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1.  Introduction 

The problem of electromagnetic coupling from one region to another 

region through an aperture in a grotmd plane can be formulated in terms 

of two admittance operators, one for each region [1]. These admittance 

operators are complex and symmetric. Recently, a theory for the charac- 

teristic modes for apertures has been proposed [2]. These modes are de- 

fined as the eigenfunctions of a certain generalized eigenvalue equation 

involving the admittance operators and their real parts. Because of the 

particular choice of the eigenvalue equation, the characteristic modes 

are real (or equi-phasal) and orthogonal with respect to both the admit- 

tance operators, their real parts, and their imaginary parts over the 

slot. Furthermore, the characteristic fields produced by the character- 

istic modes are orthogonal over the radiation sphere. For small aper- 

tures, the characteristic mode theory reduces to an augmented Bethe hole 

theory, i.e., the aperture is described by a susceptance term related to 

the  polarizability,   plus  a conductance   term. 

In this paper, the general theory is specialized to an infinitely 

long slot in a ground plane in an unbounded medium. The purpose of the 

paper is to illustrate the theory, then apply it for a complete analysis 

of the slot problem vdien the slot is illvraiinated by a uniform TE (to the 

slot axis) plane wave. Specifically, the characteristic currents and 

fields are computed for different slot widths. These are then used to 

compute the quantities and parameters of importance usiially encotmtered 

in electromagnetic field compatibility problems, such as the equivalent 

magnetic current of the slot, transmission coefficient, and transmitted 

field pattern both near to and far f|:om the slot. Analytic expressions 

for  the  special  case of the narrow slot  are  also given. 



The infinitely long slot problem has been extensively considered by 

researchers over the years. A long list of previous work'can be found 

in [3] and [4]. The theory of characteristic modes is seen in this 

paper to be both general and computationally efficient. Ihe extensions 

of the work here to a slot in a ground plane separating contrasting me- 

diums, and to a uniform TM plane wave excitation of the slot are under 

preparation. 

2.     Basic Formulation 

Let the excitation be a plane wave of unit amplitude incident on the 

slot at an angle 9 from the left of the screen (see Figure 1). This 

wave is assumed to be uniform and IE to the slot axis, and therefore has 

the   field distribution 

E    =   c   |cos0 X -   sinG  z|   e 
- ^ T- —_, 

„i _    -JK(X sine +  z  cosS) 
H    =  e -^ X 

]     -JK(X sin© +  z  cose) 

(1) 

vAiere 

K   =   U)   /(IE 

C  = ue 

(2) 

are  the medium wave nxnnber  and   impedance,  respectively. 

Because of the presence of the slot, part of the incident field is 

reflected back into the z<0 half-space, while the jrest of it is trans- 

mitted  through  into   the   z>0 half-space.     The   total   field,   incident  plus 
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FIG.   / SCREEN 

AN INFINITELY LONG SLOT IN A GROUND PLANE 
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scattered, (E, H), must have zero electric field component tangent to 

the screen, and continuous tangential electric and magnetic fields 

across the slot. A field equivalence theorem is used to divide the 

problem  into two decoupled parts. 

Let the exciting field be incident while the slot is covered by a 

perfect conductor. This field, often referred to as the short circuit 

field  (E     ,  H     ),   is  given by 

sc 
E  = -2c IjcosQ sin(icz cos9) x 

+ sine COS(KZ COS6) 

,,sc _ o   /     QN  -JKx sinO H  =2 COS(KZ cos 9) e ■*       y. 

1       -JKX sin6 
(3) 

By  the   field  equivalence  theorem  [5,   Section 3-5],   the   field   to   the   left 

SC        sc 
of  the   screen   is   identical   with   (E     ,   H     )   plus   the   field   (E(M),   H(M)) 

produced by  the magnetic  current  sheet 

M =   z   X E 
z=0 (4) 

on the slot vAiile it is covered by a perfect conductor. The field to 

the right of the screen is then identical with the field (E(-^M), H(-M)) 

produced by the magnetic current sheet -M on the slot while it is cover- 

ed by a perfect conductor.    Figure 2 shows   the  equivalent  situations. 

