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ABSTRACT 

The acoustic radiation characteristics of a fluid filled concentric shell 

structure are investigated by making use of the simple source surface integral 

method.  The fluid field is described in terms of surface expansion functions, 

while the in vacuo structural modes, obtained by using the B0S0R4 structural 

program, are used as a basis for the shell motions.  The structural code can be 

applied to branched shells of revolution, thereby obviating the need to 

introduce structural coupling of the two shells in a manner which is external 

to the main code. 

For illustrative purposes three types of internal harmonic excitations 

have been considered:  (1) an axisymmetric unit pressure acting on the central 

region, (2) a unit line load acting on the central region, and (3) 

concentrated axial loads acting at the poles of the spherical closures.  The 

far field fluid pressures have been obtained for a wide range of frequencies 

for both the single shell and for the double shell with and without inner 

fluid. 

Because of numerical difficulties encountered when applying the integral 

methods to internal fluid problems, some simple approximations to the internal 

fluid problem were considered. The results obtained compare quite favorably 

with those of the exact solution over a wide range of frequencies. 
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LIST OF SYMBOLS 

a (b) radius of inner (outer)shell 

Aj (A^) surface area of inner (outer) shell 

c   . acoustic velocity in fluid 

d distance between field and source points 

\j pressure influence coefficient associated with k th 
field point and j th source point 

Dj^j.n^ velocity influence-coefficient associated with k th 
field point and i  th source point 

G free space Green's function 

G^ n th circumferential component of Green's function 

h distance between inner and outer shells 

k wave number 

K generalized stiffness of the structure 

t length of cylindrical region 

™» n axial and circumferential mode numbers, respectively 

M generalized mass of the structure 

n normal to surface at location P 

p fluid pressure 

q generalized coordinate 

q generalized coordinate associated with surface expansion 
function 

Q generalized force 

Q generalized force associated with surface expansion function 

^» 6» X radial, circumferential and axial coordinates, respectively 

R mean radius (R = ^   ) 

meridional arc length of surface of revolution 



-11- 

S source strength distribution function 

U , V , W axial, circumferential and normal components of ni th 
™  '"  ^        structural mode 

w normal displacement component of shell 

Z^ impedance function associated with j th surface expansion 
function 

z radial coordinate measured from mean radius R 

V Laplacian operator 

p fluid density 

^ velocity potential 

tjj k th surface expansion function 

0) 

m 

frequency of excitation 

in-vacuo frequency of m th structural mode 
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I.  INTRODUCTION 

A vast amount of literature exists concerned with the prob- 

lem of predicting sound radiation from submerged structures exe- 

cuting induced harmonic vibrations. 

Except for some special geometries, for which analytical 

solutions can be achieved by the standard technique of separation 

of variables, the great majority of investigations have been 

carried out by using integral equation methods. Although some 

solutions have been obtained by applying the finite element 

methods these methods do not compare favorably with the simplici- 

ty and economy resulting from the use of the integral methods, 

especially so, because the problems of interest are generally 

those for which the fluid field is of infinite domain. The form 

of the integral equation method most often used to solve the 

radiation problem is referred to as the "simple source method". 

Here one assumes that the acoustic field potential is expressed 

in terms of a layer of monopole sources distributed over the 

radiating surface. 

Upon invoking the compatibility relationship for the normal 

velocities at the interface, one obtains an integral equation for 

the unknown source density function.  Once the density function 

is determined, one can compute the pressures and velocities 

throughout the fluid. 

It should be noted that the use of the integral equation 

methods does present difficulties at and in the neighborhood of 

the characteristic frequencies associated with the interior 

Dirichlet problem. However, it has been pointed out by Piacyzyk 

and Klosner [1] that the internal resonance problem which is 
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Indeed present la the transduoer type problea; i.e., when the 

velocity of the radiating surface is specified, does not occur in 

the structural radiation problea if the coupled equations are 

solved In the proper order. 

In almost all of the investigations of structural radiation 

the fluid is in contact with only one side of the radiating 

surface.  There is , however, a paucity of literature concerned 

with radiation from structures having internal and external 

wetted surfaces which interact with one another.   One such 

investigation, carried out by Cambridge Acoustical Associates 

considered the radiation from a structure consisting of two flat 

plates separated by longitudinal structural membranes, and filled 

with a fluid.  One side of the composite structure was in contact 

with a semi-infinite fluid, while the other side was in vacuo. 

A preliminary investigation of a more realistic situation was 

conducted aat the Polytechnic Institute of New York.  They 

considered the acoustic radiation from a structure consisting of 

concentric spherically capped cylindrical shells separated by, 

and immersed in, an acoustic fluid.  The internal shell  was 

stiffened, and the two shells were connected both structurally and 

acoustically. 

