

E 4.4 8 2.4 8 3.4 . .

a 18. 19. 5

SC ST AT N

MICROCOPY RESOLUTION TEST CHART NATIONAL ROPEAUL FORMANDARED 1963 A

_

Accession For

NTIS GRA&I DTIC TAB

Unannounced

By____

Dist

Justification

Distribution/

DTIC COPY INSPECTEL

Availability Codes

Avail and/or

Special

П

EDITED TRANSLATION

FTD-ID(RS)T-0041-85

13 March 1985

MICROFICHE NR: FTD-85-C-000127

ALGEBRA OF NEURON MATRICES

By: K.G. Agababyan

English pages: 10

Source: Doklady Akademii Nauk SSSR, Vol. 199, Nr. 5, 1971, pp. 991-993

Country of origin: USSR Translated by: Victor Mesenzeff Requester: FTD/TQTA Approved for public release; distribution unlimited

THIS TRANSLATION IS A RENDITION OF THE ORIGI-NAL FOREIGN TEXT WITHOUT ANY ANALYTICAL OR EDITORIAL COMMENT. STATEMENTS OR THEORIES ADVOCATED OR IMPLIED ARE THOSE OF THE SOURCE AND DO NOT NECESSARILY REFLECT THE POSITION OR OPINION OF THE FOREIGN TECHNOLOGY DI-VISION. WP.AF

PREPARED BY:

TRANSLATION DIVISION FOREIGN TECHNOLOGY DIVISION WP:AFB, OHIO.

FTD -ID(RS)T-0041-85

Date 13 Mar 19 85

Bliek	Italic	Transliteration	Block	Italic	Transliterati
÷	A a	A, a	Рр	Рр	R, r
• •	58	B, b	Ĉс	C c	Ĵ, s
:* 8	B •	V, V	Тт	T m	T, t
	Γ ε	Ĵ,Ē	Уу	Уу	ย, น
	Дд	D, d	Φ ¢	Φφ	F, f
ΕĒ	E I	ïe, ye; E, e *	Х×	Xx	Kh, kh
<u>-</u>	ж ж	In, zh	Цц	Ц ч	Ts, ts
3 э	3 ;	Ξ, Ξ	Чч	4 v	Ch, ch
1 ×	И ч	I, i	<u>ت</u> ليا	Шш	Sh, sh
· .·	A a	7, y	تس سط	Щщ	Shek, anon
•• ••	K ĸ	X, k	Ъъ	ъ 1	"
	ЛА	l, 1	5	Ы м	¥., 2
	MM	N, m	рь	ь .	1
	Ни	li, r.	Ээ	э	E, e
- 0	0 0	ũ, o	ъю	Ю ю	Yu, yu
· –	Πn	P, p	Яя	Яя	Ya, ya

U. J. BOARD ON GEOGRAPHIC NAMES TRANSLITERATION SYSTEM

 $*_{20}$ initially, after vowels, and after ъ, ь; <u>е</u> elsewhere. When written as ё in Russian, transliterate as yё or ё.

FUEDIAN AND ENGLISH TRIGONOMETRIC FUNCTIONS

Bullinn	English	Russian	English	Russian	Engli
, ,	· · · · · · · · · · · · · · · · · · ·	sh	sinr.	arc sh	
		l ch	cosh	arc ch	2
•	tan	th	tanh	are th	•
•	•	eth	esth.	arc oth	· · ·
	200	zeh	sech	are set.	. · · · -
• 1. • • ;	1.2.2	ezeh.	esch	ard dach	

Hubbian English rot purl lg i r

GRAPHICS DISCLAIMER

All figures, graphics, tables, equations, etc. merged into this translation were extracted from the best quality copy available.

PAGE 1

ALGEBRA OF NEURON MATRICES

K. G. Agababyan

(Presented by Academician V. M. Glushkov, 1-25-1971)

This article examines algebra, the principle of construction of which involves certain properties of sensory systems in the information-processing sense, ([2-5] et al.).

The concept of neuron matrices and neuron operators is introduced. The elements of the neuron matrices are the output signals of neurons of a given layer. It is assumed that each layer consists of neurons of the same type, while the signals between the layers travel only in one direction - from the receptor field to the k-th layer.