Since the slot is uniform along the y-axis, and since the incident 

field has only an H component that does not vary with y, so does the 

scattered field. Thus, the total field is uniform and IE to the y-axis, 

and, as follows from (4), M has only a y-component that does not vary 

with y: 
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M  =   M(x)    ^l_. (5) 

The   field  produced   by M   to   the   left   of   the   screen   is   then  given  by   [5, 

Section 3-12] 

E(M)  = -   V  X  F(M) 

H(M)   =  -   j -  F(M) 

(6) 

vAiere   F(M)   is   the   electric   vector   potential   produced   by  M   in   the   pres- 

ence  of  the   complete   screen   [5,   Section 5-7]: 

w 

F(M)   =   1-7^     I   M(x')   H^^^ 

-w 

(K/Z = +   (x-x')^)   dx' (7) 

(2)   . 
Here  H is   the  Hankel   ftmction of  the   second kind   and   zero   order.     Be- 

cause   of   the   linearity  of   the   electric   vector  potential,   the   field  pro- 

duced by  -M  to   the  right  of  the   screen  is  negative of  that   in   (6). 

The total tangential electric field clearly vanishes at the conduct- 

ing screen. Furthermore, the tangential electric field is continuous 

across the slot by virtue of placing magnetic current sheets of opposite 

signs on the opposite sides of the slot. The continuity of the tangen- 

tial magnetic   field  across   the   slot,  however,   requires   that 

w 

[   M(x')  H^^\K|X-X' I)   dx' 

-w 

=  2  e 
-JKX  sint 

xcS (8) 

as readily follows from (3), (6), and (7). 

In the next section, the characteristic currents of the slot a?'? de- 

fined.  These are then utilized to solve (8) for M. 



3.     The Characteristic Currents  of  the Slot 

The   integral  equation (8)   can be put  in  the  operator  form 

Y(M)   = I (9) 

where 

w 
f .(2), 

Y(M)   = -     I   M(x')  H^^KIX-X'!)   dx' 
5     J 0 

-w 

I = 2  e 
-JKx  sin© 

r        xeS (10) 

Since   [5,   Appendix  D] 

HQ^^O = JQCU - JNQ(0 (11) 

where J- and N are the Bessel functions of the first kind and zero or- 

der and of the second kind and zero order, respectively, Y(M) can be 

written as 

Y(M) = G(M) + jB(M) (12) 

where 

w 

G(M) =  -  I M(x') J„(K|X-X'|) dx' 
C  J        0 
-w 

B(M) = - 
S  J 
-w 

M(X' ) NQ(K|X-X' I ) dx' . 

xeS (13) 

Following Harrington and Mautz [2], the characteristic currents of 

the slot are defined to be the eigenfunctions M of the eigenvalue oper- 

ator equation 



Y(M  )   =  y     G(M  ) (14) 
n n n 

and  are  so normalized  that 

<M  ,   G(M )>  =  1. (15) 
n n 

In  (15),  <.,.>  denotes   the   inner  product 

w 

<C,   D> =     I   C   (x)   D(x)   dx (16) 
J 

-w 

* 
v^ere  C  (x)   is   the  complex  conjugate  of C(x) .     Put 

y    = 1  +  jb   . (17) 
n n 

Then, using  (12)   and  (17),   (14)  becomes 

B(M  )  = b    G(M  ). (18) 
n n        n 

Clearly,  Y is  symmetric   (with respect  to primed  and unprimed  coordi- 

nates),   and   so   are   G   and   B.      G  and   B   are   also   self-adjoint,   since   for 

any  M     and M 

<M^,   Gin^)>  =   <M^,   |- (Y   + Y   )(M2)> 

=   <j  (Y   + Y*)(M^),   M^> 

,    . =  <G(M^),   Vl^> (19) 

and   similarly   for   B.       Furthermore,   G   is   positive   definite,   since   the 

time-average  power  radiated  into  the  z>0 half-space 



rad 
Re 

w 
• 

E X H* 

-w 

•   z  dx 

z=0 

Re <Y(M),   M> 

= 7- <G(M) ,   M> (20) 

is  always   positive.     Tlrie   second   equality   in   (20)   follows   from   (4),   (5), 

(6),   (7),   and   (10).     It   is   then a  standard  practice   [6,   Section  1-25]   to 

prove   that   all   b   ,   and  hence   M   ,   are   real,   and   that  M    can be  chosen   to 
n n n 

satisfy   the   orthogonality relationships 

1. <M  , G(M   )>  =   6 
n              nm 

2. 
in 

B(M )>  =  b     6 
n              n     nm 

3. <M   , 
ra Y(M  )>   =   (1   +   jb   ) 

n                        -"   n 
6 

nm 

(21) 

where   6        is   the   Kronecker   delta   function   (0   if m^n,   and   1   if m=n). nm 

