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1.1. Photoelectron Energy Spectrum

In the daytime midlatitude lower ionosphere the primary source of electrons

is photolonization of the neutral gas by photons in the extreme ultraviolet p

(EUV) region of the solar spectrum. We have studied this process in detail

along with the various particle-particle collisional processes that determii."

the energy dependence of the photoelectron flux. Our analysis is based on

Boltzmann-Fokker-Planck theory in the local approximation as developed by

Jaspersel.

Using this theory we can calculate the isotropic electron distribution

function (EDF) from a detailed balance equation of electron sources and sinks in

phase space. The equation in energy space is

6F0 (E) 6Fo(E)
0 t pi + 6t Co

where the terms on the right-hand side are given in Jasperse2 ,3 . The two p

general features of the EDF are a Maxwellian in the thermal region wirlb a struc-

tured and inflated tail at high energies (1-200 eV). The electrons are

generally produced at high energies by photons ionizing the neutrals. These

photoelectrons then lose energy through both electron conserving and electron

producing collisions and eventually attain "thermal" energies where recom-

bination with ions becomes an effective sink.

In I1.1., we discuss the detailed processes that lead to the high energy . -

tail of the EDF. In Section B, we focus on the role of the electron-electron

collisions in the transition region of near-thermal energies where the EDF

changes character from a tail-like structure to a Maxwellian.

I.1.1. High Energy Tail of the Photoelectron Distribution Function

In the photoionization process, a neutral particle absorbs a photon of

energy hv and an electron is ejected with energy Eihv -Epijm, where Epijm is the

ionization energy associated with the ionization process in which the neutral j

* is transformed into an ion in state m. The number of electrons with energy E

* produced by such a process is

I(E+Epijm) Qpijm(E+Emijm) nj , (2)

I-i
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"* where I is the number of photons with energy hv=E+Epijm, Qpsjm is the cross-

section for the photolonization process described above, and nj is the density

* of neutral j. To calculate the total electron production rate due to a photon

of energy hv one has to sum over all the neutral species and all the final ionic

states. In our initial modeling we included contributions from 20 of the

electronic bound aad dissociating states of 0+ , N2+ and 02+.

The solar EUV spectrum is highly structured being composed primarily of

narrow lines 4 with the largest line being He II (40.7 eV) with a measured width

(FWHM) of .013 eV. From formula 2, it is clear that if the cross section is

reasonably constant over the width of a solar line then such a narrow line at hv

will lead to a narrow peak in the photoelectron production spectrum at hV-Epijm.

Such a production peak is then degraded by various interactions in the plasma

resulting in shifted, reduced and smeared peaks in the photoelectron spectrum.

Such structure has been seen in measured photoelectron spectrum5 , particularly

between 20 to 30 eV where several large peaks can be identified with the photo-

ionization [of 02 and N2 ] by the He II line.

In spite of the particle interactions much of the structure in the photo-

electron spectrum can be directly identified with a specific solar line, neutral

specie and final ion state. The four major peaks of the photoelectron spectrum

form a definite pattern determined by threshold energies for producing N2+ and

02+ in their ground, first excited and second excited states. While the He II

(40.8 eV) solar line produces the largest version of the pattern between 21 and

28 eV strong solar lines at 33.6 eV and 48.2 eV produce the same pattern simply

shifted in the photoelectron spectrum by the energy difference between these

solar lines and the HE II line. The pattern is not limited to four peaks but is

part of a larger pattern which includes the photaproduction of other ionic states

by a particular solar line.

While we can identify some of the structure in the photoelectron spectrum

as arising directly from photoionization there is another process which contri-

butes significantly to the structure, namely, electron-neutral inelastic scat-

tering. In inelastic scattering the electrons of the photoionization peaks

scatter off the neutrals and lose discrete amounts of energy resulting in

shifted peaks which are reduced images of the photolonization peaks. With these

two processes, photoionization and electron neutral inelastic scattering, we

1-2



found excellent agreement with satellite data with respect to the locations of

peaks and the general character of the photoelectron spectrum.

While we included such interactions as electron-electron and electron-

neutral to account for the degradation of the production peaks a variety of

effects which would broaden a peak during the photoionization process were

neglected. To account for this the solar lines were given an increased width, 2

eV for HE II, where the width was on the same order as the vibrational spacing

for the molecules. This ad hoc width fundamentally determined the width and

shape of the peaks in the photoelectron spectrum. While our agreement with data

was generally excellent the widths of the theoretical peaks were less than the

observed widths. Before one can consider if other processes such as wave-particle

interactions could be important it is necessary to first consider the photoioni-

zation process in greater detail.

We have found that the effects in photoionization due to natural line

broadening, Doppler broadening, pressure broadening, molecular rotation levels

and atomic fine structure are of the same order or smaller than the experimental

widths of the solar lines. From photoelectron spectroscopy data 6 we have seen

that enough of the vibrational levels of a given molecular electronic bound

state can be populated so as to cause a spread in electron energy as large as

4.94 eV. We include these facts in our modeling by, first, using a solar

spectrum with line width (.04 eV for HE I) of the order of the measured solar

line widths and, second, explicitly including the molecular vibration levels in

the photionization process.

Inclusion of vibrational effects changes Eq. (2) in the following manner

I(hv) Bnjm(hv) Qpijm(hv) nj (3)

where Bnjm's are branching ratios for the vibrational states for an electronic

state Jm7 . The electron energy E is now given as E=hv-Epijm-AEnvib so that the

numbter of photoelectron peaks from a particular solar line and molecular state

jm equals the number of vibrational levels of state jm that are populated. In

our current modeling we have included branching ratios for 8 of the 02+ and N2+

electronic states.

These modifications broaden the theoretical widths and remove the ad-hoc

nature of our previous calculations. The energy resolution of present photo-

electron data is such that it is difficult to quantify what differences remain

1-3
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between theoretical and experimental widths. It does appear though that theory

may still underestimate the broadening of photoelectron peaks. Theoretically

the next step is to include the interactions of electrons with the thermal wave

*[ fluctuations. Experimentally, high resolution measurements of the tail of the

EDF would clearly quantify differences between any theoretical modeling and
data.

1.1.2. Photoelectron Distribution Function at Thermal and Near Thermal Energies

In recent years there has been increased interest in the thermal and near

Athermal energy regions of the photoelectron distribution function. In theoreti-

cal calculations of the EDF how one treats the electron-electron interactions

(at these energies) is an important concern. From an examination of our solu-

tions of Eq. (1) and the various processes involved at low energies we have come

to some conclusions concerning how the electron-electron interactions should be

treated.

We used the Fokker-Planck description for the Coulomb collisions between

electrons

AF(V't) = v. [-f (V,t) (AV)av +- V• f(V,t) (AVAv)a] (4)

6Tee a 2

The first term is called the dynamical friction term and the second is the

velocity diffusion term. The friction term describes the tendency of electron-

electron collisions to act as a force accelerating or decelerating electrons to

the average velocity. The diffusion term describes the tendency of the colli-

sions to diffuse the electrons out in velocity space so there are random fluc-

tuations about the average velocity. A Maxwellian distribution of electrons

represents a distribution where these two effects exactly balance.

Our calculation, done in energy space following the Rosenbluth, MacDonald

and Judd 8 development and involving the integral of the kinetic equation, gives

SF° 0 0 47rF 2
47 t dE -kee 0 1c ) -

4nkee - / (2(10+j) Fo) (5)

where
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10 47 F(x) dx 12 4f7f Fxd J-l1 47 EI /2  F(d

F x , I= Fx dx , = dx

3/2 e2  .
and kee - 2(2  4 (m) InA. The first term we still label friction and the

second diffusion. Further, the average energy loss rate for an electron is

0 0
kee.O -) 0 0 0 ::::

El/2 which in the case of having F(x) a Maxwellian in I , 12 and J-1

agrees with the Butler and Buckingham energy loss rate. 9  It is some form of

friction term which is used in most calculations of the photoelectron distribu-

tion function while the diffusion term is often neglected.

The use of a friction term can be justified in general for high energy

where fast electrons are decelerated towards thermal regions. The two excep-

tions where ignoring diffusion can be a problem are (1) near any sharp peaks

where derivatives of Fo can be large and the proper description of the spreading

of the peaks may require diffusion and 2) in the thermal and near thermal

regions where the F is or is becoming Maxwellian in character so that the very

existence of the Maxwellian indicates that friction and diffusion are of equal

importance.

[From our calculations] we have seen [in 3 ways] the importance of the dif-

fusion term. First, a comparison of our full solution to a simpler CSD solu-

tion. The CSD solution is an example of a calculation where only a friction

type term is used, and we find that while it follows the high energy tail

without peaks that at thermal and near thermal energies it contains none of the

Maxwellian character of the full distribution function. Second, we did runs

with the diffusion term turned off above various threshold energies. When the

threshold was above IOKT away from the Maxwellian the solution was little

affected. As the threshold was lowered below lOKT into the Maxwellian region

the Maxwellian character above the threshold was completely lost and the

electron temperature became radically wrong. Finally we were able to examine

term by term the various processes included in our calculations. We found

directly that at high energies the friction term is generally much larger than

the diffusion term, but as one goes down to near thermal energies, 10 KTe, the

diffusion term becomes of the same order as the friction term, but opposite sign.

