
RD-R155 714 A PRACTICAL APPROACH TO KRARKAR'S ALGORITHI(U) /
7' STANFORD UNIV CA SYSTEMS OPTIMIZATION LAB I J LUSTIG

JUN 85 SOL-85-5 N00014-85-K-0343

IUNCLASSIFIED F/G 12/ NL

flllflfll llll

12-

1126 1

liii.M -tt V TNA

IVI

-- -,,-- - i n • .,...~ o .- - ---.2. - f .
,. REPRODUCED AT GOVERNI'A, : EXPENSE
I%-

%.-

Systems
Optimization

Laboratory

A Practical Approach to Karmarkar's Algorithm

by

Irvin 3. Lustig

TECIICAL :EPORT SOL 85-5

3we 1985

DTIC[i I - ill E L E C T E I

Department of Operations Research
Stanford University
Stanford, CA 94305

PsI T bicrehs approv6 17 1 1(

I*.

SYSTEMS OPTIMIZATION LABORATORY
DEPARTMENT OF OPERATIONS RESEAROH

STANFORD UNIVERSITY
-" STANFORD, CALIFORNIA 94305

A Practical Approach to Karmarkar's Algorithm

by

Irvin 3. Lustig

TECHNICAL REPORT SOL 85-5

3une 1985 Fv - ,

Kt

":: E
Research of this report was supported by a National Science Foundation
Graduate Fellowship.

_. Reproduction of this report was partially supported by the Department of
Energy Contract DE-AMO3-76SFO0326, PA# DE-ATO3-76ER72018; National
Science Foundation Grants DMS-8420623, DCR-8413211 and ECS-8312142; and
Office of Naval Research Contract NOOO14-85-K-0343.S
Any opinions, findings, and conclusions or recommendations expressed In
this publication are those of the author(s) and do NOT necessarily
reflect the views of the above sponsors.

Reproduction in whole or in part Is permitted for any purposes of the
, United States Government. This document has been approved for public

release and sale; Its distribution is unlimited.

o . * . *- - - + o. . - S. - - ' . . 4 .;: .*4~*~ . .

.' o

Acct-.sl on v-*o-

,'.'-" ~1TIS Uv "-

-- 2'IC

A Practical Approach to Karmarkar's Algorithm

Irvin J. Lustig A vci -
Department of Operations Research A

Stanford University Dist PLc :.:

Stanford, CA 94305

ABSTRACT
A practical approach to implementing Karmarkar's algorithm is discussed. IN.4PEO

A variant of the algorithm is proposed which still has polynomial complexity
and which eliminates the need for Karmarkar's canonical form. This method
allows upper and lower bounds to be used and does not require knowledge of
the objective value. Some heuristics are given which alleviate certain

. computational difficulties that arise when a practical implementation of the
algorithm is attempted. A FORTRAN program is described that allows one to
study its convergence properties.

Kegwords: Linear Programming, Karmarkar's algorithm, Simplex Method-
Projective Method, Least-Squares Problems

// 7 A ...

This material is based upon work supported under a National Science
Foundation Graduate Fellowship. Any opinions, findings, conclusions or
recommendations expressed in this publication are those of the author and do
not necessarily reflect the views of the National Science Foundation.

*

.,..

.

Section 0: Introduction

Narendra Karmarkar of AT&T Bell Laboratories has described a new
polynomial-time algorithm for linear programming that has generated a large
amount of press coverage. The important theoretical result he presented at
the Symposium on Theory of Computing in Spring of 1984 has been well
received, but statements regarding the practical efficiency of the method have
stirred up much controversy among experts in the field. His initial claim that
the algorithm was 50-100 times more efficient than the simplex method was
recently repeated by him at the Operations Research Society of America
meeting in Boston in April, 1985, but the type of problems for which these
results were claimed were for a very small number of test problems specially
structured to favor his approach [5]. Tomlin has attempted to solve some less

*t structured problems, and has not been able to duplicate Karmarkar's less
spectacular computation times on these smaller problems [8]. Karmarkar [4]

* - has claimed that many undergraduate should be able to read my paper and write
a program that is 10 times faster than the simplex method." This manuscript
describes the efforts of the author, a graduate student, to validate this last
claim.

