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Abstract

This report is the first in a series presenting a study of self-correlation
algorithms in intelligence systems. It was performed by the Mathematics
Clinic of the Claremont Graduate School in support of the Algorithm Analysis
subtask of the U.S. Army Intelligence Center and School (USAICS) Software
Analysis and Management System (USAMS) task at Jet Propulsion Laboratory.™ The
self-correlation algorithms use multivariate statistical tests to determine
the equality of mean vectors from two differens gqtasets. The statistical
tests developed were variations of Hotelling's‘fz-statistics. The main results
deal with the analysis of the robustness of these statistics with respect to
normality and equal covariance matrices. To do this the Clinic developed
mathematical techniques and simulation programs which generate multivariate
normal, gamma, and lognormal distributions with a specified dependency between
the vector components. Theoretical and sample multivariate skewness numbers
of these distributions were also developed. The results indicate that the
statistical tests are sensitive to skewness in the distributions but are not

affected by slightly differing covariance matrices.

Key Words: f ST ‘l_ v . P
Self-correlation algorithm
Multivariate distributions

Hotelling's T2

-statistic
Robustness

Multivariate skewness
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Summary

\:) This study is the first in a series of reports involved in researching
self-correlation and cross-correlation algorithms in intelligence systems.
These algorithms are used to maintain a data base of current information about
a battlefield. The initial view of the battlefield is stored in a central
computer data base. As new data is received from the sensors on the

battlefield, it is used to update the old data and formulate a new picture of
.f the battlefield. The work on these algorithms reported here focuses

on the sensitivity of the mathematical tests to changes and uncertainties ‘s f;‘/

—— \

in the data..f?;;;ﬁprojécf was performed by the Mathematics Clinic of the
Claremont Graduate School (CGS) in support of the Algorithm Analysis subtask
of the U.S. Army Intelligence Center and School (USAICS) Software Analysis
and Management System (USAMS) task at Jet Propulsion Laboratory (JPL). .This
is an ongoing task to study intelligence algorithms for the Combat Developers
Support Facility at USAICS.

The analysis this year focused on statistical tests that are variations

2-statistic. In many applications the Hotelling's Tz-statistics

2

of Hotelling's T
revert to chi-square (XZ) tests. (The x~ forms are used in many of the
current systems.) These tests are used tc check the equality of means in a
multivariate setting. Such tests could be used, for example, to test if two
location means or if two radar signal means are the same. The statistical
tests have several variations depending on whether the mean of the old

data and the dependency relationships of the old data and new data are

assumed to be known or are estimated. Three main cases were studied:

‘‘‘‘‘‘
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1. The mean of the old data is assumed to be known. The
dependency relationships for both the old and new data are
assumed to be known.

2. The mean of the old data is assumed to be known. The dependency

relationship is estimated for the new data and is assumed to be

known for the old data. _
3. The mean of the old data is estimated. The dependency relationshipséii?if;;f

for both the old and new data are estimated and are assumed to be RO
equal, . *

Once the statistical tests were developed, the Clinic team began investigatinéff;’ijg?
the robustness of the tests, i.e. the sensitivitx of the tests to the ;.. ~'»:
relaxation of the assumptions. A1l of the tests assume that the incoming data -®
is normally distributed (Figure i). This assumtion was deemed most likely
to fail in two ways: the distributions are skewed or they have fat tails. To - = "
test the behavior of the tests when the distribution of the incoming data was ;}gg;;gsq
skewed, the gamma (Figure ii) and lognormal (Figure iii) distributions were L
used. These distributions were chosen because they are représentative
of skewed distributions and have statistical properties which made the
mathematical development possible. A major task of the Clinic team this year
was to develop a software package to simulate representative multivariate
data from these distributions. The results obtained indicate that if the
actual distribution of the data is skewed, the statistical tests, developed
under the normality assumptions, may be invalid. The simulation programs were als!%jk 3??3
also used to test the robustness of the assumption of equal covariance matrices

while the investigation of fat-tailed distributions was left to future studies.

The development of simulation programs for determining the robustness of

the intelligence algorithms and the analysis based on the statistical tests

is being continued.
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Chapter I - Introduction

-
t

The Mathematics Clinic project involved researching methods to maintain

TT—

a data base of current information about a battlefield. The initial view of
the battlefield is stored in a central computer data base. As new data is

received from the sensors on the battlefield, it is used to update the data

v

base and formulate a new picture of the battlefield.

The process can be illustrated by Figures 1 and 2. The original view

T

of the battlefield, illustrated by Figure 1, shows one plane, a truck with two | ,
{ radars, and a single radar on top of the hill. New data is collected from B
the battlefield, as represented by the dotted lines in Figure 2. It indicates ‘

3 that the previously identified truck and plane have moved to new locations, R

and that the truck now carries only one radar. It alsc shows a new incoming

plane. The single radar on top of the hill, however, is still at the same 1ocation.gfgl;;;§’

The Clinic's goal was to develop statistical methods to analyze the incoming ;ffflﬁlé

data in order to accurately update the data base.

The procedure fellowed te formulate the new estimate of the battlefield
is illustrated in Figure 3. New data is first collected and filtered. This »ﬁl;'iéi
procedure prepares the data for the identification stage, where the source of

the transmission can be determined. It is the next stage, self-correlation, on

which the Clinic team concentrated its research efforts. Statistical tests

are performed here to compare the new incoming data with the old estimate L -.1
of the battlefield. The new estimate of the battlefield is then stored in the ,.T?;f__
data base. Figure 4 shows the updated picture of the battlefield. The final "" T

. :

ctage is battlefield identification or cross-correlation which i¢ the analysis ‘~1_f:£:

of the configuration of the battlefield based on the enemies capabilities.

The statistical tests used in the self-correlation stage are variations

of the Hotelling's Tz-statistic, which is a multivariate extension of the

student’'s t-statistic. The use of a multivariate test statistic is necessary
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because the data from the sensors comes in the form of vectors. (The location
vector, for example, may have three components: longitude, latitude, and
altitude. The signal parameter vector may have four components: pulse
repetition interval, pulse width, scan rate, and frequency.) During the first

semester, the Clinic team rederived the basic Hotelling's T2

-statistic and its
variations and then extended the results. Chapter Il presents the mathematical

models of the test statistics that the team developed.
2

The statistical tests used in this report, namely Hotelling's T -statistic

and its variations, were derived under certain assumptions. In some applications_i.
these assumptions may not be met. Thus it is desirable to investigate >, T
the robustness of the statistical tests used. (A statistical test is robust i'k~%

if the failure of assumptions does not invalidate its ability to yield correct

results). One of the assumptions that was relaxed was that of normally

distributed data. For example, the normality assumptions are violated when the
data comes from skewed distributions such as gamma or lognormal. To measure R
the non-normality of multivariate distributions K. V. Mardia's generalizations ,ffifzig
of skewness and kurtosis were used. Chapter IV develops these concepts. A Tl
second assumption which was relaxed was that of equal covariance matrices.

Chapter V contains a brief discussion of covariance matrices. To study the

robustness of the above two assumptions, the Clinic team needed to generate
multivariate distributions that had characteristics representative of the . @
battlefield data. This involved generating random samples of vectors such B

that the vectors components have different statistical distributions which ﬁﬂﬁiséi;
may not be independent of each other. That is although the vectors in the —, B
generated random sample are independent of each other, the statistical e

distributions of the vector components may be dependent. The dependence among

the vector components is described by the covariance matrix of the multivariate _® -
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distribution. For example, if the covariance matrix has non-zero off-
diagonal elements, then a dependency between the vector components exists.
The method devised for generating these random samples consists of first

specifying the desired component distributions and then specifying the

component dependency (i.e. the covariance matrix). The components of the 4
sample vectors are then assumed to be expressable as a combination of appropriatel. l,..
chosen univariate distributions. Using the assumed covariance matrix, it is |
sometime possible to solve for the coefficients of the combinations and
hence obtain the desired random sample. Thus the problem of simulating data
sets is reduced to finding the coefficient matrix of a system of equations.
The Clinic team named the procesé of finding the coefficients matrix
“backsolving" since the algorithm starts with the. desired result (the
covariance matrix) and ends with the means by which the problem is solved
(the coefficient matrix). The details of the "backsolving" process are
discussed in Chapter III. The associated computer simulation programs are
described in Chapter VI.

The results of the Clinic team's investigations indicate that the
statistical tests are sensitive to skewness in the distributions but are
not affected by slightly differing covariance matrices. A detailed
discussion of the robustness results are contained in Chapter VII.

The report concludes with Chapter VIII which contains comments on

possible future projects.
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Chapter II - Mathematical Models for the Self-Correlation Stage

The Clinic Team analyzed various models for the self-correlation stage.
2 In this chapter we briefly illustrate the self-correlation algorithm and

then develop the appropriate mathematical models.

* The self-correlation stage involves the testing for equality of mean
vectors from two datasets. The first dataset represents the old estimate of
the battlefield which has been stored in a central computer system and is

L referred to as the Base Data. The second dataset represents the new estimate
of the battlefield and is referred to as the New Data. Information from

3 both datasets is summarized and stored in the form of (mean) vectors and

*- (covariance) matrices; denoted by p and £ respectively.(Vectors will be

denoted by an underscore,) The covariance matrix desribes the relationships

- between the vector components. When referring to the Base Data we will use the
subscript B and when referring to the New Data we will use the subscript
N, for example, Ig denotes the covariance matrix from the Base Data.

Figure 5 shows how the self-correlation algorithm is implemented for the
situations mostly likely to occur on a battlefield. For simplicity, not every
possible case has been included; however, the logic used for most standard
situations is illustrated. The first step in the algorithm is to test whether
the candidate entity (New Data) is in the same location as a known entity
(Base Data). If the locations of the two entities ére determined to be the
same, then their signal parameters are compared. If these two sets of

parameters are compatible with one another, then we conclude that the

observations refer to the same entity. However if the candidate entity

e
PRI BRI
M B )

is strongly associated with more than one known entity, then it is possible

that either the candidate entity or the one of the known entities is a . .1

......................
............
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deceptive reading referred to as a phantom. Phantoms can be caused by

failing to divide the observations of the two entities in the separation

stage or by incorrectly matching a candidate entity with a known entity. When
a candidate entity has the same location as a known entity but different and
noncompatible signal parameters, the possibility that it is a known entity
which has changed its signal parameters must be checked. The last possibility
we consider is when the candidate entity's location is not the same as the
location of any known entity. In this case it must be determined whether

the candidate entity is a known entity with the same signal parameters that
has moved (i.e. the known entity is mobile) or whether the candidate entity

is a previously undetected entity.

The questions asked in the above decision process, as well as others in
the self-correlation algorithm, are answered by using hypothesis tests :f the
equality of mean vectors. The desired statistical tests are based on Hotelling's
Tz-statistic or a variation. In the development of these tests there are two
possibilities that must be considered; namely whether the mean vectors and
covariance matrices are to be considered as known constants or as estimates.
In all there are six variations of the model to be considered. These six
cases are described verbally in Figure 6. In Figure 7 the six cases are enumerated
and described using previously introduced notation.

As an example, under the assumption that ug is estimated, Ig is

unknown but Ig=1L is assumed, case 5 is appropriate. Cases 1-5 lead to

N
variations of Hotelling's T2-statistic to test

Ho: bg = by
which is called the null hypothesis against

HA: EB’EN
which is called the alternative hypothesis.

