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A Practical Approach to Karmarkar's Algorithm

Irvin J. Lustig
Department of Operations Research
Stanford University
Stanford, CA 94305

ABSTRACT

A practical approach to implementing Karmarkar's algorithm is discussed.

A variant of the algorithm is proposed which still has polynomial complexity

and which eliminates the need for Karmarkar's canonical form. This method

allows upper and lower bounds to be used and does not require knowledge of

the objective value. Some heuristics are given which alleviate certain

computational difficulties that arise when a practical implementation of the

algorithm is attempted. A FORTRAN program is described that allows one to
study its convergence properties.

Keywords: Linear Programming; Karmarkar's algorithm, Simplex Method; .
Projective Method, Least-Squares Problems
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section 0: Introduct i

Narendra Karmarkar of AT&T Bell Laboratories has described a new
polynomial-time algorithm for linear programming that has generated a large
amount of press coverage. The important theoretical result he presented at
the Symposium on Theory of Computing in Spring of 1984 has been well
received, but statements regarding the practical efficiency of the method have
stirred up much controversy among experts in the field. His initial claim that
the algorithm was 50-100 times more efficient than the simplex method was
recently repeated by him at the Operations Research Society of America
meeting in Boston in April, 1985, but the type of problems for which these
results were claimed were for a very smali number of test problems speciaily
structured to favor his approach [S]. Tomlin has attempted to solve some less
structured problems, and has not been able to duplicate Karmarkar’'s less
spectacular computation times on these smaller problems {8]. Karmarkar [4]
has claimed that "any undergraduate should be able to read my paper and write
a program that is 10 times faster than the simplex method.” This manuscript
describes the efforts of the author, a graduate student, to validate this last
claim.

Section 1 describes one possible way to apply Karmarkar's method to
general linear programs and some of the basic difficulties that arise. Section
2 proposes a variant of the method that remains polynomial and allows general
linear programs to be solved. Section 3 discusses how the method is applied
in practice, the generation of interior feasible points, and the problem of null
variables. Section 4 describes an iterative scheme to find the projected
gradient on each iteration. Section 5 discusses an implementation of the
algorithm and some computational results. Section 6 concludes the paper with
a discussion of some future research.
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section 1: Solution of 6 L p

An initial reading of Karmarkar's paper [2] indicates that a practical
implementation of the algorithm is not easy to come by. One difficulty arises
because projective transformations are used to transform any general linear
program to the following canonical form with a homogeneous right-hand side
and a convexity constraint:

min cTx ceR"
(LPO) s.t. Ax=0 A eR™N b e RM
elx =1 ENRIRILEY. S TSN
x>0

Todd and Burrell [7) and Tomlin [8] have described methods to do this
transformation, but these methods either add unnecessary rows and columns to
the linear program, and/or depend on the existence of some upper bound on the
sum of all of the variables. For practical implementations, finding such a
bound may be as difficult as solving the linear program and using this bound
can cause numerical instability during the course of solution. The procedure
described herein has the advantages that only one dense column in Phase |
needs to be added and the bad scaling properties of previously suggested
methods are not present.

Suppose we are given the following linear program:

min ¢l x ceR"
(LP1) st Ax=b A eR™N b ¢ RM
x>0

with known feasible point w € R", w>0 and known minimum ob jective value z*.

Karmarkar [4] indirectly suggested that a projective tranformation be used to
bring this program into the canonical form of (LPO), thereby creating the
following tinear program:




SRt N
PR R A

min [cTD,-z*IX
(LP2) s.t. [AD,-DIX=0

T %-
€neyX = |
X 20,
where D = diaglwy, wy, ... , Wil (LP2) is in the canonical form for

Karmarkar’'s algorithm {2) (henceforth KA). It also has not changed the
sparsity structure of the original problem, except for the addition of the
convexity constraint. If the KA algorithm is applied directly to this linear
program, a new projected space is created on each iteration in order to move
the current iterate to the center of a simplex. Therefore, a series of three
linear spaces are used to solve the linear program: The first space is that of
(LP1), the second is (LP2), and the third is artificially created on each

iteration when the projective step is made. Todd and Burrell [7) and Tomlin [8]

have not used the form of (LP2) to solve (LP1), and the equivalence of (LP1)
and (LP2) is not apparent in Karmarkar's paper [2], due to the addition of the

column for X, -
Iterates of the KA algorithm are calculated in terms of X, a vector in
. When the algorithm stops with a solution %*, the solution x* to (LP1) is

given by the inverse projective transformation x*=[D,0]x*/x%, . Furthermore,

nn“ |
the knowledge of the finite minimum to (LP1) guarantees the existence of X,

with an objective value for (LP2) of 0, as the following theorem shows:

Theorem 1 Suppose (LP1) has a finite optimal solution x*. Then (LP2) has an
optimal solution at ¥ = (D~x*,1)/(1+e[D"x*).

