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ABSTRACT OF THE DISSERTATION

Discovery of a Nonpropagating Hydrodynamic Soliton

by

Jun-Ru Wu
Doctor of Philosophy in Physics
University of California, Los Angels, 1985

Professor Isadore Rudnick, Chairman

A new type water—surface-wave soliton, nonpropagating
hydrodynamic soliton, has been discovered(l)i This is a
self-trapped, highly 1localized and stationary transverse
water—surface—wave excitation which appears in a rectangular
cross section resonator continuously excited parametrically by
vertical oscillation. )(Fig.' 1.

" An experiment AQsigned to ocreate the soliton and the
features of the soliton are described. The profiles of the
soliton for various frequencies and amplitudes are measured. It
is found that the profile of the soliton is accurately given by a
hyperbolic secant function, The stability region that is the
amplitude and frequency range of the drive in which individual
soliton can be created without hysteresis is experimentally

determined.

The interaction between two solitons has been investigated.
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It is observed that an attractive force exists between two

solitons with the same polarity and a repulsive force exists
between two solitons with the opposite polarity. Under a certain
range of drive frequencies and amplitudes, two ;olitons with the
sam¢ polarity slowly oscillate through each other. The
oscillation frequency has been measured.

The self-trapping mechanism of the soliton is studied. It
is found that the necessary condition for creating the soliton is
that our nonlinear dispersive system has an amplitude dependent
resonant frequency of the transverse mode such that the higher
the amplitude the lower the resonant frequency. The finite
amplitude tuning curves of the rectangular cross section
water—surface—wave have been determined for various 1liquid
depths. The experimental results show that the direction of the
bending of the tuning curve depends om the liquid depth. For a
deep liquid it bends toward lower frequencies, and for a shallow
liquid it bends toward higher frequencies. The so-called
nonlinear coefficieat is determined from these tuming curves.
The cross—over from right leaning to left leaning was found to bde
in good agreement with the theoretical value calculated from the
formula developed independently by I.liles(Z). and by A.Larraza
and S. Pntter-nn(s).

The soliton free decay rate is also measured. It is found
that the soliton initially decays much faster than the

corresponding linear transverse mode, but has the same rate in

xiv

.............

e e et T T T e S e e e A S : DA L e T T
WAL y ARSI TR, S S W ST P -y . 0 S OO, S O, S Y MO LR T W T IS IUIDY AL TP TV S e S P,




R v N ™ A S A o g R Ui SRR SN i e g St et i Bt MCHait St Jhatt it S B et T YT S W TN e e e,

the terminal decay.

RN

T P A N R SR P ey » ~
TS TN TG VL LT O PR R PR P R L




P

%

3 "

r o vree

Rl it e g

A. HISTORX

The concept of a

LY e LW

. R DR N »
AR TIPS PR L L

. 5 — W VTR T Y a TAE T TR VTR TN TN e e e

CHAPTER I

INTRODUCTION

’?eeceit has usually been thought

that in a relativistic field theory,
in order to have stationary bound
states, quantum mechanics must be
orucial. As we shall see, this turns
out not to be the case. In a
nonlinear field theory, with an
appropriate amount of nomlinearity,
stable bound states can exist on a
classical, as well as quantum
mechanical, level., Such bound states
are called solitons,’’

T.D.Lee (4’

solitary wave was first introduced by a
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Victorian engineer John Scott Russell in 1844 in his historical
papesr’’ Report on VWaves’’(appendix A). He used the word
'"solitary’’ to characterize the robust, 1localized, and well
defined '‘heap’’ of water which propagates along a narrow cansl
without change of form and diminution of speed(S). Russell’s
observation appeared to contradict the famous contemporary
scientist Airy’'s shallow water theory which predicts that a wave

of finite amplitude cannot propagate without change of forn(s).

The Airy paradox wasn’t totally resolved until 1895 whea
Korteweg and deVries developed an equation for a water wave which
includes both nonlinear and dispersive effects(7). This equation
has permanent solitary wave solutions(appendix B). It is now

woell known as the KdV equation, and provides a simple analytical

foundation for the study of solitary waves.

A new impetus to this problem was generated by Fermi, Pasts,
and Ulam’s work in the early fifties(s). They used the first
large electromic computer, Maniac I, to investigate the time
evolution of the emergy of a weakly and nonlinearly coupled
system of sixty four harmonic oscillators. They started with the
case vwhen the energy was initially concentrating in ome of the
modes. To their great surprise, the classical equipartition
theorem, describing the thermal equilibrium , turmed out to be

incorrect. After some tens of thousands of cycles, the emergy

invariably returned almost completely to the original mode. This
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is well known now as F.P.U. Recurrence , and is evidence that

the development of such a collective mode is a general

R

phenomenon, It occurs in the other fields of the physics,

outside of hydrodynamics(appendix C). 'ié:

. .
In 1965 N. J. Zabusky and N. D. Kruskal found from their 1
: y numerical simulation of the nonlinear discrete mass string ;ié
y problem that an intially sinusoidal profile would decompose into iii
s series of interacting solitary waves and each one of them ;iﬁi

retained its identity after each intoraction(g). It is the first b;ﬁ

!" time that the term soliton was used to characterize this kind i
o of solitary wave which has the property of emerging from the i;ﬁ
ii collision having the same shape and velocity with which it E;ﬁ
h _‘ entered - a remarkable resemblance to the elastic interaction of égf
5 particles. Ei%
Although the term soliton was originally applied only to the E;i

solitary waves of the KdV equation, there are now several !%3

; nonlinear partial differential equations known to exhibit similar ‘{é
effects. Among them, especially for fluid solitoms, the ;;;

‘{3 Nonlinear Schrodinger Equation (NLS) is a popular one(IO). In ‘Lﬂ

1968 Zakharov predicted that the time evolution of weakly R
o nonlinear deep-water—waves obeys NLS and three years later

Pt Zakharov and Shabat found the exact solution for the

(11) (12)

equation Ia 1975 Yuen and Lake verified the prediction,

and observed the so-called envelope soliton in a narrow water
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tank (appendix D). The envelope soliton cam be pictured as a

quickly oscillating wave cut off by a smoothly modulating

eavelope (Fig.2). Until recently the KdV and envelope solitons

were the only known solitary waves in fluids. Both of these

solitons have to propagate at a non-zero group velocity

determined by their amplitudes and shapes. They are also limited

to motion in omne dimension.

Recent theoretical efforts, as far as fluid mechanics is
concerned, concentrate on extending the one dimensional classical

soliton solution to higher dinensions(13).

B. AN __INTRODUCTION TO THE _NEWLY DISCOVERED NONPROPAGATING
HYDRODYNAMIC SOLITON

The nonpropagating soliton was first observed in Professor

I. Rudnick’s laboratory in the summer of 1983 in a fluid trough

driven sinusoidally and vertically from below so that all the
fluid is caused to accelerate up and down equally. A localized
surface pulse could be observed. The motion of the pulse
appeared to be 30 stable and robust that it was immediately

thought to be a soliton. Furthermore, since it could appear and

be stationary anywhere along the length of the trough and sloshes

back and forth across the width of the trough, more than one

dimension is involved. It is fundamentally different from the

other two types of soliton and is c¢alled s nonpropagating
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C. BRIER REVIEW OF WAVEGUIDE THEORY
-..' .;
To understand the physics of a nonpropagating soliton, it is @
essential to review waveguide theory. Suppose the trough is very ‘ﬁ%:
long so that it can be regarded as a waveguide with length "Ef
- -» 3
coordinate x and width coordinate y (Fig.3). The depth of F B
liquid, d, controls the surface wave phase velocity ,c, giveam by '
4
’ Wt
¢ = (g/k +pk/p)tanh(kd) (1) ﬁ!-
where k is the wave number, g is the acceleration of gravity, p .il
'}
is the surface tention and p is the density of fluid. The @
surface displacement, z, is given by :ﬁ}:
.,;1
R
z=a cos(kyy)exp[i(k‘x x 2nvt)] (2) ‘%ﬁj
R,
l‘ﬁ'."g
where v is frequency, ky' = qn, W is the width of the trough, q = L)
0,1,2,3... and ]!,
1 1 :
3 3 3 3 2 3 ]

kx = (kK - ky ) = (2n/e)( v - Youtof £ ) (3)

= 3¢
Veutoff = 2VW° (4)

The case q = O is the plane wave mode, q = 1 has one velocity

...........
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component, vy’ antinode between the side walls, q = 2 has two,

otc. The onergy of the wave propagates with the group velocity,

v‘, which can be calculated by

) (5)

If v > vcntoff’ kx and c‘ are real, emergy propagates down the

- 3
waveguide in a angle of © = cos 1[1 —(v /v)‘ ] with the x

cutof f
direction(Fig. 4). If v ¢ Voutof £ then kx and s are imaginary.
The amplitude of this particular mode decays exponentially down
the waveguide, and energy will not propagate, but is instead

totally reflected back. This is a so—called evanescent wave.

