AD-A155 668 A COMPARISON AND RNRL\‘SIS OF VINTR’ GLOBRL ROUTING 1/2
ALGORITHM WITH THE Ll U) AIR FORCE INS ECH
WRIGHT-PATTERSON ﬁFB OH SCHOOL OF ENGI.. F T CHESLEY

UNCLASSIFIED MAR 85 AFIT/GCS/ENG/85M-1 F/G 12/1

- -t

Y W .Lur\..l..s..(plrlt FRVSPRTRR DA

u.@
SEEE

K E EFETPP

2 =l

6
E

1.4

Il

=—
—

125

——
S ——
—

I

'.- l- -, \M n- t- .-
L U 3 n~ 0 u

i PRFURSLIN Luh...r

MICROCOPY RESOLUTION TEST CHART

St
PR A TR |

NATIONAL BUREAU Of STANDARDS-1963-A

’’’’’’’’’’’

Q
S
Ty »
o« ﬁ
< 1
l -4
&) =
<

ACUDLPARTRON AL LLALY TR O VTS

AL R o ViLNT T
GLoBAL A20THNG VLGORITD W17 TilE LES

VIO NG SLG O H Tt bl T =LAYEDR PRINTED
s

CIaCULT BOARDS

Prod 7.

Uopi

Srli/ues/iNGg/ang=1

OTIC FiLE COPY

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

1

)

1

DEPARTMENT OF THE AIR FORCE G “‘1
|

J

Wright-Patterson Air Force Base, Ohio .

VINTRTS
Tz LER
PRLATED

A COLPARTSON AND ARALYSTS OF
GLUBAL R0OUTING ALGORIT.IN W1TH
RaUT ALUHRTITHIL 11 TWo-LAYER

CIRCULT BOARDS

Tho

15

Tuues

Fred T.
Capt ¥

Chesley

SAT

AFLT/CCS/TING/ 350,11

Accession For

NTIS GRA&I
DTIC TAB :%3<

Unannounced O
Justification__)

By.

_Distribution/

Availability Codes

S

Avail and/or

Dist Special

mﬂ@W

Approved -
P Distribution Unlimited

tor public releolﬁ \s

. e

Telt s
.

T AFIT/GCS/ENG/85M-1
A COMPARISON AND ANALYSIS OF VINTR"S GLOBAL ROUTING
ALGORITHM WITH THE LEE ROUTING ALGORITHM IN
TWO-LAYER PRINTED CIRCULIT BOARDS
THESIS
Presented to the Faculty of the School of Engineering
@5 of the Air Force Institute of Technology
Air University
]
in Partial Fulfillment of the
Requirements for the Degree of
Master of Science
by
Fred T. Chesley, B.S.
Capt USAF
Graduate Computer Systems
March 1985

PRl ol

PO A R

'-‘.(7 K ""-".‘ e
. . B)
P XY

Ban: oy

., "

..
o.'f'.".. ‘c.'

’

KPR
*r,
0 LAY

A P R e gt et Sre dash A Shat e S i e

Acknowledgments

Lt Col Harold Carter of the Air Force Institute of Technology, i:-
Department of Electrical Engineering proposed this project. 1 am deeply -
indebted to him for his insightful assistance and patience in the course
of my research. %f*

The Institute”s Data Automation directorate also deserves many '_Y
thanks, particularly to 2Lt Mark Strovink who was kind enough to prepare
the graphs in this thesis and still manage to accomplish his normal
duties. Appreciation is also expressed to the other staff members for
their assistance in the draft and final preparation of this document.

Last, but certainly not least, L express my sincere gratitude to amy o
wife, Marion, who provided support and encouragement along the way even
during times of frustration.)

Fred T. Chesley ‘ ;if
) Ll

A T e A
IR N S L AN . ..
P PSS I A IS I S)

Table of Contents

Acknowledgments ccecsecesesscsressnssescesesssccsosasscanne
LISE OF FLGUTES eeeevneescossasennsesssecasnsnsnsssoesesenns
List Of TablesS ceecccsccecososroscacsvcosssscccoossssancasne
ADSEYACL scssccvccacsactcacnccrssocccccacsosnscsssansoncsssane
I. Introduction ceeceseccvecessarescccactsccscccccscncnnne

Background Information .ceceescescecccscocecsscnssone
The ProbleM vsecececsssvreroscsacscssscscssascscasoscncne
ObjJectivVe cevevecccccssrosscsssocsossonncnsocsssnsonse
StandardS cececsssrtesccsssssecsssccesscsccasasescosas

Apptoach to Solutlon L 3K B BN B B BE BRI BN N JE TR OB BL NN MR BN NN BB IR B B BN B BN NN IR]
II. System Requirements ceeeecscveccescncscccvctsscsococe

Obje(:tive SO 90 OO E L OQEPIOES ORI DO OO GOS0 CSNSOEP OSSO ROeN
Board ParamelerS ececcesccsacssecessssssssoccssssssvsse
Cell PArameLeYrS8 ccscecossccvsccscsssssisssssncssasane
Secondary StOCAZE ececcveccsoncescscsscccscassoovcnens
Processing ParamelerS sccececescscsssscacccscscsccnsance
Expansion DirectionS ceececeecvevscscrcrscessssrancccns
Overcoming Segment Processing Problems ccecevcescccee
Data Manipulation Parameters cececsscsssccsscscsccasne

sumary B &2 0 0P SO0 E GO BOBONOB RO OSRGOS ENIBTOOGERESOEPSSOOESE RN
III. System Design eceevesoesceccsccccecssacsscncssscssane

Introduction secoeccesvcccrcssssccevtvsscsessossoscsccne
Input Design cessceveccccccccececronssenssscsscssssns
Output DesSign seecenccccsccacsssccscvoscscscnssncssnsasne
Grid Design ~ Referencing Cells .eececccccssncoccccsee
Lee Router Design = Algorithm sceecccccccccsnccncnane
Lee Router Design - Initialization seeececssccaccanse
Lee Router Design = EXpansion eceeeescscesccssncscccses
Lee Router Design = ReLrace cecccesvessscensesssccsnse
Vintr Router DeSign eeeecececsssosvssanccesceccossosne
Grid Management DesSign ceecvecsvecsvecsccsssenccnnane
Expansion List Sort DeSifn ssececscscesscsrecscscsnnnss

Summaty 2 00 0000008060005 08000r0 800808200003 0000s00000000

itid

Page
ii

v

vi

vii

(G AR N

(-]

11
11
12
12
13
13

15

15
16
17
18
20
21
21
23
24
27
29
30

AN W ah B g e g s e Jve e o

IV, Results and AnalysSils ceecveccscsccscsscoscvcncscoccss 31 S

Procedure 2 2000000 000000000000000000000000000000c00GCS 31
Output File Size and Processing TiMe eeeeecsessescans 32
OQutput Results and Analysis = 20 NetS teocecescccoccs 35
Output Results and Analysis = 40 Nets eceesevescecsses 37
Output Results and Analysis = 60 Nets cevevccsccascecs 38
Output Results and Analysis — 30 Nets ecececescsceses 4l

summary IEEEEN NI NN N I NN B N N S NS RN NN R B N B B YRR B BB BB BN 43
v. Conclusions and Recommendations ececcesscsscscsscssne 44

ConCIusions TR R R R XN N NI I I B R A BN R BB B N BB B RE BN AE IR B B N BN B BN B R] 44
Recommendations eceecsececcsccscsscssccosssnscssscnsassee 45

Bibliography 28000000 0000006000000 909 80808080000 0cRsR0RRElbIOODl 47

Appendix A: SADT Design Diagram cevececesccscccccscsansses 43
Appendix B: Software Implementation -~ Program DATASTUB ... 59
Appendix C: Software Implementation ~ Program ROUTE 65
Appendix D: Program DATASTUB eeecceesceccccsvcesscsssosssse 85
Appendix E: Program ROUTE .vcesvevevscscsssscscscsassreass 101

Vita o..c.oonn..oo.oo.o:.ulo'oot'Qo.o.u..laooo-coc‘vlaoocont 137

1

iv - o

RS et et vt L

P P B

LI G e i N LI
- ottt .

S N W, P S S LS PR S S P LA L,

List of Figures

”~

Figure Page

R 2.1 A PCB Represented by a Uniform Grid Structure .ecceese 6
. 2.2 Euclidean/Manhattan Distance Formulas ececececscsscens 7
" 2.3 A PCB Divided into Two-=By-Two Segments esesececcccseess 8
-~ 2.4 Dimensions of a Segment secescececccssccccsccsssscasss 10
. 3.1 System DeSiBN eeeccossssscscccssssosesssssssanssasscsess 15
l 3.2 Input DesSifn cececsecccnvessnccscssecsssosnssnsssccsese 1O
o 3.3 Absolute Cell LOCALION ccseescecvsocosorocsonassssosnss 18
T 3.4 Relative Cell Location .c.cceeeecvecossssesccscccnsesss 19
:f 3.5 Lee Algorithm DesSign seccecceccssscncccssscessocsascaces 21
. 3.6 Vintr Algorithm DeSign eeecoscecnceoncccccsnssccosssse 25
3.7 Example of Four Routed NeL$ cucecoccccsccccsccscosesse 25

3.8 Example of the Tails for Four Routed Nets svecscaseess 26

4.1 Output File Size ReSULLS cieecccssecscsosecssncscsasse 33

4.2 Processing Time ReBUltS ceeeeescsscssssosscsccscsscane 34

4.3 Unrouted Cells for 60/80 Net Data SetSe.ccesecccscsesss 39

4.4 Average Route Length for 60/80 Net Data Sets seeesseces &0

R : List of Tables

. Table Page
i A Characteristics of the Data Sets Used in Analysis 31
e B Percent of Route Path to Calculate Tails ceeeecsceseass 32
. C Results for File Size and Processing Time .sccevcenesss 33
- D Results of 20 Nets by Iteration Processing Shortest ... 35
. E Results of 20 Nets by Iteration Processing Longest 36
F Results of 40 Nets by Iteration Processing Shortest ... 37
G Results of 40 Nets by Iteration Processinyg Loagest 37
- H Results of 60 Nets by Iteration Processing Shortest ... 38
s I Results of 60 Nets by Iteration Processing Longest 39
3 J Results of 80 Nets by Iteration Processing Shortest ... 41
a K Results of 80 Nets by Iteration Processing Longest 42

i

.
VYN

I A

g . Abstract
i \‘~j)uictocomputer software was designed and written to compare a

standard routing technique (Lee) with an experimental, unpublished

routing technique proposed by J. Vintr for two-layer printed circuit

boards. .
[)-. ﬂ‘.) ‘t{yyﬂ/)

vintr”s algorithm, as studied here, uses a four-iteration approach

RK 1

to minimize unroutable nets and minimize route distance.
:ﬁ The unrouted nets and average route lengths were observed and
analyzed for differing sizes of two-point nets.

Analysis revealed a reduction of unroutable connections across
iterations, but congestion played a heavy role in the overall success of
finding paths.

A recommendation is made that use of 8-bit microcomputers in design

automation is impractical, and research in this area of technology can

best be accomplished using larger computer systems. (f:;“‘\~—/

vii

............

v

st
atetalts

A COMPARISON AND ANALYSIS OF VINTR"S GLOBAL ROUTING ALGORITHM WITH THE

LEE ROUTING ALGORITHM IN TWO-LAYER PRINTED CIRCUIT BOARDS

DEAD -
v

I. Introduction

Background Information

i
l‘....lll

]

.
‘

The problem of printed circuit board (PCB) routing involves a series
5. of connections between two specific points called terminals. An attempt
: is made to connect all terminals with no wires interfering with any
,;' other wires. Interference may take the form of wires physically
intersecting with other wires, two wires too close to each other, or
- long wires on different layers of a PCB.(7)
These last two problems generally require that the wires maiptain a
-k minimum spacing at ail points on the board and that wires on two-layer
PCBs generally flow in directions perpendicular to each other (i.e. a

horizontal flow on one layer and a vertical flow on the other layer).(5)

"

L.
" A connection between PCB layers is called a via.(l) .
Traditional routing of PCB“s has been accomplished in two steps--
3 loose routing and final routing.(7) The loose routing step is the

planning stage for final routing. It determines which wires will run
;: through specific pathways on the PCB. The primary consideration in this
~2 step is the reduction of congestion through these narrow pathways to

avold bottlenecks. This may necessitate rerouting some wires.

Final routing is the actual allocation of wires to tracks. There

. are three basic final routers: grid expansion, channel routing, and

linear expansion.(7) The linear expansion router is efficient for
;;' simple tasks, but is slow, requires a large stack of data, and does not

guarantee a connection even if one exists. The channel router always

[

makes all the connections even if it has to overflow the pathways and
destroy the minimum épacing requirement between wires. The grid
expansion router (Lee”s router) requiicc 2 large amount of memory for
large, dense PCB layouts, but guarantees a path connection if it exists
with the path being the minimum wire distance.(4)

The basic Lee algorithm uses a matrix of grid points or cells to
represent the surface or layer of a PCB with the distance between cells
as the minimum wire separation. The algorithm (1) begins at a specific
cell which is to be connected to another cell. The start cell is
labeled as "1". Then all adjacent cells with a Manhattan distance of
one are labeled as "2". All unlabeled cells with a Manhatten distance
of one from these cells are labeled "3", and so on, until the target
cell is reached. A retrace procedure then executed to find a minimum-
distance path back to the start cell. Thus, if the target cell was
reached on the ith expansion, the retrace begins at the target cell
and finds a cell labeled (i-1). This cell is then used to find a cell
labeled (i-2). In this manner, the shortest path between two cells is
obtained.(6)

There are many variations of the basic Lee algorithm. Rubin (6)
disc.sses variations to allow minimal-state cell coding, paths with
minimum turns, and search size reduction. Hoel (3) incorporates an
array of stacks rather than a single list to speed up searches. Hoel
also implements a cost-encoding scheme which allows retracing codes to
be assigned as soon as they are reached.

Algorithms which combine loose and final routing are called global

routers.(7) One such global router is by Vintr.(8) This algorithm

initially routes a PCB using a standard router (e.g. Lee”s router) and
then uses an iterative approach to further minimize the total Manhattan
distance of all paths. After the board is routed using the standard
router, only a portion (say 104Z) of the ends of each path are
implemented. This is the end of the first iteration. The second
iteration begins with the selection of a single connection, eliminates
its tails and reroutes the entire path. Each connection is rerouted in
this manner and then a larger portion (say 20%) of the ends of the path
are implemented. This iterative process is continued until the
implemented portion of each tail equals or exceeds 50%. Soukup states
that although Vintr“s "router is very efficient, it cannot guarantee all
the connections”. However, Soukup goes on to state that Vintr”s router
i; the best global router today and, although it may not complete all
the connections, it is a "cure for the most frequent cause of unroutable
nets on PCB“s: the blocking of pins”. This research will explore
Vintr“s method of routing PCBs by looking at whether the algorithm

minimizes Manhattan distance and whether the number of unrouted acts

decreases.

The Problem

The Air Force Institute of Technology is an educational/research
institution through which individuals can be introduced to the field of
desigh automation and further state—of-the~art technology in the field
of design automation. The tool to provide the means for this education
and training is the Design Automation Hardware System (DAIS)(2) being
developed by several AFIT faculty members. DAHS will be a single,

dedicated computer system integrating all design automation software at

e - MRS . -."! '!!' " !.!.'A-.".'.'.'_'—.'!'T*_'." A S gk Sand A du s ol et and Jens og

o

AFIT into a central data base. One aspect of DANHS will be the design
and implementation of a user-oriented, two-layer printed circuit board
routing program to be used by AFIT/ENG personnel in their research
efforts. Preliminary research is required to develop and fully evaluate
an efficient routing algorithm for the design automation of two-layer
printed circuit board (PCB) routing. The software will be designed for
use by the Department of Electrical and Computer Engineering at the Alr
Force Institute of Technology (AFIT) in support of DAHS.
Objective

The objective of this project is to provide the first step analysis
of a relatively new routing algorithm by J. Vintr (8) using a
microcomputer. The research conducted in this study will be the basis
for later implementation of gicrocomputer-based design automation
software supporting DAHS for faculty and students.
Standards

Several standards were deemed important for the successful
completion of the project. First, the system should be written in a
structured language to encourage easy modification and documentation.
Second, the routing algorithm should use sub-algorithms designed to
reduce run—-time and minimize, as practical as possible, the length of
connections and the number of unroutable nets. Third, the system should
be designed to process virtually any size PCB. Fourth, the capability
should be included to allow the user to enter data and to create data
files. Fifth, the path for each net routed should be printable to allow

later analysis.

i
(e

% "y
SR A

L IR
P A

.
o

B P
T]

| K
[

N
A

-‘.-':' ' ‘,'
S
Lollial s b

LPULIVIY G N)

v e
o

10"1 l.-
I R R
faatatele

Approach to Solution

With the above objectives in mind, the solution was approached in
the following four major phases: system requirements, software design,
software implementation, and analysis. 1In the initial phase, the system
requirements were necessary to determine constraints the hardware would
place on software execution, data storage, and data retrieval. The
overall software design phase integrated the hardware and software
requirements into a high-level model from which the software could be
implemented. In addition, a language had to be selected to fulfill the
requirements of modularity and structured design. The software
implementation phase used the software design to flowchart the software
prior to actual writing of code. The implementation phase also included

testing and debugging. The final phase, analysis, was the systematic

execution of the program and analysis of the results.

)9

AR A G e A s S S
R A" . ~ . - - o ‘.'-_ -.' -, .‘,* - -t e - - - LT . . _' ,‘ _»" “V- - .. - - ! P T e T T

II. System Requirements

Objective ;;

The system was evaluated with the following three requirements in Ei
mind: the minimization of unroutable nets, path distance, and :;;
processing time. Several parameters were considired in light of these ii
system requirements and constraints. 2
Board Parameters

First, the effects of the system requirements on the PCB were ﬁ;,
evaluated. A typical PCB divided into a regular structure of uniform ;
cells applicable to the algorithms discussed throughout this report is
shown in Figure 2.1. oo

6 inches 'iz
® * o o e s o o o s o o o —
e e s a4 s e s s e e o . —

sa cell

6 inches © s e e o s s s e o o » ;Q
—

Fig 2.1. A PCB represented by a uniform grid structure

Most printed circuit boards for microcomputer based systems have —
dimensions of eight by ten inches or less and have two layers upon which

the circuits are etched. The wire widths average 50 mils wide with 50 "o

P T T . e e el - .
SO IS . o, T e et et T T e e N T e ettt et e e e e N e LR .
ot -t S SRR T S L - e

L}

e et A R R A T T A A, A R L UM n et e e T T T T e T RGN,
- e VRS PR PRV VAR IR TR TR AT YA U YU VOWVO O

P i e Arut e

mil spacing between wires.(l) Consequently, the center-to-center
distance of parallel wires is 100 mils. A grid structure can then be
superimposed on the PCB. The grid points or cells maintain the 100 nil
spacing necessary and represent the physical points on the PCB where
pins reside or the paths where wire routes pass through. Two cells are
ad jacent if the Manhattan distance between them is one. A path can be
formed only between adjacent cells. Each cell may either be an
obstacle, that is, unusable due to physical blockages or it may be
available for the placement of a pin or circuit path. This
representation greatly simplifies the task of finding the minimum path
for a wire. WNo curves exist and the Euclidean distance does not apply.
Rather, distances are calculated on the Manhattan distance measure and
. the calculation is generally an order of magnitude faster than
calculations based on the Eﬁclidean measure.{l) |

Figure 2.2 shows the representative difference in calculating

minioum distance by Manhattan and Euclidean based measures.

Euclidean: (x2 + y2)*%0.5
Manhattan: x + y

Fig 2.2. Euclidean/Manhattan distance
from point A to B

fetete A .
["'i AEAER
g v ' .
LN

* .'v .'l' b
A

.
. "
DR T S A R T

'l (]

. e

R e e i S i it e it T

/5

To determine the dimensions of a grid used to represent an eight by
ten inch PCB, it is casiest to calculate the number of cells in a one~ ;;;
inch distance and then multiply this value times the board dimensions in

inches. Since cells are placed at 100 mil intervals, there are 10 cells

per inch. Therefore, the dimensions of the PCB in question are 80 by —la
100 cells. The total number of cells in a single layer of the board is

8000 and with two layers, we have 16,000 cells. It is clear that the

number of required cells would easily overflow a microcomputer”s memory B

if one takes into account that the program, operating system, and system ﬂfl?

support modules or programs are also needed in core memory at the same f;?
time. Later testing showed an unacceptable length of time required to e
connect random points on this size board. Consequently, to preserve the i:ﬁ
original nature of the research, the 6 inch by 6 inch board was divided :iﬂg
. e
into four equal sized segments as shown in Figure 2.3. —
~.
o
6 inches S
L] - L] L] L] L] * * - L] . - m
. Segment .|. Segment . ;i:
6 inc hes L] L] - L] - L2 - - L 4 * - - _j~..?
L] L L] L] L] . - L] L) . - L] s-,_._q
. Segment .|. Segment . {ﬁ;
Fig 2.3. A PCB divided into two-by-two segments 3?5

3

D TR N TR IR S R Sy LIPS P R O IS . . DR
LA AT IR I YU A S P M SR T TN Lt . N P A . T R R T
St Sttt Al e 2 e e e 2 ant e et s .‘_.\l.~ PR S DR ‘.‘-‘\'..-.'
jlllllil.lll._.--_ St e S B at o o= o= ot = - 1 & S AT Z

/e

Cell Parameters

The second factor influenced by the system requirements is that of
cell coding. Hoel (3) and Rubin (6) both discuss strategies for cell-
state encoding. Each cell requires a designation of whether or not the
cell 1s free for use. In addition, a designation for the direction of

the retrace path is required. The initial rationale for each cell’s

‘state allowed for three possible conditions. The first condition is

that the cell is unavailable for use. The second condition is that the
cell has been reached through previous cell expansion. The third
condition is that a cell has not been previously reached and is
available for expansion. These three values are simply flag conditions
and can be represented by boolean values. It was later discovered that
the third condition flag could be eliminated. Consequently, cell
conditions could be represented by two bits. If these values are) -
defined during software implementation as a packed array, only one word
of memory is required for their storage. The retrace direction was a
little more involved. Initially, three different directions were
considered, each direction occupying one word of memory. A zero, plus
one, or negative one value could then be stored in any of the three
locations. However, it would have taken three words just to store the
retrace directions. The other extreme would have been to define one
word of storage for any and all of the possible retrace directions and
decode each value when a path was being retraced. These two extremes
were eliminated either due to excessive core memory consumption or
excessive processing time devoted to decoding. A compromise was made in

this area which occupled only one word of memory. The retrace

Sttt . Sl
S . f

3 . . o .
AR A N
Gt L g o Py

e e
RIS

L .
. Aaa’

[Lttt
RN .
A A
[S A I
s on O LN N

L

4

LT e
s ey
s
o
DR

e
Aok Aol t 2

P4
IR

DA
W
RN

R R S
X . Tt
PRI

H l.l ..4'
AOKION

ARy
" ‘. l‘ l‘ .l‘ 'l. ." 'l.i

directions of horizontal, vertical, and layer change could éach be
allowed two bits of storage, and if all three were defined in software
as a packed array, only one word of memory would be used. The allowable
two bit values for each retrace direction were "0" for no change of
direction, "1” for a plus one change of this direction, and "2" for a
minus one change for this direction. The last value would then be the
only value decoded. As a result of this cell analysis, 14,400 words of
memory are required for a 6 inch by 6 inch grid. Apple UCSD Pascal
allows only 18,000 words of memory available for code and data in any
procedure.(9) This constraint allows only a single segment no larger
than 3 inches by 3 inches (30 by 30 cells) to reside in central memory
at one time. Thus, each segment shown in Figure 2.3 is further divided

into cells as shown in Figure 2.4 below.

I €——— 3 inches ——>
A\ - . L] L] L] L L L] . * L] L]
::. 3 inches ¢ & o o 8 8 & e & o o o 30 cells

€= 30 cells —=————

- Fig. 2.4. Dimensions of a segment

VAT I el g B A AL AU L B M e e e o e e e e e A e

~ e T R A /7.

Secondary Storage

The third factor influenced by the system requirements was that of
secondary storage. The Apple UCSD Pascal system formats diskette
storage in blocks. Each block stores 256 bytes of data.(9) Thus, to
store one 30X30X2 grid segment at two words per cell, fifteen blocks are
necessary. For a 6 inch by 6 inch PCB (four segments), sufficient
memory cxists to store all segments, the retrace file, the input file,
and any intermediate files for processing. A user could potentially
store 10 segments, the retrace file, an input file, and several
intermediate files with the 128K RAM disk. Due to the nature of Apple
Pascal, files must be stored on disk in contiguous blocks; therefore,
when a file is opened for writing, the largest amount of contiguous
storage is reserved for the file. Thus, all remaining storage could be
reserved for the writing of one file. This problem is especiall§ . ~
difficult if one is writing to multiple files. The solution was to
specify an approximate amount of storage for the file. The system would
regserve the space and use only the amount it needed when storing the
file and release the remainder.

Processing Parameters

The fourth factor influencing the system is the general processing
requirements. First, the cost function is the Manhattan distance
between adjacent cells of the net. Thus, Lee”s algorithm will produce a
minimum distance/cost path. Second, Lee expansion is terminated when

the net end point is reached then the retrace procedure is performed.

Third, expansion is in all directions to ensure finding a path if indeed

.\ h‘
N
one exists. Fourth, to conserve memory and still have sufficient room :
‘.-;\ . :::"
11 - -

] ‘l .' " ‘l 1 r
atat,

to store all cells reached during expansion, the largest potential
nunber of cells reached during expansion must be known so the size of
the list of cells reached can be defined. For a board of 60 by 60
cells, the approximate center is at cell (30,30). With no obstacles, a
total of 30 expansions will result in the maximum number of cells
reached, 120 cells per layer or 240 cells overall.

Expansion Directions

There is a general difficulty with any search algorithm as to the
most appropriate direction to take. With a predetermined expansion
algoritinm, the first expansion direction may be opposite to the
direction of the end cell. A requirement to always expand a cell in the
direction of the end cell was considered but was disregarded since
expanding the cell closest to the end cell would largely eliminate the
effects of misdirection. The closest cell would expand in no more than
three directions before a connection was made while the use of a
sophisticated direction prioritization algorithm would add nothing to
achieve shorter patiis or lower processing time.