Further the two electron terms together do not dominate over the other processes

of these energies, but the friction term alone dominates the other processes so

1-5 .
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that, if the diffusion term is not there to cancel with it, a large error would be

introduced in the equation.

Our basic conclusion is that the Maxwellian forms a natural boundary

where one should use both friction and diffusion to describe the electron-

electron interaction. In other words if one is concerned with the lower

energies in the transition region between the Maxwellian and the high energy

tail then electron-electron diffusion effect should be considered along with

electron-electron friction. Recent work I0 has further confirmed the impact of

and need for both types of terms in the calculation of the thermal electron

heating rates.

1.2. Plasma Instabilities and Their Effects on the Photoelectron Energy
Distribution

One interesting feature of the theoretically calculated1 photoelectron

energy distribution, which is in disagreement with the measurements, occurs in

the 2-6 eV energy range. In this energy range the distribution function has a

minimum at about 2.3 eV (Fig. I-i). This is explained theoretically, since the

cross section for the electron-impact excitation of vibrational states of N2 has

a maximum at 2.3 eV. Beyond 2.3 eV, the photoelectron flux rises sharply to a

maximum at about 5 eV, as the excitation cross section decreases sharply.

Beyond this energy the flux falls off as the cross section for the excitation of

metastable states of atomic oxygen increases. The theoretical calculations

(Fig. I-I) show that this minimum in the spectrum is more and more pronounced at

or below altitudes of 130 km. Above 130 km, the valley starts to be filled up,

the peak-to-valley ratio decreases, until at or above 210 km the structure

disappears completely. This disappearance can be attributed to the depletion of

N 2 as well as to the gradual smoothing process arising from electron-electron

collisions as the altitude increases.

Measurements of the electron energy distribution by McMahon and Heroux II ,

who studied specifically the 2-5 eV energy range with improved energy resolution

of the apparatus, are in good agreement with the theoretical calculations of

Jasperse I at and above 170 km. Below 170 km, the calculated values of the peak-

to-valley ratios by Jasperse I is larger than the measured values. The measure-

ments are in most striking disagreement with the theory below 130 km, where they

show plateaus in the distribution functions in the 2-5 eV energy range.

1-6
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Th's discrepancy between theory and measurement suggests that in the low

altitude regions (100-170 km) collisional processes alone cannot explain the

observed photoelectron distributions. It is well-known that a homogeneous

plasma in a magnetic field with isotropic distribution functions can be

unstable if a population of high energy particles is also present. This is pre-

cisely the situation in the lower ionosphere, and it can be expected that

the plasma instability will produce the anomalous diffusion in the velocity

space through wave-particle interaction, which in turn will flatten the distri-

bution functions in the 2-5 eV energy range. With this in mind, we studied

excitation of electrostatic instabilities in the ionospheric collisional plasma

by the suprathermal electrons near the 5-eV maximum.

Using the Bhatnagar-Gross-Krook (BGK) collision operator to take into

account the effects of electron-neutral collisions, we find that the suprather-

mal electrons near 5 eV can excite electron cyclotron modes in the 110-130 km

region, and upper hybrid modes above 125 km1 2 . As the waves grow in amplitude

at the expense of the suprathermal electron energy, growth rates are reduced.

Eventually, a steady-state is reached in which the waves saturate to a finite

level of amplitude and the electron energy distribution in the 2-6 eV energy

range is considerably modified through anomalous diffusion in velocity space.

*We have studied these wave-particle effects within the framework of the so-

called quasilinear theory of plasma turbulence.

In this section,we first discuss the linear theory of the plasma instabili-

ties mentioned above. We then present the relevant quasilinear equations and

* discuss the approximate analytic solutions of these equations, showing the time

evolutions of the electron distribution function and the wave spectral energy

density from their initial to the time-asymptotic values.

1.2.1. Linear Theory of the Plasma Instabilities

The equation for the one particle photoelectron distribution function, f,
is

{ + " m ['E + (vx1o)/C)] a f S + L(f) (6)

where Bo is the geomagnetic field (assumed to be uniform), S is the photo-

electron source function, and L is the total collision operator for electron-

neutral, electron-electron and electron-ion collisions. The other quantities

1-7
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have their usual meanings. We imagine that the equilibrium electron population

is composed of a Maxwellian part and a suprathermal part, denoted by the two

values of the subscript J, and study electrostatic perturbations from this

equilibrium having frequencies W-Wp, where (a is the electron plasma frequency.

At these frequencies the ion dynamics can be ignored. We seek solutions of the

form

fj f o j (v) + flj(r,v,t) , (7)

E .0+ (rvt) (8)

where foj is the equilibrium (isotropic) distribution of the j type electrons,

flj is the corresponding small amplitude perturbation, and E1 is the perturbed

electric field. Approximately decoupling the thermal from the suprathermal

populations we find that the zero order equations are

0 S + L(foj) (9)

and the first order equations are

(V×Bo) l

am-l " -foj L(foj+flj) - L(foj) , (10)

= -4nq d3v flj (11)

It can be shown that L may be approximated by the BGK operator for the dominant

electron-neutral collisions, i.e.,

R.H.S. of (10) -vjflj+vj(nlj/noj)foj , (12)

where noj and nlj (r,t) are the equilibrium and perturbed densities, respective-

ly. In (12) Vm, where j=m denotes the Maxwellian electrons, is approximately

the elastic collision frequency, and vh is the sum of the elastic and vibra-

tional excitation collision frequency for the suprathermal electrons. The

important point to note is that the Maxwellian, not the suprathermal,electrons

are effective in damping the waves, and that (12) is a good approximate operator

for the study of damping effects.

Assuming perturbations of the form exp(ik.r-it) we solve Eq. (10) for flj

and then, with the aid of Eq. (11), obtain the dispersion relation

S. 1-8
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11 + (Wi /g~2 ) (Nj/Dj) 0 (13)

where

2

Dj T2 ..vj E frd3v -'~kvj)(-J La+iV jkv-ngo

jj 1iv _ Ikv-S I 'O(5

their usual meanings. For the Maxwellian electrons with density nom and temn-

*perature Te, the velocity space integrations can be carried out and Eq. (13)

* becomes

2 22 2 2

1 - PM kg 2ann Wiimk.L(oJ+ivm)
ILZ((L+iVm)k2 Ioexp(-b)- n E1 w[(+ivm) 2 n2 Q2 ]k2

+ (W~2 /fl 2 ) (Nh/Dh) =0 .(16)

p

Here an - (In/b) exp(-b),In(b) is the modified Bessel function of the first

kind, b -k2Te/1 2
, = 4rrq2  m We have assumed k2 4.4.0 , and (us-n2)/

[Jk1 (2Te/m)l/]>>l for all n, so that Landau damping and cyclotron damping can

be neglected.

1.1.2.1 Upper Hybrid Instability

In the lower Ionosphere we may assume b-1, and 92/~2a Without the supra-
p

thermal electron term, one of the roots (u)-iWr+iwic (wc'(4r) Of the dispersion

equation (16) is
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[ .4

or = (2 + Q2)1/2 (17)
pm

which is the upper hybrid frequency, and

[((W2 + g2)/22] Vm  (18)

is the collisional damping rate.

The suprathermal electrons interact resonantly with the upper hybrid wave

and drive it unstable, the resonance condition being Or-kHvp = nQ. Since noh

nom, the growth rate Y can be assumed to be small compared to wr and is given by

S(noh 4D G 2 kjvj 3 gohY=E f dvj_ J., (19)

k~ jkj nom n=-v =i vH (Ur-nS1)/kll

The collisions of the suprathermal electrons will somewhat detune their reso-

nance with the wave and reduce the growth rate. This damping rate can be shown

to be -(noh/nom) vh. So, the significant damping is that due to the Maxwellian

.. electrons and is given by Eq. (18). The explicit expression for y in the energy

representation using Goh(E) (21/2 El/2/m 3 /2 ) goh(v), so that 4nfdE Goh 1, is

!2(n4 ZoF1/2  4M O

oh 6E" n='r dE
2 nom - J_ lE El 2

2 2
xn+l(an) n Goh(E) , (20)

n

2
Here Eo=mv/2 is the peak energy (*-5 eV) of the suprathermal electrons, KII =

kljvo/Q En = Eo[(r/Q-n)/KI] 2 
, and an = (kivo/Q) [(E-En)/Eo]I/ 2 . We notice

that Y depends on the parameters: noh/nom, wp/Q, ko, and kl, which are

altitude dependent. At a given altitude the unstable spectrum is given by the

*condition j2 -j
2  > 0.

n+l n-l

Numerical values of y at various altitudes have been obtained using the

energy distributions of Jaspersel, and the results are given in Table 1. The

upper hybrid instability can be excited at an altitude as low as 125 km, below

which it is stabilized by the collisions. Above 170 km, the damping effects of

electron-electron and electron-ion collisions must be considered.

