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Abstract

This report is the first in a series presenting a study of self-correlation

algorithms in intelligence systems. It was performed by the Mathematics

Clinic of the Claremont Graduate School in support of the Algorithm Analysis

subtask of the U.S. Army Intelligence Center and School (USAICS) Software

Analysis and Management System (USAMS) task at Jet Propulsion Laboratory.-- The .

self-correlation algorithms use multivariate statistical tests to determine

the equality of mean vectors from two different datasets. The statistical

tests developed were variations of Hotelling'sT?-statistics. The main results

deal with the analysis of the robustness of these statistics with respect to

normality and equal covariance matrices. To do this the Clinic developed

mathematical techniques and simulation programs which generate multivariate

normal, gamma, and lognormal distributions with a specified dependency between

the vector components. Theoretical and sample multivariate skewness numbers

of these distributions were also developed. The results indicate that the

statistical tests are sensitive to skewness in the distributions but are not

affected by slightly differing covariance matrices.

/ V-
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Summary

. This study is the first in a series of reports involved in researching

self-correlation and cross-correlation algorithms in intelligence systems.

These algorithms are used to maintain a data base of current information about

a battlefield. The initial view of the battlefield is stored in a central

computer data base. As new data is received from the sensors on the

battlefield, it is used to update the old data and formulate a new picture of

_j the battlefield. The work on these algorithms reported here focuses

on the sensitivity of the mathematical tests to changes and uncertainties ' . .

in the data. I This project was performed by the Mathematics Clinic of the

Claremont Graduate School (CGS) in support of the Algorithm Analysis subtask -

of the U.S. Army Intelligence Center and School (USAICS) Software Analysis

and Management System (USAMS) task at Jet Propulsion Laboratory (JPL). This

is an ongoing task to study intelligence algorithms for the Combat Developers

Support Facility at USAICS.

The analysis this year focused on statistical tests that are variations

of Hotelling's T2-statistic. In many applications the Hotelling's T2statistics
revert to chi-square (x2  tests. (,The x forms are used in many of the

current systems.) These tests are used to check the equality of means in a

multivariate setting. Such tests could be used, for example, to test if two

location means or if two radar signal means are the same. The statistical

tests have several variations depending on whether the mean of the old -

data. and the dependency relationships of the old data and new data are

assumed to be known or are estimated. Three main cases were studied: '

vii
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1. The mean of the old data is assumed to be known. The

dependency relationships for both the old and new data are

assumed to be known.

2. The mean of the old data is assumed to be known. The dependency

relationship is estimated for the new data and is assumed to be

known for the old data.

3. The mean of the old data is estimated. The dependency relationships.-""-

for both the old and new data are estimated and are assumed to be

equal.

Once the statistical tests were developed, the Clinic team began investigating

the robustness of the tests, i.e. the sensitivity of the tests to the

relaxation of the assumptions. All of the tests assume that the incoming data

is normally distributed (Figure i). This assumtion was deemed most likely

to fail in two ways: the distributions are skewed or they have fat tails. To

test the behavior of the tests when the distribution of the incoming data was

skewed, the gamma (Figure ii) and lognormal (Figure iii) distributions were

used. These distributions were chosen because they are representative -

of skewed distributions and have statistical properties which made the . .

mathematical development possible. A major task of the Clinic team this year .- ".

was to develop a software package to simulate representative multivariate

data from these distributions. The results obtained indicate that if the

actual distribution of the data is skewed, the statistical tests, developed

under the normality assumptions, may be invalid. The simulation programs were als.'.-

also used to test the robustness of the assumption of equal covariance matrices

while the investigation of fat-tailed distributions was left to future studies.

The development of simulation programs for determining.the robustness of

the intelligence algorithms and the analysis based on the statistical tests

is being continued.
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Chapter I - Introduction

The Mathematics Clinic project involved researching methods to maintain

a data base of current information about a battlefield. The initial view of

the battlefield is stored in a central computer data base. As new data is

received from the sensors on the battlefield, it is used to update the data

base and formulate a new picture of the battlefield.