In the present investigation the problem of radiation from a 

concentric shell structure is reconsidered by using a more 

refined and efficient approach. 

First, surface expansion functions are used to describe the 

fluid fields.  The expediency of using expansion functions have 

been amply demonstrated for both shock [2] and radiation [3] 
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problems.  Their use results In reduced core memory requiremeats, 

thereby allowing for a more detailed description of the fluid 

fields, which is so necessary in order to accurately describe, in 

particular, the azisymmetric response of the inner fluid. 

Second, the in vacuo structural modes, which are used to 

describe the shell motions, are obtained by using the BOSOR 4 

structural program.  This highly efficient program uses a circum- 

ferential modal expansion, and can be applied to branched shells 

of revolution, thereby eliminating the need to introduce struc- 

tural coupling of the two shells in a manner which is external to 

the main code. 
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II.    TMLQSl 

^ Consider the acoustic radiation characteristics of a shell 

submerged in an acoustic medium and subjected to a time-harmonic 

excitation. 

The   velocities   at   the   fluid-structural   interface are 

expressed   by   sets   of   orthogonal   functions.      For   the   fluid, 

harmonic   surface  expansion  functions  are  used,   while   for   the 

structure the  in vacuo structural modes serve as an expansion 

basis. 

In   the   following,    we   will   describe   and   formulate   the 

procedure. 

II.1    Fluid. Eleld 

The   Helmholtz  wave   equation   for   an   inviscid   fluid 

undergoing simple harmonic motion  is 

(V^  + k^)*  -  0 (2-1) 

where   (j)      =   fluid   velocity   potential;    the   wave   number 

k = w/c;c=acoustic  velocity. 

The particle velocity is expressed as the gradient of  4» 

V = -V(J) (2-2) 
and the pressure 

P-    P 3t 
Ji (2-3) 

The   solution   of   Eq.    (2-1)   corresponding   to   a   unit 

source,    i.e,    the   free   space   Green's   function   representing   a 

divergent spherical wave,   can be written as 
r -ikd 
G - - e  (2-4) 

4iTd 

where d=distance from source point Q to  field  point  P.   (Fig.   1) 

For convenience,   the time factor e^'^*^   is supressed here and 

is  omitted   in  what   follows,   unless   clarity  demands   its   inclusion. 
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By invoking the Helmholtz integral 

^♦("- lit     G |id. 
-" ■'a 

*    |-£    d jl (2-5) 
a        dn 

where e = 0, for P not V, E » % for P on boundary 0, and e * 1, P in V, 

we can express the value of cj) at a point P in the region V in 

terms of <}) and its normal derivative 94)/9n  at the fluid bound- 

ing surface a .  The first integral of Eq. (2-5) represents the 

contribution to the potential due to a distribution of simple 

sources on the bounding surface, while the second term represents that 

due to distributed doublets^ wi«th axes normal to the surface. 

We can, under certain conditions, express the 

value of the potential in the region in terms of simple sources 

only, or doublets only, distributed over the fluid boundary. 

Expressed in terms of simple sources, the potential 

where S denotes the source strength distribution function.  Note 

that when point P = p lies on the surface the integrand is 

singular, and the normal derivative becomes 

-ikd 

1       ^ I e -^^^ da (2-6) 
a    ^ 

IJ (p)  =   I S(p)  - PV    [^ 

where PV = principal   value. 

} a 

When  considering  surfaces  of   revolution,   (Fig.   2), 

it  is  expedient to  use a circumferential  harmonic  expansion,   so that 

*This expression is invalid when k corresponds to the 

internal Dirichlet or Neumann eigenvalue problems (See Ref. 4 , 

pp.  499,  also Ref 1 ) 
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y 
S - *• S C04 n3 

n  n (2-8) 

* - n *n C04 ne (2-9) 

where rs 
*^(P) G^(P.Q)S^(Q)ds 

n     n 

and the pressure influence coefficient 

Vf-«--l^* 
2JT -ikd 

C06  nij; dij; 
o     d 

s is the arc length measured along the generator; r(Q) = distance 

from axis to generator at source point Q. Eq. (2-7) is now 

written as 
3({i, 

3n ̂̂ P^ =|s (p) +PV [f^ |- [G^(p,Q)]S (Q)ds] 
•'op 

and  the velocity  influence coefficient. 

i-[G^(P.Q)]--r(Sl['^ 
P 47r     j 3n 

o p 

-ikd 
(■^1— )  C06 ne de 

Of course, if the field point P does not lie on the surface, then 

Mji  (P) 
9n 

(S 

j     3r^  n [G„(P,Q)]S„(Q)ds n 

(2-10) 