Section 1 describes one possible way to apply Karmarkar's method to
general linear programs and some of the basic difficulties that arise. Section
2 proposes a variant of the method that remains polynomial and allows general
linear programs to be solved. Section 3 discusses how the method is applied
in practice, the generation of interior feasible po.nts, and the problem of null
variables. Section 4 describes an iterative scheme to find the projected
gradient on each iteration. Section 5 discusses an implementation of the

6: algorithm and some computational results. Section 6 concludes the paper with
a discussion of some future research.

2

Section 1: Solution of General Linea~r Prgrams

An initial reading of Karmarkar's paper [2) indicates that a practical
implementation or the algorithm is not easy to come by. One difficulty arises
because projective transformations are used to transform any general linear
program to the following canonical form with a homogeneous right-hand side
and a convexity constraint:

min cTx c (Rn

(LPO) s.t. Ax 0 A f Rmxn, b e Rm
1Te (I I)T E Rk V k 1"':- enx- ek- I , > I

X > 0.

Todd and Burrell [71 and Tomlin [81 have described methods to do this
transformation, but these methods either add unnecessary rows and columns to
the linear program, and/or depend on the existence of some upper bound on the
sum of all of the variables. For practical implementations, finding such a
bound may be as difficult as solving the linear program and using this bound
can cause numerical instability during the course of solution. The procedure
described herein has the advantages that only one dense column in Phase I
needs to be added and the bad scaling properties of previously suggested
methods are not present.

Suppose we are given the following linear program:

min cTx c e Rn

(LPI) s.t. Ax b A E Rmxn, b e Rm
x>O

with known feasible point w e Rn, w>0 and known minimum objective value z".

Karmarkar [41 indirectly suggested that a projective tranformation be used to
bring this program into the canonical form of (LP0), thereby creating the

following linear program:

3
0"

min [cTD.-Z WX
,-Z*

(LP2) s.t. [AD,-blW: 0

e", 7X= 1

where D = diag[w I, w2 Wn. (LP2) is in the canonical form for

Karmarkar's algorithm [21 (henceforth KA) It also has not changed the
sparsity structure of the original problem, except for the addition of the
convexity constraint. If the KA algorithm is applied directly to this linear
program, a new projected space is created on each iteration in order to move
the current iterate to the center of a simplex. Therefore, a series of three
linear spaces are used to solve the linear program: The first space is that of
(LPI), the second is ([P2), and the third is artificially created on each
iteration when the projective step is made. Todd and Burrell [7 and Tomlin [8

o have not used the form of (LP2) to solve (LPI), and the equivalence of (P1)
and ([P2) is not apparent in Karmarkar's paper [21, due to the addition of the
column for n I

Iterates of the KA algorithm are calculated in terms of , a vector in
Rn+l. When the algorithm stops with a solution 3W*, the solution x* to (LPI) is
given by the inverse projective transformation x=[D,O13.0 "/3l. Furthermore,

the knowledge of the finite minimum to ([P1) guarantees the existence of 9-,
with an objective value for (LP2) of 0, as the following theorem shows:

TheremL Suppose (LPI) has a finite optimal solution x". Then (LP2) has an
optimal solution at ill (D-ix*,1)/(1+enD-xw).n

ProofL It is clear that R' is feasible for (LP2) and that its objective value is
0, since cTx * = zW. Now suppose 3 ' that is feasible for (LP2) and that
[cTD,-z"]N < 0. There are 2 cases to consider, depending on the value of n I

Case 1: Assume Xn*i> 0. Let x=[D,]xAn#,. Then x is feasible for

([P2). [cTD,-zw+Z < 0 * cT[D,O]x < X 1 • cTx < z* * x* is not optimal for

(LP I).

4

.

Case 2: Assume Xn* 1 0. Let x=x* [D,.OY. Then [AD,-b1x= 0 A[D,O]A=0,"."T TDOA<Z*^

so that x is feasible for (LPI). [cTD,-zw'< 0 X c [D,0 x<z Xn I

-- cT[D,0]<O * cTx=z*+cT[D,O] < z* * x* is not optimal for (LP).
* Hence, in either case, " cannot exist, and 3W must be optimal for (LP2). e

Ix in fact, one can see from the above proof that X n 1:0 and [cTD,-zw1x :O

implies the existence of an unbounded optimal solution in (LPI) by simply
moving in the direction [D,O] from x* in the feasible region for (LPI).

