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I. INTRODUCTION

The U.S. Navy is currently in the process of developing a
capability to forecast chemical weapons hazard (CWH) for the
overwater regime. This is part of the Shipboard Numerical Aids
Program (SNAP). - The present implementation of CWH is encoded in
the BASIC programming language, and is designed for use on the
HP9345B micro-computer.

Among the major gcals during the development of CWH for SNAP
were speed, user-friendly operation, easy to interpret results,
and flexibility. The program runs extremely quickly, typically
producing the graphics output within about 10 seconds (neglecting
time for user inputs). This i{s accomplished in part by using the
relatively simple analytical Gaussian.plume formula as the core,
and in part by efficient programming techniques. The program is
easily operated by a computer novice, with default options avail-
able for all user inputs. Since the program is designed to be
cperational from shipboard during a potential battle situation,
the output is configured in easy to interpret polar coordinates
with radial compass bearing spokes spreading out from the
contaminant source, and "danger zcnes" contoured in units repre-
senting hazard to human life. The program is written using
meaningful variable names and a modular format. This will
facilitate easy modifications and additions in the Ffuture.

The purpose of the herein described research was to
investigate the behavior of the model under a full spectrum of

meteorological conditions, comparing predicted results to
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measured values. As a first step, those measured values were the
same data used to parameterize the Gaussian model. On first
thought, this procedure should be a needless, redundant exercise.
We will see, however, that this is not the case since some
valuable insights into model performance are brought forth.

Next, the model results were tested against a "pseudo-
instantaneocus" data set to examine how the model treats burst, or
puff, releases. As puff releases are of major concern in the
application of SNAP, these results are very important to the
model validation study.

Finally, the model equations were compared to results of a
recent tracer experimcat in the North Sea to test their applica-
bility at different locations. The true test of any such model

is its geographic independence.



II. METHODOLOGY

in order to compare the modzl output to measured values, the
basic model equations must be presented and discussed. The
familiar Gaussian plume dispersicn model, for a surface release

with no vertical limit to the plume spread is based on the

equation:
22

C(X Z) S aaialiadialied exp[— -zg - - ] /1)
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where C(x,y,z) is concentration, mass/volume

S is the source emission rate, mass/time

X,¥.:2 are distances measured from the release
point origin

U is the mean wind speed (in the x direction)

ay(x) is the standard deviation of the plume's

horizontal mass distribution

0,(x) is the standard deviation of the plume's
vertical mass distributiorn

Note thét sy and ¢z are fgnctions of downwind distance, x, due to
plume spread. The factor S/U in the equation takes into account
that the material released in time dt is spread over length Udt.
We have assumed 100% reflection of the plume at the zround.
Obtaining the biological effects due to the plume is a
simple matter since Equ 1 predicts a non~rhanging concentration at
each point in space. This concentration can be used to calculate
a dose rate, the total dose for some time period, etc. simply by

determining the total amount of air involved.




The situation is not so simple for an instantaneous release
of material, a burst, because the concentration at a point in ;
space is a time changing quantity. Equ 1 is also used for this
case, with “he source emission rate replaced by total amount of
material released and the calculated quantity being "“"dosage"
rather than concentration. In order to understand the comparison
of this equation, as used in CWH model, to the simulated burst
data it is necessary to understand-how it is obtained.

Fer a burst, the concentration is given by

¢~ 2 133y378:0550s oxp[- 355 - 5’532 FHOR (2)
where Q is the total amount of material released and the factor
of 2 multiplier accounts for ground reflection. In Equ 2, x' is
measured from the center of mass of the puff; we suppress the
time dependence of the concentration for the sake of simplicity.
The time dependence of the location of the center of mass can be
simply introduced using the mean wird speed.

We can define the dose at some point in space as the total
amount of material that crosses a given area aligned perpendicular
to the mean wind as the puff advects past the point. Dose is given

by

- S I 2 1 \
dose AyAz noyog exp[ Zoyz 2022] ' (37

where AyAz {s the area. In what follows we will use a unit area,
Aysz = 1, Equ 3 is obtained by integrating Equ 2 over all x. The

standard deviations are functions of the distance from the release



point, as in Equ 1. Note that dose depends only on the parameters
which describe the puff.

