
OD-0155 600 A COMPARISON AND ANALYSIS OF VINTR'S GLOBAL ROUTING V.2
ALGORITHM WITH THE LE..(U) AIR FORCE INST OF TECH
WRIGHT-PATTERSON AR OH SCHOOL OF ENGI. F T CHESLEY

UNCLASSIFIED MAR 85 RFIT/GCSIENG/85M-i FG 12/1 NL

I fllflflflflf|flfflf
I fflffl|l|fflfflfflf
mhE||hE|hh|hhhE
mhlhhh|hElhEEE

Sll flflf lllllffI m..hhhmhmmmhh

1111 0 I 38 125

111111.2

NATIONA BUEA OFSADAD-I6-

13rPROnUCED AT GOVERNM., 4*f FPENSE

to

In

~OF 4

C T.

C pI

~$JUN 2 0 W3

DEPARTMENT OF THE AIR FORCEG
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

W right- Patterson Air Force Base, Ohio

85 5 21 082


~~~~~l pu uauE". w

Accession For
NTIS5 GRA&I
DTIC TAB0
Unlannounced 0
Justification

By _-

A i:.\]:~N N) \NLUSH'\..rV 2 Distribution/ .

GL!3L OUIN \G ~ VTI'11 W ITH TU LEE AvailabilityCodes

IT I NG \LGiTi IP NL.L R I< :,TH Avail and/or
C Ii.C LT B ()AR P)S Dist Special

Crcd T. hsy
G p

A i: I r / (;C Cs G/151

DTIC

Approved jt publi e~0 4

0Distxlbutiofl Unlimited



AFIT/GCS/ENG/85M-l

A COMPARISON AND ANALYSIS OF VINTR'S GLOBAL ROUTING

ALGORITHM WITH THE LEE ROUTING ALGORITHM IN

TWO-LAYER PRINTED CIRCUIT BOARDS

THEIS

Presented to the Faculty of the School of Engineering

OC - of the Air Force Institute of Technology

Air University

in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

by

Fred T. Chesley, B.S.

Capt USAF

Graduate Computer Systems

Mardi 19h5



Acknowledgments

Lt Col Harold Carter of the Air Force Institute of Technology,

Department of Electrical Engineering proposed this project. I am deeply

indebted to him for his insightful assistance and patience in the course

of my research.

The Institute's Data Automation directorate also deserves many

thanks, particularly to 2Lt Mark Strovink who was kind enough to prepare

the graphs in this thesis and still manage to accomplish his normal

duties. Appreciation is also expressed to the other staff members for

their assistance in the draft and final preparation of this document.

Last, but certainly not least, I express my sincere gratitude to my

wife, Marion, who provided support and encouragement along the way even

during times of frustration.

Fred T. Chesley

. . .. . . . . . . . .. .

-. ....

-4 ~ ~ .. . . . . . . . . .



Table of Contents

Page

Acnweget . . ... ... . .......... ii

List of Figures................ . ............... . . 0.. v

List of Tables -. . . ... ...... ...... o...... . Vi

Abstract..... ... ......... . . . ............ . vii

1. Introduction .......... ... o . .......... .... I

Background Information o............. .. . . . . .

The Problem .- . ....... o .................. . 3

Objective... ...... o.............................. ... 4
Standards ... o.. .... 4............. o......... 4

Approach to Solution .. ..................... .. 5

Ho. System Requirements ...-....... oo... .. ..... 6

Objective .................. , .... . 6

Board Parameters o . .. o. ..... .. oo.... ..... . 6
Cell Parameters....................... 6.......... o.......9
Secondary Storage -....... o .......... ..... . 11

Processing Parameters - ... ..... .......... 11
Expansion Directions .o - .......... o..... 12
Overcoming Segment Processing Problems o. .....o 12
Data Manipulation Parameters .... .-.......... o 13

Summary o..........o....... o.... -.... 13

III. System Design ......... ... ........... . . .. -...... 15

Introduction - . ....... o ........... o......... 15

Input Design -o... o..oo .............. o.... 16

Output Design ....... ..... . .. o ..... o.......... o 17

Grid Design - Referencing Cells.o.............. 18...
Lee Router Design -Algorithm........... - o.... 20
Lee Router Design -Initialization.o............... o 21
Lee Router Design -Expansion.o...........o.............21
Lee Router Design -Retrace . ................ 23
V intr Router Design ..... ...... o................... 24
Grid Management Design - -. ..... ..oo- o.... 27

Expansion List Sort Design ................ 29
Summary . . .. .. o .... ......... ............. . 30)

1 iiM



IV. Results and Analysis ...... . . . .... .. .. .. .. . 31

Procedure ...... 6 ................... *- ..... 31

Output File Size and Procassing Time ...... .... 32
Output Results and Analysis - 20 Nets .............. 35
output Results and Analysis - 40 Nets .. .. .... 37
Output Results and Analysis a 0Nt........ 3
Output Results and Analysis - 80 Nets .. ....... 41
Summary . .. o....... ..... ...... . .. 43

V. Conclusions and Recommendations.....o................. 44

Conclusions . .. ..... ........ .... ..... 44

Recommendations.............. .......... ...... 45

Bibliography ...................... .0... .. 0.. 47

Appendix A: SAD Design Diagram ...o....................43
Appendix B: Software Implementation - Programa DATASTUB .. 59
Appendix C: Software Implementation - Program ROUTE ... .65

Appendix D: Program DATASTUB .... .. .... o......... 85

Appendix E: Program ROUTE ......... ............ 101

V ita........ ... ..... . . . ...... .. .. . .. . . . .. .. ..... 13 7

iv



List of Figaures

Figure Page

2.1 A PCB Represented by a Uniform Grid Structure......... 6
2.2 Euclidean/Manhattan Distance Formulas......... 7
2.3 A PCB Divided into Tvo-By-Two Segments............... 8
2.4 Dimensions of aSegment ............... eooeeeoo 10

3.2 Input Design.... -moosso.. ~o............. . ....... . .... 16

3.3 Absolute Cell Location.......................... 18
3.4 Relative Cell Location.................19
3.5 Lee Algorithm Design . . . . . . . . . 21

3.6 Vintr Algorithm'iDesign ...... .. . 25
3.7 Example of Four Routed Nets............ .....e-Gos 25
3. Example of the Tails for Four Routed Nets ....- e26
4.1 Output File Size Results ......o................. .... 33
4.2 Processing Time results....................... 34
4.3 Unrouted Cells for 60/80 Net Data Sets... ........... 39
4.4 Average Route Length for 60/80 Net Data Sets............40

(Iv



List of Tables

aTable Page

A Characteristics of the Data Sets Used in Analysis ...... 31.
B Percent of Route Path to Calculate Tails .... *..... 32
C Results for File Size and Processing Time .......... 33
D Results of 20 Nets by Iteration Processing Shortest ... 35
E Results of 20 Nets by Iteration Processing Longest .... 36F eut f4 esb trtinPoesn hret..3
F Results of 40 Nets by Iteration Processing Sorest .... 37
R Results of 40 Nets by Iteration Processing Lorgest ... 37
Ii Results of 60 Nets by Iteration Processing Sorest .... 39
I Results of 60 Nets by Iteration Processing Lhoest ... 49
K Results of 80 Nets by Iteration Processing Sorest .... 42.

vi



Abstract

U Microcomputer software was designed and written to compare a

standard routing technique (Lee) with an experimental, unpublished

routing technique proposed by J. Vintr for two-layer printed circuit

boards.

Vintr's algorithm, as studied heir, uses a four-iteration approach

to minimize unroutable nets and minimize route distance.

The unrouted nets and average route lengths were observed and

analyzed for differing sizes of two-point nets.

Analysis revealed a reduction of unroutable connections across

iterations, but congestion played a heavy role in the overall success of

finding paths.

A recommendation is made that use of 8-bit microcomputers in design - -,

(. automation is impractical, and research in this area of technology can

best be accomplished using larger computer systems.

vii

.......................................................

*1~~~' ** - ~~~~ . . -. .~~° . . . . . . . . . . . .. . . . . . . . . . . -

. .. ... .. ... .. ... .. ... .. ... .. ... ... . . ..-.



A COMPARISON AND ANALYSIS OF VINTR*S GLOBAL ROUTING ALGORITIIM WITH THE

LEE ROUTING ALGORITHM IN TWO-LAYER PRINTED CIRCUIT BOARDS

I. Introduction

Background Information

The problem of printed circuit board (PCB) routing involves a series

of connections between two specific points called terminals. An attempt

is made to connect all terminals with no wires interfering with any

other wires. Interference may take the form of wires physically

intersecting with other wires, two wires too close to each other, or

long wires on different layers of a PCB.(7)

These last two problems generally require that the wires maintain a

minimum spacing at all points on the board and that wires on two-layer

PCBs generally flow in directions perpendicular to each other (i.e. a

horizontal flow on one layer and a vertical flow on the other layer).(5) ,.-,

A connection between PCB layers is called a via.(l)

Traditional routing of PCB's has been accomplished in two steps--

loose routing and final routing.(7) The loose routing step is the

planning stage for final routing. It determines which wires will run

through specific pathways on the PCB. The primary consideration in this

step is the reduction of congestion through these narrow pathways to

avoid bottlenecks. This may necessitate rerouting some wires.

Final routing is the actual allocation of wires to tracks. There

are three basic final routers: grid expansion, channel routing, and

linear expansion.(7) The linear expansion router is efficient for

simple tasks, but is slow, requires a large stack of data, and does not

guarantee a connection even if one exists. The channel router always

-7.

*** ..



makes all the connections even if it has to overflow the pathways and

destroy the minimum spacing requirement between wires. The grid

expansion router (Lee's router) requiti i large amount of memory for

large, dense PCB layouts, but guarantees a path connection if it exists

with the path being the minimum wire distance.(4)

The basic Lee algorithm uses a matrix of grid points or cells to

represent the surface or layer of a PCB with the distance between cells

as the minimum wire separation. The algorithm (i) begins at a specific

cell which is to be connected to another cell. The start cell is

labeled as "1". Then all adjacent cells with a Manhattan distance of

one are labeled as "2". All unlabeled cells with a Manhatten distance

of one from these cells are labeled "3", and so on, until the target

cell is reached. A retrace procedure then executed to find a minimum-

distance path back to the start cell. Thus, if the target cell was

reached on the ith expansion, the retrace begins at the target cell

and finds a cell labeled (i-1). This cell is then used to find a cell

labeled (i-2). In this manner, the shortest path between two cells is

obtained.(6)

There are many variations of the basic Lee algorithm. Rubin (6)

disci.ses variations to allow minimal-state cell coding, paths with

minimum turns, and search size reduction. Hoel (3) incorporates an

array of stacks rather than a single list to speed up searches. Hoel

also implements a cost-encoding scheme which allows retracing codes to

be assigned as soon as they are reached.

Algorithms which combine loose and final routing are called global

routers.(7) One such global router is by Vintr.(8) This algorithm

2

. . . . . ........



initially routes a PCB using a standard router (e.g. Lee's router) and

then uses an iterative approach to further minimize the total Manhattan

distance of all paths. After the board is routed using the standard

router, only a portion (say 10%) of the ends of each path are

implemented. This is the end of the first iteration. The second

iteration begins with the selection of a single connection, eliminates

its tails and reroutes the entire path. Each connection is rerouted in

this manner and then a larger portion (say 20%) of the ends of the path

are implemented. This iterative process is continued until the

implemented portion of each tail equals or exceeds 50%. Soukup states

that although Vintr's "router is very efficient, it cannot guarantee all

the conrnections". However, Soukup goes on to state that Vintr's router

is the best global router today and, although it may not complete all

the connections, it is a "cure for the most frequent cause of unroutable -*,,

nets on PCB's: the blocking of pins". This research will explore

Vintr's method of routing PCBs by looking at whether the algorithm

minimizes Manhattan distance and whether the number of unrouted nets

decreases.

The Problem

The Air Force Institute of Technology is an educational/research

institution through which individuals can be introduced to the field of

design automation and further state-of-the-art technology in the field

of design automation. The tool to provide the means for this education

and training is the Design Automation Hardware System (DAIIS)(2) being

developed by several AFIT faculty members. DAHS will be a single,

dedicated computer system integrating all design automation software at

3

---------------------------------



AFIT into a central data base. One aspect of DAS will be the design

and implementation of a user-oriented, two-layer printed circuit board

routing program to be used by AFIT/ENG personnel in their research

efforts. Preliminary research is required to develop and fully evaluate

an efficient routing algorithm for the design automation of two-layer

printed circuit board (PCB) routing. The software will be designed for

use by the Department of Electrical and Computer Engineering at the Air

Force Institute of Technology (AFIT) in support of DAHS.

Objective

The objective of this project is to provide the first step analysis

of a relatively new routing algorithm by J. Vintr (8) using a

microcomputer. The research conducted in this study will be the basis

for later implementation of microcomputer-based design automation

software supporting DAHS for faculty and students.

Standards

Several standards were deemed important for the successful -'

completion of the project. First, the system should be written in a

structured language to encourage easy modification and documentation.

Second, the routing algorithm should use sub-algorithms designed to

reduce run-time and minimize, as practical as possible, the length of

connections and the number of unroutable nets. Third, the system should

be designed to process virtually any size PCB. Fourth, the capability

should be included to allow the user to enter data and to create data

files. Fifth, the path for each net routed should be printable to allow

later analysis.

4

•.2



Approach to Solution

With the above objectives in mind, the solution was approached in

the following four major phases: system requirements, software design,

software implementation, and analysis. In the initial phase, the system

requirements were necessary to determine constraints the hardware would

place on software execution, data storage, and data retrieval. The

overall software design phase integrated the hardware and software

requirements into a high-level model from which the software could be

implemented. In addition, a language had to be selected to fulfill the

requirements of modularity and structured design. The software

implementation phase used the software design to flowchart the software

prior to actual writing of code. The implementation phase also included

testing and debugging. The final phase, analysis, was the systematic

execution of the program and analysis of the results.

-- 4

"" " 5 "



II. System Requirements

Objective

The system was evaluated with the following three requirements in

mind: the minimization of unroutable nets, path distance, and

processing time. Several parameters were consid.re-d in light of these

system requirements and constraints.

Board Parameters

First, the effects of the system requirements on the PCB were

evaluated. A typical PCB divided into a regular structure of uniform

cells applicable to the algorithms discussed throughout this report is

shown in Figure 2.1.

6 inches

.. . .. . . . -a cell

6 inches ............

Fig 2.1. A PCB represented by a uniform grid structure

Most printed circuit boards for microcomputer based systems have

dimensions of eight by ten inches or less and have two layers upon which

the circuits are etched. The wire widths average 50 mails wide with 50

6

.......... .o..........



*: mil spacing between wires.(1) Consequently, the center-to-center

distance of parallel wires is 100 mils. A grid structure can then be

superimposed on the PCB. The grid points or cells maintain the LO0 mil

spacing necessary and represent the physical points on the PCB where

pins reside or the paths where wire routes pass through. Two cells are

adjacent if the Manhattan distance between them is one. A path can be

formed only between adjacent cells. Each cell may either be an

obstacle, that is, unusable due to physical blockages or it may be

available for the placement of a pin or circuit path. This

representation greatly simplifies the task of finding the minimum path

for a wire. No curves exist and the Euclidean distance does not apply.

Rather, distances are calculated on the Manhattan distance measure and

• ' the calculation is gdnerally an order of magnitude faster than

calculations based on the Euclidean measure.(1) .

Figure 2.2 shows the representative difference in calculating

- . minimum distance by Manhattan and Euclidean based measures.

A

y

B

x

Euclidean: (x2 + y)*.
Manhattan: x + y

Fig 2.2. Euclidean/lianhattan distance
from point A to B

7

. . ,. " .. .



To determine the-dimensions of a grid used to represent an eight by

ten inch PCB, it is easiest to calculate the number of cells in a one-

inch distance and then multiply this value times the board dimensions in

inches. Since cells are placed at 100 mil intervals, there are 10 cells

per inch. Therefore, the dimensions of the PCB in question are 80 by

100 cells. The total number of cells in a single layer of the board is

8000 and with two layers, we have 16,000 cells. It is clear that the

number of required cells would easily overflow a microcomputer's memory

if one takes into account that the program, operating system, and system

support modules or programs are also needed in core memory at the same

time. Later testing showed an unacceptable length of time required to

connect random points on this size board. Consequently, to preserve the

original nature of the research, the 6 inch by 6 inch board was divided

(j, into four equal sized segments as shown in Figure 2.3.

6 inches

Segment , • Segment

6 inches . . . . .. . .. ..

* Segment . • Segment

Fig 2.3. A PCB divided into two-by-two segments

-".-r.

.. .. ... . ... .. ... .... -.... .. . -.- .- .... ..... . .... -. - ....... -. - . ... . . . . . :



Cell Parameters

The second factor influenced by the system requirements is that of

cell coding. Hoel (3) and Rubin (6) both discuss strategies for cell-

state encoding. Each cell requires a designation of whether or not the

cell Is free for use. In addition, a designation for the direction of

the retrace path is required. The initial rationale for each ceils

state allowed for three possible conditions. The first condition is

that the cell is unavailable for use. The second condition is that the

cell has been reached through previous cell expansion. The third

condition is that a cell has not been previously reached and is

available for expansion. These three values are simply flag conditions

and can be represented by boolean values. It was later discovered that

the third condition flag could be eliminated. Consequently, cell

conditions could be represented by two bits. If these values are

defined during software implementation as a packed array, only one word

of memory is required for their storage. The retrace direction was a

little more involved. Initially, three different directions were

considered, each direction occupying one word of memory. A zero, plus

one, or negative one value could then be stored in any of the three

locations. However, it would have taken three words just to store the

retrace directions. The other extreme would have been to define one

word of storage for any and all of the possible retrace directions and _.7

decode each value when a path was being retraced. These two extremes

were eliminated either due to excessive core memory consumption or

excessive processing time devoted to decoding. A compromise was made in

this area which occupied only one word of memory. The retrace

9

.. .



. directions of horizontal, vertical, and layer change could each be

allowed two bits of storage, and if all three were defined in software

as a packed array, only one word of memory would be used. The allowable

two bit values for each retrace direction were "0" for no change of

direction, "I" for a plus one change of this direction, and *2" for a -,

minus one change for this direction. The last value would then be the

only value decoded. As a result of this cell analysis, 14,400 words of

memory are required for a 6 inch by 6 inch grid. Apple UCSD Pascal

allows only 18,000 words of memory available for code and data in any

procedure.(9) This constraint allows only a single segment no larger

than 3 Inches by 3 inches (30 by 30 cells) to reside in central memory

at one time. Thus, each segment shown in Figure 2.3 is further divided

into cells as shown in Figure 2.4 below.

k -= 3 inches --

3Inches ............ 3 cells
...... .. f

.~~~~~~ . . . ..-

o.o..o...4

i- 30 cells -

F ig. 2.4. Dimensions of a segment

10

Snhe ......... .. .............

* .. . . . . . . . .



Secondary Storage

The third factor influenced by the system requirements was that of

secondary storage. The Apple UCSD Pascal system formats diskette

storage in blocks. Each block stores 256 bytes of data.(9) Thus, to

store one 30X30X2 grid segment at two words per cell, fifteen blocks are

necessary. For a 6 inch by 6 inch PCB (four segments), sufficient

memory exists to store all segments, the retrace file, the input file,

and any intermediate files for processing. A user could potentially

store 10 segments, the retrace file, an input file, and several

