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ABSTRACT

The acoustic radiation characteristics of a fluid filled concentric shell
structure are investigated by making use of the simple source surface integral
method. The fluid field is described in terms of surface expansion functiomns,
while the in vacuo structural modes, obtained by using the BOSOR4 structural
program, are used as a basis for the shell motions. The structural code can be
applied to branched shells of revolution, thereby obviating the need to

introduce structural coupling of the two shells in a manner which is external

to the main code.

3

For illustraéive purposes three types of internal harmonic excitations
have been considered: (1) an axisymmetric unit pressure acting on the central
region, (2)-a unit line load acting on the central region, and (3)
concentrated axial loads acting at the poles of the spherical closures, The
far field fluid pressures have been obtained for a wide range of frequencies

for both the single shell and for the double shell with and without inner

fluid.

Because of numerical difficulties encountered when applying the integral
methods to internal fluid problems, some simple approximatians to the internal
fluid problem were considered. The results obtained compare quite favorably

with those of the exact solution over a wide range of frequencies.
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LIST OF SYMBOLS

radius of inner (outer)shell

surface area of inner (outer) shell
acoustic velocity in fluid

distance between field and scource points

pressure influence coefficient associated with k th
field point and j th source point

velocity influence-coefficient associated with k th
field point and j th source point

free space Green's function

n th circumferential component of Green's function
distance between inner and outer shells

wave number

generalized stiffness of the structure

length of cylindrical region

axial and circumferential mode numbers, respectively
generalized mass of the structure

normal to surface at location P

fluid pressure
generalized coordinate

generalized coordinate associated with surface expansion
function

generalized force
generalized force associated with surface expansion function

radial, circumferential and axial coordinates, respectively

mean radius (R = a_42-_b)

meridional arc length of surface of revolution
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source strength distribution function

axial, circumferential and normal components of o th
structural mode

normal displacement component of shell

impedance function associated with j th surface expansion
function

radial coordinate measured from mean radius R
Laplacian operator

fluid density

velocity potential

k th surface expansion function

frequency of excitation

in~vacuo frequency of m th structural mode



I. INTRODUCTION

A vast amount of literature exists concerned with the prob-
lem of predicting sound radiation from submerged structures exe-
cuting induced harmonic vibrations.

Except for some special geometries, for which analytical
solutions can be achieved by the standard technique of separation
of variables, the great majority of investigations have been
carried out by using integral equation methods. Although some
solutions have been obtained by applying the finite element
methods these methods do not compare favorably with the simplici-
ty and economy resulting from the use of the integral methods,
especially so, because the problems of interest are generally
those for which the fluid field is of infinite domain. The form
of the integral equation method most often used to solve the
radiation problem is referred to as the "simple source method".
Here one assumes that the acoustic field potential is expressed
in terms of a layer of monopole sources distributed over the
radiating surface.

Upon invoking the compatibility'relationship for the normal
velocities at the interface, one obtains an integral equation for
the unknown source density function. Once the density function
is determined, one can compute the pressures and velocities
throughout the fluid.

It should be noted that the use of the integral equation
methods does present difficulties at and in the neighborhood of
the characteristic frequencies associated with the interior
Dirichlet problem. However, it has been pointed out byiPiacyzyk

and Klosner [1] that the internal resonance problem which is



indeed present in the transducer type problem; i.e., when the
velocity of the radiating surface is specified, does not occur in
the structural radiation problem if the couple& equations are
solved in the proper order.

In almost all of the investigations of structural radiation
the fluid is incontact with only one side of the radiating
surface. There is, however, a paucity of literature concerned
with radiation from structures having internal and external
wetted surfaces which interact with one another. One such
investigation, carried out by Cambridge Acoustical Associates
considered the radiation from a structure consisting of two flat
plates separated by longitudinal structural membranes, and filled
with a fluid. One side of the composite structure was in contact
with a semi-infinite fluid, while the other side was in vacuo.

A preliminary investigation of a more realistic situation was
conducted aat the Polytechnic Institute of New York. They
considered the acoustic radiation from a structure consisting of
concentric spherically capped cylindrical shells separated by,
and immersed in, an acoustic fluid. The internal shell was
stiffened, and the two shells were connected both structurally and
acoustically.

