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ABSTRACT OF THE DISSERTATION

Discovery of a Nonpropagating Hydrodynamic Soliton

by

lun-Ru Wu

Doctor of Philosophy in Physics

University of California, Los Angels, 1985

Professor Isadore Rudnick, Chairman

A new type water-surface-wave soliton, nonpropagating

hydrodynamic soliton, has been discovered This is a

self-trapped, highly localized and stationary transverse

.-'- water-surface-wave excitation which appears in a rectangular

cross section resonator continuously excited parametrically by

vertical oscillation. )(Fig. 1).

An experiment designed to create the soliton and the

features of the soliton are described. The profiles of the

soliton for various frequencies and amplitudes are measured. It

is found that the profile of the soliton is accurately given by a

hyperbolic secant function. The stability region that is the

amplitude and frequency range of the drive in which individual

soliton can be created without hysteresis is experimentally

determined.

The interaction between two solitons has been investigated.

xiii



It is observed that an attractive force exists between two
9

solitons with the same polarity and a repulsive force exists

between two solitons with the opposite polarity. Under a certain

range of drive frequencies and amplitudes, two solitons with the

same polarity slowly oscillate through each other. The

oscillation frequency has been measured.

The self-trapping mechanism of the soliton is studied. It -

is found that the necessary condition for creating the soliton is

that our nonlinear dispersive system has an amplitude dependent

resonant frequency of the transverse mode such that the higher

the amplitude the lower the resonant frequency. The finite

amplitude tuning curves of the rectangular cross section

water-surface-wave have been determined for various liquid

depths. The experimental results show that the direction of the

bending of the tuning curve depends on the liquid depth. For a

deep liquid it bends toward lower frequencies, and for a shallow

liquid it bends toward higher frequencies. The so-called

nonlinear coefficient is determined from these tuning curves.

The cross-over from right leaning to left leaning was found to beUP

in good agreement with the theoretical value calculated from the

formula developed independently by X.Miles 2 ). and by A.Larraza

and S. Putterman{3 .

The soliton free decay rate is also measured. It is found

that the soliton initially decays much faster than the

corresponding linear transverse mode, but has the same rate in

xiv
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CHAPTER I

IMTODUCTON

"'....it has usually been thought

that in a relativistic field theory,

in order to have stationary bound

states, quantum mechanics must be

crucial. As we shall see, this turns

out not to be the case. In a

nonlinear field theory, with anI

appropriate amount of nonlinearity.

stable bound states can exist on a

classical, as well as quantum

mechanical, level. Such bound states

are called solitons.''

T.D.Lee

S A. AN HISTORICAL REVIEW OF SOLITONS 14A FLUID7

*The concept of a solitary wave was first introduced by a



Victorian engineer John Scott Russell in 1844 in his historical

paper'' Report on Waves''(appendix A). He used the word

''solitary'' to characterize the robust, localized, and well

defined ''heap'' of water which propagates along a narrow canal

without change of form and diminution of speed . Russell's

observation appeared to contradict the famous contemporary

* -- scientist Airy's shallow water theory which predicts that a wave

of finite amplitude cannot propagate without change of form (6 ).

" •The Airy paradox wasn't totally resolved until 1895 when

Kortoweg and deVries developed an equation for a water wave which

includes both nonlinear and dispersive effects q7 7. This equation

has permanent solitary wave solutions(appendix B). It is now

well known as the KdV equation, and provides a simple analytical

foundation for the study of solitary waves.

A now impetus to this problem was generated by Fermi, Pasta,

and Ulam's work in the early fifties (8 ). They used the first

large electronic computer, Maniac I, to investigate the time

evolution of the energy of a weakly and nonlinearly coupled

system of sixty four harmonic oscillators. They started with the

case when the energy was initially concentrating in one of the

. modes. To their great surprise, the classical equipartition

theorem, describing the thermal equilibrium , turned out to be

incorrect. After some tens of thousands of cycles, the energy

invariably returned almost completely to the original mode. This

2
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is well known now as F.P.U. Recurrence , and is evidence that

the development of such a collective mode is a general 7

phenomenon. It occurs in the other fields of the physics,

outside of hydrodynamics(appendix C).

In 196S N. 7. Zabusky and X. D. rruskal found from their

numerical simulation of the nonlinear discrete mass string

problem that an intially sinusoidal profile would decompose into

a series of interacting solitary waves and each one of them

retained its identity after each interaction (9 ). It is the first

time that the term soliton was used to characterize this kind

of solitary wave which has the property of emerging from the

collision having the same shape and velocity with which it

entered - a remarkable resemblance to the elastic interaction of

particles.

Although the term soliton was originally applied only to the

solitary waves of the KdV equation, there are now several

nonlinear partial differential equations known to exhibit similar

effects. Among them, especially for fluid solitons, the

(10)Nonlinear Schrodinger Equation (NLS) is a popular one( 0  In

1968 Zakharov predicted that the time evolution of weakly

nonlinear deep-water-waves obeys NLS and three years later

Zakharov and Shabat found the exact solution for the

( 1) 1 Lk (12)
equation In 1975 Yuen and Lake verified the prediction,

and observed the so-called envelope soliton in a narrow water

*3
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tank(appendix D). The envelope soliton can be pictured as a

quickly oscillating wave cut off by a smoothly modulating

envelope (FiS.2). Until recently the KdV and envelope solitons

were the only known solitary waves in fluids. Both of these

solitons have to propagate at a non-zero group velocity

determined by their amplitudes and shapes. They are also limited

to motion in one dimension.

II

Recent theoretical efforts, as far as fluid mechanics is

concerned, concentrate on extending the one dimensional classical

(13)soliton solution to higher dimensions )

B. AN DTRODUCTION TO MHE NEWLY DISCOVERDE NONPROPAGATING

HYDRODYNAMIC SOLITON

The nonpropagating soliton was first observed in Professor

I. Rudnick's laboratory in the summer of 1983 in a fluid trough

driven sinusoidally and vertically from below so that all the

"' fluid is caused to accelerate up and down equally. A localized

surface pulse could be observed. The motion of the pulse

appeared to be so stable and robust that it was immediately

thought to be a soliton. Furthermore, since it could appear and

, . be stationary anywhere along the length of the trough and sloshes
*
- -back and forth across the width of the trough, more than one

dimension is involved. It is fundamentally different from the

other two types of soliton and is called a nonpropagating

4*-:.
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C. BRIEF REVIEW OF WAVEGUIDE TKEORY