1-10
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1.1.2.2 Electron Cyclotron Instability

Here we consider waves with kqtO, and the instability that is found is of

the nonresonant type with cJr~ng. In this case we can write

Nh - _ ___ ___ __

rdV 2kjLv

41TS1 4M ivh
Dh =1- - E

X dv v gh E J2n+2p+1 a 22

where a noh/nom Oh, and v2  V2 + v2 . We first solve Eq. (16) with kK=0 in

the limit vm='O. We substitute ua) =ng(l+x), where n>2 and X<41, and obtain

2 2 2
1- al + 4fn u), aix

(n2-)S12 (n 2_1) 2g2

2

u (an + 2-) =0, (23)

where KjL kivo/ 2, ~2~ 'and
p

I =4irEo f~ T- Goh(E) J2n [2Ki(E/E0 )1/2] (24)

In the energy representation. We have neglected terms of the order of (vhIU) 0

or smaller. It is readily seen that X will have a positive imaginary part

(meaning instability) if 140, III> an K2/0, and
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Ii < ai~i o~l an)1/2 (25)
(n2-l)g22 (n2-l)sl2  K2  a

I I
Condition (25) determines the range of values of &w2/.Q2 for which the n-th

p

harmonic can be unstable. The maximum values of Tmx is obtained when U/ _-

(n2-l)2al. In this case X is given by

2-1 anK2 1/2
n2 4 (III _ __l)] (26)

The second term within the parentheses represents the finite-b stabilizing

effect. In the presence of collisions (vm*0), the complete solution of the

dispersion relation is

W= nD + i [y n2 n>2 (27)4n 2  _ ,

where Y = nQ(Imx) and the additional term is the collisional damping rate.

The electron cyclotron instability has a larger growth rate than that of

the upper hybrid, and an unstable harmonic is localized within a narow range

(-2 km) around the altitude at which it has the maximum growth rate. Results of

numerical calculations are summarized in Table 2. At altitudes 100 km and below,

the mode is stabilized by the electron-neutral collisions while above 130 km it

is stabilized by the finite-b effect.

1.2.2. Quasilinear Evolution of the Waves and of the Photoelectron Distribution

We have studied the upper hybrid waves analytically in somewhat details.

Excitation of these waves requires resonant interaction between the suprathermal

electrons and the wave, and the resonant diffusion, in velocity space, of the

equilibrium suprathermal electrons in response to the unstable waves is governed

by the following equation:

1-13
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* - .--. A . . .- ; -

SRh t) = £ d (kpt)
tmt n=-o - k2  v. vi

x [6(wr-kjvi-nQ) j2 ( ) r(n2 + k1  a

o h k2 im(Nh/Dh) gR (28)•nob - oh

where the time evolution of the field energy density o(k,t) is given by

at
~- (k,t) =2 Im w(k,t) (k,t) ,(29)

and Nh and Dh are given by Eqs. (14) and (15) with j=h, respectively,

Equation (28) may be derived by following the standard method of the quasilinear

theory. The superscript R on goh is to remind us that the equation is valid in

the resonant region.

An H-theorem may be demonstrated from Eq. (28) by multiplying by gR andoh

integrating over v. This gives

1 dA R2(v,t) E fdv dk k2 (wr-kllvUj-na)
2- dt oh m2  n=_ k

n (n vi [ +k 1 A-) R
x j2 (__% [ -2-- + k -

nn° 2 h k 2 [Ira (Nh/Dh)] go v"l8l Il  )  (30

no T2 oh vi 3 vj gv11  oh (2U

Referring to Eqs. (14) and (15) we see that

Q2 noh + kjv
Im(Nh/Dh) "k n- [dv J2 (-2) _(nr kvi n0)

I + k11 'V) go h (31)

Comparing the two terms inside the curly brackets on the right-hand side of

Eq. (30) we conclude that the right-hand side of Eq. (30) is negative. Equation

(30) then states that the time rate of change of a positive quantity is non-

positive. Consequently, the time-asymptotic state must be the one for which the

1-15
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integrand of the velocity integration on the right-hand side of Eq. (30)

vanishes. That is,

j
2 (ii

Wr -nS2f )(knkQ
•Jor 

d k i 6(ki 'kjl
=j rn t

+ n WvS a gR (V 2) k2 Im gRh(v,-)

vol avl oh noh 2 i Dh( o

nQ v Wr-n a
x( + -+gh 0 (32)

v1. Iv VII h = 0v i 0vi -_]

where gR (v,-) = gR (v,t=), and Nh(-), Dh(-) are to be evaluated at k1l =
ohl oh

(Wr-nQ)/vI. It is expected that the field fluctuations will grow in time and

then saturate at a finite amplitude level in the time-asymptotic state. In

other words, 6(t=)*0. Then, according to Eq. (32), gR (v,-) is given by
oh -

[ (n + u r-n1 1
v- a v+ .) gR (v2.)

vi a v 11  Dv,1  oh

no h 2 Nm(h R +n R ~ rn

kn Tm (Dh goh v avi +  v a .R (33)vii Q2V li go "1

At this point we postulate that which is initially isotropic in velocity

space remains so at all times. Then

flQ a +Lr-nQ 3 gr (v-)g
vV oh- v gR h(v,' ) (34)

where v IV and (33) becomes

2
2 no Vh Nh kR

vgR = n Tm (nh) r v gR gh (35)

Referring to Eq. (19), and using (34) we find

2Q2
Im _Nh(-)/Dh(-)] - C-ta y(5 (36)

p
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where y(-) is the time-asymptotic collisionless growth rate. Next, we assume

that y(-) = ~cj so that the fluctuations do not grow any more. Here uc is the

collisional damping rate and may be taken as given by Eq. (18). Using this

assumption in Eq. (35) we find

2 no VM\)hR

[n- o noh W4 I ooh v goh'

which can be solved to yield

oRh(v,- )  C exp(-av 2 /2)

in the resonant region of the velocity space, where

no_ VmVh

noh W4 k

p

and where the constant C has to be determined by matching this solution to the

rest of the distribution function. Changing over to the energy representation

we find

GR (E ) El/ 2 exp(-c'E/Eo) , (38)

oh

where Eo is the peak energy of the suprathermal electrons and

SI n o  vmh. Q
i no () K2 (39)

a 2 noh S2 W p

with Ki  kLv o /Q. Using the values of the parameters involved, a' is estimated

to be _10 -2. The expression (38) is valid for E>En, where En has been defined

before, corresponding to the resonant region of the velocity space. We infer

that in the resonant region the suprathermal electron distribution function,

which initially had a positive slope, will have a small negative slope in the

time-asymptotic state due to the wave-induced diffusion process. Of course,

when the photoelectron source function, which is responsible for the bump in the

equilibrium distribution function at t=O, is retained in the analysis the

distribution function in the time-asymptotic state may have a small bump in the

2-6 eV region. For this a numerical analysis is required. Our conclusion is

that the experimentally measured photoelectron distribution in the 2-6 eV energy
range can be well explained if waves and wave-induced diffusion process are

included in the theory of Jasperse I .
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II. MODELING OF DAYTIME AIRGLOW AND ELECTRON DENSITY PROFILE IN THE
MIDLATITUDE IONOSPHERE

Because of its influence on many Air Force communication and surveillance

systems, it is of great importance to know the electron density profile (EDP) of

. the ionosphere. In circumstances where ionospheric sounders and other direct

means cannot be used to determine this information, some means of modeling the

*EDP or determining it by remote sensing must be found.

One useful diagnostic of conditions within a plasma is the intensity of

optical emission features at different wavelengths. In the daytime ionosphere,

electrons released by photoionization excite atoms and molecules, which then

emit photons at characteristic frequencies when they return to the ground state.

Locally the emission rate depends on the density of the emitting species as well

as the spectrum of the photoelectron flux. The overall emission measured along

a line of sight will depend upon the profiles of these quantities.

In an effort to evaluate the practicality of using optical emissions as a

remote sensor of the EDP, we have developed the capability of modeling the

airglow emission of several features in the ultraviolet - the LBH bands and the

spectral lines at 1356A - emitted by the daytime, midlatitude ionosphere. For

the daytime no method is yet known for determining the EDP directly from optical

emissions; instead an indirect method, using optical emissions to constrain the

parameters of a model of the EDP, will likely be necessary. In this report we

describe a series of case studies, modeling the EDP using first-principle calcu-

lations and comparing the results to a variety of direct measurements. This

series is aimed at evaluating how well such ab initio calculations can model the

EDP and at determining which parameters of the model most sensitively control

the EDP. For cases in which simultaneous optical emission measurements are

available, we evaluate the emissions predicted by our model EDP and compare with

the observed emissions.

In our ab initio calculations, the electron and ion densities are found by

solving the continuity equations for all species simultaneously. In the bottom-

side ionosphere transport can be ignored, and in the steady-state approximation

the continuity equation for a species simplifies to a balance between its pro-

duction and loss rates. The four most important ion species - 0+ , N2
+ , 02+, and

NO+ - are included in our model.

TI- .
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Above the EDP peak, the full time-dependent continuity equation including

transport must be solved, although a simplification is achieved because only the

dominant ion species, 0+, need be followed. We have modified an existing

transport code so that it can run concurrently with our bottomside code. The

result is a calculated EDP from 100 to 1000 km.

