
RD-Ri55 715 INTEGRATED SUPPORT SOFTWARE SYSTEMI (ISSS)CU) GENERRL ti
DYNAMICS FORT WORTH TX DATA SYSTEMS DIV H CONN ET AL.
APR 85 FZMI-7218 AFWL-TR-85-1034 F33615-81 C-±524

UNCLRSSIFIED F/G 9/2 NL

EElhEEEllllEEI
EEEEEEEllllEE

?'4.

.4t
* -tt.

-.- 2

111311 112~IL

IWl Illl

1 25 11111j4 111-

NATIONAL BUREAU 0 STANDARDS
h.C O" RESOLUTION TEST CHART

.I

.6

* . , . .S ,, . . , - .,4 4 ., - .,- ..- .* * - . ' , - -, - .. , . - . .. , . . . ,

* 5 4 . * ' .. . * * *'' *,, . , S ,,S' * -" "- - 4 4 S -n * 4 *

AFWAL-TR-85-1034

INTEGRATED SUPPORT SOFTWARE SYSTEM (ISSS)

Herb Conn, Fred Reagor
Scott Madaras, Hal Ferguson

Lfl GENERAL DYNAMICS CORPORATION
DATA SYSTEMS DIVISION
P. 0. BOX 748, MZ 5404
FT WORTH, TEXAS 76101

LD
.Ln

. I APRIL 1985

FINAL REPORT FOR PERIOD JUNE 1981 - DECEMBER 1984

CD

". .PPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

*° . *.. .

. AVIONICS LABORATORY
AIR FORCE WRIGHT AERONAUTICAL LABORATORIES
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433

85 06 18 118
.

.,

NOTICE

When Government drawings, specifications, or other data are used for any purpose
other than in connection with a definitely related Government procurement operation,
the United States Government thereby incurs no responsibility nor any obligation
whatsoever; and the fact that the government may have formulated, furnished, or in
any way supplied the said drawings, specifications, or other data, is not to be re-
garded by implication or otherwise as in any manner licensing the holder or any
other person or corporation, or conveying any rights or permission to manufacture

* use, or sell any patented invention that may in any way be related thereto.

" This report has been reviewed by the Office of Public Affairs (ASD/PA) and is
.. releasable to the National Technical Information Service (NTIS). At NTIS, it will

be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

AL

MARK M. STEPHENSIN, 2Lt, USAF KENNETH N. FRANKOVICH, Major, USAF
ISSS Project Engineer Chief, System Evaluation Branch
AFWAL/AAAF-3 Avionics Laboratory

FOR THE COMMANDER

If your address has changed, if you wish to be removed from our mailing list, or
if the addressee is no longer employed by your organization please notifyAFWAL/AAA];

* W-PAFB, Oil 45433 to help us maintain a current mailing list.

Copies of this report should not bo returned unless return is required by security
S considerations, contractual obligations, or notice on a specific document.

{."

REPORT DOCUMENTATION PAGE
l. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED
2 SECURITY CLASSIFICATION AUT4ORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release; distri-
2b. DECLASSIFICATION JOWNGRAOiNG SCHEDULE but ion unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

FZM-7218 AFWAL-TR-85-1034
MF* 2355-5-004

Ga NAME OF PERFORMING ORGANIZATION 0. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

General Dynamics Corp. (it applicable) Avionics Laboratory (AFWAL/AAAF)
Data Systems Division 81755 AF Wright Aeronautical Laboratories

6c. ADDRESS iCaty. State and ZIP Code) 7b. ADDRESS (City, State and ZIP Code)

P. 0. Box 748, MZ 5404 Wright-Patterson Air Force Base, OH 45433
Ft. Worth, TX 76101

Ss. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

US°ComanI8d (if applicable)

Aeronautical Systems Div. FQ8419 F33615-81-C-1524

B. ADDRESS (City. State and ZIP Code) 10. SOURCE OF FUNDING NOS.

PROGRAM PROJECT TASK WORK UNIT

Wright-Patterson AFB, Ohio 45433 ELEMENT NO. NO. NO. NO.

11. TITLE (include Security Claskwfcation)

Integrated Support Software System (ISSS) 62204F 1 2003 05 24

12. PERSONAL AUTHOR(S)
Reagor, Fred Madaras, Scott

13.. TYPE OF REPORT 13b. TIME COVERED 114. DATE OF REPORT (Yr.. Mo., Day) 15. PAGE COUNT
Final FROM 6/81 TO 12/84 1985 April 35

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reuerse if necessary and identify by block number)

FIELD GROUP SUB. GR.

9. ABSTRACT (Continue on truerre if necessary and identify by block number)

The Integrated Support Software System (ISSS) is an integrated software development
environment that operates on a Digital Equipment Corporation (DEC) VAX 11/780 computer
with the VMS operating system. The ISSS provides a UNIX-like command set, but still
allows tools designed to operate on VMS to be hosted on the system. The system provides
a core set of tools for software configuration management, editing, and word processing.
Ither tools configured for this effort are a J-73 JOVIAL compiler, 1750A tool set,
JOVIAL Automated Verification System (J73AVS), Software Design and Documentation
Language (SDDL), Automated Report Tracking System (ARTS), Tool Information and Presenta-
tion System (TIPS), User System Evaluation and Integration Tool (USE.IT), VAX Downloader
to the AN/AYK-15A User Console (LODAYK), and X.25 Network between the VAX 11/780 and
the Harris H-800. - -

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED/UNLIMITED I SAME AS RPT. 0 OTIC USERSS 3 UNCLASSIFIED
22*. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER 22c. OFFICE SYMBOL

L (Include Area Code)
Lt. Mark Stephenson (513) 255-3947 AAAF-3

PREFACE

This report describes the Integrated Support Software System (ISSS)

whichlis a collection of integrated software tools utilized in the
development of software targeted for MIL-STD-1750A avionic embedded
processors.,,-

The work herein was preformed during the period 15 June 1981 to 31
December 1984 by General Dynamics Corporation Data Systems Division for
the Air Force Wright Aeronautical Laboratories (AFWAL) Avionics Systems
Analysis and Integration Laboratory (AVSAIL) under contract
F33615-81-C-1524.

0

A .;

DYIC
OOp-

INSDPECTED

0-.
.-. -- --

.__ __,i ~~~

! -''T.$--,,
-. .. I..

TABLE OF CONTENTS

Section Title Page

1.0 Introduction 1

2.0 Applicable Documents 2

3.0 ISSS Design Philosophy 4

4.0 ISSS Components 6

4.1 Base Layer 7

4.2 IS/W3 Layer 7

4.2.1 Source Code Control System (SCCS) 7

4.2.1.1 Commands 8

4.2.2 Automated Program Build Facility (MAKE) 8

-'- 4.2.3 INteractive Work Processor (INwork) 9

4.2.4 INteractive Text Editor (INed) 9

4.2.5 Other Comnands 10

4.3 Top Layer Support io

4.3.1 Commercial/GFE Software 10

" 4.3.1.1 User System Evaluation and Integration Tool
(USE.IT) 10

4.3.1.2 Software Design and Documentation Language (SDDL) 12

4.3.1.3 PSS ,ovial Compiler 12

4.3.1.4 MIL-STD-1750A Tools 13

4.3.1.5 J73 Automated Verification System (J73AVS) 13

4.3.2 General Dynamics/Systran Developed Software 13

4.3.2.1 Tool information Presentation System (TIPS) 13

4.3.2.2 Automated Report Tracking System (ARTS) 14

4.3.2.2.1 Functional Descriptions 14

v

... -. -.,...--,.. .-, .,,. ,,-. ,..-,.....,....- ,....,......,.........•.-,
" 'o -' . -' ,' --= - - 'w - .mw ' -- ' , ..

