
AD-Ai55 465 DEVELOPMENT OF R DEDICATED SPEECH WORK STTION(U) AIR /
FORCE INST OF TECH WRIGHT-PATTERSON AFB OH SCHOOL OF
ENGINEERING W H LIEBER DEC 84 RFIT/GE/EE/84D-7i

UNLCLSSIFIED F/G 9/2 NL

mIhllEllllllEI
lflflllfl.flfll

Sllfllfllflfllflflflfl

lllllllllllll
lflfllllllllllf
EIIIIIIIIIIIIu

Ki..

28i 111112.5

U.111112.0____

11111 1.1 IM11111" 1- IIIII' ,,2.o

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-I963-A

S. . - .. " . ' . , -' ' - • ... - .. -. < . - -., .. . -. ..' ,- .-..

.. - ° S . - . o . . - " ° , . - . . . % . . ,, .,, " . • ' ° . . - . . , ' . - ' . - . . . " . . . - ' . , - . - ,. - '

.. r. -- ~ -. + , -' , - ' . -- - , r r--U ° -z - &L -L +-- - .; - ; -'' . " - .- - + - °.

. IIFPH)I)t1CD Al GoVi IiN, 1' f .PENSF

LC)
If)

DEVELOPMENT OF A DEDICATED
SPEECH WORK STATION

THESIS

AFIT/GE/EE/84D-71 William H. Lieber

Capt USAF

~DTIC

DEPARTMENT OF THE AIR FORCE G
2 AIR UNIVERSITY -

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force gos*, Ohio

*.95 5 21 034
--.'., ' ~ ~ . . -. . ,. -. .'F> - -.

AFIT/GE/EE/84D-71

Accessioni For

DTICm TAB
Unnnnounced f
Ju!;tificatio

Distribution/_,

Availability Codes
Avail and/or

Di t Special

DEVELOPMENT OF A DEDICATEDI
SPEECH WORK STATION

THESIS .

AFIT/GE/EE/84D-71 William H. Lieber
Capt UJSAF

DTIC
JU14 0 JiO)

Approved for public release; distribution unlimited.G]

00

AFIT/GE/EE/84D-71

DEVELOPMENT OF A DEDICATED

SPEECH WORK STATION

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

in Partial Fulfillment of the

Requirement for the Degree of

Master of Science in Electrical Engineering

by

William H. Lieber, B.S.E.E.

Capt USAF

Graduate Electrical Engineering

December 1984

Approved for public release; distribution unlimited.

Preface

This thesis project attempted to design and develop a

dedicated speech work stationj T-he w-r-kat-xn-would

accept one of sixteen possible analog signal inputs,

digitize the input and store the resulting data in the

expanded computer memory of a modified Cromemco S-I4 bus

microcomputer system. Once stored, the data could be

relocated to magnetic floppy disk" storage or graphically

displayed on a CRT. . / 7-

I would like to thank Major Larry Kizer, my thesis

advisor, for his guidance and support during this thesis

project. I would also like to thank Major Kenneth G.

Castor, my faculty advisor, and Capt Dale Hibner for their

encouragement.

Finally, I would like to thank my wife Colletta, my

daughter Elizabeth, and my son Matthew for their love and

understanding which allowed me the enormous amount of time

required to complete this thesis project and graduate from

the Air Force Institute of Technology.

William H. Lieber

..'-.. ~ ...

•" •• . - .

Contents
Page

Preface ii

List of Figures v

Abstract .. vi

I. Introduction I-i

Background -1
Problem -2
General Approach -2

II. Detailed Analysis II-1

Cromemco/S-100 -1 L
Hardware Development -4

Software Development -16
Graphics -28

III. Design and Fabrication III-1

Hardware -1
Software -3

IV. Validation IV-1

V. Conclusions and Recommendations V-1

Bibliography BIB-I

Appendix A: Software Program Listings A-1

SPEECH.C-SPEECH.H 3
TITLE.C -6,'1|

INTRO.C -8
DESCRIBE.C -10
DEFAULTS.C -17
MENU.C -20
QUIT.C o......... -23
ANALOG.C -24

DIGITAL.C o................. . -27
STORE.C -30
RETRIEVE.C -34
GRAPHICS.C -38
PLOT.C -44
RIGHT.C -48

LEFT.C -51
VOLTLINE.C -54
INPUT.C -55
DMA.C -61
TIMING.C -65

CLEARMEM.C A-70

NOP.CSM .. -73
WAIT.CSM -74

Appendix B: Integrated Circuit Layout B-1

BOARD 1 - BOOT UP CONTROL................. -1
BOARD 2 - DIRECT MEMORY ACCESS -2
BOARD 3 - DIGITAL TO ANALOG CONVERSION ... -3
BOARD 4 - ANALOG TO DIGITAL CONVERSION ... -4

Appendix C: List of Integrated Circuits Used ... C-I

Appendix D: Wiring Diagrams D-1

BOARD 1 - BOOT UP CONTROL 1................ -
BOARD 2 - DIRECT MEMORY ACCESS -2
BOARD 3 - DIGITAL TO ANALOG CONVERSION ... -5
BOARD 4 - ANALOG TO DIGITAL CONVERSION ... -6

Appendix E: Timing Diagrams E-I

MEMORY TO MEMORY TRANSFER -i
DIGITAL TO ANALOG CONVERSION -2
ANALOG TO DIGITAL CONVERSION- 3

Appendix F: DMA Controller Chip F-i

Appendix G: System Timing Controller Chip G-I

Appendix H: Analog to Digital Module H-I

Appendix I: Digital to Analog Module I-i

Appendix J: MB64 Static RAM Users Guide J-i

Appendix K: Imaginator - Graphics Instruction

Set K-i

Appendix L: Adding Machine Language Code to a

"C" Language Program L-1

Appendix M: Long (32-bit) Integer Package for a

"C" Language Program M-I

Vita: .. VITA

iv

0,

List of Figures

Figure Page

II-1 Analog-to-Digital Conversion 11-7

11-2 Digital-to-Analog Conversion I-10

11-3 Data Samples Storage Locations 11-12

11-4 Extended Memory Addressing 11-13

11-5 Cromemco Boot-up............ 11-14

11-6 Decoder Chip's Port Addresses and

Functions I......... 11-19

11-7 A-to-D or D-to-A Command Register 11-21

11-8 MEM-to-MEM Command Register 11-21

11-9 Clear Memory Command Register 11-22

II-10 Channel 0 Mode Register 11-23

II-11 Channel 1 Mode Register 11-23

11-12 Channel 2 Mode Register 11-24

11-13 Channel 3 Mode Register 11-24

11-14 Master Mode Register 11-25

11-15 Out 1 Counter Mode Register 11-25

11-16 Out 2 Counter Mode Register 11-26

11-17 Out 4 Counter Mode Register 11-26

11-18 Out 5 Counter Mode Register11-27

11-19 Graphical Display Format 11-29

v

7- L;- 1- V.- UC

Abstract

As a result of the hardware and software developed

under this thesis, the AFIT Speech Lab's Cromemco S-10-0 bus

microcomputer system can be configured as a dedicated stand

alone speech work station.

Hardware is now developed which provides an extended

memory capability for storage of analog-to-digital sampled

analog speech. Data storage is via a direct memory access

(DMAY capability. The harAware also supports providing an

analog output from previously stored data samples via a

digital-to-analog capability.

Software is developed which controls the analog input

to be sampled and the sampling rate to be used. The

software also allows the sampled data to be graphically

displayed 5 * samples at a time on a video display screen

or to be placed in or returned from more permanent storage

on a magnetic disk.

The detailed analysis, development, and fabrication of

the hardware and software is also contained in the thesis.

* ,

vi

.......

. o...
PSC t.e.Alt•.. 2 --..

DEVELOPMENT OF A DEDICATED

SPEECH WORK STATION

I. Introduction

Background

The Electrical Engineering department of the Air Force

Institute of Technology (AFIT) needed to expand the

capability of an existing Cromemco S-100 bus microcomputer

system. This system was used to sample and digitally store

analog speech signals. The modification was required

because the existing 64K system was limited to sampling

approximately three seconds of speech. This time restraint

reduced the effectiveness of the system as a speech analysis

tool. This resulting thesis project involved both the

hardware and software modification of the existing system.

The hardware modification portion expanded the memory

storage capability of the system, thus allowing increased

digital storage of sampled analog signals such as speech.

The software additions controlled the data sampling, data

storage, and graphical display of the digitized analog

signals. Chapter One discusses the background of the thesis

and its general approach. Chapter Two provides insight into I
the hardware and software development. Chapter Three

addresses the design and fabrication involved in the thesis.

And finally, Chapters Four and Five address validation of

the thesis effort and provide some conclusions and

recommendations.

. . . .
.........................

2 /" I~--i

Problem

The problem addressed by this thesis is the development

of a stand alone speech acquisition and graphical display

station. This computer station is used to sample analog

speech, provide digital storage of the samples, and allow

graphical display of selected portions of the stored data.

The speech station is a tool to be used by speech

researchers.

General Approach

First, the dedicated speech station uses the existing

equipment located in building 640, room 241. The existing

Cromemco S-100 bus microcomputer system and associated video

display terminal had to be modified to acquire and display

analog speech. The original Cromemco memory is limited to

64K bytes, where 1K equals 1024 bytes and one byte equals

eight bits. The memory had to be increased by adding six

MB64 64K static Random Acess Memory (RAM) boards to the S-

100 bus.

Second, a direct memory access (DMA) controller has

been added to the microcomputer system. The DMA capability

and additional memory are required to allow high sampling

rates and to avoid losing any data samples due to the

relative long amount of time required by the computer to

write the data samples onto magnetic disk for storage. The

additional memory is addressed by using an extended memory

addressing format.

1-2

M W V -]-

Third, the video display unit terminal associated with

the Cromenco system contains a high resolution graphics

capability called Imaginator. This capability allows the

system user to acquire, plot and edit selected portions of

-" the data samples stored in the static memory. Data sample

manipulation to and from magnetic disk storage is also

.-. allowed.

Finally, the "C" programming language is used whenever

possible to write the software routines.

1I

FII
0:-. .

i °

Ii. Detailed Analysis

This chapter briefly describes the Cromenco S-100 bus

microcomputer system. It also includes a discussion of the

hardware and software designs necessary for the speech

station to operate. Finally, the graphics software is

discussed separately.

Cromenco/S-100

The Cromemco S-100 bus microcomputer consists of a

chassis housing a built-in power supply and an S-100 bus

mother-board made up of twenty-one 100-pin connectors. Each

of these connectors provides a slot into which a S-100

compatible circuit card can be inserted. Each of the slots

on the Cromemco mother-board receives the same set of

signals; therefore, any circuit card that is compatible

with the S-100 bus can be plugged into any of the slots.

Consequently, there are no special or reserved slots in the

Cromemco system. The only consideration that must be made

is that no more than one card can be assigned to the same

memory addresses and/or input/output (I/O) address. The

built-in power supply provides three unregulated voltages

(+8, -18, and +18 volts) to the bus. Each circuit card

inserted into a slot has to have its own on-board

regulator(s) capable of supplying the power required by the

circuit.

The S-100 bus has become one of the most popular hobby

II-i

busses and is now considered an industry standard. MITS

Inc. first introduced the S-100 bus on their 8080-based

Altair computer. Since the S-100 bus is originally designed

to support the 8080 processor, most of the bus signals are

representative of the signals generated by an 8080

processor. Almost all of the 100 lines of the bus have a

standard predefined function and are described in many

easily available publications (Ref 1). Basically, the lines

are divided into four major groups. These groups consist of

the power and ground lines, the address lines, the data

lines, and the control lines.

The power and ground line group provides the voltages

required by the computer. Six lines are assigned to provide

the three unregulated voltages (+8, -18 and +18 volts) and

their ground returns. The +8 volts and ground values each

appear on two separate lines. The address line group

initially provided the sixteen lines required to supply a

16-bit memory address. However, the latest Institute of

Electrical and Electronics Engineers (IEEE) 696 standard

supports extended 24-bit memory addressing. The data line

group is composed of sixteen lines and is used to supply

program instructions and data. Normally, the data group

lines are separated into two sub-groups of eight lines each.

One set is used to supply data to the central processing

unit (CPU), while the other set is used for data emanating

from the CPU. The IEEE 696 standard allows these sixteen

lines to become bidirectional when the proper control

signals are provided. This allows the bus to be used with

11-2

-' q - .h' " ' . X t C 4 , N 4 I: . .' *w C. - W... -. " -" j -. - C.. - .- .. - -

the evolving 16-bit microprocessors. The IEEE 696 effort is

heralded as a standard and should serve to standardize the

bus across the industry for both 8-bit and 16-bit operation.

The remaining lines comprise the control line group. These

lines are used to carry timing and control signals between

the CPU, memory, I/O, and any other circuits located on the

S-100 bus.

With the acceptance of the S-100 bus, made evident by

the extent of its use, it is a good choice as the computer

bus for use in this project. The best system, however, is

one that uses a 16-bit processor. But since the ground

rules are to use the existing hardware as much as possible,

the use of a 16-bit processor is not future addressed.

Returning to the S-100 bus, there are numerous manufacturers

building cards that comply with the standard, making the

task of finding a commercially built card, to do all but the

most specialized functions, quite easy. Such is the case of

using the commercially available MB64 memory card.

Since the S-100 bus is a true parallel bus, all signals

within the system are available to any card placed on the

bus. This provides for nearly unlimited use of these

signals by any circuit card inserted on the S-100 bus. The

Cromemco's S-100 bus is capable of communicating directly

with 256 I/O ports using the low byte of its address bus.

The S-100 bus has two control lines that delineate I/O or

control operations from normal memory transactions. One of

these lines, sINP, indicates an input operation while the

other, sOUT, indicates an output operation. Each interface

11-3

* . *

must decode the least significant byte of the 16-bit address

bus to determine its port addresses when either of these two

signals appear. Two other control signals, pWR and pDBIN,

are always generated during memory write and read

operations, respectively. These signals are used to tell

the interface circuit when it must either supply data to or

take data from the system.

More detailed information on the Cromemco system can be

found in the Cromemco instruction manuals and technical

manuals (Refs 2 thru 7).

Hardware Development

The following discussion is a brief synopsis of the

major hardware components used during the thesis project.

The DMA Controller. The AM9517A Multimode Direct

Memory Access (DMA) Controller is a peripheral interface

circuit for microprocessor systems. It is designed to allow

external devices to directly transfer information to or from

the system memory. Memory-to-memory transfer capability is

also provided. Both of these capabilities are required and

used to support the thesis. The direct transfer of data to

the system memory occurred during analog-to-digital sampling

of the speech signal. The direct transfer of data from the

system memory occurred during the digital-to-analog

conversion of the sampled data. The memory-to-memory

transfer capability is used to move data samples between the

11-40

higher memory iddresses (above 64K) and the lower memory

addresses (below 64K). This is necessary in order to use

existing software commands to move data to and from magnetic

disk and during the graphical representation portion of the

project. These commands only work on data samples located

in the memory addresses located below 64K. More specific

details on the DMA module are contained in Appendix F.

The System Timing Controller (STC). The AM9513 STC is

a large scale integrated circuit designed to service many

types of counting, sequencing and timing applications. This

chip is software programmed by the system user of the SPEECH

program. The STC OUT5 pin provides the clocking necessary to

sample the analog input at the system user specified

sampling rate. The output of the OUT4 pin is used to disable

the digital-to-analog output until the specific starting

sample is reached. The basic digital-to-analog concept is

that all stored data samples on a memory board are addressed

during each digital-to-analog operation, but only when OUT4

is active high will any external output be allowed. This is

required due to the technique used to address the data

storage locations in static memory. And finally, the OUT2

pin is used to disable the sampling conversion process. Be

it either analog-to-digital or digital-to-analog conversion,

the OUT2 pin causes an interrupt signal to be sent to the

central processing unit. The interrupt signal causes the

conversion process which is running to stop. More specific

details on the STC chip are contained in Appendix G.

11-5

' " . - ." . .- - . . - . " ; .- ' '' 'J ' '. ' ' ' '' ", . . ' ' '. - o '. - ' . -, " ' '- ' '. ",." . .',. , -. -'m ' .
- ' . '

The A-to-D Module. The DAS 1128 is a complete self-

contained miniature high speed data acquisition system. It

contains an analog input signal multiplexer, a sample-and-

hold amplifier, a 12 bit analog-to-digital converter, and

all of the programming, timing, and control circuitry needed

to perform the complex data acquisition function. More

specific details on the analog-to-digital module are

contained in Appendix H. The basic concept for analog-to-

digital conversion in the SPEECH program is shown in Figure

II-1. The analog-to-digital module is the center of the

operation. An analog input is placed at the INPUT of the

module. The module is then triggered to sample the analog

input. The trigger, however, does not occur unless: (1) the

clock sampling pulse is positive; thus assuring the correct

number of samples per second will be taken, (2) the analog-

to-digital on/off flip-flop is set to positive; thus

assuring only an analog-to-digital conversion can take

place, and (3) the finish count is positive; thus assuring

that the last user requested sample has not yet been taken.

Each data sample is placed into static memory via the data

bus. It takes two 8-bit bytes to completely store the

sampled input -- sampled to 12 bit accuracy. The signal on

the analog-to-digital module's end of conversion (EOC) pin

is used to toggle between processing the first byte of a

sample or the second byte of a sample. The control is via a

set of flip-flops. The flip-flops are enabled by the byte

count (first or second byte of a sample) and the Address

ENable (AEN) line of the DMA module. The Data REQuest 2

11-6

INPUT CLOCK

TRIGGERA/D ON-OFF

A/D MODULE FINISH COUNT

OUTPUT EOC

[' 18 .4

BUS
DRIVERS

- -- DATA BUS

DMA F BYTE COUNT
MODULE DREQ2 - FLOP

AEN

AEN
.DISABLE
CPU-HOLD HACK

CPU INTERRUPT

(IN TIGHT LOOP)

FIG II-l. ANALOG-TO-DIGITAL CONVERSION

11-7

- 7'

(DREQ2) and Data ACKnowledge 2 (DACK2) lines of the DMA

controller are used to request and aid control of analog-to-

digital sampling. The DREQ2 is used to obtain DMA service.

The HOLD and HACK lines are then used by the DMA chip to

request the central processing unit to relinquish control of

the system buses. The signal on the AEN line of the DMA

module is also used to disable the CPU so that only the DMA

is in charge of the S-100 bus. Note that just before the

DMA module is placed in charge of the data bus, via the HOLD

and HACK signal lines, the CPU is placed into a tight loop

of doing nothing but no-operation (NOP) commands. The CPU

stays in this condition until the CPU's interrupt line is

made active. This occurs when the user requested number of

data samples has been taken. The system user is then

returned to the main SPEECH menu.

The D-to-A Module. The DAC 1118 is a 12 bit, general

purpose digital-to-analog converter which comes complete

with an input storage register and output amplifier. For

this thesis project, the chip is wired to provide a two's

complement code output. In addition, the chip is set to

provide a bipolar output in the range of plus five volts to

minus five volts. More specific details on the digital-to-

analog module are contained in Appendix I. The basic

concept for digital-to-analog conversion in the SPEECH

* program is shown in Figure 11-2. The digital-to-analog

module is the center of the operation. An analog output

11-8
. . - .".II -8

2- " - i .-- ..-, i L "-":ii~ ': ii:.'."-'i i . . -i .- i- : . .- . .i - i" ".. " ." '.2 . - -]" i .' '.- . . '
- - J ' ., : ,: . - • - • :- " ." ' : " " ' ' " r . .. , , .- ' . .

* 4- -.. ~ ~-. ~ .~."

from the digital-to-analog module is the result of its'

operation. The conversion of a new 12 bit data sample into

an analog output is controlled by the STROBE input line.

This line is true only when: (1) the sample by-pass signal

is true -- meaning all the samples which must be passed over

to get to the first sample requested by the system user have

been passed over, (2) the output clock pulse is positive;

thus assuring the correct number of samples per second will

be sent out, (3) the digital-to-analog on/off flip-flop is

set to positive; thus assuring only a digital-to-analog

conversion can take place, and (4) the finish count signal

is positive; thus assuring that the last user requested

sample has not yet been sent out. Each data sample is

retrieved from static memory via the data bus. It takes two

I. 8-bit bytes to completely send out the correct sampled input

-- sampled to 12 bit accuracy. The flip-flop control

circuitry toggles between the first byte of a sample and the

second byte of a sample. The flip-flops are enabled by the

byte count (first or second byte of a sample) and the signal

on the AEN line of the DMA module. The Data REQuest 3

(DREQ3) and Data ACKnowledge 3 (DACK3) lines of the DMA

controller are used to request the digital-to-analog

conversion. The signal on the AEN line of the DMA module is

also used to disable the CPU so that only the DMA is in

charge of the S-100 bus. Note that just before the DMA is

placed in charge of the data bus, via the HOLD and HACK

lines, the CPU is placed in a tight loop of doing nothing

but no-operation (NOP) commands. The CPU stays in

11-9

".; ... :.. , . -. .. . -...- . .. :.

OUTPUT SAMPLE BY-PASS
STROBE oK-

D/A MODULE

INPUT

8 4

LATCHES It D/A ON-OFF

8 FINISH COUNT

DATA BUS

DU FLIP BYTE COUNT
MODUE DRQ3 FLOPS

AEN
~AEN

DACK3

HOLD HACK

CINTERRUPTCPU

(IN TIGHT LOOP)

FIG 11-2. DIGITAL-TO-ANALOG CONVERSION

II-10

.. . . - o- l r - -

this condition until the CPU's interrupt line is made

active. This occurs when the user requested number of data

samples has been converted. The system user is then

returned to the main SPEECH menu.

The MB64 Static RAM Memory Board. The SSM MB64K static

Random Access Memory (RAM) by Microcomputer Products, is

used to provide an extended addressing memory capability.

This extended memory capability is used to store the sampled

analog input signal. A maximum of 163,840 samples (327,680

bytes -- two bytes per sample) may be stored. See Figure

11-3 for the association of which data samples are stored

on which of five extended memory boards. Figure 11-4 shows

the scheme for the extended memory addressing. Address bits

A0 to A15 are controlled by the DMA controller and an

external latch. The extended address bits A16 to A19 are

controlled by an external counter. The counter is

initialized by making LOAD active and placing the initial

address on the appropriate data bus lines. The DMA

controller end-of-process (EOP) pin then increases the count

after each complete pass of addressess A0 to A15. One

problem did surface because the 64K static memory boards

were used. The problem arose from the original Cromemco 64K

memory board and the original boot-up technique associated

with it. A graphical representation of the problem is shown

in Figure 11-5. The original Cromemco 64K memory board has

II-ll

. °. - J - .' .', .
"

' - .~ o . . o ." . ° " - - . . - . -. L . . k.

163,840 (SAMPLE NUMBER)

MEMORY BOARD #5

--J 131,073

131,072

MEMORY BOARD #4

98,305

98,304

MEMORY BOARD #3

65,537

65,536

MEMORY BOARD #2

32,769

32,768

MEMORY BOARD #1 1S

_ __' 1 (SAMPLE NUMBER)

* FIG 11-3. DATA SAMPLES STORAGE LOCATIONS

16 I11-12 "

7'7- A

AO

Al

A2

DMA A3
A4

A5

A6

EOP DATA STROBE A7

8A

A8O

I All

A12

A13

A14

Al15

COUNT____ Al16

DATA BUS 4CUTRA17

VDECODER LA 1

Al19

~ A20

A21

A22

A23

* FIG 11-4. EXTENDED MEMORY ADDRESSING

11-13

oCooo
32K _ -_DISK CONTROLLER

64K

BOARD

RAM

64K RAM, NO EXTENDED ADDRESSING

64K DISK CONTROLLER

BOARD CFFF

CCFFF
cooo Co

CFFF
RAMCO0 k\\ \\\\cooo

64K RAM, EXTENDED ADDRESSING

FIG 11-5. CROMEMCO BOOT-UP

11-14

no capability for extended addressing. This meant replacing

- the original memory board with one of the new 64K boards.

The problem is the original board contains the capability to

disable all memory addressed above 32K during system boot-

up. This allows the read-only-memory (ROM) located on the

disk controller board, at the memory addresses between C00

and CFFF, to be used to boot-up the system. Part of the

boot-up program, located on the outer tracks of the system

disk, then turns off the ROM memory and turns on the RAM

memory above 32K. The new memory boards has one feature

which is used to allow system boot-up. By pulling any 2K

memory chip off a new board, those memory locations are

disabled and ignored. By selecting and removing the two 2K

memory chips which cover the memory addresses C000 thru

CFFF, the original boot-up technique worked. The technique

used is to mount the two removed 2K memory chips on a

separate board. The memory chips are set to be inactive at

boot-up. The circuitry on the board then detects the

command to turn the ROM off. When this command is

generated, both removed 2K memory chips are enabled. Thus,

all 64K of the system memory is available for use, however,

two of the memory chips are now located on a separate board.

All of this is transparent to the system user. More

specific details on the MB64 Static RAM memory board are

contained in Appendix J.

11-15

Software Development

The programming language "C" is used to implement this

thesis project. The reasons why are: (1) "C" is a portable

programming language. A "C" program written on one computer

can be run with little or no modification on any other

computer with a "C" compiler. (2) "C"s speed of execution

, is fast. The difference in execution speed between "C" and

- - an assemabler is almost unnoticable. (3) "C" is well suited

to structured programming techniques. The formatted

structure of "C" allows the software program to be broken

down into smaller increments which can be easily handled.

There are several sources of information on the "C" language

(Ref 8 and 9).

Two problems did arise during the software development.

- -. First, it became necessary to incorporate small portions of

machine language code into the "C" language prograr.

-. Additional information on doing this is contained in

* Appendix L. The inclusion of machine code is required to

access the interrupt capability of the Cromemco computer.

The basic concept is to start the sampling or conversion

process and let it run free under control of the DMA

- controller. While the DMA controller is in charge, the

- central processing unit of the Cromemco is placed in a tight

loop doing nothing but waiting for an interrupt to occur.

The interrupt signal is generated by the STC chip as it

reaches the number of last sample to be processed. The

• specifics of adding machine code to a "C" language program

are as follows:

11-16

P-%

NOTE: The following procedure uses the following "C"

compiler: BD Software "C" Compiler V1.46

Copyright (c) 1981 by Leor Zolman

1. The person doing the programming starts with CASM.C,

CLINK.COM, CC1.COM and CC2.COM files on their disk.

The programmer then enters: CCl CASM.C <CR>

2. A CASM.CRL file is generated.

3. The programmer then enters: CLINK CASM <CR>

4. A CASM.COM file is generated.

5. The programmer then creates a machine code program by

using the CASM guidelines. The machine code program

is labeled "FILENAME.CSM", say "FUNCTION.CSM" for

this example.

6. The programmer then enters: CASM FUNCTION <CR>

7. A FUNCTION.ASM file is generated.

8. The programmer then enter: MAC FUNCTION $SZPZ.
9. This generates a FUNCTION.HEX file and provides the

programmer with the number of sectors to be saved

later on the programmers' disk.

10. The programmer then enters: DEBUG FUNCTION.HEX

(This loads the file "FUNCTION.HEX" into memory.)

11. The programmer then enters: -C

12. The programmer then enters: SAVE FUNCTION.CRL N

(Where N is the number of sectors to be saved.)

13. Finally, the programmer enters:

CLINK "FILENAME OF "C" PROGRAM" FUNCTION A
11-17

The second problem arose from the need to manipulate

solution is to use the 32-bit integer package for "C"

language programs. More specific details on this

mathematics package is contained in Appendix M.

Although the specific software programs are available

in Appendix A, it is of value to know which addresses are

used to control chip select functions. The software port

addresses and their functions are shown in Figure 11-6.

Invisible to the system user, the DMA and STC chips are

software programmed during the use of the SPEECH program.

Figure 11-7 shows how the DMA COMMAND REGISTER is loaded

during analog-to-digital or digital-to-analog operations.

Figure 11-8 shows how the DMA COMMAND REGISTER is loaded

during memory-to-memory transfer operations. Figure 11-9

shows how the DMA COMMAND REGISTER is loaded during the

clearing of memory operations. Figure II-10 shows how the

DMA CHANNEL 0 MODE REGISTER is loaded during memory-to-

memory transfer operations. Channel 0 is used to control

the memory SOURCE location during memory-to-memory transfer

operations. Figure II-11 shows how the DMA CHANNEL I MODE

REGISTER is loaded during memory- to-memory transfer

operations. Channel 1 is used to control the memory

DESTINATION location during memory-to-memory transfer

operations. Figure 11-12 shows how the DMA CHANNEL 2 MODE

REGISTER is loaded during analog-to-digital conversion

operations. Channel 2 is used to control the placing of

digitized information into static memory for storage.

11-18

- ~.. ,.,+- ~. -. - . -. - . o-. ,.
• " + -. o .+ o - . . ° .+ ° . .+ - • . - . . ° . ° , . " + • . ° .. o °.

- ********************************

* PIN * ADDRESS * *

* NUMBER * (HEX) * FUNCTION *

* 1 * 00 * Reserved for use by 16FDC Disk *

* * * Controller. *

* 2 * 80 * Reserved for use by TU-ART Device B. *

* 3 * 40 * Reserved for use by Memory Bank *

* * * Select. Also turns ROM off. *

* 4 * CO * CLEAR Thesis hardware command. *
* * * *

* 5 * 20 * Reserved for use by TU-ART Device A. *

* 6 * A0 * Used to activate A-to-D MUX Channel *

* * * select latch. *

* 7 * 60 * Used to toggle A-to-D ON/OFF switch. *

* 8 * E0 * Reserved for use by processer. *

* * * Status Port = ED. Data Port = E8. *

* 9 * 10 * Used as Chip Select for STC chip. *

* 10 * 90 * Used as Chip Select for DMA chip. *
-* * * *

* 11 * 50 * Reserved for use by CROMEMCO *

* * * printer interface. *

* 13 * DO * Used to toggle between CPU and MEM- *

* * * to-MEM transfer operations. *

* 14 * 30 * Reserved for use by 16FDC Disk *

* * * Controller. *

* 15 * BO * Used to toggle between HI-to-LO or *

* * * LO-to-HI MEM-to-MEM transfers. *

* 16 * 70 * Used to Chip Select the HI address *

* * * counter. *
* 17 * F0 * Used to toggle D-to-A ON/OFF switch. *

FIG 11-6. Decoder Chip's Port Addresses and Functions.

111

1I-19

Figure 11-13 shows how the DMA CHANNEL 3 MODE REGISTER is

loaded during digital-to-analog conversion operations.

Channel 3 is used to control the retrieving of digitized

data FROM static memory storage. Figure 11-14 shows how the

STC MASTER MODE REGISTER is loaded during program operation.

Figure 11-15 shows how the STC OUTI COUNTER MODE REGISTER is

loaded during program operation. OUT1 is used in

conjunction with OUT2 to determine when the analog-to-

digital or digital-to-analog conversion processes should be

stopped because the total number of desired samples has been

taken. Figure 11-16 shows how the STC OUT2 COUNTER MODE

REGISTER is loaded during program operation. Figure 11-17

shows how the STC OUT4 COUNTER MODE REGISTER is loaded

during program operation. OUT4 is used to disable digital-

to-analog output until a specified number of samples has

been by-passed. This is necessary because the output

technique always starts with the sample located at the

beginning of a memory board regardless of which sample on

the board is requested as the first. Figure 11-18 shows how

the STC OUT5 COUNTER MODE REGISTER is loaded during program

operation. OUT5 produces the clock sampling pulses required

to sample at the system user specified sampling rate.

11-20

"" " " " . .." """" "". "." '

A/D or D/A COMMAND REGISTER =(80)HEX

*7 *6 *5 *4 *3 *2 *1 *0*

*1 *0 *0 *0 *0 *0 * 0*

Bit 0 =0 ; Memory to Memory transfer disabled.
Bit 1 =X ; Does not matter, if bit 0 = 0.
Bit 2 =0 ;Controller enabled.
Bit 3 =0; Normal timing.
Bit 4 =0 ;Fixed Priority.
Bit 5 =0 ;Late write selection.
Bit 6 =0 ;DREQ sense set to Active HIGH.
Bit 7 =1 ;DACI(sense set to Active HIGH.

FIG 11-7. A-to-D or D-to-A COMMAND REGISTER

MEM-to-MEM COMMAND REGISTER =(81)HEX

*7 *6 *5 *4 *3 *2 *1 *0

*1 *0 *0 *0 * 0 *0 *1*

Bit 0 =1 ;Memory to Memory transfer enabled.
Bit 1 =0 ;Channel 0 address hold disables.
Bit 2 =0 ;Controller enabled.
Bit 3 =X ;Does not matter, if bit 0 =1.

Bit 4 =0 ;Fixed Priority.
Bit 5 =0 ;Late write selection.
Bit 6 =0 ;DREQ sense set to Active HIGH.
Bit 7 =1 ;DACK sense set to Active HIGH.

FIG 11-8. MEM-to-MEM COMMAND REGISTER

11-21

07

CLEAR MEMORY COMMAND REGISTER = (83)HEX

* * * * * * * * *

* 7 * 6 * 5 * 4 * 3 * 2 * 1 * 0 *
* * * * * * * * *

* * * * * * * * *

* 1 * 0 * 0 * 0 * X * 0 * 1 * 1 *
* * * * * * * * *

Bit 0 = 1 ; Memory to Memory transfer enabled.
Bit 1 = 1 ; Channel 0 address hold enabled.
Bit 2 = 0 ; Controller enabled.
Bit 3 = X ; Does not matter, if bit 0 = 1.
Bit 4 = 0 ; Fixed Priority.
Bit 5 = 0 ; Late write selection.

Bit 6 = 0; DREQ sense set to Active HIGH.
Bit 7 = 1 ; DACK sense set to Active HIGH.

FIG 11-9. CLEAR MEMORY COMMAND REGISTER

11-22

. J6

CHANNEL 0 MODE REGISTER = (88)HEX
For MEM-MEM transfer---the SOURCE.

* * * * * * * * *

* 7 * 6 * 5 * 4 * 3 * 2 * 1 * 0 *
* * * * * * * * *

* * * * * * * * *

* 1 * 0 * 0 * 0 * 1 * 0 * 0 * 0 *
* * * * * * * * *

Bits 1&0 = 00 ; Channel 0.
Bits 3&2 = 10 ; Read transfer.

Bit 4 = 0 ; Autoinitialize disabled.
Bit 5 = 0 ; Address increment selected.

Bits 7&6 = 10 ; Block mode selected.

FIG II-10. CHANNEL 0 MODE REGISTER

CHANNEL 1 MODE REGISTER = (85)HEX
For MEM-MEM transfer---the DESTINATION.

* * * * * * * * *

* 7 * 6 * 5 * 4 * 3 * 2 * 1 * 0 *
* * * * * * * * *

* * * * * * * * *

* 1 * 0 * 0 * 0 * 0 * 1 * 0 * 1 *
* * * * * * * * *

Bits l&0 = 01 ; Channel 1.
Bits 3&2 = 01 ; Write transfer.

Bit 4 = 0 ; Autoinitialize disabled.
Bit 5 = 0 ; Address increment selected.

Bits 7&6 = 10 ; Block mode selected.

FIG II-11. CHANNEL 1 MODE REGISTER

1

II-23

0[

*1

CHANNEL 2 MODE REGISTER = (56)HEX
For Analog-to-Digital Conversions

* * * * * * * * *

* 7 * 6 * 5 * 4 * 3 * 2 * 1* 0 *
* * * * * * * * *

* * * * * * * * *

* 0 * 1 * 0 * * 0 * 1* 1 * 0*
* * * * * * * * *

Bits 1&0 = 10 ; Channel 2.
Bits 3&2 = 01 ; Write transfer.

Bit 4 = 1 ; Autoinitialize enabled.
Bit 5 = 0 ; Address increment selected.

Bits 7&6 = 01 ; Single mode selected.

FIG 11-12. CHANNEL 2 MODE REGISTER

(5
CHANNEL 3 MODE REGISTER (5B)HEX

For Digital-to-Analog Conversions

* * * * * * * * *

* 7 * 6 * 5 * 4 * 3 * 2 * 1 * 0 *
* * * * * * * * *

* * * * * * * * *

* 0 * 1 * 0 * 1 * 1 * 0 * 1 * 1 *
* * * * * * * * *

Bits 1&0 = 11 ; Channel 3.
Bits 3&2 = 10 ; Read transfer.

Bit 4 = 1 ; Autoinitialize enabled.
Bit 5 = 0 ; Address increment selected.

Bits 7&6 = 01 ; Single mode selected.

FIG 11-13. CHANNEL 3 MODE REGISTER

11-24

MASTER MODE REGISTER = (ClOE)HEX
Command Code Address = (17)HEX

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 0 0 0 0 1 0 0 0 0 1 1 1 0

Bits 3-0 = 1110 ; Set for 32 bit compare.
Bits 7-4 = 0000 ; Set FOUT SOURCE = Fl.

Bits 11-8 = 0001 ; Set FOUT Divided by 1.
Bit 12 = 0 ; Set FOUT on.

Bit 13 = 0 ; Set to support an 8 bit bus.

Bit 14 = 1 ; Set Disable Increment.
Bit 15 = 1 ; Set Scalar Control to BCD Division.

FIG 11-14. MASTER MODE REGISTER

OUT 1 COUNTER MODE REGISTER = (0029)HEX

Command Code Address = (01)HEX

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1

Bits 2-0 = 001 ; Active HIGH pulse out.
Bit 3 = 1 ; Count up.
Bit 4 = 0 ; Binary count.

Bit 5 = 1 ; Count repetitively.
Bit 6 = 0 ; Reload from LOAD.

(Note: Load LOAD with (00)HEX.)

Bit 7 = 0 ; Disable special gate.
Bits 11-8 = 0000 ; Count Source = (TCN-I).

Bit 12 = 0 ; Count on rising edge.

Bits 15-13 = 000 ; No gating.

FIG 11-15. OUT 1 COUNTER MODE REGISTER

11-25

g 4
b

4

OUT 2 COUNTER MODE REGISTER = (002D)HEX
Used in COUNT FINISHED control.
Command Code Address = (02)HEX

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1

Bits 2-0 = 101 ; Active LOW pulse out.

Bit 3 = 1 ; Count up.
Bit 4 = 0 ; Binary count.
Bit 5 = 1 ; Count repetitively.
Bit 6 = 0 ; Reload from LOAD.

(Note: Load LOAD with (00)HEX.)
Bit 7 = 0 ; Disable special gate.

Bits 11-8 = 0000 ; Count Source = (TCN-1).
Bit 12 = 0 ; Count on rising edge.

Bits 15-13 = 000 ; No gating.

FIG 11-16. OUT 2 COUNTER MODE REGISTER

OUT 4 COUNTER MODE REGISTER = (1402)HEX
Used for Digital-to-Analog OFFSET control
Command Code Address = (04)HEX

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 00 0 1 0 0 0 0 0 0 0 0 1 0

Bits 2-0 = 010 ; Active HIGH toggle (delayed).
Bit 3 = 0 ; Count down.
Bit 4 = 0 ; Binary count.
Bit 5 = 0 ; Count once.
Bit 6 = 0 ; Reload from LOAD.
Bit 7 = 0 ; Disable special gate.

Bits 11-8 = 0100 ; Count Source = SOURCE 4.
Bit 12 = 1 ; Count on falling edge.

Bits 15-13 = 000 ; No gating.

FIG 11-17. OUT 4 COUNTER MODE REGISTER

11-26

in --

OUT 5 COUNTER MODE REGISTER : (0B21)HEX
Used for CLOCK PULSES.
Command Code Address = (05)HEX

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 0 1 1 0 0 1 0 0 0 0 1

Bits 2-0 = 001 ; Active HIGH pulse out.
Bit 3 = 0 ; Count down.
Bit 4 = 0 ; Binary count.
Bit 5 = 1 ; Count repetitively.
Bit 6 = 0 ; Reload from LOAD.
Bit 7 = 0 ; Disable special gate.

Bits 11-8 = 1011 ; Count Source = Fl.
Bit 12 = 0 ; Count on rising edge.

Bits 15-13 = 000 ; No gating.

FIG 11-18. OUT 5 COUNTER MODE REGISTER

11-27

Graphics

The graphical display of digitized data samples is made

possible by using the Imaginator, built by the Cleveland

Codonics Incorporated. The Imaginator is an intelligent,

high resolution graphics retrofit unit. The Imaginator has

its own onboard microcomputer to perform graphics processing

independent of the host computer. The graphical display is

placed within the 504 pixel by 247 pixel resolution of the

Imaginator. More specific information on the Imaginator is

contained in Appendix K. Figure 11-19 shows the basic grid

display. As noted on the figure, 500 samples at a time are

displayed. This is accomplished by locating the 1000 bytes

which define the 500 samples requested by the system user.

The 1000 bytes are brought into a buffer array in lower

I. memory (under 64K). Here the data is manipulated into a

range from plus to minus five volts. The resulting data is

then plotted on the grid. The ability to move both the

vertical and horizontal cursors is provided. A START sample

number and a FINISH sample number are selectable by the

system user. These data samples may then be output to an

external analog system, for example, a speaker.

11-28

m <

o<o CN

E--'D

0 ZC ,

co Z C

-4

, . I

II:

0 10

0 H H:

t----

uI H

E- E

E--

0
Ln

C)
0

I -

un

I I I I I I I I I × -

10

I I I II I I I Ila I ,-

°° I.- I]
0 0 i4-"

FIG 11-19. GRAPHICAL DISPLAY FORMAT

11-29

04

. . . .~.-.

III. Design and Fabrication

This chapter briefly describes the design and

fabrication of both the hardware and software associated

with the this thesis project.

Hardware

The hardware design resulted in the development of four

separate S-100 boards. The four boards are the "Boot Up

Control", the "Direct Memory Access", the "Digital-to-

Analog Conversion", and the "Analog to Digital Conversion"

boards. Two types of standard S-100 boards were used. When

possible a S-100 board with power and ground busses already

installed is used. These boards are used when only standard

sized integrated circuit chips -- mounted in wire wrap

sockets -- plus standard voltage regulators, are mounted on

the board. When larger devices required mounting, such as

the analog-to-digital conversion device, then a plain board

is used. In this case, all voltage and ground paths are

also added to the board. As implied above, a wire wrap/then

soldering technique is used for all board contruction. It

is necessary at times to connect specific signals between

two fabricated boards. Where possible, the S-100 bus

positions are used. In the cases where S-100 bus positions

are not available, a ribbon cable is made and used between

the two boards in question to allow data or sometimes power

access.

p '? ,'" ". <." - " :" Z: - 4 ..-.- ,... ,...';..- .4-....:-....... --

In addition to the fabricated boards, the commercially

available MB64K static memory boards, discussed in chapter

two, are also installed onto the S-100 bus motherboard.

The integrated circuit layout on the boards is clearly

shown in Appendix B. The "Boot Up Control" board integrated

circuit layout is shown on Appendix B, page B-1. The

"Direct Memory Access" board integrated circuit layout is

shown on Appendix B, page B-2. The "Digital-to-Analog

Conversion" board integrated circuit layout is shown on

Appendix B, page B-3. And finally, the "Analog-to-Digital

Conversion" board integrated circuit layout is shown on

Appendix B, page B-4.

The cross reference between the integrated circuit

number, shown on the integrated circuit layouts, and what

integrated circuit is really used, is shown in Appendix C,

starting on page C-1.

The major portion of the hardware fabrication is shown

in the circuit wiring diagrams of Appendix D. The "Boot Up

Control" wiring diagram is shown on Appendix D, page D-1.

The "Direct Memory Access" wiring diagram is shown on

Appendix D, pages D-2 thru D-4. The "Digital-to-Analog"

wiring diagram is shown on Appendix D, page D-5. And

finally, the "Analog-to-Digital" wiring diagram is shown on

Appendix D, page D-6.

Appendix E provides the timing diagrams used during the

thesis project. Appendix E, page E-1 displays the timing

diagram for memory-to-memory transfers. Appendix E, page E-

2 displays the timing diagram for digital-to-analog

111-2

conversions. And finally, Appendix E, page E-3 displays the

timing diagram for analog-to-digital conversions.

Software

Due to the size and complexity of the software programs

required by this thesis project, a structured programing

format is used. In this format, each operation is broken

down into simple programming segments which are executed

sequentially or separately as needed to implement a desired

operation. What follows is a description of each program

segment and its development.

SPEECH.C. This is the entry module for reaching all

other program segments. Extremely short in size but also

extremely important in its function, SPEECH.C causes

several things to occur. First, the SPEECH title is

displayed on the video display screen. Thus, the system

user knows the SPEECH program has been correctly accessed.

Second, an introduction is provided on the video display

screen for the system user. This is part of making the

program user friendly. Third, this program segment sets the

default values for all global variables used in any of the

program segments. Finally, this program segment provides a

menu of "Command Options" to be displayed to the system

user. (Appendix A, page A-l)

111-3

................... >- : i' *. *. °,. ,, . <.." . ."- ..- " ','.," -' .>" ,,-S

" SPEECH.H. This program segment is a "C" language

header. It contains the GLOBAL VARIABLES used in the entire

SPEECH program. SPEECH.H is included as part of each

individual "C" module. Any change to SPEECH.H requires all

"C " modules to be recompiled, via the CCI command, and

relinked, via the CLINK command, to form a new SPEECH.COM

file. (Appendix A, page A-3)

TITLE.C. When called, this program displays the

program title -- SPEECH -- and the program author's name on

the video display screen. (Appendix A, page A-6)

INTRO.C. An introduction to the system user is

displayed when this program segment is activated. This

segment asks for and stores the name of the system user for

future display by other program segments. The system user

is also asked if the entire SPEECH program description is to

be displayed on the video display screen, and responds

accordingly to a yes or no response. (Appendix A, page A-8)

DESCRIBE.C. This program segment displays a

description of the SPEECH program and a user's guide on the

video display screen. (Appendix A, page A-10)

DEFAULTS.C. The activation of this program segment

automatically initializes specified GLOBAL VARIABLES to

default values for use by other program segments. (Appendix

A, page A-17)

111-4

MENU.C. This program segment prompts the system

user with a list of available "Command Options". The option

chosen by the system user is then implemented. (Appendix A,

page A-20)

QUIT.C. A goodbye message to the system user is

displayed on the video display screen when this program

segment is addressed. The SPEECH program is then exited and

the system user is returned to the operating system.

(Appendix A, page A-23)

ANALOG.C. This program segment controls the analog-

to-digital conversion of an analog input signal such as

speech. The system user selects the "analog channel" to be

sampled (I of 16), the data "sampling rate", and the total

"number of samples" to be taken. Options in this segment

allow the system user to exit the program, return to the

system MENU, or activate a bell which signals the beginning

of the sampling process. (Appendix A, page A-24)

DIGITAL.C. This program segment controls the

digital-to-analog conversion of data samples stored in the

extended memory of the Cromemco S-100 microcomputer system.

The system user selects the first and last sample to be

converted. Options in this segment allow the system user to

*exit the program, return to the system MENU, or activate a

bell which signals the start of the conversion process.

(Appendix A, page A-27)

111-5

.0 "" '

A 7- 7 7' 7-77. -7-- %- _--L X

STORE.C. The transfer of a system user specified

number of data samples is controlled by this program

segment. The transfer is from the extended static random

access memory (RAM) to magnetic storage disk. The data

transfer is to a system user specified "filename". The

default "filename" is: B:DATA.ONE. Data transfer is done

2048 bytes at a time by using the array named mem buffer.

(Appendix A, page A-30)

RETRIEVE.C This program segment clears the extended

static RAM and then transfers data from magnetic disk

storage to extended memory. The data transfer is from a

system user specified "filename". The default "filename"

is: B:DATA.ONE. Data transfer is done 2048 bytes at a time

by using the array named membuffer. Data transfer is

continued as long as data remains on the magnetic disk under

the "filename" specified. (Appendix A, page A-34)

GRAPHICS.C. This program segment controls the

graphical display of 500 data samples at a time on the video

display screen. The segment displays user prompts, provides

right and left cursor movement, and provides up and down

volt-line movement. While observing the graphical display,

the system user may the vertical cursor to select the

starting and finishing data sample numbers for use during a

later digital-to-analog output. (Appendix A, page A-38)

PLOT.C. This program segment draws the horizontal

axis, the vertical axis, and the zero volt line of the

111-6

S . . . , -...-.i,

graphical display. It also transfers the 500 data samples

(1000 bytes) to be displayed. The program segment then

calculates the y-axis values of the 500 data samples and

then plots the 500 data samples on the graph. Finally, the

system user is returned to the calling program segment.

(Appendix A, page A-44)

RIGHT.C. This program segment moves the vertical

cursor displayed in program segment PLOT.C to the right by

an amount specified by the system user. Any request for

movement beyond sample number 500 causes a new 500 sample

graph to be displayed. The cursor is then placed at the

first data sample of the new data plot. The vertical cursor

is not allowed to move beyond the last sample of all samples

taken. (Appendix A, page A-48)

LEFT.C. This program segment moves the vertical

cursor displayed in program segment PLOT.C to the left by an

amount specified by the system user. Any request for

movement beyond sample number one of 500 samples causes a

new 500 sample graph to be displayed. The cursor is then

placed at data sample 500 of the new data plot. The

vertical cursor is not allowed to move beyond sample number

1 of all samples taken. (Appendix A, page A-51)

VOLTLINE.C. This program segment move the

horizontal volt-line cursor up or down by an amount

specified by the system user. The volt-line is not allowed

to move off of the graph. (Appendix A, page A-54)

111-7

INPUT.C. This program segment is used to allow the

system user to: (1) select the "analog input channel" to be

sampled, (2) select the data "sampling rate", (3) select the

total "number of samples" to be taken, and (4) select the

"first and last sample" to be converted during digital-to-

analog conversions. (Appendix A, page A-55)

DMA.C. This program segment initializes the direct

memory access (DMA) chip's internal registers to: (1)

support analog-to-digital sampling, (2) support digital-to-

analog conversion, (3) support 2048 byte memory-to-memory

data transfer in support of STORE.C and RETRIEVE.C, and (4)

support 64K byte memory-to-memory data transfer to clear the

extended static memory RAM boards. (Appendix A, page A-61)

TIMING.C. This program segment initializes the

system timing controller (STC) chip's internal registers to:

(1) provide analog-to-digital or digital-to-analog clock

pulses at a system user specified triggering rate, (2)

disable analog-to-digital or digital-to-analog capability

after a system user specified number of data samples have

been processed, and (3) provide by-passing of unrequired

data samples at the beginning of a memory board during

digital-to-analog output operations. (Appendix A, page A-65)

CLEARMEM.C. Binary zero (00000000B) is placed in

each memory byte of all extended memory boards when this

program segment is addressed. (Appendix A, page A-70)

111-8

.A

NOP.CSM. One of two non "C" language programs used

in the thesis project, this program segment provides the

delay required during loading of the DMA chip's internal

registers. (Appendix A, page A-73)

WAIT.CSM. One of two non "C" language programs used

in the thesis project, this program segment prevents the

central processing unit from executing SPEECH program

statements until: (1) all analog-to-digital data samples

have been taken, or (2) all digital-to-analog data samples

have been output. This prevention is accomplished by

placing the central processing unit in a tight loop. The

loop is not exited until the interrupt signal occurrs. The

system timing controller chip activates the interrupt signal

after all samples have been taken or have been used, as the

case may be. (Appendix A, page A-74)

111-9

*."- -. -

IV. Validation

The validation of this project is limited to four

points.

First, the method developed to boot-up the system is

demonstrated to work. The boot-up control board works

perfectly and required only a few initial bugs to be worked

out of the board.

Second, much of the software is demonstrated to work.

The graphics programs works exceptionally well. The display

grid is easily displayed. The grid numbering system is

automatically updated as requests for data both above and

below the currently displayed data are made. The cursor

control commands are successfully demonstrated both for

small (1 pixel), medium, and large (500 pixel) cursor

movements. Data is easily transferred both to magnetic disk

storage and back again. The disappointing part is that

canned data had to be displayed on the grid and transferred

to magnetic disk because some of the circuitry did not work.

Specifically, the control of data sampling, controlled by

the system timing controller chip, did not function. The

registers within the chip which controlled the data

addressing often clocked at the wrong rate. Also the

registers which signalled the completion of a sampling

session failed to function.

Third, the decoder circuit used to set conditions is

demonstrated to work. This is done by using an oscilloscope

IV-1
4I

to display logic high or logic low levels on designated

integrated circuit chip pins. The oscilloscope also

displayed that logic levels are correct during requests for

analog-to-digital conversions and for digital-to-analog

conversions. The weak link is related to the malfunction of

the registers within the system timing controller chip.

Fourth, the extended memory addressing is function

properly. This is seen by observing the extended memory

address LED's on the S-100 bus plug-in monitor board when a

sampling command is given.

IV-2

p

V. Conclusions and Recommendations

Conclusions

The basic goal of sampling speech signals and

displaying the sampled signals on the video display screen

is not met. The system timing chip appeared to be the weak

link. Without changing any connections or making any

software changes, the system timing chip changed sampling

frequency. It is also believed that the register functions

within the system timing chip are not operating correctly.

Due to a lack of a second timing chip and with only a few

0 days left in the quarter, further investigation into the

locking up of the data sampling program is not included in

this document.

On the positive side, much of the designed hardware and

software is known to work very well. The modification to

allow system boot-up with extended memory is working

perfectly. The extended memory addressing is shown to work

by observing the address LED's on the S-100 plug-in monitor

board. The graphics display programs run well, even though

the data they use is "canned" data. Data is easily

transferred to and from magnetic disk storage. Command

locations for sending data to the NOVA computer system are

left available in the software program for future use.

The "C" programming language with its modular format is

demonstrated to be very powerful, friendly and easy to use.

V-1

Recommendations

This project still is full of merit and should be

persued and completed. It is recommended, however, that all

persons who do follow-on work on this thesis project have

previous hardware experience. The lack of hardware

experience is a major cause for delays in the fabrication

and understanding of the circuit boards. Individuals with

previous hardware experience are invited to investigate the

manner in which the extended memory addressing is

accomplished. Some chip reduction in this area is likely to

be possible.

V-2

Bibliography

1. Sargent, Murray III and Shoemaker, Richard L.

Interfacing Microcomputers to the Real World. Reading

Massachusetts: Addison-Wesley Publishing Company, 1981.

2. 023-0012. Cromemco ZPU Z-80 Central Processing Unit.

Instruction Manual. Mountain View California: Cromemco

Incorporated, 1978.

3. Cromemco Z80A Central Processing Unit. Technical

Manual. Mountain View California: Cromemco

Incorporated,1980.

4. 023-2004. Cromemco 16FDC Floppy Disk Controller.

Instruction Manual. Mountain View California: Cromemco

Incorporated, 1980.

5. 023-0008. 64K Ramdom Access Memory. Instruction

Manual. Mountain View California: Cromemco

Incorporated, 1979.

6. 023-0036. Disk Operating System, Series-2 CDOS.

Instruction Manual. Mountain View California: Cromemco

Incorporated, 1980.

7. 023-0011. Cromemco TU-ART Digital Interface.

Instruction Manual. Mountain View California: Cromemco

- - Incorporated, 1978.

8. BD Software C Compiler vl.4. User's Guide. Brighton

0Massachusetts: BD Software, 1981.

9. Kernighan, Brian W. and Ritchie, Dennis M. The C

Programming Language. Englewood Cliffs, New Jersey:

Prentice-Hall Incorporated, 1978.

BIB-I

. . .0. -i1 .' - - , 11 > i] . " , . " .

1* */

NAME: SPEECH.C */
/* VERSION: 1.0 */
/* DATE: 2 December 1983 */
/* MODULE NUMBER: 1 */
/* FUNCTION: *i
/* See user's guide in module #3 (describe) for complete

description of SPEECH. SPEECH.C (module #1) is the entry
module. It (1) displays the program title, (2) provides an */

/*. introduction to the user, (3) sets default values for global */

variables, and (4) provides a menu of "command options" to */
the user. */

1* INPUTS: NONE. */
/ -1* OUTPUTS: NONE. */

1* GLOBAL VARIABLES USED: exit. */
/* GLOBAL VARIABLES CHANGED: NONE. */
/* FILES READ: NONE. */
/* FILES WRITTEN: NONE. */
/* MODULES CALLED: titleo(, intro(), set defaultso, menu). *i
/* CALLING MODULES: NONE. */
/* */

/* AUTHOR: CAPTAIN WILLIAM H. LIEBER */

/ 1* HISTORY: AFIT THESIS GE/EE/84D-71: Development of a Dedicated */
/* Speech Work Station. Thesis Advisor: Major Larry Kizer. */

SYMBOLIC CONSTANTS */*** ***** * ** ** **** ** ** *** ** ** * ** ** * ** * *** *** ** ** ** * ** *** * * * *** ** * *** *****
#include "bdscio.h" /* Standard 'C' Language header file. */

********* ************************************* ******************** ** h

/* GLOBAL VARIABLES */* ** ** * **** * ** * **** **** *** **** *** * *** ** **** * *** * ***** ** ***** *** *** ** * * * *

/* NOTE: All GLOBAL VARIABLES must be listed just prior */

to main() whether used in main() or not.
**** *** ** ** * ** *** ** ** ** *** * *** ** * ** **** * ** ***** * **** * * * */

#include "speech.h" /* Contains all GLOBAL VARIABLES. */

A-1

*

.