intermediate files with the 128K RAM disk. Due to the nature of Apple

Pascal, files must be stored on disk in contiguous blocks; therefore,

when a file is opened for writing, the largest amount of contiguous

storage is reserved for the file. Thus, all remaining storage could be

reserved for the writing of one file. This problem is especially

difficult if one is writing to multiple files. The solution was to

specify an approximate amount of storage for the file. The system would

reserve the space and use only the amount it needed when storing the

file and release the remainder.

Processing Parameters

The fourth factor influencing the system is the general processing

requirements. First, the cost function is the "Manhattan distance

between adjacent cells of the net. Thus, Lee's algorithm will produce a

minimum distance/cost path. Second, Lee expansion is terminated when

the net end point is reached then the retrace procedure is performed.

Third, expansion is in all directions to ensure finding a path if indeed

one exists. Fourth, to conserve memory and still have sufficient room

;11=



to store all cells reached during expansion, the largest potential

number of cells reached during expansion must be known so the size of

the list of cells reached can be defined. For a board of 60 by 60

cells, the approximate center is at cell (30,30). With no obstacles, a

total of 30 expansions will result in the maximum number of cells

reached, 120 cells per layer or 240 cells overall.

Expansion Directions

There is a general difficulty with any search algorithm as to the

most appropriate direction to take. With a predetermined expansion

algorithm, the first expansion direction may be opposite to the

direction of the end cell. A requirement to always expand a cell in the

direction of the end cell was considered but was disregarded since

expanding the cell closest LO the end cell would largely eliminate the

jeffects of misdirection. The closest cell would expand in no more than

three directions before a connection was made while the use of a

sophisticated direction prioritization algorithm would add nothing to

achieve shorter paths or lower processing time.

Overcoming Segment Processing Problems

As a cell is reached during the expansion phase, its coordinates are

saved in a list. The expansion phase uses the entries of this list-to

reach additional cells, and it is unlikely a connection would be made

when expanding the very first entry of the list. That is, the actual

cell needed to make a connection may be far down the list and many

entries might be needlessly expanded before the cell leading to a

connection is expanded. In addition, cells from different segments will

be entered into the list as segment boundaries are crossed. The result

12



of expanding this list will be an additional processing delay due to

increased swapping of segments.

To eliminate or reduce the needless expansion of cells and increased

segment swapping, an algorithm can be designed to ensure that the cell

closest to the end cell is processed first followed by all cells of the

same segment. This algorithm should sort the list of reached cells

first in ascending Manhattan distance to the end cell and then by

segment. The effect of the sorting will reduce both the number of cell

expansions and the number of segment swaps.

Data Manipulation Parameters

The fifth factor influencing the system requirements is the need for

a general purpose program to allow data entry and to generate a hardcopy

listing of each routed net's path and length. The decision was made to

provide a separate program for data input, segment initialization and

obstacle cell specification. The main routing program would print the

route file and path lengths since this file must be used as input to

Vintr's algorithm and recreated from one iteration to the next.

Summary

Although the original board parameters were 8XI0 inches, it was

determined in preliminary testing that an unacceptable length of time

was required to route nets. Thus, to preserve the original objectives,

the board dimensions were reduced to 6X6 inches. The cell structure was

designed such that only the most important information (retrace

direction, cell availability condition, and cell reached condition)

would be stored in the least amount of memory. Thus, each cell only

requires two words of memory. Testing showed the 128K RAM disk provided

13

-- v-i- -- ~ -,1~ --.. -



adequate space to store all data input, board segments, retrace paths,

and intermediate files as long as sufficient space was defined in

software. To speed up the connection process and eliminate the number

of I/Os, two algorithms had to be designed. The first was to sort the

list of cells reached during expansion so the closest to the target

would be expanded first. The second algorithm uses the results of the

first to build a new list by taking the cell closest to the Qnd cell and

all other reached cells on the same grid, then the next closest cell

remaining in the reached cell list and all others on the same grid, and

so on until no cells remain in the reached list. The last design factor

was of data input and output. A separate program was written to input

data and build the board segments. Since the retrace file is used as

input to Vlntr's algorithm, the net paths would be printedwith each

j ( path's length before the rouce file is passed to Vintr's algorithm.

14

I.2 -

.....................................................

..................................................... .

. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . - ... *2

................................................



III. Systcm Design

Introduction

To meet the requirements previously defined, four major software

routines had to be developed. These four routines and how they interact

with each other are shown in Figure 3.1, the overall system design. The

second, third, and fourth routines are embedded within the box titled

"ROUTE DATA FILES".

BUILD NET FILE ,I.NET FILE , ROMT

DATA BOARD SEGMENTS ECONDAR TOUFILE

Fig 3.1. System Design

First of all, a data input routine was required to input the cell

coordinates for each net added to the net file (the input data file) and

the coordinates of obstacle cells. The second and third routines

developed were the routing and grid management routines, respectively.

These routines are highly depcndent on each other for fast, efficient

execution. In the fourth routine, a method was needed to provide for

the primary direction of expansion. This requires some type of sorting

scheme to expand cells closest to the target cell first. As seen from

Figure 3.1, there are two separate programs to handle data entry and the

routing/printing process.

15p--

5 "211' ""



Input Design

Figure 3.2 shows the overall input design. The user has the option

to build the initial data file and/or specify obstacle cells. To build

ENTER NET FILE INITIAL- GRID SEGMENT ENTER

CELL IZE GRID FILES OBSTACLE
COORD. SEGMENS CELL -
FOR COORD.

NE T

Fig 3.2. Input Design

the data files, the user is prompted for the start cell coordinates and

then the end cell coordinates for each net. The coordinates of each net

(- is displayed so the net may be rejected if any of the coordinate values

have been entered incorrectly. When all nets have been entered, the

entire board is initialized. Individual obstacle cells may then be

designated on the board with the capability to ignore in obstacle cell

if erroneous coordinates have been entered. All board segments are thea

saved on secondary storage. This initialization step ensures that all

retrace directions and condition flags are set to zero values except for

those coordinates which represent occupied cells (a start, end, or

obstacle cell). Each start/end tell has its obstacle flag set to "1" on

each layer of the grid to represent the physical placement of a chip's

pin which typically extends through to the opposite side of the PCB.

Obstacle cells are designated by 4aving their obstacle flags set to "I"

also. However, differing from start/end cells, obstacle cells must be

16.*.

2...: : .:' :. '. .. .- .:. .'. .. .. " -':: -'.-'. ". '..'-. -. . .. .'-" .. -: -..- .. " .. . a. .' .. ". C, '' '.a '.'-. , : . "



specified for each side of the PCB. This method of designating obstacle

cells allows special paths to be constructed which are wider than

normal, paths such as the power and ground circuits and edge connectors

which generally occupy only one side of the PCB.

In summary, the input design allows input of two-value cell

coordinates for the start and end points of each net and three-value

cell coordinates for obstacle cells. The end points of a net may be

rejected if an incorrect value is entered. Once the list of nets and

obstacle cells are entered, they are permanently stored on secondary

storage and are subsequently used to initialize all board segments.

Output Design

The output portion of the design provides the capability to obtain a

printed copy of all net paths once the Lee or Vintr router has finished.

There are three methods to do this. The first method merely prints the

cell coordinates during the retracing of the path following a connection

and does not save the path coordinates for later use in Vintr's

algorithm. The second method stores retrace paths in primary memory as

th, ;th is retraced. However, this method uses valuable primary

memory. The third and favored method stores the path on secondary

storage for later output to a printer. The advantages of this method

allows output of the paths as in method one, although not as fast as in

taethod two, but does not use valuable primary memory to store the path.

Another significant advantage is that the paths are permanently recorded

for later use in Vintr's algorithm. As a path is retraced, the three

coordinate values for each cell along the path are saved to pin-point

the precise location of the path on the grid. To avoid the tedious

1.7

°'..



manual method of determining path distance, the output routine

calculates the length of a particular path as it is printed.

In summary, three-valued coordinaes for each retrace cell are saved

on secondary storage to minimize system turnaround time and allow for

their use in Vintr's algorithm. As paths are printed, an internal

counter sums the number of cells reached during the retrace process so

the total path distance can be printed.

Grid Design - Referencing Cells

The strategy of how one locates a cell in a large array when only a

sub-portion of the large array is immediately available has a profound

effect on the efficiency of Lee's algorithm. This dilemma suggests two

representations of a specific cell location. The first representation

is of a cell's absolute location and is shown in Figure 3.3.

L
E 5 . .. .
NG 4 . . .

T
I 3 . . . .. '

(5,2)
2 . . . . x
1 . . . . .- ,.

1 2 3 4 5 6

•W, I D T H

The absolute location of cell x is (.,2).

Fig 3.3. Absolute cell location

18

7. .° . .



(It should be noted in reference to cell coordinates that the first

coordinate denotes the width parameter and the second coordinate denotes

the length parameter.) For example, if the board dimensions are 6X6

cells, a cell can be located simply by specifying its coordinates.

The second representation requires the coordinates for the cell's

location within a segment and the coordinates for the segment's location

within the board. For example, if only a portion of the entire grid is

available at one time, say 3X3 cells, a cell's location must be

specified within the segment, and the segment must be referenced with

respect to its location on the overall board. Figure 3.3 references the

same cell as in Figure 3.4 using segment coordinates and relative cell

coordinates.

3 * . .. . ..3

S L 2 2 . .. .
G E E-.,

R G N I . .. .

I H G
D E T 3 . .. .

N H (2,2)

T 1 2 . . . . x

1 . . . . .-. --

1 2 3 1 2 3

1 2

GRID SEGMENT WIDTH.

The relative location of cell x is (2,2) in segment (2,1).

Fig 3.4. Relative cell location

19 : .-. :



As cells are expanded and others are reached during the actual

routing process, segment boundaries are crossed. Consequently, if both

representations are kept in primary memory, the routing process could

take place using absolute coordinates while a second algorithm could

keep track of the segment's coordinates and of the cells within the

segment. Whenever a cell other than the current cell is referenced due

to expansion or retrace, a check is made to determine if the segment has

changed. If so, the grid management routine (to be described later) is

invoked. If the segment has not changed, new relative cell coordinates

are calculated so the reached flag and the retrace direction are

specified for the proper cell. The use of absolute coordinates for

expansion and retrace and the use of relative coordinates for access to

specific cell information is especially advantageous during retrace.

The coordinates of the retrace path are saved as absolute coordinates,

and retrace direction data from a cell (referenced by its relative

coordinates) is used to calculate the absolute cell coordinates of the

next cell in the retrace path.

Lee Router Design - Algorithm

The design of the Lee algorithm used in this project is basically a

process of reading the end cells of a net, initializing various data

parameters, expanding cells until a connection is made or is impossible,

and retracing the path for a connected net. This same process is

repeated for each net. Figure 3.5 shows the overall design of the Lee

algorithm.

20

__ _ __ _ __ _ __ _ __ _ __ _ __ _..,. ..



INITIALIZE SEG~ENT EXPAND NOT CONNECTED
SEGMENTS FILES CELLS UNRYOUTED NET -
FOR EACH NET DATA4 CONNECTED
NEW NET FIND

RETRACE
PATH

Fig 3.5. Lee algorithm design

Lee Router Design - Initialization

Upon entry into the Lee algorithm, the cells of all segments must be

initialized. The initialization process resets all retrace directions

to zero and the reached flag to "not reached" for all non-obstacle

'. cells. The obstacle cells, at this point, represent both physical

obstacles and the wire paths between cells. Once all segments have been

initialized, the data lists for storing cells to be expanded (ELIST) and ,.

cells that are reached during expansion (RLIST) are also initialized so

that neither list has any entries.

When a net to be routed is read from the net file, its start cell is

immediately stored in ELIST and the same cell on side 2 of the PCB is

stored in RLIST. Once these processes have taken place, the expansion

process continues until a net is connected or it is determined that a

connection Is impossible.

Lee Router Design - Expansion

The design of the expansion process the heart of the Lee algurith.

It is the method of taking a cell with specified coordinates and

determining if a path exists to each adjacent cell until a connection is

made or no paths exist. For any one cell there is a maximum of five

S* * .. . . . . . . .. . . . . .. . . . . . . . . . . . . . . . . . . . .. ..•



adjacent cells which may be reached on a two-layer PCB. These five

cells' coordinates can be easily calculated from a single cell's

coordinates. A single cell has three coordinate values - width, length,

and side. A fourth coordinate value can be calculated by adding "+l" to

the cell's width coordinate, a fifth coordinate value by adding "-I" to

the width coordinate. Similarly, the sixth and seventh coordinate

values can be calculated from the cell's length coordinate. The side

coordinate is trivial since it always has a value of "1" or "2". Since

these adjacent coordinates are alwiays calculated in the same manner,

they are easily defined. As an example, if a cell with location (x,yz)

is to be expanded, the five adjacent cells are defined below.

CELL LOCATION: (xy,z)

. ADJACENT WIDTH CELLS: (x-l,y,z) and (x+l,y,z)

ADJACENT LENGTH CELLS: (x,y-l,z) and (x,yIl,z)

ADJACENT SIDE CELL: (x,y,.) or (x,y,2)

If the four width and length coordinate values are saved, they may

be easily used to reference adjacent cells. Adjacent width cells are

defined by using one of two newly calculated width values to replace the

current cell's width coordinace. The adjacent length-wise cells can be

referenced in a similar manner. By sequentially replacing the original

values by the new values, all four directions may be considered without

ever permanently changing the original cell coordinates.

Initially, no cells have been reached and the only condition flag -'

set is the obstacle flag for the start/end cells and other obstacle

"" "". . . . . . . . ........ ."" """""""" '.'ii."" '" ' " v ". -.... . ..' ... , , - - . ., ,, ,-" - • ,, .-- ,



cells. As the start cell is expanded (an ELIST entry), each adjacent

cell that is reached has its three coordinates saved in RLIST. The

first expansion has at least one cell that may be reached unless the

connection is impossible. If more than one cell is reached, each cell

is saved. When the start cell has been fully expanded, the reached

cells are moved into ELIST and expanded one at a time. To avoid

repetitious expansion into the same cell, a reached cell has its reached

flag set. Only available and unreached cells are eligible to be

reached in the expansion process. If a connection has not been made by

the time the last ELIST entry is expanded, the list of reached cells

(RLIST) is moved into ELIST and expanded. This process is repeated

until a connection is made or no further cells are available for

expansion. Once a connection is made, the retrace procedure is invoked.

If all ELIST entries have been expanded and no RLIST entries exist, the

net is considered impossible and is saved in a list (tHPOSLIST).

Lee Router Design - Retrace

Once a connection has been made, the path should be retraced. Since

a connection is made with the end cell, the retrace begins at the end

cell. The next cell of the path is calculated from the current cell's

absolute location and the retrace direction information stored in the

current cell. When the coordinates of the next cell are the s:Ime as the

start cell's width and length coordinates, the retrace path is complete.

During this process, each new absolute cell location of the path is

saved in the route file and the obstacle flag for each cell is set.

Of all the data items within the program, the items which may use

more primary memory than any others are the retrace directions. If

23



.- - / ::-
31

negative values are allowed, each direction requires an entire "word" of

memory. With three directions for each cell and hundreds of cells, it

is easy to see the problem. To minimize storage for the grid entries,

the retrace directions are coded as "0", ", or "2". Then if data

packing is used in the software implementation, only two bits are

required for each of the three retrace directions. However, coding a

"2" (a "10" in binary) for a negative value requires a check during

retrace. The check will ensure a value of minus one is actually added

to the coordinate in question to obtain the next cell in the retrace

path. The other two values, "0" and "1", can be added directly to the

proper absolute coordinates to determine the next cell location in the

retrace path. For this technique to function properly, the retrace

direction values must be stored properly. As a cell is expanded in one

direction, the cell reached must have the value of the opposite

direction (from which it was entered) stored in the proper retrace

direction. Perhaps the easiest way to do this and the most foolproof c
way of ensuring the proper values have been stored is to "hard-code"

this technique into the program.

Vintr Router Design

Vintr's router uses the Lee routing algorithm to do its work but

requires some additional algorithms to function properly. Figure 3.6

shows the overall design of Vintr's algorithm and how it uses the Lee

algorithm.

24

.*. .. . . .. . . . . . .. ",

-. . . . , . . . mT , ' m . , ,



3.,,

BUILD ROUTE ELIMINATi ROUTE
TAILS UNCONNECTED -- "rAILS OF SINGLE
FROM NETS SINGLE hrT"
ROUTED NT WITH -.
N -TS LEE ?

Fig 3.6. Vintr algorithm design

Once all nets have been expanded, the route paths previously saved

to disk can be used for the first step of the Vintr router. The first

algorithm is to build a file of path "tails". The tail lengths are

calculated from the length of the routed net, the percentage of each

path to implement (10% in this study), and the iteration. The end

points of the net are added to the list of tail cells. Then the

Manhattan distance between each intervening cell along the retrace path

and the start or end cell is compared with the length of the tail to .

determine if the intervening cell should be included in the tail list.

Figure 3.7 shows an example of a board after the Lee algorithm. Figure

3.8 shows the same board after the tails are built.

4 .. . . . . ..

.'2- . . .

• . . . m . . .

Fig. 3.. Example of four routed nets

25

................................. ... .. .

.. . . . . . . . . . . .. . ..... .... i



.... . . .?f

* .-.. I

Fig. 3.8. Example of the tails for four routed nets

Intervening cells included in the tail list are flagged as "unavailable"

and those cells not included are flagged as "available". This process

is continued until tails are calculated for all routed nets.

When all the tails have been built, a second algorithm is executed.

This algorithm attempts to find a path for previously unrouted nets..

0The unrouted nets are expanded by the Lee algorithm in an effort to

Increase the net completion rate. If a net can not be connected, it is

again saved in the unrouted net list (IMPOSLIST); otherwise, the net and