Overcoming Segment Processing Problems

As a cell is reached during the expansion phase, its coordinates are
saved in a list. The expansion phase uses the entries of this list-to
reach additional cells, and it {s unlikely a connection wouldlbe made
when expanding the very first entry of the list. That is, the actual
cell needed to make a connection may be far down the list and many
entries might be needlessly expanded before the cell leading to a

connection is expanded. In addition, cells from different segments will

be entered into the list as segment boundaries are crossed. The result

12

of expanding this list will be an additional processing delay due to
increased swapping of segments.

To eliminate or reduce the needless expansion of cells and increased
segment swapping, an algorithm can be designed to ensure that the cell
closest to the end cell is processed first followed by all cells of the
same segment. This algorithm should sort the list of reached cells
first in ascending Manhattan distance to the end cell and then by
segment. The effect of the sorting will reduce both the number of cell
expansions and the number of segment swaps.

Data Manipulation Parameters

The fifth factor influencing the system requirements is the need for
a general purpose program to allow data entry and to generate a hardcopy
listing of each routed net”s path and length. The decision was made to
provide a separate program for data input, segment initialization and (‘
obstacle cell specification. The main routing program would print the
route file and path lengths since this file must be used as input to
Vintr®s algorithm and recreated from one iteration to the next.
Sunmary

Although the original board parameters were 8X10 inches, it was
determined in preliminary testing that an unacceptable length of time
was required to route nets. Thus, to preserve the original objectives,
the board dimensioas were reduced to 6X6 inches. The cell structure was
designed such that only the most important information (retrace
direction, cell availability condition, and cell reached condition)
would be stored in the least amount of memory. Thus, each cell only

requires two words of memory. Testing showed the 128K RAM disk provided

R I NG A) el

P N L A O S S PELr pe LIPS
T S A N U IO ~ e
PR R LT3 2NN PGV RSN AT SN

aw. e W
TIPS T B PN)

adequate space to store all data input, board segments, retrace paths,

i - and intermediate files as long as sufficient space was defined in

software, To speed up the connection process and eliminate the number

of 1/0s, two algorithms had to be designed. The first was to sort the

i list of cells reached during expansion so the closest to the target
would be expanded first. The second algorithm uses the results of the
first to build a new list by taking the cell closest to the e¢nd cell and

ﬁ all other reached cells on the same grid, then the next closest cell
remaining in the reached cell 1list and all others on the same grid, and
so on until no cells remain in the reached list. The last design factor

i was of data input and output. A separate program was written to input
data and build the board segments. Since the retrace file is used as

input to Vintr”s algorithm, the net paths would be printed -with each

= = : path”s length before the ro:he file is passed to Vintr®s algorithu.

B (e

J

).

: &
- o
: RS
~ . \:_-J
).)
3 14 PR
- e
:i . _~-._ ...

RO

- ITI. System Design

- Introduction

To meet tha requirements previously defined, four major softwar
i. routines had to be developed. These four routines and how they interact
with cach other arc shown in Figure 3.1, the overall system design. The

second, third, and fourth routines are embedded within the box titled

m “ROUTE DATA FILES".

NET _FILE ROUTE
ROUTE FILE NETS
BOARD SEGHENT

FILES

ﬁ“‘ BUILD NET FILE
: DATA BOARD SEGMENTS

o FILES

ECONDAR
STORAGE

Fig 3.1. System Design

First of all, a data input routine was required to input the ceil
coordinates for each net added to the net file (the input data file) and

the coordinates of obstacle cells. The second and third routines

developed were the routing and grid management routines, respectively.
)

» .

- These routines are highly depcndeat on each other for fast, efficient

execution. In the fourth routine, a metiiod was needed to provide for

the primary dircction of expansion. This requires some type of sorting
® .
S scheme to expand cells closest to the target cell first. As seen from Ny
Figure 3.1, there are two sepatate progrums to handle data eantry and the ::?

routing/printing process. o

15) <
-3
A

P A i A T DR s,
e e e e e L O AR P P N P R e e i TR R R S
L Iy el 20 mddoiatheh PR DRI W A VACIPY TR SR PRI I, S R PO P R IR AT Y DR Jead

........

55 . Input Design
Figure 3.2 shows the overall input design. The user has the option

to build the initial data file and/or specify obstacle cells. To build

ENTER NET FILE #INITIAL— GRID SEGHENT ENTER
CELL IZE GRID FILES OBSTACLE
COORD. SEGMENTS CELL
FOR COORD.
NET

Fig 3.2. 1Iaput Design

the data files, the user is prompted for the start cell coordinates and
then the end cell coordinates for each net. The coordinates of each net
is displayed so the net may be rejected if any of the coordinate values
have been entered incorrectly. When all nets have been entered, the
entire board is initialized. Individual obstacle cells may then be
designated on the board with the capability to ignore an obstacle cell
if erroneous coordinates have been entered. All board segments are thea
saved on secondary storage. This initialization step ensures that all
retrace directions and condition flags are set to zero values except for
those coordinates which represent occupied cells (a start, end, or
obstacle cell). Each start/end cell has its obstacle flag set to "1" on
each layer of the grid to represent the physical placement of a chip”s
pin which typically extends througin to the opposite side of the PCB.
Obstacle cells are designated by having their obstacle flags set to "1"

However, differing from start/end cells, obstacle cells aust be

also.

gy P ang aaa T v - - - _
Paiiidl Kas A B A T T T T Y Y Y W TN W W W,

P

specified for each side of the PCB. This method of designating obstacle
cells allows special paths to be constructed which are wider than
normal, paths such as the power and ground circuits and edge connectors
which generally occupy only one side of the PCB.

In summary, the input design allows input of two~value cell
coordinates for the start and end points of each net and three-value
cell coordinates for obstacle cells. The end points of a net may be
rejected if an incorrect value is entered. Once the list of nets and
obstacle cells are entered, they are permanently stored on secondary
storage and are subsequently used to initialize all board segments.
Output Design

The output portion of the design provides the capability to obtain a4
printed copy of all net paths once the Lee or Vintr router has finished.
There are three methods to do this. The first method merely prints the
cell coordinates during the retracing of the path following a connection
and does not save the path coordinates for later use in Vintr~s
algorithm. The second method stores retrace paths in primary memory as
the p+th is retraced. However, this method uses valuable primary
memory. The third and favored method stores the path on secondary
storage for later output to a printer. The advantages of this method
allows output of the paths as in method one, although not as fast as in
wethod two, but does not use valuable primary memory to store the path.
Another significant advantage is that the paths are permanently recorded
for later use in Vintr“s algorithm. As a path is retraced, the three
coordinate values for each cell along the path are saved to pin-point

the precise location of the path on the grid. To avoid the tedious

17

-

CR I T R

[P A
e e
R P

»
’

o e ————y
A e ara

T
\

manual method of determining path distance, the output routine
calculates the length of a particular path as it is princed.

In summary, three-valued coordina:tes for each retrace cell are saved
on secondary storage to minimize system turnaround time and allow for
their use in Vintr”s algorithm. As paths are printed, an internal
counter sums the number of cells reached during the retrace process so
the total path distance can be printed,

Grid Design - Referencing Cells

The strategy of how one locates a cell in a large array when only a
sub-portion of the large array is immediately available has a profound
effect on the efficiency of Lee”s algorithm. This dilemma suggests two
representations of a specific cell location. The first representation

is of a cell”s absolute location and is shown in Figure 3.3.

6 N
L
E 5
N
G 4 . ¢ < .. .
T
I{ 3 .] - . L] .
(5,2)
2 X .
1 . . - . . .
1 2 3 4 5 o
WIDTH

The absolute location of cell x is (.,2).

Fig 3.3. Absolute cell location

18

.......

(It should be noted in reference to cell coordinates that the first
coordinate denotes the width parameter and the second coordinate denotes
the length parameter.) For example, if the board dimensions are 6X6
cells, a cell can be located simply by specifying its coordinates.

The second representation requires the coordinates for the cell’s
location within a segment and the coordinates for the segment”s location
within the board. For example, if only a portion of the entire grid is
available at one time, say 3X3 cells, a cell”s location must be
specified within the segment, and the segment must be referenced with
respect to its location on the overall board. Figure 3.3 references the
same cell as in Flgure 3.4 using segment coordinates and relative cell

coordinates.

OHxQ
HzZmxxomn
T O Zee
-
.

1 2
GRID SEGMENT WIDTH

The relative location of cell x is (2,2) in segment (2,1).

Fig 3.4. Relative cell location

19

o 3

LY - - -

o e T e e T T N e

° o kA - - - - - -~ - . - -
AL e s o e s a" - .\ . e s T S e e N T T

E it

As cells are expanded and others are reached during the actual
routing process, segment boundarfes are crossed. Consequeatly, if both
representations are kept in primary memory, the routing process could
take place using absolute coordinates while a second algorithm could
keep track of the segment”s coordinates and of the cells within the
segment. Whenever a cell other than the current cell is referenced due
to expansion or retrace, a check is made to determine if the segment has
changed. If so, the grid management routine (to be described later) is
invoked. If the segment has not changed, new relative cell coordinates
are calculated so the reached flag and the retrace direction are
specified for the proper cell. The use of absolute coordinates for
expansion and retrace and the use of relative coordinates for access to
specific cell information is especially advantageous during retrace.

The coordinates of the retrace path are saved as absolute coordinates,
and retrace direction data from a cell (referenced by its relative
coordinates) is used to calculate the absolute cell coordinates of the
next cell in the retrace path.

Lee Router Design - Algorithm

The design of the Lee algorithm used in this project is basically a
process of reading the end cells of a net, initializing various data
parameters, cxpanding cells until a connection is made or is impossible,
and retracing the path for a connected net. This same process is
repeated for each net., Figure 3.5 shows the overall design of the Lee

algorithm.

e L e A T T T T Lt e A

........
.....

''''''
v e

INITIALIZE | SEGMENT EXPAND NOT CONNECTED
SEGMENTS [FILES CELLS ;>UNROUTED RET
FOR EACH CONNECTED
NEW NET FIND
RETRACE
PATH

Fig 3.5. Lee algorithm design

Lee Router Design - Inmitialization

Upon entry into the Lee algorithm, the cells of all segments nust be
initialized. The initialization process resets all retrace directions
to zero and the reached flag to "not reached” for all non-obstacle
cells. The obstacle cells, at this point, represent both physical
obstacles and the wire paths between cells. Once all segments have been
initialized, the data lists for storing cells to be expanded (ELIST) and
cells that are reached during expansion (RLIST) are also initialized so
that neither list has any entries.

When a net to be routed is read from the net file, its start cell is
immediately stored in ELIST and the same cell on side 2 of the PCB is
stored in RLIST. Once these processes have taken place, the expansion
process continues until a net is connected or it is determined that a
connection is impossible.

Lee Router Design - Expansioan

The design of the expansion process the heart of the Lee algorithu.
It is the method of taking a cell with specified coordinates and
determining if a path exists to each adjacent cell until a connection is

made or no paths exist. For any one cell there is a maximum of five

ponns

]
P

Lacall

R RN
; St AT
N U LT

RS L
. ' - T Fo T T e s

etatate a0

S

-——

2

ad jacent cells which may be reached on a two-layer PCB. These five -
cells” coordinates can be easily calculated from a single cell”s

coordinates. A single cell has three coordinate values - width, length,

and side. A fourth coordinate value can be calculated by adding "+1" to S
the cell”s width coordinate, a fifth coordinate value by adding "~1" to

the width coordinate. Similarly, the sixth and seventh coordinate

values can be calculated from the cell”s length coordinate. The side :;:;
coordinate is trivial since it always has a value of "1" or "2". Since P
these adjacent coordinates are always calculated in the same manner, el

they are easily defined. As an example, if a cell with location (x,y,2)

is to be expanded, the five adjacent cells are defined below. i
CELL LOCATION: (x,y,2) . jf}ﬁ
ADJACENT WIDTH CELLS: (x-1,y,2) and (x+l,y,2) ‘ s

ADJACENT LENGTH CELLS: (x,y-1,z) and (x,y+l,z) ;EQ

ADJACENT SIDE CELL: (x,y,1) or (x,y,2)
;iig
If the four width and length coordinate values are saved, they may :?i“
be easily used to reference adjacent cells. Adjacent width cells are
defined by using one of two newly calculated width values to replace the
current cell”s width coordinate. The adjacent length-wise cells can be T;w
referenced in a similar manner. By sequentially replacing the original :?;ﬁ
values by the new values, all four directions may be considered without S
ever permanently changing the original cell coordinates. :ég
Initially, no cells have been reached and the only condition flag Eig
set is the obstacle flag for the start/end cells and other obstacle ;BE

[]
ro
o 4

cells. As the start cell is expanded (an ELIST entry), each adjacent
cell that is reached has its three coordinates saved in RLIST. The
first expansion has at least one cell that may be recached unless the

connection is impossible. If more than one cell is reached, each cell

is saved. When the start cell has been fully cxpanded, the reached
cells are moved into ELIST and expanded one at a time. To avoid
repetitious expansion into the same cell, a reached cell has its reachad
flag set. Only available and unreached cells are eligible to be
reached in the expansion process. If a connection has not been made by
the time the last ELIST entry is expanded, the list of reached cells
(RLIST) is moved into ELIST and expanded. This process is repeated
until a connection is made or no further cells are available for
expansion. Once a connection is made, the retrace procedure is invoked.
If all ELIST entries have been expanded and no RLIST entries exist, the
net is considered impossible and is saved in a list (IMPOSLIST).

Lee Router Desigp - Retrace

Once a connection has been made, the path should be retraced. Since
a connection is made with the end cell, the retrace begins at the end
cell. The next cell of the path is calculated from the current cell”s
absolute location and the retrace direction information stored in the
current cell. When the coordinates of the next cell are the sawme as the
start cell”s width and length coordinates, the retrace path is complete.

During this process, each new absolute cell location of the path is

saved in the route file and the obstacle flag for each cell is set.
Of all the data items within the program, the items which may use

more primary memory than any others are the retrace dircections. If

[}
e £\

23

AR)

»
o el

e sl e Te e
o nl _alalals 9o

ot e e .
PR
. PRI

negative values are allowed, each direction requires an entire “"word” of
memory. With three directions for each cell and hundreds of cells, it
is easy to see the problem. To minimize storage for the grid entries,
the retrace directions are coded as "0", "1", or "2". Then if data
packing is used in the software implementation, only two bits are
required for each of the three retrace directions. However, coding a
2" (a "10” in binary) for a negative value requires a check during
retrace. The check will ensure a value of minus one is actually added
to the coordinate in question to obtain the next cell in the retrace
path. The other two values, "0" and "1", cam be added directly to the
proper absolute coordinates to determine the next cell location in the
retrace path. For this technique to function properly, the retrace
direction values must be stored properly. As a cell is expanded in one
direction, the cell reached must have the value of the opposite
direction (from which it was entered) stored in the proper retrace
direction. Perhaps the easiest way to do this and the most foolproof
way of ensuring the proper values have been stored is to "hard-code”
this technique into the program.

Vintr Router Design

Vintr“s router uses the Lee routing algorithm to do its work but
requires some additional algorithms to function properly. Figure 3.5
shows the overall design of Vintr“s algorithm and how it uses the Lee

algorithm.

24

B x"'-"n"""v.'.'- o8
e oo e e
.t PR et

BUILD ROUTE ELIMINATE ROUTE
TAILS | >L UNCONNECTED AILS OF ﬂ SINGLE
FROM NETS SINGLE NET
ROUTED NET WITH
NETS LEE

Fig 3.6. Vintr algorithm design

:‘1 Once all nets have been expanded, the route paths previously saved
iﬁi to disk can be used for the first step of the Vintr router. The first
t}4 algorithm is to build a file of path "tails”. The tail lengths are

calculated from the length of the routed net, the percentage of each

path to implement (10Z in this study), and the iteration. The end

points of the net are added to the list of tail cells. Then the

Manhattan distance between each intervening cell along the retrace path

and the start or end cell is compared with the length of the tail to -
determine if the intervening cell should be included in the tail list.

Figure 3.7 shows an example of a board after the Lee algorithm. Figure

3.8 shows the same board after the tails are built.

Fig. 2.7. Example of four routed nets

25

S
. '
PN

Ant 4 L

33

Fig. 3.3. Example of the tails for four routed nets
Intervening cells included in the tail ligt are flagged as “unavailable”
and those cells not included are flagged as "available”. This process
is continued until tails are calculated for all routed nets.

When all the tails have been built, a second algorithm is executed.
This algorithm attempts to find a path for previously unrouted nets.-

The unrouted nets are expanded by the Lee algorithm in an effort to

increase the net completion rate. If a net can not be connected, it is

[R

again saved in the unrouted net list (IMPOSLIST); otheruise, the nct and

™~ r

all cells along its retrace path are saved in the route file (ROUTFILE).
At this point, a third algorithm selects all of the tail list

entries for the end points of a single net and eliminates the tails by

turning the obstacle flag off, making the cell "available”™, The end

points of the net are then passed to the Lee algorithm for routing.

This process continues until all tails are routed. The algorithm then

begins the next iteration. -
In summary, for both the Lee and Vintr algorithm, separate sets of

coordinates are maintained to identify a cell”s location on the grid. fj{f

g :i

t
o
,
3t
R]
PP N NS

0 e % % O
P | o

P
MR AR

o . o e T et T s L e, e . . N . - - -
------ o v e T T) P N L . -t e . .- PO S S . AR - LI SN
A et e e e e e e Lt R e L TR NI T AL B T R .
e e e e T e e T T T T T e e . o -

. - - - -~ - - - - - - - t e T et
VLNV GG FEVS TN VS VO AaRRRN

The first set of coordinates is used for the absolute location of a
I cell. The second set of coordinates are used to determine the relative
cell location based on segment location and the cell location within the
segment. Relative values are used when storing the condition flag and
l retrace direction for a specific cell. In the basic Lee algorithm an
initialization procedure is performed, all possible directions of
expansion are attempted, and a list of reached cells 1is constructed.

The list is then used for expansion after all current cells have been

expanded. Once a connection is made, the retrace procedure allows
simple path retracing and storage of the path. Vintr®s router requires
i‘ several additional algorithms to build the tails of routed nets, to

4

expand previously unrouted nets, and to expand the tails one at a time.

= Grid Management Design

il Two methods of grid management can be considered each with its own —

advantages and disadvantages. The first method is called the grid I/0

e method and the second method is called the grid vector method. The
ii method of grid management is the single most significant factor in
- turnaround time. The first method, that of grid I/0, functions as

follows. Anytime a new cell is referenced, a check is made to determine

- i1f the cell is located in an adjoining segment. If it is not, no extra

]

?; work is done except for the calculation of its relative coordinates.

;? However, several actions are initiated if the cell is in an adjoining _ff
iﬁ segnent. First, the old segment is saved to secondary storage. :R
}j Second, the new segmen’ is loaded into memory. Third, the cell’s E}%
3: relative coordinates in the new segment are calculated. The difficulty ;Eﬂ
;n with this algorithm arises when multiple cells along a segmeat border ?:j
: 27 ‘-.L;: ‘

|

expand across segment boundaries. This requires a number of segment
swaps resulting in a tremendous amount of processing time doing 1/0.
The advantage in this method (which will become clearer from the
discussion of the vector method) is in the fact that the algorithm
allows a cell which could possibly make a connection when it first
crosses a segment to make the connection.

The grid vector method expands all cells within a segment before
swapping segments. This method requires that a "vector” or a list of
all cells on a segment boundary be saved prior to segment swapping.
Distances also need to be saved so that once a new segment is loaded,
processing of the vector entries would begin with those with the shorter
distance. The entries with the shortest distances would be processed
one at a time until each path”s distance was equal to the longest
distance saved in the boundary vector. Thisbensures that a longer path
did not make a connection before a shorter path was given an opportunity
to complete the connection. The significant advantage of this method
lies in the fact that a tremendous number of segment swaps are
eliminated which reduces turnaround time. However, there are
significant disadvantages also. The first disadvantage is that
additional memory is required to record sixty (two layers cof thirty
entries each) entries per vector and the éossibility of four vectors.

In addition, {f two cells are relatively close to each other but in
different segments, much processing time would be spent in expanding all
other cells of a segment before the connection could be made.

In summary, the two grid management methods will determine overall

processing time. Each has its own advantages and disadvantages. One

28

.

. Tt e . .
PRONRPIRIG L I, SR S ATy

method (I/0) will make a connection with a fewer total number of cell
expansions but with a price of high I1/0. The other method (vector)
requires a larger number of cell expansions and larger amount of primary
menmory but refrains from any I/0 until a segment swap is absolutely
necessary.

Expansion List Sort Design

The primary reason for these algorithms is to expand cells closest
to the target cell first and to expand all cells that have been reached
in a specific segment before segments are swapped. This method provides
some assurance that the target cell is reached as soon as possible and
with a reduction in the number of segment swaps. The first algorithm
sorts the cells reached during a particular expansion into ascending
danhattan distance sequence. The llanhattan distance is then calculated
from the cell”s current positioﬁ to the end or target ceil’s position.
The advantage here is that for long paths, there may be 100+ cells
reached, and the cell closest to the target cell may be at the end of
the list. Clearly, it would be a waste of time and resources to process
all others first before making the connection., A second algorithm uses
this sorted list to reduce the number of segment swaps. The second
algorithm uses the first entry of the sorted list and calculates which
segment it is located in, then searches the remainder of the list for
other entries in the same segment. When all entries hiave been checked,
the next closest entry is selectad and its segment is calculated. This
process is repeated until no "reached” cells remain. The resulting
expansion list (ELIST) has entries sorted by segment which is based on
the cell closest to the target cell. This method will reduce some of

the segment swaps during expansion.
29

P P S S P O TRUE AL T Ve SRR e e
W T T T T N Tm e s et et et e Vet e e e T T T S
damdnadnadmndninsinmaniindeendetden o des dodbet ittt ittt d ot ot o a2 T

2" « &
PR W P
r l' l' A' r

(O I

Pre

~

M |

et elel s
PEPIRPIN PN)

Latad

v w w '.-—'ﬂ"‘ U
B}
i

Summary

The design of several routines had to be considered before any
program implementation could begin. A routine had to be devised to
handle cell location within a segment for a multi-segmented grid.
Routines had to be designed to input and output data files and to
initialize the segments for obstacle cells and the end points for all
nets. A routine was required to expand cells and mark their retrace
directions and, once a connection was made, a separate routine had to
find the path back to the start cell. During the expansion process,
routines had to be developed to reduce the number of disk 1/0 and to

first expand those cells closest to the end cell.

o
VU ey R

PR S I

T IR——— P

S5

-9

]

IV. Results and Analysis ;2

Procedure ‘ ;;:
Four data sets were created with 20, 40, 60, and 80 randomly ;:g
created two—-point nets. Each net was created independently. Soue E;i
characteristics of these data sets are shown in Table A. No obstacle L?Z

cells were entered in any of the board configurations prior to routing.

TABLE A
Characteristics of the data sets used in analysis

Number of 2-Point Nets

20 40 60 80 -
Minimum Net Length (cells) 9 6 5 6 '
Maximum Net Length (cells) 78 107 85 69
Average Net Length (cells) 38,2 40.2 39.4 35.5 - .

The nets in each data set were sorted and stored by ascending and

¢ R

’
e d A

descending Manhattan distance. Thus, eight data sets were actually
created and used for the analysis presented here. All data sets were :
saved to floppy disk. Each data set required no more than one block of i;i
storage, while each segment required 15 blocks of storage. Temporary ;:]
storage files and intermediate route files were created and purged ;;&
during program execution and, thus, their size could not be easily ?
determined. :
To execute the main program, all files associated with a specific ?;;
data set were loaded into the RAM card. The program was then started 513
N

and the clock time noted. At the completion of the program, the time

Cr. 1
.
i

(5
—

*
',
LA

.y
s, .

. .
‘. ‘-

)
’ l' o' a »

L

-~

.
el

LA AU AN AP

39

[TL e was noted and all files in the RAM card were saved to floppy diskette.

These results are shown in Table C and discussed in the next section.

At the end of the Lee router and each iteration of Vintr”s router
(where each iteration of Vintr”s router performs the Lee algorithm with
an increase in tail length of 10%Z, see Table B), the path for each

successful connection and its anhattan distance was printed.

TABLE B

Percent of route path used to calculate tails

STEP TAIL LENGTH
LEE 0%
VINTR #1 10%
VINTR #2 20%
VINTR #3 30%
VINTR #4 40%

Each Manhattan distance was subsequently entered into a calculator to
obtain the mean and range of routed distances for each data set. This
data is showu in Tables D through K and discussed in the following
sections.

Quctput File Size and Processing Time

Table C shows the results of output file size and processing time

for all eight data sets by net-size and the routing of short vs. long]
nets. Short nets are the data sets sorted in ascending Manhattan
distance, and long nets are the data sets sorted in descending Manhattan

distance. End-of-program output file sizes for the various data sets

32

. %o e e W T e e e T e e CFREIPRY .
PRI L R WL DR W R P VR W P R R R ST R o A P A A L A A R S W P o)

Table C

Results for output file size and processing time

Jutput File Size (Blks)

Processing Time (Hrs)

Size of 2-Point MNets
Short First Long First
20 40 60 80 20 40 690 30
7 14 26 28 7 15 24 29
71.8 124 131.2 155 77 136.5 150.4 133.3

were variable and tended to level off in the 24-29 block range for the

four largest data sets.

of unrouted nets in the 80 net data sets.

This is due to the substantially higher numbor

Figure 4.1

in output file size over data set size.

shows the increase

DO S S
. s .
'y

e
o
.".'.

sy \E
gniir /Y //\ -
L ER Z§ N
2 N N N
& 5] ZS 4\% é§ /{\ ?

