

September 1978

14

CULLER/HARRISON, INC. 150-A Aero Camino Goleta, California 93017 (805) 968-1064

AD-A155 46'

STRUCTURED DESIGN

FOR AN

LPC ARRAY PROCESSOR

Quarterly Technical Report

Research on Speech Compression Prototype Development

May 1978 - August 1978

This research was sponsored by the Defense Advanced Research Projects Agency under ARPA Order No.: 3625 Contract No.: MDA903-78-C-0313 Expiration Date: March 20, 1979 Monitored by: DCASMA Oxnard, Calif.

DTIC FILE COPY

Distribution of this document is unlimited. It may be released to the Clearinghouse, Department of Commerce for sale to the general public.

ELECTE

JUN 1 7 1985

G

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION IS UNLIMITED (A)

The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the Advanced Research Projects Agency or the U.S. Government.

85 06 13 141

CONTENTS

1

t

11

			IALE
1.	INT	RODUCTION	1
	۸.	Summary of Contract Intent	1
	B.	Current Stage of Development	2
2.	PRE	LIMINARY DESIGN FOR AN LPC ARRAY PROCESSOR	5
	A.	The APU Module	9
	в.	The CPU Module	11
	c.	The PS Module	14
	D.	The I/O Module	14
3.	THE	STRUCTURED DESIGN TECHNIQUE	16
	A.	Reconveyance of Design	17
	В.	Computer Involvement in the Design Process	18
	c.	Mathematical Model for Computer Design	19
	D.	Defining Logical Modules	26
	E.	The Integrated Logical Simulator	32
	F.	The Integrated Module Analyzer	37

APPENDIX A: Sample Outputs from the Structured Design System

ን

APPENDIX B: Micro Programs

22

l

	APPENDIX	C:	Module	Analyzer	Logical	Drawings
--	----------	----	--------	----------	---------	----------

DTIC DOPY INSPECTED

Acces	sion For				
NTIS	GRAAI				
DTIC					
Unann	ounced				
Justi	fication				
By					
Distribution/					
Avai	lability Codes				
	Avail and/or				
Dist	Special				
A/	1 1				
1.	, ,				

STRUCTURED DESIGN FOR AN LPC Array Processor

11

1. INTRODUCTION

The research activities of the several ARPA contractors in the NSC network speech compression program have reached a stage of success in LPC algorithm development to merit real consideration of hardware economy and efficiency. To be sure, there are many other contributors to the body of research supporting the LPC technique; and most all of it taken together forms a successful whole that needs to be supported by better hardware to facilitate its expression. To this end, ARPA has funded a modest effort at CHI to design an array processor that is particularly well suited to perform the important steps of the family of LPC algorithms and at the same time to be amenable to LSI implementations. What follows is our first quarterly report on this design effort.

A. Summary of Contract Intent

The design team at CHI has been engaged in developing programmable special purpose computers for a number of years. Much of this work has been done for ARPA, principally in the direction of on-line research systems for signal processing in the acoustical frequency domain.

Our past work has a certain architectural stamp or style that results from the way we have approached the design process, the blending of very different technical backgrounds, and the techniques we have we settled on for solving internal structure problems that seem to have resulted in surprising efficiency and reliability of our devices. In our past efforts we have generally been confronted with an applicational design goal and with a fixed technology* in terms of which the design must be realized. With the rapid change of technology, we have found ourselves designing the same internal structures in different ways to take advantage of the new technology. This has led us to ask how may we represent our designs so they can be independent of the technology used to realize them. The task of designing an LPC array

*In this instance, what we mean by a technology is a set of available digital circuits and associated connectors and construction techniques.

processor that can be prototyped from existing components and then later realized as a single (or a few) LSI chips, brings this technology invariance question forward as a primary issue to be dealt with.

14

As a result of this, the intent of our work on contract MDA903-78-C-0313 is not only to interpret the basic operations occurring in various LPC analysis and synthesis algorithms and to design an array processor that efficiently performs them, but also to carry out the research and development required to produce a design system that will make it possible to produce technologyinvariant designs. We are not suggesting that this can be done "untouched by human hands," for this is not in the nature of architecture; but rather that the human input to the design system will be primarily limited to providing creative organizational expression while the computer part of the system responds to this input by generating a number of important design outputs such as a logic simulator that realizes an equivalent design, and after geometrical specification and primitive module specification, a connector sort, a logic sort, and ultimately, diagnostic software. Of course, all of this points in the direction of how to use a computer system to help us establish how successful a design is before we build it and how to prove it works correctly after it's built.

B. Current Stage of Development

By the time contract work began we had come to understand in qualitative terms the two principal issues involved:

- 1. What do the LPC equations indicate about the choice of array processor architecture and how does this relate to earlier array processors.
- 2. What are the important software objects that could be expected to work together to achieve a structured design system that would help us solve the reconveyance problem.

Consequently, we were able to allocate tasks that could proceed in parallel. These turned out to be of two kinds -- those that were clearly understood and would play a definite roll in the work to be accomplished and those that would gather information that might help us find out how to deal with the intangibles of our problem. In the latter category we had to:

- a. Compare the equations arising in representative LPC algorithms and establish performance criteria at the array process level.
- b. Review the steps of our prior design efforts and the associated documentation and seek a restructuring of both these steps and the documentation to make the whole of it computationally derivable from a structured design document.

14

c. Study potential data structures and associated control functions that could lead to a logical simulator that is computationally derivable from a structured design document.

At present, we can report on successful accomplishment of these tasks and are well along in implementing their consequences. More specifically:

- 1. We have a design for an LPC array processor ready for testing.
- 2. A user input language for specifying a logical design has been devised and a program has been written -- called the logic assembler -- that deduces a data structure which represents the logical design and, as such, provides the basis for logic simulation.
- 3. We have established the concept of module substitution within the logic simulator and have designed a module analyzer and its interface to the ARPA signal processing system. By specifying to the logic assembler that a certain module is to be replaced during simulation by an actual hardware module, we can cause the logic simulator to control the module analyzer and capture the hardware modules outputs for further use in the simulation. What this means is that with the device represented by software, we can test a given hardware module "in situ" for the whole device without having the rest of the device in hand.
- 4. We have restructured the nature of our hardware documentation to achieve a form that can be automatically generated and yet be of similar use to engineers in both checkout and maintenance. Indeed, an engineer has to become familiar with its use, but its simplicity appears to make this no great difficulty.

5. Programs that produce design outputs of this selected documentation format are being written and some intermediate results are ready for use.

L F

6. We have begun specifying the test programs for the LPC array processor.

The work remaining to be done on the contract consists of building and checking out the prototype, finishing the software for the structured design system and demonstrating the performance of the prototype on representative LPC algorithms.

In discussions leading up to this contract work it was anticipated that after the array processor design was appropriately in hand, we would be in a position to cooperate with some selected LSI house as an aid in the technology transfer. Our estimate is that by the end of the second quarter we will be in a position to do this.

2. A PRELIMINARY DESIGN FOR AN LPC ARRAY PROCESSOR

L 1

In J. Makhoul's paper "Stable and Efficient Lattice Methods for Linear Prediction," the best known methods of LPC analysis are brought together in a simple common framework. We choose this as our principal reference, partly because of its clarity, but mostly because it reveals a wide range of computational complexities engaged in the LPC techniques. Boiling these down to their essences results in only a few prime considerations, nevertheless arranging for their adequate implementation brings us as close to a general purpose array processor as we dare risk. The point of concern is this -- when a family of tasks are to be carried out in a single special purpose processor, they must possess some underlying simplicity that results in design advantage or we are forced to a general purpose design and the power of our approach is lost. Under the latter circumstances we must restrict the family before we can achieve a successful design.

The input to the analysis process comes from an A/D converter which may as well be taken in integer format. The dynamic range of voice signals is such that at least 8 bits/sample are required to perform any sensible analysis and 10 bits are as low as most implementers are willing to consider. In fact, most systems of reasonable quality either use 12-bit samples or incorporate some form of secondary gain ranging. In what follows we will assume that the input data is 12 bits/sample and in integer format. As to conversion rates, the NSC conferencing system used 150 µs/sample corresponding to 3.2 Khz Nyquist frequency which is marginally acceptable for male voices but unfortunately low for some female users with very small vocal tracts. A sample interval of 50 µs guarantees good sibilant data for practically all users, so we assume that the sample interval ΔT is in the range 50 µs $\leq \Delta T \leq 150$ µs. In order to set up an array oriented process, we pick a data block size long enough to get statistical benefit in estimating the vocal tract area function and short enough to get good resolution of the change of this shape with time. Accordingly, we can expect analysis block sizes to be in the neighborhood of 100 samples with corresponding time bases in the range of 5 to 15 milliseconds.

In keeping with Makhoul's notation, let f and b represent forward and backward residuals and K denote reflection coefficient. Since -1 < K < 1, the direct lattice filter equations:

$$f_{m+1}(n) = f_{m}(n) + K_{m+1}b_{m}(n-1)$$

$$b_{m+1}(n) = K_{m+1}f_{m}(n) + b_{m}(n-1)$$
1)

L 1

requires us to perform:

as an array process. The inverse filter:

$$f_{m}(n) = f_{m+1}(n) - K_{m+1}b_{m}(n-1)$$

$$b_{m+1}(n) = K_{m+1}f_{m}(n) + b_{m}(n-1)$$
3)

incorporates feedback and for small amplitudes engenders a limit cycle pathology. To handle these properly, we propose to incorporate an integer by fraction multiplication with rounding and to overlap the add (or subtract) operation. Additionally, to guard against overflow, we will arrange that only 11 of the 12 bits of integer data will be significant going into the above equations. Also, as a means to stay away from the limit cycle pathology, we will sense the output size information on the fly. That is, when the input data is too large, we will use a built-in right shift in the array process and when the output data is too small, we will insert an auxiliary left shift array process.

- a) If the 12th bit of the input arrays is significant, right shift on read.
- b) If the output array has no more than 8 significant bits, left shift it 3 places before proceeding.

In the computation of inner products of integer arrays like:

$$f \cdot f, b_{-1} \cdot b_{-1}, f \cdot b_{-1}$$
 where $b_{-1}(n) = b(n-1)$

we need to use integer-by-integer multiplication, and since our arrays have about 100 elements, we need an integer multiply overlapped with addition into an extended accumulator.

1 1

The noncorrective methods require much more precision than the corrective ones; for this purpose, we provide programmed floating point and double precision operations. We are all aware of the much lower operation count of these methods compared to the reduction of residual corrective methods, but to be fair, we should count them in at least the double precision sense. In many cases, not having the residuals as an output of the computations creates a need for exuma processes in the overall algorithm, thereby further reducing their apparent advantage.

In this section we present our current results in the development of an array processor tailored to the requirements of real time LPC analysis and synthesis. In keeping with the contract intent discussed in section 1, we will later express the design in such a manner that it can be equivalently realized in different technologies. To do this we will use the structured design approach presented in section 3 with our overall design goals established as a creative interpretation of the requirements set forth through the review of typical LPC algorithms.

The highest level top-down subdivision of the LPCAP splits it into four submodules: APU, CPU, PS, and IO.

Their overall functions can be described as follows:

- The APU module carries out all the arithmetic operations on data as specified by the right-hand part of the instruction lines (INSTRR). Its registers provide source data for output to the IO module. Certain characteristic bits provide status information to the CPU that may be used in CPU conditionals.
- 2. The CPU module performs program sequencing, data addressing, indexing, APU and IO control. Its operations are specified by the left-hand part of the instruction lines (INSTRL). In run mode these instruction lines are supplied by some of the outputs of PS. When a HOST is present and when the CPU is halted, these instruction lines are supplied by the IO module, thus providing the HOST with single step control of the CPU.

- 3. The PS module is a program source module addressed by the CPU. When PS is a RAM (or contains a subset that is a RAM) it can be loaded by a sequence of outputs from the IO module under control of the HOST.
- 4. The IO module provides an interface between the LPCAP and the external world. Aside from whatever complexities are introduced by the presence of a HOST machine, it must manage voice A/D and D/A conversion and receive and transmit voice parameters to some communication link.

The main substance of this section is the treatment of each of these modules in turn.

Figure 2.1 Block diagram showing the relationship of the four principal submodules of the LPCAP.

A. The APU Module

The arithmetic requirements on the APU module imposed by the form of the equations used in LPC analysis and synthesis may be summarized as follows:

1 1

9

- 1. The dynamic range of voice signals are best represented by 12-bit samples.
- Precise inner products of sample vectors with at least 128 components are required for the noncorrective methods of computing reflection coefficients.
- 3. Fraction by integer multiplication is required for forming linear combinations of signals.
- 4. Both down scaling to guard against overflow and upscaling to guard against limit cycle pathologies of digital filtering are required.
- 5. The same inputs must apply to both sides of the multiplier so that the sum of squares can be computed without copying a vector.
- 6. The quotients count in LPC algorithms is so low that a programmed divide will suffice.

Since the LPC algorithms have a very concentrated requirement for multiplies and since most of these are associated with adds, we should focus our attention on multipliers that have configurations with both integer-by-integer full precision and fraction-by-integer rounded outputs. Such multipliers are already available with execution times in the neighborhood of microprocessor instruction times so the architectural considerations in loading and unloading data is of paramount importance. A powerful illustration of how to do this right and the unfortunate consequences of not doing it right is provided by comparing multiply-add throughputs of the TRW chips MP12AJ and MP16AJ. The first can be used with no loss time in a looped multiply-add and the latter has a loss essentially matching its execution time. Our point is not to flamboyantly snipe at the MP16AJ but rather to emphasize the value of the architecture of the MP12AJ. Even though LSI technology will soon support the complete LPCAP on one chip, the internal multiply submatue should have the architecture of the MP12AJ.