1
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Before we develop the mathematical models for these six cases, we give
a more detailed description of the mean vector. A sensor observes p -

characteristics of a particular entity N times: therefore, there are N
x

vectors of the type Xx={ . The incoming data is assumed to be from a

X
p

p-variate normally distributed population and the N observations are assumed .3_
independent of one another. The jth component of each vector satisfies the

equation

xj(t) T ej(t) "o

a

where xj(t) is the value of the jth characteristic at time t, b is the
true value of the characteristic, which remains constant over time for a -
stationary entity and ej(t) is the error term at time t. The N vectors

are averaged to obtain the sample mean vector

X (t) = p+e(t)

That is, Z (t) 1is the sample mean observed by the sensor at time t (average
or final time of observations). We now proceed with development of the °

mathematical models ‘or the self-correlation stage

Case 1 is the simplest and least 1ikely case to occur, the reader

is referred to Johnson and Leone (1964, pp. 294-295). The Tz-statistic ]
SRR
used in Case 2 1s presented next. ]
Let XpoeeooXy be N observations, each with p characteristics.
. * 1
X1 ]
3]
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The distribution of x, is assumed to be normal with mean u and covariance

matrix I (In the self-correlation algorithm u = uy and I = Each

N')
observation vector has probability density function

; _ 1
1’x.(-x-i) -

expf-t(x.- u)- 2'1(5-- b))
- (/2n)P |2)% ] ]

The joint density, or likelihood function, is

f&l,---’éN (54:...,5N) = L (E; Z-])
N
=n (f (x )]
a=1

L(p~, z’l) denotes the likelihood function of the parameters listed. For

this case, the null hypothesis is HO: TR TP with ¥4 known, and I is
unknown and invertible. (In the self-correlation algorithm, ¥y =
In order to test HO we compute the likelihood ratio:
-1
max L(Uosz )
z']
A= -7
max L(up”,z ')
Bl
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The numerator of this ratio is the maximum of the likelihood function with

°
parameter space restricted by the null hypothesis, w. The denominator is the .. -
corresponding function maximized over the entire parameter space, Q. The ;f:ﬂf
test is to reject H, if the computed X is small; that is, less than or B

®
equal to some AO' The derivation of the maximum of the likelinood function
over the entire parameter space, £, and over the restricted parameter
space, w, is shown in Appendix I. Using this derivation the likelihood

o
ratio becomes )

1 N _ N/2
o kN I(x - - x)’
PRk l(,:%x x)(x - x)°|
3 = = . L2
~ BN - .(N/2 R
Iz, | | 205, - ug)(a g)”| ]
~ ° .T
A+ N (o) V2 e
R
®
h " - SR
where A =a'_§](zu- X)(x - x)" = (N-1)S, with S = A/(N-1). Thus RERS

RANE

. 4
A2/N - |A] ;
|A+ IN(x - ug) JIAN(x - ug) 11 i
or equivalently ’ R
\2IN ‘ s

- 2.1 o

1+ T8/(N-1) (2.1) :

®

16




(N = DN(x - 5g) A7 (x - ug)

N(Z - HO)'S-](X - Uo)

Equation 2.1 can also be expressed as

(SN CRITCRCLATE
The decision whether or not to reject the null hypothesis is determined
by comparing A against a critical XO at a certain significance level. We

reject H0 when

AZ/NEAS/N (2.2} -

Inverting Equation 2.2 , subtracting 1, and multiplying by N-1 , the critical

region is redefined as

2

T =7

2
0
2

In this case, T° can be shown to be distributed according to an F distribution

with p and N-p+t1 degrees of freedom. This result is proved in Appendix II.
For cases 3 through 6, the two sample tests, the T2-statistic does not

follow one specific distribution; it varies depending on the assumptions

on the covariance matrices. When the covariance matrices are unknown, and

there is not enough data to assume that the estimates are equal to the true

values, we use statistical methods to test whether or not two covariance

matrices are equal. The derivation of this test is presented in Appendix III.




We will now examine the case of testing two observed sets of estimates,

_m _(2)

A and x » for equality of mean vectors, i.e., Ho: E(])= 5(2). or,
(1) ) [ (2) ]
M "
(1) (2)
Y2 = 2
Y ()
! J \ J

(In the self-correlation algorithm, superscript (1) quantities may be thought

of as the New Data and superscript (2) as the Base Data,)

For case 3, to test HO’ the statistic

N, N (M) 2 _;_0) _(2)
- L2 3 x ) lw x )

. 1 .
is used, where & = (oij); osj) = °§§) = %33 by assumption.

This statistic follows a noncentral x2 distribution with p degrees of

freedom and non-centrality parameter

NN P P
. 12 (V) _ @)y, () _ (2)
S AT I
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For case 4
s (M) _2)  _-1 _(1) _(2) R
T"=1(x -x )¢ (x -x ) is used, . o
= (3 - .1 (1,1 £ J— s R
where I = (Oij) and o N, % + N, 043 . This statistic follows S
a non-central x2 distribution with p degrees of freedom, and ¢
non-centrality parameter
P P ( (Mm (2))( (1) (2))
6 = I o R ST . -
i=1 j=1 1J Mio T " M L
The preceding results (cases 3 and 4) can be found in Johnson and Leone
(1964 ,pp. 296-297). ' o
Case 5 is analogous to case 3 except that © must be replaced with e o
K| -
1 N e
- ! 1) —(1) _(1) 2
S [ (X( -X )(x“) X )+ (2)_ (2),,.(2)_(2)
SR Y. ¢ X X T-x Lx T ex - :
N] + N2 ‘2 131 3 " u=] ~u - )(5'1 i ) ] ..-,».m-.._.
Then 12 becomes C
N N oy L S
2. 2220 (N (@) 671 5(2)) i
N, + N LT
i 2 T e
Appendix IV derives the distribution of this statistic, which leads to the S
critical region :jijf'
(N, + N,=2)p
T2 R} 1 2 Fp e -](d) )
N, + N, -p-1 Ny * Ny P
| 2
where a is the level of significance. It is only in case 6, unequal and unknown A ° .
covariance matrices, that there is not a precise statistical procedure
yet developed to test the equality of mean vectors. [n this case, other methods
such as computer-intensive data handling techniques must be used. ”.

19
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The preceding tests will yield precise results only when all of the

| |
Lot .

assumptions concerning the data are met. However, in some applications not -

all of the data will be normally distributed observations. The remainder of
this report discusses techniques used to analyze the validity of the tests when !?iLif]

assumptions are not valid. ST
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Chapter 1II - Multivariate Distributions with Component Dependence ,i.?
This chapter describes the mathematical methods used to generate data ’ﬁ‘i;—ﬁij

to test the robustness of the statistical tests of Chapter II. The robustness .Ef;;fﬁg

7

results are contained in Chapter VII while the computer techniques used are Ej;i;ﬁjy

M
r
A

in Chapter VI. ‘.:d B
To simulate relevant data, it is important to understand the characteristics '

of the observations made by a sensor. Examples of these observations are the

signal parameter and location vectors. A signal parameter vector may have @

four characteristics or components: pulse repetition interval, pulse width.

scan rate, and frequency. The location vector, on the other hand , may have

longitude, latitude, and altitude as its components. Each data vector e . .

n

is independent of the others since the sensor takes readings from different

7

v

locations at different times; however due to the nature of the type of data
collected, the components of each data vector may not be independent of each
other. A good example of such dependence in the signal parameter vector is the

relationship between the pulse width and the pulse repetition interval. These

two components are related through the peak-to-average power ratio.
When simulating data, we assume p=4. That is, we assume the mean
vectors have 4 components and the covariance matrices have dimension
4x4. (JPL has indicated this would be sufficient for the desired applications.) | °® )
The Clinic team generated data from the multivariate normal, gamma, and lognormal -

distributions. The choice of these particular distributions was based on two tff}};gw

criteria. First, these distributions have reasonable statistical properties _’"‘->~
and hence the mathematical development was possible. Secondly they have the '

desired properties for testing robustness. The multivariate gamma and i§;£?£§£3
lognormal provide examples of non-normal or skewed distributions while the »f';'..‘

multivariate normal is used as a “control" distribution. . ﬁiﬁ;}’

21 .‘.. ]
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The general approach in generating the desired multivariate random

samples is as follows. We first specify the desired component distributions

and component dependency (i.e., the covariance matrix, denoted by » = (0..)).

To obtain the specified dependency the components of the vectors in the

random sample are assumed to be expressible as a comhination nf appropriately

chosen univariate distributions, we used the notation

R I
: X ? 4
X = | where x. = I a..y. , i=1,...,4
X LIRS K B
} Xq ! J=1
x4/

and the Y; are independent univariate random variables.

In matrix form,

"1\ N

X

X = 2| . Y2
X3 Y3
Xa ya}

Thus the problem becomes one of finding a coefficient matrix A such that the
multivariate distribution x will have the specified distribution and
covariance matrix. The Clinic team named the process of finding the coefficent
matrix A "backsolving" since the algorithm starts with the desired result
(the covariance matrix, I ) and ends with the means (the coefficient matrix,
A) by which the problem is solved. Once the coefficient matrix A has been

found, the univariate random variables y; are generated using standard

22




techniques which, together with A, produce the desired multivariate
random samples.
Before looking at the specific distributions, several comments should

be made. First since the covariance matrix is symmetric, we need only work

with ten of its entries; therefore we assume that the coefficient matrix is

lower triangular. Secondly when testing for robustness with respect to the

normality assumption in case 5, we need to have IN=Ig - Thus we need

to generate multivariate random samples with equal covariances matrices. To

do this we first show that we can backsolve for both the normal and gamma

cases provided certain relationships among the entries of I are satisfied

(see equations 3.9, 3.10 and 3.11). Since backsolving for the lognormal

case appears to be very difficult mathematically, we avoid it by choosing our

coefficient matrix A so that the resulting covariance matrix can be backsolved
k for the normal and gamma cases. Finally we note that although the C]\A}c team
approached backsolving using basic algebraic manipulations, Cholesky decomposition
techniques could have been used. We now develop the backsolving methods used

I for generating multivariate normal, gamma and lognormal data.

NORMAL
Constructing specified dependence between normal random variables was
. relatively simple due to the fact that any linear combination of normally
| distributed random variables is also normally distributed. By adding four
univariate random variables, Yy i=1,...,4, which are N(0,1), new random

variables were created as follows:

X =

a
i =%

a a i = ) L
1 + izyz + i3y3 + ai4y4 + Ui’ 1 ].....4 17K;‘}i

' where aij =0 for i< j °

23 RO

P W Y T




£

-~ T —w— v w =~ = = =~ -
I ——— — " La — o

Each X is distributed normally with mean

E &"] = ui!
i 2
var [Xi] = I aik » and (3°])
k=1
: (3.2)

In matrix form, the new equations Took like:
x=Ay+u

or equivalently,

- -
(x a0 0 /NN (“1

X2 a1 %2 0 O Y2 Mo

L x,]  la, a ) + i
3 N %32 %3 0 Y3 by

' i

| |

(4 _%1au a3 2aa| V4 Y

Given a certain covariance matrix, I = (°ij\' the objective is to
compute the coefficient matrix, or the A matrix,so that the cove “iance

matrix of x 1is equal to I .