(2-11) 

(2-12) 

(2-13) 

(2-14) 

Upon subdividing the surface into N bands along 

the generator, and assuming that the source strength is constant 
I 

along the generator within each band, we obtain the discretized 

forms of Eqs. (2-10), (2-12) and (2-14) 

l^^^'^-Il^^.   S (j) 

where Dj^j and Dj^j ^^j^ are the pressure and velocity influence 

(2-15a) 

(2-15b) 
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coefficients associated with reference to a field point P in the 

kth band and reference to a source point Q in the jth band, 

II.2 SURFACE EXPANSION FUNCTIONS -• IMPEDANCE FUNCTIONS 

Since   we   are   concerned   with   surfaces   of 

revolution,   a   circumferential   modal   expansion   is  used.     The 

solution for each circumferential wave number is obtained and the 

final   result obtained by superposition. 

Thus   for  each circumferential  mode,   an orthogonal 

set of fluid surface expansion functions ^^   is chosen for use as an 

expansion   basis   for   the   normal   component   of   the   surface 

displacement w, y 

It   is   to   be   understood   that   all   of   the   above ^y^'s 

have the same harmonic circumferential variation,and that they 

have been normalized with respect to the surface area A,  so that 

ij;    ij;    da - A 5 (2-17) 

The  impedance function ZJ  is defined as the 

surface pressure field p j,  due to the surface velocity -H^'p.,   and 

is   determined by equating the nnrmal components of the fluid -velocity 

at the surface to that associated with the function Tp. 

t    =^^j (2-18) 

By appealing to Eqs. (2-15), we can express the above and the 

corresponding impedance function in matrix form. 

<-^*5' ■ "'pQ.n,»=Q> """"' 
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{Z^} - i'«>P[DpQ]{SQ} (2-19b) 

The simultaneous solution of Eqs. (2-14) then 

yields the source and impedance vectors S^ and Z which are due 

to the surface velocity distribution-lonj;. 
*J 

In turn,  we represent Z-'  in terms of the surface 

expansion  functions,   so that 

Z'  =    f      ^    K '       (2-20) 
k=l        ^        ^^ 

where y z\ da = n(l+6^ ) 
K.J       jj K on ; r(s)Z^i|^j^ds (2-21) 

o 

X rl,n=0 
"^on =   ^O.n^O (2-22) 

Observe that y,.    is the generalized force associated with the 

4;, -displacement and the pressure field arising fromijj, . 

II.3  STRUCTURAL-FLUID INTERACTION 

The normal component of the displacement of the shell   can 

be expressed as 
w =  y q W (2-23) 

^  m m 
in=l 

where Wjj^ = the w-component of the mth in vacuo shell mode, and 

q^jj = mth generalized coordinate.  Again it should be emphasized 

that all of the above modes are associated with one particular 

circumferential wave number. 

For harmonic time-dependent steady-state motion, the shell 

equation of motion becomes 

^^'^m' - '^^K = Q,"^ + Q^ (2-24) 
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where'^jjj= in vacuo frequency of the m^h mode, the mth 

component of the generalized mass and force is, respectively. 

M = m ph(U  +V^+W^) d0 m    n>    m 

Qm=-|P*:,da 

(2-25) 

(2-26) 

and QEJ^ = generalized force associated with the applied loads. 

UmrVin,Wm ^^® ^^^  shell displacements along the generator and in 

the circumferential and normal directions, respectively. 

At the shell-fluid interface, the normal shell velocity 

must be equal to the normal fluid particle velocity. Hence 

M K 

m=i k=l k^k 

Making use of the orthogonality relationship, we have 

M 

K  ^ ,  km m in=i 

where km  A ;j  m k 
a 

w i|j, da 

(2-27) 

(2-28) 

(2-29) 

Expressing the surface pressure in the form of series 

expansions in both the surface expansion functions and the in 

vacuo structural modes, we obtain the following 

^ .  U    mi- 
m=l ^m  ■"  k=l ^ '^k 

(2-30) 

where the associated generalized forces 

m =-  P W da (2-31) 
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•]\ P \ da (2-32) 

are related as follows: 

^ = L - W^ 'I . VkQ. (2-33) 
k=l 

Recall  that pj  denotes the surface pressure due to the 

surface velocity ip   .    Thus,  upon observing Eq,   (2-16),   we 

note   that   the  presssure  due  to  the  actual  surface velocity can be 

written as K 
A -j 

p = I q. z (2-34) 

Upon substituting Eq. (2-34) into Eq. (2-32), we obtain 

%  =i q. z^ i|j, da 
k 

which, upon substituting (2-21) and (2-28), becomes 

^  K     ^   K      M 

(2-35) 

(2-36) 

Combining Eqs. (2-33) and (2-36) then yields 

K  K  M 

The substitution of Eq.   (2-37)   into the equations of motion  (2.- 

24),     leads   to   the   following   set   of   coupled  simultaneous 

equations,   expressed  in matrix notation. 