For a finite waveguide of length L like our resonmator,
z=a cos(kxx)cos(kyy)cos(Zth) (6)

where ka = pn and p=0,1,2,3.... Resonant frequencies are
given by
8

I (/2L + (/L’1°. (7)

The (0,1) mode is the equivalent of being the first cutoff for

the infinite waveguide.

10
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CHAPTER 11
D4
- 2]
L OBSERVATION OF A NONPROPAGATING SOLITON ]
o -
- L
L '’ You make experiments and I make y}
o
theories. Do you know the difference? ;j
A theory is something nobody believes ﬁﬁ
]
except the person who made it, while ;:
an experiment is something everybody .
believes except the person who made

it.'’

A, Einstoin(14)

The apparatus for getting a nonpropagating soliton is quite

simple., We use a Plexiglas (or glass) channel 38 cm long and 2.6
cm wide filled with still water ( unless otherwise specified, the R
working liquid is still water) to a depth of 2 c¢cm. Several drops

of the wetting agent Kodak Photo—Flo are added to the water to

minimize surface pinning effects at the walls, Waves are
generated by placing the trough horizontally on a 18''
loudspeaker (or a vibration exciter, 4809, Bruel Kjaer) whose

cone is driven at a frequency 2v in the vertical direction. As

12
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s.own by Eq.( 7 ), there could be (p,q) modes appearing in the

Yy

trough. T
R

It is found that with this parametric excitation all ﬁQ;}
low-lying (p,0) modes can be observed. When we parametrically .;j
excite the (0,1) mode, however, there is some degree of ‘}ES
competition between various modes at the initial stage, then the ;;jé
sloshing motion in y direction corresponding to (0,1) mode :;:i
developes and appears to be unstable. Finally the waves merge E';i
and focus themselves to one or more excitations highly localized ii;;
in =x-directiom, sloshing in y-direction. Importance is attached ZEZ:
to this self-focussing behavior, It is surprising and intriguing ;?}g
that while all parts of the trough are oscillated with equal 5i&:
amplitude, the vigorous wave motiom occurs in a space of a few iiii

centimeters 1long while the rest of the water remains tranquil.

The phase shift along the x-direction giveam by Eq.( 2 ) for
[ ]

Yeutof £ 5.1 hz and v = 5.4 hz is 90 in a distance of 6 cm.

Yet, within our resolution of 3.. we find no measurable phase

difference between any two points of the disturbance. It is
believed that the absence of a phase difference is of fundamental J!
importance. The wave is not simply a waveguide mode occuring

slighly asbove the cutoff frequency but a new type of

nonpropagating solitary wave. As we proceed we shall see that it

has properties usually associated with solitons.

Figure 5 and 6 are computer generated profiles of the

13




soliton based on measurements taken from photographs, whenm it is
respectively at its peaks on the far side of the trough and on
the near side of the trough. The wave frequency here is 5.1 hz

and the peak amplitude is 2.1 cm.

Figs 7 - 10 contain plots of the heights z of the solitons
as functions of x for various frequencies and the same amplitudes
of the drive, when they are at their peaks on the walls., The
points are experimental data and the curves are least square
fits. From the plots, it is evident that our solitons have the
following features.

The hyperbolic secant, s function which characterizes some
solitons, fits our soliton profile in x direction very well. The
amplitude of the nompropagating solitom can be as high, or higher
than the water depth.

The characteristic length, which is defined as the characteristic
decay 1length at its wings, and the amplitude of the solitom are
determined by the frequency of the excitation for the same
amplitude driven system. They are interrelated in such a way
that the higher the amplitude the shorter the characteristic
length.

The frequency of the sloshing motion of the nonpropagating

soliton is lower than Veutofs 8iven by Eq. 4.

The dependence of z on y when the solitom is at its peak is

found to be far from a cosine function which is linear solution

14
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to the Laplace equation. A best-fit function is found to be an

exponential fumction (Fig. 11).

It is found experimentally that one of the important feature

of our soliton is that the velocity along the x-direction of the -
localized disturbance is a free parameter. It can be zero if the Eifg
trough is sccurately horizontal, which means the soliton ;;ig
maintains its imitial x-position in the trough for the order of :ii;
an hour or more. We hypothesize that this stability is due to 'jffg
pinning effects at the wall. The soliton, however, can be moved Eﬂ£¥é
in wvarious ways. One such way is to tilt the trough. For a ?;E:
slope of 0.05, for instance, the soliton slowly moves to the }52?
shallow end with an average speed of 0.05 cm/sec. It moves in :;;ﬁ
response to geantle jets of air. It can also be nudged by rods of :2;:
soft sponge plastic. Unwanted solitons are killed by stabbing :Z§i§

them with such rods.

- The stability range, defined as the range of the amplitudes :S;f
E and frequencies of the drive in which individual solitons are Eiz%i
E: observed without bhysteresis, were measured and found to be as f::s
;’ shown by the dashed limes of Fig. 12. The eight full-line curves
i are eoqual-wave-response curves., The number on each is the pesk

;; height in centimeters of the soliton above the equilibrium level ;:;i
{’ of the water. Note that at 0.7 and 2.1 cm the curves are 30 i§!§
%: short that they are only represented by points. From the plot we }ﬁ{f
jf see that for the same amplitude of drive, the lower the frequency
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the higher the amplitude of the soliton. Outside the dashed
boundary, changes in drive amplitude and/or frequency are
generally hysteretic. If it exists, the soliton may be unstable,
and there may be a mixture of modes. At a drive amplitude
exceeding 0,081 cm, charateristically a competing mode rather

than a soliton appears. As mentioned before, there is generally

some degree of competition between the various modes of the
trough, especially after the drive is just turned on. However,
if the amplitude and frequency of the drive are appropriately
set, eonergy will finally be sucked into a soliton and it becomes
stable. Several ways are devised to selectively encourage the
appearance of the soliton to the exclusion of competitive modes.
One obvious way 1is to choose the trovgh dimensions which
separate, in frequency, the unwanted modes from the soliton mode.
Another way is to put sponge dampers at both ends of the trough
s0 that the 1longitudinal modes are discouraged. Another very
successful procedure is to nucleate the soliton mode by producing

a local disturbance which is compatible with it. Thus sloshing

motion across the width can be produced by rocking the resonator

or with the help of a hand-held paddle. This can be very f?
effective if it 1is done when the drive is just turned on. The %?
self-focusing process described before is very striking if the gi
soliton is generated by rocking the trough, %E
N

Since the frequency of the wave is half that of the drive, ;f

.

the phase of the drive is repeated every 180.of the wave.

I
Y
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Consequently solitons which are 0° or 180. apart in phase are
compatible and eoqually driven. Thus the only steady state
soliton pairs are in-phase solitons of the same polarity or 180.

out-of-phase solitons of the opposite polarity. An opposite

)

polarity soliton-pair can be generated by sharply twisting the i
trough about a central vertical axis, so that the sloshing in the ?E
left part has the opposite direction of that in the right part. 33
Alternatively an inverted T-shaped paddle immersed in the water Fﬁ
can be twisted to achieve the same result. 1;
The interaction of the solitons was studied. Two solitons ij

of the same polarity attract each other, but only weakly if the ,:E
distance betwoeen them is significantly larger (say a factor of 3) iﬁ
than their characteristic length, Two solitons which start out 'Ej
20 cm apart center to center, for example, take about 15 min to ?
reach a separation where they strongly overlap. When this happen E
their attractive speed greatly increases., If the frequency is iq
substantially lower than the small amplitude v..l, the two Gﬁ
solitons combine; the end result is a single soliton having the ;%
L

amplitude of each of the initial omes. If the frequency is

closer to v, ,, the solitons oscillate through each other. Fig.