All the currents on a slot in an infinite screen in an unbounded me- 

dium are required to radiate some power however small. As can be seen 

from (18) and (20), the characteristic currents corresponding to very 

large b's are basically non-radiating. In the limit as b-»^, these cur- 

rents cannot therefore possibly exist. Only when the z>0 region is 

bounded by a perfect conductor, so that no radiation occurs, these cur- 

rents are physically present. (G is then positive semi-definite rather 

than positive definite.) When the slot is very narrow, this is almost 

true, and such currents can be evaluated under narrow slot approximat- 

ions,   as    is   shown    in   a   later    section.       In   any   case,   however,   all    the 
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currents have to exhibit the edge property 

tion 1-4]. 

{       1     ^ 

.   [yV^oc^. 
as x-*-±w [7,   Sec- 

4.     Modal Solution of  the Operator Equation 

A modal   solution  of  (9)   for   the  magnetic   current  M over   the   slot  is 

obtained  in  this   section. 

Put 

M =   E V    M 
n    n n 

(22) 

vhere  M are the characteristic currents of the slot, and V are complex 
n n       ^ 

coefficients to be determined.  Substituting (22) into (9),  there then 

results • . 

2 V Y(M ) = I. 
n   m 

n 

Taking the inner product of (23) with each M , one obtains 
m 

Z V     <M   ,   Y(M  )>  =   <M   ,   I>. 
n      m n m 

n 

(23) 

(24) 

Because   of   the    third   orthogonality   relationship   of   (21),   only   the   mth 

term   in  the  summation  survives.     Ihus 

V     = 
<M   ,   I> 

m 
m      1  +  jb •^  m 

Substituting (25) into (22), M then becomes 

(25) 
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<M   ,   I> 
M =   2   ,   "   ■■        M   . 

1   +   lb n 
n -^  n 

(26) 

The magnetic  current M given by  (26)   is  called   the modal   solution of 

(9). 

5.  Power Considerations 

The total complex power entering the slot is basically 

P.  = 
in 

w 
f     * 
I E X H 1 

-w 

z dx. 

'z=0 

(27) 

Using  (3),   (4).   (5),   (6),   (7),   (9)  and  (10),   (27)  becomes 

m 
<I,   M>  - -^ <Y(M) ,   M> 

=  2" <I.   M> 

= - <:Y(M), M>. (28) 

Furthermore,  using  (26),   (28)  becomes 

in 

f ■> 

n n 
(29) 

A comparison  of   (20)   and   (28)   then   shows   that   the   complex   power   trans- 

mitted  through  the  slot  is  also given by  (29). 

A parameter sometimes used to express the transmission character- 

istics of the slot is the transmission coefficient T. By definition, 

the    transmission   coefficient   of   the    slot   is    the    ratio    of   the    time- 
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average  power   transmitted   through  the   slot   to   that  incident  on  the   slot 

[5,   Section 7-12].     Using   (1)   and  (29),   T is  readily  found as 

T  = 
4ws  cos6       1   +  b 

n n 
^   \<1,   M^>|^. (30) 

6.     The Characteristic Fields  of  the Slot 

The   fields   (E   ,   H  )   produced   by   the   characteristic   currents   M    are 
~-n     —n n 

called the characteristic fields of the slot. Orthogonality relation- 

ships for the characteristic fields over the radiation cylinder can be 

obtained from those for the characteristic currents by means of the com- 

plex Poynting theorem [5, Section 1-10]. These relationships are dual 

to those for the characteristic fields of a conducting body, and can be 

derived   in a  similar manner   [8].     Ihus 

1. 
2 f         * 

j       -in 

-' 00 

•  E     dT  =   6 
—n                nm 

2. 2? 
* 

H 
-m 

•  H     dT  =   6 
—n                nra 

^ "k "k 
3.   2cj   I (n  H •   H -   e  E     •   E   )   dv 

j          —m —n           —m      —n 
V 

b     6 
n    nm 

(31) 

in dviality with those for a conducting body. In (31), Cy is the radi- 

ation cylinder, and the integration in (31.3) is over the \Aiole space. 

Figure   3   shows   the   integration domain   for   (31). 