To calculate the intensity of VUV and UV daytime emissions, we begin with

the photoelectron flux, F(E,z), calculated as a function of energy and altitude.

The volume emission rate at altitude z is given by

Si(z) = n(z) f F(E,z) C(E) dE

where n(z) is the density of the emitting species and o is the corresponding

cross section. Integration of Si(z) along the line of sight taking into account

absorption gives us the column emmission rate.

The key parameters of these models are: I) the solar EUV flux 2) the

neutral atmosphere (N2 , 02 and 0 densities), 3) the neutral wind and electric

fields, and 4) the temperatures (Te, Ti and Tn). Although the latter two are

strictly parameters of the transport model for the EDP above the peak, the first

two play a major role in determining the EDP throughout the daytime ionosphere.

It is unlikely that all the parameters needed to calculate an ab initio

model of the EDP will be known in any particular case. To judge how much we

could rely on estimates of unknown quantities, and how well our codes would per-

form, we conducted a series of tests under such circumstances, in which we could

compare the results of our ab initio calculations directly with measured

electron density profiles.

(i) Case One: White Sands Missile Range, August 23, 1972, Heroux

et al., (1974).

This case involves rocket data for the solar EUV flux coincident with

ground based ionosonde data. This represents a partial control on the produc-

tion rate and should lead to good bottomside EDP agreement. In Figure 11-1, we

show a plot of the bottomside electron density profile from the ionosonde

measurement and a graph of our hybrid calculation for the electron density pro-

file. It should be noted that the estimated errors for the ionosonde measure-

ment were ±30 km near 120 km and t5 km elsewhere. For this case a Jacchia

(1977) neutral atmosphere with the appropriate parameters for the given day was

used In the calcu]ation in addition to the measured solar EUV flux. Typical
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daytime models were used for the electron temperature and neutral winds. With

observational control on the solar flux one would expect good EDP agreement in

and below the FI layer. The agreement in the Fl layer is in fact within 15%,

while the agreement in the E region is within the error bars on the ionosonde

EDP. Unfortunately the unusually large error bar on the tonosonde measurement

near 120 km renders the E region agreement of limited quantitative significance.

The 25 km or 30% difference in the F2 peak of the EDP is consistent with any

other state-of-the-art ab initio model calculation, and merely reinforces our

intent to pursue the study of the transport term which is in all likelihood the

source of this difference.

(2) Case Two: White Sands Missile Range, August 14, 1979

Rocket data for the solar EUV flux coincident with ground-based ionosonde

data were again available for this case. Thus, we could use the measu. 'd solar

. flux, along with the appropriate Jacchia atmosphere model and the neutral wind

and temperature models used in the previous case to calculate the ab il-tio

*2 model. The results, shown in Figure 11-2, are similar to those of the previous

case, although the accuracy of our calculated peak altitude happens to be better

in this case, with the altitude of the calculated peak falling within 5 km of

the measured position.

(3) Case Three: ISIS 2 topside sounder, May 23, 1972

The data considered here come from an ISIS 2 pass at 8:28 UT at 600 north

latitude and 380 east longitude. The data were taken from iso-density contours

in a sample collection of ISIS-2 observations (Klumpar, 1980). Due to reported

difficulties in interpretation of sounder data, we have shown the data with ±50

km error bars. Figure 11-3 shows two theoretical curves with thi topside sounder

data. The solid curve shows the calculated profile using our best a priori

estimates for the input quantities. We can see that the ab initto calcula-

ted profile is 60% lower than the data but agrees in shape. The dotted curve is

a scaled version of the calculated profile fitted to the data. Had this been a

nighttime case, we would expect direct VUV emissions as discussed in the next

section to provide a good estimate of the peak of the EDP, to which the calcu-

lated topside EDP shape would then be scaled. This would lead to quite satis-

factory agreement for this case. For the daytime case, the dashed curve Wuld

be essentially duplicated above 350 km by use of a stronger equatorward wind In

II1-3
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the model (as might follow at these latitudes from a high latitude heating

event). The excellent agreement of the shape of the 1nodel and observed EDP

* satisfies necessary conditions for the merit of this EDP scheme. However, some

additional observable must be added to scale the ab initio calculated EDP before

we can look for the good agreement shown by the dashed curve.

(4) Case Four: Millstone Hill, incoherent scatter radar, April 8, 1978

This is another case in which the solar EUV flux and other input parameters

for our model are unknown and we must attempt to estimate them. Using typical

values for these parameters we calculated the EDP. Figure 11-4 shows a com-

parison with the EDP derived from an incoherent scatter measurement. In this

case the predicted peak is around 50 km above the measured peak, and densities

can be as much as a factor of three in error.

Our conclusion from these four cases is that when we can specify the input

data necessary for our EDP model, the model does well in fitting the actual EDP.

When all the necessary data is not available, our model does a poorer job.

We now turn to cases in which optical emission data are available.

(5) Case Five: S3-4, Rev 373, April 8, 1978

In this case we had detailed optical emission data from a nadir-looking VUV

spectrometer flying onboard DoD satellite S3-4, 2 but no simultaneous solar EUV

flux or EDP measurements. To calculate airglow emission intensities we need, in

addition to the parameters of our EDP model, the cross sections for the

radiation processes. Because of the difficulty of laboratory mesurements, some

cross sections are still not well known. In Figure 11-5 we show airglow calcula-

tions from our ab initio model for features at nine wavelengths, along with com-

parisons with the S3-4 data. We see that agreement is good at low wavelengths,

around the feature at 1356A, but that the agreement noticeably worsens at longer

wavelengths where scattered light may be contaminating the data. The large

error bars on the data points are due to the statistical uncertainty resulting

from the low count rates in the data.

In Figure 11-6 we track the optical emissions at 1356A as the satellite

moves along its orbit in the noon-midnight plane, passing through midday in the

northern hemisphere. We find that our completely ab initio calculation does a

remarkable job in reproducing the observed emissions produced under a wide range

11-4
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of conditions. A similar plot for the feature at 1383A (Figure 11-7), shows our

theory consistently low compared to the data.

(6) Case Six: Hilat Satellite July 1983

In this case we attempted to model the 1356A airglow observed from the

Hilat satellite. On the date of the observations the satellite passed overhead

near a ground based ionosonde at Millstone Hill making near-coincident measure-

ments of the EDP available.

The optical-emission measurements were made by the AIM sensor onbcard Hilat

at 22 hr 15 min 10 sec UT on Rev. 219. At that time, while crossing the lati-

tude of Millstone Hill, the satellite passed 16.4 ° east of Millstone Hill. The

AIM sensor scans through 1350 along a path perpendicular to the satellite orbit,

in this case beginning its sweep looking east into darkness and ending looking

west into the bright limb, Figure 11-8. There is some uncertainty in the orien-

tation of the satellite, because in this rev. it was still oscillating on all

three axes with the amplitude of the oscillation unknown. If we assume that the

sensor was pointed in the nadir direction at the midpoint of the sweep, then the

observed direction of the bright limb is displaced by one data bin, 5.64, from

its expected location. We assume that this gives us an estimate of the

satellite roll, and we assign error bars of this magnitude to the directions of

the calculated optical emissions. The look direction from the satellite to

Millstone Hill is 53.62°W, placing Millstone Hill in the foot of the bright

limb. An uncertainty of 5.6° in the look direction towards Millstone forces an

*uncertainty in the 1356A flux of the order of 25%.

Our modeling began with a nadir calculation at the satellite location, with

a solar zenith angle (SZA) of 810. At this high SZA, the plane parallel

approximation for the solar flux transport breaks down, resulting in an

underestimation of the airglow emission rates. To get an upper bound for the

airglow, a second nadir calculation was performed using an artificial value of

the SZA, the angle whose secant approximates the Chapman function at 810, that

is, 79° . The results of the two calculations are plotted in Figure 11-9 at

pixel 160 (different pixels, are different look directions) we find that they

are, respectively, 1.2 and 1.5 times the observed 1356A airglow intensity in

that direction.

Z.
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To calculate the column emission rate at some angle to nadir a plane

parallel approximation for the atmosphere was used. Calculations at 10, 20, 30,

40 and 53.620 (the look direction to Millstone Hill) are presented in Figure

11-9. We see that the calculated emission profile reflects the profile of the

data. At 53.62, however, the change in SZA along the look direction was large

enough to call the plane-parallel approximation into question. At that point we

performed two airglow calculations to give bounds to the emission. One was

based on the volume emission rate below the satellite, which with its higher SZA

gives a lower bound to the airglow. The other calculation, based on the volume

emission rate above Millstone, gives an upper bound. Figure II-C shows the two

results differing by a factor of two.

We were interested in this particular sweep because a ground-based

ionosonde had measured the EDP just a half hour before the satellite fly-over.

While not an ideal coincidence either spatially or temporally, this did give us

an opportunity to compare our ab-initio calculations for the EDP and the airglow

with observations of both quantities.