The process can be illustrated by Figures 1 and 2. The original view

of the battlefield, illustrated by Figure 1, shows one plane, a truck with two

radars, and a single radar on top of the hill. New data is collected from

the battlefield, as represented by the dotted lines in Figure 2. It indicates

that the previously identified truck and plane have moved to new locations,

and that the truck now carries only one radar. It also shows a new incoming .

plane. The single radar on top of the hill, however, is still at the same location.

The Clinic's goal was to develop statistical methods to analyze the incoming -

data in order to accurately update the data base.

The procedure followed to formulate the new estimate of the battlefield

is illustrated in Figure 3. New data is first collected and filtered. This -

procedure prepares the data for the identification stage, where the source of

the transmission can be determined. It is the next stage, self-correlation, on

which the Clinic team concentrated its research efforts. Statistical tests

are performed here to compare the new incoming data with the old estimate

of the battlefield. The new estimate of the battlefield is then stored in the

data base. Figure 4 shows the updated picture of the battlefield. The final

stage is battlefield identification or cross-correlation which it the analysis

of the configuration of the battlefield based on the enemies capabilities.

The statistical tests used in the self-correlation stage are variations

of the Hotelling's T2-statistic, which is a multivariate extension of the

student's t-statistic. The use of a multivariate test statistic is necessary

...,....-.....:-." - .... ....- .' - " - , .-... . ... - . - ,,•, .,.-., .. -..... •. . .,, , ,,
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because the data from the sensors comes in the form of vectors. (The location

vector, for example, may have three components: longitude, latitude, and

altitude. The signal parameter vector may have four components: pulse

repetition interval, pulse width, scan rate, and frequency.) During the first Y.
semester, the Clinic team rederived the basic Hotelling's T2-statistic and its

variations and then extended the results. Chapter II presents the mathematical

models of the test statistics that the team developed.

The statistical tests used in this report, namely Hotelling's T2-statistic

and its variations, were derived under certain assumptions. In some applications.*

these assumptions may not be met. Thus it is desirable to investigate

the robustness of the statistical tests used. (A statistical test is robust

if the failure of assumptions does not invalidate its ability to yield correct

results). One of the assumptions that was relaxed was that of normally

distributed data. For example, the normality assumptions are violated when the

data comes from skewed distributions such as gamma or lognormal. To measure

the non-normality of multivariate distributions K. V. Mardia's generalizations

of skewness and kurtosis were used. Chapter IV develops these concepts. A

second assumption which was relaxed was that of equal covariance matrices.

Chapter V contains a brief discussion of covariance matrices. To study the .

robustness of the above two assumptions, the Clinic team needed to generate -

multivariate distributions that had characteristics representative of the

battlefield data. This involved generating random samples of vectors such .

that the vectors components have different statistical distributions which

may not be independent of each other. That is although the vectors in the

generated random sample are independent of each other, the statistical

distributions of the vector components may be dependent. The dependence among

the vector components is described by the covariance matrix of the multivariate _5

6
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distribution. For example, if the covariance matrix has non-zero off-

diagonal elements, then a dependency between the vector components exists.

The method devised for generating these random samples consists of first

specifying the desired component distributions and then specifying the ;

component dependency (i.e. the covariance matrix). The components of the

sample vectors are then assumed to be expressable as a combination of appropriatel,

chosen univariate distributions. Using the assumed covariance matrix, it is

sometime possible to solve for the coefficients of the combinations and

hence obtain the desired random sample. Thus the problem of simulating data

sets is reduced to finding the coefficient matrix of a system of equations.