For biological applications, 1t is impcrtant to know how long
a particular level of concentration remains at a point, rather than
the total dose,. For this reason the quantity dosage is introduced.
We assume that the mean wind speed dcoces not contribute to the
spread of the puff other than how it affects the turbulence spec-
trum, The orly affect of the speed is to transport the puff at a
particular rate. Thus, the length of time that the calculated
concentration will exist at a point depends inversely on the wind
speed. Dosage is defined to be the dose divided by the wind speed:

D = dose/60U, (4)
where we have used the factor of 60 to change ﬁhe units from kg
sec/m3 to kg min/m3, the common usage for calculating hzzards to
personnel,

The CWH mcdel calculates ground level, hazard isopleths. The
isopleths are the loci of coordinates for a particular predeter-
mined dosage. We let the specified dosage be Dg, and the value of
crosswind distance at which this dosage occurs for some downwind
distance be yg. Then, using the definition of dosage given in Equ
4, substituting Equ 3 for dose, and setting z=0, for ground level
impact, we easily derive:

yg{x) = oy[Zln(Q/60nD30yozU)] (5)




The maximum downwind distance at which this dosage can occur
can be found by setting y=0 and solving for x. Since the x-depend-
ence 1s absorbed in the standard deviations, it is necessary to
have analytical forms for these quantities before this step can be
carried out. Tnhis is dore by parameterizing puff growth using
experimental daté; the results are presented In 3Skupniewicz and
Schacher (1984),

The forms needed are:

- ¢
cy(x) ax

(6)
az(x) = bxd
The values of the constants, a, b, ¢, d, can be found in the
reference. . Substituting in Equ 5 for the standard deviations,
substituting y=0, and solving for x gives:
Xmax = (q/60Dgabu)(1/(c+d)) (7)

The CWH model computes lethality isopleths that are referenced
to the expected percent of personnel that will be casualties. For
example, LD50-GD means that the specified dosage would result in
50% casualties from the gas GD. In order to convert the Gaussian
calculation of dosag=z, which is based on the ambient concentration
in the air, to lethaiity, it 1s necessary to know such quantities
as inhalation rate, biclogical effects, etc. The CWH model
contains the information needed to make the conversion in a look-up
table, which is based on the total mass reaching the lungs in |

min.,

The experimental data which are used for this model validation

study come from tracer measurements of ambient concentration, mass



per unit volume, from a continuous relecase plume. As can be seen

e L

from what has been presented above, all that i{s needed to convert T

the source rates to mass released, in order tO simulate a burst ;
release, is to multiply the rate by 1 min, 60 sec. This converts i
individual surface concentration measurements to dosage for direct » f
comparison to tile CWH model isopleths. Since the CWH model A ' '3
graphics output is in units of lethal dcsage, we have also had to Eq
use the model's locok-up table to convert cxperimentally determined i E
dosages to theose units., Once this was done, we had transects of \:3
lethal dosage as a function of crosswind distance for various Lf@
dowsawind distances. The experimental transects are far enough » .j
apart in time and space that they cannot be used to construct -fﬁ}i
isopleths. Rather, we compare the CWH model results to the t;;g
individual transects. This was done Ry superimpcsing, on the model ;:N?

output, the location of the center of the plume, and by using

hashmarks connected by a line tarough the center point to indicate

the locations where the concentration falils to the value

appropriate to the specified lethality. The results are shown in

the next section.

~3




IT1I. COMPARISON TO ONE-HCUR AVERAGED CONCENTRATION PROFILES

These results use, as a data base, a subset of the data used
to produce the sigma~-y and sigma-z parameterizations implemented
in CWH. Only data whose ground-level concentration transects
were known, or c¢ould be derived, were selected. Alsoc, only those
data whose absolute coordinates were known (in relation to the
source and mean wind direccion) were used. By applying these
criteria and forming hourly averages of the experimental data,
direct comparison tc CWH output could be made.

As with the original sigma formulae, the data were divided
into Pasquill-Gifford equivalent stability classes. For arn
explanation of the techniques involved in the sigma parametcer-
izations and the determination of scability ¢class over water, see
Schacher, et. al. (1982). 1In addition, data within each
stabllity class were binned into wind speed categories with a
range of 2 m/3 each.

