
/

CULLER/HARRISON, INC. September 1978
150-A Aero Camino
Goleta, California 93017
(805) 968-1064

STRUCTURED DESIGN
FOR AN

Din LPC ARRAY PROCESSORIn
U Quarterly Technical Report

I Research on Speech Compression Prototype Development

Hay 1978 - August 1978

DTIC
ELECTE
JUNi1 71985

PROJECT DIRECTOR: Dr. Glen J. Culler _

This research was sponsored by the Distribution of this document is
Defense Advanced Research Projects unlimited. It may be released
Agency under ARPA Order No.: 3625 to the Clearinghouse, Department
Contract No.: MDA903-78-C-0313 of Comerce for sale to the
Expiration Date: March 20, 1979 general public.
Monitored by: DCASHA Oxnard, Calif.

APPROVED FOR PUBLIC RELEASe',

DISTRIBUTION IS UNLIMITED (A)

The vIeva and conclusions contained In this document are those of the authors

and should not be Interpreted as necessarily representing the official policies,
either expressed or implied, of the Advanced Research Projects Agency or the
U.S. Government.

850 6 13141
fji E! C i~L o]'

/

I
CONTENTS

Page

J 1. INTRODUCTION 1

A. Summary of Contract Intent 1

B. Current Stage of Development 2

2. PRELIMINARY DESIGN FOR AN LPC ARRAY PROCESSOR 5

A. The APU Module 9

B. The CPU Module 11

C. The PS Module 14

D. The I/O Module 14

3. THE STRUCTURED DESIGN TECHNIQUE 16

A. Reconveyance of Design 17

I B. Computer Involvement in the Design Process 18

C. Mathematical Model for Computer Design 19

D. Defining Logical Modules 26

E. The Integrated Logical Simulator 32

F. The In'tegrated Module Analyzer 37

APPENDIX A: Sample Outputs from the Structured Design System

APPENDIX B: Micro Programs

APPENDIX C: Module Analyzer Logical Drawings Accession For

i NTIS GaI
DTIC TAB

DiUnannounced -
(iVIC\ Justificatio

i Distribution/

Availability Codes
Avail and/or

Dt s Sei

/

I
STRUCTURED DESIGN FOR AN LPC

ARRAY PROCESSOR

1. INTRODUCTION

I
The research activities of the several ARPA contractors in the NSC network

I speech compression program have reached a stage of success in LPC algorithm
development to merit real consideration of hardware economy and efficiency.

To be sure, there are many other contributors to the body of research

supporting the LPC technique; and most all of it taken together forms a

successful whole that needs to be supported by better hardware to facilitate

ts expression. To this end, ARPA has funded a modest effort at CHI to design

an array processor that is particularly well suited to perform the important

I steps of the family of LPC algorithms and at the same time to be aenable to

LSI implementations. What follows is our first quarterly report on this

I design effort.

A. Summary of Contract Intent

The design team at CHI has been engaged in developing programmable special

purpose computers for a number of years. Much of this work has been done for

ARPA, principally in the direction of on-line research systems for signal

processing in the acoustical frequency domain.

Our past work has a certain architectural stamp or style that results from

the way we have approached the design process, the blending of very different

technical backgrounds, and the techniques we have we settled on for solving

internal structure problems that seem to have resulted in surprising effi-

i ciency and reliability of our devices. In our past efforts we have generally

been confronted with an applicational design goal and with a fixed

j technology* in terms of which the design must be realized. With the rapid

change of technology, we have found ourselves designing the same internal

structures in different ways to take advantage of the new technology. This

has led us to ask how may we represent our designs so they can be independent

of the technology used to realize them. The task of designing an LPC array

*In this instance, what we mean by a technology is a set of available digital

circuits and associated connectors and construction techniques.!
-!1

/

I
processor that can be prototyped from existing components and then later
realized as a single (or a few) LSI chips, brings this technology invariance

question forward as a primary issue to be dealt with.

As a result of this, the intent of our work on contract MDA903-78-C-0313

is not only to interpret the basic operations occurring in various LPC analysis

jand synthesis algorithms and to design an array processor that efficiently

performs them, but also to carry out the research and development required to

jproduce a design system that will make it possible to produce technology-
invariant designs. We are not suggesting that this can be done "untouched by

human hands," for this is not in the nature of architecture; but rather that

the human input to the design system will be primarily limited to providing

creative organizational expression while the computer part of the system

responds to this input by generating a number of important design outputs such

as a logic simulator that realizes an equivalent design, and after geometrical

jspecification and primitive module specification, a connector sort, a logic
sort, and ultimately, diagnostic software. Of course, all of this points in

the direction of how to use a computer system to help us establish how
successful a design is before we build it and how to prove it works correctly

I after it's built.
/J

B. Current Stage of Development

By the time contract work began we had come to understand in qualitative

j terms the two principal issues involved:

1. What do the LPC equations indicate about the choice of array

processor architecture and how does this relate to earlier

array processors.

i 2. What are the important software objects that could be expected

to work together to achieve a structured design system that

would help us solve the reconveyance problem.

Consequently, we were able to allocate tasks that could proceed in

parallel. These turned out to be of two kinds -- those that were clearly

understood and would play a definite roll in the work to be accomplished and

those that would gather information that might help us find out how to deal

with the intangibles of our problem. In the latter category we had to:

!2

I
a. Compare the equations arising in representative LPC algorithms

and establish performance criteria at the array process level.

1 b. Review the steps of our prior design efforts and the associated

documentation and seek a restructuring of both these steps and

j the documentation to make the whole of it computationaly derivable

from a structured design document.

c. Study potential data structures and associated control functions

that could lead to a logical simulator that is computationally

jderivable from a structured design document.
At present, we can report on successful accomplishment of these tasks

j and are well along in implementing their consequences. More specifically:

1. We have a design for an LPC array processor ready for testing.

2. A user input language for specifying a logical design has been

devised and a program has been written - called the logic

j assembler -- that deduces a data structure which represents

the logical design and, as such, provides the basis for logic

f simulation.

3. We have established the concept of module substitution within the

i logic simulator and have designed a module analyzer and its

interface to the ARPA signal processing system. By specifying

to the logic assembler that a certain module is to be replaced

during simulation by an actual hardware modulewe can cause the

logic simulator to control the module analyzer and capture the

hardware moduleb outputs for further use in the simulation. What

this means is that with the device represented by software, we

can test a given hardware nodule "in situ" for the whole device

without having the rest of the device in hand.

1 4. We have restructured the nature of our hardware documentation to

achieve a form that can be automatically generated and yet be of

similar use to engineers in both checkout and maintenance.

Indeed, an engineer has to become familiar with its use, but its

simplicity appear, to make this no great difficulty.

I

........... i i _ __ __ __ ___ __ __t.-,,-..

II

5. Programs that produce design outputs of this selected documentation

format are being written and some intermediate results are ready

I for use.

6. We have begun specifying the test programs for the LPC array

I processor.

The work remaining to be done on the contract consists of building and

checking out the prototype, finishing the software for the structured design

system and demonstrating the performance of the prototype on representative

LPC algorithms.

In discussions leading up to this contract work it was anticipated that

after the array processor design was appropriately in hand, we would be in a

Iposition to cooperate with some selected LSI house as an aid in the technology
transfer. Our estimate is that by the end of the second quarter we will be

in a position to do this.

I

I
I
I
I
I
!

I
I 4

I t

2. A PRELIMINARY DESIGN FOR AN LPC ARRAY PROCESSOR

In J. Makhoul's paper "Stable and Efficient Lattice Methods for Linear
Prediction," the best known methods of LPC analysis are brought together in

a simple common framework. We choose this as our principal reference, partly

because of its clarity, but mostly because it reveals a wide range of computa-

tional complexities engaged in the LPC techniques. Boiling these down to

I their essences results in only a few prime considerations, nevertheless

arranging for their adequate implementation brings us as close to a general

fpurpose array processor as we dare risk. The point of concern is this -- when

a family of tasks are to be carried out in a single special purpose processor,

j they must possess some underlying simplicity that results in design advantage

or we are forced to a general purpose design and the power of our approach is

lost. Under the latter circumstances we must restrict the family before we

can achieve a successful design.

The input to the analysis process comes from an A/D converter which may

as well be taken in integer format. The dynamic range of voice signals is

such that at least 8 bits/sample are required to perform any sensible analysis

jand 10 bits are as low as most implementers are willing to consider. In fact,

most systems of reasonable quality either use 12-bit samples or incorporate

fsome form of secondary gain ranging. In what follows we will assume that

the input data is 12 bits/sample and in integer format. As to conversion

Irates, the NSC conferencing system used 150 Vs/sample corresponding to 3.2 Khz
Nyquist frequency which is marginally acceptable for male voices but unfor-

tunately low for some female users with very small vocal tracts. A sample

interval of 50 ps guarantees good sibilant data for practically all users,

so we assume that the sample interval AT is in the range 50 Vs < AT < 150 vs.