Proof It is clear that %* is feasible for (LP2) and that its objective value is
0, since cIx* = z*. Now suppose 3 % that is feasible for (LP2) and that
[c"D.-z*1% < 0. There are 2 cases to consider, depending on the value of Rne -

Case 1: Assume %n.;> 0. Let x=[D,0]X/%,.;. Then x is feasible for
(LP2). [cTD,~z*1% < 0% ¢T[D,0)% < 2*%ney ? cTx < 2%  x* is not optimal for
(LP1).




Case 2: Assume R, = 0. Let x=x*+[D,0}X. Then [AD,-b]%=0 » A[D,0]%=0,
so that x is feasible for (LP1). [cTD,-z*I1R<0 * cTID,OIR<z*Rpy 2

cTID,018 <0 3 cTx=2%+cT[D,0]R < 2% * x* is not optimal for (LP1).
Hence, in either case, R cannot exist, and X must be optimal for (LP2). ®

In fact, one can see from the above proof that ;=0 and [cTD,-z*IR <0

implies the existence of an unbounded optimal solution in (LP1) by simply
moving in the direction [D,0]% from x* in the feasible region for (LP1).

Difficulties with running the KA algorithm directly on (LP2) are due to
two factors. If the optimal X™ found by the algorithm has Xz, , = 0, then a

nonnegative objective value for X™ only implies that the original problem has
an infinite ray along which it is optimal. Unfortunately, the KA algorithm does
not yield the endpoint of this ray for (LP1). It seems difficult to prove that
this condition will not occur. The second difficulty arises when one tries to
extend the basic idea of projecting (LP1) to (LP2) when the linear program has
variables with upper bounds. This problem occurs because the upper bounds do
not project to a simple linear ratio test when performing the iterative step.
The projective transformation used on each iteration that maps (LP2) to the
third space mentioned above destroys this linearity. With this motivation, we
modify the basic idea of Karmarkar's algorithm to avoid these and other
difficulties.

Intuitively, projecting the current iterate to the center of the feasible
region is also a good way of solving linear programs. In fact, there seems
good reason to consider an algorithm which simply brings each current iterate
into the center of some simplex by a projective transformation, moves in the
direction of optimality of the linear function over the inscribed sphere, and
then uses an inverse projective transformation to bring the new point back to a
point in the original space. Such an algorithm works only with iterates in the
original space of the linear program and uses projective transformations only
to move from the current iterate to the next one. When doing this, there is no
need to bring a linear program to any canonical form like (LPO). Furthermore,
there are now only two spaces used: the original linear program (LP1) and the
space created on each iteration. The next section will show that this variant
of the KA algorithm also remains polynomial.
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section 2: The New Projeclive Algorithm (NPA)

For this algorithm, we assume we are given a linear program in the form
of (LP1), the feasible point w, and the known objective value z*. Later, we
will indicate how such a point w can be obtained and how z* need not be given.

The NPA algorithm is as follows:

begin

XI"W;

k «1;
while (not optimal) do

begin
D« diag[x'j,x'é.....x‘r‘\.ll

cpe [1-8T(88T)"'BIDC,
Ce cp/lcpl

b’ « ﬁ!Ten'«l - o C
b « (Ob*)/(e], ,00")

b « b/Bp.y

k « k+|

xKe S{l....,n} (i.e, the first n components of b)

end




For theoretical purposes, the NPA algorithm will be considered terminated
at optimality when (cTx-2%)<279, where ¢=0(L), as in Karmarkar's paper. Also,
r is set equal to 1//m(n*1), which is the radius of the largest inscribed sphere
in a simplex of dimension n. The parameter o« is set to .25, to facilitate a
polynomial proof of convergence. In a following section, it is shown how the
above algorithm is modified for practical purposes by selecting o differently
and using an appropriate convergence criterion.