V .-. . . ? ,"/ " . '". :'. ' :: • L : , : ,' .: *, :.-. .;-..L .- .- :
"

-- . . - .. "
'

i.,. - -.' . . - ' , - , 4- . -,. .- :, . -• . -. - - - " . ,. 5 -- :. - , -. -. -. . . .-. - .- ,- . L

/* MAIN PROGRAM */

main()

title(); /* Print "SPEECH" on the CRT. */
introo; /* Give user the option to read the

/* description of "SPEECH".
setdefaults(; /* Initialize variables to default

/* values.
while(exit =- FALSE)(/* Show the user the commands which can

menuo; /* implemented. Continue to return to */
continue; /* the menu of commands until the user */

/* wishes to EXIT the program. */

A-2

S~:-:

\<y

L ,-

I* *I
/* NAME: SPEECH.H */

VERSION: 1.0 */
DATE: 2 December 1983 */
MODULE NUMBER: 2 */
FUNCTION: */

/* SPEECH.H is a "C Language" Header which holds the GLOBAL *1
VARIABLES used in the entire SPEECH program. SPEECH.H is *//* "1 included" in each individual "C" module. Any change to */

/* SPEECH.H will require all "C" modules to be recompiled */
/* (CC1 command) and relinked (CLINK command) to form a new
/* SPEECH.COM file. *I
/* INPUTS: NONE.
/* OUTPUTS: NONE. */
/* GLOBAL VARIABLES USED: NONE. */
/* GLOEAL VARIABLES CHANGED: NONE. */
/* FILES READ: NONE. */
/* FILES WRITTEN: NONE. */
/* MODULES CALLED: NONE. */
/* CALLING MODULES: NONE. */

/5 AUTHOR: CAPTAIN WILLIAM H. LIEBER *I/* */

/5 HISTORY: AFIT THESIS GE/EE/84D-71: Development of a Dedicated */
/* Speech Work Station. Thesis Advisor: Major Larry Kizer.

/ */

/* SPEECH.H *I
/s**************************************5********5***

int exit; /* Set TRUE by quito to exit program. */
char name[50]; /* Holds user's name for later display. */

int inputl; /* Used to control cursor movement.
int input2; /* Used to control cursor movement. SI
int cursor; /* Holds pixel number of cursor. Pixel number */

IS is one more than sample number. SI
1* I.E. Sample #1 is in pixel column #2. */

char atemp[7]; /* A tempory holding place for an ASCII string. */
char 1_temp[4]; /* A tempory holding place for a LONG (32 bit) */

/* INTEGERS. */
char 1 cursor[4]; /* Holds LONG (32 bit) version of cursor. */
char x-axis[4]; /* Holds LONG (32 bit) version of "sample 1" */

/* displayed in first column (pixel #2) of */
I* graph. *I

A-3

w .-.- 7

int is analog; /* Set TRUE for Analog-to-Digital operations. */
int is-digital; /* Set TRUE for Digital-to-Analog operations. */
int is mem mem; /* Set TRUE for Memory-to-Memory transfers. */
int is graphics; /* Set TRUE for Graphics operations. */
int is_clearmem; /* Set TRUE for NULLING Extended Memory. */

char filename[18]; /* Holds "filename" used to STORE & RETRIEVE */
/* data to magnetic disk. */

char channel[7]; /* Holds ASCII version of ANALOG CHANNEL to */
1 * be sampled. */

char rate[7]; /* Holds ASCII version of SAMPLING RATE. */
char max rate[7]; /* Holds ASCII version of MAXIMUM SAMPLING RATE.*/
char samples[7]; /* Holds ASCII version of total number of

/* SAMPLES to be taken. */
char max_samples[7]; /* Holds ASCII version of maximum number of */

1 * samples which can be stored. */
char begin at[7]; /* Holds ASCII version of first sample to be */

/* used during digital-to-analog operations. */
unsigned channum; /* Holds BINARY version of ANALOG CHANNEL to */

/* be sampled. */
char rate_num[4]; /* Holds LONG (32 bit) version of SAMPLING RATE.*/
char start[4]; /* Holds LONG (32 bit) version of first sample */

/* to be used during digital-to-analog */
/* operations. */

* char finish[4]; /* Holds LONG (32 bit) version of last sample */
" * to be used during digital-to-analog */
.-* operations. *1

/* NOTE: limitlA thru limit8A are used during digital-to-analog */
1 /* operations to set the inital extended memory board to be used. */

char limitlA[7); /* Holds ASCII version of first "sample" stored */
on extended memory board #1. */

char limit2A[7]; /* Holds ASCII version of last "sample" stored */
..* on extended memory board #1. */

char limit3A[7]; /* Holds ASCII version of first "sample"stored */
on extended memory board #2. */

char limit4A[7]; /* Holds ASCII version of last "sample" stored */
on extended memory board #2. *

char limit5A[7]; /* Holds ASCII version of first "sample" stored *1
.* on extended memory board #3. */

char limit6A[7]; /* Holds ASCII version of last "sample" stored */
on extended memory board #3. */

* char limit7A[71; /* Holds ASCII version of first "sample"stored *1
"_1* on extended memory board #4. */

char limitBA[7]; /* Holds ASCII version of last "sample" stored */
on extended memory board #4.

char crystal[8]; /* Holds ASCII version of crystal frequency */
1 * used with STC chip. */

A-4

|,. - ,.

=- .. .,"

. . .

char mem buffer[2048]; /* Temporary holding place in lowest 64K of */
-/* memory for data. Used during disk I/O and */
/* plotting operations. *

char from[4]; /* Holds LONG (32 bit) version of first byte to */
/* be moved during memory-to-memory transfer. */

char to[4]; /* Holds LONG (32 bit) version of where first */
/* byte is to be moved to during memory-to- */
1* transfer.

int volt_line; /* Used to control up/down VOLTLINE movement. */

A-5

A-5

i! "
• - - '. .'5 , " " i ' i'. " - ' " .' i" i i , _ ., , I

/* "1
1* NAME: TITLE.C */
/* VERSION: 1.0 */
/* DATE: 2 December 1983 */
.., /* MODULE NUMBER: 3 */

FUNCTION: Displays program title (SPEECH) and author's name on
/* CRT screen. */
/* INPUTS: NONE. */

OUTPUTS: Programmed "text" displayed on CRT screen. */
GLOBAL VARIABLES USED: NONE. *
GLOBAL VARIABLES CHANGED: NONE. */

-:- * FILES READ: NONE. */
* /* FILES WRITTEN: NONE. *1

/* MODULES CALLED: NONE. */
CALLING MODULES: main() */.. .1* *l
AUTHOR: CAPTAIN WILLIAM H. LIEBER */I* *I

HISTORY: AFIT THESIS GE/EE/84D-71: Development of a Dedicated */
Speech Work Station. Thesis Advisor: Major Larry Kizer. *//* $1

SYMBOLIC CONSTANTS *1

#define ESCAPE 27 /* H-19 CRT ASCII "escape" code. */
#define CLEARS 69 /* H-19 CRT ASCII clear the screen code.*/

/* */

FUNCTION: TITLE() */1- * */

title()

putchar(ESCAPE); /* Clear CRT screen. */
putchar(CLEARS);

/* Display "SPEECH" on CRT screen. */
printf("\n\n\n\n");
printf("\t ");
puts("XXXXXXX XXXXXXX XXXXXXX XXXXXXX XXXXXXX XX XX\n");
printf("\t ");
puts("XXXXXXX XXXXXXX XXXXXXX XXXXXXX XXXXXXX XX XX\n");
printf("\t ");
puts("XX XX XX XX XX XX XX XX\n");
printf("\t t);

puts("XX XX XX XX XX XX XX XX\n");
printf("\t f");
puts("XXXXXXX XXXXXXX XXXXX XXXXX XX XXXXXXX\n");
printf("\t ");

A-6

**-.-

putS(XXXXXXX xxxxxxx xxxxx XxXX xx XXXXXXX\n");
printf("\t fl);
puts(,, xx xx xx xx xx xx XX\n");
printf("\t)

puts(,, xx XX XX XX XX XX XX\n");
printf("\t ")
puts(I"XXXXXXX xx XXXXXXX XXXXXXX XXXXXXX XX XX\n");
printf("\t 1') ;
puts("IXXXXXXX XX XXXXXXX XXXXXXX XXXXXXX XX xx\n");

/* Display authors name on CRT screen. ~
printf ("\n\n\n\n\n\n\n\n\n");
printf("\t\t\t\t\t by: CAPT WILLIAM H. LIEBER");

sleep(40); / Wait while user enjoys title.*/
* putchar (ESCAPE); /* Clear the CRT screen. *

putchar (CLEARS);

A-7

1" NAME: INTRO.C *I
/* VERSION: 1.0 */
/* DATE: 2 December 1983 */
1* MODULE NUMBER: 4 */
/* FUNCTION: Stores user's name for future display. Asks user if */
1* program description should be displayed. Responds to user's */
/* yes or no response. */
/* INPUTS: User entered commands from H-19 keyboard.
/* OUTPUTS: User prompts displayed on CRT screen. */
/ 1* GLOBAL VARIABLES USED: name. */
/* GLOBAL VARIABLES CHANGED: name. */
/* FILES READ: NONE.
]* FILES WRITTEN: NONE. */
-1: /* MODULES CALLED: describeo. */
/* CALLING MODULES: main() */l* "1
/* AUTHOR: CAPTAIN WILLIAM H. LIEBER */l* "1
/* HISTORY: AFIT THESIS GE/EE/84D-71: Development of a Dedicated *1
/* Speech Work Station. Thesis Advisor: Major Larry Kizer. */1. .1

/ .1* SYMBOLIC CONSTANTS

#define ESCAPE 27 /* H-19 CRT ASCII "escape" code.
#define CLEARS 69 /* H-19 CRT ASCII clear the screen code. */

. - #define R VIDEO Ox70 /* H-19 CRT code for enter reverse video mode. */
#define NVIDEO Ox7l /* H-19 CRT code for enter normal video mode. */

/* GLOBAL VARIABLES

#include "speech.h" /* Contains all GLOBAL VARIABLES.

.'-"1, *l
1* FUNCTION: INTRO() */

introo)

1---/ LOCAL VARIABLES */

int see intro; /* Holds keyboard response to getcharo.*/
int i; /* Indexing variable used in "for" loop.*/

A-8

STORE USER'S NAME */

puts("\nMy name is MAGIC and I'm your host.\n");
puts("\nWhat is your name? (CR>");
puts("\b");
puts("\b\b\b\b\b\b");

for(i - 0; (c = getcharo) I= '\n' && i < NAMEMAX; ++i)
name[i] - c;

name[i] = '\0';

printf("\nWelcome to SPEECH, Za. \n", name);

DOES USER WISH TO SEE THE PROGRAM DESCRIPTION */

LOOP1:
puts("\nWould you like to review how I work? [Y/N]");
seeintro - getcharlj; /* Get user's command. */

switch(see intro) (/* Respond to user's command. *1
7 case 'yT: case 'y': /* Show program description to user.

describe(;
break;

case 'N': case 'n': /* User does not wish to see program /
break; /* description. Continue. */

default: /* Valid command not provided by user.
printf("\n\nSorry %s, ", name);
puts("I didn't understand what you said.\n");
goto LOOPI;

A-9

,.., J, . . 7.. 7. L< ., -... *. " -.. :.:- -. :-

I**

1* NAME: DESCRIBE.C *1
VERSION: 1.0

1* DATE: 2 Decemober 1983 */
1* MODULE NUMBER: 5 */
1* FUNCTION: Displays SPEECH'S description and user's guide on
1* the CRT screen. */
1* INPUTS: User entered commands from H-19 keyboard. *1
1* OUTPUTS: Programmed "text" displayed on CRT screen. */

GLOBAL VARIABLES USED: name. */
GLOBAL VARIABLES CHANGED: NONE. */

1* FILES READ: NONE. */
FILES WRITTEN: NONE. */
MODULES CALLED: NONE. */
CALLING MODULES: maino, menuo. *1

AUTHOR: CAPTAIN WILLIAM H. LIEBER *11* *

J, HISTORY: AFIT THESIS GE/EE/84D-71: Development of a Dedicated *1
1, Speech Work Station. Thesis Advisor: Major Larry Kizer. */1* */

/* SYMBOLIC CONSTANTS */

#define ESCAPE 27 /* H-19 CRT ASCII "escape" code. */
#define CLEARS 69 /* H-19 CRT ASCII clear the screen code. *1
#define R VIDEO Ox7O /* H-19 CRT code for enter reverse video mode. */
#define NVIDEO Ox71 /* H-19 CRT code for enter normal video mode. */

FUNCTION: DESCRIBE)//* *

describe()

/* DISPLAY PAGE 1 OF TEXT *1

putchar(ESCAPE); /* Clear CRT screen. *I
putchar(CLEARS);

puts(" I. GENERAL DESCRIPTION.\n\n");
puts(" SPEECH.COM's basic purpose is to sample an analog input\n");
putsC" and place the quantized digital value of the sample in\n");
puts(" extended memory. From there, the samples may be graphically\n");
puts(" displayed 500 at a time on the CRT screen or placed in more n");
puts(" permanent storage on a magnetic disk. Previously stored \n");
puts(" samples from a magnetic disk may of course be transferred\n");

A-10

. -*. -i. -.- .

K - -.: ° . P , . .- . . " , 7
.

. . - ' - 2 ° ' ' '

puts(" back to the system's extended memory. A short description\n");
puts(" of the eight options contained in SPEECH.COM are printed \n");
puts(" below.\n\n");
puts(" 1. ANALOG-TO-DIGITAL CONVERSION. \n\n");
puts(" Analog-to-Digital (A/D) conversion (sampling) is \n");
puts(" accomplished by the Analog Devices module DAS1128. The\n");
puts(" module is installed as Integrated Circuit chip number 61.\n");
puts(" This module has input pins for 16 (0 thru 15) separate\n");
puts(" analog inputs. Any one of the inputs may be user selected\n");
puts(" as the channel to be sampled. The default channel is\n");
puts(" channel 0. NOTE the input signal(s) must be preconditioned\n");
puts(" by the user to be between plus and minus 5 volts. During\n");

putchar(ESCAPE); /* Display user prompt in reverse video.*/

putchar(R_VIDEO);
puts("\nPress any key to continue.");
putchar(ESCAPE);
putchar(N_VIDEO);
getcharo; /* Wait for key to be pressed. */

/* DISPLAY PAGE 2 OF TEXT */

putchar(ESCAPE); /* Clear CRT screen. */
putchar(CLEARS);

puts(" program operation, the user selects the rate (in samples\n");
puts(" per second) at which the input signal will be sampled plus\n");
puts(" the number of samples to be taken and stored in extended\n");
puts(" memory. NOTE also the maximum sampling rate allowed is\n");
puts(" 31,700 samples per second and the maximum number of\n");
puts(" samples storable is 163,840. (Five SSM Microcomputer static\n");
puts(" memory boards @ 32K samples -- 64K bytes -- per board.)\n");
puts(" When an A/D conversion is requested, the selected\n");
puts(" analog input is converted to 12 bit resolution digital\n");
puts(" values. The 12 bits are in 2's complement format. After\n");
puts(" each sampling of the input analog signal, first the\n");

puts(" lower 8 bits are stored in memory and then the higher\n");
puts(" 4 bits are stored. The two trips to memory is due to\n");
puts(" the system's 8 bit data bus. The first memory location\n");
puts(" used for storage is always memory address 0 of the\n"); I
puts(" first extended memory board. The controlling devices\n");
puts(" during A/D conversion are (1) Advanced Micro Devices\n");
puts(" AM9517A Multimode Direct Memory Access (DMA) Controller,\n");
puts(" installed as Integrated Circuit chip #27, and\n");
puts(" (2) Advanced Micro Devices AM9513 System Timing\n");
puts(" Controller (STC), installed as Integrated Circuit\n");
puts(" chip #17.\n");

putchar(ESCAPE); /* Display user prompt in reverse video.*/
putchar(R_VIDEO);
puts("\nPress any key to continue.");
putchar(ESCAPE);
putchar(N_VIDEO);
getchar(; /* Wait for key to be pressed. */

A-11

i:? :}::i:: :: ! ,: i: : . *. : ... i :

I* DISPLAY PAGE 3 OF TEXT

putchar(ESCAPE); /* Clear CRT screen. *I
putchar(CLEARS);

puts(" 2. DIGITAL-TO-ANALOG CONVERSION.\n\n");
puts(" Digital-to-Analog (D/A) conversion is accomplished by the\n");
puts(" Analog Devices module DACIII8. The module is installed as\n");
puts(" Integrated Circuit chip #45 and uses 12 bit resolution\n");
puts(" digital values to produce a single analog signal. The 12\n");
puts(" bits are in 2's complement format and form an analog output\n");
puts(" value between plus and minus 5 volts. As with A/D sampling,\n");
puts(" two trips to memory are required to bring the 12 bits to\n");
puts(" the D/A module. The 12 bits are latched until the strobe\n");
puts(" clock pulse is received. Under software control, the system\n");
puts(" user selects the first and last samples to be converted by\n");
puts(" the module. An output delay occurs when the first sample\n");
puts("1 selected is not near the beginning of an extended memory\n");
puts(" board. This is because the D/A output process only knows\n");
puts(" how to start counting bytes when starting at the beginning\n");
puts(" of an extended memory board. Therefore, an output delay is\n");
puts(" experienced as the program by-passes unrequested samples.\n");
puts(" The AM9517A DMA and AM9513 STC are the controlling devices\n");
puts(" during D/A conversion.\n");

putchar(ESCAPE); /* Display user prompt in reverse video.*/
putchar(RVIDEO);
puts("\nPress any key to continue.");

'S" putchar(ESCAPE);
putchar(NVIDEO);
getcharo; /* Wait for key to be pressed. *1

I* DISPLAY PAGE 4 OF TEXT *I

putchar(ESCAPE); /* Clear CRT screen.
putchar(CLEARS);

puts(" 3. STORE DATA ON MAGNETIC DISK.\n\n");
puts(" After performing an A/D conversion, the user may select\n");
puts(" to place the collectd data samples on magnetic disk for\n");
puts(" storage. The transfer of data is always to the disk inserted\n");
puts(" in drive B. A maximum of 327,680 bytes (the capacity of all\n");
puts(" extended memory boards combined) can be placed on magnetic\n");
puts(" disk during one command. The program transfers the data\n");
puts(" samples in blocks of 2048 bytes by using a transparent data\n");
puts(" buffer. Data is first moved from extended memory to the data\n");
puts(" buffer in LO memory, and then to the magnetic disk. The\n");
puts(" data may be placed under any filename selected by the user.\n");
puts(" The default filename is DATA.ONE. The AM9517A DMA chip is\n");
puts(" used to transfer the data between HI memory (memory located\n");
puts(" above the first 64K) and LO memory (the first 64K).\n");

A-12

Si- -k- .5. -j .-Z

putchar(ESCAPE); /* Display user prompt in reverse video.*/
putchar(R VIDEO);
puts("\nPress any key to continue.");
putchar(ESCAPE);
putchar(N VIDEO);
getcharo; /* Wait for key to be pressed. */

/* DISPLAY PAGE 5 OF TEXT */

putchar(ESCAPE); /* Clear CRT screen. */
putchar(CLEARS);

puts(" 4. RETRIEVE DATA FROM MAGNETIC DISK.\n\n");
puts(" Data stored on magnetic disk may be placed in extended\n");
puts(" memory for use by other program options. The transfer of\n");
puts(" data samples is done in blocks of 2048 bytes by using a\n");
puts(" transparent data buffer. The data samples are first moved\n");
puts(" from the magnetic disk to a data buffer in LO memory. The\n");
puts(" 2048 byte block of data is then transferred to extended\n");
puts(" memory, beginning with byte address 0 of the first extended\n");
puts(" memory board. The AM9517A DMA chip is used to transfer the\n");
puts(" data between HI memory (memory located above the first 64K)\n");
puts(" and LO memory (the first 64K).\n\n");

putchar(ESCAPE); /* Display user prompt in reverse video.*/
putchar(RVIDEO);
puts("\nPress any key to continue.");
putchar(ESCAPE);
putchar(NVIDEO);
getcharo; /* Wait for key to be pressed. */

DISPLAY PAGE 6 OF TEXT */

putchar(ESCAPE); /* Clear CRT screen. */
putchar(CLEARS);

puts(" 5. USE GRAPHICS TO DISPLAY DATA.\n\n");
puts(" Once an analog signal has been sampled, it can be displayed\n");
puts(" graphically on the CRT screen in blocks of 500 samples.\n");
puts(" The high resolution graphics packige contained in the CRT\n");
puts(" terminal allows this to be done. The user selects the first\n");
puts(" sample of the 500 sample block to be displayed. The\n");
puts(" corresponding 1000 bytes (2 bytes per data sample) are then\n");
puts(" transferred by the AM9517A DMA chip to the transparent data\n");
puts(" buffer. These 1000 bytes are converted to the 500 y-axix\n");
puts(" values required for plotting. Once plotted a horizontal axis\n");
puts(" cursor allows selection of a begining and ending sample\n");
puts(" for output by the D/A module. The begining and ending sample\n");
puts(" need not be from the same 500 sample plot. Cursor movements\n");
puts(" in step of 1, 25, 100, and 500 samples are allowed.\n");

puts(" Additionally, a vertical axis (voltage line) cursor can be\n");
puts(" moved in steps of I and 20 pixels (20 pixels = 1 volt) to\n");
puts(" judge relative heights of the plotted data samples. All\n");
puts(" options are user prompted on the CRT screen along with the\n");
puts(" graph.\n");

A-13

0 /i

putchar(ESCAPE); /* Display user prompt in reverse video.*/
putchar(R VIDEO);
puts("\nP-ess any key to continue.");
putchar(ESCAPE);
pLtchar(NVIDEO);
getchar(); /* Wait for key to be pressed.

/* DISPLAY PAGE 7 OF TEXT

putchar(ESCAPE); /* Clear CRT screen. */
putchar(CLEARS);puts(" 6. TRANSMIT DATA TO/FROM THE ECLIPSE.\n\n");

puts(" This option was not written as part of the thesis effort.\n");
puts(" Space was reserved, however, in the S-100 open frame for a\n");
puts(" TU-ART board which can be used to transfer data between the\n");
puts(" CROMENCO S-100 microcomputer system and the NOVA/ECLISPE\n");
puts(" minicomputer system.\n\n");
puts(" 7. REVIEW THE INTRODUCTION.\n\n");
puts(" This option allows the user to review the basic workings\n");
puts(" of the program whenever the user wishes. Once the review is\n");
puts(" completed, the program MENU is redisplayed to the user on\n");
puts(" the CRT screen.\n\n");
puts(" 8. EXIT THE PROGRAM.\n\n");
puts(" This option is used whenever all other actions are done\n");
puts(" by the user. This option displays a good-bye message to the\n");
puts(" user and causes a control word to be set which results in\n");
puts(" the operating system prompt (A.) being redisplayed.\n");

putchar(ESCAPE); /* Display user prompt in reverse video.*/
putchar(RVIDEO);
puts("\nPress any key to continue.");
putchar(ESCAPE);
putchar(N_VIDEO);
getchar(; /* Wait for key to be pressed.

* /***I*
/* DISPLAY PAGE 8 OF TEXT

putchar(ESCAPE); /* Clear CRT screen. */
putchar(CLEARS);

puts("II. USER's GUIDE.\n\n");
puts(" 1. Turn system power on.\n\n");
puts(" 2. Place a diskette containing SPEECH.COM and the operating\n");
puts(" system in drive A.\n\n");
puts(" 3. Place a second diskette in drive B. The second diskette\n");
puts(" is used for data storage and retrieval. If used for data\n");
puts(" storage, the diskette must be able to store a number of \n");
puts(" bytes equal to twice the number of data samples taken.\n");
puts(" Recall that the maximum number of bytes taken by SPEECH.COM\n");
puts(" is 327,680 bytes (163,840 samples). If used for retrieval,\n");
puts(" the diskette must contain previously stored data.\n\n");
puts(" 4. Boot the system by pressing the keyboard RETURN key four\n");
puts(" times. You may alternately press the keyboard RETURN and\n");
puts(" REPEAT keys simultaneously.\n\n");
puts(" 5. When the system prompt (A.) appears, type: SPEECH <CR>.\n\n");

A-14

0 . _ , . , - " • . - . - .

• . . " . - - * - . . . ,

-. -.-. - - .-. .- - - - .- x.~..* ~ '-P''7.1 -

putchar(ESCAPE); /* Display user prompt in reverse video.*/
putchar(R VIDEO);
puts("\nPress any key to continue.");
putcharC ESCAPE);
putchar(NVIDEO);
getcharo); /* Wait for key to be pressed. *

DISPLAY PAGE 9 OF TEXT *

putchar(ESCAPE); /* Clear CRT screen. *
putchar(CLEARS);

puts(" 6. The SPEECH program is now loaded and operating. The \n");
puts(" program is user friendly and will prompt the user at all\n");
puts(" decision points.\n\n");
puts(" 7. First, the user may personalize the program by entering the\n");
puts(" user's name when asked at the beginning of the prograui.\n\nf);
puts(" 8. Next the user will be given an opportunity to review how\n");
puts(" SPEECH.COM works. A yes or no response is solicated with\n");

Lputs(" the program responding accordingly.\n\n");
puts(" 9. Finally, SPEECH.COM's \"MENU\" will be displayed. The menu\n");
puts(" gives the user a choice of eight options:\n");
puts(" a. Do an ANALOG-TO-DIGITAL conversion.\n");
puts(" b. Do a DIGITAL-TO-ANALOG conversion.\n");
puts(" c. STORE data on magnetic disk.\n");
puts(" d. RETRIEVE data from magnetic disk.\n");
puts(" e. Use GRAPHICS to display data.\n");
puts(" f. TRANSMIT data to the Eclispse.\n");
puts(" (Not written as part of AFIT THESIS GE/EE/83D-38.)\n");
puts(" g. Review the INTRODUCTION.\n");
puts(" h. EXIT the program.\n");

putcharCESCAPE); /* Display user prompt in reverse video.*/
putchar(R_VIDEO);
puts("\nPress any key to continue.");
putchar(ESCAPE);
putchar(NVIDEO);
getcharoQ; /* Wait for key to be pressed. *

1* DISPLAY PAGE 10 OF TEXT *

putchar(ESCAPE); /* Clear CRT screen. *
putchar(CLEARS); ''

puts(" 10. After completing any menu option (except of course EXIT),\n");
puts(" the \"MENU\" is redisplayed to the user. Another choice\n");
puts(" can then be entered.\n\n");
puts(" 11. When the user is finished, type \"E\" and the system prompt\n"t);
puts(" will reappear on the CRT screen.\n\n");
puts(" 12. Remove all diskettes, turn off all system power, and the\n");
puts(" session is completed.\n");
puts("\nTHAT CONCLUDES THE INTRODUCTION TO \"SPEECH\".\n");
puts("NOW ON TO THE MENU.\n\n");

A-15

putchar(ESCAPE); /* Display user prompt in reverse video.*/
putchar(RVIDEO);L
puts("\nPress any key to continue."t);
putchar(ESCAPE);
putchar(N_VIDEO);
getcharo; /* Wait for key to be pressed. *

A61

-L-I

I* *1
1* NAME: DEFAULTS.C *I

VERSION: 1.0
1* DATE: 2 December 1983 */
/* MODULE NUMBER: 6 */
/* FUNCTION: Initializes specified GLOBAL VARIABLES to default */
1* values. */
/* INPUTS: NONE. */

OUTPUTS: NONE. */
1* GLOBAL VARIABLES USED: exit, is analog, isdigital, is memmem,*/
1* isgraphics, is clearmem, channel, rate, maxrate, samples, */
/* maxsamples, begin at, crystal, filename, limitlA, limit2A, */
/* limit3A, limit4A, limit5A, limit6A, limit7A, limit8A. */
1* GLOBAL VARIABLES CHANGED: See GLOBAL VARIABLES USED. */
/* FILES READ: NONE. */
/* FILES WRITTEN: NONE. */
1* MODULES CALLED: NONE. */
1* CALLING MODULES: maino. */1* */

1* AUTHOR: CAPTAIN WILLIAM H. LIEBER */1* .1

/* HISTORY: AFIT THESIS GE/EE/84D-71: Development of a Dedicated */
1* Speech Work Station. Thesis Advisor: Major Larry Kizer. */1* */

SYMBOLIC CONSTANTS */

#define FALSE 0 /* Logic "false" is a zero. "1

/* GLOBAL VARIABLES */

#include "speech.h" /* Contains all GLOBAL VARIABLES. */

/* */
/* FUNCTION: SETDEFAULTS() */

setdefaults()(
exit = FALSE;
is_analog - FALSE;
is_digital = FALSE;
is mem mem - FALSE;
is graphics - FALSE;
isclearmem - FALSE;

A-17

- ,' . . A - -- * -

channel[0] - '0'; /* Default analog channel to sample *
channelil] - '\0'; 1* from is: 0.

rate[01 = '1'; 1* Default sampling rate is: 10,000. *
rate(1] - '0'; /* (Samples per second.)
rate[2] - '0';
rate[3] = 't
rate[4] = '0';
rateE5] - '\0';

max-rate[0] - '3'; /* Maximum sampling rate is: 31,700. *
Max rate[,) = '1'; 1* (Samples per second.) *
max-rate[2] = '7';
max rate[3] - '0';
max-ratel4] = '0';
max_rate[5) - '\0';

samples[0] - '1'; /* Default number of samples to be *
samples[l] - '6'; /* taken is: 163,840.
samples[2] - '3';
samples[3] = '8';
samples[4] = '4';

s amples[5] - '0';
samples[61 = \'

maxsamples[0] - '1'; /* Maximum number of samples which can
max samples[1] - '6'; /* be stored in memory is: 163,840. *
max samples[2] -=3'
max_samples[3] - '8';4.maxsamples[4] - '4';
max_samples[5] = '0';
max_samples[6] - \=

begin at[0] = '1'; /* Default Digital-to-Analog samples to *
begin_at[1] -'\0'; 1* be by-passed is: 1. *

crystal[0] - '4'; /* The STO crystal frequency is: *
crystal[l] - '0'; /* 4,000,010 hertz. *
crystal[2] - '0';
crystal[3] - '0';
crystal[4] - '0';
crystal[5] - '1';
crystal[6] -'0';
crystal[7] - \;

filename[0] - 'B'; /* Default filename is: B:DATA.ONE *
filename[l] -
filename[2] - D=
filename[3] - 'A';
filename[4] - ''

*filename[5] - 'A';
filename[61 -= '
filename[7] - '0';
filename[8] a'N';
filename[9] ='E';

K filename[10] - \01;

A-1

-, ~ ~ ~ ~ - Ro- *,T-- . - r

limitlA[0] -'0'; /* The first sample on memory board #1 *
limitIAll) - '\01; /* is: 0. *

limit2AIO] - '3'; /* The last sample on memory board #1 *
limit2Af 1] - '2'; 1* is: 32,768.
lisit2A[2] - '7';
limit2A[3] - '6';
limit2A[4] - '8';
limit2A[5] - \=

limit3A[0] - '3'; /* The first sample on memory board 12 *
limit3A[lI - '2'; /* is: 32,769. *
limit3A[i2) 1 7';
limit3A[3] ' 6';
limit3A[4] = 9';
limit3A[5] #\O

limit4A[0I = 6' * The last sample on memory board 12 *
limit4Ajjl] -'5'; /* is: 65,536. *
limit4A[2] ='5';

limit4A[3] - '3';
limit4AE4) - '6';
limit4A(5] - \=

limit5A[0) - '6'; 1* The first sample on memory board 13 *
limit5A~lI '5'; /* is: 65,537.
limit5Af2] - '5';
limit5A[3] - '3';
limit5A[4] = '7';
limit5A[5] = \-

limit6A[0] - '9'; /* The last sample on memory board 13 *
limit6A[l] - '8'; /* is: 98,304.
limit6A[2] - '3';
limit6A[3] - '0';
limit6At4] - '4';
limit6A[51 -'\;

limit7A(01 - '9'; 1* The first sample on memory board #4 *
limit7A[l] - '8'; /* is: 98,305.
limit7A[2] - '3';
limit7A[3] - '0';
liuit7A[4] - '5';
limit7A[5] - '\0';

limit8A[O] - '1'; /* The last sample on memory board #4 *
limit8A(1J - '3'; /* is: 131,072.
limitBA[21 - '1';
limit8A[3] - '0';
limit8A[4] - '7';-
limit8A[5] - '2';
limit8A[6] - '\0';

A- 19

l* */

/* NAME: MENU.C "1
/* VERSION: 1.0*
/* DATE: 2 December 1983
/* MODULE NUMBER: 7 */

FUNCTION: Prompts user with "menu of commands" available in */
SPEECH. Implements user's response. */

INPUTS: User entered commands from H-19 keyboard.
OUTPUTS: User prompts displayed on CRT screen. */

/* GLOBAL VARIABLES USED: name. */
1* GLOBAL VARIABLES CHANGED: NONE. */
1* FILES READ: NONE.

FILES WRITTEN: NONE. */
MODULES CALLED: analogo), digital(), storeo, retrieveo, */

1* graphics(, describe(, quito. */
1* CALLING MODULES: main() */1* *

1* AUTHOR: CAPTAIN WILLIAM H. LIEBER */1* .

HISTORY: AFIT THESIS GE/EE/84D-71: Development of a Dedicated */
Speech Work Station. Thesis Advisor: Major Larry Kizer. */!* .1

SYMBOLIC CONSTANTS */

#define ESCAPE 27 /* H-19 CRT ASCII "escape" code. *
#define CLEARS 69 /* H-19 CRT ASCII clear the screen code. *
#define R VIDEO Ox70 /* H-19 CRT code for enter reverse video mode. *
#define N-VIDEO 0x71 /* H-19 CRT code for enter normal video mode. *

/* GLOBAL VARIABLES *

#include "speech.h" /* Contains all GLOBAL VARIABLES. *

l* *
FUNCTION: MENU() "1l* *

menuo)

/* LOCAL VARIABLES *

int choose_one; /* Holds keyboard response to getcharo.*/

A-20

. .1

I DISPLAY "MENU OF COMMANDS" TO USER *

putchar(ESCAPE); /* Clear CRT screen. *
p utchar(CLEARS);

LOOP2: ;/* Display "menu of commands" on CRT *
puts(",\n\t",); 1* screen. *
putchar (ESCAPE);
putchar(RVIDEO);
printf("%s ", name);

I> puts("THIS IS SPEECH'S MENU:");

putchar(ESCAPE);
putchar(NVIDEO);

puts("\n\nDo an ANALOG-to-DIGITAL conversion Press.A.\n");-puts("\nDo a DIGITAL-to-ANALOG conversion Press D\n");
puts("\nSTORE data on magnetic disk Press S.\n");
puts("\nRETRIEVE data from magnetic disk Press R.\n");
puts("\nUse GRAPHICS to display data Press G.\n");
puts("\nTRANSMIT data to/from Eclipse Press T.\n") ;
puts("\nReview the INTRODUCTIONPress I.\n"I);
puts("\nEXIT the programPress E.\n") ;

puts("\n\n\n\n"); /* Prompt user to enter a command. *
putchar(ESCAPE);
putcharCRVIDEO);

- . puts("Please enter your choice.");
putchar(ESCAPE);
putcharCNVIDEO);

* /* RESPOND TO USER'S COMMAND*1'

choose one =getcharo; /* Get user's command. *
switch(choose one)(/* Respond to user's command. *

case 'A': case 'a': /* Do an ANALOG-to-DIGITAL conversion. *
analog 0;
break;

case 'D': case IV:s /* Do a DIGITAL-to-ANALOG conversion. *
digital();
break;

case 'S': case 's': /* STORE data on magnetic disk. *
store 0;

1break;t
case 'R': case 'r': /* RETRIEVE data from magnetic disk. *

retrieveo;
break;

case 'G': case 'g'1: /* Use GRAPHICS to display data. *
graphics();
break;

case 'T': case It': / TRANSMIT data to Eclias.
puts("\nCase T will not be written for this thesis.\n");
sleep(60);
break;

A-21I

case 'I': case 'i': /* Review the INTRODUCTION.
describeo;
break;

case 'E': case 'e': /* EXIT the program. */
quito;
break;

' default: /* User didn't enter a valid command. */
putchar(ESCAPE); /* Clear CRT screen and reprompt user. */
putchar(CLEARS);
printf("Sorry %s, ", name);
puts("I didn't understand what you said.\n");
goto LOOP2; /* Go wait for another command. */

A

,.-

A-22

. - - .. :

"-rtW - *-****-*r ****- **-** -**-*-*-*****-*-****-**-*******-*-**- **-*-

I* *I
1" NAME: QUIT.C */
/* VERSION: 1.0 */
/* DATE: 2 December 1983 */

MODULE NUMBER: 8 */
/* FUNCTION: Displays goodbye message to user on CRT screen and **
/* exits program. */

INPUTS: NONE. *4
OUTPUTS: Programmed "text" displayed on CRT screen. */
GLOBAL VARIABLES USED: name, exit. *1
GLOBAL VARIABLES CHANGED: exit. */

/* FILES READ: NONE. */
FILES WRITTEN: NONE. */
MODULES CALLED: NONE. */
CALLING MODULES: menuQ, analogo, digital(), graphicso). *//* *

/* AUTHOR: CAPTAIN WILLIAM H. LIEBER *//* *
/* HISTORY: AFIT THESIS GE/EE/834-71: Development of a Dedicated */

Speech Work Station. Thesis Advisor: Major Larry Kizer. */1* */

SYMBOLIC CONSTANTS */

#define ESCAPE 27 /* H-19 CRT ASCII "escape" code. /
#define CLEARS 69 /* H-19 CRT ASCII clear the screen code.*/
#define BELL 7 /* H-19 CRT ASCII bell code. */
#define TRUE 1 /* Logic "true" is a 1. */

/* GLOBAL VARIABLES */

#include "speech.h" /* Contains all GLOBAL VARIABLES. */

/* */
/* FUNCTION: QUIT *//* */

quito {7
putchar(ESCAPE); /* Clear CRT screen and display goodbye *1
putchar(CLEARS); /* message to user. */

printf("\n\n\n\nHAVE A NICE DAY lsl\n", name);
puts("\nBYEI\n");

putchar(BELL); /* Ring Bell. */
exit - TRUE; /* Enable program to return to */

1 /* operating system. */

A-23

"°°.

* :::::2.: .&t.bcRCZKt~p AZt% ~~:~V- tX&t-~ '~

- --- '-:-.----.3. - -_ 7

I* *I

1" NAME: ANALOG.C */
/ 1* VERSION: 1.0 */
/* DATE: 2 December 1983 *1
/* MODULE NUMBER: 9 */

FUNCTION: Performs analog-to-digital conversion of analog */
/* input. User selects "analog channel" to be sampled (1 of 16), */
1* data "sampling rate", and total "number of samples" to be *1
/* taken. */
/* INPUTS: (1) User entered commands from H-19 keyboard. */
/* (2) Analog input to A/D module (DAS 1128, IC #61). */
/* OUTPUTS: User prompts displayed on CRT screen. */
1* GLOBAL VARIABLES USED: is analog, chan_num. */
/* GLOBAL VARIABLES CHANGED: isanalog. */
/* FILES READ: NONE. */
/* FILES WRITTEN: NONE. *L
/* MODULES CALLED: clearmeno, input(), dma(, timing(), quito, */
/* waito. */

CALLING MODULES: menu(). */I* *I

/* AUTHOR: CAPTAIN WILLIAM H. LIEBER *//* *

HISTORY: AFIT THESIS GE/EE/84D-71: Development of a Dedicated */
/* Speech Work Station. Thesis Advisor: Major Larry Kizer. *//* */

SYMBOLIC CONSTANTS */

#define ESCAPE 27 /* 11-19 CRT ASCII "escape" code. */
#define CLEARS 69 /* H-19 CRT ASCII clear screen code. */
#define CLEARH OxCO /* Address which resets hardware. */
#define BELL 7 /* H-19 CRT ASCII ring bell code. */
#define R VIDEO Ox70 /* H-19 CRT code - enter reverse video mode. */
#define N VIDEO Ox71 /* H-19 CRT code - enter normal video mode. */
#define STC C Oxll /* Address for System Timing Controller (STC)*/

-/* chip select - control register transfer.*/
#define RUN Ox30 /* Arm STC register 5 -- start the CLOCK. */
#define RESET OxFF /* STC Master Reset code. */
#define AMUX OxAO /* Address used to load analog input channel */

-- /* to be sampled. */
#define EXTENDED Ox70 /* Address used to load Extended Address. */
#define BOARD 1 Ox01 /* Address of first extended memory board. */
#define A TOD Ox60 /* Address which toggles Analog-to-Digital */

/* mode switch ON-OFF. */
#define TOGGLE 0 /* TOGGLE may be any value. TOGGLE is used */

/* in the 'value' position of the "C" */
/1* statement: outp(port,value). */

#define TRUE 1 /* Logic "true" is a 1. */
#define FALSE 0 /* Logic "false" is a 0. */

A-24

S!i,;i::., ::ii" '" " " ' ' : : : ""

/* GLOBAL VARIABLES */

#include "speech.h" /* Contains all GLOBAL VARIABLES */

1* *1
FUNCTION: ANALOG() *//* *

analog()

/* LOCAL VARIABLES */

int donext; /* Holds keyboard response to getchar().*/
char chanin; /* Holds 8 bit version of analog input *1

/* channel to be sampled. */

SET UP FOR ANALOG-TO-DIGITAL SAMPLING */

isanalog = TRUE; /* Enable selected portions of other */
/*1 functions used by analogo.

putchar(ESCAPE); /* Clear CRT screen. */
putchar(CLEARS);
clearmemo; /* Load all Extended Memory Board bytes */

/* with zeros (OOOOOOOOB). */
outp(CLEARH,TOGGLE); /* RESET Thesis developed hardware. 5/t- puts("\b \b"); /* NOTE: CLEARH w COH. The CRT strips */

-* parity bit and prints "@" on the */
screen. (@ = 40H). Erase "@". */

inputo; 1* Input user's desired analog "input *
/5 channel", data "sampling rate", and*/
/* total "number of samples" to take. */

dma(; /* Set DMA chip for analog-to-digital */
1* sampling. */

timingo; /* Set STC chip for analogto digital */
" * sampling. */

chan in a channum; /* Form 8 bit version of analog channel *1
"-* to be sampled. */

outp(A MUX, chanin); /* Load analog input channel to be */
--/* sampled. */

outp(EXTENDED, BOARD_1); /* Load address of initial extended */
-/ memory board to be used. */

outp(ATO_D, TOGGLE); /* Toggle A/D mode switch to: ON.

A-25
S

-' "*.. .

- . * . - . *--

/* PERFORM ANALOG-TO-DIGITAL SAMPLING */

/* Display user prompts on CRT screen.
puts("\n\n\n\n\n\n\n\n\n");
puts("\nMAGIC's ready for ANALOG-to-DIGITAL sampling.\n\n");
putchar(ESCAPE);
putchar(RVIDEO);
puts(" E - EXIT M - MENU ANY OTHER KEY - RUN ");

putchar(ESCAPE);
putchar(NVIDEO);

do next = getcharo; I* Get user's command. *I
puts("\b \n"); /* Make command invisible on CRT screen.*/

switch(do_next) (/* Respond to user's command. */
case 'E': case 'e': /* EXIT program.

quito;
goto BYE;

case 'M': case 'm': /* Return to MENU. *1
goto BYE;

default: /* Let user know sampling has started by*/
1 * displaying message & ringing bell. */

puts("\nMAGIC is at workl\n");
putchar(BELL);

outp(STCC, RUN); /* Arm STC register 5 -- the CLOCK.
/* BEGIN A/D SAMPLING!! */

wait(; 1* Place CPU in tight loop until all *1
i1/* samples are taken. *1

.*i : "- I* DONE *I

/* Let user know sampling is finished by*/
putchar(BELL); /* displaying message & ringing bell. */
puts("\nANALOG-to-DIGITAL sampling finished.\n");
sleep(60); /* Let user read message. */

BYE:
outp(ATOD,TOGGLE); /* Toggle A/D mode switch to: OFF. */
outp(STCC,RESET); /* RESET STC chip. */
is-analog f FALSE; /* Disable selected portions of other */

/* functions used by analogo. */

A-26* * * *.*..** - -

. *

4- -*o..°.. -

. . ..

*, ? , -. .

1* */

1* NAME: DIGITAL.C */
VERSION: 1.0 */

'* DATE: 2 December 1983 */
1* MODULE NUMBER: 10

FUNCTION: Performs digital-to-analog conversion of data samples*/
stored in extended memory. User selects first and last sample */

1* to be converted. */
1* INPUTS: User entered commands from H-19 keyboard. */

OUTPUTS: (1) User prompts displayed on CRT screen. */
(2) Analog output signal from D/A module (DAC 1118, */

1* IC #45). */

'* GLOBAL VARIABLES USED: isdigital, is_graphics, limit4A, start.*/
1* GLOBAL VARIABLES CHANGED: is_digital. */
1* FILES READ: NONE. */

FILES WRITTEN: NONE. */
1* MODULES CALLED: input(), dma(, timing(, quito, waito. */
/* CALLING MODULES: menuo, graphics(. */1* *I

1* AUTHOR: CAPTAIN WILLIAM H. LIEBER */1, *I
HISTORY: AFIT THESIS GE/EE/84D-71: Development of a Dedicated */

1* Speech Work Station. Thesis Advisor: Major Larry Kizer. */1* */

- /* SYMBOLIC CONSTANTS */

#define ESCAPE 27 /* H-19 CRT ASCII "escape" code. */
#define CLEARS 69 /* H-19 CRT ASCII clear screen code. */
#define CLEARK OxCO /* Address which resets hardware. */
#define BELL 7 /* 11-19 CRT ASCII ring bell code. */
#define R VIDEO Ox70 /* H-19 CRT code - enter reverse video mode. */
#define N VIDEO Ox71 /* H-19 CRT code enter normal video mode. */
#define SfCC Oxll /* Address System-Timing Controller (STC) */

/* chip select - control register transfer. */
#define RUN Ox30 /* Arm STC register 5 -- start the CLOCK. */
#define RESET OxFF /* STC Master Reset code. */
#define EXTENDED Ox70 /* Address used to load Extended Address. */
#define DTOA OxFO /* Address which toggles Digital-to-Analog */

1* mode switch ON-OFF.
#define TOGGLE 0 /* TOGGLE may be any value. TOGGLE is used */

/* in the 'value' position of the "C" */
/* statement: outp(port,value). */

#define TRUE 1 /* Logic "true" is a 1.
#define FALSE 0 /* Logic "false" is a 0. */

/* GLOBAL VARIABLES */

#include "speech.h" /* Contains all GLOBAL VARIABLES.

A-27

0.

- - -- - U- V. - . - - - -- -. - -

1* *1

FUNCTION: DIGITAL() "11" *l

digital()

LOCAL VARIABLES */

int do-next; /* Holds keyboard response to getcharo.*/
char boardnum[4]; /* Holds address of extended memory */

/* board containing first "data */
/* sample" to be converted from */
/* digital-to-analog. */

char offset[4]; /* Holds LONG (32 bit) integer used to */
1* calculate board num. */

char one[4]; /* Holds LONG (32 bit) version of 1. *1
char two[4]; /* Holds LONG (32 bit) version of 2. */

/* SET UP FOR DIGITAL-TO-ANALOG CONVERSION */

* is_digital = TRUE; /* Enable selected portions of other */
/* functions used by digital(). *

if(isgraphics == TRUE) /* Don't get inputs when in graphics(), *1
/* because they are already selected! */

else (
putchar(ESCAPE); /* Clear CRT screen. */

" putchar(CLEARS);
inputo; /* Input user's desired "first and last"*/

/* sample to be converted, and desired */
/* "sampling rate".

outp(CLEARH,TOGGLE); /* RESET Thesis developed hardware. */
puts("\b \b"); 1* NOTE: CLEARH = COH. The CRT strips */

/* parity bit and prints "@" on the */
/ 1* screen. (@ = 40H). Erase "@". */

• dma(; /* Set DMA chip for digital-to-analog */
1 * conversion. */

• timingo; /* Set STC chip for digital-to-analog *1
/* conversion. */

itol(onel); /* Convert 1 into a 32 bit integer.
itol(two,2); /* Convert 2 into a 32 bit integer. */
atol(offset,limit4A); /* Convert limit4A to a 32 bit integer. *1

lmul(boardnum,start,two); /* Form address of extended */
lsub(boardnum,board_num,one); /* memory board containing */
ladd(boardnum,boardnum,offset); 1* first "data sample" to be */

/* digital-to-analog converted. */
outp(EXTENDED,board_num[l]); /* Load address of initial extended */

* /* memory board to be used. */
outp(DTO_A, TOGGLE); /* Toggle D/A mode switch to: ON. */

A-28S

i0 .i . .- l- - -

PERFORM DIGITAL-TO-ANALOG CONVERSION */

if(isgraphics f= TRUE) /* Don't display prompts when in *1
;/ graphics)l! Just do conversion. */

else (/* Display user prompts on CRT screen.
puts("\n\n\n\n\n\n\n\n\n");
puts("\nMAGIC's ready for DIGITAL-to-ANALOG conversion.\n\n");
putchar(ESCAPE);
putchar(RVIDEO);
puts(" E - EXIT M - MENU ANY OTHER KEY - RUN ");
putchar(ESCAPE);
putchar(N VIDEO);

do next = getcharo; /* Get user's command. */
puts("\b \n"); /* Make command invisible on CRT screen.*/

switch(donext) { /* Respond to user's command. */
case 'E': case 'e': /* EXIT program. */

quito;
goto BYE;

case 'M': case 'm': /* Return to MENU. */
goto BYE;

default: /* Let user know conversion has started */
/* by displaying message & ringing bell.*/

puts("\nMAGIC is at workl\n");
putchar(BELL);

outp(STCC, RUN); /* Arm STC register 5 -- the CLOCK. */
/* BEGIN D/A CONVERSION!!

waito; /* Place CPU in tight loop until all */
/* conversions are made. */

DONE */

if(isgraphics =- TRUE) /* Don't display message when in */
;/* graphicsQ. *]

else (/* Let user know conversion is finished */
putchar(BELL); /* by displaying message & ringing bell.*/
puts("\nDIGITAL-to-ANALOG conversion finished.\n");
sleep(60); /* Let user read message. */

BYE:
outp(D_TO_A, TOGGLE); /* Toggle D/A mode switch to: OFF. */
outp(STCC,RESET); /* RESET STC chip. */
isdigital a FALSE; /* Disable selected portions of other */

1* functions used by digital(). *

A-29

I.,. . -,

NAME: STORE.C */
VERSION: 1.0 */

,* DATE: 2 December 1983
" /* MODULE NUMBER: 11 */
• /* FUNCTION: Transfer user specifed number of data samples from */
12/* extended memory to magnetic disk. Transfer is to user *1

specified "filename". Default "filename" is: B:DATA.ONE. */
Transfer is done 2048 bytes at a time (thru membuffer). */

/* INPUTS: User entered commands from H-19 keyboard. */
OUTPUTS: User prompts displayed on CRT screen. */

,1. /* GLOBAL VARIABLES USED: finish, filename, is memmem, from, to, *1
/* mem buffer. m,
"* GLOBAL VARIABLES CHANGED: filename, ismemmem, from, to, *
/* mem buffer. */

FILES-READ: NONE. */
/* FILES WRITTEN: "Filename" entered by user from H-19 keyboard. */

Default "filename" is: B:DATA.ONE. */
/* MODULES CALLED: dmao). */

CALLING MODULES: menu(). */I* *
/* AUTHOR: CAPTAIN WILLIAM H. LIEBER */

• /* HISTORY: AFIT THESIS GE/EE/84D-71: Development of a Dedicated */
"'1-/* Speech Work Station. Thesis Advisor: Major Larry Kizer. *

SYMBOLIC CONSTANTS */

#define ESCAPE 27 /* H-19 CRT ASCII "escape" code. */
#define CLEARS 69 /* H-19 CRT ASCII clear screen code. */
#define BACKSPACE Ox08 /* ASCII hex code for "backspace" key. */
#define DELETE Ox7F /* ASCII hex code for "delete" key. */
#define ERROR -1 /* General "is an error" return value. */

* - #define TRUE 1 /* Logic "true" is a 1. */
#define FALSE 0 /* Logic "false" is a 0. */
#define TOGGLE 0 /* TOGGLE may be any value. TOGGLE is used in */

1 * the 'value' position of the "C" statement: */
', / outp(port,value). */

#define CPUMEM OxDO /* Address which toggles between "CPU or DMA" */
.* actions and "MEMORY-TO-MEMORY" transfers. */

#define EXTENDED Ox70 /* Address used to load Extended Address. */
#define REQUEST 0x99 /* Address of software DREQ Request Register. */
#define MEMXFER Ox04 /* Software DMA CHAN-O request, i.e. start */

-/* memory-to-memory transfer. */

GLOBAL VARIABLES */

#include "speech.h" /* Contains all GLOBAL VARIABLES. */

A-30

1. .1. - .

1" FUNCTION: STOREC) "11"*"

storeo)
(

LOCAL VARIABLES */

int i; /* Indexing variable used in "for" loop.*/
int c; /* Holds keyboard response to getcharo.*/
int fd; /* Holds FILE DESCRIPTOR of file to be *1

/* written. */
int done; /* Holds number of 2048 byte transfers *1

/* to be made. */
int holder; /* Holds address found by *ptr num. */

1* Binary operations can be done on a *1
/* integer value, but not a pointer. */

char *ptrnum; /* Used to find first address of */
mem buffer array. */

char ltempl[4]; /* A temporary holding place for a LONG */
/.1* (32 bit) integer. */

char ltemp2[41; /* A temporary holding place for a LONG */
/* (32 bit) integer. */

char buffersize[4]; /* Holds LONG (32 bit) version of *1
* memory buffer's size. *1

char zero[4]; /* Holds LONG (32 bit) version of zero. */
char two[4]; /* Holds LONG (32 bit) version of 2. */

/* DETERMINE NUMBER OF 2048 BYTE TRANSFERS TO MAKE */

itol(zeroO); * Convert 0 into a 32 bit integer.* *
itol(two,2); /* Convert 2 into a 32 bit integer. */
itol(buffer_size,2048); /* Convert 2048 into a 32 bit integer. */

lmul(ltemp2,finish,two); /* Calculate the number of */
idiv(ltempl,l temp2,buffer_size); /* times 2048 goes into the */
done - Itoi(ltempl); /* number of bytes to be *1
lmod(l temp2,1_temp2,buffer_size); /* stored. Round result *1

/* upward if a remainder *N
if(lcomp(l temp2,zero) -= 1) /* exists. */

done i done + 1;

/* GET FILENAME TO BE USED

putchar(ESCAPE); /* Clear CRT screen. */

putchar(CLEARS);

printf("\nSTORE data in FILENAME [%s", filename);
printf("]: B: <CR>");

printf("\b\b\h\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b");

A-31

" '_ • .'.'. " " • "" " . -. 'J... _ .. ,,...,,. . -.. - --........

T.~ 1- -- - -7 -7

if((c =getcharo) I-
filenaine[2] - c;
for(i - 3; (c -getcharo) I= '\n' && 1. < 17; ++i)

rif(c -= BACKSPACE c1 c DELETE)

else
filename[i] = c;

filename[i] '\'

STORE DATA ON MAGNETIC DISK

outp(CPUMEM,TOGGLE); /* Set hardware for "Memory-to-Memory" *
/* data transfer.

printf('\nMAGIC is now STORING data in file Zs\n",filename);

fd =creat(filename); 1* Create FILE DESCRIPTOR for filename. *
if(fd - ERROR) (* Check for and respond to any errors. *

printf("\nERROR: Can't creat %s\n",filename);
puts("\nPress any key to continue.\n");
getcharo;

* goto BYE;

is-mem-mem = TRUE; /* Enable selected portions of other *
1* functions used by storeo. *

froin[31 - OxOO; /* Initial memory address where data is *
from[2] = OxOO; 1* found. Used by dmao. *
from(11l- OxOl;
from[O] = OxOO;

p tr mum =&mem buffer[O]; 1* Find memory address of buffer array. *
holder =ptr_num;

to[3] = ptr mum; /* Initial memory address of buffer used*/
to[i21 - holder >> 8; 1* to transfer 2048 byte blocks of *
torl] = OxOO; /* data to magnetic disk storage. *
to[O] = Ox0O; 1* Used by dma().

for(i - 1; 1 <- done; ++i) (/* Transfer data. *
outp(EXTENDED,fromfll); /* Load address of 2048 byte block of *

1* data to be stored. *
dmao; /* Set DMA for data transfer. *
outp(REQUEST,MEM_XFER); /* Begin 2048 byte "Memory-to-Memory" *

/* data transfer. *
ladd(from,from,buffer_size); 1* Address of next 2048 byte block *

/* of data to be stored on disk. *

/* Transfer data from buffer array to *
* 1* magnetic disk. Check for and *

/* respond to any errors. *

A-32

-. . .. - - -I ..~. ~ . - . S ~ ' ' X C j . ~ . .

