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ALGEBRA OF NEURON MATRICES

K. G. Agababyan

(Presented by Academician V. M. Glushkov, 1-25-1971)

This/article examines algebra, the principle of construction of

which involves certain properties of sensory systems in the

information-processing sense,(12-5) et al.).

The concept of neuron matrices and neuron operators is

introduced. The elements of the neuron matrices are the output

signals of neurons of a given layer. It is assumed that each layer

consists of neurons of the same type, while the signals between the

layers travel only in one direction - from the receptor field to the

k-th layer. / -, . <r'.. --

We introduce the following function axiomatically:

........................ 3 .
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a , Y - iaX d: \ T

0npp a'. --- f dt<-pk,

key: npH=with

where .t' is the output signal of the ij-th element of the k-th layer,

- coefficient, I' - threshold, i - horizontal coordinate, j -

vertical coordinate, and t - time. i, j, k, j,, 12 , m, n, a, /3, and y

take on integral values. It is assumed that &1, <" b:,', where

6 =t-t. The superscript of the symbol used denotes the layer

number.

Definition 1. The element, which performs operation (I) with

k= a 1---.!,,=W=l. a=0. -1(i). we will call a receptor, where I(t)

is the input signal of the receptor.

, , .". ., .. . .. . -.. - . .. , , .............. •..... ... '.'-*-* ~.-- .* . .' " ..- ..' .• . . .' . * . *' . . . .. .? . '
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Definition 2. The set of receptprs arranged uniformly in a

two-dimensional space in the form of matrix MxN we will call the

receptor field.

Definition 3. The compact set of elements of the k-th layer

whose outputs are connected with one element of the n-th layer we

will call the receptive field.

Definition 4. r, [,,xn1 ] is an operator, which breaks up any

* . given matrix into blocks measuring nxn, and performs operation (I)

* with each block with a=1. t, =io, p-,riz, a=O. where

.l .h= (J.-,-)-- l. When =i,=, we will write the

operator in the form of r0L[n]. It is obvious that the operator

.r0 [ ixf]J transforms the receptor field to receptive fields.

Definition 5. r,[i] is an operator, which performs operation

(I) over the columns of any given matrix with a=1, I,-1,j=N a=0.

The r[.-], is the modality of the operator, where u,=M, M2 =l. N

and M are vertical and horizontal dimentions of the matrix,

* respectively.

Definition 6. rnj-] is an operator, which performs operation

*' (I) over any given matrix with a= 1. p =- p:= I. m=n. -1. =l+ . = '
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The modalities of the operator are r:1--]I lr-][ where

andy assume values -

Definition 7. r,[+] is an operator, which performs operation

(I) over any two given matrices of identical size with a=1.

=. =-I -. This is an operation of addition of

the neuron matrices.

Definition 8. 1 is an operator, which performs operation

(I) over any given matrix witha=1. a ,=I . L =, -. =i+l. =

The modality of the operator is F.1-7]1, where Af=i, y=j+l. Here

J=i+l is equivalent to 1=i-1, while 7=j+l is equivalent to 7=j-1.

Definition 9. r,[-] is an operator, which performs operation

" (I) over any two given matrices of identical size with

ta1, 1 =,=I,m . =--, p7 mn,. y This is a subtraction operation

for the neuron matrices.

Definition 10. I.,-+ is an operator, which performs operation

(I) over any two given matrices of identical size with

0

0.
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a = 1, Pa1, m ~?f. a = I, ~=~-- ,y4j

The modalities of the operator are {-,.+-], r t+]. .[-] where 3 and

- assume values P=i-! 1. = .'=-- . =i-I .

Definition 11. rd- ] is an operator, which performs operation

(I) over any two given matrices of identical size with

a r, n, a - +

The modalities of the operator are 17-].R.[-.-] where 1 and

'y assume values 1=i-1. .=j, i.,y=-. =i,X=,-1.

Definition 12. F[-]' is an operator, which performs operation

{i (I) over any given matrix with a= ;(r), = = = I. i= .u= 1. i ' =

The modalities of the operator are VJj '. rf[]A. r,14]',. where

and 7 assume values . =-i-1, =.i- . Here 0(v) is

defined as follows: (v)=t-t .(1,(,-o)rt=so/v, hence

"'-"I: -- I.

where s, is the distance between the elements from which the entries

* of a neuron can be excited, P - speed at which an image moves over

the receptor field, v'. - speed at which excitation propagates through

the entries of a neuron I and 1,. It is assumed that i,>1. where

* and 1 are lengths of the right and left entries of a neuron, and

0?