all cells along its retrace path are saved in the route file (ROUTFILE).

At this point, a third algorithm selects all of the tail list

entries for the end points of a single net and eliminates the tails by

turning the obstacle flag off, making the cell "available". The end

points of the net are then passed to the Lee algorithm for routing.

This process continues until all tails are routed. The algorithm then

begins the next iteration.

In summary, for both the Lee and Vintr algorithm, separate sets of

coordinates are maintained to identify a cell's location on the grid.

26

*. . . . . . . . .... .

: .- '.;' . -. -.: .'-.' ..-,'.;,' .. -.'-.' ... -. .--. . ..:.. +. .- .. ..-. .-.. .- .- .. ... .- .- .. .- .. .- - .. . .. - -. . - +. . .- .- . . . .. . . -... - "



*.°. - . . * ' . Y °

The first set of coordinates is used for the absolute location of a

cell. The second set of coordinates are used to determine the relative

cell location based on segment location and the cell location within the

segment. Relative values are used when storing the condition flag and

retrace direction for a specific cell. In the basic Lee algorithm an

initialization procedure is performed, all possible directions of

expansion are attempted, and a list of reached cells is constructed.

The list is then used for expansion after all current cells have been

expanded. Once a connection is made, the retrace procedure allows

simple path retracing and storage of the path. Vintr's router requires

several additional algorithms to build the tails of routed nets, to
d

expand previously unrouted nets, and to expand the tails one at a time.

Grid Management Design

Two methods of grid management can be considered each with its own

advantages and disadvantages. The first method is called the grid I/O

method and the second method is called the grid vector method. The

method of grid management is the single most significant factor in

turnaround time. The first method, that of grid 1/0, functions as

follows. Anytime a new cell is referenced, a check is made to determine

if the cell is located in an adjoining segment. If it is not, no extra

work is done except for the calculation of its relative coordinates.

lowever, several actions are initiated if the cell is in an adjoining

segment. First, the old segment is saved to secondary storage.

Second, the new segment is loaded into memory. Third, the cell's

relative coordinates in the new segment are calculated. The difficulty

with this algorithm arises when multiple cells along a segment border

27

.... ... .. . . .. . . .... ......... .... . ......



expand across segment boundaries. This requires a number of segment

swaps resulting in a tremendous amount of processing time doing 1/0.

The advantage in this method (which will become clearer from the

discussion of the vector method) is in the fact that the algorithm

allows a cell which could possibly make a connection when It first --

crosses a segment to make the connection.

The grid vector method expands all cells within a segment before

swapping segments. This method requires that a "vector" or a list of

all cells on a segment boundary be saved prior to segment swapping.

Distances also need to be saved so that once a new segment is loaded,

processing of the vector entries would begin with those with the shorter

distance. The entries with the shortest distances would be processed

one at a time until each path's distance was equal to the longest

0- distance saved in the boundary vector. This ensures that a longer path

did not make a connection before a shorter path was given an opportunity

to complete the connection. The significant advantage of this method

lies in the fact that a tremendous number of segment swaps are A-

eliminated which reduces turnaround time. However, there are

significant disadvantages also. The first disadvantage is that

additional memory is required to record sixty (two layers f thirty

entries each) entries per vector and the possibility of four vectors.

In addition, if two cells are relatively close to each other but in

different segments, much processing time would be spent in expanding all

other cells of a segment before the connection could be made.

In summary, the two grid management methods will determine overall

processing time. Each has its own advantages and disadvantages. One

28

• ~~~~~~~~~~~~.. -. °... • ...•° ... °.-... .. . . -.... .. . .... °.-. . ..-.... . .°.. -. ....



method (I/O) will make a connection with a fewer total number of cell

expansions but with a price of high I/O. The other method (vector)

requires a larger number of cell expansions and larger amount of primary

memory but refrains from any I/O until a segment swap is absolutely

necessary.

Expansion List Sort Design

The primary reason for these algorithms is to expand cells closest

to the target cell first and to expand all cells that have been reached

in a specific segment before segments are swapped. This method provides

some assurance that the target cell is reached as soon as possible and

with a reduction in the number of segment swaps. The first algorithm

sorts the cells reached during a particular expansion into ascending

"Mlanhattan distance sequence. The Manhattan distance is then calculated

from the cell's current position to the end or target cell's position.

The advantage here is that for long paths, there may be 100+ cells

reached, and the cell closest to the target cell may be at the end of

the list. Clearly, it would be a waste of time and resources to process

all others first before making the connection. A second algorithm uses

this sorted list to reduce the number of segment swaps. The second

algorithm uses the first entry of the sorted list and calculates whic'"

segment it is located in, then searches the remainder of the list for

other entries in the same segment. When all entries have been checked,

the next closest entry is selectad and its segment is calculated. This

process is repeated until no "reached" cells remain. The resulting

expansion list (ELIST) has entries sorted by segment which is based on

the cell closest to the target cell. This method will reduce some of

the segment swaps during expansion.

29

."-I

-- " -.. .. . ' .- . ' . ' , '."" " - .' i -- ' . .' - .' . . . : .' - .. - - . - . -. - ' .- - - -- . . - . -- ' .- -. . - . - - .- . .. . -



-p..." -**..*

. .Summary

The design of several routines had to be considered before any

program implementation could begin. A routine had to be devised to

handle cell location within a segment for a multi-segmented grid.

Routines had to be designed to input and output data files and to "-

initialize the segments for obstacle cells and the end points for all

nets. A routine was required to expand cells and mark their retrace

directions and, once a connection was made, a separate routine had to

find the path back to the start cell. During the expansion process,

routines had to be developed to reduce the number of disk I/0 and to

first expand those cells closest to the end cell.

30

' 1

• . .-.• ° , .. - . . .. o °. . . . . . . . . . .-' ' ' . € ." ." " " ' ' ' - . " . " - " ; ' '" , . . .' '. ,' ' '. - . . . .' " - " '" ' -' .' - .' -' - " . " ." " ' - " ' - . " . .. "- .



IV. Results and Analysis

Procedure

Four data sets were created with 20, 40, 60, and 80 randomly

created two-point nets. Each net was created independently. Some

characteristics of these data sets are shown in Table A. No obstacle

cells were entered in any of the board configurations prior to routing.

TABLE A

Characteristics of the data sets used in analysis

Number of 2-Point Nets

20 40 60 8o

Minimum Net Length (cells) 9 6 5 6

Maximum Net Length (cells) 73 107 85 69

Average Net Length (cells) 38.2 40.2 39.4 35.5

The nets in each data set were sorted and stored by ascending and

descending Manhattan distance. Thus, eight data sets were actually

created and used for the analysis presented here. All data sets were

saved to floppy disk. Each data set required no more than one block of

storage, while each segment required 15 blocks of storage. Temporary

storage files and intermediate route files were created and purged

during program execution and, thus, their size could not be easily

determined.

To execute the main program, all files associated with a specific

data set were loaded into the RAM card. The program was then started

and the clock time noted. At the completion of the program, the time

31"

....... .. .. .. ..... .



was noted and all files in the RAM card were saved to floppy diskette.

These results are shown in Table C and discussed in the next section.

At the end of the Lee router and each iteration of Vintr's router

(where each iteration of Vintr's router performs the Lee algorithm with

an increase in tall length of 10%, see Table B), the path for each

successful connection and its Manhattan distance was printed.

TABLE B

Percent of route path used to calculate tails

STEP TAIL LENGTH

LEE 0%

VINTR #1 10"

VINTR #2 20%

VITR #3 30%-

VINTR #4 40%

Each Manhattan distance was subsequently entered into a calculator to

obtain the mean and range of routed distances for each data set. This

data is shown In Tables D through X and discussed in the following

sections.

Output File Size and Processing Time

Table C shows the results of output file size and processing time

for all eight data sets by net-size and the routing of short vs. long

nets. Short nets are the data sets sorted in ascending Manhattan

distance, and long nets are the data sets sorted in descending Manhattan

distance. End-of-program output file sizes for the various data sets

32



Table C

Results for output file size and processing t1mn?

Size of 2-Point 'lets

Short First Long First

20 40 60 30 20 40 60 30

output File Size (Biks) 7 14 26 28 7 15 24 29

Processing Tim~e (Hrs) 71.3 124 131.2 153 77 136.5 150.4 133.3

were variable and tended to level off in the 24-29 block range for the

four largest data sets. Tais is due to the substantially higher numbzr

of unrouted nets in the 80 net data sets. Figure 4.1 shows the increase

in output file size over data set sIze.

3A
-27.5

CZ 25
M 22.5
=n 2A

S17.5
~~ 15 5MO 0 R NT

3 12.5

u-I 7. 5

S2. 5

DATA SET sr7E

Fig. 4.1. output File Size Results



As cin ba seen from Figure 4.2, the processing time was substanti3l,

ranging from 71.8 to 155 hours per run of a data set. The increase is

due largely to the increase in the number of nets to be routed and the

resulting increase in routing congestion. The time nearly doubled going

from 20 to 40 nets as would be expected on a relatively uncongested - -

board. With congestion though, the time began to peak in the 135-155

hour range. This is explained by the fact that as more obstacles are

encountered in the expansion process, fewer cells are reached. It is

interesting to note for all data sets, except the two largest data sets,

less time was required to route the shortest connections first. In

processing the longer nets first of the largest data set, there were

about 36% more unrouted nets for each iteration than when the shorter

LON
13

JIB

0

23 43 63 5

DIR 5ET S1'ZE

Ftgure 4.2. Processing Tine Results

34



nets were processed first. These additional, unrouted nets were

probably flagged as impossible early in the routing process to achieve

such a low processing time.

Output Results and Analysis - 20 Nets

Tables D and E show the results for 20 nets by iteration for routing

shortest and longest nets first, respectively. For each type of

processing (shortest vs. longest), all nets were routed using the Lee

algorithm. Consequently, no improvement was observed using Vlntrs

algorithm. It is interesting that even though the average route length

was slightly longer when processing the longest nets first, the maximum

path distance was several units less. Apparently, longer nets were

closer to their minimum Manhattan distances and shorter nets were

longer due to the obstructions generated by the longer nets. When the

shorter nets were processed first, they achieved their ninimua distance

with longer nets requiring longer paths to make a connection.

Table D

20 Nets (shortest routed first)

Iteration

Lee 1 2 3 4

'IlnLmun let Length (cells) 9 9 9 9

Maximum Net Length (cells) 82 82 32 32 32

Average Net Length (culls) 39.2 39.2 39.2 39.2 39.2

Number of Unrouted Nets 0 0 0 0 0

% Completed 100.0 100.0 100.0 100.0 100.0

35

. . . . . . . ........ . . . . . . . . .

. . . . .--iS tt A 3~ 5 -.- .' -%-**- - -



Table E

20 Nets (longest routed first)

I tera tion

Lee 1 2 3 4

Minimum Net Length (cells) 9 9 9 9 9 -"

Maximum Net Length (cells) 79 79 79 79 79

Average Net Length (cells) 39.6 39.6 39.6 39.6 39.6

Number of Unrouted Nets 0 0 0 0 0

Z Completed 100.0 100.0 100.0 100.0 100.0

However, the minimum, average, and maximum route lengths in both methods

of processing very nearly equalled their starting statistics. This

condition indicates the net end points were sufficiently distributed,

and the board was large enough that congestion was not a problem.

7-

36



Output Results and Analysis - 40 Nlets

The results for the 40 net data sets are shown in Table F for

shortest nets routed first and in Table G for longest nets routed first.

Again we see a 100% completion rate. It is also interesting to note

that the processing of longest nets first resulted in a shorter maximum

Table F

40 Nets (shortest routed first)

Iteration

Lee 1 2 3 4

Minimum Net Length (cells) 6 6 6 6 6

Maximum Net Length (cells) 109 109 109 109 109

Average Net Length (cells) 42.0 42.0 42.0 42.0 412.0

Number of Unrouted Nets 0 0 0 0 0

Z Completed 100.0 100.0 100.0 100.0 100.0

Table G

40 Nets (longest routed first)

Iteration

Lee 1 2 3 4

Minimum Net Length (cells) 11 12 11 11 1i

Maximum Net Length (cells) 107 107 107 107 107

Average Net Length (cells) 44.5 44.5 44.5 44.5 44.5

Number of Unrouted Nets 0 0 0 0 0

Z Completed 100.0 100.0 100.0 100.0 100.0

37

. -



,. - o

route length than did the processing of the shortest nets. Also, the

number of nets to be routed does not congest the board enough to really

affect the path lengths. The difference between the minimum possible

length and the average route length of a net when shortest nets were

routed first was only an increase of 1.8 cells. This value increased to

4.3 cells when routing the longest nets first. Thus, the cost for

routing the longest nets first is an increase in the path length of the

shorter nets, and path lengths increase to the extent that the average

route length increases significantly, especially as board congestion

increases.

Output Results and Analysis - 60 Nets

Tables H and I show the results of applying Vintr's algorithm on the

60 net data sets for routing shortest and longest nets first,

respectively. These data sets were the first to show the usefulness of

Vintr's algorithm. In routing the shortest nets first, only one net

Table H

60 Nets (shortest routed first)

Iteration

Lee 1 2 3 4

Minimum Net Length (cells) 5 5 5 5 5

Maximum Net Length (cells) 125 90 116 177 155

Average Net Length (cells) 44.6 39.3 48.8 51.1 53.4

Number of Unrouted Nets 1 8 5 4 0

Z Completed 98.3 86.7 91.7 93.3 100.0

38

1%°

.......................................................



Table I

60 Nets (longest routed first)

Iteration

Lee 1 2 3 4

Minimum Net Length (cells) 5 7 5 5 5

Maximum Net Length (cells) 180 136 127 148 123

Average Net Length (cells) 55.7 55.7 49.5 50.7 49.8

Number of Unrouted Nets 7 9 5 1 1

% Completed 83.3 85.0 91.7 98.3 98.3

could not be routed. Only after an increase in unrouted nets, as shown

in Figure 4.3, was the V.Lntr algorithm able to complete all connections.

Surprisingly, the early iterations of Vintr's algorithm showed a

25

22.5
Ln62 5

. ~ ~ ~ 8 ............ . . . . . ..



* .- - - --7 - -----

significant non-completion rate (see Table TO). This "hump" effect (see

2 Figure 4.3, a chart of the data in Table G) is apparently due to the

following sequence of actions. At the start of each iteration in

Vintr's algorithm, unrouted nets are routed first. In this way, the

m newly routed nets force other nets to take a more circuitous path, and

only whan less congestion is encountered are the previously routed nets

more likely to find a connection. The construction of tails increases a -

net's chance to find a path, and until a net finds a path outside the

congestion, additional nets may not be routed.

The average route lengths increased dramatically from the starting

lengths as shown in Figutre 4.4. Obviously, congestion played a najor

z..

z S2

40

3

WE ]s 3:
I-o

440

p3

LEE. ................................... 3. . . .

.. . .. . .. . .. . .. . .. ... . .. . .5....



part in the processing of this data. One interesting observation when

routing longer nets first is there appeared to be an improvement in both

the maximum and average route lengths for the final two iterations.

This apparent improvement was due to the fact that the unrouted net in

iteration three was different than the one in iteration four. The

unrouted net in the last iteration caused less congestion than the

preceding net.

Output Results and Analysis - 80 Nets

Table J shows the results for 80 nets with shortest nets routed

first versus Table K which shows the results of the same data set

ordered by longest nets first. It is clear from this data that the

board was heavily congested. For routing shortest nets first, there was

no improvement in unrouted nets'by Vintr's algorithm. In fact, the

improvement seen was in the decrease in maximum net length.

Table J

80 Nets (shortest routed first)

Iteration

Lee 1 2 3 4

Minimum Net Length (cells) 6 6 6 6 6

Maximum Net Length (cells) 201 138 159 233 162

Average Net Length (cells) 43.1 45.7 49.2 51.5 48.9

Number of Unrouted Nets 11 10 17 21 11

Z Completed 86.3 87.5 78.8 73.8 86.3

41

.2; .'- ."-..' . . .-.. .-
4p ? '-'

..........................................



Table K

80 Nets (longest routed first)

Iteration

Lee 1 2 3 4

Minimum Net Length (cells) 6 3 10 8 6

Maximum Net Length (cells) 155 169 181 220 242

Average Net Length (cells) 55.4 48.7 51.3 50.9 54.2

Number of Unrouted Nets 24 19 20 18 14

% Completed 70.0 76.3 75.0 77.5 32.5

The "hump" effect can be seen when routing the shortest nets first (as

seen in Figure 4.3), and the result was an 86.3% completion rate. In

routing longest nets first, the number of unrouted nets began high and

j - slowly improved with a completion rate of 82.5%. For those iterations

where the least number of unrouted nets occurred, only about 21% of all

possible cells on the entire board were used. This suggests perhaps the

"random" generation of data points actually resulted in data being

somewhat "grouped" on the board. Nets having an end point near the

center of the "group" would have the greatest difficulty finding a path.

It is clear from Figure 4.4 that the average route length for these

two data sets is difficult to analyze since there is a great amount of

congestion. When routing short nets first, a comparison between the

results of Lee's algorithm and the last iteration of Vintr's algorithm

shows a significant decrease in the maximum net length and the average

net length. On the other hand, when routing longer nets first, the

average route length only slightly decreased, but the maximum net length

increased significantly as a much better completion rate was achieved.
42

. '.

Kq°
A.o



p

Sum.mary

The Lee algorithm worked very well with uncongested boards. When

congestion increased to the point where even Vintr's router could not

reduce the number of unrouted nets to zero, Vintr's algorithm was able

to improved the completion rate. It appears the maximum number of cells

to be connected was around 65-70 using a random generation method of

producing input data. For data sets of 60 and 80 nets, the better

completion rate occurred with the processing of the shorter connections

first.

In all cases, Vintr's algorithm gave results that were as good or

better than Lee s algorithm. In most cases, Vintr's algorithm gave - -

significant improvements in routing completion and average net length,

it appears that the number of long nets in a data set will significantly

impair the ability of Vintr's router to successfully route all nets.

Improvement, even though feasible, will come at a significant

processing cost. In general, Vintr's algorithm required I*L processing

time where I is the number of iterations, and L is the length of time to

route nets using the Lee algorithm.

I 43

* . .. . . . . .. . . . . . . .



V. Conclusions and Recommendations

Conclusions

The most significant observation in this work is the fact that

design automation using 8-bit microcomputers is unrealistic. The 6502

processor is very slow running about 1 rIHz. With the constraint of 64K

primary memory only small sections of a printed circuit board can be

available at a time, in this case only a 3X3 inch segment. With the

processing of larger boards I/0 becomes of increasing importance in the

execution speed of the algorithms. In addition, due to the segment

swapping, algorithms were required to detect board seozcnt changes and

to convert absolute coordinates to relative coordinates on a continual

basis. Even with faster processing speeds and either RAM disk or hard

disk for secondary storage, the amount of I/0 and the amount of time to

consider all possible routes results in a substantially slower

application. The size of the board in this case was only 6X6 inches.

Initial testing of a board 8X12 inches with 30 two-point nets was taking

well beyond a week. This situation is entirely unacceptable in an