S.-

if(write(fd,mem buffer,16) =n ERROR)
puts("\nERROR: Probably out of disk space.\n");
puts("\nPress any key to continue.\n");
getcharQ;
goto BYE;

puts("\n\nTRANSFER COMPLETEDITI\n"); /* Let user know transfer is */sleep(60); /* completed. */

1* DONE */

BYE:outp(CPU_-MEM,TOGGLE); /* Transfer done. Set hardware for *
/* "CPU or DMA*' operation. *

is_mem_mem - FALSE; /* Disable selected portions of other */
/* functions used by storeQ. *1

close(fd); /* Close FILE that was created. *1

A-3-3

:-.'2"

S !>

-...

l* */
1" NAME: RETRIEVE.C */
/* VERSION: 1.0 */
/* DATE: 2 December 1983 */
/* MODULE NUMBER: 12 */
1* FUNCTION: Clears extended memory. Then transfers data from *•
/* magnetic disk to extended memory. Transfer is from user */
/* specified "filename". Default "filename" is: B:DATA.ONE. */
/* Transfer is done 2048 bytes at a time (thru mem buffer) as */
/* long as data remains in the disk file. *1
/* INPUTS: User entered commands from H-19 keyboard. */
/* OUTPUTS: User prompts displayed on CRT screen. */

GLOBAL VARIABLES USED: filename, ismem mem, to, from, */
mem buffer.

1* GLOBAL VARIABLES CHANGED: filename, is mem_mem, to, from, */
mem buffer. */

/* FILES-READ: "Filename" entered by user from H-19 keyboard.
• * Default "filename" is: B:DATA.ONE. *1
/* FILES WRITTEN: NONE. */
1* MODULES CALLED: dmao, clearmem(. */
/* CALLING MODULES: menu(./* */
/* AUTHOR: CAPTAIN WILLIAM H. LIEBER */1" */
/* HISTORY: AFIT THESIS GE/EE/84D-71: Development of a Dedicated */
/* Speech Work Station. Thesis Advisor: Major Larry Kizer. *1/* */

/* SYMBOLIC CONSTANTS */

#define ESCAPE 27 /* H-19 CRT ASCII "escape" code. j
#define CLEARS 69 /* H-19 CRT ASCII clear screen code.
#define BACKSPACE Ox08 /* ASCII hex code for "Backspace" key. */
#define DELETE Ox7F /* ASCII hex code for "Delete" key. */
#define ERROR -1 /* General "is an error" return value.
#define TO READ 0 /* Used to open a disk file for reading.
#define ZERO 0 /* Makes program easier to read. ii
#define TRUE 1 /* Logic "true" is a 1. */
#define FALSE 0 1* Logic "false" is a 0. *1
#define TOGGLE 0 /* TOGGLE may be any value. TOGGLE is used in */

• * the 'value' position of the "C" statement: **
/* outp(port,value). */

#define HILO OxBO /* Address which toggles memory-to-memory data */
• * transfer between "HI-memory to LO-memory" **
/* mode and "LO-memory to HI-memory" mode. */

#define CPUMEM OxDO /* Address which toggles between "CPU or DMA" */
/* actions and "MEMORY-TO-MEMORY" transfers. */

#define EXTENDED Ox70 /* Address used to load Extended Address.
#define REQUEST 0x99 /* Address of software DREQ Request Register. */
#define MEM XFER Ox04 /* Software DMA CHAN-O request, i.e. start **

-* memory-to-memory transfer.

A-34

........... -...,.........-

- - - - - c..-- - . -

GLOBAL VARIABLES */

#include "speech.h" /* Contains all GLOBAL VARIABLES. */

l* *
FUNCTION: RETRIEVE0) *1

/* */

retrieveo)

/ 1* LOCAL VARIABLES */

iet i; /* Indexing variable used in "for" loop. */
int c; /* Holds keyboard response to getcharo. */
int fd; /* Holds FILE DESCRIPTOR of file to be read. */
int check; /* Holds number of 128 byte blocks read from *1

/* disk file. */
int holder; /* Holds address found by *ptr num. Binary *1

/* operations can be done on a integer value, */
1* but not a pointer. *1

char *ptrnum; /* Used to find 1st address of membuffer array.*/
char buffersize[4]; /* Holds LONG (32 bit) version of memory */

/* buffer's size. */

GET FILENAME TO BE USED */

putchar(ESCAPE); /* Clear CRT screen. */
putchar(CLEARS);

printf("\nRETRIEVE data from FILENAME [%s", filename);
printf("]: B: <CR>");
printf("\b");

if((c = getcharo) I- '\n') I
filename[2] = c;
for(i - 3; (c - getcharo) I= I\n' && i < 17; ++i) (

if(c == BACKSPACE c == DELETE)
--i;

else
filenamefi] = c;}

filename(i] '\0';

A

. . . .-
V.""

1* RETRIEVE DATA FROM MAGNETIC DISK *

clearmemo; 1* Load all Extended Memory bytes with *
zeros COOOOOOOOB). *

outp(CPU-MEM,TQGGLE); /* Set hardware for "Memory-to-Memory" *
1* data transfer. *

outp(HILO,TOGGLE); /* Set hardware for "LO-memory to HI- *
1* Memory" data transfer. *

printf("\nMAGIC is RETRIEVING data from file %s\n",filename);

fd - open(filename,TOREAD); /* Create FILE DESCRIPTOR for filename. *
if(fd -= ERROR) (* Check for and respond to any errors. *

printf("\nERROR: Can't open %s\n",filename);
puts("\nPress any key to continue.\n');
getcharo;
goto BYE;

is-mem mem =TRUE; 1* Enable selected portions of other *
1* functions used by retrieveo. *

to[3] OxOO; 1* Initial extended memory address where*/
to[2] -OxOO; 1* data is to be moved. Used by dmao.*/
to[l] -Ox~l;
to[O] - OXOO;

ptr_num =&mem-buffer[O]; 1* Find memory address of buffer array. *
holder -ptr_num;

from(3J ptr num; 1* Initial memory address of buffer
from[2] holder >> 8; 1* used to transfer 2048 byte blocks *
from[l] =OxOO; 1* of data to extended memory. Used *
from[O] =OxOO; 1* by dmao).

itol(buffer_size,2048); /* Convert 2048 into a 32 bit integer. *
/* Transfer data from magnetic disk to *
1* buffer. Check for and respond to *

any errors.*
while((check -read(fd,mem buffer,16)) I- ZERO)

if(check -=ERROR)

printf("\nERROR: Can't read %s\n",filenaie);
puts("\nPress any key to continue.\n");
getcharo;
goto BYE;

outp(EXTENDED,to~l]); /* Load address where 2048 byte block *
1* of data is to be stored. *

dmao; 1* Set DMA for data transfer. *
outp(REQUEST,MEM XFER); /* Begin 2048 byte Memory-to-Memory *

1* transfer. *
ladd(to,to,buffer_size); 1* Form address where next 2048 byte *

1* block of data is to be stored. *

A-36

DONE */

puts("\n\nTRANSFER COMPLETED!!"'); /* Let user know transfer of */
sleep(6 0); 1* data is completed.

BYE:
close(fd); /* Close FILE that was opened. *1
outp(HILO,TOGGLE); /* Set hardware for "HI-memory to LO- *1

1* Memory" data transfer. *1
outp(CUMEM,TOGGLE); /* Set hardware for "CPU or DMA" mode */

/* of operation. */
ismem mem - FALSE; /* Disable selected portions of other */

/* functions used by retrieveo. */

-.

.°- •° °

.

1* NAME: GRAPHICS.C */
1* VERSION: 1.0 */

DATE: 2 December 1983
MODULE NUMBER: 13 */

1* FUNCTION: Graphically displays 500 data samples on the CRT */
1* screen. Displays user prompts. Provides right & left CURSOR */

movement. Provides up & down VOLT LINE movement. Provides */
1* selecting starting and finishing "data sample numbers" for */

use during digital-to-analog output. Provides selecting */
1* digital-to-analog output. */

INPUTS: User entered commands from H-19 keyboard. */
1* OUTPUTS: User prompts and graph of 500 data samples displayed */

on CRT screen. */
GLOBAL VARIABLES USED: is graphics, cursor, begin at, xaxis, */
a_temp, 1_temp, 1_cursor, start, samples, finish. */

GLOBAL VARIABLES CHANGED: isgraphics, cursor,beginat, x_axis,*/
1* a temp, 1_temp, 1_cursor, start, samples,finish, inputl, */
1* input2. */
* .,1* FILES READ: NONE. */
1* FILES WRITTEN: NONE. */
1* MODULES CALLED: inputo, ploto, quito, righto, lefto, *1
* voltline), digital(). */
1, CALLING MODULES: menuo. */

'* AUTHOR: CAPTAIN WILLIAM H. LIEBER */

HISTORY: AFIT THESIS GE/EE/84D-71: Development of a Dedicated */
1 '* Speech Work Station. Thesis Advisor: Major Larry Kizer. */1* */

SYMBOLIC CONSTANTS */

#define ESCAPE 27 /* H-19 CRT ASCII "escape" code. */
#define CLEARS 69 /* H-19 CRT ASCII clear screen code. */
#define RVIDEO Ox70 /* H-19 CRT code - enter reverse video mode. */
#define N VIDEO Ox71 /* H-19 CRT code - enter normal video mode. */
#define BACKSPACE Ox08 /* ASCII hex code for "backspace" key. */
#define DELETE Ox7F /* ASCII hex code for "delete" key. */
#define TRUE 1 /* Logic "true" is a one. */
#define FALSE 0 /* Logic "false" is a zero. */

GLOBAL VARIABLES */

#include "speech.h" /* Contains all GLOBAL VARIABLES. */

A-38

°.. .

,-~~~~~~~~~~~~~~~. i........-.. ,-........ ..

I, *I

/* FUNCTION: GRAPHICS() */1-'. * *I

graphics()

LOCAL VARIABLES

int donext; /* Holds keyboard response to getcharo.*/

char one[4]; /* Holds LONG (32 bit) version of 1. */
char two[4]; /* Holds LONG (32 bit) version of 2. */
char hundred[4]; /* Holds LONG (32 bit) version of 100. */

• * INITIALIZE VARIABLES

isgraphics = TRUE; /* Enable selected portions of other */
/* functions used by graphics(). *1

cursor = 251; /* Vertical CURSOR initially placed at */
' * sample #250 (pixel #251) of 500 */
1 /* sample plot. *1

itol(o-,2); /* Convert 1 into a 32 bit integer.
itol(one,2); * Convert 1 into a 32 bit integer. *
itol(hundred,00); /* Convert 100 into a 32 bit integer. *1

INPUT "SAMPLING RATE" AND "FIRST SAMPLE" TO BE PLOTTED

putchar(ESCAPE); /* Clear CRT screen. */
putchar(CLEARS);
input(); /* Display introduction to Graphics().*

/* Input user's desired "sampling rate" */"'" /* and "first sample" to be plotted. *

atol(x_axis,begin at); /* Form 32 bit version of "sample " $/
/* to be displayed in first column */
1 /* (pixel #2) of graph. */

/* DRAW GRAPH */

putchar(ESCAPE); /* Clear CRT screen. */
putchar(CLEARS);
ploto; /* Plot first 500 samples. */
puts("\0331,"); /* Enter Graphics Mode. */
puts("N,170,"); /* Primary Line Style: DASHED LINE. */
puts("I,2,"); /* Line Type: COMPLEMENT. */
puts("P,251,246,L,251,47,"); /* Draw vertical CURSOR. */
puts("E"); /* Exit Graphics Mode. */

A

°-.". ".'.. i."~~~~~---- - -"------ --------- ll i "ff. "" i:" "v'"'' -...- ..-. i .•:

LABEL VERTICAL AXIS

puts(" 5nn)

puts(" 4nn)
putsC" \nn)
puts(" 2nn)
puts(" 1np)
puts(" Onn)

puts(" 1n")
puts(" 2n")
puts(" 3n")

puts(" 5nl

1* LABEL HORIZONTAL AXIS *

printf(" %-6s", itoa~a_temp,x axis));
* lsub(l temp,x axis,one);

printf-("%lls", ltoa(atemp,ladd(l_temp,ltemp,hundred)));
printf("%12s", itoa~a_temp,ladd(l_temp,ltemp,hundred)));
printf("Zl3s", ltoa(atemp,ladd(l temp,ltemp,hundred)));

W printf("%12s", ltoa(a temp,laddCltemp,ltemp,hundred)));
printf("Zl3s\n", itoa-(a_temp,ladd(ltemp,lteip,hundred)));

DISPLAY PROMPTS TO USER *

putchar(ESCAPE); /* Display "CURSOR =" on CRT screen in *
putchar(RVIDEO); reverse video. Display current *
puts(" CURSOR ")1* CURSOR value on CRT screen in *

* . putchar(ESCAPE); 1* normal video. *
putchar(N_VIDEO);
itol(l_cursor,cursor);
ladd(l temp x_axis,l cursor);

putchar(ESCAPE); /* Display "START -" on CRT screen in *
putchar(R_VIDEO); 1* reverse video. Display current *
puts("START ") * START value on CRT screen in *
putchar(ESCAPE); 1* normal video. *
putchar(N_VIDEO);
printf(" %-lls",ltoa(a temp,atol(start,begin_at)));

putchar(ESCAPE); /* Display "FINISH ." on CRT screen in *
putchar(R_VIDEO); reverse video. Display current *
puts("FINISH ") * FINISH value on CRT screen in *
putchar(ESCAPE); PP normal video. *
putchar(N VIDEO);
printf(" Tf-lls",ltoa(atemp,atol~finish,samples)));

A-40

putchar(ESCAPE); /* Display remaining user prompts on */
putchar(RVIDEO); /* CRT screen in reverse video. */
puts(" \n")
puts(" E - EXIT M - MENU S - START F - FINISH
puts("A - ANALOG OUT
puts("\033xl"); /* Enable 25th line. */
puts("\033Y8 "); /* Go to Line 25, Column 1. */
puts(" R[1], T[25], Y[100], U[500] - RIGHT
puts("L[l], K[25], J[100I], H[500] - LEFT");
puts("\033Y "); /* Go to Line 1, Column 1. *1
puts("UP: \nQ[1] \nW[20]\n\nDOWN:\nZ[1] \nX[20]");
putchar(ESCAPE);
putchar(N VIDEO);

/* RESPOND TO USER'S COMMAND

E2:puts("\O33Y6o"); /* Go to line 23, Column 80. Wait there *1
/* for user's next command. */

do next = getchar); /* Get user's command.
puts(" "); /* Erase command from CRT screen. *

switch(do next) (/* Respond to user's command. *1
case 'E': case 'e': /* EXIT the program. Erase graph.

quito;
is graphics = FALSE; /* Disable selected portions of other *1

/* functions used by graphics. */
puts("\0331,D,5,E"); /* ALPHA: on, GRAPHICS: off, ERASE: on
sleep(lO); /* Wait for graphics chip to stabilize• *.
goto BYE;

0O case 'M': case 'm': /* Return to MENU. Erase graph. */
is graphics = FALSE; /* Disable selected portions of other */

S * functions used by graphics. */
puts("\0331,D,5,E"); /* ALPHA: on, GRAPHICS: off, ERASE: on
sleep(lO); /* Wait for graphics chip to stabilize. */
goto BYE;

case 'R': case 'r': /* Move CURSOR RIGHT 1 sample.
inputi = 501;
input2 a 1;
righto;
break;

case 'T': case 't': /* Move CURSOR RIGHT 25 samples.
inputl = 477;
input2 = 25;
right();
break;

case 'Y': case 'y': /* Move CURSOR RIGHT 100 samples. */
inputl = 402:
input2 = 100;
right();
break;

A-41

0.

:7

case 'U': case 'u': /* Move CURSOR RIGHT 500 samples.
inputl = 2; /* Really only goes to first sample of */
input2 = 500; /* next 500 sample plot.
right();
break;

case 'L': case '1': /* Move CURSOR LEFT 1 sample.
inputl = 2;
input2 = 1;
lefto;
break;

case 'K': case 'k': /* Move CURSOR LEFT 25 samples.
inputl = 26;
input2 = 25;
left();
break;

case 'J': case 'j': /* Move CURSOR LEFT 100 samples.
inputl = 101;
input2 = 100;
left();
break;

case 'H': case 'h': /* Move CURSOR LEFT 500 samples. */
inputl = 501; /* Really only goes to last sample of */
input2 = 500; /* next 500 sample plot. */

* left();
break;

case 'Q': case 'q': /* Move VOLT LINE UP 1 pixel. */
inputl = 1;
voltline();
break;

case 'W': case 'w': /* Move VOLT LINE UP 20 pixels (1 volt).*/
inputl = 20;
voltline();
break;

case 'Z': case 'z': /* Move VOLT LINE DOWN 1 pixel. */
inputl - -1;
voltline();
break;

case 'X': case 'x': /* Move VOLT LINE DOWN 20 pixels. */
input1 = -20; /* (1 volt).
voltline();
break;

case 'S': case 's': /* Update STARTING "sample #" for
/* digital-to-analog output operation. */

ladd(ltemp,xaxis,itol(l_cursor,cursor));
ltoa(beginatlsub(l_templ_temp,two));
puts("\033Y6<"); /* Line 23, Column 29. Update START. */
printf(" %-lls",Itoa(atemp,atol(start,begin_at)));
break;

case 'F': case 'f': /* Update FINISHING "sample " for
/* digital-to-analog output operation. */

ladd(ltemp,x_axis,itol(l_cursor,cursor));
* ltoa(samples,lsub(l temp,l temptwo));

puts("\033Y6P"); /* Line 23, Column 49. Update FINISH. */
printf(" %-lls",lto3(atemp,atol(finish,samples)));
break;

A-42

. ~ .

AD-fl155 465 DEVELOPMENT OF A DEDICATED SPEECH WORK STATION(U) AIR 2/3
TI FORCE INST OF TECH &RIGHT-PRTTERSON AFB OH SCHOOL OF
I ENGINEERING W H LIEBER DEC 84 AFIT/GE/EE/84D-71

UNCLASSIFIED F/G 9/2 NL

I fllfllfll|fflfflfflf
I fllflfflfllfl....
mhhEE|hhE|hhhI
IEEEIIEEEIIIEE
lfllflflflflflllll
IIIIEIIEIIEEEE

...-- -. . - -::---- -:a-

TL, O o I m I

IIIII'r)
4 L 1 1111 2 .

1111112 1.1-L 40 10.,

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU Of STANDARDS I96

r%.I

-

• .,"."-' " : : . / '...-!
.. ' '"-. .;.,.<, -' L -. . .

case 'A': case 'a': /* Provide a digital-to-analog output. */
digital();
break;C}

goto E2; /* Go wait for another user command. *1

DONE *I

BYE:
puts("\033y1"); /* Disable 25th line. **

0

1"*1

0q

*° . ..

'.

1* */

NAME: PLOT.C "1
VERSION: 1.0
DATE: 2 December 1983

/* MODULE NUMBER: 14 */
/* FUNCTION: Draws horizontal axis, vertical axis, and zero volt */
/* line of graph. Transfers the 500 data samples (1000 bytes) to */

be displayed into membuffer. Calculates the y-axis values of */
the 500 data samples. Plots the 500 samples on the graph. */
Returns to the calling function.

INPUTS: NONE. *1
OUTPUTS: Displays graph of 500 data samples on CRT screen. */
GLOBAL VARIABLES USED: voltline, x axis, from, mem buffer, to, */

/* 1_temp. */
GLOBAL VARIABLES CHANGED: voltline, from, mem buffer, to, */

* 1 temp. /
FILES READ: NONE. */

/* FILES WRITTEN: NONE. */
MODULES CALLED: dma(). */
CALLING MODULES: graphicso, righto), lefto. *//* *

/* AUTHOR: CAPTAIN WILLIAM H. LIEBER *//* */
HISTORY: AFIT THESIS GE/EE/84D-71: Development of a Dedicated */

Speech Work Station. Thesis Advisor: Major Larry Kizer. *1/* *

SYMBOLIC CONSTANTS */

#define POSITIVE 0 /* Positive binary numbers begin with 0.**
#define NEGATIVE 1 /* Negative binary numbers begin with 1. */
#define MASK Ux08 /* Used to determine the "sign" of a SAMPLE. */
#define TOGGLE 0 /* TOGGLE may be any value. TOGGLE is used in */

/* the 'value' position of the "C" statement: */
1* outp(port,value). *1

#define CPUMEM OxDO /* Address which toggles between "CPU or DMA" */
1* actions and "MEMORY-TO-MEMORY" transfers. */

#define EXTENDED Ox7O /* Address used to load EXTENDED ADDRESS. */
#define REQUEST 0x99 /* Address of software DREQ Request Register. */
#define MEMXFER Ox04 /* Software DMA CHAN-O request, i.e. start a *

--/* memory-to-memory transfer. */

GLOBAL VARIABLES *1

#include "speech.h" /* Contains all GLOBAL VARIABLES. *

A-44

°

,*.I

1. FUNCTION: PLOT()"

plot()

{I
/* LOCAL VARIABLES *

int x; ** Index variable used in x-axis "for" *
/* loops. *

int y; l* Index variable used in Y-axis "for" */
/* loops. *

int holder; /* Holds address found by *ptr num. */
--* Binary operations can be done on a /
1 /* integer value, but not a pointer. */

int yvalue[500]; /* Holds y-axis values (voltage levels) */
/* to be plotted. */

unsigned complement; /* Used to find 2's complement of a
/1* negative data sample. */

char *ptr num; /* Used to find first address of
/* mem buffer array. */

char sign; /* Holds-'sign' of a data sample. */
char hundred[4]; /* Holds LONG (32 bit) version of 100. */
char numlevels[4]; /* Holds LONG (32 bit) version of number*/

/* of quantization levels used by AID */

1 /* in range 0 to 5 volts. */

I* DRAW HORIZONTAL AXIS, VERTICAL AXIS, & ZERO VOLT LINE */

puts("\0331,"); /* Enter Graphics Mode. 11
puts("D,7,"); /* ALPHA: on, GRAPICS: on, ERASE: on
puts("I,O,"); /* Line Type: ON. */
puts("N,255,"); /* Primary Line Style: SOLID. */

/* NOTE: 255 = (11111111)B *I
puts("O,O,"); /* Secondary Line Style: BLANK. */
sleep(6); /* NOTE: A delay is needed to allow */

1* the graphics buffer to empty */
SET UP commands prior to */
getting movement commands. */

for(y = 66; y <= 246; y = y + 20) /* Draw vertical axis ticks. */
printf("P,O,%d,L,4,%d,",y,y);

for(y - 56; y <= 236; y = y + 20)
printf("P,1,%d,L,3,%d,",y,y);

for(x - 101; x <- 501; x - x + 100) /* Draw horizontal axis ticks. */
printf("P,%d,44,L,%d,48,",x,x);

for(x = 26; x <= 481; x = x + 25)
printf("P,Zd,45,L,%d,47,",x,x);

A-45

iI
4/

puts("P,2,245,L,2,46,"); /* Draw vertical axis. */
puts("L,500,46,"); /* Draw horizontal axis. *1
puts("N,170,"); /* Primary Line Style: DASHED LINE.

/* NOTE: 170 = (10101010)B */
volt line = 146; /* Draw ZERO volt line.
printf("P,4,Zd,L,501,%d,",voltline,volt_line);

/* NOTEl: REMOVE COMMENT DESIGNATOR AFTER DMA MEMORY-TO-MEMORY TRANSFER
IS WORKING. MUST "CCI" PLOT.C, "CLIB" PLOT.CRL INTO HOLD2.CRL,

AND "CLINK" SPEECH SPEECHI SPEECH2 TO FORM NEW SPEECH.COM FILE.

/* BRING DOWN NEXT 1000 BYTES

from[3] = x axis[3]; /* Initial memory address where data is */from[2] - x-axis[2]; /* to be found. *

from[l] = x axis[l];
from[O] - x-axis[O];

ptr num - &mem buffer[O]; /* Find memory address of buffer array. */
holder - ptrnum;

to[3] - ptrnum; /* Initial memory address where data is */
to[2] - holder >> 8; /* to be moved. */
toll] = OxO0;
to[O] - OxO0;

outp(CPUMEM,TOGGLE); /* Set hardware for Memory-to-Memory */
/* data transfer. */

outp(EXTENDED,from[1]); /* Load extended address. */
dma(; /* Set BMA for data transfer. *1
outp(REQUEST,MEMXFER); /* Begin the Memory-to-Memory transfer. */
outp(CPUMEM,TOGGLE); /* Transfer done. Set hardware for CPU */

/* or DMA operations. */

/*. CREATE Y VALUES FOR NEXT 500 SAMPLES */

itol(hundred,100); /* Convert 100 into a 32 bit integer. */
itol(numlevels,2047); /* Convert 2047 into a 32 bit integer. */

for(x 1 1; x <= 500; ++x)
sign - (membuffer[2 * x - 1] & MASK); /* Find sign bit for */
sign = sign >> 3; /* data sample. */

I temp[O] = OxO0; /* Convert data sample */
1 temp[1] - OxOO; /* into a 32 bit */
ltemp[2] - membuffer[2 * x - 1]; /* integer. */
ltemp[3] = membuffer[2 * x - 2];

if(sign =- POSITIVE) [/* If sign is positive, */
* lmul(ltemp,ltemp,hundred); /* form y-axis voltage*/

Idiv(l temp,l temp,numlevels); /* level for plotting.*/
yvalue[x - I - (146 + ltou(l temp));

A-46

-::::* .. *-...... .
.

": :'-: ..' :" " .'i : :::'" :' :'-': : : '. : "" '. .' " :"'":- : :' :. .: .. -:. . _ . .._ _ .__ .

I else (/* Sign is negative. */
complement = (1 + (-(ltou(1itemp)))); /* Take 2's complement */
utol(l temp,complement); /* and form y-axis */
lmul(l_temp,l_temp,hundred); /* voltage level for *1
Idiv(l temp,l temp,num levels); /* plotting.
y value[x - IT - (146 - ltou(ltemp));}

NOTE2: SEE NOTE1. REMOVE THE FOLLOWING COMMENT DESIGNATOR AND THE
"FOR TEST PURPOSES: CREATE YVALUES" CODE.,/

/* FOR TEST PURPOSES: CREATE Y VALUES */

for(x - 0; x <m 60; ++x) /* This data will form a stair step */
y value[x] a 46; /* plot on the graph.

for(x = 61; x <= 120; ++x)
y value[x] a 76;

for(x - 121; x <= 180; ++x)
y value[x] a 106;

for(x a 181; x <- 240; ++x)
y_value[x] a 136;

for(x a 241; x <a 300; ++x)
y value[x] a 166;

for(x a 301; x <a 360; ++x)
y_value[x] a 196;

for(x a 361; x <a 420; ++x)
yvalue[x] a 216;

for(x a 421; x <a 480; ++x)
y_value[xl a 246;

for(x a 481; x <a 499; ++x)
y_value[x] a 56;

/* PLOT NEXT 500 SAMPLES

puts("N,255,"); /* Primary Line Style: SOLID. */
printf("P,2,%d,",yvalue[O]); /* Plot samples. */
for(x a 3; x <a 501; ++x)

printf("L,Zd,Zd,",x,yvalue[x - 2]);

/* DONE */

puts("D,6,"); /* ALPHA: on, GRAPHICS: on, ERASE: off */
puts("E"); /* Exit Graphics Mode. */

A-47

A! -

/* *1
1" NAME: RIGHT.C */
/* VERSION: 1.0 */
/* DATE: 2 December 1983 *1
1 /* MODULE NUMBER: 15 *1
.* FUNCTION: Moves vertical CURSOR to right by amount given in */
/* "input2". Movement past sample #500 causes a new 500 sample */
/* graph to be displayed. CURSOR is placed at first sample of */
1 I* graph. *1
" -/* INPUTS: NONE. */
"1/* OUTPUTS: Draws new CURSOR on CRT screen. May result in a new */
" * 500 sample graph being displayed also.
... * GLOBAL VARIABLES USED: cursor, 1_cursor, input1, input2, *1
1* x axis, 1_temp, max samples.

GLOBAL VARIABLES CHANGED: cursor, 1_cursor, x-axis, 1_temp. */
./* FILES READ: NONE. */
S/* FILES WRITTEN: NONE.
,. /* MODULES CALLED: plot(). *1
, /* CALLING MODULES: graphics(). */I* *I
" " /* AUTHOR: CAPTAIN WILLIAM H. LIEBER */

HISTORY: AFIT THESIS GE/EE/84D-71: Development of a Dedicated */
.. 1* Speech Work Station. Thesis Advisor: Major Larry Kizer. */
*- ****************************** *** *****

1i GLOBAL VARIABLES

#include "speech.h" /* Contains all GLOBAL VARIABLES.

/* *1
/ .1* FUNCTION: RIGHT() */
I* *1

right()

I* LOCAL VARIABLES 5/

char one(4; 1* Holds LONG (32 bit) version of 1.***
char two[4]; /* Holds LONG (32 bit) version of 2. 5/

char hundred[4]; /* Holds LONG (32 bit) version of 100. /
char five-hundred[4]; /* Holds LONG (32 bit) version of 500. */
char 1input2[4]; /* Holds LONG (32 bit) version of 5/

--/* global variable "input2". 5/

char max[41; /* Holds LONG (32 bit) version of 5/
/* maximum number of samples which */

can be stored. */

A-48

.,

0

I 1* INITIALIZE VARIABLES *I

itol(one,1); /* Convert 1 into a 32 bit integer. *1
itol(two,2); /* Convert 2 into a 32 bit integer. */
itol(hundred,100); /* Convert 100 into a 32 bit integer. */
itol(five hundred,500); /* Convert 500 into a 32 bit integer. *
itol(1 cursor,cursor); /* Convert cursor to a 32 bit integer. *

itol(l~input2,input2); /* Convert input2 to a 32 bit integer. */

ladd(l_temp,xaxis,l_cursor); /* Form sample number where cursor
lsub(l_temp,l-temp,two); /* is to be moved. */
ladd(ltemp,ltemp,linput2);

atol(max,max_samples); /* Form 32 bit version of max number */
/* of samples which can be stored. */

/* MOVE CURSOR TO THE RIGHT */

if(lcomp(ltemp,max) =1 1) /* If (i temp > max), lcomp - 1 and */
, /* data sample can not exist. Return. */

else if(cursor < inputi) (/* If room to move cursor to right and */
/* not go past edge of graph. */

puts("\0331,"); /* Enter Graphics Mode. */
puts("N,170,"); /* Primary Line Style: DASHED LINE. */
puts("I,2,"); /* Line Type: COMPLEMENT. */

/* Remove existing "cursor line" and */
/* draw new "cursor line". */

printf("P,%d,246,L,%d,47,",cursor,cursor);
cursor = cursor + input2;
printf("P,%d,246,L,%d,47,",cursor,cursor);
puts("E"); /* Exit Graphics Mode. */

/* Update CURSOR value on CRT screen.
itol(l_cursor,cursor);
ladd(l_temp,xaxis,l_cursor);

/* Line 23, Column 11. Update CURSOR. */
puts("\033Y6*");
printf("%-6s",ltoa(a temp,lsub(l_temp,ltemp,two)));

} else (1* Moving cursor past right edge of */
/* graph, redraw graph. */

cursor - 2; /* Set cursor for 1st pixel of graph. */
/* Update CURSOR value on CRT screen.

itol(l-cursor,cursor);
ladd(xaxis,x axis,five_hundred);
ladd(ltemp,xaxis,l_cursor);

/* Line 23, Column 11. Update CURSOR. */
puts("\033Y6*");
printf("%-6s",ltoa(atemp,lsub(l_temp,ltemp,two)));

/* Line 22, Column 1. Update x-axis */
/* tick numbers. */

A-49

-': .. - .- - , ''' ..
.

. . : - - ,.-j - . ' .. , - - .- .-, - -. - ,- " -

7-w Y -- z~ % ~

puts("\033Y5)
printf(" %-6s", itoa~a temp,x axis));
lsub(l temp x axis,one);
printf-("Zlls", itoa~a -temp,ladd(l temp,l-teinp,hundred)));
printf("%I2s", itoa~a-temp,ladd(l_temp,l~temp,hundred)));
printf("%l3s", itoa~a_temp,ladd(l_temp,l_temp~hundred)));
printf("Z12s", Itoa~a_temp,ladd(l_temp,l~temp,hundred)));
printf("%13s ",ltoa(a_temp,ladd(l_teinp,l~temp,hundred)));

ploto; /* Plot next 500 samples on graph. *

puts("\0331,"); 1* Enter Graphics Mode. *
puts(1 'N,170,"); /* Primary Line Style: DASHED LINE. *
puts("I,2,"); /* Line Type: COMPLEMENT. *

/* Draw new "cursor line". *
printf("P,%d,246,L,%d,47,",cursor,cursor);
puts(fiE"); /* Exit Graphics Mode. *

A-.50

/* *

/* NAME: LEFT.C */
VERSION: 1.0
DATE: 2 December 1983 */

/* MODULE NUMBER: 16 */
/* FUNCTION: Moves vertical CURSOR to left by amount given in
/* "input2". Movement past first sample causes a new 500 sample */
/* graph to be displayed. CURSOR is placed at last sample of new
/* graph. */
/* INPUTS: NONE. */
/* OUTPUTS: Draws new CURSOR on CRT screen. May also result in a

new 500 sample graph being displayed.
GLOBAL VARIABLES USED: cursor, 1 cursor, inputl, input2, */

/* x axis, 1_temp, max samples. */
/* GLOBAL VARIABLES CHANGED: cursor, 1_cursor, x_axis, 1_temp. */
/* FILES READ: NONE. */
/* FILES WRITTEN: NONE. */
/* MODULES CALLED: ploto. */

CALLING MODULES: graphicso. *//* *
/* AUTHOR: CAPTAIN WILLIAM H. LIEBER *//* */

HISTORY: AFIT THESIS GE/EE/84D-71: Development of a Dedicated */
/* Speech Work Station. Thesis Advisor: Major Larry Kizer. *//* */

/* GLOBAL VARIABLES

#include "speech.h" /* Contains all GLOBAL VARIABLES.

/* FUNCTION: LEFT()*

left()

/* LOCAL VARIABLES *

char one[4]; /* Holds LONG (32 bit) version of 1. *

char two[4]; /* Holds LONG (32 bit) version of 2. */
char hundred[4]; /* Holds LONG (32 bit) version of 100. */
char five hundred[4]; /* Holds LONG (32 bit) version of 500. */
char linput2[4]; /* Holds LONG (32 bit) version of

/* global variable "input2". */

A-51

-..,.:,,. . ,. *

CINITIALIZE VARIABLES */

itol(one,); ** Convert 1 into a 32 bit integer. * *
itol(two,2); /* Convert 2 into a 32 bit integer. */
itol(hundred,100); /* Convert 100 into a 32 bit intper. */
itol(five hundred,500); /* Convert 500 into a 32 bit interger. *1
itol(lcursor,cursor); /* Convert cursor into a 32 bit integer.*/
itol(llinput2,input2); /* Convert input2 into a 32 bit integer.*/

ladd(ltemp,x_axis,l_cursor); /* Form sample number where cursor
Isub(ltemp,ltemp,two); /* is to be moved. */lsub(ltemp,ltemp,linput2);

MOVE CURSOR TO THE LEFT *1

if(Icomp(l temp,one) == -1) /* If (1_temp < one), lcomp -1 and */
/* data sample can not exist. Return. */

else if(cursor > inputl) (/* If room to move cursor to left and /
/* not go past edge of graph. */

puts("\0331,"); 1* Enter Graphics Mode. *1
puts("N,170,"); /* Primary Line Style: DASHED LINE. */
puts("I,2,"); /* Line Type: COMPLEMENT. *1

/* Remove existing "cursor line" and *1
/* draw new "cursor line". */

printf("P,%d,246,L,d,47,",cursor,cursor);
cursor = cursor - input2;

printf("P,%d,246,L,Zd,47,",cursor,cursor);
puts("E"); /* Exit Graphics Mode. *1

/* Update CURSOR value on CRT screen, */
itol(lcursor,cursor);
ladd(l_temp,xaxis,lcursor);

/* Line 23, Column 11. Update CURSOR. */
puts("\033Y6*");
printf("%-6s",Itoa(atemplsub(l_temp,l temp,two)));

else (/* Moving cursor past left edge of */
/* graph, redraw graph. *1

cursor = 501; /* Set cursor for last pixel of graph. */
/* Update CURSOR value on CRT screen. *1

* itol(l_cursor,cursor);

lsub(x_axis,xaxis,five hundred);
ladd(ltemp,x axis,l_cursor);

/* Line 23, Column 11. Update CURSOR. *
puts("\033Y6*");
printf("Z-6s",ltoa(a templsub(ltemp,ltemp,two)));

/* Line 22, Column 1. Update x-axis *1
ps 3,/* tick numbers. */• puts("\O33Y5")

printf(" %-6s", ltoa(atemp,x_axis));
lsub(l_temp,xaxis,one);

A-52

printf("%lls", itoa~a_temp,ladd(. tenip,I temp,hundred)));
printf("%12s", itoa~a_temp,ladd(l_temp,l_tenp,hundred)));
printf("%13s", itoa~a_temp,ladd(ltemp,ltemp,hundred)));
printf("%12s", ltoa(a_temp,ladd(l_temp,l_temp,hundred)));
printf("%13s ", toa~a_temp,ladd(l_teuip,l~temp,hundred)));

ploto; /* Plot next 500 samples on graph. *

puts("\0331,"); /* Enter Graphics Mode. *
puts("N,l70,"); /* Primary Line Style: DASHED LINE. *
puts("I,2,"); /* Line Type: COMPLEMENT. *

/ * Draw new "cursor line". *
printf("P,%d,246,L,%d,47,",cursor,cursor);

pt(/* Exit Graphics Mode. *

A-53

w-ywr ,-" -rr. .- 'nj ri-r- 'ri-f°-PY- r-rrr. r,-r, 'P a .- .* *...*.*.....* *- *

NAME: VOLTLINE.C */
/* VERSION: 1.0 */

DATE: 2 December 1983 */
MODULE NUMBER: 17 */
FUNCTION: Moves horizontal Volt Line up or down by amount */

/* given in "inputl". Volt Line is not allowed to move off the */
graph. *1

INPUTS: NONE. */
OUTPUTS: Draws new Volt Line on CRT screen. */
GLOBAL VARIABLES USED: voltline, inputl. */

/* GLOBAL VARIABLES CHANGED: voltline. */
FILES READ: NONE. */
FILES WRITTEN: NONE. */
MODULES CALLED: NONE. */

/* CALLING MODULES: graphics().

AUTHOR: CAPTAIN WILLIAM H. LIEBER */
l* CLIGMDLS grhis.*l

HISTORY: AFIT THESIS GE/EE/84D-71: Development of a Dedicated */
Speech Work Station. Thesis Advisor: Major Larry Kizer. */

GLOBAL VARIABLES */

#include "speech.h" /* Contains all GLOBAL VARIABLES. */

I * *I

FUNCTION: VOLTLINE() */1" *

voltline()

/* MOVE VOLTAGE LINE */

/* Volt Line must not move off graph. */
if((volt line + inputl >= 47) && (volt line + inputl <= 246))

puts('W\0331,"); /* Enter Graphics Mode. *1
puts("N,170,"); /* Primary Line Style: DASHED LINE.
puts("I,2,"); /* Line Type: COMPLEMENT. */

/* Remove existing "voltage line" and */
/*t draw new "voltage line". */

printf("P,6,%d,L,5Ol,%d,",volt_line,volt line);

volt-line = volt line + inputl;
printf("P,6,%d,L,501,%d,",volt line,voltline);
puts("E"); /* Exit Graphics Mode. */

A-54

0

/ * */
/* NAME: INPUT.C
/* VERSION: 1.0 */DATE: 2 December 1983

/* MODULE NUMBER: 18 */
/* FUNCTION: Allows user to: (1) Select "analog input channel" to */
/* be sampled, (2) Select data "sampling rate", (3) Select total */
/* "number of samples" to be taken, and (4) Select "first and */
/* last sample" to be converted during D/A conversion. */
/* INPUTS: User entered alphanumerics from H-19 keyboard. */

OUTPUTS: User prompts displayed on CRT screen. */
/* GLOBAL VARIABLES USED: is analog, channel, chan num, rate, */
1* ratenum, maxrate, is graphics, is digital, begin at, start, */

maxsamples, samples, finish. */
/* GLOBAL VARIABLES CHANGED: channel, chan_num, rate, ratenum, /
1* beginat, start, samples, finish. */
1* FILES READ: NONE.
1* FILES WRITTEN: NONE. */
1* MODULES CALLED: NONE. */
1* CALLING MODULES: analogo, digital(), graphicsQ. */V * *1
1* AUTHOR: CAPTAIN WILLIAM H. LIEBER */1* */

1* HISTORY: AFIT THESIS GE/EE/84D-71: Development of a Dedicated */
1* Speech Work Station. Thesis Advisor: Major Larry Kizer. */1* */

/* SYMBOLIC CONSTANTS */

#define ESCAPE 27 /* H-19 CRT ASCII "escape" code. */
#define R VIDEO Ox70 /* H-19 CRT code - enter reverse video mode. */
#define N VIDEO Ox71 /* H-19 CRT code - enter normal video mode. */
#define TRUE 1 /* Logic "true" is a 1.
#define BACKSPACE OxO8 /* ASCII hex code for "Backspace" key. */
#define DELETE Ox7F /* ASCII hex code for "Delete" key. */

[/1 1* GLOBAL VARIABLES *j

#include "speech.h" /* Contains all GLOBAL VARIABLES.

A-55

- -,'- .- it,-"... ,, .'t-, -,.' -t "- ' . ' ' . * . - . * - - -

j1*1

FUNCTION: INPUT() */

. input(o

I* LOCAL VARIABLES */

int i; /* Indexing variable used in "for" loop.*/
char c; /* Holds keyboard response to getchar).*/
char max[4]; /* Holds LONG (32 bit) version of max */

/* number of samples that can be stored*/
/* in extended memory. */

int compare; /* Used to determine if an "input" is */
/* larger than maximum value allowed. *1

putchar(ESCAPE); /* Display user prompt in reverse video.*/
putchar(R VIDEO);
puts("\n\WPress <CR> for default value.\n");
putchar(ESCAPE);

" putchar(N VIDEO);

/* SELECT ANALOG CHANNEL */

/* When requested, display prompt for */
/* ANALOG CHANNEL. */

if(is analog == TRUE) (
El: printf("\nANALOG CHANNEL to be sampled [%s", channel);

printf("]: .. <CR>\b\b\b\b\b\b\b");
/* Skip all keyboard entries until first*/

" iWO /* "digit" or <CR> arrives. */
i = 0;

while(((c=getcharo) < '0' c > '9') && (c 1= '\n'))
if(c == BACKSPACE Jj c DELETE)

puts("");.
else

puts("\b.\b");

/* Enter ANALOG CHANNEL to be sampled */
/* Skip all keyboard entries except *1

if(c I- '\n') /* "digits" and <CR>.
*/

channel[i] c;
for(i - 1; (c = getcharo) I= '\n' && i < 2; ++i)

if(c -= BACKSPACE 11 c -= DELETE)
--i;

else if(c < '0' c > '9')
puts("\b.\b");• --i;

else
channel[i] =c;

I
~A-56

"- - " - ' '- " -" . - - .. i " . " % ' ' i I.,. L - .- - . iL -- - '? i. . - ' - " -- ,.- .'.- L .- ' - ' . -5

channel[i] ='\';

chan num = atoi(channel); /* Convert ASCII "channel" to 16 bit */
/* integer value. */
/* Check for and respond to any errors.

if(channum > 15)
puts("\nERROR: MAGIC only allows channels 0 thru 15 inclusive.\n");
goto El;)

SELECT SAMPLING RATE *1

/* When requested, display appropriate */
/* user prompt for SAMPLING RATE. *1

E2:if(isgraphics .-TRUE)
printf("\nWelcome to GRAPHICS, %s. \n", name);
printf("\nDuring any Analog Output, the SAMPLING RATE ;
printf("should be [%s", rate);

else
printf("\nSAMPLING RATE in samples/sec [%s", rate);

printf("]: <CR>\b\b\b\b\b\b\b\b\b\b");
/* Skip all keyboard entries until first*/
/* "digit" or <CR> arrives. .-

i - 0;
while(((c=getcharo) < '0' jJ c > '9') && (c I- '\n'))

if(c -- BACKSPACE I c f= DELETE)
puts(

else
puts("\b.\b");

/* Enter SAMPLING RATE. */
/* Skip all keyboard entries except */
/* "digits" and <CR>. */

if(c I- '\n')
rate[i] - c;
for(i - 1; (c - getchar()) I- '\n' && i < 5; ++i)

if(c == BACKSPACE j c =- DELETE)
--i;

else if(c < '0' 1H c > '9')
puts("\b.\b");
--i;

else
rate[i] = c;*

rate[i] = '\ ';