In order to show the algorithm is still polynomial, it is necessary to
invoke the use of a potential function similar to the one used by Karmarkar. In
L fact, this potential function will relate in a special way to that of Karmarkar.
B We define the potential function as:

n
€ gekiciz®) = (0o )20 5 Aty

= j=1

K The following lemmas will show how this potential function leads to the
polynomial complexity of the NPA algorithm.

Lemma | g(xX*ic;z*)< g(xKiciz*)-6, where §=1/8, as in [3].

Proof In each iteration of the NPA algorithm, the current iterate xK s
projected to the center of a simplex to create a linear program in the
canonical form of (LPO) with n+1 variables, and a known minimum of O, by
Theorem 1. This linear program has the form:

: min _'c:Tx' §T=[cT.-z“lD
3 (LP3)  s.t. Ax=0 A=[A,-bID
erT,”x’:I

s x>0

Applying Theorem 2 of [3], one finds that f'(b')<f'(ag)-8, where b’ is as in
the NPA algorithm, ag=e, ¢, 8=1/8, and ' is Karmarkar’s potential function for

!’-'. the transformed linear program (LP3), as found in [3}:
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n+1
(x")=(n* AT %)~ 3 In(x;)
j=1

Hence, the reduction in Karmarkar’s potential function implies that

n+1 n+1
(M ANETD)- S 1n(b',-) < (e 1)ANSTag)- 3 lnalT -5
=1 j=1
Since D = (Db')/by,, ;. effectively scaling b so that it is feasible, we can write

nl
(1)ancTB-2%)- T an(Bj/D;;) < (n+1)an(DcTe,24)-5 .
j=1

Now, B, 1=1 and D=diaglx 4K....xK.1], and x* =By, ) together imply

n n
(e ATk L zm)- 5 nn(x';*‘) < (ne AN cTsK-2%)- 5 nn(x';) -5,
j=! j=!

which yields the final result, by the definition of g(xk;c;z*). [
Lemma 2 g(xKiciz*)< g(wic:z*)-ks.
Proof Obvious, by Lemma 1. @

Lemma 3 After k iterations of the modified algorithm,

(cTxk-z*) < exp(q- %)(cTw-z")(det diag(w ,w2.....wn])( (ne 1))

Proof Lemmas 2 and 1 together imply
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n n
(n+ 1A Txk-z2)- 5 D.n(x'j‘) < (m)an(cTw-29)- 5 Inw ;) - k8 .

j=1 j=1
Since we assume there to be an optimal solution to the linear program, each
component of XK is bounded above by e9. Hence,

n
an(c TxK-z#) < F\?Tq + an(cTw-2*) - > nn(wi) - ‘r‘\éT )
j=1

After exponentiating both sides, the desired result is obtained. @

One may argue that the exponential term in the result of Lemma 3 is quite
large. However, as k increases, this term wi!l eventually become small, and
this yields a proof that a polynomial number of iterations will occur.
Furthermore, the other two terms in the product are of the same order as the
exponential term (i.e. their logarithrs are polynomial in the size of the input)
and these terms do not effect the overall complexity of the NPA algorithm.

........................................................
........................................................
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section 3: Appluing the algorithm i i

The first major modification to the NPA algorithm is in the choice of .
Karmarkar [4] had originally suggested that the following ratio test be
performed:

o = max {I/(n+l)r’éj , ’c‘j >0}

This would find a blocking variable Xj- (We know that o*>1 because oc*=1

corresponds to a distance of one radius of the inscribed sphere.) One would
then use «=poc™® as the step length in the algorithm, where p=.85, .90, or .95,
say. Then p represents a fraction of how close one would get to any face of
the positive orthant in R". Tomlin's initial experimentation indicated that this
was a good approach, as values of «*>1 were often observed, which indicated
that the algorithm was moving in profitable directions to points far outside
the sphere inscribed in the simplex. The cost of computing the value o is
simply n ratio tests. Todd and Burrell [7] have suggested that a line search be
performed in the direction € to minimize the potential function. It is not
Clear how beneficial this search would be, versus the above heuristic, which
seems to work well in practice.