To understand the physics of a nonpropagating soliton, it is

essential to review waveguide theory. Suppose the trough is very

long so that it can be regarded as a waveguide with length

coordinate x and width coordinate y (Fig.3). The depth of

liquid, d, controls the surface wave phase velocity aD given by

* c3  (gik +lak/p)taah(kd) (1)4

where k is the wave number, g is the acceleration of gravity, pa

is the surface tention and p is the density of fluid. The0

surface displacement, z, is given by

z -a cos(k yy)exp[i(kxz x 2,rvt)] C2)

where v is frequency, k V-qff, W is the width of the trough, q -'

x y

yctf cWutoff

*The case q -0 is the plane wave mode, q -1 has one velocity 0

* 9



component, v ,, antinode between the side walls, q =2 has two,

ae. The energy of the wave propagates with the group velocity,

v5 which can be calculated by

S£

0 v ) 5g V cutoff

If V v Vuoff, k1 and c gare real, energy propagales down the

waveguide in a angle of 0 cos-1(1 -(vcutoff /v)z] with the x

direction(Fig. 4). If v v ctf then k~ and c5 are imaginary.

*The amplitude of this particular node decays exponentially down

the waveguide, and energy will not propagate, but is instead

*totally reflected back. This is a so-called evanescent wave.

For a finite waveguide of length L like our resonator,

z -a cos(k x)cos(ky)cos(2fvt) C6)
x yS

where k XL -pir and p -0,1,2,3 .... Resonant frequencies are

given by

v - (a12)C(pIV) + (q/L)] 7)

p,q:1
*The (0,1) node is the equivalent of being the first cutoff for

the infinite waveguid.

10
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CELAPTER I I
. I'+

OBSERVATION OF A NONPROPAGATING SOLITON

' You make experiments and I make

theories. Do you know the difference?

A theory is something nobody believes

except the person who made it, while

an experiment is something everybody

believes except the person who made

it. Fe ''"

A. Einstein(14)

The apparatus for getting a nonpropagating soliton is quite

simple. We use a Plexiglas (or glass) channel 38 cn long and 2.6 7.]
cm wide filled with still water ( unless otherwise specified, the

working liquid is still water) to a depth of 2 am. Several drops

of the wetting agent Kodak Photo-Flo are added to the water to j
* minimize surface pinning effects at the walls. Waves are I

generated by placing the trough horizontally on a 18'-

loudspeaker (or a vibration exciter, 4809, Bruel Kjaer) whose

* cone is driven at a frequency 2v in the vertical direction. As

12
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s.own by Eq.( 7 ),there could be (p,q) modes appearing in the

trough.

It is found that with this parametric excitation all

low-lying (p,O) modes can be observed. When we parametrically .

excite the (0,1) mode, however, there is some degree of

competition between various modes at the initial stage, then the

sloshing motion in y direction corresponding to (0,1) mode

developes and appears to be unstable. Finally the waves merge

and focus themselves to one or more excitations highly localized

in x-direction, sloshing in y-direction. Importance is attached

to this self-focussing behavior, It is surprising and intriguing

that while all parts of the trough are oscillated with equal

amplitude, the vigorous wave motion occurs in a space of a few S

-:.. centimeters long while the rest of the water remains tranquil.

The phase shift along the x-direction given by Eq.( 2 ) for

Vcutoff = 5.1 hz and v = 5.4 hz is 90 in a distance of 6 cm.

Yet, within our resolution of 3 , we find no measurable phase

difference between any two points of the disturbance. It is

believed that the absence of a phase difference is of fundamental

importance. The wave is not simply a waveguide mode occuring

slishly above the cutoff frequency but a new type of 2
nonpropagating solitary wave. As we proceed we shall see that it

has properties usually associated with solitons.

9- Figure 5 and 6 are computer generated profiles of the

13
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soliton based on measurements taken from photographs, when it is

respectively at its peaks on the far side of the trough and on

the near side of the trough. The wave frequency here is 5.1 hz

and the peak amplitude is 2.1 cn.

Figs 7 - 10 contain plots of the heights z of the solitons

as functions of x for various frequencies and the same amplitudes

of the drive, when they are at their peaks on the walls. The

points are experimental data and the curves are least square

fits. From the plots, it is evident that our solitons have the

following features.

The hyperbolic secant, a function which characterizes some

solitons, fits our soliton profile in x direction very well. The

amplitude of the nonpropagating soliton can be as high, or higher

than the water depth.

The characteristic length, which is defined as the characteristic

decay length at its wings, and the amplitude of the soliton are Ml

determined by the frequency of the excitation for the same

amplitude driven system. They are interrelated in such a way

that the higher the amplitude the shorter the characteristic 0

length.

The frequency of the sloshing motion of the nonpropagating

soliton is lower than veutoff given by Eq. 4. 0

The dependence of z on y when the soliton is at its peak is

found to be far from a cosine function which is linear solution .* -

14
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to the Laplace equation. A best-fit function is found to be an

exponential function (Fig. 11).

It is found experimentally that one of the important feature

of our soliton is that the velocity along the x-direction of the .6

localized disturbance is a free parameter. It can be zero if the

trough is accurately horizontal, which means the soliton

maintains its initial x-position in the trough for the order of A.

an hour or more. We hypothesize that this stability is due to

pinning effects at the wall. The soliton, however, can be moved

in various ways. One such way is to tilt the trough. For a

slope of 0.05, for instance, the soliton slowly moves to the

shallow end with an average speed of 0.05 ca/sec. It moves in

response to gentle Jets of air. It can also be nudged by rods of .

soft sponge plastic. Unwanted solitons are killed by stabbing

them with such rods.

The stability range, defined as the range of the amplitudes

and frequencies of the drive in which individual solitons are

observed without hysteresis, were measured and found to be as

shown by the dashed lines of Fig. 12. The eight full-line curves

are equal-wave-response curves. The number on each is the peak

height in centimeters of the soliton above the equilibrium level

of the water. Note that at 0.7 and 2.1 cm the curves are so

short that they are only represented by points. From the plot we

see that for the same amplitude of drive, the lower the frequency

1 _15
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the higher the amplitude of the soliton. Outside the dashed

boundary, changes in drive amplitude and/or frequency are

generally hysteretic. If it exists, the soliton may be unstable,

*and there may be a mixture of modes. At a drive amplitude

exceeding 0.081 cm, charateristically a competing mode rather

than a soliton appears. As mentioned before, there is generally

some degree of competition between the various modes of theIL
trough, especially after the drive is just turned on. However,

if the amplitude and frequency of the drive are appropriately

set, energy will finally be sucked into a soliton and it becomes

stable. Several ways are devised to selectively encourage the

. appearance of the soliton to the exclusion of competitive modes.

i One obvious way is to choose the trough dimensions which

separate, in frequency, the unwanted modes from the soliton mode.

