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Indeed, you can build a machine to draw demonstrative conclusions for you, but 1
tAink you can never build a machine that wiil draw plausible inferences.

~= Polya

L1 ract of thi 1

——XA program, called "AM", is described which models one aspect of elementary mathematics

research: developing new concepts under the guidance of a large body of heuristic rules.
"Mathematics” is considered a: a type of intzlligent behavior, not as a finished product.

The local heuristics communicate via an agenda mechanism, a global list of tasks for the
system to perform and reasons why each task is plausible. A single task might direct AM to
define a new concept, or to explore some facet of an existing concept, or to examine some
empirical data for regularities, etc. Repeatedly, the program selects from the agenda the
task having the best supporting reasons, and then executes it.

Each concept is an active, structured knowleige module. A hundred very incomplate
modules are initially provided, each one corresponding to an elementary set-theoretic
concept (eg., union). This provides a definite but immense "space™ which AM begins to
explwe. AM extends its knowledge base, ultimately rediscovering hundreds of common
concepts (e.g., numbers) and theorems (e.g., unique factorization).

This approach to plausible inference contains great powers and great limitations.
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Chapter | AM: Discovery in Mathematics ss Heuristic Search -2-

1,2, Five-page Summary of the Project

Scientists often face the difficult task of formulating nontrivial research problems which are
solvable. In any given branch of science, it is usually easier to tackle a specific given
problem than to propose interesting yet managable new questions to investigate. For
example, contrast solving the Missionaries and Cannibals problem with the more jli-defined
reasoning which led to inventing it.

This thesis is concerned with creative theory formation in maiitematics: how to propose
interesting new concepts and plausible hypotheses connecting them. The experimental

vehicle of my research is a cumputer program called AM' Initially, AM is given the
definitions of 115 simple set-theoretic concepts (like "Delete”, "Equality”). Each concept is
represented internally as a data structure with a couple dozen slots or facets (iike
"Definition”, "Examples”, "Worth"). Initially, most facets of most concepts are blank, anu
AM uses a collection of 250 heuristics — plausible rules of thumb — for guidance, as it tries
to fiil in those blanks. Some heuristics are used to select which specific facet of which specific
concept to explore next, while others are used to actually find some appropriate information
about the chosen facet. Other rules prompt AM to notice simple relationships between

known concepts, to define promising new concepts to investigate, and to estitnate how
interesting each concept is.

1.2.1. Detour: Analysis of a discovery

Before discussing how to synthesize a new theory, consider briefly how to analyze one, how
to construct a plausible chain of reasoning which terminates in a given discovery. One can
do this by working backwards, by reducing the creative act to simpler and simpler creative
acts. For example, consider the concept of prime numbers. How might one bs led to define
such a notion? Notice the following plausible strategy:

“it f is a function which transforms elements of A into elements of B, and
B is ordered, then corsider just those members of A which are
transformed info extremal elemenis of B. This set is en interesting subset
of A"

When f(x) means "divisors of x", and the crdering is "by length®, this heuristic says to

consider those numbers which have a mimal?® number of factors — that is, the primes. So
this rule actually reduces our task frcm "proposing the concept of prime numbers” to the
more elementary problems of "discovering ordering-by-length” and “inventing divisors.of".

But suppose we know this general rule: "if  is an interesting function, consider its inverse.” It

! The original masning of this mnemonic has been sbandoned. As Exodus states: | AM that | AM

2 The other extreme, numbers with 8 MAXIMAL number of factors, wss slso proposed by AM ss worth investigating. This led
, AM to meny inters :ting questions. See Appendix 4.
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Chapter 1 AM: Discovary in Mathamatics as Heuristic Search -3-
reduces the task of discovering divisors-of to the simpler task of discovering multiplication®, ‘—
Eventually, this task reduces to the discovery of very basic notions, like substitution, set- &
union, and equality. To explain how a given researcher might have made a given .
discovery, such an analysis is continued until that inductive task is reduced to "discovering” .
notions which the researcher already knew, which were his conceptual primitives. §
1.2.2. What AM does: Syntheses of discoveries %
This leads to the paradox that the more original a discovery the more obvious it ]
seems afterwards. T he creative act is not an act of creation in the sense of the g

Old Testament. It does not create something out of nothing; it uncovers, selects, =
re-shuffles, combines, synthesizes already existing facts, faculties, skills. The more E-
Sfamiliar the parts, the more striking the new whole. i

L

== Koestler

Suppose a large collection of these heuristic strategies has been assembled (e.g., by analyzing
a great many discoveries, and writing down new heuristic rules whenever necessary).
Instead of using them to explain how a given idea mlght have evolved, one can imagine
starting from a basic core of knowledge and "running” the heuristics to generate new
concepts. We're talking about reversing the process described in the last section: not how to
explain discoveries, but how to make them.

AN S NN il WA

Such syntheses are precisely what AM does. The program consists of a large corpus of
E: primitive mathematical concepts, each with a few associated heuristics®. AM’s activities all iy
serve to expand AM itsclf, to enlarge upon a given body of mathematical knowledge. To =]
- cope with the enormity of the potential "search space” invoived, AM uses its heuristics as N
: Jjudgmental criteria to guide development in the most promising direction. It appears that _7
i the process of inventing worthwhile new® concepts can be guided successfully using a s
. collection of a few hundred such heuristics. ;
2 Each concept is represented as a frame-like data structure with 25 different facets or slots. C:
The types of facets include: Examples, Definitions, Generalizations, Dc azin/Range, Analogies, B
E—‘, Interestingness, and many others. Modular representaticn of concepts provides & convenient "
5 scheme for organizing the heuristics; for example, the following strategy fits into the "
Examples facet of the Predicate concept: "If, empirically, 10 times as many elements fail some s
s predicate P, as satisfy it, then some generalization (weakened version) of P might be more S
;I;", interesting thun P". AM considers this suggestion after trviag to fill in examples of each
E;‘_‘ 3 Plus noticing that multiplication is associative and commutative '
£ 4 Srtustion/action rules which function e local "pleusible move gensrators™ Some suzgest taske for the system to carry 5
. out, some suggest ways of satisfying 8 given task, etc
- ¥ Typically, "new" mesns new to AM, not to Msnkind; and "worthwhile” can only be judged in hindsight. -
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Chapter | AM: Ducovery in Mathematics as Heuristic Search -4-

predicate®,

AM is initially given a collection of 115 cote concepts, with only a few facets filled in for
each. Its sole activity is to choose some facet of some concept, and fill in that particular slot.
In so doing, new notions will often emerge. Uninteresting ones are forgotten, mildly
interesting ones are kept as parts of one facet of one concept, and very interesting ones are
granted full concept-module status. Each of these new modules has dozens of blank slots,
hence the space of possible actions (blank facets to fill in) grows rapidly. The same
heuristics are used both to suggest new directions for investigation, and to limit attention:
both to sprout and to prune.

1.2.3. Results

The particular mathematical domains in which AM operates depend upon the choice of
initial concepts. Currently, AM begins with nothing but a scanty knowledge of concepts
which Piaget might describe as prenumerical: Sets, substitution, operations, equality, and so
on. In particular, AM is not told anything about proof, single-valued functions, or
numbers.

From this primitive basis, AM quickly discovered’ elementary numerica! concepts
(corresponding to those we refer to as natural numbers, multiplication, factors, and primes)
and wandered around in the domain of elementary number theory. AM was not designed
to prove anything, but it did conjecture many well-known relationships (e.g., the unique
factorization theorem).

AM was not able to discover any "new-to-Mankind”™ mathematics purely on its own, but Aas
discovered several interesting notions hitherto unknown to the author. A couple bits of new
mathematics have been inspired by AM2Z A synergetic AM—human combination can
sometimes produce better research than either could alone.® Although most of the concepts
AM proposed and developed were already very well known, AM defined some of them in
novel ways (eg., prime pairs were defined by restricting addition to primes; that is, for

which primes p,q,r is it possible that psq=r??).

Everything that AM does can be viewed as testing the underlying body of heuristic rules.
Gradually, this knowledge becomes better organized, its implications clearer. The resultant
body of detailed heuristics may be the germ of a more efficient programme for educating

6 In foct, sfter AM asttempts to find examples of SET-EQUALITY, so few are found that AM decides to generalize that
predicste. The result is the creation of s new predicate which means "Has-the-same-length-a¢" -- i, o
rudimentary precursor to natursl numbers.

Y "Discovering” a concept means that (1) AM recognized it ss » distinguished entity (s g, by formulating its definition) and
#slso (2) AM decided it was worth investigating (sither becsuse of the interesting way it was formed, or
becsuse of surprising preliminary empirical results)

s This is supported by Gelernter's experiences with his geometry program' White lecturing sbout how it might prove @
certain theorem sbout isosceles triangles, he came up with s new, cute proof. Similarly, Guard and Eastman
noticed an intermediate result of their SAM resolution theorem prover, and wisely interpreted it as o
nontrivisl result in Iattice theory (now known as SAM's lemma).

’ The answer is thet either p or q must be 2, and thet the other two primes are & prime pair -- ie,, they differ by iwo.
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Chapter | AM: Discovary in Mathematics as Heuristic Search 5

math students than the current dogma'®

Another benefit of actually constructing AM is that of experimentation: one can vary the
concepts AM starts with, vary the heuristics available, etc, and study the effects on AM’s
behavior. Several such experiments were performed. One involved adding a couple dozen
new concepts from an entirely new domain: plane geometry. AM busied itself exploring
elementary geometric concepts, and was almost as productive there as in its original domain.
New concepts were defined, and new con jectures formulated. Other experiments indicated
that AM was more robust than anticipated; it withstood many kinds of "de-tuning”. Others
demonstrated the tremendous impact that a few key concepts (e.g., Equality) had on AM’s
behavior. Several more experiments and extensions have been planned for the future.

1.2.4. Motivation [optional

We need a super-mathematics in which the operations are as unknown as the
quantities they operate on, and a super-mathematician, who does not know what
he is doing when he performs these operations.

== Eddington

Although the motivation {or carrying out this research of course preceded the effort, I have
delayed until this section a discussion of why this is worthwhile, why it was attempted.

First there was the inherent interest of getting a handle on scientific creativity. AM is partly
a demonstration that some aspects of creative theory formation can be demystified, can be
modelled as simple rule-governed behavior.

Related to this is the potential for learning from AM more about the processes of concept
formation. This was touched on previously, and several experiments already performed on
AM will be detailed fater.

Third, AM itself may grow into something of pragmatic value. Perhaps it will become a
useful tool for mathematicians, for educators, or as a model for similar systems in more
"practical” fields. Perhaps in the future we scientisis will be able to rely on automated
assistants to carry out the "hack” phases of research, the tiresome legwork necessary for
"secondary” creativity.

Historically, the domain of AM came from a search for a scientific field whose activities had
no specific goal, and in which natural language abilities were unnecessary. This was to test
out the BEINGs [Lenat 75b) ideas for a modular representation of knowledge.

