than it is at the equilibrium confi-
guration. The A( 2A).- X absorption band is thus expected to be significantly blue
shifted at 3000K. This line of argument can be formalized and a simple, almost classical,
algorithm developed for the determination of the absorption band contour. 48 _S

V. CALCULATED SPECTRA

A. Vibrational Spectra of the X State

Figure 4 shows the infrared vibrational spectra of the X state of C 2H calculated
using the Frozen gaussian - Classical temperature (FC) approximations to wave packet 3
dynamics. Only the linear components of dipole moment function are used in these cal-
culations. The spectrum at OK is precisely the spectrum which would be obtained using
harmonic approximations and time independent quantum mechanics. Here the intensi-
ties are proportional to the square of the dipole moment derivatives. There is a large
difference between the calculated and observed intensities. From the low temperature
spectra of Jacox,13 the CH stretch v, is seen to be about three times as intense as the
CC stretch v3 , while Figure 4 shows vI to be about 20 times more intense. Also the
bend absorption V2 is calculated to be quite strong, whereas this vibration has never
been directly observed. The approach taken here adequately describes the low tempera-
ture infrared intensities of many molecules, including ozone, 34 but seems inappropriate
for C 2H.i

The discrepancy between the intensity ratios for v, and VJ3 is due largely to the
neglect of non-linear and anharmonic terms. In principle, the electrical non-linearity
may be included directly into the FC calculations,2 6 but it is much more difficult to
include the effects of mechanical anharmonicity.4 6 , 9 Here, we choose to perform an
expensive time-independent calculation, diagonalizing the vibrational hamiltonian matrix
to account for the mechanical anharmonicity, while evaluating all of the dipole moment P
matrix elements to account for the electrical non-linearity. In Table VI, all absorption
bands with significant intensity are listed. Now v]' is only five times more intense than
v3 , in much better agreement with experiment. The increased intensity in M3 comes
largely from the non-linear pc.. term in the dipole moment function.

When the molecule is heated to 3000K, many overtones appear due to the increased
sampling of the mechanical anharmonicity. The calculated absorption band shown in
Figure 4 is quite complicated but may be assigned by performing calculations with some
components of the dipole profile removed. With only the perpendicularly polarized
intensity present (only ap/aq 2 non zero) three bands result. These all must have odd
quanta in the bend mode v 2. At low temperatures the two high frequency bands are
symmetrically distributed around v'1 and are clearly V1 +112 and vl- v2. As the tempera-
ture increases both bands move to lower frequency and their symmetric location about .'

v, is lost, as shown in Figure 4. Also shown in Figure 4 is the intensity pattern when
only (3p/q, is non zero. Three bands again result, and these must all have even quanta
in the bend quantum number. They are assigned as the CH stretch fundamental V1 and
the overtones 2V 2 and 6V2. As the 3:1 Fermi resonance is strong compared to the 6:1
resonance, 50 2V2 is expected to be more intense than 6Li2 , as observed. 4v.2 is very weak
as it is both poorly resonant (4:1) and widely separated in energy.

The previous calculations are performed using several approximations. One way to
test for their applicability is to calculate the spectra using an independent technique.
Currently, it is not feasible to use time-independent methods at 3000K due to the very
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the normal co-ordinate potential, attributable the better fit near the C2, region.

C. Bond Angle Distribution at High Temperature .

The most striking features of equations (4.4)-(4.5) is the multiplicative factor of
sinA8 in equation (4.5). Classically, a molecule with a linear equilibrium geometry has,
at non-zero temperature, zero probability of actually being linear, see Figure 2. This
result can be understood in terms that linear molecules have two degenerate bending
components. It is quite likely that any one of these components be within d0 of 0 but
of vanishing probability that both components will simultaneously be within this range,
as is needed for the molecule to be truly linear. Dynamical approaches can also be used
to explain this result. Suppose that the molecule is bent and given a random velocity in
both directions perpendicular to the molecular axis. This velocity will have a component
in the plane of the bent molecule and a component perpendicular to it. The perpendicu-
lar component produces angular momentum around the molecular axis which must be
conserved as the molecule moves. If the molecule is to become linear then the
corresponding moment of inertia would vanish and so the rotational kinetic energy
would become infinite! Motion on the true four dimensional surface can be viewed as
motion on a reduced three dimensional surface with a bend potential modified to include
this centrifugal barrier which forces the trajectory to stay out of the linear region.