Another way is to put sponge dampers at both ends of the trough

so that the longitudinal modes are discouraged. Another very

successful procedure is to nucleate the soliton mode by producing

a local disturbance which is compatible with it. Thus sloshing

motion across the width can be produced by rocking the resonator

or with the help of a hand-held paddle. This can be very

effective if it is done when the drive is just turned on. The

self-focusing process described before is very striking if the

soliton is generated by rocking the trough.

L'''' Since the frequency of the wave is half that of the drive,

the phase of the drive is repeated every 180 of the wave.
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Consequently solitons which are 0 or 180 apart in phase are

compatible and equally driven. Thus the only steady state

soliton pairs are in-phase solitons of the same polarity or 180

out-of-phase solitons of the opposite polarity. An opposite

polarity soliton-pair can be generated by sharply twisting the

trough about a central vertical axis, so that the sloshing in the

left part has the opposite direction of that in the right part.

Alternatively an inverted T-shaped paddle immersed in the water

can be twisted to achieve the same result.

The interaction of the solitons was studied. Two solitons

- .of the same polarity attract each other, but only weakly if the

distance between then is significantly larger (say a factor of 3)

than their characteristic length. Two solitons which start out

20 cm apart center to center, for example, take about 15 min to

reach a separation where they strongly overlap. When this happen

their attractive speed greatly increases. If the frequency is

substantially lower than the small amplitude v. the two

solitons combine; the end result is a single soliton having the

amplitude of each of the initial ones. If the frequency is

closer to v. , the solitons oscillate through each other. Fig.

13 is a schematic of the stages of the oscillation. In the first

* stage, Fig.13(a), there is significant overlap. In Fig.13(b) the

overlap is sufficient to create an amplitude at the center which

is comparable with the amplitudes of solitons 1 and 2. In

* Fig.13(c) the solitons completely overlap. In Fig.13(d)
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apparently solitons 1 and 2 have passed through each other and

exchanged places while in Fig.13(e) the configuration is the

original one. Left undisturbed this sequence repeats

indefinitely. The longest period of time in which this

phenomenon was observed is 36 hours. An interruption of the

oscillation has never been seen except by accident or design.

A simple transducer which responds to wave heights is a pair

of vertical wire electrodes that dip into the water. At a

constant ac voltage drive, the current due to the conductance of

the water is proportional to the wave height at the electrodes.

Fig. 14 shows the response of such a transducer placed at the

midpoint of the oscillating soliton-pair of Fig. 13. In the

lowest trace, which covers the complete sequence of Fig.13, the 0

paper speed was great enough so that the individual oscillations

are seen (v = 5.32 hz). The frequency of the envelope, which is

much lower than the drive, is 2v1(156±0.5) = 0.068 hz. The upper S

traces are recorded at succesively slower paper speeds. Fig. 15

is the identical plot for the case that the fluid is pure

alcohol. The principal difference is that the frequency of the

oscillation is a little higher (2v/(103±0.S) = 0.103 hz ) than

the water case. This suggests the surface tension might be

playing an important role in the oscillation. The surface S

tension of alcohol is only one third that of water.

A pair of solitons of opposite polarity in close proximity
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a
to each other repel each other and slowly move until they are

approximately 12 cm apart, and then maintain this separation .

" indefinitly. Again the interruption of this state has never been

"- seen except by accident or design.

By introducing tracers (eccospheres) into the water we have

been able to establish that the motion of solitons is one in

which there is a transport of excitation with negligible E-

transport of mass.

Essentially identical phenomena have been observed in an
S

annular resonator 72 cm in mean circumference and 2.2 cm wide.

This is interpreted to mean that the boundary conditions in the

x-direction are irrelevant to our problem. As many as six

solitons have been observed in the resonator. The polarity of

solitons always alternates in the steady state limit.
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FIGURE 12. The range of drive aplitude and frequency in which

individual solitons are observed without hysteresis.
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CHAPTER III

A NONLDmEAR PHYSICAL MODEL OF THE NONPROPAGATING SOLITON

The soliton digs its own hole

and builds its own walls."

I. Rudnick

The experimental observations introduced in Chapter II can

be summarized as follows.

(1) The system is very nonlinear as the amplitude of the soliton

can be as high as water depth.

(2) The profile of the soliton in the x direction can be

described by the hyperbolic secant function, which asymptotically

approaches exponential decay function at its tails.

(3) The frequencies for getting the nonpropagating soliton is in

a frequency range lower than the cutoff frequency given by

... Sq.( 4 ). Moreover the higher the drive amplitude, the lower the

'' optimal frequency for peak response.

- (4) The nonpropagating soliton has the tendency to move to the

shallow end where the cutoff frequency is lower.

What kind of the physical model can we use to describe the

nonropagating soliton based on these experimental facts? A
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reasonable model that would come up is that the cutoff frequency

of the system becomes amplitude dependent as the system appears

to be nonlinear. The fact that the drive frequency for getting

the nonpropagating soliton is below the cutoff frequency suggests

the model should be such that the higher the amplitude of the

waves the lower the cutoff frequency. The simplest system which

has this kind of property is an undamped free oscillating -

pendulum. When friction is neglected, the differential equation

governing the notion of the pendulum is given by

a@

z+ 0 sinxO, (8)

where we = g/L; the angle x designates the deviation from the

vertical equilibrium position (Fig. 16). This is a nonlinear

differential equation as we know the Taylor Series of sinx is

V
given by

0. 0

sinx - z - x /3! + xl/l - /71 +..... ( 9 )

Only in the first order approximation, does Eq. ( 8 ) reduce to

.S

the linear differential equation:
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x+ a - 0. (10)

Then the resonant frequency of the system is independent of the

angle. For large angles the linear approximation is not

justified. If the second term of the expansion is also included, X

Eq. (9 )becomes

x + tii x -(we 16)x' 0. (1

This Is the Duffing equation . The solution (up to third0

order) of the nonlinear differential equation can be written as

x -asin(ot +T) + we I(192* )a sin(3wt + 3y), (12) IN

where w is amplitude dependent and is given by the following-

equation:

a (a) 0 -(W /8)a .(13)

Now let us use this model to understand the self-trapping

effects of the nonpropagating soliton. At the core of the
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soliton the peak amplitude at the wall is so high that the

corresponding cutoff frequency there is significantly lower than

the small amplitude cutoff frequency given by Eq. ( 4 )

according to our model. However the linear theory is still valid

at both wings of the nonpropagating soliton since the amplitudes

there are pretty mall. If the system is driven at the frequency

higher than the amplitude dependent cutoff frequency at the core

and lower than the small amplitude frequency at the wings, the

energy, which propagates out of the core, gets totally reflected

at the wings, and the wave becomes evanescent. This

self-trapping is reminiscent of polaron behavior in crystals, and

leads to the soliton being called a hydrodynamic polaron.