A-57

~~~~~~~~~~~~~~~~.. . . ... ......... .................- ,..... .-..-.. ".---.',-----'-'--... ,-;

" i'- 5-7 , '--- ."- S"-""."' " "- "' " " ' '" " '" ". .. S ''.'" . " ". ." '-. .-.. ." ". 5".. .* 5



atol(rate_num, rate); /* Convert ASCII "Sampling Rate" to */
/* 32 bit integer value. */

atol(max, maxrate); /* Convert ASCII "Max Sampling Rate" to */
/* 32 bit integer value. */ -V
/* Check for and respond to any error.
/* NOTE: compare = 1 if (rate num > max)*/

compare =Icomp(rate num, max);
if(compare == TRUE) T .,

puts("\nERROR: Maximum sampling rate for MAGIC is 31,700.\n");S goto E2;

SELECT FIRST DIGITAL-TO-ANALOG SAMPLE */

/* When requested, display prompt for */
/* "first sample" to be D/A processed. *'

E3:if((is_digital =f TRUE) I (isgraphics - TRUE)) ( ',
if(is graphics -= TRUE) {

puts("\n500 samples at a time are displayed.\n");
4 puts("\nMAGIC should START with sample ");

printf("number [%s", beginat);
else
printf("\nSTART with sample number [Zs", begin at);

printf("]: ...... <CR>\b\b\b\b\b\b\b\b\b\b\b");

/* Skip all keyboard entries until first*/f* "digit" or <CR> arrives. "1 t-

i -O;
while(((c-getcharQ) < '0' c > '9') && (c I- '\n'))

if(c == BACKSPACE H c == DELETE)
puts("")

else
puts("\b.\b");

/* Enter "FIRST SAMPLE" to be processed.*/
/* Skip all keyboard entries except */
/* "digits" and <CR>. *,

if(c I- '\n')
beginat[i] - c;
for(i - 1; (c - getcharo) I- '\n' && i < 6; ++i)

if(c a. BACKSPACE 11 c == DELETE) Li

else if(c < '0' j1 c > '9')
puts("\b.\b");. , -- i;

else
begin-at[i] = c;

begin atli] '\0';

A-58

*A

*

-------------------------------------..

.. . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . .. "



atol(start, begin at); /* Convert ASCII "first sample" number */
/* to 32 bit integer value. */

atol(max, maxsamples); /* Convert ASCII "maximum sample number"*/
/* to 32 bit integer value. *1
/* Check for and respond to any error.
/* NOTE: compare = I if (start > max). */

compare = lcomp(start, max);
if(compare = TRUE) {

puts("\nERROR: MAGIC limits START sample to under 163,840.\n");
goto E3;

r}

if(is graphics == TRUE) /* Skip rest of function because "last */
goto BYE; /* sample" to be processed is provided /

/* by graphics(. L

SELECT NUMBER OF SAMPLES TO PROCESS /

/* When requested, display user prompt */
/* for "last sample" to be processed. */

E4:if(is analog == TRUE)
printf("\nNUMBER OF SAMPLES to be taken [%s", samples);

else if(is digital == TRUE)
printf(W\nFINISH with sample number [%s", samples);

printf("]: . ...... <CR>\b\b\b\b\b\b\b\b\b\b\b");
/* Skip all keyboard entries until first*/

-- 0 i-O; /* "digit" or <CR> arrives. */

while(((c=getchar)) < '0' c > '9') && (c I- '\n'))
if(c == BACKSPACE JJ c == DELETE)

puts("")
else

puts("\b.\b");}
/* Enter "LAST SAMPLE" to be processed. */
/* Skip all keyboard entries except */
/* "digits" and <CR>. /

if(c I- '\n') (
samples[i) a c;
for(i a 1; (c a getcharo) I- '\n' && i < 6; ++i) I

if(c .a BACKSPACE 11 c - DELETE)
9 -- 1 *

else if(c < '0' l[ c > '9')
puts("\b.\b");.: --i;

else
samplesli] - c;

* samples[i] '\0';

A-59

: " i ° ' ..; . - - . ' .. -.. "* "- "



atol(finish, samples); /* Convert ASCII "last sample" to */
/* 32 bit integer value. *1

atol(max, maxsamples); /* Convert ASCII "maximum sample number"*/

/* to 32 bit integer value. *
/* Check for and respond to any error. */
/* NOTE: compare = I if (finish > max). */

compare l lcomp(finish, max);
if(compare -C TRUE && is analog -= TRUE)

puts("\nERROR: MAGIC limits the number of samples to 163,840.\n");
goto E4;

else if(compare -- TRUE && is digital == TRUE)
puts("\nERROR: MAGIC limits the last sample to 163,840.\n");
goto E4;

1* DONE */

BYE:

A-60

!.

*! 4

0.. . . - . . - - -. ._. ._. < , : , . , - , . , ,,, -



1* NAME: DMA.C */
1* VERSION: 1.0 */
1* DATE: 2 December 1983 */
1* MODULE NUMBER: 19 */
/* FUNCTION: Initializes Direct Memory Access (DMA) chip's */
1* internal register's to: (1) Support analog-to-digital sampling*/

(2) Support digital-to-analog conversion, (3) Provide 2048 */
1* byte memory-to-memory data transfer to support storeo) and */
/* retrieve(, and (4) Provide 64K byte memory-to-memory data */
1* transfer to clear extended memory boards. */

INPUTS: NONE.1* OUTPUTS: NONE. */
1* GLOBAL VARIABLES USED: is memmem, is_graphics, is analog, */
* is digital, is clearmem. 

*/

1* GLOBAL VARIABLES-CHANGED: NONE. */
/* FILES READ: NONE. */
1* FILES WRITTEN: NONE. */
/* MODULES CALLED: nop(). */
1* CALLING MODULES: analogo, digital(), storeo, retrieve), */
1* plot), clearmemo. */1* */
1* AUTHOR: CAPTAIN WILLIAM H. LIEBER */

HISTORY: AFIT THESIS GE/EE/84D-71: Development of a Dedicated */
/* Speech Work Station. Thesis Advisor: Major Larry Kizer. */

/* SYMBOLIC CONSTANTS */

#define RESET Ox9D /* DMA Master Reset.

#define COMMAND 0x98 /* Write COMMAND REGISTER. /
#define A OR D Ox80 /* Set Command Reg for A/D or D/A operation. */
#define MEM MEM Oxgl /* Set Command Reg for MEM-MEM transfer.
#define MEMCLEAR 0x83 /* Set Command Reg to NULL Extended Memory. */

#define MASK FOR Ox9F /* Write all MASK REGISTERS. */
#define ANALOG OxOB /* Set DMA Mask for A/D operation. */
#define DIGITAL Ox07 /* Set DMA Mask for D/A operation. */
#define MEM XFER OxOF /* Set DMA Mask for MEM-MEM transfer. */

#define MODE Ox9B /* Write MODE REGISTER. */

#define CHO MREG 0x88 /* Set Chan 0 MODE REG for mem-mem operation. */
#define CHO-ADDR Ox90 /* Channel 0 ADDRESS REGISTER. */
#define CHO7BYTE Ox91 /* Channel 0 BYTE COUNT REGISTER.

A-61

K 4'



#define CHI MREG 0x85 /* Set Chan 1 MODE REG for mem-mem operation. *1
#define CHI1ADDR 0x92 /* Channel 1 ADDRESS REGISTER. */
#define CHI-BYTE Ox93 /* Channel I BYTE COUNT REGISTER. *1

#define CH2 MREG 0x56 /* Set Chan 2 MODE REG for A/D operation. */
#define CH2 ADDR 0x94 /* Channel 2 ADDRESS REGISTER. */
#define CH2_BYTE 0x95 /* Channel 2 BYTE COUNT REGISTER. */

#define CH3_MREG Ox5B /* Set Chan 3 MODE REG for D/A operation. */
#define CH3 ADDR 0x96 /* Channel 3 ADDRESS REGISTER. */
#define CH3_BYTE 0x97 /* Channel 3 BYTE COUNT REGISTER. */
#define TRUE 1 /* Logic "true" is a 1. */

#define ZERO OxOO /* Used to initialize memory location. */
#define BYTECOUNT OxFF /* Used to initialize byte count. */

GLOBAL VARIABLES */

#include "speech.h" /* Contains all GLOBAL VARIABLES. *1

1"**

FUNCTION: DMA() */
1"**

/* NOTE: CHANNEL 0: MEMORY-MEMORY TRANSFER (SOURCE).

/* CHANNEL 1: MEMORY-MEMORY TRANSFER (DESTINATION). *1
/* CHANNEL 2: ANALOG-TO-DIGITAL CONVERSION. */

CHANNEL 3: DIGITAL-TO-ANALOG CONVERSION. */

dma()

LOCAL VARIABLES **

char xferlo; /* Holds number of bytes to transfer */
char xfer-hi; /* during Memory-to-Memory operations. */

LOAD DMA COMMAND REGISTER */

outp(RESET); /* RESET DMA chip. */
nopo; /* NOTE: A small delay is required

/* between loading of DMA's internal */
/* registers. */

A-62

U'

C . -. . -..-.-.- .-. .. - ..-- ' ..: - -- .i -- -i l i i -.':':: ' ? -i' i -' ~ -; i: i ' i i ' i i.;
-, -. -.." -'.."_ " ....%.'. .. "... "- "- ...........................................................,......,...,.....,,,, ...,o .



if((is_memmem fi TRUE) II (is graphics =f TRUE))
outp(COMMAND, MEMMEM);
nopo;

) else if((isanalog == TRUE) Ii (isdigital fi TRUE))
outp(COMMAND, A OR D);
nopo;

I else
outp(COMMAND, MEMCLEAR);
nopo;

LOAD DMA FOR: MEMORY-TO-MEMORY TRANSFER */

/* Determine the number of bytes to be */
/* moved durina a Memory-to-Memory */
/* transfer. */

if(ismem mem fi TRUE)
xfer lo = OxOO; /* (0800)H - 2048, number bytes moved */
xfer-hi = Ox08; /* during STORE() and RETRIEVE(. */

else Tf(is graphics == TRUE) {
xfer lo = OxES; /* (03E8)H = 1000, number of bytes to */
xfer hi = Ox03; /* be moved during PLOTO. */

} else T
xfer lo = OxFF; /* (FFFF)H = 64K, number of bytes to be */
xfer-hi = OxFF; /* NULLED during CLEARMEMO. */

if((is memmem == TRUE) (is graphics -- TRUE) jj (is clearmem))
outp(MODE, CHOMREG); /* Load Group 0 MODE REGISTER. */
nopo; /* (SOURCE.)
outp(CHO_ADDR, from[3]); /* Load "Address Register" with */
nop(); /* with address of where first */
outp(CHO_ADDR, from[2]); /* byte is to "come from". */
nopo;
outp(CHOBYTE, xfer lo); /* Load "Word Count Register" */
nopo; /* with number of bytes to be */
outp(CHO_BYTE, xferhi); /* transferred. */

outp(MODE, CHIMREG); /* Load Group I MODE REGISTER. */
nop(); /* (DESTINATION.)
outp(CH1_ADDR, to[3]); /* Load "Address Register" with */
nop(); /* address where 1st byte is */
outp(CHI_ADDR, to[2]); /* "moved to". */
nopo;
outp(CH1 BYTE, xfer lo); /* Load "Word Count Register" */
nopo; /* with number of bytes to be */
outp(CHI_BYTE, xfer hi); /* transferred. */
nopo;

A-63

6



. : , i . g -4 - . - . • - - w . . - o - " , - - -. - 'i '. . -* .s - - •.. "

/* LOAD DMA FOR: ANALOG-TO-DIGITAL SAMPLING */

if(is analog ==TRUE){
outp(MOVE, CH2_MREG); /* Load Group 2 MODE REGISTER. *Cop(;
outp(CH2_ADDR, ZERO); /* Load "Address Register" with */
nopo; /* address of 1st byte (OOOOH) */
outp(CH2_ADDR, ZERO); /* on extended memory boards. */
nop();
outp(CH2_BYTE, BYTECOUNT); /* Load "Word Count Register" */
nopo; /* with number of bytes (64K) /
outp(CH2_BYTE, BYTECOUNT); /* on exteded memory boards. */
nopQ;

LOAD DMA FOR: DIGITAL-TO-ANALOG CONVERSION */

if(isdigital =f TRUE)
outp(MODE, CH3_MREG); /* Load Group 3 MODE REGISTER. */
nopo;
outp(CH3_ADDR, ZERO); /* Load "Address Register" with */
nopo; /* address of 1st byte (OOOOH) */
outp(CH3_ADDR, ZERO); /* on extended memory boards. */
nopo;
outp(CH3_BYTE, BYTECOUNT); /* Load "Word Count Register" */
nopo; /* with number of bytes (64K) */
outp(CH3_BYTE, BYTECOUNT); /* on extended memory boards. */
nop();

MASK DMA F7GISTERS

if(isanalog fi TRUE)
outp(MASK_FOR, ANALOG); /* Allow only analog-to-digital */
nopo; /* requests. */

. else if (isdigital == TRUE)

outp(MASK_FOR, DIGITAL); /* Allow only digital-to-analog */
nop); /* requests. *I

)else

outp(MASKFOR, MEMXFER); /* Allow only software memory- */
nop); /* to-memory transfer requests.*/

A-64

. .... ...... ... .. ......



--

3

I * *l

NAME: TIMING.C *I
VERSION: 1.0 */
DATE: 2 December 1983 */
MODULE NUMBER: 20 */
FUNCTION: Initializes System Timing Controller (STC) chip's */

internal registers to: (1) Provide AID or D/A clock pulses at */
/* user specified triggering rate, (2) Disable A/D or D/A */

capability after user specified number of data samples are *1
/* processed, and (3) Provide by-passing of unrequired data
/* samples at the beginning of a memory board during digital-to- */
/* analog output operation. */
/* INPUTS: NONE. */
/* OUTPUTS: NONE. */
/* GLOBAL VARIABLES USED: limitlA, limit2A, limit3A, limit4A, */

limit5A, limit6A, limit7A, limit8A, isanalog, finish,
/* is digital, start, crystal, rate_num. */
/* GLOBAL VARIABLES CHANGED: NONE. */
/* FILES READ: NONE. */

FILES WRITTEN: NONE. */
/* MODULES CALLED: NONE. */
/* CALLING MODULES: analogo, digital(). *

/* AUTHOR: CAPTAIN WILLIAM H. LIEBER1* *I

/* HISTORY: AFIT THESIS GE/EE/84D-71: Development of a Dedicated */
/* Speech Work Station. Thesis Advisor: Major Larry Kizer. */

/* SYMBOLIC CONSTANTS */

#define STC D OxlO /* Address System Timing Controller (STC) */
/* chip select - data register transfer. */

#define STC C Oxll /* Address STC chip select - control */
/* register transfer. */

#define RESET OxFF /* STC Master Reset code. */

#define MM REG Ox17 /* MASTER MODE register's address.
#define MM-LOBYTE OxOC /* Reg 1 & 2: Set to compare separately. */
#define MMHIBYTE OxCl

#define REGi CM OxOl /* Address COUNTER MODE register, group 1. */
#define CM1 LOBYTE 0x29 /* Set for active HI pulse out on a true */
#define CMI HIBYTE OxOO /* compare. */
#define REGT COMPARE Ox07 /* Address COMPARE register, group 1. */
#define REGILOAD Ox09 /* Address LOAD register, group 1. */

A-65

F~ ~ ~ ~ ~ ~~ ~~.......". . .. '... ". ... ..... ........ . .. ..-. . . . . . .. ,
;'-'-.- . " .. _ . , ,i ,.; : - ' ;" ' ; . "..." .- .." ' "" " - -.. -. - - --- .. .-.. --- -- ' ' " ' ' " " " "' " "



#define REG2 CM Ox02 /* Address COUNTER MODE regituter, group 2. */
#define CM2 LOBYTE Ox29 /* Set for active HI pulse out on a true */
#define CM2-HIBYTE OxOO /* compare. */
#define REG2 COMPARE OxOF /* Address COMPARE register, group 2. */
#define REG2_LOAD OxOA /* Address LOAD register, group 2.

#define REG4 CM Ox04 /* Address COUNTER MODE register, group 4. /
#define CM4 LOBYTE Ox02 /* Set for active HI toggle. */
#define CM4 HIBYTE Ox14
#define REG4_LOAD OxOC /* Address LOAD register, group 4.

#define REG5 CM Ox05 /* Address COUNTER MODE register, group 5. */
#define CM5_LOBYTE Ox21 /* Set for active HI pulse out. */
#define CM5 HIBYTE OxOB
#define REG5_LOAD OxOD /* Address LOAD register, group 5. */

#define TRUE 1 /* Logic "true" is a 1.
#define ZERO OxO0 /* Makes program easier to read.
#define LOAD Ox5B /* Load STC registers 1,2,4,5. 4/

#define ARM Ox2B /* Arm STC registers 1,2,4. */

GLOBAL VARIABLES *1

#include "speech.h" /* Contains all GLOBAL VARIABLES. 4/

/* FUNCTION: TIMING() *1/* */

/4 NOTE: REGISTERS l&2 -- FINISH COUNT */
/4 REGISTER 4 -- D/A OFFSET 4/

/ REGISTER 5 -- CLOCK */

timing()

/4 LOCAL VARIABLES 4/

char limitl[41; /* Holds 32 bit version of global "limitlA[7]". 4/

char limit2l[4]; /* Holds 32 bit version of global "limit2A(71". J/
char limit3[4]; /* Holds 32 bit version of global "limit3A[7]". 4/

char limit4[4]; /* Holds 32 bit version of global "limit4A[7]". 4/

char limit5[4]; /* Holds 32 bit version of global "lirait5A[7]". 4/
char limit5|4]; /* Holds 32 bit version of global "limit5A[7]".char limit6[4]; /* Holds 32 bit version of global "limit6A[7]". */
char limit7[4]; /* Holds 32 bit version of global "limit7A[7]". 4/

char limit8[4]; /* Holds 32 bit version of global "limit8A[7]". /

char one[4]; /* Holds LONG (32 bit) version of 2. 4/

char two[4 ]; /A Holds LONG (32 bit) version of 2. */

A.-66



* -char stopat[41; /* Holds 32 bit version of number of "data */
/* samples" to be taken plus one. */

char startat[4j; /* Holds 32 bit version of number of "data */
/* samples" to be by-passed on a memory board *1
/* before a digital-to-analog output begins. */

char frequency[4]; /* Holds 32 bit version of global "crystal". *
char clock[4]; /* Holds 32 bit version of STC "crystal" pulses */

/* which must occur before a TRIGGER clock
/* pulse is sent out by STC Register 5.

int isl; /* isl thru is8 are used to determine on which */
int is2; /* memory board a digital-to-analog conversion */
int is3; /* is to begin. isl and is2 determine if the *1
int is4; /* first sample to be outputted is on extended *1
int is5; /* memory board #1. is3 and is4 determine if *-
int is6; /* the first sample to be outputted is on
int is7; /* extended memory board #2. And so on. */
int is8;

/* INITIALIZE VARIABLES

*0ol*********i*i******* * Form 32*bit****s**n of**l********

atol(limitl,limitlA); /* Form 32 bit version of "limitlA". */
atol(limit2,limit2A); /* Form 32 bit version of "limit2A". *1
atol(limit3,limit3A); /* Form 32 bit version of "limit3A". */
atol(limit4,limit4A); /* Form 32 bit version of "limit4A". *1
atol(limit5,limit5A); /* Form 32 bit version of "limit5A". */
atol(limit6,limit6A); /* Form 32 bit version of "limit6A". */
atol(limit7,limit7A); /* Form 32 bit version of "limit7A". */
atol(limit8,limit8A); /* Form 32 bit version of "limitgA". */

itol(onei); /* Convert 1 into a 32 bit integer. */
itol(two,2); /* Convert 2 into a 32 bit integer. */

/ 1* DETERMINE NUMBER OF SAMPLES TO CLOCK IN OR OUT

if(is analog == TRUE) /* For A/D, clock one more time than */
ladd(stop atfinishone); /* total number of samples requested. */

else if(is_digital == TRUE) ( /* For D/A, first determine which
/* memory board the 1st sample is on.*/

isl = lcomp(start,limitl); /* For (start > limitl), lcomp = 1. *1
is2 = lcomp(start,limit2); /* For (start = limitl), lcomp = 0. *1
is3 - lcomp(start,limit3); /* For (start < limitl), lcomp = -1. */
is4 - Icomp(start,limit4);
is5 = Icomp(start,limit5);
is6 = lcomp(start,limit6);
is7 - icomp(startlimit7);
is8 = lcomp(start,limit8);

A-67

.6



/* Here is where the determination is */
/* really made. Total samples include *1
/* those by-passed at the beginning of */
/* a memory board.

if((isl == 1 II isl == 0) && (is2 == -1 is2 == 0))
ladd(stop at,finish,one);

} else if((is3 == 1 11 is3 = 0 0) && (is4 -1 II is4 0))
lsub(stopat,finish,limit2);
ladd(stopat,stop at,one);

else if((is5 == 1 TI is5 == 0) && (is6 -1 I is6 == 0))
lsub(stop at,finish,limit4);
ladd(stop at,stop at,one);

else if((is7 == 1 TI is7 =0 0) && (is8 -1 II is8 == 0))
7 isub(stopat,finish,limit6);

ladd(stopat,stopat,one);
) else (

lsub(stop at,finish,limit8);
ladd(stopat,stopat,one);

LOAD STC REGISTERS */

outp(STC_C, RESET); /* Master Reset the STC. */

outp(STC_C, MM_REG); /* Load the MASTER MODE register. */
outp(STC_D, MM LOBYTE);
outp(STCD, MMHIBYTE);

outp(STCC, REGICM); /* Load the COUNTER MODE register for */
outp(STC_D, CMI_LOBYTE); /* register group number 1. *1
outp(STC_D, CM1_HIBYTE);

outp(STCC, REGI COMPARE); /* Load the COMPARE register for */
outp(STC_D, stopat[3]); /* register group number 1. */
outp(STC_D, stop at[21);

outp(STC_C, REGiLOAD); /* Load the LOAD register for register *1
outp(STC_D, ZERO); /* group number 1. *1
outp(STC D, ZERO);

outp(STCC, REG2_CM); /* Load the COUNTER MODE register for */
outp(STCD, CM2_LOBYTE); /* register group number 2. */
outp(STC_D, CM2_HIBYTE);

* outp(STCC, REG2_COMPARE); /* Load the COMPARE register for
outp(STCD, stopat[l]); /* register group number 2.
outp(STC_D, stopat[OD;

* outp(STC_C, REG2_LOAD); /* Load the LOAD register for register */
outp(STCD, ZERO); /* group number 2. */
outp(STCD, ZERO);

A-68



outp(STCC, REG4 CM); /* Load the COUNTER MODE register for ~
outp(STCD, CM4 LOBYTE); 1* register group number 4. *
outp(STCD, CM4}IIBYTE);

lmul(start_at~start,two); /* Determine the samples to be by-passed*/
lsub(start_at,start at,one); /* before a D/A conversion begins. *
outp(STC_C, REG4_LOAD); /* Load the LOAD register for register *
outp(STC_D, start at[3J); 1* group number 4. *
outp(STCD, start-at[2]);

outp(STC_C, REG5_CM); /* Load the COUNTER MODE register for *
outpCSTCD, CM5_LOBYTE); 1* register group number 5. *
outp(STC_D, CM5_ilIBYTE);

atol(frequency,crystal); 1* Determine how often the trigger *
Idivkclock,frequency,rate_num); /* clock pulse is to occur. *
outp(STC_C, REG5_LOAD); /* Load the LOAD register for register *
outp(STC_D, clockII3]); 1* group number 5. *
outp(STCD, clock[2]);

outp(STC_C, LOAD); /* Load STC register groups 1,2,4,5.
outp(STCC, ARM); /* Arm STC register groups 1,2,4.

A-69



1, *
NAME: CLEARMEM.C */
VERSION: 1.0 *"

.* DATE: 2 December 1983
MODULE NUMBER: 21 */
FUNCTION: Places binary zero (OOOOOOOOB) in each memory byte */

of all extended memory boards. */
re INPUTS: NONE. *1
* OUTPUTS: NONE.

GLOBAL VARIABLES USED: is_clearmem, from, to, membuffer. */
GLOBAL VARIABLES CHANGED: is clearmem, from, to, mem buffer. */
FILES READ: NONE. */

1* FILES WRITTEN: NONE. */
MODULES CALLED: dma(. */
CALLING MODULES: analogo), retrieveo. */1* */

1* AUTHOR: CAPTAIN WILLIAM H. LIEBER */,* */

HISTORY: AFIT THESIS GE/EE/84D-71: Development of a Dedicated */
Speech Work Station. Thesis Advisor: Major Larry Kizer. */

1 /* SYMBOLIC CONSTANTS */

#define TRUE I /* Logic "true" is a 1. *1
#define FALSE 0 /* Logic "false" is a 0. */
#define TOGGLE 0 /* TOGGLE may be any value. TOGGLE is used in */

/* the 'value' position of the "C" statement: *1
/* outp(port,value). *1

#define HI LO OxBO /* Address which toggles memory-to-memory data */
/* transfer between "HI-memory to LO-memory" */
/* mode and "LO-memory to HI-memory" mode. */

#define CPUMEM OxDO /* Address which toggles between "CPU or DMA" */
/* actions and "MEMORY-TO-MEMORY" transfers. *1

#define EXTENDED Ox7O /* Address used to load Extended Address. */
#define REQUEST 0x99 /* Address of software DREQ Request Register. *1
#define HEMXFER Ox04 /* Software DMA CHAN-O request, i.e. start */

--/* memory-to-memory transfer. */

/* GLOBAL VARIABLES */

#include "speech.h" /* Contains all GLOBAL VARIABLES. *1

A-70

.. ..................................... ......... .. ...... ..... ... ... ...-.. ., ... ..-



A

I 1* FUNCTION: CLEARMEM() */

clearmem()

(

/* LOCAL VARIABLES ,I

int i; /* Index variable used in "for" loop. */
int holder; /* Holds address found by *ptr num. */

/* Binary operations can be done on a
/* integer value, but not a pointer. */

char *ptrnum; /* Used to find first address of */
/* membuffer array. */

INITIALIZE VARIABLES */

isclearmem f TRUE; /* Enable selected portion of other *j
/* functions used by clearmemo. */

ptr num &membuffer[O]; /* Find memory address of buffer array. */
holder = ptrnum;

from[3] = ptr_num; /* Memory address where data is found. *7
from[2] - holder >> 8; /* Used by dma(). */
from[l] - OxOO;
from[O] = OxOO;

membuffer[O] f OxOO; /* Load data byte (OOOO000B) to be */
/* transfered. */

toy3] - OxOO; /* Initial memory address where data is */
to[2] - OxO0; /* to be moved. Used by dineo. */
toil] = OxO1;
to[O] - OxO0;

CLEAR EXTENDED MEMORY */

outp(CPUMEM,TOGGLE); /* Set hardware for "Memory-to-Memory" */
/* data transfer. */

outp(HILO,TOGGLE); /* Set hardware for "LO-memory to HI- */
/* memory" data transfer. */

for(i - 1; i <= 5; ++i) ( /* Clear all extended memory boards. */
outp(EXTENDED,to[l]); /* Load extended address of memory */

/* board to be cleared. */
dma(); /* Set DMA chip for data transfer.
outp(REQUESTMEMXFER); /* Begin 64K Memory-to-Memory transfer. */
to[l] = to[I + OxOl; /* Form extended address of next memory */

/* board to be cleared. $/

A-71

. .....- _ .. ~~~~~~~~~~~~. ......,.......-. ;-.. , .; ,...............,.,............ ,. ... -,+



DONE *

outp(HI LOTOCCLE); /* Set hardvare for "HI-memory to LO- *
/* memory" data transfer.

outp(CPUJMEM,TOGGLE); /* Set hardware for "CPU or DMA" *
/* operation. *

is-clearmem =FALSE; /* Disable selected portions of other *
/* functions used by clearmemo. *

* A-72

I1



-7 -w . . . . . .

1/* */

NAME: NOP.CSM */
VERSION: 1.0 */
DATE: 2 December 1983 */
MODULE NUMBER: 22 */
FUNCTION: Provides delay required during loading of Direct

Memory Access (DMA) chip's internal registers. */
INPUTS: NONE. */
OUTPUTS: NONE. */
GLOBAL VARIABLES USED: NONE.
GLOBAL VARIABLES CHANGED: NONE. */
FILES READ: NONE. */
FILES WRITTEN: NONE. */
MODULES CALLED: NONE. */
CALLING MODULES: dma(. */

AUTHOR: CAPTAIN WILLIAM H. LIEBER */

HISTORY: AFIT THESIS GE/EE/84D-71: Development of a Dedicated */
Speech Work Station. Thesis Advisor: Major Larry Kizer. */

" -INCLUDE bds.lib

FUNCTION nop

"NOP ; ALLOWS SMALL DELAYS TO BE INSERTED INTO
* NOP ; THE "C" PROGRAM. REQUIRED IN DMAO.

NOP
RET

- ENDFUNCTION

A-73o



NAME: WAIT.CSM */
VERSION: 1.0 *I
DATE: 2 December 1983 */
MODULE NUMBER: 23 */
FUNCTION: Prevents CPU from executing SPEECH program statements*/

until all data samples have been taken by analog() or played */
out by digital(). Done by placing CPU in a tight loop and not */
exiting the loop until an interrupt has occurred. The System */
Timing Controller (STC) chip activates the interrupt signal */
after all samples have been used. */

INPUTS: Interrupt line driven active by STC chip actioF. */
OUTPUTS: NONE. */
GLOBAL VARIABLES USED: NONE. */
GLOBAL VARIABLES CHANGED: NONE. */
FILES READ: NONE. */
FILES WRITTEN: NONE. */
MODULES CALLED: NONE. */
CALLING MODULES: analogo, digital(). *

AUTHOR: CAPTAIN WILLIAM H. LIEBER */*/**/
HISTORY: AFIT THESIS GE/EE/84D-71: Development of a Dedicated */
Speech Work Station. Thesis Advisor: Major Larry Kizer. */*/**/

#INCLUDE bds.lib

FUNCTION wait

CREATE STORAGE BYTE & SAVE REGISTERS */

CHECK: DS 1 ; Byte to be checked during loop operation.
PUSH PSW ; Save affected registers.
PUSH D
PUSH H

LOAD INTERRRUPT ROUTINE */

MVI L,38H ; MVI data to Memory O0110110B.
MVI H,OOH ; Place "MVI data to M" command in memory
MVI E,36H ; location 38H.
NOV M,E

* INR L ; Place data "011" in memory location 39H.
MVI E,O1H
MOV M,E

A-74

• *. .. .... . . .. . . ...... .. . . . . ..,. * -- -. -- -:..* ** " -*



-. • . o - - - .. -. _ - b - -. - . - - '-. ' \ i . ' - " "" " -

INR L ; RETURN = 1101001B.
MVI E,OC9H ; Place "RET" command in memory location 3AH.
MOV ME

;t WAIT UNTIL ALL SAMPLES HAVE BEEN TAKEN

LXI H,CHECK ; INITIALIZE: CHECK BYTE = 0
MVI M,OOH , "A" REGISTER - I
MVI A,O1H
El ; Enable Interrupt.

LOOP: CMP M ; LOOP until CHECK BYTE - 1
-. JNZ LOOP

DONE

DI ; Disable Interrupt.
POP H ; RESTORE affected registers.
POP D
POP PSW
RET ; RETURN to calling program.

*. ENDFUNCTION

A-75

. *..- -'

- -. *- A.~



I-LJL

-ij

V0

HtM 6116P HM 6116P

3:~ ~ ~~I C6'C& I " x

SN~qS7 S7'qS 76?t sm 7 L I~t ISA7qLS.2qj

IIt

MC 790'CT

I AP

BOARD I BOOT UP CONTROL

4 B-1



+S*5 VOLF V171 4 fl?65
REGULATOX [qLOM ~ ISZLONI
MC '7?O.CT

~lAMIP I -j

ZC 37 xc asIc ,
DM~ 7qlS'qN ~~*

SNIaA 7qJ~ LS3L3

ic~~~x 11 170sc2

DMA

.c 20 r .

'S., 7VL. I i i II

El XC: 17

kS

+S VOLT
REG-'LA TOR
m~C 7Spos CT

I tAMP

BOARD 2 -DIRECIT MEMORY ACCESS
L

*B -2

.* . S ** . . . . . . .



Is voLr FLU
IRlaI F G. UL .q og .-.

ANAILOGY I F

DEVICE5 c9qo 0 (J

rc q/2 z Tc '/, [ ' L''

SN '7q 116 N ISN TVIILN SNTqLSaqq

I C '-5

DIGITAL /AmLO&

DAC 110

10YKIAl
10 K SZ

t.5 VOLT

REG.-LAToR
SG 3U3 K

L J3 MP

BOARD 3 - DIGITAL TO ANALOG CONVERSION

B-3

* . - .* *'



tVOL-T0

RE&)JILiTOR 1i:IiSG 323K

LNJ':1S00 r7Lj.I N7'LVN SVVS

P. V

ICI

AROD ANALGT IIA, O.201)



LIST OF INTEGRATED CIRCUITS USED
'..

IC #1 SN74LS244 Octal Bus Driver
IC #2 HM6116P Memory Chip
IC #3 HM6116P Memory Chip
IC #4 SN74LS688 8-Bit Compare

" IC #5 SN74LS125 Quad Bus Driver

IC #6 SN74LS125 Quad Bus Driver
IC #7 SN74LS74 D Flip Flop
IC #8 SN74LS244 Octal Bus Driver
IC #9 SN74LS688 8-Bit Compare

, IC #10 SN74LS688 8-Bit Compare

IC #11 SN74LS244 Octal Bus Driver
IC #12 SN74LS244 Octal Bus Driver
IC #13 SN74LS32N 2-Input OR
IC #14 SN74LS14 Hex Inverter
IC #15 SN74LSO0 2-Input NAND

IC #16 Ribbon Interconnect To Board Number 3
IC #17 AM9513 System Timing Chip

IC #18 SN74LSO8N 2-Input AND
IC #19 SN54LI92J 4-Bit Counter
IC #20 SN74LS244 Octal Bus Driver

IC #21 SN74LS244 Octal Bus Driver
IC #22 SN74LS32N 2-Input OR
IC #23 SN54L192J 4-Bit Counter
IC #24 SN74LS244 Octal Bus Driver
IC #25 SN74LS244 Octal Bus Driver

IC #26 SN74LS32N 2-Input OR
IC #27 AM9517 DIRECT MEMORY ACCESS
IC #28 SN5406 Hex Inverter (O.C.)
IC #29 SN74LS112AN JK Flip Flop
IC #30 SN74LS14 Hex Inverter

IC #31 SN74LS08N 2-Input AND
IC #32 SN74LS373N 8-Bit Latch
IC #33 SN74LS112AN JK Flip Flop
IC #34 SN74LS32N 2-Input OR
IC #35 AM8226 Bus Inverting

IC #36 SN74LS245N Bus Bi-Directional
IC #37 SN74LS112AN JK Flip Flop
IC #38 DM74154N 4 to 16 Decoder
IC #39 SN74LS245N Bus Bi-Directional
IC #40 SN74LS125 Quad Bus Driver

-1

C-i

* .. . . . * . . . . . . ... . . . . . . * . . . . . . . ..- - - . .** . ' .~ . -. -



IC #41 SN74LS125 Quad Bus Driver
IC #42 SN74116N 8-Bit Latch
IC #43 SN74116N 8-Bit Latch
IC #44 SN74LS244 Octal Bus Driver
IC #45 DAC 1118 DIGITAL to ANALOG

IC #46 Ribbon Interconnect To Board Number 4
IC #47 Ribbon Interconnect To Board Number 3
IC #48 SN74LSOON 2-Input NAND
IC #49 SN74LS112AN JK Flip Flop
IC #50 SN74LS112AN JK Flip Flop

IC #51 SN74LS112AN JK Flip Flop
IC #52 SN74LSl1J 3-Input AND
IC #53 SN7402N 2-Input NOR
IC #54 SN74LS32N 2-Input OR
IC #55 SN74LSO8N 2-Input AND

IC #56 SN74LS244 Octal Bus Driver
IC #57 SN74LS244 Octal Bus Driver
IC #58 Ribbon Interconnect To Analog Inputs
IC #59 Ribbon Interconnect To Analog Inputs
IC #60 Ribbon Interconnect To Board Number 2

IC #61 DAS 1128 ANALOG to DIGITAL
IC #62 SN74LS75N Latch
IC #63 SN74LSO8N 2-Input AND
IC #64 SN74LSOON 2-Input NAND
IC #65 SN7402N 2-Input NOR

C-2

.0 , -- _ .. .; -. . -- - i: " ? i .- i ..i i .: -..i. . _: " " i i- . .ii --1 : .--



- - w-p..-. -. ',-- '--*- ~ - s--:~-'-r--r - * y-? -- * .. .

-'i, , ] ' 
' - 'St'Y  ,'4 4

- _. 1, , 4 ... ,n I..
. I t !i ',Il

:<-- ... . . -_ --i l "J/

- -na , r. -"- ,~__ _ _ 1 -- - - -_.... ..:-_ .. .

-T . - "- - '--

SI -

r- 31 
--

0 .9 c.i: -, ._I,F . " -4,-, , ',""

"" "" 
,"iN 'I | I < ']! " 'I"1 ,, i ,



'Cl n .~r ~;ovrFNM~NT vxPv'~~r

S.

-tv t>o .a .,
S.

A' '~, .'..

* ti-. I 1
1 ~ ~ :~ ~ 2J.2

'0 -

6-~ _'-a I-.

j
~4, .. -

t ft.
___ I

* .4 (01t 0.
.44 ~

L~2

aaO
* .~ -

_ I 0.ti-~ i-a _

4~4-) ~...Ift..IC4 o- .0

.-.

~ H -- - .4. ',~ j~j
.4- 4- -.4

'I, ~ ('V

'.4 I
4~~

~40~--:~ lId______ - ~- ~
44' in" 4.

-4.444.4 -

4.. 4- rr-r- c-

'4QU .1

II .~L - .~

I I~~~7I7I --[I-
----------------------.--- T

Ii *4'.b4, ~

-- 4'
N ~ 4- 0*

* - - ~ r- - I
~, 1.4

4'. 44 4-,

V '4 ~ 4'-

I 0 '41744.04'
0 4~

4' CCJ(440.44 Iii
- * '4 '4- 4' - '4 "4 4- '4 r r 4. 4 ~- 44 4 41

aC-,.r0. 0' £

4,

~~444...............- -.

4... . . . ft****~***~*j
4

'4



- -. -~ --. - W~rrrW~rrW~' - .Pj&)l.14 i ~7 GLA'. ~N~NI P~N~ ~ -

I

.k 3

.4 4,

r~ I
U

4;
-'4

4-A ~

: : I:

:-

0, ___

a -.1 
.4

r N 0

;~
- I,

'4'

H
4 -4 --- 

tp.

-

'4- '4
C...

4--

442
-. - L 2 -

~ _ 411,I
n---

-. 4.,

---- 4

4... .1.. - .7.. 4 . *,.*,*.*.*.*.



~I ,,~A( N I I '4 NSL

a.

K77
'-3 3-'

3-

7
3~

I- -,

L ~
/

3,

0~ C

- *SZ*
3: 

~ viL 
'-~I s- at- -~i.i~ 21

4,- 1
!~ ~

3-,- 3,

~ I~3~iI
Ar

I!'"31
3,

0*

3- 
(J~

L1__
_____ 321 I

r-- - 3'

1 
C

C. 3- 
-"

3-'

0T-r 
3330-

* 
.

3-

-~J 
0

'II 
4,

0

. . . . . .
.........................



- - -- ~ ( ~ ,~ I, P~zgd~,I - -

I.
--

't '-

1i~
9-

0
II I -

I a-

~L2
1

:3- ,. -o

0
3- -0~

- '3

I,TT ~T'L_____ ___

7 iZilfflulLVI'i''4~Fi- I
71V7

~Ii1~L~L3 ~* . -
- 3- "

4 ri *

* ,,vi?~L z

-..----~ --

2
I '0

I I

-~ ~L-I 3. .3 ________ f-. C~

i '7.

* . U

~'
- j

iOi .~ 3. ** '1'1~ ~I
K,

4-;. 1
0
'I

0

. . . . .



REPROt),i H) T t,OVERNMENT tXPENSE

I '-4

' 4 V

- 7 1 -

Ir IPF



. I,

F.r

-b . ,K 
t.

I -i

I I
PM

.
t I 

. . . ° . . . . . . , 
.... .. . . . ..I•'

,=~



" i I--

I I i '; r--_L _ F -

'f' ;-'i ., ,

" i- 7,.. I I, :-- .L -..
ii I

I i

,..-:...t- t .---- t

4- .1

- I [Li jJ

ii

I I'
...:. ... , .''" ., , ._-.- ..,. .,. , ..,; .. .. .. .. .... ...- -,"' . . ... ..,,. . ... .. .- .' , .; ., ,,,'. , - -.. ... ., -. , '. ,..' . .". ..'..,. :... .; ' ' ,',,. , ., . , ,_.i,,, , . . .. ,C



*- - - - - - - - ~ - -

1 II I
I Ij it

LF' LLL

LLA

I ca
I I .-

. , ., .. . ..'- , '., - I " ,I.,' , .' -. - " . .'. : . , : - ' - " " ' . -- '



*~L -7 ~-

Am9517A
Multhoaode DMA Conlroller

DISTINCTIVE CHARACTERISTICS GENERAL DESCRIPTION
* Four independent DMA channels, each with separate reg- The Airi!15l7A Multimode Direct Memory Access (DMA) Con-

ft-Aisters for Mode Control, Current Address. Base Address, troller is a Peripheral interface circuit for microprocessor sys-
Current Word Count and Bate Word Count. tems. It is designed to improve system performadnce by allowing

* Transfer modes: Block, Demand. Single Word, Cascade externsal devices to directly transfer information so or from the
* Independent autoinitialization of all channels system ioem-ory. Memory-to-memory transfer capability is also
0 Memory -to -memory transfers provided. The Afrir9Sl A offers a wide variety of programmable
* Memory block initialization control features to enhance data throughput and system opti-
* Address inscrement or decrement snization and to allow dynamic reconfiguration under program

0~ ~ ~ ee signalstm isbl control.
0 Enbledisbie ontol f iniviualDMA equstsThe AnQr517A is designed to be used in conjunction with an ex-

En o Direcepndb ipto anr me of chnesternal 6-bit address register such as the Arn74LS373. It con-S nofware MA freqests tigtanfr tains tour iridependent channels and may lie expanded to any0 S o t w ar D M A req u stsn u m b er o .' ch an n els b y cascad in g ad d i io n~l co n tro ller ch ip s.
0 Cmprsse tiin opionspedstrasfes -upto 2M The tiree basic transfer modes allow programmability of the

words/second types ol DMA service by thr .;r Each channel can be indi-
+5 vot poer spplyvidually prgrmmed to Autoonitialize to Its original condition
Advnce N-hanel ilion ateMOStecnolgyfollowing ti End of Process fOI
4U in ennticDIPpacageEach cheizmsl has a full 64K address and worn count capability.

10;"il * -8 eiblt suac etn An exterima, IUP signal can terminate a DMA or memory-to-
memory transfer. This is useful for block search or compare
operations using external comparators or for intelligent peri-
phefals to abuort erroneous services.

BLOCK DIAGRAM

~BIT BU

43 is III f B s =4 AOT.

DCACC ADRES WOD Difc

1191 COU01 COUN

S 
. .ORDEING IFORIwo-j

Packge ____ Q's~rs'usi loc Frque C MMAND
Type mb~en Tempratue 3Miz 1 4Az -

He~~~~metWIT BUFF OF A 70 M5I AG C M57-4CP
Molded ~ ~ ~ ~ ~ D DIOr______~

* emfi I -5CT 1L AMj7D

[l-Ino
-"GCAG P--- --- --- --- COMAD N N. ENL A A10O FE

...................



-. --. ..- - ---- -....... J , i'C' -. .. l - . -
rI a a 79 0K, ,. l'7

* AM9517A

CONNECTION DIAGRAM During memory-t'
- the TC for channel

. A" with an active I,
,3 2g DACKO-DACK3 a.
2 30 AS

4 3' - Because EOP is.
A I I 13 _jter is required. V,.

RAC 7 Al E3O[ pin can not-
ADSr. 1 33 A AO-A3 (Address,A3 , fEour least sir

a -r 30 :-- 0 signals. During D.

RESET 1'3 Quit host CPU to loa&
RET 14.. 1? active, they are or

oACK3 1 20 D114 -- put address.
DRE- 162 J. ACCO
•.. ,24 oKO A4-A7 (Address,]
oRED D" '- -- I The four most sig"

DW and provide fourm~o v, 2 ::J perduring DMA servir

Top View HREQ (Hold Req.
Pin I is mmrked for or;etation. The Hold Reques",

Figure 1. Mos oi control of the sy;

INTERFACE SIGNAL DESCRIPTION DREQs cause th

VCC: +5 Volt Supply the contents of an Address register, the Status register DACKO-DACK3
VSS: Ground Temporary igistei or a Word Count regislel. The Data Bus is The DMA Acknow

enabled to iput data during a host CPU IhO write, allowing the many systems thK
CLK (Clock, Input) CPU to pug;arn the Am9Sl 7A control registeis. During DMA DACK will be acti'
This input controls the internal u(J.rations of the Am9517A and cycles Ie most significant eight bits of the address are output DMA is in control.
its rate of data transfers. The input may be driven at up to 3MHZ onto the dat., bus to be strobed into an external latch by ADSTB. grammabie. Rese.
for the standard Am9517A and up to 4MHz for the Amg5l7A4 In meiiory-lo ilemory operations data from the source memory AEN (Address Ei

S (tocatn comes into the Am9517A s Temporary register on the Address Enable il
CS (Chip Select, Input) read-rom-menioiy half of the operation. On the write-to-memory system bus durinrA
Chip Select is an active low input used to select the Ani9517A as half of the operation, the data bus outputs the Temporary regis- nal latch which htan /O device during an I/O Read or 1/0 Write by the host CPU. ter data into tie destination memory location, during DMA tram'This allows CPU commu , f t bus. During "nllt- IOR [:' Read, Input/Output) select all other I/0:
pie transfers to or from the Am9517A by the host CPU. CS may sed as prograIn1.'
be held low providing iOR or lOW is toggled following each I/O Read is a bidirectional active low three-state line. In the Idle Am951 7A aulom,,
transfer, cycle, it is an iiput control signal used by the CPU to read the input, during DMA
RESET (Reset, Input)' control legislers. In the Active cycle, it is an output control signal

used by the Am9517A to access data hom a peripheral during a ADSTB (Addrsit
Reset is an asynchronous active high input which clears the DMA Wite transler. The active high ;
Command, Status, Request and Temporary registers. It also address byte lron'-
clears the firstilast flip/flop and sr.? the Mask register. Following tOW (I/0 Write, Input/Output)-_
a Reset the device is in the Idle cycle. I/O Write is a bidirectional active low three-state line. In the Idle MEMR (Memory-,

READY (Ready, Input) q it is an !nnut control signal used by the CPU to load infer-  The Memory Rer'"

mation into the A .Q.t 7A In the Active cycle it is an oulput used to access da,Ready is an input used to extend the memory read and write control signal used by the Am951 7A to load data to the memory-to-periph..
pulses from the Am9517A to accommodate slow memories or peripheral duiing a DMA Read transfer.
I/O peripheral devices. -Write operations by the CPU to the Arn9517A require a rising N,
HACIK (Hold Acknowledge, Input) WR edge fnllnwirig each data byte transfer. It is not sufficient to r -.

The active high Hold Acknowledge from the CPU indicates that hold the pn low and toggle CS.t,
control of the system buses has been relinquished. EOP (End of Procese, Input/Output) Current Addr r

DREOO-DREQ3 (DMA Request, Input) EOP is an active low bidirectional open-drain signal providing r

The DMA Request lines are individual asynchronous channel information concerning the completion of DMA service. When a Temporary Ad,'
request inputs used by peripheral circuits to obtain DMA service. Chai el s Woid Count goes to zero, the Am95117A pulses EOP Temporary Wr,"In Fixed Priority. DREQO has the hig,.est priority and DREO3 low to pivirdo the peripheral with a complehor. 'oignal. EOP may Status Regise",
has the lowest priority. Polarity of DRECI is programmable. also be pulled tow by the penpheral to cause premature compte- Commend ag'
Reset initializes these lines to active high. lion. The reception of E5P. either internal or external, causes the Temporary Re,:,
0B0-0B7 (nas Bus, Input/Output) currently active channel to terminate the service. to set its TC bit Mode Registers.0 - in the Status register and to reset its request bit If Autoinitial- Mask Regisler
The Data Bus lines an bidirectional three-state signals con- izaion is selected for the chainel, the current reqi3lers will be Request Reqi'
nected to the system data bus The outputs are enabled during updlated horn the ba.e ,:r,,itAits Oti-s. lii (.iiniiet s mask
the 1.0 Read by the host CPU, permitting the CPU to exairre bit will be set and Ilie register cut lo.ts wi remain unaltered Figule

S"To

*.. • ,. ., ..... , ,, , '

, . 7. ... -. ...-.- .-. . . .. . . . ...--. . . . . . .... .. . ."...-.. .. .. . . . . . - - . ... . - .. • .- , . .- ... . . . -. . . . . ".- +-..'.. .. ,, . - . -.- ".- - ,



q_ -IL-

Duirg memory-to-memory t.anfers, w iili uo uulut vitei MILIV ( reorry Write, Output)
the TC for channel 1 occurs EOP always applie; to tir clmimel he M emot Write signal Is an Ir'I.vv ,w l ii-r Y,.le Itl-ut

- N with an active DACK; external 9OPS are disregarded a1 used to wnie dala to the selected memory location dunrig a

- DACKO-DACK3 are all inactive. peripheral to-memory or a memory-to-memory transfer.

Because EOP is an open-drain signal. an external pultup resis-
tor is required. Values of 3.3K or 4.7K are recommended; the FUNCTIONAL DESCRIPTION@pin can not sink the current passed by a I K pullup. FNTOA ECITO

The Am95f 7A block diagrar includes the raojr logic blocks andA0-A3 (Address, Input'Output) all of the internal registers. The data ite, coniiection paths ate

The four least significant address lines are bidirectional 3s ire also shown Not shown aie the various control signals between
signals. During DMA Idle cycles they are inputs and aliow the tle blocks. The Am9517A contains 344 bits f WInternal rnenory
host CPU to load or read control registers. When the DMA is in tire form of regislers. Figure 2 lists these rfrplisters bV iame

active, they are outputs and provide the lower 4-bits of the out- and shows the size of each A detailed dfi-;rrp.ion of the reqis-
put address. ters and their functions can be found under fegister Description.

A4-AT (Address, Otr-ut) The Am9517A contains three basic blocks .it control logic The

The four most significant address lines are three-state oulputs "uTkj.C...Cnqy_block generates internal liming and eterr-il

and provide four bits of address. These lines are eiiabled only control sigals or the Arn95ls 1 o e Pdsgrarrn Com r man1_C 7
during MA serice. - tro~lbo~ decodes tirevarious coninarids uiv.pi to tr Amng4517A

by the microprocessor prior to servicing a DMA Requei It also
HREQ (Hold Request, Output) decodes each channel's Mode Control word The Porty En-

The Hold Request to the CPU is used by the DMA tocorr block resolves priority contenion artioni DMA Channels

control of the system bus. Software requests or uniasked

DREs cause the Am951 7A to issue HREQ. The Timing Cotrol block derives intral riming trom the clock

input. In Am908(0A systens this input will usually be the ,,2 TTL

StatusDACKO-DACK3 (DMA Acknowledge, Output) clock from an Am8224. However, any appropriate system clock

e. The Data Bus is The DMA Acknowledge lines indicate that a channel is active. In will suffice.

0 write, allowing the many systems they will be used to select a peripheral. Only oi,3 DMA Operatiorn
jisters. During DMA DACK will be active at a time and none will be active unless tIe

,r address are output DMA is in control of the bus. The polarity of these liies is pro- The Am951 7A is designed to operale in two rmajor cycles Thes,,

-nal latch by ADSTB. grammable. Reset initializes them to active-low, are called Idle and Active cycles Each devi,.e cycle is made up
S the source memory AEN (Addof a number of slates. The Am95t 7A can assume seven sepa-

"tirary register on the . (Address Enable, Outp-t rate states, each composed of one full clock period. State I (1S)
the wrte-to -memory Address Enable is air active high signal used to disable the is the inactive stale. If is entered when the Aio9517A has no

-tie Temporary regis- system bus during DMA cycles to enab;e the output of the exter- valid DMA reque.ts pending. While in S1. the DMA cc-ntroller is

nal latch which holds the upper byte of the address. Note that inactive but may be in the Program Condition. being program-
during DMA transfers HACK and AEN should be used to de- med by the processor. Stale 0 (SO) is the first state of a DMA

0Iselect all other 4O peripherals which may erroneousis be acces- service. The Ai951 7A has requested a hold but the processor
sed as programmed 4O during the DMA operation. TIre has not yet returned an acknowledge An acknowledqe from the

-'. tate fine. tn the Idle Am9517A automatically deselects itself by disabling the CS CPU will signal that transfers may begin. S 1 2. S3 and S4 are
"'heCPU to read the

-.":l t CoUto reathe ;nput during DMA transfers. the working slates of the DMA service. If morn time is needed to
utputcomplete a iaser than is avaable with nomal hmig wait

.jperipheral during a ADSTB (Address Str-obe, Output) c~pooatase hni vial ihnra iigwi
.eieau Th aTive high(A ddress S trobe istpused to stro uer states (SW) can be inserted before S4 by the use of the Ready

The active high Address Strobe is used to strobe Ii, upper line uii the 0,951 7A.
address byte from DGCi-DB7 into an external latch. Memory-to-remory transfers require a read-from and a

tate line. In the Idle MEMR (Memory Read, Output) write-to-memory to conplete each transfer. The slates, which
resemble the normal working states, use two digit numbers borCPU to load infor- The Memory Read signal is an active low three-state o;eapol idebl t in sta e uie fo each cmete

.cle it is an output used to access data from the selected memory lucalion during a trans fi r'] four states ri.ed for l

. load data to the memory-to-peripheral or a memory-to-memory rasertour sates ( 12. 13. 14) are used for
ihe read-fror-memory half arid the last four slates (S21. S22,

i. _ S23 and S24) for the write-to-memory halt of the transfer. The
7A require a rising Name Size Nu mber Ter nporary Data register is used for Intermediate storage of the

,it is not sufficient to Imemory byte.
Base Address Registers 16 bits 4 r
Base Word Count Registers 16 bits 4 IDLE Cycle
Current Address Registers 16 bits 4 When no channel is requesting service, the Am95t 7A will enter

in signal providing Current Word Count Registers 16 bits 4 the Idle cycle arid perform 'St" states. In this cycle the

tA service. When a Temporary Address Register 16 bits 1 Am9517A will saimple the DREO lines every clock cycle to de-
,9517A pulses EC i Temporary Word Count Register 16 bits 1 termine if any clhantnel is requesting a DMA service. TIre device

,in signal. EOP may Status Register 8 bits I will also sampe CS. looking for an atlpmpt by the microproces-

a premature comple- Command Register 8 bits 1 sot to write or read the internal registers of tie Am9517A When
..-. ,xtemal, causes the Temporary Register 8 bits 1 CS is low and HACK is low the Arng517A enters the Program

_.ico, to set its TC bit Mode Registers 6 bits 4 Condition. The CPU can now establish. change. or inspect the
s bit. It Autoinitial- Mask Register 4 bits 1 internal definition of the part by read ing frori or writing to the

...nt registers will be Request Register 4 bits I internal registers. Address lines AO-A3 are inputs to tire device
he channel's mask and select which registers will be read or written. The IOR and
remain unaltered. Figure 2. Am9517A Internal Registers. lOW lines are used to select and time reads or writes. Due to the

F-3K . . -. • -, . . ; :- . . . . . . .- . - .. . - -a



~ A~ 2 .'i --A

AmG517A

number and size of the internal registers, an internal flip flop is signals of its own. These would conflict with the outputs of the Autolnllalze: By
used to generate an additional bit of address. This bit is used to active channel in the added device. The Arn951 ; A will respond channel may be s

f determine the upper or lower byte of the 16-bit Address and to DREQ with DACK but all other outputs except HREQ will be Autoinitalization. th,

Word Count registers. T ' .;ireset by Master or disabled. Current Woid Cour
Reset. A separate soilwaie t;ormnand can also reset this Nip Figure 3 shows two additional devices cascaded into an initial the Base Address a

floP. , device using two ol the previous channels This forms a two te Base Ess
ously with the curr

Special snlware commands can be executed by the Am95 7A level DMA system. Muie An119517As could be added at the sec- main unchar.ed
in the Program Coodition. These comnands are decoded as ond level by using the remainfir channels of the first level I set by LOP w
sets of addresses when both CS and lOW are active arid do not Additional devices cali also be added by cascadnq into the no

make use of the data bus. Functions include Clear Firsl'Last channels of the second level devices forming a third level Autoi r..alize the c'

Flip/Flop and Master Clear. CPU intervention.

.. Priority: The Anig

.'' ' I =available as sotiwar

ji~jACTIVE CYCLE Iily which tixes thedescending value o'
When the Am9517A is in the Idle cycle and d ch,,rroel requests a priority is 3 followed

DMA service, the device will output a HREQ to the micuopro- dSTenrdingvalueroii cessor and enter the Active cicle. It is in this cycle that Ihe UMA r F - T he second scheme
service will take place. in one of four modes: , iR[ UIo riio serw,.e becomes _

^, DA,. AC roitaiqg accoidingly.j
Single Transfer Mode: In Single Transter mode. the Arn9517A system, any device i

will make a one byte transfer during each HREQ/HACK hand-, .ognized afner nov

shake. When DREQ goes active, HREU v. ill go active. After the ognized. ife
CPU responds by driving HACK active. a one-byte transfer will Doccurred. This prey
take place Following the transter, HREQ wil go inactive. the system.

*word count will be decrerrieriled arid the address will be either IIILDVC 911 s evc
incremented or decremented. When thbeword count 9qes to zero

a Terminal Count (TC) will cause air Autoia ihe channel. highe1t 0
has been programmed to do so. 2

To perform a single transfer, DREQ must be held active only ,,,0 ,roN,, lowest 3
until the corresponding DACK goes active. If DREQ is held con- MOs -3 vE

- linuously active. HREQ will go inactive following each lin- The priority encode
and then will go active again arid a new one-byte transfer will be Figure 3. Cascaded Am9517As. questing service on
made fliowing each rising edge of HACK. In BBOA1J908oA charinel is started,
systems this will ensure one full machine cycle of execution• quest is received by
between DMA transfers. Details of timing between the Am9517A TRANSFERTYPCS chanrel will oily p
and other bus control protocols will depend upon the charac- Each of the three active transfer modes can perform three dif- releases HREQ. W
teristics of the microprocessor involved. ferent types of translers. These are Read, Write and Verify . anotlher, the CPU

Block Trnnsfer Mode: In Block Transfer mode, the Arr951 ,'A Write tnansfrrs mrve diia from an tO device to tie memory by j generalion of rising

will coinue making transfers until a TC (caused by the word activatihg ID and ME". Road transfers love the new highest-p-
memory to an tO device by activating MEMR arid IOW. Verfy I

encounlered. DREQ need be field active only until DACK be- transfers are pseudo tiansers. the Am9517A operates as in Compressed TI

comes active. An autoinitialize will occur at the end 11 ihe ser- Read or Write transfers generating addresses, responding to throughput where s
i the channel has been programmed for it. EOP, etc., however, tie iremory and 1.0 control lines remain can compress the r

viceinactive. Diagram 3 it can ill

Demand Transfer Mode: In Demand Transfer mode the de- access time of the,
vice will continue making transfers until a TIC or external EOP is Memory-o-Memory: "he AmgR17A includes a block move pulse width is made
encountered or until DREG goes inactive Thus, the device re- capality fhlt allows blocks of data to be ioved from one nem- consists only of stat
questing service nay discontinue transfers by bringing DREQ ory address spar't io another When Bit GO in the Command perform the readiw
inactive. Service may be resumed by asserting an active DREQ register is set to a logical 1, channels 0 and 1 will operate as need updating (see
once again. During the time between services when the iricro- memory-to-memry transfer channels. Qlael .0 forms the sed transfers is foun

processor is allowed to operate, the intermediate values of ad- ___ address and c!qiLnnel 1 forms the des rhat-o~n_0aress,.-- '..] procssor is allowd to operate.The channel r l. rcual i L.I . A memory-lo-menmory. trans- AdrsGera-

dress and word count may be read from the Am9517A Current TjcoU hans- 0 Address Gee
Address and Current Word Count registers Auloinilializaion will fer is initiated by selling a ;twar a or ch.' -. ---- . . . . ... .data htnes State S11
only occur following a TC or EDP at the end of service. Follow-. Block Trarnsfer Mo~de sho;jPd be t. (.,l for nmemory-tu memrory.

" '" " in g A u lo in ifia liz a io n a n a c tiv e g o in g D FR E Q e d g e is re q u ire d to .q ' h n c a e s p o r m e o j x d su c e a d d ip s s a
iniiate a new DMA service, single source word may be written into a block of memory.

j| Cascade Mode: This mode is used to cascade more than one When setting up the Ainr9517A for c.rnior y o -menioo epr-,f helin, it is su~ggest: d Vial both channels 0 arid I .be tpaske~dou

Am9517 together o sinple system expansion. Tfre HREQ and li rn, r.the s hagoiuU tll r hnnl- s 0 id b nia ed o uj

HACK signals from the additional Am9517A are connected to Further, the ctanrel d u ni should be initialized to the

the DREQ and DACK signals of a channel of the initial same value used in channel 1 No DACK outputs will be active

Am9517A This allows the DMA requests of the additional device during inemory-lo-mrnory transfers.

to propagate through the priority network circuitry of the pie- The Am9517A will re.pond to external EOP signals during
ceding device The priority chain is preserved and the new de- memory-to-memory transfers Data coniparalors in block search
vice must wait for its turn to acknowledge requests Since the schemes may usp this input to terminale the service when a
cascade channel in the initial device is used only for priorilizing nialh is found Tho ,i.,: t t rrOmr In-mirnory liranOfers may

the additional device. it does not oulput any address or corltrol be found in Imirig ). tw, 4

F-47'. -,-



.~~eotptSo te AutlointhsIIze. By pitigramrrinn a bit in 1:.e Mlod,! te-giei a bit. c, ao exter.. idci front ii'ih they may t-' placed ;n it
,~,.-trespond channel may be set up for an A-jtiitaliZe npio',ion Duripi address bus I I,,, laini ,d15e of Arid', -S, -'A, D

.1ep -Qwilt be Autoinitiaiizatiorr. the original ValLIQ", 14 the Cuf' rn! Adl revs arid ura'd to 1, loa ....... ut'., lrc~rii hli' 'tir. t I- i- l,,i '-

Current Word Count registers are automratically reslored humir Unrile (AEN Isa u',,,,d to enaie ltie bis onto PIe accwss ouS

aded nto'an intial the Base Address and Base Word Court registers, of that chair- through a 3-strile -or ible The lower ordeor addrbitsae ,t
This forms a two net following EOP. The base registers are loaded swirullaoi'- put by tire Amg',t' 1A directly. Lires AU-A7 should be co;riected F

e adedat he ec- ousty with the current registers by [he iicropiocesr,cr arid re- to tire addioss lu. I ruing Diartram 3 show, the tine relation-
adodted airt evsel- main unchanged throughout thre DMA service. [a'na~~i sips betwveen CL;,. AEN. AI lB. DBu DB,' aiid AO-A;

cascading into the no e y~alriiareF loig During Block and Demrand Iirister nodo servir es which in-F
g a third level. I Autuinitialize the chranniel is ready to tepeat is service without clude riultiple li,rsl4,is, the addresses 'letIpeaod willt. e -

I CPU intervention. quential. For n.iiry transrf~ers Ihe dalaia lii liv' exterr,31 ad-

Priority: The An95[7A has two types of priorrt1' encoding dress latch will reiii tire saiie Tnw, dila n*!I-u onl/ charg-r
V40LEELavailable as sottware selectable options. I lie first is Fixed Prior- when a cairy oi bcrurj~w from A, it) A63 lie plii'> in lbh' riorrnail

ity which fixes the ctianireis iii priurity order based upon tire seqtuernce of addie ses To save lirrir' arid si,''-i tianc"'ic.; lie

descending value of their number. Thre chaninel with the lowest An1r951t7A execienc St slates only when updrtiin of kAi3 A15 InI
priority is 3 followed by 2, 1 arid tire highest priority I hamliel. U. the latch is neceos',rv This itisiii li i-i -vi, rSt slte;

IThe second scheme is Rotating Priority The last ch-aniel to get rna- occur only cici eveiy 256 tianr'fei ,. a sa.1 iis of 21,, clocl,

NRIO i I service becomes the lowest priority channel with ire others CCC o ah23Iases
MACK rotating accordingly With Rotating Priority Ii a single chip DMA REGISTER ZE -'.1iPTION

system, any device requesting service is guaranteed to be rec- Current Address Roister: F ar-i r ti,ii rip hars a I16-bit G. orrentU ~ ~~~~~~ognized alter no more than tMice hiuier priority services have Adrsreit t'reiirhd levu'cieadrs
Ioccurred. This prevents any one chaiinel frorn mnropoling the used during DMA tiansfers lii.i (1r". i vuororraiC.iiy in-

M" sstm.creinteried or d'ieiir'ntrd ailter ecti tr,3n'-?r aind ti." Inter
F I nmeiodate values of huie address oie stiri in th? Crjrrnt A. 1dresr,

A.UI ?A Ist Seriuce 2nd Servrce 3rd Sel i ' register d~uring [liei liai isler. This registler is wrirt-ir n 01re J rly the
highest 0 ' 2 wrlVice 3 - service microprocessor ii -.iucessv~e h-hit trrsit nirralii) u

F ~ ~ ~ 1 ervicije\ re1 uit 'eiitiazed by i i Iruloiiilial'.nr bark If- it', 'irirlial valiue Au-

0 A~ir~Ai p let 3 - toiriialiiation take- place only alter an LUP.
D(VICLS ICurrent Word Couit Register: Eactihiimrr'I has a 16-bit1 Cur-

* - ~~~~The priority encoder :;&lects the igs~iest priority cluanirel re- rer~i~oi ~t'FtrIrsuitrsoui i rgarre

questing service on each active-going HACK edge. Once a with, arid will .elu' vi orr .1 CPU read, ;t.I ue 1'jss tthir the

channel is started, its operatiun will not be surpeiid. d if a no- riurroer! of v,-_J 4) ei u lrawlrrrroi Ilhe %vorrl count is gr-c

quest is received by a thigirn priorly channel. TI-i o icph priorly rnridalr -'IdutrTeri-iriiaurvl oii word

df channel will onily qaint coriliul after he lower piSuot-, cr ratnet coI, is slorr CO ii i S. register during It,(- Ir ii sler VM"Ir [tip
per' roe dif releases HREQ. Whein control is passed from orie. chanirel ;o value Ii die r t~"'- oes to zric, a TC wilt lit geirnared This

Wl,...o Verify.- another, the CPU will always gain bus control. This ensures register is loiaded ,r 'i- d In suric'ssive 8-bit bl-s~v by tne micro-

the memory by i ~~~~~~~~~~generation of rising [lACK edge to be used t0 initiate sirreciori of hi'tiiir Flivii tiencaDM

-- move data from F-the rew highest-prioiril) requesting channel. sriei a ~, i nnlaie y;iAtii~lz akt t

A and10W. Verity original vtaloe. Au;j iializ an occur only when an itsoc
-'A operates as in Compressed Timing: In order to- achieve evern greater curs. Note thaI thre conrtents oft ire Windi Comnt register will be

-. 'e, repondig to throughput where s~slemn characteristics permit. tlie Ai.r9St 7A FFFF (hex) foltuuviir on intenaly generated Ll'
'.ntrol tines remain can compress the trarisfer time to two clock cycles. Frm Timing -Bs drs u aeWr on eitr:Ec hn

- fl ~~Diagram 3 it can be seen th-rt slate S3 is used to extend tie - ie - icWr rui eitr

access time of the read pulse By removing stale S3 tire read nei has a pair ol BaeAddress moBairruCon rgstr
s a esbloc move pulse width 's made equal to the wite pulse width arid a transfer Thee1bii"-e5 .Q ryrslravlusfthra-

ed from one mom- consists only of state 32 to change lire address and state 64 to scidated current ogssDurig Autuirihtaliz-! thiese values are
-- in the Command perform thre roadr-wrile. S1 slates will still occur when AB-A1 usedto restoe Ilie Current registers to tireir origirral values Iliej

I will oprtas neupaig(eAdrsGeeain.Tmnfo ope. base registers are Ivillen sirnuttanviujywilr llnir correrspord-
penae a I eedupdaingIse Adres Genraton) Tiurirg li crrires Ing current register III B-bit bytes durinq DMA fiogranrnq by

; jnel 0 formrs the sed tranisfers is found in, Timing Diagrarm 6. - 'h irpoesrAcrigy rtn ctiv eilr .ii
stiflation address. temcorcso codnlwiigt hs eilr e

-to-memory trans- Address Gaeration: Iri order to reduce pin coutit,- the intermediate valujes are in the Current rogislers wvill overwite the
-l-est for channel 0. Ani95l 7A multiplexes the eight higher order address bits on the intermediate valtra. Thle Base registers cannol Le read oy the

2r ~ryIl-memnory. data tines. Stale StI is used to output the higher order address microprocessor.
:;uc ddress, a

K-; of memory.
-0-memory opera--

I - be masked out.
3 initialized to the

*Puts wilt be active

1P signats during -

)rs in block search
9 service when a l

lrytasfers may



M-'17A

Coan ~~tr:This 8-bit register controls the operation S V n ~ Acnrsodt eUSSAtu Register: TheI
ofth Am951 7A, It isprogrammed by [temicruprocessor iniIl DMA service d-i voaled by software aswell asby a Z91A by themcrol
Program Condition and is cleared by Reset. The tollowirig tabie CiIEU. Lad l,;e iris a evquest bit associated wit) it in thle have reached a terminal

lists the function ot the command bits. See Figure 4 for address 4-Lit Request reqisler I hese are norirnaskaote, arid subject to i mg DMA requests. Bits 0Ifoding. priorriizatron Uij llie Pi oiy Eilcoder network Each register bit is that channel, including
set uir reset separirrety unair soltware control or is crer~dlrjrr I are cleared by Reset a,

7 6 5 4 3 2 1 0 - 1--itNunrber 2 (eeaornof a IC or eiserrial EOP The entire register is wtrerever their cotrespo
cleared by a ResiT set or reset a bit, the software loads the
proper form of the data tildl Sve Figure 4 for address coding. 7 6 5 4 3 2

- -0 Memory-to-memory disable
I Memory -to-memory enable 7 6 7 i ub

0 Channel 0 address hold diiable E = -_ I17I
I Channel 0 addrrrr, sid enabto0 eee hne
X If bit 0 - 0 Don't Ca0reececane

0r Select channel 1

0Controller enable 10 I t Select channel 3

I Controller disable fSlcchne3

6 0 Reset request bit

0 Normal timing I Set requiest bit
1Compressed timing

K ibit-:Software rerejest,-* ti e serviced orrly it the channel s in Block

0Filied ProrntndeWerritittg pory-to-rnernorytrnf:
I Retating Priority sofisate request fr Sban±LA~.L should be set.

Mask Register: Eoch cliarinfit haF associated with it a mask bit

0 Liti write selection wich can be set to d~stIroroniglAQ ahms i
I. - Esierided write selectionr is SOi alien is assc.I iair'( char I'et produes an EOP if the
X It bit 3 - cliarirrl is rl pi2-irnmnc- fori Auiciriitfialile. Each bit of the a-bit

M~dii rrgister rilay -it. e set or cleared separaiely under

0 DREG sense active high softsare-isntrol1 lhe~ei ri-is also setl by a Reset. IThis
I DRtEG sers" active lown utiiE s art LIA r- iiesls url a 0iar Mark register instruction

allows Citm to occu, . Thtn ingrsirunr to separately set or clear

0 DACK serse actlve low, rhin asoe bim i% s~iialar In ure it, rhat uspd with the Request

1 DACI( sene active higri regyster. See Fi 9'Jf 4 Ins i-~hucthon addressing.

1 6 5 4 3 2 1 0 -BSit Numb,,

Mode Register: Each channel has a 6-bit Mode register as- L 7
va aW w,7 hen the register is being written to by ftre- 00Slc hini0nykr

microprocessor in the Program Condition, bits 0 and 1 deter- t0ntCre0 Seeci channel 0 mrask hit

mine which channel Mode register it to be written. Lj 1oSle hnnl2ms i

7 6 5 4 3 2 1 0----Bit Number I Select chrannel 3 mask bit

LL.L IJ..L.L.J0 Clear mask bit

_D 00 Channel 0 select 
I Set mask bit

-. LJ0C Channel I select
10t Chrannei 2 select
ItI Channel 3 selt All tour bits of the Mask lrgister may also be whiten with a

Do Verify tranisfer soinge command.
01 Wrlite trix . I -- - - - -

1 O nteadfroent ler P' 0 7' 6 5 4 3 2 1 13 Bq Nrr rntrr

it Illegal
XX It bits 6anrd7. it ITi I - l t-l ikfl

0 Aut ..i.... dlisable 3, I Set Cihrriir 0 mrask bir
IAutomrritiae enable

o Clear Cinrrn ....e tiask bit
0~ Adidress increment seiect G et Channel 1 aiiii tntl

I Address decrement select
Ccear raninirI 2 mirk bit

00 Deo-ad rindal select I Ie Ci~anril 2 mask tnt
fr 0 Single Mode select

Cascade0" rone select Ii Crie Ca..-l 3 ral Nt-

tI Csce Mde select h, 0la ianrs a n

WIPT F-O
-1 lpqp~kwllooa.



Amn9517A

in re l o requests for Status Register: The Status registers may be read out of the Tempo;rri egister: The Temiporary register is used to hold
softwa' -. well as by a iAm95HA by the microprocessor. It indicates which channels data dlurrig rrrenoiyt-rr-reimiry traristers. Following the corn-
t associated with it in the have reached a terminal count and which channels have pend- pletror u o~ transters. ho last word moved can be read by the

9 masisable and subject to ing DMA requests. Bits 0-3 ate set each time a TO is reached by microprocessor in the Proqrarn Condition The Temporary req-
1tworlc. Each register bit is that channel, including atter each Autoinitialization. These bis ister alwcifs contains Pt-e last b~te tranelterred in the previous

.controf or is cleared upon are cleared by Reset and each Sta! us Read 0iti 4-7 are set memor y 1 lori-rnory u~pviatiorr. unless cleared by a Reset.*.:X The entire register is wherrever their corresponding channel is requestig service.
)it.the oftwre lads he iSoftware Commands: There are t-wo special softwhare con)re 4 for address coding. i 6 s 4 3 2 1 0 . Bit Numiber mands whicli can be -im-.tited in the Proriram Cnnitoon They

do not deopeod on airy ,.pfcific bit patterni on the data bus tire
Sit Number L. L 1 two sottware commrrarnds are

Clear Fiist'Last Flip, Flop Thris commmud may be issued prior

.-. ooSelec chanel 0to writing or leading Ain'451 7A addrprss or word countrit nor-

~OlSelct hanelOO elet tianet0I Chrannel 0 has rearheil IC matrori. This; irritializm the tfitfop tri a known state soi fiat%t Select channel 2 tl Ctianirn t has reached ItC subsequent accesses to reyister contents bV the miicro-
11 Select channel 2 1 Chdnri 2 has reacrred 1 C processor will address lower and upper bytes in the correct

1 Chaitrier 3 has reachd 1TC sequence.

0 eset rqetbit Master Clear: This software instruction has the same etloct

IStrequest btas the hardware Reset The COnIrniand Status. Request.
1~~ et bt1charde 0 request Temporairy arid Internal Firstlast Flip Ftop registers are

IChannel Irequest cleared *Aid tlire Mask register is set. The Am951 TA will enter

it hechane i inBlck1 Channiel 2 request the Idle cycle.

-memory transfer. thre 1 Chanairel 3 neqiest Figure 4 list5 Ilia address codes for the sotaecommands.

sDciated with it a mask bit
;,g DREQ. Each mask bit_______ ________ _____________

noduces an EOP if the I Interlace Sigoals

tlize. Each bit of the 4-bit IA3 A2 Al AO 10ll tOW Operation1
*-mired separately under or 1 oo0 Read Stiles Register
.-itso set by a Reset. This I1 0 0 0 1 0 WteCnrrndegsr
J4ask register instruction 12 rt onadRgse

Ss stocla 1 0 0 I 1 Illegal____

USS. i.the Request 1 0 0 1 1 0 Write Frcqrrest Register :
de~.1 0 - Ij0 0 1 Illegal-II

-BiNubr1 0 1 0 0 Write Si.-gre Mask Register Bit

1 0 I 1 0 1 Illegal

* elc cane ms bt1 0 1 1 {-1 0 Write Mn I- Register

Select channel I mask bit I 1 0 0 0 1 Illegat

Select channel 2 mask bit 1 1 0 0 1 0 Clean tite Pointer FlipFlop

Select channel 3 mask bit 1 o 0 1 Read Tomprary Regrster

i emcanl0ms i 

1 0 1 1 0 Master lear

'Set mask bit I I 1 [0 0 1 Illegal

also beskwbitte wiha

1I 1 0] 1 Illegal
I I I _______ W Vrite AilM-hnqil ti

it Number Figure 4. Reglatef and Function Ad-iessing.

- ar Channel 0 mask bit

iChannel 0 mask bit

par Channel 1 mask bit

-,tChannel 1 matk bit

iar Channel 2 mask bit
I Channel 2 mask bit

Ia, Channel 3 mask bit
-1 Char I mask bit

'MM~~ of~ 76PIR".17 f-

I . A_



A1% -7;T

Signals internal Daa Bus ', AXIMUM RAI.
Channel . Register Operation A3 A2 Al AD Flip/Flop DB0-DB7 Sta' Tempeiau.

Current 0 1 0 0 0 0 0 A0-A7 Amtei Tempera,

0 dae&Curn Write v CC with Respect,
Address 0 1 0 0 0 0 0 1 ASA15

All Signal Vnltagc:
Current Read 0 0 1 0 0 0 0 0 A0-A7 Power Dissipator,

Address 0 0 1 0 0 0 0 1 A8 A15
Th- products descri

Base & Current 0 1 0 0 0 0 1 0 W0-W7 atic charge. It is s

Word Count 0 1 0 0 0 0 1 1 W8W15 xposure to excessi.

Current 0 0 1 0 0 0 1 0 W0-W7~Read
Word Count 0 0 1 0 0 0 1 1 W8-W15

" Base & Current 0 1 0 0 0 1 0 0 AD.A7
1 Write

Address 0 1 0 0 0 1 0 1 A8-A15
OPERATING R,-

Current 0 0 1 0 0 1 0 0 A0-AlRead Part Number
Address 0 1 0 0 1 0 1 A8-A 15

s & Current 0 1 0 0 0 1 1 0 w-w Am95W7ADCPC

Base Write Am95l7A- 1DCIPC

Word Count 0 1 0 0 0 1 1 1 WBW15
Arn9517A-4DQCPC

Current 0 0 1 0 0 1 1 0 W0-W7

Word Count Read 0 0 1 0 0 1 1 1 W8-WB 5

Base & Current 0 C 0 0 1 0 0 0 A0-A7__ ."2 A desWrite
Address 0 1 0 0 1 0 0 1 A8-A15

Current Read0 0 1 0 1 0 0 0 AO A7

Address Read 0 1 0 1 0 0 1 AB-A15 ELECTRICAL C1.

Base & Current Write 0 1 0 0 1 0 1W W7 palanleter

Word Count 0 1 0 0 1 0 1 1 W8-W15

Current 0 0 1 0 1 0 1 0 WO-W7 VO (Read
Word Count a 0 1 0 1 0 1 1 WB-WlS VOL .. .__

Vill

3 Base & Current Write 0 1 0 0 1 1 0 0 AOA) VIL

Address 0 1 0 0 1 1 0 1 A8-A15 ix __ -

IOz
Current 0 0 1 0 1 1 0 0 AO-A7

Address 0 0 1 0 1 1 0 1 A8.A 15

Base & Current 0 1 0 0 1 1 1 0 WO-W7

Word Count 0 1 0 0 1 1 1 1 W8-W15 Co

Current 0 0 1 0 1 1 1 0 WO-W7
Word Count Read 0 1 0 1 1 1 W8 W15 -

NOTES:

Figure 5. Word Coun; and Address Register Command Codes. 1 Typ-cal values
and nominal prcT

2Inrul liming par-'
less Waveform

put signals are.
olherwise noled.

3 0ulput loading

lance unless no:-
i 4 he new FOWo'

TCY- I OOns and
nel IOR or ME%.
2TCY-5Ons and -

5 DO is specjhed
is measured at
for TD02 assury..

; inecled from HRli.s
6 DREO should tx

;'77. DREO and DAc,.!
".- Timing dlaral"

•

-'F-8
*. .- -, ,, ' '', r ,



Data Bus NIAX peuctnA oVSS abovp which isr'fil lite rrnav her imprdl_ _--

A_0-A7S ___ ____ ________- t___ ____

Al inlVlae ihRespect to VSS -05V to 4 7.OV
AO-A7 Power Dissipation (Packarjn Limitation) ___ __

AS.A15
rhe products desc~ribed by this speci fication include ii. totnol (ircui itry designed it., in rotect inputI devices fr om (Jarrrdrjinr accumrulationis of

WO0W7 jitatic charge. IL is suggested, nevertheless, that cirivenitiial precautions be obse%o during storage, frardlirig idr use' riorder to avoid
W8-W 15 ejxposure to excessive voltages.

WO-W7
W8-Wl5

AO-A7
A8*A 15

AO-A7 OPERATING RANGE
A8-A15 Part Number TA VCC

farn95I7ADC.PC 'C to - 70-C 5 OV -5%

W8-W 15 -- __

Am95t7A-4DPC O^C to i70'C I 5.IJV t5l%

WSW5 IAM9517ADM -55'C to +t12;5'C 5UOV 1t017,

AO-A7

AO-A15

A8.A15 ELECTRICAL CHARACTERISTICS over operating iange (Note 1)

W8-W 1
_____ ~ ~ ~ IO =_____ -200__A 2.4____ __ ___ ______ __

xaOmte outprutt o TestG CVnditaon VolypMx ts
W0*7 Outpu -IG V rage .HREQ Only) 3.3

8-W15 VOL. Output LOW Voltage IOL 3.2rrrA 04 "t
VIII Input HIGVA Vtage 2D_________________ 2.0VC

*. AO-A7 VIL - input LOW Voltage - 0.5 0 _ot
A A15 li ir. ur Load Current vss < VI . VoC to0 ito pA

AOA7 1ZOurput Leakage Currant VCCx VO %. VSSv40 -- Il) -__ 'to ;AA

WOW7_____________ ____ TA #5 C 65____ 130t

AS-A15 VCC supply Currnt I _______ -. 6 3 A 0'C -_____7 A

W8-lW15 CO .Output Capacitanrce .____ 4 8
cI, Input Capacitance Ice I OMil?, Ir'puts 6 V 8_ 5 DF

WSCO 1/0 Capacitance 10 18 Wr

NOTES: *8. Output loading on [tie data bus is 1 Standard TTL gate plus

1 . Typical values are for TA = 25'C, nominal supply voltage 15pF tir thq minimum value and 1 Standard TIL gate plus
and nominal processing parameters. 100pF for the maxirtum value

2. Input liming paranmeters assume transition times of 2Orrs or 9. Successive read and or wrtte operatitons by the external
less. Waveform Irreasutement poirnts for both Input arid out- proces-ur to progtart or esarrtne ltle controller mrust be

* .put signals are 2.OV for High and 0.8V for Low, unless tImeld tio allow at least 600ns tor the Aig9St 'A or
otherwise noted. .Amg9t lA-1 and at least 450tr5 ltn thre Am9517A-4 as re-

3~Output Wdadtng is I Standatd TTL gate plus 50pJF capaci. Covety tine betweeir active reaud or write pulses
l ance unless inoted otherwise. 10. Patnelefs ate listed in alpha~betical ordier

4. The nA~ tOW or MEMWlf pulse width for normal write will be 11. Pin 5 ir ain input that should always be at a logic high level
* TCY-IO0ns and fur extended write wilt be 2TCt'- Wortos. The An intertidl pull-up resistor will establish a logtc htgh when

net tOR or MEMR pulse width for normal read will be the pin is. left floating Alternatively, pin 5 ntay be tied to
2TCY-SOns and for compressed read will be 1 CY-5Ons. VCC.

5. TOO is specified for two dtfterent ouput HIGH levels. TOO 1 12. Signals HEAD and WfllIIE refer to OR and MEMW resoec-
is measured at 2 OV. T002 is measured at 3.3V T' value lively tor peripheral -to -memory DMA operations and to
for T002 assumes an external 3.3ki1 pull-up resistor con- MEiF1 arid lO-W respectively for memory-tv-peritleial
nected from HREO to VCC. DMA opertions.

6. PREQ should be held active until DACK is ictutned. 13. It N wait states are added during the write -to -memory halt of.
7. rtFIE and DACK signals may be active high or active low, a memory -to- memory transfer, this parameter will increase

riming diagrams assume the active high mode. by N (TCY)

W VT-

MpT.K 71,



Am9517A
- -SWITCHING CHARACTERISTICS SWITCHIN

ACTIVE CYCLE (Notes 2, 3, 10.,11 and 12) PROGRAM L

Am9517A Am9617A-1 Am95I7A-4 (Notes 2. 3.I

Parameter Description Min Max Min Max Min MaK Unit

TAEL AEN HKGH ftromn CIK LOW (S11 Delay rimne 3030 300 22 n ' Para meter

TAET AEN LOW from CLI( HIGH (SI) Delay Time 200 200 IS no TAR

1TAFAB ADR Active to Float Delay from CIK HIGH 1SO 150 120 ns TAW

TAFC -READ or WAIITE Float from CIK HIGH 150 150 120 no TCW

TAFOD DB Active to Float Delay from CLK HIGH 250 250 190 nl TDW

TAR ADR iorn READ HIGH Hold Time TCY 100 ICY 100 TCY 100 no e

TAHS DB fromn ADSTB LOW Hold Time 50 so 40 fls 7

TAHW ADR from WRITE HIGH Hold Time TC) 50 iCY 50 TCY-50 no UR

*DACI( Valid from CIK LOW Deley Time 280 280 220 fiS_ TASTD

TAK EOP HIGH from CLK HIGH Delay Time - _ _- 250 250 - ~ 190 no ~ T

*OPLOW to CLK HIGH Delay Time 250 250 190 nl5

TASM ADR Steble from CLK HIGH 250 250 190 nsDtADrLW tuTe101010 - -- ,

____ TWA

rTH Clock High l ime (Transitions -6 Onis) 120 120) 100 n
TCL Clock Low Time (Transitions -. l0ns) 1S0 150-- -- 10- s

I-~- - -- ---- TWD
*TCY CLK Cycle lime 320 320 250 nis

TDCL CLK HIGH to READ or WRITE LOW Delay 270 270 200 nio TWWS

(Note 4) TI

TDT READ HIGH from CIK HIGH 1.4) 270 270 20 n
Delay Time (Note 4) ___

TCW WRITE HIGH from CLK HIGH i 0020 10 i
TCW Delay Time (Note 4) 202010 n

TOl HREQ Valid ftom CIK HIGH L.63ey Tinto0 tO12 i

TDO2 (Note 5) 250 250 190 no_

TEPS FOP LOW from CLK LOW Setup Time 60 60 45 niS

TEPW EOP Pulbe Width 300 300 225 no

TFAAO ADR Float to Aclive Delay from CLK HIG 250 250 190 -no

TFAC READ or WWI Active from CIK HIGH 200 200 150 nis

TFADB DS Float to Active Delay from CLK HIGH 300 -___ 300 225 'is

THS HACK valid to CLK HIGH Setup Time 100 100 75 'is

TION Input Data from MMAR HIGH Hold Time 0 0 0 no m

TIDS Input Data to MEMA HIGH Setup Time 250 250 190 n

TODH Output Data from MEMW HIGH Hold Time 200 20o) 200 "___ a

TODV Output Data Valid to MEMW HIGH (Note 13) 200 200 125 'iS

VTOS DREG to CLK LOW (S1. S4) Setup T. a2012 90 na

TRH CLK to READY LOW Hold Time 20 20 20 noe

TRS READY to CLK LOW Setup ime 1D0 100 60 'ii

TSTL ADSTB HIGH from CLK HIGH Delay Time 200 1200 150 'is

TSTT ADSTB LOW from CIK HIGH Delay Time ____[10140 110 no

- ~~F-10( W t t



-- . - ' - - - • . . _ _ _ . _ _ ,

Am9517A

SWITCHING CHARACTERISTICS (Cont.)
PROGRAM CONDITION (IDLE CYCLE)

d.. -.'4 (Notes 2.3, 10. 11 and 12)

Max Unit Am9517A Am9517A-1 Am9517A-4

225 ni Parameter Description Min. Max. Min. Max. Min. Max. Unit
-- Io nl TAR AD Valid or CS LOW to EAD LOW 50 50 .50 s

120 n TAW ADR Valid to WRI'iE HIGH Setup Time 200 200 150 i ns

120 nl TCW Dt LOW to WRITE HIGH Setup Time 200 200 150 ns

0 TW Data Valid to WITE HIGH Setup Time 200 200 150-190 a . . ... ... _o -l - -

n "TRA ADR or CS Hold from READ HIGH 0 0 0 ns

TROE Data Access from READ LOW JNote 8) 300 200 - 200 ns

220IF TTDO Float De lay from READ HIGH 20 1... 20 100 10 100

220 ns TRS Power Supply HIGH to RESET LOW _w_5w_500 AS7StpTime I

TRSTS RESET to First IuWR 2 2 2 ICY. . .. . . . . . ... . . ... ..0- no I-- - -__. . . . -2
9 TRSTW RESET Pulse Width 300 300 31

I nn TRW HEAD Width . .300 300 . 250 ns

TWA ADR fiom WRITE HIGH Hold Tin-e 20 020 20ns

TWC CS HIGH (rom WllIE HIGH Mold rine 20 20 20
nsi

TWO Date from WRITE HIGH Hold Time 30 30 30 n

TWWS Write Width 200 ... 200 2 . ,n20
200 ns TAD Date Access from ADR Valid, CS LOW 350 300 300 nsJ

210 na
SWITCHING WAVEFORMS

120 no

no

150 no A-A3 IN-,lll VALID

fl

225 ns -- -.- rwr
TOW -

n,

nio

no Timing Diagram 1. Program Condition Write Timing (Note 9).

nls MOS-036

no

150 lnul .''

110 n

A&A3 AOrr.Ifs MIsr I nI VAr1i

ree--,..-.lo

Tnut -- I -flt . .

Timing Diagram 2. Program Condition Read Cycle (Note 9).
MOS 03 F

F-11 -17

*. .

"....' .'. ' .- . . . *' :" . . ,r ,, : . ." '_ _ . " • , "- "".".".. .".. . . . . . . . . . . . . . . . . . . . . . . . . .' =' " - ':



7' 7 -

(~Am9517A
SWVITCHING WAVEFORMS (Coat.)

CLO

_J 06E 1 s o o a' 8 4 uI

MTACT

AENAE

"T,. - - .-- 
- A?

.''1FAM - TAM

DACK_________ I
AO-AI ~ ~ ~ ~ . 1 AI /fl~VLL

tIj TFC !!A A

~-Oct
0 V 'A

r~t1$WI~J I$DEDNVI - I lIA

Timng Diagram 3. Active Cycle Timliig Diagram. O D

F-1,



. v- -k K~~.. ~ - - b -- - - -1

SWITCHING VVAVErFORP.,s (Glio't.)

CLK

- ~ ~ ~ ~ FA LOT .TH;I ISj ~ AHS I...~

5 *-A? AQfVt0

.Di OW-Dey- ll A'S-~ N 11 OO-r

_ _ F . C oc t ) O ;LL

-n

Timioig Diagrama 4. Memnory-to-Memooy.

CLOC
32 £3 3 Sw S4

TOCAS lUCA---

T L -W 

flCI

j~slI t

ANAL1 TONL 
7 T.;

vcc-L ________.L-L

T9, STW

OUTM

*Timing Diagram 7. Readsetg.Tmn iarm6 Cmrse Timing.L
WOS04 MOS 042

-v-,c TO DV

TOS4--

......................................
L%. ~'J.. .. 2~ ,*

4
-Ck~' T,



Lv -.-

Am9517A

-. APPLICAK1ON INFORMATION
-Figure 6 shows a convenient rne~hod for conl:.guring a DMA significatt eight bits on the Data Bus The contents of the Data

system with ttie Am951 7A Controller and a aicfoprocessor Bus aie then latched into the Arn74LS373 register to complete
system. The Multirnode DIMA Controller issues a Hold Request the I ul 16 bits of the Address Bus The Am74t S373 is a high

Ito the processor wheiiever there is at least erie valid DMA Rc- speed. luw power. 8-bit. 3-state register in a 20-pin package..
quasi irom a penphL-ral device. When the processur rcplies with Alter the Initial transfer takes place, the register is updated only
a Hold Acknowledge signat, the Am951 7A lakes control of the after a carry or burrow is generated in the least significant ad-
Address Bus, the Data Bus and the Conitrol Bus. The address for dres& b-yte. Four DMA channels are provided when one

- athe first transfer operation comes out in two bytes - the least Am9517A ir used.
significant eight bits on the eight Address outputs and the most

GOE I

2 _ _ .

CIPU COCK Q 1 1 t
PIELMMAW .9

armMOS44L

* Figure 6. Basic DMA Configuration.

L-z -



viva.. . . .- - , , ; 
- 

.V " e
. ..y. - . -" - - - . --

.. PHYSICAL DIMENSIONS
-- "..;is Of Ihe Data Dual-In-Line

3 register to complete
Am74LS3

7 3 is a high
in a 20-pin package.

' gisler is updated only
is least significant ad- 40-Pin Plastic

p(ovided when one

2'SVini,. Min- .

A 150 20)

b015 0J20

D 050 1

V10 , 5___. .

040 070

40-Pin Hemetic

Symbol Min. Mae.

A 100 200
b 05 .022

b 03 0 060

Io' __.._____,_;'? + -- +,o_ ++T

-, -- 1960 2040
MO-4 _ 0 E ______ '550_

II .5920 60

00

- --. ~ ] 0 020 160

Metaltz tion-and Pad Layout

4, a. - - - N a

" It - 9

. .. .A . . . . . . .. . . . . . . . . . ...... +ilt..... . . .
o,,.,, . . . . r. - -_2 o, ,

"90, Is)DI SIZF

flwo, Vil 1 L, 111, 0 1914" X 0 210"

• .++F- 15



Amn9517A-1 to Z8C Interface
CIRCUIT DIAGRAMACIRCUTCMAWT

>I~

DO-07 MD7

AE

A919A)A

'/is
.5M OE

gu >0IMC

DESCRIPTION OF INTERFACE: DESCRIPTION'
In this example, the high order Aa-A15 memory a!ddress Is 4MHz Z80A if an additional circuit consisting of two D flip-flops The Arng5I ?A I-latched by an 8-bit Am74LS373 latch, while the 10R, i67M. are used 10 Insert a wait state to the ZBOA duringj t/O read an bOO crOPIOCA.

*MEMR and MEMvW signals are decoded from appropriate Z80 -write operations. holes the hgh 01
outputs. Note that a 4MHz Am9517A-4 could be used with a AD-pefp.

The HREO 6'2%
Am95117A8 a

F-I16

A-1 55,.



Advanced Miciro Devices Ll
S PRELIMINARY INFORMATION Advanced MOS/LSI

DISTINCTIVE CHARACTERISTICS GENERAL DESCRIPTION

IS Five Independent 16-bit counters The Am9513 System) Timing Controlter is an LSI circuit designed
* High speed counting rates to service many types ot counting, sequencing and timing appli-

cations. It provides the capability for programmable frequency
* Updownand inar/BOOcouningsynthesis, high resolution programmable duty cycle wavelorins,

* Internal oscillator frequency source retriggerable digital one-shots, timo-of -day clocking, coirlciduiirwo
* Tapped frequency scaler alarnms, complex pulse generation, high resolution baud iate
* Programmable frequency output generation, Irequency shilt keying, stop-watching timing. event
* 8-bit or 16-bit bus interface count a.ccumulation. waveform analysis anid many niore. A van-

* Tie-olday p~nely of programmable operating miodes and control features allow
the Ain9513 lo be porsonalized fur particular applications as wall

9 Alarm comparatos on counters 1 and 2 as dyinaiically recoiitigured under program control.
Compex uty ycl oututsThe STC includes five general-purpose 16-bit counters. A variety

* Programmable count/gate source selection as iiilt lur individual counters with software selectable active-
* Programmable input and output polarities Wi ur aciive-low input polarity. BJoth hardware and software
* Programmable gating functions galing of each counter is available. Three-state outputs for each
9 Retriggening capability couiinn provide pulses or levels arid can be active-high or ac-

five luw. The counters can be programmed to count up or down in
* *5 vlt poer suply elhei binary or B0CD The host processor may read an accuniu-

* Standard 40 pin package lateil cunt at any lime without disturbing the counting process.
* 1001'e MIL-STO-883 reliability assurance testing Ar,.y u; the counters may be internally concatenated to fornm any

Loflectivo counter length up to 80 bits.

GENERAL BLOCK DIAGRAM
SOURCE 1-6

GATE I-S

*-1------;--IJJ-;:;-OUEN1;----IE COUN ERS9 LOGIC GROUP OUTS .

FOUT SE6CF CO-TE COUNTER 4 LOGIC GROUP OUT4

COMIMAND PDAnA SAiS-COUNTERS3 LOGIC WIOUUP Our,

1 U4 R Y- MD EGISTER COUNTER 2 OICCIIUOT

-~COUNTER 2 LOGIC GiOl UT

AND ~ ~ ~ ~ ~ ~ ~ O ISO.AGSIRG"' "O" OT

W111~OD~1N INFORMATION GRUP U

0Package Temperature Counting Frequency

Type Rang j 7MHz

Molded AM9513PC
Hermetic Side-Brazed Ceiamic O'C ii TA '1' 70-C AM9513DC

Hermetic Cerdip AM9513CC

L Hermetic Side Brazed Ceramic -55'C TA 125'C AM9J513DM7

f'i-jpyiij;ni f1:I 19793 by Advaik 4d 19(1 Dou- w.i ho"

7 - 7.%



The ,AmP5,I blnik 1, C; 'f wyiff'- I nod 2) '-coe tlie lilies3 E 16 113 11 f. it.

lace signals and tife beds~i Ilow Lt ii.tliiia.wi : 'Inat cnil ul LOGIC-o.

lines and ilhe internal data bus have been OiiIni.j. Ilia cuiitiul ".ICII10
and data registers are alt connected to a comnhIui iternal 16 -bit ulilo bait COUNTER -

bus. The externalt bus may be a or 16 bits wide, in [tie 0-bit mode LOGIC [
the internal 16-bit rilorreetion is mull ir,'od to [tie low order data ONtN

bus pins DBO through U137. If i"OEAiS& 1-1 4LDRGTR
An internal oscillator provides aconvenient sourcoul Irequericies 6li OER~b R i-i 440R~EE

too use as count inputs Its oscillating frequericy is controlled by
an external ieactive network such as a crystal. The oscillator
output is divided by the Frequency Scaler to provide several
sub-frequencies Cuie ot tife scaled frequencies (or one of ten is-air GOMARArOURV

* - .input signals) may be selected as ant input to the FOUIT divider
and thein comes out of the chip at tile FOUT interlace pin.

Thre STC is aldfresscd by thea O.Nlurnal systemi d5 l.'vu locations: a 65 BIT At ARM REGIS ItR

* cntrol poil and a J,iia plurt. Thie cor,'-"nt pirt provides direct Iu I()
access ta lte Status anid Cuiiiinand registers. z;- as allowing
the user to update the D.Alr PointrrestrTen jji ud Counter Logic Groups 1 and 2.
to communicate vti all ulliar addressable iriteriia: iocations. I ho
Data Pointer corrlrols life Uata pujit addressing.

Among the registers accessible throuqh the rn4D dI1 p01 are the0
Master Mode rur and live one for sfc4
each counter I ic Master Mode registe r curiliuls the pro- iAr iN"UT Is ll IUAU AkGiSI&M

grammable options that aie nut controlled by thu Counter Mode NiEU - iiLOUr

registers. TONh-I - -OUr

* ~Each of the live general purpose counters is 16 bits long an~d is 1o6uL - I-0il LOUNTER

independently controlled by its Counter Mode register. Through oOui
this register, a user can sottware select one of 16 sources as the
courter input, a variety of galig arid repetitiort modes, op or

- down1 counting in binary or 8CD arid active-high or active-low G~;MODE REGI!iE. 1S-8iT HOLD NEUISIER)

input and output polarities. '''

~r. Associated with each counter is a Load rogislur and a Hold
register, both accessible thtough thea data port. The Load register Counter Logic Groups 3, 4, and 5.
is used to automatically reload tri counter to any peoie
value, thus controlling ;Its effective period. The 1-lid register is
used ito save count values without disturbing the count process, Figure 2.
permitting the host processor to read intermedicite counts. In ______ ___

addition, the H-old register may be used as a second Load register CNETO IGA
to generate a nuintier o; complex output waveforms. CNETO IGA

All live counters have the same basic control logic and control
registers. ~ ~ ~ ~ ~ ~ ~ i ConesIan ivaduIaair eitesadhy vuC - r 0i 40 OU -03
regist0ers2 Contr If an 24 h-ve -dii~~d GAI egser ndJ

comparators associated with them, plus the extra lugic necessary OUT 2 t 2 35 GA1- 2 0

for operating in a 24 -hour time-of -day miode. Fur real-time opera- GATE 1---{ 4 37 ou 5 e
lion the limo-el-day logic will accept 50Hz, 601 tz or 100Hz input X -1 5 36 A- GATE 3

frequencies. 0 - a7--GT
rOM r 34 A-- GATES6

Each general counit has a singlei dedicated 0011)t01 pin. II may be C;Q ToL- 33 -- SOU1RUSI
Wil -f 32 1- SOU"CE 2

turned off when tlie output is not of interest or ma~y be configuired U, '----- ) ArtI9513 if -- SOURLEF 3

in a variety of ways to diive interrupt controllers, Uailington biut- flu 11- isau7] BuOCE 4

lens, bus drivers. etc The counlt inputs, on tife ullier hanfd, are Dlii u. 4 v J- sOUumiES

specificalty not dedicated to any given interface line. Considera- Vila 14 U8 104 -D'

ble versatility is available fur cortguning boit tile riiput and thre t,-. I If s 26 . U143

*gating oh Individual counters. This not only permits dynamic teas- Lim IS tis- 0 i12.GAVE SA

srgrnent of inputs under software control, but also allows multi- DU1 - -t i 44 111 D-U-ATE 4A

pIe counters to use a single input, and allows a srnl4 gate pin to -t1, 2.1 D01i.0AE 3A

control mlore than one counter GATE IAJiRA 1 f20 24 1 D 5 IGois UD

I0up View

P'in I is in,-irked or uiiiludlion UrIs i 7.

Figure 3.

N1. i



; CC!P IO~N V.1 l-i d1 n ainq IIo Hsu bit ddtad Uu', onvivo i',t

* VCC: QpIt ~ors~iy. olil;iy be used as additin :
',~. .A U14K~hl It key ShoUld bt) luMid fI jItlI. V iik! I10 lkUOI-.v. a

VSS: Ground Aj~ ,. Jl..ia Will disabloU 1110 actIon of the Yale Input CUIoiitilly

X1,X2 (Crystal, Inputs) counuter N. 01313. 0D314 arid 01315 sh uuld be tied high fur an b-bit

data bus width.
* . -. . ~ XI and X2 are the connections fur an exteinal crystal that deter-

mines the frequency of tie internal oscillator. An RO or LC net- C l SecIpt
work may also be used instoad of a crystal. Fur driving from an The active-tow Chip Select input enables Read and Write opera-
external frequency soutueLO. I should be left open anid X2 should tians on ',ie data bus. Sea Figure 4.

- . ~~~be driven with a TTL-level square wave. (eaIu)

FOUT (Frequency Out, Output) The active-tow Rfead signal is conditioned by Cnip Select arid
The FOUT output is derived from a 4-bit counter that may be indicates that internal information is to be transferred to the data
programmed to divide its input by any integer value from I to 16. bus VVItI arid HI) bliould be mutually exclusive
inclusive. The input to tie counter is setected from any of 15 (Wie Ipt
sources. including the scaled internat frequencies. FOUT may be R(rtIp)
gated rin and off uiider sotlware cor~trot. Folluwing power-up or The activutIow Wiite signal is conditioned by Chip Select arid
reset, FOUT provides a frequency that is luG that of the internat indicates that data bus information is to be transferred to an
oscillator, internal locatiun. WH and RD should be mrutually exclusive,

GATEI-GATE5 (Gate, Inputs) C/D (Conitrol/Data, Input)

The Gate inputs provide hardware controt Lif the Counting Opera- The Coritiolata signal selects souice and destination locations
lions of individual cuters by determining wi o countiiig may for read aiid wiite operatiuiis oii[the data bus. Control Write
proceed. The sameo input imay control up to thiree counters. Gates nipeiiiiii iis toad the Cuommasiavid tegislfr arid [the Data Poirfitel.
may also be selected as count souices for any (Af the counters or Control rlead operatiorns output the Status register Da~ta Read
fur the I-OUT divider. The active polarity for a selected Gate input and Uata Write tirarislers communicat With alt other internal
is programmable a~t eacti counter. SLlimilt-tIsiggur circuitry on the rIstr
GATE inputs allows slow transition times to be used.

* SRCI-SRC5 (Source, Inputs)

The Source inputIs piovide external signals that rmay be counted
by any of Ithecounters Any Souice tine may be iouted to any or all

* - K of the counters arid the FOUT divider. Tire active polarity for a
* q selected Source input is prugrarrirnud at each counter. Any

source wavelorTi duty cycle will be accepted as long as lihe C.liaainData Bus
minimum pulse width is at least halfthle period of the mainir -- S .-c RD Operation
specified countinj f requency for the part. Schmitt-ingger ciuir CSCDI W

* .on the SRC inpull allows slow transition timeis to tie used. Transfer contents of register addressed
*~~~~~ U 0 1UOT Cute upta by Data Pointer to the data bus.

Transfer corntents of data bus to data* ~~~~Each of the live counters has a dedicated output pin. Depending 0 u t 0 eitradesdb aaPitr
on the output configuration, the OUT signal iiay be a pulse, a -eise adrese by_ Dat Po
square wave, or a complex duty cycle wavefuo. For counters 1Irnfrcnet fSau eitrt
and 2, the OUT signal may also indicate the status oh comparator 0 I 0 1 datanse bus. s fSatsrgitrt

circuits. Output polarities may be individually programnmed..trnfrctesofdabuirt

DBO-D87, D88-DO 15 (Data Bus, Input/Output) 0 1 1 Command register.___

GATE 1A-GATEr,.A (Auxiliary Gatos, Input) Norrst.
The Data Bus lines are used to commuitcate with the external - - - ------

system. After power-up or r.set, the data bus will be configured 1 X X X No transfer
for 8-bit width. It may be reconfigured for 16 bit width by changing X X 13 0 Illegal Condition
a contiol bit in the Masfor IVk. r'W. Figure 4 summarizes altl
data bus transfers. Figure 4. Data Bus Transfers.

G-



* ,, ~. '\. um../\. m,.AND) SAVL ii ~lim
(X~~~~ua~~~~,md~- viiiw..u~,~...,o(ar in, are pruvmded to sie~, iii -.... ,

ThIre 8 bit viiite-only Cumirmi idegistem IS. loadid'L ywiiIrig Into (;~lil L, L'lbk LO~li, Set arid lear aIII Outpultoi. isSueL d
Kthe control port as shown in Figure 4. Wit! 1 -o1 dlad bus, It e scifwai ivs-1. clear arnd set spucial bits in time Masdblti Mode

lw-order 8 bits are loaded ito tire regiSlur. the Iijili-uridr byte rugIStr,. l0-am time Ddta Pi'Unter regl iUr
shul be FF (hex). Data Pultafk.. Regtater
The Command register provides direct control over each of (tie The -bi mat:i Powrier r-%gmstei is loaded by issuing the ap~propll-
live general counters arid controls access througli trie data pornt ate caniri iii di luigir 1,.t) con trot port to Itio Cirnimn drug: ster.
by allowing the user to update ;tie Data Poiei rimg.sler A suili- As showni -i I -orCa 6. ibm. Data Pointer register toiisjits of a byte
mnary of alt commands appears in Figure 5. Six of the cormmanrd Pointer, am. L iumil'Pullmter, anida Giroup Pointer Thecoiturolt
types are usedfr direct sotwarecontrol ofthe coun,iiqprocess ' the Data oituj-ur is usedi as an address to point to air iritumnat
Each of these six comrmands conlmiis a live bit S h~old. In a rosu.v aieitris addressod by the Dita Pointeur, itiimay
luiir-setfatshion. eacht i filtme S field correspuiids to ore of be a~ces,.euJ Omriuuglr tme data perl.
the five general counters (St -~ Counter 1. S2 C ouiiir 2, etc.).
When an S it is a one. the specrllod operation is pertoireod on The1 BYte I"m'i;Ur bit In thi Data Pointer register indicates; which
the counter so dosignatud; wvher an S bit Isa azci. ;,o eperatiair byte Of *t '6 ;ii regis1t is to be trarist erred on the next acces
occurs fort orspsir counter. o-ro~ Li.a pert. Wtiounevvc tho Data Pointer is loaded, the

[3yinPv U I,; i ot to i no, indicatling a loast-signlicirrf Uyte is
Acounlti irust be rainz,d by Orno 01 fthe ARiM ceuiiiirsrids before pcid LIy Kc~pocled bto o5 intur togmjtos following each 8-bit data

couning can corirnui;ci.Onke airnio. llrocounmi.;ljiiOcss may tiranter,6,4 itm, 8-bi dalaibus JAMI 3 0 ). or it always tumfairis
be further enabled or dsdtbed lisurig the liar dw are gating set with Ii;, hI !itl dta bus optioir 1MrM13 11 Alth ough thme
facilies The ARM arid 0ISARMiv oili.mliiiS IpO.1 softWZare) centeirs L, G--~ lemernt arid cirup Poiter in tne Datai I'oirntur