Difficulties with running the KA algorithm directly on (LP2) are due to
two factors. If the optimal Rw found by the algorithm has n~l = 0, then a

nonnegative objective value for R" only implies that the original problem has
an infinite ray along which it is optimal. Unfortunately, the KA algorithm does
not yield the endpoint of this ray for (LPI). It seems difficult to prove that
this condition will not occur. The second difficulty arises when one tries to
extend the basic idea of projecting (LP1) to (LP2) when the linear program has

.- variables with upper bounds. This problem occurs because the upper bounds do
not project to a simple linear ratio test when performing the iterative step.
The projective transformation used on each iteration that maps (LP2) to the
third space mentioned above destroys this linearity. With this motivation, we
modify the basic idea of Karmarkar's algorithm to avoid these and other
difficulties.

Intuitively, projecting the current iterate to the center of the feasible
region is also a good way of solving linear programs. In fact, there seems
good reason to consider an algorithm which simply brings each current iterate
into the center of some simplex by a projective transformation, moves in the
direction of optimality of the linear function over the inscribed sphere, and
then uses an inverse projective transformation to bring the new point back to a
point in the original space. Such an algorithm works only with iterates in the
original space of the linear program and uses projective transformations only
to move from the current iterate to the next one. When doing this, there is no
need to bring a linear program to any canonical form like (LPO). Furthermore,
there are now only two spaces used: the original linear program (LPI) and the
space created on each iteration. The next section will show that this variant
of the KA algorithm also remains polynomial.

5
"0

17~

Section 2: The New Projective Algorithm (NPA)

For this algorithm, we assume we are given a linear program in the form
of (LPI), the feasible point w, and the known objective value zN. Later, we
will indicate how such a point w can be obtained and how z N need not be given.

The NPA algorithm is as follows:

kn~

while (not optimal) do

B -i------I
eT,

Cr4- Icazw,

Cr4 lBT(BBT)- BJDCr
C.

r

b' e - A

n.1 n+ I cr

Cr- [c, -5z+]

x b (Le, the f irst n components of

0d6

6

-'
°.

-

For theoretical purposes, the NPA algorithm will be considered terminated
at optimality when (cTx-z*)< 2 -q, where q=O(L), as in Karmarkar's paper. Also,
r is set equal to IIV7T), which is the radius of the largest inscribed sphere
in a simplex of dimension n. The parameter ox is set to .25, to facilitate a
polynomial proof of convergence. In a following section, it is shown how the
above algorithm is modified for practical purposes by selecting ox differently
and using an appropriate convergence criterion.

In order to show the algorithm is still polynomial, it is necessary to
invoke the use of a potential function similar to the one used by Karmarkar. In
fact, this potential function will relate in a special way to that of Karmarkar.
We define the potential function as:

n

- g(xk;c;z *) = (n+ 1)kn(cTxk-z*) - . in(xl).
[-: j=1

The following lemmas will show how this potential function leads to the
polynomial complexity of the NPA algorithm.

Le maJI g(xk* ';c;z*):< g(xk;c;zm)-6, where 8=1/8, as in [3].

9rLf In each iteration of the NPA algorithm, the current iterate xk is
projected to the center of a simplex to create a linear program in the
canonical form of (LPO) with n+l variables, and a known minimum of 0, by
Theorem 1. This linear program has the form:

min Tx' T[cT.-zwID
(LP3) s.t. Ax'=0 A=[A.-b]D

W:" T

:-, e, +x'=1

x'>O

Applying Theorem 2 of [31, one finds that f'(b):_f'(ao)-S, where b' is as in
the NPA algorithm, ao=en+1, 6= 1/8, and C is Karmarkar's potential function for

Sthe transformed linear program (LP3), as found in [31:

7

. . -. ..°

n+ 1
,-:~ .r'(x')=(n 0) nOTxO- I. kn~x').

j=1

Hence, the reduction in Karmarkar's potential function implies that

n" I n+l
(n1)rn(cTb')- kAn(b.) < (n 1)jrn(?Tao) - . n-- I - 8

_ n.1
j=1 j=1

Since = (Db')/bn+ I' effectively scaling ' so that it is feasible, we can write

or n+ I
i:!!ii:(n+ 0)kn(cT b-z*) - W. (6j/Djj) _< (n+ 1)k.n(DcTen -z*)-S.