In the present investigation the problem of radiation from a
concentric shell structure is reconsidered by using a more
refined and efficient approach.

First, surface expansion functions are used to describe the
fluid fields. The expediency of using expansion functions have

been amply demonstrated for both shock [2] and radiation [3]
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problems. Their use results in reduced core memory requirements,
thereby allowing for a more detailed description of the fluid
fields, which is so necessary in order to accurately describe, 1in
particular, the axisymmetric response of the inner fluid.

Second, the in vacuo structural modes, which are used to
describe the shell motions, are obtained by using the BOSOR &
structural program. This highly efficient program uses a circum-
ferential modal expansion, and can be applied to branched shells
of revolution, thefeby eliminating the need to introduce struc-
tural coupling of the two shells in a manner which is external to

the main code.



II. THEQRY

Consider the acoustic radiation characteristics of a shell
sugmerged in an acoustic medium and subjected to a time-harmonic
excitation.

The velocities at the fluid-structural interface are
expressed by sets of orthogonal functions. For the fluid,
harmonic surface expansion functions are used, while for the
structure the in vacuo structural modes serve as an expansion
basis.

In the following, we will describe and formulate the
procedure.

II.1 Fluid Field

The Helmholtz wave equation for an inviscid fluid
undergoing simple harmonic motion is
v% + xHe =0

where ¢ = fluid velocity potential; the wave number

k = w/c;c=acoustic velocity.

The particle velocity is expressed as the gradient of ¢

v = -Y%
and the pressure

3
Y

p=
The solution of Eq. (2-1) corresponding to a unit
source, i.e, the free space Green's function representing a

divergent spherical wave, can be written as

4md
where d=distance from source point Q to field point P. (Fig. 1)

iwt

For convenience, the time factor e is supressed here and

is omitted in what follows, unless clarity demands its inclusion.

(2-1)

(2-2)

(2-3)

(2-4)



By invoking the Helmholtz integral

wm - fiff 6 %a0 - [ 026 4 -5
where € = 0, for P not V, € =% for P on boundary 0, and € = 1, P in V,
we can express the value of ¢ at a point P in the region V in
terms of ¢ and its normal derivative 3¢/on at the fluid bound-
ing surface o . The first:inﬁegrai of Eq. (2-5) represents the
contribution to the potential due to a distribution of simple
sources on the bounding surface, while the second term represents that
due to distributed doublets with axes normal to the surface.
We can, under certain conditions, express the
value of the potential in the region in terms of simple sources
only, or doublets only, distributed over the fluid boundary.
Expressed in terms of simple sources, the potential*
3(®) = - = ”O Se g (2-6)
where S denotes the source strength distribution function. Note

that when point P = p lies on the surface the integrand is

singular, and the normal derivative becomes

3 1 1 9 e =
% (p) = 5 8(p) =PV [3= ”0 § mn Gg—)do ] (2-7)

where PV = principal value.

When considering surfaces of revolution, (Fig. 2),

it is expedient to use a circumferential harmonic expansion, so that

*This expression is invalid when k corresponds to the

internal Dirichlet or Neumann eigenvalue problems (See Ref. 4,

pp. 499, also Refl)
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S = z S ¢o0s nd
n 'n

¢ = E ¢n cos nb

where i
¢ (P) = L G (P,Q)s _(Q)ds
and the pressure influence coefficient
2n -ikd
()
Gn(PsQ) X {0 1 cos ny dy

s is the arc length measured along the generator; r(Q) = distance
from axis to generator at source point Q. Eq. (2-7) is now
written as

a¢n(p) 1 S 3

3 =35 () +PV [Jo Ep[Gn(P,Q)]Sn(_Q)ds]

and the velocity influence coefficient,

3 _ 2w -ikd
+— (G (p,Q)]= - r(Q) i €
8np n e Jo Bnp ( 3 ) cos nB do

Of course, if the field point P does not lie on the surface, then
g @ _ (% 3.
n , [Gn(P,Q)]Sn(Q)dS

Upon subdividing the surface into N bands along
the generator, and assuming that the source strength is constant
|

along the generator within 'each band, we obtain the discretized

forms of Egs. (2-10), (2-12) and (2-14)

N
¢p (k) = §=1 Dy Sy @ —
d¢, (k) c
3 =10, S,
e g e

where ij and ij,nk are the pressure and velocity influence

(2-8)

(2-9)

(2-10)

(2-11)

(2-12)

(2-13)

(2-14)

(2-15a)

(2-15b)



coefficients associated with reference to a field point P in the

kth band and reference to a source point Q in the jth band.