Figures 1,1-1.12 present the CWH model isopleths and the
hourly averaged composite transects, starting with the most
stable (E), lowest wind speed case and progressing through the
least stable (B), highest wind speed case, The representation of
the transect data {s explained in the former section. A single
plotted transect is the average of 2 to 15 {nstantaneocus

"snapshots" of the continuous plume.

The CWH output has an "N" that indicates north. Note that

the model graphics uses both 0 and 360 for the north bearing, and
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also uses + angles when 0 i{s used for north. No reason for these

two presentations is known.

The stability/windspeed categories have varying numbers of
transects, and not all windspeed categories have entries.
Classes B and C contain only a small number of transects and

conclusions based on these data cannot be drawn.

Figure 1. SNAP one-minute dosage output for varicus NPS
stability classes and windspeed categories compared to hourly
averaged concentration transects. Open circles locate the center
of mass. Hash marks correspond to LD1-GD . The model's source
size and lethal dosage levels have been scaled down to match the
experimental release rates. Note that ring scaling occasionally
changes from 1000 to 500 yards. An arrow at the source indicates
true ncrth. The following table gives wind speed and class for

each figure.

FIGURE NPS/P-G STABILITY CLASS WINDSPEED
1.1 E 3-4 m/s
1.2 | E -5
1.3 D 2-3
1.4 D 3-4
1.5 D 4-5
1.6 D 5-6
1.7 b 6-7
1.8 D 7-6
1.9 D 8-9
1.10 D over 9
1.11 c 4-5
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Fig. 1.1
CHEMICAL WEAPON HAZARD FORECAST PROGRAM = SNAP XX.X
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Fig. 1.2
CHEMICAL WEAPON HAZARD FORECAST PROGRAM = SNAP XX.X
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Fig. 1.3
CHEMICAL WEAPON HAZARD FORECAST PROGRAM - SNAP XX, X
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Fig. 1.4
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Fig. 1.5

CHEMICAL WEAPON HAZARD FORECAST PROGRAM - SNAP XX,X
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Fig. 1.6
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Fig. 1.7
CHEMICAL WEAPON HAZARD FORECAST PROGRAM ~ SNAP XX X
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CHEMICAL WEAPON HAZARD FORECAST PROGRAM = SNAP XX, X

Fig. 1.8
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Fig. 1.9
CHEMICAL WEAPON HAZARD FORECAST PROGRAM = SNAP XX.X
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Fig. 1.10

CHEMICAL WEAPON HAZARD FORECAST PROGRAM = SNAP XX,X
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Fig. 1.12
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Examination of these plots immediately shows that the cloud
does nont consistently follow the mean flow, even with one hour ;;
averaging. Variation of the actual c¢loud size 1s quite large,
typically ranging from 1/3 to 3 times the predicted size. These
two facts tend to suggest that the predicted cloud size is 4 g
underpredicted by CWH for a one~-hour average of one-minute
dosages (recall that CWH is predicting one-minute dosag. of a
single puff). It is obvious that meander effects (the scatter o
about the mean wind direction) should be included for a one-hcur
prediction.
CWH mathematically adjusts the puff "footprint" proporticon-
ally to ln{wind 9peed"). Examination of the wind speed
categories, particularily class D, suggests that the actual
footprint is affected by wind speed changes in a much more ;
dramatic fashion., Most abnormally wide transects are associated i
with lower wind speed while the highest wind speed category
exclusively contains transects narrower than the average. -
This may be explained by the dependence of tne surface
roughness on wind speed over wat>r, Roughness, and dispersion,
will increcase with increasing wind speed. As an example of how
thie may be {important, consider class D, C(Class D, neutral, can
result from either high wind speed or low air-sea temperature
difference, Thus using a single class, with no explicit
wind speed dependence, can not be adequate to describe diffusion.
In addition, the effects of meander are damped with {ncreasing

wind speed. These effects suggest tnat the Pasquill-Gifford
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stability classes do not sufficiently explain overwater

dispersion and nesd refinement,

One obvious feature of most of the plots is the general
tendency for the cloud tc veer to the right with increasing range.
This is a distinct characteristic of the sea~breeze regime, the
dominant meso-sdale synoptic situation during the tracer experi-
ments. The mean wind was recorded at the release site, typically
several miles offshore. As the sea breeze approaches the shore-
line and the convergence zone, acceleration due to the pressure
gradient decreases. The Coriolis force becomes more influential,