13 is a schematic of the stages of the oscillation. In the first Ei
stage, Fig.13(a), there is significant overlap. In Fig.13(b) the E;
overlap is sufficient to create an amplitude at the center which ;}
is comparable with the amplitudes of solitons 1 and 2. In ?F
Fig.13(c) the solitons completely overlap. In Fig.13(d) : !u

24




apparently solitons 1 and 2 have passed through each other and 1‘ 3

-9
oxchanged places while in Fig.13(e) the configuration is the . f
original one. Left undisturbed this sequence repeats )

indefinitely. The longest period of time in which this

phenomenon was observed is 36 hours. An interruption of the

oscillation has never been seen except by accident or design.

A simple transducer which responds to wave heights is a pair
of vertical wire electrodes that dip into the water. At a
constant ac voltage drive, the current due to the conductance of
the water is proportionmal to the wave height at the electrodes.
Fig. 14 shows the response of such a transducer placed at the
midpoint of the oscillating soliton—pair of Fig. 13, In the
lowest trace, which covers the complete sequence of Fig.13, the

paper speed was great enough so that the individual oscillations

are seen (v = 5.32 hz). The frequency of the envelope, which is if;;
much lower than the drive, is 2v/(156x0.5) = 0.068 hz. The upper

traces are recorded at succesively slower paper speeds. Fig. 15 ; ff
is the identical plot for the case that the fluid is pure |
alcohol. The principal difference is that the frequency of the
oscillation is a 1little higher (2v/(103x0.5) = 0.103 hz ) than
the water case. This suggests the surface temsion might be

playing an important role in the oscillation. The surface

tension of alcohol is only one third that of water. iff:
A pair of solitons of opposite polarity in close proximity ﬂlf]
_e
3
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to each other repel each other and slowly move until they are
approximately 12 cm apart, and then maintain this separation
indefinitly. Again the interruption of this state has never been

seen except by accident or design.

By introducing tracers (eccospheres) into the water we have
been able to establish that the motion of solitons is ome in
which there is a transport of excitation with negligible

transport of mass.

Essentially identical phenomena have been observed in an
annular resonator 72 cm in mean circumference and 2.2 cm wide.
This is interpreted to mean that the boundary conditions im the
x-direction are irrelevant to our problem. As many as six
solitons have been observed in the resonator. The polarity of

solitons always alternates in the steady state limit,

26
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FIGURE 12, The range of drive amplitude and frequency in which

individual solitons are observed without hysteresis.
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FIGURE 16 An undamped free oscillating pendulum.
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CHAPTER III

A NONLINEAR PHYSICAL NODEL OF THE NONPROPAGATING SOLITON

'" The soliton digs its own hole

and builds its own walls.''

I. Rudanick

The experimental observations introduced in Chapter II can
be summarized as follows.
(1) The system is very nonlinear as the amplitude of the soliton
can be as high as water depth.
(2) The profile of the soliton in the x direction can be
described by the hyperbolic secant function, which asymptotically
approaches exponential decay funmcotion at its tails,
(3) The frequencies for getting the monpropagating soliton is im
a frequency range 1lower than the ocutoff frequeancy givenm by
Eq.{ 4 ). Moreover the higher the drive amplitude, the lower the
optimal frequency for peak response.
(4) The nonmpropagating soliton has the tendency to move to the

shallow end where the cutoff frequeacy is lower.

What kind of the physical model can we use to describe the

nonropagating soliton based on these experimental facts? A
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N
r’
|
(- reasonable model that would come up is that the cutoff frequency
of the system becomes amplitude dependent as the system appears
to be mnonlinear. The fact that the drive frequency for getting
the nonpropagating soliton is below the cutoff frequency suggests
the model should be such that the higher the amplitude of the {ﬁ{f
waves the lower the cutoff frequency. The simplest system which 3§fﬂ
has this kind of property is an undamped free oscillating :i:j
2
pendulum. When friotion is neglected, the differential equation o
governing the motion of the pendulum is given by i»r,
;;1*
@
13 3 -.-.-::1
X + e, sinx = 0, (8) T
T
T
s 9
where w, = g/L; the angle x designates the deviation from the R
Nt _
vertical equilibrium position (Fig. 16). This is a nonlinear S
differential equation as we know the Taylor Series of sinx is ;{if
®
given by T
1
. . . o
81!8'!"8/3' *x/’l -x/7l Feoovee ( 9 ) ,?:-,":
Only inp the first order approximation, does Eq. ( 8 ) reduce to fitj
®
the linear differential equation: T
- N
: )
E:, 33 )
s . LA 1
¢ -9
c




T+ae =0, (10)

Then the resonant frequency of the system is independent of the
angle. For 1large angles the linear approximation is not
justified. If the second term of the expansion is also included,

Eq. ( 9 ) becomes

T+a’x- (0, 16" = 0. (11)

(15)

This is the Duffing equation The solution (up to third

order) of the nonlinear differential equation can be written as
x = agin(ut +y) + 0.31(192u3)a.sin(3wt + 3v), (12)

where o 1is amplitude dependent and is given by the following

equation:

w(a) =w,” - (w, /8)a". (13)

Now let us use this model to understand the self-trapping

effects of the nonpropagating soliton. At the core of the
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soliton the peak amplitude at the wall is so high that the
corresponding cutoff frequency there is significantly lower than
the small amplitude cutoff frequency given by Eg. (4)
according to our model. However the linear theory is still valid
at both wings of the monmpropagating soliton since the amplitudes
there are pretty small. If the system is drivenm at the frequency
higher than the amplitude dependent cutoff frequency at the core
and 1lower than the small amplitude frequency at the wings, the

energy, which propagates out of the core, gets totally reflected

at the wings, and the wave becomes ovanescent. This H}if
self-trapping is reminiscent of polaron behavior in crystals, and -i?:’
leads to the soliton being called a hydrodynamic polaron. fifé

Consider Fig. 7. The soliton profile in the x direction is
described by z = 2.1sech(x/1.,12)cm. At the core the peak
amplitude at the wall is 2.1 cm , consequently the cutoff
frequency is 1lower than that at the wings. At the tails of the
hyperbolic secant functiom the decay length, 1.12 cm, is equal to
the 1low amplitude waveguide evanescent length, and this is just

the magnitude of llkx. Thus we can determine the phase velocity,

¢, by the following equation: ﬂ;if

= 37.7 em/sec.

1 -ij:'_:

2 s 3 o

c = al/( k‘ + ky ) 1 "

= 2nx5.1/[(n/2.6)" - (1/1.12)"1"
.
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NN Eq. ( 1) gives the value 33.7 cm/sec. This simple calculation R
u - ._
i~; shows that our model is reasonably good. {1
\ -
. By using this model it is not difficult to understand the kﬂ
-'—-‘4‘
self-focusing eoffects observed at the initial stage of the t¢
process of the soliton formation., As the drive amplitude passes ;%
the threshould value of the parametric instability, the amplitude li
of the excitation starts to develope. Wherever the amplitude is L
higher, the amplitude dependent cutoff frequency becomes lower. }Q
As has already been pointed out that the emergy of the excitation {f
likes to go to the place where the cutoff frequency is lower. In i;
A
a snowball-like process, the energy builds up in a very small .
region, and the soliton is formed. Once the soliton appears it ;ﬂ
is stable due to the above—mentioned self-trapping mechanism. L1
Another fact which is important to the stability of the soliton };
n
is the dispersion of the system. If there is no dispersion, f
shock waves form and there is abundant emergy dissipation. &W
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CHAPTER IV

MEASUREMENTS OF TUNING CURVES

As pointed out earlier the necessary conditions for creating
&8 mnompropagating soliton is that & nonlinear dispersive system
has an amplitude dependent cutoff frequency such that the higher
the amplitude the lower the cutoff frequeacy. Therefore in order
to test our physical model it is mnecessary to measure the
amplitude dependent resonant frequency of (0,1) mode of our

trough.