II.2 SURFACE EXPANSION FUNCTIONS - IMPEDANCE FUNCTIONS

Since we are concerned with surfaces of
revolution, a circumferential modal expansion is used. The

solution for each circumferential wave number is obtained and the

" final result obtained by superposition.

Thus for each circumferential mode, an orthogonal
set of fluid surface expansion functions ¥, is chosen for use as an
expansion basis for the normal component of the surface

displacement w, K
w = 4 Y, e 2-16
Z 1 k "k ( )

It is to be understood that all of the abovewk@
have the same harmonic circumferential variation,and that they

have been normalized with respect to the surface area A, so that

JO by ¥y do= A ij (2-17)
The impedance function zJ is defined as the
surface pressure field pj, due to the surface velocity -mﬂﬁ, and
is determined by equating the normal compo:v;ents of the fluid velocity

at the surface to that associated with the function \PJ.
9 _
o =W Y 5 (2-18)

By appealing to Egs. (2-15), we can express the above and the

corresponding impedance function in matrix form,

Py . (2-19a)
{-ﬂ»wj} ]{SQ}

[DPQﬂw



{zg} = iwp[DpQ]{sQ} : (2-19b)

The simultaneous solution of Egs. (2-14) then

yields the source and impedance vectors SQ and 22 which are due

to the surface velocity distribution—iwwj.

In turn, we represent zJ in terms of the surface

expansion functions, so that

. K Y :

i) k -
2= % _Xi— ¥ (2-20)

k=1
- , s .
where v =[] 2y do- n(1+5on)Jor(s)Zkads (2-21)
g
1,n=0
Son = loins0 (2-22)

Observe that ij is the generalized force associated with the

wk-displacement and the pressure field arising fronle S

IT.3 STRUCTURAL-FLUID INTERACTION

The normal component of the displacement of the shell can
be expressed as M
w= ) 4y (2-23)
m m
m=1

where Wy = the w-component of the mth in vacuo shell mode, and

q, = mth generalized coordinate. Again it should be emphasized
that all of the above modes are associated with one particular
circumferential wave number.

For harmonic time-dependent steady-state motion, the shell

equation of motion becomes

.2
Mm(m - wz) ch = Q.mE +Q (2-24)

m m



where¥ = in vacuo frequency of the mth mode, the mth

component of the generalized mass and force is, respectively,

- 2 2 2
ol © “pb(um +V " +W ) do (2-25)
o}
Q, =—Hp 9,40
o (2-26)

and QEm = generalized force associated with the applied loads.
UnsVm,Wm @re the shell displacements along the generator and in
the circumferential and normal directions, respectively.

At the shell-fluid interface, the normal shell velocity

must be equal to the normal fluid particle velocity. Hence

M R
lew = iw )} q W_=iw T oq. (2-27)
m=p O 0 k=1 k Tk

Making use of the orthogonality relationship, we have

m=1 s
A =1 ( W Y dg¢
where km A j; m'k (2-29)
g

Expressing the surface pressure in the form of series
expansions in both the surface expansion functions and the in

vacuo structural modes, we obtain the following

M Q K Q
p = { L S _k ¥ (2-30)
Gl Mo om T LT Y

where the associated generalized forces

Q, =—” PW do (2-31)
)
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Qk = —JJP Wk do (2-32)
a
are related as follows:
K. Ak K n :
Qm kel A m 'k k=1 )\Ilk Qk

g

Recall that pj denotes the surface pressure due to the
surface velocity'wj. Thus, upon observing Eq. (2-16), we
note that the presssure due to the actual surface velocity can be

written as K A3
p=) 1 Z (2-34)
j=1

Upon substituting Eq. (2-34) into Eq. (2-32), we obtain

A~ K s
L A h|
Y = §=1 % ” 27 do (2-35)

g

which, upon substituting (2-21) and (2-28), becomes

A %( A K M
Q = Y3 Q3 =- v 4 L
kT Mg Y §=1 iy 1)1:1=1 No % (2-36)