With the architecture of the multiply nailed down, we can extend the structure to account for the requirements listed above.

- a. Since the forward and backward waves are the primary inputs to the multiplier in a Burg-type analysis, and since the sum of squares of each is to be computed, we must provide a 2-to-1 multiplexer for each of the multiplier inputs (cf figure 2.2); then 5) is satisfied.
- b. In order to provide precise inner products of 12-bit data in 128 word blocks, we use the full integer product with sign extension to 32 bits and use this as the A inputs to a 32-bit adder, with a 32-bit accumulator attached to the B side; this takes care of 2).
- c. Since the reflection coefficients are fractions between -1 and +1, when they multiply a vector with integer components to give a vector of the same type we must use the fraction-by-integer product with rounding. To add this product to another such vector, as in the lattice filter computation, we also need a 12-bit accumulator.
- d. The scaling problems intrinsic to LPC analysis and synthesis are not very severe, yet we must have some means for handling them. One simple way to do this is to maintain two flag bits under program control, call them Big and Small. Let Big selectively monitor the data written in pad and express the or of the exclusive ors of the left-hand two bits of each array value. Then Big is a 1 if any array datum is of full scale. Now let Small monitor the left-hand 4 bits in the same manner. Then Small is a 0 if no array datum has more than 8 significant bits. The capability of clearing and testing these flag bits and maintaining a scale word in pad to account for change of scale, provides a software overview of the scaling relations. We include downscaling hardware on the output from pad and will use the multiply hardware in a special pass to upscale the data when required.
- e. One of the aspects of the special forms of the equations relating the forward and backward waves coupled with the direct association of adders and accumulators is that we sometimes need to exchange outputs. Perhaps a stronger way to say this is that we must be able to move data between scratch pad arrays. To satisfy this desire, we include a pair of 2-to-1 output multiplexers.

f. The final step in this overview of the APU consists of providing means for assembling and disassembling byte-oriented data sets. To this end we have selected two-way-in registers for the accumulators with interconnections to an 8-bit accumulator accepting an external input.

F 1

In figure 2.2 below, we give a module schematic for the APU together with a decoding chart with the module operation code definitions.

B. The CPU Module

The APU module discussed above carries with it all of the significance of design relating to LPC specializations. For the CPU we are after the simplest sufficiently rapid control to get the job done. Whereas a 12-bit structure was used in the APU module, an 8-bit structure is the proper choice for the CPU module. The two scratch pads (X and Y) of the APU need only be 256 words long to provide adequate data buffering, so corresponding to these the CPU contains two 8-bit address registers (XA and YA). Present estimated program size indicates that with an instruction page size of 256 instructions, we can expect the subroutines for analysis and synthesis to each fit within a page. For prototyping purposes we will use a 4096 instruction program source (the PS module discussed in C) with 48-bit instructions and 256 per page. In a real device this will, of course, be limited to the size determined by programming the algorithms.

The CPU can now be summarized as follows. Starting with three address counters (PSA, XA, YA) of 8 bits and an 8-bit tally register for array loop control we bus these together with 8 bits from program source (the PS value field). Branching according to the tally register, the sign bit of the APU adder and IO status bits are then provided.

In setting up an array process, the bus connection between the PS value field and the internal registers of the CPU is used to initialize them one at a time. In the array process, all of the registers can be simultaneously controlled in each micro instruction. In order to provide control for the IO module, the bus mentioned above is extended to the IO module. In the bus control fields (TRN and REC) shown in figure 2.4 below, we can address a device and then input or output as required.

	+	*		1			1		5		21+27=48
	U	V	n	G,	~	3	H	~	M		
CODE	UEN	YEN	GOP	GA	6 B	HOP	HA	NB	MULT	•	
0	NOOP	NOOP	0	MPM	MPE	0	MPL	MPF		RND	
1	NOOP	NOOP	SUBT	X	U	Subt	V	V]	MXCLK	
2	G+U	H+V	RSUBT	0	0	RSUBT	0	0		AYELK	
3	RSTU	RSTV	ADD	0	0	ADD	0		M	K SEL	
4			EOR			EOR			MY	SEL	
5			OR			ae					
6			AND			AND					
7]		-/	ļ		-/	l				

Figure 2.2 APU Module Schematic

Figure 2.3 CPU Module Schematic

C. The PS Module

The program source module has been designed to allow full convenience in implementing trial LPC algorithms that will need to assess the real time performance of the LPC AP. The design is elementary and merits no special discussion.

.

D. The IO Module

The design of the IO module has been specialized to provide an interface between the LPC AP and the Serial Three signal processing research system. Our approach here has been to take advantage of the module analyzer -- one of the key elements in the structured design system discussed in section 3. The module analyzer is directly interfaced to the host machine and can be used as a programmable test fixture to check out the individual modules of the LPC AP as well as the entire device.

The IO module provides a means for loading programs into PS, transferring sample data blocks and parameter blocks to and from the Host. Additionally, it provides the logic of a pseudo panel that permits the Host to single step operations of the LPC AP.

Figure 2.4 IO Module Schematic

15

3. THE STRUCTURED DESIGN TECHNIQUE

Logical design can be thought of as a creative process in which larger modules are defined as combinations of smaller, simpler ones in such a way as to fulfill basic design goals.

The approach can be "bottom up." In this case the designer visualizes combinations of available parts, and combinations of these, always working towards accomplishing the desired goals.

An alternative is a "top down" approach in which the design is subdivided into sections which, if implementable, would achieve the basic goals. These sections are again decomposed, and so on, until the resulting blocks are seen to be buildable from available parts. The subdivisions represent intermediate design targets.

A third approach works from both directions simultaneously, hoping to meet in the middle. At that point, sections which are known to accomplish the design goals are seen to be realizable as combinations of combinations of available hardware.

In any of these approaches the final design can be conceived as a single entity or expressed in modular terms. However, modular design simplifies checkout, allows for consideration of more design alternatives, and facilitates making changes.

A structured design is a tree-like hierarchy having the following characteristics.

ALIGN THE STATE OF A ST

- 1. For each module in the structure, the outputs are uniquely determined by the inputs, the controls and the status of memory.
- 2. Each module in the hierarchy is either primitive (not broken down further) or composite (a combination of lower level modules called the submodules of the module).
- 3. The definition of a composite module involves only its submodules. No reference to submodules of the submodules is allowed.

This means that from the point of view of a module, there is only one level below it. All strate beneath are invisible to the module, and each module acts as a primitive relative to higher level design. In a hardware realization of the design, the primitives might be chips, and lower level, intermediate modules might be groups of chips wired together. A higher level intermediate module might be realized as a board or a group of boards connected by cables.

A. Reconveyance of Design

Assume that a design has been created which accomplishes the original goals. Of course, many alternative designs could be produced fulfilling the same criteria. In particular, one of the intermediate modules (along with its substructure) could be replaced by a different combination of submodules (along with their substructures) which performed the same function. If all of the relationships among other elements of the hierarchy were preserved, the resultant design would fulfill the original goals. Similarly, substitution for an intermediate module in the new design would lead to an additional acceptable design.

Thus, one design can be <u>reconveyed</u> by a whole family of equivalent designs. The highest level subdivision of the original design is of critical importance since all members of the family inherit the top structure.

If an intermediate module has been thoroughly checked out, either by theoretical simulation or by prototyping and hardware checkout, the design can be reconveyed into one in which the module in question is a primitive. The design is simplified by removing the substructure of the module from the hierarchy.

This is of practical as well as theoretical interest. For, at any stage, from design through prototyping or even production, technological advances can be easily incorporated into the existing design. If a function which was previously computed in a composite module is found to be performable by a new device (for example, a chip) the original design can be reconveyed into one where that module is a primitive. It would not be necessary to redesign the whole system, which would be required if there were no modularity.

B. Computer Involvement in the Design Process

A computer can be brought into the design process in several ways. Elements of a computer aided design system are given below.

Given an <u>inventory of primitives</u> and a language suitable for describing composite modules, a <u>logic assembler</u> can produce a data structure encapsulating the design. From this structure, appropriate programs can generate the tedious documentation necessary to implement the design -- for example, connector sort and wire list. This frees the designer to concentrate on more creative aspects such as alternative designs of intermediate targets.

An <u>editor</u> which enables changes to be made in documents defining the design facilitates consideration of alternatives.

A <u>logical simulator</u> can be used to calculate the response of any module in the system to particular sets of inputs and controls (not, of course, in real time). The simulator works on the data structure set up by the logic assembler. At each stage, the inputs and controls are passed on to submodules until they reach a primitive module. Then a subroutine pointed to in the primtive's description is invoked. The outputs thus calculated are passed back to the higher level module. Eventually, when the actions of all submodules of a module have been simulated, the outputs of that module are implicitly determined. In this way, the design can be exercised, while still in theoretical form, to make sure that each module conforms to design goals.

When a module has been realized by engineering design and prototyping, its adequeny as part of the overall design can be tested by integrating the action of a <u>module analyzer</u> with the simulator. The hardware realization of the module is plugged into the analyzer and switches are set to indicate which connector elements represent controls inputs and outputs.

At the stage in the simulation when execution of the module is required, inputs and controls are supplied to the external device through the module analyzer. The resulting outputs produced by the device become the values which are used at the next stage of the simulation.

C. A Mathematical Model for Computer Design

In order to implement a computer aided, design facility it is necessary to have an underlying mathematical model of a computer system and the process by which the system is constructed from components. This 'theoretical' computer, as well as its components, will be called a logical module. The model should be such that its features and functions can be translated into a computer acceptable language.

The purpose of this section is to provide basic definitions and clarify the synthesis process by revealing rules of combination which result in logical modules. We must also develop a language that provides precise expression of one logical module in terms of others. These concerns motivate the definitions which follow.

The definitions are in terms of vector spaces, so as a preliminary step, we indicate notations which will be used elsewhere in this section.

Let X and Y be finite dimensional, vector spaces over finite fields.

- 1. X x Y, the cross-product of X and Y, is the set of pairs of vectors (x, y) where x $\in X$ and y $\in Y$.
- 2. If X and Y are over the same field, then $X \bigoplus Y$, the direct sum of X and Y, is the set of vectors x|y. If

 $x = (x_1, ..., x_n) \in X$ and $y = (y_1, ..., y_m) \in Y$

then x y has coordinate expression

 $\mathbf{x} | \mathbf{y} = (\mathbf{x}_1, \ldots, \mathbf{x}_n, \mathbf{y}_1, \ldots, \mathbf{y}_m)$

- 3. If X and Y are of the same dimension, n, and over the same field, they are isomorphic and can be identified. This identification will be denoted $X \leftrightarrow Y$.
- 4. The <u>dimension</u> of X will be denoted by <u>dim X</u>

Logical Modules

Defn 1: A Logical Module L is an ordered sextuple

 $L = \langle C, I, IO, M, O, F \rangle$

where C, I, IO, M, O are finite dimensional vector spaces over finite fields and F is a function from C x I x IO x M into O such that, for each set of vectors $c \in C$, $i \in I$, $i o \in IO$, $m \in M$ there is a unique vector $o \in O$ for which

$$F(c, i, io, m) = o$$

The notation used here has the following mneumonic relations :

C is the control space of the module I is the input space of the module IO is the input/output space of the module M is the memory space of the module O is the output space of the module F is the function of the module

10 and/or M may be empty. The vectors of 10 represent either input or output depending upon the control vector.

The outputs can be 'switchable,' in which case the field associated with 0 has at least three elements.

For simplicity 0 is presented as a single space; however, it some but not all outputs are switchable, 0 is really a pair of vector spaces.

The crux of the definition dictates that for every combination of control, input, IO and memory vectors, there is a unique output vector 'computed' by the function F.

The concept of a logical module applies over a broad range of complexities, extending from 'chips' to an entire computer system.

Defn 2: Let L be a logical module. The boundary of L, denoted by δL , is the quadruple

$$\delta L = \langle C, I, IO, O \rangle$$

The quantity

dim δL = dim C + dim I + dim IO + dim O

will be called the dimension of the boundary.

The boundary is not itself a vector space, since the underlying fields of the constituent spaces may be different. However, the individual coordinates of the constituent spaces can be ordered to run from 1 to dim δL (as for x|y). This will be called an ordering of the <u>elements</u> of the boundary.

Defn 3: A logical module L is <u>primitive</u> if its function F is explicitly given as part of the module's definition.

Defn 4: A logical module L is <u>composite</u> if it is defined by a combination of logical modules

L₁, L₂, ..., L_n

The L_i are called <u>submodules</u> of the module L. A submodule can be either primitive or itself a composite module. Only primitive modules can have memory.

In order to combine logical modules and form more comprehensive structures which are themselves logical modules, we must specify a <u>boundary correspondence</u> that defines a boundary δL for a composite module L in terms of the boundaries δL_i of the constituent submodules. The boundary elements of δL must be associated with boundary elements of submodules. A single element of δL may be associated with elements in more than one submodule or even with more than one boundary element of a single module. A further restriction on the boundary correspondence is that output elements of the composite module boundary be associated with output elements of the submodules. (It is not required that, for example, each input to the composite module be an input to some submodule.)

It will usually be the case that there are some submodule boundary elements which are not associated with elements of the composite boundary. Mappings may be specified a mong such elements.

These mappings are called interconnects.

From the definitions above, it seems clear that the function of a composite module is derivable from the structural relationships of the boundaries of its submodules and the submodule functions. In fact, the boundary correspondences and interconnects define the function F of the composite module L implicitly in terms of the functions F_4 of the submodules L_4 .

To aid us in giving some specific examples of combinations, we introduce the following notions.

Defn 5: Two logical modules are <u>equivalent</u> if there exists a one-one correspondence of their boundaries which results in their functions becoming identical.