environment where students require faster turnaround.

The Lee algorithm produced the minimum length path in all cases

unless congestion impeded the expansion process. The Vintr algorithm

worked as advertised but there seemed to be a fairly narrow range of

data set size that really allowed the algorithm to do its work. On one

extreme, all nets were connected on the first execution of Lee's

algorithm and subsequent execution of Vintr's algorithm did not reduce

the average route length. On the other extreme, the board became so

congested that it was difficult to predict, let alone expect, the number

44



of unrouted nets to decrease. One fact is for certain though, Vintr's

algorithm will result in a fewer number of unrouted nets at the expense

of processing time.

A reduction of the overall processing time should be expected if a

16-bit microcomputer is employed to accomplish the expansion process. A

faster processor should significantly speed up processing and the

increased range of memory addressing would allow much larger sections or

an entire printed circuit board to reside in memory at one time. This

would eliminate the algorithms devoted to segment swapping and for the

conversion of absolute coordinates. Potentially, a 75. reduction in

processing time might be observed using this program with different

hardware configurations. Vintr's algorithm could be a viable approach

if hardware specifically tailored for routing algorithms or design

automation (similar to a database machine) were used.

In addition, if the pin data for the layout of actual chips was

used, the net's end points should be more uniformly distributed on the

board. Consequently, some of the congestion should be eliminated.

Varying the method of processing might also bring unexpected

-'--results. In the data sets where all connection were made, Vintr's

algorithm did not affect the routes, but if the routing method was

alternated from shortest processed first to longest processed first,

different results might be observed.

Recommendations

No further research is recommended unless a more powerful

microcomputer can be used to study the effects of Vintr's algorithm. At

best this research could provide an introduction to the routing process

45

-...................-

-- -. :. -." L t "• -- -t -% " ° , -[ :_ " . ' Z -" _' ." % _. 7 _L¢ ; ' t " " " -' L'" ' 7- "<'. "-- -' K-'' " '-''- --''-'. .l"



*. - . . . . .

for students and the algorithms could be studied by students and

improved upon. However, for true research purposes a larger-scale

computer system is required to lower processing times to a tolerable

level. The results of varying the length of tails and the number of

iterations during Vintr's algorithm might prove interesting or

significant.

4.

4 I-o

. . . . . . . . .. . . . . .

. . . . . . . . . . . . . . . .. .. . . . . . .

........ ........



BIBLIOGRAPHY

1. Akers, Sheldon B. "Routing," Design Autmation of Digital Systems.
Vol. 1, Melvin A. Breuer (ed.), Englewood Cliffs, New Jersey: Prentice-

Hall, Inc., 1972.

2. Carter, Harold. "A Plan for Digital Systems Design Automation,"

unpublished plan for the Air Force Institute of Technology, 1982.

3. Hoel, Jeffrey H. "Some Variations of Lee's Algorithm," IEEE
Transactions on Computers, C-25: 19-24 (January 1976).

4. Lee, C. Y. "An Algorithm for Path Connections and Its
Applications," IRE Transactions on Electronic Computers, EC-lO: 346-353

(September 1961).

5. Newton, Richard A. "Computer-Aided Design of VLSI Circuits,"

Proceedings of the IEEE, 69: 1189-1199 (1981).

6. Rubin, Frank. "The Lee Path Connection Algorithm," IEEE

Transactions on Computers, C-23: 907-914 (September 1974)-.

7. Soukup, Jiri. "Circuit Layout," Proceedings of the IEEE, 69: 1281-

1304 (1981).

8. Vintr's router as reported by Soukup. J. Vintr is the inventor of

the algorithm that was reported by R. Dutta at the 1980 CANDE workshop
on hardware for CAD, Univ. Michigan, Ann Arbor. There were no
proceedings published.

9. Apple Pascal Operating System Reference Manual and Apple Pascal

Language Reference Manual, Apple Computer, Inc., Cupertino, California
(1980). Apple is a registered trademark of Apple Computer, Inc. UCSD

Pascal is a registered trademark of the Regents of the University of
California.

47

.........................................



APPENDIX A: SADT Design Diagrams

48



LU LW

I---
'-4

c- I.- W~

I-4-4

I-- n

* j -w .

*u .. =A

--

= LU
__,j

I~rn

4x LU* , j

-=LLAJ. . . .. . .

r-4 LAS
Lai* -j

_j In . -

-JJ * - * z.
CA L

>- . * U

49 I



w UA

Li L U C Li >. W

LUC- La L

La ca~
cn I-- J a CC

1!4
4U I- L ClG

1-4-~2

1. 19-~a

t- *' I- . _ L

(iA LU J * - S

LLLU

71~

U.3

5 0 .

~- ~ L



L J I -L ?
cc ~ ~ w . C4 L

6- C. 3 I w cn.

CCCJ
CC L". - . *

ell,
1= .W I4cn .6-0 * C.J6C.. 4.AAdl

-0 U

La La *

c~ **-4

La'

-L cn6~J *

cn L.JU

.- '. A A. A U ~ 5G



LA-J

c Lai*

- w0 I= -cc

*. . -. . C3

CmC

- La~

_j --.

LA2I

U- - --=

LU52



A.A

-i

C4 C) I.

*~U U;LU J

La -. C4LC

- -j

-j u- -

cn1

* e .L - .

- -LU *CJ53



-CC

LALU

j LL U

w B -M-

La c.,

-j. w

L"U

ck 1- -

CC -j --

C- 6-- m

=~~ 9 - LL " ,

I.- ** d- -

0-4

-. M

54



1=L -c

1-4

- .- A

La 120,J *

_j . . n

-e LU" d

uj con *

.L..U . . . ...

-- 3 - L

a- * 55

* a%



*C.2

- ~-E
I:,' - - L .) LJ 9=

I-.

LU -J

9:L L& -C
I-L to - *

* . . G

* LU - *

3c co -_5* .-
LU * C- CM * .

LI. . . 04
.=~ -5CA

I! L..U2. - - -
,- -T

- - r

La. I.. CC 0
L'i- I. I. w= -M g 'm *

C-3 CA:

La4 = -M w I
-j - 4 LU n Al

.U . . . . . . .-u.s
_j-

* n - L

* LU *56



LLU

W L U
LU -

.~ ... c .

*U2J L 0 - J -

-1-z Lo*

-j. U1 LLIJ*

.- LUA cu
LL. -~ -I-

b. - -o

.4c .4- >< * ~ L
.- LAI L A.. LA -

*~ ~ - * -

-C . Ln C-3

I.-' . -0- 1.- * .

1- 0

I- LUJ *I

CO 0

* LUf

*j I. f4.I-

_- -U L

57



-4

I- * f

*A I.--
-j- = -- LJ .

=1-4 . 4 LJJ

.n

cn .fCO WJC-) -4 #-4 *G

I.-A

.J 1 4 .4

E .. C" I.-

r; 1=4--& n I- C=C

- .1

*L I.- I. t.

0-.4

C - - - -- - C4a

II.

-~LL - *J *

P12-4

*~~ 4..
- 4-

- -cc

ci * L L2 I

* _

. . .4 . . I U. . J .



APPENDIX B: Software Implementation -Program DATASTUB

59



*..............v .....................
* IITILIZ MAIL4M NUMtBER OF GRID POINTS

*INITIALIZE REDO AND MORE TO TRUE
.............................................................

N. BUILD. Y
............................... INTRFILE..........

v V............
* . RO0CEDURE-INTRSTUB 1.0

.................................. >...<................

V
N.y

INIT ......

* .BORD.

~~ ...............

* . P;ROCEDURE INITBORD 2.0

N . ADD *Y

.......................................... OBSTACLES.............

*~ V..............

* . ROCEDURE*BORDSTUB 3.0

........ ..............

.............................................. ..........

ENDDATASTUB.

........................................

Program DATASTUB.

60



. .. .. .. .. .. .. .. ..

*START INTRSTUB

* INPUT NAME*OF NET FILE
. BUILD FILENAME
. OPEN INTRFILE FOR WRITING

V
No

..................... - MORE
.DATA

o .Y

* SET REDO TO TRUE
*~~~ ~~ .....................

* (.................... ....

o.INPUT WIDTH, LENGTH COORD. o
.. FOR START/END CELLS
.oDO NOT ACCEPT VALUE UNTIL o

o . . WITHIN LIMITS OF PROGRAM .
o .ENTER "Y" TO REDO OR '*N"* TO.

. ACCEPT
V o............................................e......

. REDO ...... ...........

.. *...............V.......

S*AVE ~iNTRiLE ENTRY TO DISK
o .ENTER "Y" FOR MORE OR "N'

o . TO FINISH

N Y
o - ... ..... SAVE . . ..o . . .

DATA.
.~V ............... V....

PURGE INTRFILE .. CLOSE INTRFILE

o~ ~ ~ ~~~~~V ..... o ....... .....

END INTRSTUBo

Procedure 1.0 -INTRSTUB

61



*INITIALIZE EACH BOARD SEGMENT WITH ALL DIR
* ENTRIES SET TO 0 AND RCH FLAG SET TO
* FALSE

. READ EACH INTRFILE ENTRY

. PROCEDURE CALCFILE 2.1

. FOR EACH CELL IN INTRFILE, SET THE CELL-S
* OBS FLAG ON
*SAVE SEGMENT TO DISK

.......................... .v.. ..

Procedure 2.0 -INITBORD

62



* 11: WIDTH
* 12: LENGTH

* CALLATE NEW SEGMENT WIDTH AND o
0 NEW LENGTH USINGG 12

*COMPARE NEW SEGMENT COORD * WITH
* CURRENT SEGMENT COORD.

NV

o OPEN, WRITE, CLOSE CURRENT SEGflEN'T
* . SAVE NEW SEGMENT COORD. AS CURRENT COORD.
* . USE NEW COORD. AND BUILD NEW SEGMENT

FILENAMEo
oOPEN, READ CURRENT SEGMEU1T
.PURGE CURRENT DISK FILE -

.CALCULATE NEW RELATIVE WIDTH COORD. USING Il .
. CALCULATE NEW RELATIVE LENGTH COORbi. USING 12 . . -4

*END CALCFILE.

Procedure 2.1 -CALCFILE

63



...V........

V
N.

..... .... ..... .... ... ORE

* ............................... V......................
* .ENTER WIDTH, LENGTH, SIDE COORD. OF OBSTACLE

* . CELL
* .DO NOT ACCEPT VALUES UNLESS WITHIN LIMITS OF

* . PROGRAM
* .PROCEDURE CALCFILE 1.2
* .SET CELL'S OBS FLAG ON

*. REDO ........

..........V.............
N *SET CELL'S OBS FLAG OFF..

*...........................<0 ......

ENTER "Y" FOR MORE OBSTACLES
ENTER "No' TO FINISH

................ ... .... V. ........

*END BORDSTUB

Procedure 3.0 BORDSTJB

64

................................................



APPENDIX C: Software Implementation -Program ROUTE

65



....... ......

*START ROUTE

...........................V......

*SET MAXWID, MAXLEN

............................. RUN ................

.LEE.

...... .V.............
* . OPEN ROUTFILE, INTRFILE
* . SET NUIPOS TO 0
* . INITIALIZE IMPOSLIST

* ............... 0.V............

* . ROCDURELEE1.0

* .. . . ... ...........

* PIiNTUNROUTED TOTAL
CLOSE ROUTFILE, INTRFILE.

*....................................................

...... V.............
(i:**PROCEDURE VENTR 2.0

* ......................................

9*...v ...........
*PROCEDURE PRINTIT 3.0

.. .. .. . .. .. . .. .. .

........................................... S........

...

*END ROUTE

Program Route.

66



7774

*START LEE

:* GETiNTRFILE ENTRY

v
Y . . N

.... .. ... . . ... EOF . . . .

v... o.o........ V.......
:*;PINT NUMBER OF .PROCEDURE INIT 1
- UNROUTABLE ..............
. CONNECTIONS

........ *v ........
* . READ INTRFILE

o ASSIGN START COORD TO o
B W, BL AND END COORDo.

* .TO EW, EL
o ASSIGN SIDE 1 START

* .COORD. TO ELIST AND
* * SIDE 2 COORDo TO RLIST.

*~s-- ....... .o

PROCEDURE CALCFILE
I: START COORDS. 1 .2

............. ..*............sso

SET LAYER RETRACE DIR OF.
SIDE 2 CELL To 2

a V............ 9 o
*SUBPROCEDURE LEE 1.3

o o * a .a. . . ..o 6.

END LEE

Procedure 1.0 -LEE

67



*START INIT

INITIALIZE EACH BOARD SEGUIENT WITH ALLDI
*ENTRIES SET TO 0 AND RCH FLAG SET TO FALSE

*INITIALIZE ALL RLUST AND ELIST ENTRIES TO 0:

*INITIALIZE R, SC, INDEX, AND KUM TO 1

S * INITIALIZE IMPOSSIBLE CONDITION FLAG AND
CONNECTED FLAG TO FALSE*

..........................................

SV.*. . ....

. ED INIT.

Procedure 1.1 INIT

68



11I: WIDTH
* 12: LENGTH

:*CALCULATE'NEW SEG!!ENT WIDTH AND
* NEW LENGTH USINGO 12

*COMPARE NEW SEGMENT COORD. WITH
* CURRENT SEGMENT COORD.

NV

.............. ...... V... . . .

aid .. OPN, WITECLOSE CURRENT SEGMENT

* . SAVE NEW SEGMENT COORD * AS CURRENT COORD.
* .USE NEW COORD. AND BUILD NEW SEGMENT

* . FILENAME
* .OPEN, READ CURRENT SEGMENT
* .PURGE CURRENT DISK FILE

.. ............... ..............

..................... *.. .. .

*.....V ......................
:* CALCULATE NEW RELATIVE WIDTH COORD. USING II

CALCULATE NEW RELATIVE LENGTH COORD. USING 12
...... *.......*....... ............................

*END CALCFILE
.....................................

Procedure 1.2 -CALCFILE

69



......................................... V........................
.CHECK SETTING OF OBSTACLE AND IMPOSSIBLE FLAGS
.....................................0.............................

N . . Y
.................................NOT .........

.SET..... ..

* . EADNEX"T EL*STENTRY*

* N * NOT
............................................CONNECTED

* ............. V..........
* . CALCULATE ADJACENT CELL
* . COORDS.

PROCEDURE EXPCK1/EXPCK2
* . 1.3.1

> >... <..... .

* .ELIST.........................

* .EOF.

........... V ..............
PROCE;;DURE RCHECK 1.3.2

* ... ..... .. .

... ... ... ... ... ... .... .

END SUB-LEE

Sub-Procedure 1.3 -LEE

70

-. 9..~~ ~~ ~~~.. ............................. .. .. ......................



*START EXPCK1/2

*. .................

~ .. . ...............

* . GET ADJACENT CELL COORDINATES
.........................................

* y
............... CONNECTED

..... .V................
* * .PROCEDURE CALCFILE 1.2

........................................

N
...... RCII

.SET.

......* ..... V..................

* . . .PROCEDURE EXPAND 1.3.1.1
..................

.* ... ....... RCH

.SET.

.......................V..............
SAVE RETRACE DIRECTION

> . . .... <. .

N END.
SADJACENT

.CELLS.

END EXPCK1/2

Procedure 1.3.1 -EXPCKI/EXPCK2

71



*GET WIDTH, LENGTH, SIDE COORDS.
*COMPARE WIDTH WITH END WIDTH
* AND LENGTH WITH END LENGTH

. . . . . . . . . *.. .................

y VN
........ .........

* . ..v ............V....
:SETNUMBER OF RLUST

ENTRIES TO 1
*SET CELL-S RCH FLAG
SET CONNECT FLAG .......... ................... V......

.................. * CHECK CELL-S OBSTACLE
* .FLAG

.................... o......

*................... .......SET

* . N
*~~~~~~~~ ..............................

SE;T RCII FLAG
ADD 1 TO NUMBER OF RLUST.

* . . ENTRIES
STORE COORDS. IN RUIST

.......................

*~ >...<...........

~> . ..

*;END EXPAND

Procedure 1.3.1.1 -EXPAND

72



*START RCHECK

.V...........
CHECK iFOR EjIPTY RLIST

..................

......... EMPTY..............

*........V................................ V.............

:*ADD E START/END COORDS. .CHECK CONNECTED FLAG
IN IMPOSLIST .............

*ADD 1 TO NUMBER
NOT ROUJTED Y V N

SET COI,,:FT FLAG ON ..................... SET.......

... V........................

PROCEDURE RETRACE . CHECK .
1.3.2.1 .. NUMBER.

.RUIST

V

* . 9 .................................... V.....

PROCEDURE SORTLIST 1.3.2.2
..............................

. .... v...... .... < ......

SAVE NUMBER OF RLIST ENTRIES AND
* . . THEN SET TOO0

. ...............................

>... <..

.>...(.........

.V........

END RCHECK
.. . . . . .

Procedure 1.3.2 -RCHECK

73



.* *.... U *..................U

*.........................V .................. ..
j. PROCEDURE SAVEROUT I: START COORDS. 1.3.2.1**

.MOVE END COORD. TO NEW COORD.
. PROCEDURE SAVEROUT I: NEW COORDS. 1.3.2.1
. PROCEDURE CALCFILE I: NEW COORDSo 1.2

. . .............. o~o.........o.......o.

* CHECK IF ~ANY STARTCOORD. IS NOT EQUAL
*WITH ITS RESPECTIVE NEW COORD.

* .GET C77. DATA OF NEW CELL
* .LOAD DIR VALUES INTO TEMP AND
*.DIR OF 2TO -1

* WAD NEW COORD * TO TEMP TO FORIM1
.. NEWEST COORD.

* .PROCEDURE CALCFILE
1 : N4EWEST COORD. 1.2

* .SET OBS FLAG OF NEWEST CELL
PROCEDURE SAVEROUT

1 : NEWEST COORD. 1.3.2.1.1 . -

j (i. .CONSIDER NEWEST COORD. AS NEW

V

DIFF ..............

...........................V................................
OPEN, WRITE, CLOSE CURRENT SEGMENT FILE

................ ......................... ....... 0..

EDRETRACEo

Procedure 1.3.2.1 RETRACE

74



.. . . . . .

*START SAVEROUT

*INPUT WIDTH, LENGTH, SIDE COORD.
*LOAD ROUTFILE ENTRY WITH COORDS.
SAVE ENTRY TO DISK

....................................V.......

:END SAVEROUT

Procedure 1.3.2.1.1 -SAVEROUT

75

* .



. ~ ~ ~ ~ ~ .. .

*START SORTLIST

*SET SWITCH TO TRUE

N Y
................... SWITCH ......

*....................................V.........
* *;ET-IND'EX-TO NUMBER OF RLIST ENTRIES.
* .SET SWITCH TO FALSE

................. .........................................

CHEK I INEXEQUALS 2

Y V
........................................................

................................................................... V...........

CLUATE MANHATTAN DISTANCE ROM CURRENT
* .COORD. TO END COORD. FOR CURRENT RLIST ENTRY.

(Si) AND PRECEDING RLIST ENTRY (S2)
..... .... ..... .... ................ ....... ..

N
.................................................. SI(s2

...........................................V ..........
:*SWITCH TO TRUE. EiXHANGE POSITION OF .
RLIST ENTRIES. DECREMENT INDEX 2lY 1. .

* . * .................................................................

* ......................... >... <...................

> ... <..

......................................

END SORTLIST

Procedure 1.3.2.2 -SORTI.IST

76



.4 .-. . ... .. .. .. .

*START SORTSEG

SET ELIST INDEX TO 0

SET T14UM TO NUMBER OF RLIST ENTRIES

N Y

. Ni0 . .

S*ETRUIST"INDEX TO 0. READ FIRST
*. RLIST ENTRY AND SAVE IN ELIST.

CALCULATE SEGMENT COORD. AND LOAD o
IN CURS1 (WIDTH) AND CURS2 o

* . (LENGTH).

* . . READNEXT RLIST

* .N VY
........... END o.......

oCALCULATE SEGMENT COORD. AND COMPARE WITH

o o CURSi AND CURS2
..... ....................................

* .N VY

........... .............. .. V ...........
INCREMENT T2. STORE . . INCREMENT Ti. STORE
ENTRY IN LOWEST AVAIL- . . ENTRY IN ELIST.
ABLE RLIST ENTRY .............

............

........ ... . .. .

* ...........................

*END SORTSEG

Procedure 1.3.2.3 -SORTSEG

77



*START VINTR

*CHECK ITERATION
......... 0.

.. .. .. .. .. .. ..O.. ..... ...

N . .

*ooo ... ~~ . ... .

........ ............ 0.
* INITIALIZE LENGTH ARRAY o
. OPEN ROUTFILE
. PROCEDURE ROUThEN 2.1
. CLOSE ROUTFILE

* . OPEN ROUTFILE
*OPEN TAILLIST FOR W4RITING
PROCEDURE BLDTAIL 2.2

*PURGE ROUTFILE
o .~ CLOSE TAILLIST o

. OPEN ROUTFILE FOR WRITINGo
o .* PROCEDURE ROUTVN'TR 2.3 o

. CLOSE RO(JTFILE

. PROCEDURE PRINTIT 3.0
(. .. INCREIMENT ITERATION

0 ... ...*........ 00

....... oo.... o...

o END ViNTR .

S...* .***

Procedure 2.0 VINTR

78



*.................. ........

. SET INDEX TO 0
* CHECK EOF ON ROUTFILE

N
S................ ..... ...... NOT

* .EOF.

* ............... V... .o.........o
INCREMENT INDEX BY 1

o LOAD START ENTRY WITH
* . ROUTFILE ENTRY

* .. GET NEXT ROUTFILE ENTRY .

o . GET NEXT ROUTFILE ENTRY
* . LOAD NEW ENTRY WITH

* . ROUTFILE ENTRY
* . CHECK IF START = NEW ENTRY.

..............................*.................. ....

* VY

* . N

* .INCREMENT LENGTH ARRAY ENTRY BY 1o
o o READ NEXT ROUTFILE ENTRY AND LOAD.

INTO NEW ENTRY
* . ......................... *. . *.... .....-.o o ....... oo

* >.. ........... o

* . GET NEXT ROUTFILE ENTRYo
................................o...........oo.

..................... ..... ... o. :o.......~~

.........................................v . .. o..

END ROUTLEN o

Procedure 2.1 ROUTLEN

79

. - -~~ ~~~. . . . . ..7.- .



.......... ........
" SET INDEX TO 1
" CHECK EOF ON ROUTFILE

N.
.............. *.... NOT

.EOF.

.Y
............................... V...................
.LOAD TAILLIST ENTRY WITH ROUTFILE ENTRY
.WRITE TAILLIST
.CALCULATE NUMBER OF ENTRIES IN TAIL
.SAVE NUMBER OF TAIL ENTRIES FROM ROUTFILE

INTO TAILLIST

CLCULATEoNUMBER OF ROUTFILE ENTRIES T
IGNORE

CALL PROCEDURE CALCFILE FOR EACH ROUTFILE
ENTRY

SET OBS FLAG OFF FOR EACH ROUTFILE ENTRY

............... ..........V................ .
SAVE*NUMBER'OF TAIL ENTRIES FROM ROUTFILE,
INTO TAILLIST

GET ROUTFILE
INCREMENT INDEX BY I

.................... .. ............

......................... ... V...

END BLDTAIL
.............................

Procedure 2.2 -BLDTAIL

80



.....*........................

CHECK IF ;,NUMBER OF U*NROUTED CONNECTIONS >0
...........................

N

SY

................. V.................. ...

* . OPEN INTRFILE FOR WRITING
* . READ IMPOSSIBLE ARRAY INTO INTRFILE
* . CLOSE INTRFILE

* SET NUMBER OF IMPOSSIBLE CONNECTION TO 0
. OPEN INTRFILE
.PROCEDURE LEE 1.0

* . PURGE INTRFILE
.. . . . . . . . . . . . . . . . . . . . . .

........ . . . . . . . . .> .. . <.

v aa*... V. . . . . . . . . . . . . . ...

. PROCEDURE SUB-ROUTVNTR.
* 2.3.1 .

..................

END ROUTVNTR

Procedure 2.3 -ROUTVNTR

81



'~','. . .11 .I .EI.II .I*** . .li .

*START SUB-ROUTVNTR

:*;OPEN, READ TAILLIST
*CHECK FOR TAILLIST EOF

N .

... .. ... .. ... .. ... .. NOT .

.EOF.
* .Y

*.......................... V......................
.OPEN INTRFILE FOR WRITING
.LOAD START ENTRY WITH TAILLIST ENTRY
.LOAD STOP ENTRY WITH NEXT TAILLIST ENTRY
.LOAD INTRFILE ENTRY WITH WIDTH/LENGTH COORD.

ri OF START/STOP ENTRIES
SAVE INTRFILE ENTRY
GET NEXT TAILLIST ENTRY
CHECK IF TAILLIST ENTRY NOT EQUAL TO START
* AND STOP ENTRIES AND NOT TAILLIST EOF

* . . PASS TAILLIST COORD..
. TO PROCEDURE CALC-.

*. . FILE 1.2 o
:..o~~o .. SET OBS FLAG OFF .

GET NEXT TAILLIST . o
SV........ . ...... ...... ..

PURGE TAILLIST *V

o~~~ ~ ~ ......o... Z NOT . Y
*AND NOT ....

EOF o
N

o ............. e.e.*.1..V.............46 e
.OPEN, WRITE, CLOSE BORDFILE
.CLOSE INTRFILE
OPEN INTRFILE

* . PROCEDURE LEE 1.0
.CLOSE INTRFILE

* .GET NEXT TAILLIST

.........................V.......
END SUB-ROUTVNTR o s - v e e- -o

Procedure 2.3.1 -SUB-ROUTVNTR

82



.......... .. .

*SET BET TO "C" AND COUNT7ER TO 0
*SET COUNTER TO 0
*ASSIGN OUTPUT ID TO PRIN4TER
*OPEN ROUTFILE AND READ FIRST ENTRY

..................... .

N .EOF.Y
... ROUT- . .......

.FILE

* ............. ............. .........
* . CHECK IF COUNTER-8 .CLOSE ROUTFILE

............... CHECK FOR IMPOSSIBLE.
CONNECTIONS

NVY ..............

..........

* .. V...............V..........N
* .INCREMENT .. WRITELN . ..... illpos>O
. COUNTER . SET COUNTER
. BY1 *. TOL1
....... .* ... ...........

v .. ...........

..>.. .(. . RINTARRAY OF
* . . .ENTRIES

.......*.*.* ............ . ........... o........
* * POCEDURE DISPLAY 3.1
* .GET NEXT ROUTFILE ENTRY <..

........ .......

.........V......

END PRINTT

Procedure 3.0 -PRINTIT

83



........ ......
*CHECK FOR BEG -C

NVY

. **.................V................

* *iNITIAL~ZE LENGTH COUNTER TO -2
*. LOAD START ENTRY WITH ROUTFILE ENTRY

.SET BEG TO "Y"

................................................. (

*................ ... ... .V....................

*ADD 1 TO LENGTH

*PRINT ROUTFILE COORD.
*CHECK IF ROUTFILE ENTRY -START ENTRY

.....................................................

............................................... ...............