Combining Egs. (2-33) and (2-36) then yields

K K M (2-37)
% =—1§=1 §=1 E=1 "3y S

The substitution of Eq. (2-37) into the equations of motion (2-
24), 1leads to the following set of coupled simultaneous
equations, expressed in matrix notation,

[K - @M@ L]{q} = {qF} (2-38)

eTa (K} = [0} M] (2-39)

[fM]=[w%%]

(L] = Dyl by ) D]
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The solution of the above equation yields the generalized coordinate

vector q . By substituting q into Eq. (2-28) and then into Eq. (2-34), we obtain

an expansion for the surface pressures at the i nodes (or bands) (i = 1-I)

tog} = 2,000 Hq ) (2-40)

where Z; 5 = z;J = the value of the impedance function at the ith
node associated with the ?j surface displacement.

The far-field pressure is then obtained by substituting the
source strength vector SJ into the discretized form of Eq. (2-10)
and thereupon substituting into Eq (2-3). Thus the far-field

pressure at point P,

- T
p(P) iwp{Gi(P)} [sij][Ajm]{qm} (2-41)

where  G;(P) = pressure influence coefficient vector, [G,(p) = G(P,1)]

Sij = element of source strength vector

[Sij;= Asi Si = product of ith band width and value of SJ at ith node]
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III.ARPPLICATION TO THE DOUBLE HULL SHELL

We now consider the concentric capped cylindrical
shell (Fig 3), and define a set of surface expansion functions
for the inner and outer shells ¢i and wil ¢ respectively.

Following along the lines described in Section II, we have that

M K1 :

I I al 1

wo=) o oad =) 4ty (3-1)
g=] B D k=1 k k
M K2

II TT aII I

wit= ] qW -y (3-2)
ge] W' E;l k Yk

where the subscript I and II refers to the inner and outer
shell, respectively, and all of the above functions have a

common circumferential wave number n. Wp 1S the normal component

of the mth in vacuo mode of the branched shell structure, amiWi

and W1 refer to that part of Wy associated with the surfaces
m

of the inner and outer shells, respectively. K1l and K2 are the

number of expansion functions used for the inner and outer

surfaces, respectively.
As in Section II, we have that

M
S I 3-3
a, Z:Fl )‘km a_ (3-3)
M
“11 11 3-4
m=1
I 1 I
where )‘km = Xl ” WIIn \l’k do (3-5)
(o)

o
-
n
i L
N
Ny
S———
Q
=,
(aa]
WE-H
9
[« W

(3-6)
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We define the impedance functions Zgl as the pressure at the
k;h surface due to the surface expansionwj at the 1-th shell

surface. It is evaluated by following a procedure similar to
that for a single shell*. For the inner fluid the discretized
form of the compatibility equation (2-12) is applied to all

wetted nodes of the inner fluid; for example, when the fluid

velocity is -ﬁwg it is implied that —%%— 0 at all nodal
points lying on the outer shell. When considering the

outer fluid, the impedance function is determined by using the
procedure described for the single shell. Thus for the inner

fluid the impedance functions associated with the displacement¢§

along the inner shell are expressed as

11

i Kl ¥
11 k=1 A1
21
23 =I§2 Yk e
217 L A, Y (3-8)

*As a consequence of the fact that the normal direction is always
assumed to be positive outward, the term 1/2 S(p) which appears
in Eq. (2-7) is replaced by -1/2 S(p) when considering the inner

fluid in contact with the outer shell.
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while those associated with the displacement distribution w}x
of the outer shell are
22
A 5 Ty (3-9)
22 k=1 A2
12
K1l
23, =3 Ty v T (3-10)
12 L, A Tk ¢
where
I . -
T JJ z3, Vi dg (3-11)
Al
21 2 R (3-12)
Y3 JIA “21 Y
pJ
22 _ L SR S (3-13)
and ij = JJ Z22 wk e
)
12 j
Yij ™ JJ 2y, wi do (3-14)
A

1

The subscripts and superscripts 1 and 2 respectively denote the
surfaces of the inner and outer shells which are in contact with
the inner fluid.