Defn 6: A composite logical module is <u>homogeneous</u> if all of its submodules are equivalent.

Simple Composite Modules

As a rule it is difficult to desicribe the functional relationships between the function F of the composite module L and the functions F_i of the submodules. In such a case, the boundary correspondences and interconnects can be listed element by element. However, when the boundary mappings can be described in vector terms, F often has a simple representation in terms of the F_i . We detail a few such situations below.

Parallel Modules

In the design of a computer system, we frequently encounter logical modules that occur in parallel configuration; that is, their inputs, outputs, memories and controls are respectively independent and consequently their functions can be simultaneously used.

For example, consider an 'or' chip with 4 'or' gates which can be used independently. In this case the individual gates, not the chip, are the primitives; the chip represents a composite module with parallel submodules.

$$L_1 = \langle C_1, I_1, IO_1, M_1, O_1, F_1 \rangle$$
 and
 $L_2 = \langle C_2, I_2, IO_2, M_2, O_2, F_2 \rangle$

be logical modules; let

 $C = C_1 + C_2$ $I = I_1 + I_2$ $I_0 = I_0 + I_0$

 $M = M_1 + M_2$ $0 = 0_1 + 0_2$ and define

 $F(c, i, io, m) = F_1(c_1, i_1, io_1, m_1) | F_2(c_2, i_2, io_2, m_2).$

for each combination of control input IO and memory vectors.

Then L = <C, I, IO, M, O, F> is a logical module with <u>parallel</u> submodules. The boundary of L is <C₁ + C₂, I₁ + I₂, IO₁ + IO₂, O₁ + O₂>. dim δ L = dim δ L₁ + dim δ L₂. There are no interconnects.

1

Widened Modules

Using homogeneous submodules it is easy to define a wider module with the same controls. Since homogeneous modules are logically equivalent, we may use the ordering assigned by the equivalence and identify corresponding controls. This, in effect, gangs the controls of the submodules together. The inputs, outputs and memories are combined in parallel as above.

Let

}

 $C = C_1 \leftrightarrow C_2$ I = I₁ + I₂ IO = IO₁ + IO₂ $M = M_1 + M_2$ O = O₁ + O₂ and define F(c, i, io, m) = F(c, i₁, io₁, m₁) | F₂(c, i₂, io₂, m₂)

for each combination of control, input, IO and memory vectors.

Let

۲ د

dim δL = dim C_1 + 2 dim I_1 + 2 dim IO_1 + 2 dim O_1 < dim δL_1 + dim δL_2

There are no interconnects.

An example of the realization of a widened module is a 12-bit register made from three 4-bit register chips.

Composition of Modules

Logical modules may be combined by <u>composition</u> in two important ways, viz the output of one may provide inputs or controls for another. In either case, the composition mapping represents interconnects.

Function Composition

If the dimension of the output space of the first module agrees with the dimension of the input space of the second module, then the composition of these is a logical module. Let

> $C = C_1 + C_2$ $I = I_1$ $IO = IO_1 + IO_2$ $M = M_1 + M_2$ $O = O_2$ and define

 $F(c, i, io, m) = F_2(c_2, F_1(c_1, i_1, io_1, m_1), io_2, m_2)$

for each combination of control, input, IO, and memory vectors. Such modules are, in effect, cascaded and, in the case that L_1 can be preparing its new outputs without modifying its prior outputs, this composition is said to form a pipeline.

Control Composition

If the output space of one module coincides with the control space of another module, the composition of these modules is a logical module.

Let dim $O_1 = \dim C_2$,

 $C = C_1$ $I = I_1 + I_2$ $IO = IO_1 + IO_2$

 $M = M_1 + M_2$ $0 = 0_2$ and define

$F(c, i, io, m) = F_2(F_1(c_1, i_1, io_1, m_1), i_2, io_2, m_2)$

The second second

for each combination of control, input, IO and memory vectors. In such a case as this we say the module L_1 has provided the control for module L_2 . Such a module is called a <u>control module</u>.

In the various composite modules treated above, we have limited ourselves to simple combinations, yet combinations of these combinations will provide most of what is required to treat significant computer systems.

D. Defining Logical Modules

The definitions of the previous sections were of conceptual intent; that is, they essentially assigned formal names to intuitive concepts. In order to translate these concepts into somethings a computer can get its teeth into, we must present a module definition language and a corresponding data structure. Since module combinations can be completely described in terms of the module boundary and the boundaries of the submodules, the language is a vehicle for specifications of boundaries.

Three kinds of documents suffice for logical module definitions:

- 1) definition document for a primitive module
- 2) definitive document for a composite module
- definition document for a module which is a copy of a previously defined module (either primitive or composite).

Definition document for a primitive module

The boundary elements of the module must be ordered and assigned 'local' names. For example, if the module is to be realized as a 'chip,' the names given to the pins by the manufacturer will suffice. The document then consists of a list of those names, together with a description of the use made of each boundary element (control, input, IO, output). The amount of memory required (if any) must be detailed.

In addition, pointers must be provided to subroutines which compute the module's function. Up to three such subroutines are allowed. This allows control, input, IO and output vectors to be divided into convenient subsets, and enables subsets of outputs to be computed from subsets of inputs.

Definition document for a composite module

The document contains a list of submodules of the module. Then, for each element of the composite module boundary, two items of information must be given: the use of this element (input, control, etc.) and the signal name associated with that element. Each signal name must appear in the definition document of at least one submodule.

The signal names in the document definitions for the module and its submodules determine the boundary correspondences and the interconnects between the submodules. The major design step, then, is encompassed in the assignment of signal names.

Definition document for a copy of a previously defined module

In such a document, the name given in the original definition document must be provided. Then the boundary elements of the module are assigned new signal names. The elements are listed in the same order as in the original module definition document. For each boundary element, its type (control, input, etc.) as well as its assigned (new) signal name is designated.

Using such documents allows many copies to be made from one definition document. In the case of primitives, this avoids proliferation of copies of the subroutine for the module. In the case of composite modules, it enhances modularity by allowing one set of signal names to be associated with boundary elements within a module, and a different set to be assigned to those same elements when the module is used as a component of a larger module.

If the definition document for a submodule L_1 of a module L is itself a composite module, definition document, then the signal names connecting boundary elements of L with boundary elements of L_1 will continue into the interior of L_1 . Such a signal connects at least three levels of the structure. This runs counter to modularity but is allowed in our system for flexibility.

When the design documents for all submodules of a module are copies of previously defined modules, all signals among the boundary elements of the module and the submodules stop at the boundaries of the submodules, preserving modularity. That is, wiring between modules is independent of wiring within those modules.

Examples of definition documents

We illustrate the concepts of the previous sections by including printouts of design documents.

Document 1 is a composite module, definition document for an 8-bit counter, CNTR8. It is composed of the submodules CNT1, CNT2, CNTB, and has 24 boundary elements. Signal names on the same line represent elements of the same type -- control, input, etc. The signal names listed here appear in the design definition documents for the modules CNT1, CNT2 and CNT8.

Document 2 defines a module ADDR8 which is a copy of the CNTR8 module. ADDR8 is combined with another module to form a module PAD. The definition document for PAD is shown in document 3.

Those signal names in document 2 which also appear in document 3, (e.g. BUS 7) detail part of the boundary correspondence for the composite module PAD. Names which appear in document 2 but not in document 3 (e.g. A7) will occur in the definition document for the other submodule of PAD (RAM12). These represent interconnects betwen the submodules of PAD.

DØCUMENT CNTR8PAGE1LINE1"CNTR8 8bit counter module with bussed and regularoutputeSUBMODSCNT1, CNT2, CNT8CØNTRØLLDn, INC, BA, BAn, CLK, G1n, G2nIØBUS7, BUS6, BUS5, BUS4, BUS3, BUS2, BUS1, BUS0ØUTPUTCNT7, CNT6, CNT5, CNT4, CNT3, CNT2, CNT1, CNT0ØUTPUTCNT2RØnEND

Document 1. Definition document for a composite module

DECUMENT	ADDR8	P	AGE	1	LINE	1
ADDRB	8 bit	ADDRESS	REGI	STER/CN	TR	
TYPE	CNTRO					
CONTROL	LDn, I	NC, BA, BA	n,CLK	,DC,GND		
BUS	BUS7,6	BUS6,BUS	5,809	54,BÚS3,B	BUS2,BUS	S1,BUSO
ØUTPUT	A7, A6	, A5, Á4, A	3, 42,	AÍ,AŬ	-	-
ØUTPUT	ØPÉN			•		
	END					

Document 2. Definition document for a 'copy' of the module definition document 1

PAD	PAD PAGE 1 LINE 1 256 word by 12 bit RAM with address register
SUBMØDS	ADDR8, RAM12
INPUT	IN11, IN10, IN09, IN08, IN07, IN06 IN05, IN04, IN03, IN02, IN01, IN00 RD-1 DD-DC-INC RA RAD CLU
BUS ØUTPUT	BUS7, BUS6, BUS5, BUS4, BUS3, BUS2, BUS1, BUS0
ØUTPUT END	ØUT05, ØUT04, ØUT03, ØUT02, ØUT01, ØUT00

......

I

I

I

 \mathbf{I}

 \square

 \square

I

Π

I

Document 3. Definition document for a composite module on the next higher level. The module defined in document 2 is a submodule of this module.

E. The Integrated Logical Simulator

The logical module simulator permits verification of the logical design of a module prior to its construction. It also can be used to compute expected results for comparison with values measured using the module analyzer. In addition, algorithm development for a device can be carried out using the simulator.

As part of an integrated logical design facility, the simulator uses the common logical module structure for description of the module being simulated. The module is defined in terms of its boundary elements and its constituent submodules. These submodules may themselves be composite modules, or they may be uses of previously defined modules. At the lowest level, these are primitive modules with associated programs to perform their function. It is also possible to replace a module in the simulation with the physical device using the module analyzer. In this mode, signals to and from the module analyzer are used with those produced through simulation of the remaining modules.

The simulation is performed at discrete time steps. For each step, the processing consists of computing the outputs of the module from given inputs and controls. All output computation actually takes place at the lowest, or primitive level. Input and control signals are distributed from higher level modules down through submodules until primitive modules are reached. Signals are collected at the boundary of each primitive module until those needed to compute outputs are available; then outputs are computed. These outputs are then distributed throughout the module structure wherever they are needed as inputs or control signals. The processing for a step is complete when all primitive modules have computed their outputs.

A logical module is described to the simulator by specifying its boundary elements and either identifying the module type from a library of previously defined modules or by listing the constituent submodules. The submodule descriptions are in the same form: either uses of previously defined modules or sets of interconnected modules. The boundary specification for each module is ordered by position. The use of the boundary element (Input, Output, Control, Bus) is given explicitly. The signal name given for the element defines the interconnection structure between submodules and to the boundary of the composite module.

Primitive modules are defined for simulation by providing an executable subroutine which computes the outputs of the module from its inputs and controls. In addition, a table must be provided which describes the use made of each boundary element of the module, together with the amount of memory which the module contains. Each such module can have up to three separate subroutines. This permits computation of some outputs based on the presence of only a partial subset of the inputs. This simplifies the processing of modules containing memory elements whose state is to be used during the current step and updated for use in the following step. One subroutine makes their outputs available as soon as the appropriate control signals are present, another updates their internal state when the input data is available.

A two-part, parallel data structure is used for the logic simulation. The first part, the interconnect table (Table 3.1), represents the logical interconnections of the boundary of a module with the boundaries of its constituent submodules. This structure provides the paths for transfer of logic values from their source to dl modules where they are used. Each module entry in this structure has a set of pointers to the entries for each of its submodules and a pointer entry for each boundary element of the module and of each of its submodules. These pointer entries are linked together in circular lists connecting all boundary points which share a common signal name. Primitive module entries in this structure contain the subroutines for computing their outputs. If the same module is used more than once, only one copy of it is needed in this structure since its connections to other modules for each use are described at the next higher level.

The second structure used for simulation is a state table which maintains the record of the current state of the module (Table 3.2). This table includes the memory for each primitive module and the current state of all its boundary elements. At higher levels, this table contains only a list of pointers to the entries for each submodule. Since identical modules need not have identical states, this table has separate entries for each use of a module.

These data structures are created from the text description of a module in a two-stage process. Each composite module is first processed by the logic simulation assembler to produce its interconnect table, which shows all logic variables present on its boundary as well as all interconnections between the submodules which make up this module. The output of the logic

assembler for a module is this interconnect table and a list of the submodules referenced. When a module is to be simulated, the interconnect tables for all modules contained in it are loaded along with primitive module code and linked together. At the same time, the state table is constructed and the initial variable state filled in. This completes the second stage of the creation of the data structures needed and is followed by the actual simulation steps.
Table 3.1 Interconnect Table Formats for a Module

a. Nonprin	nitive Module
Word #	<u>Contents</u>
0	<pre># submodules + 1 (M+1)</pre>
1-M	Pointer to each submodule entry (*-displacements)
M+1	<pre># boundary elements for module (N)</pre>
M+2 - M+N+2	Pointer entry for each boundary element
M+N+3 – END	Entries for submodules
	A (interconnect table for submodule) filled in during
	second phase.
	One-word pointer entry for each boundary element of sub-
	module, contains submodule index/pin index of next use of
	signal. Each element entry, whether on the boundary of
	the module or some submodule, is a circular list link of
	the form: submodule index/element index where submodule
	index 0 refers to the boundary of the module. All
	elements with the same signal name are linked together
	in a ring.
b. Primit:	ive Module
Word O:	length of state table entry for module
Word 1:	A (source for state table entry)
Word 2:	A (primary processing code)
Word 3:	control entry 1 A(first control processing code)
Word 4:	control entry 2 A(second control processing code)
	A primitive module has up to three processing sections.
	Each section has its own entry point and is executed
	according to the following rules:
1.	Entry point given at module base + 2. Standard processing. Executed when the specified number of scheduling inputs and controls are valid.
2.	Entry at module base + 3: Executed when control with subtype 1 is valid.
3.	Entry at module base + 4: Executed when a control with sub- type 2 is valid and low or a control with subtype 3 is valid and high.