"
=' ," - - ." "-"_- , ' ' -' . / ' . . '

TABLE OF CONTENTS

Section Title Page

4.3.2.3 Load File to AYK-15 (LODAYK) 15

4.3.2.3.1 Function Allocation Description 16

4.3.2.4 X.25 Network 16

4.3.2.4.1 Pad 17

4.3.2.4.2 Wright Aeronautical File Transfer (WAFT) 17

5.0 ISSS in the Software Community 18

5.1 Use of ISSS at Government Air Logistics Centers 18
(ALCs)

*

5.2 Use of "ISSS" Internal to General Dynamics 18

5.2.1 Use by Production Digital Flight Controls (PDFC) 18

* 5.2.2 Electrical Harness Data Systems (EHDS) 18

5.2.3 Defense Mapping Agency (DMA) Contract 19

* *-5.2.4 Advanced Technology 19

6.0 Lessons Learned 20

6.1 Using ISSS as a Software Development 20

Envi ronment

6.1.1 SDDL as a Documentation Tool 20

6.1.2 Configuration Management of the Development 20
Effort

6.1.3 Impact of ISSS Utilities on the Functionality 21
of the System

O 6.2 User Response 21

6.3 Experience with USE.IT 22

7.0 Observations/Recommendations 24

vi

Ap..lt 6.I -', ,° ." ." .''." " .'-' -'.''.'.' .- , -,?'-/ . ,. .".. .,"-. , ," - ,'.. •.. ."... .,.-.. . . .r.. ".",.. . .'.,. .

F.I

TABLE OF CONTENTS

Section Title Page

7.1 General Requirements for a Software Development 24
Environment

7.2 Full Software Product Support 25

7.3 Software Development Needs More Than Tools 25

=.- 7.3.1 Training 25

7.3.2 Documentation 25

7.3.3 Methodologies 26

7.3.4 Scenarios 26

7.4 Tools for Enhancing an Environment 26

7.4.1 Problem Statement Language/ 27
Problem Statement Analyzer (PSL/PSA)

7.4.2 Change and Configuration Control (CCC) 27

7.4.3 Ten Plus 27

7.4.4 UNIX for the IBM PC (PC/IX) 27

7.4.5 Terminal Emulator (INterm) 28

7.4.6 Ada 28

7.4.7 Profilers 28

7.4.8 Integrated Text and Graphics 28

7.4.9 Configuration Management of Testing Information 28

8.0 Conclusion 29

vii

0
S. ...

LIST OF ILLUSTRATIONS

Figure Title Pg

1 155 Framework 4

2 ISSS Software Architecture 6

viii

1.0 INTRODUCTION

The Integrated Support Software System (ISSS) provides the AFWAL
Avionics Systems Analysis and Integration Laboratory (AVSAIL) with a
software development and maintenance environment. This environment
provides full life cycle support for all AVSAIL High Order Language
(HOL) projects.

This document details the ideas, philosophies, and concepts involved in
developing the ISSS. This final technical report presents lessons
learned during the development and provides a list of ideas and
recommendations for future tools and systems.

111

-o.- . .

. .

2.0 APPLICABLE DOCUMENTS

Included in this document is a brief description of the ISSS environment
and its components. A detailed description of the ISSS can be found in
the following ISSS documents. Documents prior to the "Phase II Interim

. Technical Report" are listed in that report. Only subsequent documents
are listed here.

Document No. Title Date

FZM-7122 Phase II Interim Technical Rpt 28 March 1983

SF*23555001 System Specification for the 30 September 1982
Integrated Support Software
System Type A

NF*23555001 ISSS Installation/Maintenance 9 October 1984
Manual

MF*23555001 ISSS Training Manual 9 October 1984

SF*21856001 ISSS Automated Report Tracking 10 October 1983
System (ARTS) System Specification
Type A

SF*21856001 ISSS Automated Report Tracking 7 August 1984
System (ARTS) Development
Specification Type B-5

SF*21856001 ISSS Automated Report Tracking 14 August 1984
System (ARTS) Product Specification
Type C-5 (Parts I thru III)

MF*21856001 ISSS Automated Report Tracking 8 August 1984
System User's Manual

O

*" 2

Document No. Title Date

SF*21656001 VAX 11/780 Downloader to the 14 October 1983
AN/AYK-15 User /Console
(LODAYK) System Specification

SF*21656001 VAX 11/780 Downloader to the 14 October 1983
AN/AYK-15 User Console (LODAYK)
Development Specification Type B5

SF*21656001 VAX 11/780 Downloader to the 20 August 1984
AN/AYK-15A User Console (LODAYK)
Computer Program Product
Specification Type C5

PF*21656001 VAX 11/780 Downloader to the 15 August 1984
AN/AYK-15A User Console (LODAYK)
Test Plan

MF*21656001 VAX 11/780 Downloader to the 15 August 1984
,O AN/AYK-15A User Console

(LODAYK) User's Manual

SF*23555002 ISSS Tool Information ana 15 August 1984
Presentation System Product
Description Specificat'ion

SF*21698002 ISSS VAX Harris X.25 Network 4 September 1984
Wright Aeronautical File
Transfer (WAFT) Computer
Program Development Specification
Type 65

SF*21698002 ISSS VAX Harris X.25 network 15 September 1984
Wright Aeronautical File Transfer
(WAFT) Computer Program Pv-oduct
Specification Type C5

rKF*21698003 rSSS VAX Harris X.25 network 15 August 1984
Virtual Terminal User's f.anual

* 3

ow.

*MF*23555004

3.0 ISSS DESIGN PHILOSOPHY

CD proposed that the most cost-effective method of achieving the desired
requirements was +o use commercially available: software whenever
possible. In cases where no suitable software existed, GD would develop
the necessary components and "integrate" them irto the ISSS environment.

The resulting framework from these design decisions is shown in Figure
1.

USER
EXPANDABLE IS/W B

ENVIRONMENT

UNIX* based
AUTOMATED REQUIREMENTS ProgramrAND DESIGN TOOLS = Prgams

COMPLEMENT Workbench

g MULTIPLE DOD

LANGUAGE

ENVIRONMENTS

DCL ANDVax/VMS UTILITIES

Figure 1. ISSS Framework

The approach was to use the facilities anc tools resident within ISSS to
further develop the ISSS. New tools which were built, used the existing
ISSS as their development environment. For e-xample SDDL, SCCS and MAKF
were used extensively in new developm'ents. FMS is an integral part of
ARTS. The VAX help facility is an integral part ,f TIPS. Whenever
practical, parts of ISSS were used to support the development of new
features. This approach reduced development cost and promoted
commonality in S/W development methodologie!.

As Figure I illustrates, the ISSS framework has as its base, the VAX/VMS
* operating system. The VMS base is necessary because many of the

JOVIAL/1750A tools that were available execute under the VMS operating
system. Upon this, base is a user-friendly software support environment
contained principally ir the Interactive Systems Corporation's
Programmer's Workbench (IS/WB). This design allowc a user to access the
desired tools directly through VAX/VMS or by using the tools and
facilities of the IS/Workbench. This framework provides the users of
iSSS with a rirh software development environment into which many
software tools car [e "plugged". This "pluqboard" approach provides an
extensible environment into which newly available tools can he easily
added.