"pulling" the flow to the right.
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IV. COMPARISON TQO PSEUDO-INSTANTANEOUS CONCENTRATION PROFILES

The primary goal of CWH, as stated earlier, is to predict
total dosage realized over a one-minute period. Using one-hour
average sigma formulae, as is presently implemented in CWH, will
predict the ave;age one-mrinute dosage experienced by releasing a
statistically large number of puffs over a one-hour periéd. If
the goal is to predict the impact of a singie released puff, one-
hour average sigma formulae will predict a wider and shorter
region of impact than should be expected. This can be a ccnserv-
ative approach, from the user's point of view, in determining how
far off the downwind axis is "safe", but dangerous when deter-
mining how far down the centerline axis is "safe". This vill be
explained more fully at the end of this section.

To examine the actual behavior of a single puff, a pseudo-
instantaneous puff data set has been compiled. This set was
produced by recombining the individual transects through the
piume. The center of each transect was superimposed and new
hourly averages formed. Such an average gives the "typical"
cross~-wind concentration dependence for a puff for that hour.
Processing the data in this way removes meander from the results,
so that the sigma-y produced contains only relative diffusion
about the puff center of mass.

There are two assumptions made in this data analysis. Note
that the data are obtained from measurements made during
transects through a continucus plume, not a burst release. We

assume that lateral and longitudinal dispersion are independent
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when using a plume to simulate a burst. We further assume that
the sizes of the plume and burst are approximately the same so
that they would respond in the same way to the turbulence.

The results are shown in Figures 2.1-2.9. The size and
placement of each "puff" is indicative of an individual puff.
While these data.are somewhat a function of averaging time, the
individual profiles were measured over a short enough period of
time so that, in most cases, the variance between individual
transect's sigmas was small compared to the average size of the
plume cross section (the pseudo-instantaneous cross section).

Examination of the figures reveals that the individual puff
widths are almost exclusively less than or equal to the model
prediction., This is convenient, in that the hourly average sigma
values define the upper limit of puff growth for this data set.
In addition, the area enveloped by CWH isopleths appear to be
more representative of the scatter of puff profiles due to
off-axis deviations of the centers of mass. This suggests that
the "danger zone" predicted by CWH is representative of the total
possible area of coverage by a burst rather than the area covered
by a single burst.

In order to correctly interpret these results, it is
important to recognize that the CWH model conserves mass. This
means trat, if it predicts too wide a hazard corridor, it must
also predict too short a range for the hazard. This is almost a
"conservation of area covered" principle. Comparison of the
model predictions and the data shows that fhis is the way CWH

behaves.
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The data set used for these comparisons is not sufficiently
large to enable separation of the relative diffusion about the
center of mass and the meander, which would allow a true "scatter

envelope" to be determined.

Figure 2. Same as Figure 1. except CWH output vs. pseudo-
instantaneous averaged profiles. Note that this data set is
significantly smalier than the hourly averaged data set (Figure
1). The following table gives windspeed and class for each
figure.

FIGURE NPS/P-G STABILITY CLASS WINDSPEED
2.1 E 3-4
2.2 D 2-3
2.3 D 3-4
2.4 D 4-5
2.5 D 5-6
2.6 D 6-17
2.7 D 7-8
2.8 D 8-9
2.9 D 9+
26
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Fig. 2.2
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Fig. 2.4
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Fig. 2.6

CHEMICAL WEAPON HAZARD FORECAST PROGRAM - SNAP XX, X
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Fig. 2.7
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Fig, 2.8

CHEMICAL WEAPON HAZARD FORECAST PROGRAM - SNAP XX,X
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Fig. 2.9
CHEMICAL WEAPON HAZARD FORECAST PROGRAM - SNAP XX.X
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V. COMPARISON OF THE NPS SIGMA-PARAMETERIZATION .. AN

INDEPENDENT DATA SET

This report and the findings of many other investigators
have demonstrated ‘that Gaussian-type dispersion model results are
heavily influehcéd by the choice of sigma-y and sigma-z values,
Measured values have been shown to fluctuate radically. and are
dependent upon numerous independent variables (see Hanna, et al.
1977). BSecause of this complexity, these investigators (NPS
included) inevitably choose to preaict sigma via semi-empirical
methods. A group of "important" variables are selected, and
curve-fitting ensues. 1ilecause this approach is based on
correlation, and not physical cause-effec¢t relotionships,
experimental "evidence" should always be required to substantiate
results.