10 Currently, an educator tahas the very best work sny mathematician has ever done, polishes it until its brilsnce is
blinding, then presents it to the student to induce upon. Many individuals (eg., Knuth and Polya) have
pointed out this blunder. A few (ag., Papert at MIT, Adams st Stanford) are experimenting with more
reslistic strategies for "teaching” creativity. See the ufouncu by these suthors in the bibliography.
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Chapter | AM: Discavery in Mathematics as Heuristic Search -6-

It would be unfair not to mention the usual bad reasons for this research: the "Look ma, no
hands” syndrome, the A researcher’s classic maternal urges, ego, the usual thesis drives, etc.

1.2.£. Conclusions

AM is forced to judge a priori the value of each new concept, to lose interest quickly in
concepts which aren’t going to develop into anything. Often, such judgments can only be
based on hindsight. For similar reasons, AM has difficulty formulating new heuristics
which are relevant to the new concepts it creates. Heuristics are often merely compiled
hindsight. While AM's "approach” to empirical research may be used in other scientific
domains, the main limitation (reliance on hindsight) will probably recur. This prevents
AM from progressing indefinitely far on its own.

This ultimate limitation was reached. AM’s performace degraded more and more as it
progressed further away from its initial base of concepts. Nevertheless, AM demonstrated
that selected aspects of creative discovery in elementary mathematics could be adequately
represented as a heuristic search process. Actually constructing a computer model of this
activity has provided an experimental vehicle for studying the dynamics of plausible
empirical inference.

1.3, Ways of viewing AM as some common process

This section will provide a few metaphors: some hints for squeezing AM into paradigms
with which the reader might be familiar. ~ar example, the existence of heuristics in AM is
functionally the same as the presence of domain-specific information in any knowledge-
based system.

Consider assumptions, axioms, definitions, and theorems to be syntactic rules for the
language that we call Mathematics. Thus theorem-proving, and the whole of textbook
mathematics, is a purely syntactic process. Then the heuristic rules used by a
mathematician (and by AM) would correspond to the semantic knowledge associated with
these more formal methods.

Just as one can upgrade natural-language-understanding by incorporating semantic
knowledge, so AM is only as successful as the heuristics it knows.

Four more ways of "viewing” AM as something else will be provided: (i) AM as a hill-
climber, (ii) AM as a heuristic search program, (iii) AM as a mathematician, and (iv) AM
as a thesis.

1.3.1. AM as Hill-climbing

Let's draw an analogy between the process of developing new mathematics and the familiar
process of hill-climbing. We may visualize AM as exploring a space using a measuring or
evaluation” function which imparts to it a topography.
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Consider AM’s core of very simple knowledge. By compounding its known concepts and
methods, AM can explore beyond the frontier of this foundation a little wherever it wishes.
The incredible variety of alternatives to investigate includes all known mathematics, much
trivia, countless deadends, and so on. The only "successful” paths near the core are the
narrow ridges of known mathematics (plus perhaps a few as-yet-undiscovered isolated
peaks).

How can AM walk through this immense space, with any hope of following the few, slender :
trails of already-established mathematics (or some equally successful new fields)) AM must
do hill-climbing: As new concepts are formed, decide how promising they are, and always
explore the currently most-promising new concept. The evaluation function is quite
nontrivial, and this thesis may be viewed as an attempt to study and explain and duplicate

the judgmental criteria people employ. Preliminary attempts'' at codifying such ‘
"mysterious" emotive forces as intuition, aesthetics, utility, richness, interestingness,
relevance.. indicated that a large but not unmanageable collection of heuristic rules should
suffice.

The important visualization to make is that with proper evaluation criteria, AM’s planar
mass of interrelated concepts is transformed into a three-dimensional relief map: the knowr
lines of development become mountain ranges, soaring above the vast flat plains of trivia
and inconsistency below.

Occasionally an isolated hill is discovered near the core;'? certainly whole ranges lie

undiscovered for long periods of time'3, and the terrrain far from the initial core is not yet
explored at all.

ey g g gy cy  w  m m ek ey rwe i s s g

1.3.2. AM as Heuristic Search

As the title of this section — and this thesis — proclaims, AM is a kind of “heuristic search”
program. That must mean that AM is exploring a particular “space,” using some informatl
evaluation criteria to guide it. i

g m e mn wam

The flavor of search which is used here is that of progressively enlarging a tree. Certain
"evaluation-function” heuristics are used to decide which node of the tree to expand next,
and other guiding rules are then used to produce from that node a few interesting successor
nodes. To do mathematical research well, I claim that it is necessary and sufficent to have
good methods for proposing new concepts from existing ones, and for deciding how
interesting each "node” (partially-studied concept) is.

e ¥ v =

e e

AM is initially supplied with a few facts about some simple math concepts. AM then

.

n Thesa took the form of informal simulations. Although far from controlied sxperiments, they indicated the feasability of
sttempting to create AM, by yielding an spproximete figure for the amount of informal knowledge such &
system would need

12 ¢ ¢, Conway's rumbars, s3 described in [Knuth 74]
13 E g, non-Euclidean geometries weren't thought of until 1848
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Chapter | AM: Discovery in Msthematics as Heuristic Search -8-

explores mathematics by selectively enlarging that basis. One could say that AM consists of
an active body of mathematical concepts, plus enough "wisdom” to use and develop them
effectively. For "wisdom", read “"heuristics”. Loosely speaking, then, AM is a heuristic search
program. To see this more clearly, we must explain what the nodes of AM’s search space
are, what the successor operators or links are, and what the evaluation function is.

AM'’s space can be considered to consist of all nodes which are consistent, partially-filled-in
concepts. Then a primitive "legal move" for AM would be to (i) enlarge some facet of some
concept, or (ii) create a new, partially-complete concept. Consider momentarily the size of
this space. If there were no constraint on what the new concepts can ve, and no informal
knowledge for quickly finding entries for a desired facet, a blind "legal-move” program
would go nowhere ~ slowly! One shouldn’t even call the activity such a program would be
doing "math research.”

The heuristic rules are used as little "plausible move generators”. They suggest wnich facet
of which concept to enlarge next, and they suggest specific new concepts to create. The only
activities which AM will consider doing are those which have been motivated for some

specific good'? reason. A global agenda of tasks is maintained, listing all the activities
suggested but not yet worked on.

AM has a definite algorithm for rating the nodes of its space. Many heuristics exist merely
to estimate the worth of any given concept. Other heuristics use these worth ratings to

order the tasks on the global agenda list. Yet AM has no specific goal criteria: it can never

"halt”, never succeed or fail in any absolute sense. AM goes on forever'S,

Consider Nilsson’s descriptions of depth-first searching and breadth-first searching ([Nilsson
71]). He has us maintain a list of “"open” nodes. Repeatedly, he plucks the top one and
expands it. In the process, some new nodes may be added to the Open list. In the case of
depth-first searching, they are added at the top; the next node to expand is the one most
recently created; the Open-list is being used as a push-down stack. For breadth-first search,
new nodes are added at the bottom; they aren't expanded until all the older nodes have
been; the Open-list is used as a queue. For heuristic search, or "best-first” search, new npodes
are evaluated in some numeric way, and then "merged” into the already-sorted list of Open
nodes.

This process is very similar to the agenda mechanism AM uses to manage its search. This
will be discussed in detail in Chapter 3. Each entry on the agenda consists of three parts:
(i) a plausible task for AM to do, (ii) a list of reasons supporting that task, and (iii) a
numeric estimate of the overall priority this task should have. When a task is suggested for
some reason, it is added to the agenda. A task may be suggested several times, for different
reasons. The global priority value assigned to each task is based on the combined value of
its reasons. The control structure of AM is simply to select the task with the highest
priority, execute it, and select a new one. The agenda mechanism appears to be a very well-
suited data structure for managing a "best-first™ search process.

14 Of courss, AM thinks a reason is "good"” if -- and only if - it was told that by 8 heuristic rule; o those rules had better
be plavsile, prefrrably the ones sctually used by the experts.

15 Technicslly, forsver is sbout 100,000 list cells and s couple cpu hours.
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= Similar control structures were used in LT [Newell, Shaw, & Simon 57), the predictor part 2
i of Dendral [Buchanan et ai 69), SIMULA-67 [Daht 68], and KRL (Bobrow & Winograd o
77). The main difference is that in AM, symbolic reasons are used (albeit in trivial token- -

like ways) to decide whether — and how much — to boost the priority of a task when it is N

suggested again.

[ AT AL

There are several difficulties and anomalies in forcing AM into the heuristic search

creation of new heuristic rules; "Compose” is both a concept and an operation which results

ﬁ paradigm. In a typical heuristic search (e.g., Dendral [Feigenbaum et al 71}, Meta-Dendral 5
N [Buchanan et al 72), most game-playing programs [Samuel 67)), a "search space” is defined N
implicitly by a "legal move generator”. Heuristics are present to constrain that generator so N

Y that only plausible nodes are produced. The second kind of heuristic search, of which AM -
e is an example, contains no "legal move generator”. Instead, AM’s heuristics are used as N
plausible move generators. Those heuristics themselves implicitly define the possible tasks 7

-~ AM might consider, and all such tasks should be plausible one. In the first kind of search, =
.. removing a heuristic widens the search space; in AM’s kind of search, removing a heuristic N
- reduces it. i

v Another anomaly Is that the operators which AM uses to enlarge and explore the space of g
. concepts are themselves mathematical concepts (e.g, some heuristic rules result in the el

0 in new concepts). Thus AM should be viewed as a mass of knowledge which enlarges itself
i repeatedly. Typically, computer programs keep the information they "discover” quite i
separate from the knowledge they use to make discoveries'® Z:'
. Perhaps the greatost difference between AM ard typical heuristic search procedures is that =
AM has no well-defined target concepts or target relationships. Rather, its "goal criterion” — =
. its sole aim — 15 to maximize the interestingness level of the activities it performs, the X
zf.: priority ratings of the top tasks on the agenda. It doesn’t matter precisely which definitions :{
=, or con jectures AM discovers — or misses — so long as it spends its time on plausible tasks. %
There is no fixed set of theorems that AM should discover, so AM is not a typical problem- R\
& solver. There is no fixed set of traps AM should avoid, no small set of legal moves, and no “
E winning/losing behavior, so AM is not a typical game-player. ~
- For example, no stigma is attached to the fact that AM never discovered real numbers'’; it E
. was rather surprising that AM managed to discover natural numbers! Even if it hadn't “
done that, it would have been acceptable'® if AM had simply gone off and developed ideas -
in st theory. )
N L
t:‘ s Of courss this is often becauss the two kinds of knowledge are very different. For a chess-player, the first kind is .E”
o "good board positions,” and the second is "sirategies for making s good move.” Theorem-provers are an W

T

exception. They produce s new theoram, and then use it (simost ke a new operator) in future proofs. A
program to learn to play checkers {Samuel 67] hes this same flavor, thereby indicating that this ‘self-help’
property is not a function of the task domein, nct simply a characteristic of mathematics.

- 17 There are many "nice” things which AM didn't -~ and can't -- do. e g., devising geomstric concepts from its initis! simple
sot-theoretic knowledge. See the discussion of the imitations of AM, Section 7.2.