Fig. 4.1, Output File Size Results

Cs
383

T T————— Caec sy o ol
O PEE SR y " R na s et sets aaan e o

As can be seen from Figure 4.2, the processing time was substantial,
ranging from 71.8 to 155 hours per run of a data set. The increase is
due largely to the increase in the number of nets to be routed and the
resulting increase in routing congestion. The time nearly doubled going
from 20 to 40 nets as would be expected on a relatively uncongested
board. With congestion though, the time began to peak in the 135-155
hour range. This is explained by the fact that as more obstacles are
encountered in the expansion process, fewer cells are reached. It is
interesting to note for all data sets, except the two largest data sets,
less time was required to route the shortest connections first. In

processing the longer nets first of the largest data set, there werea

about 364 more unrouted nets for each iteration than when the shorter

i? swrnxm\{i \\ Zi J
g | N N N
= é\ ZN A

DATR SET SIZE

D I N I N
VPRSP

Figure 4,2,

Processing Time Results

l'l'
Lo T M R

AR

A ST e audi g LY T -

nets were processed first. These additional, unrouted nets were
probably flagzed as impossible early in the routing process to achieve
such a low processing time. -

Qutput Results and Analysis - 20 Nets

Tables D and E show the results for 20 nets by iteration for routing
shortest and longest nets first, respectively. For cach type of
processing (shortest vs. longest), all nets were routed using cthe Lee
algorithm. Consequently, no improvement was observed using Vintr’s
algorithm. It is interesting that even though the average route length
vas slightly longer when processing the longest nets first, the maxinum
path distance was several units less. Apparently, longer nets were

closer to their minimum Manhattan distances and shorter nets were

longer due to the obstructions generated by the longer nets. When the

shorter nets were processed first, they achieved their ainimun distance - -

with longer nets requiring lomnger paths to make a coanection. RN
Table D -

20 MNets (shortest routed first)

Tteration
Lee 1 2 3 4
Miniaua Jet Longth (cells) 9 9 9 9 3]
Maximum Net Length {(cells) 52 82 32 32 82 ’
Average Net Length (cells) 39.21 39.2 39.2 39%9.2 39.2 ;l
Number of Unrouted Nets 0 0 0 0] 0
s Completed 100.0 {100.9 100.0 100.3 100.9)

35

P T e e N T T N N I N e I ISR S - . - - -
T T S e ety A S e T e St o A I T S g I A A T

LS
S
A

SRk 2%

20 Nets (longest routed first) o

Minimum Net Length (cells)
Maximum Net Length (cells)
Average Net Length (cells)
Number of Unrouted Nets

%4 Completed

However, the minimum, average, and maximum route lengths in both methods .
of processing very nearly equalled their starting statistics. This
condition indicates the net end points were sufficiently distributed,

and the board was large cnough that congestion was not a problem.

Table E : .
]

Lee

Iteration NS

1 2 3 4

79

39.6

100.0

36 i

9 9 9 9 2]
79 79 79 719

39.6 39.6 39.6 39.6
0 0 0 0 e

100.0 100.0 100.0 100.0

A dondia.

D
PR

s 5

2

1
<A

Lo e e Cr
A PRI

. R

RPN S P

e
A L A A
AP
TR
PV TN

1y
- [2
Ry O

. L P
4 A § PRI
) e e e e e e e
RO P U b
catatatal el —iaelals

.
R
v e -

4
1
i
4

Qutput Results and Analysis - 40 Nets

The rasults for the 40 net data sets are shown in Table F for
shortest nets routed first and in Table G for longest nets routed first.
Again we see a 100% completion rate. It is also interesting to note

that the processing of longest nets first resulted in a shorter maximum

Table F
40 Nets (shortest routed first)
Iteration

Lee 1 2 3 4

Minimum Net Length (cells) 6 6 6 6 6

Maximum Net Length (cells) 109 109 109 109 109

Average Net Length (cells) 42,0 42.0 42.0 42.0 42.0

Number of Unrouted Nets 0 0 0 0 0

% Completed 100.01100.0 100.0 100.0 100.0
Table G

40 Nets (longest routed first)

Iteration

Lee 1 2 k) 4
Minimum Net Length (cells) i | 1r 1111]
daximum Net Length (cells) 107 107 107 107 107 ﬂ
,\"‘
Average Net Length (cells) 44,50 44.5 44.5 44.5 44.5 .
Number of Unrouted Nets 0 0 0 0 0 :E:
% Completed 100.0{100.0 100.0 100.0 100.0 o
- 4
et
37 e
::"_‘_:i
-
- -‘.7
e e e e T T

Y T T Yy e~ s -

route length than did the processing of the shortest nets. Also, the
number of nets to be routed does not congest the board enough to really
affect the path lengths. The difference between the minimum possible
length and the average route length of a net when shortest nets were
routed first was only an increase of 1.8 cells. This value increased to
4,3 cells when routing the longest nets first. Thus, the cost for
routing the longest nets first is an increase In the path length of the
shorter nets, and path lengths increase to the extent that the average
route length increases sigﬁificantly, especially as board congestion

increases.

Output Results and Analysis - 60 Nets

Tables H and I show the results of applying Vintr“s algorithm on the
60 net data sets for routing shortest and longest nets first,
respectively. These data sets were the first to show the usefulness of
Vintr“s algorithm. In routing the shortest nets first, only one net
Table H

60 Nets (shortest routed first)

Iteration

Minimum Net Length (cells)

Maximum Net Length (cells)

Lee

1

2

3

4

125

5

90

5

116

5

177

5

155

Average Net Length (cells) 44.6] 39.3 48.8 51.1 53.4 =tq

Number of Unrouted Nets 1 8 5 4 0 SN

4 Completed 98.3) 86.7 91.7

93.3 100.0 i

3 8 =~ .-'1
SR
q

Table I

60 Nets (longest routed first)

Iteration
Lee 1 2 3 4
Minimum Net Length (cells) 5 7 5 5 5

Maximum Net Length (cells) 180 136 127 148 123

1 Average Net Length (cells) 55.7} 55.7 49.5 50.7 49.8
3

b Number of Unrouted Nets 7 9 S 1 1

E % Completed 83.3] 85.0 91.7 93.3 98.3

could not be routed. Only after an lncraase in unrouted nets, as shown

in Figure 4.3, was the Vintr algorithm able to complete all connections.

3? Surprisingly, the early iterations of Vintr“s algorithm showed a
: —
25 o i i T
22.5¢} 3Bl ~~~‘s~ 4
& 2’ + \“\,‘ __________________ ‘_."". 4
WoIT.5t e S 1
a 15 3 ’ “‘:.~~ 4
w 12.5¢ LT " 4
5 g} 985 tereeeeeail”]
o ..
= .51 et)
= Sr 4
. 2.5}
) 685 we
LEE 2] 92 e3 si
- ITERATION

{j Figure 4.3. Unrouted Nets for 50/30 Net Data Scts

- a7 -
w AT g AT R SR it i S Mt i

4
significant non-conmpletion rate (sce Table H). This "hump"” effect (see

i N Figure 4.3, a chart of the data in Table G) is apparently duc to the

;3 following sequence of actions. At the start of each iteration in

5 Vintr“s algorithm, unrouted nets are routed first. In this way, the

'I newly routed nets force other nets to take a more circuitous path, and
only whaen less congestion Is encountered are the previously routed nets
more likely to find & connection. The construction of tails increases a

Ei net“s chance to find a path, and until a net finds a path outside the

congestion, additional nets may not be routed.
The average route lengths increased dramatically from the starting

lengths as shown in Figure 4.4. QJbviously, congestion played a major

i . 5 f ‘ N ' :
- r 5S4t 4
o =
.:-:. z 52 ¢+ o
- w
O - SB F |
-] W
e = 48t 1
T o)
o G 4t !
> £ 42l
- T 4} 4
5 38t
T LEE 1) 22 v3 '
[TERATION
> Figure 4.4. Average Route Length for 50/80 Net Data Sets .
=
i 40 .

N . . P .. - - . . . R . N - PR - ‘. " - . M M Lt

IR S RN Lt T e e T Vet A T Tt e T e T S T e e T T T ORISR S I

P R S R AP) ORI ORISR TR .4 T TR L. STt Tt T T e T e T T e e T T e e e el
AR LA PO T A T VRN

S BB SO BT I PP G N LIRSS

Bl

N R
’

e
.
S

4,8

part in the processing of this data. One interesting observation when
routing longer nets first is there appeared to be an improvement in both
the maximum and average route lengths for the final two iterations.

This apparent improvement was due to the fact that the unrouted net in
iteration three was different than the one in iteration four. The
unrouted net in the last iteration caused less congestion than the
preceding net.

Output Results and Analyslis = 80 Nets

Table J shows the results for 80 nets with shortest nets routed
first versus Table K which shows the results of the same data set
ordered by longest nets first. It is clear from this data that the
board was heavily congested. For routing shortest nets first, there was
no improvement in unrouted nets ‘by Vintr“s algorithm. 1In fact, the

improvement seen was in the decrease in maximum net length. —

Table J

80 Nets (snortest routed first)

Tteration
Lee 1 2 3 4
Minimum Net Length (cells) 6 6) 6 6

Maximum Net Length (cells) 201 138 159 233 162

Average Net Length (cells) 43.1] 45.7 49.2 51.5 48.9
Number of Unrouted Nets 11 10 17 21 11
% Completed 86.3| 87.5 73.8 73.8 86.3
41 -

RGN

.
! Iy
P

LM

P
. ;
y i by

P
"

v
sl

L%

. PR
RS
PGPS)

SN

R

- - e s s . »

« o
?ea’a’a

oW,
L et

MRS I ACE M-S AN e A A e S e

Table K

80 Nets (longest routed first)

Iteration
Lee 1 2 3 4
Minimum Net Length (cells) o 3 10 8 6

Maximum Net Length (cells) 155 169 181 220 242

Average Net Length (cells) 55.4) 48.7 51.3 50.9 54.2
Number of Unrouted Nets 24 19 20 18 14
% Completed 70.01 76.3 75.0 77.5 32.5

The "hump” effect can be seen when routing the shortest nets first (as
seen in Figure 4.3), and the result was an 86.3% completion rate. In
routing longest nets first, the number qf uarouted nets began high and
slowly‘improved with a completion rate of 82.5%. For those iterations
where the least nuamber of unrouted nets occurred, only about 21% of all
possible cells on the entire board were used. This suggests perhaps the
“"random” generation of data points actually resulted in data being
somewhat “grouped” on the board. Nets having an end point near the
center of the "group” would have the greatest difficulty finding a path.

It is clear from Figure 4.4 that the average route length for these
two data sets is difficult to analyze since there is a great amount of
congestion. When routing short nets first, a comparison between the
results of Lee”s algorithm and the last iteration of Vintr®s algoritha
shows a significant decrease in the maximum net length and the average
net length. On the other hand, when routing longer nets first, the

average route length only slightly decrcased, but the maximum net length

increased significantly as a much better completion rate was achieved.
42

et e
PP 0

!

Lalele

¥

‘.’v‘ ot
¢

oy

TSNS

ﬁij

AR
o
Pl .‘l
e
LR

'l
ot

]
v
AD SN,

.
2
jo
b
a
.’
o Pl
.I
r ._r
| NUALN

F——

Summarx

The Lee algorithm worked very well with uncongested boards. When

congestion increased to the point where even Vintr”s router could not
reduce the number of unrouted nets to zero, Vintr~’s algorichm'was able
to improved the completion rate, It appears the maximum number of cells
to be connected was around 65-70 using a random generation method of
producing input data. For data sets of 60 and 80 nets, the better
completion rate occurred with the processing of the shorter connections
first.

In all cases, Vintr®s algorithm gave results that were as good or
better than Lee”s algorithm. In most cases, Vintr”s algorithm gave
significant improvements in routing completion and average net length,
it appears that the number of long nets in a data set will significantly
impair the ability of Vintr®s router to successfuily route all nets.

Improvement, even though feasible, will come at a significant
processing cost. In general, Vintr“s algorithm required I*L processing

time where [is the number of iterations, and L is the leagth of time to

route nets using the Lee algorithm.

43

11
.n’
a 'y

G

DR - .

e e gt e e e T e
- e a® e Ll

Kmlia e ol n st e 2°a 2 0 2" 0°

v.

Conclusions and Recommendations

Conclusions

The most significant observation in this work is the fact that
design automation using 8-bit microcomputers is unrealistic. The 6502
processor is very slow running about 1 !MHz. With the constraint of 64K
primary memory only small sections of a printed circuit board can be
available at a time, in this case only a 3X3 inch segment. With the
processing of larger boards 1/0 becomes of increasing importance in the
execution gpeed of the algorithms. In addition, due to the segment
swapping, algorithms were required to detect board seszcnt changes and
to convert absolute coordinates to relative coordinates on a continual
basis. Even with faster processing speeds and either RAM disk or hard
disk for secondary storage, the amount of I/0 and the amount of time to
consider all possible routes results in a substantially slower
application. The size of the board in this case was only 6X6 inches.
Initial testing of a board 8X12 inches with 30 two-point nets was taking
well beyond a week. This situation is entirely unacceptable in an
environment where students require faster turnaround.

The Lee algorithm produced the minimum length path in all cases
unless congestion impeded the expansion process. The Vintr algorithm
worked as advertised but there seemed to be a fairly narrow range of
data set size that really allowed the algorithm to do its work. On one
extreme, all nets were connected on the first execution of Lee”s
algorithm and subsequent execution of Vintr“s algorithm did not reduce
the average route length. On the other extreme, the board became so

congested that it was difficult to predict, let alone expect, the number

44

PR AN
B . L
A r e AT
- IS AP N AU WY

o

-\

Lo ..
TN tat .
-

PRV R I
S a ko Bog oo 3 a8 g

T T T TV oy

of unrouted nets to decrease. One fact is for certain though, Vintr’s
algorithm will result in a fewer number of unrouted nets at the expense
of processing time.

A reduction of the overall processing time should be expected if a
16~bit microcomputer is employed to accomplish the expansion process. A
faster processor should significantly speed up processing and the
increased range of memory addressing would allow much larger sections or
an entire printed circuit board to reside in memory at one time. This
would eliminate the algorithms devoted to seguent swapping and for the
conversion of absolute coordinates. Potentially, a 754 reduction in
processing time might be observed using this program with different
hardware configurations. Vintr”s algorithm could be a viable approach
if hardware specifically tailored for routing algorithms or design
automation (similar to a database machine) were used. _

In addition, if the pin data for the layout of actual chips was
used, the net”s end points should be more uniformly distributed on the
board. Consequently, some of the congestion should be eliminated.

Varying the method of processing might also bring unexpected
results. In the data sets where all connection were made, Vintr’s
algorithm did not affect the routes, but if the routing method was
alternated from shortest processed first to longest processed first,
different results might be observed.

Recommendations

No further research is recommended unless a more powerful
microcomputer can be used to study the effects of Vintr®s algorithm. At

best this research could provide an introduction to the routing process

45

Y Y T T Iy YT T T e YR

PR M
et
y e N

els
s %"

R T i e v o Aot ot e e s o o e
A ot AL I - . K . . - Bt M R . O - [A da TEL.T.TL.Y ‘Uj.--‘r"r'v!"_.‘ﬁf'“"w

for students and the algorithms could be studied by students and jfi
improved upon. However, for true research purposes a larger-scale T

computer system is required to lower processing times to a tolerable
level. The results of varying the length of tails and the number of

iterations during Vintr”s algoritha might prove interesting or

significant.

TR
L R S MR R
PR

.
[N)

ot

Shi N Ty ey Y

>Y

PR

BIBLIOGRAPHY

1. Akers, Sheldon B. "Routing,” Design Autmation of Digital Systems. ‘;J
Vol. 1, Melvin A. Breuer (ed.), Englewood Cliffs, New Jersey: Prentice- ';i
Hall, Inc., 1972, .

2. Carter, Harold. "A Plan for Digital Systems Design Automation,”
unpublished plan for the Air Force Institute of Technology, 1982. - 1

3. Hoel, Jeffrey H. "“Some Variations of Lee”s Algorithm,” IEEE
Transactions on Computers, C-25: 19-24 (January 1976).

. .,
bl kel

4, Lee, C. Y. "An Algorithm for Path Connections and Its
Applications,” IRE Transactions on Electronic Computers, EC-10: 346-353
(September 1961).

s A

.
WP NP |

5. Newton, Richard A. “Computer—Aided Design of VLSI Circuits,”
Proceedings of the IEEE, 69: 1189~1199 (1981).

.
PSR D

6. Rubin, Frank. "The Lee Path Connection Algorithm,” IEEE
Transactions on Computers, C-23: 907-914 (September 1974).

7. Soukup, Jiri. "Circuit Layout,” Proceedings of the IEEE, 69: 1281~
1304 (1981).

8. Vintr“s router as reported by Soukup. J. Vintr is the inventor of
the algorithm that was reported by R. Dutta at the 1980 CANDE workshop
on hardware for CAD, Univ. Michigan, Ann Arbor. There were no
proceedings published.

1
9. Apple Pascal Operating System Reference Manual and Apple Pascal =
Language Reference Manual, Apple Coaputer, Inc., Cupertino, California i
(1980). Apple is a registered trademark of Apple Computer, Inc. UCSD .
Pascal is a registered trademark of the Regents of the University of R
California. 53

47

43

0
]
o
~
&0
L
oy
[=]
-]
o0
o
(7]
U
(=]
|
(=]
<
v

APPENDIX A

*0 1337 - uE1SaQ 42ISAG TTEJaAD 'T 3YNAI4

-v.vot‘o.vv»oc

“NPZH“Q A—..o..o..oao oom voo.o.—
AVMYY 3LN0YON °* WHIINOIW ‘O '

3254015
AYYGNDIIS

' HINIA 0

“MFZHKQ A.o.-o.o-oo.v Zsz L}
14 3oy 31008 *

[EEEE NN RN NN NN I

ey

¥

+

+ OQ-....o..o..

.o.o.o.ov.

Q03

+

v v
o.m J (XXX XN TR

* f SLMIWA3S o

zthHZE A..........~..sg.....Ass...-.s.s.vs

f 3114 3100y

.oooc.oooovo-v..o...oooooo

YIINTY4 000

’«““« uh=om=z [ERRA XS EENNRN]

::thcwdq .A..oo....o.‘.o..-. °oﬁ oA.o.-.oo........oo.o..o‘..

331 " SIS (N3W33S * 53TL4 * SIUIYNIGNGOT 13T 313WLS0
HiIH * I UL

u#:o“ QA-CO.o.oOQQ-.oo.o. GJHzm .Aoo-.vo-ooo..o-..oooo.oo.o

¢

* 4

4 t

L)

I L3N A At

L
L]
L]
+

' NOILdO

PERIRIIBRIRIELILOINIROINELTY

1133 31wisE0

1 V40000 NORSY

531YNIQ4003 13N

(4v0gAIN

v

(AR ERS RN R

+

NOIL4O *
o1

* GIN3WI3S IZIWILIND °

FERRRINENIIIRIGERIINRIRRRONDY

13138

L]

JII4 13N Q7RG v

49

0°7 12637 - 3714 £38Q P1INg

329015
ANYANDI3S

QW03

v v
R A RN RN Y]

' 531y °
* -NIQ¥00Z *

S31YNIQY00D

\h...-.oo-vvo A—AWQ oA-o‘o-oo.'.o.o.

S1M3NT3S * 370v1580 °

13 37v1580

* H3INT

.oo.oooboo.o
4+

+

NOI140

Ing

QRN
31v1590

‘7 J4NI14

ENLITH]
AYYaNDI35

+

QoA !

v v
R ’ ZOH.—.¢N)] [
(A AN AAR N lHéH.—.HZH (] [} mu._.«_)

SINIW3S ' INGWD3S ° ' -NIQ¥OOD ° SILYNIQuO0D
L oA................. JJMU X XN R YRR NN XY
rerareepreete EIE Nk A I Y T30 QN3/LWNIS I

! ! YN

. .-....b.....
NOLL4D .
NOLLYZIWILINT :

BUE! NE] NOILD NIJ

13N I3

50

-
<
_—h

v

02 18837 - WTaoE [y a7 YA Aoy £ WIS

Ivu0LS
AYVANDD3IS

3

v
(B XX R EERN NS uucxahw
A.oo....oooo-ooo-oo.o moN ¢ . uuc“chm >x¢guum
EpCRE Tl I T JAYONDI3S :
Aooooo-..oo..oo..c.. ZOHP oA.ooooo.oo. L}
SINIHIZS * -D3NNOD * : : v
ST e v SIAUNIOHD0) TIF) Sreeeceseens
(AR RS RRERRE L 1] [AR XN NAN) PEREERIERINNIELNTS ﬁ.N L]
L [EE SRS NNNEE) N.N .A..o czw\.—vzchm L] +
L] mhzmzuum L3 muHx.—zm oA..-o-.oo.oo....oo o«hoo.o..-ooo.oo..oo.o
AR R R R R AR ARRR] hde L hmHJz . * wl—HuE
SILYNION00D T130 GND/LAVLS L3N * QNYAK *Coeoovvevevesonees 34 Iy ¢
Ao...-.....o.oo...oc.oo.o... vo.oo. PmHn—u + zou WNH oﬁnoao..ooo.o.o.o..o.
h«.‘z< Uhgzcz (AN ERNRE) (AR AR AR A RE N ll—cHhHZH + mpgyuwm
mhzmtum R R R R R RN A RN

*]e7 19437 - SITIIUT UOTIIBUUOIIRINT MaN 104 UDTIEZTTRIJINT ‘b IWMIA

V4015
ANVONDI3S RN RN XY
' ' 3114 13N

v »
mUHCZHaxbOU (A YRR RN RN L] I X KRN N
Aoooo.o..-oo.o.-o..o... ¢ ¢ ..o.s.o..eo...hdex QZ« 14
130 ON3/1WWIS * e 16173 ‘15173 321 °
Ao.o....o.oooooo..oo..o .A.. L] [A XARENEREN] |J<HPH2H *

mhzuzuum] w»czz« L] . + hmHJz (XX R AN RN AR N
Ao-o-o-...oo.ooo-oo.o.o hmHJz\hmHJu .A.oooo L]
1SI73 * ISHI4 QTING *¢*frerrrte 3VM01S
Ao.ooo....o.oo.oooo.... .Aoo.o. >E°zouum
hde (AR XEXERREERRERR) + .

+

Y
+ (XX AR AN NN

* ' GINZWI3S °
terei e NNH L]
SININDIS QIZIUVILIND * -TWILIND °

[(EXEEEEREANNN]

“...o‘..ooooo....o.ono

SININIIS

52

'2°7 12437 - S3T4qu3 15173 puedky 5 3YNIL4

\
ua«achm PEEPIENERAREN LRI B NI ROINIEE

AWWONDDIS ' SILYNIGH00D 1730 ON3 L3N

¢ IR IR NANN NI BNR IR SNy

v v ILELSER]
muhczHonou TAPNBINREE b
A.-o-.oo-.oonoooo..o .A. . [EXEEERRERS)
T30 ON3 L3N ' 2°2°2 <t SIUYNIGNWOOD * v'eT
Aa.o..ao.-a.-..‘.‘oo JJNU‘ .Ao.oooo.ooo.o.o..-.o deuu vo.o..oo-
GINIHI3S * §53304d ‘0 713D INIWNQY O° §530084 * ISIWI
IR NN AN RN R oA..oo.o..oo.oo..-.V- .A.ooo.-o-
AVNYY SLOONON ***''ptttt? ST e ISIN
o-o...v.-o».ovoo.Vo.o..-o.-¢-

+

135 10N
RLAE
(3L33NN0J

. 207 18897 - 11373 SS30044 *e9 IWNILY n

[R XA EERE RN NN RN

* SIYNION00 ° :
&ooo......oo-.o... JJ“U L : ‘W-
TI3D INIOVPQY * INIOVPOY * SILUNTQNOED **'tereeeerere
+ u*«#:u#cu voo..o.-o.co..o GWFCZHQ“QQU .A.-.o.-...- hmHJu L
SRURRU NS T30 T * 1SIT3 ' 0L ISTM .
R I LS
* Cooooooo.o.oo.oo-V. ncmm .Ao-o..o.o.- azc hzcm ’ '

+ >Pm=u haz thJu (AR XN ER A ER RN hdeg ooo.—ooo.poo L3 A)

W !
(03133NN03

54

[EXEENERES NN

[EAEEEEEEE N RN L] ’ IR AR RN]
! AVNNY ¢ ARdH3 * ettt ISIWY .
* OJINOMON NI * ION * ST * ALdW3 ctetrtte

* S3LYNIONODD * ! R IF I 1STW
+ u>¢m .A..oov.oooo-ov..o. v—uuzu *

XXX EREREENERE RS ».—.L:m [EXEREER RN

10N

07027 13497 - T130Y 8520044 Q9 JWNILY

JavH01S
AYVaNOIIS

A...o.o.o..o.o.oo..oo h
151

Aoooo.-coo.o.-ooooov.

ILEURE !

NOTLIINNOD
ON

S31VNI0N00D
AJWU ozu huz ﬂ-.o‘..-.-‘
NOILIINNDD

v
[XXRER]

.A.o.oooo...o

STy °* 15T

ah oAa.o-.ococooo-vov.-.oﬁoooooooo.-ooov.ocoooooooooooocoooocooooo

mn e !

aac voooooo L3
-:.ooo L] L
. © eeeeesees S31UNIGN000 .
] A‘o...‘q-‘-.qa.. sA—atatﬁo.’ss. L]

* T13] IN3VRQY * NOILDINNOD * 7730 ON3 I3 '
' ' ¥od ¢ WI0IS ’
FHEFEINEsIBRIRIIIRS xuu:u .A.vvo »z«azcuwm *

oo-o...>-o.oo. L 1
L] L] v +
L + [E XXX EEEER NN [

’ L] L4 ﬁoNoN-N 4 L]
+ IFEXEEERENRE RN mchu A L]
* JJMU hzuu¢ﬁ°¢ * uducpmmc oﬂ..ooo.ooooo.o..oo..
! */QIHVH SINNI3S

ooooo..o...ooe-oocoo.vvt “ch xuw:u ohov-ovovvooooooooooo

135 10N S9¥14 FT0VISI0/QIMIYIY **eertht e T13) IN3IVROY

(3LY3INNDD
108

55

*1°2°2'7 1337 - ST13] ataeysap (paydesy 404 4234 */ N4

JI¥H01S
A¥YONBI3S

v
R NN A RN

! (3HIV3Y *
4 mc juu xmc: .A.....-.&-‘..o..oo...oq-..&.ct..o...