A. INTRODUCTION

The amplitude dependent =resonant frequency of (0,1) mode
calculated by J. liles(Z). and by A, Larraza and S.
Putternnn(3) is given by the following equation ( Eq. (E-24),

Appendix E ):

ve(T) = vy [1-Ag ¢ /(128¥' )] (14)

where v, is determined by Eq. ( 4 ), and A is given by Eq.(E-20)




.......

(Appendix-E) as
A=der’-sT 416 -1 ) (15)

where T = tanh(%d). When correction is made for surface temsion

Eq. (E-20) becomes Eq. (E-22) as

A= et ) T aerh? At e (16)

where p is surface tension, and u. = p(%)z/(ps). From Eq. (14)
it is obvious that the amplitude dependent frequency v can be
greater or less than v, depending on the sign of A, which is in
turn uniquely determined by the depth of the liquid. By putting
A = 0 in the equation the theoretical crossover depth can be
calculated. Experimentally v,({) can be determined by measuring
the tuning curve of the (0,1) mode for various amplitudes, {, of
the surface—-wave oscillation for different depths of liquid. By
using the measured value of v, - the peak response frequency at
small amplitude, v,({) - the peak response frequency at high
amplitude , {, when we sweep the frequency for different drive
amplitudes, the magnitude as well as the sign of the nonlinear

coefficient, A, can be determined from the Eq. (14).

B. APPARATUS
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i’{ﬁ
ii. The resonator nused to measure the tuning curve is a sealed S
- glass basin with the inside dimensions of L 2.0 x W 2.6 x H 7.0 :ﬁ_q
E in centimeters. t,?
The reasom for not using the 1long channel (38 cm) to :i;f
determine the tuning curve is that when the amplitude of the .:
surface—wave gets quite high, solitons appear in the 1long ff:z
channel, The 2cm length is chosen to be smaller than the ijif
characteristic length of the soliton so that the soliton does not ;_i;E
appear and so that the (fundamental resonant frequency of the T;}x;
longitudinal (1,0) mode is well above that of the (0,1) mode. ;i;f
Then the tuning curve is that of the transverse (0.1) mode, and ﬁ;}
as pointed out earlier, this is the equivalent of being at the .; i
first cutoff frequency for a waveguide of infinite length. rii':
4
The resonator is cleaned with a potassium hydroxide, ethyl f;;;
alcohol, solution followed by washing with hot tap water and f;i;i
othyl alcohol. Then it is filled with 100% ethyl alcohol up to :g!?
S
the depth of d as the working fluid. The resonator is put on an -
improvised table on rollers which is driven horizontally by 2 § ) . ]
inches loudspeaker im a direction normal to the sides of the ‘.1

basin so that sloshing occurs across the width of the basin (Fig. Effk:

15). An accelerometer (4367, Bruel Kjaer) is used to measure

the displacement of the oscillating table. It is found that the
displacement is quite sinusoidal —— the second harmonic component

is at least 40 db lower than the fundamental.

-.4
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C. ELECTRONICS

The block diagram of the eletronics is shown in Fig. 16.
The oscillator (Wavetek) is slowly swept over the range of 3 — 7
hz by using an external ramp voltage signal. The output of the
oscillator drives the loudspeaker after going through a power
amplifier. In order to keep the displacement amplitude of the
oscillating table constant when the frequency 1is changed, a
feedback loop is used. The basic principle is as follows. An ac
voltage signal from the accelerometer proportional to the
oscillating table displacement is sent to the charg amplifier
(2635, Bruel 4 Kjaer) then is rectified and filtered by an ac -
dc converter. A dc differential amplifier is used, its negative
input is connected to the output of the ac — dc converter and its
positive input is controlled by a dc regulated power suply. Thus
the amplified negative dc signal from the output of the dc
differential amplifier is related to the displacement amplitude
of the oscillating table in such a way that the higher the
displacement amplitude the more negative the dc output. This
negative dc voltage is sent to the VCA input of the Wavetek to

decrease the amplitude of the ac output of Wavetek. The result

of this simple feedback loop is quite good; it makes the driving
system which originally has a peak in response at about 5§ hz to Efﬂ

become a constant amplitude of displacement driving source. _'4.

40 o
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The transducer for measuring the displacement of the -—ﬂ
surface-wave is a pair of vertical wire electrodes that is . §
immexsed into the liquid. A built-in low output impedance .__l
(600.10) ac voltage (1 v, 1000 hz) from lock-in smplifier (HR - 8, ,f
Princeton Applied Search) is applied on the transducer, which is 1
in series with a 100J1 resister. Since the resistance of the _L
resister is negligible comparing with the impedance of the liquid ‘.—1
between the electrodes (about 100 k1), the voltage drop across {
the resister is proportional to the conductance of the liquid ,___1
between the pair of electrodes. When the height of liquid F.M'
oscillates at about 5 hz as the surface-wave does, the ac
conductance of the 1liquid at the transducer is modulated. The __4
lock-in amplifier picks up the slow modulation signal, amplifies .i
it and sends it to the ac - dc comverter. An x-y recorder is J
used to plot out the tuning curves. ‘
D. THE RESULTS OF MEASUREMENTS ‘
Typical frequency sweeps for several different drive ,_.‘__1
amplitudes for each of six different depths, d, are shown in i
Figs. 19 - 25, It is evident as shown in Fig. 19 that when d = 5
0.5 cm the peak frequemcy increases as the amplitude of _._ﬂ
water—surface-wave becomes bigger. v, is 4.22 hz from Eq.( 4 ) ‘
in good agreement with the observed 4.23 hz. As the amplitude, i
§, goes from 0.1 cm to 0.4 cm in steps of 0.1 cm, the peak _.:
" 5
'11
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FIGURE 19 The (0,1) mode amplitude dependent tuning curves of

a rectangular section resomator (W= 2,6 cm), d = 0.5 cm.

44

....-. ‘, - . ) . -. .- - -
P T R

. . ‘. -'. . QA . .-. .. - " . DY .
- . ~ - . ~ - - . - DR - -t T
Co o W WL WL PR AL WA WL RSP » N W, 20 g WA o W VUL Y Ul WP




.

2l "0l

A R R T T TR e Ve W R W W WL VL LWL VR R U LR TN LT

-—

' ol

-

e,

\Y
[N
LSRN
PR .
L I
(SNSRI T, T

Lo al

-
«
W

‘W0 °T = P ‘3J03VuOse1 owss oy3 JO 9AImo Sujun) juopuodep opn3yjdws opom (1°Q) 9UL °0T FANIIA
(ZH) Aouanbayy i
9'G ov'e v

——

“

-

- " "

e T H;
A

.

-

N
-

PR , -
T PR TSAYY

B
.

~
RN W

L

(Sjiun quo) 8pnjijdwo
45

“va
OIS, PUSPEPL S




-y

-

T

- O w e

BRI " S i

E2ac T i~ -

CRMINC St ~Bine S

Al a S8 anis S Shdnsaat ag |
-

‘Wo ¢°f = P ‘IOIVU0SGI oWES oY} JO soaInd Sujuny jucpuodep opujfrdws opow (1°0) o4l °1z FWOOIA

(ZH) Kouanbayy
¥2'9 8cy

13

(Sjtun 'qJo) apnjijdwo

46

W <

o e e e
LIPS T SO TR W

R T e L LT
T T e T e e
R A T N TR TP Y T N
P'A O U BRI s M T Sl S S S I T

3




‘md L°T = P ‘JOIVNOSII oWES oY)} jJO soAIno Sujun) juopucdop opniyidwe opom ([‘Q) oUL

(zH) Aouanbayy

‘TT FUNOIA

A i
s T

st e Sl 8 oo

Y

47

(S}iun 'qiD) apnjijdwo

Ciae Sl el gt Gnch Sl B C B A B i Al i e

[ N W NERRIGNS

Matatataal

-

Zalalatatata . atala

-

APV W, AT WA WA . Y./

.<.L
<
b
-4
'
.L
A
- 4
. ...
--.n.




o ' 2 ——r—y v Ty T - o ” . ararua -y y- - - v
A .,-\‘ﬁ DTN | MO 14 ‘.‘-44.,...-..&. A _,\A:\.." o -y 41111‘ “4 .11« —— ~.l-l. v ...J«...W-.q ~r ﬂn.ﬁi\.dldl<|1‘!
ﬁ s, D AT .o . . . . _-—7. . S AR T B ‘ B AR PR O AR .. .
R . . . . . . . . I S A L .
et 4 el 2. el el R AN ¥ TR I —lhi 2a_ -:\ ALY ¥ PR R A A N ‘ot ettty . Y IR A A
.