LA A

- 18 Acceptatie to whom? Is there really a domain-invariant criterion for udgmg the quality of AM's actions? See the “
i discussions in Section 7.1 ",
b &
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1.5.8. AM as a Mathematician |

Before diving into the innards of AM, let's take a moment to discuss the totality of the
mathematics which AM carried vut. Like a contemporary historian summarizing the work
of the Babylonian mathematicians, we shan't hesitate to use current terms and criticize by
current standards.

AM began its investigations with scanty knowledge of a few set-theoretic concepts (sets,
equality of sets, set operations). Most of the obvious set-theory relations (e.g, de Morgan’s
laws) were eventually uncovered; since AM never fully understood abstract algebra, the
statement and verification of each of these was quite obscure. AM never derived a formal
notion of infinity, but it naively established con jectures like "a set can never be a member of
itself”, and procedures for making chains of new sets ("insert a set into itself”). No
sophisticated set theory (e.g., diagonalization) was ever done.

After this initial period of exploration, AM decided that “equality” was worth generalizing,
and thereby discovered the relation "same-size-as”. "Natural numbers” were based on this,
and soon most simple arithmetic operations were defined.

Since addition arose as an analog to union, and multiplication as a repeated substitution

followed by a generalized kind of unioning'? it came as quite a surprise when AM noticed
that they were related (namely, N+N=2xN). AM later re-discovered multiplication in three
other ways: as repeated addition, as the numeric analog of the Cartesian product of sets,

and by studying the cardinality of power sets2%, These operations were defined in different
ways, so it was an unexpected {to AM) discnvery when they all turned out to be equivalent.
These surprises caused AM to give the concept ‘Times' quite a high Worth rating.

Exponentiation was defined as repeated multiplication. Unfortunately, AM never found any
obvious properties of expanentiation, hence lost all interest in it.

Soon after defining multiplication, AM investigated the process of multiplying a number by
itself: squaring. The inverse of this turned out to be interesting, aid led to the definition of
square-root. AM remained content to play around with the concept of integer-square-root.
Although it isolated the set of numbers which had no square root, AM was never close to
discovering rationals, let alone irrationals.

Raising to fourth-powers, and fourth-rooting, were discovered at this time. Perfect squares
and perfect fourth-powers were isolated. Many other numeric operations and kinds of
numbers were isolated: Odds, Evens, Doubling, Halving, etc. Primitive notions of numeric
inequality were defined but AM never even discovered Trichotomy.

The associativity and commutativity of multiplication indicated that it could accept a BAG

19 Take two bags A and B. Replace sach element of A by the bag B. Remove one fevel of parentheses by taking the union of
il slements of the trensfigursd bag A Then thet new bag will have as many elemenis as the product of the
lengths of the two original bags.

2 The size of the set of all subsets of S is 25, Thus the powsr set of AUB has length equs! to tho product of the lengths
of the powsr sets of A and B individually (assuming A and B are disyoint).
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Chapter | AM: Discovery in Mathamatics as Heuristic Search -1t

of numbers as its argument. When AM defined the inverse operation corresponding to
Times, this property allowed the definition to be: "any bag of numbers (>1) whose product is
x". This was just the notion of factoring a number x. Minimally-factorable numbers
turned out to be what we call primes. Maximally-factorable numbers were also thought to

be interesting.

Prime pairs were discovered in a bizarre way: by restricting addition (its arguments and its

values) to Primes2! AM conjectured the fundamental theorem of arithmetic (unique
factorization into primes) and Goldbach’s con jecture (every even number >2 is the sum of
two primes) in a surprisingly symmetric way. The unary representation of numbers gave
way to a representation as a bag of primes (based on unique facisrization), but AM never

thought of exponential notation. 2 Since the key concepts of remainder, greater-than, ged,
and exponentiation were never mastered, progress in nutmber theory was arrested.

When a new base of geometric concepts was added, AM began finding some more general
associations. In place of the strict definitions for the equality of lines, angles, and triangles,
came new definitions of concepts we refer to as Parallel, Equal-measure, Similar, Congruent,
Translation, Rotation, plus many which have no common nare (eg. the relationship of two
triangles sharing a common angle). A cute geometric interpretation of Goldbach's

conjecture was found?, Lacking a geometry "model” (an analogic representation like the
one Gelernter employed), AM was doomed to failure with respect to proposing only
plausible geometric con jectures.

Similar restrictions due to poor "visualization” abilities would crop up in topology. The
concepts of continuity, infinity, and measure would have to be fed to AM before it could
enter the domains of analysis. More and more drastic changes in its initial base would be
required, as the desired domain gets further and further from simple finite set theory and
elementary number theory.

2 That is, consider the set of triples p,q,r, all primes, for which psqer. Then one of them must be "2", and the other two
must therefore form a prime pair.

22 5 tengential note: All of the discoveries mentioned above were made by AM working by itself, with 8 human being
observing its behavior. If the level of sophistication of AM's concepts were higher (or the level of
sophisticstion of its users were lower), then it might be worthwhie to develop s nice user--system
interface. The user in that case could -- and ought to -~ work right slong with AM ss » co-resaarcher.

s Given ol angles of a prime number of degress, (0,1,2,3,5,7,11,.,179 degress), then any angle between O and 180
degrees can be approximated (to within | degres) ss the sum of two of those angles.
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1.3.4. AM as a Thesis [optional]

Walking home along a deserted street late at night, the reader may imagine
himself to feel in the small of Ais back a cold, hard object; and to hear the words
spoken behind him, ‘Easy now. This is a stick-up. Hand over your money.’ W hat
does the reader do? He attempts to generate the utterance. He says to himself,
now if 1 were standing bekind someone holding a cold, hard object against his
back, what would make me say that? What would I mean by it? The reader is
advised tact he can only arrive at the deep structure of this book, and through the
deep structure the semantics, if he attempts to generate the book for himself. The
author wishes him luck.

' i
£

»
- ll,(

S

== Linderholm

Don'’t be scared by the weight of the document you’re now hoiding. If you flip to page 165,
you'll see that the last two-thirds are just appendices.

Each chapter is of roughly equal importance, which explains the huge variation in length.
Start looking over Chapter 2 right away: it contains a detailed example of what AM does.
Since you're reading this sentence now, we'll assume tha: you want a preview of what’s to
come in the rest of this document.

Chapter 3 covers the top-level control structure of the system, which is based around the
notion of an ‘agenda’ of tasks to perform. In Chapter 4 the low-level control structure is
revealed: AM is really guided by a mass of heuristic rules of varying generality. Chapter 5
contains more than you want to know about the representation of knowledge in AM. The
diagram showing some of AM's starting concepts (page 105) is worth a look, even out of
context.

Most of the results of the project are presented in Chapter 6. In addition to simply ‘running’
AM, several experiments have been conducted with it. It’s awkward to evaluate AM, and
therefore Chapter 7 is quite long and detailed.

The appendices provide material which supplements the text. Appendix 2 contains a
description of all the initial concepts, some examples of how they were coded into Lisp, and
a partial list of the concepts AM defined and investigated along the way. Appendix 3
exhibits all 242 heuristics that AM is explicitly provided with. Appendix 4 is essentially a
math article, about the major discovery that AM motivated: rmaximally-divisible numbers.
Finally, Appendix 5 contains traces of AM in action: a long prose description, a long task-
by-task description, and a long undoctored transcript excerpt. Appendix 1 hasn’t been
mentioned yet, and forms the sub ject of the remainder of this section.

This thesis — and its readers — must come to grips with a very interdisciplinary problem.
For the reader whose background is in Artificial Intelligence, most of the system’s actions —
the "mathematics” it does — may seem inherently uninteresting. For the mathematician, the
word "LISP" signifies nothing beyond a speech impediment (to Artificial Intelligence types it

.............
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also connotes a programming impediment). If 1 don’t describe "LISP" the first time 1
mention it, 2 large fraction of potential readers will never realize that potential. If I do stcp
to describe LISP, the other readers will be bored.

- o

A
M
s

te

In an attempt not to lose readers due to jargon, two glossaries of terms have been compiled.
Appendix L1 (p. 165) contains capsule descriptions of the mathematical terms, ideas, and
notations used in this thesis. Appendix 1.2 renders the analogous service for . rtificial
Intelligence jargon and computer science concepts.
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N Chapter 2. An Example: Discovering Prime Numbers
e

R

This chapter will present an example of AM in action, an excerpt from the output of AM,

- as it investigates scme concepts.

After a brief discussion of AM's control structure in Section 2.1, the reader will be told

- what the point of this example is — and is not. Section 2.3 provides a few eleventh-hour
n hints at decoding the example.
A The excerpt itself follows in Sectior: 2.4. It skips the first half of the session, and picks up
o at a point just after AM has defined the concept "Divisors-of”. Soon afterward, AM defines
) Primes, and begins to find interesting con jectures related to them. The excerpt goes on to
o show how AM conjectured the fundamental theorem of arithmetic and Goldbach’s
o conjecture. AM derived the notion of partitioning a collection of n objects into smaller
bundles, but failed to find any interesting con jectures about that process. Instead, AM was
side-tracked into the (probably) fruitless investigation of numbaers which can be represented
; as the sum of two primes in one unique way.

The final section of this chapter will recap this example the way a math historian might
o report it.

2.1, Discussion of the AM Program

2.1.1. Representation

- AM is a program which expands a knowledge base of mathematical concepts. Each concept
is stored as a particular kind of data structure, namely as a collection of properties or

A “facets” of the concept. For example, here is a miniature example of a concept':