(R 2

' ONY NOILD3¥IQ *) 1130 IN3QURQY <ttt

* uucz.—w“ WDGm .Aoooo.-o..o- (XXX EAREEZERN] +
L] .oo..obco.o...- L] t
+ (A RN NS RENE] * :

+ 1] w¢d voo..oo...Qoo.Aoo.
A..o-.-.. (A REX] gucux + : ¥
QIHIVIH LON * WO *Crorererrreeneger 39V301S
.-.vo.)..ov 1] L ﬁxcazcumm
L] [(EEEEERREREN 2] L > +
L] L] U«.—& oA...oo.oo v
A‘o.o...o.oooo.oo ud0¢hmm° L] > L HP08 00000000
TIvIS0 1N * QD <t SIAYNIT00D *
tetesatetane ¢ 4 4 pr.—vcdux 4
L IAXEERRRENN] ch L]
* SININO3S ' INIWO3S
SEPFOIPIIINISEIGY m.»c&:u.-«u
SIAVNIQH00D TI3D JNTLYTIY **ererrepreess

(3123NNDD
108

' O
‘ vy
+
T3 IN3¥ROY
B LA A S N TR P NS L PAPE" YRR PRTARE

(3137400 30v413Y)
51132

'£07 1997 - Yje4 PA32auu0) 330433y 8 WNIT4

[R R R KR AR RN]

' S3LYNIGHOOD 717130 L1¥vLS 1N

+

esrabbReR Y ¢ muczOkm
‘ T3 f¢rree A4YaNOD3S

Aoo..ooooo.ooo.-oo.o.o.ooohz¢hw °z¢ *

JX3IN/LYYLS 903

L]

v
)

'T133 1X3N e '
¢ 34vdNOD * v

V4018
AYYONOI3S

[EEE R ANERR] L] (AR R R R R RN

[EEE R RN

7130 LX3N * 71730 LK
Ao-ooo-o....‘....oo. u>¢m ch
SINIHIIS ' FTWLST0
A.o-.c-.ooo_v..-ooo- wc JJWU
JTI4 3UN0Y * LXIN NV

v
* [AEEREERR NN AN mUPGZHO“QOU
0 (il . .h-......oo..........
.A.o.....o......ovo JAWU . JJNU czm hwz
! T LGN Y WL

L] L] quz o.u.r [AN AN RN EENENN NS

tgrererereerisesens JINAWD SININI3S

I EE AR SE RN EE Y] whzu:umm ooo.#o’o.o.oo

$77130 1X3N/14V1S WNDINA

AR N R X N R R N N N R NN R A XN R R AR NN

57

'0°E 13497 - MRLI0BTY J3UTA Y3IR 300§ 4 3404

[XXX R EREENENE]

ﬂ...ooo.o..ooo :IPH“OUJ« L] o.o.c..oo.o....o...o..ooo...-.o_oo-o.o..-.

SINMITS * 3
COHIN
Ao.ooo...ooo.- uhzcz .A.
JTL4 JLADY *orereererene o wrnaieenee

] + “PZH -Ao..o.oooovooo.
¢ NI ' AVMSY 31NO¥ON

CoosTR

taee ozu .ﬁg.

FI14 UINT * /L8915 "
B LR

[EXEE RN 2] +
L

+

erR A e LB RN Y

*

1517w
*ro¥04 SUINL Y

4

»Zqu .ﬁ.oo.......o....-.oo-.o

SININDIS

§T130 GNI/LYYLS 13N * JLWNININ *<*°

o—o.-oz-oo-o.

403 10N

103

XX EEERN]

* SHLYd "

© oI

t uhzcm oﬂnc...o-o.oo.o
T4 CoWoud 3014 300

o' IGITITYL *<**seeseeor §WL °

0 [

. L] Vv.—.—.zw XA EXXIXRIE]
' 1SITIVL * 38
A

PENEIENIIINEEIIIINY ncwz N
< SNIYIS 4D ettt

*

A0 ¥4

1SITIIYL * QIR

.ﬁ.o.o-..oco...

e SINANGES

* [(XXNEAREREENE S

! * NOLAWNALI *

Ozu :«“wc“& ﬂooovovoocovooovooovooooooooaao- xuu:u azc L]

SALYLS NOLIYNILT * INIWIYINI °

o..oo.b......

*

.oo...o...-.o.oo.oo.-o-.ao-oo..oo-oo.o-....-oo...oo...o...

58

APPENDIX B: Software Implementation - Program DATASTUB

e e

59 . '..

P T e e e
D T T T TN T N e P A S e el . - . AT A . . “ . N
» ATt ettt O PR A I IR I T I .

. . .
. L. . BTN P S RS I L P ALY . .
PRI N T v I SR SRS WAL S R W W WY . T W ST W WA WP L Y l‘lAl...‘_F-‘..l. daduniedodoteine debeden i ke de b fenten o deedetdunclodeonfen

|

e/

. START DATASTUB .

c..coo'ooo..oooo..uoichoo-nnoo.o-..o-oonoo-

. INITIALIZE MAXIMUM NUMBER OF GRID POINTS .
. INITIALIZE REDO AND MORE TO TRUE .

€0 008 000000000000 NOLELsBORLOGIOENOSIEBSEACRAERDNDIOETS

v

N . BUILD . Y
tecssesoese INTRFILE seos0ceessos

% . . -un'o-uo--c-¢Vocoan~ooo.oco

. PROCEDURE INTRSTUB 1.0 .

b"» 0.o.-.lo..-vol>tc'<0..0'...la.o-.

N . « Y

seose00scs INIT seessssssse
. «BORD . .
3-...o.-..v..-.......-..
. « PROCEDURE INITBORD 2.0 .

..-t...oo.unl.)l.i(..'.........o.

v

N. ADD . Y
eeensesssse OBSTACLES cceevvanans

. . I‘Il......‘.‘v.’.........l.
. . PROCEDURE BORDSTUB 3.0 .

.....O..O..l.‘>QCO<.O0.0..DO.I...
-n..-aouVoovoo.o

« END DATASTUB .

s 000 st 000

r'v‘l"' L
Atl“"“‘ oy

.
P Y

U
’
Yo le 'y

Program DATASTUB.

]
L N

.
el
. e
Alale e Aot

60 b

¢ et

= e

a” .

N

. B . e e - . e
O e R v, . Woe o Tae F S Y I TS
S S P N TP TR I N s N I T I IR S, W e
RSP AT Y Y DAL T AR L N B .

Y,

v
. . Y. Ol
. " a0 .
ol A A N

Ll .‘»."~-'~'~‘-“‘.!T_‘ OBt Y l. '. !..l_.‘l._l_l‘—v.“'_"__‘,..'_>",‘_,‘r'_‘ —

« START INTRSTUB .
CI..'..............v.l...0..........'.
« INPUT NAME OF NET FILE .
« BUILD FILENAME .
« OPEN INTRFILE FOR WRITING .
.<..'...D'...l..........l.'0.
v .
N . L] L
T 4 (0):4 4 . .
. -DATA . .
L] . Y L]
. ...OOOQCIOVUQIOOOQ.. .
. » SET REDO TO TRUE . .
L] Q<..........I...I..QQ L]
. « « INPUT WIDTH, LENGTH COORD. . .
. o o FOR START/END CELLS . .
. « <« DO NOT ACCEPT VALUE UNTIL . .
. o e WITHIN LIMITS OF PROGRAM . .
o « + ENTER "Y" TO REDO OR "N" TO . .
. e a ACCEPT o .
L] V O 0 0 @ 00 00 O 00N O RO B0 OO RO OORO OGS L]
. L] L] Y - L]
. . REDO eonssessesecacas .
. ...l.‘.......l.lnvoll..ll.'.... *
. « SAVE INTRFILE ENTRY TO DISK . .
. . ENTER "Y" FOR MORE OR "N" . .
. « TO FINISH . .
v
N . . §
tetscsssssassnee SAVE cseavesensncs .y
. . DATA. .
eoeseseseVesnsanes . ceessesVessocacans -
. PURGE INTRFILE . . CLOSE INTRFILE . L
.......'.l".l...l.>000<0.‘......0....’. --——‘:
OQOOCCOIVOQQQOOQ :';‘:
. END INTRSTUB . N
808 s0s000s000000 \::‘J
Y
Procedure 1.0 -~ INTRSTUB .
-)
61 - o]
T
- s

L e o " P PT————

. START INITBORD . T

.....Q.O.t.l..'l..'..'.v....t..!.0............

. INITIALIZE EACH BOARD SEGMENT WITH ALL DIR . e
. ENTRIES SET TO O AND RCH FLAG SET TO . R
. FALSE . R

. READ EACH INTRFILE ENTRY . -
. PROCEDURE CALCFILE 2.1 . T

. FOR EACH CELL IN INTRFILE, SET THE CELL"S . N
. OBS FLAG ON . et
. SAVE SEGMENT TO DISK .

l‘......v-......

+ END INITBORD .

S0 0s000sv0000se -
-

Procedure 2.0 - INITBORD S

= . START CALCFILE . -
e . Il: WIDTH . ;
o . 1I2: LENGTH . o
d . —

.o.oo.a-oo.olco.oooVo'c-ot.oo.conco.o.

F . CALCULATE NEW SEGMENT WIDTH AND .

- « NEW LENGTH USINGG I2 . o
- . COMPARE NEW SEGMENT COORD. WITH . o
. CURRENT SEGMENT COORD. .

N Vv o

~ . . Y :‘j

. 2 00 09 0 600 508000 BSEDS .v. 8 0090 ¢ 00000t osboe s - :'{
. . OPEN, WRITE, CLOSE CURRENT SEGMENT .

. . SAVE NEW SEGMENT COORD. AS CURRENT COORD. -

. . USE NEW COORD. AND BUILD NEW SEGMENT . e

. . OPEN, READ CURRENT SEGMENT . i

5 . . PURGE CURRENT DISK FILE . e

i:: ® 0 06 00 ¢ 000 008000 s e > L N] < L N] ‘:;-:‘_]

2% v Ry

=y . CALCULATE NEW RELATIVE WIDTH COORD. USING Il . —~ s

' . CALCULATE NEW RELATIVE LENGTH COORD. USING IZ . - -

.:‘> ® 0 00 0 00 00 00 SO H T O LSOO QO LSOO PPO SO EROSOR OO Nl .‘.:\“

:- .- 290 G080 .6 L N N B BN N J -:::::

e . END CALCFILE . s

€vs0csac0sesretses ;;q‘

o Procedure 2.1 - CALCFILE -

o s

o =

N SN

:.' 63 * .:,\

Y
-~

E: . START BORDSTUB . o

oo'-.lo-cuVuo.o.oloo T
« SET MORE TO TRUE .

o<oo...ooo-.oooc-oooooooo..oo

v .
N L] . .

® 600 60 PP GOS0 OE SO Se P }1ORE - -
: . X : Y
* @O0 9 0 09 0OV PSS EOOS OSSO SEISDS 'v. 9 00 9 00 0t a0 0o seL OO L] <. :.1

. . ENTER WIDTH, LENGTH, SIDE COORD. OF OBSTACLE . .
. . CELL . . i
. . DO NOT ACCEPT VALUES UNLESS WITHIN LIMITS OF . . o
. . PROGRAM . .

. . PROCEDURE CALCFILE 1.2 . .
. . SET CELL"S OBS FLAG ON . .

. 00 000 2 0000000000 ¢00003 00 0800000600000 sscossocroreosn .

LA

. e

. v .

1)
et
. et
PP I WO WP O N IS P P

. . . Y . L.
. 3 REDO *eeevesecvssccen . .J
. . T P . -::
. . N . SET CELL"S OBS FLAG OFF.. . T
. . ® 9 ¢ 9000 0990800 PO OTROLOSE OO L '""
. . . . - e
L]‘..‘)...(.'...... L

Lv.'.'...I.......". L]

. . ENTER "Y" FOR MORE OBSTACLES . . O
. . ENTER "N" TO FINISH . . Y

. 00 060000080 3OO E OO0 BN N0 H NSRS - ‘.*-q
. . . ::'::
. R R RN RN WA IS S AT A N .':'.'_'
e Lty

. ..'-._'q
A

SO S 000 00 00 B 00O RSSO OeNe LSS SE PO, LI -
KRR

. =

...l....v..'.'.. .‘_.‘

. END BORDSTUB .

sesassessesenss

Procedure 3.0 - BORDSTUB oy
"Ly

64 -

W -

KPS TR L LA L st

APPENDIX C: Software Implementation - Program ROUTE

65

+ START ROUTE .

...D.....'.VOI.'CQ.Q..
» SET MAXWID, MAXLEN .

N . . Y

seo000 o000 RUN Se s s scsessensse

.LBE. L)

l.-.--nn-o-ooVo-'-.connoouo

« OPEN ROUTFILE, INTRFILE .
« SET NUMIMPOS TO O .
« INITIALIZE IMPOSLIST .

..........o..V-.-.--...-...
« PROCEDURE LEE 1.0 .

Qco'oooooootoV-oooo'ol.oluc

« PRINT UNROUTED TOTAL .
« CLOSE ROUTFILE, INTRFILE.

--o.-uo.ooo.oVoooooo-o--ooo
« PROCEDURE VINTR 2.0 .
.‘.O.l..OCOOOVCIOQOIOIQOOOO
« PROCEDURE PRINTIT 3.0 .

l..'...'......).!.(..l.l.l.l...i.

. LN L)
Attt At et

0.-.0.Vco~.c.
. END ROUTE .

sSes0 e

Program Route.

66

\ 00600 8000000
e . START LEE .
5-'v..'.......

. GET INTRFILE ENTRY .

. F Yo e
y .H‘ ‘ !
B O

v
Y L] - e N

RN WA NN I I N N B O EOF LICI I I I

R SRS
W7
K

PR
b 'r e
PRI

. . L] .

o-o.ooooov.-o-.o.o- .t..l.‘l.l...V......Q.....0

« PRINT NUMBER OF . . PROCEDURE INIT 1.1 .
. UNROUTABLE L] 0 6 8820 G000 C S OSSP OSIENBOS NS
+ CONNECTIONS . . .

s ss0cssesess s looo-OQQCQQUQVGOlQGOQODoo'o

READ INTRFILE .

. « ASSIGN START COORD TO .
. . BW, BL AND END COORD. .
. . TO EW, EL .
. + ASSIGN SIDE 1 START .
. . COORD. TO ELIST AND .
. SIDE 2 COORD. TO RLIST.
. ...‘..O......v.'........‘.'
. . PROCEDURE CALCFILE .
. . I: START COORDS. 1.2 .

.Q‘Q..0....-.Vooooo-.ooo.oc

. SET LAYER RETRACE DIR OF.
. SIDE 2 CELL TO 2 .

..'....O...OOVI..C.IQQOQCQI

. SUBPROCEDURE LEE 1.3 .

oo-aoo..ooo.o.o..oo-)t.o(ooo;ooo.
o-oocv-ouoo

. END LEE .

ss0 000000900

Procedure 1.0 = LEE

« START INIT .

0...-.-000..0....-0-.-.v--..........-u.ooonooo

n - . INITIALIZE EACH BOARD SEGMENT WITH ALL DIR .
. ENTRIES SET TO O AND RCH FLAG SET TO FALSE .

N . INITIALIZE ALL RLIST AND ELIST ENTRIES TO O.

e . INITIALIZE R, SC, INDEX, AND NUM TO 1 .

CONNECTED FLAG TO FALSE

90 B 00 00T E P 00600080 0C8LETPES0CRITPECCSINISIOINIESEESDRETS

INITIALIZE IMPOSSIBLE CONDITION FLAG AND .

.-ooooVonn..
. END INIT .

a0 e00e0s00e

Procedure 1.1 - INIT

68

Cscesevsev O e

« START CALCFILE .
. I1: WIDTH .
o I2: LENGTH .

- ®0 000080000000 s0s0ss
. i
. lI....".....'.....V.Q.....l.l..'....O

;;21 . CALCULATE NEW SEGMENT WIDTH AND .
. NEW LENGTH USINGG I2 .

- » COMPARE NEW SEGMENT COORD. WITH .
—i . CURRENT SEGMENT COORD. .
;'_:' N Vv
: ; L] . Y
ﬁ . essesnsccscssensecesesseVisicossecscrccncssoassen

. . OPEN, WRITE, CLOSE CURRENT SEGMENT .

. . SAVE NEW SEGMENT COORD. AS CURRENT COORD.

. . USE NEW COORD. AND BUILD NEW SEGMENT .

. . FILENA.ME .

. o OPEN, READ CURRENT SEGMENT .

. . PURGE CURRENT DISK FILE .
‘::::I...'...'...‘.I..Q‘)...(...
:.‘V:- .Q..................v................".........I

= « CALCULATE NEW RELATIVE WIDTH COORD. USING Il .
« CALCULATE NEW RELATIVE LENGTH COORD. USING I2 .

- © 000000003 00000003 000000 sss000eossecssssrenessnns
-~ .
'y

oooc.o-oVoo..l.-
. END CALCFILE .

Procedure 1.2 - CALCFILE

. - RORS
u':' 69 '_.:“_.
..:.. e
o)

R r—

s eve0ssovstesses

. START SUB-LEE .

-
RS
- .'.
\l‘
(Wi
[

. T\ ®eeC eSS LIIBTOERPEPLOOND

' .

[.

Vo D v

Vv - sse00sesessecstsscescvsssoeVocsonssnsvsocsssconssossne

. CHECK SETTING OF OBSTACLE AND IMPOSSIBLE FLAGS .

90 0000000020800 000 ¢00C000000000000s0000s0sRssNRSROGS

- v
N . . Y

®Sess0cseesensse NOT es0ssve0ncnse

QSET- o<oo.0..oon'o

LA A

£
.

L] ...I..'........v""'.... L
. « READ NEXT ELIST ENTRY . .
= . v .

. N L) NOT . L]
. eeensssecssensesssces CONNECTED . .

T

L . '} . . Y .
- - . P .

T . . . CALCULATE ADJACENT CELL . .
o . .« . COORDS. . .
S " + . PROCEDURE EXPCK1/EXPCK2 .« .

o - Y . . 10301 . .
(.-- L) L] 0 & 0 0 8090800 ROSHOEESNESINERTSTSTE L]
;j L])...(...‘..... L]
- : v :
i . - « N .
s L ‘ELIST 8 0 9000000800 S0 HD OO GO
. .EOF.
. < Y
-.v‘_ . .'......'....V...'......Q....
. . PROCEDURE RCHECK 1.3.2 .
.O.I...>...<...."
..'.'.v.....‘.l
. END SUB-LEE .
Sub-Procedure 1.3 - LEE -?'“

SRR Nt Bt It Bas Gl Jas St St S St A e g hge SN S " .'_¢l> .l.-l - P— P e e - - SO Y SORe ot T e

Sev 90 sse0v0sssre

. START EXPCK1/2 .

..'......C.I........l......l.).
p . [COOIOOOOCOQOCOODOIVO-.'t...'.o‘.l
h . . GET ADJACENT CELL COORDINATES .

.)
. Y . .
. PR RN I S I NI I I CONNECTED L]

. . . N

.l'.'..l.V..ll.t..'..l."O

. . . PROCEDURE CALCFILE 1.2 .

. . N L] .

. . ceo0essc0s st RCH L]

. . . .SET-

. . . . Y

. . . QQOOCOOOOQOVOO‘.I.....'...‘.I.
. . . . PROCEDURE EXPAND 1l.3.1.1 .

. . . v
. 3 . : N .

. . . oo 0080 r00000, RCH 3

. . . . +SET.

. . . L] . Y

. . . . ono.'oo-nQ.vl-uonoooooouoc
. . . . « SAVE RETRACE DIRECTION .
. . . 0..0..).0.(..-.-0

. . ouo-)o-.(oo.u

. 0-').00(....

. v
. N . END .
eeseee ADJACENT .
+CELLS.
Y
eseeeVeeooeannns

. END EXPCK1/2 .

Procedure 1.3.1 = EXPCK1/EXPCK2

PO e L A e PR g AR e ed SRR~ A AR A A4

ﬁ?' . START EXPAXD . e

o.oo.-0-.OonoosoooVOouoooooaoo..otco

. GET WIDTH, LENGTH, SIDE COORDS. . L
. COMPARE WIDTH WITH END WIDTH .
. AND LENGTH WITH END LENGTH .

P I P S S0 00 0080000 0Ce00s00s0000tsssRNtIe

Y VoW e
cevosessecssnrese P sesceccsecncsce I-h.—'—.bi
.'.‘..'.....v.'.....‘.. -

. SET NUMBER OF RLIST . .

. ENTRIES TO 1 . .

. SET CELL”S RCH FLAG . . .

. SET CONNECT FLAG . eecsesssceseeVereeocvnccans -
ersesvessessecasconten . CHECK CELL”S OBSTACLE . .

. . FLAG . . ‘
. Y v R
. @esess0ss s SET . . H
. ° L] N ‘:;i::::
L] L] See0s B0t .v CICI B N B I B .-‘.:—:
. . : . SET RCH FLAC . --:-:"

. . . ADD 1 TO NUMBER OF RLIST.. Sie
. . . ENTRIES . N
. . . STORE COORDS. IN RLIST . .

. -o-o.ooo>'-0<aoon.o.o‘

oco.o..o'oo.oo>.ot<ooo

.--.-..V...... :-'

. END EXPAND . R
Procedure 1.3.1.1 = EXPAND N
2 o

R

-

b M et atass an

oo e ey =y Py~ WY

« START RCHECK .
...l.."..l..v.....'l..'-
. CHECK FOR EMPTY RLIST .

v
Y . . N
seceeoensopsssoe EMPTY se0ecs0css0s s

1ooouo.-.oooVo.-cocotoucocc . ooooo.o--oVoooouo.oonoo.

. ADD E START/END COORDS. . . CHECK CONNECTED FLAG .
. IN IMPOSLIST . teessscsssscrssssssscnne
. ADD 1 TO NUMBER . .

. NOT ROUTED . Y V N

. SET COMIFCT FLAG ON . esessevessase SET coceee

. . lol.‘.--io.Vooolu.onos. ootoVo-ooo

. . PROCEDURE RETRACE . . CHECK .
. . 1.3.2.1 . . NUMBER .

L] ee 0 PLssLPOLISIRIIOGIERRIOEQSTOEPOSe . IN .
. . . RLIST .

. . V
L] . N . .

L] . X EEEEEEXER RN NN N NI NN NN >1 .
L] . L] . Y

. . L] .00'0...‘.'...o.'o.o'll..on.c.l
. . . . PROCEDURE SORTLIST 1.3.2.2 .
-'.00..0>!I.<l.0....

. . .l..!..‘..‘..v....l.‘0‘0..0..0.’l...

. . . PROCEDURE SORTSEG 1.3.2.3 .
. . . SAVE NUMBER OF RLIST ENTRIES AND .
. . . THEN SET TO O .

. unucccoo>ooo<'-o-.

'uoaoco>t00<aoon-o.

'..‘.v.....‘..
. END RCHECK .

Procedure 1.3.2 = RCHECK

73

[]

N ORI

. START RETRACE .

.‘.CQI.O'.......a-.l.’OOQVOOO.....IOQ..I.Q....I.OQ

. PROCEDURE SAVEROUT
. MOVE END COORD.
. PROCEDURE SAVEROUT
« PROCEDURE CALCFILE

I: START COORDS. 1.3.2.1 .

TO NEW COORD. .

I: NEW COORDS. 1.3.2.1 .
I: NEW COORDS. 1.2 .

000600060000 0000000000 0000030000080 000s000800s0bts0se

.<'O..'l...".0..

. .

.lll..l....l.0'l.l.l‘l.....'.V'.'l..l..Q.. .

. CHECK IF ANY START COORD. IS NOT EQUAL . .
. WITH ITS RESPECTIVE NEW COORD. . .

. . GET CELL DATA OF NEW CELL .

. . LOAD DIR VALUES INTO TEMP AND .

. . DIR OF 2 TO -1 .

. . ADD NEW COORD. TO TEMP TO FORM .

. . NEWEST COORD. .

. . PROCEDURE CALCFILE .

. . I: NEWEST COORD. 1.2 .

. . SET OBS FLAG OF NEWEST CELL .

. » PROCEDURE SAVEROUT .

. . I: NEWEST COORD. 1.3.2.1.1 .

. « CONSIDER NEWEST COORD. AS NEW .
. I 4 .
o DIFFccececsccncses

. N
-oo-ocnoclVo-co

. OPEN, WRITE,

eesesssvocvenee

CLOSE CURRENT SEGMENT FILE .

.

.......v....l..
. END RETRACE .

Procedure 1.3.2.1 - RETRACE

74

-

-

BRI IR
. Lt
AP AP DA WU

'
<, 4

v
.

')
. .,
o
PRSI

>

o e
PRaCR
.

.'1
<Y
S

| O . aaa L — S o
- . B R . S AR Rl ML Ry R cTRL -

. START SAVEROUT .

oo..l'oo.ooo.-ooo.v..ao-.n.o..tot.no

. INPUT WIDTH, LENGTH, SIDE COORD. .
. LOAD ROUTFILE ENTRY WITH COORDS. .
. SAVE ENTRY TO DISK .

.0.'!0'.Voo.|-'.

. END SAVEROUT .

B EEROERS
1 '.',.l'i.l'.'

Procedure 1.3.2.1.1 ~ SAVEROUT

......
......

'''''''''''''

« START SORTLIST .
..........'.'v....l.l...l
« SET SWITCH TO TRUE .

0<o.ono-.ooo-0..n'oooo.o..tcol

V .
N . . Y .

G000 e ssrvOsOOeEsBIsOEOORS szTCH e e vescssose .
. o-oouo.u--coo-'..-oloo-a..o-av..l.cooo. L]

. + SET INDEX TO NUMBER OF RLIST ENTRIES. .
. . SET SWITCH TO FALSE . .

. o..oc.oooccaoaonoVn.-oouoo- .
. + CHECK IF INDEX EQUALS 2 . .
. Y V .
. . . N .
.] oo..oo.oc-o.oo-oco‘ol.u-co.oonoa-.cho‘oo'-oo'. .
. . « CALCULATE MANHATTAN DISTANCE FROM CURRENT o«

. COORD. TO END COORD. FOR CURRENT RLIST ENTRY. .