.

-
.
‘r 4
..

s

- PV .
PR L A T S
SealonatataSaialaNatal

‘W0 (°C = P ‘I03%U0SIX owes oY} JO $0AInO Fujuni juopuodop opajlyidws opom ([‘Q) oYl ‘gz FAADIA

R

TN T W T TP TR TR TR Y TN Y R W T YUY T w T w YW

(ZH) Aouanbayy o
be'9 82’y Sé
P

o ;
I 3 Ry
.“ S o
- “. -....JJ
3 c -
. Q. a
® ® ,

. = p
. - o
4 o )
i g

5.

| f N
3 &

3
. |
b . .
% ..,.».nm
w A
p et
. ..-rn
. hd ..ﬂL
3 . o




R S n g M bk dags e B g Aae ust e BasedaoasdE i il pnd g d aii SO RS il I g Sl gl

4.28
frequency (Hz)
The (0,1) mode amplitude dependent tuning curves of the same resonator, d = 3.0 onm.

(S{lun 'qJo) apnjljdwo

FIGURE 24.




DR G il Sl e RS B A I W & g B e s qud A SRR Rt et g

. e N

ChilieY

-

v v
......
...................................
.........
.....

...............
.......

‘N0 8°0 = P ‘IUBNOSOI owws oyl JOo seAIno Surun) juopuedop opnypydwe opom (1°'0) UL ‘57 w0914

ZH) Aouanbai
bo'e (ZH) J

——

ov'e

(S4un 'qio) apnjijdwo

50

S S WO W -

YN

ME IV RN

U .« R BN &
Bt Bttt P PRI T WP I

LA I S )




T
...... T I T T T I T e T = — e e

=

omplilude (arb. unils)

bt

5.03 - j

omplilude (arb. unils)

4.28 6.24
frequency (Hz)
see 478

omplitude (arb. unils)

\

3.40 5.64
frequency (H2)

FIGURE 26. A reduced plot of the combination of
Figs. 19, 23, and 25 for comparisom with the theory.
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frequency shifts up from 4.23 hz to 4.42 hz. This is a typical

right bending tuning curve.

Figs. 20 - 24 are respectively for the case of d = 1.0,
1.5, 1.7, 2.0, and 3.0 cm. The common feature is that the peak
frequencies all shift down as the amplitudes of the responses go
higher and higher; all belong to left bending tuning curves.
Fig. 20 (d = 1.0 cm) shows that the peak frequency goes from
5.00 hz down to 4.94 hz as the amplitude goes from 0.2 cm up to
0.8 cm. Fig. 21 (d = 1.5 cm) shows that the peak frequency goes
from 5.38 hz down to 5.16 hz as the amplitude goes from 0.1 cm up
to 0.7 cm. Fig. 22 (d = 1.7 cm) shows that the peak frequency
goes from 5.4 hz down to 5.20 hz as the amplitude goes from 0.2
cm up to 1.0 em. Fig. 23 (d = 2.0 cm) shows that the peak
frequency goes from 5.43 hz down to 5.03 hz as the amplitude goes
from 0.2 cm up to 1.0 cm in steps of 0.2 cm. Fig. 24 shows that
the peak frequency goes from 5.61 hz down to 5.18 hz as the

amplitude goes from 0.2 cm up to 0.9 cm.

Fig 25 is a plot for the case of d = 0.8 cm. Within the
experimental error the peak frequency remains constant at 4.78
hz, as the amplitude of the wave increases from 0.1 cm to 0.8 cm.
It was experimentally found that at d = 0.8 cm changes in depth
of 0.1 cm produced hardly detectable shifts of peak frequency.
It is concluded that it is at this depth (d = 0.8 = 0.1 cm) that

the crossover from right leaning to left leaning occurs. The
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calculated value of v, is 4.81 hz from Eq. ( 4 ).

.
-y

Figure 26 is a reduced plot of the combination of Figs. 19,

23, and 25. The dash dot curves are theoretical peak values from

Lorsinsd

Fig. 27 contains plots of the nonlinear coefficient, A, i
versus fluid depth, d. The top curve is for the case without -
L

surface tension correction i.e. Eg. (15) and the bottom curve
is for the case with a surface temsion correctiom i.e. Eq.
(16). As shown by Eq. (14) the nonlinear coefficient, A, for
various depths of 1liquid can be calculated when the measured

values of v,, v,({) and { are plugged into the Eq. (E-22). Thus

SO UL S eta e at s A

the experimental value of A can obtained from the data of Figs.

-,

19 - 25, and represented by the points on Fig. 27. From the

curves we can get an independent determination of the crossover

LI T A L

depth to compare with the above-mentioned experimental value (0.8

R _d

cm). This is the value of d at which A vanishes, The

intersection of a horizontal 1line, A = 0, with the top curve

JUL UL SV WO ST ST ST A S 3

yields a value of d = 0.85 cm and for the bottom curve, d = 1.03

{:fi From Figs. 26 and 27, we can see that the curve for Eq.(16)
® is closer to the experimental data than the curve for Eq.(15) at

deep-water region, The reverse is true for the crossover depth.

e AT T

Overall both equations work better in the deep-water region than

e
.
- - -
o - LT,

. shal low—water region. The reason for this is, as pointed by A,
T s4 -

b
b
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Larraza, a result of a breakdown of the pertubation theory as the

system approaches the nondispersive limit at zero depth.

In summary, experimental measurements shows that s
rectangular section resonator (W = 2.6 om) has an amplitude
dependent tuning curves with a peak frequency, v_, such that

P

dvp/d§ <0, for d > 0.8 cm,

dvp/d; =0, for d = 0.8 cm,

dvpld§ >0, for d ¢ 0.8 cm.

The nonlinear coefficient, A, as a function of depth, d, is found

to be in reasonable agreement with the theoretical results of

Milos(Z), and Larraza and Pntternan(s). As to the discrepancy

between theory and experiment, especially at the high amplitude
limit, Professor Putterman expressed his satisfaction with the
extent of agreement. He often emphasizes the theory is a
perturbation calculation good only to third order in %q << 1,

which is much smaller than the amplitudes used in the experiment.
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CHAPTER V

THE FREE DECAY RATE OF THE NONPROPAGATING SOLITON

A. YATER-SURFACE-WAVE DAMPING IN CLOSED BASINS

The damping of water—surfaco—wave in a closed basin has been
extensively studied by Benja-in(ls). Ursell(17). Case,

Parkinson(la). Kenle:an(ls). Van Dorn(zo)

and Miles‘31) . If we
use 6' and 5‘ to respectively represent the decay rate due to the
viscous disippation in the neighborhood of the rigid wall and in
the mneighborhood of the free surface, and SL to denote the decay
rate due to the capillary hysteresis associated with the meniscus
formed at the contact line between the free surface and the rigid
wall, im general aL will be much smaller than the other two for
our case. It was shown theoretically by Ursoll(IG). Case and

(18)

Parkinson that for a clean bounded surface 6. is negligible

comparing with &'. While experimental measured value of 6/5' may

be as large as three. Van Dorn(lg)

clarified the discrepancy by
his experiment, he found that the decay rate agreed with 5' when
the water was fresh, then the former tended to increase with time
to some higher 1limiting value within an bhour or so. He

attributed the observed higher value of 6' to a surface film

produced by spontaneous contamimation. Considering these effects
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lilos(zl) derived the following equations:

1
8, = TREIB] +xt1-APlcosecndFh)) (17)

- - 9 203
= 8, = gx(5P? (€ =C)coth (%) (18)
L 8, = 2251425 [/ (psL0)] (19)

where p is the surface temsion, L is the length of the basin, 4

VT —
S EERT 2N

is the viscosity, (Cr-Ci) the ratio of the surface-film damping

to that which would be produced by an inextensible film, may be
approximately taken betweean O and 1 for 1low frequenocy
water—surface~wave depending the extent of contamination at the
surface, x is a semiemperical coefficient which is related to
capillary hysteresis at the meniscus omn the wall, it may be
approximated by 0.05 for a hydrophilic basin (e.g. clean water

on glass).
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B. FREE DECAY MEASURFMENTS

A sealed glass channel, filled with 100% ethyl alcohol up to
2 cm, with the inside dimensions of L 38x W2.6x H 7.0 in
centimeters is used to measure the free decay rates of the low

amplitude oscillation of the (0,1) mode as well as the solitons.