0

! The roght arrow {"+") in the box on the next page is the symbol for “implies”. "Nos." is an abbraviation for "Numbers®. Tho
" veartical bar "|” i o symbol for the predizate “divides evenly into™; the hook "+" is a symbol for the predicate
> “the negation of". "®" indicates exclusive o7, and the symbol “V" is read "for all". Please consult the
&4 glossery, Appendix 1.1, for fuller discussion of these, plus other math terms like "Prime pairs”.
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i::
NAME: Prime Numbers
UEFINITIONS: v
ORIGIN: Number-of-divisors-of(x) s 2
PREDICATE-CALCULUS: Prime(x) = (Vz)(zix = 21 @ 2=x) ~—
ITERATIVE: (for x>1): For i from 2 to Sqri(x), ~(ilx) P“
EXAMPLES: 2, 3, 5,7, 11, 13, 17 ~
BOUNDARY: 2, 3 3¢
BOUNDARY-FAILURES: 0, | i
FAILURES: 12 -
?{:f
GENERALIZATIONS: Nos., Nos. with an even nc. of divisors, Nos. with a prime no. of divisors
SPECIALIZATIONS: Odd Primes, Prime Pairs, Prime Uniquely-addables : «;j::‘
COMJECS: Unique factorization, Goldbach's conjeciure, Extremes of Number-of-divisors-of
i~
INTU'S: 4 metaphor to the effect that Primes are the building blocks of all numbers E:,
ANA! CGIES: w3
Maximally=-divisible numbers are converse extremes of Number=-of-divisors-of ;:J
Factor & ncn=simple group into simple groups
INTEREST: Conjecturas tying Primes to TIMES, to Divisors~of, to closely related operations Y,
i
WORTH: 800
w2
5
"Creating a new concept” is a well-defined activity: it involves setting up a new data A
structure like the one above, and filing in entries for some of its facets or slots. Filling in a &
particular facet of a particular concept is also quite well-defined, and is accomplished by
executing a collection of relevant heuristic rules. This proces: will be described in great b
detail in later chapters. e
N 2.1.2. Agenda and Heuristics "
4 An agenda of plausible tasks is maintained by AM. A typical task is "Fill-in examples of -
Primes”. The agenda may contain hundreds of entries such as this one. AM repeatedly i
selects the top task from the agenda and tries to carry it out. This is the whole control o
4 structure! Of course, we must still explain how AM creates plausible new tasks to place on
. the 2genda, how AM decides which task will be the best one to execute next, and how it "
,i carries out a task. i
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p If the task is "Fill in new Algorithms for Set-union”, then satisfying it would mean actually ]
E synthesizing some new procedures, some new LISP code capable of forming the union of A
any two sets. A heuristic rule is relevant to a task iff executing that rule brings AM closer R
to satisfying that task. Relevance is determined a priori by where the rule is stored. A rule J
o tacked onto the Domain/range facet of the Compose concept would be presumed relevant to K
i the task "Check the Domain/range of InsertoDelete”. 3
4
l Once a task is chesen from the agenda, AM gathers some heuristic rules which might be !
" relevant to satisfying that task. They are executed, and then AM picks a new task. While
a rule is executing, three kinds of actions or effects can occur: 3
2 (1) Facets of some concepts can get filled in (e.g., examples of primes may actually be found
ar.d ta=ked onto the “Examples” facet of the "Primes” concept). A typical heuristic rule "
- which might have this effect is: E
~ To fill in examples of X, where X is a kind of Y (for some more general concept Y),
- Check the examples of Y; some of them may be examples of X as well.
o For the task of filling in examples of Primes, this rule would have AM notice that g
Primes is a kind of Number, and therefore look over all the known examples of g
- Number. Some of those would be primes, and would be transferred to the Examples [
"\ facet of Primes. :
. (i1) New concepts may be created (e.g., the concept “primes which are uniquely representable %
e as the sum of two other primes” may be somehow be deemed worth studying). A g
- typical heuristic rule which might result in this new concept is: A
~ If scme {but not most) examples of X are also examples of Y (for some concept Y), »
- Create a new concept definod as the intersection of those 2 concepts (X and Y). K
N Suppose AM has already isolated the concept of being representable as the sum of two L
E primes in only one way (AM actually calls such numbers "Uniquely-prime-addable :
ey numbers”). Wien AM notices that some primes are in this set, the above rule will -
create a brand new concept, defined as the set of numbers which are both prime and '{
"4 uniquely prime addable. %
W b
(1) New tasks may be addec to the agenda (e.g, the current activity may suggest that the ;E
- following task is worth considering: "Generalize the concept of prime numbers™). A ‘z
oy typical heuristic rule which might have this effect is: q
] If very few examples of X are found, :
s Then add the following tack to the agenda: "Generalize the concept X". -
o Of course, AM contains a precise meaning for the phrase "very few". When AM looks £
) for primes among examples of already-known kinds of numbers, it will find dozens of s
2 non-examples for every example of a prime it uncovers. "Very few" is thus naturally ¥
(v L
C".
E{.,-F (::
£ x

________
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implemented as a statistical confidence level?.

The concept of an ageusia is certainly not new: schedulers have been around for a long
time. But one imports:.* ‘eature of AM's agenda scheme is a new idea: attaching — and
using — a list of quasl-sym!:aolic3 reasons to each task which explain why the task is worth
considering, why it's plausible. It is the responsibility of the Aeuristic rules to include reasons

for any tasks they propose® For example, let's reconsider the heuristic rule mentioned in (i)
above. It really looks more like the following:

If very few axamples of X are found,

Then add the following task fo the agenda: "Generalize the concept X7, for the following
reason: "X's sre quite rare; a slightly (ess restrictive concept might be more
interesting”.

If the same task is proposed by several rules, then several different reasons for it may be
present. In addition, one ephemeral reason also exists: "Focus of attention”. Any tasks
which are similar to the one last executed get "Focus of attention” as a bonus reason. AM
uses all these reasons, eg. to decide how to rank the tasks on the agenda. The
“intelligence” AM exhibits is not so much “what it does”, but rather the order in which it
arranges its agenda®. AM uses the list of reasons in another way: Once a task has been
selected, the quality of the reasons is used to decide how much time and space the task will
be permitted to absorb, before AM quits and moves on to a new task. This whole
mechanism will be detailed in Section 3.3.2, on Page 33.

2.2, What to get out of - and NOT get out of -~ this example

The purpose of the example which begins on page 20 is to convey a bit of AM’s flavor.
After reading through it, the reader should be convinced that AM is not a theorem-prover,
nor is it randomly manipulating entries in a knowledge Lase, nor is it exhaustively
manipulating or searching. AM is carefully growing a network of data structures
representing mathematical concepts, by repeatedly using heuristics both (a) for guidance in
choosing a task to work on next, and (b) to provide methods to satisfy the chosen task.

2 The ratio o5 examples found to non-examples stumbled over lies between .00: snd .05. Philosophers ocutraged by this may
be somewhat appoased by knowisdge that large changes in the precise numbers very rarely alter AM's
behavior

3 Zach reason is an English sentance. Wiile AM can tell whether two given reasons coincide, it can't actually do any internal
processing on them. If this lack of intelligence had proved to be s limiting problem, then more work would
have been expended on giving AM some such sbilities.

4 An slternatve schems, perhaps even 8 bit more humsn-ike, would be to (perhaps only occasionally) allow a burst of
poorly-motivated tasks to be proposed, and then use some pruning criteria to weed out the obvious losers.
During this time, AM could typs out to the user (who otherwise would be clossly monitoring its activities) 8
cute anthropomorphic phrase ke “I'm now sitting back and puffing on my pipe, lost in contemplation.”

5 For example, siternating a randomly-chocen task and the "best” task (the one AM chose to do) only siows the system
down by a factor of 2, vet it totally destroys its credibility as & rational resesrcher (ss jdged by the
human user of AM). This is one conciusion of experiment 2 (see Section 6.2.2, page 129).
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The following points are important but can't be conveyed by any lone example: 2
e () Although AM appears to have reasonable natural language abilities, this is a typical Al -
b illusion: most of the phrases AM types are mere tokens, and the syntax which the user -
’ must obey is unnaturally constrained. For the sake of clarity, I have "touched up” some
of the wording, indentation, syntax, etc. of what AM actually outputs, but left the spirit =
! of each phrase intact. As the reader becomes more familiar with AM, future examples e
v can be “unretouched”. If he wishes, he may glance at Appendix 5.3, which shows ::E
some actual listings of AM in action. gl
f.': \ ‘:"L
o (ii) The reader should be skeptical of the generality of the program; is the knowledge base &
“just right” (ie., finely tuned to elicit this one chain of behaviors)? The answer is =
- "No". The whole point of this project is to show that a relatively small set of general 3
r heuristics can guide a nontrivial discovery process. Each activity, each task, was o
proposed by some heuristic rule (like "look for extreme cases of X") which was used
s time and time again, in many situations. It was not considered fair to insert heuristic -
guidanze which could only "guide” in a single situation. b
‘ o
This kind of generality can’t be shown convincingly in one example. Nevertheless, &
o even within this small excerpt, the same line of development which leads to ..
e decomposing numbers (using TIMES™') and thereby discovering unique factorization,
R also leads to decomposing numbers (using ADD™') and thereby discovering Goldbach's
con jecture. The same heuristic which caused AM to expect that unique factorization .o
] will be useful, also caused AM ‘o suspect that Goldbach's con jecture will be useless. -
&
- Let me reemphasize that the “point™ of this example is not the specific mathematical &
‘ concepts, nor the particular chains of plausible reasoning AM produces, nor the few flashy >,
’ con jectures AM spouts, but rather an illustration of the kinds of things AM does. R
g . 2,3, Deciphering the Example &
v
: Recall that in general, each task on the agenda will have several reasons attached to it. In %
e the example excerpt, the reasons for each task are printed just after the task is chosen, and Ry
before it's executed. o

o
[ AM numbers its activities sequentially. Each time a new task is chosen, a counter is ?L
incremented. The first task in the example excerpt is labelled %% TASK 65 %%, meaning that b
e the example skips the first 64 tasks which AM selects and carries out. The reason simply is B
= that the development of simple concepts related to divisibility will probably be more b
ks intelligible and palatable to the reader, than AM’s early ramblings in finite set theory. 1
g x
!E; ¢ The design of AM was finely tuned so that the antwer to this question weuld be "No™. Ponder that one! E_
'
~
l""_
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Y
.

In the example itself, several irrelevant tasks have been excised’. About half of those
omitted tasks were interesting in themselves, but all of them were tangential or unrelated to
the development shown. The reader can tell by the global task numbering how many were
skipped. For example, notice that the excerpt jumps from Task 67 to Task 79.

To help gauge AM’s abilities, the reader may be interested to know that AM defined
"Natural Numbers” during Task 44, and "TIMES" was defined during Task 57. AM
started with no knowledge of numbers, and only scanty knowledge of sets and set-operations.
Task 3, e.g., was to fill in examples of Sets.

The concepts that AM talks about are self-explanatory — by and large. Below are discussed
some nornistandard ones.

BAG is a kind of list structure, a bunch of elements which are unordered, but one in which
multiple copies of the same element are permitted. One may visualize a paper bag filled
with cardboard letters. Technically, we shall say that a set is not considered to be a bag. A
bag is denoted by enclosure within parentheses, just as sets are within braces. So the bag
containing X and four Y’s might be written (X Y Y Y Y), and would be considered
indistinguishable from the bag (Y Y Y X Y).

Number will mean (typically) a positive integer.

TIMES"! is a particular relation. For any number x, TIMES !(x) is a set of bags. Each
bag contains some numbers which, when multiplied together, equal x. For example,

TIMES-'(18) = { (18) (2 9) (2 3 3) (3 6) }. Checking, we see that multiplying, eg. the

numbers in the bag (2 3 3) together, we do get 2x2x3=18. TIMES™}(x) contains all possible
such bags (containing natural numbers >1).

ADD"! is a relation analogous to TIMES™!. For any number x, ADD"}(x) is also a set of
bags. Each bag contains a bunch of numbers which, when added together, equal x. For

example, ADD"'(4) = { (4)(1 11 1)(1 12)(13)(22) }. ADD"¥(x) contains all possible such
bags (containing numbers >0); it finds all possible partitions of x.

Divisors-of is a more standard relation. For any number x, Divisors-of(x) is the set of all
positive numbers which divide evenly into x. For example, Divisors-of(18) « {1 2 36 9 18}.

The definitions for most of the mathematical terms used in the excerpt can be found in the
Glossary (Appendix 1.1). Whenever there is a conflict between “computer science jargon”
and "math jargon", I have opted for the latter. So, eg., all "functions” are necessarily single-
valued for each member of their domain.

AM is an interactive computer program. It prints out phrases indicating what it is doing at
each moment, and a human being, referred to as the User, watches AM’s activities. At any
moment, the user can interrupt AM to ask questions or re-direct its energies. In the excerpt,
the user never re-directs AM, although he does occasionally ask AM to rename some
concept and to explain its behavior (e.g, just after xx _TASK 106 #%). For the benefit of the
reader, I have bold-faced all the user's comments.