The   third  orthogonality relationship of (31)   states   that  the   differ- 

ence between  the magnetic   and  electric   energy  stored   in  any characteris- 
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^yao^^-^oo 

FIG. 3 

THE INTEGRATION DOMAIN OF (31) 
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tic field is -b/2u Joules for every one Watt of radiated power. The 

characteristic fields corresponding to positive (negative) b have pre- 

dominantly stored electric (magnetic) energy, and are therefore referred 

to as the capacitive (inductive) modes of the slot. The characteristic 

fields  corresponding   to  b=0  are called  the  resonant modes  of the  slot. 

A modal   expansion of the   field   radiated  by M in   terms  of the   charac- 

teristic   fields  E     and H    can readily be  obtained using  the modal   expan- 
—n —n 

sion  (22)   of M: 

E(M)   =   Z V     E(M   )   =   Z V    E 
  n n n —n 

n n 

H(M)   =   Z  V     H(M   )   =   Z  V    H   . 
  n n n -n 

n n 

(32) 

In   the  Appendix,   it   is   shown   that   the   field   (E(M),   H(M))   given  by  (32) 

converges   in  a  least  squares   sense on  the  radiation cylinder. 

7.     The Narrow Slot 

An   important   case   that   requires   a   special   consideration   is   that   of 

the narrow slot  (2wic<<l). 

Since 

K|X-X' I    <   2WK   «   1 (33) 

the   Bessel   functions   J„   and   N„   can   be   replaced   by   their   small   argument 

approximations   [5,   Appendix  D]: 
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JQ(KIX-X'I)   =  1   - ^U-x' 1^ 

NQ(KIX-X'I)   = 7 log[^|x-x'|) 

(34) 

*4iere   log  denotes   the  natural   logarithm,   and   Y=l. 7810724.     G(M)   and  B(M) 

are   then given by 

G(M)   = 
K 

W 

I   M(x')    |1 

-w 

f-ix-x' r\ dx' 
4 j 

w 

B(M)   . - ^     \   M(x')   logte|x-x'||   dx- 
IT?     J >.  '^ J 

-w 

xeS (35) 

Furthermore, I does not vary appreciably over S, and can therefore be 

approximated by the first two terms of its Taylor expansion about x=0. 

That is 

1=2- J2K X sin9. 

Using   (3),   I  then becomes 

xeS. (36) 

I   = H^''(0)  +   j-    £^"^(0)   X, 
y ?      z 

xeS (37) 

where  (0)   is  written   for   the   point   (x,z)=(0,0). 

The   characteristic   currents   of  the   narrow  slot   can  be   determined   by 

solving   (18)   with G(M)   and  B(M)   given by   (35),  viz.: 
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w 

-     [ M  (x-)   logf^|x-x' 11   dx' 

-w 

w 

=  b        [  M  (x')   (l n     J     n { 
-w 

^Ix-x-rj   dx'. xeS (38) 

An  exact  solution of  (38)   is  possible:     Using   the   identities 

* 1 
1 ^^- -x- 2 

dx'   = 

w 

f    ,   ^ logtelx-x'il   dx' =  -n   log 

-w 
< 4   J 

(39J 

it  readily follows   that 

U, 
M,   = 

i/a' 

'^YKW^I 

1 T (   '*    J 

(40) 

is  a  solution pair  of (38).     Similarly,   it   follows   from  the   identities 

w 
,2 2 

X .     , W    IT 
  dx'   = -T- 

-w 

w 
f 

-w 
/w2-x'2 

log 
YK 

2 
|x-x'|j dx' -IT   X 

(41) 

that 



M„   = 
U2X 

/w^ 

^2 2   2 
TTK   W 
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(42) 

is another solution pair of (38). In fact, these solution pairs are the 

only possible solutions to (38), as can readily be verified from the 

identity   [9,   Appendix] :■' 

w 
f 

T   (—) n w logl|x-x' I I   dx'   =     ; 

-TT   log(-)   T„(-) if n=0 ° w       0 w 

J 

-w 

- ^ T   (^) 
n    n w 

(43) 

if n>0 

where T is the Chebyshev polynomial of the first kind and nth order, 

and the two identities in (39) and (41) ii^volving logarithms are the n=0 

and n=l cases of (43), respectively. In (40) and (42), U. and U„ are 

constants   to  be determined  according   to   (15).     Thus 

1 TT 

^2   = 
TTKW 

^       ^2-X = 

"     /w" 