(2-37) 

where 

[K -   OJ^M 'ff L]{q}  =  {Q^} 

[K]   =   [03^ MJ 
m    m 

[wM]   =  [co^M ] 

(2-38) 

(2-39) 

f^^  =  ^\J  f^kj^tXjJ 
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The solution of the above equation yields the generalized coordinate 

vector q    .       8y substituting q into Eq.   (2-28)   and then into Eq.   (2-34),. we obtain 

an expansion for the surface pressures at  the i nodes   (or bands)   (i =  l->-I) 

t-i' - f^l]"^jJ''V> (2-40) 

where Z^^j = ZiJ = the value of the impedance function at the ith 

node associated with the uj  surface displacement. 
j 

The far-field pressure is then obtained by substituting the 

source strength vector sJ into the discretized form of Eq. (2-10) 

and thereupon substituting into Eq (2-3). Thus the far-field 

pressure at point P, 

P(P) -ia)p{G^(P)}T[s^j][AjJ(q^} (2-41) 

where  Gj^(p) = pressure influence coefficient vector, [G (p) - G(P,i)] 

^ij = element of source strength vector 
4 

[S^. > As^ S^ = product of ith band width and value of S"' at ith node] 
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III.APPLICATION TO THE DOnRT.E HULL SHELL 

We   now   consider   the    concentric capped cylindrical 

shell   (Fig  3),   and  define  a  set of  surface  expansion  functions 

for the  inner and outer shells i|jj     and \l)}^   ,  respectively. 

Following along the lines described  in Section II,  we have that 

T      ^ 

m=l m ni 

Kl 

I 
k=l 

S I   ,1 
(3-1) 

TT      ^ TT      K2 
^      =   2.       qW     =   I 

m= k=l 5^^ ^'^ (3-2) 

where the subscript I and II refers to the inner and outer 

shell, respectively, and all of the above functions have a 

common circumferential wave number n. Wm is the normal component 

of the mth in vacuo mode of the branched shell structure, and W""" 

and W   refer to that part of Wm associated with the surfaces 

of the inner and outer shells, respectively. Kl and K2 are the 

number of expansion functions used for the inner and outer 

surfaces, respectively. 
As in Section II, we have that 

^_  M   _ 

K.  ^ , km m m=i 

;il   r   ,11 „ 
^k ' ^ , ^km \ 

m=l 

(3-3) 

(3-4) 

where km A, W^ ^  da (3-5) 

\m- A. ]] 
^V"^ da (3-6) 
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We define the impedance functions z^ as the pressure at the 

kth surface due to the surface expansion i^. at the 1-th shell 

surface. It is evaluated by following a procedure similar to 

that for a single shell*. For the inner fluid the discretized 

form of the compatibility equation (2-12) is applied to all 

wetted nodes of the inner fluid; for example, when the fluid 

velocity is -ioJ^^J it is implied that -^ = 0 at all nodal 
j on 

points lying on the outer shell. When considering the 

outer fluid, the impedance function is determined by using the 

procedure described for the single shell. Thus for the inner 

fluid the impedance functions associated with the displacement i^-^ 

along the inner shell are expressed as 

1   Kl y 

11   k=l ^1  '^ 

hi - l^   ^ \ (3-8) 

*As a consequence of the fact that the normal direction is always 

assumed to be positive outward, the term 1/2 S(p) which appears 

in Eq. (2-7) is replaced by -1/2 S(p) when considering the inner 

fluid in contact with the outer shell. 
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while   those   associated   with   the   displacement distribution \\) 

of the outer shell  are 

where 

22 
K2      Y, t     ,11 

'22 

'12 

k-1 2 

k=l       J. 

^U < ^5 

II 
J 

(3-9) 

(3-10) 

(3-11) 

y^tt = 11 2^21 <'^? 
21 

1 

(3-12) 

and Y. 
22 
kj    " i ^2 \'' ^"^ 

(3-13) 

Y- 
12 
kj )j   ^ll <    <5^ (3-14) 

The   subscripts   and  superscripts   1  and  2   respectively denote  the 

surfaces of the  inner and outer shells which are  in contact with 

the  inner  fluid. 