IJ

Table 3.2 State Table Formats

a. State Table Nonprimitive Module Entry

Words 1 to N-1:Address of state table entry for each submodule.Word N:#1 address of state table entry for last submodule.

b. State Table Primitive Module Entry

#2 S # needed R # received 15 14 8 7 6 0

R and S are set when control entry 1 or 2 respectively can be executed.

received is a count of the number of signals which have their schedule bit set which have been received.

needed is the number of these signals which must be present before the primary entry can be executed.

Words 1 to
$$\frac{N}{2}$$
: [#1] $\frac{T}{15 \ 14 \ 13 \ 12 \ 11 \ 10 \ 9 \ 8 \ 7 \ 6 \ 5 \ 4 \ 3 \ 2 \ 1 \ 0}$

One byte for each signal:

T = Type 00 = Control 01 = Output 10 = Input 11 = Bus

ST = Subtype <u>Output Bus</u>	<u>Control</u>
00 = Combinatorial/Ungated	00 = Other
10 = Latched/Ungated	01 = Immediate entry 1
01 = Combinatorial/enabled	10 = Active low - entry 2
11 = Latched/enabled	11 = Active high - entry 2

S = Schedule bit - increment received count when this signal is received V = Valid - set when signal is valid

N = Next Value - retains value for use in clocked outputs

C = Current Value - state of signal if V bit is set.

The last signal word has its flag 1 set. If the module requires memory, it will be located immediately after the signal entries.

F. The Integrated Module Analyzer

The Module Analyzer (MA) performs post construction verification of the logical and engineering design. At this stage in the design the modules involved should be logically correct. However, engineering considerations may affect the performance and implementation of the logical design. Timing characteristics, signal transmission paths, power requirements, and noise environment are among the possible engineering design considerations that may affect the final form of the hardware.

The realization of the prototype MA was influenced by two factors: (1) the desire to have its elements under direct external software control, and (2) to have a working prototype quickly available. These two factors resulted in a device that has overall structural simplicity. The final implementation of the MA may involve more sophistication that could allow more automation of hardware checkout. For example, the manual switches used for sampling selection could be electronic switches under program control. Nevertheless the prototype MA has proven itself a useful tool. The remainder of this section documents the MA and contains the following paragraphs: Paragraph 1 is a functional description of the entire unit including each of its major registers. Paragraph 2 describes how to operate the MA using the manual controls, external connections, and programmatic capabilities. is a detailed circuit description. Appendices include sample Para. 3 microprograms, and a complete set of drawings.

1. Functional Description

The main features of the MA are depicted in the block diagram of Figure 3.1. Generally, the purpose of the MA is to provide both static and dynamic inputs to a board under test and then to sample the board's outputs after a specified time period. This time period is specified by external control, so that a sequence of tests can determine when an output changes within 5 ns. External addresses and data are supplied on PAXOO* to PAXO5* and IØXOO to IØX15, respectively. The internal registers are addressed according to the decoding scheme included in Figure 3.1.

The Buffer Register (BR) has several purposes. It serves as a converter from (or to) external 16-bit data to (or from) internal 140-bit data. This is accomplished by nine separately addressable 16-bit registers within BR. After data has been transferred into BR, the information may then be loaded into either the Input Register or the Control Register, both 140 bits.

•

.

....

-94

-

**

....

.....

BR also serves as the data storage register when the board under test is sampled.

x 1

The Input Register (IPR) provides static input data to the board under test. It is a 140-bit register that is loaded from BR. Its outputs may be connected to the board under test by switch settings.

The Control Register (CØN) provides dynamic input data to the board under test. The clocking of CØN provides an initiate pulse to the MA that begins the test sequence. This initiate pulse defines the time of change of any bit in CØN and also provides a start pulse to the counter.

The Counter consists of two elements, the Count Save (CS) register and a 50 Mhz up-counting register (CNT). The counter has two functions: It generates timing strobes for the various data transfer operations to, from, and within the MA. It also provides the sample strobe that defines when data from the board under test is loaded into BR and the Status Register. The length of time between the initiate pulse of CØN and the sample pulse of CNT is determined by the number loaded into CS. This time may be practically varied from 30 ns to 327 μ s in 5 ns intervals.

The Status Register (STAT) is a 16-bit register whose inputs are directly attached to external probes. These probes may be connected to any signal on the board under test; this provides the capability to sample 16 internal states in addition to the I/O pins. Data from STAT is directly read from the X-Bus since it is only 16 bits wide.

Switches on the MA are set to correspond to the function of each pin. Input pins are switched to "I" or "C" depending on whether the input is a static or dynamic one. At sample time the state of these inputs is loaded into BR. Output pins are switched to " \emptyset " so that at sample time the state of the output pin is recorded. Power and ground pins are switched to " \emptyset "; power wiring is not a logic input so it is wired separately to the board connector.

2. Operation

The operation of the MA is governed by three conditions: (1) External connections, (2) switch settings, and (3) control of external logic signals.

The external connections must be made prior to powering on. The power cable must be plugged to both the MA and an external 5V power supply. A 50-pin flat cable must be connected to Connector MP1. This provides external input/output; pin assignments are given in Table 3.3. The opposite end is connected to the device providing control. The board to be tested should be

Table 3.3 MP1 Pin Assignments

1

¥ 1

Pin	Signal	Pin	<u>Signal</u>
1	1\$200*	26	1#X12*R
2	I#X00*R	27	10X13*
3	1 \$ X01*	28	IØX13*R
4 .	IØXD1*R	29	1\$114*
5	IØX02*	30	10X14*R
6	IØX02*R	31	1#X15*
7	IØX03*	32	IØX15*R
8	1ØX03*R	33	IØXENA*
9	1ØX04*	34	1 ØXENA *R
10	1 \$ x04*r	35	UNUSED
11	IØX05*	36	UNUSED
12	1 ØX05*R	37	PAX00*
13	1øx06*	38	PAX00*R
14	1\$X06*R	39	PAX01*
15	IØX07*	40	PAX01*R
16	IØX07#R	41	PAX02*R
17	I\$X08*	42	PAX02*R
18	IØX08*R	43	PAX03*
19	1\$X09*	44	PAX03*R
20	1ØX09*R	45	PAX04+
21	1øx10*	46	PAX04*R
22	1øx10*r	47	PAX05*
23	1øx11*	48	PAX05*R
24	1øx11*r	49	UNUSED
25	1\$12*	50	UNUSED

....

.74

I

I

45

•

placed in the edge connector provided on the top of the MA. When these connections have been made the power-on switch may be enabled.

11

Before programmatic manipulation is begun, the desired switch settings should be made. Output pins of the board under test should have their corresponding switches set to " \emptyset ". Inputs should be set to "I" or "C" depending on whether the pin will have a static or dynamic input. In addition to switch settings the user may desire to attach any or all of the 16 probes to internal points on the board.

Programmatic control of the MA is achieved by manipulation of the address (PAX00* to PAX15*), data (IØX00 to IØX15), and enable (IØXENA*) signals. Generally the procedure to perform a test sequence is as follows:

- (1) Reset the MA ($PA = 34_a$).
- (2) Load CS with the desired 16-bit count ($PA = 31_{B}$).
- (3) Load BR with the desired data for IPR (PA 20 to 30).
- (4) Transfer BR to IPR (PA32).
- (5) Load BR with the desired data for CØN (PA 20 to 30).
- (6) Transfer BR to CØN (PA33); this initiates the count previously loaded into CS.
- (7) Wait for sample pulse.
- (8) Read BR (PA 40 to 50).
- (9) Read STAT (PA 51).

These data transfers are controlled by internally generated timing strobes. These strobes define the times during which commands and data are to be supplied to the MA, and they define when MA output data is be externally sampled. The timing of input to the MA is given in Figure 3.2. Both I\$X (data) and address (PA*) should be changed a minimum of 100 ns before making I\$XENA* active. I\$XENA* enables the X-Bus, and 820 ns later the timing pulse, STR\$BE1*, is activated. In Figure 3.2 the signal REG DECODE represents the register enable signal that is a decode of PA 20-34. The combination of decode and STR\$BE1* generates the appropriate register clock. This latches the data in the corresponding register. The timing is the same for clocking external data into a 16-bit segment of BR, transferring 140 bits from BR to IPR or C\$N, and generating a reset pulse. The user must simply keep I\$XENA* active for more

• •

Figure 3.3 Output Timing Diagram

than 900 ns and then data, address and IØXENA* may be made inactive simultaneously.

The timing for output from the MA is similar to the input timing with the addition that the output data must be sampled during a specified time period. Output timing is given in Figure 3.3. The timing for output is the same as input thru the generation of STRØBEL*. This allows the MA to decode the address of the register being selected for output. However, after STRØBEL* there are additional timing rules. The user must stop driving the enable, address, and data signals before STRØBE2* which occurs at 1140 ns. At this time the MA will begin driving the IØX lines and will continue until STRØBE3* at 1920 ns. Data must be sampled between 1140 and 1920 ns.

Appendix 1 gives sample micro programs for controlling the MA. They are written for a CHI MP32A Macro Processor. The instruction #UTPUT CLR provides proper timing to I\$XENA, and INPUT samples I\$X during the time it is driven by the MA. These micro routines assume that PD (which drives I\$X) has been previously set up with the desired data.

3. Circuit Description

1

This section will first describe each of the major registers within the MA and then describe the control circuits that generate the proper timing and event sequence. Refer to the logic drawings in Appendix 2.

The Buffer Register (BR) is the only reigster that functions as both an array of 16-bit registers and as a 140-bit register. BR is made of DM8542 4-bit three-state registers. External input data (I\$X00 to I\$X15) is received by 8T95 three-state drivers whose outputs are connected to the A-Bus of the 8542. The 140 bits are segmented into 16-bit groups, each group having a separate input and separate output enable controls. These controls are direct decodes of the PA* signals. Although the entire 140-bit register must have a common clock to allow loading of 140 data bits from the B-Bus, sixteen bit loading is accomplished by the A-Bus controls. Thus BR is externally read in 16-bit segments.

When data is to be transferred from BR to either the Input or Control Registers the B-Bus output enable control is activated. Data is clocked into these registers at STRØBE1* time. Both the Input and Control Registers (IPR and CØN) are made of SN74LS174 6-bit registers. The outputs of IPR and CON may be switched to the board under test and in this case they are buffered from the B-Bus of the 8542 by three-state buffers (SN74367). When data is to be loaded into BR from this side the input control LDBR* activates both the three-state buffers and the B-Bus input of BR. In this case BRCLK is generated from the counter.

The Status Register is made of AM25S18 4-bit three-state registers. Its inputs are directly attached to the external probes. It is clocked at the sample time generated by the counter. Its three-state outputs are enabled onto the X-Bus when its address has been decoded. It is read in the same manner as any of the 16-bit segments of BR.

Timing pulses and control signals are generated by a 16-bit up counter. The basic clock of the counter is supplied by a 50 Mhz oscillator. The outputs of the counter are used in two functionally different ways and divide into two phases. The first phase generates all the timing and control signals; the second phase generates the data sample pulse which may be varied between 30 ns and 327 µs in 5 ns intervals.

The first phase generally begins with the activation of IØXENA* and lasts until STRØBE3*. The only exception to this is when the data sampling pulse is to be generated (see below).

When IØXENA* becomes active it clocks CNTENAQ which enables the 16-bit counter (AM93S16). CNTENAQ is also wired to the reset input of each stage of the counter to ensure the count begins at zero. The counter is a synchronous counter, but the carryout of a stage is clocked into the next stage with a delay of one clock. This was necessary because the delay time from clock to carryout plus the setup time from carry into clock is longer than the 20 ns clock period generated by the oscillator. Thus it was necessary to stretch the carryout by two inverters and an ØR gate in order to meet the setup requirements.

The strobe pulses, STR#BE1-3* are generated by simply using an 8-input AND gate with the appropriate inputs. STROBE1* generates all the 140-bit register clocks: C#UNTCLK, IPRCLK, C#NCLK, and BRCLKO. STR#BE2* clocks #UTENAQ, the enable pulse for MA output. STR#BE3* is generally used to reset control flip flops to their original state so that each time the MA is addressed it begins operation from the same state. It resets #UTPUTQ, #UTENAQ, LDBR and CMTENAQ.

The exception to this sequence is when the counter is used to generate the sample pulse, TO. The decode of PA33 (Load Control Register) generates the signal CØNCLK at STRØBE1* time. CØNCLK alters the usual sequence of events. Referring to Figure 3.4 the first events are the activation of STRINHQ* and LDBR*. STRINHQ* disables STROBE2-3*; LDBR* enables the B-Bus input of BR. CØNCLK* is used to enable the parallel load feature of the 93S16 counter. So the contents of CS are loaded into the counter at every DELCLK until CØNCLK* goes inactive. At this trailing edge of CØNCLK the counter begins to count and the Control Register is clocked. Hence the dynamic inputs to the board under test change at the same time the counter begins to count.

1 1

When the counter reaches a count of all ones the sample pulse, TO, is generated. TO generates a BRCLK, so the data from the board under test (or the contents of other registers as determined by the switch settings) is loaded into BR. TO also clocks data into the Status Register. Additionally TO resets STRINHQ*, so that the counter now begins counting again from zero. Therefore, the generation of the STRØBE1-3* pulses proceeds as previously described with STRØBE3* being the only important event. STRØBE3* resets any remaining active pulses so that the MA is returned to its idle state.