~~~~v V................*
(. . CHECK OR BEG - "Y" . CHEC K FOR BEG *- "N"*

.........................

NV NV

y Y

v

.SET BEG " N" .PRINT LENGTH

........... SET BEG - "C".

* S....

................................ .> . (..........

END DISPLAY

Procedure 3.1 -DISPLAY

84

... .. .

APPENDIX D: Program DATASTUB

85

.

Program
Program DATASTUB allows input of cell coordinates and definition

of additional obstacle cells. When the user is finished with
entering data, it can be saved to floppy diskette and the board

initialized.
Inputs - (1) an interconnection file (INTRFILE) with start and end

width/length coordinates.

(2) individual board segments (GRIDDATA) as required.
Outputs - (1) updated individual board segments (GRIDDATA).

Constants

4AXSEGWD, MLAXSEGLN - these values define the number of segments along
the width and length of the board, respectively. Together, they
define the overall board dimensions. To increase the board

dimensions, merely increase these values.

Array Types
INTRDATA - a 4XI packed array storing integer values of 0..60. The

values represent coordinate values. Element 1 is the start
width, element 2 is the start length, element 3 is the stop width,

and element 4 is the stop length.
GRIDDATA - a 30X30X2 packed array of RECDATA. Each specific element

of the array corresponds to a specific position in a single board
segment.

Record Type
RECDATA - each cell is represented by a single record. Each

- record has two flags and a 3XI packed array storing integer values
of 0..2. The first flag is OBS and designates whether or not the

cell is an obstacle. The second flag is RCH and designates whether
or not the cell has been previously reached during the current cell

expansion phase. The 3Xl array (DIR) represents the integer values
required for retrace once the end cell has been reached. The first
element of DIR is the width retrace direction, the second element of

DIR is the length retrace direction, and the third element of DIR is

the side retrace direction. A value of 0 signifies no change, 1
signifies a +1 change, and 2 signifies a -1 change in the present

coordinate position. These values are added to the current
coordinates to achieve the next retrace cell. Note that only one
direction parameter should ever be non-zero.

36

* '"
.'..

Variables
INTRFILE - a secondary storage file of INTRDATA. Entries are the
width/length coordinates of the net's end cells to be connected.

INTR - the coordinates of a net's end cells.

BORDFILE - a secondary storage file of GRIDDATA. Each file is a
30X30X2 array of cells and is termed a board segment.

GRID - an individual entry in GRIDDATA.
SEGWD, SEGLN, CURSEGWD, CURSEGLN - these are integer values that keep

track of the current segment loaded into memory (CURSEGWD and
CURSEGLN) and the new segment (SEGWD and SEGLN) containing the cell

currently under consideration. A suffix of WD designates a width
coordinate. A suffix of LN designates a length coordinate.

NEWWD, NEWLN - these integer values are the relative coordinates of
the current cell within a board segment.

NUTM - a general purpose integer variable to store keyboard numerical
input in INTRSTUB.

MAXWID, HIAXLEN - these are integer values representing the maximum
board dimensions.

ANSWER - a character value read from the keyboard in response to a
question.

SEGCHRI, SEGCHR2 - the string equivalent of SEGWD and SEGLN,
respectively.

CURSEGFILE - the name of the current secondary storage file loaded
into memory. Other literal characters are concatenated with SEGCHRI
and SEGCHR2 to uniquely define the individual board segments.

I, J, K - integer value input representing the width, length, and side
coordinates of cells in BORDSTUB and INITBORD and as an index in -.-

INITBORD.
NAME, FILENAME - NAME is the unique name a user can provide if

building multiple INTRFILEs. FILENAME concatenates additional
information to NAM and uses FILENAME to refer to the file.

REDO, MORE - boolean flags to indicate whether a value requires
changing (REDO) or if there is more input data (MORE).

PROGRAM DATASTUB;
Function - to allow the usz ,o build datafiles, specify obstacle

cells, and initialize the segments.
Global pirameters modified - LNXWID, MAXLEN, REDO, :IORE.
Local parameters modified - none.
Calling procedures - none.
Called procedures - RESPONSE, INTRSTUB, INITBORD, BORDSTUB.
Superior procedure - program DATASTUB.
Sub-procedures - INRSTUB, CALCFILE, INITBORD, BORDSTUB.

37

%,

.. .- .. . '. ..

AD-A155 666 R COMPARISON AND ANALYSIS OF VINTR'S GLOBAL ROUTING 2/2
ALGORITHM WITH THE LE..(U) AIR FORCE INST OF TECH
WRIGHT-PATTERSON RFB OH SCHOOL OF ENGI.. F T CHESLEY

UNCLASSIFIED MAR 85 RFIT/GCS/ENG/85M-i F/G 12/1 NL

lllllllolllllIIEE.E..E.EEEEE
I flfl..ll.lflflfl

L3.

LL La i .6
11.8

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS- 1963-A

Special processing - if the user wishes to build an interconnection
file, he will input the width/length coordinates for both start and

end cells. The program will prompt for each specific coordinate and

all four coordinates have to be entered. The nets can then be

accepted or rejected. If there are more nets, additional
data can be entered. If there are no more entries, the data can now
be saved. Not saving the data will destroy the entire interconnec-

tion file. The program will then ask to initialize the board. To
do this, the program will create and initialize the segments

and mark those cell found in the interconnection (net) file as

unavailable on the board. The last input routine is for obstacle

cell coordinates. An entry can be rejected and multiple obstacle
cells can be entered. j

CONST
MAXSEGWID=2;
MAXSEGLN-2;

TYPE
INTRDATA-PACKED ARRAY[..4] OF l..60;
RECDATA-PACKED RECORD

OBS: BOOLEAN;
RCH: BOOLEAN;
DIR:PACKED ARRAY[I..3] OF 0..2
END;

GRIDDATA=PACKED ARRAY(1 . .30,1. .30,1. .2] OF RECDATA;
VAR

INTRFILE:FILE OF INTRDATA;

INTR:INTRDATA;
BORDFILE:FILE OF GRIDDATA;--

GRID: GRIDDATA;
I ,J ,K: INTEGER;
SEGWD, SEGLN, NEWWD, NEWLN:I 'TEGER;
CURSEGWD, CURSEGLN: INTEGER;
NUM, MAXWID, !AXLEN: INTEGER;
ANSWER: CHAR;
SEGCHR1 ,SEGCHR2,CURSEGFILE, NAME,FILENAME: STRING;

REDO,eMORE: BOOLEAN

BEGIN
TA XWID: -VkXSEGWD*30;
MAXLEN: -L XSEGLN* 30;
REDO:-TRUE;

MORE:-TRUE;
WRITE (-DO YOU WISH TO BUILD AN INTERCONNECTION);

WRITE (*LIST?(Y/N));
RESPONSE;

IF (ANSWR--Y-) OR (ANSER-y) THEN
INTRSTUB;

WRITE (-DO YOU WISH TO INITIALIZE THE BOARD AT);

WRITE (-THIS TI{E?(Y/N));
RESPONSE;

-'T'T" " -

IF (ANSWERY') OR (ANSW~r-y) THEN
BEGIN (*THEN*)

14RITELN (-INITALIZING BOARD, PLEASE WAIT.-);
INITBORD

END; (*-,HEN*)
WRITELN ('DO YOU WISH TO SPECIFY ADDITIONAL)

WRITE ('OBSTACLE CELL DATA?(Y/N) *

RESPONSE;
IF (ANSWER'Y') OR (ANSWER'y') THEN

BORDSTUB;
WRITELN ("***END OP DATA STUB***')

END. (*END DATASTUB*)

89

PROCEDURE RESPONSE;
Function - reads the keyboard for a user response to a question.
Global parameters modified -ANSWER.

Local parameters modified -none.

Calling procedures - program DATASTUB, INTRSTUB, BORDSTUB.
Called procedures - none.
Superior procedure - program DATASTIB.
Sub-procedures - none.
Special processing -checks to ensure a yes or no response is given.

BEGIN
REPEAT

READ (KEYBOARD ,ANSWER)
UNTIL ANSWER IN -Y-,N',y',ni];
WRITELN (ANSWER)

END; (*PROCEDURE RESPONSE*)

90

PROCEDURE NUMCHK;
Function - validates that input data is within the proper numerical

range of values.
Global parameters modified -NUI.

Local parameters modified -none.

Calling procedures -INTRSTUB.

Called procedures -none.

Superior procedure -program DATASTUB.
Sub-procedures - none.
Special processing -ensure coordinate values range from 1 to 60.

BEGIN
REPEAT

READ (KEYBOARD,NUK)
UNTIL NUM IN [1..601;
WRITELN (NUH~)

END; (*PROCEDURE NUHCHK*)

91

.

PROCEDURE INTISTUB;
*Function - Input interconnection cell coordinates.

Global procedures modified - NAME, FILENAMIE, REDO, INTR, INTRFILE,
MORE.

Local procedures modified - none.
Calling procedures -program DATASTUB.
Called procedures -NUMCHK, RESPONSE.
Superior procedure -program DATASTUB.
Sub-procedures - none.
Special processing - coordinates are input one at a time. The entry

can be redone, eliminated, or accepted. If there Is no more input
data, the interconnection file can be saved or destroyed.

BEGIN
WRITE (-WHAT IS THE NAME OF YOUR ITERCONNECTION FILE?)
READ (KEYBOARD,NAME);
WRITELN (NAME);
IF NAME- - THEN
NAE: INTFILE;

FILEME:-CONCAT ('PSEUDO:',NAME,'.DATA');
REWRITE (INTRFILE,EAME)
WHILE MORE DO

BEGIN (*WHflILE1*)
REDO :TRUE;
WHILE REDO DO

BEGIN (*WHILE2*)
WRITE (-INPUT START WIDTH.)
NUMCHK;
INTR[I11:NUM;
WRITE (-INPUT START LENGTH.)
NUMCHK;
INTR[2] :-NUM;
WRITE (-INPUT END WIDTH.)
NUlICHK;
INTR[3] :uNUH;
WRITE (-INPUT END LENGTH.)
NUMCHK;
INTR[4J :UNUM;
WRITE (-ROUTE -,INTR[l],,INTR[2],' TO)
WRITELN kINTR[1,',,INTR[4]);
WRITE (-DO YOU WISH TO REDO THIS ENTRY?(Y/N))
RESPONSE;
IF (ANSWER'N') OR (ANSWER-'-n') THEN
REDO:-FALSE

END; (*WHILE2*)
INTRFILE :-INTR;
PUT (INTRFILE);
WRITE (M1ORE CONNECTIONs?(YIN))
RESPONSE;

92

IF (ANSWER-'N&) OR (ANSWER-'n') THEN
MORE:-FALSE

END; (*WHILE1*)
WRITE (-SAVE DATA?(Y/N))
RESPONSE;
IF (ANSWER'Y) OR (ANSWER'y) THEN
CLOSE (INTRFILE,LOCK)

ELSE
CLOSE (INTRFILE)

END; (*PROCEDURE INTRSTUB*)

93

PROCEDURE CALCFILE (Il,12:INTEGER);
Function - the absolute width coordinate (Il) and absolute length
coordinate (M) are passed to this procedure to detect when a cell
is in a different segment and to calculate the cells's relative
coordinates.

Global parameters modified -SEGWD, SEGLN.
Local parameters modified -11, 12.
Calling procedures - INITBORD, BORDSTUB.
Called procedures - CALCSEG, EXCIIFILE, NEWCOOR.
Superior procedure - program DATASTUB.
Sub-procedures - CALCSEG, EXCUFILE, NEWCOOR.
Special processing - if the segment has changed, segments are
exchanged. Relative coordinates are then calculated for the cell.

BEGIN-
SEGWD:-CALCSEG(Il);
SEGLN:-CALCSEG(12);
IF (SEGWD<>CURSEGWD) OR (SEGLN(>CURSEGLN) THEN
BEGIN (*THEN*)
EXCHFILE; (*PROCEDURE*)
NEWCOOR (*PROCEDURE*)

END (*THIEN*)
ELSE
NEWCOOR (*PROCEDURE*)

END; (*PROCEDURE CALCFILE*)

94

FUNCTION CALCSEG (VAL: INTEGER): INTEGER;
Function - this function returns an integer value. It accepts an

absolute integer coordinate (VAL) and computes the relative
coordinate within a grid segment.

Global parameters modified - none.
* Local parameters modified - VAL, CALCSEG.

Calling procedures - CALCFILE.
Called procedures - none.
Superior procedure - CALCFILE.
Sub-procedures - none.
Special processing - this function is called twice in CALCFILE, once

to calculate the relative width and once to calculate the relative
length coordinates.

BEGIN
CALCSEG:1l+((VAL-1) DIV 30)

END; (*PROCEDURE CALCSEG*)

ppp

95

6I))

PROCEDURE EXCHFILE;
Function - writes the old segment to secondary storage and reads

the new segment into primary memory.
Global parameters modified - CURSEGWD, CURSEGLN, SEGC1{RI, SEGCHR2,
CURSEGFILE, BORDFILE.