Now, bn11 and D=diag[x 1 ,xk,...,Xn1], and xk+l={ I n} together imply

n n
(n+)I kn(cTxk l-z*) - Z tn(x +I) < (n+)In(cTxkz)_ n - s ,

j=l j=l

which yields the final result, by the definition of g(xk;c;z*). e

Lemma 2 g(xk;c;z*) g(w;c;ze)-kS.

Proo Obvious. by Lemma I. 0

Lemma After k iterations of the modified algorithm,

. .. ,(cTxk-zm) :S exp(q- IcL XcTw-z*Xdet diaglw i ,w2,..,wnl)(I/1(n +

S

Proof Lemmas 2 and 1 together Imply

8

V.,-.. % .:i. --. -_ ,-._ i i. .A . .A. ." , .- ..---.. ' . --- , -. .'. - .,- -',.'- ' ." "- , - '--\- " -.. --

n n
(n+)n(cTxk-z*) - .In(x) :S (n+ I)In(cTw-z-)- Z kn(w j) - kS.

Since we assume there to be an optimal solution to the linear program, each
component of xk is bounded above by eq. Hence,

"n~cTxk-z*) :S -- q + In(cTw-z*) - Itn(wj) -nl

nt I j=l 1 ~

After exponentiating both sides, the desired result is obtained. 0

O One may argue that the exponential term in the result of Lemma 3 is quite
large. However, as k increases, this term wi!l eventually become small, and
this yields a proof that a polynomial number of iterations will occur.
Furthermore, the other two terms in the product are of the same order as the
exponential term (i.e. their logarithms are polynomial in the size of the input)

- .and these terms do not effect the overall complexity of the NPA algorithm.

9

Section 3: Appluing the algorithm in practice

The first major modification to the NPA algorithm is in the choice of cx.
Karmarkar [41 had originally suggested that the following ratio test be
performed:

CxK = max {1/(n+ 1)rcj , ^ >
This would find a blocking variable xj. (We know that oc*>l because o('=l

corresponds to a distance of one radius of the inscribed sphere.) One would
then use cx=po' as the step length in the algorithm, where p=.85, .90, or .95,
say. Then p represents a fraction of how close one would get to any face of
the positive orthant in Rn. Tomlin's initial experimentation indicated that this
was a good approach, as values of o<(>1 were often observed, which indicated
that the algorithm was moving in profitable directions to points far outside
the sphere inscribed in the simplex. The cost of computing the value o0(is
simply n ratio tests. Todd and Burrell [7] have suggested that a line search be
performed in the direction c to minimize the potential function. It is not
clear how beneficial this search would be, versus the above heuristic, which
seems to work well in practice.

Given a general linear program in the form of (LP 1), the first problem that
arises is that of finding an interior point. As suggested by Karmarkar in [21,
one may set up the following linear program to get an interior point:

minX
(LP4) s.t. Ax (b-Aen) = b

*x>__, X>__0.

This linear program has an optimal value of 0 if and only if (LP1) is
feasible. Furthermore, the vector x=en, X=I, is feasible for this linear
program. We can then apply the NPA algorithm directly to this linear program
to yield a feasible point. If the program (LP1) is infeasible, we will probably
take many iterations to detect that condition. However, if (LP) has a strictly
interior point, X will become a blocking variable in relatively few iterations,
with the Iteration count depending upon how far en lies from any solution of

(LP4). When X blocks in the ratio test mentioned above, o< is set to 4x*, and
the algorithm obtains a strictly interior point.