Consider Fig. 7. The soliton profile in the x direction is

described by z = 2.lsech(x/1.12)cm. At the core the peak

amplitude at the wall is 2.1 an , consequently the cutoff

frequency is lower than that at the wings. At the tails of the

hyperbolic secant function the decay length, 1.12 on, is equal to

the low amplitude waveguide evanescent length, and this is just

the magnitude of l/kx. Thus we can determine the phase velocity,

c, by the following equation:

c = u/( k + k ) -

- 2wx5.1/[(v/2.6)s
- (l/1.12)s]

= 37.7 om/sec.
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Eq. 1 gives the value 33.7 on/sea. This simple calculation

shows that our model is reasonably good.

By using this model it is not difficult to understand the

self-focusing effects observed at the initial stage of the

process of the soliton formation. As the drive amplitude passes

-' the threshould value of the parametric instability, the amplitude

of the excitation starts to develope. Wherever the amplitude is

higher, the amplitude dependent cutoff frequency becomes lower.

As has already been pointed out that the energy of the excitation

[ likes to go to the place where the cutoff frequency is lower. In

a snowball-like process, the energy builds up in a very small

region, and the soliton is formed. Once the soliton appears it

is stable due to the above-mentioned self-trapping mechanism.

K%'" Another fact which is important to the stability of the soliton

is the dispersion of the system. If there is no dispersion, iii
shock waves form and there is abundant energy dissipation.
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MEASUREMENTS OF TUNING CURVES 

As pointed out earlier the necessary conditions for creating

a nonpropagating soliton is that a nonlinear dispersive system

has an amplitude dependent cutoff frequency such that the higher

the amplitude the lower the cutoff frequency. Therefore in order

to test our physical model it is necessary to measure the

amplitude dependent resonant frequency of (0,1) mode of our

trough.

A. INTRODUCTION

The amplitude dependent resonant frequency of (01) mode

calculated by 3. Miles (2 ) ,  and by A. Larraza and S.

Putterman ($ )  is given by the following equation ( Eq. (E-24), -

Appendix E ):

v,(;) v,[l-Ag /(128W4)] (14)

where v. is determined by Eq. ( 4 ), and A is given by Eq.(E-20)
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(Appendix-E) as

4
A =-(6T -ST + 16- T ) (15)8

where T tanh(id). When correction is made for surface tension

Eq. (E-20) becomes Eq. (E-22) as

O-
A =12 ~ 1 ,- 2 12

21[1+(1T )42(1+4p)-(1+T) -(T 4R) (3-T)] (16)

where p is surface tension, and P _ Mpg). From Eq. (14)

it is obvious that the amplitude dependent frequency v can be

greater or less than v. depending on the sign of A, which is in

turn uniquely determined by the depth of the liquid. By putting S

A = 0 in the equation the theoretical crossover depth can be

calculated. Experimentally ve( ) can be determined by measuring

the tuning curve of the (0,1) mode for various amplitudes, , of

the surface-wave oscillation for different depths of liquid. By

using the measured value of v. - the peak response frequency at

small amplitude, v,() - the peak response frequency at high

amplitude , , when we sweep the frequency for different drive

amplitudes, the magnitude as well as the sign of the nonlinear

coefficient, A, can be determined from the Eq. (14).

3. APPATATUS
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The resonator used to measure the tuning curve is a sealed

glass basin with the inside dimensions of L 2.0 x W 2.6 x H 7.0

in centimeters.

The reason for not using the long channel (38 cm) to

determine the tuning curve is that when the amplitude of the

surface-wave gets quite high, solitons appear in the long

channel. The 2cm length is chosen to be smaller than the

characteristic length of the soliton so that the soliton does not

appear and so that the fundamental resonant frequency of the

longitudinal (1.0) mode is well above that of the (0,1) mode.

Then the tuning curve is that of the transverse (0.1) mode, and

as pointed out earlier, this is the equivalent of being at the

first cutoff frequency for a waveguide of infinite length.

The resonator is cleaned with a potassium hydroxide, ethyl

alcohol, solution followed by washing with hot tap water and

ethyl alcohol. Then it is filled with 100% ethyl alcohol up to

the depth of d as the working fluid. The resonator is put on an

improvised table on rollers which is driven horizontally by a 5

inches loudspeaker in a direction normal to the sides of the

basin so that sloshing occurs across the width of the basin (Fig.

15). An accelerometer (4367, Bruel Kjaer) is used to measure

the displacement of the oscillating table. It is found that the

displacement is quite sinusoidal -- the second harmonic component

is at least 40 db lower than the fundamental.
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C. ELECTRONICS

The block diagram of the eletronics is shown in Fig. 16.

The oscillator (Wavetek) is slowly swept over the range of 3 - 7

hz by using an external ramp voltage signal. The output of the

oscillator drives the loudspeaker after going through a power L

amplifier. In order to keep the displacement amplitude of the

oscillating table constant when the frequency is changed, a

* feedback loop is used. The basic principle is as follows. An ac

voltage signal from the accelerometer proportional to the

oscillating table displacement is sent to the charg amplifier

(2635, Bruel K[jaer) then is rectified and filtered by an ac -

do converter. A dc differential amplifier is used, its negative

input is connected to the output of the ac - dc converter and its

positive input is controlled by a do regulated power suply. Thus

the amplified negative do signal from the output of the do

differential amplifier is related to the displacement amplitude

.*U. of the oscillating table in such a way that the higher the 5

displacement amplitude the more negative the dc output. This

negative do voltage is sent to the VCA input of the Wavetek to

decrease the amplitude of the ac output of Wavetek. The result .

of this simple feedback loop is quite good; it makes the driving

system which originally has a peak in response at about S hz to

become a constant amplitude of displacement driving source.