In order to set up an array oriented process, we pick a data block size long

enough to get statistical benefit in estimating the vocal tract area function

j and short enough to get good resolution of the change of this shape with time.

Accordingly, we can expect analysis block sizes to be in the neighborhood of

100 samples with corresponding time bases in the range of 5 to 15 milliseconds.

!I
!

'I -mmml -mmT m- m m mmm

I
In keeping with Makhoul's notation, let f and b represent forward and

backward residuals and K denote reflection coefficient. Since -1 < K < 1,

the direct lattice filter equations:

f M+l(n) - fW(n) + Ki+ib(n-l)
1)

b M+l(n) - Km+ifm(n) + bm(n-l)

requires us to perform:

(Fraction x Integer)RND + Integer - Integer 2)

as an array process. The inverse filter:

f m~n W f U+l(n) - Ku+ibm(n-1)

3)

bM+l(n) - Kif(n) + bm(n-l)

incorporates feedback and for small amplitudes engenders a limit cycle

pathology. To handle these properly, we propose to incorporate an integer by

fraction multiplication with rounding and to overlap the add (or subtract) opera-

tion. Additionally, to guard against overflow, we will arrange that only 11

of the 12 bits of integer data will be significant going into the above equa-

tions. Also, as a means to stay away from the limit cycle pathology, we will

sense the output size information on the fly. That is, when the input data

is too large, we will use a built-in right shift in the array process and

when the output data is too small, we will insert an auxiliary left shift

array process.

a) If the 12th bit of the input arrays is significant, right shift on

read.

b) If the output array has no more than 8 significant bits, left shift

it 3 places before proceeding.

6

/

In the computation of inner products of integer arrays like:

f-f, b 1 .b 1, f.b 1 where b-1 (n) - b(n-1)

we need to use integer-by-integer multiplication, and since our arrays have

about 100 elements, we need an integer multiply overlapped with addition into

an extended accumulator.

The noncorrective methods require much more precision than the corrective

ones; for this purpose, we provide programmed floating point and double

precision operations. We are all aware of the much lower operation count of

these methods compared to the reduction of residual corrective methods, but

to be fair, we should count them in at least the double precision sense. In

many cases, not having the residuals as an output of the computations creates

a need for exLra processes in the overall algorithm, thereby further reducing

their apparent advantage.

In this section we present our current results in the development of an

array processor tailored to the requirements of real time LPC analysis and

synthesis. In keeping with the contract intent discussed in section 1, we

will later express the design in such a manner that it can be equivalently

realized in different technologies. To do this we will use the structured

design approach presented in section 3 with our overall design goals esta-

blished as a creative interpretation of the requirements set forth through

the review of typical LPC algorithms.

The highest level top-down subdivision of the LPCAP splits it into four

submodules: APU, CPU, PS, and 10.

Their overall functions can be described as follows:

1. The APU module carries out all the arithmetic operations on data as

specified by the right-hand part of the instruction lines (INSTRR).

Its registers provide source data for output to the 10 module.

Certain characteristic bits provide status information to the CPU that

may be used in CPU conditionals.

2. The CPU module performs program sequencing, data addressing, indexing,

APU and 10 control. Its operations are specified by the left-hand

part of the instruction lines (INSTRL). In run mode these instruction

lines are supplied by some of the outputs of PS. When a HOST is

present and when the CPU is halted, these instruction lines are supplied

by the 10 module, thus providing the HOST with single step control of

the CPU.

7

/ .

I
3. The PS module is a program source module addressed by the CPU. When

PS is a RAM (or contains a subset that is a RAM) it can be loaded by

j a sequence of outputs from the 10 module under control of the HOST.

4. The 10 module provides an interface between the LPCAP and the external

world. Aside from whatever complexities are introduced by the pre-

sence of a HOST machine, it must manage voice A/D and D/A conversion

and receive and transmit voice parsmeters to some communication link.

The main substance of this section is the treatment of each of these

modules in turn.

ADDRESS s
>1 I

DATA j
; STATUS WU

CONTROL

INPUT JL OUTPUT

HOST 10 PROGRAM
INSTR.

PARAM -PARAM
IN OUT

COMMUNICATION

Figure 2.1 Block diagram showing the relationship of the
four principal subodules of the LPCAP.

I
.. / I8

K/f

'1
A. The APU Module

The arithmetic requirements on the APU module imposed by the form of the

equations used in LPC analysis and synthesis may be summarized as follows:

1. The dynamic range of voice signals are best represented by 12-bit

samples.

2. Precise inner products of sample vectors with at least 128 components

are required for the noncorrective methods of computing reflection

coefficients.

3. Fraction by integer multiplication is required for forming linear

combinations of signals.

4. Both down scaling to guard against overflow and upscaling to guard

against limit cycle pathologies of digital filtering are required.

5. The same inputs must apply to both sides of the multiplier so that

the sum of squares can be computed without copying a vector.

6. The quotients count in LPC algorithms is so low that a programmed

divide will suffice.

Since the LPC algorithms have a very concentrated requirement for multi-

plies and since most of these are associated with adds, we should focus our

attention on multipliers that have configurations with both integer-by-integer

full precision and fraction-by-integer rounded outputs. Such multipliers are

already available with execution timesin the neighborhood of microprocessor

instruction times so the architectural considerations in loading and unloading

data is of paramount importance. A powerful illustration of how to do this

right and the unfortunate consequences of not doing it right is provided by

comparing multiply-add throughputs of the TRW chips MP12AJ and MP16AJ. The

first can be used with no loss time in a looped multiply-add and the latter

has a loss essentially matching its execution time. Our point is not to

flamboyantly snipe at the MP16AJ but rather to emphasize the value of the

architecture of the MP12AJ. Even though LSI technology will soon support the b

complete LPCAP on one chip, the internal multiply subu dule should have the

architecture of the MP12AJ.

9

S!.. ,

With the architecture of the multiply nailed down, we can extend the

structure to account for the requirements listed above.

a. Since the forward and backward waves are the primary inputs to the

multiplier in a Burg-type analysis, and since the sum of squares of

each is to be computed, we must provide a 2-to-l multiplexer for

each of the multiplier inputs (cf figure2.2); then 5) is satisfied.

b. In order to provide precise inner products of 12-bit data in 128

word blocks, we use the full integer product with sign extension to

32 bits and use this as the A inputs to a 32-bit adder, with a

32-bit accumulator attached to the B side; this takes care of 2).

c. Since the reflection coefficients are fractions between -1 and +1,

when they multiply a vector with integer components to give a vector

of the same type we must use the fraction-by-integer product with

rounding. To add this product to another such vector, as in the

lattice filter computation, we also need a 12-bit accumulator.

d. The scaling problems intrinsic to LPC analysis and synthesis are not

very severe, yet we must have some means for handling them. One

I simple way to do this is to maintain two flag bits under program

control, call them Big and Small. Let Big selectively monitor the

data written in pad and express the or of the exclusive ors of the

left-hand two bits. of each array value. Then Big is a 1 if any

I array datum is of full scale. Now let Small monitor the left-hand

4 bits in the same manner. Then Small is a 0 if no array datum has

i more than 8 significant bits. The capability of clearing and testing

these flag bits and maintaining a scale word in pad to account for

change of scale, provides a software overview of the scaling relations.

We include downscaling hardware on the output from pad and will use

the multiply hardware in a special pass to upscale the data when

1required.
e. One of the aspects of the special forms of the equations relating

I the forward and backward waves coupled with the direct association

of adders and accumulators is that we sometimes need to exchange

outputs. Perhaps a stronger way to say this is that we must be able

to move data between scratch pad arrays. To satisfy this desire, we

include a pair of 2-to-l output multiplexers.

1 10

iL

/

f. The final step in this overview of the APU consists of providing

means for assembling and disassembling byte-oriented data sets.

To this end we have selected two-way-in registers for the accumulators

with interconnections to an 8-bit accumulator accepting an external

input.

In figure 2.2 below, we give a module schematic for the APU together with

a decoding chart with the module operation code definitions.

B. The CPU Module

The APU module discussed above carries with it all of the significance

of design relating to LPC specializations. For the CPU we are after the

simplest sufficiently rapid control to get the job done. Whereas a 12-bit

structure was used in the APU module, an 8-bit structure is the proper choice

for the CPU module. The two scratch pads (X and Y) of the APU need only be

256 words long to provide adequate data buffering, so corresponding to these

the CPU contains two 8-bit address registers (xA and YA). Present estimated

program size indicates that with an instruction page size of 256 instructions,

we can expect the subroutines for analysis and synthesis to each fit within

a page. For prototyping purposes we will use a 4096 instruction program

source (the PS module discussed in C) with 48-bit instructions and 256 per

page. In a real device this will, of course, be limited to the size deter-

mined by programming the algorithms.

The CPU can now be summarized as follows. Starting with three address

counters (PSA, XA, YA) of 8 bits and an 8-bit tally register for array loop

control we bus these together with 8 bits from program source (the PS value

field). Branching according to the tally register, the sign bit of the APU

adder and 10 status bits are then provided.