. . . (S1) AND PRECEDING RLIST ENTRY (S2) o«

. . v .
L] . N . . 3
. . ©0 0000000000000 00000 sss00vsOeee S].<Sz . .
. . 3 . Y .
. 3 . .-c-o.occo...ooc.ouoovno--‘oooovaccvcoaoo. .

. . . . SWITCH TO TRUE. EXHANGE POSITION OF o« .
. . . . RLIST ENTRIES. DECREMENT INDEX 2Y 1. . .

L] . . 90000000 00CEEE00sP000ssOsRORRRRERNIOIROIESIOIPOISTIES .
.
. . .i.l‘l....'..O.).I.(..IO.......l...' .
. . . .
. nnao--co.oo.a)n.o(.no-oc .
. . .
. P9 00080000000 IEONRORIRIIVNENINIOIINRIOIEOLEOEDS

L N N N N NN N N RN

o-u.-oov..onococ
+ END SORTLIST .

ss0se00s0s0s00000e

Procedure 1.3.2.2 = SORTLIST

76

o o f . } ' 1 \ v 1
' B =

I A L PL [T VG L. P N T S YLt - s P . .-t ..
LIRS I . . AT T R e e s e T o

R A O A A AT I I e e T TN Tt e et ST I T T T T O VR
% LS S A T AT LA I A, AP S LN Suecndndoce dece deceduiochie ot gt St d (P LTS PN VT VR VL A S W W VY

e Tt .
LIPRR IR 2P O ST

S N N A P
U VR T WA A SRl WA)

ST M LTI Pl ‘.‘/" ".—‘,..‘
.
. START SORTSEG .]
eseseceessnccvsee .1
eeccsssvsscrseVecncesonee ..’_..:
o SET ELIST INDEX TO O .
®esecsesesertscssvcverere —3
.<............................ e
'..'..."..........v........‘.......... . ::;1
. SET TNUM TO NUMBER OF RLIST ENTRIES . . Y
v | : 2
N . . Y . SRR
9 0 600000 00 0OORLOIIOEDSTSIES TNU“DO L BN B B B IR AR B B J L] 1‘?-‘-*
. eessvessssssscsssssssesscssssesVeccscsnce . "‘
. . SET RLIST INDEX TO O. READ FIRST . . R
. . RLIST ENTRY AND SAVE IN ELIST. . .
. « CALCULATE SEGMENT COORD. AND LOAD . .
. . IN CURS1 (WIDTH) AND CURS2 . . .1
. . (LENGTH). .. N
. ..'.................'...'..."‘..'.‘..I‘>. L]
. - .'.......v".....'. L]
. . « READ NEXT RLIST . .
. . N V ¥ . .
. Y 00 sesc0censncasese END se0eseesesse o~
*‘...‘..‘v......'.....‘...‘.‘....‘.....
. . o CALCULATE SEGMENT COORD. AND COMPARE WITH .
. . . CURS1 AND CURS2 .
. . N V Y
. . D |
. . . INCREMENT T2. STORE « « INCREMENT Tl. STORE .
. . . ENTRY IN LOWEST AVAIL- . . ENTRY IN ELIST. .
* L] . ABLE RLIST ENTRY L] . e P 0 OB B IB OO OOESOSEELe o - >
. L)'..)-..('..‘...’... it.:
Cecesvsrocssssresvesessssesrene .':
oqaooroo-ococo -
. END SORTSEG . N
Procedure 1.3.2.3 - SORTSEG \
.‘_1
v i
7 S

Attt e, e
WIS U]

« START VINIR .
..'..OOCOOV.....I..
. CHECK ITERATION .

o<olol'oooooloooooocooloo.n.o

v
N . L]

@00 00000000000 sct s sOa <1’>5 .

e« o o o o

0..-.-.o-..o.-Vo-..i.o..oa-.o

INITIALIZE LENGTH ARRAY .

-
.
.
.
(3
.
.
-
.
.
.
»
.
.
3

OPEN ROUTFILE
PROCEDURE ROUTLEN 2.1
CLOSE ROUTFILE

OPEN ROUTFILE

OPEN TAILLIST FOR WRITING
PROCEDURE BLDTAIL 2.2
PURGE ROUTFILE

CLOSE TAILLIST

OPEN ROUTFILE FOR WRITING

CLOSE ROUTFILE
PROCEDURE PRINTIT 3.0
INCREHMENT ITERATION

908 0000000800000 ¢SS0t PIO

PROCEDURE ROUTVNTR 2.3 .

e ® o e o »

o..on.VooooC.
. END VINIR .

Procedure 2.0 - VINTIR

73

Ty

N

Lo—

LR

I

LAEH

N
I

sl
elels

oSy ry

.« .
K
AT

e s
Sl S

+ e A 8 & » # ’
BRAIENON ’i

SRR
PR R
NN

PSS e
. ’
PR AT, e :
L a0
el o
JUNCY PRI

»

'« "
P
b

o START ROUTLEN .

0.0..00.'00...-V..lc:o.oo

+ SET INDEX TO O .
« CHECK EOF ON ROUTFILE .

.<nn..i.n.oo-......o.oo.-.o.o

v .

N L] L] L]

Q0500 C8 09 0BSIEBEGEONNOSIIOEESEDS NOT L L)
. +EOF. .

. .ooou--o-oootov---.oooo.cio'o [}

. « INCREMENT INDEX BY 1 . .
. . LOAD START ENTRY WITH . .
. . ROUTFILE ENTRY . .
. « GET NEXT ROUTFILE ENTRY . .
. o GET NEXT ROUTFILE ENTRY . .
. « LOAD NEW ENTRY WITH . .
. . ROUTFILE ENTRY . .
. « CHECK IF START = NEW ENTRY. .

. v Y .
. L] N . .
. oooooot..-..ooo.ooloV..o-...‘o.ooo.o. . 3
. . INCREMENT LENGTH ARRAY ENTRY BY 1 . . .
. . READ NEXT ROUTFILE ENTRY AND LOAD . . .

. . INTO NEW ENTRY . . .

. N NN N RN NE NN NN RS RENFYRENENERERNRE NN E NN . .

. o..‘o-oo>o.‘<o.oloco.c .

. Qlooo..oooaopoov.ooonncocoo L]

. « GET NEXT ROUTFILE ENTRY . .
ocooooaVoo.ooo'

» END ROUTLEN .

s s0es 00000000

Procedure 2.1 -~ ROUTLEN

. L Y S PP N T e S T U Y
..

.....

S fine B Bt B S 8

. START BLDTAIL .

.

oo-.oc‘o"-‘ncuVocc.o.o-o

. SET INDEX TO 1 .
« CHECK EOF ON ROUTFILE .

c<c.'ltoco..oo.o.-ooo-a.ooc.o

v .
N L . .

00600 se st cdcegrsrssssretper NOT . .
3 oEOF. .
. L] Y .
. Ccoooton...o.a-n-o;-oo..oV.‘oo-Q-otltooo.oo-o .

. « LOAD TAILLIST ENTRY WITH ROUTFILE ENTRY . .
. « WRITE TAILLIST . .
. . CALCULATE NUMBER OF ENTRIES IN TAIL . .
. . SAVE NUMBER OF TAIL ENTRIES FROM ROUTFILE . .
. . INTO TAILLIST . .

. 00 800080 ¢ 0000000030 0800000800000000000s0¢s0b0s0s0 .
] . .
. -...-......o..o.o-.......V-.........o-..-.--. L]

. . CALCULATE NUMBER OF ROUTFILE ENTRIES TO . .
. . IGNORE . .
. « CALL PROCEDURE CALCFILE FOR EACH ROUTFILE . .
. . ENTRY . .
. . SET OBS FLAG OFF FOR EACH ROUTFILE ENTRY . .

3 680850900 00000000000CEsPPBCECNNPOIERPLIIOOITIIIINIOIETOTTS L]
. . .
. occ.oocon.oo.---o.otb-.--Val..oo-oc"oo..oooo L]

. . SAVE NUMBER OF TAIL ENTRIES FROM ROUTFILE . .
. . INTO TAILLIST . .
. . GET ROUTFILE . .
. '« INCREMENT INDEX BY 1 . .

. S 00 0P L0 P NGEIREIPICIEOREtPIROSISOLOIRNOOIEIOETTOLTTE .
L] . .
. 08 6800000680080 000 0000000000
.

.Ql'....'....C..OVQQOOOI.....'.
. OPEN, WRITE, CLOSE BORDFILE .
.......v’.'..‘.

. END BLDTAIL .

Procedure 2.2 - BLDTAIL

A
= I

o
)
_a

80

LA .
LI N AN 4
s 2

.

»

s

D
s %
o

s

it

.

oMt e e e T T T T T T e e e
AL YL 0TI W sl W A PR il >P SERD N W

« START ROUTVNIR .

.ooo.lo..ootooooOooo.noontol.ov.ocooiOooo.ooc.
. CHECK IF NUMBER OF UNROUTED CONNECTIONS >0 .

v
N . .

08 0000 F OSSO NOPLPOEPSIIORPEDPTOEDN >0 L]
N 4

.........!...l"..-..O.v.l.l....'.'.....'....
. OPEN INTRFILE FOR WRITING .
. READ IMPOSSIBLE ARRAY INTO INTRFILE .
« CLOSE INTRFILE .
. SET NUMBER OF IMPOSSIBLE CONNECTION TO O
. OPEN INTRFILE

. PROCEDURE LEE 1.0
. PURGE INTRFILE

GOSN O PP PSSP P PSPPI RLRPOGERSEETSIEIBIBRIESTERILTS

.l...."."............>.Q.<..

0.00.--.V0¢0.0000.0.o-...o

. PROCEDURE SUB~ROUTVNIR .
. 2.3.1 .

l.‘...l.V‘.....l
« END ROUTVNIR .

IR N RN N RN ENEENENEREER]

Procedure 2.3 = ROUTVNTR

81

TN AR I A .—W I e s

o START SUB-ROUTVNIR .

.luo.lcoc't'vluo...n.ou-a-

. OPEN, READ TAILLIST .
. CHECK FOR TAILLIST EOF .

@t s 00 s00s0 s RNGERNOSOOGIOSEECS

o<ooco.ooao.looo.--ooooooooo.

v .

N . . .
eesessescesesesssescsssesss NOT .
. .EOF. .
. 4 .
L]0'.‘..‘...'...l..‘.v......‘...I..l........ L]
. . OPEN INTRFILE FOR WRITING . .
. . LOAD START ENTRY WITH TAILLIST ENTRY . .
. « LOAD STOP ENTRY WITH NEXT TAILLIST ENTRY . .
. . LOAD INTRFILE ENTRY WITH WIDTH/LENGTH COORD. . .
. . OF START/STOP ENTRIES . .
. » SAVE INTRFILE ENTRY . .
. « GET NEXT TAILLIST ENTRY . .
. « CHECK IF TAILLIST ENTRY NOT EQUAL TO START . .
. . AND STOP ENTRIES AND NOT TAILLIST EOF . .

. 0<con.oooo...co .

. « o PASS TAILLIST COORD.. .
. : ' . . TO PROCEDURE CALC~. .
. o FILE 1.2 o e
escesvssse « .« SET OBS FLAG OFF .« e
. « o GET NEXT TAILLIST . .
eevescsecsVoeesocns . $s0cescsccssssssrertscn e .
. PURGE TAILLIST . v - .
cecesccssesscnsens N . NOT . Y . .
. « = AND NOT cecnans .
. . EOF . .
. « N .
. onc.-oo.h.-.tl--voo.ocoo-lcoo-_- .
. . OPEN, WRITE, CLOSE BORDFILE . .
. . CLOSE INTRFILE . .
. . OPEN INTRFILE . .
. . PROCEDURE LEE 1.0 . .
. « CLOSE INTRFILE . .
. . GET NEXT TAILLIST . .

. 09 0000008500000 000000000000 0000ce .

0..-0.V000..0-...00. . .
. END SUB_ROUTVNTR . Se9e P 0P e0PsRGOEEROEROIOIOIOIERESEOTSS

Procedure 2.3.1 - SUB=-ROUTVNTR

R e e e i S

Ty

. START PRINTIT .

Coon.l.o.ol.looooloo....oVu.c.nl'oO-c..

b-.
] « SET BET TO "C" AND COUNTER TO 0 .
« SET COUNTER TO O .

: . ASSIGN OUTPUT ID TO PRINTER . i
: . OPEN ROUTFILE AND READ FIRST ENTRY . N
- L0 B B BN B BB AN BN LR TR AL BE B K BN 3R B B NE BN RN BN AN B B N BN RN BN RN NN Y l.::‘-

O..l...tll...l.'l.l.l"..‘..).

. v

Procedyre 3.0 = PRINTIT

. N . EOF . Y :
. ceseseseses ROUT= teeveveenns .
. . .FILE . . B
. ..'....O.V...-O‘..IQ... OQ.Q.......OIVOQQIIOI.- '-

« .« CHECK IF COUNTER=8 . . CLOSE ROUTFILE .

e eteseesssetscssesccencs . CHECK FOR IMPOSSIBLE.

. . . CONNECTIONS . :

. NV Y Ceesvecssssscsssascenan o

e eeeVeeeeooses sestncaVenonnes N . .

+ o INCREMENT . . WRITELN ¢ eeess IMPOS>O .

« . COUNTER . . SET COUNTER

. o+ BY1 e . TO1 . .

- . s0esecssss00s scesssssssssnacn . . Y "0_'.
[3 . . o;oooooVoo-o-o--o. v -"-'
. teeeseedecslocnacane « « PRINT ARRAY OF . .

. . « .« ENTRIES . N
. ..‘.........v.....'....'... L LI IK B B 3R BN B BN B B BN B BN O B NN 3 :»’
. . PROCEDURE DISPLAY 3.1 . . o
. . GET NEXT ROUTFILE ENTRY . R JUAN ST .
vevsessVeransan RN
. END PRINTIT . =
LI B R B B BN BN B B BN BN AR BN ¥ 3 :::‘:

- Seoessecacrssr e
t:_ . START DISPLAY .

nﬁco.oool.olv-c.o..oooo

. CHECK FOR BEG = "C” .

N V Y

b

h L] O.....l'.".......lOv.'..'........‘.....
s . . INITIALIZE LENGTH COUNTER TO -2 .
-Tj . . LOAD START ENTRY WITH ROUTFILE ENTRY .
3 . . SET BEG TO "Y" .
t

. 000880 0P 080000000000 RENSLIOSBROIOCEIOIEOICOCEPRIRNRTRIBIEOETS

.coo--..0..0.-)...(00.-0.

...ll....I..'...'.C...VIO..l.l...l.l....'

. ADD 1 TO LENGTH .
S « PRINT ROUTFILE COORD. .
o . CHECK IF ROUTFILE ENTRY = START ENTRY .

90 00900008 000 000QEOEPBRNEREOCIOEIRESIRIOIEOIOITONESES

N V Y

gl......v...l...'. '.I"....'.v'..........
- (o . CHECK FOR BEG = "Y" . . CHECK FOR BEG = "N" .
::. N V NV

. . Y . . Y
. eeseoessssVecsoaas . sesvecaVerennanns
- . « SET BEG = "N" . . « PRINT LENGTH .
. sececrcssesscccnn . « SET BEG = "C" .

L] .> o e .<. L] L -
L] LI] .>. L .<l e
:l..l......I).'.(.........I'

. .ooo.o.Voto-to- ..
« END DISPLAY . U
SO EeN SO 9 OGRS SIDS . -,_;;1
x“
: Procedure 3.1 - DISPLAY . :‘ﬂ
‘. ’. ‘('
2 A
- ;' " af
27
- oY
’ 34 nel)
AN
)
SN
RS

*
L
!
o .

P pr———
> v YT N e e , .
IR A [e e Ty TR I o A
S O PR R R ¢ .
..... . IR R R L g R A A X e)
b TR PR B T A A 1 | -
-
Q~

Sl ol

rar

e
S

Program DATASTUB
85

APPENDIX D:

Program

Program DATASTUB allows input of cell coordinates and definition
of additional obstacle cells. When the user is finished with
entering data, it can be saved to floppy diskette and the board
initialized.
Inputs = (1) an interconnection file (INTRFILE) with start and end
width/length coordinates.
(2) individual board segments (GRIDDATA) as required.
Outputs = (1) wupdated individual board segments (GRIDDATA).

Constants

MAXSEGWD, MAXSEGLN - these values define the number of segments along

the width and length of the board, respectively., Together, they
define the overall board dimensions. To increase the board
dimensions, merely increase these values.

Array Types

INTRDATA - a 4X1 packed array storing integer values of 0..60. The
values represent coordinate values. Element 1 is the start
width, element 2 is the start length, element 3 is the stop width,
and element 4 is the stop length.

GRIDDATA - a 30X30X2 packed array of RECDATA. Each specific element
of the array corresponds to a specific position in a single board
segment.

Record Type

RECDATA - each cell is represented by a single record. Each
record has two flags and a 3X1 packed array storing integer values
of 0..2. The first flag is OBS and designates whether or not the
cell is an obstacle. The second flag is RCH and designates whether
or not the cell has been previously reached during the current cell
expansion phase. The 3X1 array (DIR) represents the integer values
required for retrace once the end cell has been reached. The first
element of DIR is the width retrace direction, the second element of
DIR is the length retrace direction, and the third element of DIR is
the side retrace direction., A value of O signifies no change, 1
signifies a +1 change, and 2 gignifies a -1 change in the present
coordinate position. These values are added to the current
coordinates to achieve the next retrace cell. Note that only omne
direction parameter should ever be non-zero.

36

T T T WP Ty yr—yv~y

3 Variables
.. INTRFILE -~ a secondary storage file of INTRDATA. Entries are the
i width/length coordinates of the net”s end cells to be connected.

INTR - the coordinates of a net”s end cells.
BORDFILE - a secoundary storage file of GRIDDATA. Each file is a
30X30X2 array of cells and is termed a board segment.
GRID = an individual entry in GRIDDATA.
SEGWD, SEGLMN, CURSEGWD, CURSEGLN - these are integer values that keep
track of the current segment loaded into memory (CURSEGWD and
CURSEGLN) and the new segment (SEGWD and SEGLN) containing the cell
currently under consideration. A suffix of WD designates a width
coordinate. A suffix of LN designates a length coordinate.
NEWWD, NEWLN -~ these integer values are the relative coordinates of
the current cell within a board segment.
NUM - a general purpose integer variable to store keyboard numerical -
input in INTRSTUB.
MAXWID, MAXLEN - these are integer values representing the maximum
- board dimensions.
N ANSWER - a character value read from the keyboard in response to a
- question.
A3 SEGCHRl, SEGCHR2 - the string equivalent of SEGWD and SEGLN, .
2% respectively. -
i CURSEGFILE - the name of the current secondary storage file loaded
= into memory. Other literal characters are concatenated with SEGCHRIL

~ and SEGCHR2 to uniquely define the individual board segments.
" I, J, K - integer value input representing the width, length, and side .
coordinates of cells in BORDSTUB and INITBORD and as an index in - -

INITBORD. - -
NAME, FILENAME - NAME is the unique name a user can provide if .
o building multiple INTRFILEs. FILENAME concatenates additional
> . information to NAME and uses FILENAME to refer to the file.
- REDO, MORE - boolean flags to indicate whether a value requires
changing (REDO) or if there is more input data (MOREZ). »

B PROGRAM DATASTUB;
Function = to allow the usc: 0o build datafiles, specify obstacle
cells, and initialize the segments,
Global parameters modified ~ MAXWID, MAXLEN, REDO, ORE.
Local parameters modified - none.
- Calling procedures =~ none,
L Called procedures - RESPONSE, INTRSTUB, INITBORD, BORDSTUB.
Superior procedure =~ program DATASTUB.
F - Sub~procedures - INTRSTUB, CALCFILE, INITBORD, BORDSTUB.

a7

L A h

A COHPRRISON RND ANALYSIS OF VINTR’S GLOBRL ROUTING 2/2
RLGORITHH WITH THE LE.. <U> AIR FORCE INST OF
RIGHT-PATTERSON AFB OH SCHOOL OF ENGI. F T CHESLEV
UNCLASSIFIED HRR 85 AFIT/GCS/ENG/8SH-1 G 12/4

_AD-A45S 600

'

AN s e

. d . ST
nL..,..h.u.r.r..blr\’.’u‘.b\(niblcri?

<t

T

¥
ol
]
'

ol Ng ©
sl
=

HEEE

K EEFEFTT

2

lle2
e

14

|

1.25

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS-1963-A

L APR)

DA)

taalala

..........

...........

T T T Y T T O I —— Ry
. D T o N S e i i A A A Rt e Siae S e S s e e s e) e e —r—

‘Special processing - if the user wishes to build an interconnection

file, he will input the width/length coordinates for both start and
end cells. The program will prompt for each specific coordinate and

all four coordinates have to be entered. The nets can then be
accepted or rejected. If there are more nets, additional

data can be entered. If there are no more entries, the data can now
be saved. Not saving the data will destroy the entire interconnec-
tion file. The program will then ask to initialize the board. To

do this, the program will create and initjalize the segments

and mark those cell found in the interconnection (net) file as
unavailable on the board. The last input routine is for obstacle
cell coordinates. An entry can be rejected and multiple obstacle
cells can be entered.

CONST
MAXSEGWD=2;
MAXSEGLN=2;
TYPE
INTRDATA=PACKED ARRAY{l..4] OF 1..60;
RECDATA=PACKED RECORD
OBS : BOOLEAN;
RCH:BOOLEAN;
DIR:PACKED ARRAY[l..3] OF 0..2
END;
GRIDDATA=PACKED ARRAY({1..30,1..30,1..2] OF RECDATA;
VAR
INTRFILE:FILE OF INTRDATA;
INTR:INTRDATA;
BORDFILE:FILE OF GRIDDATA;
GRID:GRIDDATA;
1,J,K:INTEGER;
SEGWD,SEGLN,NEWWD , NEWLN : INTEGER;
CURSEGWD, CURSEGLN: INTEGER;
NUM ,MAXWID ,MAXLEN: INTEGER;
ANSWER:CHAR;
SEGCHR1 ,SEGCHR2 ,CURSEGFILE, NAME ,FILENAME : STRING;
REDO, {ORE : BOOLEAN

BEGIN
MAXWID : =MAXSEGWD*30;
MAXLEN:=MAXSEGLN*30;
REDO:=TRUE;
MORE :=TRUE;
WRITE (“DO YOU WISH TO BUILD AN INTERCONNECTION “);
WRITE (“LIST?(Y/N) 7);
RESPONSE;
IF (ANSWER="Y”) OR (ANSWER="y”) TIEN
INTRSTUB;
WRITE (“DO YOU WISH TO INITIALIZE THE BOARC AT “);
WRITE (“THIS TIME?(Y/N) °);
RESPONSE;

o
U

t

e e e e ’

S P e

R '

ST T e A At
St P B
acalacala alal -~

t. 4

.
.’
’

e e o

CA IR

....,..
B ..
S S

1 A0 ot .
G

. o i
oo [e
B B e o ,
. . . o .
PO I DV K LI LIS DL S

. I Sl - St e e 3 ER - Chacane e o -
- R - A - . PR S i)

vl

4
4
IF (ANSWER="Y") OR (ANSWER="y”) THEN) O
BEGIN (*THEN*) S]
WRITELN (“INITALIZING BOARD, PLEASE WAIT.); o oad
INITBORD -
END; (*THEN*) i;i
WRITELN (°DO YOU WISH TO SPECIFY ADDITIONAL “); o
WRITE (“OBSTACLE CELL DATA?(Y/N) 7); =
RESPONSE; T
IF (ANSWER=“Y") OR (ANSWER="y”) THEN Ll
BORDSTUB; .
WRITELN (“***END OF DATA STUB***~)
END. (*END DATASTUB?*)

o o 8,
’

% %ttt

.
. J N AN

(] .l
. l”:l.‘:

8 9 Lw. ‘l

[N
»

- .

....... A -l.‘- - ‘.A - » - - .
..........

. v Fa e e . -
AEILYRTLML YO ML VUSE S LG, SRS

PROCEDURE RESPONSE;
. Function - reads the keyboard for a user response to a question. -
Global parameters modified - ANSWER. -

Local parameters modified = none. oL
. Calling procedures - program DATASTUB, INTRSTUB, BORDSTUB. L]
. Called procedures - none. ::é.::i
=, Superior procedure - program DATASTUB. ~::.~‘
:3 Sub-procedures = none. .:::.::t
Special processing ~ checks to ensure a yes or no rcsponse is given. N:i
BEGIN 1

REPEAT

READ (KEYBOARD,ANSWER)

UNTIL ANSWER IN [7Y","N7,"y","n"};
WRITELN (ANSWER) 2t d
END; (*PROCEDURE RESPONSE*)]
e
S
¥ -
s, S

; e
e -";.j'.
e

4 v o e v
ahatata e g

e
C e
R

L N

|

G RS

- . -.; !

-, - -'l «
. e
I", '. n-.-..

N s

..'.-1
. [}
- ~—r—
" S (R
ot .-

b "o e -\‘n-:
~ 90 N
» . .h'

. S
= n
- -'- -

RS

PROCEDURE NUMCHK;
Function - validates that input data is within the proper numerical
range of values.
Global parameters modified - NUM.
Local parameters modified - none.
Calling procedures - INTRSTUB.
Called procedures - none.
Superior procedure - program DATASTUB.
Sub-procedures - none.
Special processing - ensure coordinate values range from 1 to 60.

BEGIN
REPEAT
READ (KEYBOARD,NUM)
UNTIL NUM IN [1..60];
o WRITELN (NUM)
- END; (*PROCEDURE NUMCHK*)

""" - LRSS

S

. .."

Rt

-

=]

- PROCEDURE INTRSTUB; "3

_ Function - input interconnecticn cell coordinates. Do
Global procedures modified - NAME, FILENAME, REDO, INTR, INTRFILE, s

N Local procedures modified - none. ;

Calling procedures - program DATASTUB.
Called procedures - NUMCHK, RESPONSE. e
Superior procedure - program DATASTUB. =]
Sub-procedures - none. . i
Special processing - coordinates are input one at a time. The entry .

can be redone, eliminated, or accepted. If there is no more input o

data, the interconnection file can be saved or destroyed. Rfﬂ

l' v, !'