40
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The transducer for measuring the displacement of the

surface-wave is a pair of vertical wire electrodes that is

immersed into the liquid. A built-in low output impedance

(600J) ac voltage (1 v, 1000 hz) from look-in amplifier (HR - 8,

Princeton Applied Search) is applied on the transducer, which is

in series with a 100n resister. Since the resistance of the

resister is negligible comparing with the impedance of the liquid

between the electrodes (about 100 kM), the voltage drop across

the resister is proportional to the conductance of the liquid

between the pair of electrodes. When the height of liquid

oscillates at about 5 hz as the surface-wave does, the ac

conductance of the liquid at the transducer is modulated. The

lock-in amplifier picks up the slow modulation signal, amplifies

it and sends it to the ac - dc converter. An x-y recorder is

used to plot out the tuning curves.

D. THE RESULTS OF MEASURE.NTS

Typical frequency sweeps for several different drive

amplitudes for each of six different depths, d, are shown in

Figs. 19 - 25. It is evident as shown in Fig. 19 that when d

* 0.5 cm the peak frequency increases as the amplitude of S

water-surface-wave becomes bigger. v. is 4.22 hz from Eq.( 4 )

in good agreement with the observed 4.23 hz. As the amplitude,

*- , goes from 0.1 ca to 0.4 cm in steps of 0.1 ca, the peak -
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frequency shifts up from 4.23 hz to 4.42 hz. This is a typical
.0

right bending tuning curve.

Figs. 20 - 24 are respectively for the case of d 1.0,

1.5, 1.7, 2.0, and 3.0 cam. The common feature is that the peak AD

frequencies all shift down as the amplitudes of the responses go

higher and higher; all belong to left bending tuning curves.

Fig. 20 (d = 1.0 cm) shows that the peak frequency goes from

5.00 hz down to 4.94 hz as the amplitude goes from 0.2 ca up to

0.8 ca. Fig. 21 (d = 1.5 ca) shows that the peak frequency goes

from 5.38 hz down to 5.16 hz as the amplitude goes from 0.1 ca up

to 0.7 cm. Fig. 22 (d = 1.7 ca) shows that the peak frequency

goes from 5.4 hz down to 5.20 hz as the amplitude goes from 0.2

ca up to 1.0 c. Fig. 23 (d = 2.0 cm) shows that the peak -

frequency goes from 5.43 hz down to 5.03 hz as the amplitude goes

from 0.2 cam up to 1.0 ca in steps of 0.2 ca. Fig. 24 shows that

the peak frequency goes from 5.61 hz down to 5.18 hz as the

amplitude goes from 0.2 ca up to 0.9 ca.

Fig 25 is a plot for the case of d = 0.8 c. Within the

experimental error the peak frequency remains constant at 4.78

hz, as the amplitude of the wave increases from 0.1 cm to 0.8 ca.

It was experimentally found that at d - 0.8 ca changes in depth

of 0.1 cm produced hardly detectable shifts of peak frequency.

It is concluded that it is at this depth (d = 0.8 ± 0.1 ca) that

the crossover from right leaning to left leaning occurs. The
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calculated value of v. is 4.81 hz from Eq. ( 4 )"

Figure 26 is a reduced plot of the combination of Figs. 19, 2
23, and 25. The dash dot curves are theoretical peak values from

Eq. (E-24).

Fig. 27 contains plots of the nonlinear coefficient, A,

versus fluid depth, d. The top curve is for the case without _2

surface tension correction i.e. Eq. (15) and the bottom curve

is for the case with a surface tension correction i.e. Eq. "j

(16). As shown by Eq. (14) the nonlinear coefficient, A, for
0|

various depths of liquid can be calculated when the measured

values of ve, V,(;) and are plugged into the Eq. (E-22). Thus

"+ the experimental value of A can obtained from the data of Figs.

19 - 25, and represented by the points on Fig. 27. From the

curves we can get an independent determination of the crossover

depth to compare with the above-mentioned experimental value (0.8

cm). This is the value of d at which A vanishes. The 1

intersection of a horizontal line, A 0, with the top curve

yields a value of d = 0.85 cm and for the bottom curve, d = 1.03 "

Cu.

From Figs. 26 and 27, we can see that the curve for Eq.(16)

is closer to the experimental data than the curve for Eq.(15) at

deep-water region. The reverse is true for the crossover depth.

Overall both equations work better in the deep-water region than

shallow-water region. The reason for this is, as pointed by A. -
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Larraza, a result of a breakdown of the pertubation theory as the

system approaches the nondispersive limit at zero depth.

In summary, experimental measurements shows that a

rectangular section resonator (W 2.6 on) has an amplitude .

dependent tuning curves with a peak frequency, Vp, such that

dv p/d < 0, for d > 0.8 cm, AL

dv /d 0, for d = 0.8 cm,
p

dv /d; > 0, for d < 0.8 cm.
p

The nonlinear coefficient, A, as a function of depth, d, is found

to be in reasonable agreement with the theoretical results of

Miles (2 ), and Larraza and Putterman (3 ) . As to the discrepancy S

between theory and experiment, especially at the high amplitude

limit, Professor Putterman expressed his satisfaction with the

extent of agreement. He often emphasizes the theory is a

perturbation calculation good only to third order in - ( 1,

which is much smaller than the amplitudes used In the experiment.
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CHAPTER V

THE FREE DECAY RATE OF THE NONPROPAGATING SOLITON

A. WATER-SURFACE-WAVE DAMPING IN CLOSED BASINS

The damping of water-surface-wave in a closed basin has been

extensively studied by Benjamin , Ursell 17 ), Case,

akisn(18) (19) (20) (1
Parkinson Keulegan 9

, Van Dorn and Miles 121 ). If we

use 6 and 6. to respectively represent the decay rate due to the

, viscous disippation in the neighborhood of the rigid wall and in

the neighborhood of the free surface, and 6L to denote the decay

- rate due to the capillary hysteresis associated with the meniscus

formed at the contact line between the free surface and the rigid

wall, in general 6L will be smuch smaller than the other two for

(16)
our case. It was shown theoretically by Ursell (16 1, Case and

Parkinson that for a clean bounded surface &, is negligible

comparing with *•. While experimental measured value of 6/6w may

be as large as three. Van Dorn(19) clarified the discrepancy by

his experiment, he found that the decay rate agreed with 8w when

the water was fresh, then the former tended to increase with time
*

to some higher limiting value within an hour or so. He

attributed the observed higher value of 5 to a surface film

produced by spontaneous contamination. Considering these effects
0
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(21)

Miles (2)derived the following equations:

fiv T k(-2)(1+J +w(l-(;)oseoh(2;d)) (17)

as W-1f)-i (C -C )c18 )
4 po ico T

323(,_A)(19)

where p& is the surface tension, L is the length of the basin, i

is the viscosity, (Cr-Ci the ratio of the surface-film damping

to that which would be produced by an inextensible film, may be

approximately taken between 0 and 1 for low frequency

water-surface-wave depending the extent of contamination at the

surface. r. is a senieperical coefficient which is related to

capillary hysteresis at the meniscus on the wall, it may be

approximated by 0.05 for a hydrophilic basin (e.g. clean water

on glass).
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B. FREE DECAY MEASUREMENS

A sealed glass channel, filled with 100% ethyl alcohol up to

2 om, with the inside dimensions of L 38X W 2.6X 1 7.0 in

centimeters is used to measure the free decay rates of the low

amplitude oscillation of the (0,1) mode as well as the solitons.