7 This is fair, despite the resuits of Experiment 2 (see Section 6.22) because the remaining tasks clump together in
twos, threes, stc; they ire uninterrupted lines of resesrch (eg, Tasks 65-67), separated by very large
gaps (s g, the ump from Task 67 to 79).
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My personal notes and comments occur right- justified, in italics.

2.4, The Example Itself

%% Task 65: xx
Filling in examples of the following concept: "Divisors-of".

3 Reasons: (1) No known examples for Divisors-of so far.

(2) TIMES, which is related to Divisors-of, is now very interesting.

(3) Focus of attention: AM recently defined Divisors-of.

26 examples found, in 9.2 seconds. e.g.: Divisors-of(6)={1 2 3 6}.
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%% Tagk 66: %%
Considering numbers which have very small sets of Divisors-of (i.e.,, very few divisors).

2 Reasons: (1) Worthwhile to look for extreme cases.
(2) Focus of attention: AM recently worked on Divisors-of.

Filling in examples of numbers with O divisors.
0 examples found, in 4.0 seconds.
Conjecture: no numbers have O divisors.

Filling in examples of numbers with 1 divisors,
1 examples found, in 4.0 seconds. e.g.: Divisors-of(1)={1}.
Conjecture: 1 is the only number with | divisor.

Filling in examples of numbers with 2 divisors.
24 examples found, in 4.0 seconds. e.g.: Divisors-of(13)={1 13}.
No obvious conjecture. This kind of number merits more study.
Creating a new concept: "Numbers-with-2-divisors",

AM had previously derived the notion of singleton,
doubleton, etc. Above, AM was actually defining, e.g., the
set of numbers which gets mapped into a doubleton of
numbers, by the operation Divisors-of. I took the liberty
of translating this into the above form, whick uses, e.g.,
the number "2",

Filling in examples of numbers with 3 divisors.
11 examples found, in 4.0 seconds. e.g.: Divisors-of(49)={1 7 49},
All numbers with 3 divisors are also Squares. This kind of number merits more study.
Creating a new concept: "Numbers-with-3-divisors".

How did AM notice that confecture? It took a random
example of Numbers-with-3-divisiors, say 49. Then it
asked what other known concepts "49" was an example
of. The two answers were: Odd-numbers and Perfect-
squares. AM then tested these confectures on the other
ten examples just found. The only surviving conjecture
was that all numbers-with-3-divisors are also perfect-

squares.

.........
......
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Py *% Task 67: %% it
E Considering the square-roots ¢f Numbers-with-3-divisors.

2 Reasons: (1} Numbers-with-3-divisors are unexpectedly also perfect Squares.
(2) Focus of attention: AM recently worked on Numbers-with-3-divisors.

.

i All square-roots of Numbers-with-3-divisors seem to be Numbers-with-2-divisors. :-
a e.g., Divisors-of( Square-root(169) ) = Divisors-of(13) = {1 13}. -
e Formulating the converse to this statement. Empirically, it seems to be true. f
The square of each Number-with-2-divisors seems to be a Number-with-3-divisors. ¥

(- This is very unusual. It is not plausibly a coincidence. (Chance of coincidence is < .001) !
E- Boosting interestingness factor of the concepts involved: 4
Interestingness factor of "Divisors-of" raised from 300 to 400. 5

- Interestingness factor of "Numbers-with-2-divisors" raised from 100 to 600. k
it Interestingness factor of "Numbers-with-3-divisors” raised from 200 to 700. "
o USER: Call the set of numbers with 2 divisors "Primes". L
e £
%% Task 68: %% ;'
N Considering the squares of Numbers-with-3-divisors. Ny
. 2 Reasons: (1) Squares of Numbers-with-2-divisors were interesting. "
A (2) Focus of attention: AM recently worked on Numbers-with-3-divisors. N
N This gap in the sequencing — from task 67 to task 79 — N
eliminates some tangential and boring tasks. See page iy

E 19 for an explanation. .
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Chapter 2 A’ Discovery in Mathematics as Heuristic Search

%% Task 79: xx

Examining TIMES"(x), looking for patterns involving its values.

2 Reasons: (1) TIMES"! is related to the newly-interesting concept "Divisors-of".
(2) Many examples of TIMES™! are known, to induce from.

Looking specifically at TIMES™}(12), which is { (12) (2 6) (22 3) (3 4) }.
13 conjectures proposed, after 2.0 seconds.

2.8, *TIMES™!(x) always contains a bag containing only even numbers",
Testing the conjectures on other examples of TIMES™,

5 false conjectures deal with even numbers,
AM will sometime consider the restriction of TIMES™ to even numbers.

Only 2 out of the 13 conjectures are verified for all 26 known examples of TIMES™:

Conjecture 1: TIMES™ (x) always contains a singleton bag.
e.g, TIMES™}(12), which is { (12) (2 6) (2 2 3) (3 4) }, contains (12).
eg., TIMES™(13), which is { (13) }, contains (13).

Creating a new concept, 'Single-times".
Single-times is a relation from Numbers to Bags-of-numbers.
Single-times(x) is all bags in TIMES™Y(x) which are singletons.
e.g., Single-times(12)={ (12) }. '
e.g., Single-times(13)={ (13) }.

Conjecture 2: TIMES™!(x) always contains 8 bag containing only primes.
e.g., TIMES !(12), which is { (12) (2 6) (2 2 3) (3 4) }, contains (2 2 3).
e.g, TIMES™}(13), which is { (13) }, contains (13).

Creating a new concept, "Prime-times”.
Prime-times is & relation from Numbers to Bags-of-numbers.
Prime-times(x) is all bags in TIMES™}(x) which contain only primes.
. e.g., Prime-times(12)={ (2 3 3) }.
L e.g., Prime-times(13)={ (i3) }.
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E L

E *x Task 80: %%

Considering the concept "Prime-times".

I 2 Reasons: (1) Conjecs about Prime-times will tell much about Primes and TIMES™!.
*t:: (2) Focus of attention: AM recently defined Prime-times.

Looking specifically at Prime-times(48), whichis { (2222 3) }.
4 conjectures proposed, after .6 seconds.
o e.g, "x Is never inside any member of Prime-times(x)".
Testing them on other examples of Prime-times.

“i Only 1 out of the 4 conjectures are verified for ali 23 known examples of Prime-times:
:h Conjecture 1: Prime-times(x) is always a singleton set.
4 That is, Prime-times is a function, not just a relation.
g e.g., Prime-times(48), which is { (2 2 2 2 3) }, is a singleton set.
R4 e.g., Prime-times(47), which is { (47) }, is a singleton set.
This holds for all 17 known examples of Prime-times. (Chance of coincidence is .0001)
- This fails for 2 of the boundary cases (extreme numbers): 0 and 1.
&:-; Conjecture is amended: Each number >1 is the product of a unique bag of primes.
N | suspect that this conjecture may be very useful.®
= USER: Call this conjecture "Unique factorization con jecture”.
s .
’i [ ]
Ej To show that AM isn’t really always right on the mark,

the next sequence of tasks includes a crime of omission
(ignoring the concept of Partitions) and a false start
(worrying about numbers whick can be represented as the

N

sum of two primes in precisely one way). Notice the
- skip here; 3 tasks have been omitted.
1Y
b
N
Ly
- s How did AM know this? One of the (unfortunately few!) meta-heuristics in AM said the following: "When using the ook
o at the inverse of exireme items under the operation f' ruls, Tack the following note onto the
:-: Interest facet of the new concapt which s crested- ‘Conjectures involving this concept and f (or
LI ') are natural, interesting, and probably useful? ~ Now the concept PRIMES was defined
uging the 'sxtrema’ heuristic (uh, with f-Dwi:or_s-of, When PRIMES was first crested, the metn-rule we just
. presented {acked the following note onto Primesinterest cConj“mru involving Primes and
o diviston (or multiplication) are natural, interesting, and probably useful.’ Twe the
vnique fectorizetion conjecture triggers this festure, wheress Goldbach's conjecture wouldn't,
h‘l
Ao
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%% Tack 84: xx
Examining ADD" ! (x), looking for patterns involving its values.

(114)(123)(15)(222)(24)(33)(6)).
17 conjectures proposed, after 3.9 seconds.

e.g. *ADD"(x) always contains a bag of primes”.
Testing them on other examples of ADD™,

3 out of the 11 conjectures were false until amended.

Conjecture 1: ADD™!(x) never contains a singleton bag.

e.g., ADD!(6) contains (1 5), (2 4), and (3 3).
e.g., ADD"(4) contains (1 3), and (2 2).

Creating a new concept, "Pair-add",
Pair-add is a relation from Numbers to Pairs-of-numbers.

e.g, Pair-add(12)={ (1 11)(2 10)(39)(48)(57) (6 6) }.
e.g., Pair-add(4)={ (1 3) (2 2) }.

Conjacture 3: ADD™(x) always contains a bag containing only 1’s.

Conjecture 10: ADD™!(x) always contains a pair of primes.
This conjecture is false. Conjecture is amended:

"ADD(x} usually (but not always) contains a pair of primes.”
e.g., ADD"1(10) contains {3 7), and (5 5).

e.g., ADD"1(4) contains (2 2).

e.g, ADD"1(11) does not contain a pair of primes.

Creating a new concept, "Prime-add".
Prime-add is a relation from Numbers to Pairs-of-numbers.

Prime-add(x) is all bags in ADD"!(x) which are pairs of primes.
e.g., Prime-add(12)={ (5 7) }.

e.g., Prime-add(10)={ (3 7) (5 5) }.

e.g, Prime-add(11) = { }
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Pair-add(x) is all bags in ADD"(x) which are doubletons (i.e., of size 2).
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2 Reasons: (1) ADD"! is analogous to the newly-interasting concept "TIMES™!".
(2) Many examples of ADD™! are known, to induce from.

Only 11 out of the 17 conjectures are verified for all 19 known examples of ADD!:

Looking specifically at ADD™}(6), whichis {(111111)(11112)(1113)(1122)

Conjecture 2: ADD™!(x) always contains a bag of size 2 (also called a "pair”® or a "doubleton”).
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xx Task 106: xx
Considering the set of numbers for which Prime-add is defined (has non-empty value).

1 Reason: (1) Prime-add often has non-empty value. Worth isolating that case.
Warning: no task on the agenda has an interestingness value above 200!

Creating a new concept "Prime-addable”.
Prime-addable is a kind of Number. x is Prime-addable if Prime-add(x) is non-empty.
Will spend 5.0 seconds filling in examples of Prime-addable.
18 examples found. Here are some of them: 456789 1012131417 16 18.
Empirically, all even numbers are also in this set (ignoring boundary cases: 0 2 4 6).
So conjectured. Danger: must examine boundary cases: the numbers 0, 2, 4, and 6.
Two exceptions noticed. The only exceplions are the smaiiest boundsry cases: 0, 2.
Conjecture is emended: All even numbers >2 are the sum of two primes,

Warning: | expect this conjecture will be cute but useless.
USER: Why?