* ' " A",-,'- .; --" d .. ,,' ,= -:,- --- 0. ,,. r.-- . m m , ,- ,, -=- . . ." ,- . . '" '' . ' 'i, :

One result of the ISSS design philosophy was the discovery of the subtle
distinction between "integrating" and "interlacing" tools. Not all of
the various components of ISSS are truly integrated. That is, there is
no common tool database and there is no integrating entity that feeds

- the output of one tool into another tool. lhe interconnection
relationship of components would be more aptly described as
"interlaced". This means the output of one tool is compatible with the
required input of another tool when that compatibility is meaningful.
This looser bindirg of software tools adds to the ease with which tools
can be added to the environment.

Details of the component parts of ISSS are pr.vided in the following
section and in the !SSS documents listed in Svction 2.

0 5

t.F*23555004

4.0 ISSS COMPONENTS

The ISSS is a VAX-based software development environment consisting of a
combination of commercially available and originally created components.
Full software development lifecycle support is provided by a layered
architecture as shown in figure 2. The base layer is the VMS operating
system overlaye by the IS/Workbench package. The top layer is a
complimentary collection of software components designed to provide
specific areas of support in the lifecycle development. Each of these
layers is discussed in the following paragraphs.

VAXIVMS LAYER

IS/WORKBENCH LAYER

ADDITIONAL SUPPORT LAYER
RW" IRJqND/TS D:I t CODING T4 TZiG

SOFTWARE DEVELOP1MEN LIFECYCLE-

I S7" "f" L

CAM3. P1t9%A T ARTS TIPS X. 25

Xf~IO fIed INvord 40

CO WTON Fsccs MAKE

1.VAU ~O181LUNIX COMMANDS

SDEC COMM LAWNGE COL)

Figure 2. ISSS Software Architecture

* 6

.'. .. * .*..* *.- . -.. -... *-.,*. ... ,, ,.,

4.1 BASE LAYER

The basic support environment for ISSS is provided by the Digital
Equipment Corporation VAX Virtual Memory System (VMS) Command Language,
DCL (Digital Command Language). DCL is a user friendly interface which
allows file manipulation, and interactive and batch program execution
and control, as well as interactive program development. Many volumes of
documentation are provided by Digital Equipment Corporation on the use
of DCL. All other layers of the ISSS rely on the support provided by
DCL.

4.2 IS/WB LAYER

The Interactive Systems Corporation Programmer's Workbench (IS/WB)
provides its users with a complete set of UNIX-like commands while
running as a subsystem of VAX/VMS. The decision was made to incorporate
the IS/workbench in the ISSS for two principle reasons. First, it
provides its users with the full array of UNIX tools. It allows use of a
very versatile command language and provides a robust array of
programmer support facilities. Many of these tools were specifically
called out as requirements for the ISSS. The cost effective approach was
to procure these tools instead of redeveloping them. The second reason
for selection of the IS/Workbench is that it "looks-like" UNIX but in
fact runs under the VMS operating system. VMS was an absolute
requirement for the ISSS. Many military tools, and in particular all of
the JOVIAL support tools, executed under the VMS operating system, not
under UNIX. The ISSS was designed to blend both, thus the choice of the
IS/Workbench for VMS.

Since the IS/WB runs as a subsystem of the VAX/VMS operating system
provided by DEC, full access to DEC software is always available. The
Workbench command interpreter can invoke workbench utilities and also
DEC utilities. Most workbench features can be directly initiated from
DCL. This means that usually no additional "shell" process need be
running in order to have access to ISSS.

4.2.1 Source Code Control System (SCCS)

The Source Code Control System (SCCS) is a collection of IS/WB commands
that help individuals or projects control and account for changes to
text files (typically, the source code and documentation of software
systems). It is convenient to conceive of SCCS as a custodian of files;
it allows retrieval of particular versions of the files, administers
changes to them, controls updating privileges to them, and records who
made each change, when and where it was made, and why. This is important
in environments in which programs and documentation undergo frequent
changes because of maintenance and/or enhancement work. Sometimes it is
desirable to regenerate the version of a program or document as it was
before changes were applied to it. Obviously, this could be done by
keeping copies on paper or other media; but, this quickly becomes
unmanageable and wasteful as the number of programs and documents
increases. SCCS provides an attractive solution to managing these copies
because it stores on disk the original file and whatever changes are

-- 7

MF*23555004

made to the original file. Each set of changes is called a "delta" and
only these deltas and the original file are stored.

REFERENCE MANUAL:
IS/Workbench for VAX/VMS Programer's Guide

4.2.1.1 Commands

The following is a summary of all SCCS commands and their major
functions:

get Retrieves versions of SCCS files.

unget Negates the action of the previous get.

delta Applies changes (deltas) to the text of SCCS files, i.e.,
creates new versions.

admin Creates SCCS files and applies changes to parameters of SCCS
files.

prs Prints irformation stored in an SCCS file according to user
specifiea format.

inhelp...Gives explanations of diagnostic messages.

rmdel Removes a delta from an SCCS file; allows the removal of deltas
that were created by mistake.

cdc Changes the commentary associated with a delta.

what Searches any IS/WB file(s) for all occurrences of a special
pattern specified by the SCCS identification keywords and
prints what follows the pattern.

sccsdif..Shows the differences between any two versions of an SCCS file.

comb Combines two or more consecutive deltas of an SCCS file into a
single delta; often reduces the size of the SCCS file.

val Validates an SCCS file.

NOTE: The "man" command can be used to obtain help information on these
and other workbench commands.

4.2.2 MAKE (Automated Program Build Facility)

The MAKE program mechanizes many of the activities of program
development (i.e. compiling, linking, etc.) and maintenance. If the
information on inter-file dependencies and command sequences is stored
in a file, a single command is frequently sufficient to update the
necessary files, regardless of the number of files that have been
changed since MAKE was last invoked.

8

MF*23555004

A common practice is to divide large programs into smaller, more
manageable pieces which may require quite different treatments. Related
maintenance activities involve running complicated test scripts and
installing validated modules. However, a programmer can forget which
files depend on other files or which files have been modified recently
and the exact sequence of operations needed to make or exercise a new
version of the program. Forgetting to compile a routine that has been
changed or that uses changed declarations can be disastrous for program
execution; but recompiling every module for guaranteed execution can be
very time consuming, as well as a wasteful use of computer resources.
The MAKE program mechanizes these management activities of program
development and maintenance. If the information on inter-file
dependencies and command sequences is stored in a file, a frequently
sufficient command to update the necessary files is: $make [carriage
return]. In most cases, the description file is easy to write and
changes infrequently. It is usually easier to type the make command
than to issue ever one of the needed operations, so the typical cycle of
program development operations becomes

think -- edit -- make -- test ...

4.2.3 INword (INteractive Word Processor)

INword is a word processing facility that provides the capability to
create, format, proof, revise, and print files (documents). The document
is created and edited using the INed text editor with the formatting
instructions embedded in the document.

4.2.4 Interactive Text Editor (INed)

INed is INTERACTIVE SYSTEMS screen text editor which provides a
two-dimensional window into a text file. INed's command language
features function keys for opening, deleting, and moving files,
characters, and rectangular portions of text on the screen. Interactive
text processing includes paragraph file and right margin justification
and may be expandea to include additional user or system-provided
programs that are invoked interactively from within the editor. The
screen may be divided into several windows to simultaneously edit one or
more files.

System functions, other than editor commands, can be invoked from within
the editor, placing their results in the editor. For example, a
formatted list of files can be produced for a document by entering the
editor, writing the document up to the place where the file list is
desired, and invoking the "ls" command, which will place a directory
listing in the document. Once the file list is in the document, it can
be formatted using normal editing commands.