Let us first to calculate the decay rate of the (0,1) mode

by using the above-mentioned formula worked out by Miles.

Substituting the following data into the Eqs. ( 17 ) to ( 19 ):

L = 38cm, W = 2 .6cm, d = 2.0om

3i - 23 dyne/cu, p = 0.79 g/cm , nj 0.012 g/(sececm)

- 0.05, wi = 2,z5.1 rad/sec, 0<(C r-Ct)<1

we get

6= 0.2 sec
- I

0 < 6 < 0.3 see "

-16= 0.02 sec -1

Thus 0.2 sec-1< 6 < 0.5 sec.

Since we known from experiments that the main dissipation

comes from the walls and the surface of the liquid, the channel

is carefully cleaned by using the same procedure as the one we

used to clean the small basin before the tuning curves were
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measured. Right after being filled with 100% ethyl. alcohol as

the working fluid, the channel is sealed, thus the contamination

at the liquid surface would be minimized.

Fig. 28 is the plot of a decaying (0,1) mode surface-wave 0

with the frequency of 5.1 hz and the initial amplitude of 0.5 cm.

Decay rate is determined to be 0.4 sec, which is in the range

of the theoretical prediction.

The free decay rate of the soliton was determined in two

different ways. In one the channel is driven by the oscillating

table in its width direction, and once the soliton is created and

reaches a stable state, the driving source is turned off. The

free decaying oscillation data were stored in a wave analyser

(6000, Data Precision) and plotted out by a x-y recorder. In the

other method the channel is oscillated vertically at twice the

soliton frequency by a vibration exciter (4809, Brul4KJaer).

Identical decay rates were obtained for both methods.

Fig. 29 is a plot of the free decay soliton with the

initial peak amplitude of 1.8 an and the frequency of 5.1 hz. -0

Comparing with Fig. 28 clearly the soliton decays faster than

the corresponding (0,1) mode initially. Fig. 30 is a plot of

the ampltude versus time. The points are the amplitudes of the

same soliton as Fig. 29, and the circles are the amplitudes of

the same (0,1) mode surface-wave as Fig. 28. From the plot we

can see the initial decay rate of the soliton (frequency 5 5.1 .
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hz, amplitude - 1.8 cm) is 0.7 sec -1 and changes to 0.4 sec- 1 as ",0

its amplitude drops below 0.5 ca, which is seen to be the same as

the decay rate of the corresponding small amplitude transverse

mode. The possible expanation of the higher initial decay rate -

is that the soliton has very rich higher harmonic components -

which in general decay faster than the fundamental of the (0,1) .

mode.
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CHA7YER VI

CO~NCLUSION

"'The laws of physics

should be simple."o

A. Einstein 22

A. S

The experimental discovery of a unique nonpropagating

hydrodynamic soliton whose excitation is that of a transverse

surface-wave in a channel is reported. Like the polaron in

solids, its energy is highly localized through a self-trapping S

ffeet. The profile of the soliton can be decribed by a

hyperbolic secant function and the self-trapping occurs because

W the cutoff frequency for the transverse mode is a decreasing

function of the wave amplitude. Accordingly the appropriate

frequency for generation of the peak energy at the center of the

- soliton is below the cutoff frequency at the evanescent wings and

above the amplitude dependent cutoff frequency at the peak.

Measurements also show that this self-trapping behavior is absent

when the liquid depth falls below a certain value, which is in
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reasonable agreement with the theory (2 )'(s)

The interactions between solitons are also observed.

Solitons with the same polarity attract each other, while the

force between solitons with opposite polarity is repulsive. The -

breather-like internal oscillation of an in-phase soliton pair is

seen to be very stable.

The free decay rate of the soliton is measured, and the

measurements show that solitons initially decay faster than the

corresponding transverse mode but have the same rate in the

terminal decay.

B. FURIHE EXPERIMENTS AND THEORETICAL INVESTIGATIONS

As discussed earlier that the two essential conditions to

create the nonpropagating soliton are: 0

a, The system must be dispersive enough to prohibit higher

harmonic generation.

b, The cutoff frequency for propagating a transverse wave must .

decrease as the amplitude of wave increases.

It might be possible to find a dispersive system with higher

dimensions which has a highly localized finite amplitude

disturbance existing at a frequency less than the cutoff

frequency of propagation in the surrounding medium. Thus the
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'r disturbance cannot escape but exponentially decays into the

surrounding region forming the soliton. One possible candidate

might be the flexure mode in thin plates.

Another possibility is to look for the nonpropagating

soliton in an acoustic, optical, or even biological

- "waveguide-like system. Of couse the first thing to check is to

see if the system has the properties which satisfy the

above-mentioned conditions.

There are as yet no theoretical explanations of the

breather-like oscillations of the in-phase soliton pair and the

initial free decay rate of the soliton.

66

. ._1



APPENDIX A

3. SCOTT RUSSEL'S REPORT ON HIS DISCOVERY

3. Scott Russel's Report on Waves at the British

Association for the Advancement of Science was first published in

1845 3 . The following paragraph is the most fascinating part of

the report of his great disvovery:

'"I believe I shall best introduce this phenomenon by

describing the circumstances of my own first acquaintance with
0

it. I was observing the motion of a boat which was rapidly drawn

along a narrow channel by a pair of horses, when the boat

suddenly stopped - not so the mass of water in the channel which

it had put in motion; it accumulated round the prow of the vessel

in a state of violent agitation, then suddenly leaving it behind,

rolled forward with great vilocity, assuming the form of a large

solitary elevation, a rounded, smooth and well-defined heap of

water, which continued its course along the channel apparently

without change of form or diminution of speed. I followed it on

horseback, and overtook it still rolling on at a rate of some

eight or nine miles an hour, preserving its original figure some

thirty feet long and a foot and a half in height. Its height

67
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gradually diminished, and after a chase of one or two miles I

lost it in the windings of the channel. Such, in the month of

August 1834, was my first chance interview with that singular and

beautiful phenomenon which I have called the Wave of

Translation....'
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APPENDIX B

KdV TYPE SOLITONSj

In 1895 Korteweg and de Vries included both dispersion and

nonlinearity, and derived the so-called KdV equation. There are

different versions of derivation for the equation. The one,

introduced as follows, is worked out by M. Olsen, H. smith and

A. C. Scott in 1984(23).

For an incompressible, irrotational and invisoid fluid in a

water tank, the velocity potential (Fig. 3), 0, satisfies the

Laplace equation:

,a 0-0 (B-1)

Let us consider waves propagating in x direction in the

water L...nk of depth of d. The displacement of the free surface

is specified by the function ;(x,t) defined by S

z =  (zt). (B-2)
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Boundary condition at the bottom of the tank is the velocity. v,

must be zero in z direction:

(zv - (60/6z) 0 =B3

At the free surface the boundary equations are specified the

following two equatioins: I

60/6z -&0/
6 x*8t/x -6 /&t -0 (B-4)

6016t + (VO)2 + g~-0 (B-5)

where the first one is the kinematic boundary equation and the

second is Dennoulli's equation.

Lot us express a solution of Eq. (B-1) satisfying the

boundary conditions of Eq. (B-3) as a wave packet:

0 =Jdkoshk(d+z)exp(ikx)g(k~t) (3-6)

where the weight function g(k,t) has its fourier transform f(x,t)

given by

f (z,t) -fdkxpeikigk,t) (B-7)1
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m7 0- k -

equal to the value of 0 at the bottom of the tank, z =-d. We -

perform a simultaneous expansion for z ; (x~t) of Eq. (B-6) in

terms of a mIxd and W dA) - 0(c), where A is the

characteristic length of the soliton, and got that

0: f(x,t) -(d+ ~)f(B-8)

and

OZ -- (d + Ofx + 6(d + C)fx (-)

Thus Eq. (B-5) becomes

;t +[(d.-QfxI- Id fxx (B-10)

by keeping terms to a = t,maId and p (dIA) -0(s) in our

expansion, while Bernoulli's equation is

1 2 1 2
ft + S4-Id f t + -~x 0 (B-11)

From Eq. (B-10) and Eq. (B-11) the resulting linear dispersion

relation for propagating plane wave becomes

2 132 (12
4$W ck(1 ;k d (B12

where c. gd.
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If the function E -f xand the dimensionless valuables x

mUax
(B-11) and Eq. (B-12) can be rewritten as follows (dropping the

stars):

1B13

Z~ C~ ~p 1 ~+ZZ= 0 (B-14)

In order to determine an equation for tvalid to first order in

a and ~.we write Z C + aLA + AB and insert in Eqs.(D-13) and

(B-14). The two equations become consistant if A =- and B
4

3xx. and yield the KdY equation:

2 1 =0. (-5

With the time and space variables restored this equation becomes

the XdV equation in its usual form:

5 +cOC + -(cOId)K + 1d ~ 0 (B-16)

It is convenient to nondimensionalizo Eq. (B-16) in to a

reference frame moving with the basic wave speed 0, by

introducing the following variables:
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U-060 ~ (c(Gt/A), it ; /'Max*

The end result is

In 614 14C 0 (B-19)

The soliton solution of Eq. (B-18) is

i sech[( /2) Q -2(03 -19)
Max Saxmax

Korteweg and do Vries derived a somewhat more general

equivalent of Eq. (3-16), in which they included a surfaceV

tension ~,such that coefficieft d' in Eq. (B-16) is replaced by

ILE 1-03)I/d]. If di ( (-JL)a (0.5 cn for water), A must be
PS .~. ps

replaced by IA[1_(h) 1 1, and Eq. (B-18) becomes:

Now the solution for this equation is a solitary wave of

depression rather thani elevation.

Frost Eq. (B-19) we notice that the velocity of the soliton

is related to its amplitude in such a way that the soliton would
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- no longer exist as the velocity vanishes.

* . Figure 31 shows the [dY soliton observed by M. Olsen, at

a(23)
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K FIGURE 31. K4V type solitons observed by N. Olsen et al. Three

different single wves going right. The solid curves are 7
are experimental, the dots obtainied from theory.
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APPENDIX C

11 p
F.P.U. RECURRENCE

After world war II, Fermi became interested in the L

development and potentialities of the electronic computer. The

first physical problem he decided to try is a problem for

heuristic work. An one dimensional dynamic system of 64 .

particles with fixed boundary condition and nonlinear coupling

between neast neighbors was studied on the Los Alamos computer

Maniac I. The nonlinear terms considered are quadratic, cubic

and broken linear types. The results are analyzed into fourier

* components and plotted out as a function of time. The original

motivation was to observe the rates of thermalization. The

results of the calculations were quite surprising; the time

evolution of energy shows very little tendency toward

equipartition of energy among the degrees of freedom.

Fig. 32 is a plot of the energy of the system versus time.

The nonlinear coupling force here is quadratic. The initial

position of the 64 particles string is a pure sine wave (the

first mode). At beginning, the gradual energy flow from the

first to the second and the third etc. was observed. Later on,

7.
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however, this gradual sharing of energy among successive nodes

ceases. Instead, it is one or the other mode that predominates.

It is only the first few nodes which exchange energy among

themselves. Finally node I comes back to within few persent of

the initial value. This kind recurrence occurs to the cubic and

broken linear coupling too. In 1970 U. Toda proved that this

kind phenomenon can be approximately represented by the soliton

(24)solution of the so-called Toda lattice

* 7
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* FIGURE 3 2 F. P. U. recurrence.
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APPENDIX D

ENVELOPE SOLITONS

It was theoretically discovered by Lighthill (25 ) in 1965 I

that weakly nonlinear MC ma a << 1, k is wave number, max is

the characteristic amplitude of the disturbance) deep-water (kd

* > 1, d is the depth of water) wavetrain are unstable to

modulation pertubations. In 1968 Zakharov found that this

- .modulation instability leads to the fact that the time evolution

of weakly nonlinear deep-water wave obeys the nonlinear

* Schrodinger equation:

i#+ A85A/D8I =VIA IA (D-1)

CI

where n sk(*-ct) , T a (gk)2t1 0c Y Ow
2 2

*A - k /C2(sk) Vac laws v (- ()z -2ghI[k(kh)2(gh - 2A
5 4 g5

and the free surface of water is

2 2
*z -Re([si(kh) A/k Jexp[i(kx-wt]. (D-2)

In 1971 Zakharov and Shabat 26  solved NLS exactly by using

the inverse scattering technique developed by Gardner et &I27 7
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The soliton solution of Eq. (D-2) is

1

A = alUIsech[a(-q -2b-]exp[ibq + iA(a2-b2)V] (D-3)
V

The solution shows that the disturbance, which is moving with

group velocity c5, is a localized wave packet with a fast

oscillation of carrier frequency w and an envelope specified by

hyperbolic secant function. So it is known as the envelope

soliton.