To verify the NPS parameterization, the results of a tracer
experiment conducted by the German Military Geophysical Office
(GMCO) in the North Sea were obtained. (See Groll, et al. 1683).
This experiment was performed about 80 km NW of Helgoland, far
removed from possible shoreline effects. Sigma formulae
presented in this sectior are based on continuous releases of SFé6
gas., Techniques were similar to those used by NPS. |

The stability c¢class parameterization scheme selected by GCMGO
was based on the same two key variables used in the NPS scheme;
mean wind speed and air-sea temperature difference. NPS also

used relative humidity, but its affect on stability {s minor.
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The GMGO class boundaries were chosen empirically s¢ that sigma
curves would present marked differences. The stability classes
are therefore unique, and will not coincide witﬁ the
NPS/Pasquill-Gifford categories. Some conclusions can be made by
interpolation, and noting that the selected independent variables
are similar. Tﬂe neutral classes, centered about negligible
air-sea temperaturc difference or due to high wind speed, should
theoretically be ide ical.

Arother problem in comparing the NPS results to the GMGO
results was the averaging time. NPS performed one-hour averages
in contrast to the two hour period used by the German
investigators. This difference should be significant in the
sigma-y results, where meander effects are strongly a function of
averaging time. Sigma-z, on the other hand, should not be
affected by different averaging times for a sampling period
larger than a few minutes.

GMGO calculates fwo separate horizontal parameters; one
accounting for meander effects, and another affected only by
dispersion relative to the plume centerline (the instantaneous,
or puff, sigma-y of the previous section). The two-hour average
results presented represent the combined effects of both
parameters. At the time of this report, NPS has not converted
its instantaneous data set into analytical formulae, so it is not

possible to compare NPS and GMGO instantaneous results,
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The basic equation used in CWH for the sigma parameteri-

zation, a form of which was given in Equ 6, is

0(X) = Operf (;f'-)

where o(x)

Oref

Xpef

Qa

* (8)
ef

is either oy(x) or oz(x)

is a constant defining the cloud size at the
range Xpef

100 m

is an empirical constant

Note that the reference terms can be combined into one

constant. The NPS and GMGO constant values used for this compar-

ison are given in the following table.
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DATA

NPS
1 hr.
average

GMGO
2 hr.
average

GMGO

STABILITY*

(@]

2a
2b
6a

6b

2

"instantaneous" 4

6

SIGMA-Y
a Opref
.70 20.0
.69 15.1
.65 16.1
T 39.8
.7 27.8
7 27.0
.7 9.7
T 8.1
7 6.8

SIGMA

.70
.65

.62

* NPS classes are Pasquill-Gifford equivalent.

GMGO classes are 2:

where

AT

4

6:

a.

b:

(aT/U)2 = [-.3,

-.15]

" = [-.01, .01]

" = [‘15’

.3]

wind speed < 10 kts

wind speed 2>

10 kts

is air-sea temperature difference (K)

is mean wind speed (m/s)
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SIGMA-Y (M)
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Figure 3.1. Sigma-y vs. range for the Naval Postgraduate School
l-hour average scheme and the German Military Geophysical Office 2-hour
average scheme. The GMGO class 2 and NPS class € are unstable data,
while the GMGO class 6 and NPS class E are stable. NPS class D is
neutral stability. GMGO class 4 representing neutral conditions was
roughly in between the class 2 and 6 curves. Subscript "a" refers to

low wind speeds, while "b" references high speeds.
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Figure 3.2. Sigma-y vs. range comparison between the NPS l-hour
average scheme and the GMGO "instantaneous'" data set (representing

dispersion from the center of mass).
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not be considered as "matched pairs".
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Figure 3.1 compares the GMGO 2-hour average sigma-y to the
NPS 1-hour averages. Figure 3.2 compares the GMGO instantaneous
values to those same NPS 1-hour averages. The figures show the
NPS curves to lie, as expected between the GMGO 2~hour
and instantaneous curves.

The first conclusion one can draw from the figures i{is that
meander dominates the results. This can be seen from the large
differences in the results for the various averaging times:
instantaneous, one-hour, and two-hour. All of the sigma-y curves
are bounded by the GMGO two-hour, 2a curve on one side and the
GMGO instantaneous, 6 on the other.