In setting up an array process, the bus connection between the PS value

field and the internal registers of the CPU is used to initialize them one at

a time. In the array process, all of the registers can be simultaneously

controlled in each micro instruction. In order to provide control for the

10 module, the bus mentioned above is extended to the 10 module. In the

bus control fields (TRN and REC) shown in figure 2.4 below, we can address a

device and then input or output as required.

I

-11 *ul

-IA

Ur

L./ rs 'Af__ __ #
COhbe GlEN VdN GOP 6A SO AOV iVA W& At,&,.7-

o NV0is A'OOP a AM MPA 0 AG 4W AVID
/ ApamP Awpi sowr x I/ 3.e s Vo V y Wly

e WL G..UH. VVOg 0 0 RATW 0 a 40re/
*IfrvpP~rv 4hp 0 0 AhM 0 0 m wl.

S ORO

Figure 2.2 AFU Module Schematic

12

SXA XA VA

rr
XAEGs -,V Z YA X V rjpNR&

0 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I OV(,ICb~C " W AX'AP)0VVI N

Gr ~ ~ ~ ~ ~ ~ ~ ~ % (, A PC XVCJC')l OOfAA X
2~~~~~~~ A .rNC IC JrV# & f y

AIC IC WrlW~pVA~oq AI,4 .

LVA4

a Off5 ab'AA V 6 V *A A C

CLA'y

Figure 2.3 CPU Module Schematic

13

L!

C. The PS Module

The program source module has been designed to allow full convenience

in implementing trial ,PC algorithms that will need to assess the real time

performance of the LPC AP. The design i elementary and merits no special

discussion.
/

D. The 10 Module

The design of the 10 module has been specialized to provide an inter-

face between the LPC AP and the Serial Three signal processing research

system. Our approach here has been to take advantage of the module analyzer

- one of the key elements in the structured design system discussed in

section 3. The module analyzer is directly interfaced to the host machine

and can be used as a progranmable test fixture to check out the individual

modules of the LPC AP as vel as the entire device.

The 10 module provides a means for loading programs into PS, trans-

ferring sample data blocks and parameter blocks to and from the Host.

Additionally, it provides the logic of a pseudo panel that permits the Host

to single step operations of the LPC AP.

1Il

I I I I II Id Cd

".44.01 i - AO P;

SI ______________________________

I d

-b iG,.,O ,, i4 = s

(A

) "t ' • -* .. 4CfysT', 5 ,- A '

Figure 2.4 10 Nodule Schematic

15 *1

.

1 3. THE STRUCTURED DESIGN TECHNIQUE

I
Logical design can be thought of as a creative process in which larger

modules are defined as combinations of smaller, simpler ones in such a way as

to fulfill basic design goals.

The approach can be "bottom up." In this case the designer visualizes

combinations of available parts, and combinations of these, always working

towards accomplishing the desired goals.

An alternative is a "top down" approach in which the design is subdivided

into sections which, if implementable, would achieve the basic goals. These

sections are again decomposed, and so on, until the resulting blocks are

seen to be buildable from available parts. The subdivisions represent inter-

j mediate design targets.

A third approach works from both directions simultaneously, hoping to

Imeet in the middle. At that point, sections which are known to accomplish

the design goals are seen to be realizable as combinations of combinations of

available hardware.

In any of these approaches the final design can be conceived as a single

entity or expressed In modular terms. However, modular design simplifies

jcheckout, allows for consideration of more design alternatives, and facili-
tates making changes.

A structured design is a tree-like hierarchy having the

following characteristics.

1. For each module in the structure, the outputs are uniquely determined

by the inputs, the controls and the status of memory.

2. Each module in the hierarchy is either primitive (not broken down

further) or composite (a combination of lower level modules called

the submodules of the module).

3. The definition of a composite module involves only its submodules.

I No reference to submodules of the subodules is allowed.

This means that from the point of view of a module, there is only one

[level below it. All strata beneath are invisible to the module, and each

module acts as a primitive relative to higher level design.

1

" 16

In a hardware realization of the design, the primitives might be chips,

and lower level, intermediate modules might be groups of chips wired together.

A higher level intermediate module might be realized as a board or a group

of boards connected by cables.

A. Reconveyance of Design

Assume that a design has been created which accomplishes the original

goals. Of course, many alternative designs could be produced fulfilling the

same criteria. In particular, one of the intermediate modules (along with

its substructure) could be replaced by a different combination of submodules

(along with their substructures) which performed the same function. If all

of the relationships among other elements of the hierarchy were preserved,

the resultant design would fulfill the original goals. Similarly, substitu-

tion for an intermediate module in the new design would lead to an additional

acceptable design.

Thus, one design can be reconveyed by a whole family of equivalent designs.

The highest level subdivision of the original design is of critical importance

since all members of the family inherit the top structure.

If an intermediate module has been thoroughly checked out, either by

theoretical simulation or by prototyping and hardware checkout, the design

can be reconveyed into one in which the module in question is a primitive.

The design is simplified by removing the substructure of the module from the

hierarchy.

This is of practical as well as theoretical interest. For, at any stage,

from design through prototyping or even production, technological advances

can be easily incorporated into the existing design. If a function which was

previously computed in a composite module is found to be performable by a

new device (for example, a chip) the original design can be reconveyed into

one where that module is a primitive. It would not be necessary to redesign

the whole system, which would be required if there were no modularity.

17

B. Computer Involvement in the Design Process

A computer can be brought into the design process in several ways.

Elements of a computer aided design system are given below.

Given an inventory of primitives and a language suitable for describing

composite modules, a logic assembler can produce a data structure encapsulating

the design. Prom this structure, appropriate programs can generate the tedious

documentation necessary to implement the design -- for example, connector sort

and wire list. This frees the designer to concentrate on more creative aspects

such as alternative designs of intermediate targets.

An editor which enables changes to be made in documents defining the

design facilitates consideration of alternatives.

A logical simulator can be used to calculate the response of any module

in the system to particular sets of inputs and controls (not, of course, in

real time). The simulator works on the data structure set up by the logic

assembler. At each stage, the inputs and controls are passed on to submodules

until they reach a primitive module. Then a subroutine pointed to in the

primtive's description is invoked. The outputs thus calculated are passed

back to the higher level module. Eventually, when the actions of all sub-

modules of a module have been simulated, the outputs of that module are

implicitly determined. In this way, the design can be exercised, while still

in theoretical form, to make sure that each module conforms to design goals.

When a module has been realized by engineering design and prototyping,

its adequcny as part of the overall design can be tested by integrating

the action of a module analyzer with the simulator. The hardware realization

of the module is plugged into the analyzer and switches are set to indicate

which connector elements represent controls inputs and outputs.

At the stage in the simulation when execution of the module is required,

inputs and controls are supplied to the external device through the module

analyzer. The resulting outputs produced by the device become the values

which are used at the next stage of the simulation.

..... V1 8

-. AL

C. A Mathematical Model for Computer Design

In order to implement a computer aided, design facility it is necessary

to have an underlying mathematical model of a computer system and the process

by which the system is constructed from components. This 'theoretical'

computer, as well as its components,will be called a logical module. The

model should be such that its features and functions can be translated into

a computer acceptable language.

The purpose of this section is to provide basic definitions and clarify

the synthesis process by revealing rules of combination which result in

logical modules. We must also develop a language that provides precise

expression of one logical module in terms of others. These concerns motivate

the definitions which follow.

The definitions are in terms of vector spaces, so as a preliminary step,

we indicate notations which will be used elsewhere in this section.

Let X and Y be finite dimensional, vector spaces over finite fields.

1. X x Y, the cross-product of X and Y, is the set of pairs of vectors

(x, y) where x c X and y c Y.

2. If X and Y are over the same field, then X Y, the direct sum of X

and Y, is the set of vectors xly. If

x - (x,..., xn) cX and y- (yl, ... , Y) cY

then xly has coordinate expression

xly , (xI, ... V xn , Y19.. Ym)

3. If X and Y are of the same dimension, n, and over the same field,

they are isomorphic and can be identified. This identification will

be denoted X -* Y.

4. The dimension of X will be denoted by dim X

19
I°

"Il a l lni

Logical Modules

Defn 1: A Logical Module L is an ordered sextuple

L - <C, 1, 10. M, o, F>

where C, I, 10, M, 0 are finite dimensional vector spaces over

finite fields and F is a function from C x I x 10 x H into 0 such

that, for each set of vectors ccC, icl, ioclO, mc there is a unique

vector ocO for which

F(c, i, io, a) - o

The notation used here has the following uneumonic relations:

C is the control space of the module

I is the input space of the module

10 is the input/output space of the module

M is the memory space of the module

0 is the output space of the module

F is the function of the module

10 and/or M may be empty. The vectors of 10 represent either input

or output depending upon the control vector.

The outputs can be 'switchable,' in which case the field associated

with 0 has at least three elements.