BEGIN
WRITE (°WHAT IS THE NAME OF YOUR INTERCONNECTION FILE? °);
READ (KEYBOARD,NAME);

WRITELN (NAME);
IF NAME="" THEN
NAME:=" INTRFILE";
FILENAME:=CONCAT (“PSEUDO:”,NAME,”.DATA");
REWRITE (INTRFILE,FILENAME);
WHILE MORE DO
BEGIN (*WHILE1*)
REDO : =TRUE;
WHILE REDO DO
BEGIN (*WHILE2%)

® WRITE (“INPUT START WIDTH. “);
T NUMCHK ;
INTR{1]:=NUM;
WRITE (“INPUT START LENGTH. “);
NUMCHK ;

INTR[2] :=NUM;
WRITE (“INPUT END WIDTH. 7);
NUMCHK;
INTR{3):=NUM;
WRITE (“INPUT END LENGTH. °);
NUMCHK ;
INTR[4] :=NUM;
WRITE (“ROUTE ~,INTR[1},”,",INTR[2],” TO);
WRITELN (INTR[3],”, ,INTR{4]);
WRITE (°DO YOU WISH TO REDO THIS ERTRY?(Y/N) 7);
RESPONSE;
IF (ANSWER="N") OR (ANSWER="n") THEN
REDO:=FALSE *
END; (*WHILE2%*)
INTRFILE® :=INTR;
PUT (INTRFILE);
WRITE (“MORE CONNECTIONS?(Y/N) 7);
RESPONSE;

e 92

IF (ANSWER="N") OR (ANSWER="n") THEN
MORE :=FALSE

END; (*WHILEl*)
WRITE (“SAVE DATA?(Y/N) “);
RESPONSE;
IF (ANSWER="Y") OR (ANSWER="y~”) THEN
CLOSE (INTRFILE,LOCK)
ELSE
CLOSE (INTRFILE)
END; (*PROCEDURE INTRSTUB*)

93

-~ .'4“.'. ERE AN ‘..'.‘

- T G R TR RN [t N Bsc et aachds B S o0y
Ef S
)
T PROCEDURE CALCFILE (I1,12:INTEGER); R
N Function - the absolute width coordinate (Il1) and absolute length S

coordinate (I2) are passed to this procedure to detect when a cell
is 1in a different segment and to calculate the cells”s relative

coordinates.
Global parameters modified - SEGWD, SEGLN.
Local parameters modified -~ I1, I2. o]
Calling procedures -~ INITBORD, BORDSTUB. :t}j
e

Called procedures - CALCSEG, EXCHFILE, NEWCOOR.

Superior procedure -~ program DATASTUB.

Sub-procedures - CALCSEG, EXCHFILE, NEWCOOR.)

Special processing - if the segment has changed, segments are
exchanged. Relative coordinates are then calculated for the cell.

BEGIN
SEGWD:=CALCSEG(I1);
SEGLN:=CALCSEG(12);
IF (SEGWD<>CURSEGWD) OR (SEGLNK>CURSEGLN) THEN
BEGIN (*THEN*)
EXCHFILE; (*PROCEDURE*)
NEWCOOR (*PROCEDURE*)

- END (*THEN*¥)

- ELSE

- NEWCOOR (*PROCEDURE*)

> END; (*PROCEDURE CALCFILE*)

»
o

?iﬂ
po

AN
¢

%,
e s

'

' 94

'
Lt L
PREEPL AP DA
. . ..
e fa s tale s .i bl s

...... VY Y ‘ a” a - . - - N
..... T S N R R TN

ot Y e Taca®

AR SRS SRR

a’al .- n®a® " h®wt e, U i .

A e w et et et IS R L ST S Tt S x R et . .

PR P AL AL S WA % TE, P WA W MR W W ST >~ .LL'M'-_- IS AN PSR AR AR |
i - re W e .

::: . - . - . . - - . N . - - - . e e v Ve Ve Ve -/.o) .‘.;‘-W':.‘.
o]
- FUNCTION CALCSEG (VAL:INTEGER):INTEGER;]
= Function - this function returns an integer value. It accepts an L 3
!l absolute integer coordinate (VAL) and computes the relative o g
N coordinate within a grid segment. o
- Global parameters modified - none. :{;<
}i: Local parameters modified ~ VAL, CALCSEG. ﬁ:f
o Calling procedures - CALCFILE. -
- Called procedures - none. -l
. Superior procedure = CALCFILE.
_ Sub-procedures - nomne.
. Special processing ~ this function is called twice in CALCFILE, once
: to calculate the relative width and once to calculate the relative
- length coordinates.
BEGIN
CALCSEG:=1+((VAL-1) DIV 30)
END; (*PROCEDURE CALCSEG*)
~
=
=
95 ,:.':;
<
o)

s TN T TR TR T T T N~ g —
N A N Nt R eI M AN Ml A i A A AR N T e el i/ e S N “ S ol Belh e i Sh - S M Secat Ges v Ji~ e Aoen oo T

. e PROCEDURE EXCHFILE;
- SN Function - writes the old segment to secondary storage and reads
I the new segment into primary memory.

Global parameters modified - CURSEGWD, CURSEGLN, SEGCHRLl, SEGCHR2,
. CURSEGFILE, BORDFILE.
K Local parameters modified - none.
: Calling procedures - CALCFILE.
" Called procedures = none.
I Superior procedrue - CALCFILE.

Sub-procedures - none.

Special processing - as each new file is read into memory, its entry
is purged from secondary storage. Also, the width and length
integer values are converted to string values and concatenated with
other string values to form the current file name. The [16]

ﬁ appended to the end of the filename ensures sufficient and necessary
storage is reserved for the file.

Tt
v

N
-
.
-
9
¢
-

Y

BEGIN
REWRITE (BORDFILE,CURSEGFILE);

) BORDFILE®:=GRID;
i PUT (BORDFILE);
s CLOSE (BORDFILE,LOCK);
" STR (SEGWD,SEGCHR1);
S STR (SEGLN,SEGCHR2);
N CURSEGWD : =SEGWD;

CURSEGLN:=SEGLN;
(® CURSEGFILE : =CONCAT(“PSEUDO:SEG”,SEGCHR1 ,SEGCHR2,
e ~.DATA[16]7);

RESET (BORDFILE,CURSEGFILE);

GRID:=BORDFILE";
) CLOSE (BORDFILE,PURGE)
- END; (*PROCEDURE EXCHFILE%*)

B R

.
-
.
N
K
<
v
3
\"
.
L
v
“
-
.
- S
.
_ 96
-
-
.
-
*a
I-' Pv—1~
- -t
] - 2
...... - - - ~
................ TAT et e Tt et vy,
‘e w LR TN N I P A A VAL A D R S S S R N - T . .
RPN ___._‘-_‘1_‘\ -_. . . P R I N A R AL AT RO AN AN .n.‘_- ORI I "-]
LRI Rt B ¥ Dol T S . . I, Al at at e o tam et ata® et A a A

RN

i

-~
L
o
AN

v'T:H‘ ‘ S
‘, ottt e T e
‘. ‘ PELIRI)

ORIt S i S Nt i S et A M o [S et Bk At S el s s o o - o~ —
. . R DAL R A RN R - WM e e T A

-

PROCEDURE NEWCOOR;

Function - uses the absolute width (SEGWD) and length (SEGLN) integer
values passed to CALCFILE to calculate the relative cell position
within the segment.

Global parameters modified = NEWWD, NEWLN.

Local parametcrs modified - none.

Calling procedures - CALCFILE.

Called procedures - none.

Superior procedure - CALCFILE.

Sub-procedures - none.

Special processing - aone.

BEGIN
NEWWD:=11-((SEGWD=1)*30);
NEWLN:=I12-((SEGLN-1)*30)

END; (*PROCEDURE NEWCOOR*)

TG

' .
e h o A
_*.A. PRSI ERPLY PN S b

97 SN

Ty

.

O

- -

.t .‘

.

~ S
B N T S - e - T
i b e e T T A T T et e e
Sl Ul IS, W, VI W RN S N VAT Vol Tl A VLT Tl Sl T ATTRr PTG RO REPRDROA R A N o
F¥) N Sl A a Saia L WL WY £

.—P‘l.“‘l.l
..‘b.ill.l-l.'
.

v
.

R

R L e .. PR . R . PG -.-.-'.‘-“.'/,‘a).'-'.‘

PROCEDURE INITBORD;

Function - initialize all segment parameters for the entire board.

Global parameters modified - SEGWD, SEGLN, CURSEGWD, CURSEGLN,
SEGCHR1, SEGCHR2, CURSEGFILE, BORDFILE, I, J, K, 0BS, RCH, DIR,
INTR.

Local parameters modified - none.

Calling procedures - INITBORD, BORDSTUB.

Called procedures - CALCFILE.

Superior procedure - program DATASTUB.

Sub-procedures - none.

Special processing - first, mark OBS and RCH flags as false and all
DIR as 0, then use the interconnection entry coordinates to flag
cells as obstacles. Saves the segments to RAM disk.

BEGIN
FOR SEGWD:=1 TO MAXSEGWD DO
FOR SEGLN:=1 TO MAXSEGLN DO
BEGIN (*FOR*)
CURSEGWD :=SEGWD;
CURSEGLN:=SEGLN;
STR (SEGWD,SEGCHR1);
STR (SEGLN,SEGCHR2);
CURSEGFILE : =CONCAT(“PSEUDO:SEG” ,SEGCHR1,SEGCHR2,
“.DATA[16]7);
WRITELN (CURSEGFILE);
REWRITE (BORDFILE,CURSEGFILE);
FOR I:=1 TO 30 DO
FOR J:=1 TO 30 DO
FOR K:=1 TO 2 DO
WITH GRID{I,J,K]} DO
BEGIN (*WITH*)
OBS:=FALSE;
RCH:=FALSE;
DIR[1]:=0;
DIR[2]:=0;
DIR[3]:=0
END; (*WITH*)
BORDFILE” :=GRID;
PUT (BORDFILE);
CLOSE (BORDFILE,LOCK)
END; (*FOR%*)
RESET (INTRFILE,FILENAME);
WHILE (NOT EOF(INTRFILE)) DO
BEGIN (*WHILE¥)
INTR:=INTRFILE";
L:=INTR[1];
J:=INTR[2];
CALCFILE (I,J);
GRID{ NEWWD,NEWLN,1] .OBS:=TRUE;
GRID[NEWWD,NEWLN,2] .0BS:=TRUE;
I:=INTR[3];

93

A
et

e

o

. . , X
L A - .

G LN S YA DU T ST

S
R

T P —y y PP w
ARNEN L NS T T e e TR TR T T Ml AT R Bl e T P o o Py

A Y
J:=INTR[4]; B
CALCFILE (I,J); -
GRID|[NEWWD,NEWLN,1].0BS:=TRUE; -
GRID|[NEWWD,NEWLN,2] .0BS:=TRUE; .
GET (INTRFILE) g

END; (*WHILE*®) -
CLOSE (INTRFILE); -
REWRITE (BORDFILE,CURSEGFILE); -
BORDFILE":=GRID; :
PUT (BORDFILE); -
CLOSE (BORDFILE,LOCK) .

END; (*PROCEDURE INITBORD¥*))

RERR]
i
‘.l‘l.]

.
2’
P

99 RO

........................
..............................

.............

PROCEDURE BORDSTUB;

Function - to enter obstacle cells on the board and mark as
unavailable.

Global parameters modified - MORE, I, J, K, 0BS.

Local parameters modified - none.

Calling procedures - program DATASTUB.

Called procedures = CALCFILE.

Superior procedure - program DATASTUB.

Sub=-procedures = none.

Special processing - ensure each coordinate is valid and for all
entries to be accepted, rejected, or redone. Allow multiple cell
inputs.

BEGIN
MORE : =TRUE ;
WHILE MORE DO
BEGIN (*WHILE*)
WRITE (“ENTER WIDTH COORDINATE. °);
REPEAT
READ (KEYBOARD,I)
UNTIL I IN [1..60];
WRITELN (I);
WRITE (“ENTER LENGTH COORDINATE. “);
REPEAT
READ (KEYBOARD,J)
UNTIL J IN [1..60];
WRITELN (J);
WRITE (“ENTER SIDE COORDINATE. °);
REPEAT
READ (KEYBOARD,K)
UNTIL K IN {1..60];
WRITELN (K);
CALCFILE (I,J);
CRID[NEWD,NEWLN,K] .0BS:=TRUE;
WRITELN (°DO YOU WISH TO REDO THIS °);
WRITE (“OBSTACLE CELL?(Y/N) °);
RESPONSE;
IF (ANSWER="N") OR (ANSWER="n") THEN
REDO : =FALSE
ELSE -
GRID [NEWWD, NEWLN,K] .OBS : =FALSE;
WRITE (“MORE?(Y/N) °);
RESPONSE;
IF (ANSWER="N") OR (ANSWER="n") THEN
MORE : =FALSE
END (*WHILE*)
END; (*BORDSTUB*)

100 .

APPENDIX E: Program ROUTE

191

P

Program

Program ROUTE is a Pascal program using a heuristic algorithm (LEE)
to route wires on a two-layer printed circuit board (GRIDDATA).
Following execution of the initial route (LEE), Vintr”s algorithm {is
executed (VINTR). Although the program can only store 30X30X2 cells
(GRIDDATA) in memory at one time, extra board segments are kept
on secondary storage (BORDFILE) and retrieved as necessary.
Inputs = (1) an interconnection file (INTRFILE) with net
width/length coordinates.
(2) 1individual board segments (GRIDDATA) as required.
Qutputs - (1) a route file (ROUTFILE) with start and end cells
and all intermediate cells forming the connection path.
(2) updated individual board segments (GRIDDATA).

Constants

MAXIMPOS - defines the maximum allowable unroutable nets.

MAXSEGWD, MAXSEGLN - these values define the number of segments along
the width and length of the board, respectively. Together, they
define the overall board dimensions. To increase the board
dimensions, merely increase these values.

Array Types

INTRDATA - a 4X1 packed array storing integer values of 0..60. The
values represent board coordinate values. Element 1 is the start
width, element 2 is the start length, element 3 is the stop width,
and element 4 is the stop length.

ROUTDATA - a JX1 packed array storing integer values of 1..60. The
values represent the coordinate values of cell elements.
Element 1 is the width, element 2 is length, and element 3 is the
side.

GRIDDATA - a 30X30X2 packed array of RECDATA. Each specific element
of the array corresponds to a specific position in a single board
segment,

Record Type

RECDATA - each <cell is represented by a single record. Each
record has two flags and a 3X1 packed array storing integer values
of 0..2, The first flag is OBS and designates whether or not the
cell is an obstacle. The second flag is RCH and designates whether
or not the cell has been previously reached during the current cell
expansion phase. The 3X1 array (DIR) represents the integer values
required for retrace once the end cell has been reached. The first
element of DIR is the width retrace direction, the second element
of DIR is the length retrace direction, and the third elemant of DIR
is the gide retrace direction. A value of O signifies no change, 1
signifies a +1 change, and 2 signifies a -1 change in the present
coordinate position. These values are added to the current
coordinates to achieve the next retrace cell. Note that only one
direction parameter should ever be non-zero.

102

Variables

INTRFILE - a secondary storage file of INTRDATA. Entries are the
width/length coordinates of the net”s end cells to be
connected.

IMPOS - the width/length coordinates of an unrouted net.

INTR - the width/length coordinates of a net”s end cells.

ROUTFILE -~ a secondary storage file of ROUTDATA. A single entry
represents the coordinates of a cell. A connection is stored
as a geries of entries in the following form: start cell, end cell,
intermediate cells, start cell. This format aids the calculations
necessary in procedures CHKDIST and BLDTAIL.

ST, RT - these integer values hold the cell coordinates of a path and
are used to partially control the printing process

ROUT - an individual entry in ROUTFILE.

BORDFILE ~ a secondary storage file of GRIDDATA. Each file is a
30X30X2 array of cells and is termed a board segment.

GRID - an individual entry in GRIDDATA.

RLIST, ELIST ~ 360X3 packed arrays with integer values of 0..120.
Each is a sequential listing (up to 360 entries) of cell coordinates
(width, length, side). RLIST stores the coordinates of cells that
are reached during the current expansion phase. ELIST is the list
of cells available for expunsion in the next cell expansion phase.

WC, LC, SC - the current celi of width, length, and side,
respectively.

WCAl, WCS1, LCAl, LCSl - the width coordinate changes for possible
expansion (WCAl is a +1 change and WCSl is a ~1 change) and the

P i e b B e e oo ——— e M S S Sl A | o
e et R e . CREEA Yt e i A b SR N A AT S vl il a0 Sy AR - Ao dart e NI AN e e e o e oy

length coordinate changes for possible expansion (LCAl is a +1 —

change and LCS1 is a -1 change.

BW, BL, EW, EL, ES - coordinates for the start width, start length,
end width, end length, and end side, respectively.

NW, NL, NS - coordinates for the new width, length, and side which
are calculated from the current cell coordinates and the addition of
the current cell”s DIR elements.

SEGWD, SEGLN, CURSEGWD, CURSEGLN - these are integer values that keep
track of the current segment loaded into memory‘(CURSEGWD and
CURSEGLN) and the segment (SEGWD and SEGLN) containing the cell
currently under consideration. A suffix of WD designates a width
coordinate. A suffix of LN designates a length coordinate.

NEWWD, NEWLN - these integer values are the relative coordinates of
the current cell within a board segment.

CONNECTED, IMPOSSIBLE - these are boolean flags. CONNECTED indicates
a connection is successful for the net. IMPOSSIBLE indicates a
connection is not successful for the net.

E, R, NUM - E is the index for ELIST, R is the index for RLIST, and
NUM ts the total number of entries in RLIST for the current
expansion.

NUMIMPOS - an integer value of the total number of unrouted nets.

MAXWID, MAXLEN - these are integer values representing the maximum
board dimensions.

103

..........................

TN T e e
........
''''''

IR

ANSWER - a character value read from the keyboard in response to a fj:

question. e
SEGCHR1, SEGCHR2 - the string equivalent of SEGWD and SEGLN, -
respectively. e
CURSEGFILE - the name of the current secondary storage file loaded ;}:
into memory. Other literal characters are concatenated with SEGCHR1 W
and SEGCHR2 to uniquely define the individual board segments. :3:
IMPOSLIST - a list of cell coordinates for unrouted nets. "
ITERATION - an integer value for the number of the current Vintr =
interation. .
LENGTH - an integer value summing the Manhattan distance of a path. T
X, Y, Z, CHARL, CHAR2, CHAR3 - individual coordinate values of a path o
(width, length, side) are stored in X, Y, Z respectively. Then they f::
are converted to string values and stored in CHARl, CHAR2, and CHAR3 Ve
respectively. Used in the printing process. -
OUTPUT - string variable storing the output media ("PRINTER"). Do
BEG ~ a character value variable denoting various conditions during SR
the printing process. A "C” indicates a change to a new path, "Y" RS
indicates the start of a new path, and "N” indicates the end of the Yy
path. L
INDEX - a general index. . A
I - 3 counter to sum the number of path cells printed across the -
paper. el
FID ~ the variable name given to interactive use of the printer for :}ﬂ
the printing process. ??i
@ =
--4

N

104

..... SRS

>
e e .
LRI SIS TR TR P
-y Al a s arate y Yy ot o, - g 3y

A A w P ————
|- - N
.

.- -7

PROGRAM ROUTE;
Function = executes the LEE algorithm first and then VINTR. .
Global parameters modified - MAXWID, MAXLEN, ITERATION, ROUTFILE, —

NUMIMPOS, TMPOS, IMPOSLIST, INDEX. o

Local parameters modified - none. o
Calling procedures - none. i
Called procedures - YESNO, LEE, PRINTIT, VINTR. A
Superior procedure = none.
Sub-procedures - YESNO, PRINTIT, CALCFILE, INIT, RETRACE, SORTLIST, PN

o SORTSEG, RCHECK, EXPAND, EXPCK1l, EXPCK2, LEE, VINTR.

= Special processing - open the data input file (INTRFILE) and the data

“f output file (ROUTFILE). Initialize the impossible connection list.

e then run LEE, print the results and run VINTR.

E CONST o
- MAXIMPOS=40; .
oy MAXSEGWD=2;
& MAXSEGLN=2;
[. TYPE
- INTRDATA=PACKED ARRAY[l..4] OF 0..60;
ROUTDATA=PACKED ARRAY(l..3] OF 1..60;
RECDATA=PACKED RECORD

OBS : BOOLEAN;

RCH: BOOLEAN;

DIR:PACKED ARRAY[I..3] OF 0..2

B
Lt
o

END; ,
GRIDDATA=PACKED ARRAY([1..30,1..30,1..2] OF RECDATA; ~
VAR .o
INTRFILE:FILE OF INTRDATA;
IMPOS, INTR: INTRDATA;

IMPOSLIST:PACKED ARRAY({1l..MAXIMPOS] OF INTRDATA;
ROUTFILE:FILE OF ROUTDATA;

ST,RT,ROUT:ROUTDATA;

BORDFILE:FILE OF GRIDDATA;

GRID:GRIDDATA;

RLIST,ELIST:PACKED ARRAY{1..360,1..3] OF 0..60;
INDEX,WC,LC,SC,WCS1,WCALl,LCS1,LCAl: INTEGER;
I1,SEGWD,SEGLN,NEUWD,NEWLN, ITERATION,LENGTH: INTEGER;
NUMIMPOS ,CURSEGWD ,CURSEGLN,X,Y,Z: INTEGER;
E,R,NUM,BW,BL,EW,EL,ES,NW,NL,NS ,MAXWID ,MAXLEN: INTEGER;

ANSWER , BEG: CHAR; "]
SEGCHR1 , SEGCIIR2 , CURSEGFILE , CHAR] ,CHAR2 ,CHHAR3 : STRING; A9
OUTPUT:STRING(8]; Y
CONNECTED, IMPOSSIBLE : BOOLEAN; e
FID:INTERACTIVE; "]
BEGIN L
ITERATION:=0; ")
MAXWID : *MAXSEGWD*30; o
MAXLEN: =MAXSEGLY*30; ' e
WRITE (“DO YOU WISH TO RUN THE LEE ROUTER?(Y/N) °); v
PO

105 e
.
|
DA
""" E e A e A e T T T T T T R e

R oA S SRELIrSLEM S St g e S veat) ey -
L BERAARAN A SN A RS S A0 A M p o L AR v st s i /A P e e

YESNO;
IF (ANSWER="Y”) THEN
BEGIN (*THEN*)
REWRITE (ROUTFILE, PSEUDO:ROUTFILE.DATA[30]");
RESET (INTRFILE, PSEUDO:INTRFILE.DATA);
NUMIMPOS:=0;
FOR INDEX:=1 TO 4 DO
IMPOS[INDEX] :=0;
FOR INDEX:=1 TO MAXIMPOS DO
IMPOSLIST[INDEX] : =IMPOS;
LEE; (*PROCEDURE*)
WRITELN (“TOTAL UNROUTABLE CONNECTIONS=~,NUMIMPOS);
CLOSE (ROUTFILE,LOCK);
CLOSE (INTRFILE);
PRINTIT; (*PROCEDURE*)
VINTR (*PROCEDURE*)
END; (*THEN*)
WRITE (“END ROUTE”)
END. (*PROGRAM ROUTE*)

106

e et ettt atat At vasL e e, =, P R Bt S Ce -
e e T AT T T A T A et et et e T et e et ettt Lt T T W N e, et et A S T L B i S S
S P A S I S A I N TV S S S A L A T A S AT AL I = *
A P P A A T S T e DL L TN T e e T T L T e e e e e
FRY SEAL S SN RN OSSR PL IS VI S b WP WY P R P A A A R A L VA WA AT L S A S R A AP ORI S

PROCEDURE YESNO;
Function = reads the keyboard response to a question.
Global parameters modified - ANSWER.
Local parameters modified ~ none.
Calling procedures =~ program ROUTE.
Called procedures = none.
Superior procedure ~ program ROUTE.
Sub-procedures - none.
Special processing =~ checks to ensure a yes or no answer is given.

BEGIN
REPEAT
READ (KEYBOARD,ANSWER)
UNTIL ANSWER IN [°Y","N7,"y","n"];
WRITELN (ANSWER)

END; (*PROCEDURE YESNO*)

~
oy,
-—
~ Ry
foe =
107 SOSEES
_':._1
N
S
- -y
.) i -y
_______ o, x et e S o, R . L ety
PRSP o WAL, L A a 'Y P bt o ORISR AL SIS, YL LR S0 L L

A I St A i W Wt N~ Pl 2 ol stel oA Lt and oA g P ' o g
- Bl - ~ ~ o —— - - ,

T ’) 72> - ~~‘
’]
o
- PROCEDURE PRINTIT; ’
Function ~ output ROUTFILE data and then the impossible connections
2) to a printer.

Global parameters modified - BEG, I, OUTPUT, CHARl, CHARLl, INDEX,

IMPOS.

Local parameters modified - none.