Using equations 3.1 and 3.2 , the aij terms can be computed, For

example, by equation 3.2 ,




since 612 = 313 = 314 = 0. And by equation 3.1,

2 2
ayy » or

an =9
Thus »

o
_
a4] U]

The rest of the aij terms are computed in a similar way involving numerous

calculations, algebraic manipulations, and substitutions.

They are
a1 7 9
» a2'| o
]
a = Jdet B
22 0]
- a = _o_]}.
| 31 o
2 [e]
) = %y 923 - 912913
32 %) Jdet B
_ et C o :
a3 det B s
a,, = "4 - * ]
81 o IR
2 L
a = 91 %4 ~ 91214 T
. 42 01 vYdet B ® ]
) ) o
25
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2 2 2 2 2 o
_ %1% %4 7 %1293 T % °13%14 T 91 923%4 T 912°13%4 * 912914°

T

v{det B) (det C)

where

det B = det

det C = det |21 %2 923 and

%12 °13 %14
(o] 020 s}
21 % 923 %24
det D = det 2

931 932 %3 934

2
%41 %42 %3 %
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: In order for the X5 to be distributed as gamma, certain restrictions BRRSE :
ij have to be imposed on the n; and Ai. These restrictions become clear when Sf57{
'
. we look at the moment generating function. The moment generating function o 1
1
;- (MGF) of Yy is -]
. T
- M (t)=<-}>‘"i -
. Y i .
| S
. 27 SRS
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GAMMA ]
The gamma distribution was chosen to represent a skewed distribution. s f_;j

Through its parameters, n and X, the gamma has a great deal of versatility.

The density function of a gamma distribution is

n n-1

_ A oY SO
fy(y) —%(F)\e y:n’A>07 V .

Its mean and variance are
E[y) =%and

var [y] = l% respectively.
A

To simulate multivariate gamma random samples we assume, as in the normal

case, that the coefficient matrix is lower triangular.
Let % = apy,
2 TN T Y,

37 a3y Y agy, toagyy,

where the Y; are independent gamma random variables with parameters

(ni,Ai) , 1. =1,2,3,4. i.e.,yi ~ G(ni,Ai).

4= Yy T Yyt 2433 Y a4y, RN




Similarly,

a,;t\-n
11 1
M (t) =<|- _>

On the other hand, the MGF of x2 is

MORE. etany) *+ a5y, l

|
a t 3,5t
- {e 21 y] £ [e 22 yzl (by independence)

g

\_/
/\
]

|m

e )
LS XY
~—,
3

N

A X
The MGF of x. indicates that x. will be distributed as a G(n,+n,,— +-2
2 2 172 a2] a22
only if
21 | %22
x] Az (3.3)

By a similar analysis, two more restrictions are imposed for x 3 and Xa

to be gamma. They are

az1] _ 93 233

= = and (3.4)
M A2 A3
Bar | 2 Y3 |
: Az x3 A4 (3.5)

In summary, if restrictions 3.3 , 3.4, and 3.5 hold, X will be

distributed as

. N e e Yt LS SO
LI S I TRl T S SR Y At N
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The mean of X5 is
. 4 n - R |
' k °
E[x.]=1 +— a;
LS ¥ ik
. and the covariance matrix is e
? o5 = cov[xi ,xj] °
E rd 4 nk 4 4 nk A
4 =t Za,y -L —a, f a,y -§L —a )
(1 1 K X 1><k-1 L J"}
s / ]
[ 4 n 4 n
k Kk
=t T a, [y - ——j I a, (y - =
_{k-l "‘(" M {k=1 Jk Tk xy
= g a.,a. k : . .
i=1 ik Jjk N 2 e
k .'«"_‘"_.l;:'-::
n n. 0 Kk#j - ER
] - _k_ - _.l = P e
since E Yo 3 yJ. = ] 0 °
k j k K= i B
—_ J o )
- — X 2 .>. ,.: ._'...‘-‘.
k el 5
Accordingly, the a].j terms can be expressed in terms of i \1., .
and n.. After tedious algebraic manipulations

1

ajj =0, for i< i
a
e =
n o !
1™
OnyA ®
2 - 21 R
Yoy R
®
29




™, w.‘v

a
22
992{M*N,
I | L
3 1M
- 30"
32 Yo (n +n ,
22\M*ny
) 9333
633 ) VO +n +
ag3(ny¥n +n,)
I\ I
4 1M
) 9422
P2 *
g (Ny*n,
) 943*3
93 " g
035(N ¥ *ng)
%4474
344 x —
vogq(NytNytngtn,)

The covariance matrix, t 1is constrained due to the restrictions imposed on

the relationships between the aij terms by equations 3.3, 3.4, and 3.5 .

From equation 3.3 ,

°21M U22%2
o™ | Topp(nyng)
A] AZ
30
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e laa

s
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= —_— (3.6)

S‘milarly, from equation 3.4 ,

Yy

-

k 99 ) o35 ) 933 (3.7) :f{;;{;
[ ]
oM /o59(n1#0,) vo33(ny*n ¥ng) o

and from equation 3.5,

oM CPRCT vo33(ny#ny+n,) CYPLCINPRIISIN

1
g g o g : .
: 4] B 42 - 43 44 (3.8) .

P

Combining 3.6 , 3.7 , and 3.8 , the restrictions on o, become o
i %12 _ %3 . °ue (3.9) L
E %2 %23 ‘2 B
S

o] o

Gqal ;:*}?"“;
P 3344 (3.11) °

.y

"

31

T
@




O Se o A L
,.

LOGNORMAL
The lognormal distribution is a skewed distribution which is related to the
normal distribution. Given that y 1is normally distributed with mean

and variance 02 then x = exp[y] 1is defined as a lognormal distribution.

®
The expected value of x is
E[x} = explu] - exp[o®]
while the variance is
2 2 9
var[x] = exp[2u]-exp[c“]-{exp[c°-1]).
Since x = exp[y), the condition O<x<= must hold.
[
Let .:~ o
i | . 15
X5 = ex -E ajjyj *byl = 1,..,4 S

Thus

X) = exp lagyy + by ]

_ . .
Xp = exp [aggyy * a0, * byl B
Xy = exp [ag,yy + 2y, + aggys + b4l

Xg = exp [agy) * 2y, + a3 + agy, + b,]

where the a;; and b, are scalar constants, and the y, are 1ndependent standard,fQ.*f
normal distributions. i.e. ¥;~ N(0,1). Each x; 1s lognormally distributed .

i .
since [ E] a;5%j * byl s distributed normally with mean b, amd variance 1 afl
) j=1 vl

Using the model shown above, the expected value of x. is : ;

i
= . 2
Elx;] exp[b,] explkﬁlakk /'2]
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The variances of the Xi s which are the main diagonal elements of the

covariance matrix, are

. i, i
VueriJ = exp[Zbi + (kil akk)] [exp(kglaki)-l]

Thus

i

J i
o.. = exp b.+b_+'|/2(£az+ 2 ( 2-

Please see appendix V for the actual equations for each o3
The relationships needed between the entries of the covariance matrix L=(-

in order to backsolve for the normal and gamma cases are

ﬁg:i"—é:_‘l‘z
922 923 924
°23 |
933 °34
933944

7~ > 1
%43

Appendix VI shows these relationships will always hold for a multivariate

lognormal random variable defined as above.
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Chapter IV - Skewness for Multivariate Distributions

The previously discussed distributions (Chapter III) were chosen in

order to study the robustness of the Hotelling's Tz-statistics. The Clinic

team decided to analyze the effect of relaxing the assumptions of normality

and equal covariance matrices. The relaxing of equal covariance matrices

is discussed in Chapter V. To analyze robustness with respect to nommality,
the normal distribution is used as a control since it is the distribution

on which the Tz-statistics are based. Two descriptive statistics commonly o
used in the literature to measure the non-normality of multivariate

distributions are skewness and kurtosis. Skewness is a measure of how

i symmetric a distribution is., A symmetric distribution, such as normal, will T e
have a skewness of zero. Kurtosis, or excess, is a measure of the probability -
density in the tails of a distribution. The normal distribution is saigto 0
ii have a standard level of kurtosis. By using these two measures in statistical Y

tests, one can determine whether a distribution is normal or not [Kres (1983,

Table 26)] These tests for multivariate normality, developed by K. V. Mardia,

were not studied by the Clinic team; however, Mardia's theories of multivariate )
skewness and kurtosis were used extensively. In a Monte-Carlo study of the ;
T2-statistic in a univariate case, Mardia found that the level of skewness
had a much more significant effect on the test statistic than the level | ;
of kurtosis [Mardia (1975,p.167)]). Similar results are indicated throughout
the literature.

The following example will illustrate the effects of skewness. Figure 8 f bb

shows a non-normal skewed distribution centered at the correct meah and the

assumed normal distribution. This case can lead to two types of errors.

If a candidate entity falls outside the assumed acceptance region, it is ._.‘._.

considered a new entity and is added to the Base Data. Thus when the candidate

35
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entity falls in Region I, an error will be made since the assumed acceptance
region is too small. This error will create a phantom entity in the Data Base.
The opposite problem accurs in Region II. Since the assumed acceptance
region is too large compared to the actual acceptance region, the tests will
incorrectly associate a candidate entity with a known entity in the Data Base.
1 Hence a new entity will not be detected when it enters the battlefield.

To analyze the effect of skewness, the gamma and lognormal distributions
were examined along with the normal. The gamma and lognormal are both skewed

distributions common to statistical analysis. This chapter will develop

ﬁ the skewness model in general terms and then present the skewness formulas
g for the gamma and lognormal distributions used in the Clinic teams's

: analysis.

E Most distributions can be characterized by their moments about the

mean. Specifically, the third moment is the measure of skewness:

o=
Blp E{[(yg) L (x-g)]} (4.1)

.? Here, x and y are independently and identically distributed random

. variables, and p is the number of characteristics in each vector. For p=2,

[ the following theorem gives an alternate expression fgor 5 o

3

' X Y - i - %2

. Theorem Let x =(x]2)' y =<y;> T = (oiJ)’ % = (o J). and p = corr (X«onz) '\"D .

S Also for 1 < r,s,t <2 let

: bpsp = ELOG = w ) (xg = ug)(xg - wy)] (4.2) :ifﬁl‘zii
' and co
& . Urst 4.3) ®

Yest 6 00O (4.
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s
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then

e 12 (12

o
e
S

e
3

" .

b

b
,L

2 2 2, ;.2 2
{7111 * g * 3 (1420%) (g * M2 * .

3 2 -
2 Y-”]Yzzz + GO{Y]"](QYIZZ Y]]Z)

<+

2
va22(12p ~ Miz2) - (3 )Y122Y112}‘ -
proos e (M2 /- -u\]3

g V) Lar )T
B] ’2 XZ“JZ g o] yz-uz . .

Let '; | *

o

=((X]'u])0]] + (Xz'gv:)OZl)(y]-u]) and

o

=((X]'u])o]2 + (xz-uz)ozz)(yz-uz) s e

then

EL(a + 5)°) .