Because the concept of "Primes" originally arose as extreme cases of Divisors-of. The more
closely an operation X is related to the concept Divisors-of, the more natural will be any
conjecture involving both that operation X and Primes. E.g., conjectures involving both
Primes and Times will be natural and useful. But this conjecture, which involves Primes and

ADD", will be cute but useless, since the relation "ADD"!* is unrelated to the relation
"Divisors-of".
End of explanation.

USER: Call this con jecture "Goldbach's con jecture”.

%% Task 197: 2%
Considering the set of numbers for which the relation Prime-add is single-valued.

3 Reassons: (1) Prime-add often has singleton value. Worth isolating that case.
(2) Restricted to this set, Prime-add would be a function,
(3) Focus of attention: AM recently worked on Prime-add.

Creating a new concept "Uniquely-prime-addable”.
"Uniquely-prime-addable” is a kind of Number.
x is Uniquely-prime-addable if Prime-add(x) is a singleton.
Will spend 10.0 seconds filling in examples of Uniquely-prime-addable.
11 examples found. Here are some of them: 457 8 9 12 13.
No obvious conjecture derived empirically.

Will forget "Uniquely-prime-addable numbers®, if no Ties found in near future.
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2.5, Recapping the Example

Let’s once again eavesdrop on a mathematician, as he describes to a colleague what AM
did.

This example was preceded by the momentous discoveries of multiplication and division.
Several interesting properites of these operations were noticed. The first task which was
illustrated (xx Yask 65 ##%) involves exploring the concept of "divisors of a number”
(meaning all positive integers which divide evenly into the given number). After tiring of
finding examples of this relation, AM investigates extreme cases: that is, it wonders which
numbers have very few or very many divisors.

AM thus discovers Primes in a curious way. Numbers with 0 or 1 divisor are essentially
nonexistent, so they're not found to be interesting. AM notices that numbers with 3 divisors
always seern to be squares of numbers with 2 divisors (primes). This raises the
interestingness of several concepts, including primes. Soon (%% TASK 79 xx), another
conjecture involving primes is noticed: Many numbers seem to factor into primes. This
causes 2 new relation to be defined, which associates to a number x, all prime factorizations
of x. The first question AM asks about this relation is "is it a function?”. This question is
the fuil statement of the unique factorization conjecture: the fundamental theorem of
arithmetic. AM recognized the vaiue of this relationship, and assigned it a high
interestingness rating.

In a similar manner, though with lower hopes, it noticed some more relationships involving
primes, inciuding Goldbach's conjecture. AM quite correctly predicted that this would turn
out to be cute but of no future use mathematically.

The last activity mentioned (x% TASK 107 %x) shows AM examining a rather nonstandard
concept: "numbers which can be written as the sum of a pair of primes, in only one way".
These are termed “uniquely-prime-addable” numbers. It was mildly unfortunate that AM
gave up on this concept before noticing that z+2 is uniquely-prime-addable, for any prime
number p, and that in fact these are the enly odd uniquely-prime-addable numbers. The
session was repeated once, with a human user telling AM explicitly to continue studying this
concept. AM did in fact construct "Uniquely-prime-addable-odd-numbers”, and then notice
this relationship. Here we see an example of unstable equilibrium: if pushed slightly this
way, AM will get very interested and spend a lot of time working on this kind of number.
Since it doesn’t have all the sophistication (i.e, compiled hindsight) that we have, it can't
know instantly whether what it's doing will be fruitless.
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Chapter 3, Control Structure N

3

‘Objectively’ given, ‘important’ problems may arise [in math]. But esen then the ‘|
mathematician is essentially free to take it or leave it and turn to something else, "
while an ‘important’ problem in [any other science] is usually a conflict, a L
contradiction, which ‘must’ be resolved. The mathematician has a wide choice of o,

which way to turn, and he enjoys a very considerable freedom in what ke does.

g
)y

B s SO

== yon Neumann

L

AM is one of those awkward programs whose representations only make sense if you
already understand how they will be operated on. A discussion of AM’s control structure
(this chapter and the next) must thus precede a discussion of concepts and how they are
represented (Chapter 5). Section 2.1 gave the reader a sufficient knowledge of AM’s

e

Y

~ e
. 7 .

"anatomy"” to follow these chapters. Thus armed with a cursory knowledge of the “statics” of ;:-
AM, we shall proceed to describe in detail its "dynamics”. B
Section 3.1 will give the reader a feeling for the immensity of AM’s search space. This is ‘.
the "problem”. The next section will give the top-level “solution™: the flow of control is n
governed by a job-list, an agenda of plausible tasks. Section 3.3 will present some details of o
this global control scheme. -
Chapter 4 deals with the way AM’s heuristics operate; this could be viewed as the "low- b
level” or local control structure of AM. Chapter 5 contains some detailed information bz
about the actual concepts (and heuristics) AM starts with, and a little more about their ~
design and representation. The reader is also directed to Appendix 5, which presents Y
several detailed examples of AM "in action”. s
&

-

3.1, AM's Search o

o

o

To develop mathematics, one must always labor to substitute ideas for calculations. il

== Dirichlet ::;I

'.)‘:

e

Let’s first spend a paragraph reviewing how concepts are stored. AM contains a collection -
- N
o o)
o
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of data structures, called conceprs. Each concept is meant to coincide intuitively with one
mathematical idea (eg., Sets, Union, Trichotomy). As such, a concept has several aspects or
parts, called facets (eg., Examples, Definitions, Domain/range, Worth). If you wish to think
of a concept as a "frame”, then its facets are "slots" to be filled in. Each facet of a concept
will either be totally blank, or else will contain a bunch of entries. For example, the
Algorithms facet of the concept Union may point to several equivalent LISP functions, each
of which can be used to form the union of two sets'. Even the "heuristic rules” are merely
entries on the appropriate kind of racet (eg., the entries on the Interest facet of the

Structure concept are rules for judging the interestingness of Structures?).

At any moment, AM contains a couple hundred concspts, each of which has only some of its
facets filled in. AM starts with 115 concepts, and grows to about 300 concepts before
running out of time/space. Most facets of most concepts are totally blank. AM’s basic
activity is to select some facet of some concept, and then try to fill in some entries for that
slot®. Thus the primitive kind of "task”™ for AM is to deal with a particular facet/concept
pair. A iypical task looks like this:

Check the entries on the "Domain/range"” facet of the "Bag-Insert” concept

If the average concept has ten or twenty blank facets, and there are a couple hundred
concepts, then clearly there will be about 20x200=4000 “fill-in" type tasks for AM to work
on, at any given moment. If several hundred facets have recently been filled in, there wiil
be that many "check-entries” type tasks available. Executing a task happens to take around
ten or twenty cpu seconds, so over the course of a few hours only a small percentage of these

tasks can ever be executed.?

Since most of these tasks will never be explored, what will make AM appear smart — or

stupid — are its choices of which task to pick at each moment. So it's viorth AM's spending
a nontrivial amount of time deciding which task to execute next. On the other hand, it had

better not be too much time, since a task does take only a dozen seconds.®

One question that must be answered is: What percentage of AM’s legal moves (at any

! The reasons for having multiple algorithms is that sometimes AM will want one that is fast, sometimes AM will be more
concerned with economizing on storsge, sometimes AM will want to "snslyze” an algorithm, and for that
purpose it must be s very un-optimized function, etc.

2 A typical such rule 1s: "A Lructure is very interesting if all its slements are mildly interesting in pracisely the same way."

3 This is not quite complete In addition to filling in entries for a gwven facet/concept pair, AM may wish to check it, split it
up, reorganize it, stc

L

4 The preciss “18 seconds sverage” figure is not important. All heuristic-search programs suffer this same handicap: As the
, depth to which they've sesrched increases, the percentage of nodes (st or sbove that level) which have
y besn examined decreases exponentislly (assuming the branching factor b is strictly lerger than unity),

5 This is true of all heuristic search programs The branchier the search, the more it applies.

¢ The snswer is that AM spends this "deciding” time not just before a task is picked. but rather esch time » task is added
to the agenda A little under | cpu second is spent, on the sverage, to place the task properly on the
sgends, to sesign it a meaningful numeric priority value. So "sction time” ie roughly one order of magnituds
larger than "decding time”.
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Chapter 3 AM: Discovary in Mathematics as Heuristic Search -30-

typical moment) would be considered intelligent choices, and what percentage would be
irrational? The answer comes from empirical results. The percentages vary wildly
depending on the previous few tasks. Sometimes, AM will be obviously "in the middie" of
a sequence of tasks, and only one or two of the legal tasks would seem plausible. Other
times, AM has just completed an investigation by running into dead-ends, and there may be
hundreds of tasks it could choose and not be criticized. The median case would perhaps
permit about 6 of the legal tasks to be judged reasonable.

It is important for AM to locate one of these currently-plausible tasks, but it's not worth
spending much time deciding which of them to work on next. AM still faces a huge search:
find one of the 6 winners out of a few thousand candidates.

Its choice of tasks is made even more important due to the 10-second "cycle time" — the time
to investigate/execute one task. A human user is watching, and ten seconds is a nontrivial
amount of time to him. Hea can therefore observe, perceive, and analyze each and every
task that AM selects. Even just a few bizarre choices will greatly lower his opinion of AM’s
intelligence. The trace of AM’s actions is what counts, not its final results. So AM can’t
draw much of its apparent intelligence from the speed of the computer.

Chess-playing programs have had to face the dilemma of the trade-off between "intelligence”
(roresight, inference, processing,..) and total number of board situations examined. In chess,
the characteristics of current-day machines, language power vs. speed, and (to some extent)
the limitaticns of our understanding of how to be sophisticated, have to date unfortunately

still favored fast, nearly-blind’ search. Although machine speed and LISP slowness may
allow blind search to win over symbolic inference for shallow searches, it can’t provide any
more than a constant speed-up factor for an exponential search. Inference is slowly gaining

on brute force,® and must someday triumph.

Since the number of "legal moves” for AM at any moment is in the thousands, it is

unrealistic to consider "systematically"® walking through the entire space that AM can reach.
In’AM’s problem domain, there is so much “freedom” that symbolic inference finally can

win over the "simple but fast” exploration strategy'®.

3.2, Constraining AM's Search

7 te, using a very simple static svaluation function.

E¢, eoz [Berliner 74]. There, searching is used mainly to verify plavsible moves (s convergent process), not to discover
them (a bushier search),

9 e g, sxheustively, or using o8 minimaxing, etc

10 This is the author’s opinion, partiaily supported by the results of AM Paul Cohen disagress, fesling that mechine speed
should be the key to an automated mathematicien's success
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Chapter 3 AM: Discovery in Mathematics as Heuristic Search .3]-

T here exist too many combinations to consider all combinations of existing entities;
the creative mind must only propese those of potential interest.

== Poincare’

A great deal of heuristic knowledge is required to constrain the necessary processing
effectively, to zero in on a good task to tackle next. This is done in two stages.

1. A list of plausible facet/concept pairs is maintained. Nothing can get onto this list
unless there is some reason why filling in (or checking) that facet of that concept
would be worthwhile.

2. All the plausible tasks on this "job list” are ranked by the number and strength of
the different reasons supporting them. Thus the facet/concept pairs near the top of
the list will all be very promising tasks to work on.