For simplicity 0 is presented as a single space; however, it some

but not all outputs are switchable, 0 is really a pair of vector

spaces.

The crux of the definition dictates that for every combination of

control, input, 10 and memory vectors, there is a unique output vector

'computed' by the function F.

The concept of a logical module applies over a broad range of complexi-

ties, extending from 'chips' to an entire computer system.

Defn 2: Let L be a logical module. The boundary of L, denoted by 6L,

is the quadruple

6L - <C, 1, 10, O>

20

LI

The quantity

dim SL - dim C + dim I + dim 10 + dim 0

will be called the dimension of the boundary.

The boundary is not itself a vector space, since the underlying fields

of the constituent spaces may be different. However, the individual

coordinates of the constituent spaces can be ordered to run from 1 to

dim 6L (as for xly). This will be called an ordering of the elements

of the boundary.

Defn 3: A logical module L is prmLitive if its function F is

explicitly given as part of the module's definition.

Defn 4: A logical module L is composite if it is defined by a com-

bination of logical modules

L i L1, L2, ... L

The Li are called submodules of the module L. A submodule can be

either primitive or itself a composite module. Only primitive

modules can have memory.

In order to combine logical modules and form more comprehensive

structures which are themselves logical modules, we must specify a

boundary correspondence that defines a boundary SL for a composite

module L in terms of the boundaries 6Li of the constituent submodules.

The boundary elements of 6L must be associated with boundary

elements of submodules. A single element of 6L may be associated

with elements in more than one submodule or even with more than one

boundary element of a single module. A further restriction on the

boundary correspondence is that output elements of the composite

module boundary be associated with output elements of the subodules.

(It is not required that, for example, each input to the composite

module be an input to some submodule.)

It will usually be the case that there are some submodule boundary

elements which are not associated with elements of the composite

boundary. Happings may be specified among such elements.

21

-/

These mappings are called interconnects.

From the definitions above, it seems clear that the function of a

composite module is derivable from the structural relationships of

the boundaries of its submodule. and the submodule functions. In

fact, the boundary correspondences and interconnects define the

function F of the composite module L implicitly in terms of the

functions Fi of the submodules L V

To aid us in giving some specific examples of combinations, we intro-

duce the following notions.

Defn 5: Two logical modules are equivalent if there exists a one-one

correspondence of their boundaries which results in their functions

becoming identical.

Defn 6: A composite logical module is homogeneous if all of its sub-

modules are equivalent.

Simple Composite Modules

As a rule it is difficult to desicribe the functional relationships

between the function F of the composite module L and the functions Fi

of the submodules. In such a case, the boundary correspondences and

interconnects can be listed element by element. However, when the

boundary mappings can be described in vector terms, F often has a

simple representation in terms of the Fi. We detail a few such situa-

tions below.

Parallel Modules

In the design of a computer system, we frequently encounter

logical modules that occur in parallel configuration; that is, their

inputs, outputs, memories and controls are respectively independent

and consequently their functions can be simultaneously used.

For example, consider an 'or' chip with 4 'or' gates which can be

used independently. In this case the individual gates, not the chip,

are the primitives; the chip represents a composite module with

parallel submodules.

22

L

Let

L1 - <C1,
1I, 101, MI, 01, FI> and

L2 - <C2, 12, 102, M 2 , 02, F2>

be logical modules; let

C - CI +C 2 I -11 + 12 10 =101 + 102

M - MI + M 2 0 - 01 + 02 and define

F(c, i, o, m) - FI(cI, £1, iOi, m)IF2(c2, 12, 1o2, m2).

for each combination of control input 10 and memory vectors.

Then L - <C, I, 10, M, 0, F> is a logical module with parallel

submodules. The boundary of L is <CI + C2 , II + 12, 101 + 102, O + 02>.

dim 6L = dim 6L, + dim 6L2. There are no interconnects.

Widened Modules

Using homogeneous submodules it is easy to define a wider module

with the same controls. Since homogeneous modules are logically

equivalent, we may use the ordering assigned by the equivalence and

identify corresponding controls. This, in effect, gangs the controls

of the submodules together. The inputs, outputs and memories are

combined in parallel as above.

Let

C - CI - C2 I - II + 12 10 = 101 + 102

M - MI + M2 0 0 O1 + 02 and define

F(c, i, io, m) - F (c, i1, i0, mU)I F2(c, £2, £02, m2)

for each combination of control, input, 10 and memory vectors.

I

23

Lt

/

,I

dim 6L = dim C1 + 2 dim I, + 2 dim I01 + 2 dim Oi < dim 6L, + dim 6L2

There are no interconnects.

An example of the realization of a widened module is a 12-bit register

made from three 4-bit register chips.

Composition of Modules

Logical modules may be combined by composition in two important ways,

viz the output of one may provide inputs or controls for another.

In either case, the composition mapping represents interconnects.

Function Composition

If the dimension of the output space of the first module agrees

with the dimension of the input space of the second module, then the

composition of these is a logical module. Let

C - C + C2 I =Ii I0 -I01 + 102

M - M + M2 0 - 02 and define

F(c, i, 1o, m) = F2 (c2, FI(cl, il, io, ml), io2, m2)

for each combination of control, input, 10, and memory vectors.

Such modules are, in effect, cascaded and, in the case that Ll can

be preparing its new outputs without modifying its prior outputs,

this composition is said to form a pipeline.

Control Composition

If the output space of one module coincides with the control

space of another module, the composition of these modules is a

logical module.

Let dim O 1 dim C2 ,

C - C I I,+1 10 = 101 + 102

M - MI + M2 0 - 02 and define

i

24

L

I F(c, i, io, m) F2(FI(cl, il, iol, ml), 12, 102, 32)

for each combination of control, input, 10 and memory vectors.

In such a case as this we say the module L1 has provided the control

for module L2. Such a module is called a control module.

In the various composite modules treated above, we have limited our-

selves to simple combinations, yet combinations of these combinations

will provide most of what is required to treat significant computer

systems.

/

I

I"

I

I

I

F 25

_7

/
V

1k

D. Defining Logical Modules

The definitions of the previous sections were of conceptual intent; that

is, they essentially assigned formal names to intuitive concepts. In order

to translate these concepts into somethings a computer can get its teeth into,f we must present a module definition language and a corresponding data struc-

ture. Since module combinations can be completely described in terms of the

module boundary and the boundaries of the submodules, the language is a

vehicle for specifications of boundaries.

Three kinds of documents suffice for logical module definitions:

1) definition document for a primitive module

2) definitive document for a composite module

3) definition document for a module which is a copy of a previously

defined module (either primitive or composite).

Definition document for a primitive module

The boundary elements of the module must be ordered and assigned 'local' b

names. For example, if the module is to be realized as a 'chip,' the names

given to the pins by the manufacturer will suffice. The document then con-

sists of a list of those names, together with a description of the use made

of each boundary element (control, input, 10, output). The amount of memory

required (if any) must be detailed.

In addition, pointers must be provided to subroutines which compute the

module's function. Up to three such subroutines are allowed. This allows

control, input, 10 and output vectors to be divided into convenient subsets,

and enables subsets of outputs to be computed from subsets of inputs.

Definition document for a composite module

The document contains a list of submodules of the module. Then, for

each element of the composite module boundary, two items of information must

be given: the use of this element (input, control, etc.) and the signal

name associated with that element. Each signal name must appear in the

definition document of at least one subodule.

The signal names in the document definitions for the module and its sub-

modules determine the boundary correspondences and the interconnects

between the submodules. The major design step, then, is encompassed in the

assignment of signal names.

26_

N=

-- - . -=.mm mmmmm mm m ioNm ~ m lM1 m mm•

II

I Definition document for a copy of a previously defined module

In such a document, the name given in the original definition document

must tie provided. Then the boundary elements of the module are assigned new

signal names. The elements are listed in the same order as in the original

module definition document. For each boundary element, its type (control,

input, etc.) as well as its assigned (new) signal name is designated.

Using such documents allows many copies to be made from one definition

Jdocument. In the case of primitives, this avoids proliferation of copies of
the subroutine for the module. In the case of composite modules, it

enhances modularity by allowing one set of signal names to be associated with

boundary elements within a module, and a different set to be assigned to those

same elements when the module is used as a component of a larger module.

If the definition document for a subodule L1 of a module L is itself a

composite module, definition document, then the signal names connecting

boundary elements of L with boundary elements of L, will continue into the

interior of L1 . Such a signal connects at least three levels of the structure.

This runs counter to modularity but is allowed in our system for flexibility.

When the design documents for all subodules of a module are copies of

) previously defined modules, all signals among the boundary elements of the

module and the submodules stop at the boundaries of the submodules, preserving

modularity. That is, wiring between modules is independent of wiring within

those modules.

jExamples of definition documents
We illustrate the concepts of the previous sections by including printouts

of debign documents.

Document 1 is a composite module, definition document for an 8-bit counter, CNTR8.