Finally,  for the outer fluid 

T ^ 
k=l    ^2 

zJ    = y        kJ II 
33      ,4  ,    A.      \ 

(3-15) 

Y. kMj    ^i3<^- 
^2 

(3-16) 

One can readily show that the components of the generalized force 

associated with the interaction fluid pressures are 
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Qi' - -I  I  I ^'nk\] ^jV« (3-17) 
k=l j»l m-l 

21  K2 Kl M       21,1 q 

"^n "L ? 1 ^ 1 ^nk\j^jmm (3-18) k»l j»l m-1 

Q^^ = f f !  X^^ YJ? X" 'I (3-19) 
^   k=I j-1 m-l  nk ^i     i^    ^ 

\2 ^^    f2 ?  ,1   12 ,11 q 
Q„ --III      X  Yi^j X      \ (3_20) 

k-1 j=l m=l HK  J J 

and oo   K2  K2 M   ^^ ^, 

where the negative signs appear on the right hand sides of the 
11  12  33 expressions for Q ,Q ,Q    because positive pressures are in the 

opposite direction to positive radial displacements for these cases. 

The shell equation for time-harmonic motion is 

M  (w^ -   Q?)   q    = Q^    + Q^l + Q21 + Q22 ^ ^12 33 
mm mm m m m m m '■■' ^•^'' 

[K- 0)^ M - L]   {q} = {Q^} (3-23) 

where  K  and   OJM  have been previously defined   [Eq 2-39  ]   and 

here 

utilizing the q-matrix found from Eq.  (3-23)   , we can 

determine the pressure at the surface nodes from the following 

expressions 
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J-^\ _  r-yJ     _ TJ   1   r\^^t{»   \-rvi   ^T\^ and {p-} - [Z^33 - Z^^]   [Xp{q^}-[Z^21^ ^ V^ V (3-26) 

The  far-field pressures are obtained by simply applying the form 

given by Eq.   (2-41.)   to the outer fluid. 
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TV.APPROXIMATE SOLUTIONS 

Serious numerical difficulties are encountered when applying 

the integral methods to solve radiation problems for an enclosed 

fluid. As a consequence, the number of nodes (or bands) required 

to obtain accurate results must be greatly increased over that 

which is required for the external fluid. In addition much 

greater detail has to be introduced when evaluating the fluid 

influence coefficient integrals. Because of this, a preliminary 

investigation of some simple approximations was undertaken. 

Consider a fluid region within two concentric 

cylindrical surfaces and end closure rings as shown in Fig. 4. 

Let the normal displacement of the inner surface be of the form 

cos (H-Ii) cos nee^"^   , and let the outer surface and the end 

closure rings be rigid. For this problem first the exact 

solution is obtained and then approximations of the fluid field 

are developed for the situation when the gap between the two 

cylinders is small. 

IV.1 £xaiLt Solution 

The fluid field potential is represented by the 

wave equation 

3^4.1 _M +i ^.^     _1 1^ 
. 2  r  9r    2 ..2 ^ 2 " 2 .^2 
9r , r  96   9x   e  9t 

where r, 6, x, are cylindrical coordinates. For the problem 

(4-1) 
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described above, the boundary conditions are. 

■^(r-a) - -io) C04 (—j-)C04 n9 e (4-2) 

f<'-"-» (4-3, 

^  (x=o,^) - 0 . (4_4) 

The general solution of Eq. (4-1), satisfying the 

boundary condition in Eq. (4-4) is 

OO     00 

where *     /,,2    2 2    2    2 2 
m yj 

< 

2 2~ ^""^ ~2~ - "^^ (^-6a) 

^'^'^ ^nr Sn are Bessel functions of the 1st and 2nd kind of order 

n, 

,22   2       2   22 
or k JH4 _ H_ for liL- < ^ ^ 

m >j £2   £-2      c2   ^2 (4-6b) 

a^^ ^r\t  Sn a>^6 the modified Bessel functions. 

The constants Amn and Bmn ^'^^  determined from Eqs. (4-2) and 

(4-3), and thus Eq. (4-5) can be written as 

«     "      ^         rf'(k b)g  (k r)    g'(k b)f  (k r), , ^     ,,   ^. 
(j> = 2,      I      T:—      i    cos n6 cos   (—o—)e 

m=0 n=0    m        f'(k a)g'(k b)-f   (k b)g'(k a) 
nm°nm        nmnm 
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where ^;( ^ 3( ) 

The velocity and pressure fields are then obtained by 

substituting into Eqs. (2-2) and (2-3) 

IV.2 FIRST-ORDER APPROXIMATION - Series Expansion 

For the region shown in Fig. A,  we express the fluid 

potential in terms of a three-term series expansion through the 

thickness, 
4) = f^(x.e,t)+ zf^Cx.e.o+z^f^Cx.e.t) (4-8) 

where 
z = r-R(-h < z  h ) 