O 5

[a’] + E[%] + E[3a%] + E[3ab] (h.0) g

The elements of z'] can be expressed in terms of o . They are

Py

1 1 1 L]
N 2 ) i (0.5) i

77 2 2 T3
01705703 2 (1. _ 12 017 (1-0%)
O-I *—7———2

[}
Q
"

T
Ln'a’a

’

, ..
P
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PO M\
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3 _ 3 3, 11,3 2, N
2> = (y,u) [(Xl-u]) ("2 + 305207206 ) 2 ,mu o7
N
* 30xymup)a’ (xpmup) 20?12
+ (xz'U2)3(02])3]
‘
By using equation 4.2, the expected value of a3 can be written as
3, _ 11,3
i E[a”] = u]]1[u]]1(o )T+ 3u]]2(0]1)202] + 3u]22011(02])2
21,3
+ 11222(0 ]) ]
S e as . . n 22 12
- ubstitution of equations 4.5, 4.6, and 4.7 into o ', ¢°°, and o ~, of the
' above equation yields ;{,5;; :
39 _ 1 1 12 I
(i) sl G L
IRRISE RN 2 + 3 T
o (]'02) U'” q]4(1_02)2 ]2022(]'L‘2 : '.-. :
2 3 R,
| 2 o 2(]-02) " 40 4(]_02)2 222 o 60 6(]_02)3 J ' o :
1 172 172 SN
. R
» o p
f::: el
RN
39 o i
] ] 4
i
) U U ']

22 ] 2 ! =
fo] = 2 2 2 0*' 2 2 2 (4.6)
9)795" =, 2 %12 oz (1)
9 VT T 2. 2
0] 02
12 _ 21 1 (-1, %12 . - 2';12 .
- 2 2 2 o _
017057075 o 2o 2(]_ 12 0y 9, (1-07)
1 %2 2 2
% %2
(4.7)

It can easily be shown that
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M111%222%12
6,6
%1 %2
[ J
And by equation 4.3,
3 1 2 2 3
E(a"] = RILE [‘111 - I * gt C e ‘o
Similarly,
2 12, 22,2 .
E[b3] = W9 [u]]1(012)3 + 311”2(012)202 + 3u]220 2(0 2) _., _
2
* ) }
, "o
By equations 4.3, 4.5 - 4.7, .
E(b3] = —— - 34 3y, vga0l - 3 o byl
(1-02)3 |'222"” Y222'12° Y222M122 20
(4. ®
The same procedures also apply in calculating E[azb]. First o
) .
2% = (yy-u1)2(y,mn,) [(x]-u1)3(o”)zo‘2 + (xymuy) (0?2 .
®
+ (X]’“])z(xg‘“z) 20”(0]2)2 + (Un) 2522
+ ("]‘H)("z‘uz)z {20”02]022 + (0]2)3”
o
]
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Its expected value is

n 1.2 22
E[a%b) = “112[“111‘“ 2o N R

* oy {2011(012)2 . (011)2022}

by [ 20162162 4 (o123 J

It can be expressed in terms of p such that )

2 " %2 912
112 [ m 015022(]_5253 222 0]4026(]_02)3
2

. < 20]2 . 1 )
112 (]_02)3&;5624 0]4022(]_02)3

-2 o 3
.. ( °12 i 12 ) }
9
12 \T1-08) % %, 0180,501-50)°

The final substitution yields

2
2,2
E[a%b] - ————%33——- {- 2N+ 22 ¢ Tt (20%4)

(-0
+ Yyy,Y (-20-03)
1127122 (4.10)
. R
Similarly, R
2 2 3, 12,2 N 3.21, 22,2 * )
ab™ = (y]-U])(yz'Uz) [(X]“u]) (0 ) g + (XZ'UZ) b (0 ) .
2 [ 12 22 11 12,3

+ (X]-u]) (xz-uz) 2o o0 "o + (o %) ? ’.
] AR .a,.ﬁw;&j
+ (X1‘U])(X2’v2)2\2(012)2022 + 0]](022)2[/ e )
\ S
4-] - -~ ...J

N RN .
iathetenbeabnbecnde aboed —y
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and therefore,
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E *{“nz 2.12,22. 11 (]2)3f
B °
(512)2,22 1, 22,2
*{1122 to (o )}]
2 2 b 3
” . M2z 12 | Me%e °12 . 12
o ) 2.3 M111 T 6_4 —2 6 Mmae{" a4 & 6 69 .
(1-0%) o) 79, oy 0 0,0 Uy 0
2 192 1%
| - 20, 1
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. DIZZ( 406 0204 )J ' -
1 % 1 2
i S N 2 + (=20-0°) .
- T T3 mP T 222 T M2z’ T
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g. + Y122 (20°41) ( )
o ' )
- Finally, results from 4.8 , 4.5, 4.10, and 4.11 are substituted hack into .
4.4 to give .
;' _ ] [ 2 2 .
y B s Y = 6Y171Yq19P t 6Yq71Yy90P ,
1,2 (1-02)3 "1 1MMi2 1mMez2 1
2 3+ 6 o _ 6
1Y222° Y2222 Y222"122°
2 2 2 3
tovggp * vy (20THN) 4 Byqppvyyp(-2eme”)
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Regrouping, we obtain the desired result:

A ) [’m 2z * 3 (14207) (vppp * Wyyy)

3 2
- TETNY22 *{6" i teryze = )

2
] *ovaalee - vqpp) - (240 “122*112”

This result corresponds to the work of Mardia in the two dimensional
case. [Mardia (1970, p. 523.) Mardia gives a general formula for the computing
of theoretical skewness of a multivariate random variable. To check Mardia's
results, the Clinic team developed a formula for the case P=4, This derivation
is presented in Appendix VII. The team then implemented both Mardia's formula
and the team's in a computer program to compare results for p = 4. It was

found that Mardia's general skewness formula is correct. The formula is:

rr' ss' tt'
) b
09 Mgy Hprgige
rls’t r',S',t'

T=r,s,t,r',s',t'<p
Thus, for a random sample from a multivariate population, S Or I 1S computed,
and the theoretical moments inherent in each specific distribution are used

to set a measure of theoretical skewness., It is clear that if the distribution

type changes, so will the moments, and hence the value of skewness. The Eff#,ﬁfgf

theoretical measures of skewness, including the derivation of moments, for

the multivariate normal, gamma, and lognormal distributions constructed in BRI

Chapter III are presented next.
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NORMAL

i The normal distribution is symmetric, and has a third moment equal to 4‘
X zerc; thus, its measure of skewness should also equal zero.

.

- Given:

. - "..’
!il X Nt

g

4

Xog T ¥t eyt
lii X3 = gy tagyy, *tagzgyytoug °

Xg =AYy Y agY tagyytagdy ty

8 It can easily be shown that the following elements of Mardials skewness equation ‘o .

which apply to the multivariate normal . tribution are all equal to zero.

E [(x;-4;)%0 = 0 (4.12)
2 -
E [(Xi'ui) (XJ"UJ')] =0 (4']3)
E [(xi-ui)(xj_uj)(xk-uk)] =0 (4']4)
In equation, 4.12 Y
3, _ 3.
B D(xg-u3)7] = E Llagqyy * agpyp +ayvg + a5,y,)7
4 4
3 2 2
=E[ I (a .+ 31 ¢ (a.. Y.
[j=]( i3 K kﬂ_( i) Y5 V) °
4 ‘;“;:t
+6Lma.y,]
k#J °
The first and third terms of the equation on the right are equal to :
zero since the mean and third moment of y; are equal to zero. Due to
independence among the Yy and that & [yk] = 0, the second term will
also be equal to zero . °
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In equation 4.13,

4
2 _ 2.
E [(Xi-ui) (xj-‘ﬁ)] = E[(ai]y] + ai2y2 + ai3y3 + ai4y4) k ] JkykJ
: 2, 2, %
= E[kil(aik) (yy) (k§1ajkyk)
4 4 ( 4 )
(z Y2y ) E asy )l
N [ PALARRS 1o
' 2=1
! 4 )2 3 4 4
. =E[Z(a., a..y + T y(a )yay
kel VO IKK ey e TR TR I
2=1
' 4 4 4 4 4
¢ + 2z y 2y I r I aga. a.yyy]
g k'lk;éQ 7kak 2 k=1 kgl 2#m ik iz mekﬂm
2=1 2=1 m=1

Once again, every term on the right side of the equality sign is equal to
zero since the mean and the third moment of each y; are equal to zero,

and all the y's are independent. Similarly,

1 [(xi 'Pi)(xj = Uj)(xk - Nk)] =0

Substituting equations 4.13, 4.14, and 4.15 into the formula derived for

81.4 in Appendix VII, it can easily be seen that Bl,p =0 forp=4. 1
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GAMMA

Given

)
= ¥
17 ]
aYy ¥ 2, - 1
'1

X3 = a3)Yy * Az, *azgyy

t..;l Xg =2y Y Y2 t 233 Y 2gada °

where each Y; is distributed as gamma (ni,xi) i=1,...,4. The mean

variance, and third moment of the Y are respectively

"
E [.V.i]= x
n;
var [y;] = ;T?— and e
i e
Zni '

E ((y; - Ely; D1 = —
i

Define w, = (y, - E[yi])

Since the y. are independent, the w,. are also independent. Some properties
i i

of w, are

m™m
-~
x
-
(%)
—
1}
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The third moment of X; is

d E [(xi - E[xi])3] [E( kz]aikyk - ki)aikE[yk])3] ;; ’n;;{

- [E< kg]aik(yk - E[yk])3]

i 3
‘ (51 a‘kwk> ]

i
[E( by aikawkf> + interaction terms
k=1 involving one w, to . L
the first power

e
1]

Since the W, are independent, the interaction terms are equal to zero
(E [wi] = 0). Thus, R
3, .. b33 -
E {(x'l -t [X,']) ] =t Lki]a.lk wk J
i 5 T
) kilE [ag 7w "] L
) ;:a 3 an
%k T T3 :
k=1 )xk ®
= 2 7 (.j}K) 0 FO
k=1 k T
Similarly, °
E[(x, -E [x-])z (x; ~E[x. ] = | g a za E [w 3] for i#j ~
i i J J k=1 1k “Jk k 7
and for i<j<k, e
min(i,j,k) 3 e
E [(X‘ -t [X'IJ)(XJ - E[XJ])(xk = E[Xk])] = Qi] ailajﬂakEE LN? ] ~.-
®
L
- P T e T e T e e T e e
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LOGNORMAL L
. 2 . e o
Given that y is N(0,0°) , then x = exp[y] is a lognormal distribution j
and the coefficient of skewness is
E L(x - E(x))) o
(var[x_] 2) 1
For computational purposes, the important elements of Mardia's skewness equation, ]
. {
By 4 are based on the following dependencies among the components of the ' 1
X vector: 1:
X = explayyy; + b)) . :
xp = explayyy * aypp * byl e
X3 = explay ¥y + a5y, + 23375 + b, C o
X, = exp[a,,y, *+ a
where the y, are indepenaently igentically distributed N(0,1). —'—.—i"'-'-;-l
The elements of Mardia's skewness equation _jl}_i-_
E[x]=exp[b]-exp{l(a 2*f--o'faz)] R
i i 2\ ii
2 4 2 2 °
E in ] = exp [2biJ ¢ exP[f(a]] teoo ¢ aii )J ' -
3 = . 2 2 2 ~i: 
E [x\. 1 = exp [3bi] exp[z(an ASELIE JF P )J
L

E Kxi = uj)(xj - “j)(xk = Uk)]
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E [(X, 'Ui) (XJ = NJ) =t [X,' XJ] - Zulf[xixJ] = l—'JELX12] + 2U.i2Uj‘