It is composed of the subodules CNT1, CNT2, CNTB, and has 24 boundary elements.

Signal names on the same line represent elements of the same type - control,

input, etc. The signal names listed here appear in the design definition

documents for the modules CNT1, CNT2 and CNTS.

Document 2 defines a module ADDR8 which in a copy of the CNTR8 module.

i ADDR8 is combined with another module to form a module PAD. The definition

document for PAD is shown in document 3.

I

II 27

/ ll

,I
Those signal names in document 2 which also appear in document 3, (e.g.

BUS 7) detail part of the boundary correspondence for the composite module

PAD. Names which appear in document 2 but not in document 3 (e.g. A7) will

occur in the definition document for the other submodule of PAD (RAM12).

These represent interconnects betwen the submodules of PAD.

iI

j

I
!
i

I

I
I
I
I
I

I28
-A

I - ,- i ,i iia i m I I i I i I I I I I I I I I I I I I I

I
OCUENT CNTRS PAGE 1 LINE 1
'CNTRS e bit counter module w;th bussed and 'egu a
oUtputs

j SUSMODS ONTI CNTZ CNTB
CONTROL LDn I NC,BA BAn CLK GIn G2n
to BLIS? r BS6 US51BUSBUS3,BJS2rBUS1rBUSO
OUTPUT .-NT7 CNT6,CNT5ICNT'fCNT31 CNTZCNTIICNTO
OUTPUT CNTeZROn
END

I

i
I

Iii
Jl Document I. Definition document for a composite module

29

. _ _ _ _ _'

. l-- - - - - - - -- -J

II

I

S OUENT ADDRS PAGE 1 LINE 1
4DOR 8 b;t ADDRESS REGISTER/CNTR
TYPE CNTR8
CONTROL LDn I NC BA BAnCLKDCGND
BUS BUSt , BIJS6JS5IBUS'f y BUS3yIJS2 BUS I I BUSO
OUTPUT A7tA6,A5 AdfA3,AZA1,AO
OUTPUT OPEN

END

I

1
I

Document 2. Deflnition document for a 'copy' of the
module definition document 1

I
I 30

E. The Integrated Logical Simulator

The logical module simulator permits verification of the logical design

Jof a module prior to its construction. It also can be used to compute

expected results for comparison with values measured using the module analyzer.

In addition, algorithm development for a device can be carried out using the

simulator.

As part of an integrated logical design facility, the simulator uses the

common logical module structure for description of the module being simulated.

The module is defined in terms of its boundary elements and its constituent

submodules. These submodules may themselves be composite modules, or they

may be uses of previously defined modules. *At the lowest level, these are

primitive modules with associated programs to perform their function. It is

also possible to replace a module in the simulation with the physical device

using the module analyzer. In this mode, signals to and from the module

analyzer are used with those produced through simulation of the remaining

modules.

The simulation is performed at discrete time steps. For each step, the

processing consists of computing the outputs of the module from given inputs

and controls. All output computation actually takes place at the lowest, or

primitive level. Input and control signals are distributed from higher level

modules down through subodules until primitive modules are reached. Signals

are collected at the boundary of each primitive module until those needed to

compute outputs are available; then outputs are computed. These outputs are

then distributed throughout the module structure wherever they are needed as

inputs or control signals. The processing for a step is complete when all

primitive modules have computed their outputs.

A logical module is described to the simulator by specifying its boundary

elements and either identifying the module type from a library of previously

defined modules or by listing the constituent submodules. The submodule

descriptions are in the same form: either uses of previously defined modules or

sets of interconnected modules. The boundary specification for each module

is ordered by position. The use of the boundary element (Input, Output,

Control, Bus) is given explicitly. The signal name given for the element

defines the interconnection structure between subuodules and to the boundary

of the composite module.

I3

u i
- 32 ,

L

Primitive modules are defined for simulation by providing an executable

subroutine which computes the outputs of the module from its inputs and

controls. In addition, a table must be provided which describes the use

made of each boundary element of the module, together with the amount of

memory which the module contains. Each such module can have up to three

separate subroutines. This permits computation of some outputs based on the

presence of only a partial subset of the inputs. This simplifies the pro-

cessing of modules containing memory elements whose state is to be used

during the current step and updated for use in the following step. One sub-

routine makes their outputs available as soon as the appropriate control

signals are present, another updates their internal state when the input data

is available.

A two-part, parallel data structure is used for the logic simulation.

The first part, the interconnect table (Table 3.1), represents the logical

interconnections of the boundary of a module with the boundaries of its

constituent submodules. This structure provides the paths for transfer of

logic values from their source to Al modules where they are used. Each module

entry in this structure has a set of pointers to the entries for each of its

submodules and a pointer entry for each boundary element of the module and of

each of its submodules. These pointer entries are linked together in circu-

lar lists connecting all boundary points which share a common signal name.

Primitive module entries in this structure contain the subroutines for

computing their outputs. If the same module is used more than once, only

one copy of it is needed in this structure since its connections to other

modules for each use are described at the next higher level.

The second structure used for simulation is a state table which maintains

the record of the current state of the module (Table 3.2). This table

includes the memory for each primitive module and the current state of all

its boundary elements. At higher levels, this table contains only a list of

pointers to the entries for each submodule. Since identical modules need

not have identical states, this table has separate entries for each use of

a module.

These data structures are created from the text description of a module

in a two-stage process. Each composite module is first processed by the

logic simulation assembler to produce its interconnect table, which shows all

logic variables present on its boundary as well as all interconnections

between the submodules which make up thin module. The output of the logic

33
L

' -----7- -, •. n . l il

assembler for a module is this interconnect table and a list of the sub-

modules referenced. When a module is to be simulated, the interconnect

tables for all modules contained in it are loaded along with primitive module

code and linked together. At the same time, the state table is constructed

and the initial variable state filled in. This completes the second stage of

the creation of the data structures needed and is followed by the actual h

simulation steps.

3

IiI

34 .1

, .- - - I I I-I-l

b

Table 3.1 Interconnect Table Formats for a Module

a. Nonprimitive Module

Word I Contents h

0 # submodules + 1 (MIi)

1-M Pointer to each submodule entry (*-displacements) b

M+i # boundary elements for module (N)

M+2 - M+N+2 Pointer entry for each boundary element

M+N+3 - END Entries for submodules

A (interconnect table for submodule) filled in during

second phase.

One-word pointer entry for each boundary element of sub-

module, contains submodule index/pin index of next use of

signal. Each element entry, whether on the boundary of

the module or some submodule, is a circular list link of

the form: submodule index/element index where submodule

index 0 refers to the boundary of the module. All

elements with the same signal name are linked together

in a ring.

b. Primitive Module

Word 0: length of state table entry for module

Word 1: A (source for state table entry)

Word 2: A (primary processing code)

Word 3: control entry 1 A(first control processing code)

Word 4: control entry 2 A(second control processing code)

A primitive module has up to three processing sections.

Each section has its own entry point and is executed

according to the following rules:

1. Entry point given at module base + 2. Standard processing.
Executed when the specified number of scheduling inputs and
controls are valid.

2. Entry at module base + 3: Executed when control with subtype
1 is valid.

3. Entry at module base + 4: Executed when a control with sub-
type 2 is valid and low or a control with subtype 3 is valid
and high.

35

L

Table 3.2 State Table Formats

a. State Table Nonprimitive Module Entry

Words 1 to N-i: Address of state table entry for each submodule.

Word N: #1 address of state table entry for last submodule.

b. State Table Primitive Module Entry

Word 0: #2 IS J# needed JR1 # received I
15 14 8 7 6 0

R and S are set when control entry 1 or 2 respectively can be

executed.

received is a count of the number of signals which have their

schedule bit set which have been received.

needed is the number of these signals which must be present

before the primary entry can be executed.

Words 1 to !: [#111 T I ST I Si V 1N Ic I T I ST IS IVN I
2 15 14 13 12 11 0 9 8 7 6 5 4 3 2 1 0

One byte for each signal:

T - Type 00 - Control

01 = Output

10 - Input

11 - gus

ST - Subtype Output Bus Control

00 - Combinatorial/Ungated 00 - Other

10 - Latched/Ungated 01 - Immediate entry I

01 - Combinatorial/enabled 10 - Active low - entry 2

11 - Latched/enabled 11 - Active high -entry 2

S - Schedule bit - increment received count when this signal is received

V - Valid - set when signal is valid

N - Next Value - retains value for use in clocked outputs

C - Current Value - state of signal if V bit is set.

The last signal word has its flag 1 set. If the module requires

memory, it will be located immediately after the signal entries.

36

L

F. The Integrated Module Analyzer

The Module Analyzer (MA) performs post construction verification of the

logical and engineering design. At this stage in the design the modules
h

involved should be logically correct. However, engineering considerations may

affect the performance and implementation of the logical design. Timing

characteristics, signal transmission paths, power requirements, and noise

environment are among the possible engineering design considerations that

may affect the final form of the hardware.