We introduce the following function axiomatically:

PAGE 2

$$f_{i,j}^{(k)} = \begin{cases} \lambda_k \left[a \sum_{i=1}^{\mu_1} \sum_{j=1}^{\mu_2} \int_{l_0^{(k)}}^{l} (f_{ij}^{(m)} + \alpha f_{i\gamma}^{(n)}) dt - p_k \right] & \text{прп } a \sum_{i=1}^{\mu_1} \sum_{j=1}^{\mu_2} \int_{l_0^{(k)}}^{l} (f_{ij}^{(m)} + \alpha f_{i\gamma}^{(n)}) dt > p_k, \\ & (1^2) \\ & (1^$$

key: при=with

where t_{i}^{α} is the output signal of the ij-th element of the k-th layer, $\lambda = \text{coefficient}, \quad t^{\alpha} = \text{threshold}, \quad i = \text{horizontal coordinate, j} = \text{vertical coordinate, and t} = \text{time. i, j, k, } \mu_{1}, \mu_{2}, \text{ m, n, } \alpha, \beta, \text{ and } \gamma$ take on integral values. It is assumed that $\delta_{\alpha}^{(k)} \leq \delta_{\alpha}^{(k)}$, where $\delta^{\alpha} = t - t_{\alpha}^{(\alpha)}$. The superscript of the symbol used denotes the layer number.

Definition 1. The element, which performs operation (I) with $k = 1, a = 1, \mu_2 = \mu_2 = 1, a = 0, f_{ij}^{(1)} = I(t)$. we will call a receptor, where I(t) is the input signal of the receptor.

PAGE 3

Definition 2. The set of receptprs arranged uniformly in a two-dimensional space in the form of matrix M×N we will call the receptor field.

Definition 3. The compact set of elements of the k-th layer whose outputs are connected with one element of the n-th layer we will call the receptive field.

Definition 4. $\Gamma_0 [\eta_1 \times \eta_2]$ is an operator, which breaks up any given matrix into blocks measuring $\eta_1 \times \eta_2$ and performs operation (I) with each block with a=1, $\mu_1=i_0\eta_1$, $\mu_2=i_0\eta_2$, a=0, where $a_i=(i_{k+1}-1)\eta_1+1$, $i_k=(j_{k+1}-1)\eta_2+1$. When $\eta_1=\eta_2=\eta$, we will write the operator in the form of $\Gamma_0 [\eta]$. It is obvious that the operator $\Gamma_0 [\eta_1 \times \eta_2]$ transforms the receptor field to receptive fields.

Definition 5. $\Gamma_1[I]$ is an operator, which performs operation (I) over the columns of any given matrix with a = 1, $\mu_1 = 1$, $\mu_2 = N$, $\alpha = 0$.

The $\Gamma_1[-]$ is the modality of the operator, where $\mu_1=M$, $\mu_2=1$. N and M are vertical and horizontal dimentions of the matrix, respectively.

Definition 6. $\Gamma_2[-]$ is an operator, which performs operation (I) over any given matrix with a = 1, $\mu_1 = \mu_2 = 1$, m = n, c = -1, $\beta = i + 1$, $\gamma = i$.

PAGE 4

The modalities of the operator are $\Gamma_{2}[-], \Gamma_{2}[-]\dagger, \Gamma_{2}[-]\downarrow$, where β and γ assume values $\beta = i - 1, \gamma = j, \beta = i, \gamma = j + 1, \beta = i, \gamma = j - 1$.

Definition 7. $\Gamma_{3}[+]$ is an operator, which performs operation (I) over any two given matrices of identical size with a=1, $\mu_{1} = \mu_{2} = 1$, m = n, u = -1, $\beta = i$, $\gamma = j$. This is an operation of addition of the neuron matrices.

Definition 8. $\Gamma_{i}[+]$ is an operator, which performs operation (I) over any given matrix with a = 1, $\mu_{i} = \mu_{i} = 1$, m = n, a = 1, $\beta = i + 1$, $\gamma = j$.

The modality of the operator is $\Gamma_{*}[+]$, where $\beta=i$, $\gamma=j+1$. Here $\beta=i+1$ is equivalent to $\beta=i-1$, while $\gamma=j+1$ is equivalent to $\gamma=j-1$.

Definition 9. $\Gamma_{n}[-]$ is an operator, which performs operation (1) over any two given matrices of identical size with $a = 1, \mu_{1} = \mu_{2} = 1, m \neq n, a = -1, \beta = i, \gamma = j$. This is a subtraction operation for the neuron matrices.

Definition 10. $\Gamma_{4}[+]$ is an operator, which performs operation (I) over any two given matrices of identical size with

 $a = 1, \mu_1 = \mu_2 = 1, m \neq n, a = 1, \beta = i + 1, \gamma + j.$

The modalities of the operator are $\Gamma_{\epsilon}[+], \Gamma_{\epsilon}[+], \Gamma_{\epsilon}[+]\downarrow$, where β and γ assume values $\beta = i - 1, \gamma = j, \beta = i, \gamma = j + 1, \beta = i, \gamma = j - 1$.