10

A heuristic argument can be given as to why the above procedure yields an
interior point, if one exists. In each iteration of the algorithm, the variable X
is projected to a simplex as one of the variables of the linear program. Since
= corresponds to all feasible solutions of (LPI) and to all optimal solutions

of (LP4) and also to a face of the simplex artificially created in each iteration,
one can see that the linear programs (LP3) and (LP4) have multiple optimal
solutions. The KA and NPA algorithms both tend to go to the "center* of such
a face of multiple optima, when starting with a point sufficiently far away
from any boundary. This is a result of minimizing over the sphere inscribed
inside the simplex, and the fact that this sphere is tangent to the face =0 of
that simplex.

In Phase I, problems arise in the presence of null variables. For (LP I), x
is said to be a null variable if xj=0 in all feasible solutions for (LP1). Hence,

a linear program with any null variables has no strict interior. It can be
shown that a linear program has one or more null variables if and only if every
basic feasible solution of (LPI) is degenerate. One should also note that
randomly generated linear programs rarely have null variables, but null
variables seem to occur quite often in practical problems.

The behavior of both the KA and NPA algorithms on (LP4) is quite
interesting. The solution of (LP4) still lies on the face X=O, but this face is
not n-dimensional, as in the case when no null variables are present. It has
been observed on various test problems that X does not become the blocking
variable in a small number of iterations; instead, the algorithm tends to otail
off" as it converges to a solution with X=O. However, as iterations progress
the algorithm seems to identify the null variables in an interesting way. Since
the algorithm is converging, the change in those variables that are not null is
very small compared to those that are null. If xk is small, it must be

projected relatively far to the center of the next simplex in the next iteration.
It has been observed that for null variables that are converging to 0, the value
of xk is very small compared to that of its projected gradient j

A heuristic which takes advantage of this observation has been
implemented. If a variable xj is the blocking variable in the ratio test and
(xi/(j/xj)) < e, then oc is set to ox, driving xj to zero. Note that the test

divides cj by xj so that the values compared are related to each other within

the space of (LP1). For practical testing, a value of E=10 -6 was found to be
11

L .-.- < .•

.1-".

A.I

suitable. After that variable has been set to 0, it is effectively ignored, and
,- the algorithm proceeds until X becomes blocking in a ratio test. During that

time, other null variables may be identified and set to 0 as well. As soon as
an interior point (ignoring any null variables that have been identified) has
been generated, one can then solve (LP I).

The final difficulty in solving the linear program is the requirement that
z*, the optimal objective value of (LPI), be input to the algorithm. It does not
seem practical to solve the combined primal-dual program as suggested by
Karmarkar in [31. Yinyu Ye has used in [91 a "cutting objective" method to
solveF this problem. This method is extremely easy to apply to the NPA
algorithm, as it simply sets cr=[c.-cTxk]. effectively cutting off the objective
value of (LP3) at 0. Ye has proved that this version of the algorithm will
converge, but is polynomial only if the starting point w is "reasonably close to
the optimal solution. Ye's algorithm, in fact, may always be polynomial, but
this seems to be extremely difficult to prove. One can show that cTx k+ l <

cTxk for the cutting objective method, which implies that cp is a descent
direction. In practice, his method works well and was the method used in my
implementation. The method also admits an elegant convergence criterion:
(lcpI/ I cTw I)<e. For my implementation, a value of c= 10-6 was used. Later it

will be shown why this convergence criterion has special significance in some
other way.

Given a linear program with upper bounds, the NPA can be modified to
handle them. Assume the linear program is in the form:

min cTx
(LP5) s.t. Ax=b

0_< x< u

if lower bounds are present as well, the above form can be obtained by a
simple translation of the variables.

Karmarkar has suggested using a flipping technique to handle the upper
bounds. As the algorithm progresses, if xk > (uj/2), then xj is flipped by

setting xk=uj-xk negating the jth columns of cT and A, and adjusting the value

of b, so that the new x remains feasible. The upper bound for xj is tested
12

using the ratio test:

= max, ,provided (ujCn - xjc) >0 }
Cn

As the algorithm converges, the "flippingu of the variables should become less
frequent. Note that this procedure preserves the upper bounds and is easy to
implement. It should be noted that a proper proof of convergence has not get
been exhibited. The procedure has worked well on a small number of test
problems.