The implementation of selectable 5 ns delays is accomplished by using a delay line with 2-1/2 ns delay taps. Delays of 5, 10, 15, and 20 ns are used to provide four selectable clocks. DELO is selected at all times except when LDBR is active. When LDBR is active the delay is selected by the two least significant bits of CS.

, / ...

ł

Figure 3.4 Test Sequence Timing

ſ',

APPENDIX A: SAMPLE OUTPUTS FROM THE STRUCTURED DESIGN SYSTEM

-

1

11

. . .

	DECUMENT	connapt	,	PAGE	1	LINE	1
	P	"Part	03/08				
	1	TSel					
	8	TCLK					
	4	KACIT					
	5	0100					
	7	0101					
	6	@103					
	9	0104					
	10	0105					
	12	8107					
	13	0108					
	15	0110					
	16	0111					
	17	GASOI					
	19	GCO					
	20	OC1					
	21	GC2					
	23	OBCIV					
	24	UCLK					
	40 26	MPCIK					
	27	MXCLK					
	28	MYCLK					
	30	MXSel				× .	
	31	MXCIT					
1	52	MYCLY					
	54	CLK					
	55	YMSel					
-	57	0200					
-	38	0201					
	59	0202					
4	11	8204					
9	12	0205					
4	M4	0205					
9	5	0200					
1	7	0209					
-		0211					
4	3	HASel					
5	ĩ	HOO					
5	2	HC1					
5	3	HC2					
200	5	HBCIr					
8	6	VCLK					
2	R	VSG I					

· •

/ 11

DRICUMENT 59 60 61 62	CONNAPU G11 GCIN HCRY GND
61 62 64 65 66 66 66 67 77 77 77 77 77 77 90 12 34 56 78 99 99 99 99 99 99 99 99 99 99 99 99 99	HCRY GND I100 I101 I102 I103 I104 I105 I106 I107 I200 I201 I202 I203 I206 I207 I207 I207 I207 I207 I207 I207 I207
116	4 0

61

LINE

T L

1

PAGE

DECLIMENT	NC	PAGE	1	LINE
121	VCC			
122	VCC			
125				
1.25				
126				
1.27				
8				

DOCUMENT "MICHAPU	menuapu	PAGE	1	LINE	1	
Submod.	Physical	Display				
M	J19	Location				
PUK1 PUK3	J10 N10	0,0		MX2	L10	0,+0
MY3	NI NI	30,25		MY2	L1	0,40
F1	C10 A10	300		T2	G10	0.40
01	C19	5.6		F2	E10	30,40
63	C#1	30.25		02	C30	0,40
GA3	A21 A43	0,0		GA2	A32	0,40
GB3	E21 E43	30,25		082	E32	0,+0
H3	R19 R41	30,25		нг	R30	0,40
HAI	N21 N43	30.25		HA2	N32	0,40
HB1 HB3	T21 T43	0,0		HB2	132	0,40
U1 U3	G21 043	30,25		U2	G32	0,40
V3	V21 V43	0,0		V2	V32	0,40
xm1 xm3	C1 G1	0,0		×M2	E1	0,40
YM3	R1 V1	30.25		YM2	T1	0,40
DCD6 TestetAPU	A1 T10 G#2	0,0 30,0		DCD5 DCD7	R10 V10	0,40 30,40

PRES 35 MPFO6 L48 PR4 36 MPFO7 L47 PR3 37 MPFO8 L46 PR1 39 MPFO9 L45 PR1 39 MPFO9 L47 SGNM 40 MPF09 L43 NC 41 @PEN L42 YSGN 42 MY11 L41 Y1 43 MY10 L40 Y2 44 MY09 L39 I Y1 43 MY10 L40 Y3 45 MY08 L38 I Y5 47 MY06 L36 Y WCC 48 VCC L35 Y WCC 49 VCC L34 Y WCC 50 VCC L35 Y WCC 50 VCC L32 Y WCC 50 VCC L32
I Y7 52 MY04 L31

· 10

T

0

U

U

E

[]

[]

and a

2"Part name 25LS157 16 2"Part name
MXSel J10 C Sel 1 MXSel L10
I208 J11 I 1A 2 I204 L11
1308 J12 I 18 3 I304 L12
MX08 J13 Ø 1Y 4 MX04 L13
1209 J14 I 2A 5 I205 L14
1309 J15 I 28 6 I305 L15
MX09 J16 0 2Y 7 MX05 L16
OND J17 G OND 8 GND L17
MX10 K17 Ø 3Y 9 MX06 M17
I310 K16 I 39 10 I306 M16
1210 K15 I 3A 11 1206 M15
MX11 K14 Ø 4Y 12 MX07 M14
I311 K13 I 48 13 I307 M13
I211 K12 I 4A 14 I207 M12
MXCIr K11 C STRØBE 15 MXCIr M11
VCC KIO V VCC 16 VCC M10
ISOB J12 I IB 3 ISOM L MXOB J13 Ø IY 4 MXOM L I2O9 J14 I 2A 5 I2O5 L I3O9 J15 I 2B 6 I3O5 L MXO9 J16 Ø 2Y 7 MMO5 L GND J17 G GND 8 GND L MX10 K17 Ø 3Y 9 MMO6 M I310 K16 I 3B 10 I3O6 M I210 K15 I 3A 11 I2O6 M MX11 K14 Ø 4Y 12 MXO7 M I311 K13 I 49 13 I307 M I211 K12 I 4A 14 I207 M VCC K10 V VCC 16 VCC MXC1r

- M.	X3			
25	_\$157	16	2"Part	name
C	Sel	1	MXSel	N10
T	14	2	1200	N11
Ŧ	18	3	1300	N12
à	14	4	MXOO	N13
Ť	24	R.	T201	N14
÷	28	ž	1301	NIS
â	24	7	MXO1	N16
G	GND	A	GND	N17
a	TV	ě	MXO2	P17
ĩ	39	in	1302	PIG
+	30	11	1907	DIS
-	JA	11	1404	DIA
10	TT	12	MAUS	P17
Ī	48	13	1303	P13
I	4A	17	1203	212
C	STROBE	15	MXCIT	P11
V	VCC	16	VCC	P10

11					M2			
LS157	16	2"Part	name	25	LS157	16	2"Part	00
Sel	1	MYSel	J1	C	Sel	ī	MYSel	LI
LA	2	1200	J2	I	14	2	1204	12
18	3	1300	33	Ī	18	3	1304	13
14	4	MYOB			1Y	4	MYO4	14
24	5	1209	J5	I	24	5	1205	15
28	5	1309	J6	Ť	28	6	1305	16
24	7	MY09	37		ZY	7	MY05	17
GND	8	GND	Je	Ĝ	GND	8	GND	I.A
3Y	9	MY10	KB	Ō	3Y	9	MYOG	MA
.50	10	1310	K7	Ī	30	10	1306	MZ
34	11	1210	K6	Ī	34	11	1206	MA
4Y	12	MY11	K5	Ō	4Y	12	MYO7	MS
₩ ₿	13	1511	K4	Ī	48	13	1307	M4
4A	14	1211	K3	Ī	44	14	1207	MT
STROBE	15	MYCIT	K2	Ċ	STROHE	15	MYCIT	MZ
VCC	16	VCC	K1	Ÿ	VCC	16	VCC	MI
	LS157 Sel LA LB LB LY ZA ZB ZY GND 379 378 378 378 378 378 378 378 378 378 378	LS157 16 Sel 1 LA 2 LB 3 LY 4 2A 5 2B 6 2Y 7 GND 8 3Y 9 SE 10 SA 11 4Y 12 4B 13 4A 14 STROBE 15 VCC 16	III IIII IIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		LS157 16 2"Part name 28 Sol I 1 MYSel JI C LA 2 I200 J2 I LB 3 I300 J3 I LY 4 MY00 J4 J4 ZA 5 I209 J5 I ZB 6 I309 J6 I ZY 7 MY09 J7 J7 GND B GND J8 G 3Y 9 MY10 K8 G 3B 10 I310 K7 I JA 11 I210 K6 I 4Y 12 MY11 K5 G 3H 13 I511 K4 I 4Y 12 MY11 K5 G YHB 13 I511 K4 I YA 14 I211 K3 I YA 15 MYC1 r K2 C YCC 16 YCC K1 Y Y	M1 $M2$ LS157 16 2'Part name 25LS157 Sel 1 MYSel J1 C Sel LA 2 I200 J2 I IA LB 3 I300 J3 I IB IY 4 MY08 J4 0 IY 2A 5 I209 J5 I ZA 2B 6 I309 J6 I ZB 2Y 7 MY09 J7 0 ZY GND B GND J8 0 3Y SB 10 I310 K7 I 39 SA 11 I210 K6 I 3A 4Y 12 MY11 K5 0 4Y 4Y 12 MY11 K5 0 4Y 4H 13 I511 K4 I 4B 5TRØBE 15 MYC1* K2 C STRØHE VCC 16 VCC	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Implement Implement Implement LS157 16 2"Part name 25LS157 16 2"Part Sel 1 MYSel J1 C Sel 1 MYSel LA 2 I200 J2 I IA 2 I204 LB 3 I300 J3 I 18 3 I304 IY 4 MY08 J4 Ø IY 4 MY04 2A 5 I209 J5 I 2A 5 I205 ZB 6 I309 J6 I 2B 6 I305 ZY 7 MY09 J7 Ø ZY 7 MY06 SGND B GND J8 G GND 8 GND 9 SW 9 MY10 K8 Ø 3Y 9 MY06 SW 9 MY06 I 3B I0 I306 3A 11 I206 SW 9 MY06 I <td< td=""></td<>

I

Service and	11.5				
25	1.5157	16	2"Part	name	
С	Sel	1	Mysel	N1	
I	1A	2	1200	N2	
I	18	3	1300	N3	
0	14	4	MYCO	N4	
I	20	5	1201	NS	
I	28	6	1301	NIG	
e	24	7	MYO1	NZ	
C	GND	8	GND	NB	
C	3Y	9	MYO2	PB	
I	38	10	1302	P7	
I	3A	11	1202	P6	
ø	44	12	MYO3	PS	
I	48	13	1303	P4	
I	44	14	1203	P3	
C	STRUBE	15	MYCIT	P2	
V	VCC	16	VCC	DI	

235.509 C S B GO I DOA I DOB I DIB I DIA G GND C OP G G2 I D2A I D2B I D3A S G3 V VCC	16 2*Part 1 Tsel 2 T04 3 F04 4 I104 5 I105 6 F05 7 T05 8 GND 9 TCLX 10 T06 11 F06 12 I106 13 I107 14 F07 15 F07 16 VCC	C10 C11 C12 C13 C14 C15 C16 C17 D17 D17 D16 D15 D14 D13 D12 D11 D10	* 12 255LSO9 C S Ø GO I DOA I DOB I D18 I D18 I D18 I D18 Ø G1 G GND C CP Ø G2 I D2A I D28 I D38 I D38 I D38 I D38 V VCC	16 2*Part name 1 TSei G10 2 TOO G11 3 FOO G12 4 I100 G13 5 I101 G14 6 FO1 G15 7 TO1 G16 8 GND G17 9 TCLX H17 10 TO2 H16 11 FO2 H15 12 I102 H14 13 I103 H13 14 FO3 H12 15 TO3 H11 16 VCC H10
*F1 251.52517 I A1 I B1 I A0 I B0 C S0 C S1 C S2 # F0 # F1 G GND # F2 # F3 # GVR # C# I CN I B3 I A3 I B2 I A2 Y VCC	20 2 1 GA11 2 T05 3 GA11 4 T04 5 GC0 6 GC1 7 GC2 8 F04 9 F05 10 GND 11 F06 12 F07 13 ØPEN 14 ØPEN 15 F2CØ 16 T07 17 GA11 18 T06 19 GA11 20 VCC	A10 A11 A12 A13 A145 A16 A17 A18 B18 B18 B17 B18 B17 B16 B17 B15 B14 B13 B12 B10	*F2 25LS2517 I A1 I A0 I B0 C S0 C S1 C S2 Ø F0 Ø F1 G GND Ø F2 Ø F3 Ø F3 Ø F2 Ø F3 Ø F3 I Ch I B3 I A3 I B2 I A2 I A2	20 2"Part name 1 GA11 E10 2 T01 E11 3 GA11 E12 4 T00 E13 5 GC0 E14 6 GC1 E15 7 GC2 E16 8 F00 E17 9 F01 E18 10 GND E19 11 F02 F19 12 F03 F18 13 SPEN F17 14 F2CS F16 15 G1CS F15 16 T03 F14 17 GA11 F13 18 T02 F12 19 GA11 F11 20 VCC F10

I

[

 $[\hspace{-0.5mm}]$

0

U

0

I

:94

/ ..