* ~~~~gatirng of the count procczs. i;- somne nodes,.eitrcrrn era ytr rs rcsoteBt ,i o

The LOAD comm"'anld LGUS,3S ItO coas'ter to be reloaded with the ;s avdauiis a bit in tho Status register.
value in either tlie associated Load rogustor or the associated To pcrrnIt;' .: ,, hiul pos:,or to rapidly access time various inrnial
Hold register. It wI oliui be used as a selware rotigger. or as rgses Wj~niljo h aaPitri ivod
counter wiaializamn pr ;u active hardware gaimmy. Seqienci. i:, wirabled tiy leauirng Master Mode bit 14 (IMM 141 to
The DISARM Icommran-d disalles fuithercocc-:. ry n:pendent 1 0 s5iI i iroe1 eerltpsa euecn i vma

0anlyhamdware gating. A disa-rmed countermiay be rlouaded usingj ble dfepim,!t., m( in thco data bus width bung wum and trie irwat
the LOAD comrniand, may tmo inciremtou or decremnented using Data Foiuuio valiae entered by command.
thre STEP command anid may be read usiiig the SAVE command. When El 0io: i 2 0 amid 04, G2, G1 pouint leaCoimirmur Grot,
A count process may bie resumned using an A11M crrirnand. the Data Putmmiiti wilt Iioceed through thme Elernoiit ' /,leI tIm

The SAVE Lommnand iran ster s limo cm1intents 0 a cou ier to its E lemrit I . 4 i . II auto; iiItiC ally 5teqJUerieLUi uiii irOj tfe. V a I.
associated Hold register The tiarisfer takes place vvithout inter- ocs: 00. o2 anld tO sltimg with the Value entered Wmmmrm te

*fering with anty counting that r(nay be order way [hiis mcoinmnd traikSimUriI'm 10 10; to (tmCCLiiS, ifhe GOt fu ieId Will al:, otbe
will oiverwrite arty previos ! told regi stei con tleri ts. Tthe SAVE iricromei t-oii U. ri Nulr m th at tim he eit tielId iiiiim i Side
coinmrand is desiyned to arllow arm .rccuiiulateil coijiit to be lore- not SekjUri-t.( III a vdimmm mII I I I me( (1rommum field mmmm1,0.111Wie, ommlIJ

served so that it cart be noead bthI e I 051 Cl'U at Siole 1,ler tinjw i. Wi lii li t e Foor r illei i i mup ciji"Li

Curnrirnd Code

C I C6 C5 C4 C.) C2I L;t CO Commaild Uoeuctiplior

0 o 0t E2 E I 04 k.2 (it tL~~JLm 0ri CL.' !:' mWn41 '40f Wmitm bi0iiliiiiS oI iii Gm imemd-,

0 U I S5 S 53 S2 - St Iim coriimii hma -.1i1 mrumteit LA1111,iii~

o 0 S5 54 53 u2 St toadd cumteim i s 'i em %(-.mm rit imo ill Lt',it i' mI iuiiO

o i i S5' S4' S3 32 m SI toad ammd Amlm dil .ui-mie0d CumiPimmIS

I
1  0  I0 S5, S4 53 S.i SI Disaimi amid 5-,v ill -ajicted icummiiem-,

I o 1 5" S41 S3) S2 51 Save dii %ieci''mi m~m too hmioli II('Msem

I I , 0 S5 S4~ SI 5 2 SI Dimsari i tmolw'.lemi I"iuitley

1 I ' I N4 N; I i Set output bmi Ni oo mt N miiil

1 I N4 I'M i NI Lear ommpuli .1 1,, ii.m) 1 N- I() I

I U N ' Ni I s I Ip Loum~ I I bint - r 4 i 11

J t 0 i 0 SeIi'.im 1 (Lbr~ I . mm (),,a irti . e w a i

I I I U S tM ' I- o i( i OU.-e I).

Fiqile . 1Iun9!o5V Commandi se'-'iialry.



F.

G4 C2 C 2 E- Uio
r I ft IE i

C',[ Byte Pointer

I = Least signilhcant Byte Translerred next

0 = Most signilicant Byte Transferred next

L Group Pointer Element Pointer

000 - Illegal 0 LoeRose
001 Counter Grpup 1( 00 = Load Register Element Cycle

010 = Counter Group 2 t0 = Hold Register Increment

011 Counter Group 3 11 =- luld Register/Hold Cycle Increment
100 Counter Group 4
101 Counter Group 5 00 Alarm Rogiser 1
110 -: Illegal I C t Cycle

III Control Group 01 Alarm Register 2 IConrol Cycle
oo o10 = Mast r Mode Regisle Increileit

11 Status Register/No Incrernenl
mL

Figure 6. Data Pointer Counter. Uos in

If E I = 1 arid E2 = 1, then only the Group field is sequenced This

Counter I Hold Rrlg. Counter I Mode Reg. is the t;old cycle. It allows the Hold registels to be sequentially
aCcussfd while bypassing the Mode and Load registles. 1 he third
type ul se liencirrg is the Control cycle. If G4.G2.GI 111 and

Coue 2E2.E I ,' 11. the Element Pointer will be incremenled through tieCounter 2 Hold R~eg. Counter 1 Load feg. value.. O0, 01 and I0, with no change to the Group Pointer

Whe,, G , G2,GI = I11 and E2,EI - 11. no incrementing lakes

Couirler 1 Hold Reg. place arid only the Status register will be available through the
dala purl. Nole that the Status register can also always be read

rdeOLIty through the Control port.
C Counter 2 Mode Reg. For all of these auto-sequence modes, if an 8-bit data bus is used.

thIe 13to puinler will toggle after every data transfer to allow the
least arid most signiticant bytes to be transferred before tho

Counter 2 Load Reg. Element or Group Fields are incremented.
Counter 5 Hold Fleg. IStatue Rogister

The 8-bit read-only Status register indicates tIe state of tile Byte
HOLD CYCLE Counter 2 Hold Reg. Pointer bit in the Data Pointer register and the state of the OU I

signal lor each oh the general counters. See Fiyuie 8 The OUT
signals reported are Ihose internal to the chip alter the polarity-
select logic and lust belore tie three-state interlace butler ci-

* cuilry. The Status register is norrially accessed by reading the
control purt (see Figure 4) but may also be road via tihe data por
as part of the Control Group.

I
Counter 5 Hold Reg.

Alarm Reg I
Sni S116 SlI 1 S114 S113 SH2 SH 1 SHO

ELEMENT CYCLE

SAlarm Reg. 2

Master Mode Reg. Status Reg 1 OUT4UT 2 BYTE
POINTE1H

0ut 5 0U1 3 OUTi1
.S CONTROL CYCLE STATUS CYCLE uot. it

Ftlu I. Data PotmW, SaquansMng,. Figure 8. Status fleg,,ter Bit Assignments.
tAOS-t14

c.-5]

% .-- - - - ....

.. . . . . . . . . . . . . . .. .. . . . . . . . . .



DA T a".T "I.:- I. I ',,r' ti1r Iti, -~ cobr . I

Counter Logic Civi1 rriil .~oiplqlodb lg rrd.,r

* i-. ~~s shown in Figure 2, each of the five Counter Lcngir: Groi~ns riiuimaii *., dorlo otingrodSorb hesltae .
consists of a 16-bit geaeral counter with associatod control and ~
output logic, a 16-bit Load tegis'tar. a 16-bil Hold register arid a Th1-ir udwtConrMdeeisrCntlshegtig
16 bit Mode register. In addition. Counter Groups 1 arid 2 als counting, ar rd source rielect functions within each Counter -

include 16-bit Comparatcs arid I 6 bit Alarm registers. Tile corn- Logic Grout, Figure 9 shiows Inc bit assignarorits for the Counter
pardtor/alarm functions are cooiolledqy Mode~'te od regi~los Genetra ly OdCh counter is independently (.unt-

__________ Mister roaegis-
terTh oei:io u te ofe ~ui e~ses hn guod by 44i Louunte Modo register aid dues not depeind onl

_iaine for ait five counters. 1The host CPU has both iead arid write cniuarr ~onarnotieisCunu oi ru
access to) all registers in 1,we Counter Logic Groups through the Counter medo h~ts CMO tliii~ijh GM"' specify the output ,onhful
data port. The counter iftsolt is never directly acces~ird. configuraion.' to OU r pin, rray ho off aind in d t irij ifiipcoaric

The t6-bit readilte Load ruostor is used to r-rntrol the etfective stale, or it iid Lu ott witt , low impirdairco to ground I1 It4Ks
period of the general cou:idu;. Any 1 6-bit value may bo witieri into rerraining cun-irbnilions ow split into active-high and iL;tivvuluw
thea L -.1 rogrsler. ThXI va'uo call than bsi translerrlrd into the versions o, 11- u ,rrok bsiL output wuveorrirs.

counter each tine that Torrrrn.'i,' Count (TC) occurs. Temnl One outlput tirrirl WvWWWOlr i5 Cld 1nrnl±LQiiLi n
Count"-isdolined as that peioduol tiflevithen thu counter c onents represernts Ilic pi ud ii trric t14r1t tie ouner reaChis ann tqiuVa-
would have been zero it an axternal value had not boen itianster- tart valuu of ,uiu~ Figure 10 shows d anrrirui Count putse andr.-.red into the counter. Thus the terminial coirit frequrincy cani be the an example cojiroxitthat grrnr,'atedtI The oC width is deleninned
input frequency divided Lry thea value tii the Load iv' - Ini all by Ilie poiriuo, of lho counlirr1- source. Regardless of any jarlirrg
operating modes thea contents o1 lther Load or Hold will be input, t1re tunriiial LUuir will go active fur only 0ri0 LIocI CYcle.
transteried into the counter when TC occurs. tIn cases whore Figure 10 crinsactrvo-iry source puldrify, counter aiinid.
values are being accumolaied in the counter, the L2-r ritr counter dOLri Ililiftig arid tii external reluad ,alue of K

action can be transp arentl by tilling the Load register wzeros. The courrior -il ai.vay be loaded fronr an eAtenrial locaion when
Thle ItG-birtread/wrie Fluid;ogrsler is dual purpose. 1, can be used TC occurs; fithu sr cal ii hose tire surce, location aid thle
in thea same way as the Load regrster, thrus olfuning an alternate value. If a nor. zurio value is prcked, lte Counter will nevei really
source for moduluo deonitio r l ire couinter. The Hold regrster attain a zero sI,;e aind _IC will indicate [tie counter staie that

4may also be used to stae accumulated counter values loi later would have boein zero, had rio parallel tranrsfer occurred.

Co-unt Source Selccti-in Count Coirut
OXXXX Courit on i Lsinq Edige , xxxx Disable Special Gale
I XXXX ~-Count on$ Falling Fdy IXX i liable Spoi25cl 110
XOOOO TCN I XL X l iukroid hrni Load

qX0001 SRC I XIKX Iteodd tfm .oad or t-i~rl
X0010 SRC 2 j~XXUXX Count Oiiuef
X001 I SR4C3 XX t XX Cunrlt erhrively
XOIUO SRC 4 R xiox' Binary Count
XUtU SIC 5 XXX I CD Cont
x~t lu GATE I XXXX0) Count Down
X01 ItI GATE 2 .XAX)% I Corunt Up~
X 1000 GATE- 3
X1001I GATIF 4
X1010 GArE 5
XIOlt F I
X 1100 =F2
Xl 1101 F3
XIIIO F4
X111t F5

ICM15 CM14 CM13 CM12ICM1ICMt0I 019 C8 M l"; M (M 'M2 ('Mi M

Ge1 lng Control Output Control
00q No Gatrig 000 I hracfrve. Output I ow
001 Active igrh Level TON 1 001 Artrye Iihii Iterinral Count Pise -'

010 Active I-figh Level GATU Ni IOu 0 Actirve ighi lnrgrinr. Drert Ped
Oll Active thrqfr Level GAtE N 1 Al' p------
100 Active I lrr.h Level GI . N IOU0 Irracive, Output I irijh 11rintredarice
101 Active Low Level GATE N tot Active Low Teirmiral Count Pulse
110 Active Itrijgr Fdge GAlIE N " Oi,~~~ ~ ~ ', ~
Ill Actrve Low Edge GATE N c~~

Cr.Qwr.u WiLtLt 'iAe 1 DA Ami.~nmenle. Mob 11 11

G-6



I

COUNT 3 "2i

VALUE

CT
Figure 10. Terminal Count Waveform. ,os %I?

Another output form uses TC to toggle a flip flop to generate an Bit CMG specifies the location used to reload the couler con-
output level Instead of a pulse. Two variations of the toggle tents whein TC occurs When CM6 = 0, the contents of the Load
wavelorms are avaitablo, as shown in Figure 1 1 The one labeled register are transferred into the counter at every TC. When CM6
-Delayed- uses only the TC pu:se to change the ILggle. Since TC - 1. the itluad location may be either the Load or Hold regisler
does not occur until a lull cound elapses following the loading of The reload location in this case may be controlled extemally
the counter, the first tiansition of the toggle is delayed from the using a GA I E pill or may alternate on each TC. Bit CM7 controls
moment of arming. On the other hand, the waveorm labeled the special gating functions that allow retriggenng arid the
*"mmediate" also uses the TC pulse as the toggling source but selectioun of Load arid Hold locations for counter updating. The
adds a toggle transition on the first count following the arming. use aild defilion of CM7 will depend on the status of the Galing
After the initial transition, both Delayed arid Immediate Coihtro N,-id and bits CM5 and CM6. See Figure 12.
wavelorms are the same; for the same output polarity they will be
180 ° out of phase. The trading edge of TC trigger s tie toggle and Coiniri Mode bits CM13 through CM15 specify the hardware
the toggle output is 1/2 tie frequency of TC. gating oplhins. Wheii "no gating" is selected (00O) tfie counter

wl Me i .-ed wimconditionally as long as it is armed For any other
Countei Mode bits 0IG throiryh CM12 specif, tlia source used golin r,,ui .tile coit process is coodiioned by ftie specitied
as input to the counter and the active edge thdt is counted. Bit
CM12 controls the pularily for all (tie sources, logic zero counts i i prieis ater [li specifed aive Gate edge occurs
usOMg edges and logilcone counts alhng edges. BrsCMhrough to t heialli. tie Gate input is ignored and counting continues
CM I 'selecl one of sixteen courag sources to route to the u dd ai o ie or two TC pulses occur or the counter is disarmed.counter input. Five ul the available inputs are internal frequencies Otiei c,,cs iii tie qihng field select either active-high or ac-
derived from the internal oscillator (see Figure 15 tor trequency Oie-v,' h Ivia gating fhom a particular GATE pin, or from fe TC

assignments) Ten of the available inputs are ii iterface pins;, live sgial of lhe adjacent counter. Level gating allows the counter to
are labeled SRC and live are labeled GATE. The sixteenth avail- couta it n ly th ose clock edges that occur while [he gate is active.

