

MITRE Technical Report

MTR-3892

ARPA ORDER NO. AO-3338

The Trusted Function in
Secure Decentralized Processing

P. Tucker Withington

eOssiIO Fr

NTI S GRA&I
DTIC TAB

SEPTEMBER 1979 Unannounoed Q3

CONTRACT SPONSOR ARPADitiuo/
CONTRACT NO. F192-79COO1 Availability Codes

PROJECT NO. am6 Avail aud/or
DEPT. 075 Ds pca

The viesm and conclusions contained in this paper
are those of the authors and should not be inter-
preted as necessarily representing the offi1cil
policies, either expressed or implied of the Defense
Advenced Research Projects Agency or the United_________________States Government.

THE__________

MITRE
SEOFRO, ASSCHUSTTSApproved for public relese; distribution unlimited.

BEFOD MASSACHU...

Department Approval%

MITRE Project Approval: d ~ (Ud h'

ACKNOWILEDGEMENTS

The author acknowledges the motivation and help of S. R.
Ames, Jr., Dr. J. G. Keeton-Williams, and Dr. J. K. Millen of the
MITRE Corporation in developing the proposed model.

L.

IV

. .+-.

TABLE OF CONTENTS

Section Page

LIST OF ILLUSTRATIONS vii

1 INTRODUCTION 1

BACKGROUND 1
SYNOPSIS 1

2 THE CONSISTENCY PROBLEM 2

DATA SECURITY 2
CONSISTENCY 3
HISTORY 3
PREVIEW 5

3 TRUSTED FUNCTIONS 6

PRESENT 6
HYPOTHESIS 7
INFORMATION FLOW MODEL 7

Setting8
Model 8
Security 9
Tranquility 10 -- -

Problem 10

TRUST MODEL 10

Setting 10
Model 11
Trustworthiness 11

PROPERTIES 12

Authority 12

Continuity 12
Believability 12

SUMMARY 12

4 DECENTRALIZED PROCESSING 13

V

:....

TABLE OF CONTENTS (Concluded)

Page

REQUIREMENTS 13 "

Special Functions 14

NETWORK SECURITY 15

Solution 16

Implementation 17
Impact 18

SUMMARY 20

5 CONCLUSION 21

APPENDIX A EXAMPLE 22

TRUST SYSTEM 22
OBSERVATIONS 25
ANALYSIS 28

Authority 28
Continuity 29
Believability 30

SOLUTION 31
SUMMARY 32

REFERENCES 33

o

-.

.--

* . . o .. .,

LIST OF ILLUSTRATIONS

Figure Number Page

1 Existing Security Model 6
2 Proposed Model 8
3 Existing Network Design 14
4 Secure Network Connection 15
5 Example Trust Network 16
6 Possible Trust Net Implementation 17
7 Network Protocol Levels 18
8 Sample Trust Message Content 19
9 Trust System Interface 22

10 Scheduler Module 23
11 Program Processor Module 24
12 Kernel Module 25
13 Protection Data Module 26
14 Storage Module 27
15 Process Module 28
16 Input/Output Module 29
17 Trusted Interface Module 30
18 Better Trusted Interface 31

i'-?

vii

~~.

IA

SECTION 1

INTRODUCTION

The objective of this paper is to examine the concepts of com-

puter security in the decentralized processing setting. One partic-
ularly weE k point of present computer security systems, the9"trusted
functionrEbecomes quite difficult in this new setting. The notion
of the trusted function is scrutinized and a technique for support-
ing it in a decentralized processing system is discussed.

1/'*

BACKGROUND

The computer security problem has been thoroughly investigated
for single-location systems. The present technological solution,
the "security kernel", is simple enough and well-understood enough
that many feel it can easily provide a solution for the distributed
case. Some even believe decentralized processing will ease the
security problem by providing each user with his own isolated
hardware. It is not clear, however, that the security kernel or

some of its "accessories" are so easily extended to the decentral-
ized case.

Because of the new setting, a fresh examination of the security
problem should be undertaken. In a decentralized system, the pro-
cessors must establish some level of mutual trust to perform useful
work (to maximize the advantage obtained by interconnection). Pro-
tection is even more of a consideration than in the single-location

case, however, because the possibility of compromise or sabotage is
enhanced by the same interconnection mechanism, and the payoff to an " "
agent or saboteur is similarly raised.

SYNOPSIS

This paper introduces the "consistency problem", a problem in
current secure systems that is a major impediment to secure, decen-
tralized processing. Current solutions are reviewed and some diffi-
culties are discovered. After summarizing an exisiting formal secu-
rity model, an extension to solve the consistency problem is pro-
posed and its interpretation is discussed. Finally, the model is
applied in the decentralized processing setting and the resulting
implications examined.

.* .- - .. -.

SECTION 2

THE CONSISTENCY PROBLEM

The purpose of decentralized processing is to link together
independent processors, each providing useful services, in such a
way as to enhance these services through their mutual support. To
allow a user to take advantage of these interconnected processors,
provision must be made for: common information storage, a uniform
interface to processing tools, and a technique to control users on a
network basis. [2,3]

From the security viewpoint, these three elements of decentral-
ized processing correspond to: passive information containers,
active information accessors, and the external system interface,
respectively. Exactly how the notion of security effects these
aspects of the distributed system is taken up after an examination
of single-location security concepts.

DATA SECURITY

What are the requirements of data security? Most basic is the
requirement that no unauthorized observation of protected data be
allowed. This requirement has two facets. First, the protected
data might be directly observed in an unauthorized manner -

espionage; or second, the data might be indirectly or covertly
observed with the aid of an inside accomplice, releasing information
- treachery.

How do these requirements map into a computer system? One
critical, but not obvious, point is that all objects in the system
must be treated as data repositories - even the active observers
and modifiers (they must have a place for the data they manipulate).
With this simplification, we see that data security means: for any
transfer of data from one repository to another (within the system),
or to or from outside the system, it must be ensured that the
transfer is "permitted".

The concept of permission is also known as the security policy.
This policy determines what transfers of data are allowed. A
straightforward policy, which can be shown to correspond to the

1The term "decentralized processing" is due to Karger [1].