Quantum mechanics modifies this purely classical picture primarily by broadening 5

the distributions due to zero point motion. The width of the ground state wave function
is about 15 and so the classical probability functions are only slightly broadened.
These effects are included in the subsequent spectral calculations: indeed, wave packet
dynamics can be used to construct the quantum probability functions, if desired. For
stiff molecules like HCN at reasonable temperatures, the peak in this probability func-
tion is close to 1800 and the molecule can be treated as being truly linear. On the other
hand, for floppy molecules such as C2H at high temperatures, there are large displace-
ments from linearity. The classical average angle for C2H is 145 at 3000K and as a
result it should not be regarded as a linear molecule at this temperature. This effect .'"

dominates the A( 2A')4- X spectrum.

D. The Intersection Region of the Surfaces
In the linear configuration the X and A surfaces cross when rcc = 1.348A at an

energy of 3870cm - 1. Shih, Peyerimhoff and Buenker 19 obtained similar results. This
crossing is very close to the minimum energy configuration of the excited state and its
ramifications are expected 20, 47 to be severe on low temperature spectra. When the
molecule bends, the crossing of the X and A( 2A) surfaces becomes sharply avoided. This
is shown in Figure 3, where the vertical excitation energies from the X surface to both
the A( 2 A) and A( 2 A") surfaces are plotted as contours at Ar~c = 0 ( rc, = 1.056A ).
The value of Arcc at the crossing of the X and A( 2 A" ) states is a relatively insensitive
function of bond angle, however, the crossing of the X and A( 2A) states is quite sensi-
tive to the bond angle. Because of the rapid increase in energy of the A(2X) state as the
molecule bends, the intersection point moves to very large CC distances. Note that the -.

potential contours are somewhat insensitive to the value of A'cH at which they are
evaluated.