I.................
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p(v) satisfies the inequality O<Q(v)<t,.

For the group of operators, where a=Q(v), we will assume that

:-= t const, /s"! =const, , and t=1.

For the operators, where a=l. ,----- 1. we will assume that

L---1-,, while for the operators r,[4nx n], r[Im. r,[-]: 1, -< Il,, where I is

. the length of the ij-th entry.

Definition 13. r,[-i" is an operator, which performs operation

(I) over any given matrix with

G=q("). =P:=I. m=n. a=- 1 =-. N=). The modalities of the

* * operator are r,-R" ,r.[-] r,[-]"r. where p and 7 assume values p=i-l,

" 7=j, 1:i, 7=j+l, A=i, and y=j-1.

.. Definition 14. F,,[-r]' is an operator, which performs operation

(I) over any two given matrices of identical size with

p a q(P). I,= = I,m n.0 I.=+ I,'= .

The modalities of the operator are r,0[;i'. r,0[+-'-. v:0]':, where A

* and 7 assume values O=i-1.y.=j i,y=.r+ 1.i,0 = --.

- Definition 15. r,,T--" is an operator, which performs operation

*(I) over any two given matrices of identical size with

.,. . . . . . *.. .
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.a = q (u). Pt = w~: 1. i=n 1.0 -1. fg, i+ 1.'y= I.

The modalities of the operator are F-]". I,-]"4, r,[-";, where p

and 7 assume values 3=L-i, 7=j, 3=i, 7=j+l, /3=i, and 7 =j-1.

Definition 16. Fr+] is an operator, which performs operation

(I) over any two given matrices of identical sizes with

a = , ('). !t = = 1. rn ,. ( = 1. 3 = i, =i.

Definition 17. [,,[-] is an operator, which performs operation

(I) over any two given matrices of identical size with
~a =, it) it, = i. = 1. in - ,. a = -I. i= L =.

!.y

It is not difficult to see that the addition and subtraction

operations for the ordinary matrices are particular cases of addition

• _and subtraction of the neuron matrices. To prove this, it is

sufficient to substitute i. tj," =0. t 1. p, =0, :'"= ronst. 0, =,-, 1 ,t in

the corresponding expressions and then, after substituting

-"- -'.-a f--.b we will obtain: c =a;-b. and c~j=a -b,.. i e.,

C=A+B and C=A-B.

• . When ,=.r. p-pat), this algebra makes it possible to model

certain pathological properties of the sensory systems.

0
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We note that the neuron matrix does not have to have a

rectangular form in order to perform the operation over the neuron

matrices. It can have an arbitrary form consisting of elements

densely arranged in such a way as to permit their ordering.

Let us consider some of the elementary properties of the neuron

matrices.

6 Theorem 1. Let , q ,.. F0[r 9-j (J A) I [rq-, qI (-i.

Theorem 2. [.[N. I](A) is equivalent to ([A), and F[41; , .!],.i is

equivalent to F: 1 j(A).

Theorem 3. Let A;-==(4JJ). The following relations are valid:

[r[-(A) = .A,-, r[-] (.4) = . j-. r[- A)=., .
rd-I * (A) =4, ,.

Here .is a set of matrices for whose elements .i)=sf=... =" , is

,*'I valid, and 4- a set of matrices for whose elements

fj f'.= -... =f. =, is valid.

4 Theorem 4. Let II--I-.4)=A -. where A - -. The following

relation is valid: il -.

*• Theorem 5. I I-](A. B)= i-IeB.AI.

.°

S. . .
S.-."
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Theorem 6. Let .4 B. I7--(A.Th IB - (B..4).

Let us examine the operator variants.

a) a I. i"=,', jQ t .n ,.t'--. t- I. we will write the operators

in the form T[nJ.-,]f-.V 2 [-1,f.[±I, etc.

O b) Only the absolute value of the difference between and

is estimated.

We will write the operators in the form

[ [-1. r_-]. F[-. r-[-1. --I. [-. rot-I" etc. For this variant,

"=i+l is equivalent to A=i-1, while 7=j+l is equivalent to 7=j-1.

Cases a) and b) are valid simultaneously. We write the operators

in the form 1'4--.E'I-]l.L--. -I--].- , etc.

Certain properties of the neuron matrices were examined in [I]•

In addition to describing and analyzing the operation of the sensory

* systems, this algebra can be used also for solving a class of

problems, which do not relate to neuron networks.

0
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