2

,..

.i*.

.

..

.

.

°

..-

security policy of the Department of Defense, can be defined as a
function, mapping ordered pairs of containers into allowed or disal-"
lowed. The mapping defines whether the transfer of information from
the first container of the pair is allowed to the second.

Because the permission function is independent of the informa-
tion transferred, such a simple policy is known as an information
flow model; it is the path the information flows along and not the
information transferred that is regulated. While this does not
exactly model the security system of the paper information domain,
it has been accepted as a reasonable choice for the computer pro-
cessing domain. A resulting problem, however, is how to best keep
the two domains (internal-computer and external-paper) in correspon-
dence, or consistent.

CONSISTENCY

The "consistency problem" involves establishing and maintaining
protection information in the computer domain in agreement with the
paper domain. As information enters and leaves the system, and
while it resides in the system, the protection information about it
must be kept consistent with the external environment.

Usually, this protection information is held in a "protection
data base" that embodies the security permission function for all
the information containers in the system. In an implementation, the
access control mechanism enforces the security policy by referring
to this protection data. A difficult point in early security model-
ling work was how this database would be maintained.

HISTORY

The "trusted function" evolved as a special purpose mechanism
in response to the realization that the simplistic security model
prevented one from accomplishing many tasks required in everyday use
of the computer system (e.g., reclassifying old information, classi-
fying new information). Initially, the trusted function was
exempted from the model controls because it was trusted to violate
the model only to keep the system consistent with the external
environment.

Stork [r4 presented a model for these trusted functions based
on the "formulary concept": the idea that the correct classifica-
tion of an information container could be determined from some com-
putation on its contents. This concept was initially favored
because it worked outside the existing security model, but in the

L . . .i -... -.\ - t... . . t ... -, t .. x . . t..

Lii

end, opinion was that the formulary was impossible to establish2 .
Also, this model addressed only one facet of the consistency prob-
lem: downgrading. It did not address other operational require-
ments, as we shall see arise in a secure network design.

As implementations evolved, it became clear that there was a
second type of trusted function that did not violate any security
axioms, but was known to have an important security effect. These
trusted functions dealt with the consistency problem by directly
manipulating protection data. The mechanism was trusted to handle
the protection information correctly.

Functions of that type have recently become known as "responsi-

ble software". These trusted functions did not fit either the secu-
rity model or Stork's model, as they were not violating any model
rule. Nonetheless, they were manipulating what was known to be

highly sensitive data. As a result, an ad hoc3 mechanism evolved

[5,6) to provide the required function.

Mogilensky [7) provided the first recognition of these require-
ments as a general problem of interfacing distinct security systems.
He attempted to define the requirements for communicating protection

information from one domain to another. Schiller [83 finally sue-
cinctly defined the trusted function as providing "... the security
related binding of computer system elements to the external environ-
ment".

In these early designs, a special interface to support the

trusted function was implemented by a reserved key on the user ter-
minal that caused activation of a trusted communication path. The
trusted path provided two features not provided by the basic access
control mechanism: a high degree of reliability in preventing the
injection of spurious or misleading data4 , and the ability to accu-
rately identify the participating parties in the communication.

2Work continues on trying to maintain traces (colors) of the origin
of information in a file such that a computation of its overall
classification can be derived, but it is of an experimental nature.

3By ad hoe we imply: without formal modelling or specification.
TBiba [9) has worked on a general policy to provide degrees of such

protection to thwart sabotage; the trusted function was a first
special case.

4

PREVIEW

What the trusted function and its associated interface
attempted to do is to recognize the existence of a special kind of
information in the computer system, different from the data of the
system, and to provide a mechanism for handling it. Unfortunately,
the full importance of this "control" information was never recog-
nized in the single-location system work, and it was never success-
fully specified or modelled. Next, an attempt is made to do so.

°, .

,

SECTION 3

TRUSTED FUNCTIONS

PRESENT

The original security model dealt only with information and not
information about information. Many attributes of protected infor-
mation can be handled by the same mechanism that protects the infor-
mation5 .Some "meta" information does not fit into the model of
security, however, because it is the model (or its representation).
Still, it is an information system, and to deal with it correctly, a

CONTROLLER

Figure 1. Existing Security Model

model should be developed. Figure 1 illustrates the existing infor-
mation flow security model and highlights the meta-information of
concern, the protection data base.

Initially, it is not clear that this meta-information has any
analogue in the paper information domain. There, both the informa-
tion distribution channel and the end user are trusted to maintain

5These attributes are information in an equal or slightly higher
protection class. The "directory" mechanism evolved as a way to
handle this information, although it was eventually realized that
the hierarchical organization of information was only a functional
requirement and not security relevant. [10]

6

S.
°

.-.

the protection class of information, independent of its container.
The binding of protection and information in the paper domain is not
so obvious (or tenuous) as in a computer system.

HYPOTHESIS

Let us consider the existing information flow model in fig-
ure 1. This model is primarily concerned with the flow of informa-
tion to and from containers, within the system. Flow outside the
system can be modelled as a container on the boundary of the system.
The definition of permissible flow is held in the protection data
base.

As we have noted, this protection data is not necessarily
static. The protection data base could not be updated through the
access controller, though, because its protection policy seemed dif-
ferent from that of the other data. The best determination of pol-
icy that can be arrived at by examining existing solutions is that
the protection data base is protected on individual identity. It is
the individual's privilege that allows him to examine or modify the
protection data base.

To model the trusted function interface, we can use the same - -1

information accessing framework of the existing model, but with a
new protection data base. This "trust data base" will associate an
identity with the set of rights exercisable by that individual.
These rights will specify what protection data can be accessed and
in what way.

Tt also makes sense at this level to allow the trusted function
interface to mediate access to its own trust data base. (The
hierarchy of access mediators cannot go on forever.) Figure 2
illustrates the hypothesis and how it fits with the old model. This
proposal is concisely defined below, by summarizing an existing
information flow model and proposing an extension.

INFORMATION FLOW MODEL

The information flow model to be reviewed models the problem of
controlling the dissemination of classified information in a com- --

puter system. The approach is to control the access of the active

agents in the system (who can cause information transfer) to the
passive containers of information.