°0	1				-0	2			
25	LS2517	20	2'Part	nama	25	LS2517	20	2"Part	nam
I	A1	1	GA09	C19	I	A1	1	GAOS	030
T	81	2	GB09	020	Ī	81	2	6805	C31
1	AO	3	GAOB	C21	Î	AO	3	GAO4	C.52
1	BO	+	G808	C22	Ī	BC	4	GBO4	C33
C	50	5	GCO	C23	Ċ	SO	5	GCO	C.34
C	Si	6	GC1	C24	ċ	51	6	GC1	035
0	52	7	GC 2	C25	ċ	52	7	GC2	036
ø	FO	8	008	C26	0	FO	A	604	C37
0	F1	9	G09	C27	õ	F1	9	605	038
G	GND	10	GND	C28	Ĝ	GND	10	GND	039
ø	F2	11	G10	D28	Ø	F2	11	G06	039
Ø	F3	12	G11	D27	Ø	F3	12	G07	0.38
ø	EVR	13	OFEN	D26	Ø	OVR	13	OPEN	0.37
Ø	CØ	14	GICO	D25	Ø	CVD	14	GICO	036
-	Cn	15	G2CØ	024	T	m	15	6300	035
-	63	16	GB11	023	Ŧ	83	16	GB07	034
I	A3	17	GA11	1)22	i	43	17	GAOZ	033
I	82	18	GRID	021	÷	82	ia	GBOG	032
Ī	A2	19	GALO	020	ŕ	A2	19	GAOG	031
Ŷ	VCC	20	VCC	019	Ŷ	VCC	20	VCC	D30

U

U	5			
25	LS2517	20	2"Part	nama
I	A1	1	GAU1	C41
I	81	2	GB01	C42
Ī	AO	3	GACO	C43
ř	HO	4	CHIO	C44
ċ	SO	5	600	CHE
č	G1	2	act	CHE
č	51	2		CTO
C.	52	5	GCZ	UTT
10	FU	8	600	C48
ø	F1	9	GO1	C49
C	GND	10	GND	C50
ø	F2	11	GO2	D50
10	F3	12	G03	D49
Ø	ØVR	13	OPEN	D48
0	CØ	14	63.00	047
Ŧ	Co	15	GCTN	046
Ŧ	HR	14	COOR	045
+	0.3	10	0803	045
+	AS	ir	GAUS	DTT
1	82	18	GBOZ	D43
I	AZ	19	GAO2	D42
V	ucc	20	when	Del 1

-0	AL			
28	L\$157	16	2"Part	name
C	Sel	1	GASel	A21
1	LA	1	MPFU9	A22
1	18	3	1200	A23
	14	4	GAOB	A24
I	24	5	MFF10	A25
T	29	6	1209	A26
	24	7	GAO9	A27
0	OND	8	GND	A28
	3Y	9	GA10	828
I	30	10	1210	827
I	SA	11	MPF11	826
	44	12	GA11	825
I	48	13	1211	B24
T	44	14	MPF11	823
C	STREE	15	GACIT	822
V	VCC	16	VOC	821

I

I

U

I

T

•0	AZ			
25	LS157	16	2"Part	08660
C	Sel	1	GASel	A32
Ī	14	2	MPFOS	A33
Ī	18	3	1204	A34
ē	IY	4	GAO4	A35
ī	24	5	MPFOS	A36
ī	28	6	1205	A37
â	27	7	GAOS	A39
ā	GND	8	GAD	ATO
ä	TY I	ä	GAOG	050
Ŧ	100	in	1906	030
+	RA	10	MOEOT	0.00
-	AN	1.0	CAOZ	DIC
	TT	14	TROT	0.75
1	THE	15	1207	830
I	TA	17	MAL OR	837
C	STROBE	15	GACIT	833
11	Ling		LACC .	2329

- G	A3			
25	LS157	16	2"Part	name
C	Sel	1	GASel	A43
I	14	2	MPF01	A44
Ī	18	3	1200	A45
Ø	17	4	GAOO	A46
Ĩ	24	5	MPF02	A47
Ĩ	28	6	I201 .	A48
ø	24	7	GAO1	A49
Ğ	GND	8	GND	A50
	3Y	9	GAO2	BE50
T	38	in	1202	849
Ť	30	11	MPEOS	848
à	No.	10	GACIE	847
Ť		12	1203	Charles
+	TO MA	1.0	MOSON	DALE
-	CTOMPE	17	GACIN	DIA
S	STREETE	10	UNCIT	DAT

L

•0	191				•0	82			
25	15157	16	2"Part	name	25	1 \$157	16	2"Part	-
C	Sel	1	GBSel	E21	č	Sel	ī	GRSal	F32
1	LA	2	MPFUB	E22	Ī	14	2	MP4 04	1.44
I	18	3	008	E23	i	IB	-	104	ETH
6	14	+	GBOB	E24	ō	Ο	Ä	6804	FIS
	2A	5	MPF09	F25	Ĩ	24	5	MPEON	FK
1	28	6	UC19	E26	Ī	28	6	105	F37
Ø	24	7	G809	F'27	Ō	24	7	6805	F'30
G	GND	8	CND	E28	G	GND	à	GND	F 39
e	3Y	9	GBIO	F28		3Y	9	GBOG	F'59
E.	30	10	110	F27	I	58	10	UOG	F.50
I	3A	11	MPF10	F26	Ī	34	11	MPEOG	F 37
e	4¥	12	C811	F25	0	44	12	GROZ	136
1	*8	13	011	F24	Ī	413	13	1107	FIG
ľ	4A	14	MPF11	F23	Ŧ	40	14	MPENZ	1.34
C_{-}	STRØBE	15	GOOIT	F22	ċ	STROPF	15	GACIT	ERR
5	VCC	16	VCC	F21	v	VCC	16	VCC	F 32

I

I

I

Π

location and

°C	83			
25	LS157	16	2'Part	0000
С	501	ī	CBSal	E43
I	1A	ž	MITOO	E44
I	18	3	UOO	E45
ø	14	4	CBOC	E46
I	24	5	MPF01	E47
Î	28	6	U01	FAR
ē	24	7	GHOI	FNG
Ğ	GND	Å	GND	ENO
ě	3Y	ă	GROZ	F50
Ī	38	10	1102	F#9
ī	34	11	MPEOP	-
ā	44	12	6903	547
Ť	413	13	103	FAC
Ŧ			WWW OF	F 10
*	CTOTO	17	THTUS	CT 1
5	STRADE	15	GBCIT	FTT
V	VUC	16	VCC	F43

**	1				"H	2			
25	1.\$3517	20	2"Part	name	25	LS2517	20	2"Part	name
1	AL	1	H409	R19	I	A1	1	HAOS	R30
T	81	2	HB09	R20	I	81	2	HBOS	R31
Ĩ	AO	3	HAOB	RZ1	T	AO	3	HAO4	R32
Ť	80	4	HEOE	R22	T	80	4	HB04	R33
Č	SO	5	HCO	R23	C	\$0	5	HCO	R34
C	\$1	6	HC1	R24	C	S1	6	HC1	R35
č	52	7	HC2	R25	C	52	7	HC2	R36
	FO	8	HOO	R26		FO	8	HOT	R37
	F1	9	H09	R27	0	F1	9	HOS	R38
Ö	OND	10	GND	R28	G	GND	10	GND	R39
	F2	11	H10	S28	0	F2	11	HOG	\$39
Ö	F3	12	HII	S27	0	F3	12	HO7	\$30
	OVR	13	OPEN	S26	0	OVR	13	SPEN	\$37
	CØ	14	HCRY	S25	0	CO	14	H2CØ	\$36
I	Cn	15	H2CO	S24	I	Cn	15	HIGCO	\$35
Ī	83	16	H811	\$23	I	83	16	HB07	534
Ī	AS	17	HALL	S22	Í	A3	17	HAO7	\$33
Ĩ	82	18	HBIO	S21	I	82	18	HBOG	\$32
Ĩ	A2	19	HAIO	S20	T	A2	19	HAOG	\$31
N	MAC	20	VCC	519	V	VCC	20	VCC	530

"H3		
25LS2517	20 2'Part	name 1
I A1	1 HA01	R41
I 81	2 HB01	R42
I AO	3 HAOO	R43
I BO	4 HB00	R44
C SO	5 HCO	R45
C 51	6 HC1 .	R46
C \$2	7 HC2 '	R47
Ø FO	8 HOO	R48
Ø F1	9 HO1	R49
G GND	10 GND	R50
Ø F2	11 HO2	\$50
Ø F3	12 HO3	S49
6 GVR	13 MPEN	548
Ø CØ	14 H3C8	547
T CD	15 GND	546
1 93	16 4803	CAR
T AR	17 4403	CHA
T De	10 4007	COT
7 43	10 1002	CHO
1 1000	17 1102	576

I

"MC "

-	M1				-H	A2			
25	LS157	16	2"Part	name	25	LS157	16	2"Part	0000
C	Sel	1	HASel	N21	C	Sel	1	HASAL	N32
ī	IA	2	MFLU8	N22	Ī	14	ž	MP1 04	N.5.5
I	18	3	1300	N23	Ī	18	3	1304	N34
13	14	4	HADIE	N24	Ō	IY	4	HAOM	N35
Ι.	2 A	5	MFLU9	N25	I	ZA	5	MPLOS	N.56
I	28	6	1309	N26	I	28	6	1305	N37
e	ZY	?	HA09	N2."	ø	24	7	1405	N.58
Q	GND	8	GND	N28	G	GND	8	GND	N39
2	3Y .	9	HA10	P28	0	3Y	9	HAOG	P.19
	38	10	1310	P27	I	59	10	1306	PSA
I	3A	10	MPL10	P26	Ī	34	10	MPLO6	P37
e	4 Y	12	+IA11	P25	ø	44	12	HAOZ	P36
I	#8	13	1311	P24	I	48	13	1507	P35
1	44	14	MPFOO	P23	I	44	14	MP1.07	P34
	STRØBE	15	HACIT	P22	С	STRØBE	15	HACIT	P33
Y	VCC	16	VCC	P21	v	VCC	16	VCC	P.52

I

Γ

 \llbracket

ľ

I

I

I

in the second

-+	143			
25	LS157	16	2"Part	name
C	Sel	1	HASel	N43
I	1A	2	MPLOO	N44
I	18	3	1300	N45
0	14	4	HACO	N46
τ	2A	5	MPL.01	N47
I	28	6	I301 .	N48
0	24	7	HA01 '	N49
G	GND	8	GND	N50
0	3Y	9	HAOZ	P50
I	38	10	1302	P49
I	3A	10	MPL02	P#8
0	4Y	12	HAO3	P47
I	48	13	1303	P#6
I	44	14	MPL03	P45
C	STROBE	15	HACIT	P#4
V	VCC	16	um	DAT

I

I

[

[

 \llbracket

I

[

 \square

I

in the second

Property of

Barrowene

1

"H	83			
25	LS157	16	2"Part	name
C	Sel	1	HBSel	T43
I	14	2	MPFOO	THA
I	18	3	VOO	T45
0	14	4	HBOO	746
I	2A	5	MPF01	747
I	28	6	V01 .	T48
0	24	7	HB01	749
G	GND	0	GND	750
0	3Y	9	HB02	U50
I	38	10	V02	U49
I	3A	10	MPF02	U49
	4Y	12	HBOS	U47
I	48	13	V03	U46
I	4A	14	MPF03	U45
C	STROBE	15	HBCIT	U44
V	VCC	16	VCC	1 145 1

TL

- U	11				U	12			
25	1.509	16	2"Part	name	25	LS09	16	2"Part	name
С	5	1	USel	G21	Ċ	5	1	ŬSe i	ũ 32
ø	30	2	UCIB	G22	Ø	GO	2	UO	G33
T	DOA	3	GOB	G23	T	DOA	3	GOT	G34
1	DOB	4	TOT	G24	Ī	DOB		TOO	035
I	D1 9	5	105	J25	T	D18	5	TO1	C36
T	DIA	6	G C19	J26	Ť	DIA	6	605	637
8	G1	7	U09	027	ø	G1	7	005	038
G	GND	θ	OND	J20	G	GND	8	OND	G39
С	CP	9	UCLK	H28	С	CP	9	UCLK	H39
0	Q2	10	U10	HZ7		02	10	U06	H.58
τ.	D2A	11	G10	H26	Í	D2A	- 11	606	H37
T	D28	12	T06	H25	I	D 2B	12	102	H36
I	D 38	13	107	1124	Ť	D.58	13	103	H35
I	CI3A	14	GIL	H23	Í	D3A	14	G07	H34
0	Q3	15	U11	1122		Q.3	15	U07	H33
V	VCC	16	VCC	H21	V	VCC	16	VCC	H32

.....

. . . .

. -

.

ີບ	13			
- 25	LS09	16	2"Part	nane
С	S	Ī	USel	G43
1	ĞO	Ī	ŬÖÖ	G44
Ĩ	DOA	3	ĞÖÖ	GH5
Ť	008		UOR	Ğ46
Ŧ	DIR	, Š	009	G47
÷		ž	čõi .	648
à	01	7	in i	640
č	Cho	í á		CEO
Ň		a	GRU	
2		7	ULK	HOU -
6	0Z	10	002	H H7 9
I	D2A	11	GO2	HWB
Ť	D28	12	ŬĪŌ	H#7
Ť	038	13	Ū11	HHG
Ť	034	14	603	HHS
à	03	- is	0.03	1444
ũ	vinc	īž	VOC	LAN T
_				

- ----

معد العنامة

and the second s

··· ··· · · · · ·

.

۰.

-• -

15. i

• ••

L.