Definition 11. $\Gamma_{1}[-]$ is an operator, which performs operation (I) over any two given matrices of identical size with $a = 1, \mu_{1} = \mu_{2} = 1, m \neq n, \alpha = -1, \beta = i + 1, \gamma = j.$

The modalities of the operator are $\Gamma_{1}[-]$, $\Gamma_{2}[-]^{*}$, $\Gamma_{2}[-]^{*}$, where β and γ assume values $\beta = i - 1$, $\gamma = j$, $\beta = i$, $\gamma = j - 1$, $\beta = i$, $\gamma = j - 1$.

Definition 12. $\Gamma_{\epsilon}[+]'$ is an operator, which performs operation (I) over any given matrix with a = q(v), $\mu_1 = \mu_2 = 1$, m = n, a = 1, $\beta = i + 1$, $\gamma = j$.

The modalities of the operator are $\Gamma_{\epsilon}[+]'$, $\Gamma_{\epsilon}[+]'^{*}$, $\Gamma_{\epsilon}[+]'^{*}$, $\Psi_{\epsilon}[+]'^{*}$, where β and γ assume values $\beta = i - 1$, $\gamma = j$, $\beta = i$, $\gamma = j + 1$, $\beta = i$, $\gamma = j - 1$. Here $\phi(\nu)$ is defined as follows: $\varphi(\nu) = t_{1} - t_{2}$, $t_{i} = (l_{1} - l_{0}) / v_{\nu}$, $t_{i} = s_{0} / v_{i}$ hence

$$l(v) = \frac{l_1 - \frac{1}{2}}{v_0} \sqrt{1 - \frac{s}{l_2 - l}} \frac{v_0}{v}$$

where s_{i} is the distance between the elements from which the entries of a neuron can be excited, ν - speed at which an image moves over the receptor field, v_{i} - speed at which excitation propagates through the entries of a neuron l and l_{i} . It is assumed that $l_{i} > l_{i}$ where l_{i} and l_{i} are lengths of the right and left entries of a neuron, and

 $\varphi(\nu)$ satisfies the inequality $0 < \varphi(\nu) < t_1$.

For the group of operators, where $a=\phi(\nu)$, we will assume that $f_{ij}^{(m)} = \text{const}, \quad f_{Bij}^{(m)} = \text{const}, \quad t_{ij}^{(m)} = 0$, and t=1.

For the operators, where a = 1, $\mu_i = \mu_i = 1$, we will assume that $l_i = l_i$, while for the operators $\Gamma_0[\eta_i \times \eta_2]$, $\Gamma_1[I]$. $\Gamma_1[-]$: $l_i \leq l \leq l_i$, where l is the length of the ij-th entry.

Definition 13. $\Gamma_{\bullet}[-]''$ is an operator, which performs operation (I) over any given matrix with $a = \varphi(v), \mu_{i} = \mu_{2} = 1, m = n, \alpha = -1, \beta = i + 1, \gamma = j$. The modalities of the operator are $\Gamma_{\bullet}[-]'', \Gamma_{\bullet}[-]'' \uparrow, \Gamma_{\bullet}[-]'' \downarrow$, where β and γ assume values $\beta = i - 1$, $\gamma = j, \beta = i, \gamma = j + 1, \beta = i, \text{ and } \gamma = j - 1$.

Definition 14. $\Gamma_{10}[+]'$ is an operator, which performs operation (I) over any two given matrices of identical size with $a = q(v), \mu_1 = \mu_2 = 1, m \neq n, a = 1, \beta = i + 1, \gamma = j.$

The modalities of the operator are $\Gamma_{10}[+]'$, $\Gamma_{10}[+]'$, $\Gamma_{10}[+]'$, where β and γ assume values $\beta = i - 1$, $\gamma = j$, $\beta = i$, $\gamma = j + 1$, $\beta = i$, $\gamma = j - 1$.

Definition 15. $\Gamma_{ii}[-]$ " is an operator, which performs operation (I) over any two given matrices of identical size with

PAGE 7

 $a = q(v), \mu_i = \mu_i = 1, m = n, a = -1, \beta = i + 1, \gamma = j.$

The modalities of the operator are $\Gamma_{ii}[-]'', \Gamma_{ii}[-]''^{\dagger}, \Gamma_{ii}[-]''^{\dagger}$, where β and γ assume values $\beta = i - 1$, $\gamma = j$, $\beta = i$, $\gamma = j + 1$, $\beta = i$, and $\gamma = j - 1$.