77

•

. '..-.......... ,-... - I" -"i " lr

-- TRUST
TRUSTEE ~CONTROLLER POETO

DATA

Figure 2. Proposed Model

..- ..4

Setting

In the people/paper domain that is to be mimicked by the com-
puter system, all "Data" is classified by an appropriate authority
such that one can imagine the "Classification" of data as defining
the set of observers allowed to view the data. The model does not
examine this concept of classification; it takes the classification
of the information in each of its containers as an external given.

Model

The model6 is made up of Repositories, Aooessors, Protection-

Classes, a Flovelation, and a ClassCcbination function.

where:

Repositories Is a set of information containers; the containers
define the parcels of Information protected in the model. The
value of a repository is the information it contains.

Aoessors is a set of information manipulators, a subset of
Reposltories; the accessors are the model elements that can
cause information flow. The information flow operation of an
accesor consists of affecting the value of one repository
based on a function of the values of other repositories.

6 The model described is a review of a detailed state-transition
model that has been developed by Denning [11J.

8

''.'.''"." ",'''''...,"......"..."......"."."-.."......"."- ".". "- "" "* . ""2

. . ° .-. '.

The protection classes and flow relation make up the protection
data base. The protection data base is the model representation of "i
the information control policy of the paper domain. It is defined
as follows:

ProtectlonClases is the partitioning of Repositories into
classes according to the sensitivity of the information they
contain (or can transfer). For two repositories to be in the
same proteettomClass, the "Classification" of their data must
be equal.

FlowRelation is a partial ordering of the ProteotlonClasses
reflecting the relationship of the sets of people allowed to
access each class. If oneProteotionClass is higher than
anotberProtectionClass in the FlowRelation, then the "Classifi-
cation" of repositories in oueProtectionClaas is more restric-
tive than that of anotberProteotionClass. (Here, "more res-
trictive" means only a proper subset of people can view it, so
in a sense its classification is "higher".)

Finally,

ClausCombinatiom is a function on a pair of input protection
classes that defines the class of the result of any function on
a pair of values, one from each input class. The resulting
protectioClaas is the class that can be observed only by the
set of observers allowed to view both the input protection-
Classes under "Classification".7

In the paper domain, we think of security as meaning no infor-
mation ever gets to a place where someone who isn't allowed to see
it can see it. Under the model, this idea can be stated simply:
the model system is secure if and only if no sequence of operations
can cause information to flow from its container to a container
lower in the flow relation (thus incorrectly increasing the set of
observers of that information).

Security

We can state the idea of security as an axiom about individual
(indivisible) operations. (Preserving this axiom for single opera-

tions can be shown to imply the security of aggregate operations.) -

7In her paper, Denning showed that ProtectomClasms, together with
FlowtRelation and CliasCmbination, forms a universally bounded
lattice.

9

.. .." .ir -

Security Axiom -Assuming a secure initial condition, if an
accsuu can cause information to flow from a set of source-
Repooitorles to a destinationlepository only if the CILaCabd-
vmtIon of the protectioiiClasses of the aouroelepositories is
not higher than the proteotlemClass of the destinatooflePoal-
tor" under the FlowRelation, the system will remain secure.

Tranquility

In early Use of the information flow model, an additional prin-
ciple [12) was assumed.

Tranquility Principle - The proteotionClasa of an active
* (accessible) reposiory will not change during normal opera-

tion.

The tranquility principle is in effect a statement that the model is
an in vitro experiment. The additional principle is an assumption
in the model that must be shown for a "real" system.

Problem

The tranquility principle indicates that the model assumes that
the paper concept of "Classification" is static. The model concept
Of C i8331fication is static in that a repository does not move from
one protection Class to another.

This assumption is inappropriate because it inhibits frequently
required operations. As discussed, this problem is presently
avoided by allowing violations of the security axiom. A preferred
alternative would be to modify the model to account for the reclas
sification requirement. (As also mentioned. Stork's proposal has
not been pursued because of the difficulty in specifying the formu-
lary.)

TRUST MODEL

We now propose an alternative model, based on the ad hoc

mechanisms that have evolved in secure system implementations. This
model will provide a basis for discussion for the remainder of the
paper.

Setting

In the paper domain, we speak of reclassifying "Data". Since
the model protects repositories, the operation of reclassifying is
best modelled as a repository changing its protection Class.

10

. * . , . .
Thi asupin. nproraebcuei nhbt .eunl

Since the model does not embody the classifying authority, the
reclassification decision must come from outside the model. This
decision can be thought of as based on the people/paper concept of
"Custodianship", wahere the custodian of any data is responsible for
its classification being maintained correctly.

Model

The extended information flow model to handle reclassification
(and thus trusted functions), will be called the Trust Model. It is
concerned with the previous Repositories and ProtectionClasse, and
replaces the tranquility principle by adding Trustees and a Trustap
relation,

where:

Trustees is a set of agent identifiers of those allowed to
manipulate the protection data base. They are trusted to main-
tain security by placing repositories in the appropriate
proteotionClass.

Trusteap is a relation of Trustees and Repositories defining
which trustee is allowed to maintain the classification of each
repository. If a trustee is related to a repository by Trust-
Nap, he has "Custodianship" of the data in that repository.
(The relation may be a function whose value determines the
specific privileges and responsibilities of the custodian.)

In the paper domain, the custodian of data is trusted to main-

tain its appropriate classification by not releasing it improperly
and by upgrading it or downgrading it as required. Careful selec-
tion of custodians and significant legal penalties make the correct
discharge of this responsibility highly probable.

Trustworthiness

Under the proposal, the trust mechanism allows paper domain
custodians to perform their duties with respect to model informa-
tion. The mechanism described is intended to enforce the require-
ment for responsibility through an additional axiom.

Trust Axiom - If a trustee moves a repository from

oneProteationClass to anotherProtectionClass, only if that
trustee is a custodian of the repository according to the
TrustHap, then the reclassification can be trusted to leave the
system secure.

ii ..

9 .. "°' "

The claim is that enforcing this axiom when allowing access to the
protection data base of a computer security system will solve the
consistency problem in a secure fashion.