S

% .":'-13

.-.-. s

" " " " " ' " " " ' " " '" " " ""' - " '" "' '" ' '" " " " " ' ' " !- ' ' " " ' " -" " " " " " " ' " " " " " " " "" " ''" " " " ' " " " " ' ,' " " •' ' " - " " '" ". " "'.-' " " " ' . - ' ,

- ' o - q .-o4 . . .

Section 4: The calculation of the proiected gradient

The largest computational burden in any algorithm based on Karmarkar's
original method is in the calculation of the projected gradient
C p=(I-BT(BBT)-I B)DCr during every iteration. The computation involved can be
viewed in many ways, and, in particular, as the following least-squares
problem:

(LS1) min IDcr - BT()12
whose solution satisfies the normal equations (BBT)(,l)=BDCr . It follows that

c p=Dcr-B T(7) is the residual vector for the least-squares problem (LS1). If

(LPI) has a non-degenerate optimal solution, then n converges to the optimal
dual solution. In any case, p always converges to zero. In the case of the
cutting objective method of Ye, one can show that jj=O on every iteration.
With that assumption, one can then write cp:D([c.-cTxkT-[A,-bTirk) on the O
iteration. One can then see that the first n components of cp are related to

the complementary slackness conditions that hold at optimalitg of (LPI),
because of the construction of D. Furthermore, the last component of Cp
corresponds to the duality gap between (LP1) and its dual. So if D is
converging to a non-degenerate solution, the size of the norm of cp compared

to the initial estimate (with 7r=O) is a reasonable convergence criterion. In
the case of a degenerate optimal solution, the convergence criterion is still
valid, but there is no reason to believe that 7r will converge to a specific dual
solution. Since a degenerate optimal solution corresponds to multiple dual
optima, the method used to compute cp will determine the nature of the
convergence of 7r. However the norm of c, will still converge to zero.

M. A. Saunders has suggested an incremental scheme to find cp by solving
for a correction term to the vector 7r. This method will be presented in the
context of the NPA algorithm presented in Section 2.

14

Before the first iteration, we set
d - Cr and
*-0.

On each iteration, we solve the least-squares problem
(LS2) min IDd - BT()12
for the vector

We then update our past solutions:

d 4- d-[A,-b]T8,
and calculate the final projected gradient:
Cp4- Dd-jpen+I

Note that Dd=D(cr-[A,-b]T r) should be converging to zero, by the

complementary slackness condition. Hence, we are solving for smaller
correction terms to 7r as the algorithm proceeds.

When Ye's cutting objective method is used, it is also necessary to update
the last component of d on each iteration before solving the least-squares
problem (L52).

15

' o4."

bT.-

Section 5: Computational Results

The new projective algorithm described above was implemented with the
cutting objective method of Ye using FORTRAN on an IBM 3081 Model KX2.
Since the cutting objective method was used, no knowledge of the final
objective value was needed by the program to obtain a solution. The majority
of the test problems were the same as those run bg Tomlin [81 in his tests. An
additional test problem was created from an exponential counterexample to the
simplex method and came from Blair [1].

In order to calculate cp, we used the iterative algorithm LSQR or Paige

and Saunders [6]. The incremental method described in the previous section
was used, since the diminishing vectors Dd in the least-squares problem (L52)
allow LSQR to converge more rapidly than it does when applied to (LS1). A
minimal preconditioner which scaled the columns of each least-squares
problem to have a unit Euclidean norm was also implemented. Without this,
the LSQR algorithm failed to converge in reasonable time on some problems.

The computational results are presented in Table 1. All CPU times
represent the time in seconds to read in the data from MPS format, solve the
linear program, and write out a solution. Columns labeled MINOS refer to the
iteration counts and CPU times to solve the same problems using software
based on the Simplex Method developed by M.A. Saunders of the Systems
Optimization Laboratory at Stanford. The times to input the data and write
out the solution for the NPA algorithm and for MINOS are equal because MINOS
subroutines were used for these purposes.

While the CPU times reflect the difficulty of using LSQR directly in the
NPA algorithm, the iteration counts indicate much promise for NPA. In order
to reduce the work done on each iteration, a very good preconditioner would
have to be implemented. It should be noted that the problems BRANDY, E226,
and BANDM all have null variables and result in higher iteration counts in Phase
I. The problem ISRAEL requires a large amount of time because of severe
ill-conditioning. This problem was a notable omission from the results
presented by Karmarkar in Boston [5].