Definition 16. $\Gamma_{12}[+]$ is an operator, which performs operation (I) over any two given matrices of identical sizes with $a = \frac{1}{4}(v), \mu_1 = \mu_2 = 1, m \neq r, a = 1, \beta = i, \gamma = j.$

Definition 17. $\Gamma_{1,3}[-]$ is an operator, which performs operation (I) over any two given matrices of identical size with $a = q(v) \mu_1 = \mu_2 = 1, m \neq n, a = -1, \beta = i, \gamma = j.$

It is not difficult to see that the addition and subtraction operations for the ordinary matrices are particular cases of addition and subtraction of the neuron matrices. To prove this, it is sufficient to substitute $b_a = 1$, $t_0^{(\alpha)} = 0$, t = 1, $p_a = 0$, $f_{ij}^{(\alpha)} = const$, $\beta^{(i)} = const$ in the corresponding expressions and then, after substituting $f_{ij}^{(\alpha)} \rightarrow c$, $f_{ij}^{(\alpha)} \rightarrow a$, $f_{ij}^{(\alpha)} \rightarrow b$, we will obtain: $c = a_i + b_i$ and $c_0 = a_{-b_{ij}}$ i.e., C=A+B and C=A-B.

When $\lambda_* = \lambda_*(t)$, $p_* = p_*(t)$, this algebra makes it possible to model certain pathological properties of the sensory systems.

We note that the neuron matrix does not have to have a rectangular form in order to perform the operation over the neuron matrices. It can have an arbitrary form consisting of elements densely arranged in such a way as to permit their ordering.

Let us consider some of the elementary properties of the neuron matrices.

Theorem 1. Let $\eta_1 \neq \eta_2$, $\Gamma_0[\eta_1 \times \eta_2](A) = \Gamma_0[\eta_2 \times \eta_2](A)$.

Theorem 2. $\Gamma_{i}[N \times 1](A)$ is equivalent to $\Gamma_{i}[1](A)$, and $\Gamma_{i}[1 \times M](A)$ is equivalent to $\Gamma_{i}[1](A)$.

Theorem 3. Let $A \equiv (4 \cup \overline{A})$. The following relations are valid:

$$\Gamma_{2}[\overrightarrow{-}](A) = A_{1} \rightarrow, \quad \Gamma_{2}[\overrightarrow{-}](A) = A_{1} \leftarrow, \quad \Gamma_{2}[-] \uparrow (A) = A_{1} \uparrow, \\ \Gamma_{2}[-] \downarrow (A) = A_{1} \downarrow.$$

Here A is a set of matrices for whose elements $f_{12}^{*} = f_{12}^{*} = \dots = f_{MN}^{*} = 0$, is valid, and $\overline{4}$ - a set of matrices for whose elements $f_{12}^{*} = f_{12}^{*} = \dots = f_{MN}^{*} = 0$ is valid.

Theorem 4. Let $\Gamma_1[-](A) = A_1 + \text{where } A_{-+} = A_{-+}$. The following relation is valid: $\Gamma_1[-](A_1 +) \neq A_{-+}$.

Theorem 5. $\Gamma[+](A, B) = \Gamma[-](B, A).$

PAGE 9

Theorem 6. Let $A \neq B$. $\Gamma_{\gamma}[-](A, B) \neq \Gamma_{\gamma}[-](B, A)$.

Let us examine the operator variants.

a) $a = 1, f(\overline{\gamma}) = \text{const}, f(\overline{\gamma}) = \text{const}, t_{\overline{\gamma}}^{(1)} = 0, t = 1$, we will write the operators in the form $\overline{\Gamma}[\eta], \overline{\Gamma}_t[I], \overline{\Gamma}_2[+], \overline{\Gamma}_4[+], \text{ etc.}$

b) Only the absolute value of the difference between \mathbb{R}^n and \mathbb{R}^n is estimated.

We will write the operators in the form Γ_{-} , Γ_{-} , etc. For this variant, β =i+1 is equivalent to β =i-1, while γ =j+1 is equivalent to γ =j-1.

Cases a) and b) are valid simultaneously. We write the operators in the form $\overline{\Gamma_1[-]}, \overline{\Gamma_2[-]}, \overline{\Gamma_2[-]}, \overline{\Gamma_2[-]}, \overline{\Gamma_2[-]}, etc.$

Certain properties of the neuron matrices were examined in [1]. In addition to describing and analyzing the operation of the sensory systems, this algebra can be used also for solving a class of problems, which do not relate to neuron networks.

Institute of Cybernetics, AS UkrSSR

References

¹ К. Г. Агабабян, Кандидатская диссертация, Киев, 1969. ² А. Л. Бызов, актрофизиологические исследования сетчатки, «Наука», 1966. ³ В. Д. Глезер, итанизмы опознания зрительных образов, «Наука», 1966. ⁴ Р. Грания, Электроакологические исследования рецепции, И.Л. 1957. ⁵ Теория связи в сенсорных встемах, М., 1964.

END

C

FILMED

7-85

DTIC