Given a general linear program in the form of (LP1), the first problem that
arises is that of finding an interior point. As suggested by Karmarkar in (2],
one may set up the following linear program to get an interior point:

min A
(LP4) s.t. Ax+(b-Aen)7\ =b
x>0, A>0 .

This linear program has an optimal value of O if and only if (LP1) is
feasible. Furthermore, the vector X=€n A=1, is feasible for this linear

program. We can then apply the NPA algorithm directly to this linear program
to yield a feasible point. If the program (LP1) is infeasible, we will probably
take many iterations to detect that condition. However, if (LP1) has a strictly
interior point, A will become a blocking variable in relatively few iterations,
with the iteration count depending upon how far e, lies from any solution of

(LP4). wnhen A blocks in the ratio test mentioned above, o is set to o*, and
the algorithm obtains a strictly interior point.
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A heuristic argument can be given as to why the above procedure yields an
interior point, if one exists. In each iteration of the algorithm, the variable A
is projected to a simplex as one of the variables of the linear program. Since
A=0 corresponds to all feasible solutions of (LP1) and to all optimal solutions
of (LP4) and also to a face of the simplex artificially created in each iteration,
one can see that the linear programs (LP3) and (LP4) have multiple optimal
solutions. The KA and NPA algorithms both tend to go to the “center” of such
a face of multiple optima, when starting with a point sufficiently far away
from any boundary. This is a result of minimizing over the sphere inscribed
inside the simplex, and the fact that this sphere is tangent to the face A=0 of
that simplex.

In Phase 1, problems arise in the presence of null variables. For (LP1), Xj

is said to be a null variable if xj=0 in all feasible solutions for (LP1). Hence,

a linear program with any null variables has no strict interior. It can be
shown that a linear program has one or more null variables if and only if every
basic feasible solution of (LP1) is degenerate. One should also note that
randomly generated linear programs rarely have null variables, but null
variables seem to occur quite often in practical probiems.

The behavior of both the KA and NPA algorithms on (LP4) is quite
interesting. The solution of (LP4) still lies on the face A=0, but this face is
not n-dimensional, as in the case when no null variables are present. It has
been observed on various test problems that A does not become the blocking
variable in a small number of iterations; instead, the algorithm tends to "tail
off” as it converges to a solution with A=0. However, as iterations progress
the aigorithm seems to identify the null variables in an interesting way. Since
the algorithm is converging, the change in those variables that are not null is

very small compared to those that are null. If x'j‘ is small, it must be

projected relatively far to the center of the next simplex in the next iteration.
It has been observed that for null variables that are converging to 0, the value

of x'j‘ is very small compared to that of its projected gradient ’c‘j.

A heuristic which takes advantage of this observation has been
implemented. If a variable Xj is the blocking variable in the ratio test and

(xj/(ej/xj)) < € then o is set to o*, driving x; to zero. Note that the test
divides ’c‘j by x j o that the values compared are related to each other within
the space of (LP1). For practical testing, a value of ¢=10-6 was found to be




suitable. After that variable has been set to 0, it is effectively ignored, and
the algorithm proceeds until A becomes blocking in a ratio test. During that
time, other null variables may be identified and set to 0 as well. As soon as
an interior point (ignoring any null variables that have been identified) has
been generated, one can then solve (LP1).

The final difficuity in solving the linear program is the requirement that
z*, the optimal objective value of (LP1), be input to the algorithm. [t does not
seem practical to solve the combined primal-dual program as suggested by
Karmarkar in [3). Yinyu Ye has used in [9] a "cutting objective” method to
solve this problem. This method is extremely easy to apply to the NPA
algorithm, as it simply sets cr=[c.-chk]. effectively cutting off the objective

value of (LP3) at 0. Ye has proved that this version of the algorithm will
converge, but is polynomial only if the starting point w is “reasonably close” to
the optimal solution. Ye's algorithm, in fact, may always be polynomial, but
this seems to be extremely difficult to prove. One can show that ek <
cTsk for the cutting objective method, which implies that ¢, is a descent

direction. In practice, his method works well and was the method used in my
implementation. The method also admits an elegant convergence criterion:
(llcplll |cTw|)<e. For my implementation, a value of €=10-6 was used. Later it

will be shown why this convergence criterion has special significance in some
other way.

Given a linear program with upper bounds, the NPA can be modified to
handle them. Assume the linear program is in the form:

min ch
(LPS) s.t. Ax=b
0<x<u

If lower bounds are present as well, the above form can be obtained by a
simple translation of the variables.