Also plotted in Figure 3 are contours of equal probability for the VgXI(Ar) poten-
tial at 3000K. These contours are centered around a bond angle of 145 , as noted previ-
ously. The overlap of this set of contours with the previous set demonstrates that the
intersection region is not significantly populated at 3000K. Not only is it improbable to
get direct Franck-Condon transitions into this region, but also the centrifugal barrier
prevents the excited state trajectories from entering it. Thus, the non-adiabatic effects
are reduced2 , 47 as the temperature increases.

~~~0~ ... .
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should not be run on these surfaces at energies near either the saddle point energies or
end-over-end rotation energies. Figure 2 is used to demonstrate a posteriori that such
trajectories are not common at a temperature of 3000K. It shows the classical ensemble
averaged values of the bond lengths and angles at 3000K for both the VlX](A&r) and
V.1X](q) potentials, and these show little penetration into the poorly represented regions.
Expressions for these average values can be obtained by considering the partition func-
tion, which for the normal co-ordinate potential is

Q = f0 dqd924 dq2 b dq e - .V~ix(q) (4.1)

Noting that V.[Si(q) are only functions of q2 = (q 2 
2 +q2b ) , we can introduce the

"polar" co-ordinates q2 and 0, as is done in equation (3.2), simplifying the partition func-
tion to

00Q= 2,rf_ dqldq3 fodq2 q2  .(4.2)

A similar result applies to the partition function expression written in terms of valence

coordinates, resulting in

Q f-0 drcq drcc fo d9 sinA0 e V.IXl(hy) (4.3)

Here, the sinAB term arises from the transformation from cartesian to valence co-
ordinates, equation (3.1). The probabilities of being within drcl of rCH, drcc of rc
and d 0 of 8 are given by

fo d r cc fI dO sinAO e -p V 
yX

Ar ) , (4.4)

f0 dr fr d0 sinA# e -f V.IX(r) (4.5)

and

sin o 0 00drc, drcc e - f V.JxJ(Ar), (4.5)

respectively. Parallel equations exist for these probabilities written in terms of normal
coordinates.

In Figure 2 the bond length distributions are well within the reliability range of the
fitted X potential functions. Unfortunately the angle distribution has a slight tail to
large angles, into the end-over-end hydrogen rotation region. Trajectories which start in
this region of the potential are not run in the subsequent spectral calculations. This is
not a significant error in the calculation. It is clear that these potential surfaces are
inappropriate at temperatures significantly higher than 3000K for which end-over-end
rotation needs to be included explicitly.

A method for estimating the reliability of the A surfaces is to take the most prob-
able regions on the X state and look at the excited state surfaces, not only in this region,
but in all regions energetically accessible to excited state trajectories starting with these
ground state geometries. The excited state data points are chosen to span this entire
region, and about 1% of all the trajectories which were run were found in poorly
represented regions.

The probability distribution functions for both the normal and valence co-ordinate
potentials are given in Figure 2 as a final check on the accuracy of the functions.
Clearly, both potentials are very similar. The major differences in the probability func-
tions are first, a shift of 0.015A in the T,, probability, attributable to inadequacies in
the bend-CH stretch potential (see Figure 1); and second, the longer tail to low angle on

..........-.. -... .-.. ....... ,.*
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The calculated X state CH stretch harmonic vibrational frequencies are nearly the
same, 3645cm - 1 and 3623cm - 1 , for VJXJ(Ar) and V, X(q), respectively. When anhar-
monicity is included the frequency for V.Xl(q) decreases to 3484cm - 1, slightly less than
the value of 3612cm - ' observed 13 by Jacox. In the A state the CH stretching frequency
is slightly reduced. The CC harmonic stretch frequency is calculated to be near
1975cm in the ground state. Anharmonic corrections reduce this to 1900cm - 1, not far
from the observed1 5 value of 1848cm - 1. In the A state the corresponding harmonic fre-
quency is 1655cm - . and anharmonic corrections will likely bring this very close to the
observed 12 value of 1560:1 40cm - 1. For the bending vibration the calculated harmonic
frequencies are around 494cm-: anharmonic corrections reduce this to 470cm - . This
frequency has never been directly observed. Carrick, Merer and Curl1 5 deduced, by
analyzing the I-type doubling in their electronic spectra, that it lies in the range 390-
475cm 1 : arguing that this range is conservative, they then went on to postulate that
the frequency is actually 375cm-1. Clearly, further experimental studies need to be per-
formed in order to measure this frequency more reliably. In the excited A( 2AX) surface
this frequency decreases slightly but it more than doubles in the excited A( 2 A) surface.
This is brought about by the repulsion between the lower X (2 A') and upper A( 2A ) sur-