, able input is the TC signal from tIle adjacent lower-numbered Io
counter (The Counter 5 T- wraps around to tIle Counter I input). Arrr9 .-ijrrrarizus Ih ie various counting configuraons of the
This option allows internal concatenation that perrnits very long
counts to be accumulated. When TCN I is the source, the count Wiet cdge gating is speciied and the 0M7 bit is cleared,
riples between the connected counters. countinU will be enabled on the first active gate edge after the
Counter Mode hil- CM3 tirough CM7 specify the various op- ARM i;structiun. Counting wit continue until a DISARM instruc-

lions available (or direct control of the counting procers. CM3 lion occ-irs or one or two TC pulses occur. When the counting
and C;.,i4 operate independently ol the others arid control up/ stops oni T, an active GATE edge will allow counting to resume
down ard BCD/binaiy counting. 1"hey may be combined freely if the specified repetition has not occurred. While the counter is
with other control bits to form many types of counting conligura- counting no GATE input edge or level will influence the count
lions. The other three bits interact in complex ways. Bit CM5 sequence. This mode provides a non-retriggerable, edge-
controls the repetition of the count process. When CM5 = 1, triggered, digital one-shot function. When edge gating is
counting will proceed in the speciiied mode unti; the counter is specit.uu at id the CM7 bit is set, counting will begin on the active
u;sarnned or the mode is changed. When CM5 = 0 the count gate edge after the ARM instruction. It the specified repetition
process will proceed only until one full cycle of operation occurs. has not occuired, any active edge of the specified Gale input will
This may occur after one or two TC events. The counter Is then reload tiie counter and at the same time the counter's contents
disarmed automatically. The single or double TC requirement will be lanslerred to the Hold register. In this mode the counter
will depend on the state of other control bits Note that oven it the will stup altor each TC and will resume on tile next active GAI E
counter is automatically disarmed upon a TC. it always counts edge. 1hus the counter perlorms as a roriggerable edge-
the count source edge which generates the trailing TC edge. triggered one shot. II the non-gated niode when the CM7 bit is

ARM

~~~INTERNAL i - -
DFLAIVED

TOGULE

!Figure 11. OtdPr Wiawtloim.u,

G-7

.. ~ -~....2.~............
1
............ .

-7l r .~ .- .- - .-,.7-. ------- ~ -- -7 ---7- - .

J(. f I, (t 0 i ii

ApolioCM 5 • 1 U u

Gale ctwlad, jl .M 5 (.M 13) (0 0 1 1. 0vL i (; OW1 Lf VI-I f IGt-(K I t/ t V,~ i A Iko L , VI IAL

G~onI10 I 01K. l~o d,.i•nA A

C;ounl to 10. urKe. Ilion di(san x U

- *x A- A

Gate input doe% n gale counter inpu xd x' A

Counol Oly d.--V~ aclo gale. b.9l A A A A

Sian Count 0(dOov Vale vjV6 I l IIj

slop cot0-11 P.1 IC x

Stan i l on 00~v 0(1(0 ed11lge and

stop ...n on s 0t 1,A

No h a(0l0I el,,yinlfny A A A A A A A ii A A A x

M.lIoal d (ul00 ItiWI Load isii A A A A A A

on TO

Roload C,wnlo .on v.Ch IC alterning
alokad so elO o Uit t I. Load a(i1J Hold A A A X A A

Transfer Loa.d FleyiJsit ink, Lowlrif (on

eah (Ina V1 di* 1 5LOW. 1(40510, fld IL

(ou~ew,njo O u'e oCI(l n e~iah IC X l'a.

Vale is 111UH1

Oil active Yl"~~ edie lirson counter

Lin acti.3 ya. edgeu~ ,1 i1or counter

counter Won,1 Load ihgke

OieaImy Mode0 N 0 P U It S T U) V W A

ScoLviale (C ?1 A I I -I1 I i I -

HIoadSoluo,,lrlCbl 0 U U 0 0 %

Reea.oC- 0 - 0- 0 1 1 1 U U 11 1

Gate Control01(CM 15 CNIl31 0(0) I ISVFL FDGF 00K) I.VEL E0i14 -.(A) 1 VII I DGF) (xxI ilVII 1(if
(.001,1 to rC once. ll.,, disarm A A

Countl Io TC Iwj it01 disarm A A x

. --

CoT0unt o IC teo Iedly A A A A A

Gae input dos 101 Vale counler in(put A A

Count1 only duJIllU activel gale l6el x A x A

Stan1 count on &love Vale ledgea

.. con I ..

Slarl count oil actilve MllS edg and

slop counl on "Cnd I A A

Nu hadwae (lelogn A x x

Rload0 cosullI from Load Regslter
%

on IC A x x x

Reload ;.Owfli((.wh 0(0C. allC((01l1(g
ieload suo tl loten Load and Hold x x x A

Tranilfe Load Rell into counter ran 00
each TC that gale is LOW, tralnlse Hold A

R sief into COwIl16 on eaco IC tlhal

gale ea 010H I .

On aclive pala edge Ianser coulte r.
into Hold ille told tanraherlled A i A

couner from Load IHoele

On acie gala edge VI ef cout11er

illo Hold ReVgalel ia lhan cared A A A

(+Oi111te fromn Load of(isold Riflerlm I

Note: Operalig modes M and P should rot be used.

Figure 12. Am9513 Operating Modes.

- G-8

Coun to C te~eal<JlyX X X

Galempu 0de no le conle iii~uIX)

CO nlOll d~ll.. Jv a la il. a a a -

S~. ra . a . . a . ale ., eallJ +(

A.... -. . a'op*i*. *.lae.--- e -'1.

* . .- -a1; a~n On a~l~ ..ll .aa. aa a

.aa~ ..llo e :nIT

set. ;he coui: W.s ki lie Iu ii[
I ki ih; riledo, i;,; Cgui .',ii j iiipwul wi: * 10u;h0 i.J ih ..4 MIasu ",lude (IVIM) lcgiLlor I , U i, .

Load cegi.' ; c, '.', ,s Wioidi-d .,: .1 CI . eu i , a ,;,i OtViull(hu, dhal a i nut L iukohIU L jo iHiiimu ,l uu.,'
Terminal Count. 1"l GATE input is syrm.iiiuud -11ithu ctu.-t UuunIoi Mode regibtels. This ini;fudut hequency colliol,
source to eliminate possible race conditions if it changes as the time-ol-day operation, comparator controls, data bus width

*-TC occurs. and data pointor sequencing. Figure 14 shows the bit assign-

When the Am9513 is set to operate with an 8-bit data bus width, ments lor the Master Mode register.

pins D8 through D115 are not used for the data bus and are A 16-bLi scaing counter divides the output of the on-chip os-
available for other functions. Pins D13 through D15 should be cillator inlo four additional sub-frequencies. This provides a
tied high. Pins DB8 through DB12 are used as auxiliary gating total of live interna frequencies that may be routed to any of
inputs, and are labeled GATE IA through GATE5A respectively. the geneial counters and to the FOUT divider. The scaler is
The auxiliary gate pin, GATE NA, Is logically ANDod with the gate lapped every 4 bits and may be programmed by Master Mode
input to Counter N, as shown in Figure 13. The output of the AND bit MMI5 to divide in binary or in BCD. Figure 15 shows the
gate is then used as the gating signal for Counter N. resulting combiiatiuns of frequeuncies that are available.

!- I uCOUNTER MODE
'.. REGISTER

A EN - I GATE

OATEN MUL IILEAER r AND

GAFEN. I COUNTEREGAII ONE

CON .IiOi
GArENIA LOGIC

"* Figure 13. Gatlng Contiol. MOS 179

FOUT Divider FOUT Source

" 0000 Divide by 16 0000 F1
O0O1 - Divide by I 0001 SFIC I

0010 . Divide by 2 0010 SRC2
0011 Divideby3 0011 SHC3
0100 =Divide by 4 0100 SH4C 4

0101 Divide by 5 0101 SIic
0110 "' vidoby6 0110 (,AIF I
0111 Uividoby7 0111 GAl1 2
1000 Divide by 8 1000 AILE 3
1001 - Divide by9 I1001 (A]E4
1010 Divide by 10 1U10 (.A]Eb
1011 Divide by 11 lul I F I

1100 Divide by 12 1100 F2
1101 Uvide by 13 1101 FA
1110 Divide by 14 11U F4
f111 Dividetby 15 lilt -b

IMII4M3MM1I MM1IMM1I MM12% MM8 NIM7 N*.Mi; M'j~! MM'1 MM I MM) MrM: MMO

L FOUT Gate Compare 2 Eitable ---j

0 FOUl Oil 0 I h'Iblef

1 FOUlU I 00 (Low Z to (ND) 1 LtiibludI

Data Bus Width Compare 1 Enable

* 0 0 Ili tu. / U tJi0.,it d t
1 16-131i1us ,, '- 1 Ln~ibled

Data Poinler Control Time-of-Day Mode
0 Enaht) Incremeit 00 101) t aisdtbk!d

"1 • Disa.ble InciciaefnAl O I01) t r1ibied. 5 Ilpul

Scaler Control I0 I(11) i iabiud. b h
0 [iary Division I I I(JtJ I aitlied. 10 liliul

I CD liviioii

Figure 14. Master Mode Register Dit Asiugrnents.

G-9 ...

-.-. a' L.a ~ a.a.l a.a . A

OSC .- SCALE"~

BCD Scsling Sinaty Scaling ~ AE

Frequency MM1s W= 1 ~ t= 0

F2 FI 10 Ft ilb

F Fi 2bb

F5 1FI 10,000 F1 t),i6

Figure 15. Internal oscillator Frequency Scaler. mo e

B its MMO and MM1 of Ilha Master Modo registor :;pacify the 16, inclusive, a,-d is theft passed to the FOUT output bulter.
time-of-day (TOD) opticansi When MMU 0 and M1M1 I 0 the After power-un or res et, the FOU 1 Divider is set to divide by

special logic used to imploinient TOD is disabled a~id counters sixteenl.
1 arnd 2 will operate ina araf;1l the same way as cobrileris 3, Master Mode bil MM12 provides a software gating cd1)dbility
and 5. When MMO =I or MMI 1, aditional counter do- for the FOUT signal. When MM12 1, FOUT is off arid in a
coding and control logic is enabled on counters 1 and 2 which low impedance state Ito ground. Alter power-up or reset,
causes their decades to turn over at the counts that generate FO ae n
appropiriate 24-hour TOD accumulations. Bit MM13 contiols thea niultiplexer at tile data bus intuilace in
Figure 16 shows the counter configu~ations fr 1-O0 opera- order to contigiaie the pail for an 8-bit or 16-bit external bus. Thle
lion. The least significant decade of Countor 1 is used to internal bus is always 16-bits wide. When MM13 - 1, 16-bit data
scale the input frequency in order to output tenti -of-second istiierddrelybwenhenenabuadal16ote

* -eniuds into the next decade. It can be setup to divide by five, external bus lines. In this contiguiation. tlie Byte Pailter bit ill
Wide by six, or divide by ten. Thus thea input frequency for [he Data Pointer register iemains seta a lltimes. When MM13- j)

real-lime clocking can be, respectively, 501-z, 601:. jr 100Hz. 0, 16-bitinternal data is tiarislerred a byte at a litna ito anid frain
Th inb t n Cunor2shoul bihe TC .I kiul ,,[Counter 1 the eight low-order exteinat data bus lines. The Byte Pointer bit

0 for TOD operation, Both crunters should be setup for BOD toggles, with eacia byte ts,%nslev in this mode. When operating
* counting and noglting Th odlgsessol eue O with an 8-bit data bus width, live of the eight high-order data bus

* initialize the clock to the proper tunfe, pins (088 thiucgh 0612) aie available tor use as auxiliamy gate

* Added functions are available in Iflie Counter Logic Groups for inputs.
counters I and 2 (see Figure 2). Each contains a 16-bit Alarm Bit MN114 controls the Data Pointer logic to enable or disable the -

register and a 16 bit Comparator. Bits MM2 and MM3 control automatic secliniricing funictions. When MM14 = . the contents
the Comparators. W~hen a Compar ator is enabled its, Output is of the Data Poiiiler can be changed only directly by entering a
subsituad mr ihea niLalounter oupto ha-'nili omn.Wii M4 0, several types of automatic

OUTI or 0U1Z2 ou. The polarity definition for the Comparator sequencing of Ilia Data Pointer are available. These are de-

output will depend on the active-high or active-low definition scribed in the Data Pointer register section of this document.
as programmed in the appiopriate Counter Mode register. Bt M2 M3adM1 a eidvdal e n ee
Once the compare output is true, it will remain so until the using commands issued to the Command register. In addition

*count changes and the comparison therefore goes false. The they can all be changed by writing directly to Ilhe Master Mode
- - two Comparators can be used individually in miust operating register.

-modes. A special case ocurs when; the time-t-da olion is
invoked arid bot4h Coiorir IW ebld he upoiatuon 0o
(Coia,.arator 2 will then be conditioned by C custlo I s
that a -full 32-bit compaue ust be true in order to cienetale a I

* Master Mode bits M4through MM7 specify thea source input iI
for the FOUT divider. Filleen inputs areavaulable lot selection ta, Maausa

anid they include the live Source pins, the five Gate pins and c15 012 Co14

the five internal frequencies derived fronIlthe oscillator. The
Sth combination of the four control bits (all zeros) is used to curmisae I

-isuie that an active frequency is available at thea input to the
OUT divider following reset. --

Bits MM8 through MM 11 specify the dividing ratio fot the 11"aai i i '82Sb0a

FOUl Divutliei. The FOUl source (selected by Lits MM4
through MM7) is divided by an integer value between t arnd Figuze 16. Tkme-o4-Day Steage Configurathon.

G-10

T-

%

AP LiCA .fT .. orir .ChA- L .J::.vJIu reset is dkiivu .,i t ,

1 h 3 Il 1W 1 ' X 2J -" -, Jni ;.i, V, i . . R C n e h , '. Jr I i. -. : hi O , U :!e ,,:(15 e It p e i i . .i 1 10 th

e :OX 0 lia i T I -, , u a re w v u , c .- a c ir ; .. i i u e 19 5 h eow s , ,DW U I U p l ,S.-

the suggested methods ol connecting di;uienl frequency Following either type of Reset, all flive counters aiae disablud.
Sources to the internal oscillator iripul. 0800 is loaded into each Counter Mode register, and 0000 is

The use of a crystal provides a highly accurate frequency source loaded in tle Master Mode register. This results in eacuh counter

at moderate cost, and accordingly, will usua:ly be the pielerred being configured to count down in binary on the positive-going

method of operation. The Am9513 is designed to use a crystal in a edge of lhe internal F1 frequency source with no repetition or
methd o opraton.gating. Ire Master Mode register is cleared to configure ilia

parallel-resonant mode. The two ceramic capacilors connecting ain g• f hr a t d width, in d o lh e i l
X1 and X2 to ground ensure proper loading on the crystal. The Am9513 fur an B-bit data bus width, binary division of he intemal

a n d c o X 2 ground e an p ro p e oadn e -uin g onth e rystal. T e o scilla to r; FO U T g a te d o n a n d se t to d ivid e F l b y 6 ; tim e -of-d a y
capacitor to X2 may be an adjustable type fyi fine-tuning the node and comparators 1 and 2 disabled; and the Data Pointer
resonant frequency for critical applications. increment enabled.

An RC network provides a very low cost frequency souice but
may exhibit lage frequency variations over recomnrded iReset wl clear the Load and Hold regsters or each counter but

power supply and lemrperalure ranges. Note iiial there is a re-

siStor internal to Ihe Ar19513 in p rallel with any exteinal register.

resistance. The following inilalizaton procedure should be followed on
Counleis I and 2 when Tine-of--Day mode is selected

Initialiation Procsdures
I Set Time-of Day enabled in the Master Mode register and load

The rese . the Air9513 is accomplished in two Counlei Mode registers 1 arid 2.
ways: aooinalicall' duing tower-up and b soltwaie Master 2. I f limeot-Day i- to count up, load 0000 in Load regislers 1 aid
Reset commnaidid. P "_(; r- i r sL g ;Lcircuilry is inernally triggered 2 a :nd execute c inm and FF43 (Load) to load Ifis value itlo
by the rising VCC vilaye when a predeluimid threshold is the cuu;iteis. This step conditions the count circuitry
reached. An internal f;p-Ilop is set by the risiri supply voltage 3. Load iOi desired start iue into the Load registers and oxecule
and controls the reset operaion. The reset hip-1op remains set comni id F :4J agcin +
until cleared by the firsl .c-ive Chip Select inp;;1 A reset nay also 4. For cotoilig up, load Load registers 1 and 2 with 0000
by initiated by the hust p.ocesso(by entering Ihe Master Reset 5. Couiers 1 and 2 may now be armed.

AM9513 (NO A.,.I613 XI- A.013I

~rAL CONNECIION)

i46(pFI

_
AW

JA-L-CRCEIAII

Rin

X25 I5

Figure 19. Driving the Xl and X2 inputs.

.%

...... . .-
I! ; .: ' " " .+ , .--:: -'..: -::t':'. ": '.: : : : ?::" :' : ": : : -: :': ': ..- : ":' " ::::::::: :::::: L":

L

A- ALOG .111Wll Lost, 161is"00
~DEVICES --ata Acquisition Module

K.. FEATURES
Com~plete Data Acquisition System
12 Bit Digital Output

* 16 Single or 8 Difierential Analog Inputs
Hiji;, Throughput Rats
Selectable Analog Input R..jes
Versatile Input/Output/Control Format .* b
Low 3 Watt Power Dissipation
Small 3" x 4.6" x 0.375" Module

GENERAL DESCRIPTION Ulie l)ASI 128 is a high per ifrimjie dcvii-, which can digitize
The DASI 128 is a c-niplete self-contained nuiniatule IIL", an andj %I si;,j ti(,. .. acic of + ISli out of 12 bits. rela-

*speed data acquisition system. The compact 3 1 x 4_6" x (0.375" tive to fuill -- le It ha s ±8ppmi/"(. gain inficrature coefficient,

module provides the decsir with an easily impleii-int ! - lu- and tlte in itiiim thdiii put ratecatn he varied from 50,000
tion to the data acquisition problern. It contains an analog iii- corner iisettsjid for a 12 hit conveiiion from different
put signal multiplexer, a sam; !e-and-hold amplifier. !,it analog. iiinnel'. ?00,000 conveisionislscnnd for a

'> A/D converter, and all of the progrAmming, tiniing and cowirol su(ccss.vc 4 mt conversion niadc on a single channel.

* circuitry needed to pciform the complete data acquisition
function. jI i

Figue .4uc a I[oc Jiga
informtion urnised byAnalo Deicis beiee to be acurt Rot nutra.ak1.. o ;NrooMu 26

an rlibl. owve, o esonibtyIis asue by Anlo Deie Te:6739-70T 703467
fo is se nr o ay nfinemns f atnt o ohr igtsofthr

parties~ ~ ~ ~ ~ whcjajeutfo t s. olcnei rtt~ yipl etCatMdWs ea

tin roeie uneer n pesnit rptihs sedb Analng Devices. Te:21/29-78384300 214/2710/3 947

S PrLE,. i'C-i" IIufl (typical @ 4250C -il -15V unless uthciwis ',voted)

ANALOG INPUlS lt.IAI. I titi., Sin
Number of inputs to Multiplexer 16 StiglI Fidte. 8 I rue Dlte....l. c:ipalihiv Stla', ,l il , 5

16 Pseudo D,(feregltal unh .lads I

Input Voltage (Full Scale Range) -llV to il0V, it%, Ito t ilIV. -5% to Palall ()utput IIIl. ItI hi..gh Il.'

.111l 24V. 0V\ to 10|i 24V,' -5 IZV iqtl,el hl \. +1 , it "*II' t' t i

tIt5 IV. or OiV to *5 125' tin 5- ile l

Masimum Input Voltage '4iSV MLUX Addrts I0 plrIls NlIile."lt. .1.1.1. .'itt% - *' lug

Input Current (per channel) 5nA iax I A. 8, 4. 2. I poti 11414 . .hitr1- 1nI l I 'd c

Input Impedance >I il tItitis 191 hr1-ul. 2 2 I 1

Input Capacitance iipF fit "O .i. tlF ati i I)FLAY OUI l.(l tl i 2.1) N g p eliti/li .hiill',f

I F |(p 1,fr iIN" chantel I *iiiig P,ii

Input Iault Current (power itf(or %10 f i l1 . t f

MUX failure? lnernallyv bolted to 2iiiiA 211/sn .1ill SI Ii) i ,,I+* I

Direct ADC Input Impedance I iikZ (or each input line ,lali I ,

A(:CURACY' "Ill ~.- w,. h t, h

Resolution 12 Bits il F,(' II

E rro r R elative to F S 4 , .S I) FO C (Pin 2 7 11) I i I i I '1. I I l i, hi 5 \ I

*juantitat ion Error _ "I.1SB Iititisj ,

Differential Noninearity Error ADJUSYMENIS & I RIMIS1

00 3 MIle throughput rate "iA S I, I LSi ax fIset Adjust
(5S kIiz thiroughput rate +IISB Internal .\iltiiill . I 'I t't.lls

Norse Error -f I.SBI At'idl~l j l|i "NH Imn

-IS nt I-S Firit letee SUices" Ienttle Ixelhl AIIdUni lllt-llI

sine ChAniel I tans I iSII Illi 161 I 10 n,1i• nit

TEMP. COEFIICIEN IS Range Ailnnt

Gain 8ppt/C, 20ppiioC inax inertial Adjiust.i I 1 xtnalls

Offset pptltf(:. I Spplit/"C max Ac-cessibile) 4 Jii S's (nou)

Differential Nonlinearity 2.Spptn/'C, bppin/
1

C niax Reiite I"sn i * 4 A llnt iiiei
(Pill 1610 - ItLH.% , Im ,

SIGNAL DYNAMICS Ciock 'I rito WP 2.11)

lirugliput Kate (12 Bits) 51 11. (max) Iah.-iiv Seting eit 2.,lt "tI0 NI I SP ./Itt%

(includes 5Ms (ir MU
X

anil SI IA Fxiertl Adl.it...it l.. I ige I 2Tps'l).i i,, 2 tlnJp, Iii
settling tile pIlls I J (or A51() DIelay I Itm (Pi ,'It1

MUX Cronslalk ("OFF" cliannels • S (

to "(iN" channel) >80,1B d,.n i. lk Factrs Set t tI ,l2

Differential Aiplilier C)M BR 71dB t1 l iIII I'N I Ito 2iia1

SIIA Ac ulislton Time to 0.01% Ixtetal Adjstottit RIi4. lips 1t,.x 20p

SUIA Aperture Uncertainty l/ts CONTIROILS

SIIA Feedthrouglt 711dB down ti k IIIn SIII R I (+I . ll 2. .. t) til ,i t ll i I' (I,,It

DIGITAL INPUT SIGNALS
... it.i

...f .. %IUI(I ... I It, ho,
C o ipatib ili ty S tand aid i i L /IT L log ic levels. C h ali ll Stlec t . "I ,- d,. h q , m ol o i .t

I unit load/line . sequential niggard Pin

MUX Address Inputs (8.4.2. 1; Positive true natural binary coding A ret t aiPe

Pins I9B through 228) selects channel for randomti addiess- A) (:iltve sioni/ililaiinvl Stcci Ni I l I t i l httiel tettiats

ing mode. Must te stable for siqueo cs s 'i'(v, I lit i ig i
,

, 1) c-lcl ll-l I

I (tOns after SI Ro.BiE.
MUX ENABLE III (Pin 18T) Iligit (tigic "I") input enables MUX ;tuil Iii'tili+ litni Ilhi111el sit ted

"Ill" output Ifor inputs U tlhrollgh 7) illIt

MUX ENABLE LO (Pin 17B) Iligh (Logic "1") input enables MUX
".0" output (for inputs 8 tliotugh Range Select eli2 I I llhteiiiial Aillhller gain t.n;Ii

15) .irrt' I I,. A\NA R I N IP~l 21 1| I

STR=W (Pin 244 or 25T) Negative going transition I L.llt "I" X I g ionl-I t AMP' lit) (i'm

to Logic "0"i updates MUX address 131t) Ill. X2 gi I l .t.ll is

register. M'I' iMr I most hte a logic BINARY in W,., , It liiiii pr,1 I-il i.
"I" to enable MTT"1. SYR.flI0 lIlNRY S(Ai.I 1l'11 1511) Ct-t to lIt) AliJ (0i 91.7t,

2 m ust he at Logic "I " to cnalie set relct 'e l Ite I . I l2l. l V -I ,i

5111 . tol is useid Ill h 'le'ltctill prt

DAD ENABlU E PMin 248) Iligh (Logic "I") input allows next ediurt. nec I h"li .

STRI F contmand to sequentially O Ut I PIU' I (:)tIOOi . i 1711 Ground hir Is olnlilc -ne l .utti

advantce M UX address registe. cid e i to - I 5V dc I- he r

Low (Logic "0") input allows next available ,d,,

ST OU l comund to update MUX POWER IRE(IIII:N Is

address register accord ing to exter- 15V !3% li'ili \ 5. |{1%A I(i

nal address inputs. I 5V
+

3% 7i iA. 1 1i1.1A i.. IA

C"rWINA=tt (Pin 25B) Los, (Logic "0") input allows text .5%, 5% 250oiA, 5(lt.A mas

S9i ! coninratid to reset MUX Poster Supply SermsitI st) I

address to channel "0" overidiiig (.ain 2 2 4h1\/V

r"JAfl'rN AMr Offset 14 IitVf'

TRIGGER (Pin 26T) Positive going transitiln (Logic "U" Ref l1i 5i'iV/'

to Logic "I") initiates A/D coner- ENVIRONMENT & PiIYSitAI.

sion (even during conversion); operattig elipelalknt eit t 70"CT MlF (Pin 27T) niust be atT1Mstorage lenlpelwUR 25^((,, .9%(

Logic "0" to allow TRIGGER Rtaive lluten e 2 I -, 8 (,ng

function. +Iteltn eIi g (ill 5 I 1,
TRlrrlT(pin 27T) Negative going transitiln (Logic "I" lectrical th'litg lt I & I- ,I nles Ii 5cr Il in ne'

t o L og c " 0) in itiates A /I) cv.. -.. tI ',l t , , i) I - d I . lh I " 4 4 11 "

sion; Pin 261 iTRIGGER) itust he

at Lotgic "I"to allow iRIUGlER
function. P I(1(" $2115 4 I I Ut, I1llli let ittlil1g

*w a r up l ln " I t l l i-sicur y is 5 m nute
fg h ;l l ig h t -i lti. + til

4e sl- m.s appi1s tInry when rkin# liv sim -15V mupplis ir -11, --l lot
slowly oneunnll variction% in power supply venles

S %petllchons wltert to clange without niltie

11-2

69

THEORY OF OPERATION fur all sensoi s. III cach ti these input schemes, it shtould Ie
A block diagram of the DAS 1128 is shown in Figure 1. Analog toted that I lit' i iultililexer lis hen designed to poicci

-.. input signals are applied to the various inputs of the 16 channel itself and sigial sources iroin both overvoltagi ladurc aid Iroill
-. CMOS multiplexer. This multiplexer in conjunctiorn with the fault curreis due to pnter -ofl lrading Ii, MUX lailurc.

differential amplifier that follows it, can be configured by the
user to accept 16 single ended analog inputs, or 8 fully differ-
ential analog inputs. It can also be connected as a 16 channel I
"pseudo-differential" input device, which pernits sonic of the -.,-- ',

benefits of differential operation while maintaining a 16 chan- - 2.: / I

nel input capability.

The differential buffer amplifier is gain programmable by tle :"
user via jumpers at the module pins. This feature, along with
the selectable reference voltages, permits the user to set up tire
DAS 1128 to operate on any of 8 input voltage ranges. The
differential amplifier drives a saiiple-and-hold amplifier, whose .
function it is to hold tile selected analog input signal at a con- .o .

stant level while the AID converter is making a conversion.

The All) converter is a high speed 12 bit successive approxima- : :. - r

tion device that has been designed using the Analog Devices' 7 .

AD562, 12 bit integrated circuit D/A. The reference voltage - . . ,.

for the conversion is supplied by an adjustable precision refer-
ence circuit that has a temperature coefficient of 5ppni/0 C.

In addition to these basic functional blocks, the DAS 1128 also Figure 3. Srjloat Irput Connections for Three Different

contains all of the clock circuitry necessary to perfoili the Conf/guraro/us

- complete data acquisitioin function. The internal clock can be
externally adjusted to provide various throughput rates at diff- Full scale range of the IAS 1128 may he set by appropriate
erent accuracies. Input channel addressing logic is piovided, as junper comnect ions for 8 different ranges: 0 to + I0V; 0 to

-. , is the capability to short cycle the A/) converter (i.e. perform +V; r to 10_4%; ti to t 5.12V ; -re to 10V; -5 to +5V.';
conversions of less than 12 bits resolution). It is also possi-le - i.24 to 4 1 .24V I; -5.1 2 ' -t +5.12V.
for the user to adjust the time interval between input channel
selection and the commencement of a conversion. The user can Note that 10.24 and 5.12 ranges are comnonly used since con-

thus trade off speed vs. accuracy iin the settling time of tile version inc ieinerts Ircconic 5nie /llit, 2.5ru\'/bit. and I.25nrV/

multiplexer and sample-and hold amplifier, as well as speed bit.
versus accuracy of the A/D converter.

MUX AND S/il IYNAMICS - (VIERIP.I' M IDE
'The overlap niode is defined as tIre ability of MUX to accept

mrn~an- I- O&,MiN -u a new chainlc' address thereby selecting the next channel to be
DUE AOOUTS - 1n sampled while the previoujsly acquired sample is being held b

(TRIG!- n -- ___ _til___- tre S/Il for c',inversion. li dVllaina ic chatacteristics of ile
S._ , . S/Il circuit arc shor iill Igure 4. Maxlrnom throughput rates

B) .----__--_ - are obtainalle when a single chaliel is held at a single address

SIX-... . . n _-7 . . . and tire h:rim cl is sanplicd repeatedly. In a dynamic condition,
*-' DIFF AMP OU data-throughpur rates oIt,,inahlc are shown in Figure 5.

S & H OUT SAMPI riot t)YNAMICS
-Fa

Pro 'Z; N I rIrA(KIN,;

Figure 2. Simplified Timing Diagram, Showing Titne-Interval ANALOG

Assignments and Constants ,t4ui i " li .. MAYII I " 1?'.

PRFViOUS 1 H ---
INPUT CONNECTIONS ANATOG ACO.nii I I .N1 .-MINIM-UM tiMF

INPUT ,.- iNPO-. I I MA(iMIIM iM IN I" r... ..

As shown in Figure 3, three input configurations canl be used. I I I -AII 1'rrurANrs

16 single-ended inputs (3a) can be connected to the multiplex- -or1 I A XII,,,MAI,

er, all referenced to analog gnd. In the second configuration - - i - I - ..

(3b), the inputs are connected individually as 8 true differen- sOh.i r A(UII v ItLO

tial pairs. In this case the differential amplifier is cunnected COMMAND

"Differentially" with the output of the MUX. Finially, a
"Quasi-Differential" connection (3c) call be realized under rrnof,, riii},

favorable ground path conditions. In this configuration the
differential amplifier Lo terminal is used as tine ground return Figure 4. Samnple-Hold Pararoeters Dehnfed arid Specified

11-3

I. .&.- .i+ + i-l -7i 'Xti C+ P A . K Xe A" . .9.it j ++ ,m - ' . -.....-

SHORT CYCLE GRt!.." '.":CO(NSIDERATIONS
It is possible to short cycle the DAC 1128. i.e.. stop the conver- Attel,,.. . .. lie given to the methods of connec,-'i f ,I

- sion after less than 12 bits. 1his can be done by connectiing ali clkr,, ia,..., aild voltage reference points Anahug return
external jumper between short cycle terminal and one of thle (ANA itI NJ and digital return (DIG WIN) arc provided. The
output terminals. With shorter cycles the attainable through- following rules should be applied when integrating the DAS 1128 "

It ate increases, see Figure 5. In short cycle operation the into the system.
willdecrease proportionately to the number of bits 1. If the ± 15V power supply is floating (for optimum analog

selected. Note the short cycle terminal must be grounded for accuracy). connect its return to ANA RIN (Pin 2H or 2T)_

full 12-bit operation. If the ±15V power supply is not floating, connect its return

to DIG l.1N (i!in 351 or 3511).
2W-, _, - 2. Connect the +5V supply return to DIG RTN (Pin 35T or

SINGLE CHANNEL 3513). If this supply also powers additional equipment. run
176 /!-NONSLEW LIMITED INPUT separate, paiallel returns to the equipment ground and to

DIG RTN Pin 351' or 35B).

_ 10! - 3. To minimize signal grounding problems, single-ended input

signals should only be returned to A~NA WIN (Pinl 213 or
Z lt5 21). If this is not possible, then connect the input signals* I OVERLAP NONOVEt-LAP. in either the "true differential" or "pseudo-differential"

-. I RANDOM OR SEQUEN hAL

5 10 ADRES cofiguatins seeFigure 3).
4. Connect computer ground to DIG RTN (Pin 351 or 35B1).

75 Use heavy wire or ground planes.

-So 5. The conputer chassis should be connected to the computer
50 .lI - and povver supply grounds at oiily one point.

25 tlLSBDIFFERENTIAL LINEARITy 6. Coniicet the third wire ground froii niain ac power input

to the coliptt('i power supply returl.

12 10 8 6 4 2

RESOLUTION -Bits GAIN AND OFFSIT ADJ USTMENS

Figure 5. DAS1128 Throughput Rates The DASh 128 is calibrated with external gain and offset adjust-

ment potenitineters connected as shown in Figure 7 and 8.
MUX ADDRESSING TiT. offsCt atdjusttnent potentiometer has an adjustment range
External terminals have been provided for the address counter. of at least ;0.SIfVs, and the gain range adjustment potentio-
Thus the address counter can be configured to produce the meter has an adjustmnent range of at least ± 10LSBs.
following modes: Continuous sequential scanning (free run- Offset calibiation is not affected by changes in gain calibration,ning), sequential scanning with external step command, abbre- and should therefore be performed prior to gain calibration.

viated scan continuously, random channel selection. See Figure Proper gail and offset calibration requires great care and the

6and set up procedure for details.] use of exte,,ely sensitive and accurate reference instruments.
The voliage standard used as a signal source must be very stable.

MUX SAN CONROL CONNECTIONS I shouI be capable of being set to within ±I/IOLSB of the
EXT -- C OD[24T OR 25TI desired value at any point within its range.
DIG COMMAND

These adjustmients are not made with zero and full scale input
DAS1128 signals, and it may be helpful to understand why. An AID con-

NAND GATE verter will pioduce a given digital word output for a small
1T MIL ADDRESS 4 - range of input signals, the nominal width of the range beingZ0T MUX ADDRESS 4

2T U ARSS 2 "- one LSB. If the input test signal is set to a value which should22T MUX ADDRESS I
cause the converter to be on the verge of switching between
two adjacent digital outputs, the unit can be calibrated so that

*.LAST MUX ADDRESS

- . CHASNE 8 4AD D IG.ERSS it does switch at just that poinit. With a highl speed convert

X*if iiX A X ifh thsbENDsISAsousEn comnmand rate and a visual display, these adjustments can beCHANNEL ONEC

if iX BA X 2 CONNECTII. RSlSlG1S 1 L5A1Ti performed in a very accurate and sensitive way. Analog Dcvices
4 X X X X INGPREFERENCE OA Analog-Digital Conversion Notes gives more detailed informa-if Cg X A X CLEARING

x C C x tion on testiog and calibrating A/D converters.IX C B A IX NOTE FOR INITIAL CHANNEL o
B C if X i M. CONNECI GATE OplPrI io

C x IT A X tOAD END 124R) AND CODE
10 C i : X i CHANNEL IN@. 4,2, TO
I I C B A X ADrRESSM HOWEVER
12 B C X X X THIS PRECI UDES RANDOM
13 8 C X A X ADDRESSING
14 A C a X X OFFSET CALIBRATION

For unipolai 4 t)V operation set the input voltage precisely to
S XROCONNECTIDN -40.0012V and adjust the offset potentiometer until the con-

Figure 6. To shorten scanning sequency of multiplexer chan- verter is just oii the verge of switching from 000000000000 to

nels, make the appropriate connections, (as shown in the chart) 0000000000 1.

between an external NAND gate and MUX ADDRESS terminals For ±5V bipolar operation set the input voltage precisely to
19T to 21T -4.9988V; for ± IOV units set it to -9.9976V. Adjust the offset

11-4

potentiometer, Figure 7, un:' Offset Binary codet unit., are CLOCK RAFE ADJ US IMEN I
just on the verge of switching frun 0O000000000 to The clock r.tc may be adjusted tor best tonverson limc/ac,'u-
00-0O0O00001 and Two's Complemeat coded units are just racy trade oll. The eonvcision Innie is varicd bY ni c ,1 ofh

on the verge of switching 1000000U000 to 100000O 0001. external circutr\ir shown in Iiguic 9. Ani open CI.K TRIM
INT. OFEterminal (Pil 2o15) results in 1.25ps/bit i ontinal coinvrlsion
NT. OFFSET ADJUSTMENT tine. A grontded CI.K ll RIM teruinal (tol highest acUturacy)

: INCRFASE results in 2.0t ps/ltt contcision.OFFSET

// EXT. 201, f14 ..

";22ADJ. !,V I,' . ..

ANA. RTN 2112B - CI 0
-DECREASE i il,

A I I Fi .I

Figure 7. Ex t. Offset Adjustm ent 1141 . .), , 1.,

GAIN CALIBRATION
Set the input voltage precisely to +9.9963V for unipolar oper- Figuie 9. Clock Trim

ation, +4.9963V for inputs of ±5V or +9.9926V for iiiputs of
±1OV. Note that these values are 1Y2LSB's less than nominal DELAY TIMI" ADJ USIMI:NT
full scale. Adjust the 20k variable gain resistor, Figure 8, until The I)LY OU I signal Aiay he adjusted to vary the A/I) convcr-
Binary and Offset Binaiy coded units are just on the verge ter triggering l inc by nicans of the external circuitnv shown
of switching from 111111111110 to 111111111111 and Two's in Figure 10. An open I)IXY TRIM terminal (Pin 23B) results in
Complement coded units are just on the verge of switching a nominal delay time of 3.0js. A grounded DL TRIM
from 011111111110 to O111Il111111. termiial (for highest-accuracy) results in 20ps delay time

nominal.
INT. RANGE ADJUSTMENT

DECRFASE TD I'FASF
RANGE) OFLAY

I 15-TV .5V 36 1 '36H .SR-

REF. ADJ. 160 20k OF OI AV 31 -- k
tinM

ANA. RTN 2112 INCREASE 1 G, II TN 3'1,3511 -
INT~t TE .- IN(lItASE

RANGE l ' AY

*R 5OU.O RIF AT
L[Aq;T 47Wt AND NO

MORE THAN 470H1L
REDUCING A INCREASES Figure 10. Delay Trim
ADJUSTMENT RANGE.

Figure 8. Ex t. Ref. Adjustment

"FABLE I

INPUT ANALOG INPUT ANALOG JUMPER
CONFIGURATION CONNECTIONS INPUT II TII'RN CONNECTIONS

16 Single-Ended 31 thru 1Il" All input returns 11B to IIT

Inputs and to 211 or 2 1' 12B to 211 or 21"

(Figure 3a) 3B thru lOB 17B to 191

18T to 18B

8 l)ifferen Id 3'r 3B 111 to 1211
Inputs thru thru 17B to 18 1" to I "

(Figure 3b) lOT 10B

16 Pseudo-Differ- 3"1 lm I OT Common Ihput Ilt B I, IH
ential Inputs and return to 121 17B Io Irl

(Figure 3c) 31 thru IOB 11 hto I 8B

•11-5

W..

;::-:.

: _. ' .. -:. .. -: .., .: .:.+ ..: :...- :, : -.. ... :. ,, ..-. ,

RECt1MUN-),A) S;F I U." -1.' '

2. Select MUX address mode. i' ii, .35it i1 RI N

The method of addressing the multiplexer can be selt cted b. Bii (flli < 12 liii restilutiin: connefc~t Pill 28T to (the

by connecting the unit as follows: output pill~t (oilli 4 1.

RANDOM. Set Pin 2411 (FOAFD FNII) to Logic "0". [1lie 5. Select optimum throughiput rate.
next falling edge of STROBlE will load the address presented TIule systeml cltuk ilequency and tire SI Itt)111 to 'I RIG
to Pins 19B through 2211 (8, 4, 2, 1). rThe code on these delay (if used -cani Ile triminici to optinmize tie accuracy/
lines must be stable during the falling edge of STROBEL plus throughput iatc tiatdc-off. See Figure% 9 antI Ii).

100ns.6. Select input voltage full scale range. See I able IL.
SEU _TAL FREE RUNNIN Se1olo cIli 7. Select output di~,;;il coding. See 'Iable Ill.

24B (LOAD RM4ii) and 2511 (C(AI N1). Conngect Pin 2711
(EOC) to Pin 241 (STROHjE I. Connect Pin 23T (I)LY
OUT) to Pin 27Tr (RIG). Use Pill 26T (ICiJas a run!/ 'IAIIH. 11
stop conitrol (i.e., A/D) conversion will continue while IIl ORFL CAEMK [I 'I..WN
is high and will stop while TRIG is lowv). RNEOF. ON(7IN

SEQUENTIAL TRlGGEFREI). Set to Logic "I"', Plins 2411 (0 to + IOV 121 to 21 ;14 1 to 141 lip ADC(Soiurt r
(EOAD EM) arid 2511 WLERI11).~ Connect Pinl 24T

W~RIIE) to external triggering source. The multiplexer 0t t.4 aea)t i~;li 5 i18

address register will automatically advance by one chanmel 0 to .45V 12T to 131B; Ill1 and 141 It ,)(D It uric
whenever a S rROBE coitnimarid is received. The iniitial clian- 0t 5.2Vsaes01o+5V pi15Ito1611
nel call be selected by setting Pili 2411 (1IOAT) N13) to Logic 0t 5 2 aea io+\,pu 51t
"U"' during only one STROBEti coimiant. .. i multiplexer -10V to 4 IUV 12T it) 2*1 , 1+ t) 1 51 ;and 1411i to ADC(
address will then be determinled by the logic levels Oil Pins Sou rc
198 through 2211 (the external MUX address lines). Chatnnel -1.4 o11.4'-ao sIVt -I0V ___u 15tlo11
"0"' canl be selected as rte initial channel by setting P'inl 25B1 - .4 o1.1Vsm sIli oiIt~/x11 t (1
(CMiTE1NDY to Logic "'U" during only one STROBE~ coin- -5V to +5V. 121 to 1311; 141 to 1 51 and 14B ito AD)C
niand. The final channel can be selected by follo-wing the sourc'e*.
procedure presented in Figure 6.

-5.12V to +5.12V sante as 5V ttO 4')k.'/Ijj 1511 199 1611.
3. Select A-D conversion/chiannel select sequence (see Figure 5).L

*ADC Source is timialivtl plo i] W p tiIIIl ttIi- , l

(1) N0(. ',A1 (input channel remains selected durin sig;...l source inalud e a~iid niol, luiput t t Sml and)o tod i. s

its A/D conversion). Connect in 23T (DLY OU T) not desired. luigI'l.A.tluut31)iSalend Iidi
to Pin 27T (TRIG).

(2) OVERLAP (next channel is selected during A/D ll.Il
conversion). Connect Pin 27B (LOC-) to ITTL conm- (JUTPtJI CODE CONNFC1 IONS
patible inverter iniput. Connect inverter output to
Pin 24T (9T ROMBID. Conntect Pin 23T (DLY OJUT) Unlipolar Contnect 17*1 to -1 5V

to Pinl 27T CllbUM. Adjust the delay to at least iryse21('I frMI
4juis greater than EUC, 20ps max (see Figu re 10). 2 's Conipleiment Connect 17T it) -15V'
The signal on Pinl 26T (TRIG) serves as RUN/ Ilse 281B (It 1) for MSI1
STOP control. Offset iiai V (:iinect 171 tt' -15\V

(3) REPETITIVE SINGLE CIIANNEL. After sciet-ting (Use 21*(It I for NIS I
the input channel to be repetitively sampled (seel' oie;it (tte:tI7i'21

MUX ADDRESS MODE, above), set Pinl 271 [R6) Use 28B1 (111 b-r W,11Lto Logic "0''. Connect Pin 261' C(;) to a I rig.

gering source. Coniversion process is initiated by)
positive edge ofI [RIG commitand.

11-6

lo RADO AUDESN -mw -- 11 r u OVELA -". - -- NO

- ~ OA ENBL Y- -.- ,---- u--

1
'~SXm 'IQ.

.*Z rj7T/7=

ADDRESS DA z4 z~ ~ F -- CM *

DELAY ouTTI~ N___

811

8S ___

810our __ _ -- - -- ----- .-- - - - - - - -------

OUTPUT~~~II DAAVAI RVCH4 1

'S

Figure 11. Timing for Non-Over/np Opera tion in Both Random ,imid Sequential Addressing Modes.
For Status Keys and Signal Condition Data, Refer to Boxo Below.

SIGNAL C:OND)ITIONS
AND STATUS KEYS

F;OR FIGURES I I AND 12.
SFOVEN "IAL ADDOREvSING OIVFORAPM(M4

ARRANGE U FOR CON TINUOUS CONVERSION VVI I H 211., PE HI00
CAN~~~~ Et1f1404(1. 2 = -3.415SV C -111) 101 0110 101

tnAo rNABLE (-II. 3 = 41I0.235V CODE I I II II I II II I

MOR - CI. 0 =-10 240V (011.)0 000 000 000
-~ ~ ~ ~ ~~I SIFIIT(1.I = j3 410k' CODE 101 010 101 (010

TRIG ISIAT RUNS WUlEII'H - \ \V\\VV"\

DELAY OUT[I'RII I_ ADU 42I1. A D- ~ IC SET.UP 11 OR + 10. 24N' I N PI I,
_ (SAMPLING

FOc - -NV~ I4U.DI% OI- ISElI IUNARY. (POR I1 W~O'S

MUX ADUR OUT X~__.-- XCONI'II.EMEN1, USE I IFOR M.S.13.)

OUTPUT DATA VALID CH-AN 1 ______N DATA_
-3410' _______ 3-5 K F Y INI'U I'S MUTILU I'S

DIF FAMP OUT 0 - _____----- - -____ _____

* ., E.H1 F1*S -3410 May____ ,/'"'g -m' n~

FS 3 411.7~ Ni aN. t~iige II it) I (liaiigcs 0 t II 1

Figure 12. Timing Diagram for Over/op Operationi in the 17 7 1 N. %11 [C II1C 1 Wt) I1gC be Stil
* ~~~Sequential A ddl -ig Mode. For Status Keys and Signal C'orn- L. 2 2 I

* dition Data, See Box at Right.

11-7

1(ji, VIEW

DASl 128 Connector Pin Diagram . . .

-15V 1T it ISV
ANA TN 2T 28 ANA RTN

CH 0 IN IT 38 CI 8 IN ICI110IN:
1C I IN 4 40 C :' IN ICH 1 AINI

C 2 IN 57 58 1 IN 11 2RIN)
C 3 IN 87 0I CII II C" I A~I

CI 4 IN 71 70 CHI 12 IN ICH4 IN)
C" 6 IN 81 BF ClI 13 IN IC t SAIN)
CH 6 IN 91 96 CH 14 IN (CH 6 RINI
C" 1 IN 10t 108 CI 15 IN ICH 7 RIN)
MUB HI OUT 111 118 MUTX LO OUT
RANGE SEL 121 1a4 AMP IN LO
S& HOUT 1I 311 AMPOUT
fk70 IN 1 141 148 ATIC IN 2 0O
7IV REF 15T 150 8INAR SCALE ;C A O F FSE T lrT 166 E T A LD J

(-

OUIPUT CODING it l e ENA LE LO . .

ENARLE HI 18t 18g I OUT -

01 OtI MUX 19f 1017 8 IN MT
OUI ADDRESS 20! 208 4 IN 401). , 55

2ou LINES 21 1 2 N LINES ,lS

I OUT 22t 228 1 IN

ESIIOUT 21T 230 D), TRIM

STAcI8 2 250 2WO CLR FNF Dimensions shown in inches and (nim).
I1R1G 261 2868 CLK TRIM
tRIIG 21 27 "-

SHT CYC 27R 288 §1 1 ,

SI OU 29T1 211 82 (71) T''"
83 OUT 30T 3)1 D4 OUT In
5OUT 37T 31 A 1,,, 1

87 701 321 328 H110o1......l, ,
890O117 33T 3711 111111 3 11lA717,I''-

81 OUT0 341 348 117 (UT OF i
DIG BIN 351 3.11 [71 .7N (I IN'

381 368 .-

,.. ..,,L .

...+ : .:.. :.

.t.L)

Typical Applications ,..

DAS1128 WITII MOTOROLA 6800 I)ASJ 128 WII 11 INTEL 808)

-..11161 - -I -"

6____U
-H

, + + -) +. + u ... :
'o-*-* A ll ; - -~ -?1111..11;i'

DAA1 12...1.'

A, A M X 00 1I

A ,11 SFI SE I -p,. ...-* - , - - I

NOT NOTE

1 0255 U SE7 IN M100F 11117 n1171 r1 I 'II 1 R2r11 l77 1 r1lI'I , l III I I 11777.
2 CE INDFXFS M I X I O 1 F E IIIE 'CIAIINE .'A CS III A , .V lI 777 0, IS 01 .07717 I7F5 07 I lI I IT IIIIN A ll(

0CS 1 A, 'WHfR 4, I AN ,0,I)RF ,S Oil I 1 0 1F 5 I 'A N A 1 OR At I I P NIlo AIN MIIX If [il 5 l 1IANN "4 PCPJINIIIAIESTIINVFnSIII| 4 P'C.IIP77/',ISIINVU'SI'IN .
FoE . SiR(IFIS IN 0AA ANt MoX INF11 b IC 177 i IN 77l)A AN, Mu INII

8 8257 SIIOWN, HOWEVER 687)CAN AINAI OF USED

1 1 -8 " '

, , " i " " • i -' " m : n - " i " n " " " - i : '.- + i ' " " ; " - " ;

IJ %A st GeneralF.

-, L..a _. o An~ z Cc---

a..

FEATUR!.S -12 Bit Resolution
Input Register Included \'~ p '

Programmable Output Ranges
Low Profile 2" x 4" x 0.4" Module

GENERAL DESCRIPUiON OU A 1LiTC1ARACTERISTICS
The DACII8S is a 12 bit, general purpose digital-to-analog The 4 2 b iiiry-weihcd current sources which form the basis

j converter which conics complete with an input storage register of dic d:-ita ~ to-analog conversion process are directly con-
and a versatile output amplifier. This low profile 2" x 4" x 6r~ .tv tlic digital data stored in the input register. The

S 0.4" module has been designed to provide economical solu- coiibinid output of these sources is applied to the internal
tions to a wide range of digital-to-analog conversion problems. op amnp 5umniing junction to produce a voltage output signal.

*Performance specificationis include 5jus settling time to 0.01%, By consaee-ting jumpers between the proper module pins,
(~- *0pprn/ 0C :,in temperature coefficient, and ±1/LSB lin- various values of op amp feedback resistance and thus, out-

earity error. put voltage ranges can be selected.
*The design of the DAC I1118 centers around the ADJ550 in order to pioduce bipolar outputs. the current input to the

monolithic quad current switches and a hybrid resistor interal op amp is offset by 1/ Full Scale. This offset current
assembly consisting of matched precision resistors and a is gcierted by the precision inter-nal reference source and is
thick film network. The resistor assembly which contains all applied to the op amp summing junction by means of jumpers
of thie critical gain determining resistors and the quad switches connected to appropriate module terminals.
with thcir inherent temperature tracking provide dhe DACi 1

wth excellent performance over temperature.

Tefully DTLITTL compatible DAC Il S can be provided -A- 1ZR

with 2: variety of input codes. in addition, any one of five ,T440

voltage output ranges'can be programmed by means of ex-
tcrn._ jumpers connected to the module's terminal pins. :1: a C

BIT1111 0 3a
BIT$ 12 **- 0

DIGITAL INPUT CHIARACTERISTICS SIT I is * a
The TTL/DTL comnpatible storage register contained within VIT TI, IT 0
the DAC 1118 is configured during production to accept BI t 95

either Binary (including Offset Binary), Two's Complement, FOn
or BCD code. Digital data appitarinb ,,~ the converter's 12 input
terminals'Will be strobed ito the register whenever a positive- 4 fs

going transitio nfis applied to the STROBE input (pin 22). -%V n ____ ____ ___as__ 4

With the STRO!'IF input hcu at either Logic "U" or Logic
49", 32 5the input data may be changed wiihout affecting either the ALOGO34-OUTPUT

contents of the register or the output of the conver ter. The 41A0034W

transfer characteris; . .: of the DAC 1118 are such that a full
* 1~ scale digital input (such as 1111 ..1 1 for Binary coded units)

*will result in a positive full scale voltage output. DA C 1118 Block LDiagrain

'a 1-1DIA CONVERTERS 347

7,77,

RESOLLU FION Jas)GI AL Ld AJUIIN
(I*Ki1AL INPU IsGANAl_ k O DUSIM T

.ogil:Levels 0V <Logic "0" < .8V For units uwili.'ing bipolar codes apply tile digital input cor-

6, atVIpu Lod San ardTT Ladbi responding to tie nergative full scale analog Output and Adjust
Stob Input Load 3 Standard IT L Loadsla the zero pot until the value listed is obtainerd with ± 1 / 1LSB.