Local parameters modified - none.
Calling procedures -CALCFILE.

Called procedures -none.

I Superior procedrue -CALCFILE.

Sub-procedures - none.
Special processing - as each new file is read into memory, its entry

is purged from secondary storage. Also, the width and length
integer values are converted to string values and concatenated with
other string values to form the current file name. The [16]
appended to the end of the filename ensures sufficient and necessary
storage is reserved for the file.

BEGIN
REWRITE (BORDFILE ,CURSEGFILE);
BORDFILE-:-GRID;
PUT (BORDFILE);
CLOSE (BORDFILE,LOCK);
STR (SEGWD,SEGCHRl);
STR (SEGLN,SEGCHR2);
CURSEGWD -SEGWD;
CEJRSEGLN:-SEGLN; -

CURSEGFILE :-CONCAT(PSEUDO: SEG', SEGCHR1., SEGCIIR2,
-.DATA [161');

RESET (BORDFILE,CURSEGFILE);
GRID: BORDFILE^;
CLOSE (BORDFILE,PURGE)

END; (*PROCEDURE EXCHFILE*)

96

PROCEDURE NEWCOOR;
Function - uses the absolute width (SEGWD) and length (SEGLN) integer
values passed to CALCFILE to calculate the relative cell position
within the segment.

Global parameters modified - NEWWD, NEWLN.
Local parameters modified - none.

V Calling procedures -CALCFILE.

* .Called procedures -none.

Superior procedure -CALCFILE.

Sub-procedures - none.
Special processing -none.

* BEGIN

NEWWD:-Il-(CSEGWD-1)*3O);
NTWLN:-12((SEGLN-1)*30)

* . END; (*PROCEDURE NEWCOOR*)

97

PROCEDURE INITBORD;
Function - initialize all segment param~eters for the entire board.
Global parameters modified - SEGWD, SEGLN, CURSEGWD, CURSEGLN,

SEGCHR1, SEGCHR2, CURSEGFILE, BORDFILE, I, J, K, OBS, ROCl, D11,
INTR.

Local parameters modified -none.

Calling procedures - INITBORD, BORDSTUB.
Called procedures - CALCFILE.
Superior procedure - program DATASTUB.
Sub-procedures - none.
Special processing - first, mark OBS and RCH flags as false and all
DIR as 0, then use the interconnection entry coordinates to flag
cells as obstacles. Saves the segments to RAM disk.

BEGIN
FOR SEGWD:1l TO MAXSEGWD DO

* FOR SEGLN:1l TO 11AXSEGLN DO
BEGIN (*FOR*)
CURSEGWD:-SEGWD;
CURSEGLN:-SEGLN;
STR (SEGWD,SEGCHRI);
STR (SEGLN,SEGCHR2);
CURSEGFILE :-CONCAT(PSEUDO:SEG ,SEGCHR1 ,SEGCHR2,

.DATA[16]');
WRITELN (CtJRSEGFILE);
REWRITE (BORDFILE ,CURSEGFILE);
FOR I:inI TO 30 DO

FOR J:inl TO 30 DO
FOR K:inl TO 2 DO

WITH GRID[I,J,K] DO
BEGIN (*WITH*)
OBS:-FALSE;
RCH:-FALSE;
DIRfi] :=O;
DIR[21 :mO;
DIR[3] :0

END; (*WITH*)
BORDFILE^:-CRID;
PUT (BORDFILE);
CLOSE (BORDFILE ,LOCK)

END; (*FOR*)
RESET C INTRFILE ,FILENAHE);
WHILE (NOT EOF(INTRFILE)) DO
BEGIN (*WHILE*)

INTR:-INTRFILE,;
I:-INTR~lI;
J:IN1TR[2];
CALCFILE (1,J);
GRID [NEWWD,N'EWLN,11 .OBS:-TRUE;
GRID[NEW4WD,NEWLN,2I .OBS:-TRUE;
I: -INR[3);

98

J:-INTR[41;
CALCFILE (I,J);
GRID[NEWWD,NEWLN,1] .OBS:-TRUE;
GRID[NEWWD,NEW~fLN,2] .OBS:-TRJE;
GET (INTRFILE)

END; (*WHILE*)
CLOSE (INTRFILE);

* REWRITE (BORDFILE,CURSEGFILE);
BORDFILE-:-GRID;
PUT (BORDFILE);
CLOSE (BORDFILE ,LOCK)

END; (*PROCEDURE INITBORD*)

99

PROCEDURE BORDSTUB;
* -- ~Function -to enter obstacle cells on the board and mark as

unavailable.
Global parameters modified -MORE, I, 3, K,*OBS.
Local parameters modified -none.

Calling procedures - program DATASTJE.
Called procedures -CALCFILE. -4

Superior procedure -program DATASTUB. ..

Sub-procedures - none.
Special processing - ensure each coordiate is valid and for all

entries to be accepted, rejected, or redone. Allow multiple cell
inputs.

BEGIN
H1ORE:-TRUE;
WHILE MORE DO

BEGIN (*WJHILE*)
WRITE (-ENTER WIDTH COORDINATE.)
REPEAT

READ (KEYBOARD, I)
UNTIL I IN [1..601;
WRITELN (1);
WRITE ('ENTER LENGTH COORDINATE.)
REPEAT

READ (KEYBOARD,J)
UNTIL J IN [l..60];

(j WRITELN (J);
WRITE ('ENTER SIDE COORDINATE.)

REPEAT
READ (KEYBOARD,K)

UNTIL K IN [l..601;
WRITELN (K;
CALCFILE (I,J); -REGRID[NEWD,NEWLN,KI .OBS:TRE
WRITELN (-DO YOU WISH TO REDO TIS)
WRITE (-OBSTACLE CELL?(Y/N))
RESPONSE;
IF (ANSWER'N') OR (ANSWER'n') THEN

REDO: -FALSE
ELSE

GRID(NEWWD,NEW4LN,K] .OBS:-FALSE;
WRITE ('%MORE?(Y/N))

RESPONSE;
IF (ANSWER-N) OR (ANSWER'n') THEN

MORE: -FALSE
END (*WHILE*)

END; (*BORDSTUB*)

100

APPEIMIX E: Program ROUTE

101

Program
Program ROUTE is a Pascal program using a heuristic algorithm (LEE)
to route wires on a two-layer printed circuit board (GRIDDATA).
Following execution of the initial route (LEE), Vintr's algorithm is
executed (VINTR). Although the program can only store 30X30X2 cells
(GRIDDATA) in memory at one time, extra board segments are kept
on secondary storage (BORDFILE) and retrieved as necessary.

Inputs - (1) an interconnection file (INTRFILE) with net
width/length coordinates. -

(2) individual board segments (GRIDDATA) as required.
Outputs - (1) a route file (ROUTFILE) with start and end cells

and all intermediate cells forming the connection path.

(2) updated individual board segments (GRIDDATA).

Constants
MAXIMPOS - defines the maximum allowable unroutable nets.
MAXSEGWD, MAXSEGLN - these values define the number of segments along

the width and length of the board, respectively. Together, they
define the overall board dimensions. To increase the board
dimensions, merely increase these values.

Array Types
INTRDATA - a 4XI packed array storing integer values of 0..60. The

values represent board coordinate values. Element 1 is the start
width, element 2 is the start length, element 3 is the stop width,
and element 4 is the stop length.

- ROUTDATA - a 3X packed array storing integer values of 1..60. The
values represent the coordinate values of cell elements.

Element 1 is the width, element 2 is length, and element 3 is the
side.

GRIDDATA - a 30X3OX2 packed array of RECDATA. Each specific element
of the array corresponds to a specific position in a single board
segment.

Record Type
RECDATA - each cell is represented by a single record. Each

record has two flags and a 3Xl packed array storing integer values
of 0..2. The first flag is OBS and designates whether or not the
cell is an obstacle. The second flag is RCH and designates whether
or not the cell has been previously reached during the current cell
expansion phase. The Xl array (DIR) represents the integer values
required for retrace once the end cell has been reached. The first
element of DIR is the width retrace direction, the second element
of DIR is the length retrace direction, and the third element of DIR
is the side retrace direction. A value of 0 signifies no change, I"
signifies a +1 change, and 2 signifies a -1 change in the present
coordinate position. These values are added to the current
coordinates to achieve the next retrace cell. Note that only one
direction parameter should ever be non-zero.

102

"I... 9. ..

Variables
IN TRFILE - a secondary storage file of INTRDATA. Entries are the
width/length coordinates of the net's end cells to be
connected.

IMPOS - the width/length coordinates of an unrouted net.
INTR - the width/length coordinates of a net's end cells.
ROUTFILE - a secondary storage file of ROUTDATA. A single entry

represents the coordinates of a cell. A connection is stored
as a series of entries in the following form: start cell, end cell,
intermediate cells, start cell. This format aids the calculations
necessary in procedures CHUDIST and BLDTAIL.

ST, RT - these integer values hold the cell coordinates of a path and
are used to partially control the printing process

ROUT - an individual entry in ROUTFILE.
BORDFILE - a secondary storage file of GRIDDATA. Each file is a

30X30X2 array of cells and is termed a board segment.
GRID - an individual entry in GRIDDATA.
RLIST, ELIST - 360X3 packed arrays with integer values of 0..120.
Each is a sequential listing (up to 360 entries) of cell coordinates
(width, length, side). RLIST stores the coordinates of cells that
are reached during the current expansion phase. ELIST is the list

of cells available for expansion in the next cell expansion phase.
WC, LC, SC - the current cell. of width, length, and side,

respectively.
WCAL, WCSl, LCA1, LCSI - the width coordinate changes for possible

expansion (WCAI is a +1 change and WCSl is a -1 change) and the
length coordinate changes for possible expansion (LCAI is a +1
change and LCS1 is a -1 change.

BW, BL, EW, EL, ES - coordinates for the start width, start length,
end width, end length, and end side, respectively.

NW, NL, NS - coordinates for the new width, length, and side which
are calculated from the current cell coordinates and the addition of
the current cell's DIR elements.

SEGWD, SEGLN, CURSEGWD, CURSEGLN - these are integer values that keep
track of the current segment loaded into memory (CURSEGWD and
CURSEGLN) and the segment (SEGWD and SEGLN) containing the cell
currently under consideration. A suffix of WD designates a width
coordinate. A suffix of LN designates a length coordinate.

NEWWD, NEW4LN - these integer values are the relative coordinates of
the current cell within a board segment.

CONNECTED, IMPOSSIBLE - these are boolean flags. CONNECTED indicates
a connection is successful for the net. IMPOSSIBLE indicates a
connection is not successful for the net.

E, R, NUM - E is the index for ELIST, R is the index for RLIST, and
NUM is the total number of entries in RLIST for the current
expansion.

NUMIMPOS - an integer value of the total number of unrouted nets.
MAXWID, MAXLEN - these are integer values representing the maximum

board dimensions.

103

ANSWER - a character value read from the keyboard in response to a

question.
SEGCHR1, SEGCHR2 - the string equivalent of SEGWD and SEGLN,

respectively.
CURSEGFILE - the name of the current secondary storage file loaded

into memory. Other literal characters are concatenated with SEGCHRI

and SEGCHR2 to uniquely define the individual board segnents.

IMPOSLIST - a list of cell coordinates for unrouted nets.

ITERATION - an integer value for the number of the current Vintr

interation.

LENGTH - an integer value summing the Manhattan distance of a path.

X, Y, Z, CHAR1, CHAR2, CHAR3 - individual coordinate values of a path
(width, length, side) are stored in X, Y, Z respectively. Then they

are converted to string values and stored in CHAR1, CHAR2, and CHAR3

respectively. Used in the printing process.

OUTPUT - string variable storing the output media ("PRINTER").
BEG - a character value variable denoting various conditions during

the printing process. A "C" indicates a change to a new path, "Y"
indicates the start of a new path, and "N" indicates the end of the

path.
INDEX - a general index.
I - counter to sum the number of path cells printed across the

paper.
FID - the variable name given to interactive use of the printer for

the printing process.

104

PROGRAMI ROUTE;
Function - executes the LEE algorithm first and then VINTR.
Global parameters modified -MAXWID, NMAXLEN, ITERATION, ROLJTFILE,

NUMIMPOS, IMPOS, IHPOSLIST, INDEX.
Local parameters modified - none.
Calling procedures -none.

Called procedures -YESNO, LEE, PRINTIT, VINTR.
Superior procedure -none.

Sub-procedures - YESNO, PRINTIT, CALCFILE, INIT, RETRACE, SORTLIST,
SORTSEG, RCRECK, EXPAND, EXPCKI, EXPCK2, LEE, VINTR.

Special processing - open the data input file (INTRFILE) and the data
output file (ROUTFILE). Initialize the Impossible connection list.
then run LEE, print the results and run VIN'TR.

CONST
MAXlI4POS-4O;
1AXSEGWD-2;
MAXSEGLN-2;

TYPE
* . INTRDATA-PACKED ARRANY~l..41 OF O..60;

ROUTDATA-PACKED ARRAY[l..3] OF l..60;
RECDATA-PACKED RECORD

OBS :BOOLEAN;
RCH: BOOLEAN;
DIR:PACKED ARRAY(1..3J OF O..2

END;-
GRIDDATA-PACXED ARRAY(l..30,I..30,I..21 OF RECDATA;

VAR
INTRFILE:FILE OF INTRDATA;
IMPOS, INTR: INTRDATA;
IMPOSLIST:PACKED ARRAY ~l. .MAXIMPOSJ OF INTRDATA;
ROUTFILE:FILE OF ROUTDATA;
ST ,RT ,ROUT: RO'JTDATA;
BORDFILE:FILE OF GRIDDATA;
GRID: GRIDDATA;
RLIST,ELIST:PACKED ARRAY[I..360,l..3] OF O..60;
INDEX,WC,LC,SC,WCS1,WCA1,LCS1,LCAl:INTEGER;
I, SEG.D , SEGLN, NEtiWD ,NEWLN ,ITERATION ,LEN4GTH: INTEGER;
NUMIMPOS ,CURSEGWiD,CURSEGLN,X,Y,Z: INTEGER;
E,R,NVJI1,BW,BL,EW,EL,ES,NW4,NL,NS,MAXWID,MAXLEN: INTrECER;
ANSWER ,BEG: CHAR;
SECURI,SEGCLIR2 ,CTRSEGFILE,CIIAR1 ,CHAR2 ,ClIAR3:STRING;
OIJTPUT:STRING[81;
CONNECTED ,IMPOSSIBLE: BOLEAN;
FID: INTERACTIVE;

BEGIN
ITERATION:inO;
.IAXWID:-uMAXSEGWD*30;
MlAXLEN:-mMASEGLN1*3O;
WRITE ('DO YOU WISH TO RUN THE LEE ROUTER?(Y/N))

105

..... ... --. --~ -. J.&:~-:~~§~.:K....-:: j ..-. '.* **

K: --- -YESNO;

IF (ANSWER-Y) THEN
BEGIN (*THE14*)
REWRITE (ROUTFILE,'PSELIDO:ROUTFILE.DATA[30]J);
RESET (INTRFILE ,-PSEUDO: INTRFILE .DATA');
NUMIKPOS:-0;
FOR INDEX:1l To 4 DO

IMPOS[IbDEX] :-O;
FOR INDEX:in1 TO HJAXIMPOS DO

IMPOSLIST[INDEX :-IMPOS;
LEE; (*PROCEDURE*)
WRITELN (-TOTAL UNROUTABLE CONNECTIONS--,N'UMIrfPOS);
CLOSE (ROIJTFILE,LOCK);
CLOSE (INTRFILE);
PRINTIT; (*PROCEDURE*)
VINTR (*PROCEDURE*)

END; (*THEN*)
WRITE ('END ROUTE')

END. (*PROGRAM ROUTE*)

136

PROCEDURE YESNO;
Function - reads the keyboard response to a question.
Global parameters modified -ANSWER.

Local parameters modified -none.

Calling procedures - program ROUTE.
Called procedures - none.
Superior procedure - program ROUTE.
Sub-procedures -none.

Special processing -checks to ensure a yes or no answer is given.

BEGIN
REPEAT

READ (KIEYBOARD ,ANSWER)
UNTIL ANSWER IN Y, y n ;
WRITELN (ANSWER)

END; (*PROCEDURE YESNO*)

107

*.M.. --

PROCEDURE PRIN1TIT;
Function - output ROUTFILE data and then the imipossible connections

to a printer.
Global parameters modified - BEG, 1, OUTPUT, CHARI, CHARLI INDEX,

IMPOS.
Local parameters modified - none.

Calling procedures - program ROUTE, VINTR.

Called procedures - DISPLAY.

Superior procedure - program ROUTE.
Sub-procedures - DISPLAY.

Special processing -controls the number of retrace cells printed

across the page and prints the unconnected nets.

BEGIN
BEG:'c';

OUTPUT:-'PRINTER:';
RESET (FID ,OUTPUT);
WRITELN (FID,-***ROUTFILE PRI~n***');

RESET (ROUTFILE,-PSEUDO :ROUTFILE .DATA');

STR (ITERATION,CHARI);
IF ITERATION>O THEN
WRITELN (FID,-ITERATION-',CHARI);

WHILE NOT EOF (ROUTFILE) DO

BEGIN (*WHILE*)
IF 1-8 THEN

~ ~j.BEGIN (*THEN*)
WJRITELN (FID);
DISPLAY; (*PROCEDURE*)
GET (ROUTFILE);

END (*THEN*)
ELSE

BEGIN (*ELSE*)
DISPLAY; (*PROCEDURE*)
GET (ROUTFILE);

END (*ELSE*)
END; (*WIIILE*)

CLOSE (ROUTFILE);
WRITELN (FID,(END OF ROUTFILE.');
WRITELN (FID);

* .WRITELN (FID);

IL

IF NUI4DPOS>3 THEN
BEGIN (*THEN*)
WRITELN (FID, ***NOROUTE PRINT***');

FOR INDEX:1. TO NUMIMPOS DO
BEGIN (*FOR*)

IIIPOS :IMPOSLIST(INDEX];
WRITELN (FID,lI-POS[1,,,IPOSL'2],-:,LPOS[3],

,IMPOS[41)
END; (*FOR*)

IWRITELN (FID,-END OF NOROUTE.')
END; (*THEN*)

WRITELN (FID);
WRITELN (FID);
CLOSE (FID)

END; (*PROCEDURE PRINTIT*)

I

109

* -. --. >

PROCEDURE DISPLAY;

Function - control the printing process of when paths change.

Global parameters modified - RT, LENGTH, ST, BEG, X, Y, Z, CHARI,
CHAR2, C11AR3.

Local parameters modified - none.
Calling procedures - PRINTIT.
Called procedures - none.
Superior procedure - PRINTIT.
Sub-procedures - none.
Special processing - the coordinates of the path are read and con-
verted to string values for printing. The length is simultaneously

cummed as cells are processed after subtracting 2 from the initial

start length retrace path due to some redundant data for each cell
in ROUTFILE. The length is also printed when coordinates for a new
path are encountered.