The Clinic team named the process of finding the coefficients matrix

"backsolving" since the algorithm starts with the. desired result (the

covariance matrix) and ends with the means by which the problem is solved

(the coefficient matrix). The details of the "backsolving" process are

discussed in Chapter 111. The associated computer simulation programs are --. -.

described in Chapter VI.

The results of the Clinic team's investigations indicate that the

statistical tests are sensitive to skewness in the distributions but are ..-.

not affected by slightly differing covariance matrices. A detailed

discussion of the robustness results are contained in Chapter VII.

The report concludes with Chapter VIII which contains comments on

possible future projects.

7
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ChaDter II - Mathematical Models for the Self-Correlation Stage

The Clinic Team analyzed various models for the self-correlation stage.

In this chapter we briefly illustrate the self-correlation algorithm and

then develop the appropriate mathematical models.

The self-correlation stage involves the testing for equality of mean

vectors from two datasets. The first dataset represents the old estimate of

the battlefield which has been stored in a central computer system and is

referred to as the Base Data. The second dataset represents the new estimate -

of the battlefield and is referred to as the New Data. Information from

both datasets is summarized and stored in the form of (mean) vectors and

(covariance) matrices; denoted by j and E respectively.(Vectors will be

denoted by an underscore.) The covariance matrix desribes the relationships

between the vector components. When referring to the Base Data we will use the

subscript B and when referring to the New Data we will use the subscript

N, for example, ZB denotes the covariance matrix from the Base Data.

Figure 5 shows how the self-correlation algorithm is implemented for the

situations mostly likely to occur on a battlefield. For simplicity, not every

possible case has been included; however, the logic used for most standard

situations is illustrated. The first step in the algorithm is to test whether

the candidate entity (New Data) is in the same location as a known entity 0 S

(Base Data). If the locations of the two entities are determined to be the

same, then their signal parameters are compared. If these two sets of

parameters are compatible with one another, then we conclude that the - B

observations refer to the same entity. However if the candidate entity

Is strongly associated with more than one known entity, then it is possible :'

that either the candidate entity or the one of the known entities is a

9
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deceptive reading referred to as a phantom. Phantoms can be caused by

failing to divide the observations of the two entities in the separation

stage or by incorrectly matching a candidate entity with a known entity. When

a candidate entity has the same location as a known entity but different and

noncompatible signal parameters, the possibility that it is a known entity

which has changed its signal parameters must be checked. The last possibility

we consider is when the candidate entity's location is not the same as the

location of any known entity. In this case it must be determined whether

the candidate entity is a known entity with the same signal parameters that

has moved (i.e. the known entity is mobile) or whether the candidate entity

is a previously undetected entity.

The questions asked in the above decision process, as well as others in

the self-correlation algorithm, are answered by using hypothesis tests ,f the

equality of mean vectors. The desired statistical tests are based on Hotelling's •

2T statistic or a variation. In the development of these tests there are two

possibilities that must be considered; namely whether the mean vectors and

covariance matrices are to be considered as known constants or as estimates.

In all there are six variations of the model to be considered. These six

cases are described verbally in Figure 6. In Figure 7 the six cases are enumerated

and described using previously introduced notation.

As an example, under the assumption that vB is estimated, ZB is

unknown but EB I is assumed, case 5 is appropriate. Cases 1-5 lead to
B N

variations of Hotellinq's T2-statistic to test '

H0:

which is called the null hypothesis against

HHA: YN

which is called the alternative hypothesis. -p 11 .0
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Before we develop the mathematical models for these six cases, we give

a more detailed description of the mean vector. A sensor observes p -

characteristics of a particular entity N times: therefore, there are N

'X 2
vectors of the type X- J The incoming data is assumed to be from a

p-variate normally distributed population and the N observations are assumed

independent of one another. The jth component of each vector satisfies the

equation

x3(t) -P + YO(t)

where xj(t) is the value of the ith characteristic at time t, j is the

true value of the characteristic, which remains constant over time for a

stationary entity and E.(t) is the error term at time t. The N vectors

are averaged to obtain the sample mean vector

_ (t ) - + E (t )

That is, x (t) is the sample mean observed by the sensor at time t (average

or final time of observations). We now proceed with development of the S

mathematical models or the self-correlation stage

Case 1 is the simplest and least likely case to occur, the reader

is referred to Johnson and Leone (1964, pp. 294-295). The T2-statistic •

used in Case 2 is presented next.