٦					••				
20	LION	- 16	2"Part		2	Ľ#09	- 16	2"Part	
Q.	\$	1	VSei	V21	C	8	1	VSel	V31
	90	2	VOB	V22	•	00	2	VOV	V33
T	DOA	3	HOU	V23	τ	DOA	3	HOT	VOT
t	008	4	UOT	V24	Í	DOB	- Ē	UÕÕ	V35
1	Di	5	UOB	V26	Í	D10	5	UDI	V36
1	DIA	- Č	HOT	V26	Ĩ	DIA	Ĝ	HOS	V37
Ö	e1	7	V09	V27	Ē	01	7	VOK	V30
Ō	ÖÖ	. è	GND	V20	Ğ	GND		GND	V39
Č.	ĊP .	Ť	VOLK	426	Č	OP	Ť	VOLK	U 39
ð -	- Ü	io	VIO	427	ě	<u>ã</u>	io	VO6	USB
Ť	DAA	- ĬĪ	H10	426	Ī	DŽA	ĨĨ	HOS	U 37
1	DEE	ĪŻ	UDE	425	Ī	Das	ĨŻ	UOZ	U36
t	<u>ÓŚ</u>	13	Ú07	124	Ť	038	13	003	V35
Ť	03A	14	ĤÎ Î	W23	Ī	DSA	14	HÔ7	U34
Ō		15	VĪĪ	W22	ě	03	15	V07	W33
Ŷ	VCC	16	VCC	W21	Ŭ,	VCC	16	VCC	432

٩ν.	5			
25	LS09	16	2"Part	
Ĉ	\$	Ĩ	VSel	V43
ā.	ão	2	Vno	V144
Ŧ	004	1	HOO	VIER
÷.		ž	Une	VIIIC
\$		Ĩ		
÷	OID.			
±	DIA		TOI :	
	01		V01	A44
G	GND		GND	V50
C	CP	9	VCLK	M50
Ø.	Q1	10	V02	W77
I	D2A	11	HO2	W19
Ť	D	11	VIÕ	U97
Ĩ	DI	13	VII	U46
Ŧ	034	14	HOS	L##5
à	20	iś	VOT	144
ŭ	J.C.C.	12	JACC .	
•		10		HHH

• Starling the second • : • en la ett

• 30	n1			
29	LS167	16	2°Part	name
С	Sel	1	XMSe1	CI
Ť	1.	Ž	UCO	CZ.
Ť	18	3	VNA	Č3
à	ĨŸ	ă.	ation	04
Ŧ	54	ĸ.	109	Č5
÷	28	ž	vine	Ň
à	27	7	a109	07
ă	â		GND	ča
ě	31	ě.	ailo	Ďě
Ť	39	io	vio	D7
÷.	34	11	UIO	D6
à	AY	12	a 111	05
Ŧ	440	13	011	N #
+		14		ñ.
*	C TIDORDE"	16	XMC I v	n 2
ŭ.	STREEDE	15	NCC 1	
v	VUL	10	V (4)	

. Nord

. ...

الاستثنائي ومورد المتراجع والمراجع المنافعون المتحوف المتح

" XI	42			
25	_S157	16	2"Part	name
C	Sel	1	XMSel	E1
I	18	2	U04	E2
Ī	1B	5	VO4	E3
ā	ĪY	4	Ø 104	E#
Ĩ	ŽA	5	UÕ5	Ë5
Ī	28	6	VOE	Ē6
(24	7	# 105	E7
G	GND	8	GND	F8
	3Y	?	Ø106	£.8
T	39	10	V06	F7
I	3A	11	006	F6
8	4 Y	12	Ø1 07	F5
I	49	13	V 07	F4
1	48	14	U07	F3
Ċ	STREE	15	XMCIT	F2
U		14	VCC	514

• · • • • •

n anti-ar

بالوا المفاصية

LS157	16	2"Part	none
Sel	1	XMSel	Gl
14	2	000	G2
18	3	V00	63
17	4	0100	G4
24	5	ŬÕ1	Ğ5
28	š	VOI	Č6
27	ž	a io1 `	G7
CNO .	à	GND	nia –
NY.	ŏ	a107	HÃ
801	ío	No3	147
30	11	102	
		d 107	
	14	0103	112
TH	15	V03	HT
4A	14	U03	H3 -
STREEE	15	XMCIT	H2.
VCC	16	VCC	H1
	LS157 Sel 1A 18 19 2A 28 29 29 29 39 39 38 39 38 34 49 49 49 49 57R08E VCC	LS157 16 S01 1 1A 2 1B 3 1Y 4 2A 5 2B 6 2Y 7 GND 9 3Y 9 3Q 11 4Y 12 4B 13 4A 14 STROBE 15	LS157 16 2"Part Sei 1 XMSei 1A 2 UOD 1B 3 VOO 1Y 4 Ø100 2A 5 UO1 2B 6 VO1 2Y 7 Ø101 GND 8 GND 3Y 9 Ø102 3B 10 VO2 3A 11 UO2 4Y 12 Ø103 4B 13 VO3 4A 14 UO3 STRØBE 15<

4		1e	1"Port	name
0	Sei	1	YMSe i	Ri
1	14	2	UDB	R2
1	10	3	VOR	R3
ð	ĪŸ	Ť.	6106	RT
ł	<u> Xi</u>	Ś.	UD9	RB
Ť	-	ž	UD9	DK.
	55	7		D7
X		4	00	
X.				
	जा		4210	50
I	3	10	V10	\$7
1	36	11	U10	56
	4 Y	12	6211	55
1	48	13	V11	54
Ť	44	14	ŮĪĪ	\$3
č	STREET	18	YNCLY	<u>Š2</u>
J.	MOC	īš	VCC	ŠĨ

1

• ¶	ME			
25	L\$157	16	2"Part	
Ĉ	Sei	1	Y HSe l	71
1	14	8	UOT	72
Ţ	1.	3	VOT	T 3
•	14	4	8204	T #
I	24	5	U05	T5
1	28	6	V05	T6
	2Y	7	\$205	17
0	GND		GND	TB
	3 Y	9	6206	UB .
1	39	10	V06	U7
I	34	11	U06	U6
	47Y	12	\$207	US I
1	49	13	V07	UH
I	44	14	U07	U3
С	STREE	15	YFICIT	U 2
V	VCC	16	VCC	U1

T	n .9			
- 25	L\$157	16	2'Pert	
C	Sel	Ĩ	YMSel	VI .
Ť	14	ž	UDO	V2
Ť	1A	3	VOO	Ŷ3
- à -	īv	ă.	#200	V
Ŧ	34	Ř	ini	V6
÷	20	ž	voi .	W
â	27	7	67 01	¥7
		6		
2		2		
	31		1204	
Ī	58	10	VUZ	W
I	3A	11	002	W6
	4Y	12	203	W5
I	48	13	A03	₩¥
I	4A	14	U03	W3
С	STRIEE	15	YHCIT	W2
V	VCC	16	VCC	M1

.

•

·• .

L İ

	Contacte 16 2 1 OND 2 GC2 3 GRP2 4 UC 5 USel 6 VO 7 VSel 8 GND 9 CLK 10 11 12 13 14 15 16 VCC	Wi dth Al A2 A3 A4 A5 A6 A7 A8 B6 B7 B6 B5 B4 B5 B4 B1 B1	*DCD5 25_507 C E 00 I D0 I D1 01 01 01 I D2 02 G GND C CP 03 I D3 03 I D5 04 I D4 I D5 05 05 05 05 05 05 05	16 2 1 GND 2 GBSe1 3 GB0 4 GB1 5 GBC1+ 6 GA0 7 GASe1 8 GND 9 CLK 10 GAC1+ 11 GA1 12 GC0 13 OBP0 14 GBP1 15 GC1 16 VCC	R11234567765514 R11234567765515513 S110 S11255555555555555555555555555555555555
*DCD6 251.507 C E 0 00 I D0 I D1 0 01 I D2 0 02 G 0ND C 0P 0 03 I D3 I D3 I D3 I D3 I D5 I D5 0 05 V VCC	16 2 1 GND 2 HBCIT 3 HB1 4 HA0 5 HASel 6 HA1 7 HACIT 8 GND 9 GND 9 GND 10 HC0 11 HEPO 12 HC1 13 HEP1 14 HEP2 15 HC2 16 VCC	T10 T11 T12 T13 T14 T15 T16 T17 U17 U16 U15 U14 U13 U12 U11 U10	*DCD7 251_S07 C E Ø @ 00 I D0 I D1 Ø @1 I D2 Ø @2 G @ND C @P Ø @3 I D3 Ø @4 I D4 I D6 Ø @5 V VCC	16 2 1 GND 2 MPRND 3 MO 4 M1 5 MXCLK 6 M2 7 MYCLK 8 GND 9 GND 9 GND 9 GND 10 MXSel 11 M3 12 MYSel 13 M4 14 HBO 15 HBSel 16 VCC	V11 V112 V12 V156 V17 V156 V17 V154 V154 V154 V154 V154 V154 V154 V154

•

, /

11

.

•	es letap	U		
N.E.	SISTER	2	2"Part	name
ò	True	â	TRUE	G42

• 1 Ô,

1

CLK	34	96	\$17	U17	W17
F00	612	E17			
F01	G15	E18			
F02	H15	F19			
FOS	H12	F18			
FOI	C12	A17			
FOS	C15	A18			
FOG	D15	B 19			
F07	D12	818			
F2C8	815	F16			
000	C-48	045			
GO1	C49	G48			
602	050	H#8			
003	D49	HME			
007	C37	634		×	
GO 5	C38	037			
906	039	437			
007	030	H34			
GOØ	C26	023			
009	C27	026			
G10	· D20	H26			
011	59	D27	H23		
6108	F15	D25			
0208	D24	D36			
0304	035	D47			
GAO	111	R15			

.....

1

n 1 ··· --

..... • • • •

1 L

1

Page 2

F	0400	043	446			
	GAO1	C41	A+9			
	GAU2	D+2	850			
	CA03	D44	847			
	GA04	C32	A35			
	GAOS	030	A38			
	GADE	D31	B39			
	GAO7	D33	B 36			
	GAUB	C21	A24			
	GAO9	C19	A27			
	GA1	112	\$15			
	GALO	D20	B28			
	GA11	410 E12	A12 F13	813 F11	811 D22	E10 825
	GACIT	18	822	833	. B44	\$16
	GASel	17	A21	A32	A+3	R16
	GBO	109	R12			
	CB00	C44	E46			
	CBU1	C#2	E49			
	6802	D43	F50			
	6903	D45	F47			
	0804	C33	E35			
	6805	C31	E30			
	0806	D32	F39			
	0807	D34	F36			
	GEUB	C22	F24			

1

T
Page 3

0809	C20	E27			
081	110	R13			
0810	D21	F28			
G811	D23	F25			
COCIT	23	F22	F33	F44	R14
CBSe1	22	E21	E32	E43	R11
000	19 C 1 5	A14 514	E14	C23	C34
001	20 C46	A15 511	E15	C24	C35
OC.1	21 C47	A16 A2	E16	C25	C36
OCIN	60	D46			
GND	62 J44 L8 E19 R28 N39 G28 V50 T8 R17	63 J17 NB C28 A50 R39 N50 G39 C8 V8 T10	J41 L17 C17 C29 E20 R50 T20 G50 E0 A1 T17)42 N17 017 C50 E39 S46 T39 V28 08 A8 V10	J#3 J8 A19 A28 E50 N28 Y50 V39 R8 R10 V17
OBP0	113	S13			
OGP1	114	512			
00P2	115	A3			
HOO	R48	V45			
HOI	R49	V48			
HO2	\$50	W48	Y		
HOS	549	W45			
HOT	R37	V34			

意

Ī

and and a second se

I

[

14 ---

.....

Page 4

1 11

	HOS	R.38	V37			
1	H06	\$39	W37			
	H07	\$38	W34			
T	HOB	R26	V23			
and the	409	R27	V26			
T	H10	\$28	W26			
đ.	H11	\$27	W23			
T	H2:00	524	\$36		•	
1	H3:30	\$35	547			
T.	HAD	104	T13			
1	HADO	R43	N#6			
Ð	HADI	R#1	N49			
L	HAU2	542	P50			
Ð	HA03	544	P47			
L	HADY	R32	N35		÷	
87	HAUS	R3 0	N38			
1	HAOG	\$31	P39			
	HA07	\$33	P36			
	HAUB	R21	N24			
98.04	HA09	R19	N27			
Γ	HAL	105	T15			
a.	HA10	S20	P28			
Π	HAII	S22	P25			
1	HACIT	50	P22	P33	P44	116
17	HASel	49	N21	N32	N#3	T14
1	HBO	102	W12			

. ...

I

1

1

-	
	Ð

1800	R11	T46			
	R12	749			
HB02	543	U50			
4903	545	047			
HEOT	R33	T35			
HBOS	R31	T30			
HBOG	\$32	U39			
HB07	534	U36			
HBOB	R22	724			
HB09	R20	T27			
HB1	103	T12			
HB10	S21	J28			
H811	S23	·J25			
HBCIT	55	·J22	U 33	044	T11
HESel	54	T21	132	143	W11
нсо	51	R23	R34	R#5	U16
HC1	52	R24	R35	R46	U14
HC2	5.3	R25	R36	R47	UII
HORY	61	S25			
HOPO	106	U15			
HØP1	107	U13			
HØP2	108	U12			
1100	65	613			
1101	66	614			
1102	67	H14			
1103	68	H13			

1104	69	C13		
1105	70	C14		
1106	71	D1+		
1107	72	D13		
1200	73	M11	NZ	A15
1201	74	N14	N5	AHB
1202	75	P15	P6	849
1203	76	P12	P3	846
1204	77	L.11	L2	A34
1205	78	L14	L5	A37
1206	79	M15	M6	838
1207	90	M12	M3	835
1208	81	311	J2	A23
1209	82	J14	J5	A26
1210	83	K15	K6	827
1211	84	K12	K3	B24
1300	85	N12	N3	N45
1301	86	N15	N6	. N48
1302	87	P16	P7	P#9
1303	88	P13	P4	P46
1304	89	L12	L3	N34
1305	90	L15	L6	N37
1306	91	M16	M7	P38
1307	92	M13	£]4	P35
1300	93	J12	33	N23
1309	94	J15	J6	N26

-

· .