Finally, for the outer fluid

K2 Y33 T

i _ ki =
Z:, = (3-15)
33 1{:1 a, Yk
33 II
Ty ™ JJ 23, Y do (3-16)
A

One can readily show that the components of the generalized force

associated with the interaction fluid pressures are
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Kl Kl M

11 I \Iq
= - A
-4 E Dl e
K2 K1 M
21 II 21,1 q
Qn 12@:1 :El:al Zjﬂl Ank.ykjkjm m (3-18)
K2 K2 M
2=y ) )1 gl | (3-19)
B k=1 j=1 m=1 'nk
K1 K2 M
12 I 12 .11 q
= - A A -
¢ E:l §=1 121:1=1 nk' ij im m (3 20)
and Q33 ol EZ X2 M AII Y33 AII . o
n k=l j=1 m=l kj o m

where the negative signs appear on the right hand sides of the
expressions for Q ,Q12Q33 because positive pressures are in the
opposite direction to positive radial displacements for these cases.

The shell equation for time-harmonic motion is

2 E 11 21 22 12 33
M-t 4 =q +aqt+a2t e 4l (3-22)
[K- o M- 1] {9} = (B} (3-23)

where K and UFM have been previously defined [Eq 2-39 ] and

here

L = Dyl Il 03,] + Diizin

II.T. 33

+ g Ty 1051 = Dy ﬁijm 1= gl v

1t (3-24)

jm

-

Utilizing the g-matrix found from Eq. (3-23) , we can
determine the pressure at the surface nodes from the following

expressions

II
Bl = 231000t + 2], 0 gl e} )
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and () = 12); - 21,0 pia -1z 10 a )

The far-field pressures are obtained by simply applying the form

given by Eq. (2-41) to the outer fluid.

(3-26)
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IV.APPROXIMATE SOLUTIONS

Serious numerical difficulties are encountered when applying
the integral methods to solve radiation problems for an enclosed
fluid. As a consequence, the number of nodes (or bands) required
to obtain accurate results must be greatly increased over that
which is required for the external fluid. 1In addition much
greater detail has to be introduc;d when evaluating the fluid'
influence coefficient integrals. Because of this, a preliminary

investigation of some simple approximations was undertaken.

Consider a fluid region within two concentric
cylindrical surfaces and end closure rings as shown in Fig. 4.

Let the normal displacement of the inner surface be of the form

1w
cos (27%y cos nfe’ "

£
closure rings be rigid. For this problem first the exact

, and let the outer surface and the end

solution is obtained and then .approximations of the fluid field
are developed for the situation when the gap between the two
cylinders is small.
IV.1 Exact Solution
The fluid field potential is represented by the

wave equation

i‘i’+l_aé+l 32_'Q+3£Q=_13_2$
2 r Or 2 2 2 2 2
or . r~ 38 o9x £ ot

where r, 6, x, are cylindrical coordinates. For the problem
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described above, the boundary conditions are,

g%(r=a) = -iw Ccos (E%E)COA nb eiwt
aiﬂ =
ar(r b) 0

%% (x=0,£) = 0

The general solution of Eq. (4-1), satisfying the

boundary condition in Eg. (4-4) is

= -]
= mmx _
¢ £=0 E=6[Amnfn(kmr)+ B 8n(kgr)1¢os nd cos () iux
where k = 23— m%ﬁ f wz m%ﬁ
7 ~~7 for—7-2—;
" ¢ £ c 2

and f,, g, are Bessel functions of the lst and 2nd kind of order

n,

NETRY 2 .22
or =l T h=l
w2z T2 T3

and fn, dn are the modified Bessel functions.

The constants App and Bpp 2are determined from Egs. (4-2) and

(4-3), and thus Eg. (4-5) can be written as

¢ = E § iw [f;(kmb)gn(kmr)- g;(kmb)fn(kmr)]

__k 1 ' _' '
m=0 n=0 m fn(kma)gn(kmp) fn(kmb)gn(kma).

cos nf cos (E%E)ei&x

(4-2)

(4-3)

(4-4)

(4-6a)

(4-6b)

(4-7)
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£
where £20) "%fﬁ

The velocity and pressure fields are then obtained by
substituting into Egs. (2-2) and (2-3)
IV.2 FIRST-ORDER APPROXIMATION -~ Serieg Expansion
For the region shown in Fig. 4, we express the fluid
potential in terms of a three-term series expansion through the

thickness,

2
¢ = fo(x,e,t)+ zfl(x,e,t)+z fz(x,e,t) (4-8)
z = r—R(-h z _h)
where 55 23 (4-9)
the mean radius R,=.E;E (4-10)
and the gap h = b-a (4-11)