Let wus first to calculate the decay rate of the (0,1) mode
by using the above-mentioned formula worked out by MNiles.
Substituting the following data into the Eqs. ( 17 ) to ( 19 ):

L=38m, ¥W=2.6cm, d = 2,0cm

p =23 dyne/cm, p = 0.79 g/cns. n =0.012 g/(sececm)

x = 0,05, w = 2nx5.1 rad/sec, o<(cr—ci)<1

we get

-1
6' = 0.2 sec

0¢85, <0.3 sec .

8, = 0.02 sec 1.

Thus 0.2 sec 1< & < 0.5 sec™ 1.

Since we known from experiments that the main dissipation
comes from the walls and the surface of the liquid, the channel
is carefully cleaned by using the same procedure as the one we

used to clean the small basin before the tuning curves were

38




measured. Right after being filled with 100% ethyle alcohol as
the working fluid, the channel is sealed, thus the contamination

at the liquid surface would be mimimized.

Fig. 28 is the plot of a decaying (0,1) mode surface—wave

with the frequency of 5.1 hz and the initial amplitude of 0.5 cm.

IR LT e,
e S E P APARA
Sete @ et
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Decay rate is determined to be 0.4 sec-l. which is in the range 0
of the theoretical prediction. :iif
) ?

The free decay rate of the soliton was determined in two 125:
different ways. In one the channel is drivem by the oscillating ;;;j
table in its width direction, and once the soliton is created and ig%ﬁ
reaches a stable state, the driving source is turned off. The .i,}F

free decaying oscillation data were stored in a wave analyser
(6000, Data Precision) and plotted out by a x-y recorder. Ia the
other method the channel is oscillated vertically at twice the
soliton frequency by a vibration exciter (4809, BrueldKjaer).

Identical decay rates were obtained for both methods.

Fig. 29 is a plot of the free decay soliton with the ?ii;
initial peak amplitude of 1.8 om and the frequency of 5.1 hz. ;!ij
Comparing with Fig. 28 clearly the soliton decays faster than ‘}SE
the corresponding (0,1) mode initially. Fig. 30 is a plot of :&ii
the ampltude versus time. The points are the amplitudes of the jhi

same soliton as Fig. 29, and the circles are the amplitudes of

the same (0,1) mode surface—wave as Fig. 28. From the plot we

can see the initial decay rate of the soliton (frequency = 5.1 K |
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hz, amplitude = 1.8 cm) is 0.7 nc-1 and changes to 0.4 sec_l as
its amplitude drops below 0.5 cm, which is seen to be the same as
the decay rate of the corresponding small amplitude transverse
mode. The possible expanation of the higher inmitial decay rate
is that the soliton has very rich higher harmonic components
which in general decay faster than the fundamental of the (0,1)

mode.,
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CHAPTER VI Tl

")

'.'.
CONCLUSION

*'The laws of physics

should be simple.’’
(22)

A, Einstein

A. SUMMARY

The experimental discovery of & unique nonpropagating
hydrodynamic soliton whose excitation is that of a transverse
surface—wave in a channel is reported. Like the polaron in
solids, its emergy is highly localized through a self-trapping
effect. The profile of the solitom can be decribed by a
hyperbolic secant function and the self-trapping occurs because

the cutoff frequency for the transverse mode is a decreasing

function of the wave amplitude. Accordingly the appropriate
frequency for generation of the peak energy at the center of the :;ﬂ
soliton is below the cutoff frequency at the evanescent wings and ij
above the amplitude dependent cutoff frequency at the peak.
Measurements also show that this self-trapping bohavior is absent

when the 1liquid depth falls below a certain value, which is in : !_

64
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reasonable agreement with the theory(Z)'(3),

The interactions Dbetween solitons are also observed.
Solitons with the same polarity attract each other, while the
force between solitons with opposite polarity is repulsive. The
breather—like internmal oscillation of an in-phase soliton pair is

seen to be very stable,

The free decay rate of the soliton is measured, and the
moasurements show that solitons initially decay faster tham the

corresponding transverse mode but have the same rate in the

el
1
2

terminal decay.
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B. FURTHER EXPE THEORETICAL ESTIGATIONS D
As discussed earlier that the two essential conditions to i}i:

create the nonpropagating soliton are:

8, The system must be dispersive enough to prohibit higher
harmonic generation. ‘::5
b, The ocutoff frequency for propagating a transverse wave must

decrease as the amplitude of wave increases.

It might be possible to find a dispersive system with higher

s
.

j@

dimensions which has a highly 1localized finite amplitude i};?
o
disturbance existing at a frequency 1less than the cutoff e
S
frequency of propagation in the surrounding medium. Thus the e

!
+
|
LR

LR S WP W PR
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disturbance cannot escape but exponentially decays into the |
surrounding region forming the soliton. One possible candidate "

might be the flexure mode in thin plates.

Another possibility is to 1look for the nonpropagating gﬁ
soliton in an acoustic, optical, or even biological ”i
waveguide—-like system. Of couse the first thing to check is to )
see if the system has the properties which satisfy the !ﬁ

Lt

above—mentioned conditions.

There are as yot mno theoretical explanations of the ;-'
breather—1ike oscillations of the in-phase soliton pair and the i?

initial free decay rate of the soliton.
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J. SCOTT RUSSEL'S REPORT ON HIS DISCOVERY f»ﬂd

=

J. Scott Russel'’s Report on VWaves at the British :_!H

Association for the Advancement of Science was first published in . 5?

]

1845(5). The following paragraph is the most fascinating part of j;

the report of his great disvovery: o

o

''I believe I shall best introduce this phenomenon by wf 1

describing the circumstances of my own first acquaintance with ]
@

it. I was observing the motion of a boat which was rapidly drawn '?ff

along a narrow chammel by a pair of bhorses, when the boat :;3?

suddenly stopped — not so the mass of water in the chanmel which ;g{i
®

it had put in motion; it accumulated round the prow of the vessel NEAE

S

in a state of violent agitation, then suddenly leaving it behind, :{:i

rolled forward with great vilocity, assuming the form of a large }E?g

A

solitary elevation, a rounded, smooth and well-defined heap of S

water, which continued its course along the channel apparently }f?

without change of form or diminution of speed. I followed it on i:;:
®

horseback, and overtook it still rolling on at a rate of some 3

eight or nine miles an hour, preserving its original figure some ?j?ﬁ

thirty feet 1long and a foot and a half in height. Its height
67

LTI | :
. y.‘ L >-. -n-.b‘- \
AR L R LR PRI
Er PN 4 -'\.,at".-'\..)'n.,-'.'.:ﬁd. WP S el - P, N P R, . v Py L - AN




&
)
4
4
4
|
h
[
P
4
4
%
'
4
.
3
o
o
'
3
4
1
P
4
C
‘1
7
4
¢
4

o .
-
e :
P o~
-

«

L Al

-l 0
:;?f gradually diminished, and after a chase of one or two miles I i
o lost it in the windings of the channel. Such, in the month of g
Z‘ Augnst 1834, was my first chance interview with that singular and

beautiful phenomenon whkich I have called the VWave of

Translation....''
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APPENDIX B