1

All second second

Contraction of the

Contraction of

Philadella Contraction

I

I

1

Page 6

Pu	00	7
		-

T3 10	95	K16	K7	P27
1311	96	K13	K4	P24
MD	9 7	V12		
M1	90	V13		
M2	99	V15		
713	100	W15		
***	101	W13		
MPOLK	26	J *1 5	346	
MPF00	347	E44	P23	T##
MPF01	348	A14	E47	T47
MPF02	.)+9	447	F 48	UHB
NPF03	.)5 0	B 48	F45	U45
MPF04	1150	B4 5	E33	133
PFOS	M49	A33	E36	136
MPF OG	M48	A36	F37	U37
MPF07	4 47	837	F34	U34
MPF'08	M46	B34	E22	122
MPFOY	M15	A22	E25	T25
MPF10	11-14	A25	F26	J26
MPF11	PH3	B26	823	F23
HPLOO	J27	N#1		
HPL.01	J28	N#7		
PPL.02	J29	P49		
MPL03	J30	P45		
MPL.04	J 31	N35		
MPL06	.152	N36		

......

10. Al**a**

ntellisette Station

1.

.

...

.

U23

• -

.

...

۰.

.

Ŧ

1			
	-	-	-

.....

Page 8

MPL.06	353	P37		
PL07	334	P34		
11.00	.155	N21		
MPLO9	356	N25		
MPL10	J 37	P26		
IPRO	29	M25	V11	
OCH4	J2E	N13		
Pbi01	J25	N16		
FH02	124	P17		
Pbt03	123	P14		
Post	J22	L13		
10105	J21	L16		
F0006	.320	M17		
Pbt07	J19	M14		
Phote:	M19	J13		.••
Pb(079	M2 0	J16		
PK10	M21	K17		
PBK11	M22	K14		
PRICLIC	27	M23	V1 #	
PRCIT	31	K11	411	P11
recsie i	30	J10	L10	N10
PIVOO	M27	NY		
LOAN	F126	N7		
PIVOZ	M29	P#		
mos	130	P5		
anan-4		. .		

.90

.....

.....

.....

- -

- ---

W16

W14

- ----- -

1

MY05	M32	L7		
MYOS	M36	MB		
MY07	M37	M 5		
MY08	M38	J ~		
MY09	M39	J7		
MY10	MHO	KB		
MY11	M+1	к5		
MYOLK	28	M24	V16	
MYCIT	33	K2	MZ	P2
MYSel	32	31	1.1	NL
NC	58	119		
@100	5	64		
0101	ь	67		
0102	7	HB		
0103	8	H5		
0104	9	E4		
0105	10	E7		
0106	11	FØ		
0107	12	F5		
@109	13	C4		
@109	14	C7		
@110	15	De		
Ø111	16	D5		
820 0	37	V#		
6201	30	V7		
6202	39	W8		

-74

Baaa	
	10

4203	40	15			
6204	41	T#			
6205	42	T7			
6306	43	UB			
4207	44	U 5			
#208	15	R4			
8207	16	R 7			
6210	47	58			
6211	-18	55			
(PD)	J38 F17 \$37	11+2 D26 548	426 137	817 D 49	B16 \$26
100	G 11	E13	635		
TO1	G16	E11	036		
TOS	H16	F12	H36		
103	H11	F19	H35	<u>.</u> .	
TOT	C11	A13	024		
105	C16	A 11	G25		·
106	D16	812	H25		
TOP	DII	814	H24		
TCLK	2	D17	H17		
THUE	H12	J 3 9	.)+0		
13 01	L	C10	G10		
UD	116	Art			
000	E46	044	V35	G2	₩2
U01	E48	049	V36	05	V 5
UDE	F49	+++9	636	HK	

-

• • • • • • ..**.**•••

H

....

003	F46	++++	435	Н3	w3
UON	E34	033	√2 4	E2	Ť2
U 05	E37	0 .59	V25	ES	1 5
U05	F.38	H 38	w25	F6	1J6
007	FJE	H33	₩24	F3	U 3
U09	E23	322	646	C2	RZ
009	E26	027	G 4 7	C5	R 5
010	F27	H27	HH7	D6	56
U11	F24	H22	HH6	D3	S 3
UCLK	24	H28	H39	H50	
USel	25	021	G32	G43	A 5
v 0	117	A 6			
v00	145	V44	63	V3	
v 01	T48	V49	G6	₩5	
V02	U 49	449	H7	47	
V03	UNE	w++	HH	W4	•
V04	T34	V33	E3	T3	
V05	T 37	∨38	E6	T6	
V06	U 39	W38	F7	U7	
V07	U 35	W33	F4	U#	
V08	T23	V22	V H 6	C3	R3
V09	126	V27	V47	6	R6
V10	U27	W27	W17	07	\$7
V11	U24	₩22	W46	D4	54

-

-111

Page 11

• • • • • •

۲.

,

Page 12

VCC	042 M33 F1 F10 B32 S19 F43 H32 D1 W1	121 K10 P1 D19 B43 S30 U21 H43 F1 B1	122 M10 D10 D30 F21 S41 U32 W21 H1 S10	M35 P10 H10 D41 F32 P21 U43 W32 S1 U10	M34 K1 B10 B21 F43 P32 H21 W43 U1 W10
VCLK	56	W28	W39	w5 0	
VSel	57	V21	V32	V#3	A7
MACIN	4	D2	F2	H2	
imse i	3	CL	E1	61	
YPCIT	36	52	U 2	₩2	
YINSO I DONE	35	R1	TI	V 1	

..

788 *

1

....

.

.

•••• ١.

APPENDIX B: MICRO PROGRAMS

Π

1. 5

2.95

Micro Programs

1

1.291023

Far A Fial	DUTTLU		
RA IA	TM J 2P DCBA	1	
	OI VBAL H	KFFLD	
0 C	0 0 60 14 1406	BIFFLD	LOADCD MACRA 60.1
2 60	0 2 61 6 0020	A .	PA=20
4 61	: 0 62 14 7123	A .	MUTHUT CIR .
6 62	3 0 65 14 5001		WAIT 4.2
10 63	N 0 64 16 0365		IF OCT 53 SKIP
12.64	0 0 61 6 0010		INC FA GETE A.
14 65	00 3 6 0000		COTO 3
16 66	1.0 60 6 000M	L	Gate B

I

I

I

[

L

[]

B

INA.	TWENT	CHAFFED		
F.	IA	TM J OP DOBA	•	
		GLABAL B	LIFFRO	
0	c	0 0 60 14 1407	BUFFPD	LEADED MACRE 60.10
2	60	0 2 61 6 0040	B	PATO
4	61	7 0 62 14 7123	4	OUTPUT CLR
6	62	2 1 63 14 7120	1	INFUT
10	6.3	3 0 64 5 0513	;	MOVE DI +F1+T1+PD Y=3
12	64	6 1) 65 16 0566		IF WCY 5 SKIP
14	61	0 0 61 6 0010	1	INC PA GOTO A
16	65	0 0 3 6 0000		6010 3
22)	67	0 0 60 6 0000		GOTO B

DIC	UPENT	CNTRALD		
RA	IA	TM J OP	DCBA	
		ULK49	AL CNTRALLO	
0	C	0000 14	1406 CNTRELLD	LIBAUCE MACIER ALL
2	60	0261 61	0033 8	PASS
4	61	7 2 62 14	123	OUTPUT CLR
6	62	0203 61	0002 A	PA=2
10	63	0061 16.	3402	IF S(2)=0 GATA A.ATH C
12	64	C 1 65 16	4500 C	S(PA)=0
14	65	00 3 61	NOO	GUTO 3
16	66	0060 61	1000 L	OUTU B

CXY.	UMEINT	COUNTLO					
P/.	TA.	T 17] 04	DCBA				
		GL.C	HAL CC	N.KITLD			
i	C	0 0 60 14	1403	CULNTLD	LENDED	MACRI	60.L
2.	66)	1 2. 6.1 6	0.031	8	PA=31		
4	61	7 9 62 14	7123		CUTPUT	CLR	
6	62	0036	0000		0070 3		
10	63	01160 6	0000	L	GUTU B		

DOC.	TUESTIC	TIPTLO				
RJ.	TA	TMJ	OP DOBA			
04440	C 60 61 62 63	$\begin{array}{c} 0 & 0 & 60 \\ 0 & 2 & 61 \\ 7 & 0 & 62 \\ 0 & 0 & 3 \\ 0 & 0 & 60 \end{array}$	CLAHAL TA 14 1403 6 0032 14 7123 6 0000 6 0000	INPTLD B	LUADCO MATRO PA=32 Olitput Clr Coto 3 Coto B	60,

I

I

E

E

174	145945	PT-JTA			
FJ.	TA	TM J OP DO	BA		
		CLUERAL	RESMA		
0	C	6. 6. FAD 14 14	103 RESMA	LADOD MAILE	1 60 .
2	60	0 2 61 6 00	34 8	PA=34	
4	61	: 0 62 14 71	23	GITPUT CI P	
4	62.	00 3 600	100	GATA 3	
10	63	0 0 60 6 00	00 L	GUTO B	

DAC	UMENT	STATED		
RA	IA	TM J	OF DUBA	
			G MHAL STATED	
0	C	0060	14 1405 STATED	LOADED MACRO 60.L
2	60	0201	6 0051 H	PA =51
4	61	10 62	14 7123 A	OUTPUT CLR
6	62	2 1 63	14 7120	INFUT
10	63	3 0 64	5 0513	MOVE DI+F1+11+F1) 1=3
12	64	0 3	6 0000	GUTH 3
14	65	C 0 60	6 0000 L	GOTO B

1474 5 [32

APPENDIX C: MODULE ANALYZER LOGICAL DRAWINGS

E

l

1

4

1

.

1

A CONTRACTOR OF A CONTRACTOR O

1 e

بالعمقان أفاري الهجادي

١ L

مند مرجع .

____<u>__</u>___

ALL DENTES TALS 867

+1

٨

• ∳⊶⇒

B18.5 (205.1) (8.9-1) \$2-5 (SW024 B024 02-B2-11 (30030 B030 3 B030 34018 8018 Swarg 1 ->5 8019 6 - Swors - Bo25 - 0 8031 12 - 50031 50020 7 8020 7 - 50026 -0-13 (BW032 B032 8026 7 SWORN Bozi -D+ 8 - Swo27 8027 -0+-Swoss 80#3 1++ 510022 -D III 9 (30028 15 500 000 0000 0000 8022 8018 54023 -> 8025 10 (SW029 B029 16 3W035 B035 P15 9: 4088#3 B19.4 819-5 (820-2) 1 50000 B060 Sw054 . B054 50055 8 5 WOLT 8067 5 8055 2 50061 8061 5W056 8056 3 (SW062 6 7 8062 9 (Swows) 7 8068 50057 -D-8057 + (SW063 8063 10 50069 8069 5 10 58 5 - 50064 8058 B064 11 (SW070 B070 11 wo59 D 13 8059 6 5 W 065 B065 12 (SWOTI BOTI 95 % 915 91 915 91 LDBRAJ (A19.5) (A08-1) (A13-1) 2 3 8070 05de-66-3 (5W102 B102 2 3 17 (SW096 B096 1000 5 8091 H 5 8097 8097 + (SW105 +) 5 8103 6 8092 19 (SW096 B098 5 (Swind 6 7 8104 10 8093 20 (50099 8099 6 (SW105 B105 12 \$6-1 Sw100 12 8100 7 (30000 8106 111 wo95 8095 50101 \rightarrow 8101 24 8 (SW107 B107 13 P15 9 915 91 LOBR#3 (4/4-2) (A15-2) (A17.2) 07-2 8126 87-13 (SW192 B132 2 5 07-19 (SW 130 2) 5 138 # B127 14 (JW133 B133 20 - 54139 5 8/39 6 7 15 (Sw134) 8134 8128 -D 7 1129 9 8/29 16 JU135 BI35 $\neg \triangleright$ 10 9 B130 12 17 (SWIEG BISC BISC 72-0 U131 M 11 0131 18 5W137 B137 -013 915 91 95 91 LOBRES

-

	CHI	CULLER-	HARRI	SON INC.	1
	MODULE	ANALYZER	-	APPROVED BY	1
PRACTIONAL	SWI	TCH BU	FFER	>5	
-	BATE 7/24/70		M	1207	

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) READ INSTRUCTIONS BEFORE COMPLETING FORM REPORT DOCUMENTATION PAGE 1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER CHI-QTR-301 5. TYPE OF REPORT & PERIOD COVERED 4. TITLE (and Subtitle) Quarterly Technical Report Structured Design for an LPC Array Processor May 1978 - August 1978 Quarterly Technical Report Research on Speech Compression Prototype Development 8. CONTRACT OR GRANT NUMBER(+) 7. AUTHOR(.) Dr. Judith Bruckner Mr. Roger Russ MDA903-78-C-0313 Dr. Glen J. Culler Dr. Michael McCammon PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK Culler/Harrison, Inc. Program Code: P8P10 150-A Aero Camino Goleta, CAlifornia 93017 Defense Supply Service -- Washington 12. REPORT DATE September 1978 13. NUMBER OF PAGES Room 1D245, The Pentagon Washington, D.C. 20310

18. SUPPLEMENTARY NOTES This research was supported by the Defense Advanced Research Projects Agency under ARPA Order No. 3625.

Distribution of this document is unlimited. It may be released to the Clearinghouse, Department of Commerce for sale to the general public.

19. KEY WORDS (Continue on reverse side il necessary and identify by block number)

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, il dillerent from Report)

4. MONITORING AGENCY NAME & ADDRESS(II dillerent from Controlling Office)

LPC Analysis LPC Synthesis Array Processor Logical Design

DCASMA Oxnard

300 Esplanade Dr., Suite 990

Oxnard, California 93030

Logical Modules Structured Design Computer Architecture

20. ABSTRACT (Continue on reverse side II necessary and identify by block number)

The architecture of an array processor that is tailored to the requirements of LPC analysis and synthesis is presented. Interim results in the development of a structured design system are also given.

Requerte indes

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered

15. SECURITY CLASS. (of this report)

15. DECLASSIFICATION/DOWNGRADING

Unclassified

APPROVED FOR PUBLIC RELEASE;