PROPERTIES

The appendix introduces an example specification to motivate
some important properties that must be enforced for a proper imple-
mentation of the trust model. Here, the properties are quickly
reviewed.

Authority

Each paper domain custodian must be correctly associated with a
representing trustee, for proper determination of rights. A
password-like mechanism is a possible solution.

Continuity

Trusted changes to the protection data of an object must ensure
that all current accesses to the object are still allowed. This
check is required to prevent breaches of security from a potentially
inconsisent state. Forcing recomputation of all existing accesses
to the object is a possible solution.

Believability

Each trusted request must be conveyed from the paper domain to
the computer domain in an integritous fashion, to prevent spoofing. -

A protected communication channel is a possible solution.

SUMMARY

In addition to the trust axiom, three properties must also be

enforced in an implementation to solve the consistency problem
correctly. How these four requirements affect the design of a
decentralized processing system is taken up in the next section.

12

SECTION 4

DECENTRALIZED PROCESSING

How are the elements of a decentralized system affected by
security? What is the correct interpretation of our new model in a
decentralized case? Ignoring the trusted function for the moment,
the problem is how to create the effect of access control in a sys-
tem where the information containers, information accessors, the
access controller(s), and the protection data base(s) are not neces-
sarily centrally controlled.

REQUTREMENTS

First, a uniform policy must be established. Even if initially
different policies are enforced by each site, for the sites to com-
municate, the policies must map into each other; thus establishing a
uniform policy. To enforce the policy, some access control mechan-
Ism must be placed between all containers and accessors. Two obvi- -
ous choiceg are to control all the accessors or to control all the
containers

Single-location secure systems provide a mechanism for protect-
ing all containers; but, must each access controller know about
every accessor-container combination in a network; or even all com-
binations with the objects he controls? Fortunately not, otherwise
an information explosion would occur. Since the model establishes
object classes that partition all objects according to their protec-
tion requirements, each access controller need only know what
classes its objects fall into and understand how the security policy
relates classes to one another.

Finally, a mechanism must be established for communicating a
protection class along with information when it moves from the
domain of one access controller to another. One way to communicate
protection classes is to have separate protected network channels
for each class of information. This arrangement works well with
existing single-location systems; they can deal with communication
channels simply as a new type of external object.

8A less obvious choice is to control all communication paths, an
option as yet unexplored in securing single-location machines, but
enticing in networks, where the communication paths are explicit.

13

. .. .

SC

Figure 3. Existing Network Design

Figure 3 gives a representation of the design presently being
• . pursued in an existing network. [1,13] Here, the hope is to connect

together existing single-location systems in a fashion similar to
-i the Arpanet, only with careful attention to security. Each informa-

" tion channel supplied by the network is treated as an object by both

access controllers. While this design supports remote information
accessing, it does not support all the functions desired in a net-
work operating system."

Special Functions "

If we examine the elements of a decentralized processing sys-
tem, we discover additional needs. Remote reclassification, remote
use of tools, and remote login all present additional requirements.

A protected channel per class worka well for transmitting ''

access data along with information. Information moving from one

location to another nay carry its protection class in this way. The
ability to change the class of information, however, is not sup-
ported by this mechanism.

For the user to invoke tools on a remote host (as if he were
local) his network connection should support the same facilities as
his terminal. In particular, there is a need for the user to change
his working classification at various times throughout a session,-

regardless of his maximu or login classification. ...

Finally, the user interface to the distributed system must be '-'
provided remotely. If a user is to be authenticated (logged in) '-'

remotely from his authentication data base, or if his authentication

-..- .2L.=:,%. . -, ... _. . -...

is to be propagated to another node in the system, the network data

channels do not suffice.

All these requirements can be reduced to the requirement of

providing a trust interface in the distributed case, over the net-
work. Assuming that a trust interface (enforcing the trust axiom
and obeying the continuity requirement) exists for the single-
location security systems in the network, we discuss below how the

authority and believability requirements affect the design of a
secure network to interconnect them.

NETWORK SECURITY

i-i

Figure 4. Secure Network Connection

Figure 4 shows a diagram of a secure network connection between
two single-location machines as it might appear in the network of

figure 3. In this system, the data channels are provided by a
link-encrypted packet switch network, where the switches are
single-location, kernelized minicomputers. The figure illustrates
why data channels cannot support trusted communication.

Because existing security models only restrict data flow to a
particular class, and, because of the nature of a class, the source

and destination of a data channel are not uniquely defined (they
might be any member of the class). The authority principle can thus
be subverted as in figure 4: although the questionable data flows
(arrows) are to the correct level, under the security policy we have

no guarantee of the individual identity of the sender or receiver.

In addition, a plain security policy (in particular, one that

does not include some form of integrity, c.f., [91) does not provide

15
p5;>

II

the additional believability principle of our model. If the policy
cannot distinguish between an accessor reading information from a
lower class and the symmetric but separate operation of an accessor
writing information to a higher class, the second operation can be
used to sabotage believability (lower arrow in figure 4).

What is needed is a technique to authenticate the parties in
the communication (for authorization) and to provide additional pro-
tection (for believability) to meet the new trust requirements.

The communications network in a secure system has been modelled
as an data object shared by two (or more) access controllers. A
trusted communication channel to support a secure virtual connection
could be provided by a similar shared object for trust controllers.
Figure 5 gives a conceptual picture of what is desired - a parallel
but separate network, enforcing the trust model requirements.

Figure 5. Example Trust Network

Solution

The requirement for authentication in communication is usually
achieved through a recognition code or password. A password is only
useful If a limited number know it, and if it can be communicated
without being overheard.

Assuming we cannot create a perfect channel, the protection
requirement for integrity could be achieved through redundancy.
This redundancy must be such that any attempt to modify the data
could be detected, and perhaps corrected.