2 P.

°...

4.2.5 Other Commands

The UNIX-like command set of the IS/WB provides over two hundred
additional completely integrated commands, each of which is discussed in
detail in the IS/Workbench User's Manual and can be displayed using the
workbench "man" command.

Of particular interest are the concepts of filters, redirection, and
pipes. Some of the UNIX commands act as filters because input data is
converted by the command before being output. Redirection allows the
standard I/O defaults to be changed during a particular coriand
sequence. A pipe allows two or more cooperating processes to pass data
between them without the need for temporary files.

User communications are enhanced by the INmail and INnet features of the
workbench. INmail is an electronic message sending and receiving
facility. Each user on the system has a private mailbox for receiving
mail from other users. INnet is a group of facilities that provides for
transfer of mail and files over a network to other VAX computers
equipped with INFt.

4.3 TOP LAYER SUPPORT

The top layer is provided by a complimentary set of software tools
designed to provide support in specific areas of the lifecycle of
software development. Some tools were purchased from commercial sources
or provided as Government Furnished Equipment (6FE). Others were
developed during the ISSS project by General Dynamics or Systran. These
are discussed in more detail in the following paragraphs.

4.3.1 Commercial/GFE Software

Tools purchased commercially or provided as GFE are 1) User System
Evaluation and Integration Tool (USE.IT), 2) Software Design and
Documentation Language (SODL), 3) PSS JOVIAL compiler, 4) MIL-STD-1750A
tools and 5) the J73 Automatic Verification System (J73AVS). These tools
are discussed further in the following paragraphs.

4.3.1.1 User System Evaluation and Integration Tool (USE.IT)

USE.IT automates a mathematically based methodology developed by Higher
Order Software, Inc. (HOS) in Cambridge, MA. USE.IT was designed to
provide a complete environment for the development of software by
verifying the consistency and logical completeness of the design at the
specification level. The HOS methodology forces the generation of
specifications that are complete and consistent. Frequently, it is
possible to automatically produce source code from the specifications.
Current language targets include Pascal, FORTRAN and COBOL.

10

• - -~~~~~~~~~~~~~~~.-. .. •. -,........... ..-.-.-.... .-.-.-..-. -- " -- -- -

MF*2355504

The USE. IT System is made up of four main components:

USER INTERFACE

The User Interface is a menu-driven front end which allows easy
interaction with the other main components of USE.IT. You may
choose between command options, enacting them with one or two
keystokes. The User Interface also provides a very convenient
listing of models within a system and the development status of
each model.

A great aid in managing the diverse elements of a system under
development, the User Interface eliminates much confusion and
provides a straight-forward approach to USE. iT.

AXES

Using the USE. IT graphics editor, you may construct control maps
for processes in a system. Each control map constitutes a model.

*@ Graphical AXES is the highly structured hierarchical language with
which you may specify all functions in the model using three basic
units:

o data types (input/output variables)

o functions

o control structures

ANALYZER

The Analyzer performs static analysis on partial or completed
*. models. It checks to ensure that all parts of the model are

internally consistent, and checks all interfaces for correctness
and completeness. No model may be implemented in a program unless
it passes the Analyzer.

RESOURCE ALLOCATION TOOL

The Resource Allocation Tool (RAT) au'omatically generates programs
from successfully analyzed models. The RAT ensures that the
implementation is strictly consistent with the definition as
constructed in the models. The RAT eliminates the need for

6 error-prone manual programming, permits simulation, and makes rapid
prototyping possible. Most important, it enables you to reconfigure
to any other language or machine without modifying the requirements

set forth in AXES.

* 11

NF*2355504

:;!
4.3.1.2 Software Design and Documentation Larguage (SDDL)

The Software Design and Documentation Language (SDDL) is a software
support tool used to partially automate the generation and checking of a
software design document (SDD). The objective of SDDL is to support the
design and documentation of complex software by providing (1) a text
processor which can convert design specifications into an intelligible,
informative, machine reproducible document, (2) a design and
documentation language with forms and syntax that are simple,
unrestrictive, and communicative, and (3) a methodology for effective
use of the languaqe and text processor. The text processor can format
documents, summarize design information in the form of reports and
act on various user-controlled directives.

SDDL is accessed interactively, but is a batch oriented process. It is
used to periodically generate a SDD which will reflect the current
status of the design process. Information may be generated on variable
usage, program modules, changes to programs, management information and
many other states of the design as desired by the project team members.
A programming language's structure and keywords may even be modeled to
an extent that very little effort would be required to change the final
SDD into source code.

Utilization of SDDL is accomplished through a language syntax that is
simple and flexible. The SDDL processor reads a text file phrased in the
language, then reformats the file by providing indentation, control flow
lines, and user specified cross reference tables. The printed SDD
contains the reformt.ted input, a table of contents, and module
hierarchy reports. The indentation can be modeled by using the
structural keywords of a specific language. The exploitation of these
and other features of SFDL provides a vehicle for establishing standards
and conventions in the design process.

SDDL is a product of SAI, La Jolla, Ca.

4.3.1.3 PSS JOVIAL Compiler

The Proprietary Software Systems (PSS) JOVIAL Compiler currently hosted
on the ISSS is the one which is available as GFE (Government Furnished
Equipment) from the Embedded Computer Systems Program Office (ECSPO) at
Wright Patterson AFB.

This compiles MIL-STD-1589B JOVIAL into VAX-Il object code or into
o MIL-STD 1750A assembly language. The 1750A object code produced by the

compiler is compatible with the ECSPO tool set. (1) the McDonnell
Douglas 1750A mlacro preprocessor, and assembler (2) the TRW linker a"d
simulator. These tonls are outlined in the following paragraphs.

S12
,

.. . . *.. -

4.3.1.4 MIL-STU-1750A Tools

The ECSPO toolset consists of the McDonnell Douglas macro librarian,
macro preprocessor, assembler, and -eformatter, and the TRW linker and
simulator. The miacro librarian maintains (adds, deletes, replaces)
macros in a library; the macro preprocessor expands all macros into
assembly language. The assembler translates assembly language code into
MIL-STD-1750A object code. The reformatter takes the object code output
from the assembler and reformats it for input to the ALINKS linker.
The ALINKS linker combines object modules from the JOVIAL compiler and
reformatted object modules from the asse.bler into a executable image.
A symbol table can he generated for input to the TRW simulator.

The TRW simulator- allows the 1750A instructions to be executed in
software on the VAX 11/780. Its inputs are the executable image and
symbol table from' the ALINKS linker. The executable image from the
ALINKS Linker can be downloaded from the VAX 11/780 through an RS-232
link to an AN/AYK-15A 1750A embedded computer using LODAYK.

4.3.1.5 J73 Automated Verification System (J73AVS)

The J73AVS (J73 Automated Verification System), a product of General
Research Corporation, is a JOVIAL testing tool. It can interactively
check syntax and data flow. It can generate statistics on the source
code, and it can instrument source code for testing (various tracings,
timings, etc.).

J73AVS is a software tool that analyzes either the MIL-STD-1589A or
1589B dialects of JOVIAL/J73. The goals of the system are to provide
automated assistance for program development, debugging, testing,
retesting, maintenance, and software documentation for JOVIAL J73
programs. The user's JOVIAL source code is instrumented and used by
J73AVS to direct the type of analysis to be performed.