The first of these constraints is akin to replacing a /egal move generator by a plausible
move generator. The second kind of constraint is akin to using a heuristic evaluation

function to select the best move from among the plausible ones.'!

The job-iist or agenda is a data structure which is a natural way to store the resuits of these
procedures. jt is (1) a list of all the plausible tasks which have been generated, and (2) it is
kept ordered by the numeric estimate of how worthwhile each task is. A typical entry on
the agenda might look like this:

Fill in the EXAMPLES face! of the PRIMES concept .

Reasons for filling in this facet

1. No examples of primes are known so far,
2. Focus of attention: AM just defined Primes.

Overall value of these reasons

" Past Al programs (eg, [Samus! 67)) have indicated that constraining generation (1) is more importunt than sophisticated
ordering of the resultant candidates (2). This was confirmed by the expsriments performed on AM.
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Chapter 3 AM: Discovery in Mathamatics s Heuristic Search -32-

The actual top-level control structure is simply to pluck the top task from the agenda and
execute it. That is, select the facet/concept pair having the best supporting reasons, and try
to fill in that facet of that concept.

While a task is being executed, some new tasks might get proposed and merged into the
agenda. Also, some new concepts might get created, and this, too, would generate a flurry of
new tasks.

After AM stops filling in entries for the facet specified in the chosen task, it removes that
task from the agenda, and moves on to work on whichever task is the highest-rated at that
time.

The reader probably has a dozen good questions in mind at this point (e.g, How do the
reasons get rated?, How do the tasks get proposed?, What happens after a task is
selected?,..). The next section should answer most of these. Some more judgmental ones
(How dare you propnse a numeric calculus of plausible reasoning? If you slightly de-tune

all those numbers, does the system's performance fall apart?..) will be answered in Chapter
2

33. The Agenda

Creative energy is used mainly to ask the right question.

== Halmos

3.3.1. Why an Agenda?

This subsection provides motivation for the following one, by arguing that a job-list scheme
is a natural mechanism to use to manage the task-selection problem AM faces. If that seems
obvious to you, feel free to skip ahead to section 3.3.2, page 33.

Recall that AM must zero in on one of the best few tasks to perform next, and it repeatedly
makes this choice. At each moment, there might be thousands of directions to explore
(plausible tasks to consider).

If all the legal tasks were written out, and reasons were thought up to support each one,
then perhaps we could order them by the strength of those reasons, and thereby settle on
the "best” task to work on next. In order to appear "smart" to the human user, AM should
never execute a task having no reasons attached.

Some magical function will be assumed to exist, which provides a numeric rating, a priority
value, for any given task. The function looks at a given facet/concept pair, examines all the
associated reasons supporting that task, and computes an estimate of how worthwhile it
would be for AM to spend some time now working on that facet of that concept.
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Chapter 3 AM: Discovary in Mathamatics as Heuristc Search -33- b=
So AM will maintain a list of those legal tasks which have some gwod reasons tacked onto &
them, which justify wk: each task should be executed, why it is plausible. At least &
implicitly, AM has a numeric rating for each iask. The obvious control algorithm is to
choose the task v ith the highest rating, and work. on that one next. =
Assuming the tasks on this list are kept ordersd by this numeric rating, then AM can just i
repeatedly pluck the highest task and execute it. While it's executing, some new tasks might A
get proposed and added to the list of tasks. Reasons are kept tacked onto each task on this &
list, and form the basis for the numeric priority rating. RN
Give or take a few features, this notion of a "job-list” is the one which AM uses. It is also "j;
called an agenda.'? "A task on the agenda” is the same as "a job on the job-list" is the same £
as "a facet/concept pair which has been proposed” is the same as "an active node in the
search space”. Henceforth, I'll use the following ali interchangeably: task, facet/concept pair, %
node, job. This should break up the monotony '3, Z
The flavor of agenda-list used here is similar tc the control structure of HEARSAY-II 3
[Lesser/Fennell/Erman/Reddy 75]. Vast numbers of tasks are proposed and added to the g@
job-list. Occasionally, when some new data arrives, some task is repositioned =
$.3.2. Details of the Agenda scheme N
At each moment, AM has many plausible tasks (hundreds or even thousands) which have £3
been suggested for some good reason or other, but haven't been carried out yet. Each task =
is at the level of working on a certain facet of a certain concept: filling it in, checking it, etc. :
Recall that each task also has tacked onto it a list of symbolic reasons explaining why the -
5

task is worth doing.

K4
Thia

Ir. addition, a number (between 0 and 1000) is attached to each reason, representing some
absolute measure of the value of that reason (at the moment). One global formula'®

¥
3

-4
combines all the reasons’ values into a single priority value for the task as a whole. This vl
overall rating is taken to indicate how worthwhile it would be for AM to bother executing
that task, how interesting the task would probably turn out to be. The "intelligence” of W
AM'’s selection of task is thus seen to depend on this one formula. Yet experiments show g:g
that its precise form is not important. We conclude that the "intelligence” has been pushed )
down into the careful assigning of reasons (and their values) for each proposed task. -
33
12 Borrowed from Kaplan's term for the job-list prasent in KRL (see [Bobrow & Winograd 77]). For an earlier general -
N discussion of agendas, see [Knuth 68)
- 13 snd cover my sloppinass. Ssriously, thanks to English, sach of thess terms will conjure up » slightly different image: # %i
; "job" is something to do, s "node” is an item in » search space, "facet/concapt pair" reminds you of the 5
. format of » task -

g 1 Hars is that formula: Worth(J) « [ISQRT(SUM R. ]| x [ 0.2xWorth(A) + 0.3xWorth(F) + 0.5xWorth(C)}, where J « job to be

:}: judged = (Act A, Facet F, Concept C), and {R;} are the ratings of the reasons supporting J. For the sample :?j

’i& job pictured in the box below, AsFillin, FsExamples, CeSets, {R.J»(100,100,200}. The formuls will be o

:,“:" repested -- and sxpluned —- in Section 4.2, on pags 40.
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Chepter 3 AM: Discovery in Matheratics as Heuristic Search -34-

A typical entry on the agenda might look like this:

TASK: Fill-in examples of Sais

PRIORITY: 300

REASONS:
100: No known examples for Sets so far.
100: Failed to fillin examples of Set-union, for lack of examples of Setls
200: Focus of attention: AM recently workad on the concept of Set-union

Notice the similarity of this to the initial few lines wvhich AM types just after it selects a job
to work on.

The flow of control is simple: AM picks the task with the highest priority value, and tries to
execute it. As a side effect, new jobs occasionally get added to the agenda while the task is
being executed.

The global priority value of the task also indicates how much time and space this task
deserves. The sample task above might rate 20 cpu seconds, and 200 list cells. When either
of these resources is used up, AM terminates work on the task, and proceeds to pick a new
one. These two limits will be referred to in the sequel as “time/space quanta” which are
allccated to the chosen task. Whenever several techniques exist for satisfying some task, the
remaining time/space quanta are divided evenly among those alternatives; i.e, each method
is tried for a small time. This policy of parceling out time and space quanta is called
"activation energy” in [Hewitt 76] and called "resource-limited processes” in [(Norman &
Bobrow 75). In the case of filling in examples of sets, the space quantum (200 cells) will be
used up quickly (long before the 20 seconds expire).

There are two big questions now:

1. Exactly how is a task proposed and ranked?
How is a plausible new task first formulated?
How do the supporting reasons for the task get assigned?
How does each reason get assigned an absolute numeric rating?
Does a task’s priority value change? When and how?

2. How does AM execute a task, once it's cliosen?
Exactly what can be done during a task’s execution?

The next chapter will deal with both of these questions. A detailed discussion of difficulties
and limitations of these ideas can be found in Section 7.2, on page 156.
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Chapter 4 Heuristic Rules
e ]

Assume that comehow AM has selected a particular task from the agenda — say "Fill=in
Examples of Primes”. What precisely does AM do, in order tu execute the task? How are
examples of primes filled in?

The answer can be compactly stated as follows:
"AM selects relevant heuristics, and executes them."

This really just splits our original question into two new ones: (i) How are the relevant
heuristizs selected, and (ii) What does it mean for heuristics to be executed (e.g., how does
executing a heuristic rule help to fill in examples of primes?).

These two topics (in reverse order) are the two major subjects of this chapter. Although
several examples of heuristics will be given, the complete list is relegated to Appendix 3. !

The first section explains what heuristic rules look like (their "syntax”, as it were). The next
three sections illustrate how they can be exescuted to achieve their desired results (their
"semantics”).

Section 4.5 explains where the rules are stored and how they are accessed at the appropriate
times.

Finally, the initial body of heuristics is analyzed. The informal know.edge they contain is

categorized and described. Unintentionally, the distribution of heuristics among the
concepts is quite nonhomogeneous; this too is described in Section 4.6.

4.1, Syntax of the Heurisiic

Let’s start by seeing what a heuristic rule looks like. In general (see [Davis & King 75) for
historical references to production rules), it will have the form

If <situational fluent>
Then <actions>

As an illustration, here is a heuristic rule, relevant when checking examples of anything:

! There they are condensed and phrased in English. The reader wishing to see examples of the heuristics ss they sctuslly
were coded in LISP should glance at Appendix 2.3.
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if the current task is fo Checi: Examples of any concept X,
and (Forsome Y) Y ic a genoralization of X,
and Y has at least 10 examples,
and all examples of Y are »'so examples of X,
Then print the following conjeclure: X is really no more specialized than Y,
and add it to the Examples facet of the concept named "Conjectures”,
and add the following task to the agenda: "Check examples of Y", for the reason: "Just
a8 Y was no more general than X, one-of Generalizations(Y) may turn out to
be no more general than Y", with a rating for that reason computed as the
average of:  |[Examples(Generalizations(Y))|l,  ||[Examples(Y)], and
Priority(Current task).

As with production rules, and fc¢ 3l grammatical rules, #~.h of AM’s heuristic rules has a
left-hand-side and a right-hand-side. On the left is a test to see whether the rule is
applicable, and on the right is a list of actions to take if the rule applies. The left-hand-side
will also be called the IF-part, the predicate, the preconditions, ieft side, or the situationai
fluent of the rule. The right-hand-side will sometimes be referred to as the THEN-part, the
response, the right side, or the actions part of the rule.

4.1.1 Syntax of the Left-hand Side

The situational fluent is a LISP predicate, a function which always returns True or False
(in LISP, it actually returns either the atom T or the atom NIL). This predicate may
investigate facets of any concept (often merely to see whether they are empty or not), use the
results of recent tests and behaviors (eg., to see how much cpu time AM spent trying to
work on a certain task), etc.

The left side is a conjunction of the form P1 A P2 A.. All the conjuncts, except the very
first one, are arbitrary LISP predicates. They are only constrained to obey two
commandments:
1. Be quick! (return either True or False in under 0.1 cpu seconds)
2. Have no side effects! (destroying or creating list structures or Lisp functions, resetting
variables)

Here are some sample conjuncts that might appear inside a left-hand side (but not as the
very first con junct):

* More than haif of the current task’s time quantum is already exhsusted,..

There are some known examples of Structures,..