Karmarkar has suggested using a flipping technique to handle the upper

bounds. As the algorithm progresses, if ><'JS > (u ]/2). then X| is flipped by

setting x'j5=u j’“'f- negating the jﬂ:l columns of ¢! and A, and ad justing the value

of b, so that the new x remains feasible. The upper bound for X; is tested
12
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using the ratio test:

o<=max{
j

As the algorithm converges, the “flipping” of the variables should become less
frequent. Note that this procedure preserves the upper bounds and is easy to
implement. It should be noted that a proper proof of convergence has not yet
been exhibited. The procedure has worked well on a small number of test
problems.

K
UjX]

, provided (ujé‘n,,, - x',?’c‘j) >0 } .

(ujé‘n,‘ = x'fej)(m I)r

e et i i o

13
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section 4: The calculation of ti iected aradient

The largest computational burden in any aigorithm based on Karmarkar's
original method is in the calculation of the projected gradient
cp=(l-BT(BBT)"B)Dcr during every iteration. The computation involved can be
viewed in many ways, and, in particular, as the following least-squares
problem:

(Ls1)  min Joc, - 7D .

whose solution satisfies the normal equations (BBT)(L')=BDcr. It follows that

cp=Dcr-BT(ﬁ) is the residual vector for the least-squares problem (LS1). If

(LP1) has a non-degenerate optimal solution, then 5t converges to the optimal
dual solution. In any case, p always converges to zero. In the case of the
cutting objective method of Ye, one can show that y=0 on every iteration.
With that assumption, one can then write Cp=D([C,-CTXk]T-[A.-b]TTl'k) on the ki

iteration. One can then see that the first n components of S are related to

the complementary slackness conditions that hold at optimality of (LP1),
because of the construction of D. Furthermore, the last component of %

corresponds to the duality gap between (LP1) and its dval. So if D is
converging to a non-degenerate solution, the size of the norm of o compared

to the initial estimate (with 7=0) is a reasonable convergence criterion. In
the case of a degenerate optimal solution, the convergence criterion is still
valid, but there is no reason to believe that 1t will converge to a specific dual
solution. Since a degenerate optimal solution corresponds to multiple dual
optima, the method used to compute Cp Will determine the nature of the

convergence of 7. However the norm of o will still converge to zero.
M. A. Saunders has suggested an incremental scheme to find ) by solving

for a correction term to the vector . This method will be presented in the
context of the NPA algorithm presented in Section 2.
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Before the first iteration, we set

d « o and

nNe 0.

On each iteration, we solve the least~squares problem
(LS2) min JDd - BT(f,)Iz

for the vector (i).

We then update our past solutions:

T+ T0+§

d « d-[A-bITs ,

and calculate the final projected gradient:
Cp+ Dd-pep, .

Note that Dd=D(cr-lA.-b]T1r) should be converging to zero, by the

complementary slackness condition. Hence, we are solving for smaller
correction terms to 7t as the algorithm proceeds.

When Ye's cutting objective method is used, it is also necessary to update
the last component of d on each iteration before solving the least-squares
problem (LS2).
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Section 5: C tational Result

The new projective aigorithm described above was implemented with the
cutting objective method of Ye using FORTRAN on an IBM 3081 Model KX2.
Since the cutting objective method was used, no knowledge of the final
objective value was needed by the program to obtain a solution. The majority
of the test problems were the same as those run by Tomlin [8] in his tests. An
additional test problem was created from an exponential counterexample to the
simplex method and came from Blair [1].

In order to calculate Cp. We used the iterative algorithm LSQR of Paige

and Saunders [6]. The incremental method described in the previous section
was used, since the diminishing vectors Dd in the least-squares problem (LS2)
allow LSQR to converge more rapidly than it does when applied to (LS1). A
minimal preconditioner which scaled the columns of each least-squares
problem to have a unit Euclidean norm was also implemented. Without this,
the LSQR algorithm failed to converge in reasonable time on some problems.

The computational results are presented in Table 1.  All CPU times
represent the time in seconds to read in the data from MPS format, solve the
linear program, and write out a solution. Columns labeled MINOS refer to the
iteration counts and CPU times to solve the same problems using software
based on the Simplex Method developed by M.A. Saunders of the Systems
Optimization Laboratory at Stanford. The times to input the data and write
out the solution for the NPA algorithm and for MINOS are equal because MINOS
subroutines were used for these purposes.