Strobe Pulse Width 20m; (mill) For Unipulaii co0deS apply 00 ... 0 and adjust for 011 out.
Data Set-Up Time 2Ons (min)
Data Itold Time 51" (mil)

INPUT COVES 48ll r 111LuS I
Unipolar Binary. BCD 4910 01! 0TR
Bipolar Offset Binary. 2's Comaplemient c i. 0tR

OIPU I RANGEiS 0, to 4V 0) I~mA
to +V 0 zrA n- Inu

12.5V I ?OmA V i~ _ 0 TURNv

iSv *l~mA20,01UR
110IV @ 5mA

OUTP'UT IMPFDANCE 0.0231 Ga/ia and Zero Pot Connec tions
SlerrLngt;Ie ZO/Sla o00 For all unuits. once tile appropriate zero adjustmuent has been

i.INFIRiIV ERRORJl ititsLkOX ae pl the digital input corresponding to the positive full
.-IEMPERAIURE .AJLIFiIJLN' * scale analog output. Adjust the gain pot until the value listed

G (ain 4 12t0ppniiC.(3pi/Cmx is obtaine.; %%itluni ±1/IULSB.
UnipoLar l 30miVI*C (±SOUIVI

0
C ma.)OUPTCIN M S

Bipolar tiuOuaV/
0
C 0 33OAVI*C llax) OTU ONCIN

tDifferenntal Linearity t21iplofC (5 iOppm/*C max) -VTTRNE PN JM1E OEIE
TEMPERAI URE RNEOtT'tRA E 'NJui MDOEhR

Opelaing 0 to +70'C f Iils.r Ofs.I lecblas k esisance
Storage -5 5*C to St i

0
C

POWERl REI.UiRiAIMENTS .15V 15% W ZOoiA t2SiA o.ax) Hllso). BCDl BRotary BCD1

%-I5V 15% tv 3tinA (45n,A miax) fl iV 45. 4t, 47.42 43. 45

*5V ±1IQ% Oi l2SinA (171n'A m~ax) 15.11V 45.46 47,42

iPOWER SUI'PLY SENSITIVITY
1 ±I0V~ 45.4A 47. 4;3

Gan t2pp/%VofRedigi4 to #5V 46. 34 46. 34 47,42 45,45 47. 42
Zaro . ±2ppn/%tlV5 of Rang uto +10V 46. 34 46,34 47.42 47, 43