2 -  - 2 
(4-9) 

the mean radius 

and the gap 

R = a+b 

h = b-a 

(4-10) 

(4-11) 

The fluid equations of motion can be expressed in 

terms of Hamilton's variational principle, 

6 [ I ^ Ldt + f 2 wdt ] =0 (4-12) 

where the Lagrangian 

L = Js 
) 

ip[(-5j-) + (r3Q) + ^3x^ J   2 ^9t^ ^° 

and the work done by the pressure at the boundaries 

(4-13) 

"-*H. P^n 9F ^"^ 
(4-14) 

The  (+)   sign  refers to the   surfaces r=a and  x=o,   and the   (-)   si ign 
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refers to the surfaces r=b and x -I.,  and v^^ = normal surface 

velocity (positive in positive r and x directions). 

The variational equation (4-12) can thus be written as 

t^ r c Cj 

.6-|ida]dt 

.  (4-15) 

which upon integrating by parts and enforcing the condition that 

the variation vanishes at the end points, becomes 

' X.y    '' ^ r      99 dx c      8t 

+ P 
ft- 5, Iz=h/2 fc ^, 

[//  C   +v )64.   L .^„ rdedx+  l!(|! + v )6(b '3r n'^   iz=-h/2 j j   dx        n 

x=£ 
rdedr]dt = 0 x=o 

■1 

The evanescence of the above surface integral  simply leads to 

the interface boundary conditions 

(4-16) 

and 

34) 
3r 

9$_ 
3x 

V    at z=± h/2 n 

-V    at x=o,-£. n 

(4-17) 

If we  introduce Eq.   (4-8)   into Eq.   (4-17)   ,   then 

-v^(b),.|^(t)-||(h/2)  -fi+hf^ 

-V (a)  = f (a)  = H (-h/2)  = f, - 1 (4-18) 

and thus 

f2 = -ihtV^>-V^>^ (4-19) 
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Since fj and f2 are expressed in terms of the surface 

displacements, 

6* - <5fQ (4-20) 

It should be noted that this procedure can easily be generalized 

to include a higher - order expansion function. 

Upon utilizing the approximation 

J^ s 1 --2- (4-21) 
R+Z  R  „2 

and integrating throu:gh the thickness, Eq.   (4-16)   takes the following form 

'i 

{2Rhf    + hf    + h f h_    f -  h_    f Rhf + h^      f,       + 

^   ^2.xx -\ (Rhf     ^^ + h^ f,^   ^^ + Rh^ f_   . .)}  6  f    rdedx]dt = 0 
12 i °'tt      ^    i.tt      j2       2,tt o (^_22) 

Setting  the above  integrand  equal  to  zero,   we obtain the 

differential equation  for  fo' 

^o.xx+ l^^cee-i  f^^^^ = -2f2-^f,-4t-^'i.ee4  f^.ee "^ ^,xx+ 
R '- R 

"*"    ^^2.xx ~^^l.tt "^    ^2,tt] (4-23) 
c c 

Since h/R <<1,   the terms appearing in the bracket are 

neglected and the final equation is 

o,xx  —2 o,WU 2 o»tt     z  K  i 
R C 

Letting 

^i " ^i ^^^ '^"^ '^® ^^' (^-25) 
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2  _2 
we have 

f   + (-^ - ^) fo " - (2f2 + i f, ) (^-26) o,xx  ^j^  r.2  o       /  R  1 

We can reformulate the problem in terms of the pressure, so that 

P - (pQ + z pj + z^ P^) cos n9 e^"^ ^^"27) 

and the equivalent of Eqs. (4-26) and (4-19) are 

+ (4 -4) Po "-(2P2+lpi) <^-28) °'^   c2   R2   °     2  j^ ^l 

2 2 ,0)    n 
P.. .-    . c    R 

and 

p = -ipu) r^n(b) + ^n(a)] 
^ 2 

rV ,,.    V P- - -ipw r n(b) - n(a)] (4-29) 
2 2h 

For the problem described in the beginning of this 

iuc section   (Fig.   4) ,     „ CaN  « iwcos m-rrx cos nB e 

V (b)  - 0 n 
(4-30) 

and since the end closure rings are assumed to be rigid 

M = 0 at X - o, ^ (4-31) 
9x 

or alternatively 
|£ = 0 at X - o, £ 
dX 

(4-32) 

By  substituting  Eqs.   (4-30)   into   (4-29),   we note  that  P^  and  P2 

identically satisfy this last condition,   and it is thus necessary 

that 

3x 

Applying   these   end   conditions   to  the  solution  of  Eq.   (4-28), 

results   in the  following 

2/22 

^o ^ 32 2  / f72 " "2 "  ^r"^   ^ >    "«     -r- (^-3^) b    - a    /     '-        R ^ 
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The pressures can thereupon be expressed as 