The realization of the prototype MA was influenced by two factors:

(1) the desire to have its elements under direct external software control,

and (2) to have a working prototype quickly available. These two factors

resulted in a device that has overall structural simplicity. The final

implementation of the MA may involve more sophistication that could allow

more automation of hardware checkout. For example, the manual switches used

for sampling selection could be electronic switches under program control.

Nevertheless the prototype MA has proven itself a useful tool. The remainder

of this section documents the MA and contains the following paragraphs:

Paragraph 1 is a functional description of the entire unit including each of

its major registers. Paragraph 2 describes how to operate the MA using the

manual controls, external connections, and programmatic capabilities.

Para. 3 is a detailed circuit description. Appendices include sample

microprograms, and a complete set of drawings. b

1. Functional Description

The main features of the MA are depicted in the block diagram of

j Figure 3.1. Generally, the purpose of the MA is to provide both static and

dynamic inputs to a board under test and then to sample the board's outputs

f after a specified time period. This time period is specified by external

control, so that a sequence of tests can determine when an output changes

i within 5 ns. External addresses and data are supplied on PAXOO* to PAXO5*

and IXOO to I0X15, respectively. The internal registers are addressed

according to the decoding scheme included in Figure 3.1.

The Buffer Register (BR) has several purposes. It serves as a con-

verter from (or to) external 16-bit data to (or from) internal 140-bit data.

This is accomplished by nine separately addressable 16-bit registers within

BR. After data has been transferred into BR, the information may then be

j loaded into either the Input Register or the Control Register, both 140 bits.

37

A40-41

/7 0 S .11

X140

.C------ -.t0 0 0

A4 (W'rC-A'I 06e-e1~)l

~Q6'A

,AipPr 'Z) /'ne()6rsroclx. r* m A)

zA~ 0-6' lPf5 0-

F, Z-V -6/

/-ST~ wo~rE vuS 8000 0/

C 0/Y7 'O , Q~ /LA /

tl 7 /', Sr

1/140

MOj

BR also serves as the data storage register when the board under test is sampled.

The Input Register (IPR) provides static input data to the board under

test. It is a 140-bit register that is loaded from DR. Its outputs may be

connected to the board under test by switch settings.

The Control Register (CON) provides dynamic input data to the board

under test. The clocking of CON provides an initiate pulse to the HA that

begins the test sequence. This initiate pulse defines the time of change of

any bit in CON and also provides a start pulse to the counter.

The Counter consists of two elements, the Count Save (CS) register and a

50 Mhz up-counting register (Off). The counter has two functions: It

generates timing strobes for the various data transfer operations to, from,

and within the A. It also provides the sample strobe that defines when

data from the board under test Is loaded into BR and the Status Register.

The length of time between the initiate pulse of CON and the sample pulse of

CNT is determined by the number loaded into CS. This time may be practically

varied from 30 no to 327 Us in 5 ns intervals.

The Status Register (STAT) is a 16-bit register whose inputs are directly

attached to external probes. These probes may be connected to any signal

on the board under test; this provides the capability to sample 16 internal

states in addition to the I/0 pins. Data from STAT is directly read from the

X-Bus since it is only 16 bits wide.

Switches on the MA are set to correspond to the function of each pin.

Input pins are switched to "I" or "C" depending on whether the input is a

static or dynamic one. At sample time the state of these inputs is loaded

into BR. Output pins are switched to "0" so that at sample time the state of

the output pin is recorded, Power and ground pins are switched to "0"; power

wiring is not a logic input so it is wired separately to the board connector.

2. Operation

The operation of the MA is governed by three conditions: (1) External

connections, (2) switch settings, and (3) control of external logic signals.

The external connections msot be made prior to powering on. The power

cable must be plugged to both the MA and an external SY power supply. A

50-pin flat cable must be connected to Connector MPI. This provides external

input/output; pin assignments are given in Table 3.3. The opposite end is

connected to the device providing control. The board to be tested should be

39

39 t

.,= ,m,,i a meml llmal rus il l!

I Table 3.3 PI Pin Auuipnts

IPIn Signal Pin S!Mad

1 IO100* 26 10112*1

2 10100*R 27 10113*

3 1O101* 28 10113*R

14. 1001l*R 29 10114l*

5 10X02* 30 10114*1

6 10102*R 31 10115*

7 10X03* 32 IOXiS*R

8 I0103*R 33 IOW~aA*

9 I0X04* 34 IOXMR

10 I0104*R 35 UNUSED

11 10X05* 36 UNUSED
12 10X05*R 37 A0*

13 I0106* 38 PAM00*t

14 I0X06*R 39 PAIO1*

15 10107* 40 PA201*1

16 10X07*R Ill PAXO2*R

17 10108* 42 PAXD2*R

is 18 108*R 43 ?AX03*
19 10109* 44 PAX03*R

20 10109*R 45 PAX04*

21 10110* 46 PA204*Rj22 10110*R 47 ?hX05*

23 t0111* 48 FAXO5*R

24 10111*1 49 WMUED

25 10112* so UNUSED

I4

I placed in the edge connector provided on the top of the MA. When these connec-

tions have been made the power-on switch may be enabled.

Before programatic manipulation is begun, the desired switch settings

should be made. Output pins of the board under test should have their corres-

ponding switches set to "0". Inputs should be set to "1" or "C" depending on

whether the pin will have a static or dynamic input. In addition to switch

settings the user may desire to attach any or all of the 16 probes to internal

points on the board.

Programmatic control of the MA is achieved by manipulation of the address

(PAXOO* to PAX15*), data (IX0 to 10X13), and enable (IOXENA *) signals.

Generally the procedure to perform a test sequence is as follows:

(1) Reset the MA (?A - 34@).

(2) Load CS with the desired 16-bit count (PA - 310).

(3) Load BR with the desired data for IPR (PA 20 to 30).

(4) Transfer BR to IPR (PA32).

(5) Load BR with the desired data for CON (PA 20 to 30).

(6) Transfer BR to CON (PA33); this initiates the count previously loaded

into CS.

(7) Wait for sample pulse.

(8) Read BR (PA 40 to 50).

(9) Read STAT (PA 51).

These data transfers are controlled by internally generated timing strobes.

These strobes define the times during which comands and data are to be supplied

to the MA, and they define when MA output data is be externally sampled. The

timing of input to the MA is given in Figure 3.2. Both IPX (data) and address

(PA*) should be changed a minimu, of 100 us before making IOXENA* active.

IOXENA* enables the X-Bus, and 820 ns later the timing pulse, STUIBEI*, is

activated. In Figure 3.2 the signal REC DECODE represents the register enable

signal that is a decode of PA 20-34. The coubination of decode and STROBEIC

generates the appropriate register clock. This latches the data In the corres-

ponding register. The timing is the sam for clocking external data Into a

16-bit segment of BR, transferring 140 bits from BR to IPR or CON, and

generating a reset pulse. The user must simply keep IOWXIA* active for more

41 s

PA*

IOXENA*

x
ST0BE1*

REGDECODE

REG =

Figure 3. 2 Input Timing Diagram

lox

PA*

I0XENA*

x.......
STROBE1*

STROBE2* -q

STi*BE3*

REGDECODEQ

OUTMUQ__

Figure 3. 3 Output TiminS Diagram

_ - - 42

than 900 ns and then data, address and IOXENA* say be made inactive

simultaneously.

The timing for output from the MA is similar to the input timing with the

addition that the output data must be sampled during a specified time period.

Output timing is given in Figure 3.3. The timing for output is the same as

input thru the generation of STRSEl*. This allows the KA to decode the add-

ress of the register being selected for output. However, after STRIBEI* there

are additional timing rules. The user msot stop driving the enable, address,

and data signals before STROBE2* which occurs at 1140 no. At this time the MA

Swill begin driving the IOX lines and will continue until STROBE3* at 1920 us.

Data must be sampled between 1140 and 1920 ns.

Appendix I gives sample micro progra for controlling the MA. They are
written for a CHI MP32A Macro Processor. The instruction OUTPUT CLR provides

proper timing to IOXENA*, and INPUT samples I0X during the time it is driven by

the MA. These micro routines assume that PD (which drives 0X1) has been pre-

viously set up with the desired data.

3. Circuit Description

This section will first describe each of the major registers within the MA

and then describe the control circuits that generate the proper timing and

event sequence. Refer to the logic drawings in Appendix 2.

The Buffer Register (BR) is the only reigster that functions as both an

array of 16-bit registers and as a 140-bit register. BR Is made of DM8542

4-bit three-state registers. External input data (IX00 to l0X15) is received

by 8T95 three-state drivers whose outputs are connected to the A-Bus of the

8542. The 140 bits are segmented into 16-bit groups, each group having a

separate input and separate output enable controls. These controls are direct

decodes of the PA* signals. Although the entire 140-bit register msat have a

common clock to allow loading of 140 data bits from the B-Bus, sixteen bit

loading is accomplished by the A-Bus controls. Thus BR is externally read in

16-bit segments.