KdV TYPE SOLITONS

In 1895 Korteweg and de Vries included both dispersion and
nonlinearity, and derived the so—called KdV equation. There are
different versions of derivation for the equation. The one,
introduced as follows, is worked out by M. Olsen, H, smith and

A. C. Scott in 1984(23),

For an incompressible, irrotational and inviscid fluid in a
water tank, the velocity potential (Fig. 3), ¢, satisfies the

Laplace equation:

vl =0 (B-1)

Let us consider waves Dpropagating in x directiom in the
water wink of depth of d. The displacement of the free surface

is specified by the fuaction {(x,t) defined by

z= ;(x't)- (B-'Z)
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Boundary condition at the bottom of the tank is the velocity, v, L

must be zero in z direction:

(vz)z = -d (6¢/5z)z = —d 0 (B-3) >
. '11
::‘-:.
)
At the free surface the boundary equations are specified the :;;
following two equatioins: !a;
89/8z — 89/8xe8l/x ~ 5(/Bt = 0 (B-4) o
‘-;'J
b,

1, .3 L
89/8t + 5(v9) + g{ =0 (B-5)
where the first one is the kinematic doundary equation and the !_,
second is Bennoulli’s equation. ':;1
o
Let us express a solution of Eq. (B-1) satisfying the i'l
boundary conditions of Eq. (B-3) as a wave packet: ]
iy
1 9 ‘
¢ = 5=/ dkcoshk(d+z)exp(ikx)g(k,t) (B~6) = -
Reen ..J

where the weight function g(k,t) has its fourier transform f(x,t)

P
PRSP
PAr AP )

given by

o
£(x,t) = -;*-f dkexp (ikx)g (k, t) (B-17)
Nen
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equal to the value of ¢ at the bottom of the tank, z = -d. We

’.
perform a simultaneous expamsion for z = {(x,t) of Eq. (B-6) in -
terms of a = Cux/d and B = (dIA)z = 0(a), where A is the ‘-
characteristic length of the soliton, and get that _a_j

ik

- 8~ flx,t) -5+ 8 £, (B-8) S
T
. and .
o
: @+ 0 +ia+ 0’ (B-9) S
- °, = -ld Of,x *6ld* O — o
P (B
D Thus Eq. (B-5) becomes e
9 1¢ (B-10) e
. ;t+[(d+§) fx] x 6d xxxx = 0 —— e
.

=

3 ]

by keeping terms to a = §-.x/d and B = (d7/A) = 0(a) in our RO

R
expansion, while Bernoulli’s equation is ~.*

% 1 ol - o
3 £, + 80 -4 fhpp * 200 =0 (B-11) S
3 Lo
- From Eq. (B-10) and Eq. (B-11) the resulting linear dispersion L
- relation for propagating plane wave becomes ‘:::E:.-.,
g e
[ ®
Q: 3 3_3 1.3 .3 IORRY
1 w ¥c, k(1-3kd) (8-12) RS
- -]
. -
[ " I O
C where ¢, gd. ‘» -
e
o R
b )
p°- LN
- SRS
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& )
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L ]




- v—v—v— -
T LIt Aot B dens o Bos e St Ciheis s Biud Sl e T i i o v S b st e S SN A

If the function I = fx and the dimensionless valuables x. =

.
i' t = i°o-§‘ = énux and o = (wey) /(g8 , ) are introduced, Eq.
(B-11) and Eq. (B-12) can be rewritten as follows (dropping the

stars):

S+ Lavapzl_-2pz =0 (B-13)

1 =
I, + G - 3BE . +oZZ_=o0. (B-14)

In order to determine an equation for {, valid to first order in
a and B, we write £ = { + aA + BB and insert in Eqs.(B-13) and

(B-14). The two equations become consistant if A = - %{’ and B =

1 \
Scxx, and yield the KdV equation: -
G+ 8, + 2at8 + 88, =0 (B-15)

t x 3 x 6" ’xxx * i ‘

--:1

"

T

With the time and space variables restored this equation becomes T
the KdV equation in its usual form: '&
».

C, + co8_+ 3(cordrtt, + La’c,t =0 (B-16) 2

t o>y ~ 2'"e x 6 0 xxx * S

o

It is convenient to nondimensionalize Eq. (B~-16) in to a g;j
.

reference frame moving with the basic wave speed o, by -]
oy

introducing the following variables: <
. !;:
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= (x—c,t)/A, T = %'%)’(c.t/A). LI 94 S (B~17)

5' The end result is LQFQ

The soliton solution of Eq. (B-18) is

g i

1

n= ;.‘xsech’[(c 12)’(§ ‘ZC-‘xt)] (B-19)

AlXx

LEa - MRS

Korteweg and de Vries derived a somewhat more general
equivalent of Eq. (B~16), im which they included a surface
teasion y, such that coefficiept dz in Eq. (B-16) is replaced by

L[1-(%f)’ld]. If 4, < (%':)3 (0.5 om for water), A must de

AR  ~ MR

replaced by lA[l—(%ﬁ)’/d]l. and Eq. (B-18) becomes:

N S

ng = 6nny + g, = O (B~20)

ORI N B

\ am e 20 Se ot g o
L N

Now the solution for this equation is a solitary wave of

. rOREE
- depression rather than elevation, SN
- SN
3 R
"_ . W~ :'J
t, From Eq. (B-19) we notice that the velocity of the soliton T
P -—ad o
f,' is related to its amplitude in such a way that the solitoa would fé!fﬂ

C ol i)
’
2’ g o s
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no longer exist as the velocity vanishes.

Olsen, ot

the KdV soliton observed by M.

31 shows

Figure

1(23)
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FIGURE 31. KdV type solitons observed by M. Olsen ot al. Three

different single waves going right. The solid curves are

are experimental, the dots obtained from theory.
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APPENDIX C

F.P.U. RECURRENCE

After world war II, Fermi became interested in the
development and potentialities of the electronic computer. The
first physical problem he decided to try is a problem for
heuristic work. An one dimensional dynamic system of 64
particles with fixed boundary condition and nonlinear coupling
between neast neighbors was studied on the Los Alamos computer
Maniac 1. The nomlinear terms considered are quadratic, cubic
and broken 1linear types. The results are analyzed into fourier
components and plotted out as a function of time., The original
motivation was to observe the rates of thermalization. The
results of the calculations were quite surprising; the time
evolution of  energy shows very little tendency toward

equipartition of energy among the degrees of freedom.

Fig. 32 is s plot of the energy of the system versus time,
The mnomlinear coupling force here is quadratic. The imitial
position of the 64 particles string is a pure sine wave (the
first mode). At beginning, the gradual emergy flow from the

first to the second and the third etc. was observed. Later on,
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however, this gradual sharing of emergy among successive modes ;j
ceases. Instead, it is onme or the other mode that predominates. %?
It is only the first few modes which exchange energy among ;ii
thomselves, Finally mode I comes back to within few persent of ig
the initial value. This kind recurrence occurs to the cubic and !ﬁi
broken 1linear coupling too. Imn 1970 M. Toda proved that this Z;;
kind phenomenon can be approximately represented by the soliton :E

solution of the so—called Toda lattico(24).
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APPENDIX D

ENVELOPE SOLITONS

It was theoretically discovered by Lighthill(ZS) in 1965

that weakly nonlinear (kC-.x =8 ({1, k is wave nmmber, max is
- the characteristic amplitude of the disturbance) deep—~water (kd
1? > 1, d is the depth of water) wavetrain are uanstable to

modulation pertubations. In 1968 Zakhlrov(ll) found that this

;{; modulation instability leads to the fact that the time evolution

of weakly nonlinear deep-water wave obeys the nonlinear

Schrodinger equation: O

1%% + Ad°As0m” = vIA’lA (p-1)
ud
where 0 = ck(i-c‘t), T = cz(lk)’ti c‘ = %%. 1
A= k’/[z(.x)’1°ac‘/au. v = %§<f)’ —2gh/ [k (kh) (gh - c")]

and the free surface of water is

1

z = Re([ei(kh) A/k’Jexpli(kx-wt]. (D-2)

(26)

In 1971 Zakharov and Shabat solved NLS exactly by using

the inverse scattering technique developed by Gardmer et 11(27).