BEGIN
RT :-ROUTFILE ;
IF BEG-'C' THEN

BEGIN (*THEN*)
LENGTH:--2;
ST:-RT;
BEG:i°Y'

END; (*THEN*)
X:-RT[l];
Y:=RT[2);

(Z:-RT[3];
STR (X,CHARI);

STR (Y,CIAR2);
STR (ZCHAR3);
LENGTH: -LENGTH+l;
WRITE (FID,CHARI ,, ,CHAR2, ,",CHAR3,);
IF (ST-RT) THEN
BEGIN (*TEN1*)

IF BEG-'N TIEN
BEGIN (*THEN2*)

WRITELN (FID);
WRITELN (FID,LENGTH- ',LENGTH);

WRITELN (FID);
WRITELN (FID);
BEG:='C'

END; (*THEN2*)
IF BEG='Y' THEN
BEG:="N"

END (*TIIENl*)
END; (*PROCEDURE DISPLAY*)

110

II

S* -.-

.'-...... .

PROCEDURE CALCFILE (11 ,12:INTEGER);
Function - the absolute width coordinate (Il) and absolute length

coordinate (12) are passed to this procedure to detect when a cell

coordinates.
Glblparameters modified -SEGWD, SEGLN.

Local parameters modified -11, 12.
Calling procedures -RETRACE, EXPCK1, EXPCK2, LEE, CHKDIST, BLDTAIL,
ROUTVNTR.

Called procedures -CALCSEG, EXCITFILE, NEWCOOR.
Superior procedure -program ROUTE.
Sub-procedures - CALCSEG, EXCIIFILE, NEWCOOR.
Special processing - if the segment has changed, segments are

exchanged. Relative cell coordinates are then calculated for the
point.

K BEGIN
SEG14D:-CALCSEG(ll);
SEGLN:-CALCSEG(12);
IF (SEGWD<>CURSEGWD) OR (SEGLN<>CURSEGLN) THEN
BEGIN (*THEN*)

EXCHFILE; (*PROCEDURE*)
NEWCOOR (*PROCEDURE*)

END (*THEN*)
ELSE

NEWCOOR (*PROCEDURE*)
END; (*PROCEDURE CALCFILE*)

FUNCTION CALCSEG (VAL:INTEGER) :INTEGER;

Function - this function returns an integer value. It accepts an

absolute integer coordinate (VAL) and computes the relative cell
coordinates within a segment.

Global parameters modified - none.
Local parameters modified - VAL, CALCSEG.
Calling procedures - CALCFILE.

Called procedures - none.
Superior procedure - CALCFILE.
Sub-procedures - none.
Special processing - this function is called twice in CALCFILE, once

to calculate the relative width and once to calculate the relative

length cell coordinates.

BEGIN

CALCSEG:,l+((VAL-I) DIV 30)
END; (*PROCEDURE CALCSEG*)

(- ,

112

........ . ..

PROCEDURE EXCHFILE;
Function - writes the old segment to secondary storage and reads

the new segment into primary memory.
Global parameters modified - CURSEGWD, CURSEGLN, SECR1, SEGCIIR2,
CURSEGFILE, BORDFILE, GRID.

Local parameters modified - none.
Calling procedures - CALCFILE.
Called procedures -none.

Superior procedrue - CALCFILE.
Sub-procedures - none.
Special processing - as each new file is read into memory, its entry

is purged from secondary storage. Also, the width and length
integer values are converted to string values and concatenated with
other string values to form the current file name. The [161
appended to the end of the filename ensures sufficient and necessary
storage is reserved for the file.

BEGIN
REWRITE (BORDFILE,CURSEGFILE);
BORDFILE~ :-GRID;
PUT (BORDFILE);
CLOSE (BORDFILE,LOCK);
CURSEGWD:-SEGWD;
CURSEGLN:-SEGLN;
STR (SEGWD,SECCIRI);
STR (SEGLN, SEGCHR2);
CURSEGFILE: CONCAT(PSEUDO: SEG , SEGCHiRI ,SEGCHR2,

.DATA[16]');
RESET (BORDFILE ,CURSEGFILE);
GRID: BORDFILE;
CLOSE (BORDFILE,PRE

END; (*PROCEDURE BORDFILE*)

113

PROCEDURE NEWCOOR;

Function - uses the absolute width (SEGWD) and length (SEGLN) integer

values passed to CALCFILE to calculate the relative cell position

within the segment.

Global parameters modified - EWWD, NEWLN.

Local parameters modified - none.

Calling procedures - CALCFILE.
Called procedures -none.

Superior procedure - CALCFILE.
Sub-procedures - none.
Special processing - none.

BEGIN
NEWWD:-1l-((SEGWD-l)*30);
NEWLN:.I2-((SEGLNL1)*

3O)

END; (*PROCEflURE NEWCOOR*)

114

pf a

PROCEDURE INIT;
Function - with the start of each new net, all DIR and RCH

entries for the cells of all segments are initialized. In
addition, all RLIST and ELIST entries are Initialized.

Global parameters modified - CURSEGWD, CURSEGLN, SEGCHRI, SEGCInR2,
CURSEGFILE, DIR, RCH, RLIST, ELIST, R, SC, IMPOSSIBLE, CONNECTED,
NUM, BORFILE, GRID.

Local parameters modified - none.
Calling procedures - LEE.
Called procedures - none.
Superior procedure - program ROUTE.
Sub-procedures - none.
Special processing - none.

BEGIN
WRITELN (-INITIALIZING BOARD SEGMENT.-);
FOR SEGWD:'4 TO MAXSEGW4D DO

FOR SEGLN:1l TO MAXSEGLN DO
BEGIN (*FOR*)

CURS EGWD:-SEGWD;
CURSEGLN:-SEGLN;
STR (SEGWD,SEGCHRl);
STR (SEGLN, SEGCHR2);
CURSEGFILE: CONCAT(PSEUDO: SEG , SEGCHR , SEGCHR2,

S. DATA [161');
RESET (BORDFILE ,CURSEGFILE);
GRID: BORDFILE^;
CLOSE (BORDFILE ,PURGE);
FOR W'C:-l TO 30 DO

FOR LC:inl TO 30 DO
FOR SC:1l TO 2 DO
WITH GRID[WD,LC,SCI DO

BEGIN (*WITH*)
DIR[11:inO;
DIR[2] :O;
DIR[3I :=O;
RCH:-FALSE

END; (*WITH*)
REWRITE (BORDFILE,CURSEGFILE);
BORDFILE-:-GRID;
PUT (BORDFILE);
CLOSE (BORDFILE ,LOCK);
WRITELN (CURSEGFILE, - INITIALIZED.-)

END; (*FOR*)
RESET (BORDFILE ,CURSEGFILE);
GRID:inBORDFILE^;
CLOSE (BORDFILE,LOCK);

115

FOR WC:-1 TO 360 DO
FOR LC:inl TO 3 DO
BEGIN (*FOYU*)

RLIST[WC,LCJ :uO;
ELISTj[WC,LC] :0

END; (*FOR*)

IMPOSSIBLE: -FALSE;
CONNECTED:-FALSE;
I NDEX: =1;
NUM:l

END; (*PROCEDURE INIT*)

116

PROCEDURE RETRACE;
Function - the retrace path is found.
Global parameters modified -NW, NL, NS, OBS, BORDFILE.-
Local parameters modified -ADDW, ADDL, ADDS.
Calling procedures -RCHECK.
Called procedures -SAVEROUT, CALCFILE.
Superior procedure -program ROUTE.
Sub-procedures - SAVEROLJT.
Special processing - processing begins at the end cell. While the

current coordinates do not equal the start cell coordinates, each
DIR value is retrieved from the current GRID entry, stored in an
intermediate variable (ADDW, ADDL, and ADDS). DIR values of "2" are
stored as -1. ADDW, ADDL, and ADDS are then added to the current
coordinate position (NW, NL, or NS) except when the DIR value equals
2. In this case, -1 is added instead of 2. Each successive set of
cell coordinates are passed to SAVEROUT.

VAR
ADDW,ADDL,ADDS: INTEGER;

BEGIN
WRITELN (- BEGIN RETRACE)

SAVEROUT (BW,BL,l);
NW:-EW;
NL: -EL;
NS:-ES;
SAVEROUT (NW,NL,NS);
WRITE (NW,',,NL,',,NS);
CALCFILE (NW ,LQ;
WITH GRID[NEWWD,NEWLN,NS] DO

WRITELN (- ,DIR[l]- -,DIR[2],- ,DIRI3]);
WHILE ((BW(>NW) OR (BLONL) OR (NS>l)) DO
BEGIN (*WHILE*)-

WITH GRID[NEWWD,NEWLN,NSJ DO
BEGIN (*W~ITH*)

IF DIR[1J-2 THEN
ADDW: -- 1

ELSE
ADDW:'DIRIII;

IF DIR[2]-2 THEN
ADDL:i-l

ELSE
ADDL:DIR[2];

IF DIR[3]in2 THEN
ADDS:--i

ELSE
ADDS:-DIR[3];

117

NS :-NS+ADDS;
UL:-NL+ADDL;
N4W: 'NW+ADDW

END; (*WITHl*)
CALCFILE (NW,NL);
GRID[NEWWD,NEWLN,NSI .OBS:-TRUE;
SAVEROUT (NW,NL,NS);
WRITE (NWv'$'NL,,,'NS);
WITH GRID[NEWWD,NEWLN,NS] DO

WRITELN (' ,DIR[1J,' ',DIRf2],' 'DIR[3)

END; (*WHILE*)
REWRITE (BORDFILE,CURSEGFILE);
BORDFILE^:-GRID;
PUT (BORDFILE);
CLOSE (BORDF'ILE ,LOCK)

END; (*PROCEDURE RETRACE*)

118

- ~ .. r~~,PIN.

PROCEDURE SAVEROUT(I1 ,I2,I3:INTEGER);
Function - the three coordinate values (11, 12, 13)) are passed to this

procedure and saved on secondary storage.
Global parameters modified -ROUT, ROUTFILE.
Local parameters modified 11I, 12, 13.
Calling procedures -RETRACE.

Called procedures -none.

Superior procedure -RETRACE.4%

Sub-procedures -none.

Special processing -none.

BEGIN
ROUTI4 :-Inl;
ROUT[21 :-12;
ROUT[IJI:-I3;
ROUTFILE :-ROUT;
PUT (ROUTFILE)

END; (*PROCEDURE SAVEROLJT*)

PROCEDURE SORTLIST;
Function -entries are sorted according to the least Manhattan
distance from RLIST's width and length entries to the end cell's
coordinates. The Manhattan distance of each two successive entries

(SI and S2) are compared. If the higher indexed entry's distance is
less than the other, then the two entries exchange positions in
RLIST. When all RLIST entries have been compared, the process
begins again until no exchanges are ma-de.

Global parameters modified -RLIST.

Local parameters modified -TEMP, SWITCH, Sl, S2.
Calling procedures - RCHECK.
Called procedures - none.
Superior procedure - program ROUTE.
Sub-procedures - none.
Special processing - a bubble-sort technique is used to sort RLIST in

ascending distance using TEMP as a temporary array. SWITCH is used
to designate when entries are changed. When SWITCH is true the sort
starts from the beginning and processes RLIST until no exchanges are
made (SWITCH-FALSE).

VAR
TE!iP:PACKED ARRAY~l..31 OF l..60;
SWITCH: BOOLEAN;
SI ,S2:INTEGER;

BEGIN
SWITCH:-TRUE;

(i WHILE SWITCH DO
BEGIN (*WHILE*)

SWITCH: -FALSE;
% ~FOR E:-R DOWNTO 2 DO

BEGIN (*FOR*)
Sl:-ABS(RLIST[E,1 j-EW)+ABS(RLIST(E,2 1-EL);
S2:-ABS(RLISTIE-l ,11-EW)+ABS(RLISTE-1.,21-EL);
IF S1<S2 THEN
BEGIN (*THIEN*)

SWITCH: -TRUE;
TEMP(I :-RLISTEIj
TEMP[2 :-RLIST[E-.,2]
TE 1P[3 :-RLIST(E-I ,3J
RLIST(E-1,1] :RLIST[E,11;
RLIST[E-1,2j :'RLIST[E,2J;
RLIST(E-1,3 :nRLIST(E,31;
RLIST[E,lj :TEMP~lJ;
RLIST[E,2] :TEMP[2I;
RLIST[E,31 :TEMP[31

END (*THEN~*)
END (*FOR*)

END (*4ILE*)
END; (*PROCEDURE SORTLIST*)

120

PROCEDURE SORTSEG;
Function - to sort the RLIST entries into groups based upon the

segment each belongs to in an effort to reduce the number of I/0

operations.
Global parameters modified - ELIST, RLIST.

Local parameters modified - Ti, T2, T3, TNUM, CURSI, CURS2, SI, S2.
Calling procedures - RCHECK.
Called procedures - none.
Superior procedure - program ROUTE.

Sub-procedures - none.

Special processing - the first entry of RLIST is selected and the

segment it belongs to is calculated. That entry and all others

belonging to the same segment are written to ELIST and removed

from RLIST. Then the first entry is again retrieved from RLIST and

the same process is continued until no RLIST entries remain. T3 is

the index for RLIST with TNUM entries in RLIST. T2 is the total

number of remaining entries in RLIST. TI is the total number of

entries written to ELIST. The segment coordinates of the first

entry in RLIST (the closest cell to the end cell) are calculated and

stored in CURS1 and CURS2 and the RLIST entry is stored in ELIST.

Subsequent segment coordinates are stored in Si and S2. If the grid

coordinates are the same, the new cell is stored in ELIST; other-

wise, it is stored in the first available entry in RLIST. When all

cells of a specific segment are in ELIST, the first entry of
RLIST is selected and the segment coordinates calculated.

VAR

TNUM,TI,T2,T3,CURSI,CURS2,SI,S2:INTEGER; -

BEGIN
TI:-O;
TNI: -R;
WHILE TNUM<>O DO

BEGIN (*WHILE*)
T2:iO;
FOR T3:=l TO TNUM DO

BEGIN (*FOR*)

Sl:el+((RLIST[T3,1]-I) DIV 30);
S2:.l+((RLIST[T3,21-1) DIV 30);

IF T3-1 THEN
BEGIN (*THEN*)
CURSI:-SI;
CURS2:-S2

END; (*THEN*)

121 " "

. . ..

. .

.-. .. ~-, -- -- -.-. . . .

IF (SIiECURSI) AND (S2-CLJRS2) THEN

BEGIN (*THEN*)
T :-T1+1;

ELIST[Tl,.1:-RLISTfT3,1];
ELIST[Tl)2 :-RLIST[T3,2];
ELIST[Tl,3] :.RLISTIT3,3]

END (*THEN*)
....

ELSE
BEGIN (*ELSE*)

TZ:-T2+1;
RLIST[T2,1I :-RLIST[T3,l];
RLIST[T2,21 :.RLIST[T3,2 I;
RLIST[T2,31 :uRLIST[T3,3]

END (*ELSE*)
END; (*FOR*)

TNUM:in72
END (*WHUILE*)

END; (*PROCEDURE SORTSEG*)

122

PROCEDURE RCHECK;
Function - saves unroutable nets, retraces path for routed nets,

and prepares ELIST for the next series of expansions if no
connectioi. been made.

Global parameters modified -R, INTR, NU.MI'MPOS, IMPOSSIBLE, NUM,
BORDFILE.

Local parameters modified - none.
Calling procedure - LEE.

fl Called procedures - RETRACE, SORTLIST, SORTSEG.
Superior procedure - program ROUTE.
Sub-procedures - none.
Special processing - stores unroutable nets in an array

(IMPOSLIST). If a connection has been made then RETRACE is called;
otherwise, the RLIST entries are sorted and ELIST is built.

BEGIN
IF R0O THEN
BEGIN (*THEN*)
WRITELN C
WRITELN (-BW,,BL,-->,EW,-,,EL,- IMPOSSIBLE!-);
INTR[j :-BW;
INTR[21 :-BL;
INTR[31 :-EW;
INTR[4 :-EL;
NUMIMPOS :.-NUMIMPOS+l;
IMPOSLIST[NUMIMPOSJ :-INVTR;

j REWRITE (BORDFILE,CURSEGFILE);
BORDFILE-:-GRID;
PUT (BORDFILE);
CLOSE (BORDFILE ,LOCK);
IMPOSSlBLE: -TRUE

END (*THIEN*)
ELSE

IF CONNECTED THEN
RETRACE

ELSE
BEGIN (*ELSE*)

IF R)1 THEN
SORTLIST;

SORT SEG;
NUN. -R;
R: -o

END (*ELSE*)
END; (*PROCEDURE RCHECK*)

123

PROCEDURE EXPAND (W,L,S:INTEGER);
*Function - to check the status of a cell to determine if it can be

reached.
Global parameters modified -R, RCH, ES, CONNECTED, RLIST.
Local parameters modified -W, L, S.
Calling procedures - EXPCKI, EXPCK2.
Called procedures - none.

Superior procedure - program ROUTE.i Sub-procedures - none.
Special processing - the cell coordinates (W, L, S) are passed and

they are checked to determine if a connection has been made. If so,
the condition (CONNECTED) is set; otherwise, if the cell is not an I

obstacle, it is added to RLIST.

r BEGIN
* IF (W-EW) AND (L-EL) THEN

BEGIN (*THEN1*)

GRID [NEWWD,NEWLN,S) .RCH:-TRUE;
IF S-2 THEN

BEGIN (*THEN2*)
GRID[NEWWD,NEJLN,1] .DIRL3] :-l;
S:inI

END; (*TIIEN2*)
ES:-S;
WRITELN (-CONNECTION IS MIDE.');
CONNECTED: -TRUE

* END (*7THENJl*)
ELSE

IF NOT GRID[NEWWD,NEWLN,Sj.OBS THEN
BEGIN (*THEN*)

GRIDrNVEWWD,NEWLN,SI .RCH:'.TRUE;
R:-R+l;

RLIST[R,11 :-W;
RLIST[R,2] :L;
RLIST[R,JJ :5

END (*THEN*)
END; (*PROCEDURE EXPAND*)

124

PROCEDURE EXPCKl;
Function - to check all adjacent cells for possible expansion

and to record the retrace direction if a point Is reached.
Global parameters modified - DIR.
Local parameters modified - none.
Calling procedures - LEE.
Called procedures- CALCFILE, EXPAND.
Superior procedure - program ROUTE.
Sub-procedures - none.
Special pro'essing - if the cell has not been connected, for each

expansion direction attempted, a check is made to see if the cell
has been previously reached. If the cell has been reached, it is

skipped and the next direction is attempted. For a cell not
reached, EXPAND is called and if the cell is then reached, the
specific retrace direction is stored in the appropriate DIR location
and the next direction is attempted. This process continues until

all four adjacent cells have been checked.

