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Abstract

Necessary and sufficient conditions are given for certain classes of

distributions to be closed under mixtures. The relevant classes are

defined in terms of antistarshapedness or dispersiveness. One of the main

ADS
results characterizes distributions with log concave densities.
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1. Introduction.

A basic tool in the analysis of univariate survival data is the

quantile plot, (G-1 (t), Fn-1(t)), where G is a fixed distribution of

interest and Fn- 1 is the empirical quantile function. For large sample

sizes Fn F, where F is the distribution of the observations. So the

behavior of the empirical quantile plot should be similar to (G-1(t),

*F-1(t)) which is essentially the same as (t,G-1 F(t)). The study of this

behavior leads quite naturally to classes of distributions {F: G-1 F has

property P1. Such classes were first studied by Van Zwet (1964) when P was

the property of convexity.

Certain well-known classes fall within this framework. When G is

exponential the IFR (increasing failure rate), IFRA (increasing failure

rate average), DFR and DFRA are the classes where property P is,

respectively, convexity, starshapedness, concavity and antistarshapedness.

The latter two classes are known to be closed under mixtures (Barlow and

Proschan, 1975, Section 4.4). For the arbitrary case necessary and

sufficient conditions are given in Leon and Lynch (1983).

Corresponding to each lifetime random variable (r.v.) X with

A A

distribution F is a r.v. X a log X with distribution F(x) • F(eX),

A A
-< < x < a. A distribution F is said to be more dispersed than G, written

d
G < F, if

A_1 8 01_ (a

(1.1) G-(B) - G 1 (a) < F-(8)-F-(i) s ( S

This notion of dispersion is equivalent to G-1 F being antistarshaped,

S%
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p

(1.1') eG-1 F(x) < G- 1 F(ex) 0 < e < 1, x > 0,

a

written F < G, and has been studied by a number of authors - Doksum (1969),

Saunders and Moran (1978), Bickel and Lehmann (1979), Lewis and Thompson

(1981) and Shaked (1982). Of particular note is Lewis and Thompson's

result that the preservation of the dispersive ordering characterizes

distributions with log concave densities.

In Section 2, we use the Lewis and Thompson characterization along

with results in Leon and Lynch (1983) and the correspondence between (1.1)

and (1.1') to find necessary and sufficient conditions on G for classes of

distributions antistarshaped with respect to G to be closed under mixtures.

Then using this same correspondence we obtain necessary and sufficient

A

conditions for classes more dispersed than G to be closed under mixtures,

one of which is that G have a log concave density.

2. The antistarshaped ordering and dispersiveness. In this section, the

relationship between the antistarshaped ordering and the dispersive

ordering is exploited to prove mixture results. The following definitions

and lemma are needed. Throughout it is assumed that the support of the

life distribution G is an interval [O,c] if c < a or O,w) if c -

A
Definition. A distribution G is said to be two point dispersive if

d
A A A A
G < G * F whenever F is a discrete distribution with only two mass points

A
and where * denotes the convolution operation. The distribution G is said

A d A A A 4
to be dispersive if G * F < G * H whenever F < H.

Lemma 2.1. The following are equivalent:

(i) G is two point dispersive,

.. . ... . ... 5.. . .. .... ~ .1 . :.*
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A
(ii) 0 is dispersive, and

A
(iii) G is absolutely continuous with a log concave density.

Proof (ii) . (iii). This is in Lewis and Thompson (1981).

(ii) * (i). This is obvious since it is easy to see that any

distribution is more dispersed than a degenerate one.

A

(i) * (iii). If G is twice differentiable the argument in the proof

A
of the only if part of Lewis and Thompson (1981) shows that G has a log

concave denzity. The proof then follows as in the last paragraph of Lynch,

Mimmack and Proschan (1983). o

Definition. The hazard transform for a life distribution G is given

by

Tp(u,V) = G-1 (pG(u)+ G(v))

where 0 < p < 1, = 1- p, and 0 < u, v < -.

The following notation is needed. For two life distributions we

denote the scale mixture fG(A-lx)dF(A) by GF.

Let

a d A

AG = {F: F < GI and Gd - {F: G < F}.

Thus G = {F: FCAG} by the equivalence of (1.1) and (1.1').

The main results are given in the next two theorems.

Theorem 2.2. The following are equivalent:

(i) AG is closed under mixtures,

(ii) T (u,v) is antistarshaped for each p,

*A A
(iii) G is dispersive (and so, G has a log concave density), and

" ... '' " " " ' '"" " " .:-::'::: .:-'::: :< ' ; t- i
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(iv) D4 is closed under mixtures.

Proof (i) - (ii). This is just a restatement of Theorem 2.4(a) of Leon and

Lynch (1983).

(ii) - (iii). Because of Lemma 2.1, it suffices to show that (ii) is

A A
equivalent to G being two point dispersive. Let F = p6x + 56y where

" 6x(z) - 0 if x * z and - 1 if x z z. Let u = ex and v - eY. Then

. F = p6u + 6v . Thus,

d a
,\ A A

G < G * F iff GF < G

iff G-IGF(ez) > G-GF(Z) for ee(0,1)

iff Tp(uz,uz) is antistarshaped

iff Tp(uv) is antistarshaped.

(i) 4 (iv). Ignoring certain measure theory details which are

easily resolved and left to the reader, for a measure j on AG, let U - -

A A
where I: AG * DG is the 1-1 mapping I(F) F. Then,

d a
* . A A

G < fHdu iff fHdu < G.

Thus AG is closed under mixtures if and only if DG is closed under

mixtures. a

As an immediate consequence of Lemma 2.1 and the equivalence of (1.1)

and (1.1') we have
a a A

Theorem 2.3. GF < GH whenever F < H if and only if G is dispersive.

A a
Corollary 2.4. Let G be dispersive. If F < H, then GF - GH has at

most one sign change and if one occurs it is from - to +. If, in addition,

f~dF(X) - fXdH(A), then GF - GH has exactly one sign change.

02
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Proof. The proof is the same as for the DFRA case, i.e., G is the

exponential distribution which is in Barlow and Proschan (1975). It is

reproduced here for completeness.

a
Since GF < GH by Theorem 2.3, GF - GH has at most one sign change and

it is from - to + if one occurs. If fAdF(A) = fXdH(A), then fxdGF(x) =

fxdGH(x). Thus, GF - GH must have at least one sign change. o

Remark. Corollary 2.4 should be contrasted with Theorem 4 of Shaked

(1980) where the ordering on the mixing distributions and the mixed

distributions is the dilation ordering and with Theorem 1 of the same

paper.

S. + -.+ ..... + + .' ' , " + ..+ ., . . , -' .: . . .- -' .- - ., ., . ., ., . - . . - -, + . • .. .. ..+ . . . . :
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