This theoretical prediction was verified by Yuen and Lake's

experiments (1 2 )  in 1975. They use a 0.915 m x 0.914 a x 12.9 m

water tank with a wavemaker at one end and a wave-absorbing beach

at the other. The wavemaker As a hinged paddle activated by a 9

hydraulic cylider. The time evolution of each initial wave was

measured by capacitance wave amplitude gauges, which were put at

1.53, 3.05, 4.58, 6.10, 7.63 and 9.15 m in downstream of the

wavemaker. Experimental results show that any initial wave

packet, other than the soliton envelope described by Eq. (D-3),

*eventually evolves into a number of envelope solitons .

Measurements also show solitons survive from the interaction of

"'-."two envelope solitons (Figs. 33 and 34).
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FIGURE 3 3 The initial pulses disintegrate into solitons. Case

a, initial pulse with soliton profile. Case b, initial pulse

with sech profile and amplitude twice that for soliton profile,

amplitude scale of traces reduced by factor of 2.5 compared with

case a and c. Case c, initial pulse with sine profile.
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*FIGURE 34 The interaction of envelope solitons. Left-hand

trace: first pulse alone. Center trace: second pulse alone.

- -- light-hand trace: the second one overtakes and passes through

* the first one.
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APP!NDIX R

713 ThORY OF NONPROPAGATIG SOLITONS

The theory' of nonpropagating solitons were worked out by

(2) (3)Miles *and by Larraza and Putterman independently. Larraza

and Putteruan' a approach neglects friction and drive, while

Miles's approach includes dissipation as well as parametric

* drive, essentially identical results were achieved. This fact

implies that neither dissipation nor parametric drive are central

*to our problem. For the sake of simplicity only the first

approach is Introduced as follIows.

For an incompressible inviscid and irrotational fluid in a

gravitational field, if surface tension effects are neglected the

velocity potential, 0. satisfies Laplace's equation.

For the problem we want to solve (Fig. 3) the following

* boundary condition should be satisfied:

0 tgiz -d. (9-2)
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0 -0, at y 0. W. (E-3)
y

At the free surface z - (z.yt) the boundary conditions are

-: specified by two equations. One is so-called kinematic boundary

condition, which is due to the fact that wave motion becomes

stationary when it is observed in a reference frame moving with

it. Consequently

d/dt[z-;(x.y.t)J 0 (E-4)

or

;t +0- + OZ. at z V X.y.t).

The other Is the d-]amic boundary condition which is specified by

Bernoulli's equation:

0 +sW+/2(vO) -0, at z - (Xy~t)* (E-5)

If the surface displacement ;(z,y,t) Is eliminated in favor

* .of the velocity potential, 0. the following equation for 0 valid

* up to terms that are cubic in derivatives of 0 can be derived:
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2o V j 22T 01 1 ! WT 
4.l."r .- _v-r%, .

Optto tems thatO ar quadra~tics t1iraitso Eq (E-6)aj

-12(O t+2Cl/g0) +(0 tz-0 1

envlop (v) t in n-ieto ad+ saifyn the followin

beultitencaerqirms

(dou +/z)/dog-/d) at z( 0. (1-7)

Considering- the' wekynolna-polm1fadstracewt)

(dog/emz)/e9log4/t (s). (2-9l)

where

/v~ .'.*. * % % ~ %*



-, gkT, T - tanh(kd), k - /V. (E-12)

The solution of Laplace's equation specified by the boundary

conditions Eq*. (E-2) and (1-3) is given by

0 (01(x,t)Ccoshk(z+d)/coshkdiecoskyeexp(iu*t)+c.c.) (E313)

(a)+[00 (x~t)oxp(21*t)+c.c.]+ [cosh2k(z+d)/cosh2kdlecos2ky

*(cosky/cosh~kd)ep(iwt)Czhiaiak(u~d)-dexp(-k(z+d))J+c.c.J

4
+0.(z+i(Z+d).t)+0.Cz-i(z+d).tl+0(e )

Substituting Eq. (1-13) into Eq. (1-7) and equating to zero

coefficients of the samne cos(.ky)exp(niwt) dependence, the

following solutions of different orders can be determined

we kgT (valid to 0(W)(-)

02 - 3ik 01 )/8T)~-T )(valid to 0(92)) (-5

00 (2 [ik,/(Sw)]10 2(1+3T2) (-6

(valid to 0(s)

02 0 (valid to 0 a)(3-17) ~

36



and

2180 (E-18)

-u')01 -Ak'4 01 2 01 - 0 (valid to 0(as))

where

ca - T+kd(1-Ts)J (E-19)
2k

andA1

A - /8(6T _ST +16-9T s). (E-20)

If the surface tension effects are included, as worked out

by miles 2 , Eqs.(E-19) ad (E-20) should respectively modified

-(kg + Ek )T (E-21)

and

)231
(le) -'

1 (T- 4 pe)l 3  )J (E-22)

A .*Ak(I- 01+p* (1-2

.. 1.



or

a a 4 4
V,(C.,,)= v,(l-Ag r, /(1281 v* . (E-24)

Under the condition that A>O. which moans that 4>1.022/k from

Eq.(E-20). ve(;)(00. As 00(a(ug(C), Eq.(E-18) possesses a

soliton solution of the form

-l [2(we -a )/(Ak4)Jzsech[( a ) - a (E-25)

The surface displacemnent, C(ZDY't) can be calculated from

Eq.(E-7) as

;(~~) -(C-i*01ezp(iot)cosky+c.*.J (B-26)

+Elk loll (T'1osy k 1k01 1(T 1)

- isa l1)sxp(2iwt)cos2k.e.cAo)

In suminary,the solution has the following features:

(1) the shape of the modulation is given by hyperbolic secant

function.

(2) the soliton is stationary along x--direction.

*8
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(3) the amplitude and width of the soliton are determined by

the liguid depth, d. and the frequency of the

excitation for a particular trough.

These characteristics qualitatively match our experimental

observation.

A0
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