ELOxy - Y= € 01 - 308 12 v 20 3

E
k For i<j,

2 - T2, 3
E Lx, ij = exp[Zbi + ij . exp[%gz 92,°* I a, )]

| =} k=i+1
!
£ (x;x.] b, + 5.1 -explis( £ 8 a2+ 3 a 2]
X.Xx.J = explb,. .] ~exp T a.. + I a o
1 1] i J k=1 1V =i kk

.1
]
O
|
i

- j 2 j 5 o
E in ij = exp[2p, + bjj exp[(r9a, + 1 42, ") R

For i>j,

k=1 k=i

i 2
+roa )l
k=j+1

il 2
E [xixj] = exp(bi + bj] . expL%££]4akk

R~ o
| J

For icj<t, Lo _:;i

i j ; Ry
2 2,0, 2 Seae:
9t T da e o By i

. = s . l
EDxixgxgd = explby + by + 5] - exp(s(s 9a,, k=141 k=j+1 kK

k=1
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These measures of skewness are specific to each distribution type
since each distribution has different values for the moments needed in the
skewness equation. These results, then, are theoretical. It is also
possible to obtain an indication of sample skewness, b],p, which is
not dependent on distribution type. This measure is:

N N

1 ) - -1 — 3
b = = I I l{x;-X%X)s (x; - x)]
1,p N2 q=1 g1 J

b].p can be tested against zero to see if the sample is from a symmetric
distribution. This test is presented in [Kres, (1983,Table 26)]. By using
both the sample and theoretical measures of skewness, the Clinic team examined
the robustness of Hotelling's T2 statistic with respect to distribution

type.
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Chapter V - Unequal Covariance Matrices

Another assumption that the team relaxed was that of the equality of
the covariance matrices. It is important to analyze the robustness of the

12

-statistic when this assumption fails because there is no statistic derived
for the case of unknown and unequal covariance matrices (Case 6). If the test
statistic for case 5 is robust, then it would be acceptable for use in case 6;
if the statistic is not robust, however, using the wrong statistic would
lead to phantoms or other types of misinformation in the Base Data. To
illustrate this situation in the univariate case, Figure 9 shows two symmetric
distributions with the same means, but the actual distribution of the data has a
much greater variance than is assumed, i.e. the actual distribution is “fat-
tailed." The effect of this incorrect assumption is an acceptance region which
is too small compared to that of the actual distribution. As in the case of
Region I, in Fiqgure 8, phantoms may occur because an estimate that falls in the
shaded region is from a known entity, but the test will indicate that any
estimate that falls outside the assumed acceptance region is a new entity.

The Clinic team altered the equality of covariance matrices by allowing
the input of an additional positive definite matrix to be added to the covariance

matrix of the test distribution. In this way it is possible to make either a

larger or a smaller covariance matrix for the test.
Chapter VII contains the results obtained by relaxing the assumption

of equal covariance matrices. S
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Chapter VI - Computer Simulation

The programs written for the Claremont Graduate School Mathematics Clinic i '—~—4¥1

under the auspices of the Jet Propulsion Laboratory are designed to simulate
' data from various probability distributions and perform the Hotelling's Tz-tests
to determine whether or not two sets of data are from the same distribution. : e
As described in the report, the T2-test assumes that the data from the two ]
populations are normally distributed. This program is used to study the
robustness of the test when the data is not properly distributed; in particular, | )

when the data follows a skewed distribution, i.e. a gamma or lognormal. The

mathematics of these tests have already been presented. This chapter constitutes

a "user's manual" for the programs written by the Clinic team.
Since simulation requires a great cd«=1 of computer time, the program

INPUT was written to create input data for the simulation program, SIMULATE.

With data generated from INPUT, SIMULATE is not interactive and requires no
user attention.
Specifically, INPUT sets all of the necessary parameters for SIMULATE to

run. These parameters are as follows:

1. The output file for the information from the simulations.

:
:

. have 1=Uniform; *2=Normal; 3=Exponential; *4=Gamma; *S5=Lognormal;

2. The distribution types for the test distribution. Here we

6=Weibull; *7=Cauchy; *8=Gamma and Lognormal with the same
covariance matrix. The starred numbers are implemented completely
in SIMULATE. The other distributions are not complete and are

left for further development. The default is a Normal distribution,
i.e. if no distribution is specified a normal distribution will

» be used.
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3. The test number depending on the assumptions made about the

covariance matrices. The test number is 1 if the covariance

K
o

matrices are known and equal, 2 if the covariance matrix is
estimated from the test data, and 5 if the covariance matrices
are unknown and equal. Tests 3, 4, and 6 require further
work and are not implemented.

4. The parameters necessary to generate random observations from
the specific distribution. The specific method for obtaining
observations will be discussed later.

5. The amount by which the theoretical means of the Normal base
distribution should be varied from those of the test distribution.

6. The positive definite matrix by which the covariance matrix of

the base distribution should be varied from the test distribution.
7. The theoretical mean of the base distribution. o 4
8. The theoretical covariance matrix of the base distribution.
9. The confidence level (1-significance level) for the test where
1=99% and 2=95%.
10. The sample size of the generated distributions. A large sample of

100 or a small sample of 20 are the sizes used. If other sample

N SR

sizes are desired, then it is necessary to alter the critical test
values in the code to reflect the sample size. 1
11. The number of simulations using the parameters as described in

2 through 10 above.

INPUT allows the user to input data for as many runs as desired so SIMULATE may

e T
o' .
ko oh

generate many sets of results. Given the above parameters, SIMULATE may generate

the prescribed data and perform the specified tests.

',"‘r.rr."-_ LT
X e
@
A

The flow of control of SIMULATE is straightforward. The parameters are
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read in, the observations from the specified distributions are generated, and
the particular test is performed. Clearly, there are many details to be
filled in, but rather than describing every line of code, a description
of each procedure is given here.
PROCEDURE RANDOMIZE

This procedure generates a seed integer to be used subsequently in
the function, RND, described below. This seed is generated by calling the
external system Math Library function FOR$SECONDS. The output of FOR$SECONDS
is a real value corresponding to the'current time given by the computer's
internal clock. Since this value is given in milliseconds, it is improbable
that the same seed will be returned twice. This greatly improves the “"randomness"”
of this random number generator.
FUNCTION RND

This function is called throughout the program to return a random number
in the range (0,1). After cvery 500 calls, RND will generate a new seed to
be used in subsequent calls. RND calls the external system Math Library
function MTH$RANDOM to return the random number. See Appendix IX.
PROCEDURE INPUT PARAMS

INPUT_PARAMS is the procedure which gets all of the necessary information
from the file created by INPUT. The actual parameters read in differ according
to the distributions to be generated.
PROCEDURE MAT_OUT_ONE

This procedure outputs an NxN matrix to the output file.
PROCEDUREMAT _OUT _TWO

This procedure outputs two NxN matrices to the output file, side by side.
PROCEDURE INVERT

This is an external procedure written in BASIC which computes the inverse
of the matrix passed to it. The BASIC matrix handling capabilities are much
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easier to use than trying to invert a matrix using brute force. At this :
point, no investigation has been made concerning the accuracy of the BASIC

inverse routine. If a better routine is found (such as an IMSL routine)

it could replace the current inversion procedure.

FUNCTION MAT MULT_ROW_COLUMN

A row vector and a column vector are sent to this function, and the

scalar result is returned.

FUNCTION MAT MULT ROW MATRIX

A row vector and a matrix are sent to this function. The result, a

row vector, is returned.

w-v.—vv"', m——

FUNCTION TRANSPOSE

This function returns the row vector which is the transpose of the column

-

vector passed.

_",','v.
IS
o

FUNCTION DETERM

This function computes the determinant of a 4x4 matrix along with its

sub-determinants. The particular determinant calculated depends on whether a ."' ;
2, 3, or 4 is passed into the parameter SIZE. Each calculation is done by followin -
the general formula for the determinant of a matrix. No recursion is used.

PROCEDURE UNISETS

This procedure generates observations from a bivariate Uniform -
distribution with parameters (A1, B1) and A2, B2). This procedure was inserted :E
at the beginning of the program development and was recently updated to build ° ‘
4-characteristic samples. t':;];i
PROCEDURE NORMSETS L ]

This procedure generates observations from a Normal distribution with tour -;;}
characteristics. This procedure requires the mean about which the observations e ]
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are centered and the matrix which describes the dependencies between the
k characteristics.
! PROCEDURE EXPOSETS
. Like UNISETS, this procedure is incomplete. It generates independent
. observations from an exponential distribution with parameter 2.
PROCEDURE GAMMASETS
This procedure generates 4-variate observations from a Gamma distribution
i using a sum of exponential random variables.
PROCEDURE LOGNORMAL

! This procedure generates 4-variate observations from a Tognormal distribution.

The methodology used to build dependence between the parameters described in
Chapter IIl is used here. The local procedure AMAKER is used to generate an
A matrix and a B vector. These entities are generated randomly between

specified upper and lTower bounds. These are used to generate the covariance

matrix which must be positive definite in order to solve for the dependence

matrix required to generate the data from the normal distribution used as the
base. A's and B's are generated until the covariance is positive definite. - -f-}
PROCEDURE CAUCHYSETS

This procedure generates 4-variate observations from a Cauchy distribution.

ORI

This distribution has "fat-tails" and may be used to test the robustness of .'
2
the T"-squared test on a fat-tailed distribution.

PROCEDURE WEIBULL

This procedure may be used to generate data from a Weibull distribution,

®
but it is not completely coded. - f-?
PROCEDURE STAT_TESTS T
This is the main procedure of the program. It performs the statistical ° !

tests described earlier. The local procedures GAMSKEW and LOGSKEW compute
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the theoretical skewness using the moments of the distributions according
to Mardia. Within STAT _TESTS, a count of the number of acceptances and ‘® _
rejections is kept to summarize the results of the simulations. This procedure
also computes the estimated skewness and kurtosis of the test distribution.

PROCEDURE INFO _OUT

This is the output.procedure of the program. It outputs all of the vital
information needed to analyze the test statistics. This information
é_ includes the test type, the test distribution, the mean vector, and the °
," covariance matrices of the test and base distribution, the parameters used
i to generate the data, and the dependence matrix, After the summary information
is printed once, the user can suppress repeating the summary; in this case, V;

only information that changes is reported after the summary.
As mentioned above, the flow of SIMULATE is rather straightforward. The
only section of code that may seem unclear is case 8 in the FOR Z:=1 TO RUNS loop. ; |
When the program was originally developed, it was designed to generate data for
only one test distribution. When the decision was made to run LOGNORMAL and

GAMMA data with the same covariance matrix, it was easier to simply generate -

Tognormal date, perform the tests, generate the gamma’ data, and then let the
program continue normally. Thus, the necessary code was exactly duplicated for
running the lognormal tests. This is not negessarily efficient, but it was the °
best solution given the time constraints.
As a final note, the reader may refer to Appendix VIII for the
simulation techniques for generating the univariate random samples. °
e
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Chapter VII - Robustness Results

The self-correlation stage uses statistical tests to check if one set
of data (New Data) is from the same population as another set of data (Base
Data). The tests are based on assumptions about the data, such as distribution
type and dependency relationships. The study of robustness concentrates on
a statistical test's ability to perform as expected even though the data does
not conform to the assumptions upon which the test is based; specifically, if
the data from the battlefield are not normal, or the assumptions on the
covariance matrices are incorrect, will the tests still perform accurately? These
assumptions were addressed by the implementation of the mathematical techniques
and simulation program previously described (Chapters III-VI).