2a 
ru2 2,     2 2 ^  „ 

^   2 " „2 "  "   ^ 
c R 

^2 2(b-a) }    cos mTTx   COS n9e ,,   ^^. J- (4-35) 

IV.   3       ONE-DIMENSIONAL APPROXIMATION -  "PIPE FLOW 

The linearized form of the continuity and momentum equations 

for inviscid, compressible flow are; 

9'P 
at 

+ p V • V = 0 

1 „   3V 
- ? ^P = aT 

(4-36) 

(4-37) 

Since the acoustic velocity 

^   ^ap '' 

we can rewrite the continuity equation as 

(4-38) 

-2 l^+p v.v = o, 
c 

(4-39) 

where in cylindrical coordinates 

9u, 
V   -V.i    3f(rV+i   ^ + ^ (4-40) 

The one-dimensional axi-symmetric or "pipe-flow" 

approximation is obtained by satisfying the continuity and 

momentum equations on an average by integrating them through the 

thickness. The resulting one-dimensional forms of the continuity 

and momentum equations are 

1      a.* 2[b u^(b)  - a       (a)]       3,* 
■=—   -^^ + D  + —-   = n 
c2     3t ^ P ,,2 _    2, ^   3x ° 2 2 

(b^ - a^) 
(4-41) 
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and 

vhere 

p    3x " 3t 

rb 
prdr 

2    2 
(b -a^) 

(4-42) 

(4-43) 

.J. \ 
rdr 

(b    - a ) 
(4-44) 

Upon taking the temporal derivative of Eq. (4-41) and the spatial 

derivative of Eq (4-42), and combining them, we are led to the 

"pipe-flow"   equation 

1        :i2 *     »2 * 1        dp        dp 
2 2 2 T- 

2[b ^iT-Cb)  - a -;^ (a)] 3t 9t 
(b^ - a2) (4-45) 

For the axisymmetric    problem presented  in the previous section. 

(n=o), u  (a)  = io) cos ^ e^"*^ 

u^(b) = 0 

and the velocities at the end closures vanish, 

(4-46) 

u*(o) = u*(£) = 0 
X        X (4-47) 

Thus, the boundary-value problem reduces to 

i2„*  2 _ „  . (jj-  x 2aa) P    „^. miTx  iut 

9:4^   c^     (b'^ - a^) 

and 

|E- (o) = Is- «) - 0 (4-48) 
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and  its solution  is 

2 
p*. 2ay_e . ^^3 mx ^ia,t ^^_^^^ 

c 
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V.   Numerical Caloulatlona and Results 

The geometry of the capped concentric cylindrical shell used in 

the calculations is shown in Figure 3.  For illustrative purposes 

three types of internal harmonic excitations have been considered: 

(1) an axisymmetric unit pressure acting on the central region over 

a length of 22.5", (2) a unit line load acting along the central 

region, and (3) concentrated axial loads acting at the poles of 

the spherical closures. 

The fluid pressure field has been obtained for nondimensional 

frequencies ranging from ka = 0.18 to 3.52 for the single shell and for the 

shell with and without inner fluid. 

Because of the longitudinal symmetry of the loading functions, 

only longitudinally symmetrical structural modes and surface 

expansion functions were used.  Calculations were carried out by using 

a total of 80 structural modes and 35 surface expansion functions for 

each of the first four circumferential modes (i.e. for n = 0,1,2,3). 

The impedance functions for each of the surface expansion functions 

were obtained by subdividing each of the wetted surfaces into 180 

discrete bands (15 bands for each sphere, and the remaining 150 

bands located on the cylinder), so that the band widths were 

approximately 1.5 in. 

The pressure and velocity influence coefficients were calculated 

by using surface integrals for the self-influence coefficients, and 

line integrals elsewhere.  However for the axisymmetric mode, n=0, all 

influence coefficients pertaining to the inner fluid were evaluated by 

means of surface integrals.  This was necessary  because of the 

extreme sensitivity of the axisymmetric response of the inner fluid 

to numerical inaccuracies, especially at low frequencies. 
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All calculations were performed on the CYBER 176.  The execution 

time required to obtain 80 structural modes for a particular 

circumferential mode number was approximately 30 sees for the single 

shell case, and 90 sees for the double shell. For the single shell 

about 3 minutes of execution time was required to calculate the 

influence coefficients and impedance functions associated with all of 

the surface expansion functions, and an additional 20 sec were 

required to calculate the structural responses and the far-field 

pressures.  These'were increased to 20 minutes and 40 sees, 

respectively for the case of the double shell. 