faces, and has a very important effect on high temperature spectra.

B. Useful Range of the Potentials

Figure 1 contains contour plots of sections cut through the surfaces and indicates
the magnitude of the anharmonicity of C2 H. The top three inserts in this figure display
V.ISi(q) cut through the section q3 = 0, while the lower inserts display VlIS(Ar) cut
through the section Arcc = 0. Here the contours, in 1000cm 1 , are given with reference
to the minima of the respective potential surfaces S. As the A( 2fI) surface is displaced
in the CC stretch variable the lowest energy in both of the A sections is 2027cm-I above

the A state potential minimum. From the shape of the contours we see both the intrinsic
advantage of writing the potential in valence co-ordinates and the effectiveness of the
non-linear transformation, equations (3.20)-(3.22).

These plots extend in geometry far beyond the region of the potential that is fitted
to the ab initio data most of the data points have energies < 10000cm - 1, very few have
energies > 16000cm- ). In the fitted regions the potentials fit the data well. Spurious
saddle points exist outside this region, however. Consequently these surfaces are notsuitable for extrapolation purposes. Included in Table V are the geometries and energies

of the lowest found saddle point for each potential surface.
The valence co-ordinate potentials are slightly less susceptible to low lying saddle

points. In some respects this is a disadvantage as the normal co-ordinate potentials
represent better the turn-over of the bend potential which occurs as the C2, geometry is
approached. From Table V the valence potential predicts that a saddle point lies on the
X surface at - CH = 1.33A , roc = 1.34A , 0 = 57 and an energy of 14789cm - 1 . As the
largest angle used in the CASSCF data is 100", this point represents a considerable
extrapolation. Subsequent to the fitting of the potentials, more CASSCF calculations
have been performed and the C2, transition state for end-over-end hydrogen rotation cal-
culated to be at rci = 1.28A , rcc = 1.29A , 0 = 63' and an energy of 14509cm - '. As
the CASSCF energy increases quite slowly when all bonds are simultaneously extended,
the accuracy of the extrapolation of the normal co-ordinate potential is quite remarkable.
On the other hand the valence co-ordinate potentials tend to climb rapidly at small 0,
showing no sign of turning over. If greater accuracy is needed, then a potential written
in terms of the sine of the angle between the CC bond vector and the vector joining the
hydrogen atom to the mid-point of the CC bond vector should be used. Such a function
would possess the correct angle boundary conditions.

At moderate to high energy the surfaces are quite ergodic: a trajectory will quickly
sample most of phase space that is energetically accessible to it. Thus trajectories

. . . . . . . . . . . . ... - . . . . . . . . .. . . . .. ... ..n ... .. ... . . . . . . . . . . . .. . .. .. .



TABLE VI. Vibrational Absorption Frequencies and Intensities from the X

state Normal Co-ordinate Porential.

Mode Component Frequency Relative

(cm-1) Intensity

n] 470 1.

22980 0.02

P31900 0.17

2+V3 11 2326 0.07

2V 32857 0.03

i.' 1 3484 0.94

233778 0.001

fl V 3940 0.06

V 1 +512 5380 0.01

2v, 6855 0.02



TABLE V. Properties ot the Potentials.

V~X() V"fAIK(q V.IA( 2A")J(q) VIXI(Ar) VIA(A)J](Ar) VIA( 2A"(r)

at equilibrium geometry

V/m 3645 3589 3589 3623 3589 3589

*'/m 504 1056 483 486 1075 545

V.3 /cm' 1976 1655 1655 1971 1655 1655

at lowest saddle point

V /cm- 14789 20596 19241 57478 19375 18693

THA1.330 1.406 1.504 19.667 1.143 1.143

rc1.340 1.260 1.414 1.714 1.323 1.323

O/deg 57 117 108 180 123 57
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ordinates. The functional forms used to represent, these components are

ie -Po + pji qI + c q3 3 /+,j q1
2 + poc q1q3 4 pcc q3 2 + PD q22 + (3.20)

2 2 2 22 2 4
Pjs qIq 2 + PcEB q3 q2 + A HHBB q1 q2 + pI

1 cs q 2 Iq 3 q2 + cc q32q2 + psssB q2

and

A = q 2 ( p + + Pis ql + pc q 3 + P,, ql2 +Pica qlq 3 + P cs q 3
2 + pas q 22 + (3.21)

p s q 3 + p cs q 1 2q 3 + 1AScBs qlq 3
2 + pcccB q 3 3 + AHB qlq 22 + PcBsE q 3 q 2

2 )

The electronic transition A( 211)4- X(2 +) has different symmetry properties. It is per-
pendicularly polarized: p is used to represent these components. When the molecule
bends, the in-plane component of the transition moment is associated with the
A(2 MA')- X transition and the out-of-plane component is associated with the A( A"')--X
transition. Bend displacements also introduce some parallel-polarized vibronic intensity:
IA. is used to represent this component of the transition moment. This intensity is asso-
ciated with the A( 2A)4- X transition only.

Minimization of the root mean square error

E.in 17!.. = ( - pSFIT )2 (3.22)mn

is the condition used to determine the parameters in these expansions. As the number
of ab initio data points for the transition moments is quite small, some of the cross