Calling procedures - program ROUTE, VINTR.
: Called procedures - DISPLAY.
i Superior procedure - program ROUTE.
. Sub-procedures - DISPLAY.
Special processing - controls the number of retrace cells printed
,:j across the page and prints the unconnected nets.
5 BEGIN
ﬁ BEG:="¢”;

1:=0; ‘
o OUTPUT:="PRINTER:";
" RESET (FID,OUTPUT);
SR WRITELN (FID, ***ROUTFILE PRINT***");
o RESET (ROUTFILE, PSEUDO:ROUTFILE.DATAT);
i"‘ STR (ITERATION,CHARL);
IF ITERATION>O THEN

WRITELN (FID, ITERATION=",CHARL);
WHILE NOT EOF (ROUTFILE) DO
BEGIN (*WHILE*)
: IF I=3 THEN
i (.~ BEGIN (*THEN¥*)
‘ . WRITELN (FID);
e DISPLAY; (*PROCEDURE?*)
GET (ROUTFILE);
I:=1
END (*THEN*)

h ELSE

- BEGIN (*ELSE%*)

o DISPLAY; (*PROCEDURE*)
- GET (ROUTFILE);

> I:=1+1

- END (*ELSE*)

» END; (*WHILE*)

- CLOSE (ROUTFILE);

; WRITELN (FID, END OF ROUTFILE.”);
WRITELN (FID);

WRITELN (FID);

14 -' :
”I‘ .n. “
" (A
.. .‘ - ‘I
..' 3 -
. - -7
- X ‘,\.._1
- - 108 A
. Y
” .,
A R '..1
LI “u
. e
- -~
L] _.
P, SO
o’
. i
L - .-..'l
o ISR s I I DR et

el S ror_ 4 L
a e M b H) . N
PLL RERPL PN SR

" L}
R

K
R

[N
{ ACS)
et Tt Ts e

bl i Al A AR S St 4

IF NUMIMPOS>) THEN
BEGIN (*THEN*)
WRITELN (FID, ***NOROUTE PRINT#**%°);
FOR INDEX:=1 TO NUMIMPOS DO
BEGIN (*FOR¥)
IMPOS : =IMPOSLIST{ INDEX];
WRITELN (FID,IMPOS{1l],”,”,IMPOS{2],”:",IMPOS[3],
-, ,IMPOS([4])
END; (*FOR¥)
WRITELN (FID, END OF NOROUTE.”)
END; (*THEN*)
WRITELN (FID);
WRITELN (FID);
CLOSE (FID)
END; (*PROCEDURE PRINTIT¥)

109

Ty

Jre

B et B i A A i e B et B ey e e e g e iy e e o o o
. SR R N . WG T T T S T R T T T T TN TR N N T TN R T —

PROCEDURE DISPLAY;
N o Function - control the priunting process of when paths change.
i Global parameters modified - RT, LENGTH, ST, BEG, X, Y, Z, CHARL,
’ CHAR2, CHAR3.
= Local parameters modified ~ none.
- Calling procedures - PRINTIT.
- Called procedures - none.

g Superior procedure - PRINTIT.
l Sub-procedures - none.
Special processing - the coordinates of the path are read and con-

verted to string values for printing. The length is simultaneously
cumned as cells are processed after subtracting 2 from the initial
start length retrace path due to some redundant data for each cell
in ROUTFILE. The length is also printed when coordinates for a new
path are encountered.

SN L R

BEGIN
RT:=ROUTFILE";
IF BEG="C” THEN
. BEGIN (*THEN*)
r LENGTH:=-2;
L ST:=RT;
BEG:="Y~
END; (*THENY*)
X:=RT([1];
Y:=RT[2];
(; Z:=RT[3];
STR (X,CHARL);
STR (Y,CHAR2);
STR (Z,CHAR3);
LENGTH:=LENGTH+1;
T WRITE (FID,CHARL,”,”,CHAR2,”,”,CHAR3,” “);
i? IF (ST=RT) THEN
BEGIN (*THEN1*)
IF BEG="N" THEN
BEGIN (*THEN2%*)
WRITELN (FID);

- a * e T e .
. Y EAEATRPRRD

N WRITELN (FID,”LENGTH= °,LENGTH);
0 WRITELN (FID);

d WRITELN (FID);

' BEG:="C"

END; (*THEN2%)
BN IF BEG="Y" THEN
- BEG:=“N~
END (*THEN1*)
END; (*PROCEDURE DISPLAY*)

N

» .
ettt

.r..

‘I-.I‘4‘l' My
.
—
-
o

...........
...............

T TN YW TR Y e e S AP LPuE soet mage o aam)
L A R T ——— - -y —————y
. T . A Te v ., NN R A - e AT N T T T T T ~

- ' S ' RIS

-

PROCEDURE CALCFILE (I1,I2:INTEGER);))
S Function - the absolute width coordinate (Il) and absolute length . Ced
:I coordinate (I2) are passed to this procedure to detect when a cell o —
is in a different segment and to calculate relative cell
coordinates. .
Global paramaters modified ~ SEGWD, SEGLN. {b
Local parameters modified -~ Il, I2. .
Calling procedures - RETRACE, EXPCKl, EXPCK2, LEE, CHKDIST, BLDTAIL, o
ROUTVNTR, :
Called procedures - CALCSEG, EXCHFILE, NEWCOOR.
Superior procedure - program ROUTE.
Sub-procedures - CALCSEG, EXCHFILE, NEWCOOR.
Special processing - if the segment has changed, segments are
exchanged. Relative cell coordinates are then caiculated for the 'uq
point. -4

¢ . "'
N WO U

v
[

T
A

e

BEGIN
SEGWD : =CALCSEG(I1);
SEGLN:=CALCSEG(12); o
IF (SEGWD<>CURSEGWD) OR (SEGLN<>CURSEGLN) THEN)

BEGIN (*THEN*) o
EXCHFILE; (*PROCEDURE*)
NEWCOOR (*PROCEDURE*)
END (*THEN*)
ELSE
NEWCOOR (*PROCEDUREX)
END; (*PROCEDURE CALCFILE¥) —

T T A N e et e T e e e e e L e e e T It e T te e e e e e
R T T P N N e A B e S A I I LAY)
n Sl AT AR R S SR . PR DR AL et e M e YN MNC AR
W TV . ry a - s b s > a » b v
2, A b 2B P '4.}..:_..‘ ala' s “J'-.“' ‘)‘.“‘. T ".‘J' P »

Nt e,

Sl e LI
USRI

A " atata_ 2. ..

.
- - .
halr " aa

PR S St e el s s art e sy o v v y—
LT I CRCNEA A At RIS AT A TR AN S i Deth el tnt Sl S S7e Ao od S aut Deu aea o Son

17

FUNCTION CALCSEG (VAL:INTEGER):INTEGER;

Function - this function returns an integer value. It accepts an
absolute integer coordinate (VAL) and computes the relative cell
coordinates within a segnment.

Global parameters modified - none.

Local parameters modified - VAL, CALCSEG.

Calling procedures - CALCFILE.

Called procedures - none.

Superior procedure - CALCFILE.

Sub~procedures - none.

Special processing - this function is called twice in CALCFILE, once
to calculate the relative width and once to calculate the relative
length cell coordinates.

BEGIN
CALCSEG:=1+((VAL-1) DIV 30)
END; (*PROCEDURE CALCSEG¥)

e
112]

L .- - - . .
N IR R e e e N U SRR T A IR S S R c et . F S T -
A N AR AR SR -_.-,\1.-_-.3'..‘._~._ B T N A T N T e A R T S T
- . - - - - - - - PR - L . . *

A b LGP RO PSS PO G G R TS TE G TSl Sl il S W, VN Sl i, - SN S B T T S Sl T S S R -

)eo

PROCEDURE EXCHFILE;

Function - writes the old segment to secondary storage and reads N -
the new segment into primary memory.) -

Global parameters modified - CURSEGWD, CURSEGLM, SEGCHRL, SEGCHR2,
CURSEGFILE, BORDFILE, GRID.

Local parameters modified - none.

Calling procedures - CALCFILE.

Called procedures = none.

Superior procedrue - CALCFILE. R

Sub-procedures - none. :

Special processing - as each new file is read into memory, its cntry
is purged from secondary storage. Also, the width and length
integer values are converted to string values and concatenated with
other string values to form the current file name. The [16]
appended to the end of the filename ensures sufficient and necessary
storage is reserved for the file.

P
e,
A R
PO I

BEGIN
REWRITE (BORDFILE,CURSEGFILE);
. BORDFILE" :=GRID; -
= PUT (BORDFILE); o
CLOSE (BORDFILE,LOCK);]
CURSEGWD : =SEGWD; o
CURSEGLN:=SEGLN;
STR (SEGWD,SEGCHR1);
STR (SEGLN,SEGCHR2); .
CURSEGFILE : =CONCAT(“PSEUDO:SEG”,SEGCHR1, SEGCHR2, e .

- .DATA[16]"); ‘ . .
RESET (BORDFILE,CURSEGFILE); R
GRID:=BORDFILE";

CLOSE (BORDFILE,PURGE) e
END; (*PROCEDURE BORDFILE*) .

Tt et e e e e e e e . . .ot . o . . L T T -
. R LS. PR PR . B T T S U P

L e I TR A TR L I PO AT R Y DL Ay)

ORI I ST e

R A I 3 AL R)
S A R A N P A P L N T P R N R T T S S N Y e - e e e - .

HE SUNE N W PRAPSEAPY DI WA S) . - . et ettt e e e T e e S -

LWL AL W0 NP Gy) . (S AP TN TR IPUFI W S W WS SO W AT WL W W VR S s R

P e T
e

PR
A

b;,~d‘1

)

B PROCEDURE NEWCOOR; tﬁﬁ
o Function - uses the absolute width (SEGWD) and length (SEGLN) integer s,
values passed to CALCFILE to calculate the relative cell position P

within the segment. .
Global parameters modified - NEWWD, NEWLN. N
Local parameters modified - none. '
Calling procedures = CALCFILE., e
Called procedures =~ none.
Superior procedure = CALCFILE. e d
Sub-procedures ~ none.
Special processing - none.

BEGIN
NEWWD : =I1-((SEGWD-1)*30); .
NEWLN:=I2-((SEGLN-1)*30) ' i
END; (*PROCENURE NEWCOOR¥) -

At wreT—rel

'y L4

PROCEDURE INIT; -

Function - with the start of each new net, all DIR and RCH S 'f‘;:-'

entries for the cells of all segments are initfalized. In T ol
addition, all RLIST and ELIST entries are initialized.

Global parameters modified - CURSEGWD, CURSEGLN, SEGCHRl, SEGCHR2,
CURSEGFILE, DIR, RCH, RLIST, ELIST, R, SC, IMPOSSIBLE, CONNECTED,
NUM, BORFILE, GRID.

Local parameters modified - none.

Calling procedures = LEE.

Called procedures = none.

Superior procedure - program ROUTE.

Sub-procedures ~ none.

Special processing - none.

A

X

.

BEGIN e
WRITELN (“INITIALIZING BOARD SEGMENT.”);)
FOR SEGWD:=1 TO MAXSEGWD DO o

FOR SEGLN:=1 TO MAXSEGLN DO
BEGIN (*FOR¥*)

CURSEGWD : =SEGWD; L
CURSEGLN:=SEGLN; : o

STR (SEGWD,SEGCHRL);)
STR (SEGLN,SEGCHR2); A
CURSEGFILE :=CONCAT(“PSEUDO:SEG”,SEGCHR1 ,SEGCHR2, :
~.DATA[16]7); e
RESET (BORDFILE,CURSEGFILE); o Y
GRID:=BORDFILE"; - e
CLOSE (BORDFILE,PURGE); : _)
FOR WC:=1 TO 30 DO =
FOR LC:=1 TO 30 DO =
FOR SC:=1 TO 2 DO N
WITH GRID(WD,LC,SC] DO S
BEGIN (*WITH*) s
DIR{1]:=0; -
DIR{2]:=0; i
DIR[{3]:=0; N
RCH:=FALSE o
END; (*WITH*) e
REWRITE (BORDFILE,CURSEGFILE); S

BORDFILE" :=GRID; N
PUT (BORDFILE); B
CLOSE (BORDFILE,LOCK); L
WRITELN (CURSEGFILE,” INITIALIZED.") e
END; (*FOR*) S
RESET (BORDFILE,CURSEGFILE); -
GRID:=BORDFILE"; .
CLOSE (BORDFILE,LOCK); -

f
‘¥
{

115 N -:.:

D I e L S N S I Rt - .
st e SN Se L% Lt * R T R T R L e SR A e e e T e Nt T et T T N Ve

- - “®a® ..- ... -. - - . - - » - - - - - . - - - ~ - *
PR R R ST ST SR PP, g% gt et et Lt et Lt PP S SN PP A AV A AR A TP P I S A A A A A AR 2 .!.-Ll. < .\...A.
- . - e re PPN, S Sl .l - [WO,

DO M S S S S S Sy
/o Sl
.

FOR WC:=1 TO 360 DO s
FOR LC:=1 TO 3 DO Tl
BEGIN (*FOL¥*) L
RLIST[WC,LC]:=0;
ELIST[WC,LC]:=0
4 END; (*FOR*) sl
R:=1; i
SC:=1;
IMPOSSIBLE:=FALSE; L
CONNECTED: =FALSE; o
INDEX:=1; L
NUM:=1
END; (*PROCEDURE INIT*)

- Chal it S e ? rﬁ,-_‘AA-_.;.\‘_-“‘_>..._‘-;4_ T - i Al e e L B e e e T T R —
i YR A%

‘.

-—

PROCEDURE RETRACE; .
Function - the retrace path is found. ST
Global parameters modified - NW, NL, NS, OBS, BORDFILE. - s
Local parameters modified - ADDW, ADDL, ADDS. e o—
Calling procedures - RCHECK. e
Called procedures = SAVEROUT, CALCFILE. e
Superior procedure ~ program ROUTE. it
Sub—-procedures = SAVEROUT. e
Special processing ~ processing begins at the end cell, While the ey

current coordinates do not equal the start cell coordinates, each
DIR value is retrieved from the current GRID entry, stored in an
intermediate variable (ADDW, ADDL, and ADDS). DIR values of “2" are)
stored as ~1. ADDW, ADDL, and ADDS are then added to the current R
coordinate position (NW, NL, or NS) except when the DIR value equals R
2. In this case, -1 is added instead of 2. Each successive set of i
cell coordinates are passed to SAVEROUT.

VAR
ADDW,ADDL ,ADDS : INTEGER;

BEGIN N
WRITELN (” BEGIN RETRACE “); .
SAVEROUT (BW,BL,1); S
NW:=EW; S
NL:=EL; e
NS:=ES; : c-
SAVEROUT (NW,NL,NS); —~
WRITE (NW,”,”,NL,”,”,NS); : .. - .
CALCFILE (NW,NL); S
WITH GRID{NEWWD,NEWLN,NS] DO o

WRITELN (° -,DIR[1],” °,DIR[2],” “,DIR[3]); S
WHILE ((BW<ONW) OR (BL<>NL) OR (NS>1)) DO we

BEGIN (*WHILE*)
WITH GRID[NEWWD,NEWLN,NS] DO —
BEGIN (*WITH¥*) -
IF DIR[1])=2 THEN iy
ADDW:=-1 RS
ELSE e
ADDW:=DIR[1];)
IF DIR[2]=2 THEN R
ADDL :=-1 SRS
ELSE
ADDL:=DIR{2];
IF DIR[3])=2 THEN
ADDS:=-1 o
ELSE —
ADDS:=DIR[3]; e

e
s 8
.

D
LN}
a sy

117

......................

NS : =NS+ADDS; I

A, NL:=NL+ADDL; SRS

' NW : =NW+ADDW)

: END; (*WITH*) o

p CALCFILE (NW,NL); e

- GRID[NEWWD,NEWLN,NS] .0BS :=TRUE; N

& SAVEROUT (NW,NL,NS); !

3 WRITE (NW,',’,NL,’,‘,NS);

Il WITH GRID[NEWWD,NEWLN,NS] DO S

WRITELN (~ °,DIR[1),” °,DIR[2],” °,DIR[3]))
= END; (*WHILE*) ey
tf- REWRITE (BORDFILE,CURSEGFILE);

. BORDFILE":=GRID; S
PUT (BORDFILE); SN
CLOSE (BORDFILE,LOCK) ol

END; (*PROCEDURE RETRACE*)

N
e
-"'n.

s

v
[}

| AT
P

s
B
tanfa %u.ts '2 ‘22

e s
e

I

PR

.

g
v

0
1

Alatala e A

00) DA

Tt

)

)

[
e,
]
S tatatae

FTTY TV T TR TN - " - - ——
0 TSNS SR Yt e b A N M I GRS S St e S e i I R A A S e et e s St A0 e T ————— T

Jedfs

-

PROCEDURE SAVEROUT(I1,I2,13:INTEGER); S

Function = the three coordinate values (Il1, I2, I3) are passed to this S A
procedure and saved on secondary storage. - o

Global parameters modified - ROUT, ROUTFILE.
Local parameters modified - I1, 12, I3.
Calling procedures - RETRACE.
Called procedures - none.
Superior procedure - RETRACE.
Sub-procedures - none.
Special processing - none.

.
- BEGIN
ROUT[1]:=I1;
ROUT{2]:=12;
ROUT[3]:=13;
. ROUTFILE" :=ROUT;
- PUT (ROUTFILE)
‘:- END; (*PROCEDURE SAVEROUT*)
ﬁ;"
[:
p .-
b
P‘."
- —
f n
.;
R
;L;ij
-::: . ~=- 4
3 119 .
.‘:'

....................

...

..........................
...............

-

o .
‘a

Lot e

AR IR
AP UIPELIPUIPAC S GIP PY

PROCEDURE SORTLIST;

Function - entries are sorted according to the least Manhattan
distance from RLIST”s width and length entries to the end cell”s
coordinates. The Manhattan distance of each two successive entries
(Sl and S2) are compared. If the higher indexed entry”s distance is
less than the other, then the two entries exchange positions in
RLIST. When all RLIST entries have been compared, the process
begins again until no exchanges are made.

Global parameters modified - RLIST.

Local paramcters modified - TEMP, SWITCH, S1, S2.

Calling procedures - RCHECK.

Called procedures - none.

Superior procedure = program ROUTE.

Sub—-procedures - none.

Special processing ~ a bubble-sort technique is used to sort RLIST in
ascending distance using TEMP as a temporary array. SWITCH is used
to designate when entries are changed. When SWITCH is true the sort
starts from the beginning and processes RLIST until no exchanges are
made (SWITCH=FALSE).

VAR
TEMP:PACKED ARRAY{1..3] OF 1..60;
SWITCH:BOOLEAN;

S1,52:INTEGER;

BEGIN
SWITCH:=TRUE;
WHILE SWITCH DO
BEGIN (*WHILE*)
SWITCH:=FALSE;
FOR E:=R DOWNTO 2 DO
BEGIN (*FOR*)
S1:=ABS(RLIST(E,l[-EW)+ABS(RLIST[E,2]~EL);
S2:=ABS(RLIST[E-1,1]-EW)+ABS(RLIST[E-1,2]-EL);
IF $1<S2 THEN
BEGIN (*THEN*)
SWITCH: =TRUE;
TEMP(1]:*RLIST(E=1,1]
TEMP{2] :=RLIST[E-1,2]
TEMP[3] :=RLIST{E~1,3]
RLIST{E-1,1]:~RLIST[E,1];
RLIST{E-1,2):=RLIST(E,2];
RLIST[E-1,3]:=RLIST(E,3];
RLIST[E,1):=TEMP[1];
RLIST{E,2]:=TEMP{2];
RLIST(E,3] :=TEMP[3]
END (*THEN*)
END (*FOR%)
END (*WHILE*)
END; (*PROCEDURE SORTLIST*)

120

T I
A
ataate o

........

e Tl e e e e e e e e e LR ST AL S
N - N . . N . A o« " . - . . . - D . . ., . . . - - DU TR AN S
-l . a L N _ a0 o s LI WAL R s e - % . . e N
ahsietuinindedndhtindhd 2 PR LU N S LI T GNP T S TP W DY LI PP UL

PROCEDURE SORTSEG;

Function - to sort the RLIST entries into groups based upon the
segment each belongs to in an effort to reduce the number of I/9
operations.

Global parameters modified - ELIST, RLIST.

Local parameters modified - T1, T2, T3, TNUM, CURS1l, CURSZ, S1, S2.

Calling procedures —~ RCHECK.

Called procedures = none.

Superior procedure - program ROUTE.

Sub-procedures =~ none.

Special processing - the first entry of RLIST is selected and the
segment it belongs to is calculated. That entry and all others
belonging to the same segment are written to ELIST and removed
from RLIST. Then the first entry is again retrieved from RLIST and
the same process is continued until no RLIST entries remain. T3 is
the index for RLIST with TNUM entries in RLIST. T2 is the total
number of remaining entries in RLIST. Tl is the total number of

- entries written to ELIST. The segment coordinates of the first

- entry in RLIST (the closest cell to the end cell) are calculated and

- stored in CURS1l and CURS2 and the RLIST entry is stored in ELIST.

ii Subsequent segment coordinates are stored ian Sl and S2. If the grid
coordinates are the same, the new cell is stored in ELIST; other-

o
| S

-

’

" .
ﬁf wise, it is stored in the first available entry in RLIST. When all }5-
- cells of a specific segment are in ELIST, the first entry of o
:} RLIST is selected and the segment coordinates calculated. }2}
VAR =
TNU4,T1,T2,T3,CURS]1,CURS2,51,S2:INTEGER;
BEGIN
T1:=0;
TNUM:=R;

WHILE TNUM<>0 DO
BEGIN (*WHILE*)
T2:=0;
FOR T3:=1 TO TNUM DO
BEGIN (*FOR*)
Sl:=»1+((RLIST(T3,1]~-1) DIV 30);
§2:=1+((RLIST{T3,2]-1) DIV 30);
IF T3=1 THEN
BEGIN (*THEN%*)
CURS1:=51;
CURS2:=52
END; (*THEN*)

121 RSN

.........................

i
LY

=
>

Loy P

IF (S1=CURSL) AND (S2=CURS2) THEN
I BEGIN (*THEN*)
2) Tl:=T1+1;
ELIST[T1,1]:=RLIST[T3,1]};
ELIST[T1,2]:=RLIST[T3,2];
ELIST[T1,3]:=RLIST[T3,3]
END (*THEN*)
ELSE
BEGIN (*ELSE*)
T2:=T2+1;
RLIST(T2,1}:=RLIST(T3,1]};
RLIST[T2,2]:=RLIST(T3,2];
RLIST[T2,3]:=RLIST[T3,3]
END (*ELSE*) -
END; (*FOR¥) L
TNUM:=T2)
END (*WHILE*) -
END; (*PROCEDURE SORTSEG*) e

atele’an

‘U
R

LT ., . LR A
et PRI I |
N N . N M AN
. ..v.l FI)) l.‘.l
RPN WA I

Te h 0,0,

CRY

a @
i
y
T
T
) _
B =3
- 122 S
: R

'
. ‘.,
s
o lndd ‘s 's

- 2. 2 e A > v ~ . > . . .
B . “ - N T T I P

P PRI P P N TR P P N I N TR S R N Y R I VL AP P o B e T R} K.
. SRR ST) X R e L. ISR LIV I IS PR L Nt s S Wt et e et .
P S o § "3 PR e gt r e ate N e e e e T e e e g e e s s e et e oa T

T T Cooun st an 4 Sl - v
5 - Pkt N T, —"
. t. . = - - “ A . - b St oy PR AN ANt - i oA e o R e T Y T T Ty —
EREN L e -t EaE) S

PROCEDURE RCHECK;
: Functlon - saves unroutable nets, retraces path for routed nets,
l and prepares ELIST for the next series of expansions If no
connection i's been made.
Global parameters modified - R, INTR, NUMIMPOS, IMPOSSIBLE, NUM,
BORDFILE.
Local parameters modified = none.
. Calling procedure - LEE.
I Called procedures - RETRACE, SORTLIST, SORTSEG.
Superior procedure - program ROUTE.
Sub-procedures - nonec.
Special processing - stores unroutable nets in an array
(IMPOSLIST). If a counection has been made then RETRACE is called;
otherwise, the RLIST entries are sorted and ELIST is built.

BEGIN
IF R=0 THEN
BEGIN (*THEN*)
WRITELN (° 7);
- WRITELN (°BW,”,”,BL,”=>",EW,”,”,EL,” IMPOSSIBLE!");
. INTR{1]:=BW;
INTR[2]:=BL;
INTR[3] :=EW;
B INTR[4):=EL;
- NUMIMPOS :=NUMIMPOS+1;
_ IMPOSLIST [NUMIMPOS] :=INTR;
i REWRITE (BORDFILE,CURSEGFILE);
BORDFILE":=GRID;
PUT (BORDFILE);
CLOSE (BORDFILE,LOCK);
IMPOSSIBLE :»TRUE
- END (*THEN*)
I ELSE
» IF CONNECTED THEN
RETRACE
ELSE
BEGIN (*ELSE*)
- IF R>1 THEN
- SORTLIST;
- SORTSEG;
‘ NUM:=R;
R:=Q
END (*ELSE*)
END; (*PROCEDURE RCHECKY*)

e
4 I ,‘.,' o
Lo

R
PR
NPIAPIRT IR

LR N T
«
)

.
f
NPV SRR

l'v’
ol

.
A ' *
e mtd _ala L ot

)
.

123 s

u'l‘.'l"l-‘l‘t
o
00 et

e
e v e

1]
A |

.................
...................

e L P g ey ey - —
. A R R L At e S S S e At S S S M s N ey

P
: PROCEDURE EXPAMND (W,L,S:INTEGER);

- Function = to check the status of a cell to determine if it can be
i reached.

. Global parameters modified - R, RCH, ES, CONNECTED, RLIST.

Local parameters modified ~ W, L, S.

Calling procedures - EXPCKl, EXPCK2.

Called procedures - none.

. Superior procedure - program ROUTE.
i Sub-procedures - none.

Special processing - the cell coordinates (W, L, S) are passed and
they are checked to determine if a connection has been made. If so,
the condition (CONNECTED) is set; otherwise, if the cell is not an
obstacle, it is added to RLIST.

r BEGIN
A IF (W=EW) AND (L=EL) THEN
: BEGIN (*THEN1*)
Re:=1;
GRID[NEWWD ,NEWLN,S] .RCH:=TRUE;
. IF S=2 THEN
i BEGIN (*THEN2%*)
g GRID[NEWWD,NEWLN,1].DIR[3]:=1;
S:=]
END; (*THEN2%*)

- ES:=S;
’ WRITELN (“CONNECTION IS MADE.”);
o - CONNECTED: =TRUE
i (e END (*THENL*)
- ELSE
- IF NOT GRID{NEWWD,NEWLN,S].OBS THEN
" BEGIN (*THEN*)
- GRID[NEWWD,NEWLN,S] .RCH:=TRUE;
o R:=R+1;
" RLIST[R,1]:=W;

RLIST([R,2]:=L;

RLIST{R,3]:=S

END (*THEN*)

END; (*PROCEDURE EXPAND*)

Vo e

e 124

Ty e v

s o T,

e - P T T T R S . TN : - L I S et .)

LR A PR A AL A TRl SR R L. o et P AR S e e e e e T T e e T T e T T e T s e e,
IR AT e e T T T T e T e et e e T e I U R

, o T S A T T S L T R A T T) LT T, T B P S A .