Figure 3.1 shows the importance of the GMGO wind speed
subclass. Classes 2a and 6a, and also 2b and 6b, lie almost on
top of each other, while the a and b curves show large
differences in their behavior. Recall from the table that
subclass a {8 for wind speed less than 10 kts while b is for 10
kts and greater. This result is not conclusive since wind speed
is one parameter needed to determine stability and cannot be
treated as a completely {ndespendent parameter. However, the
results do indicate that including wind speed only in the
stability calculation probably does not sufficiently account for
the dependence on this parameter, This may be due to the strong
wind speed dependence of meander. The GMGO instantaneous results
presented in Figure 3.2 are essentially meander independent and
do not show the strong wind speed dependence.

One would expect that the GCMGO and NPS neutral classes would

show the same behavior. The flgures show that this is not the
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case. (Note that the neutral GMGO case is not shown in Figure
3.1 in order to reduce clutter on the graph. The results fall
between those for c¢lasses 2 and 6.) This is not of much concern
since the two analyses are not directly comparable because of the
different averaging times, class definitions, etec.

Figure 4 shows the comparison of sigma-z values. It is
apparent that the GMGO values are somewhat larger than the NPS,
but the agreement is generally better than for sigma-y. The most
significant fact is that a stability classification scheme
accounts for the variability in vertical diffusion much better
than it does for horizontal, cross wind diffusion. This is due
to the fact that meander does not contribute to vertical
diffusion.

No in~-depth analysis of the comparison of NPS and GMGO
results has been undertaken. The purpose of this comparison is
only to show verification &or lack of verification) of the CWH
model predictiona. NPS preliminarily concludes that the
empirical methods for determining dispersion are similar, but do
not sufficiently agree to conclude that either parameterization
fully explains dispersion. Uncertainties could be calculated and
errors estimated, but adding such estimates to the already
empirical formulae would give confusing and difficult to
interpret results. In order to proceed further 4ith the
comparison {t would be necessary to reanalyse one of the data

sets based on the classification scheme used for the other.
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CONCLUSIONS

Comparison of SNAP's Chemical Weapons Hazard Program to the
one~hour average plume dispersion data used in its parameteri-
zation has shown the model is operating as expected. When drift
of the c¢loud (dde to meander) is included, the region of impact
is shown to dramatically increase,

In its present form, CWH appears to be predicting a hazard
"envelope" that is reasonable when examining a possible puff
event, taking meander effects into consideration. The downwind
axis ranges predicted by CWH to be hazardous are undoubtedly
underestimated, since the range-dependent sigma-y values are
approximatel& the upper limit of the pseudo-instantaneous puffl
widths.

The NPS sigma formulae are reasonably close to the results
of an independent tracer experimen’ .llowing CWH to be con-
sidered as a site-independent model. The comparison does point
out some differences, however, and future research should examine
refinement of stability parameterization schemes. It {s becoming
apparent that stability is a good parameter for predicting
vertical diffusion but is not sufficient for horizontal diffusion.

To improve sigma parameterizations, and ultimately CWH's
usefullness to SNAP, meander effects must be directly addressed.
This could mean a different "concept”™ in the prediction of hazard
regions 13 needed. The problem can be divided into two

predictions; one predicting the characteristics of a single quf

in {ts center of mass coordinate system, and a second predicting
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the probablistic characteristics of the puff's downwind
trajectory.

CWH 1s a single parameter diffusion model: It assumes that
the hazard moves in the downwind direction and uses puff/plume
width to predict the width of the hazardous corridor. This type
of model works well for continuous plumes and long averaging time.
It will also work for burst releases if the prediction required
is the total area over which a hazard might occur. In that case,
as has been stated above, the downwind hazard distance has been
underestimated. This could be corrected by using the puff
relative diffusion width to determine the distance,

The problem with this "patchwork" approach is that it lumps
together two entirely different concepts. One is that the spread
of the puff about its :enter of mass reduces its lethality. The
second concept 1is that the puff may or may not pass over a given
location. It is important at this state of the CWH model devel-
opment to b2 able to correctly predict both effects. Exactly how
the results will be used depends on user needs, and it may be
that more than one type of CWH display 1is needed. In any event,
an investigation of meander should be undertaken so that the
probability distribution function for the puff center of mass

location will be known.
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