Comparison of the measured EDP with the ab initio EDP calculated for the

airglow theory presented above shows that the ab initio EDP is consistently low

(Figure 11-10). We are currently working to find a method of adjusting the

input parameters of our EDP calculation which can bring the calculated EDP into

line with the measured EDP without destroying the fit of the calculated airglow

emi-sion to the observed airglow. One such adjusted model, shown in Figure

11-10, was made by changing the neutral atmosphere to fit the model EDP to the

measurements at the F2 peak. Such an adjustment, however, will also increase

the already high optical emission rate.

The conclusion of this study then is that our ab initio calculations can

perform fairly well when crucial input data can be accurately specified.

Airglow measurements may be helpful in constraining parameters when the input

data is inadequate. The future direction of this work should be aimed at

establishing the correlations between the airglow and the EDP parameters so that

the airglow measurements can be used for this purpose.
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III. PARTICLE PRECIPITATION: MAGNETOSPHERE-IONOSPHERE COUPLING

The nighttime ionosphere at high latitudes, i.e., in the auroral zone, is

created by energetic particles (both electrons and ions) precipitating from the

magnetosphere. Calculations of energy deposition and ionization in the

atmospherel,2 require that the incident flux of particles precipitating from

the magnetosphere be specified. We have addressed this question with a study ot

the pitch angle diffusion process in the magnetosphere which causes particles to

precipitate. The results of this study are summarized in subsection 111.1, below.

We were able to calculate the loss-cone population in the magnetosphere, as a

function of position, when the processes of precipitation and diffusion compete

against each other; the results are illustrated using data from the diffuse

aurora.

In addition to ionization, the precipitating particles can also trigger

plasma instabilities in the ionosphere, which can cause auomalous heating, irregu-

larities, and other phenomena which interfere with communications. One of the

sure indications of such activity in the aurora zone is the detection of ion

conics: fluxes of energetic ions streaming out of the ionosphere along auroral

field lines. We have studied both the means by which turbulence can be created

by precipitating electrons and the way in which the turbulence can accelerate

ionospheric ions. This work is summarized in subsection 111.2, below. In an

empirical study, using a Monte Carlo model for wave particle interaction, we

were able to show that the commonly observed intense lower-hybrid turbulence in

the suprauroral region is capable of accelerating ions to the energies commonly

observed in ion conics. Then, using a plasma simulation, we demonstrated that a

precipitating electron flux modeled after the flux observed in a discrete

auroral arc could excite lower-hybrid turbulence and cause significant ion acce-

leration.

,h.
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111.1.. The Loss-Cone Population in the Magnetosphere

Pitch-angle scattering has long been recognized as one of the important

3consequences of wave-particle interaction in the magnetosphere Its action

continuously replenishes the flux of particles in the loss cone in velocity

space, which gain access to the dense atmosphere and precipitate out of the

4magnetosphere4 . Indeed, for the continuous (diffuse) aurora a common approxi-

mation is to assume that scattering is strong enough to maintain an isotropic

particle distribution in the face of such anisotropic particle loss . Detailed

satellite observations5 , however, show that electrons at keV energies and above

are often anisotropic. At the low altitude of the ISIS satellite, the upward

flowing loss cone, containing the few electrons backscattered from the

atmosphere, is always strongly depleted. It is more interesting to find that

the downward flowing loss cone, containing precipitating electrons, often shows

a moderate depletion, too. While pitch-angle scattering has attempted to fill

in the strongly depleted loss cone created at the other footpoint, its job is

still unfinished when the particles reach the end of the field line and precipi-

tate.

The effect of pitch-angle scattering by wave-particle interaction can be

described by the quasilinear diffusion equation

af a f

++ v * + (E+vXB/c) .. [D- " ] (1)
3t -r M -- - v v X 3

In this equation, f is the distribution function, E and B are the static fields

and D is the quasilinear velocity diffusion coefficient due to fluctuating

fields. (In a self-consistent treatment E would be determined from the particle

populations via Poisson's equation or the condition of quasineutrality6 and the

diffusion coefficient would be determined from the turbulence arising from the

instability of features in the particle distributions7 . For the sake of simpli-

city, we regard these fields as given, imposed on the particles.)

When the spatial variation of the distribution function is weak, a fruitful

simplification of this equation can be made by averaging over the bounce motion

of a particles. The resulting bounce-averaged diffusion equation has seen wide

8-10application in the magnetosphere.

Far outside the loss cone the bounce-averaged diffusion equation can be

justified because the spatial gradients are small. Inside the loss cone,

however, the bounce-averaging approximations fail. When particles are removed
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from the loss cone, sharp gradients in the distribution function are created at

its edge. These gradients magnify the diffusion term so that significant change

in the distribution function can occur over a time short compared to a bounce

period. This implies significant variation of the distribution function along

the orbit, which the bounce-averaged equation cannot describe.

To calculate the spatially varying distribution function, we must return to

the full equation (1). Numerical solutions of (1) for the distribution function

over all velocity space have been calculated by Davidsonl1 . But the narrowness

of the loss cone may be turned to our advantage, for it implies that we need to

solve the spatially dependent problem only for that small region of velocity

space. A boundary-layer treatment along this line has been developed for the

loss cone in a mirror machine plasma12 and for the stellar distribution around a

black hole 13 . Basically one solves Eq. (1) in a simplified form for the loss

cone, taking advantage of the smallness of the velocity-space region over which

the solution is to apply, and matches that solution to a solution of the bounce

averaged equation which applies outside the loss cone. We will use this method

to describe the spatially dependent distribution function in the loss cone for

the geomagnetic field. We will then apply the results to interpret particle

data from a satellite pass through the continuous aurora. Readers interested in

more detail than is presented here are referred to Retterer et al. 14 .

III.1.1 The Boundary-Layer Equation

The kinetic equation (1) describes both the random changes in velocity due

to scattering and the systematic changes with position due to the mean fields.

A simplification of the equation results when a change is made to variables

incorporating the systematic changes, viz, particle energy and magnetic moment,

or the magnitude of the velocity, vo, and the pitch angle, ao, of the particle

when it crosses the equatorial plane. Assuming that all other velocity gra-

dients will be smaller, we retain only the pitch-angle gradients in the dif-

fusion term. We will look for a quasisteady state solution for f: after

possible initial transients the only time variation we expect is the slow decay

of the population as the result of precipitation through the loss cone. With

these approximations, the kinetic equation becomes

111-
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7.7
?ff

v J sin[ sinao Do f  (2)
0 n 0  %

where J is the Jacobian for the transformation from local velocity v to

equatorial velocity vo, and Do is the familiar equatorial-pitch-angle diffusion

coefficient (with units of sec-1 ). We simplify the equation further by intro-

ducing a scattering depth T, normalized to run from 0 to 1 as s runs from one

footpoint of the field line -sm, to the other at +sm:

2 Do (3)

fsm

where

X= 2 L_ 8 m ds Do - TbDo>b  (4)

sm vo

Tb is the bounce period, and <Do>b is the bounce averaged diffusion coef-

ficient. Introducing the pitch-angle variable u

u = sin 2cz0 /2X (5)

and using the small-angle approximation sinaoao, we reduce the kinetic equation

to Its final form:

3f(u,T) - I f3-C 3- a) u u (6)

111.1.2 The Pitch-Anl Di stribution

We solved Eq. (6) with the appropriate boundary conditions to find the

distribution function as a function of pitch angle (u) and position (T). The

solution has two parameters. The first is uj, the value of u at the edge of the

loss cone

uk = sin 2 %, / 2 Tb(Dob . (7)

This determines the degree of anisotropy within the loss cone; the larger ut is,

the larger is the size of the loss cone compared to the mean angle through which

a particle is scattered during a bounce period and thus the greater is the

depletion within the loss cone. The second parameter is an arbitrary nor-

malization factor, which Is determined (when needed) by matching the boundary-

layer solution to the bounce-averaged solution outside the loss cone.

0 /11-4
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Figure 111-I illustrates the pitch angle distribution of precipitating par-

ticles (at T=1) as the strength of scattering (the parameter ut) is changed. We

rJ see our expectation of increasing anisotropy with increasing uk borne out. The

dashed lines in this Figure are plots of an asymptotic solution to Eq. (6),

calculated in the limit that af/aT goes to zero:

fasymp = in(u/ui) + A (8)

where A is independent of u. We see that the asymptotic form fits well at pitch

angles only a little outside the loss cone, implying that spatial derivatives

are already small at that point.

The variation of the pitch-angle distribution along the field line is

illustrated in Figure 111-2. This shows the filling in of the loss cone, which

starts nearly empty at one end of the field line (T=O), as T increases and the

opposite end of the field line is approached. We have assumed reflection sym-

metry about the equatorial plane, so that the point T=1/2 corresponds to the

equator. This allows us to construct the populations in both loss cones at one

point in space, by putting back-to-back the two distributions calculated at

complementary values of T: T and l-T. This has been done in the insert in

Figure 111-2, for the case T=3/4. This shows a nearly empty upflowing (vH<O)

loss cone along with a fuller downflowing (vjj>O) one, much like the observed

pitch-angle distributions5 . None of this structure could have been calculated

using the earlier bounce-averaged theory.