terms in these expansions are constrained to be zero. Different refinements are per-
formed for both of the odd and even functions and for both the pure-stretch and bend-
containing subsets of the functions The calculated constants are given in Table II], and a
summary of the fits is given in Table IV including the error term E,,,, the number of
free parameters, and the number of data points. More details are available from the
authors. Note that the bending X dipole moment functions fit the data points with
bond angles -- 145 ver) well: most of the errors reported in Table IV arise from the
data points with bond angle in the range 100 to 145"

These expansions in terms of the dimensionless normal co-ordinates converge
quickly. The only high-c.rder constants that are appreciable are Ps, s and p.
Similar fits to the ab init dita have been attempted by expanding in powers of the
valence co-ordinates Ar. a., are not reported here as the fits are unstable, having
large high order terms Apparentl the normal co-ordinates provide a better description
of the dipole moment surface than do the valence co-ordinates.

IV. PROPERTIES OF THE POTENTIALS

A. Vibration Frequencie
Table V gives details of a harmonic analysis of the potential minima. All minima

have linear geometries and their bond lengths may be obtained directly from the param-
eters given in Table i. To get an indication of the effects of anbarmonicity, the vibra-
tional hamiltonian matrix for the V lXI(q) potential is constructed in the normal co-
ordinate basis, truncated at states with more than a total of eight quanta (a grand total
of 495 states are included), and then diagonalized. A product form Gauss-Hermite qua-
drature is used to evaluate the matrix elements. Some of the eigenvalues are given in
Table VI, relative to the zero point energy which is found to be 3240cm - 1 . The one and
two quanta levels are believed to be converged to ± lOcm - and ± 40cm - , respectively:
note, however, that no rotational corrections 27 are included in these calculations.

---------------------------- o



TABLE IV. Sumumary of the Fits of the Dipole and Transition Mornen.s.

Number of Error of Fit

Moment Form Polarisation Data n Unknowns Lim#

(Debyes)

X p linear 33 6 .0006

X p bent 33 7 .0589

X PO bent 33 13 .0110

A-X plinear 16 6 .0016

A2,)_X P, bent 4 2 .0073

A2NX Uben t 4 2 .0500

A 'K' bent 4 2 .9036
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Each line is broadened by unresolved hot bands 12' 3 expected slightly to the red of the
main 0 3 lines. There is also a small intrinsic broadening due to the use of the frozen
gaussian approximation for propagation on an anharmonic potential surface.2 6 At 3000K
the spectrum contains the cold lines 3 as well as two hot band progressions 3 and " 3.
Lines are drawn on Figure 5 to highlight these hot band progressions. The 3000K spec-
trum is broadened due to the large number of lines present, and only partial structure
remains at 60cm - 1 resolution.

The calculated spectra for the A( 2 A)- X transition, Figure 7, are much more diffi-
cult to interpret. There is both a perpendicular band based upon the allowed origin 0
and also a parallel band based upon the vibronic origin o2. The perpendicular band at
OK is almost identical to the perpendicular band for the A( 2A)- X transition except
that the zero point correction shifts the origin up to 3960cm - 1. At 1000K the perpendic-
ular spectra of the two states are quite different. Hot bands " 2 are spaced progressively
at 550cm - ' to the blue of all of the OK lines and fill the gaps between the ' 3 progression.
The intensities of these lines are highly non-Boltzmann with both 112 and 2 being
stronger than ;2. This enhancement comes from the high anharmonicity of the excited
state bend. The A( 2A') potential decreases markedly in curvature at large angle, thus
increasing the overlap between its wave functions and the ground state wave functions.

There are problems with the frozen gaussian approximation which even at OK have
more profound effects than just missing the changes in the zero point levels. Even
though there is no displacement in the bend co-ordinate between the minimum energy
configuration of the ground and excited states, Frank-Condon factors linking levels like
62 can be significant. This is due to the large frequency change between the ground and
excited state bending vibrations. Thus a second progression, based upon the origin 0
and spaced at 2100cm - , should be present. Thawed gaussians know about the fre-
quency change and trial calculations performed using them indicate that 2 is about five
times weaker than 02. Thus the error in using frozen gaussians is not great. At higher
temperatures there is motion in the bend co-ordinate and thus the calculation knows
about the frequency change. In the 1000K spectrum the shoulder at 5960cm - 1 to the
left of the fifth strong band is 2 and a progression in v3 can be seen based upon this
line. The large number of lines resulting at high energy can not be distinguished at
60cm - 1 resolution.