(44) 

(45) 

Furthermore, it readily follows from (40) and (42) that the chareteris- 

tic values of the narrow slot are very large positive numbers vAiose ra- 

tio  satisfies 

-4 

log 
YKW 2   2-., 

K   W (1 

(2   V 
YKWv        2    2 iKWl 
-7-)     K   W 

(46) 

The  equivalent magnetic  current M of the  narrow slot  is  now g;Lven by 
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M = 
<M       I> <M   ,   I> 

M,   +   . ..        M„ 
1   +   jbj     1 

<M       I> 
—  M 
1   +   jb,      1 

1   +   jb„ 

<n^. i> 
M. 

;i. y 
V +   logl^J   +   J  2 

-    +    E^'^CO)   X 
IT Z 

(47) 
A? 

as readily follows by substituting (37), (40), (42), (44) and (45) into 

(26). In (47), v=log(Y) is the Euler's constant. Higher order solu- 

tions can be obtained by retaining more terms in the small argvment ap- 

proximations of Bessel functions in (34), but, in view of (46), the con- 

tribution of the higher order characteristic currents is negligible. 

Incidentally, the magnetic current in (47) is identical with the solu- 

tion given   in   [9 ]. 

8.     Solution of  the Eigenvalue Equation 

An exact solution of the eigenvalue eqiiation (18) for the character- 

istic currents is rather difficult, if at all possible. An approximate 

solution has   then   to be   sought. 

Put 

,0 
k=l 

(48) 

M     =     Z     U ,    P, . 
n       , _i     nk    k k=l 

(49) 

In  (48),   S    are non-over lapping   intervals  such   that 
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N 
2w =     Z 

k=l 
(50) 

where   |S   |   is   the   length   of   the   kth   interval   (see   Figure  4).      In   (49), 

each   P     is   a   real   ftinction,   yet   to   be   specified,   that  vanishes   on   S   ,, , 

and  U ,    are   real   coefficients   to   be   determined.     Substituting   (49)   into 
nk 

(18),   it  becomes 

N N 
I    U  ,    B(P, )   =   b        S     U  ,   G(P, )   +  R ,    ,      nk k n ,    ,      nk k 

k=l k=l 
(51) 

where  R  is  a residual   term. 

A  Galerkin   solution   [10,    Section   1-3]       of   (13)   can   be   obtained   by 

requiring   that  R be  orthogonal   to   all   P   ,  viz.: 

<P   .   R> =  0, i =  1,2,..,N. (52) 

Thus,   taking   the   inner   product   of   (51)   with   each   P   ,   and   enforcing   the 

Galerkin condition  (52),   there   then  results 

N N 
Z    U ,    <P   ,   B(P, )>  =  b       Z    U ,    <P   .   G(P. )>,     5,=1,2,..,N. (53) 

,    ,      nk        S, k n , _,      nk        {, k 
k=l k-1 

In matrix   form,   (53)   becomes 

B  U    = b    G U n n n 
(54) 

where  G and  B are   the  N by N matrices 

1 

G   =   [G^^]   =   [<?^.   G(P^)>] 

^   =   [^k^   =   f<^'   ^^\)>^ 

(55) 

and  U    is   the  N by  1  vector 
n 
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U    =   [U , ]. n nk (56) 

The  constraint equation  (15)   now becomes 

U    G U     =1 n        n (57) 

where   the   superscript   T denotes  vector   transpose. 

The   solution  of  (54)   subject   to   (57)   determines   in   a Galerkin   sense 

the   first  N characteristic  currents  of  the   slot. 

9.     Evaluation of  the Matrices G  and B 

The evaluation of the matrices G and B constitutes a large portion 

of the work involved in the solution. An efficient evaluation of these 

matrices   is   therefore necessary   for   the  success  of  the   solution. 