When data Is to be transferred from DR to either the Input or Control

Registers the B-Bus output enable control is activated. Data is clocked into

these registers at STOBE1P time. Both the Input and Control Registers (IPI

and CON) are made of SN74LS174 6-bit registers.

I43|L

_ _ _ __-_ _ _ _ •

-- -- - N .,, =.-.= s mi m Im ll~mi l i i • i

IA

i The outputs of IPR and CO may be switched to the board under test and in

this case they are buffered from the B-Bus of the 8542 by three-state buffers

(SN74367). When data is to be loaded into SR from this side the input control

LDBR* activates both the three-state buffers and the I-Bus input of BR. In

this case BRCLK is generated from the counter.

The Status Register in made of AN25S18 4-bit three-state registers. Its

inputs are directly attached to the external probes. It is clocked at the

sample time generated by the counter. Its three-state outputs are enabled

onto the X-Bus when its address has been decoded. It is read in the same

manner as any of the 16-bit segments of BR.

Timing pulses and control signals are generated by a 16-bit up counter.

I The basic clock of the counter is supplied by a 50 Hhz oscillator. The outputs

of the counter are used in two functionally different ways and divide into

two phases. The first phase generates all the timing and control signals;

the second phase generates the data sample pulse which may be varied between

30 ns and 327 Vs in 5 no intervals.

The first phase generally begins with the activation of IOXENA* and lasts

until STROBE3. The only exception to this is when the data sampling pulse

is to be generated (see below).

When IOXENA* becomes active it clcoks CNTENAQ which enables the 16-bit
counter (AM93S16). cNTENAQ is also wired to the reset input of each stage of

the counter to ensure the count begins at zero. The counter is a synchronous

counter, but the carryout of a stage is clocked into the next stage with a

delay of one clock. This was necessary because the delay time from clock to
carryout plus the setup time from carry into clock is longer than the 20 no

clock period generated by the oscillator. Thus it was necessary to stretch

the carryout by two Inverters and an 0t gate in order to meet the setup

frequirements.
The strobe pulses, STRIN1-3* are generated by simply using an B-input

j AND gate with the appropriate inputs. STAOBEl generates all the 140-bit

register clocks: COUNTCLK, TPRCLK, CONCL, and IBCLKO. STVIBE2* clocks

j OtrrENAQ, the enable pulse for NA output. STR3BE3* is generally used to reset

control flip flops to their original state so that each time the NA is addressed

it begins operation from the sme state. It resets VTUTQ, rMTAQ, LDBR

and IrTENAQ.

I 44 ,

IL

The exception to this sequence is when the counter is used to generate

the sample pulse, TO. The decode of PA33 (Load Control Register) generates

the signal CONCLK at STROBElC time. CONCLK alters the usual sequence of events.

I Referring to Figure 3.4 the first events are the activation of STRINHQ* and

LDBR*. STRINHQ* disables STROBE2-3*; LDBR* enables the I-Bus input of BR.

f CONCLK* is used to enable the parallel load feature of the 93S16 counter. So

the contents of CS are loaded into the counter at every DELCLK until CONCLK*

jgoes inactive. At this trailing edge of CONCLK the counter begins to count

and the Control Register is clocked. Hence the dynamic inputs to the board

under test change at the same time the counter begins to count.

When the counter reaches a count of all ones the sample pulse, TO, is

generated. TO generates a BRCLK, so the data from the board under test (or

the contents of other registers as determined by the switch settings) is loaded

into BR. TO also clocks data into the Status Register. Additionally TO

resets STRINHQ*, so that the counter now begins counting again from zero.

Therefore, the generation of the STROBEl-3* pulses proceeds as previously

described with STROBE3P being the only important event. STROBE3P resets any

remaining active pulses so that the HA is returned to its idle state.

I The implementation of selectable 5 ns delays is accomplished by using a

delay line with 2-1/2 ns delay taps. Delays of 5, 10, 15, and 20 no are used

- to provide four selectable clocks. DELO is selected at all times except when

LDBR is active. When LDBR is active the delay is selected by the two least

significant bits of CS.

4
I
I
!1:
I
I

1 45

PA*

IOXENA*

STROBE1*

CONCLK

STRIIUQ*

LDBR*

TO O R

STROBE2*

STROBE3*

Figure 3.4 Test Sequence Timing

A

I
I
1

AF'PEIVIX A: SNIPaLE OUTPUTS FRt THE TU1JE

DES IC'1 SYSTEM

1 t

I,

z5L)9 16 Z*Pert raa2L0 G2 a ~t

I DO4 .5 00 023 T DO4 3 "0 G3,t
It DO 1 TCO# G24 I DOB It TOO 035
r DID 5 r05 0325 T 018 5 TOt 036
T D44 6 O09 026 1 DIA 6 005 133?
* al ? U0" 027 a a1 7 1)05 1330
GON QV S~i Gza0 0 GIN0 a o G39
c CP 9~ tK #126 C CF 9 UCULK #39
* Q2 10d 0Z?0 l6i 02a 10 LAX6 isA

D2A 11 010 HZ6 1 024 11 006 H37
I LD28 12 TC6 H25 r D29 12 TOI t36
I1D38 13 RVP #1291 T D38 13 T0.3 H35

[1£3A IV GIL #123 I D3A 1900GO #1
i0 kill V122 0 Q35 151)0OW 1433

v veX 16C #2 VCCCHIvY 16 VCC "31

.1)3
25LS09 16 1"Part nme
C S 1 VS501 093
M 00 21)0 09 a
I 004 3 G00 045
r E09 It We0 CG
I D19 5 V)09 0ff?

a601 7 Vol0a"
c CP 9 UCLK "50
a 02 10 U)01 1"
I 024 11 001 H"9
1 02B 12 UIO 9497
r 038 1311 Ull 96
I D3A 19 G03 W15
0 03 is 1)03 H"9

v Vec 16 voc #193

[. ~ -. -L

IVS. V21 c i2 1PM V81

3fr"n V23 Z OA SH09 V39
4 Lov V24 TOC ow 40 I D via
a I SUCS 1r IDim. SU0 V36
r0 ?m V27 0e at r m VE,.S 0 Vm GQ a w V39

0CO 9 C w" I 9~ vm 139
so VIO W27 6 a 0 " W3e

L 114"0 1W25 1 DSA LI HOG W357
is U0 was I Di is U02 W36'I . 13 1.40 Wa14 I an 13 U.03 W35

WA 14 MIL W123 IA 14 940N? W134
a 03 1in 1122 S 0 3 is~ %W 33V vo0 16 vo 112L V v 1E 11c32

25L"O9 16 2"P. 1 nwom
C s I "of V103

I OA 3 M40 V"S
I oCS q vw v
101.D 5 V VI?
I OlA 4 HoI.Vqo

a an 1V 1150"

I OSA it Hot5 WY.
z 0*1 12 vio 119?
I on 13 VII 1196
I DSA 14 403 1196
v 03 15 V3 W"9
V Yee I& Vw W193

I 3Lj157 16 I*Part rwm 25LS157 16 V*PartI C Sol I griseI c I C Sol 1 D I c I

I to 3 vce C3 I B9 35 V(E3

I AA 5 U(109 C5 1 A 5 U05 E
t 23 6 VC19 C6 1 29 6 VOK F6
a ZY 7 6109 c? * 2y ? 6105 E7I 001 O1O SI4 C8 0GN 19ONO) F8
* 3y 9 silo0 D6 A 3Y 9 6106 'V6
1 30 O0VIO Dr tI LO V06 F7
I 3A 11IL'lO D6 I 3A it LO6 rfi
* Iy 1101 mil 0~ a q 12 9101 F5
I "9 13 V11 Dd# T q8 13 V07 F'f

T A q ilI 3I #A iLuo U0 V
C STWE 5 (fCIY DZ C STEIW 5 MClr F2
V VoC 16 VCCr DI V Voc 16 VCC FtI

'XM5
ISLS157 16 2Zpert nm
C Sol I. xmSl G1.
T LA 2 U00 02
1 is 3 VWO 03
0 ly of 0100 a
T 2A 5 V01 G5
1 28 6 Vol 06
a 2y 7 6101' G?
0 ONO 9 GMW 06
m 3y 9 9U102 He

I 3A 11lU02 HG
* IUy 11 0103 H5

j1 4#8 13 V03 H
r 4A 1It UO H-I
C STRE 15 XMCIr HI
v Vc 1OC IVCC HI

Is v'Pmvt ns amsiw 16 2406"r
A. I "sI RI C Sol I i"Sal TI

AA aW h a A a UOR Ts
a 3VO M311 SA 3V0 T3

680 sa R1t0 9 dw Tol

5OVI9 IS t 24 l6 U I

G3 Vii9 06 V6 y

V 10 Lvco ST V9 to 06C U

4A IV vi I S5 I~ *Pw rqU0
C ST 15 CM5.1 S2YC S VI1 MCIr
v ~ ~ ~ h lUOC L4VCS o 6VIc