4.3.2 General Dynamics/Systran Developed Software

Tools developed by General Dynamics or Systran for the ISSS contract are
the 1) Tool Information and Presentation System (TIPS), 2) Automated
Report Tracking Sytem (ARTS), 3) Load File to AYK-15 (LODAYK), and 4)
X.25 Network Software. These are discussed further in the following
paragraphs.

4.3.2.1 Tool Infrmation Presentation System (TIPS)

TIPS is an on-line help facility for JSSS. For each software tool
available under ISSS, TIPS provides a description of the tool, an
explanation of its invocation and the reference materials available for
further information. TIPS is based upon the VAX VMS "help" facility

Semaking it easily expandable.

13

.o

When a user logs onto the VAX 11/780, the following message will be
displayed:

WELCOME TO ISSS.
FOR FURTHER INFORMATION, TYPE ISSS

When ISSS is typed, TIPS is invoked. TIPS can be invoked at any time
during the login session by typing ISSS [carriage return] whenever the
Digital Command Language (DCL) prompt ($) is displayed. Once the user
has entered TIPS, the desired keyword for ISSS tool information may be
chosen from a list of keywords displayed on the screen by typing the
keyword followea by a carriage return.

The following is a list of keywords used by TIPS.

ARTS MAKE USE.IT
INed MS1750 WORKBENCH
INword SCCS X.251E TWORK
J73AVS SDDL
JOVIAL TOOLS

• LODAYK TRAININGMANUAL

4.3.2.2 Automated Report Tracking System (ARTS)

ARTS is a menu-driven program specifically developed for ISSS that
allows the user to select one of the followina functions: input of
reports, modification of reports, arna outputtlno lists of selected
reports. The reports that ARTS will process are: Problem Reports (PR's),
Engineering Change Proposals (ECP's), Emergency Configuration Change
Notices (ECCN's), Specification Change Notices (SCN's), and Document
Change Notices (DCN's).

The ARTS program is vritten in VAX-11 Pascal. The program also uses a
screen-formatting package, FMS, for all menu and report displays. Since
FMS employs direct cursor addressing, ARTS may only be run using a VT100
or VT100 compatible terminal. ARTS also uses some of the DCL and IS/WB
commands to perform text processing and file manipulation directly from
the program.

4.3.2.2.1 Functional Descriptions

This section identifies and describes the allocation of functions and
- . tasks to be performed by the individual computer subprograms. The

following is a list of the ARTS source files and their use.

1) ARTS.PAS - This file contains the initialization and cleanup

routines.

* 2) ARTSDEF.PAS - This file contains all of the global constants and

type definitions used by ARTS

3) CI.PAS - This file contains the routines to handle Configuration
Item Descriptions.

0 -o

MF*23555004

4) CMOMENU.PAS - This file contains the routines to select the next
menu or report to be displayed based on user input.

5) DCN.PAS - This file contains the routines to handle Document Change
Notices.

6) DOCS.PAS - This file contains the document configuration item
specific routines.

7) ECCN.PAS - This file contains the routines to handle Emergency
Configuration Change Notices.

8) ECP.PAS - This file contains the routines to handle Engineering
Change Proposals.

9) HW.PAS - This file contains the hardware configuration item
specific rcutines.

10) MENUHAN.PAS - This file contains general purpose menu handling
routines to display menus, perform scrolling of menu choices, and
to obtain user selections.

11) PP.PAS - This file contains the general routines to handle Problem
Reports.

12) PR1.PAS - This file contains the routines specific to the top half
of the PR form.

13) PR2.PAS - This file contains the routines specific to the bottom
half of the PR form.

14) REPHAN.PAS - This file contains general purpose report handling

routines.

15) REPUTIL.PAS - This file contains general report utilities.

16) SCN.PAS - This file contains the routines to handle Specification
Change Notices.

17) SORT.PAS - This file contains the sorting.1 reutines used for log
generating

18) SW.PAS - This file contains the software configuration item
specific routines.

4.3.2.3 Load File to AYK-15 (LODAYK)

LODAYK is used to 1) download files from the VAX to an AN/AYK-15A
processor and 2) to allow the user to execute AN/YK-15A processor User
Console (UC) commards from any VAX computer terminal.

15

* F'*23555004

LODAYK is written in VAX-11 FORTRAN and utilizes the FORTRAN accessible
VAX System Service Routine "QIO" for the i/0 operations between the VAX
and the AN/AYK-15A User Console. Also LODAYK converts a file, output by
the Avionics Linker (ALINKS), to a character oriented file suitable for
transmission over an RS-232C channel.

4.3.2.3.1 Function Allocation Description

LODAYK is comprised of five major functions: the main routine, an input
file reader/converter, output handler, input handlers and command
handler routines.

The main program, called LODAYK, controls the assigning and
relinquishing of I/O channels, performs variable initialization and
interacts with the user to initiate commands for the AN/AYK-15A User
Console.

The input file reader/converter is a subroutine called
REFORMAT VAX FILE. It opens the specified input file, reads in the data,
converts the data to ASCII Hex characters, ano writes it out to a
temporary file to he downloaded.

The output handler is a subroutine called CIUOUT. It outputs character
string data to the User Console.

There are two input handler subroutines cdaled CIUIN and CIUIN2. Both
subroutines collect character string data from the User Console. CIUIN2
is used in the cases where multiple buffers are needed to accept larger
amounts of User Console output.

The command handler subroutines are in the filfs CIUSUB and CIUXFER.
Each subroutine handles the processing of a particular command.

*4.3.2.4 X.25 Network

The X.25 networking system is a Packet Switching Network (PSN) between
the VAX 11/780 computer system and the Harris 800 systems located in
AVSAIL. The PSN system permits a user of either VAX or Harris systems to
sign or as a virtukl terminal user to the alternate system. This network
fully conforms to the CCITT standards for X.25 communications.

-* . The X.25 network supplies two capabilities to the users of the VAX and
* Harris systems. The PAD command provides virtual terminal capabilities

to terminals on either the VAX or Harris systems. The WAFT command
* provides a file transfer capability to terminals on the VAX system. The

WAFT command is available to Harris users by connecting to the VAX
through the PAD.

1

* 16

..

1". "" " . ' "' " '- '-Z . - - - " "- - -" '4 " --'. '-". ." " " " " ' " ' " " - " "'. - -", . , -

MF*23555004

4.3.2.4.1 PAD

The PAD (Packet Assembly/Disassembly) Commdnd permits a user of either
the VAX or Harris systems to sign on as a virtual terminal user to the
alternate system. After signing on as a virtual terminal, the user's
terminal appears to be a teletype to the other machine. The user is able
to carry out any function which can be done on a teletype (dumb
terminal) on the other machine. Once a user has entered the network and
connected to the target system, all commands are single line teletype
mode entry. These commands must be in the format of the target system.

Individual characters typed at the terminal are assembled into packets
via the (PAD) facility: then they are shipped through the network to the
remote computer; and, finally, the packets are disassembled for storage
at the remote site. The X.25 virtual terminal capability on the AVSAIL
VAX/Harris systems is implemented through the host based PAD resident on
each system.

4.3.2.4.2 Wright Aeronautical File Transfer (WAFT)

,O The Packet Switching Network (PSN) system permits a user of the VAX
system to transfer text files to or from the harris system. The Wright
Aeronautical File transfer (WAFT) program carries out this function.

The VAX WAFT programs is initiated by the cormand "WAFT". After
executing WAFT, the user is prompted for several items of information
including the Harris logon Tline, direction of transfer, VAX filename and
Harris areaname. The program then transfers the file according to the
user's input. The transfer files must be ASCII files.

0

0 1

. . ..