The   ilkth  elements  of G and   B are  given  by 

i k 
f f 

G..    =        I     P   (x) dx      I     P   (x')   J„(K|X-X' I)   dx' 
j li, J K- Ik '0 

'a-i X. 
k-1 

ilk 

I k 
r f 
I     Pj,(x)   dx      I      P^(x')   N^(K|X-X'|)   dx' 

0 

'i-l \-l 

(58) 

where  P    are   so   far  unspecified.     A particularly simple  choice   for  P,    is 

f     1 on  S. k 

\  = (59) 

on  S 
!iik 



M 

v^ich   corresponds   to   a   pulse   expansion   of   the   characteristic   ciirrents, 

Using  (59),   the   £kth elements of G and  B become 

'Ik 

Si k 

f     dx 
J 

X 

J„(KIx-x'I)   dx' 

5,-1 k-1 

£k \ 
i 

dx     I     N-(ic|x-x' |)   dx' 

(60) 

Pttt 

^k^^)   = 

Jlk 

I     J-(K|X-X'|)   dx' 

\-l 

\ 

I     N„(K|X-X' |)   dx' 

\-l 

xeS   . (61) 

Then,  by the   first mean value   theorem  for  integration  [11,   Section 7-18] 

there   exists   points x^   ,  x„   eS    such  that 
■^0      ^0     ^ 

G ,    =   Is    I   G , (x,  ) ilk        '   «.'     Jlk    JQ 

^k=   I^J   \k^\'>- 

(62) 

The  evaluation    of G ,   and  B ,      is  completed  by    integrating  the     Bessel 

functions  J    and N    over   S   ,     and,   for   that purpose,   any quadrature  rule 
U U K 

can be  used.     Thus 
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1=1 

1=1 

■>       •> 

(63) 

In  (63),   Q is   the  order  of the   rule,   q.   are   its  coefficients,     p.   deter- 

mine   the   location of its   abscissas,   and 

^k+J =   K+1   ^   \^ 
(64) 

is   the midpoint of  S   . 

When  evaluating   the  diagonal   elements  of B    (il=k) ,  NQ offers  a  loga- 

rithmic   singularity at x=x'   that  requires  particular   attention.     Put 

N^(K|X-X' I)  =   (N^  - N-   )(<|x-x' |) (65) 
Op 0 Os 

where N       is   the   singular  part of N„  given by  its   small   argimient approx- 

imation  (34).     Then 

li 

X                 X, 

f          f 
-      1     dx         (N-     + N^   )(ic|x-x' 

J             J          Os         Op        ' I) dx' 

X       ,        X       , 
i-1     l-l 

2   log YK        2 

J 

-  3 - 

X                X 
i        i 

f          f 
1     dx         N 

^-1     ^-1 

>" 

(66) 

N-       has no   singularity at    x=x',   and   can   therefore be   integrated  by  the 

first mean value   theorem  and  quadratures.     Thus 
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SiSi 

r 1 

2   log  YK —;r-    -  3 

-1   1^1^   .^   ^i   % 
1=1 ^ Op 

ISJ^ 
i.*\      ^i    2 

(67) 

for   some x„     ES   . 
N        a 

Op 

Actioally,   finding   such points  x     ,  x     ,   and  x^       is  at   least  as  dif- 
■^0       ^0 ^Op 

ficult as computing the integrals themselves. For sufficiently small 

|S |, however, the midpoint of S can replace these points vAiile intro- 

ducing  nearly no   error.     Thus,   eliminating   the   common  factor   |S   |, 
Jb 

1=1 
for   all   X,,k 

^   |S    I      Z     q.   N   (u^^ if   i-^k 
2       k     .   ,      1     0     1 

1=1 

'ilk   "  ^ 

IS    I   ^^ 

I.     1. 

2   log YK 

|S   P 
-  3 ^1 V M {      ^K[ 

2 i=l ^^ 

if  «,=k 

(68) 

where 

u. 
«,k 

l^\ \ *i 
(69) 

The matrices  G and  B so obtained  are  the   same as  those  would  result  from 

enforcing   the   point matching  condition 

R(x^^,)  = 0. Jl=l,2,..,N (70) 
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in (51) rather than the Galerkin condition (52), except for a slight al- 

teration in B  .as can easily be established. 
iSi 

10.     Numerical Results 

The characteristic currents and fields, as well as the equivalent 

magnetic current, radiation pattern, and transmission coefficient, have 

been computed for different slot widths. Some of the results obtained 

for   the  0.4X,   0.5X,   and  l.OX   slots   are  given   in  this   section. 