GRSl PP, 0,0 LI U PN - PGNP WP Wl wE W WP P PR PR WP WD SR R R R P R A

0 JFEN

PROCEDURE EXPCK1;

Function - to check all adjacent cells for possible expansion

and to record the retrace direction if a point is reached.

Global parameters wmodified - DIR.
Local parameters modified - none.
Calling procedures - LEE.

Called procedures = CALCFILE, EXPAND.
Superior procedure = program ROUTE.
Sub-procedures - none.

Special pro~essing - if the cell has not been connected, for each
expansion direction attempted, a check is made to see if the cell
has been previously reached. I1f the cell has been reached, it is
skipped and the next direction is attempted.
reached, EXPAND is called and if the cell is then reached, the
specific retrace direction is stored in the appropriate DIR location
and the next direction is attempted. This process continues until

all four ad jacent cells have been checked.

BEGIN
IF (WCS1>=1) AND (NOT CONNECTED) THEN
BEGIN (*THEN1¥)
CALCFILE (WCS1,LC);
IF NOT GRID[NEWWD,NEWLN,SC].RCH THEN
BEGIN (*THEN2*)
EXPAND (WCS1,LC,SC);
IF GRID[NEWWD,NEWLN,SC).RCH THEN
GRID[NEWWD,NEWLN,SC] .DIR[1]:=1;
END (*THEN2*)
END; (*THEN1*)
IF (WCAL<=MAXWID) AND (NOT CONNECTED) THEN
BEGIN (*THENL*)
CALCFILE (WCAl,LC);
IF NOT GRID[NEWWD,NEWLN,SC].RCH THEN
BEGIN (*TUEN2*)
EXPAND (WCAL,LC,SC);
IF GRID[NEWWD,NEWLN,SC].RCH THEN
GRID[NEWWD,NEWLN,SC] .DIR[1]:=2;
END (*THEN2*)
END; (*THEN1*)
IF (LCS1>=1) AND (NOT CONNECTED) THEN
BEGIN (*THENL*)
CALCFILE (WC,LCS1);
IF NOT GRID[NEWWD,NEWLN,SC].RCH THEN
BEGIN (*THEN2*)
EXPAND (WC,LCS1,SC);
IF GRID{NEWWD,NEWLN,SC].RCH THEN
GRID({ NEWWD, NEWLN,SC] .DIR[2]:%1;
END (*THEN2*)
END; (*THEN1*)

125

L T T S
At et

D T O U N S] e T YT At e . -t et
B L S ~ . AN S -

For a cell not

.......

LI
. e e, et . . LTS, DR L I I R .
DAL RN AL PR . . oot » * *
TP “---AJAM-L‘"‘-.)‘—.!‘_‘A.)L“.:A..‘~ Y

- ——

AT e

- «
e ol 8 SR

F'-‘A*."_-.l'._"-"‘:.v'u_"‘ E" A i ™ ANt N e Mdi a0t Segh Jeal By

IF (LCAL<=MAXLEN) AND (NOT CONNECTED) THEN
BEGIN (*THEN1*)
CALCFILE (WC,LCAl);
IF NOT GRID[MEWWD,NEWLN,SC].RCH THEN
BEGIN (*THEN2*)
EXPAND (WC,LCAL,SC);
IF GRID[NEWWD,NEWLN,SC].RCH THEN Sy
GRID[NEWWD, NEWLN,SC] .DIR[2] :=2; A
END (*THEN2*) Y
END; (*THENL*) _ *

END; (*PROCEDURE EXPCK1%*)

e te et
et tel e
RS
acd od o 4

126

PROCEDURE EXPCK2

Function -~ to check the adjacent cell on the opposite layer for
possible expansion and record the retrace direction if the cell is
reached.

Global parameters modified - DIR.

Local parameters modified - none.

Calling procedures - LEE.

Called procedures - CALCFILE, EXPAND.

Superior procedure = program ROUTE.

Sub-procedures = none.

Special processing - if the cell has not been connected, the opposite
direction expansion is attempted, a check is made to see if the
cell has been previously reached. If the cell has been reached,
it is skipped. For a cell not reached, EXPAND is called and if
the cell is then reached, the specific retrace direction is stored
in the appropriate DIR location.

BEGIN
IF (SC=1) AND (NOT CONNECTED) THEN
BEGIN (*THENL*)
CALCFILE (WC,LC);
IF NOT GRID[NEWWD,NEWLN,2].RCH THEN
BEGIN (*THEN2*)
EXPAND (WC,LC,2);
IF GRID[NEWWD,NEWLN,2].RCH THEN
GRID[NEWWD,NEWLN,2] .DIR[3]:=2;
END (*THEN2*)
END; (*THEN1*) ~
IF (SC=2) AND (NOT CONNECTED) THEN
BEGIN (*THEN1*)
CALCFILE (WC,LC);
IF NOT GRID{NEWWD,NEWLN,1].RCH THEN
BEGIN (*THEN2%)
EXPAND (WC,LC,1);
IF GRID{NEWWD,NEWLN,1].RCH THEN
GRID|[NEWWD,NEWLN,1].DIR[3]:=1;
END (*THEN2*)
END; (*THENL*)
END; (*PROCEDURE EXPCK2*)

127

. ".“.-.-\.‘_- O
WY AP T WA G TP PR W Y

DR T N Y N W N W I W LN W W e e o -

/3y

¥
I
a2t A e s

H
A

e e e

S

7

P T
RS

f
et
Seodrrs ol

P TV T T T Ty — AR e 4 —
MR N A S O T TR Y (A B e B Bte om S

...... AN

. PROCEDURE LEE;
“T Function - to drive the basic LEE algorithm. It calculates the
) ad jacent width and length coordinate values to be used during the
actual expansion of a point. LEE continues to execute until no
ELIST entries are left to expand.

Global parameters modified - BW, BL, EW, EL, ELIST, RLIST, WC, LC, SC,
WCAl, WCS1l, LCAl, LCS1l, DIR.

Local parameters modified - none.

Calling procedures = ROUTVNTR.

Called procedures - INIT, CALCFILE, EXPCKl, EXPCK2, RCHECK.

Superior procedure - program ROUTE.

Sub-procedures - none.

Special processing - while there are still nets to route, LEE will
ratrieve each from INTRFILE and store the layer 1 beginning
coordinates in ELIST and the layer 2 beginning coordinates in RLIST.
Each entry in ELIST is expanded until the connection is made or it
is determined that the connection is impossible.

BEGIN
WHILE NOT EOF (INTRFILE) DO
BEGIN (*WHILEL*)
WRITELN (“***NEW CONNECTIQN*#*%*~);
INIT;
INTR:=INTRFILE";
BW:=INTR[1];
BL:=INTR[2];
— EW:=INTR[3];
(o EL:=INTR(4];
ELIST[1,1]:=BW;
ELIST[1,2]:=BL;
ELIST(1,3]:=1;
RLIST[R,1]:=BW;
RLIST[R,2):=BL;
RLIST[R,3]:=2;
CALCFILE (BW,BL);
GRID|[NEWWD,NEWLN,2] .DIR[3]:=2;
WHILE (NOT CONNECTED) AND (NOT IMPOSSIBLE) DO
BEGIN (*WHILE2%*)
FOR E:=1 TO NUM DO
IF (NOT CONNECTED) THEN
BEGIN (*THEN%*)
WC:=ELIST(E,l];
LC:=ELIST(E,2];
SC:=ELIST[E,3];
WCS1:=WC-1;
WCAl :=WC+1;
LCS1:=LC~1;
LCAl:=LC+1;

128

..

.....
I UM ST T L P S B P Tee tet A AR IR S

)36

IF (E=1) THEN
WRITELN (BW,”,”,BL,”=>",EW,”,”,EL,”.”,
we,”,”,LC, %, ,8C);

e e, - - e e e
P) . RSN
Ve e Yy
alala’'a’a’ el et st

EXPCK1; e

EXPCK2 e

END; (*THEN*) ot
RCHECK . e
END; (*WHILE2*) <

GET (INTRFILE)
END (*WHILE1%)
END; (*PROCEDURE LEE*)

.
uig
&

/

1 2 9 -~ ':\.:-1

........ et . " - PR ~

........ . PN R ST e el . o e e T N,

e T e T e e e e T e e e e e e e e e e e e T e e e e e e e e e e e RERENNC R
PRSI T AL ULP WA, W 1 WA AP UGT Y TUREIRTIA VAR T WA W VRS WAL WA W I WL WA SR IR WA I, DA DA TR T S el oty g

PROCEDURE VINTR; : e
Function = control the iteration and preparation of input data for BN
processing by Vintr“s algorithm and the printing of results. e
Global parameters modified - ITERATION, INDEX, LEN, ROUTFILE. .
Local parameters modified - TAILLIST. e
Calling procedures - program ROUTE. -
Called procedures - ROUTLEN, BLDTAIL, ROUTIVNTR, PRINTIT. :f
Superior procedure - program ROUTE. -
Sub-procedures - ROUTLEN, BLDTAIL, ROUTVNIR. o
Special processing - for each iteration the LEN array is initialized
then processing control is sequentially passed to procedures for
calculating the path lengths, building tails from the paths, routing
the cell pairs, and printing results.

VAR ;;;
TAILLIST:FILE OF ROUTDATA;
NEW,START,STOP:ROUTDATA;
REMOVE ,COUNT ,LENTAIL: INTEGER; :
LEN:ARRAY [1..80] OF INTEGER; S

BEGIN P
FOR ITERATION:=1 TO 4 DO .
BEGIN (*FOR*) : o
WRITELN (“ITERATION=#”,ITERATION); R
FOR INDEX:=1 TO 80 DO o O
LEN{INDEX] :=0; .
RESET (ROUTFILE, PSEUDO:ROUTFILE.DATA"); S
ROUTLEN; ..
CLOSE (ROUTFILE,LOCK); -
RESET (ROUTFILE, PSEUDO:ROUTFILE.DATA”); e
REWRITE (TAILLIST, PSEUDO:TAILLIST.DATA[30]"); S
BLDTAIL; e
CLOSE (ROUTFILE,PURGE); o
CLOSE (TAILLIST,LOCK);
REWRITE (ROUTFILE, PSEUDQ:ROUTFILE.DATA[30]");
ROUTVNTR;
CLOSE (ROUTFILE,LOCK);
WRITELN (“TOTAL UNROUTABLE CONNECTIONS FOR); o
WRITELN (“ITERATION °,ITERATION,” IS “,NUMI!POS); RO
WRITELN;
PRINTIT)
END (*FOR*) e
END; (*PROCEDURE VNTR*) RO

o[B

% %
PR
.

130

-
1_ -
iy

..........
............

R e e dar e d M r) e damre L i v B A St o 20
S .. - .. MR L e e T R T T T e T T T T Peieh JhsU UL I T A A/ S ek 8

PROCEDURE ROUTLEN;
Function = calculates the path lengths. Ry
ROUTE Global parameters modified - INDEX. i o
VINTR Global parameters modified - START, NEW, LEN.
Local parameters modified - none. -
Calling procedures - VINTR. ~
Called procedures = none. -
Superior procedure - VINIR. .
Sub~procedures = none. ~
Special processing - lengths are calculated and stored in an array
(LEN) correspouding to each entry in ROUTFILE.
BEGIN
INDEX:=0; -
WAILE NOT EOF (ROUTFILE) DO -
BEGIN (*WHILELl*) ‘
INDEX:=INDEX+1; o
START :=ROUTFILE"; o

GET (ROUTFILE);
GET (ROUTFILE); .
NEW: =ROUTFILE"; -
LEN[INDEX] : =LEN[INDEX]+1;

WHILE (NEW<>START) DO L
BEGIN (*WHILE2*) s
LEN[INDEX] : =LEN{ INDEX]+1; o

.\‘

GET (ROUTFILE); ,
NEW:=ROUTFILE" _-
END; (*WHILE2*) : -
GET (ROUTFILE)
END (*WHILEL*)
END; (*PROCEDURE ROUTLEN*)

» :I'l."x 3 “'. .".

e,

4"
‘vl". .
<

R
N

e

131 .

'y .l' .'. A‘I -

REAES

Y e At et A Y g, B aw, e -
A e e e e e e e e S TR N e -‘.'.".' Se et s, ate Lt P T I e) f o o .
T e LA P R I L T Lt

AL, . KRR . e
AL ASAT YA -L-';‘H_.)‘-Pj_‘l TR A A A A ’_-.‘_,_-, v, . A A A ORI R AN S
P SRR SN S VA VL PR PRI Y VR PR

T Rt A — —— ol i —
(s .“'~ . ‘.—\.v) RO R Y CRAPIAS S i St A S WML S Rre v AU A SM /el uhS AR ade e SRR T

PROCEDURE BLDTAIL;

Function ~ the length of a path is used to calculate the length of
tail on each end of the path. The intermediate cells arc marked as
available. All cells along the tails are stored im TAILLIST.

ROUTE Global parameters modified - BW, BL, INDEX, ROUT, NW, NL, NS,
OBS, BORDFILE.

VINTR Global parameters modified - TAILLIST, COUNT, REMOVE, LENTAIL,
TAIL.

Local parameters modified - none.

Calling procedures = VINTR.

Called procedures - CALCFILE.

Superior procedure = VINIR.

Sub-procedures - none.

Special. processing - ROUTFILE entries are read sequentially and cells
that are part of a tail are saved in TAILLIST. The length of a tail
is calculated from the path length (LEN), the ITERATION, and a
constant of O0.1. Entries up to the length of the tail are saved,
the intermediate cells have OBS in GRID set to available, and
finally the second tail is saved. This process repeats for each
path in ROUTFILE.

BEGIN
INDEX:=1;
WHILE NOT EOF (ROUTFILE) DO
BEGIN (*WHILE*)
TAILLIST " :=ROUTFILE";
PUT (TAILLIST);
LENTAIL:=TRUNC(LEN{[INDEX]*ITERATION*0.1);
FOR COUNT:=1 TO (LENTAIL+l) DO
BEGIN (*FOR¥*)
GET (ROUTFILE);
TAILLIST " :=ROUTFILE";
PUT (TAILLIST)
END; (*FOR¥)
REMOVE :=LEN[INDEX]-2*LENTAIL-1;
FOR COUNT:=1 TO REMOVE DO
BEGIN (*FOR*)
GET (ROUTFILE);
ROUT:=ROUTFILE";
NW:=ROUT([1];
NL:=ROUT[2];
NS:=ROUT(3];
CALCFILE (NW,NL);
GRID{ NEWWD,NEWLN,NS] .0OBS :=FALSE
END; (*FOR*)

/757

.
A g

s
o,
.
.
.

Ceeeta
4 'l 'l ‘I .l 'l
PRV RV

4

’
P .u’ ’

. e

....... LD i S et et st SOML s aieh Jwh mond MG Mieh ardn Sren el ran gean Secun e St an s Ul D S

FOR COUNT:=1 TO (LENTAIL+l) DO o]
BEGIN (*FOR*) ST
GET (ROUTFILE); R
TAILLIST":=ROUTFILE";
PUT (TAILLIST)
END; (*FOR¥%)
GET (ROUTFILE);
INDEX : »INDEX+1
END; (*WHILE*®)
REWRITE (BORDFILE,CURSEGFILE);
BORDFILE" :=GRID;
PUT (BORDFILE);
CLOSE (BORDFILE,LOCK);
WRITELN (“TAILLIST IS BUILT.”)
END; (*PROCEDURE BLDTAIL*)

- R T T e T IE Y v s N
. LI A NI I

‘u

,

BN
PR
AP
'
K
o'’y

e
D)
F P)

g
LA

AT L
PRI P
[

L
.
v
W)

i

.
AN

. .
[PN

4 .« s e

rs e o ®

b
Al A

133 RN

....
A
"A.l

L)
s le e

Se
Ay
.

.

-
o
.

L e et A et e o e -
- R S P L N A R N R s R S O T N T L Y T W T T W™, > iy v~ v,

PROCEDURE ROUTVNTR;

Function - process tiue unroutable nets, read TAILLIST entries
and eliminate all obstacle cells in the path except for start/end
cells, and passes the results to LEE for routing.

ROUTE Global parameters modified - INTRFILE, INTR, ROUT, WW, NL, NS,
OBS, BORDFILE.

VINTR Global parameters modified - START, STOP.

Local parameters modified - VNTRFILE, VNIR.

Calling procedures - VINIR.

Called procedures - CALCFILE, LEE.

Superior procedure - VINTR.

Sub-procedures - DONOROUTS.

Special processing - DONOROUTS is called first if any unroutable nets
exist. The first entry in TAILLIST is read, its tails
eliminated except for the start/end cells and this net is
loaded into VNIRFILE and processed by LEE. This process continues
for each path in TAILLIST until an end of file (EOF) is encountered
with TAILLIST.

VAR
VNTRFILE:FILE OF INTRDATA;
VNTR: INTRDATA;

BEGIN
IF NUMIMPOS>0 THEN
DONOROUTS ;
RESET (TAILLIST, PSEUDO:TAILLIST.DATA");
WHILE NOT EOF (TAILLIST) DO
BEGIN (*WHILEL*)
REWRITE (INTRFILE, PSEUDO:VNTRFILE.DATA[30]");
START:=TAILLIST";
GET (TAILLIST);
STOP:=TAILLIST";
WRITELN (“BUILDING INTRFILE ENTRY.");
INTR{1]:=START([1];
INTR([2] :=START([2];
INTR{3]:=STOP[Ll}];
INTR([4]:=STOP[2];
WRITE (“ROUTE ~,INTR[1},”,°,INTR[2],” TO 7);
WRITELN (INTR{3],”, ,INTR{4]);
INTRFILE” :=INTR;
PUT (INTRFILE);
GET (TAILLIST);
ROUT:~TAILLIST";
WHILE ((ROUTSDSTART) AND (ROUT<>STOP)
AND (NOT EOF(TAILLIST))) DO
BEGIN (*WHILE2*)
NW:=ROUT[1];
NL:=ROUT(2];
NS:=ROUT(3];
CALCFILE (NW,NL);

134

] .
-p_- -)-.:\n.'n"'-' '.-,**-.'-.\ B T P I T S L *
. . POIONE (O S T s LI LT AL S T AN

."J._I'_‘L"H.L.A‘_l“l A e g .'QA"\L‘;__...-.'-;."“."!',\'3_;"-“.' - 5 ’_4_-'4_14& -._1‘-. .'

o GRID(NEWWD,NEWLN,NS] .0BS:=FALSE;
- GET (TAILLIST);
n ROUT:=TAILLIST"
END; (*WHILE2*) .

-,

= REWRITE (BORDFILE,CURSEGFILE);
o BORDFILE " :=GRID;

- PUT (BORDFILE);

CLOSE (BORDFILE,LOCK);

WRITELN (“INTRFILE ENTRY COMPLETE.”);
CLOSE (INTRFILE,LOCK);
RESET (INTRFILE, “PSEUDO:VNTRFILE.DATA");
LEE;
CLOSE (INTRFILE,LOCK);
GET (TAILLIST)
END; (*WHILEL*)
CLOSE (TAILLIST,PURGE)
END; (*PROCEDURE ROUTVNTR*)

r-

o
-
o
b.' -~
v
o
[
[
[

v el
e

. .
Y . Y
(R 13 - o e d
o p]
. K
.7 ROR
- RS
e e
o
- et
., R
- A
n"e - - s
boe. R
o .y o e M et et et et eV we . N
...... RSN A L g T PP R
o Y N Y o L S I NN e o T e Lt S TN T
A A PRI - PRI WA WA Sy

PROCEDURE DONOROUTS;
i o Function - route the unrouted nets. -
I) ROUTE Global parameters modified ~ INTRFILE, NUMIMPOS. P
VINTR Global parameters modified - none.
Local parameters modified - none.

"

- Calling procedures - ROUTVNTR.]
- Called procedures - LEE. =
> Superior procedure = ROUTVNTR. S
' Sub~procedures - none. g
Special processing - the entries from IMPOSLIST are loaded into o

VNTRFILE and then LEE is called to route the net. {f;

-

BEGIN -

: REWRITE (INTRFILE, “PSEUDO:VNTRFILE.DATA[30]7); O
ﬁ FOR INDEX:=1 TO NUMIMPOS DO o]
BEGIN (*FOR*)]

- INTRFILE" :=IMPOSLIST{ INDEX];
o PUT (INTRFILE)
END; (*FOR¥)
CLOSE (INTRFILE,LOCK);

i NUMIMPOS:=0;

g RESET (INTRFILE, “PSEUDO:VNTRFILE.DATA");
. LEE;

- CLOSE (INTRFILE,PURGE)

END; (*PROCEDURE DONOROUTS*)

VO
13 .
'ﬂ\ .
5

N
LI A S

v
'

KRS A

= EN
J <"
= -
KOS
L -
: oy
- o)
.'. l. -.
- i
. s
. N
b v
2.
I.. 'l-.- - ot - ~
. s
At A .
" 136 . A
" h\ h..
r.- \' .
.t - - 9§
.t PRy
v "
,:; |
-
-
)
S

L oom s an o tou s e o

g W I T——————

’ ey

VITA

. Fred Thomas Chesley was born on 2 September 1950 in Washington,
D.C. He graduated from high school in Sandpoiﬁc, Idaho in 1968 and
attended Idaho State University, Pocatello, Idaho, from which he

i received the degree of Bachelor of Sclence in Secondary Education with a
major in mathematics in August 1972. Upon graduation he was employed by
the Department of lealth and Welfare, State of Idaho, as a social

caseworker. He entered the Air Force in April of 1977 and obtuined a

£ ...

commission through Officer Training School in ilay 1978. He coapleted
Computer Systems Development Officer school in September 1978 and was
i assigned as a systems analyst to lleadquarters, Strategic Air Command,

Offutt Air Force Base, Nebraska. He entered the School of Engineering,

Air Force Institute of Technology, in June 1980.

Permanent address: 1322 Cal Young Rd., Apt. 147

Eugene, Oregon 97401

.Y

.t e
2 8 4

.
.
s

»
.
sy

0
o'

137 o

e 0.

DA

S TR
Slee e .~
2 a7

A
et
L a4

.oy

o
]
4-""'1

LY
'
PR

.......... T T U LI SR
A e -'i.a.a.r'.-’." . e 5 A TR ’

s
5
.
’,
a
’
2
-
.
.
D
.
-
o
‘4
l
M
[l
.
’

- IR -

e Lt e Lt e e % NS i ER R R, N N SR e M N T

WM e e e e e & R v, e .. [e e e T A Ce Nt
P S Oy oSS S S - TP SN I S S JRP SPIPIA TUP T P S PN S SIS R T TP R SR

e
0

m o T A T

)
. __IINCLASSIFIED
B SECURITY CLASSIFICATION OF THIS PAGE
o REPORT DOCUMENTATION PAGE
: 1s. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS \ ,
] 28. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
Approved for public release; ‘
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE ’ distribution unlimited
4. PERFORMING ORGANIZATION REPORT NUMBER(S) 6. MONITORING ORGANIZATION REPORT NUMBER(S)
. AFIT/GCS/ENG/85M~1 : .
' 6a. NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL | 7a. NAME OF MONITORING ORGANIZATION
(1f applicable)
School of Engineering AFIT/ENG
. 6¢c. ADDRESS (City, State and ZIP Cade) i 7b. ADDRESS (City, State and ZIP Code)
: Air Force Esstitute of Technology .
Wright-Patterson AFB, OH 45433
8s. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL |9. PROCUREMENT INSTRUMENT IOENTIFICATION NUMBER 1
ORGANIZATION (if applicable; :
. 8¢c. ADDRESS (Cily, State and ZIP Code)) 10. SOURCE OF FUNDING NOS.
P- PROGRAM PROJECT TASK WORK UNIT
~ ELEMENT NO. NO. NO.
E 11. TITLE (Include Security Classification)
- See Box 19
— 12. PERSONAL AUTHORIS)
| Fred T. Chesley, B.S., Capt, USAF ’
- 13a TYPE OF REPORT 130. TIME COVERED 14. DATE OF REPORT (Vr., Mo., Dey) 16. PAGE COUNT :- -':
- MS The‘is FROM T0 1985 Maxch 137 o
g 16. SUPPLEMENTARY NOTATION :—‘.:-
} : X
e t -
‘ COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number,
FIELD GRAOUP SUB. GR. Design Automation, Routing, Printed Circuit Boards,
. 09 02 Lee's Algorithm, Vintr's Algorithm
19. ABSTAACT (Continus on reverse if necessary and identify by block number)
Title: A Comparison and Analysis of Vintr's Global Routing Algorithm with the Lee
d Routing Algorithm in Two-Layer Printed Circuit Boards 1
- Thesis Chairman: Harold W. Carter, Lt Col, USAF :j
Assistant Professor of Electrical Engineering =
3

oved for\p zna release: IAW AFR 190-17. -4
OLAVE'I Y‘ . -:.:.
Dt n !cr Reseaich and Proiessloncl Development -

Ai: Force lnstitute ot Technology (AIQ) .
Wright-Patierson AFB OH 45431

-
-

~0. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION e

uncLaSSIFIEO/UNLIMITED (B same as apr. O o1ic usens [UNCLASSIFIED

220. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER 22¢. OFFICE SYMBOL
(Include Area Code)
1.t Col Harold W. Carter 513-255-6193 AFIT/ENG
.
FORTION 01) AN 1415 OBSOLE T L UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

<P

|y-e v v v -
TR

PFre¥ = Ty -

e Y e W W W W W PR TS TS N e R Cafii= i e e A S LR A A T A A R

UNCLASSIFIED

SECURITY CLASSIFICATION OFf THIS PAGE

Microcomputer software was deaigned and written to compare a standard routing
-~ . technique (Lee) with an experimental, unpublished routing technique proposed by
"~ J. Vintr for two-layer printed circuit boards. Vintr's algorithm, as studied here,
uses a four-iteration approach to minimize unroutable nets and minimize route
distance. The unrouted nets and average route lengths were observed and analyzed
for differing sizes of two-point nets.

Analysis revealed a reduction of unroutable connections across iterations, but
congestion played a large role in the overall success of finding paths. A recommen-
dation is made that use of 8-bit microcomputers in design automation is impractical,
and research in this area of technology can best be accomplished using larger computer
gystens.

UNCLASSIFIED- R
SECURITY CLASSIFICATION OF TwIS PAGE

e e ammm mmm ea—