MF*23555004

5.0 ISSS IN THE SOFTWARE COMMUNITY

The Phase II interim report of March 1983 discussed the briefings and
demonstrations given to government agencies and internal to General
Dynamics. Since that time, several of these groups have obtained
components of the ISSS for their project development work. The use of
the ISSS by these groups is discussed in the following paragraphs.

5.1 USE OF ISSS AT GOVERNMENT AIR LOGISTICS CENTERS (ALCs)

The Air Force Wright Aeronautical Laboratory has supplied a copy of the

IS/WB portion of ISSS to the Ogden, Utah and Oklahoma City, Oklahoma
ALCs for beta test in an effort to standardize development environments
in the Air Force. The informal response has been good. As of this date,
no formal report from the ALCs is available for inclusion in this
report.

5.2 USE OF ISSS INTERNAL TO GENERAL DYNAMICS

The IS/WB has been purchased for use within the Fort Worth and Data
Systems Divisions of General Dynamics in the Production Digital Flight
Controls (PDFC), Electrical Harness Data Systems (EHDS), Defense Mapping
Agency (DMA) Modern Programming Environment (MPE) contract, and the
Advanced Technology Group.

5.2.1 Use by Production Digital Flight Controls (PDFC)

The IS/WB has been purchased for use by the PDFC group initially based
on the improved text editor and word processing capability. Other
features ot the IS/WB will be evaluated for use by the group after the
IS/WB software is received in-house. Configuration control has been
established for several years, thus there was no crucial need for SCCS.
The current development utilizes 073 and 1750A running under VMS. Thus
the IS/WB will be quite compatible with the current working
configuration.

5.2.2 Electrical Harness Data Systems (EHDS)

This group was not mentioned in the interim Phase II Technical Report,
but they had a requirement for strong configuration control and powerful
file handling capability, such as that provided by SCCS and UNIX-like
command structure (cat, grep, etc.). They found out about IS/WB and
requested a demonstration. Subsequently, JS/WB was purchased and has
been in operation since May 1984. This is not a software development
operation, so the primary need is still in configuration control, but
the group is pleased with the operation and use is to be continued
indefinitely.

* 18

iA

. . .

MF*23555004

5.2.3 Defense Mapping Agency (DMA) Contract

The Advanced Technology Department of Data Systems Division is currently
on contract to provide a Modern Programming Environment (MPE) for the
DMA. The DMA is interested in a VAX-based development environment that
would support VMS (because of the number of tools that are available)
with the power of UNIX. This is the primary reason why the IS/WB was
chosen. In addition, the SDDL, and USE.IT tools are included for their
ability to aid in requirements and design definition. In particular,
SDDL was chosen for its flexibility, ease of use, and maturity. The tool
is flexible because it can be used across multiple languages. JOVIAL,
however, is not one of the languages used, so there will be no need for
J73 or MIL-STD-1750A capabilities.

5.2.4 Advanced Technology

The Advanced Technology Department has utilized the commercially
available components of ISSS on the Fort Worth Division Engineering VAX
for about two years. The editor and SDDL have had particularly heavy use
in previous projects.

The IS/WB is being installed on the new Advanced Technology Department's
VAX, and is intended for use by the development group in fulfillment of
current and future contracts.

0

19

-4--. . . .A N

MF*23555004

6.0 LESSONS LEARNED

This section details the lessons learned by General Dynamics during the
development of the ISSS. These details only cover experiences directly
related to the development of the ISSS environment. Section 7.0 takes
these experiences and adds in new insight as well as information about
new tools and develops a series of recommendations for an improved
software development environment.

6.1 USING ISSS AS A SOFTWARE DEVELOPMENT ENVIRONMENT

During the development of the Automated Report Tracking
System (ARTS), some valuable insights into using ISSS as a software
development environment were made. ISSS tools were utilized in the
development effort, in the documentation elfort, and as a functioning
part of the program. ARTS was written in Pascal using FMS and IS/WB
tools consistent with the ISSS philosophy. A detailed discussion of each
of these efforts is given in the following paragraphs.

6.1.1 SDDL as a Documentation Tool

The Software Design and Documentation Language (SDDL) played a major
role in the documentation of the ARTS and LODAYK programs. The program
flow information provided by SDDL listings eliminated the need for
conventional flow charts. Further, a functional flow diagram, which is
required in a product specification, is automatically generated by SDDL.

Information was gained on how to use SDDL with Pascal to gain the most
useful items of information. Minor structural changes to the Pascal
source code were necessary so SDDL could handle subroutine nesting,
subroutine invocation and certain Pascal control structures. Special
comment sections describing the constants, type definitions, and
variables used by ARTS were necessary for SDDL to create detailed cross
reference listings of all identifiers. It should be noted that these
structure changes to the Pascal code were of the form of comments and/or
indentation and had no effect whatsoever on the functionality of the
code itself. For details regarding the use of SDDL for ARTS, reference
section 3.5.9 of the ARTS Production Specification.

6.1.2 Configuration Management of the Development Effort

Some key features of the ISSS environment are Configuration Management
and Configuration Control of source code and documentation. It was
necessary to learn how to use the available automated CM tools and to
apply the tools properly. Further, a methodology was developed for the
organization and layout of the source code modules and the use of
various disk directories. This established the overall organizational
methodology. These ideas will be discussed in Section 7.3 as general
project development methodologies.

!

* 20

-..

MF*23555004

6.1.3 Impact of ISSS Utilities on the Functionality of the System

The purpose of a software development environment is to provide
utilities that aid the development effort. An indication of the power
and flexibility of ISSS is that the tools and utilities can be used as
part of the functionality of a software system. These utilities simplify
the development effort because large amounts of code can be replaced by a
few commands. The resulting product becomes more flexible and reduces
the development cost. This concept of using ISSS utilities to perform
some of the functions of a system was demonstrated in the Automated
Report Tracking System (ARTS).

The basic functions of ARTS include entering reports, modifying reports,
and producing listings (logs) sunynarizing the entered reports. lhe
nature of this program dictates the need for storage and retrieval of
data records. Although this would typically be performed by some type of
data base manager, ARTS merely uses text files to store the records.
ISSS utilities are called to search for records, modify records, or
perform formatting functions on the data. A distinct advantage of this
method is that information can be retrieved from the master report file
without actually running the ARTS program. Further, data can be
extracted based upon the data in any field or fields at any time and in
ways not foreseen at the time of the requirements specification of ARTS.

6.2 USER RESPONSE

Section 5 discussed the various installations where ISSS resides. These
installations have provided GD with good feedback on the acceptance and
use of the ISSS environment. This has been especially useful in those
instances where software developers were using the facilities of ISSS.
The following paragraphs present their observations and impressions of
these tools.

The most difficult aspect of introducing new technology is making people
aware that it exists, and getting them to use it. Towards that end, GD
provided the various agencies using ISSS with training courses that made
people awdre of what was available and how it could help them. The
training classes offered "hands-on" lab experience so that the
"fear-of-the-unknown" aspect of new tools woule be diminished. It
appeared that the training classes were well accepted. They did initiate
people to the tools and utilities. Exposure to new technology and
training in it is a very underrated aspect of new tool development.
Training is crucial to the infusion of new technology and in increasing
productivity. This fact cannot be overlooked, and all too often is.

Another important aspect of new tool development, besides knowing how to
use the tool, is knowing when to use it. This leads to the notions of
methodologies and scenarios. A tool can be the most powerful one
available and people can be taught how to use it, but it won't be used

* 21

-" -' . - .'- .- ." " .'. • • . . ".-' ..i .' .L ;. .'. .. .- - ' "- " - " " --'.-'. " '" .- .-'- '. ."..
, ,m 'm,* ,,w m "I-- ' - "." * ." "" '• " ' . ."" " """' '

I.'