In the actual computation, polynomial expansions of the Bessel func- 

tions J„ and N [12, Articles 9-4.1,2,3] are utilized, while all the in- 

tegrals are computed using an eight-point Gaussian quadrature [12, Table 

25.4]. In evaluating the far fields, the Hankel function is first re- 

placed by  its   large   argument  approximation   [5,   Appendix D]: 

„«)(5, . /n :'\ (71, 

Then,  using   the   typical   radiation  zone  approximations   [5,   Section 2-10], 

K =   K/Z^   +   (x-x')2   -   K(P -   x'cos\|j) 

(72) 

for all points (x,z)eCy , p»2w, where ^) is the angle £=xx+zz^ makes with 

the X-axis, the electric vector potential produced by the characteris- 

tic  current  M    at  any point  (p,>l))eCy     is  readily   found as 
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k+l 

F(M  ) 
 n 

. /2JTT KP 

-JKp        N 
e E     U 

k=l 
nk 

j KX   COSl|J 

dx' 

J 
X. 

N 
Adcp)      I    U  ,    Is,  I   e 

,    ,     nk      k 
k=l 

JKXj^^lCOSt 
(73) 

The   far  characteristic   fields  then   follow by substituting  (73)   into   (6). 

An IMSL Library 2 subroutine "EIGZF" [13] is used to solve the ma- 

trix eigenvalue equation (54) for the characteristic values and currents 

In all the computer runs, a "performance index" has consistently come 

less than one, indicating that the subroutine has performed well. The 

convergence patterns for the characteristic values for the 0.4X, 0.5X, 

and l.OX slots are shown in Tables 1, 2, and 3, respectively. As can be 

seen, the convergence is always montone, either upwardly, or downwardly. 

Only for the l.OX slot, b first decreases monotonically, but later in- 

creases, although this can be attributed to roimding errors. Further- 

more, the convergence of the lower order characteristic values is gener- 

ally faster than that of the higher order ones. The convergence of the 

dominant characteristic current for these slots is shown in Figures 5, 

11,   and 17. 

The last columns in Tables 1, 2, and 3 warrant an explanation. 

"EIGZF" returns pairs of ntmbers whose quotients determine the charac- 

teristic values. Both numbers are checked, and when the divisor of any 

such pair is found to be an exact zero, an infinte value is assigned to 

the characteristic value. Furthermore, the power radiated by the corre- 

sponding characteristic current has always been found to be exactly 

zero.     Unfortunately,   it   is   not   true   that  only  a   finite   number   of char- 
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Table   1.     The  convergence of the   characteristic  values   for   a 0.4>^  slot. 

N b^ b^ b3 b^ b3 

3 
4       0.3864999     2.5419659    52.9851044     7.2047462x10 * * 

3 5 
8       0.3829608    2.3814417    39.5235940    2.7784331x10 4.6240706x10 

3 5 
12     0.3819787     2.3403592     37.0742823    2.3726822x10 3.3298869x10 

3 5 
16    0.3815764     2.3221121     36.0919691     2.2324162x10 2.9452827x10 

3 5 
20    0.3813810    2.3119735    35.5731692     2.1634724x10 2.7752366x10 

->24    0.3812775     2.3055932     35.2564286     2.1232330x10^ 2.7000217x10^    =° 
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Table  2.     The  convergence of the  characteristic   values   for   a 0.5X  slot. 

N ^ \ S \ h 

3 
4       0.2486212     1.7228569     22.1775861     1.8489054x10 *                  * 

3 5 
8       0.2514326    1.6158270     16.8422341     0.7267531x10 0.7674664x10 

3 5 
12     0.2524255     1.5885171     15.8617172     0.6228877x10 0.5547073x10 

3 5 
16    0.2529714    1.5763806     15.4663358    0.5868004x10 0.4937043x10 

3 5 
20    0.2533296     1.5696359     15.2567972     0.5690416x10 0.4661994x10 

3 5 
-^24    0.2535877     1.5653913     15.1285194    0.5586531x10 0.4505765x10 
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acteristic currents can exist on the slot. Since single precision ar- 

ithmetic is the mode of operation used in all computations, these char- 

acteristic values are actually 0(1/6), where 6 is the smallest positive 

real number different from zero on the computer. Nevertheless, the con- 

tribution of these currents is extremely small, and therefore have not 

been considered in subsequent computations. It appears that for a slot 

in a ground plane in an unbounded medium, only a finite number of char- 

acteristic currents need to be computed. This is also expected to carry 

thrpugh   to  slots   in  a screen  separating   contrasting medixims. 