The first way in which the clinic ~-m analyzed the robustness of Hotelling's
T2-statistics was through the use of non-normal distributions. As mentioned in
Chapter IV, skewness has a detrimental effect on the performance of these tests
in the univariate case. The team used backsolving techniques (Chapter III) to
generate multivariate skewed distributions to be used to test the TZ—StatISt1CS
tor cases 1, 2, and 5. (These were the only cases simulated since case 3 and
case 4 do not appear to have relevent applications and no test statistic was
derived for case 6.) A description of the 6 cases is contain in Figure 7,
Chapter II. There are two ways that the tests could fail to perform properly:
the test could reject the null hypothesis when the null hypothesis is really
true (Type I error), or it could accept the null hypothesis when it is really
false (Type II error).

The Clinic team tested for Type I error by simulating Base Data and
New Data with equal mean vector and covariance matrices. At a 5% signigicance

level the null hypothesis should be accepted approximately 95% of the time when it

is true. Figure 10 shows the results of the simulation. Sifce the statistica: ti-
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Simulation Results 1
Figure 10

60




T

- o
.

L e ) v."_‘mﬂ- Clin e 200 V-F-—Y

are based on the assumption that the data follow normal distributions, they should
be accurate when normally distributed data is used. That is, the null hypothesis
should be accepted approximately 95% of the time when it is true. The first row
shows that in each of the three cases the percentages are as expected. Since

the gamma and lognormal distributions are skewed distributions (i.e., not normal)
we would expect the tests to fail. The second and third rows indicate that the
tests do fail for skewed distributions. Except for the lognormal distribution

in case 5, neither the gamma nor the lognormal distributions lead to the
acceptance of the null hypothesis more than 63% of the time when it is true;

in fact the gamma distribution never did better than 28%. The reasons why the
lognormal distribution performed well for case 5 are unclear at this point in
time. It is suspected that the use of pooled estimates for covariance matrices
from both the New Data and the Base Data could have compensated for the effect

of a slightly skewed distribution.

The Type Il error, accepting the null hypothesis when it is not true, was
tested by generating data with equal covariance matrices but unequal mean
vectors. Hence we would expect the null hypothesis of equality of mean
vectors to be rejected a large percentage of the time. (That is, the null
hypothesis would be accepted a small percentage of the time.) As shown in
Figure 11, the null hypothesis was accepted 0% of the time for all three

distribution types in cases 1, 2, and 5. Thus, for Type Il error simulation,

the statistica) tests performed well for both the normal and skewed distributions.

In other words, the statistical tests appear to be robust with respect to
Type Il error for the distributions considered.

The final simulation performed generated data from the three distributions
with equal mean vectors but with different dependency relationships: thus

kN = Vg but zN # ZB' This simulation was used to check the robustness of
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uB¢"N’za=z

N

. EXPECT = 0%

e CASE
" DIST.
- TYPE 1 2

NORMAL 0 0

GAMMA O 0

LOGNORMAL 0 0

Simulation Results 2
Figure 11
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equal covariance matrices in case 5. Once again, with equal mean vectors
we would expect the null hypothesis to be accepted approximately 95% of the
time. Figure 12 shows the results of this simulation. While the normally
distributed data performed well, the two skewed distributions did not (98%

vs. 23% and 71%). We note that these results are similar to those shown

in Figure 10 for case 5. Thus, these preliminary results seem to indicate

WY

3 that small to moderate differences in the two covariance matrices have little

effect on the performance of the tests. These results imply that it is

i the skewness of the distributions that causes the non-robustness of the tests. _ .
We note that it is important to analyse robustness of equal covariance

matrices since there is no test statistic derived for the case of unknown ‘
* and unequal covariance matrices (case 6). If the test statistic for case lA, ‘
- 5 is robust, then it would be acceptable for use in case 6. .

In summary, the Clinic team used a simulation approach to test the

robustness of Hotelling's T2-statistics with respect to normality and equa) R

covariance matrices. Three separate simulations were performed involving

normal, gamma, and lognormal distributions. The results of the simulations
show that the T2-statistical tests are not robust with respect to the normality SR

(or symmetry) assumptions. In other words, if the data being analyzed comes

from a skewed distribution and a variation of Hotellings Tz-statistic is

used, the decision made by the test will probaply be incorrect. More studies

need to be made on the relationship between skewness and the Tz-statistics. fi-gﬁ

Using T2-statistics that assume equal covariance matrices on datasets that 352%;
®

actually have slightly different covariance matrices, however, seems to

have an insignificant effect on the performance of the tests.
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CASE
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TYPE S

NORMAL 98

GAMMA 23

LOGNORMAL 71

Simulation Results 3
Figure 12
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Chapter VIII - Concluding Remarks

In this report the Clinic team first developed the mathematical techniques ?7
and simulation program required to generate multivariate distributions with .
component dependency. These results were then used to investigate the effects
of skewed distributions and unequal covariance matrices on the statistical tests ®
in the self-correlation alqorithm. (The results of these investigations are

contained in Chapter VII.) The Clinic team plans to continue working in this

area. In particular, since preliminary results indicate that skewed distributions L
cause inaccurate conclusions in the statistical tests, the relationship between
the robustness of these tests with respect to multivariate skewness and kurtosis
; will be studied further. This will be the main objective of the next report, ®

o Applications of Correlation Techniques ‘- Battlefield Identification II.

There are at least two other areas that clearly should be studied in

future reports. One topic would be the investigation of the robustness of the T .:w".
statistical tests with respect to other assumptions. These assumptions include
1. The sensor data is unbiased.
2. The error term of the mean vector is independent of time. °
3. The New Data describes only one entity.
4. The entities are stationary.
The Clinic also plans to develop a final computer package to implement results. o
This package would be a user-friendly process which, among other things, .
performs goodness-of-fit tests on the data to determine whether or not the

proposed statistical tests are appropriate. . ®
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APPENDIX 1

- PREV,
: Finding the Maximum Likelihood Function for -z ! ‘;ZEEEEEE?Ntég?

The likelihood function L(g‘;z'];Ll....,gN) is given by

L
. L = 1 exp[-% g (x - p)° z'](x - )] (AL.1)
‘ (2m) PNy =1 -

To find the maximum 1ikelihood estimates for u and z-] in Equation Al.1

we begin by taking the natura) logarithm of Equation AI.1. Denoting u* and ¢*

to be the maximum 1ikelihood estimates for . and z'] respectively, we get

N
TnL = N InQo+HN Infu*| =% T (x = u*)y *(x - ) (AL.2)

a=]l 2

where u* and y* maximize In L.

The following lemma will be useful in solving the above equation for

p* and ¢*.

Lemma 1: Let LNRRREY. ™ be N ({p-characteristic) vectors. Then for any

vector b,
N N
< -(ltu-g) (Ea-b)'- z (ia-x) (x_=x) *+N(x~b) (x-b)
a=1.. a=1
N N
Proof . Z(x =b)(x -b)‘- ol (x -x)+(x-b)][(x -x)+(x-b)]’
0'1 -a - a=1 ~aqQ =
N
=z [(x -x) (x -x)'+ (x -x) (x=b) *+(x-b) (x -x)’+(x-b)(x-b) ] 1
a-l R
N N N % |
= 7(x -x) (x -x)'+[ T(x -x)](x-b)+(x-b) L (x -x) ’+N(x-b) (x-b)' "
a=1 ¢ a=l ¢ a=1 ©° .
_ X
The second and third terms are equal to zero since I(x -x) = zx ;N( 2) =0
o = —u N
Thus, let b=uy* and apply Lemma 1, to obtain that ST
. @ 4
N N RN
cI'Z.l(x -g*)(x -u*)’ -QE{XG-X) (x -X)'+N(x-&*)(x-g*)-A+N(x-g*)(x-g*) (B1.2) :
RERE
67 " .
e
" ‘.J
e L L S e S e e e e e e e e




where A =

x)(

LI e B4

EREEE

Recall the properties of the trace of a matrix:

u If Cis mxn and D is nxm then
L m n
= ..d.. =
: tr(eD) = 5T ey = er(oc)

tr(C+D) = tr(C) + tr(D)

A amae

Applying Equation AI.3 and the properties of the trace of a matrix to the

third term of the right side of Equation AI.2, we have

N N
azl(fu- *) g% (x -u*) = tr ail(lq_ *) g% (x %)

N
tr I w*(zu-x*f(za- *)-
a=1
N
tr y* T (x _~p*)(x_-p*)”
a=l © e

= tr{y*[A+N(x—p*) (x-p*)*1}

= tr[y*Al+tr [YAN(=p*) (x=p*) *]

= tr[Y*AJ+N(x-p*) Sy * (x-p*) (AI.4)
With the result of Equation Al.4, Equation AI.2 can be rewritten as

In L = -3pN1n(2m)+3N In|y*|-Rtr(y*A) = IN(X-p*) “y* (x-p*) (AI.5)

We only need to maximize the second and third terms of the right side of

Equation (Al.5) because the first term is a constant, and the fourth term is

equal to zero then u*=x,

To maximize the second and third terms, which are %N 1n|y*| and Btr(erh) o

respectively, we must use the following lemma.
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1,)=1 t) it

Lemma 2: |Let f(c) =hN Injc| - &

c= (Cij) is positive semidefinite and D = (d is positive definite. Then

)
W)
the maximum of f(c) 1is taken at c=N0~! and the maximum is

f(ND']) = %pN(’In N)-%N In |D| -%pN.

Applying Lemma 2 to Equation Al.S5 by letting C(=y* and D=A, we obtain
InL = -%pN In (2n) + 3pN In N - XN In |A]| - L4pN. (Al.b)

or, when the second and third term of the right side are combined, we obtain
InL = -%pN In (2n) + SN[1n W%ST ] - 4N (AT.7)
After taking the exponential of Equation AI.7, the result is

]
(Zu)%prfE(%N

-1
M L)

exp [-%pN]
LJ!Z

where |£|™N = [y TN o VPN N
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APPENDIX I1

The Distribution of T2 for Case 2

Unknown Variance-Covariance Matrix, Hy: p=u,-

R
AR
e ettt

We wish to find the distribution fo T2=N(N-1)(E-ug) A" (X-izp), where .
x is distributed as N(HO’%)' This will be done by several tran<formations

which associate T2 with a simple and known statistical distribution.

Remember that the matrix A is defined as [ )
N 4
A= I (x=%)(x -x)°
a=1
N /x . .—x
ez [ I\ g Taeexg X)) 3=l ®
a=1 X =X L
cp p - ]
*a1 xj .
ti Note that . is not independent because each 25 is dependent on the o
. *ap™*p
ti corresponding xaj. This dependency can be eliminated by summing up to N-1, S
N‘] - Sl L.
. : )
: {.e.,A is distributed independently as = zaza‘. z s independent and is , 1
1 a=1 -
: distributed as N(Q,Z). We denote the sample covariance matrix by S.
Our first formation is to let T2=y*S™'y, wh = /Nlx-u,) and )
ur first transformation is to let T =y Y, where y = X-py) and y P ‘
is distributed as N(y,z). The objective of this transformation is to simplify L)

the mean so that it will become zero under the null hypothesis. In notation,

¥ = Ely] = E(VNG-p)] =N El(E-g)]
VNG, ™
= \/N(E(x] 1)

- NG

71

......