MF*23555004

if people can't see how to apply the tool to their problem. Such a
situation as this occurred with the Source Code Control System (SCCS)
tools. SCCS is a set of tools that provides configuration control of
text files (source code, documents, etc.) SCCS was installed at Hill
AFB, Ogden, Utah where General Pynamics trained the personnel in the use
of the tools. However, when the programmers attempted to use SCCS on a
development project they experienced difficulties. The existing system
did not organize their files and directories in a manner that worked
well with SCCS. An example of a development methodology and a scenario

* that give examples and suggestions of appropriate file and directory
organization might have prevented this problem.

Both VMS and the IS/WB provide a powerful series of commands and equally
powerful command language interpreters. However, they also provide
separate and distinct user interfaces. Although the differences are
mostly syntactical, users expressed the desire for a conon user
interface. In addition, the ability to mix VMS and IS/WB commands would
help to alleviate the awareness of two distinct command language
interpreters. Further, the sometimes cryptic nature of the various IS/WB
commands (e.g. "cat" a file) has been a topic of slight annoyance to

__ most all non-UNIX users.

Although Interactive Systems Corporation provides a lot of documentation
for their systemi, the descriptions and examples of the various commands
tend to be somewhat cryptic. This is not true of their documentation for
INed and INword though. To help meet the user needs of good
documentation, CD has produced both on-line documentation (TIPS) and
written documentation (ISSS Training Manual and the ISSS Installation
and Maintenance Manual) to assist the user. The Tool Information and
Presentation System (TIPS) provides the user with on-line information
regarding the various component pieces of ISSS. It also identifies
specific written documentation that the user should consult for further
information. The ISSS Training Manual is an introduction and
instructional aid for ISSS users. This manual provides an explanation of
the purpose of the ISSS components and how they relate to each other.
Finally, the ISSS Installation and Maintenance Manual is a collection of
all the necessary information to install, maintain, and sometimes
enhance the software tools of ISSS. Together, TIPS and these two

* documents provide an overview picture of the ISSS and detailed
information on its various components.

6.3 Experience with USE. IT

The USE.IT tool can be applied to 1) software development from
* requirements through code generation, 2) requirements only, or 3) rapid

prototyping. But experience suggests that the best potential use of the
tool is in the area of requirements definition.

The reasons for this conclusion are as follows. 1) Although the USE.IT
tool is maturing, there are still some problems with the FORTRAN code

*generator when complex specifications are usea. 2) A tremendous amount
of specification detail is required in order to produce code

;* 22

MF*23555004

automatically. 3) On a large project, the architecture of the design may
not match the structure of the requirements definition. Thus the USE. IT
tool could lead a designer into a less than optimal design
configuration. 4) Only basic support libraries exist, making system
functions, especially screen formatting, very difficult. 5) Primitive
definitions, essential for the proper operation of USE.IT applications,
are difficult to define.

The reasons why USE.IT is a good tool for requirements definition lie in
the graphics capability of the tool and in t e ability to get fast
hardcopy of the graphics on a plotter. The analysis tool can check for
missing parts of the specification and notify the user of
inconsistencies. Also, textual comments can be added using the
documentor utility. Thus, all the basics of a good requirements
specification tool are met.

2

MF*23555004

7.0 OBSERVATIONS/RECOMMENDATIONS

This section extends the lessons learned during the ISSS project into a
series of observations and recommendations for additional enhancements
to a software development environment. These observations and
recommendations are presented in the following sections. The first
section presents the general attributes for a desired environment. The
next two subsections discuss the need for a more integrated environment.
The final section looks at some new or additional tools and how they
could enhance the ISSS environment.

7.1 GENERAL REQUIREMENTS FOR A SOFTWARE DEVELOPMENT ENVIRONMENT

Software development is very complex and difficult to manage. In an
effort to ease the burden of software development, various software
tools have been proposed and built. As stand-alone elements, these tools
provide a narrow scope of help to the development process. A software
development environment is a collection of tools whose union provides
support across the full software development lifecycle.

A problem exists for environments that also exists for programming
languages, documentation, etc. There is little standardization within
one branch of the armed forces let alone DoD wide (Although Ada is an
attempt to solve that problem for the programming language aspect). A
major reason that environments haven't been standardized is that they
have been too narrow in scope and too tightly bound to site-specific
needs.

Additional requirements for software developmernt environments include
transparency, exparcability, and modularity. The existence of the
environment should be transparent to the user and the tools should be
available at all times. An environment should be expandable so that new
tools can be added to the system and unsuitable tools can be replaced or
deleted without affecting the rest of the system. To help achieve the
goals of transparency and expandability, the environment should also be
modular. That is, it should not be one monolithic entity in the
background, tying up resources and generally tying up a system. It
should be an ordered collection of compatible tools that are interlaced.
Interlaced means that the tools are loosely bound together making the
transition to new tool technology an easy task. The term interlaced is
used instead of integrated. Integrated tools implies a stronger
interleaving of tools and the existence of dependencies between the
tools. This makes the addition/subtraction of tools unwieldy.

These basic requirements outline the specifications for a "generic"
software development environment that is both language independent and
machine independent. The following sections give specific details of
this kind of software development environment.

I.2

*! 24

MF*23555004

7.2 FULL SOFTWARE PRODUCT SUPPORT

As mentioned earlier, single tools usually provide support of a single
phase of the software lifecycle. By combining a series of carefully
chosen tools into an environment, the full software development
lifecycle can be supported. However, this is still an incomplete support
package. Ideally, an environment should provide full software product
support, as defined by Richard C. Gunther in Management Methodology for
Software Product Engineering.

Mr. Gunther states that software product support includes software
lifecycle support, but adds the concepts of software planning,
estimating, documentation, quality assurance, quality control, training,
distribution, ana maintenance. Some of this support can be automated
using available tools, while others are implemented with good software
methodology practices and software management techniques. Within a
particular organization, these methodologies and techniques should be
uniformly and consistently applied. Further, all such methodologies -i
techniques should be fully documented for each software product.

7.3 SOFTWARE DEVELOPMENT NEEDS MORE THAN TOOLS

A good software development environment can provide much assistance to
the software development effort. However, the existence of these tools
does not mean that they will be used properly or used at all. Non-tool
related components of an environment are needed to complete the software
development picture. These additional components are software
development training, documentation, methodologies and scenarios.

7.3.1 Training

As mentioned previously, training is frequently neglected when a new
tool becomes available. Users need to know what tools are available.
They need to be sufficiently trained in the use of the tools, so that
using them won't stand in the way of productivity. Just as importantly,
a user needs to know when to use the tools. This last aspect relates to
the remaining ideas of this subsection: documentation, methodology and
scenarios.

7.3.2 Documentation

The developers of an environment should provide an abundance of useful
documentation, both on-line and in written manuals. On-line information
should provide a "ser with a view of the environment and top level

* details of each component. It should also reference specific manuals
that can be consulted for additional information. On-line "help"
information giving the details of how to invoke the various tools and
options available should also be provided.

Detailed documentation of the various components of the environment, as
9 well as the environment as a whole, should be provided. This includes

the development documentation and user docunentation. Development
documentation can be found in the following manuals: Requirements
Specification, bevelopment Specification, Product Specification,
Installation Instructions, Maintenance Instructions and Enhancement
Instructions (how to add/subtract tools from the system). User

* documentation Includes user's manuals and training manuals for each

• 25

MF*23555004

individual tool and for the system as a whole. The training manuals
should include examples as well as training exercises for hands-on
experience. The training manual could be an interactive computer-based
instruction course. Finally, there should be documents giving realistic
examples of software development methodologies and scenarios.