* nIus IMLNiS
UJser Provided) INPUT-OUTPUT RELATIONSHIIPS

* ~~~~Gain (lIioflS. 20 Turn Pot). ±0.2% of Range [.ilA.INT NONLVl1AE(UTT
Zero (20W,.2 20 Turin Pol) I o.3% of Range ______AINUT NOINA____AGEOUPU

'Fo JO st~i 0io +5V Oto +i0V

' I-or. t 1v .apuiis only iitf. . tOY "dn -Isv Vv tpic0rkii. Range____ ________

* Re..hrf; fr bipolar iripa is dr[,onlas Asrtuai kt.;,r - (- F.S.) 1.Bilarv Coude
Rang fur uosgoisi opertin w. +.S.; Ranigc for bipular operation w IlI Fi... *1l 1111111111 +4AJ9981V +9.9976V
Spadwxtwmmw subicci to rhire without oatise. t..il lOLIO i 0,0t 12 V .00t24V

(1ll0141 0000 iJ.titiKiV 0.0000V

BLO Code
it ") 11411(N11 .4 9950iV *9.9900(V

WNt 0000 Milli -0.0050iV +4D.010V

Unipolar Output
OUTLINE DIMENSIONS

Dirnessions shown in inches and (mmn). ISLI , NI'T NOMINAL V'OL] AGE OUTPUT
12.5V ±5V 11OV

Range Range Range
ous ma aist a', 'm m ujI WomtuplemellfChit

h011llli1111 *4 489V +4,9976V +9.95IV

14 ~Offse 01

NOTE: 00ooholllql 01t2V 0 Q(124V 0.t448V
Ten al pins imsiMIed only in shaulet bole 0hlllttO lItthh l.tllV OtiiV

M4odule sllor 3 5 -- es- (99.3 Wpm)u 1,JO0iiitIKK~O04)t -2.5000lV -S .00011' -10.0000)V
All pins we 90dJ pl...d heitheld West,
1011. .O.JS2lW?0l9tB *.00140.48

10 OJImul do..
moo h, lug n ~ ned ~ ~Bipolar Output

A0 It i i4.3Onlnl . 3 750" 195 2.,")s

i. AC4,494 ORD)ERING GUiIDE:

1ff DACIIIII xxx
1-02 (Rtinary. Offset Binary)

SoM MW oftoal, CIA 044 (2*s Complement)

348 DIA CONVERTERS

HBW4 64K STATIC RAM

S-100 Bus

USER'S M'ANJUAL

SS IRCMUERPOUTIC

210Prgo rv
San Joe aiori 53

219(08 Paragon4 Dri0Baue

* SanJoseCaliornia9513

ii

'"MB64 is a trademark of SSM Microcomputer Products, Inc.

Written by Malcolm T. Wright

Illustrated by Barbara R. Bastian

01981 SSM MICROCOMPUTER PRODUCTS, INC.
All Rights Reserved

Part No. MN0032
January 1982

.i~i i . I-2

0

=Ti LE OF CONTE?g

1.0 INTRODUCTION

* * ;2.0 SETTING UP YOUR MB64

- 2.1 Memory Addressing
* *"2.2 Extended Addressing

2.3 Bank Select

2.3.1 Bank Select Enable
2.3.2 Bank Bit
2.3.3 Power-Up State

2.4 EPROM Option
2.5 2K Memory Disable/1iaory Organization
2.6 Board Lnable Indicator
2.7 Battery Connector JI

2.8 Setup for (7,MIX
2.9 Standard S, Lap

2.9.1 64K memory, no options
- 2.9.2 60K memory with top 4K EPROM

2.9.3 Bottom 32K banked with top 32K wasLer
2.9.4 Two 32K banks, lower address
2.9.5 48K banked slave memory

2.9.6 64K memory with extended addresbing

2.10 SWO Option

3.0 THEORY OF OPERATION

3.1 32K Memory Select PROM
3.2 Mcmory Address Select
3.3 2K Memory Decode

3.4 Magic Mapping
3.5 Extended Addressing

3.6 Bank Select Circuit
3.7 Battery Backup
3.8 Bus Interface

4.0 MEMORY TEST PROGRAM

5.0 TROUBLESHOOTING

5.1 Bank Select Test
5.2 Bank Preset
5.3 Memory Addresing

6.0 WARRANTY

J.-3

APrENDIX:

Assembly Drawing
Jumper Drawing
Memory Map

* Parts List
1116116 Specification Sheet
Schematic (INSERT)

*J -4

07

The SSM 1IB64 represents a significant, advance in low-cost, high-density,
static memory boards. It incorporatei, such features as batik select,
extended addressing, diagnosmtic LEDs, and a provision for battery backup.

The MB64 is configurable as two 32K byte bank-switchied memory blocks, or
64K bytes of memory with standard or extended addressing. The H1164 call be
disabled in 2K increments by the use of a Magic Mapping' circuit to

* *provide memory space fo oter memory-mapped devices within the computer
- -system. Th is board is equipped to sense the pliant owi di sabl e Iline toi
*prevent. hardware conflicts with1 auxiliary system boot ROlls on aiotLlier 611

compatible board.

Features:

*Two 32K byte memory blocks
* Low power C11OS RANI chips (1116116P)
e High speed access, approximately 150 use-.
* Bank switching circuity to support. MNP, CROI-IIX, OASiS, ctc.
* Extended addressing to support, IEEE 696 products
LED indicators for RAN select and banik select
* Low power consumption of less than 300 ma typical
* Up to 8K of the top 32K canl be replaced with EPROM (2716 type) on-hoard
e Card ejectors
* Goldplated PCB edge connector

The board has been designed to conform to the prupused IEEE 696 standard.

Magic Mapping is a trademark of SSN Microcompteir Products, Inc.
CROMIX is a trademark of Cromemco, 280 Bernardc Ave'nt(, Mountain View, CA.

OASIS is a trademark of Phase One Systms, 7700 Edgewater Dirive, Oakland, CA.
MP/M is a tademark of Digital Research, P.O. Box 579, Pacific Grove, CA.

p~J -5

2.0STT""' '

This section provides the informat ion necessary to Cofigure the MBG4 to
your particular application. Section 2.9 provides several example set-tups
to assist you in performing this task. Be sure to also read Section 2.10,
SWO OPTION, for proper read/write operation of the 1,1B/ wiL your CPU.

NOTE: All of the following options (except BANK BIT) can be selected
either by using supplied mini-jumpers or wire-wrappinF.

2.1 MEKORY ADDRESSING

The MB64 is divided into two memory blocks of 32K byte; each. Block-A is
physically located on the left Lhalf of the board; Block-N is physital ly
located on the right half. Refer to the Memory Map in the APPE-NDIX for
the address location of each memory chip.

Each 32K block can be addressed to either the lower or upper portien1 of
the 64K memory space. Both 32K blocks can be addressed to the sam
address space if the M64's Bank Select option is u;cd and the bank bit
for each block is different (refer to Section 2.3).

ADDRESS BIOCK-B BLOCK-A

Upper 32K E17 to E]. E20 to E21
Lower 3?K E18 to E19 E21 to E22
Block Disabled E18 open E21 open

2.2 EXTENDED ADDRESSING

The MB64 is designed to support extended addressing (A16 thru A23) as
defined in the proposed IEEE 696 standard. This will allow the 111M64 to I,(
placed on any 64K boundary within a maximum memory space of 16 megabyttes.

The Extended Addressing option is enabled by connecting E26 to E27 for
Block-A, and E29 to E30 for Boeik-B.

To select the extended address range which will enable the MB,4, jumpers
will be either installed or removed on the the Leader F thru 116 l isted
below.

Installing a jumper wil l provide a match when that parl icular address I in(,
is at a logic zero (low). Removing a ju;-per w ill pi,,vide a match whie.i
that particular address line is at a logic one (high).

J1-6

.1

N

"0 , " ' " ' . ' • , " " . ' - ' - ="- " " ' . , " ' " - ' . . . , ' ' ' " .."" ' ' " " " % . .% ' ' - " .. .- ' " " . ." "

........................ "... ".- . *..*d J' r'lLia -l 'k..', ,'L'..' ', -- ' -.'.t.. '._r_'. .* _x'.-'

.Jump-r inFtalled 0
Jata±,2r ewoved - I

A23 A22 A21 A20 A19 A18 A17 A16
- " ADDR ESESS ADDRESS

(lex) E9 E10 Eli 12 E13 514 E15 E16 RANCE
El K2 E3 E4 E5 56 K7 58

000000 0 0 0 0 0 0 0 0 Ist 64K
010000 0 0 0 0 0 0 0 1 2nd 64K
020000 0 0 0 0 0 0 1 0 3rd 64K
030000 0 0 0 0 0 0 1 I 4Lh 64K
040000 0 0 0 0 0 1 0 0 Sth 64K

FEOOOO I 1 1 1 1 1 1 0 255th 64K
FF0000 1 1 1 1 1 1 1 1 256th 64K

When Extended Addresing is selected, Bank Select is disabled; therefore,
Bank Select and Extended Addressing are not possible together for the
same memory block.

2.3 BANK SELECT

To extend the amount of memory available for an 8-bit CPU, Bank Select

can be used on the MB64. This memory management technique switches in
and out a 64K bank of memory by writing to an 1/0 port. Multiple 32K

blocks, on one or more HB64s, can be addressed to the same address
space, but only ONE block will be active at a time. All bank control is
done through port 40 Hex (or 41 Hex). When Bank Select is selected,
extended addressing is disabled; therefore, bank select and extended
addressing are not possible together on the same memory block.

2.3.1 Bank Select Enable

The two 32K blocks of memory on the MB64 can be individually bank
selected. E26 thru E28 controls Block-A, while E29 thru E31 controls
B loclk-B.

OPTION BLOCK-A BLOCK-8

Bank Select' E27 to E28 E30 to E31

Extended Addressing E26 to E27 E29 to E30
Neither option E27 open E30 open

2.3.2 Bank Bit

One of 8 bits sent out to I/O port 40 Hex can be used to turn on (or
off) a 64K bank of memory. If the data bit sent is a zero, the bank is
disabled. If the data bit sent: is a one, the bank is enabled.

i% ,

K j.

All bani- bit se le t iol is through i Ifl p i ' I hi i p' ill is 41 Le .
are data bitts D/ hiru I)M, r espectf u '. I'li, L4) P. > Ior baijk iiijg B Ock-A,
and pin E38 & E39 are for bduking Block-B.

(Nl) D60D5 04 03 02 DI (DO)
E41 E48

BLOCK B BL OCK A0 ()
U 0 QAff0 0 00 .

E38 I-40
E39

BANK BIT HEADER

Connect pins E38, E39 and E40 to the data bit desired by soldering a
wire on the IC header. If only one bank bit is used for Block B, you
can jumper E38 to E39. Be careful that pins E41 thru E48 DO NOT SHORT
TOGETIIR. Pins E41 Lhru E48 are the main S-100 bus' data output lines,
and shorting them together may cause damage to other boards in your sys-
tem.

2.3.3 Power-Up State

In a bank selected memory management system, one of the memory banks
must be active on power-up to allow normal CPU operatioii. Each block ,
the MB64 can be set up to be enabled or disabled oil reset (bus piii K')
of the computer.

POWMR-UP STATE BLOCK-A BLOCK-B

Disabled E35 to E36 E33 to E34
Enabled E36 to E37 E32 to E33

If the Bank Select option is used on the MB64, the user MUST select one
of the Power-Up options for each block. [NOTE: Re;vt must be gei.rat,,d

on power-up of the computer during POC per the IEE 696 standard.]

2.4 EPROM OPTION

The MB64 board is capable of supporting up to four 2716 EPROMs. Four IC
sockets (U7, U14, U21, U28) have been provided with a jumaper option to
connect the Vpp (programming pulse) pin on Lhe EI'PROM to +5 volts. Ti' e"
four IC sockets are addressed as the top 8K bytes of Block-B.

Address RAM RON Socket

Ist 2K of 8K ES0 to E51 E49 to ES0 U28
2nd 2K of 8K E53 to E54 E52 to E53 U21

3rd 2K of 8K E56 to E57 E55 to E56 1114 1
4th 2K of 8K E59 to E60 E58 to E59 UI

[Remember that there are NO wait cycles generated by the MB64 fLo the
EPROMs; therefore, the board cannot be run any faster than the EPIUM's
speed.]

.1-8

.. 6.-

S- - -'- . - . -- . , . ".,. . ., . -. -% -. -. . . -- - - - *. ' ' :- 4 .-- .- . " ' .-: -' ' "' " "

2716 faz..... e.

CURiL'T AVAILABLIE

NAME PART STANDBY RHA SPEED

Intel 2716 25ma 100ma 350ns to
(0um Typ.) (57wa Typ.) 650ns

NEC UPD2716 25ia 100 ma 450ns
(10wa Typ.) (57ma Typ.)

Motorola MCM2716 25ma 100ma 250as
AMI S4716 2 5ma 100ma 450ns
Fujitsu MBM2716 25ws lOOma 450ais

Hitachi IIN462716 35wa I100ma 450ns
(2l1aa Typ.) (62ma Typ.)

National NMC27C16 200ua 30ma 450is to
(12ma Typ.) 650ns

2.5 2K MEMORY DISABLE/MEMORY ORGANIZATION

The HB64 board is equipped with a special Magic Mapping circulit which
allows the board to be disabled iii 2K byte increwen ; by ' simply removi ii,
the appropriate memory IC. This allows the useL to fl UJ) u 1('11ory spa,

for memory-mapped devices such as disk interfaccs, video boards, gvuletal
I/O, ROM boards, etc.

Magic Mapping relies on the assumption that the waster CPI board ha.,

external pull-up resistors on the data input (D) lines or tle copliter
system has a terminated bus. The pull-up res istors on the DI bus wil I
force the bus to "FF" lex state, even if no S-1O0 board is prsent.
Therefore, "FF" does not have to be Lransferrc d from the memory board to

the data input bus. The code "FF" Hex is used icternally by the MB64 to

disable the ability to read the memory.

To determine which memory chip should be removed for a particular free
address space, refer to the memory location map in the APPENDIX.

If the user wants to disable Magic Mapping for some reason, simply remove
IC U44 (74LS30).

2.6 BOARD ENABLE INDICATOR

The MB64 has 4 memory state indicators at the top dge of the board. Two
indicators show whether a 32K block of memory is selected. Two indicators
show whether the bank for a block is enabled.

32K RLJIlCK A-' .

32K SLOCK ---,

BANK A ENABLEO-- <

SANK 8 ENABLED-

J-9

'7-

If tiiur 11,136 is set p 11'or Tlank S elect (ro, -n .),both1 the bI c
(label: ILNA,ENi3) a.nd boulk LLD (labe I i A,V V, B) must: be lit- to re-adj Or
write to the corresponding 32K bytes of weatory.

2.7 BATTERY CONNECTOR AI

The l1B64 is set up for a future battery backup piggyback board which will
interface through connector AI. The COLILctor J11 is tised for:

*Battery power input MVAT)
*Remote MB64 enable/disable (Sense)
*Off-board logic power (+5v)
*Battery charger power (i-16V)
*General purpose power (+8V)

When no battery backup is connected to the MB6'., i pin 5 to pin 6 (sense)
must be sliorted together to enable the M1B64. Also, I pin 3 to in 4 must
be connected to supply power to the memory chips when no battery power is,
ava ila bl1e.

+8V + 16V +1V
VI3AT N

BAT TERY CONNEC1OR

2.8 SETUP FOR CROMIIX

The MB64 can be set up to support the "User Berurv" requ irumeitb (iof thev
CROMIX operating system by Cromemco. Under CROMIX, there can be up to 6
user memory boards of 64K bytes each. CRO;i.X req4uires bank-switched
memory, with the upper 32K residing in the selected user space and also InI
the common memory bank (number 7).

The 141B64 is split iuto two 32K banks called "A" and "13". Bank-A willI be
addressed to low memory range, while Bank-B willI be addressed to the upper
32K range. Bank-B has two bank bit inpuots Uk38 & L39) so that, it can be
switched into two d iffereuit banks per CROMIX. First, set up the M1164 for
64K with bank switching, and then select the bank bits fur the user memory
you are suppox-ting. Typical setup is as follows;

aJ -10

a7

CO NNT "

E17 to E18 Enable upper 32K
E21 to E22 Eniable lower 32K
Jl-3 to JI-4 Enable memory power
J1-5 to JI-6 E able HB64 (battery chip select)
E27 to E28 EnabIe Bank-A uode
E30 to E31 - hi bIe Ban k-B mode
E39 to E/40 S;et both bank bits thc .aw,.
1.35 t 1o3(4 I-set Bank-A to OFF
F33 ,1 oi,;,t Bd k-fl Lto 01I

• 1;46 I V, 1,. _, .l4.ihit SWu si ,n1al
.I;' t LiI L. ' upphi 32K at Jllmk

.'." lh;tei- 1,-;.au y t ~up

U!;E O{ COUNI.T CROrhiX SIZE

1st F40 t o 17 Ole l(.ri .;ySt t

2" d 1.1(} 10 l1 ' wo

3rd E6IO t o Eli, '1r1 ' " "
4Lh E40 t ,/ 14 F ou r"

5h 1,40 to 1 '13 F Jw v
6t1 1£40 to 1:42 Six "

2.9 STANIARD SETIPI'
'! ~~~In this section we willItr to shot'w se'lll: sta:liklard 1k.l}'lfl,"i;l~ l

2.9.1 64K memory, no opt ions

CONNECT COMMENT

E17 to EI8 Emble upper 32K bytes
E2I to E22 Enal-le lower 32K bytes
J1-3 to JI-4 Enable menmory power
J1-5 to J1-6 Enable MB64 (battery chip sclect
E35 to E36 Reset Bank-A (turn off LED)
E33 to E34 Reset Bank-B (turn off LED)
E50 to E51 Set U28 as RAM
E53 to E54 Set 1121 as RAM
E56 to E57 Set U14 as RAM
E59 to E60 Set U/ as RAM

[-.1[i-h

0

------------------- "......-,-tA*2 ! .. o..I..,.r7.

AD-RI55 465 DEVELOPMENT OF A DEDICATED SPEECH WORK STRTION(U) AIR 3/3
FORCE INST OF TECH WRIGHT-PATTERSON RFD OH SCHOOL OF
ENGINEERING W H LIEBER DEC 84 AFIT/GE/EE/84D-7i

UNCLASSIFIED F/G /2 NLI EEEEEEEEEEEEE
m|hEE|hhE|h|hI
IIIIIIIIIIIIII...flf
EllhiEihEEllhEEi,
EEEEEEEI|IhhEEEI
I.•

11111-5II*~~

11111- 11 11 IIL6

MICROCOPY RESOLUTION TEST CH-ART
NATIONAL BUREAU OF STANDARDS 1963-A

_,

2.9.2 6nK nvinory w th t;.p 1'

El7 to E18 Enable upper 32K bytes
E21 to E22 Enable lower 32K bytes
J1-3 to J1-4 Enable memory power
J1-5 to J1-6 Enable MB64 (battery chip select)
E34 to E36 Reset Bank-A (turn off LED)
E33 to E34 Reset Bank-B (turn off LED)
E55 to E56 Set U14 as a ROM socket
E58 to E59 Set U7 as a ROM socket
E50 to E51 Set U28 as RAM

" E53 to E54 Set U21 as RAM

Remove U7 and U14 RAM chips. Place first 2K of EPROM (2716) into socket
U14. U14's socket is addressed at OFOOO Hex. Place second 2K of EPROM
into socket U7. U7s socket is addressed at 0F800 Hex. Remember that
the CPU's speed cannot be any greater than the access time of the on-
board EPROMs unless wait states can be preset on the CPU or other 696
memory support boards.

2.9.3 Bottom 32K banked with top 32K master

~O~I~ECTCOMMEJ4T

E17 to E18 Enable upper 32K bytes
E21 to E22 Enable lower 32K bytes
JI-3 to JI-4 Enable memory power
JI-5 to Ji-6 Enable MB64 (batter chip select)
E35 to E36 Reset Bank-A
E33 to E34 Reset Bank-B (turn off LED)
E27 to E28 Enable Bank-A mode
E40 to * Select bank bit
E50 to E51 Set U28 as RAM

E53 to E54 Set U21 as RAM
E56 to E57 Set U14 as RAM
E59 to E60 Set U7 as RAM

* Select bank bit per Section 2.3.2.

This setup makes the top 32K of memory a permanent (non-banked) master,
whi. , the lower 32Y of memory is bank selected. The lower 32K of memory
is switched off during reset or power-up, but can be turned on if E35 to
E36 is changed to E36 to E37.

J-12 ?

0%

2.9.4 Two 32K banks, lower address

CO'E.-t

E18 to E19 Enable lower 32K bytes (Block B)
- 'E21 to E22 Enable lower 12K bytes (Block A)

JI-3 to JI-4 Enable memory power
J1-5 to J1-6 Enable MB64 (battery chip select)
E35 to E36 Reset Bank-A
E33 to E34 Reset Bank-B
E27 to E28 Enable Bank-A mode
E30 to E31 Enable Bank-B mode
E40 to * Select bank bit for A
E39 to * Select bank bit for B
E38 to E39 Strap up used input
E50 to E5I Set U28 as RANI
E53 to E54 Set U21 as RAM
E56 to E57 Set U14 as RAM
E59 to E60 Set U7 as RAM

* Select bank bit per Section 2.3.2.

2.9.5 48K banked slave memory

16K of memory (from Block-B) will be removed from the MB64 to make jt a
48K only board.

ONNECT VOM NMI

E17 to E18 Enable upper 32K
E21 to E22 Enable lower 32K
JI-3 to Ji-4 Euable memory power
JI-5 to I1-6 Enable MB64 (battery chip select)

, E27 to E28 Enable Bank-A mode
E30 to E31 Enable Bank-B mode
E39 to E40 Set both bank bits the same
E38 to E39 Strap up used input

E38 to * Select bank bit
E35 to E36 Reset Bank-A to OFF
E33 to E34 Reset Bank-B to OFF

* Select bank bit per Section 2.3.2.

Remove U6, U7, 113, U14, U20, U21, U28 and U35 from their sockets. This
will disable the top 16K of memory with the help of Magic Mapping.

J

"* J-13

*--

. . - ."."." - " - ' .. . ' 'z °' " . - -," ' . ." "..,."' .'' • •. . •. . .-. • .. .'-? ,

2.9 .6 .r.4" i;h r , .i f ':

.,CONNECT COMMENT

E17 to E18 Enable upper 32K
E21 to E22 Enable lower 32K
J1-3 to JI-4 Enable memory power
JI-5 to JI-6 Enable MB64 (battery chip select)
E35 to E36 Reset Bank-A LED
E33 to E34 Reset Bank-B LED
E26 to E27 Enable extended addressing (A)

-' . E29 to E30 Enable extended addressing (B)
*El thru E16 Select extended addressing code
E50 to E51 Set U28 as RAM

" E53 to E54 Set U21 as RAM
i- -E56 to E57 Set U14 as RAM

. E59 to E60 Set U7 as RAM

* See Section 2.2 on Extended Addressing.

2.10 SWO OPTION

Some of the S-100 CPUs, and most of the IEEE 696 CPUs, are equipped with
a write status signal 'alled SWO. This signal can be used by the MB64

* to control memory writing operations. If your CPU doesn't have this
signal or the timing on this line is not correct, lie SWO option can be
disabled. be sure to check your CPU for SWO (bus pin 97) and select the
appropriate mode.

@ Enable SWO for writing: Connect E24 to E25.
e Disable SWO for writing: Connect E23 to E24.

RECOMKENDED SETIG

Model CPU Hanufacturer Connect

CBIA 8080 SSM E24 to E25
CB2 Z-80 SSM E24 to E25
SCC Z-80 Cromemco E24 to E25
ZPU Z-80 Cromemco E24 to E25
ZPB Z-80 Northstar E23 to E24

- Z-80 Dynabyte E23 to E24
- 8080 WAMECO E24 to E25
SBC-100 Z-80 SD Systems E23 to E24
ZPU Z-80 TDL E24 to E25

J-14

L

. . -. - ~ ~ * . . . * ... *.

T T

3.0 TOY n? : rz.?ATION

3.1 32K MEMORY SELECT PROM

The selection of 32K bytes of memory is controlled by a 256 x 4 PROM which
replaces several discrete logic ICs by acting as a wemory-mapped truth
table of the logic functions desired. The address lines and chip select
pins of the PROM are used as inputs to the logi(Q function, while the
output pins equal the truth table solution.

The input PROM signals are as follows:

SINP [bus 46] - PROM chip select 2 (E2)
SOUT [bus 451 - PROM chip select I (El)

BANK-A ENABLE = PROM, address A7
BANK-B ENABLE A6
NOT ENABLE-A = " A5
NOT ENABLE-B - A4
MAGIC MAPPING = " " A3
SMEMR [bus pin 471 = " " A2
PHANTOM [bus pin 67] = " Al
PDBIN [bus pin 78] " " AO

BANK-A or BANK-B ENABLE must be at a logic one to activate 32K of memory
* on the 1D64. The NOT ENABLF lines are used to select the lower or upper

32K block of memory within a 64K boundary. The Magic Happing line must be
a logic one to enable a memory read. The PHANTOM line (per the proposed

-.. - IEEE 696 standard) must be a logic one to read from or write into memory.

The output PRON signals are as follows:

32K SELECT-A - PROM dAta 3
32K SELECT-B = " " 2
OUTPUT ENABLE - " " I
READ ENABLE - " 0

The 32K SELECT lines from the PROM are used to control a 4-to-16 decoder
which drives sixteen 2K RAM chips. The OUTPUT ENABLE line from the PROM
goes to the OE pin on each RAM. The READ ENABLE line from the PROM
controls a tri-state buffer to transfer data ftom the selected memory chip
to the data input (Di) bus in the computer.

To select a 32K block of meiory, we need BANK ENABLE and ADDRESS (NOT
ENABLE); therefore:

32K BLOCK-A - BA11K-A ENABLE and not NOT ENABLE-A
- A7A5

32K BLOCK-B = BANK-B ENABLE and not NOT ENABLE-B

= A6"A4

To select one 32K block t1;at does aot conflict with the other 32K block,
both conditions MUST NOT be true. Also, PHANTOM disable must be true to
select anything.

J-15

,..-.-..

32K SELECT-A 03J) - 32K BLOfCK-A and riot 32K flLOCY-11 and PhANTOM
- A7X(A6A)AI

32K SELECT-B 0D2) -31KBLOCK-B and not 32K BLOCK-A and PHIANTOM

-. A6A4 .,5)A

To provide an OUTPUT ENABLE signal to the RAMs, first the CPU must be
performing a memory fetch operation (Sl4ERR) and the 32K must be selected.

OUTPUT ENABLE 01l) - SHEMR and (32K BLOCK-A or 32K BLOCK-B)
- A2*(A7*X3)1G (A6AX4) ~ I

To turn on the tni-state buffer (U43) to read memory, the read strobe
(PDBIN) from the CPU must be true, as well as the Magic Napping control
line.

1ULAD ENABLE (DO) PDBIN and SMEMR and MAGIC and PhANTOM
and (32K BLOCK-A or 32K BLOCK-B)

=AA2'A3'(A7-3) 0 (A6X2 A

With these four equations for the data lines of PROM1, the following
truth table can now be generated for the PROM.

J-16

%......................................

- - r'- .r ' -, .

ADDRESS DATA
(Hex) A7 A6 A5 A4 A3 A2 Al AO D3 D2 DI DO (Uex) COMMENT

0 0 0 0 0 0 0 0 0 1 1 1 1 F No condition met
1 0 0 0 0 0 0 0 1 1 1 1 1 F
2 0 0 0 0 0 0 1 0 1 1 1 1 F
3 0 0 0 0 0 0 1 1 1 1 1 1 F
4 0 0 0 0 0 1 0 0 1 1 1 1 F
.5 0 0 0 0 u 1 0 1 1 1 1 1 F
6 0 0 0 0 0 1 1 0 1 1 11 F
7 0 0 0 0 0 1 1 1 1 1 1 1 F
8 0 0 0 0 1 0 0 0 1 1 1 1 F
9 0 0 0 0 1 0 0 1 1 1 1 1 F
A 0 0 0 0 1 0 1 0 1 1 11 F
B 0 0 0 0 1 0 1 1 1 1 11 F
C 0 0 0 0 1 1 0 0 1 1 1 1 F
D 0 0 0 0 1 1 0 1 1 1 11
E 0 0 0 0 1 1 1 0 1 1 1 1 F
F 0 0 0 0 1 1 1 1 1 11 1 F

10 0 0 0 1 0 0 0 0 1 1 1 1 F
11 0 0 0 1 0 0 I 1 1 1 F
12 0 0 0 1 0 0 1 0 1 1 11 F
13 0 0 0 1 0 0 1 1 1 1 1 1 F
14 0 0 0 1 0 1 0 0 1 1 11 F
15 0 0 0 1 0 1 0 1 1 1 1 1 F

" 16 0 0 0 1 0 1 1 0 1 1 1 1
17 0 0 0 1 0 1 1 1 3 1 F
18 0 0 0 1 1 0 0 0 1 i 1 1 F

q4 19 0 0 0 1 1 0 0 1 1 11 1 F
1A 0 0 0 1 1 0 1 0 1 1 11 F
IB 0 0 0 1 1 0 1 1 1 F
IC 0 0 0 1 1 1 0 0 1 1 11 F
1D 0 00 1 11 01 1 1 11 F
IE 0 0 0 1 1 1 1 0 1 1 1 1 F
iF 0 0 0 1 1 1 11 1 1 1 F

20 0 0 1 0 0 0 0 0 1 1 1 1 F
21 0 0 1 0 0 0 0 1 1 1 1 1 F

22 0 0 1 0 0 0 1 0 1 1 1 1 F
23 0 0 1 0 0 0 1 1 1 1 1 1 F
24 0 0 1 0 0 1 00 1 1 1 1 F
25 0 0 1 0 0 1 0 1 1 1 1 F
26 0 0 1 0 0 1 1 0 1 1 1 1 F
27 0 0 1 0 0 1 1 1 1 1 11 F
28 0 0 1 0 1 0 0 0 1 1 1 1 F
29 0 0 1 0 1 0 0 1 1 1 1 F
2A 0 0 1 0 1 0 1 0 1 1 1 1 F
2B 0 0 1 0 0 1 1 1 1 1 i F
2C 0 0 1 0 1 1 0 0 1 1 1 1 F
2D 0 0 1 0 1 1 0 1 1 1 11 F
2E 0 0 1 0 1 1 1 0 1 1 11 F
2F 0 0 1 0 1 1 1 1 1 1 1 F

J-17

"" ~~~~ ~ ~~~~~~~~~.... '...-..'......-".."',.', ",............ "..."-."".-... '.,-.

idD1LiSS
(Hex 1.7 A " A. A3 a2 -. AO [3 D2 A .,+) oi. &r

* 30 0 0 1 1 0 0 00 1 1 11 F
- 31 0 0 1 1 0 0 01 1 1 11 F

32 0 0 1 1 0 0 1 0 1 1 1 1 F
33 0 0 1 1 0 0 1 1 1 11 1 F
34 0 0 1 1 0 1 0 0 1 1 11 F

35 0 0 1 1 0 1 0 1 1 1 11 F

36 0 0 1 1 0 1 1 0 1 1 11 F

-" 37 0 0 1 1 0 1 1 1 1 11 1 F

38 0 0 1 1 1 0 0 0 1 1 11 F
39 0 0 1 1 1 0 0 1 1 1 1 F
3A 0 0 1 1 1 0 1 0 1 1 11 F
3B 0 0 1 1 0 1 1 1 1 1 F

3C 0 01 1 1 100 1 1 11 F
3D 0 0 1 1 1 1 0 1 1 111 F
3E 0 0 1 1 1 1 1 0 1 1 1 1 F
3F 0 0 1 1 1 1 1 1 1 11 1 F

40 0 1 0 0 0 0 0 0 1 1 1 1 F
41 0 1 0 0 0 0 0 1 1 1 11 F

42 0 1 0 0 0 0 1 0 1 0 1 1 B Write Block-B

- 43 0 1 0 0 0 0 1 1 1 0 1 1 B Write Block-B

44 0 1 0 0 0 1 00 1 1 0 1 1)
9 45 0 1 0 0 0 1 0 1 1 1 0 1 D

46 0 1 0 0 0 1 1 0 1 0 0 1 9 Featly to read B
47 0 1 0 0 0 1 11 1 0 0 1 9 Ready to read B
48 0 1 0 0 1 0 0 0 1 1 1 1 F
49 0 1 0 0 1 0 0 1 1 1 1 1 F
4A 0 1 0 0 1 0 1 0 1 0 1 1 B Write Block-B
4B 0 1 0 0 1 0 1 1 1 0 1 1 B Write Block-B

4C 0 1 0 0 1 0 0 1 1 0 D D
4D 0 1 0 0 1 1 0 1 1 1 0 1 1)
4E 0 1 0 0 1 1 1 0 1 0 0 1 9 Ready to read B
4F 0 1 0 0 1 1 1 1 1 0 0 0 8 Read Block-B

50 0 1 0 1 0 0 0 0 1 1 11 F

51 0 1 0 1 0 0 0 1 1 1 11 F
52 0 1 0 1 0 0 1 0 1 1 1 1 F

53 0 1 0 1 0 0 1 1 1 1 11 F

54 0 1 0 1 0 1 0 0 1 1 11 F
55 0 1 0 1 0 1 0 1 1 111 F
56 0 1 0 1 0 1 1 0 1 1 11 F
57 0 1 0 1 0 1 1 1 1 1 1 1
58 0 1 0 1 1 0 0 0 1 1 1 1 F

59 0 1 0 1 1 0 0 1 1 1 1 1

5A 0 1 0 1 1 0 1 0 1 1 1 1 F
5B 0 1 0 1 1 0 1 1 1 111 F
5C 0 1 0 1 1 1 0 0 1 1 11 F
5D 0 1 0 1 1 1 0 1 1 1 11 F

5E 0 1 0 1 1 1 1 0 1 1 11 F

SF 0 10 11 1 11 1 1 11 F

0 .J-I 2

* -, * * .. % *-, . .
I,...

*~ - *-_-.a-~t.

ADDRESS DATA
(Hex) A7 A6 A5 A A3 A2 Al AD D3 D2 CI DO (Hex) (XZ ff

-60 0 1 1 0 0 0 0 0 1 1 1 1 F
61 0 1 1 0 0 0 0 1 1 1 1 1 F
62 0 1 1 0 0 0 1 0 1 0 1 1 B Write Block-B
63 0 1 1 0 0 0 1 1 1 0 1 1 B Write Block-B

64 0 1 1 0 0 1 0 0 1 1 0 1 D
65 0 1 1 0 0 1 0 1 1 0 1 D
66 0 1 1 0 0 1 1 0 1 0 0 1 9 Ready to read B
67 0 1 1 0 0 1 1 1 1 0 0 1 9 Ready to read B
68 0 1 1 0 1 0 0 0 1 1 1 1 F
69 0 1 1 0 1 0 0 1 1 1 1 F
6A 0 1 1 0 1 0 1 0 1 0 1 1 B Write Block-B
6B 0 1 1 0 1 0 11 1 0 1 1 B Write Block-B

6C 0 1 1 0 1 1 00 1 1 0 1 D
6D 0 1 1 0 1 1 0 1 1 1 0 1 D

6E 0 1 1 0 1 1 1 0 1 0 0 1 9 Ready to read B
6F 0 1 1 0 1 1 1 1 1 0 0 0 8 Read Block-B

70 0 1 1 1 0 0 0 0 1 1 1 1 F
71 0 1 1 1 0 0 0 1 1 1 1 1 F
72 0 1 1 1 0 0 1 0 1 1 1 1 F
73 0 1 1 1 0 0 1 1 1 1 1 1 F
74 0 1 1 1 0 1 0 0 1 1 1 1 F
75 0 1 1 1 0 1 0 1 1 11 F
76 0 1 1 1 0 1 1 0 1 1 1 1 F
77 0 1 1 1 0 1 1 1 1 11 1 F
78 0 1 1 1 1 0 0 0 1 1 1 1 F
79 0 1 1 1 1 0 0 1 1 1 1 1 F
7A 01111010 1111 F
7B 0 1 1 1 1 0 1 1 1 11 1 F
7C 0 1 1 1 1 1 0 0 1 1 1 1 F
7D 01111101 1111 F
7E 01111110 1111 F
7F 0 1 1 1 1 1 1 1 1 11 1 F

80 1 00 00000 1 1 1 1 F
81 1 0 0 0 0 0 0 1 1 1 1 1 F
82 1 0 0 0 0 0 1 0 0 1 1 1 7 Write Block-A
83 1 0 0 0 0 0 1 1 0 1 1 7 Write Block-A
84 1 0 0 0 0 1 0 0 1 1 0 1 D
85 1 0 0 0 0 1 0 1 1 1 0 1 D
86 1 0 0 0 0 1 1 0 0 1 0 1 5 Ready to read A
87 1 0 0 0 0 1 1 1 010 1 5 Ready to read A
88 1 0 0 0 1 0 0 0 1 1 1 1 F
89 1 0 0 0 1 0 0 1 1 1 1 1 F
8A 1 0 0 0 1 0 1 0 0 1 1 1 7 Write Block-A
8B 1 0 0 0 1 0 1 1 0 1 1 1 7 Write Block-A
8C 1 0 0 0 1 1 0 0 i 1 0 1 D
8D 1 0 0 0 1 1 0 1 1 1 0 1 D
BE 1 0 0 0 1 1 1 0 0 1 0 1 5 Ready to read A
8F 1 0 0 0 1 1 1 1 0 1 0 0 4 Read Block-A

J-19

iii f'] - - i , i~ -f' ii-.i li ..i, i '. . ii " . ii " 7 il ' i i 'i- .I i .'i 'i I " i . ; "ii :1 "i" " . . ." -' i i" '' ' . . i" " i ii "'. ' 1 " ' . .

ALDDRESS DlATA
(Hex) A7A6A5 A4A3 A2 AlAD D3 D2 L1DO (Rlex) COMMEU

1 10 01 0 00 0 1 111 F
91 1 001 0 0 01 1 1 11 F
92 1 0 01 00 10 0 11 1 7 Write Block-A
93 1 00 10 0 11 0 1 11 7 Write Block-A
94 10 010 1 00 1 1 01 D
95 1 00 10 1 01 1 1 01 D
96 1 00 1 01 10 0 1 01 5 Ready to read A
97 1 00 10 1 11 0 10 1 5 Ready to read A
98 1 00 11 0 00 1 1 11 F
99 1 00 1 1 001 1 1 11 F
9A 1 00 11 0 10 0 1 11 7 Write Block-A

A9B 1 00 1 1 011 0 1 11 7 Write Block-A
9C 1 00 11 1 00 1 1 01 D
9D 1 00 11 1 01 1 1 01 D
9E 1 00 11 1 10 0 10 1 5 Ready to read A
9F 1 00 11 1 11 0 1 00 4 Read Block-A

AO 1 01 00 0 00 1 1 11 F
Al 1 01 00 0 01 1 1 11 F
A2 1 01 00 0 10 1 1 11 F
A3 1 01 00 0 11 1 11 1 F
A4 1 01 00 1 00 1 111 F

9A5 101 0 0 101 1 1 11 F
A 1 01 00 110 1 1 11 F
A7 1 01 00 1 11 1 1 11 F
A8 1 01 01 0 00 1 1 11 F
A9 1 01 01 0 01 1 1 11 F
AA 1 01 01 0 10 1 1 11 F
AB 1 01 01 0 11 1 1 11 F
AC 1 0 101 1 00 1 1 11 F
AD 1 01 01 1 01 1 1 11 F

-- AE 1 01 01 1 10 1 1 11 F
AF 1 01 01 1 11 1 111 F

BO 1 01 10 0 00 1 1 11 F
11 1 01 1 00 01 1 1 11 F
B2 101 10 0 10 1 1 11 F
B3 1 01 1 00 11 1 111 F
B4 1 01 10 1 00 1 11 1 F
B5 1 01 10 1 01 1 11 1 F
B6 1 01 10 1 10 1 11 1 F
B7 1 01 10 1 11 1 1 11 F
B8 1 01 110 00 1 11 1 F
B9 1 01 11 0 01 1 1 11 F
BA 1 01 11 0 10 1 1 11 F
BB 1 01 11 0 11 1 1 11 F
BC 101 1 11 00 1 1 11 F

*BD 1 01 11 1 01 1 1 11 F
BE 101 1 11 10 1 1 11 F
BF 1 01 11 1 11 1 1 11 F

J-2U

ADDRESS DATA
(Rex) A7 A6 A5 A4 A3 A2 AI A D3 D2 DI DO (Rex) 00MEUT

CO 1 1 0 0 0 0 00 1 1 1 1 F
- Cl 11 0 0 0 0 0 1 1 11 1 F

C2 1 1 0 0 0 0 1 0 1 1 1 1 F
C3 1 1 0 0 0 0 1 1 1 1 1 1 F
C4 I 1 0 0 0 1 0 0 1 1 1 1 F
C5 1 1 0 0 0 1 0 1 1 1 1 1 F
C6 1 1 0 0 0 1 1 0 1 1 1 1 F
C7 I 1 0 0 0 1 1 1 1 11 1 F
C8 1 1 0 0 1 0 0 0 1 1 1 1 F
C9 1 1 0 0 1 0 0 1 1 1 1 F
CA 1 1 0 0 1 0 1 0 1 1 1 1 F
CB 1 0 0 1 0 0 1 1 1 1 1 F
CC 11 0 0 1 1 0 0 1 1 1 1 F
CD 1 1 0 0 1 1 0 1 1 1 1 1 F

CE I 1 0 0 1 1 1 0 1 1 1 1 F
CF 1 1 0 0 1 1 1 1 1 11 1 F

DO 1 1 0 1 0 0 0 0 1 1 1 1 F
Dl 1 1 0 1 0 0 0 1 1 1 1 1 F
D2 1 1 0 1 0 0 1 0 0 1 1 1 7 Write Block-A
D3 1 1 0 1 0 0 1 1 0 1 1 i 7 Write Block-A

D4 1 1 0 1 0 1 0 0 1 1 0 1 D
D5 1 1 0 1 0 1 0 1 1 1 0 1 D
D6 I 1 0 1 0 1 1 0 0 1 0 1 5 Ready to read A
D7 1 1 0 1 0 1 1 1 010 1 5 Ready to read A

, D8 1 1 0 1 1 0 0 0 1 1 1 1 F
D9 1 1 0 1 1 0 0 1 1 1 1 1 F

DA 1 1 0 1 1 0 1 0 0 1 1 1 7 Write Block-A
DB 1 1 0 1 1 0 1 1 0 1 1 1 7 Write lock-A
DC 1 1 0 1 1 1 0 0 1 1 0 1 D
DD 1 1 0 1 1 i 0 1 1 1 0 1 D
DE 1 1 0 1 1 1 1 0 0 1 0 1 5 Ready to read A
DF 1 1 0 1 1 1 1 1 0 10 0 4 Read Block-A

EQ 1 1 1 0 0 0 00 1 1 1 1 F
El 1 1 1 0 0 0 0 1 1 1 1 1 F

E2 1 1 1 0 0 0 1 0 1 0 1 1 B Write Block-B
E3 1 1 1 0 0 0 11 1 0 1 1 B Write Block-B
E4 1 1 1 0 0 1 00 1 1 0 1 D
E5 1 1 1 0 0 1 0 1 1 1 0 1 D
E6 1 1 1 0 0 1 1 0 1 0 0 1 9 Ready to read B
E7 1 1 0 0 1 11 1 0 0 1 9 Ready to read B
E8 1 1 1 0 1 0 0 0 1 1 11 F
E9 I 1 1 0 1 0 0 1 1 1 1 F

EA 1 1 1 0 1 0 1 0 1 0 1 1 B Write Block-B
EB 1 1 0 1 0 1 1 1 0 1 1 B Write Block-B
EC 1 1 1 0 1 1 0 0 1 1 0 1 D
ED 11101101 1101 D

EE I 1 10 1 1 1 0 1 0 0 1 9 Ready to read B
EF 1 1 1 0 1 1 1 1 1 0 0 0 8 Read Block-B

J-21

F-

ADDLSS DATA
(Rex) A7 A6 A5 A4 A3 A Al AO D 2 D D- (Rex) COMMffT

FO 1 1 1 1 0 0 0 0 1 1 1 1 F
SFl 1 1 1 1 0 0 0 1 1 1 1 1 F

F2 11 1 0 0 1 0 1 1 1 1 F
F3 1 1 1 1 0 0 1 1 1 111 F
F4 1 I 1 1 0 1 0 0 1 1 1 1 F
F5 1 1 1 1 0 1 0 1 1 11 F
F6 1 1 1 1 0 1 1 0 1 1 1 1 F
F7 1 I 1 1 0 1 1 1 1 1 1 1 F
F8 11 1 1 1 0 0 0 1 1 1 1 F
F9 1 1 1 1 1 0 0 1 1 1 1 1 F
FA 1 1 1 1 1 0 1 0 1 1 1 1 F
FB 1 1 1 1 1 0 1 1 1 11 1 F

FC 1 1 1 1 1 1 0 0 1 1 1 1 F
FD 111111I I0 i 1 1111 F
FE 1 1 1 1 1 1 10 1 1 1 1 F
FF 1 1 1 1 1 1 1 1 1 1 1 1 F

J-22

. . .* **** ~ *

" ' RPS- 2
• " 'BANK A (I A7 RP7-3

,AS "Z'- 4- cs A32K SELECTA

%- ENABLE A _ r-_I-'Rp7-e A5 P-

EAL8 : 41 73A4 039 tEj----Ci1-P9 32 SELECTRPP 6

MAGIC1 A3 RPT-4

7A I I I OTPUT1
SRU3ZDQPZENABLE

L. PHAN TOM [Al RP T-5

PSNAO DO -(i4--)READ

SINP F46_-- 14C -S2

256 A8 PROM

3.2 MxMO;r ADD1ESS SELECT

Memory n'dress selection is provided by jurapers E17 thru E22. These
jumpers allow the user to select the lower or upper 32K of memory within a
64K boundary by selecting the normal or inverted state of the A15 bus
line. The input pins A4 & A5 must be a logic zero to enable 32K of
memory.

U40

A1 32 6-PT5 U41

PROM

MEMORY ADDRESS SELECT

3.3 2K MEMORY DECODE

After the input conditions are met on the PROM per Section 3.1, one of the
two 327 select lines (D3 or D2) goes low, enabling a 4-Lo-16 decoder IC
(74LS154). The 4-to-16 decoder receives address lines All thru A14 as its
input and therefore will decode down to every 2K memory increment within
one 32K boundary. Each of the 16 outputs of the 74LS154 goes to the chip
select pin of a memory IC within a memory block.

The 4-to-16 decoder has two enabling pins. While one enable pin goes to
32K Select, the other enable pin goes to the battery back-up connector JJ.
J1, pin 5, is used by the battery back-up option to protect the data

within RAM from being changed while on battery power. Without battery
* -"back-up, this pin is normally grounded to enable the 4-to-16 decoder.

J-23

• " '" "" " " " " " ' " "" "" " """""" - ". "" ,t. l l ~ ,- ..i .--.m, ", , -.. , at,.

-0

APT-3 14 I
E2 14 a

D3 " 2 ----- 1

:':'" PROM '10 '

U34 a :)9- TO CS OF EACH

7 - RAM CHIP -

A 12 F33>B

All L A I

F ST2K

2K DECODER ;;A

3.4 MAGIC MAPPING:

Originally incorporated into the MB8A in 1977, the Magic Mapping circuit
allows a socket on the memory board aud its supporting circuitry to be
disabled by simply removing the IC chip. The Magic Mapping circuit
disables the tri-state buffer from driving the data input (DI) bus if the
memory IC is removed. Memory space (in 2K increments) can be made
available for memory mapped video, I/0, disks or ROM boards within the 64K
of memory.

Magic Mapping relies on the assumption that the master CPU board has
external pull-up resistors on the DI lines or the computer system has a
terminated bus. The pull-up resistors on the DI bus will force the bus to
"FF" Hex state, even if no S-100"board is present. Therefore, "FF" does
not have to be transferred from the memory board to the DI bus.

U44 (74LS30) is an "FF" detector on the iIiB64. If an addressed memory chip
puts out any Hex code except FF, then U44 outputs a one which will enable
the read buffer (U43). If "FF" is detectd, the output tri-state buffer
is turned off, allowing any exterkal S-100 board to drive the DI bus.

Magic Mapping allows for an entire 2K memory increment to be available for
other memory boards or smaller areas by filling selected areas of RAM with
"FF" Hex.,

J-24

I

.° ..

16 - r15 6 14
06 UI --- 93,I

14 T 16 3 2 to

04- 91< 014RAM 13n R1-o , 3 z
DATA 03 "-@ - 420D3

D2~J± 41 D12
D1 if 0- I -] 1 7' 1) Oi

O9 1169 5 01

7 LS244

_ 51 61 It 41 31 21

I, 4 4LS30

FF DETECTOR U44

U 4

RP7-6 A3 00 RP7-5

MAGIC MAPPING CIRCUIT

3.5 EXTENDED ADDRESSING

The proposed IEEE 696 standard for the S-100 bus has added 8 additional
address lines, A16 thru A23, for up to 16 megabytes of memory. The MB64
has an on-board 8-bit comparator (U38) which can be set to enable/disable
the memory per the state of the extended address lines. Input lines A6 &
A7 of U41 (PROM) are used to enable or disable a 32K block of memory per
the equations in Section 3.1.

RPS
A23 P4 U38 Q4

1 2
9EI

A18 E

A P3 Q3 L lj: 0)EI5

A2 IP 5 XT1 7E14

A19 5, p AN QNB is F__5 j) E12o

1Eli

U40 U41

ADDRESSPROM

EXTENDED ADDRESS DECU .R

-J-75

0%* .

1-. T -- - -t - M .IT I ,

3.6 BANK SELECT CIRCUIT

The bank select function is driven by I/O port 40 or 41 Hex. This
function is used in memory management schemes to provide multiple layers
of memory, all addressed at the SAKE address space. Each banked memory
board is turned on or off by the memory manager software, for each task to
be executed, as scheduled under time or priority interrupts.

The I/0 address decoder is one 74LS688 (32) comparator. This IC puts out
a negative pulseaevery time PWR, SOUT, and Al thru A7 match the preset
inputs on the other side of this comparator. Due to the lack of suf fi-
cient inputs to U32, AO was not sensed, so the bank port address is 40 Hex
and 41 Hex.

* I "+ 5V

1 U32 It t
7"" ' AT 2Q4 P4 '

A5 Q7> P7 l

To av1te serseecedbi fo contiuous! bakcnto"aflpfo

A3IZ 31 Q5 '+VP51.

/~~'0 '9 S Ei~+l

The bank select circuit is divided in-'o two banks of 32K each. A bit
within the byte sent to 1/0 port 40 Hlex controls the activation of a bank.
To save the user-selected bit for continuous bank control, a flip-flop

(U41) is used for storage. The bit to be stored is selected by a 16-pin
IC header. If the bit sent to the D-inpit of the flip-flop is a one, then
the 32K block is enabled. If the bit sent is a zero, then 32K is
disabled.

On power up in a bank-selected computer system, one memory bank is usually
activated as the master. The flip-flop has been provided with jumper
options to force the 32K block ON or OFF on power-up (POC) or reset.
(NOTE: The proposed IEEE 696 standard requires Reset to be generated when
the POC bus line is low.]

Jumpering E32 to E34 (E35 to E37) connects the computer's reset signal to the
set input or clear input of the bank flip-flop.

4-

J-26

.: i.<: .i ;::: Y : :-. .. ;. " " ' + ' "" " '" + "" ".".".
. . . ;, ". . . " ,' -; '". .":" ": - ' .

m ~T _L L_ L_ .n. .n

E 9__C 40-P.5) J___________

E30 0- 1
U.3 7 0 9 ONi, A6LE

U4-741.174 8 BANK

UIf jumper E32 to E33 (or E36 to E37) is conected, the memory block that

.... flip-flop is controlling becomes a master ba,.k on reset. If jumper E33 to
E34 (or E35 to E36) is connected, the remt signal clears the aQ" output

of the flip-flop and that memory block.

Two bank select indicators are provided on the MB64. Each flip-flop
drives a LED to indicate if one of the 32K bank flip-flops are enabled.

- 3.7 BATTERY BACKUP

The MB64 is provided with a connector labelled JI for an optional battery
backup circuit. This battery option can maintain power to the memory
chips for more than 5 hours, depending on the memory type and manufacturer
used. For further information, please Contact SSM for features and date
of availability.

3.8 BUS INTERFACE

The MB64's memory chips are isolated frow the S-100 bus by buffer ICs
_- (74LS244, 74LS125, etc.) or general logic (74LSC154, 82S129, etc.).

a. Address lines AO thru A7 are buffered by U33 (74LS244).

b. Address lines A$ thru A10 are buffered by U39 (74LS244).
c. Address lines All thru A14 are isolated by U31 & U34 (74LS154).
d. Address line A15 is isolated by U40 (74LS368).
e. Address lines A16 thru A23 are buffered by U38 (74LS688).
f. Status lines SINP and SOUT are isolated by U41 (82S129).
g. The status line for memory read (SMEMR) is isolated by U41 (82S129).
h. The read strobe (PDBIN) is isolated by U41 (82S129).
i. The write strobe (FP') is isolated by U32 & U39 (74LS688 & 74LS125).
j. The read/write disable line (Phantom) is isolated by U4 (82S129).
k. The status line for writing (SWO) is isolaLed by U39 (74LS125).
I. The memory data is read via U43 (74LS244).
m. The memory data is written via U45 (74LS244).

The data buffer used during a read operation (U43) is controlled by the
logic truth table within U41 (82S129) and issued on pin 12. U41, pin 12
will not provide a chip enable to U43 until the SMEMR, PDBIN, PHANTOM,
A15, SINP and SOUT signals are in the correct state (see Section 3.1).

J-27

.~J

-:J

The data buff-- used during a write operi~ion (UJ45) is controlled by the
buffer gate U39 C74LS125). To guarantee L.ISIL Lhe data is still present on
the memory chip when the VE signal goes high, the write line (U39, pin 11)
drives the RAN and U45 directly. (U45 provides 10 nanoseconds or greater
delay before the data becomes invalid at iLie end of a write cycle which meets
the manufacturer's specification of 0 nanoceconds of data hold time.)

J-28

..

.. . -. s -'j-'. - b- - - r-. - - r

4.0 iIEMORY TEST rROGRAX

Simple Memory Test
Written by Andrew Schneider
Modified by Malcolm Wright

Coyright 1977 by SSM

Set "START" to the startig address of
memory to be tested. Set "iEND" to the last
address of memory to be checked.

; The program will stop (:ALT) when complete
or if an error was found. "GORB" (good or
bad) will be set to 00H foz good memory or
to the. byte pattern that would not read or
write correctly into memory. "LAST" is the
location where the last address tested will
be saved. If memory is good, then LAST=MEND.

8000 - BEGIN EQU 8000 ;Start of program
EOOO - START EQU OOOOH ;Beginniug of address
E3FF - MEND EQU 7FFFIR ;Ending address

80u ORG BEGIN
8000 210000 LXI H,START

8003 11FF7F LXI D,MEND /

8006 2B DCX H
8007 23 LOOP: INX H
8008 3E7F MVI A,7FH (,1 i
800A 07 CHECK: RLC
BOOB 77 MOV M,A I I"

80(C BE CMP M
800D C22080 JNZ ERROR ..

8010 B7 ORA A
8011 FAOA80 JM CHECK
8014 7B NOV A,E
8015 BD CMP L
8016 C207 80 JNZ LOOP
8019 7A MOV A,D
801A BC CMP H
801B C20780 JNZ LOOP

801E 3E00 HVI A,0
8020 322780 ERROR: STA GORB ;If using an IMSAI front panel

;replace with CHA
OUT OFFH

;to display byte on front panel.
8023 222880 SHLD LAST
8026 76 ULT
8027 00 GORB: DB 0
8028 0000 LAST: DW 0
802A END

J-29

..r.,r.,, +.. ~~~~~~.................. •.-............. ,........ ... ,,.... . '.i. ... ,. . .. ,....... ,
., . _, , . , ," " -< " -, " "A.. +. . l a2.Dl"l, i ~ , , , i i r,.iP, , ..+-.<+JJ m. .,,-,... +,, -.-,.

Some checkout of the MB64 can be done by just watching the LEDs on the
board.

5.1 BANK SELECT TEST

If you have another memory board which will run your system, you can

temporarily disable the M4B64 to test the banking circuitry.

a. Remove jumpers from E17 to E22.

b. Make a test header for E38 to E48.

Connect E40 to E48 (BitO)
Connect B39 to E47 (Biti)

* Connect E38 to E46 (Bit2)

c. Run the following routine (clear BANKS):

ORG 10011
*100 AF XRA A ;SET BANK BYTE-0

101 D3,40 OUT 4011 SEND BYTE
*103 C3,00,00 JMP 0 ;GO BACK TO CP/M

All LEDs of the MB64 should not be lit. This checks both halves of
U42 for a zero.

d. Pow run:
ORG 10011

100 3E,01 MVI A,l SET BANK BYTE-'1
102 D3,40 OUT 40H1 SEND BYTE
104 C3,00,00 JMP 0 ;GO BACK TO CP/M

Only the LED labelled ENKA should be lit. This checks one-half of
U42.

e.- Now run:
ORG 10011

100 3E,02 MVI A,2 ; SET BANK BYTE-2
102 D3,40 OUT 4011 ; SEND BYLL
104 C3,00,00 JHP 0 ; GO BACK TO CP/M

Oniy Lhe LED labelled BNKB should be lit. This checks the other half
* of U42 and one input of U37.

f. Now run:
ORG 10011

100 3E,04 MVI A,4 ;SET BANK BYTE-4
102 D3,40 OUT 4011 SEND BYTE

S104 C3,00,00 JMP 0 ;GO BACK TO CP/M

Only the LED labelled BNKB should be lit. The checks the other input
of U37.

* J-30

ORG iiSuh ; SLL, , BANK
100 3E,08 MVI A,8 ; SET LANK BYTE=8

. 102 D3,40 OUT 4011 ; SEND BYTE
104 C3,00,00 JMP 0 ; GO BACK TO CP/M

No LEDs on the 1B64 should be lit.

5.2 BANK PRESET

If you have another memory board which will run your system, you cal

temporarily disable the 14B64 to Lest the banking circuitry.

a. Remove jumpers from E17 to E22.

b. Install jumpers E35 to E36 and E33 to E34.

c. Push computer Reset. (DON'T LET TMe SYSTEM BOOT.)

No LEDs on the MB64 should be lit. This tests the reset inputs of
U42.

d. Install jumpers at E36 to E37 and E32 wo E33 now.

e. Push computer Reset.

Both LEDs on the 1IB64 labelled BNYl & B1KB should be lit. This tests
the set inputs of U42.

f. Install jumpers at E36 to E37 and E23 to E34.

g. Push computer Reset.

One LED on the MB64 labelled BNKA aiould be lit. This tests that the
set/reset inputs are not shorted between the halves of U42.

5.3 MEMORY ADDRFSSING

If the MB64 is set up in one of the many standard configurations indicated
in Section 2.9, the LED's ENA or ENB should be flashing dimly as the
computer accesses the board. If there ate to jumpers on E17 thru E22, the
MB64 cannot be read.

By enabling half of the MB64 (32K), it should be possible to run user-
defined memory tests. Jumper E18 to V ' to test memory block B as the
first 32K and leave E21 open. Jumper E21 to E22 to test memory block A as
the first 32K an', leave E18 open.

J-31

Ms " . . - *

_ ,_ '-' ,'-',.. " .-'"*-*~. .' .- •.. .. .-. ,. . .'.,.. ' . . .
j, .- .. , ,,.. . .' , .: .. ,. , .. •........ ,.... ,.......-..... ,.....,....

SSM Microcomputer Products, Inc. warrants its products to be free from
defects in materials and/or workmanship for a period of ninety (90) days for
kits and one (I year for factory assembied boards. In the event of
malfunction or other indication of failure attributable directly to faulty
workmanship and/or material, then, upon return of the product (postage paid)
to SSM at 2190 Paragon Drive, San Jose, CA 95131, "Attention: Warranty
Claims Department", SSM will, at its option, rcpair or replace the defective
part or parts to restore said product to proper operating condition. All
such repairs and/or replacements shall be reiidered by SSM without charge for
parts or labor when the product is returned .'iLhiu the specified pti od of
the date of purchase. This warranty applies only to the original purchaser.

This warranty will not cover the failure ui SSM products which at the
discretion of SS shall have resulted fron, accident, abuse, negligence,
alteration, or misapplication of the product. While every effort has been
made to provide clear and accurate technical information on the application
of SSt products, SSM assumes no liability in any events which may arise from
the use of said technical information.

This warranty is in lieu of all other warranties, expressed or implied,
including warranties of mercantability and fitness for use. In no event
will SSM be liable for incidental and consequential damages arising from or
in any way connected with the use of its products. Some states do not allow
the exclusion or limitation of incidental or consequential damages, so the
above limitation or exclusion may not apply to you.

IMPORTANT: Proof of purchase is necessary for products returned for repair
under warranty. Before returning any product, please call our Customer
Service Department for a return autlbrization number.

J-32

0i

; . .5....

A . t .

IL a I a

4, 0

10

go

I* ILII

4 a4K

a 445

ox
2 2

0t

Ii001(
I-'- 4

1-0 V'4

J-33

sto

VC:
cc

c I

1c:

ocm

S&I

ocl <
CLI

wu

:02

V)C

J-34

LOG ; ~ C
mc co, m

anU.

OD m m r

co W, mC
D(D

Y--

0 IS uj 4

. + +

uJ

ID C\ C3

(nrn

< m)

Oj ~ '5 '5J-3',

32 U1-U30, 35, 36 ID116116P 2K X CHI0S Static RAM (150 us)
2 U31I, 34 74LS154
2 U32, 38 74LS688 8-bit cowpaxrator
3 U33, 43, 45 74LS244
1 U39 74LS125
1 U40 74LS368
1 IJ41 82S129 256 x 4bipolar PROM (warked MR64-LE)
1 U42 74LS74
1 U44 74LS30

1 1U37 74LS32
I VRI 7805 +5V vultaige regulator

RES ISTORS

1 RI 10K oh-n 1/4W 5% (biowi, bla&., orange)
5 RPI, 2, 3, 4, 6 2.7Y% oluaj 10-pin SIPf resistor network
1 RI'S 4.7K olin 10-pin S.1,1 revistor network
1 RI'S 2.7K ohmn 8-pin Sli' resistor network
I RP7 1K ohm S-pin SIP rebistor network

CAPACITORS

4 Cl, 3, 13, 14 4.7 uf DIP Zzzntaumn
27 2, 4-10, 12, 15-32 .1 uf monoil;jLic capacitor

DIODES

CRI-4 LED Dialig.. 555-2007

SOCKETS CONNECT R

4 14-pin sockets 9 3 A I header strips
3 16-pin sockets 1 6 x I header strip
5 20-pin sockets 1 5 x 2 header strip

34 24-pin sockets 1 8 x 2 header strip

11A. ARE

*1 #6 hardware set
1 Small heatsink
2 Card ejectors

*19 Mini-juwpers
1 MB64 PC board
I MB64 manual

1 Warranty card

I 16-pin IC header

L 13

C~ - . - 1 7WW' r -w-r

2048 X 8 BIT HIGH 152EfED' 5 .iTIC C MOS RAM

* . URES.

0 Single 5V Supply and High Density 24 Pin Package
* High Spieed Fast Access Time 12?Ois'1 S0ns.'2 00 maxi

& Low Power Standby and 1OU.W typ ladr
Low Powei Operation ilirriWl

tN (Opeiatlin INDUJSTRIAL STANDARD-

- Col - ly Sialic RAM. No clock or I rirrig Strobe Re~i..... 24 pin (0.6 width)

- Uirecty I I L Curnpatible All Input wid Uuitpuit

9 Pin Out Coorpatible with) Standard 16K EPROM MASK ROiM
* Equal Access and Cycle Time

0 FUNCTIONAL BLOCK DIAGRAM

(Ro * e.-.r 5 1 .(OP 24)

Decoder 1 ;i8, 128 N PIN ARRANGEMENT

-7:7-A 724 VCC

DInput ~ ir Di ni Ab[1 2 A9

A4LI2]W
I' -. - A3I 'lOF.-

A7 At I f c

'0 0-__ _ _ AO[IOk

- E o. __ _--- _ . 110.11_t1" t4j1 0 5

GNDL{ A t
11i04

N ABSOLUTE MAXIMU'. '.ATINGS

Voltage on Ari Vin ReIz;rve to G NL) 7~ o4 i. V

Operatillg 1elipelatuie ~..n*
Storage Temperatute 7, 5 ~
Jemrperaturc Under Bias - 0 to ;4 S

Powe4.r D issipatiniI)

N TRUTH TABLE

CS OJF W E, Mode ~ V Cu~t, at ar Ref Cvstc

It X X] Not Sciecteu. /Na. IItigh I.

I. I. If Read 01- Rh. eadt(s" No I

* I ILI Write j II Write Cycle Nio 1:

I. I Write [l),Y~ik i e C cle Nio 2

NOTE The specificaiion,; of this device are subject to change without notice. Please contact your rirarrist
H-itachi's Sales Office regarding specifications

.J-37

d

III RECOMMENDED DC OPERATING CONDITIONS llr("- I a l0'L)

*" ". '?+".Parameter Ssmnbol Milt Ihp MAX I i ..,

Supp b Voltage
4.5 ' 5 5. V

Input ligh (logic I) Vohage /u 2.2 - 5 - 60 * i- I
"' +-- -- 1_ lsel vidlh Sll S n: DC(

Input Lo, (logic 0) Voltage VI 0-1.0 1, nu _ . ,, ...un i ,V

* DC AND OPERATING CHARACTERISTICS ((-- Li 70'C, I 5V t 10 .'; .6\ 1) l\

Parameter Symbol V III i diii o -"
Mi Nn' I p Md MiIAXpMa

Input .cakage Current 11111 Ill ,A ,, 0 10 1.. I_° LCl t W, ,, , u -
Output Leakage Current I 10ol ,uA ,,,, , 1 ,A 4.

(pc;ating ower Supply 4'7 i,.

C(uilrenl. 1 1, _ _,_A_.__,_

) rlatu g Pover Supply 35 1ii 1,,, r s I,, - II
irrent--I D - -- -''--. -l

'+'

Acrage Opera ing (.urrerW 4 4j) i 3s 1 7 -it',- -

Standby Power Supply 5 15 5 I5 [inA (S I /
Current: DC /so 5 15. 5, 1 Y C

(' I, - 12V

i ! AS- ndb.urr erl: Supply /(a8 I 1.102 2 (1.02 2 mA till' r." I, - fV (2V o:

Outpul Low, Voltage 1,01 *0.4 ''04 I I,iA

Output IHigh Voltage I',, 2.4 24 I I mA

NOTES 1 Typical limits are at Vcc 5 OV. Ta - 25^C and specified loading
2 Reference Only
3 HM6116P-2 I(/L 4 OmA, HM6116P-3 HMG)1GP 4 lt -- 2 lAili

* CAPACITANCEt 25C. f t1.0 MII)

Parameter Synihiil Isp '5ia x 1111l 011(11ti1d i\iiii Nte%

Inpul Capacitance 5, . 3 1 .I I ttV

Input Output Capacitance -, -.5 7 P1 1 (IV

NOTE 1 This parameler is sampled and not 100o% tested.

0 AC TEST CONDITIONS
Input pulse levels: 0 8V to 2 4V
Input rise and fall times: 10 ns
Input and output timing reference levels 1 5V

Output load: I TTL Gale aid C, lIUilpF

* Including scope & jig)

j-38

AS

i- .o . -. *-* *

- . *°. . 4 .

U AC CHARACTERISTICS (Ta 00C to 70*C, V, 5V t 10r'c unless iu it: At rotled
*READ CYCLE

)IM6I 161'-!) 1 N16'l lP.3 11 MfI lbI'-4
Paiameter SymbolM

Redd Cycle Time 120 150 200)fl

Adtdre%s Access Time 144 120 ISO 200 ns

C hipSelect Access Time 4(S 120 ISO 200) n-.

Chip Selection to Output in Low Z It 10 15 1S5i

Output Enable to output Valid to, 8 100 120 n %

OJuiput Enable to Output in Low Z t. 10 I5 15 n%~

fhip [Dcselection to Output ini Iigh Z IH ,I 0 4U~ -) so-5 0 60 11%

()uiput Disable to Output in High Z 10Hz 0s0o 5 0 64) rn

Output Ifoid from Address Change (oil 10 lnISfs

0 TIMING WAVEFOR-M OF READ CYCLE NO. 1I.s

* Address R

IAA

_________AC

Dout tcLz

8 TIWNG WAVEFORM Of READ CYCLE HO0. 21 z -

Address

A

Dout _

J-39

8 TIMING WAVEFORM OF READ CYCLE H~O. 3' 3..

Dout

NOTES: 1. WE is High for Read Cycle.
2. Device is continuously selected. CS= i
3. Address Valid prior to or coincideint with CS transition Low.
4 When CS is Low, the address input mnust not be in the high impedance state

*WRITE CYCLE

Parameter Syimbol -_4 ~ L i' II~~ ---t. -I -U~ II I fill
Mil MNax Mil Max Miili M1 ix

Write Cycle Iiic120 1 501 I 21)

-Chip Selection to End of Wtite 70 -. 90 I120

Address Valid to End of Wijte 1 4 .6 1015 1 14

Address Set Up Timec 20 -20 20 201

-Write Recovery Time tf?5 10 Il i0

Output Disable to Output in hfigh Z (,If/___ 0 41 l 50 60 n,)

W~rite to Output in High Z 0 51) 00 60 I 1 i

Data to Write I ime Overlap 111 3Sf___ 40 _---

Data Hfold from W~rite Time 5 1nu:

Output Active from End oWrite 5 10 M t

* TIMING WAVEFORM OF WRITE CYCLE NO. 11

Address

131

0 E.

0."1

J--

f0 TIMING WAVEFORM OF WRITE CYCLE NO. 21''

SWe

Addi es

Din

NOTES 1 WE must be high during all address transitions.

2 A write occurs during the overlap (twP1 of a low CS and a low WE.
3 IwA is measured from the earlier of CS or WE going high to the end of Nrile cycle

4 During ktis period. If pins are in the Output state SID that the input iSgi~al to it phase to the outputs must not be

applied
5, if the CS low transition occurs simultaneously with the WE low transitiions or after the WE transition. output remain in a

high impedance state
6 OE is continuously low (OE = Vill
7 N~., is the same phase of write data of this write cycle
8 0,, is the read data of next address
9 If CS is low during this period. I1O pins are in the output state Theoi the dita input signals of opposite phase to the

outputs must not be applied to them

J-41

S.. . 7.., - . * . * '. -2

6~ (74LS2-

A3 1 5

529 2 61 T 3 A5

A6 S 3711 '

2222,

13-1 AA

I' I '-

-, 2~ AL6AAI(~A4 NMIR AA

A93 3 L4 61
T3-LN125) 3 Ai ~N~A l JJ U dI

A1. 37 . A3.* .
E.. . r. . - A2.-..-. -

4:,F7 J1 t.' U.

U31 (7'4L'0t514) VHAT 1
-i LA

5 6 7 Q 9 W 9 t o1 i t s

~~J~~R AP-*10;.

CS C S C S CS CS CS c s Ci -S C,
u u 0 2 U?3 U S uf602 ulO Ul? U.9 1,2 W16 asu

,2-.)

U19~~. 2 ~ 1I8U) U ,4~~ ,.
7

1

2. 15 D e

12 -

079 1793

1) 1 1 c

U-2 132 U' ~ ~~0 10.5 77 6i z F__ _ _ _ _ _ _ _ _ _ A__ _ _ _ _ _ _ _

5- 12 8 T DO,__

Ir A V1

04'0
12 1 R_6_1_

13 E 38

f 13

Ir. PIN IC yEC
- L T 7 1! 3

'24V

u~ 41 4

9 0Ij~

(4) C U2P,2 114, ND (UNEPAIN3 21

- - - ..3PJ.~iJmw4~~L CiJ.)IUU~dI5
sv~

-- 7

16 - 4 9V0TiiE "

'5 u UL43 96V9 1

7R 0.17

S 1040016

15 9 4 6 e o cc

9
92t > 12 14 Ok

4 , 4 4) 1
545

41 99

926 f9 M

)994

9., 1

90 90 007 (

15 T 5 UL5 f 5we(D0

is(42

N9 3 6 f9 C

9.~ -i2 a__-_-_-_-_-__3_OF__C___

. 2

12 12 q ,1 2

A E.%C C44-

Or.. PIN IC(T HEEEDEE

E24_ON * i _O.

r f,3-. A '

41,.~

3SN~~~~~d ~ 7 .L'IP TM3O 11E TO~d

INTRODUC -."1ON

The Imaginator is an intelligent, high efficency :i(rsolution (504 by 2417 pixel)
graphics retrofit unit for your I leath,'Zenith liZ 1; j imiinal and IVIZ-89 computer.

The Imaginator has its own onboard microcomp-ulci Iperformi graphics processing in.
dependent of the host computer. T]his reduces L~iel ni: en placed onl the host processor
and therefore improves execution speed.

A 128 character communications buffer further inproves execution speedl. This buffer
permits the terminal and the host computer to po.-foinl their tasks asynchronously.

A graphics command may be entered by typing on tiitv keyboard when the terminal is
OF-LINE or it may be sent via RS-232C from tlllw -e. omue hen the terminal is

ON-LINE.

The Imaginator's transparent operation leaves z,!, ul~terrauinal's normal escape func-
tions intact. The terminal's nornial alphanurneicz. L 12 u1'LillY independent of the Im-
aginator's graphics. The two displays can be ovi on oiw another and may be in-
dividually altered under software control. B~oth i' ercand graphics images can
be created in memory and restrained Afi-om being ' -eLI on the screcen. Once created
they can be displayed instantaneously-. Alternatiivi ' Oie hnmages may be displayed as
they are created.

The graphics command processor (GClI) can be imiveled to accept commands in either
ASCII or BINARY format. ASCII m ode has the aoviintage of easy user imiplenlenta-
tion of the graphics command language. All of the commriands canl be directly output by
high level language programs which are executed i.-- 0w host computer (e.g., PL/I, FOR-
TAN, PASCAL, BASIC, and of course ASSEMBL'!;Y languages). Standard, off-the-
shelf, interpreters and compilers are all that are retioro-d (those languages need not have
any special graphics instructions). No miachtine lio' driver programs are required.

The BINARY mode has the advantage of high e,;i, ic A iminimum of information
must be sent to specify an operat~r Again, no sl~fcidjitpirpreters or compilers; are re-
quired but machine language drivers ar e suggestek (eci hese are nut required) for effi-

* ciency.

An additional memory-mapped soclwt is provided for minory expansion. Uip to 16K of
E/P/HOM can be mounted and addressed by the GCI1 , or- SK of l-/P/JM and 8K of R!WN
11AM can be used. Custom programns can be doixiist.aded fiorn the host computer into

* this memory for fast independent execution.

I~~ n7%4* C

2

T 1 7"

EnterGraphicsMode
MoveTo (X,Y)
PointAt (X,Y)
LineTo (X,Y)
AreaTo (X,Y)
PriLineStyle (Z)

30 Unique styles
Sec LineStyle (Z)

30 Unique styles
LineType (Z)

On
Off
Complement
Read Bit
Toggle to Alternate LineStyle at Boundzr,.y L
Read Byte

DisplayToggle (Z)
Enable/Disable Graphics
Enable/Disable Alphanumerics
Erase Graphics

4 or any of the eight combinations
BringlnProgram (ZQ,Z...Z127)
JumpToProgramn
Ex i Graph icsM ode

Cle!---and Codunics, Inc. reserves the right to dV i---iiue products and to change
spec .ions at any time without incurring any Oligition to incorporate new features
in products previously sold.

K- 2

HOST CGMMUN- .ATIONS
REQUmiEY -ZNTS

When operating at high baud rates, the graphics ter- The otA~i Zype of UARIT has a software flag that
minal will generally lag beo' Ite host Lu,,,,,Ut if reprc-,v.;L. Iie Clear To Send signal. Normally, the
asked to execut P a succession of commands with loug compU e .o,, e orating system's lasic Input/Output
execution times (e.g., Erase, AreaTo, and LineTa Systii, '10S) is responsible for interfacing with the
commands). The Graphics Command Processor seria ; (, hardware. Generally. the BIOS will check
(GCP) will set the Request To Send RS-232C line to see ;',- I, transmitter is ready (TxltDY) before
false when the terninal's input communications Luf- loadi, (!,JA ll'wit h a character to transmit to the
fer is net. ly full, preventing a loss of data resulting terndi, d. ','o add hardware handshaking, simply

fI fron a buffer overflow. (The terminal's bell will t;ne modilv ji, iB10S to check tho Clear To Send flag
to indicate a loss of data.) The GCP will reseL the Re- also. "'i!.., make sure that Txlt)Y AND Clear To
quest To Send line true when the buffer is ready 4o Send .,.. ,,l true before loading the UART with a
receive additional data. new ".,,: c i to transmit.

Therefore, it is important, that the host conpter or Without this hardware handshaking. it is the pro.
o - MODEM is configured to respond to this sig,;al. (''he gran,;i,., '. responsiblit y to add software timing

terminal n: -Is no modification because it is delay., i.:;,vent a buffer overflow.
manufactured with hardware handshaking capabii-
ities.) A true RS-232C configuration will work finie, Ilarv.'a, . .iandshaking will in no way detrimentally
but often the typical RS-232C's handshaking pot- effect Ll' ,,-ration of aiiy of your existing programs.
tions are incomplete. Pin 4 of the 25-pin "D'" coniec- Software haadshaking is still present when running
tor on the b',k pant of the terminal is the Requcst the terii,;al in its standard alphanumeric mode.

. To Send line (d.,ed as Clear To Send at the corn- Assui;g that the process executing in the host
p", end). A physical wire must, connect the ter- comput.i understands ctri-S (stop transmitter) and
minal's pin 4 with the computer's (MODEM's) pin A. ctrl-Q .. t transmitter), it is possible to suspend

graphic. I);*gram output by typing a ctrl-S on the
The UARTs used in the host's RS-232C serial ports keybou, d, v. hen the terminal is on line.
fall in two catagories. Some UARTs, such as the IN-
TEL P251 Universal Synchronous / Asyncronous H~e- The (;C.' ,;up ,orts only one directional hardware
ceiverr'ransnmitter, respond directly to the Clear To hands l,.ii,, It. will send signals to control the
Send signal. A high or low on the Clear To Send line host's ,,": -imnnmel transmitterbut will not respond
with this type of UART will electronically disable or to sigualai Sent to the terminal's serial channel
enable transmissions This type of UART requires no trans,,il: t. froi the host.
further modifications.

K-3

....-....-...: ..: , ..-.-. .: .., , ',, , .., , , " -, -.,. ..-,.. ., ... , .. , ,," ...- -- .., : , . , -: .., -,. . -..

WELCOLL?&i

Welcome t~o the field of computer gi 'ylis. The ii.nd is the greatest known
graphics processor in existancc. Thoughts can be in! ~iI conveyed by meanso (ia pic-
ture. And in this time of information uphbeaval g sis needed more than ever to

- . ~~enable one to assimilate it all. As a result cort(. lis is one of the fastest grow-
iiig disciplines in computer science.

Try typing in and executing (lie following demonrltrim iiii rograms. (We are a,;su mming

that you have access to a BASIC ijiterpieter or cuin~Iei .)

* .Note that the Inraginator is assumed to lie installh'! i . torniinal that is serving a- the

* console.

In case of error. I f nothing appears to Lappen or sw(;i very 5!rangv liapw orweC
* . you have typed the RU N command give the terimiii. hai dware iwlet (right -SHIFT

RESET) followed by a ctrl-C (or whatever comm;,..d .;programn executioni in ' ur
particular version of BASIC). Type Ll';Tan-d 2.2. cck (lie pm ttram for typinig
errors.

Enter at,d run this prograin fitrt

DEMONSTRATION 1.

00010 DEFINT XY
00020 PRINT CHR$(27);"1"
00030 PRINT l10,N255,D3"
00040 PRINT "M";0;125
00050 FOR X =0 TO 500 STEP 2
00060 Y = 100' SIN(X1 13.27) + 125
00'070 PRINT "L";X;Y
00080 NEXT X
00090 PRINT "D6,E"
00100 STOP

[K-4

.......

6,

* 1 ~ier&'ither one.

DEMONSTRATION 2.
00010 DEFINTA-Z
00020 PRINT CHR$(27);'1"
00030 PRINT "D3,12,N255"

- 00040 FORJ=1TO10
00050 X =251
00060 Y=126
00070 PRIM "'P';X;Y
00080 FORI=0TO80STEP8
00090 X=250-1
00100 Y = 125
00110 PRINT 'L;X;Y
00120 X=254
00130 Y=121 I
00140 PRINT "L";X;Y
00150 X=258+I
00160 Y=125
00170 PRINT 'L";X;Y
00180 X=250
00190 Y= 133+I
00200 PRINT "L";X;Y
00210 NEXT I
00220 NEXTJ
00230 PRINT "06,E"
00240 STOP

Too siirple? Try thls one if you L.ave some time.

This program requires the ;, ,3t computer to caIcL,.Ato over 30,000 coordinates so it
takes quite a while to complete. SL' ,hi.- prograi., . ,ax, read the rest of the User's

DEMONSTRATION 3.

00010 D 7iT F,I,L,N,O,X,Y
00020 DIM L(302)
00030 PRINT CHIR5(27;I1 , .,, 0,M0,0 . 7,1
00040 FORI=0TO301
00050 L(l) = 0
00060 NEXT I
00070 PRINT "P050023"
00080 OY=23
00090 OX =50
00100 FORY=OTO 100
00110 FOR X=0 T0300
00120 ZX=(X150)'(X150)/1790.5
00130 ZY =(Y.50)*(Y50)/199
00140 Z = COS(ZX + ZY)/(SIN((ZX + ZY + .48)/82,
00150 NX=X+Y+50
00160 NY=Y+Z +20
00170 IF F =1 THEN PRINT FM,X,YF (0 , CO 200

00100 IF NY > = L(X + 1) THEN PRINT '".Q)",O,'Y;"L";NX;NY: GOTO 200
00190 IF NY<=L(X+ 1)THEN L(X)= L(. - 1): Gr10210
00200 L(X) = NY
00210 OX=NX
00220 OY=NY
00230 NEXT X
00240 F = I
00250 NEXT Y
00260 PRINT "D6,E"
00270 STOP

K-06

-*** r* . . . -•.

* C_* *

G- E i-ER ,L

GENER:,

COMPUTEiR GiIAPir,.C.S R..A3-TC' by 2 w7 e user accessible and displayed). The
positive .-. axis (horizontal axis) originates at the left

This is an introduction to the general concept:° of of the .zccn and terminates at the right. The
computer graphics for tthose who Iay be unDf~iniar posit) e Y a,,is (vertical axis) originates at the bot-

with the field. Basically, a graphics terminai in Its torn o, !Ji, sci e n and ends at the top. Therefore, the
simphst form need only execute two conijinand: origin (0,0) is located at the lower left of the screen.
MoveTo(X,Y) and LineTu(X,Y). A superseL of com- Since the aiplanumeric screen is 80 characters wide
mands can be formed from these two primitives, and the giaphics screen is 63 ('haracters wide, the

graphics :scieen's left starts at the alphanumeric's
Consider for the moment a hardcopy XY ploter. Tile 9th clwiactvr Position.
MoveTo(X,.Y,) command in this case will lift tbe pen
off the paper and move it Lo the absolute cooi-dinete To viI te 1)it e graphics screen, e1aIle the 25th

(X,.Y,). The LineTolX 2 ,Y,) command will diop the line, E;C x I (ESC [1 h if in ANSI mode).
(. pen onto the paper and move it in a straight line to Whn the te iiuial is reset, either whe powered up. a

the r' olute coordinate (X,,Y,) (i.e., it would draw a eo
b lined ieset. right SHIFT-RESET foor a softwarereset U&C z (ESC (z if in ANSI mude the terminal

In a CHT style graphics terminal the comiands will pcrforn; as though it %ere uneodified. It will ex-
would be executed in a similar manner. The ecuteallvjftlieescapefunctionsitdid [wforetheaddi.
MoveTo(X,,Y,) corrimand will move a virtual pointer Lion of the Imaginator-the functiinal existence of
to the absolute screen coordinate (X,,Y,). Nothing is the hniginator is transparent to the user. (At this
written or the screen. The LiheT(c',Y,) conimmid time the Li a hic's video RIAM will be cleared, and the
writes a s-~ ,ight :ie on the screen -:n the, -lm.e line t: ie will be ON; the primary line style will be
coordinate tX1.Y,) to the absoh' , dir.ate ,Aj solid, the secondary line style will be blank, and the
by turning on the appropriate p;xels (picture ele- vir i ip er will be assigned as (0,0)
ments). Almost any geometrical shape can be created
by a ,quence of MoveTo and '. ,eTo commands o inU. ,, ' .e graphics command processor ((;CP).
(e.g., a circle can be approximated by a many sided an L;ie, rajtlhicMuoe, escape sequenc , is re-
polygon). Several other primitive utility commands quire(!. (\\he :raphicsw "Enter(;r~iphics lihle is
are convenient, such as sone means to erase the ref(,, :, ill this lIlmnu.l it should ie connot (S a, a
screen and a command to reinitialize the graphics referei.ce t o tli capabilities of the llniaginator, iot
ternminal. To take some of the burden from the ap- the 33 ;,,ecial symbols stored in the terminal's
plica Lions programmer, this priimitive insLru,' * o charaJ,-k scteeator.)
is usually expanded.

The GCP cn be invoked to a,'cept comniand in
NFeither I.l ieh, or as seven bit binary w-ordlIMAGINATOR SPECIFICS) ~ r.

i(,lNAi"V lllod+) l ith ikins, of eacli tonmanl w ill
The graphics screen memory i, composed of 11072 be acco: pnAiid by a functional desCription.* K bit arranged in a 512 by 256 array (although o:l]v 504

K-7

- -

L -';.i.;.,:'m ;. ". . .'" . ;" ' " .. ." "'. . ." " "

A command may be ettered either by typiing on the
keyboard when the terminal is OFF LINE or it may
be sent via RS-232C from the host computer when

- - the terminal is ON LINE.

There is no good way to abort a command midway
(e.g.. delete and backspace won't erase a command).
Obviously, a keyboard reset right SHIFT-RESET is
one way to clear a half-created command, but is
rather drastic. The GCP expects to receive com-
mands and data in certain fixed sequences; once a
command sequence is started it must be completed.

*K54I

".

* - -. rr r -- . .. % Y n •~ur~ *. .r.gr *' - * s°'- v - -, r . - ' '-_*Tr2t w

COMMAND FORM AND
FUNCTION, 2ASCII

ASCII COMMAND ,. .ATS

A complo.te description of the irm and function of c.h romnand follows.

Upper case characters'A,B,C,D.E.IGJI,J,K,L,M,N,' .,P represent commands (some
of these are unassigned).

X representS the 6b oljtdhi~rizoatal coo, diiiati" It rni!-. be Pan integer between 0 and
999 inclusively, although it will Ive truncaLed to 5 3 i:.,,ar than 503.

Y meprei is the absolutovertical coordinate: It mrnv' I ;' -u integer between 0 and 999
inclusively, afthough it will be truncatc-d to 246 if ,.. ei that 246.

Z repre~ients an bperiind; It musL be an integer betx~c. P and 999 inclusively.

[opt. deliim represents ai optional dclindter. A delimi ', e-e is not required but may be
included. If included.it may be any number of ASV!i characters exceptthe charac-
ters 0,1,2,3,4,5,6,7,e,

"de[imi represcnts a,' : miiniter. A delimiter here is mnandi ry unless three consecutive
' .-aumels preceed ira delimiter is automatically assucd after a three digit number; ad-
ditional delimiters are opt onr." The deliiter may 71 ;%y ASCII character except
0,1.2,3,4,5,6,7,8,9.

•~~ ---

| o

A bV '.IT.--*,~~!~2 ~ WW2 ~ ~ ~ V * . .

12

It will be assumed in the rem-iin-l1-r of this v ' thaL the language BASIC is
understood by the reader. However. unly the mo,, . udinenitary of BASIC commandsI
will be used to prevent undue confusion to a novice.

The following examples illustrate a typical comwn:-ad formiat:

A Poi,,tAt command: Plopt. deli.i x Idel,. ~dlIi .~cetdi AI s

PRINT "P";X;Y The space will serve as th,: d'4,imiiter.

or

PIT"P',X,Y The tab will serve as the dellimnir. (':',te that in some BASICs a
tab may be represented as a serics of spaces. This format would
then be in,,,-cient.)

or

PR;NT "P" The carriage return/line feod --i,'1!;erve as the delimiter.
PRINT X
PRINT Y

or or

If X and Y are constants such as X=25 and Y=39

PMINT "P";25;39 The space will again serve tiedelimiter.

or

-' FiJNT "P025039" The leadin& zeros create t~r'I tnumbers so the delimiter is
automatically iserte.

'KU-1

EnterGraphics~lode, ASCII

Command formu: ESC I

Command function:

This command signals the GCP to interpret all future information as graphics comn-
rnand/data, -No graphics attributes are reinitiaLized. Commands atid data will nlow be
assumed to consist of the ASCII characters AA.C.1).E,IKG,11,1,J,K,L.M,NO.P and
0,1I,2,3.45,6,7.8,9 respectively. ASCII mode has Uike advantage of easy user imnpletnenta-
tion of the graphics command language. All of the commands can be directly output by
high level language programs which are executi-d !in the host computer. No inachine
language driver programs are required. The ASCI I mode has (hie disadvantage of ineffi-
ciency. On the average, twice as many characters miust be sent to the terminal than it]
binary mode to perform the same operation. Thot disadvantage would be most evident
when communications speed, rather than vectoi- drawing speed or host processor speed,
is the effective bottleneck.

VXAMPLE: 10 PRINT CHR$(27);"

K-1Il

14

I MoveTo MXY), ASCII

Command form: M [opt. deilml X IdellmI Y IdelUmj

Command function:

I Tho~ virtunl pointer is assigned the absulute cooriinate (X.Y). Nothing is written to the
screen nor can it be interrogated.

EXAMPLE: 10 DEFINT X,Y

20 X =25
30 Y=210
40 PRINT "M";X;Y

K- 12

% %.

PointAt MXY), ASCII

r
Command form.- P lopt. dedim] X IdteiniI Y Idelimi

Command function:

% ~The virtual pointer is assigned the absolute coordinate (X.Y?). The Pattern byte (see the
LineStyle commands) is rotated one position; if the carry contains a 0. the command is
treated as a MoveTo, command. 1 f the carry contains a 1, the pixel is interacted with ac-
cording to the pending line type (see ILineType u':tiniand).

EXAMPLE: 10 DEFINT X,Y

20 X = 25
30 Y =210

* 40 PRINT 'P";X;-Y

K-13.

:1 >.LineTo (X,Y), ASCII

* Command form: L (opt. de~imJ X [dellmi Y IdeUmJ

Command function:

A line is dzaWri from, but not including, the virtu%! pointer's currently assigned absolute
~coordinate to the absolute coordinate (X,Y). The line drawn is subject to the current line
style and line type attributes. This commandA 's" emulate a MoveTo command if the
line style is 00000000 (execution time will be considerably longer however). At the corn-

* pletion of this command. the virtual pointer is asqigned the absolute coordinate IX.Y).

EXAMPLE: 10 DEFINT X,Y

20 X=25
30 Y = 210
40 PRINT "L";X;Y

* K-14

ir-

r(. AreaTo (X,Y), ASCII

Command form: A lopt. delim] X Ideihil Y Ideliml

Command function: L

The area inside a regular rectangle is filled. The recte ,4v is defined as having the virtual
pointer's currently assigned absolute add'ess as one v Ni L:Ke and the absolute coordinate
(XY) as the diagon'ally opposite vertice. Starting ;.t, !)it not including, the virtual
pointer's currently assigned absolute coordinate,a 1.hrizoiital line is drawn to the op-
posite side of the rectangle. When possible, a second lii. starting at the original side of
the rectangle is drawn adjacent to the first line (a recta.i'le with a height of I will only
accept one line). This procedure is repeated until th j .'; ,:gle is filled. The line drawn is
subject to the current line style and line type attribute3. T is command will behave as a
MoveTo command if the line style is 00000000 (ex" oitstai time will be considerably
longer however). At the completion of this commai..! ihc virtual pointer is assigned the
absolute coordinate JX,Y).

EXAMPLE: 10 DEFINT X,Y

20 X =25
30 Y= 210
40 PRINT A";X;Y

KF~ ,'

K-15L

(. .,"

II

Io' ->PriLineStyle (Z), ASCII

Command form: N lopt. deliml Z Ideliml

Where: Z sa number between 0 and 999 inclusivcl-. This number is converted to binary
format whose Iidd§tVi['fithnt'8 bits are used to d :J e the Primary Pattern.

Command function:

This command pernits dashed or dutted line to '., automatically generated by the
GCP.'

Preceeding any write to the graphics display, 1! i: :.ding Pattern byte is rotated one
position. The least significant bit is rotated iato the carry and is used to determine
whether screen interaction is permitted or not. A c gical I in the Pattern represcits per-

*dsiTio r0"irsteractwiththe pixel; a 0 dishbles i: .ri.cLioii.The pending Pattern byte is
then updated with the new rotated pattern. TI.- * ,At significant bit is the first to be
tested to determine if interaction should occur. 'i..: fure, the eight bit line style pattern
is re:- 'itively traced t,. ;he screen wh-en drawI;. a line.

U. FROTATON

" 010 1010- 1" CARRY

PATTERN BYTE

The LineStyle and LineType commands are tota':y ih ?pendent of one another. The line
style will equally effect any line jype attribute (e *.L iEAD BIT and READ BYTE).
For instance, a line drawn with a 10101010 line :A.yc and a complement line type will

complement every other pixel.

When short line segments are used to construct hoi-,; lines (e.g., curves), they should be

sent in a consecutive order. There is no guarantce th't a line segment patched into the'

middle of an existing line will have a perfectly matcic.J line style sequence. Of course, it

is possible to reset the sequence by executing ar, Awir LineStyle command.

The-pending line style pattern is -lways reset to Priiary when entering any graphics
command.

.- Any portion of the graphics display may be select:- 'erased by executing an AreaTo
command with a line style of I 111111 and an 01"F line type.

EXAMPLE: 10 PRINT "N255"

*K-16

SecLineStyle (Z), ASCII

Command form: 0 lopt. delimi Z Idelinil

Where: Z is a number between 0 and 999 inclusivel:. rJ:P"h; number is converted to binary
format whose least significant 8 bits ai e used to J:fi, the Secondary Pattern.

Command function:

Identical to PriLineStyle (Z). ASCII

EXAMPLE: 10 PRINT "0170"

* K-17

LineType (Z), ASI

Cor.iad forni: I lopt. delirnil Z idelhal

Where: z PIXEL ACTION ________

0 ON
I.; OFF

COMPLEMENTS
'3 ZREAD SIT

'C ~ TOGGLE TO ALTERNATE L.NEsJYLE AT BOUNDARY
READ BYTE

Command function:

This command sets the type of line to be drawn. (N aL, that a point is considered a short
line an~d an area is considered a long line). Cons~dk-r cz,chi pixel of the line individually for
now.

The different line types are explained below.

ON-the pixel is turned on.

OFF-the pixel is turned off (i.e., erased).

COMPLEMENT-the pixel is complemented (i.e., thw pi xel is turned on i f itL was of f arid

it is turned off if it was on).

READ BIT-The pixel is interrogated to detci mi' i,- whether it is on or off but is not
otherwise effected. An ASCII 0 or I followed b -a ca.,ri:ig3 return is transmitted to the
host computer for a pixel that is respectively ofi or Qn.

* This line type has some special restrictions.

This line'type can only be used in conjunctiou %6.% a PiXntAt command. LineTo and
AreaTo commands will imitate a MoveTo cuoiia, rd.

Note that if the terminal is OFF~ LINE this atti iute will perform no function except
6that the PointAL, LineTo, or AreaTo command .il ct as a NioveTo commnand.

The line style will act as if it were set to solid GII 111!:11) regardless of its actual value.
(See LineStyle command). This is to prevent th lo? omnputer from getting trapped in
an eternal wait loop for a terminal response if the li;-,e style contains a 0.

* The process executing in the host computer that is iresponsible for reading the data sent
* by the terminai miust be fast enough to keep pace. The terminal will transrn~t the data as

fast as the baud rate selected will permit.

0 K-18

It is important that the host computer does not cciho tle terminal response (0 or I fol-
,- " '.lowed by a carriage return) back to the termainal. An echo'd response wil be treated byi BIARY odebecase i ASCI moe th 0 o i ,t -,, resposed wilen teatie-

the GCP as conunandldata information. (This is really only true if the GCP is in
BINARY rnode,because in ASCIiI mode the 0 or 1 -..ill 1,. received when the GCIP is ex-
pecting an opcode (A-P) and will therefore be ass:mmeU Lo be a delimiter.) See the Ex-
amples section of tiis manual to see how tiis cai, ,e iiiplmented.

TOGGLE TO ALTERNATE LINESTYLE AT DOUNTAIIY-This line type is a very
simple, and therefore liited, algorithm that may tic usei for filling irregular polygons.

As the line is scanmied,each pixel is interrogated in t:rn io determine whether it is on or
off. If it is off it is written to according to the pendiig linc s yle. A single on pixel will be
left untouched, but the current line style pattern is exci,.nnged with the alternate Pat-
tern. For instance, if the line style is ,"rrently loaded wi ', the Primary Pattern it will be
reloaded with the Secondary Pattern,or if theLi:iestyheis currently loaded with the
Secondary Pattern it will be reloaded with the Prim,.ry PUttcrn. If two or more adjacent
pixels are on they A;ll be left untouched and Kiie s yle p ttcrn will NOT be exchanged.
At the completion of the LineTo or AreaTo comma_:. t,, line style is reloaded with the
Primary Pattern.

READ BYTE-The display byte is read and conv;' ' 'o:n-, binary to hexadecimal. The
ASCII representation of this hexadecimal numbe;':2- ia uan:;itted to the host coniputer.
Display bytes are defined as 8 co: -utie, horiz, ,1 pi.cl locations. The beginningof

hor.z,. '.111)1..isI(XwtiowheTeieX eg8,1niiigo
a display byte is (X,Y) where X is 0,8,16I ,6 aid ;' i , integer between 0 and 246.
inclusively. Each display byte is redundatly addre ..,i 8 coordinates. For example,
to access the display byte beginniing at WG.J) any A' the1 1owing coordinates could be
used: (0,0), (1,0), (2,0), /3,0). (4,0), (5,0), (6,0), or (7,%,). "l'h,)iiA at the beginning of the
display byte is the least significant and he pixel aL .'c mcgnining + 8 is the most signifi-
cant.Notice that this mea:as that. visually,a patteri. on the screen will appear in reverse
significance with respect to its hexadecimal representation.

Leading zeros are transmitted (not suppressed).

This line type has sonic special restrictions.

This line type can only be used in conjunction wiilh a PintAt command. Ine'To and
AreaTo commands will imitate a MoveTo command.

Note that if the terminal is OFF LINE this attribu e %%ill perform no function except
that the PointAt, LineTo or AreaTo command will act a., a MoveTo command.

The line style will act as if it were set to solid (1111 liii i rogardless of its actual value.
(Set- LineStyle commnamd) This is to prevent the ho , comptuter from getting trapped in
an eternal wait loop for a terminal responre if the line style contains a 0.

The process executing in the host computer that is -,poir-ible for reading the data sent
by the terminal must be fast enough to keep pace. Th,, terninal will transmit the data as
fast as the baud rate selected will permit.

It is important that the host computer does not echo th,, terminal response (00 to FF
followed by a carriage return) back to the terminal. An echoed response will b, treated
by the ;CI[as conmnand/data information. See the Exani)le" ection of this maMl to
see how this can be implemented.

* K-19

"o-.. t .

22,

DisplayTc lce (Z), A.SCII

Command form" D op, d.llilm Z ld.iiml

Where: Z ENABLE ENABLE EFASE
ALPHA GRAPHICS GR-APHICS

.01 NO NO NO
jf NO NO YES

,2 NO YES 14O
NO YES YES

4.' YES NO NO
.5 YES NO YES
.46 YES YES NO
i YES YES YES

Command function:

This command has two distincL funcLiuns. One fui.ctioa is to permiL the user to block or
* not block the display of alphanumeric or graphics i;for:nation to the entire screen. The

other function of this command is to era3e the eiLire graphics display memory. This
command stays in effect even after executing ai; E -xt';haphicsMode command.

5. EXAMPLE: 10 PRINT "D3'

This command would disable alphanumerics, enable gr-ihics and erase the previous im-
age.

0K- 20
* . -

a-..K--20

2.

Brin nlrogain k-7!j)j (ZI), ... ,(Z127), ASCII

Command form: B [opt. delim[ZO Iopt. delinil ZI [opt. d&'i;inl .Z127 lopt deliml

Where: 1opt. deli,nl ia this case is any ASCII charicte; ,xcept 0,1,2,3,4,5,6.7,8,9,A.B,
C,D,E,F.

AND

Where: Z is a " "Wdigit hexadecimal number ';etw,cnu 00 and FF, incluively. A
leading zero must be present if a single digit nunl, ; i.e.. 03 not 3). I lowever, do ot in-
sert a leading 70 in fro-t of a twu digit number i.e., Fi* not OFF).

Command function:

This command loads 128 bytes of data (ZO-Z127) i,,Lo the expansion R/W RAM U913.
The data is converted from hexadecimal to binary Ifuriiat prior to loading into R/V
RAM. ZO is loaded into memory at address CO01 !, '.1 is loaded into memory at C00211,
etc. After the 1203Lh byte is loadedc,cntrul is retur, d to t e G Cl' for the next comuiand.

This command is only useful if RI/W RAM is mounted at U91. Beware that once a
BringinProgram command is initiated,Lhe GC' will expect at least 256 characters
before accepting new commands (this is true regartdLss of whether R/W RAM is present
at U9B or not).

EXAMPLE: 10 PRINT "B"
20 PRINT "00"
30 PRINT "00"
40 PRINT "00"
50 PRINT "03"
60 PRINT "04"
70 PRINT "00"

1290 PRINT "00"
4

This example of data entry is correct with regard to format but is quite inflexible and
therefore not advocated as a good programming t "chni[ue.

rK-2 I

24

*JumpToProgram, ASCII

Command form: J

Command function:

This command transfers control from the GCP to the program residing in U9B.
Transfer is accomplished by a JMP (JUMP) to addrcs3 C00411. Control may be given
back to the GCP by a RET (RETURN) statement.

Before the transfer is made, a test pattern is written to location C0001I and then read
back. The pattern must match or no transfer is permitted and control is returned to the
GCP. Therefore, physical memory must be mounted at U9B and it must be valid at
Coo00. This prevents inadvertently jumping to a nonexistant program, resulting in a
runaway processor.

EXAM-LE: 10 PRINT "J"

0.

K-22

.

.K ExitGraphicsMode, ASCIF

Command form: E

Command function:

This coimnand inst,.-, the GCP to release control back to normal alphanumeric pro-
cessing. All previously set graphics attributes will remain valid (i.e., no attributes
revert back to default or reset values).

EXAMPLE: 10 PRINT "E"

K-23

S

.

* K-23

* * .%---

BDS C User's Guide C .S',

Appendix E

The CASM Assemt-',-language--to-CRL-Format Preprocessor
For LADS C vl.50

* .. e only aneans previously provided to BDS C users for creating relocatable
of'ject modules (CRL files) from assembly language programs was a painfully

- complex macro package (CMAC.LID) that only operated in conjunction with Digital
Reseach's macro assembler (M!.2.COM). This was especially bad because MAC, if
not already owned, cost about as much as the entire BDS C package to purchase.
This document describes the program "CASM", sup;plied to eliminate the need for
"MAC". CASM is a preprocessor that takes, as input, an assembly language source
file-of .type :.cSMbt (mnemonic for C aSseMbly language) in a format much closer
to "vanilla" assembly language than the bizarre craziness of CMAC.LIB, and writes
otLtt:an*' ff'ASM"fil6, which may then be assembled by the standard, ubiquitous CP/M
assembler (ASM.COM). CASM automatically recognizes which assembly language
instructions require relocation parameters, and inserts the appropriate
pseudo-operations and extra opcodes into the resulting ".ASM" file so it properly
"ssembles directly into CRL format. In addition, some rudimentary logic checks
are performed: doubly-defined and/or undefined labels are detected and reported,
and similarly-named labels in different functions are ALLOWED and converted into
unique names so ASM won't complain.

E.1 Creating CASM.COM

- CASM is supplied in source form only on the 13DS C distribution disk. Before
compiling CASM.C to make an executable version, customize the beginning of the
file by setting the default library drive and/or user area definitions to conform to
your system configuration. Instructions for compilation and linkage of CASM are
given in the comments at the head of the file.

,.'L- 1

BD Software

.,°.1o J .

November 1982 BDS C User'. ii.>

E.2 Command Line Options

-cEnables comment retention on both input and output. By
default, CASM strips off all comments from the input file
when reading it in, and does not put any comments into the
assembly code added to formn the final ASM file. If -c is
specifid the original comments are preserved and CASM adds
its own comments to ncw sections of code.

-f Flags old CMAC.LIB Macro library operators, to help users
convert old assembly language source files to the CSM
format.

9-o name Calls the output file nrwme.ASM. Normally, the output file is
named by tacking an A:11M extension onto the filename of the
CSNI input file.

The files making up the CASM package are as follows:)

C ASIM.C Source rile for CASM program

CASM.SUB Submit f ile for performing the entire

conversion of a CSM file into CRL format

AS1.COM (or MAC.COM)
Standard CP/M. utility, for assembling the

DDT.COM (or SID.COM)
Standard CP/N1 utility, for converting the HEX
output of the assembler into binary- CRL

-format-

The pseudo-operations that CASM recognizes~ as special control commands.
within a CSM file are as follows-

FUNCTION <name> Each function must begin with a FUNCTION pseudo-op, where

(name> is the name tMo. will be used for the function in the

CRL file directory. No other information should appear on
this ine Note that there no need to specify a complete

L-2 BD Software

-Ais

covetol asmby agugesure iestote S

A. -'A- -A
t h ie aigu h A package are as follows

CAM-Surefl -o C, progra

BDS C User's Guide , .i

list of contained functions at the start of a .CSM file, as was
the case with the old CNIAC.LIB method of CRL file

generation.

EXTERNAL <list> If a function calls other- C or assembly-coded functions, an
EXTERNAL pseudo-op n.ming these other functions must
follow immediately after the FUNCTION op. One or more
names may appear in the list, and the list may be spread over
as many EXTERNAL lines as necessary. Only function names
may appear in EXTEINAL lines; data names (such as
"external" variables defined in C programs) cannot be placed
in "external" statements.

ENDFUNC

ENDFUNCTION This op (both forms are equivalent) must appear after the end
of the code for a particular function. The name of the
function need not be given as an operand. The three
pseudo-ops just listed are the ONLY pseudo-ops that need to
appear among the assembly language instructions of a ".CSM"
file, and at no time do the assembly instruction themselves
need to be altered for relocation, as was the case with
CMAC.LIB.

INCLUDE <filename>

INCLUDE "filename" This op causes the named file to be inserted at the current
line of the output file. If the filename is enclosed in angle
brackets (i.e., <filename>) then a default CP/M logical drive is
presumed to contain the named file (the specific default for
your system may be customized by changing the appropriate
#define in CASM.C). If .he name is enclosed in quotes, than
the current drive is searched. Note that you'll usually want
to include the file BDS.Li3 at the start of your .CSM file, so
that names of routines in the run-time package are recognized
by CASM and not intc'pretvd as undefined local forward
references...since CASM is a one-pass preprocessor, that would
cause it to generate uadesired relocation parameters for
instructions having rund-time package routine names as

" operands. Note that the pseudo-op MACLIB is equivalent to
INCLUDE and may be used instead.

The format for a ".CSM" file is as follows,;:

L.

L-3

BD Software

,*

- .November 1982 BS C Urs

INCLUDI' bds.lib

FUNCTION functionl'
EXTERNAL needed funcl [,needed_fuic2] [,...]
code: f6F'fUnctibnL _ W,
ENDFUNC'

FUNCTION function2
[" EXTERNAL needed funcl (,needed_fune2] [,...I

code for function2
ENDFUNC

Additional notes and bugs.

1. If a label appears on an instruction, it mvist begin in column 1 of the line.
If a label does not begin in column 1, CASM will not recognize it as a label
and relocation will not be handled correctly.

2. Forward references to EQUated symbols in executable instructions are not

allowed, although forward references to relocatable symbols are OK. The

reason for this is that CASM is a one-pass preprocessor, and any time a
previously unknown symbol is encountered in an instruction, CASM assumes
that symbol is relocatable and generato-, a relocation parameter for the
instruction.

3. INCLUDE (and MACLIB) only work for on,. level of inclusion.

4. When- a relocatable- value needs to be specified in a dw op, then it must be
the only value given in that particular D statement, or else relocation will-
not be properly handled. In other words, only one 16-bit relocatable item is
allowed per dw statement.

5. Characters used in 'symbol, names- shcld be restricted to alphanumeric
charactersl the dollar sign ($) is also allowed, but might lead to a conflict
with labels generated by CAS,..-

6. The .HEX file produced by ASM after assembling the output of CASM cannot
be converted Into a binary file by using the CP/,M, LOAD command; instead,
DDT or SID must be used to read the file into memory, and then the CP/M
SAVE command must be Issued. to save the file as a .CRL file. CASM
Inserts a line into the ASM file ending in the character sequence "'."

BD Software

-4I

"N.' " .' '" '' 'S , .,% " -''V ' ''''""""''' - . :" "."- " . '''".'' '''- " " . " "' '-:..,'' '-'- .2'
. l '' -l "- ' '' ' " - ' * = "'" . '?',- ""'''' """ :" " " "; ".0,A

TT -.7 T -%7 .

BDS C User's Uuide Ct ,,i

specifically so that the line will be flagged as an error... the user may then

look at the value printed out at the left margin to see exactly how many

256-byte blocks need to be SAVEd after using DDT or SID to get the file
into memory. The reason that LOAD cannot be used is that CASM puts out

I the code to generate the CRL File directory at the end of the ASM file,
* using the "ORG" pseudo-op to set the locatioii counter back to the base of

the TPA. The LOAD command aborts with the cryptic message "INVERTED
LOAD ADDRESS" when out-of-sequence data of this nature is encountered.
Rather than having CASM write out the directory information into a new file
and then append the entire previous output onto the end of this new
directory file, I decided to require the user to enter a SAVE command.

7. The CASM.SUB submit file may be used to perform the entire procedure ofconvertin",CSM file to a .CRL file, except for entering the final SAVE
command. For a file named "FOO.CSM", just say:

submit casm foo

and enter the "SAVE" command just the way it instructs you to when
*-.. processing is complete.

'75'

,..7

I ..

= "Z
L,

. *. - .. . -. ..

%" BD.'So:tware

BDS C User's Guide Long Integcr Paekngge

Appendix I

A Long Integer Package for DDS-C

Rob Shostak
August, 1982

1.1 Introduction

This package adds long (32-bit) signed integer capability to BDS C much in the
same spirit as Bob Mathias's floating point package. Addition, subtraction,
multiplication, division, and modulus routines are provided as well as comparison,
assignment, and various kinds of conversion.

Each long integer is stored as an array of four characters. A long integer x is
thus declared by:

char x[4];

The internal representation is two's complement form, with the sign (most
significant) byte as the first byte of the array. For most purposes, however, you
needn't be concerned with the internal representation.

Most of the routines that operate on longs take three arguments, the first of
which points to where the result is to be stored, wid the other two of which give
the operands. For example, given longs x, y, and z (all declared as char[41),

ladd(z,x,y)

computes the sum of x and y and stores it into z, which is returned as the value
of the call. Note that the result argument may legitimately be the same as one
(or both) of the operand arguments (for instance, ladd(x,x,x) does "the right
thing").

M-1

BD Software

* -

N~ovember 1982 Kk :der

The package is written partly in C and p:'tly (for speed and compactness) in
8080 assembly language. To use it, simply l1 n, LONG.CRL into your program. A
description is given below for each routine.

itol(l,i)
char 1[4];
int i;

Stores the long representation of the 16-bit integer i into 1! and
returns 1.

atol(l,s)
char 114];
char *s;

Stores the long representation of the A. cii string s into 1. and returns
The general form of s is a strL,.,; of decimal digits, possibly

preceded by a minus sign, and terminate," by any non-digit.

lta(s,l)
char *s;
char 1[4];

Stores the Ascii representation of long into string s. and returns s.
The representation consists of a nul-ter ;nnated string of Ascii digits
preceded by a minus sign if I is negati i. s must be large enough to
receive the conversion.

ladd(r,opl,op2)
K-.. - char r[41;

IA &II)) ,q
Stores the sum of longs opt and op2 into r and returns r. opt or 2p2
may be used for r.

M-2
BD Software

%
,% '. . o. j, . .* .- ,

BDS C User's Guide Long Integer Package

Isub(r,opl ,op 2)
char r[4];
char opl[4),op214);

Similar to ladd, but computes opi or"

lrnul(r,opl,op2)__J

* . char opl[43,op2[4];

Similar to ladd, but computes opl on?.

ldiv(r, opi, op2)
char r[4];
char opl[4], op2t4];

Similar to ladd but comptites the integ ,r quotienit OP / 2. If 2L) is
zero, zero is computed as the result.

lmod(r, opi, op2)
char r[4);
char opi[4], op 2[4);

Similar to ladd but computes op mod 2L If op? is zero, zero is
computed as the result.

lcomp(opi ,op2)
char opl[4], op2[4];

* Compares longs 2pj and op, and returns one of (the ordinary integers)
1, 0, -1, depending on whether (221 > nr-?), (2j-j op2) or (2pt <
22), respectively.

M- 3

PP) Rnftwnre

IL k.- "I
jjf

lass ign(des t,source)
char source[4bdest[4];

Assigns long sot~rce to long etand returns pointer to (Jest.

I touQl)
char 1[41;

Converts long 1to unsigned (by truncation).

utol(l,u)
char 114];
unsigned u;

40
Stores the Ion- represeritat~o:I of unsigned u into 1 and returns 1.

1.2 Implem entation Details

Most of the work in tlh, routines above is done by a single 8080
assembly-language function calivd long, the sourc-c fur which is found in the file
LONG.CSM (availalbe from the C User's Grou-). The remainder of the package
resides in LONG.C. Note that mnost of the pk-iiniiives described above simply call
long, passing it a function code (tha t1 iwhtoeAto iso promd
together with the arguments to be manipulated.

The file LONG.CRL contain~s the compiled functions given in LOt4G.C, and
DEFF2.CRL contains the workhorse function

r M-4 [D Software

..

N~~~~ -?-' ' k

VITA

William H. Lieber was born on 22 September 1950 in

Canton, Ohio. He graduated from Canton McKinley High

School in 1968 and attended the University of Akron,

Akron, Ohio, from which he received the degree of Bachelor

of Science in Electrical Engineering in June 1973. Upon

graduation, he entered the Air Force on active duty in

December 1973, and received his commission from Officer

Training School in April 1974. He served as a scheme

engineer at HQ Southern Communications Area Tinker AFB

Oklahoma until October 1978. He then served as

communications operations officer at the 2006

* Communications Group Incirlik Common Defense Installation

Turkey until November 1980. He then served as tactical

communication equipment acquisition officer for HQ Air

Force Communications Command, Scott AFB Illinois, until I

entering the School of Engineering, Air Force Institute of

Technology, in June 1982.

Permanent address: 205 Weber Dr.

O'Fallon Illinois 62269

V.I

VITAoo

- . . o, o. , -7 -. . * 4 -

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

-" UNCLASSIFIED

2s. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release;

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE distribution unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

AFIT/GE/EE/84D-71

6a. NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(If applicable)

School of Engineering AFIT/EN
6c. ADDRESS (City, State and ZIP Code) 7b. ADDRESS (City, State and ZIP Code)

Air Force Institute of Technology

Wright Patterson AFB, Ohio 45433

8&Ba. NAME OF FUNDING/SPONSORING Sb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
O RGAN IZAT ION (if applicable)

Sc. ADDRESS (City, State and ZIP Code) 10. SOURCE OF FUNDING NOS.

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. NO.

11. TITLE (Include Security Classification)see Box 19

12. PERSONAL AUTHOR(S)
William H. Lieber, B.S., Capt, USAF

13I& TYPE OF REPORT 13b. TIME COVERED 14 AEO EOT(rM. a) 15. PAGE COUNT3 TPOFRORMS Thesis FROM TovO, 198 December 255

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB. GR. Analog-to-Digital, Digital-to-Analog, Direct
09 02 Memory Access, Data Storage, Computer Graphics

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Title: DEVELOPMENT OF A DEDICATED SPEECH WORK STATION

$I Yd for 15u)Uc releaser 1AW APR190-1f.

Thesis Chairman: Major Larry R. Kizer OC"'l '(

.i Fore I,"h" . 1 l '. ',:(y

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

.. CLASSIFIED/UNLIMITEDIX SAME AS RPT. C3 DTIC USERS 0 UNCLASSIFIEDI22. NAME OF RESPONSIB3LE INDIVIDUAL 22b, TELEPHONE NUMBER 22c. OFFICE SYMBOL

Major Larry R. Kizer 513-255-3576 AFIT/EN

DD FORM 1473,83 APR EDITION OF 1 JAN 73 IS OBSOLETE. UNCLASSIFIED-i SECURITY CLASSIFICATION OF THIS P7AGE

. k ' - -'i [" . - . i ' - . ' ' - " : - .[. .i -" . . . " " " l ", i ' ; ' . , 2 , . . - - " . " " ' ' . . . ' -. . . - ' .'. . . . ' ' '

I 6Ai UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

19. ABSTRACT

As a result of the hardware and software developed
under this thesis, the AFIT Speech Lab's Cromemco S-100
bus microcomputer system can be configured as a dedicated
stand alone speech work station. Hardware is now
developed which provides an extended memory capability
for storage of analog-to-digital sampled analog speech.
Data storage is via a direct memory access (DMA)
capability. The hardware also supports providing an
analog output from previously stored data samples via a
digital-to-analog capability. Software is developed
which controls the analog input to be sampled and the
sampling rate to be used. The software also allows the
sampled data to be graphically displayed 500 samples at
a time on a video display screen or to be placed in or
returned from more permanent storage on a magnetic disk.
The detailed analysis, development, and fabrication of
the hardware and software is also contained in the
thesis.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

FILMED

* 8-85

0TI