111.1.3 Anisotropy in the Continuous Aurora

In the theory as it is formulated, the diffusion coefficient remains a free

parameter. If it were possible to specify the amount of turbulence as a func-
tion of position, frequency and wavenumber, it would be possible to calculate

the diffusion coefficient using quasilinear theory1 5 . In practice, such

detailed information about the turbulence is never available. Instead we can

turn the problem around: from the detailed observations of particle anisotropy,

we can infer the diffusion coefficient, and obtain valuable information con-

cerning the turbulence. This empirical method has seen wide use in the

* radiation belts starting with 3. An application of the method to data from a

post break-up nurora, coupled with qua fI I ne. ,r i. f I ma t,.,: of th,. !lF f ,,; I o f

ficient, allowed Lyons 1 5 to identify the turbu] ence thrv to bt. tih rt.!,I lt )I

unstable electron cyclotron harmonic waves. We go on to apply the method to

111-5
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PA provided by James Sharber (Florida Institute of Techinoiogy).

The technique is to take the pitch-angle distribution measured at one

energy during one spin of the satellite and fit our theoretical pitch-angle

distribution to it by adjusting the parameter uj. The results of this fitting

are Illustrated in Figure 111-3. This shows the ISIS-2 data at several

energies, for one spin cycle at inv. lat. A w 68.60. We see that anisotropy is

small at low energies, E 41 keV, but that it grows as particle energy

increases. Using appropriate values of the loss cone opening angle and bounce

period, we then determine ZD>b from uZ using Eq. (7). The results for the

pitch-angle diffusion coefficient are shown in Figure 111-4. Here we plot ZD>b

at several energies as a function of inv. latitude across the continuous aurora.

We find that <D>b falls with energy roughly as a power law, E- n, with n between

one-half and unity. At fixed energy, the diffusion coefficient peaks at inv.

lat. A - 69.60, where the precipitating energy flux into the ionosphere is also

largest 5 . Cyclotron emissions are also known to be correlated with fluxes of

1-10 keV electrons6 in this way, suggesting that such waves may be responsible

for the scattering7 .

1I1.1.4 Discussion

We have demonstrated how the effect of particle loss out of a loss cone in

velocity space is gradually smoothed out along the field line by pitch-angle

scattering. Our technique was applied to determine the amount of scattering

necessary to account for the observed anisotropy of electrons precipitating in

the continuous aurora.

The diffusion of electrons by turbulent fields, such as we have described,

is only one aspect of the auroral precipitation problem. Another side is the

generation of the fields as the result of instability of features in the par-

ticle distribution 7 . Each approach should form part of a self-consistent

description of the total system of both particles and waves - a challenging

problem for future work.
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111.2. Ion Acceleration in the Suprauroral Region

It is becoming more widely accepted that the energetic ion conics 17

observed below shock structures in the suprauroral region are produced as the

result of ion acceleration by the VLF turbulence observed there18 . The tur-

bulence is generated through the instability of the auroral electron distribu-

tion accelerated parallel to the geomagnetic field by the shock 9 . A model for

the formation of ion conics in this way was proposed by Chang and Copp120 .

Acceleration nearly perpendicular to the field line by VLF turbulence near the

lower hybrid frequency is followed by the adiabatic folding of velocities as the

ions mirror and travel up the geomagnetic field line, creating the conic velo-

city distribution. Detailed calculations of conics using a Monte Carlo tech-

nique to model the wave-particle interaction were carried out by Retterer et

a121 "

1) A Monte Carlo Model for Ion Acceleration

In the lower suprauroral region the electron cyclotron frequency is

generally larger than the electron plasma frequency. Such an electron-ion

plasma can support lower hybrid waves2 2 with frequencies near the ion plasma

frequency. For these modes, 2i4(wLH4'44 Se, k1144kL, and vte/Qez.k-1'vti/i. It

has been shown that these lower hybrid waves can be generated quite efficiently

by the electron beams produced by field-aligned DC potential drops during magne-

tic substormsl9 ,20,23 . Because of the broadband nature of the turbulence1 7 , we

cannot use a theory of acceleration by a coherent wave24 . Instead, we apply the

quasi-linear diffusion formulation for wave particle interaction. Because of

the frequencies and wavelengths involved, we may, in a first approximation, use

the unmagnetized expression for the diffusion coefficient for the ions, given

for example by Eq. (10.23) of Ichimaru2 5 . (The excitation of LH waves with the

unmagnetized approximation dropped has been studied by Basu et al. 26 .) The

dynamical picture is completed by including the effects of the geomagnetic field I
and the DC electric field, along with the quasi-linear term, in a kinetic

.* equation for the slow evolution of the ions:

af q v f f
++ v ql +- (E + xB) = I- . rD ()• "a-t m -- c 3v av av • '

In this equation f is the Ion distribution function, vii is the velocity alutg ,

which is a coordinate denoting position along the field line, and E and B are

111-7
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the static fields. (Drifts perpendicular to B are ignored.) The quasilinear

diffusion coefficient D is

D - SE(k,) n 6(u-k.v) (10)""f 2J(2-) 3  lk 2

where SE is the spectral energy density in the turbulence.

Because of the inherent importance of its spatial structure, the time-

dependent solution of the kinetic equation for the ions would be fully a four-

dimensional problem - too complicated to be solved by standard finite-difference

techniques. Instead we adopt a particle simulation model, in which the

stochastic effects of wave-particle interactions are described using a Monte

Carlo technique. Because the number of accelerated ions is small, we treat them

as 'test particles' in externally imposed fields, instead of calculating the

fields self-consistently.

From an initial distribution in velocity and space, the calcuation of the

evolution of the distribution proceeds by following the motion of a large

number of ions with time. Because we are interested in changes occurring on

scales much larger than the size of a gyroorbit, we need not integrate the

equations of motion in detail. Instead, we follow only the motion of the par-

ticle guiding centers along the field line. Between the velocity perturbations

caused by interaction with the waves, it is assumed that the ions travel in the

inhomogeneous geomagnetic and DC electric fields with constant energy and first

adiabatic invariant.

The wave-particle interactions are taken into account in the following way.

In each time step At, the velocity of each particle is perturbed by an increment

Av chosen according to a probability distribution PAt(Av). In kinetic-theory

terms, the resulting change In the distribution f is given by the Smoluchowski

e qua t ion /

f(v,t+At) = ff(v-Av,t) PAt(Av) d3Av (11)

To model the quasillnear diffusion process, one chooses PAt(Av) to be a gaussian

fwjot ion with the following moments

(Av> V v 0 At and <AvAv> 2 D At (12)

111-8
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where D is the quasilinear diffusion tensor. With this choice, the Fokker-

Planck expansion of Eq. (11) yields the quasilLnear diffusion equation in the

limit that At+0. In the calculation, the probability distribution PAt(Av) is

sampled using random numbers. Among many other applications, this Monte Carlo

technique has been used to introduce collisions into plasma simulations28 '2 9

We go on now to apply the technique to the ion conic problem.

111.2.1 The Formation of Ion Conics

To study ion comics in the lower suprauroral region, we carry out a simu

lation using the following parameters. Over the altitude range from 1000 to

5000 km we follow the evolution of H+ and 0+ ions, whose initial density distri-

bution decreases with the second power of the altitude - an approximation to

30Maeda's model of ionospheric density. Their initial velocity distribution is

an isothermal Maxwellian distribution, with a temperature of 1 eV. As the simu-

lation progresses, we allow a steady state to be established by replacing every

particle which leaves the simulation by a particle picked at random from the

primordial distribution. For these first calculations, we include no DC poten-

tial drops.

The last parameter we must specify is the diffusion coefficient. To

evaluate the quasi-linear term, we need to know the spectral density, SE, of the

lower hybrid turbulence. A self-consistent calculation of SE(k,w) is compli-

cated by the difficulty of determining the saturation mechanism of the lower

hybrid instability, whether it occurs by nonlinear evolution or simply by con-

vection out of the beam. We can sidestep that problem by using the experimen-

tally observed amplitudes of the lower hybrid waves, which can range up to 50

mV/m and beyond31 . In order of magnitude we have, In the range of resonant

velocities,

2 JEwJ
2

DL -s (-S) (13)mi (Lpi

where lEwI is the observed amplitude of the wave. The resonant range extends

from a few times the ion thermal velocity up to a velocity vimax ~ Ube (k11/kj)

maxLH Ube (me/mi)1/2 , where Ube is the velocity of the electron beam. Thus

ions shuuld stay in resonance until they reach energies near the electron beam

energy, 1-10 keV. Above the upper limit vimax, DL should behave asymptotically

as vi- 3 . Unfortunately, lack of knowledge of the wavenumber spectrum of the

L 11-9
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turbulence prevents us from specifying the velocity dependence of the diffusion

jd coefficient in any more detail than as a constant within the resonance limits.

In practice, we will find that saturation of the heating is not caused by the

resonance limit but instead by convection out of the region containing the

turbulence. We consider several cases for the altitudinal range of turbulence:

from narrowly spread, over a few kin, to widely spread, over a thousand km. The

actual spatial distribution is poorly known, although evidence shows3 1 that

broadband lower hybrid turbulence will be found below the electrostatic shock

region whenever electron beams are detected.