16

-
..-. :

Cryptography can help provide both these features. By disguis-

ing the information content of a message, enciphering a message
makes it very difficult to change the cipher version in a way that

is meaningful when deciphered. Enciphering data raises the inter-
bit dependency of the data sufficiently that a small amount of

redundancy in the unenciphered data will allow detection of modifi-
cation. [14,15]

Also, knowledge of a cipher key can act as a password. The

source of decipherable code is limited to those who possess the key.
By design, enciphered text does not reveal the encoding key, so the

password cannot be compromised. By limiting key distribution, the
authentication can be made as specific as necessary. [14)

Implementation

In an implementation, a trusted function interfaces to the

access monitor through privileged calls. The trusted communication
channel could be implemented by such a call.

METNE
PROTOCOL PROTOCOL

ENCIPHER 'Up DECIPHER

Figure 6. Possible Trust Net Implementation

Figure 6 shows a minimal implementation. The proposal is to

provide privileged calls for enciphering and deciphering trust
information. These calls will add and make appropriate redundancy

checks to provide integrity. These calls will also add identifica-

tion information to each trust message to provide authentication.

Through encryption, these calls provide the trust network as a spe-
cially protected virtual channel over the existing data network.

17

." .

oIwo

Because of their importance, the privileged calls must be
specified and implemented as part of the access controller and scru-
tinized for the same level of credibility. The intent is that the
operation of these two calls can be verified at a significantly
lower expense than trying to verify the network end-to-end protocol
module or a whole new channel.

Kent [16] has discussed at some length the choice of a cipher
scheme to allow authentication and detection of modification. While
these mechanisms are fairly expensive, the design proposed here
would limit their use to protecting trust data and thus make their
cost reasonable.

Once the trust information is enciphered by the privileged ker-
nel call, it becomes an unclassified object (its information content
is zero to a non-key holder). The enciphered package can then be

delivered using existing network commands.

Impact

The end-to-end encryption channel provided by the proposed
privileged calls essentially provides an "out-of-band" signal that
can be used by the trusted functions to communicate trust informa-
tion over a secure data network.

3.MESSAGE

VIRTUAL CHANNELS

1- 2.CONNECTION1I.ROUTING

LINK ENCRYPTION

Figure 7. Network Protocol Levels

Figure 7 illustrates how the proposal relates to existing
secure network protocols:

. -. .

-- N. - - .. - . .. - _ r

The bottom level (1) represents the existing protection pro-
vided by secure networks. Here, the internet protocol, the host
addresses, and other message data are unenciphered when in a network
node. Protection is provided during transmission between network
nodes by link encryption. The dangers of this protection alone are
known, and work is under way to solve the problems in several data
networks.

The second level (2) represents the end-to-end connection pro-
tocol that attempts to address the denial of service problem in
existing protocol designs £17]. Attempts to protect connections at
this level have been unsuccessful to date in that they exhibit many
of the same problems as the bottom level [18], and yet, are signifi-
cantly more difficult to implement.

The top level (3) represents the present proposal, a message

level protocol. The intent is to use a single connection (provided
by the next lower level) to support at least two virtual channels by
appropriately distinguishing messages.

CLEAR INTEGRITY "CIPHER"

IADDRESS/TRANSPORT INTEGRITY FUNCTION j SEALED MESSAGE TEXT

TRUST CIPHER

Figure 8. Sample Trust Message Content

Figure 8 shows a possible construction of a trust message and
how it fits in the lower network protocols. Only a small amount of
information about the message need be protected using the network
"trust channel" cipher: an integrity function to provide authority
and believability for the rest of the message. (This function may
be a secondary cipher - different for each message.) The integrity
information acts as the "seal" of the sender. If the receiver finds
the seal unbroken, he knows he can trust the contents.

19

Because the amount of information transmitted using the trust

cipher is small, the trust cipher scheme need not be fast (it can be

implemented in software). Similarly, it need not be re-keyed often.

If the lower level protocols can protect the connection from a
security standpoint (at the highest level of data to be transmit-
ted), the trust cipher need not protect against espionage from out-

side the system. Its duty is simply to inhibit the effect of sabo-
tage (or error) within the system.

SUMMARY

An "out-of-band" channel has been proposed as one way of pro-

viding the properties required for trusted function implementation
in a decentralized system supported by a secure data network.

Encryption was proposed as a technique for providing that out-of-
band channel, but all the power of traditional encryption schemes is

not required. Perhaps a better mechanism can be found.

20

.

.. ::: :

f .

SECTION 5

CONCLUSION

The computer security problem (the need to correctly regulate
the sharing of data in a computer system) has been thoroughly inves-
tigated for single-location systems. The present technological

solution to the problem is the security kernel mechanism. This sim-
ple mechanism assigns a protection class to each identifiable infor-
mation repository and then regulates the flow of Information to be
only between repositories of compatible classes.

A deficiency discovered in the security kernel is how to

correctly assign a protection class to information from outside the
system (e.g., information entered at a terminal) and how to maintain
consistency between the paper information domain and the computer
information domain (e.g., to follow reclassifications). In the
single-location system, these problems have been solved by an ad hoe
mechanism called the trusted function. This function provides a
reliable interface to the protection database of the kernel to allow
updates to that data.

In the decentralized processing case, where information reposi-
tories are scattered and the protection data base is similarly dis-
tributed, the trusted function is even more important because the
consistency problem is exacerbated. The operation of the trusted
function has been reevaluated in this new setting.

The problem of how existing networks can accommodate secure
information sharing is seen to hinge on support of the trusted func-
tion operation in a more general case. Determining the requirements
of the trusted function leads to formalizing the concept of communi-
cating protection information between security domains and the
development of a Trust Model.

The model distinguishes the protection information as a special
type of data that must be communicated in a trustable manner since
it is crucial to the general protection mechanism. Any solution to
this problem will impact the design of a decentralized processing
network and its protocols.

Finally, software-supported, end-to-end encryption has been

proposed as a possible method for providing the requirements of
trusted communications. The impact of this mechnism on protocols is
seen to be minimal. Nevertheless, further investigation is required
to determine the best possible solution.

21

.. .