The computed characteristic currents normalized to a maximum ampli- 

tude of unity and their radiation patterns for the slots considered are 

shown in Figures 6, 8, 12, 14, 18, and 20. This normalization is only 

for plotting convenience. The equivalent magnetic currents and radia- 

tion patterns for the slots are shown in Figures 7, 9, 13, 15, 19, and 

21, for the case of normal incidence. It i^ interesting to note that 

the niamber of lobes in each pattern is equal to the order of the charac- 

teristic current or field. Finally, Table 4 gives the ratios of the 

powers radiated by the characteristic currents to that radiated by the 

dominant characteristic current for each slot, whereas the transmission 

coefficient for the slots for the case of normal incidence are given in 

Table 5, all is evaluated with N as specified in the arrow marked rows 

in Tables 1, 2, and 3. The entries in Table 4 suggest that the radia- 

tion pattern for the slot is basically the same as that for its dominant 

characteristic current. This is indeed the case, as Figures 10, 16, and 

22   readily   show. 
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Table 4. The ratio of the power radiated by each characteristic current 
to that radiated by the dcminant characteristic current for a 
(a)  0.4X  slot,   (b)  0.5X  slot,   and (c)   l.OX  slot. 

(a) 

n P    / P. n         1 

1 1.0 

2 0.1595670 

3 5.1706787 xio""^ 

4 6.8070769x10"^ 

5 5.3741932xl0~^ 

0.0 

(b) 

n P    / P, n         1 

1 1.0 

2 0.2678140 

3 1.1451906x10"^ 

4 2.3665750x10"^ 

5 2.9297482x10"^ 

0.0 
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(c) 

n P    / P, 
n         1 

.   ^1    ■ 1.0 

2 0.1496020 

3 0.0390829 

4 3. 7669604xio'"^ 

5 1.72643 61x10"^ 

6 5.2402006x10"^ 

7 1.1263396x10"^ 

0.0 

« 
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Table 5.     The    transmission   coeffiecient   for    the   0.4X,    0.5X,    and   l.OA 
slots   for  normal   incidence. 

2w 

0.4X 0.9757939 

0.5X 0.9777421 

l.OX     0.9994257 
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11.   Discussion 

The theory of characteristic modes for slots has been applied for 

the solution of the problem of an infintely long slot in a ground plane 

in an unbounded medium illvraiinated by a uniform TE (to the slot axis) 

plane wave. The theory is a specialization of the general theory of 

characteristic modes for apertures, and can be applied to slots in a 

ground plane separating contrasting mediums and illuminated by general 

plane  waves. 

The characteristic currents and fields, as well as the equivalent 

magnetic current, transmission coefficient, and radiation pattern, of 

the slot have been computed for different slot widths. The theory is 

rather general and computationally efficient, applicable to both narrow 

and wide slots. For narrow slots, the modal representation of the 

equivalent magnetic current is readily recognized as an augmented multi- 

pole expansion of the cuurent. Furthermore, it appears only a finite 

number of characteristic currents need to be computed. The applicabili- 

ty of the theory is not necessarily confined to slots of small or inter- 

mediate width compared to the wavelength. In fact, it is computationally 

more attractive than a great many other numerical solutions. This is 

evident from its performance in the present sittiation. All the inter- 

esting features displayed here are expected to carry through for general 

apertures  and medixjms. 
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Appendix 

In   this  Appendix,   it  is  shovm   that  the  convergence of the   field 

E(M)   =   r V    E 
  n —I 

n 
(1) 

over   the   radiation  cylinder   is   in   a  least   squares   sense.     The  proof  for 

H(M)   is   similar. 

Put 

N 
E(M)   =     l    U     E     +  R„(E) 
  1     n -n       -N — 

n=l 
(2) 

where 

R„(E)   =     E     (V^   - U^)  E     +        S       V    E —N — ,        n n    —n ^,.,     n —n 
(3) 

n=l n=N+l 

is a residual term. Then, the convergence of E(M) in a least squares 

sense over the radiation cylinder is equivalent to the requirement that 

the  norm of the  residual 

||R^(E)||^  =      [  R^(E)   .   R^(E)   dx (4) 

be minimvmi   if and   only if U = V   ,   n=l,2,..,N.     Substituting   (3)   into   (4) 

and using  the  orthogonality relationship  (31.1),  it becomes 

1^ (E) |2  .   C 
C   N 00 

Z |V     - U   1^   +       Z        |V   1^ 
-1 n         ri              _„^.        n' n=l n=N+l 

(5) 

The result   then   follows, 
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