_ [
»
Var[y] = Var [\/_;(Z'Eo)] = N Var “Z‘“’o)]
= N[Var(i)-ﬂlar(go)-Cov(z.Eo)]
B - Nevar(D=N- £ = I ¢
Our second transformation is to let D be a nonsingular matrix such that
- D:D"=I, and define °
" y* = Dy
: S* = DSD’
f
; Y* = Dy
r‘ ]
o 2 . cenVow .
| T is now equal to y*“S* 'y*,
because T° = z'S'lx
- )
= (y°1)S 1(11) o
= y’[0r 0%~ s o i)y L
= (Dy)*(psp”) " (ny)
-l i
= X*’S* x*
& ]
.- y* is distributed as N{y*,I). i
[
The third transformation is to let the first row of a pxp orthogonal o 1
matrix, Q, be defined by 'j}
y* }
- i-l LI )
914 oy ’ P o )
In other words,
°
- .
Q= Y| y2* ........ ylr*
VLt HERNALE y* oy
anything so that () 1s orthogonal -j ,.
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The rest of the matrix Q, other than row 1, can be anything as long as
.’ orthogonality is maintained. -
P P , R
Xy*z 21y*2
P 2 n=1"1 n=] l B
% q a] becausye ——g——— = — — e ] RN
1 Y*y* P .
l=1 cy %2 ¥
2 y1 :
1 -1 .
Q, as defined, is a random matrix. What we want to do is to express T2 in
]
a scalar form rather than in a matrix form. This can be done by letting
- @
t g - Qlﬁ .
i . B = Q(N-1)S* 07
With the above definitions, the first component of U now becomes
P
U - Z q z * @
T
p
= [yk? g%
if SIPICIPRTPANS i)
P 2 .
=Jy*yr T o(agy) R
=1 R
— = PR
‘\/X*'X* . 1 = v X*’Z.* ~-:. _<
- X
The remaining components of U become . .
P
U. = Z * 3
3 i_lqjix_i i1

P

ERANCREDT .
VI y* ( g 9y:974) |
(aq 3171

‘/)’.*'X* « 0 ®

Therefore, U =f 0
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2 -
Then, g = U U (AIL.T)
] e
because U’B %g = (Qlf)'(Q(N'I)S*Q')-I(QX*) P
-1
= yks[0r (0-)" 17 (S*) -1
y*[Q (Q*) ) -1 [0 Qly*
- *l(s*)-l * V »
Y¥-R-1 Y (recall y*aDy and S*=DSD ) L]
!
= oy LD

N L0 2 i

N-1 ®
. oysty | r?
N-1 N=-1
Re-expressing Equation AII.l
°
.2 il pl2,, plP U,
W1 (U 00 [y 22 2e ) [0
. . 2 . : .
bpl p ...bpp 0
®
11, 12 1p./ U1 L
= (ub UL Y/lg oLl
\; k
= U12 bll where (bij) = B—l
In Anderson's notation,
°
I SR - -1 .,
1T P T PP D
b b
- bn'2 p where B = b}l b(l)
’-oo, (1) 22 .
is a partitioned matrix. R
°
Hence,
2
T2 - Ul yX*y*
N-1 b "
11-2,...,p bll.z' cerp

. a e e e 2t e s
e - - L c e e et e g e eaihauiaiiing
iy LT et ISP B ST A ST S Pt SR SRR v S e
P =




The denominator is conditionally distributed as X2 (chi-square) with N-p
degrees of freedom; it is the sum from 1 to N-p of the square of w where w
is distributed as N(0,1). The numerator, on the other hand, is distributed as
a noncentral XZ with p degrees of freedom and noncentrality parameter

* *

2
v*¥° oy y‘Z-]Y. Thus, —TN- . LN—'—-E—tD— is distributed as a noncentral F wi

p and N - p + 1 degrees of freedom. The noncentrality parameter is ¢ = .
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APPENDIX I1I
Using Likelihood Ratio Criteria to .
[
Test the Equality of Variance-Covariance Matrices
(g) . th . R
Let X be an observation from the g~ population where °
a=1,...,N_and g=1,...,q. (g is the total number of populations.)
5(9) is N(E(g).zg) and is a column vector of size p. Let
p = number of characteristics, °
Ng= number of observations in the gth population ,
N = total number of observations ,
N
) () —(g ~(
Ag' “.)l (ln u)‘ﬁ(‘))(iu(u)-ﬁ(“))' P PPN and .
A = Sum of Ag's. N
We want to test HO: x] = 22 = oee. = Eq ’ ®
The likelihood function is iﬁ
Ly 1 exp [ 2° (e B u®fr e B @0,
g=1 (2")%9N8'ng¥Ng =] O g —a . ®
Define @ as the parameter space where each xg is positive definite and
u(g) is any vector. Define w as the parameter space where R zq .
and u(g) is any vector. Then the maximizing values are
- - A 4
A9 5@ L9 Luer g °
= g N PR
g R
and
“(9) .z (9) =~ A
H X zg =5 over ®
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Therefore, the likelihood ratio criterion to test HO

>
i

"
Jel
i
—

A < X (a) where

a when HO is true.
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(AIII.1)

A{a) is defined such that Equation AIII.1 holds with probability




APPENDIX IV
The Distribution of T2 for Case 5

Unknown but Equal Variance-Covariance Matrices

1) (2
HO:E = )
This derivation uses the results of Appendix II to show that
ﬁ N, N
2 12 —(1) =(2),, .-1,~(1) —
(g (1( )fi(Z)) S 1(5(1)_5 (2))
172
k; follows an F distribution with p and N] + N2-p-1 degrees of freedom. Recall
f that
[ | 1 20 %% =)y, (0 (),
S & —— T I (x -x ) (x -x" )
le Ny#N2=2 el qml - s
4 Set
N 172 —=(1) —=(2)
e g &)
;. = YN,

Under the null hypothesis z is distributed as N(0,z). Defining 2z
this way accomplishes the same goal as the first transformation in Appendix II
Therefore, the remaining transformations of Appendix 1I, when applied to 2z

will yield the desired result. Specifically:

25 (N1+N2-2)p . (@)
- N +N, =p~1
N+, -p-1 P2T1 T

where a is the level of significance.
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APPENDIX V \
Elements of Covariance Matrix of a Lognormal PREVIOUS PAGE .
1S BLANK
!
Given: X, = exp[a]1y] + b]]

x, = explayy) + a5y, + byl
x3 = explagyyy + 2y, +agys + bl
xy = explay yy + ay¥, + ag3¥g * ay,y, * byl

and the y, are i.i.d, N(O,1),

i

i
2 :
and (E]aJJyJ) + b1 ~ N(b1e E‘laJJ ) fOr‘ 1 ]:--pa.
J J
The covariance matrix elements are: ;‘:~~  ]
L B |
. ®
°n ° LexP(Zbi + a'l']z).]' [exD(anz) -1] i
. 2 2 =
Opn = [exp(2b2 tag, "+ 35, )] . [exp(a”2 + a222) -1] )
N 2 2 2 . ;
733 7 [exp(2bg + 2™ + 2y + 2yl - Lennlag, + 2y, + a3 %) -1) .
-1
Oaa - 2 2 2 2
4 . RS,
b Lexp(@y t ey ey tagy 4 agg )] - Lexnlayy® v ag)? vy ? v ey ) g
*
2 2 SR
i i 2a))" * a5, 2 BN
019 = 99 = Lexp(b] + b, + 5 )] - [exp(an ) -1] '¥fi»iii
2 2 2 D
2a + 2a + a ®
_ ) . N 2 1
2 2 2 2 L
2a + 2a + a +a TR
~ _ 11 LTl
024 = 042 = [exP(bz + b4 + 22 2 33 34 ) ] : [exp(a'nz + 3222) ’1] ST
*
e
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2 2 2 2
2a” + Za;_,2 + 2a33 +a

44
O34 = %43 = [exp(b3 + byt > )4

2

Lexplayy? + aj,” + ag3)) -1

2 2 2

2a + a + a

e 11 22 - 2

oqy = Lexp(b, + by + 5 33 )1 - Lexp(a]1 ) -1)

2 2 2 2
, 2a)" t 3, ta

+ a
_ 33 Y 2
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APPENDIX VI

Covariance Matrix Restrictions for Lognormal Case

Proof that the restrictions on the covariance matrix also hold true in the

lognormal case. Let
N 2 93 9qq)
.°21 %2 %23 924
L % 491 %32 933 9

%41 %2 %43 %44

-~ -

The following relationships must be satisfied in order to backsolve for

the Gamma or Normal distributions.

°12 °13 14

B L (AVI.1)
922 923 924
%23 _ %2 (AV1.2)
933 O34 )
g [o]
33%4 .
—>1 (AVI.3)
* %3 .

T

Using the results of Appendix V, AVI.1 becomes
] % 2 *
[exp(b] + b, + a]]z + ‘%?’)] . [exp(a]] ) -1] f;i};¢gi
’ 2 2 2 2 -f'.: '
E [exp(2b, + apy" + 2,7)] - Lexplagy™ + a5,7) -1) e
S
2 2 2 o
2a + a + a . 1
[exp(b1 + b3 + n 222 33 )] - [exp(a]12) -1) S
) 2 2 2 ol
2a + 2a + a RO
L
S
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2 2 2 2
2a + e + 3 +a 2
n_" 2 3
[exp(b; + b, + ). Lexp(ay, ) -1]

2 2 2 2
2a + 2a + a +a
[exp(b, + b, + 1 2% 33 44 ),

2 RS
- Lexplayy® 4 ay)0) M

After simplifying each ratio,

2 2 2
422 22
exp [b] - b2 - 5 ] = exp[b] - b2 - 5 ] = exp [b] - b2 - -—7—J

Clearly, relationship AVI.1 holds in lognormal case. For the relationship

f23 | ‘2 Av:.2)
933 934 , Ve
23112 * 2a222 ¥ a332 - 2 2
[exp (b, + by + 5 )1 - [exp(ay® +a,,") -1)
2 2 2 (4. 2 2 2
[exp(2by + 23" + a,," + 253" )]+ [explay;® + a,," + a,%) -1
2 2 2 2
2a + 2a + a + 2
1N 22 33 44 2 2. .. R
exp(b, + b, + -1 . _ IR
_ [explb, + b, : 2? : : I« fexp(ag,™ +a,,°%) .11 - .
2a + 2a +a + a R
11 22 33 44 2 2 2.
b + + 3 b . - .
[exp(b; + b, . 1 - [exp(ag, + a5, + a5 R
o
or S
6332 2 . '.,:.:j’_i .
- b, - - ) 33 e
o
1
"
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3
b
1
? For the relationship
g [o]
3 4
. 3 ? 4 >1, (AVI.3)
g
A 43

2 .2 2 2

2 2
(?e*p(2b3 fan tayy tagz )l [explapt v ay,t v agf) 1]

2 2)_]'1

2 2
22 T a33 *a,,")] [EXD(a]]2 + a222 tag,t +a

L [exp(2b4 + a”2 +a 2

2 2
¢ (@exP(ba F by tap” ag” *ag s ‘%?‘ )1 - Lexplagy® + ap,° + ag3®) -1
2
exp(allz * a222 tagg * a442) -1 :
= >
explay? + 2y, + ag50) -1

Since all three relationships are valid, backsolving from a lognormally generated

covariance matrix to a normal or gamma distribution,is possible.
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APPENDIX VII

Derivation of 31 4 -

Llet x and Z be independently and identically distributed random

variables Define:

By E [i(x - w)° Z'](g - g)}3J

i ) /x] _ u]\, Fon 0]2 013 014- /Z] _ u\ 3
| S I L I A

" = £ ﬁ X = u 03] 032 033 034 2. = u $

. -: 3 3 3 3

¢ ’ K:4 ) ;34] 42 43 04{_ k34 ) “4)

JP | C

(]
x
]
©
o
3
o
X
]
~N
[
©
-
o
i
-
]
—
-

.,4, then

-
-
-
-
-

Let Yy . . . i
# (/y]\ M O12 o13 cm "W\\W

'O 4 ' 4 R

- 1 i2 i3 4.3

= E [{w zy.o1 +W, Ty, 0 +w, Lyo +w, Ly.o }°]

Vil 2ja171 3T 4 L
*
by matrix multiplication. .
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v Tamp— = -

Let

4 0

a=w Iyo (AVII.1)
s k]
i=1
4 )

b=w, I y.o'l (AVII.2)
. b]
i=]
4 .