It is interesting to note the amount of work done by this rather naive
application of LSQR to find cp. The number of iterations performed by LSQR
can be linked to how well-conditioned the least-squares problems are. This
conditioning can be poor on either the first few iterations of Phase I or the

16
I1

f inal iterations of Phase 2, depending on the nature of the problem. Table 2
summarizes the results on the amount of work performed by LSQR. On most
problems, the number of iterations performed by LSQR on (LS2) seemed to
stabilize as the projective algorithm converged. This usually occurred when
the algorithm had few degeneracies at optimality.

From these results, it is apparent that success or failure of Karmarkar's
algorithm and its variants will depend solely on how fast cp can be calculated.
The i I -conditioninS of the problems may cause dif ficulties at the beginning of
Phase I or the end of Phase 2. Most l ikely, any method that finds c p will find
difficulties because of this ill-conditioning. It is clear that further research
is necessary to understand how Karmarkar's algorithm creates these
conditioning problems.

It is also important to note the low iteration counts of the NPA
2 algorithm, when the cutting objective method of Ye is used. The promise

provided by these low counts is encouraging enough to warrant further research
into Karmarkar's algorithm and its variants.

17

7 TO 7. -70 7 7 . - .

Section 6: Conclusions and Acknowledgements

Karmarkar's algorithm has variants which are easier to understand in the
context of classical linear programming theory. These variants allow one to
implement computer programs that run with low iteration counts and solve
linear programs with upper bounds.

Karmarkar claims there are some problems which will be solved much
faster by his algorithm than by the standard simplex method, but it is probable
that an adapatation of the simplex method which does some interior probing

.- may also do well on these same problems. For most linear programs, however,
the cost of doing each iteration might well outweigh any low iteration counts

- obtainable. It is still questionable whether Karmarkar's algorithm or some
variant will become "the method of choice" for linear programming in the near

..future.
'* The author would like to thank George Dantzig, Narendra Karmarkar,

Edward Klotz, Nimrod Megiddo, and Michael Saunders for suggestions, insights
and encouragement as this work progressed.

This material is based upon work supported under a National Science
Foundation Graduate Fellowship. Any opinions, findings, conclusions or
recommendations expressed in this publication are those of the author and do
not necessarily reflect the views of the National Science Foundation.

18

*-;.. '. .-,-,.-. -.-..... :,.- . -.. .. .-... ,..... .-. ,,..-....... . -.. i

Table 1: Computational Results of New Projective Algorithm.
All times in CPUJ seconds on an IBM 3081 Model KX2.

MINOS New Projective Algorithm
(Simplex)

Problem- - ___ ___ ___

Name Rows Columns Total CPU Phase I Phase I I CPU
ltns.lie ltns. Itns. Time

EXP 1 10 17 52 0.6 6 11 0.4
AF IRO 28 32 6 0.5 3 1 0.8
ADLITTLE 57 97 126 1.0 9 20 12.3
SHARE2B 99 79 91 1.0 7 14 67.4

*ISRAEL 175 142 338 4.2 9 24 636
BRANDY 221 249 292 41 16 19 215
E226 226 282 572 7.9 17 42 644

BANDM 1306 1472 1362 1 6.4 1 18 1 37 1771

Table 2: LSQR Iteration Counts for NPA algorithm.
NS = Never Stabilized. continuing to increase.

LSQR Iteration Counts Max
Problem Attained

*Name Minimum Maximum "Stable" Phase/Itn

EXPI 12 22 12 1/1
AFIRO, 26 55 30 1/1

*ADLITTLE 83 329 -160 1/1
SHARE2B 607 786 -775 2/10
ISRAEL 270 8853 -650 1/1
BRANDY 136 1008 NS 2/18
E226 130 1332 -1100 1/1

*BANDM 175 1679 NS 2/34

19

[1] C. Blair, "Some Linear Programs Requiring Many Pivots," Faculty Working
" - Paper No. 867, College of Commerce and Business Administration.

University of Illinois At Urbana-Champaign, (May 1982).
[21 N. Karmarkar, "A New Polynomial-Time Algorithm for Linear Programming,"

Proceedings of the Sixteenth Annual ACM Sumposium on Theoru of
Qf mutjg, p. 302-311 (May 1984).