7.3.3 Methodologies

A methodology is a set of methods, rules, guidelines, and procedures to
follow for software development. It is not the purpose of this report to
dictate which methodologies should be adhered to during software
development. However, it is imperative that a set of procedures be

- established and followed.

Some of these may be global in scope, such as file and directory
organization, configuration management and control schemes, and

*documentation standards. Other procedures may be localized, i.e. site
* dependent, language dependent, or machine dependent. The same set of

local methodologies may not be appropriate for all software
developments, but the use of some set of guidelines and procedures

*@ should be enforced. These local procedures siould be uniform and
. consistently applied. Further, they must be fully documented as part of

the system development effort. By forcing the use and the documentation
of these guidelines, the tendency to skip the guidelines due to
time/budget constraints will be diminished.

Methodologies should be outlined for: 1) documentation standards, 2) use
of CM tools in documentation, 3) directory structure, 4) use of CM in
software development, 5) testing criteria and CM, 6) software
deliveries, and 7) installation and maintenance. Further guidelines
should be established for full software product support, as outlined in
Section 7.2.

7.3.4 Scenarios

A scenario is an outline for, or an example of a sequence of events. As
applied to software development, scentarios constitute an example of a
sequence of events in software development. This includes the tracking
of a software product development throughout the entire software
lifecycle. It includes giving examples of when to use specific tools and
how specific methodologies should be applied. To help make a software

-'. development environment complete, different scenarios should be
developed, documented, and presented to the eventual end user of the
system. This information will help the user to know how and when to

* apply certain tools. It gives the user a "template" upon which to
structure his individual application.

7.4 TOOLS FOR ENHANCING AN ENVIRONMEUIT

* '."During the Requirements Analysis Phase of ISSS, many tools were reviewed
* and evaluated. The best and most cost-effective set of tools were

combined to form the ISSS environment. Since that time, new tools have
become available that could offer enhancements to ISSS. Also, some tools

* 26

MF*23555004

not yet developed for the VAX have been identified. The next sections
*u present some of these tools and ideas, and what advantages they offer to

software developers.

7.4.1 Problem Statement Language/Problem Statement Analyzer (PSL/PSA)

PSL/PSA is a requirements definition language system. This system
consists of several tools: PSL (Problem Statement Language), a language
used to express system requirements and specifications; PSA (Problem
Statement Analyzer), which generates 48 different reports which display
and analyze the requirements and specifications in different ways; a
Query System, a Document Generator, an Algorithm Development Language
Processor, various utility programs and a Data Base Manager that ties
the system together. This set of tools provides support for the
requirements analysis phase of software development. PSL/PSA is
available from ISDOS corporation in Ann Arbor, MI.

7.4.2 Change and Configuration Control (CCC)

The Change and Configuration Control (CCC) System is a configuration
management tool by Softool Corporation in Goleta, CA. It provides the
same capabilities as SCCS with the addition of some other useful
features. Particularly, CCC handles the whole project: source code,
object code, executable, and documentation. Each project exists as an
entity of its own. Information is organized in a hierarchical format
that allows easy identification of logical subsystems. CCC also provides
a more detailed protection mechanism, a more friendly user interface,
and a complete recovery system. These additional features provide a
well-balanced set of configuration control abilities.

7.4.3 Ten Plus

Ten Plus is a user-friendly interface for UNIX and UNIX-like systems. It
is being developed by Interactive Systems Corporation, Santa Monica, CA.
It is scheduled to be available for the IS/WB around July 1985. Ten Plus
provides the user with an object-oriented interface, where each object
is a hierarchical data structure. Since Ten Plus appears as a visual
editor, objects are acted upon as they would be in a text editor.
Objects can be picked up and put down somewhere else, regardless of
whether the object is text, a whole file, or a directory tree. Ten Plus
will be available on a variety of machines (IBM 43XX, DEC VAX, IBM PC,
SCI 1000) so that an organization could have a consistent user interface
across the large variety of computing facilities.

7.4.4 UNIX for the IBM PC (PC/IX)

PC/IX is a UNIX-based operating system for the IBM PC. It is developed
by Interactive Systems Corporation in Santa Monica, CA. and it provides
the same capabilities as the IS/WB for the VAX. Although developed by
ISC, it is marketed by IBM corporation. By using PC/IX, a user can

*, perform tasks independent of the VAX CPU and then transfer the work to
the VAX using INterm.

* 27

MF*23555004

7.4.5 INteactive Terminal Emulator (INterm)

INterm is a terminal emulator for the IBM PC and is developed by
Interactive Systems Corporation in Santa Monica, CA. INterm allows an
IBM PC to emulate various terminal types and to transfer files between
the PC and the host. Used in conjunction with PC/IX, development of
software can be done on the P and then transferred to the VAX.

7.4.6 Ada

Since ISSS uses a "plug board" design approach, new tools can be easily
added to the system that can use the other features of the environment.
An excellent example of this capability would be the addition of an Ada
compiler to ISSS. Both the ALS and AIE appear to be delayed for a period
of time. By adding an Ada compiler to ISSS, a user gets the advantage of
using an advanced programming language and a series of tools to support
software development. This allows immediate generation of Ada software
combined with the convenience and advantages of the various ISSS tools
and utilities.

7.4.7 Profilers

An interesting and useful tool for software enhancement, tuning, and
analysis is a profiler. A profiler provides the user with information
like the number of times each subroutine is called, the amount of time
spent in the subroutine each time, and the total amount of time spent
executing particular subroutines. Analysis determines if a bottleneck
exists. The bottleneck can be isolated and system performance can be
improved. A profiler can also be used to determine the efficiency of
various different solutions to a problem. The ideal approach would be to
have a language independent profiler, like the VAX has a common
debugger. That is, one profiler works with all VAX (or other machine)
languages. Such a thing does not currently exist.

7.4.8 Integrated Text and Graphics

A real need in the area of documentation is to automatically integrate
text and graphics. A document should be generated in its entirety on one
system. The document could contain text, tables, illustrations,
photographs, etc. This implies the ability to generate high-quality
graphical images on a system in a simple and user-friendly manner. With
all aspects of documentation present on one machine, document updates
would be substantially easier. There would be no cut and paste
operations and losing track of previous versions of the document.

7.4.9 CM of Testing Information

There are various testing tools available currently, but there appears
to be no configuration management tool to keep track of the various sets
of test data used. There needs to be a tie between a particular module
and version of that module and its associated input and output data from
the testing procedure. This would improve the quality of the final
product and also provide detailed assurance that specific testing
guidelines have been met.

28

MF*23555004

8.0 CONCLUSION

General Dynamics developed the Integrated Support Software System to
provide AVSAIL with a modern software development and maintenance
environment. This final technical report described the ideas,
philosophies and concepts involved in its production. It also provides a
reflective look to discover what lessons were learned from the project
and what direction ISSS modifications should take.

We at General Dynamics look upon the ISSS project as very successful. We
see that continual enhancement and standardization is necessary. As
developers at both AFWAL and other agencies use the features of ISSS. We
hope that its open-ended design will continue to provide many years of
productive service.

0

0 29
U.S. Government Printing Office: 1985 - 559-065/20821

S. . -. . , , . , . , . ., . . - . . .

w 47

FILMED

* 7-85

0TI