19
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The soliton solution of Eq. (D-2) is

b N

A= al%él’soch[a(n ~2bzlexpliby + iA(a b )<l (D-3)

The solution shows that the disturbance, which is moving with
group velocity cs, is a localized wave packet with a fast
oscillation of carrier frequency w and an envelope specified by

hyperbolic secant function. So it is known as the envelope

soliton.

This theoretical prediction was verified by Yuen and Lake'’s
experinents(IZ) in 1975. They use 2 0.915 m x 0,914 m X 12,9 m
water tank with a wavemaker at one end and s wave—absorbing beach
at the other. The wavemaker is s hinged paddle activated by a
hydraulic cylider. The time evolution of each initial wave was
meagsured by capacitance wave amplitude gauges, which were put at
1.53, 3.05, 4.58, 6.10, 7.63 and 9.15 m in downstream of the
wavemsaker. Experimental results show that any initial wave
packet, other than the soliton envelope described by Eq. (D-3),
eventually evolves into s number of eavelope solitons .
Measurements also show solitons survive from the interaction of

two envelope solitons (Figs. 33 and 34).
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FIGURE 33 The initial pulses disintegrate into solitons. Case ;i:Q
a, initial pulse with soliton profile. Case b, initial pulse
with sech profile and amplitude twice that for soliton profile,
amplitude scale of traces reduced by factor of 2.5 compared with i

case a and ¢. Case c, initial pulse with sine profile.
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FIGURE 34 The interaction of envelope solitons. Left-hand
trace: first pulse alone. Center trace: second pulse alone.
Right-hand trace: the second one overtakes and passes through

the first one.
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APPENDIX E

THE THEORY OF NONPROPAGATING SOLITONS

The theory of nonpropagating solitons were worked out by

2). and by Larraza and Pntter-ln(3) independently. Larraza

lilos(
and Putterman’s approach mneglects friction and drive, while
NMiles's approach includes dissipation as well as parametric

drive, eossontially identical results were achieved. This fact

implies that neither dissipation nor parametric drive are central

to our problem. For the sake of simplicity only the first

approach is introduced as follows.

SN
A For an incompressible inviscid and irrotational fluid in a :k:
o gravitational field, if surface temsion effects are neglected the E;

.

{:f velocity potential, ¢, satisfies Laplace’s equationm.

o ve =0, (E-1)

- For the problem we want to solve (Fig. 3) the following

-J boundary condition should be satisfied:

;;';‘. o
2 ® =0, atz=—d (B-2) ]
o ]
s
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¢’ =0, aty=0, VW, (E-3)

At the free surface z = {(x,y,t) the boundary conditions are
specified by two equations. One is so—called kinematic boundary

condition, which is due to the fact that wave motion becomes

stationary when it is observed in a referemce frame moving with

it. Consequently

L.L

.
]

dsdtlz-¢(x,y,t)] = 0 (E-4)

‘et S A
] PR R,
Wt M e
A M PEP R

or

s
PO

fo

Ct+¢x§x+¢,§y =9, at z = {(x,y,¢t). .

..."‘: oy, .-':'
(N M

.

The other is the d~iamic boundary condition which is specified by

Bernoulli’s equation:

1 4
I

o SRR
L S
M ‘e Co a'. i ’

e, ”
e

¢t+,;+1/z(v¢)’ =0, at z = {(x,5,t). (E-5)

A MR
'J."'-L.'

If the surface displacement {(x,y,t) is eliminated in favor

. -
RO s e v
ot et e '
PRSI

of the velocity potential, ¢, the following equation for ¢ wvalid

up to terms that are cubic in derivatives of ¢ can be derived:
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3
8,488, = —((v9) ~1(8 48, /8)9.1 ) (E~6)
3 3 3
-172( (v9) x¢x+(v¢) ’¢y+(v¢ )zﬂz
2 3
~2/5l(ve)" 8.1, -8+, /5) L(v9)
‘2"":’3” +0(e’), at z = 0.

Up to terms that are quadratic in gradients of ¢, Eq. (E-6) can

be rewritten as <7

8 = -9, +1/2[1/5(8,)" ~(v#)’] at 3 = 0. (B-T)

oo e tteter
2 e IS
OO I RN R R
A P

Considering the weakly nonlinear problem of a disturbance with a
high frequency of motion ® im y-direction modulated by an

envelope {,(x,t) in x-direction and satisfying the following

multiple—scale requirements:*

3

max = ® < 1, (E-8)

(dloggsdx)/(dlogg/dy) = O(s), (B-9)

w se-1=0("), (E-10)

LA At
» 1;':,','.' i U] L I
A M LAt
[ S a "y re e e

:. o

= =
® 3

o [1/(wg,)edg,173t = O(s ), (E-11) Oy
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w,’ = gkT, T = tanh(kd), k = n/W. (E-12)

The solution of Laplace’s equation specified by the boundary

conditions Eqs. (E-2) and (E-3) is given by

¢ = (8, (x,t)[coshk(z+d)/coshkd] ecoskyeexp (itt)+c.c.) (E~13)
+[¢.(’)(x.t)oxp(Zint)+c.c.]+ {cosh2k(z+d) /cosh2kdlecos2ky
-(li,(x.t)oxp(21~t)+c.c.l+¢,(')(x.t)} +([-1/(2k)l-3’¢‘/3x’
O(cosky/coshkd)Ooxp(iUt)[zsinhk(t+d)-doxp(—k(z+d))]+c.c.}

+9, (x+1(z+d), t)+8, [x-1(z+d),t]+0(s").

Substituting Eq. (E-13) into BEq. (E-7) and equating to zero
coefficients of the same cos(mky)exp(niwt) dependence, the

following solutions of different orders can be determined

w,' = kgT (valid to O(e)) (B-14)
8, = [(-3ik'8, )/ (8eT )1 (1-T") (valid to 0(e’)) (B-15)

8, = Lix’ /(8w 18, (143T") (E-16)
(valid to 0(s))

$,() =0 (va11d to 0(s*)) (B-17)
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and
2iedg, /3t-c 379, /0% +(w,’ (E-18)
—")o,-ak" 8,° 9, = 0 (valid to 0(s’))
where
3 j - 3
¢ = A (T+kd(1-T )] (E-19)
and
4 3 -
A = 1/8(6T -5T +16-9T ). (E-20)

If the surface temsion effects are included, as worked out
by lilos(Z), Eqs.(E-19) and (E-20) should respectively modified

w, = (kg + ﬁx')r (E-21)

and
A= %mu—r’)’+}(1+4u‘)“u+r‘)’ - %(-r’- et ®-22)

where u is surface temsiom, and u. = p(%)’/(p.).

We introduce amplitude dependent cutoff frequency, w,({),

which is given by

: (E-23)

v, (0) = w, -AX' ¢
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or
3 3 PR
VelSa) svell-Ag & = /(128W v, "), (E-24)
Under the condition that A>0, which means that d>1.022/k from

Eq.(E-20), w,({)<w,. As w,<wwy({), Eq.(E-18) possesses a

soliton solution of the form

b §
$, = [2(w, -0 )/(AK )13sech[( @, ~w )x/c] (B-25)

The surface displacement, {(x,y,t), ocan be calculated from

Pl e g e

Eq.(E-7) as

ras,

P
[ .

{(x,y,t) = %([-iﬂi,oxp(iut)cosky+c.c.l (E-26)
135" 19, 1* (T +1)c0a2ky + d’lg, 1 (x’-1)

TR I N
Sl

PP A T
P S W N T )

- %k ¢;’ (%‘—l)oxp(Ziut)cOQZky+c.c.])

o

IR}

MY 'a"‘ Lok

In summary,the solution has the following features:

L

(1) the shape of the modulation is given by hyperbolic secant

function.

(2) the soliton is statiomary along x-direction.
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(3) the amplitude and width of the soliton are determined by
- the liguid depth, d, and the frequency of the
excitation for a particular trough.

These characteristics qualitatively match our experimental

observation.
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