APPENDIX A

EXAM4PLE

An example multiplexed processing system specification is given
to point out some important properties of the trust model that must
be considered in an implementation.

module SystemInterface
begin
exports InputBuffer, OutputBuffer,

with RequestName, ParameterType, AnswerType;

Includes Scheduler;
ProgramProcessor,
Kernel,
Trusted;

RequestName S (Map, Get, Put, Registers, Input, Output,
ArithLogic, ChangeClassOf);

ParameterType setof (StorageChunk, Direction,
ProcessNumber, RegisterNpme,
PortName, BinaryFunction,
ProtectionClass, UserName);

AnswerType = oneof (Can't, Ok, Value);

Schedule;

end SystemInterface;

Figure 9. Trust System Interface

TRUST SYSTEM

Figures 9-17, give the elements of the trust system. Figure 9
gives the top level module interface that defines the behavior of
the system. The system is made up of a scheduler, a program proces-
sor, a kernel, and a trusted interface. It knows of a number of
requests, their associated parameters, and can return a number of
answers. Its operation is defined by the "Schedule" function.

22

..... .-.. . . . --- - - -

module Scheduler
begin
exports Schedule;

exports currentProcess to Storage, Processes, Protection;

funotima Schedule()
{
for (ever)
f
currentProcess 4- Choice(ProcessNumber, currentProcess);

Compute;

continue;

end Scheduler;

Figure 10. Scheduler Module

"InputBuffer" and "OutputBuffer", defined in the kernel, are the

interfaces to the system.

Figure 10 gives the scheduler module. This model defines the
overall operation of the system, which consists of eternally choos-
ing a process and doing a computation for it. The variable
"currentProcess" defines the multiplexing of the system.

Figure 11 is the program processor, responsible for computa- ..-

tions. The "Compute" function defines the basic processor opera-
tion, which is to open the program file, retrieve a request and
parameter for execution, perform the operation, place the result in
the accumulator, and increment the program counter to point to the
next portion of the program.

The function "ArithLogic" defines the non-security-related
requests that can be computed by the system. It supports binary
functions on the accumulator and the current readable memory por-
tion.

Figure 12 shows the kernel interface, which defines all the
security-related requests that can be computed by the system.

23

-.

module ProgramProcessor
begn"
exports Compute, ArithLogic;

fumetio. Compute()
{
request :RequestName,
parameter: ParameterType;

Map(Registers(programCounter), program);
request <- Execute.request;
parameter +- Execute.parameter;

Registers(accumulator) <- request(parameter);

Registers(programCounter) <-
Next (StorageChunk, Registers(programCounter));

f uctlon ArithLogic(tfunction:BinaryFunotion)value:Value
{ - -

value <- function(Registers(accumulator), Get);

end ProgramProcessor;

Figure 11. Program Processor Module

The kernel supports storage, processes, and input/output in a secure

fashion using the protection database.

Figure 13 gives the protection data module, which defines the
permissible information flows. The function "PermissibleFlow"
decides whether information may flow in a specified direction
between a memory object and the current process. The function bases
its decision upon the "Class" database, which for the moment is
assumed correct.

Figure 14 is the storage portion of the kernel. It ensures that

information motion requests by the current process to and from the
memory are carried out in accordance with the protection policy.
Storage supports three virtual memory areas for each process: one
each for reading input, writing output, and accessing the program.

The "Map" function checks access to a specified area for a -.-

specified purpose and records the result. The functions "Get",

24. , "

module Kernel S
begin
exports Map, Get, Put,

with StorageChunk, Direction;
Registers,
with ProcessNumber, RegisterName;
Input, Output,
with PortName;

Includes ProtectionData,
Storage,
Processes,
InputOutput;

end Kernel;

Figure 12. Kernel Module

"Put", and "Execute" are used to access the area mapped for input,
output, and program, respectively.

Figure 15 showr the processes provided by the kernel. The pro-
cess module keeps tr-tik of the program counter and accumulator
registers for each process and ensures that an executing process can
access only its own registers.

Figure 16 gives the input/output module of the kernel. This
module ensures that information motion requests to and from the
interface buffers obey the protection policy. The interface buffers
are the areas of memory where devices that interface to the paper
domain exchange information with the system. The functions "Input"
and "Output" are used to access the memory area appropriate to the
I/0 device or "port" desired.

Figure 17 defines the trusted interface to the system. It is
an attempt to address the earlier assumption of correctness regard-
ing the "Class" protection database. "ChangeClassOf" provides a
function to change the class of storage objects in the system.
Unfortunately, it depends on another mysterious database, called
"Proprietorship".

OBSER VATIONS

Two observations will be made about the system before analyzing
the trust interface:

25 ..

II

module ProtectionData
begin
exports PermissibleFlow,

with ProtectionClass, Permission;

exports Class to Trusted;

fumction
PermissibleFlow(location :StorageChunk,

direction: Direction) permission: Permission F

permission <-- if(direction = input I direction = program)
then if(Class(location) < Class(currentProcess))

then allowed;
else if(direction = output)
then if(Class(location) Class(currentProcess))

then allowed;
else denied;

Class : array(StorageChunk U ProcessNumber)
of ProtectionClass initially "secure";

ProtectionClass a (anyoneCanSeeIt,
kindOf Important,
realSensitive);

Permission r (allowed, denied);

end ProtectionData;

Figure 13. Protection Data Module

First, note that "Map" in the storage module obviates the need
to compute "PermissibleFlow" each time the memory is to be accessed.
This organization has been found expedient in practice because of
the high frequency of memory operations, but it leads to some com-
plications in enforcing the proposed model, as will be seen below.

Second, the interface buffers in the input/output module illus-
trate the implementation issues we wish to address. These buffers

are storage objects classified by the "Class" function in the pro-
tection data module, but the system has no way of assuring that
external access to the devices they interface is consistent with the
internal assignment. This problem is one facet of the consistency
problem.