Let us consider the model with a narrow range of turbulence first. In this

case the heating and folding processes work almost independently of each other.

In the steady state we find that the resonant ions have been heated to a charac-

teristic energy of 10-20 eV when the turbulence range is 10 km. Their pitch-

angle distribution remains sharply collimated at all altitudes, as it folds from

near 90' at 1000 km to about 1500 at 5000 km.

In contrast, when diffusion occurs over a wide range of altitude, the

resulting conic structures are more diffuse. The continued transverse heating

destroys the collimation. Figure 111-5 illustrates the ion conic formed in this

case, with a scatter point plot of particle kinetic energies parallel and per-

pendicular to the magnetic field. The lower panel of the figure presents the

particles in the altitude range from 1000 km to 2000 km - the L1 acceleration

region in the simulation; the upper panel gives the ion conic after it has left

the acceleration region, using the particles from 2000 km to 3000 km. The acce-

lerated ions create a hot tail on the ion energy distribution,as Figure 11-(6 sih'w5.

Because of the wide extent of the acceleration region, particles reach high

energies - up to a few keV in this case. The increase in energy is not greater

because the heating is self-limiting: as a particle gains energy, it moves out

of the heating region more quickly. The broader conics calculated in this

second model are much lke the conics seen by S3-3 1 7 .

I111.2.3 lDi siia'ion

We have Illustrated the process of conic formation through transverse

heating by lower hybrid waves and propagation along the geomagnetic field.

Although we explicitly considered only 11+ ions in the calculations presented

here, other calculations show that 0+ ions can he heated to energies comparable

1I 1-1)



to those of H+; the number of resonant 0+ ions in a hydrogen dominated plasma,

however, will be small.

j Focusing on the broadband nature of LH turbulence, we have here adopted the

quasilinear description of the acceleration process. Other workers have con-

sidered stochastic heating in the presence of a single wave. In the lower

suprauroral region, where turbulence is intense but broadband, it is clear that

neither approach is completely satisfactory. What is needed is a theory of

strong turbulence. Once the wave-particle interaction in such a theory can be

described in a probabalistic way, it is amenable to the Monte Carlo treatment

presented here.

Considerable uncertainty remains in the model, however because of the dif-

ficulty in estimating the rate of the wave-particle interaction process.

Empirical estimates of the velocity diffusion tensor based on observed wave

amplitudes suffer because the lack of wavenumber measurements prevents us from

determining the phase velocities of the waves. We cannot rely on linear calcu-

lations to give us the wave spectrum either, because there appears to be a real

difficulty in linearly exciting waves of small enough phase velocity so that the

resonant portion of the ambient ion distribution can account for the observed

number of particles in the conics. In addition, the self-consistent evolution

of the wave spectrum has been ignored in previous work.

2) Plasma Simulation

To address these problems, a plasma simulation was performed to provide an

independent, self-consistent means of studying the generation of the turbulence

and the resulting ion acceleration. The suprauroral situation was modeled by

allowing a weak (nb/no 10-2), energetic (Eb = 1 keV), warm electron beam

traveling along the magnetic field to destabilize a cool electron-ion plasma (Te

= Ti = I eV). We set the direction of propagation of the waves to be nearly

perpendicular to the magnetic field, with cos2 OB = me/mi to reflect the observed

wave spectral peak near 1.5 times the lower hybrid resonance frequency. The

velocity of the I keV electron beam projected onto the propagation direction is

then about 32 times the initial ion thermal velocity. The phase velocities of

waves excited by this beam will be far out on the tall of the ion velocity

distribution, where few ions can resonantly interact with them.

I I I- I
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Nevertheless, a finite fraction of the ions are significantly accelerated

in the course of the simulation. We found that tails of energetic ions formed,

emerging from both sides of the initial distribution at about three times the

ion thermal velocity; some ions are accelerated to velocities comparable to

those of the electron beam. In addition to the tails the core of the velocity

distribution showed evidence of nonresonant lbeating. It can be fitted by a

Maxwellian velocity distribution, in which changes in the fitted thermal velo-

city reflect the changes in the total wave energy. But the tails account for

most of the energy transferred to the ions in the course of the instability:

immediately following wave saturation, at t - 400 j'V, they already contain 3%

of the ions and account for half of the ion energy.

The interpretation of these results is clear, because it follows from the

extensive work devoted to the high-frequency analogue of the problem: electron

tail formation in strong Langmuir turbulence32 . The intense VLF waves linearly
excited by the beam parametrically decay into lower phase velocity VLF waves by

coupling through nonresonant quasimodes which are driven to finite amplitude in

the turbulent state. These lower phase velocity VLF waves are then Landau

damped by the plasma, accelerating the ions perpendicular to the magnetic field

and the electrons (because of their restricted perpendicular mobility) parallel

to the field.

Several calculations support this interpretation of our simulation. First
33.

an analysis of the nonlinear dispersion relation33 for the coupling of two lower

hybrid waves through nonresonant quasimodes was performed. Using the amplitude

and other parameters of one of the linearly excited waves in our simulation as a

pump wave, we calculated the phase velocities of the sideband waves excited by 0

the three-wave coupling process. We found that thes velocities agreed well

with the velocities at the points where the tails emerge from the background

distribution, supporting the argument that Landau damping of these sidebands

accelerates the ions. Second, direct simulation of the parametric decay of a

lower hybrid pump wave34 was found to lead to perpendicular ion acceleration

accompanied by parallel electron acceleration. Finally, we formulated a simple

set of kinetic equations containing the quasilinear equations with mode coupling

terms to describe the parametric processes. Numerical solution of these I

I11-12 0
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equations produces ion velocity distribution with high energy tails and a wave

spectrum similar to the ones observed in the simulation.

111.2.3 Conclusion

Scaling of our simulation results to suprauroral conditions gives results

which agree well with data from observed ion conics: fraction of accelerated

ions -l0- 3 to 10-2: average energy -50 eV: maximum energy -1 keV: observed -""

lower hybrid wave amplitude ranging up to 50 mV/m. We conclude that the VLF

turbulence generated below field aligned potential drops in the suprauroral

region can account for the acceleration of ions observed in ion conic events.
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IV. PROBE THEORY

IV.l. Introduction

Probe theory has been an active area of research for almost two decades

starting with the original study of Mott-Smith and LangmuirI . Earlier studies

dealt mostly with the laboratory plasmas. With the advent of the space age,

the theory had to be extended so that it can be applied to space plasmas as

well. An interesting topic of space-related probe research is the spacecraft

charging due to emission of positively charged particles. We are particularly

interested in the experimental study by Cohen, Sherman and Mullen 2 . Their

results on the variation of the extended probe-to-payload potential difference

(t) with respect to the electron density and to the beam current (I) need to

be explained analytically.

Since their observations indicated that the vehicle potential was indepen-

dent of the neutral density and the vehicle pitch angle the effects of colli-

sions and of the magnetic field seem to be unimportant. Thus, as a first

attempt, it is reasonable to consider the collisionless, non-magnetic field

electrostatic theories 3,4,5 to seek an explanation of the observed results.

However, two important differences from these theories can be noted immediately:

(i) the existence of the beam current and (ii) the different geometry of this

problem. We can show that the observed saturation value of t can be explained

in terms of fairly simple considerations.

The main difference that is expected to be due to beam emission is the

limitation on the minimum value the probe potential can attain. (Positive ion

emission makes the probe attain a negative potential Op with respect to the

ambient plasma). In the experiment2 , the beam emission energy is -2 keV. If p

were to go below (-2) kV, the beam particles would not be able to escape, and

this constitutes an obvious limit on 4p, I~pj / 2 kV. As the beam current is

increased, tpl would keep increasing until it reaches this saturation value.

The extended probe is at a distance of 152 cm (taken perpendicular to the

cylindrical axis of the probe). If the effective sheath were smaller than this

distance, the extended probe potential 4I would reflect the ambient plasma

potential (=0), and 4t=4l-p would be the same as (- p) = p Under these

conditions, 4t would also saturate at 2 kV. The observed value of -1 kV

suggests that only part of the potential drop occurs at a distance rl such as
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that of the extended probe, and the sheath size may be larger than this

distance. A simple estimate for the sheath size ro is obtained from the "free

2
fall" condition Io = ronovte where no is the ambient charged particle density

and vt is the thermal velocity of the ions in the ambient plasma (beyond the

sheath). For the parameters of this problem ro>>rl, and the potential variation

from the payload to the extended probe is essentially governed by the Laplace's

equation since the charge term is negligible near the payload.

If we consider the rocket to be an idealized sphere, with radius rp,

I Pt~ -- r t ~ rl

and the ratio

t rp
P 1 1  r1

This ratio Is independent of the beam current or the saturation potential. For

this experiment, depending on how one defines the equivalent sphere radius, rp,

we find P 0.7 to 0.75. This provides a saturation value for t1l. 4 to 1.5 kV.

If we consider the rocket to be a long cylinder, and use the two-

dimensional picture in its neighborhood,

- Bin(rp/ro) ,1 B2n(rl/ro)

and the ratio

£n(rl/rp)

pn(ro/rp)

Now the ratio depends mildly on the beam current through ro . For the para-

meters of this experiment, one finds p-0.5 and the saturation value for tl kV,

which is In good agreement with the observed value.