26I1E 160 VSrtn

I IA I U0i V5

a IY 7' 11201 V4

1 25A 5lU01 V5
a 2y 113owl'bB

I 'PA 19 U03 W43
C STW L5 "W PrY WS
v vcc is vcc. .WL

ww 16 1 C E I ONC RIG

10 ZI DO 3 3Z 319Iq 0e R13
I DI 4 AD A a at OCIr i
90 a SU" I 6 A5 6040 RIB

vs 6 Ao 6 99a1 ?0*SefRlf
M r ?V96I A? 00 Gm ON RIF

0a ON 0ON AG c CP 9 C.J SI7
C CP 9 CUK a6 6 a3 IC0CIlr S16
0 03 10 oil 1 03 11 GAI S15
I 03 11 06 aI(L9 IOW siq
0 09 is 05 1 Dq 13 OV S13
T 09f 13 f" Tt~ D1 qal s1
I D15 IV B3 a 05 isOC Gel si
a 0 5 US52 V voc 16VO v SIO

28507W IA I zs9s7 1
C E 1 O0 TIO C E I am VIC
* 0 D 2 ~ mo il T1 is 00 1'MOO Vii
r D0 3 HI Til 1 00 3 m0 vii
I DI 9 IIA T13 I D1 of ml V13
tv t1 SHASe I TO' 691t 5 MXCU(V14

I I AL TIS I D2~ 6 M2 VIS
* 02 r HACIr T16 0 Q2 7 P1CLK V16
a1 601a0O TI? 00am0 a 00 VI7
cC P 9 CLK WiF c CP 9 CIJ(W17
8 03 10 HCO J14 9 (13 L0 9A(SelIGL
I 03 1WOO 1315 T D3 11 M3 *W15
a 09 12 MCl U19 I 09(12 mysIl UI'
T 09 13 1 13I 13 I M9 13 M4 U13
1 05 iq NS1 1311 1 06 1416 HO wis
a as is NC U11 0 (15 15 Me"I wit
V YM IGcb vw 1 WO v Y VCC* W10

CA DO. Sir usui

05"i F19~ HIZ P'2g

P09 CIA Air
rO6 Cis ALS

r15 919*11

POT O12 0L

7@is .1 P16

000 C4. 0"

001 C'" 0
00,1 D0O H49

S 003 D"9 HS

W9 C3? 03q
06 cam O3T

00 32 0137
Owr D39 4

cvr on000 C26 023

on1 C2r 026
f10 D30 HAG

OLL 59 D2 .43

Gow FIS D26

am" D,4 D36

1_ OIlO111 115ll

I
II,
I

!-V - --- -

I 310w 1(16 IVt P27
131 KiJ I3

97 v IS

M3~ icl W15

J"? E"4 P23 T"~

~O1EaIr T47

.3'19Z A4I7 V40 U

IPPOS .j5 9B" P'5 aUlS

A36 P3? U3?

mpoP M4l7$ 837 F30V U3

j4 934 E21 Z
wa" AZA E25 T25

mWil "03 B26 o 23 U2 (3

MA U29 pqs

' rG moo P" ms
RP~iS J31 R0

I R n"

PPFL X" P30f

PrL*9 33a"43

39 MIS Vi

9W-VA3 NIS

~O1 33 ~ N16

33 J3 P14

Moog 323 LOS

MW? .319

MM 11 J11?

.wcio F=2 WI?'

M3CI'v 31 9(11 "Itl pit
P3IftI 30 J10 LIC NWO W16

uwoo P13? Nt

frOw P19 pe

... . 7r", ~*4I.............

I m 40 w
wt 41 T4I - 41 T7
a" ~43 u

sa 45 b

am 4 R7
I a 1#0 7 so

=it1 16 16

We"6 93 "2 M17 016
Ir? D26 0.3? D" s3

TOO al E13 am5

ToI 016 Ell 036

Tax '416 P11 143

103 N11 P1i 143

TOO Cii A13 03

105 C16 All 02

T06 D16 912 H425

TOT D11 014 1424

T"l 2 Dir NO?

1 ecL 010

126 44

(5 m 0a" V35 02 Vz

W0I w4 9 V6

wu HG~ 146

IL

Npa I I4

0* V21 11 35 E2 TZ

E37 038 V25 ES T

'4 FV, 33 bJZ'9 F3 035I I FE23 022 r.46 czRZ

UL '41 H9 7 D6 S6

UllI FI-0 HIZ 446 D3 S3

LXJK21 1428 '439 HSO

u 5s 1 r 21 032 0'#3 A5

* 4oc V"I (3 V3

Vol TIS8 V"1 06 9

V09 T34 V*33 E3 T3

VOS 13? V38 F6 46

V6 U30 W36 F? Ui?

V? U35 W.V3 FlfU

VOS T23 V21 V46 C3 R

V0 T26 V27 VVIC

vio LIZ7 WI? W47 or sr

Vii V24 W22 WI6 DI SI

IL
IL

VM 041 121 122 PnMSq
P133 81<1 P110 PlO KI

FLO DI! D30 CIVI 821

s11 P10 S41 P21 P32

D I F1H#3lv

VCLe 56 wl 139 ba5c

VSe 57 %J2 V32 .ot34 A?

)Mlir 4Di F242

V1C I r 36 S2 U2 W2

Ynss I WC T I VI

064

I

I I;
I
[2
I
I

I

1 i
APPBDIX B: MJ~RO PROGRNWIS

I I'
I I
I
I 4
II
I

I

F
[I

I - /

I8

I

I

I

-- - - - - - - - -•I-m m m

.01

r T-

w
jj*o A0,0 .0

%r 0 64 A'%oPO73
4,+oAP&/ evc

''I I

A04 CAo0g

CAa,, go / /1

F i' o ASloEo -Aqda/

c7rza 414- C ~ roo

CCAlF/l

rosay

C.lP re A -SCF

al m 4W2oCo

CadrE ' CVd?

&7-1Ad-

- I-,A At

A p~ -s,

7 4 4.3,

AM I

Il

^60s

All'a,

P.00
0 orADzz : r"'b:

V. al

A, SO V

100 x -A £ 1 04
AO/ roil~ :~1//

14~.5 X, a., Aea.b i. -,21", S-fa. "-&i'215

ON Arob 0* 10 r 1 D '0 *

xro r7-j- J--4 A,.. I

4,1, 0

zbae., PA" . _4"AP

P0311. 000 0(0' A#0R5 ~D

'0 ell~,A~4 ~ ~ -4T AlR 23/A7PaA VIAD j4 I *8/ 2,,' ~ 52
W,l ' Pf / 45 *C S a.

4, , R 00 0A.F&C6 'A.J OR4RI #
5)/J,'0

II T

4,I- ccie r. 1 '5 Cra C t 5 Cr

so 79 "? Oop 4,09

il" J0 AegeA
4"0,

'0

-o

zO/
P

A, ell 4FIId IAc2

5f/o If/ 205 , 4 4 0

41(Aj

.4 .e ., AV% :q
ffej5 IAVI1 0// ~4 , 2/052 A/ _ _

x9 04 19'~ 0 , , 0/15 5/4s 'p 2,,, A

-r 1 . - 'lull -0 O E eI. , IF 1.0 p Ae

le, If, . 11 a 1 Al
ffe /, rf'y

'1552d

AJA 0&I Aide A, P w0'

5.' - A' 'l ' - A/'1/ .TAA 0 4,*.

,cry_-10

I qf

XI,. 013z,-ef.

do0 47 6$/ p4 aG6~E

/8 R_ _ 4, 6,.-04O 9
Ado j£4*o/'E 6B,7 ffX0.4

4 ;7-~0~ ,1 ~ 42 *~ ~ . 4 a-&4 ,
*C Cr0. C, Il Zwa

U '-AWC/

XPoyC _______________ V00

e4 12 9,

jow 1 4F 41 Id053 at.gf
I~

new XA4%q-I / 9lo~

&d7 2)-wo'-0'9

10,0~ 17 of 47)., lot- O-F X, 7

,~ 84903 00/ r2Aeool'q ".q k.0 earl9d~
41, 3 eovtI, ,

SIvl -LITCs

I ' U9 '

aw),s 07-

4,O ar As17 4 4 * ~ 6/
*ZPRI04 IM 249/dO Z^61040 0

4r F AA#

C, t 0 0caa

Irwoe &00 v-4964 3rw-,t/

I4 /rolt de ~ 07 4A"
IFI

- - -- -- --- -

&a? 7r m -I A> 6WM

T '0" 1>

j~J IsS3w3

J0 7 ' M *~p - - > 0 0 p w a s i s w f . -- .>

0& F#: d"&,0Irl' a voAre
a 'o? OVA -Foo* zr 'f If'1

*.wo . 64 -f-- -- c 0 Aar

ia..,,,,,, rvm 3.5. > - a,

7(S*a&9 w 73w ffif9 00 .Ald" I'
ha, AV

ffIo pa