26

• . . -

module Storage
begin
exports Map, Get, Put,

with StorageChunk, Direction;

exports Execute to ProgramProcessor;

function Map(direction:Direction, which:StorageChunk)B

if(PerinissibleFlow(which, direction) =allowed)
then VirtualMemory(currentProcess. direction) <- which;

function Getovalue:Value

if(VirtualMemory(currentProcess, input) null)
then value t-

MemoryCVirtualMemory(currentProcess, input));

j function Put()B

{fVruleoycret~oe3 upt ul
thn f r(VirtualMemory(currentProcess, output)) <nll

Registers(accumulator);

U function Executeovalue:Value

if(VirtualMemory(currentProcesa, program) j null)
then value <-

Memory(VirtualMemory(currentProcess, program));

Memory : array(StorageChunk) of Value
Initially Memory(firstChunk) =-"boot program";

VirtualMemory : array(ProcessNumber, Direction) of StorageChunk;
StorageChunk =-(firstChunk, secondChunk, .. lastChunk);
Direction -=(input, program, output);

end Storage;

Figure 14. Storage Module

27

module Processes
begin
exports Registers,

with ProcessNumto- RegisterName;

Registers S AllRegisters(currentProcess);

AllRegisters array(ProcessNumber, RegisterName) of Value
initially AllRegisters(firstProcess,

programCounter) = firstChunk;
ProcessNumber (firstProcess, secondProcess, ... lastProcess);
RegisterName (accumulator, programCounter);

end Processes;

Figure 15. Process Module

ANALYSIS

The trusted interface in figure 17 is the implementation of the
extended model to address the consistency problem. The function
purports to allow a trusted user to update Class to keep it con-
sistent with the paper domain. Three additional properties must be
assured to achieve this goal in an implementation, however; in addi-
tion to enforcing the trust axim we require: "authority", "con-
tinuity", and "believability".

Authority

Some mechanism is required to ensure that only the correct

authority is permitted to exercise the "ChangeClassOf" function. In
the example specification, this assurance is indicated by the argu-

ment "user". We have no reason to believe, however, that a mali-
cious user will properly identify himself.

The problem is similar to the problem of knowing the class of
the input/output ports. For the ports, however, we have some belief
about the location of the devices being static and protected physi-
cally. These facts allow the "Class" function to be preset for
ports.

A similar mechanism is needed to identify the user on an indi-

vidual basis, but we have no reason to believe a user's location

28

module InputOutput
begin

exports Input, Output,
with PortName;

exports InputBuffer, OutputBuffer to SystemInter face;

function Input~port: PortName)value:Value

ifCPermissibleFlow(InputBuffer~port), input) allowed)
then value <- fMetory(InputBuffer(port));

function Output(port:PortName)

if(PermissibleFlow(OutputBuffer~port), output) allowed)
then Memory(OutputBuffer(port)) <-

Registers(accumulator);

intraeIptufr aryPr~m)o trg~uk

Interface IntputBuffer array(PortName) of StorageChunk;

iPortName (frontPanel,
consoleTerminal,
anotherTerminal,
bigTape,
linePrinter,
aNetConnection);

end InputOutput;

Figure 16. Input/Output Module

static. The currently accepted mechanism for juthenticating the
user of an interface is the password mechanism

Continuity

A scenario of operations that can occur in the system is for
one user to open a storage object for writing, and then for another
user to lower the class of that object. Under the present

9Other, more-sophisticated, authentication mechanisms are under
development and should be used when feasible.

29

module Trusted S
begin
exports ChangeClassOf,

with UserName;

function ChangeClassOf(user :UserName,
which: StorageChunk,

new:ProtectionClass)
{

if(user = Proprietorship(which))
then Class(which) <- new;

Proprietorship : array(StorageChunk) of UserName
initially "trusted";

UserName B (me, you, ... others);

end Trust;

Figure 17. Trusted Interface Module

implementation specification, this scenario leaves an information
path for the unwitting first user to leak information. Even though
the downgrade was "trusted", something went wrong.

There are two immediate remedies to this problem: The memory
unit can check the class of each object at each access; a solution
experience tells us is infeasible. Or, the trust function may not
change the class of an object in use, a procedure reminiscent of the
old tranquility principle. A third option would be for the trust
function to ensure that all users of the object can still use it or
otherwise disconnect (unmap) them, thus maintaining the continuity
of the security policy.

Believability

Since the request buffers are simply storage objects, protected
only by class, requests entered by devices using these buffers may
be sabotaged by anyone of appropriate classification. Because the
authority requirement depends on the user's identity, some means is
needed to provide a believable request channel that can preserve the
integrity of the user's request, also based on identity (rather than i.

just classification).

30

module Trusted S
begin
exports ChangeClassOf,

with UserName;

exports TrustChannel to SystemInterface;

function ChangeClass~f(argumentChannel.:PortName)

user: User Name,
password: Value;
which :StorageChunk,
new: ProtectionClass;

user <- TrustChannel (argumentChannel) .user;
password <- TrustChannel(argumentChannel) .password;
which <-- TrustChannel(argumentChannel) .storageChunk;
new <- TrustChannel(argumentChanlel) .protectionClass;

if(password Password(user))
then ifuser =Proprietorship(which))

then if G~ process e ProcessNumber, direction e Direction $
VirtualMemory~process, direction) =which)

then TrustChannel~argumentChannel) <- Can't; -

else

Class(which) <- new;
TrustChannel (argumentChannel) <- Ok;

Proprietorship :array(StorageChunk) of UserName
Initially "trusted";

h" Interface TrustChannel : array(PortName) of Value;
Password :arrayCUserName) of Value initially "trusted";
UserName (me, you, .. others);

end Trust;

Figure 18. Better Trusted Interface

SOLUTION

Figure 18 shows an updated trusted interface that attempts to
remedy the three implementation problems discussed above.

31

A new set of interface channels, "TrustChannel", is added to
provide a trustworthy and dependable communication with the user for
"Believability". While these channels are still associated with the
existing ports to devices, they do not allow general access. Basi-
cally one can think of them being input buffers under the control of
the kernel or trusted process. (If the trustworthiness of the nor-
mal device is of concern, a special device can be interfaced to the
trusted channel.)

The "ChangeClassOf" function is modified to read only from a
trusted channel. The user's purported identity is read from the
trust channel and will be verified against a password. (The pro-
tected channel is used here to maintain the secrecy of the password,
actually an unintended use of the channel.) The arguments for class
change, object and new level, are also read from the trusted chan-
nel. If the password passes and the user is the proprietor of the
specified object, then the main body of the function is entered.

An additional check is now made to see that the object is not
"inuse". This check represents the second of the "Continuity"
options. (The third was not pursued only because the existing per-
mission function did not allow easy check of access other than by
the current user.)