Let x1 ...,N be N observations, each with p characteristics.

{ 1pI
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The distribution of x is assumed to be normal with mean and covariance

matrix E (In the self-correlation algorithm W = and E E z,.) Each

observation vector has probability density function

f (11 1)P (x i

The joint density, or likelihood function, is

f ,~ (xl15 .. ,x) L (i
-=N

N

Hf [f (xU)]

N/2 N
(/)N .exp[- F (x (Xi)

S)denotes telikelihood function of the parameters listed. For

this case, the null hypothesis is H0  p = with EOknown, and z is

unknown and invertible. (In the self-correlation algorithm, P N '=

In order to test H we compute the likelihood ratio:
0

max L(Ij0,z§~

max L(p',EC

1-l

15S



The numerator of this ratio is the maximum of the likelihood function with

parameter space restricted by the null hypothesis, w. The denominator is the .1

corresponding function maximized over the entire parameter space, Q. The -:

test is to reject H0  if the computed X is small; that is, less than or
0S

equal to some X The derivation of the maximum of the likelihood function

over the entire parameter space, R, and over the restricted parameter

space, w, is shown in Appendix I. Using this derivation the likelihood

ratio becomes

N N/2
I! N I - )(x-

N

IA

A + N (x -o 0)-NI2

N
where A = z (x- x)(x- x) = (N - 1)S, with S = A/(N-l). Thus

Cilm

*2/N JAI

IA + [.N(x - o)J[.(x- Ii11lj

or equivalently .

22N -(2.1)
1 + T2/(N-1)

16



where

T2 (N N .o)'A-1( - _-))

- N(x- o)S(x Wo )

0

Equation 2.1 can also be expressed as

T 2 =(N-1)(X- 2/N-1).

The decision whether or not to reject the null hypothesis is determined

by comparing x against a critical A0  at a certain significance level. We

reject H when
0

X2/NX2/N (2.2) -

Inverting Equation 2.2 subtracting 1, and multiplying by N-1 the critical

region is redefined as

T2  2

2
In this case, T can be shown to be distributed according to an F distribution

with P and N-p4- degrees of freedom. This result is proved in Appendix II.

For cases 3 through 6, the two sample tests, the T2-statistic does not

follow one specific distribution; it varies depending on the assumptions

on the covariance matrices. When the covariance matrices are unknown, and

there is not enough data to assume that the estimates are equal to the true -

values, we use statistical methods to test whether or not two covariance

matrices are equal. The derivation of this test is presented in Appendix Ill.

17
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We will now examine the case of testing two observed sets of estimates,
(1) (2)() (2

X and x ,for equality of mean vectors, i.e., H: 1 M= P (2, or,

iPi
(1) (2)

(1 P (2)

(In the self-correlation algorithm, superscript (1) quantities may be thought

of as the New Data and superscript (2) as the Rasp Dat~a

For case 3, to test H0, the statistic

2 N IN 2  (1) _(2) 1 (1) _(2)
T ~ + =( x )i x -x )

is used, where E a ) ()= ~ =o by assumption.ii ii 13 .13

This statistic follows a noncentral X2distribution with p degrees of

freedom and non-centrality parameter

18



For case 4

2) (2) -1 (1) (2) ). 
.s dT2 =( -  -x ) (_- - ) is used,

where E and Oij + (1) N (2). This statistic followsvjj N~ 0i 2 i j
22

a non-central x2  distribution with p degrees of freedom, and S

non-centrality parameter

p p (1) (2) (1) (2)

i=l j=l ij 1 i

The preceding results (cases 3 and 4) can be found in Johnson and Leone

(1964,pp.296-297).