While the CPU times reflect the difficulty of using LSQR directly in the
NPA aigorithm, the iteration counts indicate much promise for NPA. In order
to reduce the work done on each iteration, a very good preconditioner would
have to be implemented. It should be noted that the problems BRANDY, £226,
and BANDM all have null variables and resuit in higher iteration counts in Phase
I. The problem ISRAEL requires a large amount of time because of severe
ill-conditioning. This problem was a notable omission from the results
presented by Karmarkar in Boston [S].

It is interesting to note the amount of work done by this rather naive
application of LSQR to find Cp- The number of iterations performed by LSQR

can be linked to how well-conditioned the least-squares problems are. This
conditioning can be poor on either the first few iterations of Phase | or the




................

. final iterations of Phase 2, depending on the nature of the problem. Table 2
) summarizes the results on the amount of work performed by LSQR. On most
problems, the number of iterations performed by LSQR on (LS2) seemed to
stabilize as the projective algorithm converged. This usually occurred when
the algorithm had few degeneracies at optimality.

From these results, it is apparent that success or failure of Karmarkar's
algorithm and its variants will depend solely on how fast ¢p can be calculated.

The ill-conditionin; of the problems may cause difficulties at the beginning of
Phase | or the end of Phase 2. Most likely, any method that finds p will find

difficulties because of this ill-conditioning. It is clear that further research
is necessary to understand how Karmarkar's algorithm creates these
conditioning problems.

It is also important to note the low iteration counts of the NPA
A algorithm, when the cutting objective method of Ye is used. The promise
- provided by these low counts is encouraging enough to warrant further research .
into Karmarkar's algorithm and its variants.

A
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Karmarkar claims there are some problems which will be soived much
faster by his algorithm than by the standard simplex method, but it is probable
that an adapatation of the simplex method which does some interior probing
may also do well on these same problems. For most linear programs, however,
the cost of doing each iteration might well outweigh any low iteration counts
obtainable. 1t is still questionable whether Karmarkar’s algorithm or some
variant will become “the method of choice” for linear programming in the near
future.

The author would like to thank George Dantzig, Narendra Karmarkar,
Edward Klotz, Nimrod Megiddo, and Michael Saunders for suggestions, insights
: and encouragement as this work progressed.

5 This material is based upon work supported under a National Science

. . . .
> Section 6: Conclusions and Acknowledgements
Karmarkar's algorithm has variants which are easier to understand in the
context of classical linear programming theory. These variants allow one to
- implement computer programs that run with low iteration counts and solve
_x_ linear programs with upper bounds.

Foundation Graduate Fellowship. Any opinions, findings, conclusions or
e recommendations expressed in this publication are those of the author and do
not necessarily reflect the views of the National Science Foundation.
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Table 1: Computational Results of New Projective Algorithm.
All times in CPU seconds on an [BM 3081 Model KX2.

MINOS | New Projective Algorithm
(Simplex)

Problem
Name Rows |Columns | Total{ CPU |Phase | |Phase |l] CPU

Itns. |Time | Itns. itns. Time
EXP1 10 17 521 06 6 11 0.4
AFIRO 28 32 6] 05 3 11 08
ADLITTLE] S7 97 126 | 1.0 9 20 12.3
SHARE2B| 99 79 911 1.0 7 14 67.4
ISRAEL 175 | 142 338 | 4.2 9 24 636
BRANDY | 221 | 249 292 | 4.1 16 19 215
£226 226 | 282 5721 79 17 42 644
BANDM | 306 | 472 362 | 6.4 18 37 771

Table 2: LSQR Iteration Counts for NPA algorithm.
NS = Never Stabilized, continuing to increase.

LSGR fteration Counts Max
Problem Attained
Name Minimum | Maximum | “Stable” | Phase/itn
EXP1 12 22 12 /1
AFIRO 26 35 30 171
ADLITTLE 83 329 ~160 /1
SHARE2B 607 786 775 2/10
ISRAEL 270 8853 630 171
BRANDY 136 1008 NS 2/18
£226 130 1332 |71100 /1
BANDM 173 1679 NS 2/34
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