IV.2. Detailed Theory

It Is rather remarkable that the above simplified picture, without any

detailed matching of the near and far solutions and without using the charge

term, gave such a good agreement with the experimental result. It is clearly

Important then to develop a more detailed theory of this phenomenon along these

Iines.
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In order to develop a theory for the mixed geometry, it Is helpfZ.1 first to

obtain a detailed understanding of the purely spherical and purely cylindrical

kd situations. The first refers to a spherical probe and a spherical sheath, the

second refers to an infinite cylindrical probe surrounded by a cylindrical

sheath surface. While the basic differential equation for both cases and some

analysis and numerical solutions in each case are already available in the work

of Lam3 , we have gone much beyond that effort and succeeded in obtaining very

accurate analytical representations for the space potential. These results also

allow us to develop a theory for the mixed geometry.

IV.2.1 Spherical Geometry

For the sheath region, in the notation of Lam 3 , the basic differential

equation is

2 d2F I (

dU2  FI/2

where F is a scaled, dimensionless potential and T = rl/r where r is the

distance from the center of the probe and rI is slightly larger than ro, the

free fall sheath size given by Io = rr 2novte, where no is the ambient charged
0

particle density, vt the thermal velocity of the ions in the ambient plasma and

1o the beam current.

Lam 3 showed that

4
lira 3 4
Jim F(T) = (2) (T-l)3 , (2)

lim F(r) 1.9T - 2.7 , (3)

and also provided a table of numerical values for F(T) for T=l to T=10, and a

graph of F(T) over a smaller range of T.

Introducing i=ex , x-logr simplifies Eq.(l) to
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F1
F" F, (4)

where prime denotes differentiation with respect to x.

Obtaining a series solution for small x is straightforward; one finds,

4

F= ao xT1 + blx + b2x2 +1 (5)

ao = (3/2)4/3 ,bl =2 ,3b b3 =229
5 'b 25 ' 8250 '..

Such a solution was also obtained recently by Leadon et a16 , except that their

coefficients were in the form A1 = ao, A2 = aobl, A3 = aob2, etc. and were

expressed numerically in decimal form. Thus, the simple rational character of

bl and b2 was not recognized. We further noted that there were simple relations

between successive coefticlents.

3 3 3

which lead to a simplified, explicit equation for F,

F- F = g(x)

4 xl/3 x

g(x) ao X 3 - " (7)

An explicit solution in terms of incomplete gamma functions is thus obtained,

F(x) - ao [4/3(x) - y7/3(x)j (8)

The series solution (5) is not valid for large x, whereas (8) is well defined

for all x. It was also found to be numerically accurate to within 8 parts per

million for x~l (when compared to the exact, numerically obtained F). It can be

shown also that for large x, the result is about too low and it reduces to
*40

the form (3), with slightly different coefficients. In spite of all the success

and convenience of the solution (8) it is still only a (good) approximation and

one can seek Iterative procedures that provide improvements.
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Some exact results can be derived from (4), which by two integrations, and

using the boundary conditions F(o) 0, F'(o) = 0 can be converted to the

integral

XS
F = ex e-x  dx' dx" (9)

/-F-(x_) (9

This leads to the exact result, for large x,

F = Aex + B, (10)

where

A = f dx e- X F- 1 / 2 (x) , (11)

0

B - dx F-1 /2 (x) (12)

An interesting procedure to evaluate A is to use the small-x expansion (5) for F S

in (11); this leads to A - 1.913 by keeping the first few terms in F. Thus we

have shown that the small-x expansion and the large-x behavior of F are con-

nected in a precise fashion. This is a fairly general result for the Poisson

equation when the charge density term is a function of the potential. P

An alternate approach to obtain the large x behavior of F is to assume a

direct series expansion in inverse power of T to solve (I). Such a procedure

was carried out by Leadon et a16; this method, however, cannot show the connec-

tion between the small-x and large-x behavior, as through (11) or (12). In

fact, an auxiliary matching of the two series solutions in some intermediate

domain of x becomes necessary, and the accuracy of determination of the coef-

ficients of the large-x series depends on how the matching is carried out. We

use the large-x series solution, and determine its two arbitrary constants A and

B by exploiting (11) and (12).

It should be noted that (8) can be made more accurate by keeping higher

order terms of g(x) in (7), and if we do so, the improved (8) precisely repre-

sents the large-x behavior with the proper coefficients A and B.

In summary we have developed several new results for the spherical

geometry, and a very accurate explicit solution has been provided for the poten-
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tial. The methods developed are quite general and can be carried over to

cylindrical geometry as shown below.

IV.2.2 Cylindrical Geometry

Now the basic differential equation, in the notation of Lam3 is

2d (TdG I
dT (T) = (13)

where C is a dimensionless, scaled potential. Lam provided a table and a graph

for G, by numerical integration of (13) over a small range of T. Interestingly,

as - l, G(,) has the same behavior as F in Eq. (2). Lam did not provide any

analog of Eq. (3).

We have analyzed (13) by methods similar to the spherical case, and we find

in terms of x=ZnT,

. e-x

1- ' (14)

G(x) = aox4/3 (1 + blx + b2x 2 + ... ) , (small x) , (15)

a o  (3/2)4/3 bl = 2 11
S-1- b2:- , '

G(x) = Ax + B + ... (large x) , (16)

A=f dx e - x G- 1/2 , (17)f
B - dx x e - x G- 1/2 . (18)

Results (17) and (18) are exact, and if we use (15) to represent G in those

equations, we find A 2.09 and B - -0.75 from the first few terms in (15). We

have also solved (13) directly in terms of a large x series of the form
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3m n+l
G(x) AX + B + Cmn e-mx 2 (19)

m1l n~o

where A and B are already known from (17) and (18) and the constants cmn are

expressible in terms of A and B.

The accuracy of our results for the cylindrical case is comparable to that

of the spherical case. Since Lam gave the numerical (exact) results for G for S
only a small range of T, we cannot ascertain this directly over a wider range.

However, we have matched the small-x and large-x series and found that they

agree very well in the intermediate domain. An analog of (8) for the potential

in the cylindrical case can also be written down, but more terms are required

for accuracy.

IV.2.3 Mixed Geometry
5,.

The more realistic problem of the space probes requires us to consider a

cylindrical picture when r4<X/2,X being the length of the cylinder, a spherical

picture when r>)Z/2, and the problem of matching. The simplest approach is to

consider the plane of symmetry passing through the center of the cylinder and

perpendicular to its axis. In this plane, one can use (19) for the small-r

(large-T) solution and (5) or (8) for the large-r (small x) solution. This is

a reasonable approximation, since the role of the charge term in the Poisson

equation becomes quite weakened near the probe cylinder (i.e. for large T), and

only the first two terms in (19) representing a Coulomb potential and a fixed

bias term are really important. Further improvements are obtained by keeping

the next few terms in (19). While the structure of the solution is not changed,

the numerical values of A and B are no longer as in (17) or (18). These have to

be determined now by matching (19) and (5) over the intermediate domain at two

points.

IV.3. Comparison with Experiments

The saturation value of Ot, in Figure 5 of Cohen et a12 is well explained

by our approach. The development of the theory for the mixed geometry allows us

to obtain results for intermediate values of T, which provides a comparison with

Figure 4 of their work.
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It is clear from the geometry of the experimental set-up that the potential

drop quite near the long cylindrical payload will be better described by the

two-dimensional Laplace's equation. This seems to be borne out by the better

agreement of p (2-dim) with the observed value. Another test of this picture

would be to examine the variation of p with current Io . Since ro increases as

1/2
o0 , p (and pt) will decrease with increasing current beyond saturation. This

can be easily tested if additional experimental data become available.

To understand the variaton of 4t for the full range of Io, we replotted

that data on a log-log plot. We find that Ot increases only as -I/4 in the
.7/6

low-current domain. This is to be contrasted with 17 for a Lam-type theory3 .

The two curves (observed data and Lam-type theory) cross at 0'50pA, t-70OV.

One must explain why the observed curve remains above the Lam-theory for low

currents and why it remains below the Lam-theory for high currents.

Since Lam-theory does not include beam emission, it does not lead to a

saturation for p, and the increasing difference from the observed results for

larger currents is due to this limitation of that theory. A modified theory,

which takes into consideration the beam emission and the effect of the ion space

charge In the emitted beam is required. We have calculated the amount of posi-

tive charge Q+ in the beam up to ro and find it becomes'comparable to Q-, the

total negative charge on the rocket, for high currents. Working out the

electrostatics for this "tadpole" charge distribution might provide a smooth and

gradual approach to saturation.

Another physical effect missing in Lam-type theories is the "trapped ion"

effect. It has been shown that when the probe size is small compared to the

sheath size, ion-trapping will occur and this will reduce the pull exercised by

the negative charge of the rocket. This in turn will allow a build-up of a

larger probe potential for the same beam current. This effect might explain why

the observed potential is larger than the Lam-theory in the region of lower

currents.
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