If the object is not active, its new level is set, and the
proprietor is notified by the trust channel. (Consistency would not
be fulfilled if the proprietor could be spoofed about the result.)

SUMMARY

An example implementation of the trust axiom as a trusted

interface for a multiplexed processing system has been presented.
We have also noted three properties that must be enforced in an
implementation to solve the consistency problem correctly: author-
ity, continuity, and believability.

32

...

REFERENCES

1. P. A. Karger, "Non-discretionary Access Control for Decentral-
ized Systems," LCS/TR-179, MIT Laboratory for Computer Sci-
ence, Cambridge, Massachusetts, May 1977.

2. R. H. Thomas, R. E. Schantz, and H. C. Forsdick, "Network
Operating Systems," RADC-TR-78-117, Rome Air Development
Center, Griffis Air Force Base, New York, May 1978.

3. D. P. Geller and K. Sattley, "National Software Works User's
Reference Manual System Version 2.1," CADD-710-2611, COMPASS,
Wakefield, Massachusetts, October 1977.

4. D. F. Stork, "Downgrading in a Secure Multilevel Computer Sys-
tem: The Formulary Concept," ESD-TR-75-62, The MITRE Corpora-
tion, Bedford, Massachusetts, June 1974.

5. D. E. Bell, R. S. Fiske, M. Gasser, and P. S. Tasker, "Secure
On-line Processing Technology -Final Report," ESD-TR-74-186,
The MITRE Corporation, Bedford, Massachusetts, August 1974.

6. W. L. Schiller, "The Design and Specification of a Security
Kernel for the PDP-11/45,"1 ESD-TR-75-69, The MITRE Corpora-
tion, Bedford, Massachusetts, March 1975 (AD A01171).

7. J. Mogilensky, "A General Security Marking Policy for Classi-
fied Computer Input/Ouput Material," ESD-TR-77-259, The MITRE
Corporation, Bedford, Massachusetts, May 1975 (AD A016467).

8. W. L. Schiller, "The Design and Abstract Specification of a
Multics Security Kernel," ESD-TR-77-259, volume 1, The MITRE
Corporation, Bedford, Massachusetts, January 1977.

09. K. J. Biba, "Integrity Considerations for Secure Computer Sys-
tems," ESD-TR-76-372, The MITRE Corporation, Bedford, Mas-
sachusetts, April 1977.

10. S. R. Ames, Jr., "File Attributes and Their Relationship to
Computer Security," ESD-TH-74-191, Case Western Reserve
University, Clevelandi, Ohio, June 1974.

11. D. E. Denning, "A Lattice Model of Secure Information Flow,"
Communications of the ACM, volume 19, number 5, May 1976, pp.
236-243.

33

.

REFERENCES (Concluded)

12. D. E. Bell and L. J. LaPadula, "Secure Computer Systems,"
ESD-TR-73-278, volumes 1-3, The MITRE Corporation, Bedford,
Massachusetts, April 1975.

13. G. D. Cole and D. K. Branstadt (editor), "Design Alternatives
for Computer Network Security," publication 500-21, volume 1,
National Bureau of Standards, Washington, District of Colum-

ibia, January 1978 (PB 276 771).

14. G. J. Popek, and C. S. Kline, "Design Issues for Secure Com-
puter Networks," Operating Systems - An Advanced Course, R.
Brayer et al., (editors), Springer-Verlag, Berlin, Germany,
1978, pp. 518-546.

15. R. M. Needham and M. D. Schroeder, "Using Encryption for
Authentication in Large Networks of Computers," Communications
of the ACM, volume 21 number 12, December 1978, pp. 993-999.

16. S. T. Kent, "Protocol Design Considerations for Network Secu-
rity," NATO Advanced Studies Institute on Interlinking of Com-
puter Networks, Bonas, France, August 28-September 8, 1978.

17. J. Postel (editor), "Transmission Control Protocol (TCP)
Version 4," TEN: 81, Information Sciences Institute, Marina
del Rey, California, February 1979 (AD A067072).

18. M. A. Padlipsky, D. W. Snow, and P. A. Karger, "Limitations of
End-to-End Encryption in Secure Computer Networks," ESD-TR-
78-158, volume 1, The MITRE Corporation, Bedford, Mas-
sachusetts, May 1978.

341

DISTRIBUTION LIST

INTERNAL D-75 (Continued)

D-1O N. C. Goodwin
A. Hathaway

E. L. Key S. W. Hosmer
G. A. Huff

D-II J. G. Keeton-Williams
J. K. Millen

J. J. Croke D. G. Miller
G. H. Nibaldi

D-44 S. J. Rajunas

D. P. Sidhu
M. Ferdman D. J. Solomon

J. D. Tangney
D-50 P. S. Tasker

E. T. Trotter
F. Chess E. E. Wiatrowski

W. F. Wilson
D-64 P. T. Withington (10)

J. P. L. Woodward
G. T. Hopkins
B. P. Schanning W-31

D-70 S. E. Holmgren
D. C. Wood

W. S. Attridge

E. L. Lafferty
W. S. Melahn

PROJECT

D--73
Defense Advanced Research Projects Agency

J. A. Clapp Information Processing Techniques Office
1400 Wilson Blvd.

"D-75 Arlington, VA 22209

S. R. Ames, Jr. (10) Lt. Cmdr. J. Dietzler
D. L. Baldauf W. E. Carlson, IPTO (5)
E. H. Bensley
E. L. Burke
M. H. Cheheyl
M. J. Corasick
D. L. Drake

K. B. Gasser
M. Gasser

35

DISTRIBUTION LIST CONCLUDED

EXTERNAL

Naval Electronic Systems Command
Dept. of the Navy
Washington, D.C. 20360

H. 0. Lubbes

Naval Research Laboratory
Code 7503
Washington, D.C. 20375

S. H. Wilson

Office of the Secretary of Defense, OASD (C31)
Information Systems
Room 3B252
The Pentagon
Washington, D.C. 20301

S. T. Walker

Rome Air Development Center
Griffiss Air Force Base
Rome, NY 13441

Maj. T. Darr, ISCP

36

-7 -7..