Results for the forbidden parallel band, also given in Figure 7, show essentially the
same features. The problem with the frozen gaussian approximation at OK in not
detecting the true excited state bend frequency now results in the vibronic origin 2
being seen 550cm - 1 to the red of where it should be. Again at 1000K the lines move to
their correct location.

Figure 8 gives the total A- X spectra at OK, 1000K and 3000K as a sum of the
individual A( 2A')- X and A( 2A")- X spectra. The doublets in the OK spectra arise due
to the difference in the zero point energies of the two A state components. Inadequacies
in this spectrum have been discussed previously: the red shift of 550cm - 1 in the parallel
transitions and the absence of the weak 0 2 progression. At 1000K the large number of
new lines which appear washes out the structure at high energy. This continues as the
temperature rises and at 3000K very little structure remains at 60cm - resolution.
There is a large blue shift in the intensity distribution at high temperatures due to the
repulsive nature of the A( 2 A) surface combined with the large value of the average
ground state bend angle. The maximum intensity in the spectrum is shifted to
9500cm - 1 . Some indication of a two band structure is present in the spectra with the
A( 2A") - X band appearing as a shoulder 4000cm -1 to the red of the intense A( 2 A) - X
band.

... .... . -.. .. ~ ~,....... ....-. .. 0: ...-.- , ,,.:...: ..'.. . .- ... ...-.-. . -%....'.. ..,...
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VI. CONCLUSIONS
This work is the first application of the high temperature spectral formalism of Rei-

mers, Wilson and Heller 26 to either infrared spectra or the spectra of polyatomic
molecules. The method is seen to be both simple and practical, requiring little more
effort than pure classical mechanics. Some problems appear because of the use of frozen
gaussians and classical temperatures but these fade in significance as the temperature is
increased and the density of spectral lines increases. Also at high temperatures the dom-
inately bent character of the molecule reduces the effects of the Born Oppenheimer
approximation, allowing the A- X absorption to be represented as the sum of the
A( A')4- X and A( 2 A)- X absorptions.

The C2H potential surfaces have distinctive properties which are not characteristic
of typical laboratory molecules like HCN. First C2H is floppy, leading to large thermal
bend displacements. When this couples with the appreciable mechanical anharmonicity
and electrical non-linearity, many overtone and combination bands appear in the
infrared spectra. Both the natures of the Fermi resonances involved and the energy level
differences are seen to be important in redistributing intensity from the fundamentals to
the overtones. In particular the CC stretch fundamental is predicted to get most of its
intensity from anharmonic effects, and its intensity is predicted to be highly temperature
dependent. The A( 2 A").- X electronic transition is relatively simple but the A( A)-X
absorption is complicated by the large thermal motion and bend frequency disparity. "
We see many blue shifted hot bands with highly non-Boltzmann intensity distributions,
and progressions in a mode that is not displaced. The center of the absorption band
shifts 4000cm -  to the blue when C2H is heated from OK to 3000K. Its intensity
increases considerably due to the forbidden nature of the parallel transition, leaving the
unaffected A( 2A")*- X band as a shoulder to the red of the A( 2 A')- X band. A very
large number of lines appear in the hot spectra and these blend into a continuum at

60cm - resolution.

Experimentally only the region 3500-4200cm - 1 , in the tail of the absorption band,
has been investigated. 15 Within this region the calculated intensity due to the electronic
transitions (Figures 6-8) is much greater than the vibrational intensity (Figures 4-5).
This supports the conclusions of Carrick, Merer and Curl15 that none of their observed
bands in this region is primarily of vibrational nature. This work shows that the overall
band structure contains a lot of information about the potential surfaces and therefore it
is desirable that the entire band be experimentally observed in the gas phase.

We have shown that it is possible to calculate ab initio the often complicated
spectra of small molecular fragments like C2 H. There exists many chemical species in
this category, ranging from covalent second row type molecules to largely ionic molecules
like NaOH and NaCI to fragments of transition metal complexes and clusters. In general
these are difficult species to observe and characterize in the gas phase so that their spec-
tra are difficult to obtain. Molecules of this type are important though as reaction inter-
mediates and in astrochemistry, and they are often found at high temperature. It is
hoped that the CASSCF and wave packet techniques used here will be of general use for
predicting their spectra.
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