The fluid equations of motion can be expressed in
terms of Hamilton's variational principle,

t2 t2
t1 tl

where the Lagrangian

9, 2
L=% m{pugf 32+ &2+ &Y - & BNy (4-13)
' c

and the work done by the pressure at the boundaries

1 3¢
W=+ = A 4 m
2 Hopvn e do (4-14)

The (+) sign refers to the surfaces r=a and x=o, and the (-) sign
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refers to the surfaces r=b and x =£., and v, = normal surface
velocity (positive in positive r and x directions).

The variational equation (4-12) can thus be written as

pj _2 £ I_%S;Q _‘Ra_i 1 ls—‘ﬁ}rdedrdx]dtfp

t
2. -l
§ do 14t
o T 2 W x ~ 23t [L ”GVn ot <71
1 ,
1 (4-15)
which upon integrating by parts and enforcing the condition thag
the variation vanishes at the end points, becomes
2 2 2 2
—o[ [[JJ{LS_(rg_cb)+__l_ I S 91 §¢rasdrdx]dt
Je, H)E T2 30?2 a2 2 gl
1 e t
t 2=h/2 (r x=£
2 3 )
p J [ff (§% + vn)6¢ z=-h/2 rdfdx + “(52 + v )6¢| rder]dt =0
1
(4-1¢)
The evanescence of the above surface integral simply leads to
the interface boundary conditions
g% Rl at z=t h/2
d
an (4-17)
g% =-v_at x=0,8 .
If we introduce Eg. (4-8) into Eq. (4-17) , then
~v_(b) .. 3¢’ (b)= ﬁ (h/2) = £, + b,
~v,(@ =5 (a) = 3z ( TYV2)NSk,, “NBED (4-18)
and thus
£, =is %_[vn(b) + v _(a)]
1
£, == [vn(b) - vn(a)] (4-19)
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Since f; ang f72 are expressed in terms of the surface

displacements,

(4-20)

(4-21)

(4-22)

(4-23)

(4-24)

8¢ = Of
It should be noted that this procedure can easily be generalized
- to include a higher - order expansion function.
Upon utilizing the approximation
: 1.1 _ g
R+Z R RZ
and integrating through the thickness, Eq. (4-16) ‘takes the following form
J‘z 3 3 3
[JJ{ZRhf +hf, +h f h™ £ -h” f Rhf +h £ N
¢, 2 L7 R 0000 -2 1,004 g 2,88 + R0, o H R fy
RR> £ -1 (Rnf i e + RO £ )} 8 £ rdédx]ldt =0
13- 2xx 7 (Rhf o+ e PR Sk o
c 12 12
Setting the above integrand equal to zero, we obtain the
differential equation for for
o A Lo Eomey L f = or = -EE[--LfleeHlf FE o+
1 R2 ’ c2 o,tt 2 R'1 1i2r R2 ? R 72,68 " T1l,xx
R et 15 £l et 755 £),et]
[} Cc
Since h/R <<1, @ the terms appearing in the bracket are
neglected and the final equation is
£ +1 f 1 £ =-2f], -1 ¢
0, XX 5 0,00 - =5 O»tt 2 R 1
R c
Letting
f, = £,  (x) cos nb ei N
i i

(4-25)
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we have ¢ . (_@i - EE) £ o= (26, +1 £) 4-26)
0, XX & R2 . 2 R 71 (

We can reformulate the problem in terms of the pressure, so that

P (Po +zp + z2 Pz) cos nd eiwt (4-27)

and the equivalent of Egs. (4-26) and (4-19) are

2 2
[IV) n
Po,xx t G:i 5 ;5 ) p, = -(2p, + %‘pl) (4-28)
and
p, = -1ou ['n(®) + "n(a)]
2
p, = -iow ["n(b) - "n(a)] (4-29)
2h

For the problem described in the beginning of this

. , @
section (Fig. 4), v (a) = iwcos mmx cos nd R
n z

vn(b) =0 (4-30)

and since the end closure rings are assumed to be rigid

_ai= = L -

e 0 at x = o, (4-31)
or alternatively

%§-=Oatx=0,£ (4-32)