C=wy I y.o'3 (AVIL.3)
o7
i=]
4 )

d=w, © yoald (AVII.4)
i=1 !

The problem restated is

8 4= El@a+bsc+a)], (AVII.S5)

It can be shown that

3 3 3

(a+b+c+ d)3 = (a” +b” + ¢ 2

2 2

+ d3) + (3% + 3ab% + 3¢%4 + 3cd

2 2

+ 3a°c + 3ad 2

2 2

+ 3bc? + 3bd + 3acd + 3a’d

2

+ 3b%c + 3b2d) + (6abc + 6abd + bard + 6bcd)  (AVII.6)

Note that equation AVII.6 consists of three groups of like terms.

Substituting equations AVII.1 through AVII1. 4 into AVI1.6 and

expanding:
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g °®
q The first group becomes
F 4 4 - 4 4 - - .
k.2 k
(a3 #0340 a‘3) =z wya[ z (yic”‘)3 +3 & & (yio1 ) yjo‘] S
. k=1 © i=1 i=1 j=1
: J#i RN
F 4 4 i ¢
- +6 ¢ fy.o ] (AVII.7)
s . .11
. J=] 'I;]
. 1#]
)
| .
I In the second group,
. 4 . 4 .
: a2b =W 2( by _y.o”)zw Ly 012
S 242171
l{‘ .
4 4 - 4 T
= w]2w2[ pX (yicﬂ)2 + 23z y;o ]y.c'” + 21 yzo?‘]yjo‘” R
i=1 j=2 J j=3 o
4 .
+ 2y3031y4041 I y1'°12 |
i=1 "
Multiplication and collection of terms yields
°
4 4 4 4 4 . .
a2b w]2w2 [ £ ¢ yiz(o”)zy,an + ¥ I I yiony.c‘]]ykokz]
i=1 j=1 J k=1 j=1 i=1 J
J#i
®
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The remaining terms in the second group of equation AVII.7 are calculated

similarly, and ()

3[a2b + a2c + azd + bza + b2c + b2d + cza + czb + c2d + d2a + d2b + dch

°
4 4 4 4 : : 4 4 4 ki i
=3[z : wizw.( £z yk2y2(0k1)2023 + 1 5t ymykygom’o .89y
i=1 j#i I g=1 k=1 g=1 m=1 k=1
J=1 k#m
(AVII.8)
®
Finally,
°
4 . . 4
il je k3
abc = wowowo( Zy.o MLy, o) zyoo)
L A S N
Y
4 4 4 iy s ,
= w]w2w3 r L L ,y_i‘y._yll(o”c"]zol('3 L
i=1 j=1 k=1 ' L
.
Therefore, the last group is
4 4 4 sy
6[abc + abd + acd + bcd] = 6[w]w2w3 r I I yiyjyko']onok3 e
i=1 J:] k=1 ®
4 4 4 Sy 4
il j2 k4
+ W W, W, L b L y.y.ys oo
V2800 gop k= TR
°
4 4 4 £y
il j3 k4
+ WW W, I I Ly.y.yo oo
1378421 =1 k=" VK
4 4 4 o ®
i2 13 k4
+ wWoWw, I b I y.y.yo o o ] (AVII1.9)
2738421 =1 ka1 VIR
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Substituting equations AVII.7, AVII.8, and AVII.9 into AVII.5, and using the

properties of the expected value operator, then

4

4 . 4 4
1k 2 Jjk
By g = I E[wk3J [ I E[y,-3J(o’k)3 +3 z T Ely; y 10742
' k=1 i=1 i=1 3_;1
J#F1
4 1k 3k 4k
+6 (E[y]y2y3]o1k02ko3k + Ely,yy,lo ThoZkotk ELygygy o o7 0™ +
k 4%
4 4 4 4 .
+3f: 2 Elw w1 £z Ly, 2 5, J(a*1)2oH
i=1 j=1 37 =1 k=1
J#i
4 4 4
k1 23
+ ¢ 1 s Elyyy,lo mi )
1 met ey DR ]
k#m
4 4 4
+ 6 [E[w]w2w3] z] E] E] ELy; 2 ¥, Jo i1 32 k3
i= j: k=
4 4 4
+ E[w]w2w4] z] z] z]E[y Y.y ] i 32 k4
i=1 j=1 k=
4 4 4
+ E[w]w3w4} I © I E[y y Y Jo i IERS
i=1 3=1 k=1
4 4 4
+ E[w2w3w4] Z] 2] E] E[y Y5y ] iz 33 kd}
1'- j: k:
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APPENDIX VIII

Generation of Univariate Random Samples

Most computer systems only supply random numbers from the Uniform

distributions: U[0,1). The best of these random number generators is

discussed in Appendix IX. To generate data from multivariate distributions,

it is necessary to use observations from other univariate distributions.

This appendix presents methods to generate data from the following distributions: P L
U(a,b), E(A),W(b,c), N(¥,0), LN(Y+8), and C(a,B). .

UNIFORM

The uniform distribution has a distribution function

U(a,b) = —=3

A standard technique used for many distributions is Inversion. Recall that
any distribution, r = F(x), is distributed U[0,1), Therefore if F is

invertible, x = F'l(r) will be from the desired distribution. Specifically
X =a+ (b-a)r
EXPONENTIAL
The exponential distribution also uses the Inversion technique to

generate a random observation given an observation from a U(0,1). The

exponential is

E(r) =1 - exp(-ax)

Set r=F(x). Since r 1is random between O and 1, so is ler. Thus

.
g
)
Palrees
'l..' .' . .
P4

.

r* = J-r = exp(-1x) N

:

In(r*) =ax
X = =1n(r*)

A
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WEIBULL
' The Weibull distribution is given by

W(b,c) =1 - exp[-(-’,;-)c]

By the same analysis as before

x = b(- 'Inr)]/c

NORMAL
Some distributions cannot be inverted easily. These must be handled
v by other methods. The Normal distribution is the most important in our

study. Let ry, and rs be observations from a 'J[O.l).

X) = oJ-ZInr]cos(anz) +u

X o/-?lnr]sin(Zwrz) +u

are twso observations from a N (u,0). (Note that the operators sin and
cos act on radian arguments. )

LOGNORMAL

The Lognormal distribution can be generated easily once we have

two normal observations. Thus, to generate from a Ln(y,8) , set

w=lny- ’ﬂﬂ(—sz- +1)
Y

azsln(—g—-r])
Y
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are from the desired distribution. jzf_;g
GAMMA S
The gamma distribution is generated by summing observations from the T 4

exponential distribution. Specifically fgigﬂw

e
neM-

] E(ANG(A,r) | <

CAUCHY

The Cauchy is a symmetric, fat tailed distribution with parameters median f;:"
a and scale 8. « gives a measure of location while B8 provides an indication

of dispersion. The probability density function for the Cauchy is
2
1 - X -a -1
C(a,8) 18 [1+ (——B ) ]

The following generation techniques will lead to the generation of C(r.q),

where r §s real and q is rational.

Let N] and N2 be independently identically distributed N(0,1). Then

N
r ~ C(Oo])
2
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Next, use the fact that

n n n
xC(aisbi)"‘C( I 3., b.)
i=1

=1 'i=1 !
to see that
k

Another useful relationship is that
[c0.0)) '~ c(0,)

By combining the preceding techniques, a ((0,9) where q = ]% is

rational can be generated as follows:

Lk -1 L
[ 2 C0.1)17 ™~ (0,2 )
il i=]

The final transformation is that for any real number, r,

C(O,Q) +tr~ C(Y‘,Q)

Thus, in order to generate a random sample from a C (r,q), use the
following transformation

L k N

{ct[ ¢ —N-]— N r~C(r,q)

=) i=) 2
NSNTRONY
R
Satai]
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APPENDIX IX

An Evaluation of Several Random Number Generators

When we began performing the simulations of normally distributed data,
some anomalies were present in our results. Consequently, it was decided
to test the quality of the random number generator used in the simulation
program, and determine if there were any alternative generators which
performed better.

The following random number generators were studied:

1) The standard VAX BASIC random number generator.

2) MTH-RANDOM a VAX Run-Time Library procedure.
3) GGUW, the IMSL routine for generating random numbers with
shuffling.

4) The algorithm RND=(25173*RND+13849) MOD 65536, which is included
in Peter Grogono's book PROGRAMMING IN PASCAL.
5) The algorithm RND=(1061*RND+9533) MOD 65536, which was developed

by G. Silberberg for use as part of a previous project.

A KolmogorowSmirnov test was used to measure the randomness of the

generators. The Xolmogorov -Smirnov test is a standard statistical procedure

to determine whether a set of data can be generated from a specified

distribution. The K-S statistic D is defined as
D = max {F(i/n) - Fo(i), Fo(i) - F((1-1)/n)}

where Fo(iln) is the ith ordered observation in the data set and F s
the distribution function which the data is to be tested against.

If D 1s greater the 1.22// n (where n is the number of observations

in the data set), then it can be stated with 90% confidence that the data




does not follow the given distribution.
The following results were obtained using a sample of 199 numbers.

50 trials were performed for each algorithm.

# Trials
Generator Average D Randomness Rejected
BASIC .06143 4
VAX RTL .06308 8
IMSL .06058 5
Grogono's .25837 50
Silberberg's .07324 10

Another set of trials was performed, this time with a sample size of

2000.

# Trials Rejected

Generator Average D out of 20

BASIC .01269 0

VAX RTL .01419 0 :.
IMSL .02314 4

Grogono's .31935 20

Silberberg's .07074 20

Conclusions: The BASIC random number generator showed the best

pgrformance. and was placed in our simulation program. Unfortuane1y. we found

problems in sending the random numbers from BASIC to Pascal. The system
generator used by BASIC is MTHSRANDOM; therefore, we used this system function
to generate random numbers with the Pascal program. The RTL generator performed s
nearly as well, and may be appropriate for use in certain cfrcumstances. Th:

others, especially Grogono's algorithm, should be avoided.
98
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