I [31 N. Karmarkar, "A New Polynomial-Time Algorithm for Linear Programming,"
Combinatorica, Vol. 4, No. 4. p. 373-395 (Nov. 1984).

[4] N. Karmarkar. Seminar Presentation at Stanford University. (Jan. 1985),
and private communication (Nov. 1985).

[51 N. Karmarkar, Seminar Presentation at ORSA/TIMS, Boston, MA, (May 1985)
[6] C.C. Paige and M.A. Saunders, "LSQR: An Algorithm for Sparse Linear

Equations and Sparse Least Squares," ACM Transactions on Mathematical
Software, Vol. 8, p. 43-71 (1982).

[7] M.J. Todd and B.P. Burrell, "An Extension of Karmarkar's Algorithm for
Linear Programming Using Dual Variables," Technical Report No. 648,
School of Operations Research and Industrial Engineering, College of
Engineering, Cornell University, Ithaca, NY, (Jan 1985).

[8] J.A. Tomlin, "An Experimental Approach to Karmarkar's Projective Method
for Linear Programming," Ketron, Inc., Mountain View, CA., (Jan. 1985).

[91 Y. Ye, "A Large Group of Projections for Linear Programming - Cutting and
K-Projective Methods," Ph.D. Dissertation, Department of Engineering and
Economic Systems, Stanford University, (in progress).

20

. - . .-. .2I

* UNCLASSIFIED
SSECURITV CLASSIFICATION OF ThIS PAGE (W" *,,._.,.,_

REPORT DOCUMEMT&TION PAGE arwDWLBMu rom
. REPONT MUMER GOVT ACCESS NO . & RECIPIENT'S CATALOO MUMER

SOL 85-5
4. TITLE (mid tlde) S. TYPE OF REPORT & PERIOD COVERED

Technical Report
A Practical Approach to Karmarkar's
Algorithm *. PERFORMING ORO. REPORT MUNER

7. AUTHOR) S. CONTRACT OR GRANT NUmER(e)

Irvin 3. Lustig N00014-85-K-0343

9. PERFORMING ORGANIZATION NAiE AND ADDRESS IS. PGORAN 9 MUNT.)ECT, TAS

Department of Operations Research - SOL A&WONK T UZDER

Stanford University NR-04 7-064
Stanford, CA 94305

II. CONTROLLINO OFFICE NAME AND ADOES IS. REPORT DATE

Office of Naval Research - Dept. of the Navy June 1985
800 N. Quincy Street Is. NUmEn OF PAoE
Arlington, VA 22217 20 pp.

I&~ MONITORING AGENCY MN S DDRES(jIfI dlftfwA CaMWMUhW 00 Is. SECURITY CLASS. (of owe MPMu

qUNCLASSIFIED
IS. VCkASFICATIOWDOWNGOI

16. OISTRISUTION STATEMENT (el his Rhpw

This document has been approved for public release and sale;
its distribution is unlimited.

17. DISTRIGUTION STATEMENT (o5.eef Mw.S 86&0 in Bek 35. A0086 6 ua RMW)

IS. SUPPLEMENTARY NOTS

IS. KEY WORDS (C.U 5om M mm .l*55 I mami or 9 180dMl8 0le udn.)
linear programming projective method
Karmarkar's algorithm least-squares problems
simplex method

2L. ABSTRACT (05nu aM nmee @W f 00900awr md fd=V& OF Week suim
A practical approach to Implementing Karmarkar's algorithm Is discussed. A
variant of the algorithm is proposed which still has polynomial complexity
and which eliminates the need for Karmarkar's canonical form. This method
allows upper and lower bounds to be used and does not require knowledge of

_* the objective value. Some heuristics are given which alleviate certain
computational difficulties that arise when a practical Implementation of the
algorithm is attempted. A FORTRAN program Is described that allows one to
study its convergence properties.

DO ,Ao 1473 m'.TO OFI NOV 6.10 060oRTE

SECURITY CLA PICATION OP THIS PAGE (1Mei -0---

N -,

r

FILMED

7-85

* DTIC