By substituting Egs. (4-30) into (4-29), we note that P; and P
identically satisfy this last condition, and it is thus necessary

that
AE’Q:Oatx:o,L (4—33)
9x

Applying these end conditions to the solution of Eq. (4-28),
results in the following

2 2 2
B 2apy w _n”  omm2 m
5 { L /[c2 =2 = (771} cos E’ZX_ (4-34)
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The pressures can thereupon be expressed as

iwt

2 I 2a . 1 22 }

+oz-E o
Bf - af? ol amzy O
2 g2 T

P= pw cos mTx cos nfe

IV. 3  ONE-DIMENSIONAL APPROXIMATION - '"PIPE FLOW"

The linearized form of the continuity and momentum equations

for inviscid, compressible flow are:

89p
=0
T +p V"

o)lo)
i<l

Vp =

O |+

Since the acoustic velocity
—(9p (1/2
c (ap)

we can rewrite the continuity equation as

ke SN p V.V =0

1
2 adt
o4

where in cylindrical coordinates

1 ) 1 %Y
v -v=+ 9 ] z
\) r 37 (ru ) + - 38 + Py

The one-dimensional axi-symmetric or "pipe-flow"
approximation is obtained by satisfying the continuity and
momentum equations on an average by integrating them through the
thickness. The resulting one-dimensional forms of the continuity
and momentum equations are

* 2[b y_(b) - a y (a)] A
L Eeo > e
c t (b2 - az) ax

(4-35)

(4-36)

(4-37)

(4-38)

(4-39)

(4-40)

(4-41)
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adt
d 1 x
L o "3 (4-42)
b
2 & prdr
where (bZ_aZ) (4-43)
b
2 qkrdr
ol =42 (4-44)
X 2 2
(" -a”)

Upon taking the temporal derivative of Eq. (4-41) and the spatial
derivative of Eq (4-42), and combining them,we are led to the

"pipe-flow" equation

) dur Jur
1 %t %t 2 5 ®) - a5 @]
7 .2 2= P YY) } (4=45)
¢ ot ax (b - a

For the axisymmetric problem presented in the previous section,

(n=0), ur(a) = 1w cos 2%5 eiwt
up(b) = 0 (4-46)
and the velocities at the end closures vanish,
* *
ux(o) = ux(ﬂ) =0 - (4=47)
Thus, the boundary-value problem reduces to
2 2 2
3p*+w2 p,*= zabz)o 5 Qoémj‘r}'_x_ eiwt
a2 c (™ - a%)
and
* *
%ﬁ— (o) = %ﬂ— &) =0 (4-48)



and its solution is

p=
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2
280 g cos
2 _ a2yl | @mmy2y.
® - a5 - G

mrx _iwt
e

(4-49)
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V. Numerical Calcylations and Results
The geometry of the capped concentric cylindrical shell used in
the calculations is shown in Figure 3. For illustrative purposes

three types of internal harmonic excitations have been considered:

(1) an axisymmetric unit pressure acting on the central region over,

a length of 22.5", (2) a unit line load acting along the central

region, and (3) concentrated axial loads acting at the poles of

"the spherical closures.

The fluid pressure field has been obtained for nondimensional
frequencies ranging from ka = 0.18 to 3.52 for the single shell and for the
shell with and without inner fluid.

Because of the longitudinal symmetry of the loading functions,
only longitudinally symmetrical structural modes and surface
expansion functions were used. Calculations were carried out by using
a total of 80 structural modes and 35 surface expansion functions for
each of the first four circumferential modes (i.e. for n=0,1,2,3).

The impedance functions for each of the surface expansion functions
were obtained by subdividing each of the wetted surfaces into 180
discrete bands (15 bands for each sphere, and the remaining 150
bands located on the cylinder), so that the band widths were
approximately 1.5 in.