* Some generalization of the current concept (the concept mentioned as part of the

3 current task) has an empty Examples facet,..

':_:-: * The space quantum of the current task is gone, but its time allocation is less than 10%
f::_.xj, used up,...

.;:%:j:‘ * A task recently selected had the form "Resiructure facet F of concept X", where F is
iﬂ any facet, and X is the current concept,...

o

.

.

1N

?_'_Fp:'--,‘

E®

........ LI Y'-"""""‘- r,wrr '-nv'{,r,r,zr N‘h”,'_,'_r"',', ‘.."J‘ u"‘_,".'




e AL A TR AT AR AT TR TRT N T R T e T e LT TR e e LW e e LT e e e e T . ek S bt el i

e R

I a0l 1%

']

Chepter 4 AM: Discovery m Mathematics as Heuristic Search -37- :
o

L‘-

* The yser has used this system at least once before,.. H

* It's Tuesday,.. 1

The very first conjunct of each left-hand side is special. Its syntax is highly constrained. It ;
specifies the domain of applicability of the rule, by naming a particular facet of a particular N
concept to which this rule is relevant. =
b

AM uses this first conjunct as a fast "pre-precondition”, so that the only rules whose left- )
hand sides get evaluated are already known to be somewhat relevant o the task at hand. In -
fact, AM physically attaches each rule to the facet and concept mentioned in its first 4
conjunct? This will be discussed in more detail in Section 4.5, "Gathering relevant g
heuristics”, This first conjunct will always be written out as follows, in this document 4
(where A, F, and C are specified explicitly): A
R

The current task (the one just selected from the agenda) is o' the form "Do action A ('

to the F facet of concept C" .

5.

This can be viewed as the "syntax” of the very first con junct on each rule’s left-hand side. N
Here are two typical examples of allowable first con juncts: 4
* The current task (the one last selected from the agenda) is of the form "Check the i‘
Domain/range facet of concept X", where X is any operation ,

* The current task is of the form "Fillin the examples facet of the Primes concept” g_
These are the only guidelines which the left-hand side of a heuristic rule must satisfy. Any 7
LISP predicate which satisfies these constraints is a syntactically valid left-hand side for a b

heuristic rule. It turned out later that this excessive freedom made it difficult for AM to
inspect and analyze and synthesize its own heuristics; such a need was not foreseen at the g
time AM was designed. L

s

Because of this freedom, there is not much more to say about the left-hand sides of rules.
As the reader encounters heuristics in the next few sections, he should notice the

.
«

(unfortunate) variety of conjuncts which may occur as part of their left-hand sides. g\

4.1.2. Syntax of the Right-hand Side £
"Running” the left-hand-side means evaluating the series of con joined little predicates there, \'
to see if they all return True. If so, we say that the rule "triggers”. In that case, the right- e
hand-side is “run”, which means executing all the actions specified there. A single heuristic .
rule may have a list of several actions as its right-hand-side. The actions are executed in "

order, and we then say the rule has finished running.

Only the right-hand-side of a heuristic rule is permitted to have side effects. The right side
of a rule is a series of little LISP functions, each of which is called an action.

2 Sometimes, | will mention where a certain rule is sttached; in that case, | can omit explicit mention of the first conjunct.
Converssly, if | inchude thet conjunct, | needn't tell you wher« the rule is stored. ’ ;
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Semantically, each action performs some processing which is appropriate in some way to the
kinds of situations in which the left-hand-side would have triggered. The final value that
the action function returns is irrelevant.

Syntactically, there is only one constraint which each function or “action” must satisfy: Each
action has one of the following 3 side-effects, and no other side-effects:

1. It suggests a new task for the agenda.

2. It causes a new concept to be created.

3. It adds (or deletes) a certain entry to a particular facet of a particular concept.

To repeat: the right side of a rule contains a list of actions, each of which is one of the
above three types. A single rule might thus result in the creation of several new concepts,
the addition of many new tasks to the agenda, and the filling ia of some facets of some
already-existing concepts.

These three kinds of actions will now be discussed in the foilowing ihree sections.

4.2, Heuristics Suggest New Tasks
Thils section discusses the “croposing a new task” kind of action. {

Here is the basic idea in a nutshell: The left-hand-side of 2 rule triggers. Scattered among
the "thinge to do” in its right-hand-side are some sugyestions for future tasks.' These new
tasks are then simply added to the agenda list.

4.2.1. An Illustration: “Fill in Generalizations of Equality”

If a new task is suggested by a henristic rule, ther that rule reust specify how to assemble
the new task, how to get reusons fcr it, and how to 2valuate those reasons. For example, 1
here is a typical heuristic rule which progoses a new task to add ‘o the agenda. It says to s

generalize a predicate if it is very rarely® satisfied:

If the current fask was {Fili=in axsmples of X), t
and X is a pradicate, 9
end more than 106 iteme are known in the domain of X,
and st laast 10 cpu seconds were spant trying to randomly instantiate X,
and the ratio of successes/failures is both >0 and less than .05
Then add the foliowing task to the sgenda: (Fill-in generalizations of X), for the following
reason:

Gy g

[T

3 The most suspicious part of the situationa! fluent (the IF-part) is the number "05". Where did it come from? Hint: if all
humans had ¢ fingers, this would probably be 005 in base f. Seriously, one can change this value (to .01 or
to 25) with virtually no change irn AM's behsvior. This is the conclusion of experiment 3 (see Section
623A)M50ch empiricsl justification is one important resson for actually writing and running large programs
tike
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™Y is rarely sstisfied; o slightly less restrictive concept might be more interesting”.
This roasor's rating is computed as three times the ratio of nonexamples/examples
found.

Evep this is one full step above the actual LISP implementation, where "X is a predicate™
would be coded as "(MEMBER X (EXAMPLES PREDICATE))". The function EXAMPLES(X)
rummages about looking for already-existing examples of X. Also, the LISP code contains
information for normalizing all the numbers produced, so that they will lie in the range 0-
1G00.

Let’s examine an instance of where this rule was used. At some point, AM chese the task
"Fillin examples of List-equality”. One of the ways it filled in examples of this predicate was
to run it on pairs of randomly-chosen lists, and observe whether the result was True or

False®. Say that 244 random pairs of lists were tried, and only twice was this predicate
satisfied. Sometime Iater, the IF part of the above heuristic is examined. All the conditions
are met, so it "triggers". For example, the "ratio of successes to failures” is just 2/242, which
is clearly greater than zero and less than 0.05. So the right-hand-side (THEN-part) .of the
above rule is executed. The right-hand side initiates only one action: the task "Fillin
generalizations of List-equality” is added to the agenda, tagged with the reason "List-equality
is rarely satisfied; a slightly less restrictive concept might be more interesting”, and that
reason is assigned a numeric rating of 3x(242/2) = 363.

Notice that the heuristic rule above supplied a little function to compute the value of the

reason. That formula was: "three times the ratio of examples/nonexamples found".
Functions of this type, to compute the rating for a reason, satisfy the same constraints as the
left-hand-side did: the function must be very fast and it must have no side effects. The
"intelligence” that AM exhibits in selecting which task to work on ultimately depends on the
accuracy of these local rule evaluation formulae. Each one is so specialized that it is "easy”
for it to give a valid result; the range of situations it must ju.ge is quite narrow. Note that
these little formulae were hand-written, individually, by the author. AM wasn’t able to
create new little reason-rating formulae.

The reason-rating function is evaluated at the moment the job is suggested, and only the
numeric result is remembered, not the original function. In other words, we tack on a list of
reasons and associated numbers, for each job on the agenda. The agenda doesn’t maintain
copies of the reason-rating functions which gave those numbers. This simplification is used
merely to save the system some space and time.

Let's turn now from the reason-rating formulae to the reasons themselves. Each reason
supperting a newly-suggested job is simply an English sentence (an opaque string, a token).
AM cannot do much intelligent processing on these reasons. AM is not allowed to inspect
parts of it, parse it, transform it, etc. The most AM can do is compare two such tokens for
equality. Of course, it is riot to hard to imagine this capability extended to permit AM to

4 The True ones becams exsmples of List-equality, snd the pairs of lists which didn't satisfy this predicate became known as
non-sxsmples (faikures, fodles,.). A hauristic similer to this “random instantiation” ome is illustrated in
Section 4 4, on page 48

5 sctuality, this would be checked to ensure thet the result lies betwsen O and 1000.
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syntactically analyze such strings, or to trivially compute some sort of "difference” between

two given reasons.® Each reason is assumed to hive some semantic impact on the user, and
is kept around partly for that purpose.

Each reason will have a numeric rating (a number between 0 and 1000) assigned to it
locally, by the heuristic rule which proposed the task for that reason. One global formula
will then combine all the reasons’ ratings into one single priority value for the task.

4.2.2 The Ratings Game

In general, a task on the agenda list will have several reasons in support of it. Each reason
consists of an English phrase and a numeric rating. How can a task have more than one
reason? There are two contributing factors: (1) A single heuristic rule can have several
reasons in support of a job it suggests, and (ii) When a rule suggests a "new" task, that very
same task may already exist on the agenda, with quite distinct reasons tacked on there. In
that case, the new reason(s) are added to the already-known ones.

One globa! formula looks at all the ratings for the reasons, and combines them into a single
priority value for the task as a whole. Below is that formula, in all its gory detail:

Worth(J) = ||SQRT(SUM Riz)ll x [ .2xWorth(A) + .3xWorth(F) +» 5xWorth(C)]

Where J = job to be judged = (Act A, Facel F, Concept C)
and {R;} are the ratings of the reasons supporting J.

For example, consider the job ] = (Check examples of Primes). The act A would be
"Check", which has a numeric worth of 100. The facet F would be "Examples”, which has
a numeric worth of 700. The concept C would be "Primes”, which at the moment might
have Worth of 800. Say there were jour reasons, having values 200, 300, 200, and 500.
The double lines "||..I" indicate norinalization, which means that the final value of the
square-root must be between 0 and 1, which is done by dividing the result of the Square-
root by 1000 and then truncating to 1.0 if the result exceeds unity.

In this case, we first compute Sqrt(2002 + 3002 + 2002 4 5002) = Sqrt(420,000), which is
about 648. After normalization, this becomes 0.648. The expression in square brackets in

the formula’ is actually computed as the dot-product of two vectors®; in this case it is the
dot-product of (100 700 800) and (2 .3 .5), which yields 630. This is multiplied by the
normalized Square-root value, 0.648, and we end up with a final priority rating of 408.

The four reasons each have a fairly low priority, and the total priority of the task is

6 It is in fact trivial to IMAGINE it. Of course DOING it is quite 8 bit less trivial. In fact, it probably is the toughest of all the
"open ressarch problems” {'ll propose.

7 Namely, [ 0.2xWorth(A) « 0.3xWorth(F) + 0.5xWorth(C) }.

s Namely, <Worth(A), Worth(F), Worth(C)> and < .2, 3, .5 >. The dot-preduct of <al 82 #3.> and <bl b2 b3..> is defined
os (al xbl)+ (82 xb2)+ (a3 x b3)s..
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therefore not great. It is, however, higher than any single reason multiplied by 0.648. This
is because there are many distinct reasons support