BEGIN

IF (WCS>-l) AND (NOT CONNECTED) THEN
BEGIN (*THENl*)
CALCFILE (tCSI,LC);
IF NOT GRID[NEIWD,NEWLN,SC] .RCH THEN
BEGIN (*THEN2*)
EXPAND (WCSI,LC,SC);
IF GRID[NEWWD,NEIILN,SCJ.RCH THEN
GRID[NEWWD,NIEWLN,SC] .DIR[i] :ml;

END (*THEN2*)
END; (*THEN1*)

IF (WCAI<-MAXWID) AND (NOT CONNECTED) THEN
BEGIN (*THENl*)
CALCFILE (WCA1,LC);
IF NOT GRID[NEWWD,NEWLN,SC].RCH THEN

BEGIN (*TLIEN2*)
EXPAND (WCAI,LC,SC);
IF GRID[NEWD,NEWLN,SC].RCH THEN
GRID[NEWWD,NEWLN,SC].DIR i] : 2;

END (*THEN2*)
END; (*THENl*)

IF (LCSI>-l) AND (NOT CONNECTED) THEN
BEGIN (*TIIENI*)
CALCFILE (WC,LCSl);
IF NOT GRID[NEWWD,NEWLN,SC] .RCH THEN
BEGIN (*TrIEN2*)
EXPAND (WC,LCSl,SC);
IF GRID[NEWWD,NEWLN,SC].RCH THEN

GRID[,NEWWD,NEWLN, SC] .DIR[2] :.'1;
END (*TIIEN2*)

END; (*THENl*)

125

,I.'

IF (LCA1(-MAXLEN) AID (NOT CONNECTED) THEN

BEGIN (*THEN1*)
CALCFILE (WC,LCA1);
IF NOT GRID[NEWWD,NEWLN,SCI.RCll THEN

BEGIN (*THEN2*)
EXPAND (WC,LCAI,SC);
IF GRIDLNEWD,NTEWLN,SCI.RCH THEN

GRID[NEWWD,N4EWLN,SC] .DIR[2J :-2;
END (*TIIEN2*)

END; (*THEN1*)
END; (*PROCEDURE EXPCKl*)

126

............

PROCEDURE EXPCK2
Function - to check the adjacent cell on the opposite layer Ear

possible expansion and record the retrace direction if the cell is-
reached.

* Global parameters modified -DIR.

Local parameters modified -none.

Calling procedures -LEE.

Called procedures -CALCFILE, EXPAND.
Superior procedure -program ROUTE.
Sub-procedures - none.
Special processing - if the cell has not been connected, the opposite
direction expansion is attempted, a check is made to see if the

* cell has been previously reached. If the cell has been reached,
it is skipped. For a cell not reached, EXPAND is called and if
the cell is then reached, the specific retrace direction is stored
in the appropriate DIR location.

BEGIN
IF (SC-1) AND (NOT CONNECTED) THEN
BEGIN (*THENl*)

CALCFILE (WC,LC);
IF NOT GRID[NEWWD,NEWLN,2 J.RCH THEN

BEGIN C*THEN2*)
EXPAND (WCLC,2);
IF GRID[NEWWD,I;EWLN,2].RCII THEN
GRID[NEWWD,NEWLN,2] .DIR[3I :=2;

E ND (*THEN2*)
END; (*TIIEN1*)

IF (SC-2) AND (NOT CONNECTED) THEN
BEGIN (*THEN1*)

CALCFILE (WC,LC);
IF NOT GRID[NEWWD ,NEWLN, I] .RCH THEN

BEGIN (*THEN2*)
EXPAND (WC,LC,l);
IF GRID[NEWWD,NEWLN,1] .RCII THEN
GRID[NEWWD,NEWLN,11 .DIR[31 :-I;

END (*THEN2*)
END; (*TRENl*)

9 END; (*PROCEDURE EXPCK2*)

127

PROCEDURE LEE;
Function - to drive the basic LEE algorithm. It calculates the

adjacent width and length coordinate values to be used during the
actual expansion of a point. LEE continues to execute until no
ELIST entries are left to expand.

Global parameters modified - BW, BL, EW, EL, ELIST, RLIST, WC, LC, SC,
WCAI, WCS1, LCAI, LCSL, DIR.

Local parameters modified - none.
Calling procedures - ROUTVNTR.
Called procedures - INIT, CALCFILE, EXPCK1, EXPCK2, RCHECK.
Superior procedure - program ROUTE.
Sub-procedures - none.
Special processing - while there are still nets to route, LEE will

retrieve each from INTRFILE and store the layer 1 beginning
coordinates in ELIST and the layer 2 beginning coordinates in R~LIST.
Each entry in ELIST is expanded until the connection is miade or it
is determined that the connection is impossible.

BEGIN
WHILE NOT EOF (INTRFILE) DO
BEGIN (*WHILE1*)
WRITELN (-***NEW CONNECTION"*);
INIT;
INTR:inINTRFILE^;
BW:.INTR[l];
BL:-INTR[2];
EW:-INTI(3];

(. EL:EINTR(41;
ELIST[l,11:-BW;
ELIST[l,2] :-BL;
ELIST[l,31 :-l;
RLIST[R,1] :=BW;
RLIST[R,2] :BL;
RLIST[R,3] :'2;
CALCFILE (BW,BL);
GRID[NEWWD,NEWLN,21 .DIR[3J :2;
WHILE (NOT CONNECTED) AND (NOT IMPOSSIBLE) DO

BEGIN (*WHILE2*)
FOR E:-Il TO NUM DO

IF (NOT CONNECTED) THEN
BEGIN (*THEN*)

WC:-ELISTLE,1];
LC:-ELIST[E,2];
SC:-ELIST[E,3];
WCS :-WC-l;
WCA1: WC+l;
LCS1 :iLC-l;
LCAI : LC+1;

123~

IF (E~ml) THEN
WRITELN (W (,L-,W ,L.-

EXPCK1;
EXPCK2

END; (*THEN4*)
RCHECK

END; (*rJHILE2*)
GET (INTRFILE)

END (*WIIILE1*)
END; (*PROCEDURE LEE*)

129

PROCEDURE VINTR;
Function - control the iteration and preparation of input data for

processing by Vintr's algorithm and the printing of results.
Global parameters modified -ITERATION, INDEX, LEN, ROUTFILE.
Local parameters modified -TAILLIST.

Calling procedures -program ROUTE.
Called procedures -ROUTLEN, BLDTAIL, ROUTVNTR, PRINTIT.
Superior procedure -program ROUTE.
Sub-procedures - ROUTLEN, BLDTAIL, ROUTVNTA.
Special processing - for each iteration the LEN array is initialized

then processing control is sequentially passed to procedures for
calculating the path lengths, building tails from the paths, routing
the cell pairs, and printing results.

VAR
TAILLIST:FILE OF ROUTDATA;
4,W,START ,STOP: ROUTDATA;
REMOVE, COUNT, LENTAIL: INTEGER;
LEN:ARRAY [l..801 OF INTEGER;

BEGIN
FOR ITERATION:nl TO 4 DO
BEGIN (*FOR*)

IRITELN ('ITERATION-#',ITERATION);
FOR INDEX:-l TO 80 DO

LEN[INDEXj :0;
RESET (ROUTFILE ,-PSEUDO :ROUTFILE .DATA');
ROIJTLEN;
CLOSE (ROUTFILE ,LOCK);
RESET (ROUTFILE,-PSEIDO:ROLITFILE.DATA');
REWRITE (TAILLIST , PSEUDO:TAILLIST.DATA[30]');
BLDTAIL;
CLOSE (ROUTFILE,PURGE);
CLOSE (TAILLIST ,LOCK);
REWRITE (ROUTFILE ,-PSEUDO:ROUTFILE.DATAL 30]');
ROUTVNTR;
CLOSE (ROUTFILE ,LOCK);
IJRITELN (-TOTAL UNROUTABLE CONNECTIONS FOR);
WRITELN (-ITERATION %ITERATION,- IS 0,NUMI11POS);
WRITELN;
PRINTIT

END (*FOR*)
END; (*PROCEDURE VNTR*)

130

PROCEDURE ROUTLEN;

Function - calculates the path lengths.

ROUTE Global parameters modified - INDEX.

VINTR Global parameters nodified - START, NEW, LEN.

Local parameters modified - none.

Calling procedures - VINTR.
Called procedures - none.

Superior procedure - VINTR.
Sub-procedures - none.
Special processing - lengths are calculated and stored in an array

(LEN) corresponding to each entry in ROUTFILE.

BEGIN
INDEX: -0;
IILE NOT EOF (ROUTFILE) DO

BEGIN (*WHILE1*)
INDEX: INDEX+I;
START: ROUTFILE;
GET (ROUTFILE);

GET (ROUTFILE);
NEW: -ROUTFILE-;

LEN(INDEX] :LEN[INDEXJ+I;
WHILE (NEW<>START) DO

BEGIN (*WHILE2*)
LEN[INDEXJ :-LEN[INMEXj+1;
GET (ROUTFILE);
NEJ: -ROUTFILE,

END; (*WHILE2*)
GET (ROUTFILE)

END (*WHILE1*)
END; (*PROCEDURE ROUTLEN*)

131 '-"-

* 4*..*4.4*4.*...-

o...~.P*~ .. 444 ***

PROCEDURE BLDTAIL;
Function - the length of a path is used to calculate the length of

tail on each end of the path. The intermediate cells ara marked as
available. All cells along the tails are stored in TAILLIST.

ROUTE Global parameters modified -BW, BL, INDEX, ROUT, NW, NL, NS,
OBS, BORDFILE.

VINTR Global parameters modified -TAILLIST, COUNT, REMOVE, LENTAIL,
TAIL.

Local parameters modified - none.
Calling procedures - VINTR.
Called procedures - CALCFILE.
Superior procedure - VINTR.
Sub-procedures - none.
Special-processing - ROUTFILE entries are read sequentially and cells

that are part of a tail are saved in TAILLIST. The length of a tail
is calculated from the path length (LEN), the ITERATION, and a
constant of 0.1. Entries up to the length of the tail are saved,
the intermediate cells have OBS in GRID set to available, and
finally the second tail is saved. This process repeats for each
path in ROUTFILE.

BEGIN
INDEX:1l;
WHILE NOT EOF (ROUTFILE) DO
BEGIN (*WHILE*)
TAILLIST-:UROUTFILE-;rPUT TILS)

(0-LENTAIL:inTRUfJC(LE&N INDEX 1*lTERATlON*O. 1);
FOR COUNT:-l TO (LENTAIL+l) DO

BEGIN (*FOR*)
GET (ROUTFILE);
TAILLIST : -ROUTFILE;
PUT (TAILLIST)

END; (*FOR*)
REIIOVE: -LEN[INDEX] 2*LENTAIL-l;
FOR COUNT:-1 TO REMOVE DO

BEGIN (*FOR*)
GET (ROUTFILE);
ROUT: -ROUTFILE^;
NW:-ROUTj II;
NL:-ROUT[2J;
NS:'.ROUT(3J;
CALCFILE (NW,NL);
GRID[(NEWWD,NEWLN,NSI .OBS:-FALSE

END; (*FOR*)

132

FOR COUNT:-. TO (LENTAIL+l) DO

BEGIN (*FOR*)
GET (ROUTFILE);
TAILLIST-: -ROUTFILE-;
PUT (TAILLIST)

END; (*FOR*)
GET (ROUTFILE);
INDEX:-INDEX+l

END; (*WHILE*)
REWRITE (BORDFILE ,CURSEGFILE);
BORDFILE~ : -GRID;
PUT (BORDFILE);
CLOSE (BORDFILE ,LOCK);
WRITELN (-TAILLIST IS BUILT.-)

END; (*PROCEDURE BLDTAIL*) w

133

PROCEDURE ROUTVNTR;

Function - process tie unroutable nets, read TAILLIST entries
and eliminate all obstacle cells in the path except for start/end
cells, and passes the results to LEE for routing.

ROUTE Global parameters modified - INTRFILE, INTR, ROUT, NW, NL, NS,
OBS, BORDFILE.

VINTR Global parameters modified - START, STOP.
Local parameters modified - VNTRFILE, VNTR.
Calling procedures - VINTR.
Called procedures - CALCFILE, LEE.
Superior procedure - VINTR.
Sub-procedures - DONOROUTS.
Special processing - DONOROUTS is called first if any unroutable nets
exist. The first entry in TAILLIST is read, its tails
eliminated except for the start/end cells and this net is
loaded into VNTRFILE and processed by LEE. This process continues

for each path in TAILLIST until an end of file (EOF) is encountered

with TAILLIST.

VAR
VNTRFILE:FILE OF INTRDATA;
VNTR: INTRDATA;

BEGIN
IF NUINIPOS>O THEN
DONOROUTS;

RESET (TAILLIST,-PSEUDO:TAILLIST.DATA*);
WHILE NOT EOF (TAILLIST) DO

BEGIN (*HILEI*)
REWRITE (INTRFILE, PSEUDO:VNTRFILE.DATA[301);
START: -TAILLIST-;
GET (TAILLIST);
STOP:-TAILLIST-;
WRITELN (-BUILDING INTRFILE ENTRY.');
I -rR []: =START [I] ;

INTR{2J :START(2J;
INTR[3]:-STOP[];
INTR[4] :-STOP(2];
WRITE (-ROUTE -,INTR[l,-,-,INTR[2],- TO);

WRITELN (INTR[3J,",',NTR[4J);
INTRFILE^ :=INTR;
PUT (INTRFILE);
GET (TAILLIST);

ROUT :-TAILLIST^;
WHILE ((ROUT<>START) AND (ROUT<>STOP)

AND (NOT EOF(TAILLIST))) DO

BEGIN (*WHILE2*)
NW:-ROUT(];
NL:-ROUT[2];
NS:-ROUT[31;
CALCFILE (NW,NL);

134

* -. .- *

7p7

GRID NEIWD, NEW'ILN,NS] .OBS:-FALSE;
GET (TAILLIST);
ROUT:-TAILLI ST^

END; (*WHILE2*)
REWRITE (BORDFILE,CURSEGFILE);
BORDFILE-:inGRID;
PUIT (BORDFILE);
CLOSE (BORDFILE ,LOCK);3 WRITELN (INTRFILE ENTRY COMPLETE.');
CLOSE (INTRFILE,LOCK);
RESET (INTRFILE,-PSEUDO:VN4TRFILE .DATA');
LEE;
CLOSE (INTRFILE,LOCK);
GET (TAILLIST)

END; (*WHILE1*)
CLOSE (TAILLIST ,PURGE)

END (*PROCEDURE ROUTVNTR*)

135

PROCEDURE DONOROUTS;
Function -route the unrouted nets.
ROUTE Global parameters modified - INTRFILE, NUflIMPOS.VIT lblprmtesmdfe oe
LoNc oal parameters modified - none.

Calling procedures -ROUTVNTR.

Called procedures -LEE.

Superior procedure -ROUTVNTR.

Sub-procedures - none.

Special processing -the entries from IIIPOSLIST are loaded into
VNTRFILE and then LEE is called to route the net.

BEGIN
REWRITE (INTRFILE ,PSEUDO:VNTRFILE.DATA(301);
FOR INDEX:ml TO NUMIMPOS DO

BEGIN (*FOR*)
INTRFILE-:-IMPOSLIST[INDEX];
PUT (INTRFILE)

END; (*FOR*)
CLOSE (INTRFILE ,LOCK);
NUMIMPOS: -0; ,
RESET (INTRFILE,-PSEUDO:VNTRFILE.DATA');
LEE;
CLOSE (INTRFILE ,PURGE)

END; (*PROCEDURE DONOROUTS*)

136

VITA

Fred Thomas Chesley was born on 2 September 1950 in Washington,

D.C. He graduated from high school in Sandpoint, Idaho in 1968 and

attended Idaho State University, Pocatello, Idaho, from which he

received the degree of Bachelor of Science in Secondary Education with a

major in mathematics in August 1972. Upon graduation he was employed by

the Department of Health and Welfare, State of Idaho, as a social

caseworker. He entered the Air Force in April of 1977 and obtained a

commission through Officer Training School in Iay 1978. He completed

Computer Systems Development Officer school in September 1978 and was

assigned as a systems analyst to Headquarters, Strategic Air Command,

Offutt Air Force Base, Nebraska. He entered the School of Engineering,

Air Force Institute of Technology, in June 1980.

Permanent address: 1822 Cal Young Rd., Apt. 147

Eugene, Oregon 97401

137

SECURITY CLASSIFICATION OF THIS PAGE

t REPORT DOCUMENTATION PAGE
Is, REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS

24L SECURITY CLASSIFICATION AUTHORITY 3. OISTRIBUTION/AVAILABILITY OF REPORT

____________________________________ Approved for public release;

2b. OECLASSIF ICATION/OVNGRADING SCHEDULE . distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBERMS

AFIT/GCS/EMG/85M-1

6a. NAME OP PERFORMING ORGANIZATION b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(I, applicable)

School of Engineering AFIT/ENG

*c. ADDRESS (City. State and ZIP Cada) 7b. ADDRESS (City, State and ZIP Coda)

Air Force iistitute of Technology
AW Wright-Patterson AFB, 0OH 45433

Se. NAME OF FUNDINGISPONSORING
1
Bb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (fa ppicable)

Sc. ADDRESS (City. State and ZIP Cade) 10. SOURCE OF FUNDING NOS.

fPROGRAM PROJECT TASK WORK UNIT
* ELEMENT No. NO. NO. NO.

11. TITLE (Include Security Classif(ication)

See Box 19_______
12. PERSONAL AUTHORIS)

Fred T. Chesley, B.S., Capt, USAF
* 13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr.. Mo., Day) 15. PAGE COUNT

MS Thellis FROM _____TO ____ 1985 March 137
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 1. SUBJECT TE RMS lCon tinue on reverse of necesary and identify by block numbir)

FIELD GROUP SUB. GRI. Design Automation, Routing, Printed Circuit Boards,
* 09 02 Lee's Algorithm, Vintr's Algorithm

19. ABSTRACT (Continueaen rverse. of necessary and identify by block nunmber)

Title: A Comparison and Analysis of Vintr's Global Routing Algorithm with the Lee
Routing Algorithm in Two-Layer Printed Circuit Boards

Thesis Chairman: Harold W. Carter, Lt Col, USAF
Assistant Professor of Electrical Engineering

3 A~goA d toy)flc release: JAW AP" 190-47.

LEVWOLAVE11

DefIn lei rt-eochi and Professioa Devslopmeixt

Ali Force insIut..I of TechnvAogY (AICI
W right- Patterson A.iESQ 04i3

'CL DISTRISUTION/AVAILAUILITY OF ABSTRACT 21. AB3STRACT SECURITY CLASSIFICATION

UNCLA8SIFIED/UNLIMITED MSAME AS RPT. 0 OTIC USERS 0 JCASFE

221L NAME OP AGGPONS1BLE INDIVIDUAL 22b. TELEPHONE NUMBER 22c. OFFICE SYMBOL.

L 1t Col Ha~rold W4. Carter5125693AT/N7
DO FORM 141i1. UJ APR -0 N%1 A . 1 1SH UNCLASSiIFIED

S. .-. ECURIITY CLASSIFICATION OF THjS PARE.

LUCLASSIFIED
PCJITY CLASSPICATION OP T"12 PAOE

Microcomputer software was designed and written to compare a standard routing
-technique (Lee) with an experimental, unpublished routing technique proposed by
'J. Vintr for two-layer printed circuit boards. Vintr' a algorithm, as studied here,

uses a four-iteration approach to minimize unroutable nets and minimize route
distance. The unrouted nets and average route lengths were observed and analyzed

* for differing sizes of two-point nets.
* Analysis revealed a reduction of unroutable connections across iterations, but

congestion played a large role In the overall success of finding paths. A recommen- -

dation is made that use of 8-bit microcomputers in design automation is impractical,
and research in this area of technology can best be accomplished using larger computer
systems.

7'

UNISITD

SEUIYjAPCTINO "8PO

FILMED

7-85

DTIC