The physical constants used for all calculations are: 

(Density) P = 9.45216xl0"^lb-sec2/in ^ 

(Acoustic Velocity)c = 60,000 in/sec 

£IE£L SELLL 

(Density) P= 73.3 xlO'^lb-sec^/in* 

(Acoustic Velocity) c= 202,284 in/sec 

Results for the far field pressure at points located 32 radius 

(R = 32a-) from the geometric center of the structure are shown in 

Figures (5-21) 

The radiated pressure field for the axisymmetric loading of the 

central compartment is shown in Figs (5-10) .  The results indicate that 

at the lower frequencies the coupling affected by the inner fluid has 

little effect upon the radiated pressure.  However, no general trend 

can be observed as to the efficacy of using a particular shell 

construction to reduce the far field radiation.  Indeed, one can note 
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that the relative radiation characteristics of the shell 

configurations vary with frequency.  Of course, it is well known that 

the relationship between the forcing frequency and the in-fluid 

resonant frequency of the structure is the primary factor in 

determining the magnitude of the far field pressures. 

Figs (11-15) show the results for the line load acting on the 

central compartment, while Figs. (16-21) present the results for the 

loadings.  For these cases, as for the previous case, no end cap loading: 

general trend is observed. 

Because of numerical difficulties encountered when applying 

the integral methods to problems in which internal fluids are 

present, an investigation of some simple approximations to the 

internal fluid problem was undertaken.  As a vehicle for this 

preliminary investigation, the problem of two concentric circular 

cylindrical shells separated by a small gap, which is filled with 

an acoustic fluid, was considered (Fig. 4).  The outer cylinder 

and the end closure rings were assumed to be rigid, and the 

normal displacement of the inner cylinder was assumed to vary 

cosinusoidally in both the circumferential direction and along 

its generator. 

Two approximations were considered - a first order 

approximation, in which the fluid potential is expressed in terms of a 

three-term series expansion through the thickness, and a simple one- 

dimensional or "pipe flow" approximation.  A comparison of the results 

obtained from these approximations to those determined analytically 

from the exact formulation is given in Fig (22 - 32).  It should 

be  noted that the very large pressures obtained are simply due 

to the fact that a unit displacement amplitude of the inner 
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cyllnder  was  used. 

For   the   axisynmetric   case   (n=0),   Figs   (22-26),   the   first-order 

approximation yields  excellent  results  over  a  wide   frequency band . 

The  lowest  frequency for which the approximation is 

valid  varies from   ka = 0.088 at  the axial wave number,  m = 0  to ka =  1.58 at 

m=8  .     At   the   highest   frequency f.or which  calculations have  been 

performed    (ka = 4.40)   the maximum error is about  3%.     It should be noted 

that   the  one-dimensional   approximation yields  good  results  over a more 

restricted   frequency   range,   i.e.,   the   error   is   within  2%   for ka = 0.88 

to  1./b  tor m=U  and for ka = 1.67  to 2.11  for m=8. 

For  the  asymmetric  cases   the  one-dimensional   approximations   is 

invalid.     However  the   first-order  approximation  yields  results  that 

are   within  2%   in  error  over   the   range   of   ka = 0.088 - 4.40 for n=l, m=0 and 

over   the   range   of   ka = 1.67 - 4.40  for n=l,  m=8.     Similar results  are 

obtained   for   the   n=2   modes. 

It   should   be  noted   that  the  first-order approximation yields 

excellent  results over  the  frquency range  where  the  exact 

solultion   is   expressed   in   terms   of  the  ordinary  Bessel   function, 

i.e.   when coW k mV/i^ •      When u^/c^ < mV^^ these 

functions  are  replaced   by  the modified  Bessel   functions,   and  the 

three-term series  approximation no  longer  yields meaningful 

results,   pointing  out   that   a   higher-order   series   approximation   is 

required. 

Thus this preliminary investigation of the first-order 

approximations has Illustrated that such a series expansion 

through the thickness does lead to a significant reduction of the 

effort required to determine the far field radiation characteristics 
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for structures which contain an internal fluid.  To aecomodate a 

larger frequency range, and consider more complex geometries for 

which an internal fluid is present, a higher-order series 

expansion is required. 
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CONCENTRATED LOAD ON ENCLOSURES ; f » 500 Hz 



D    SINGLE   SHELL 

O    DOUBLE   SHELL (NO  INNER   FLUID) 
•    DOUBLE   SHELL (INNER FLUID) 

15* 

50     60     70    80    90     100 

PRESSURE   IN   DECIBELS 

<t>'0* 

I 
Ul 
o 
I 

FIG. 19   RADIATED   FLUID   PRESSURE    (dB)   AT    R « 32 
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