The pressure and velﬁcity influence coefficients were calculated
by using surface integrals for the self-influence coefficients, and
line integrals elsewhere. However for the axisymmetric mode, n=0, all
influence coefficients pertaining to the inner fluid were evaluated by
means of surface integrals, This was necessary because of the
extreme sensitivity of the axisymmetric response of the inner fluid

to numerical inaccuracies, especially at low frequencies.
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All calculations were performed on the CYBER 176. The execution

time required to obtain 80 structural modes for a particular
circumferential mode number was approximately 30 secs for the single
shell case, and 90 secs for the double shell. For the single shell
about 3 minutes of execution time was required to calculate the
influence coefficients and impedance functions associated with all of
the surface expansion functions, and an additional 20 sec were
required to calculate the structural responses and the far-field
pressures. These' were increased to 20 minutes and 40 secs,
respectively for the case of the double shell.

The physical constants used for all calculations are:

FLUID
9.45216x10 > 1b-sec2/in 4

(Density) P

(Acoustic Velocity)e 60,000 in/sec

STEEL SHELL
(Density) p= 73.3 x10™° 1b-sec2/in?

(Acoustic Velocity) c= 202,284 in/sec

Results for the far field pressure at points located 32 radius
(R = 32a;) from the geometric center of the structure are shown in
Figures (5-21)

The radiated pressure field for the axisymmetric loading of the
central compartment is shown in Figs (5-10) . The results indicate that
at the lower frequencies the coupling affected by the inner fluid has
little effect upon the radiated pressure. However, no general trend
can be observed as to the efficacy of using a particular shell

construction to reduce the far field radiation. Indeed, one can note
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that the relative radiation characteristics of the shell
configurations vary with frequency. Of course, it is well known that
the relationship between the forcing frequency and the in-fluid
resonant frequency of the structure is the primary factor in
determining the magnitude of the far field pressures.

Figs (11-15) show the results for the line load acting on the
central compartment, while Figs. (16-21) present the results for the
énd cap loadings. For these cases, as for the previous case, no
general trend is observed.

Because of numerical difficulties encountered when applying
the integral methods to problems in which intermal fluids are
present, an investigation of some simple approximations to the
jnternal fluid problem was undertaken. As a vehicle for this
preliminary investigation, the problem of two concentric circular
cylindrical shells separated by a small gap, which is filled with
an acoustie fluid, was considered (Fig. 4). The outer cylinder
and the end closure rings were assumed to be rigid, and the
normal displacement of the inner cylinder was assumed to vary
cosinusoidally in both the circumferential direction and along
its generator.

Two approximations were considered - a first order
approximation, in which the fluid potential is expressed in terms of a
three-term series expansion through the thickness, and a simple one-
dimensional or "pipe flow"™ approximation. A comparison of the results
obtained from these approximations to those determined analytically
from the exact formulation is given in Fig (22 - 32). It should
be noted that the very large pressures obtained are simply due

to the fact that a unit displacement amplitude of the inner
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cylinder was used.

For the axisymmetric case (n=0), Figs (22-26), the first-order

appréximation yields excellent results over a wide frequency band.

The lowest frequency for which the approximation is

valid varies from ka = 0.088 at the axial wave number, m = 0 to ka = 1.58 at
m=8 . At the highest frequency ﬁor which calculations have beeh
performed (ka = 4.40) the maximum error is about 3%. It should be noted

éhat the one-dimensional approximation yields good results over a more
restricted frequency range, i.e., the error isAwithin 2% for ka = 0.88
to 1./6 tor m=0 and for ka = 1.67 to 2.11 for m=8.

For the asymmetric cases the one~dimensional approximations is
invalid. However the first-order approximation yields results that
are within 2% in error over the range of ka = 0.088 - 4.40 for n=1, m=0 and
over the range of ka = 1.67 - 4.40 for n=1, m=8. Similar results are
obtained for the n=2 modes.

It should be noted that the first-order approximation yields
excellent results over the frquency range where the exact
solultion is expressed in terms of the ordinary Bessel function,
i.e. when wZ/c2 2 m2ﬂ2/£2 . When uz/c2 < m2u2/£2 these
functions are replaced by the modified Bessel functions, and the
three-term series approximation no longer yields meaningful
results, pointing out that a higher-order series approximation 1is
required.

Thus this preliminary investigation of the first-order
approximations has illustrated that such a serjies expansion
through the thickness does lead to a significant reduction of the

effort required to determine the far field radiation characteristics
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for structures which contain an internal fluid. To accomodate a

larger frequency range,

and consider more complex geometries for

which an internal fluid is present, a higher-order series

expansion is required.
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