Case S is analogous to case 3 except that z must be replaced with

S + -2 [ .(x I)x )(xl) )M+ (2) (2) (2) (2)
N - XI + L 2x-X )'( -X )]

Then T2 becomes

N NT2  N1N2 ( )-( "S-I (1~)-x(2 )  "

- (x x )S (X x
N1 + N2

Appendix IV derives the distribution of this statistic, which leads to the

critical region

(N1 + N2-2)p

N - FPN 2 1

N N2  -- N2

where a is the level of significance. It is only in case 6, unequal and unknown

covariance matrices, that there is not a precise statistical proce~lure

yet developed to test the equality of mean vectors. In this case, other methods

such as computer-intensive data handling techniques must be used.

19
0

.........................................................**.



The preceding tests will yield precise results only when all of the

assumptions concerning the data are met. However, in some applications not

all of the data will be normally distributed observations. The remainder of

this report discusses techniques used to analyze the validity of the tests when -

assumptions are not valid.

2
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Chapter III - Multivariate Distributions with Component Dependence

This chapter describes the mathematical methods used to generate data

to test the robustness of the statistical tests of Chapter II. The robustness . .

results are contained in Chapter VII while the computer techniques used are

in Chapter VI.

To simulate relevant data, it is important to understand the characteristics

of the observations made by a sensor. Examples of these observations are the -

signal parameter and location vectors. A signal parameter vector may have

four characteristics or components: pulse repetition interval, pulse width.

scan rate, and frequency. The location vector, on the other hand , may have

longitude, latitude, and altitude as its components. Each data vector .

is independent of the others since the sensor takes readings from different

locations at different times; however due to the nature of the type of data

collected, the components of each data vector may not be independent of each

other. A good example of such dependence in the signal parameter vector is the

relationship between the pulse width and the pulse repetition interval. These x- .

two components are related through the peak-to-average power ratio.

When simulating data, we assume p=4. That is, we assume the mean

vectors have 4 components and the covariance matrices have dimension

4x4. (JPL has indicated this would be sufficient for the desired applications.)

The Clinic team generated data from the multivariate normal, gamma, and lognormal

distributions. The choice of these particular distributions was based on two -

criteria. First, these distributions have reasonable statistical properties

and hence the mathematical development was possible. Secondly they have the

-desired properties for testing robustness. The multivariate gamma and ----

lognormal provide examples of non-normal or skewed distributions while the

multivariate normal is used as a "control" distribution. -

.~~~, ., . .. -. .o .. .. . .
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The general approach in generating the desired multivariate random

samples is as follows. We first specify the desired component distributions

and component dependency (i.e., the covariance matrix, denoted by (: = oij)).

To obtain the specified dependency the components of the vectors in the *-. -

random sample are assumed to be expressible as a comhination nf appropriately

chosen univariate distributions, we used the notation

x2  42where xi = a 1, ..,4x 3 j=1 aijyj  , ,

x4 )

and the yi are independent univariate random variables.

In matrix form, _

x = = A - Y 21 
-

_ x>x3 Y 3 
, i

x 4 Y 4) 
. ..]

Thus the problem becomes one of finding a coefficient matrix A such that the

multivariate distribution x will have the specified distribution and

covariance matrix. The Clinic team named the process of finding the coefficent

matrix A "backsolving" since the algorithm starts with the desired result

(the covariance matrix, z ) and ends with the means (the coefficient matrix,

A) by which the problem is solved. Once the coefficient matrix A has been

found, the univariate random variables Yi are generated using standard

2 2 * .'
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techniques which, together with A, produce the desired multivariate

random samples.

Before looking at the specific distributions, several comnents should

be made. First since the covariance matrix is symmetric, we need only work

with ten of its entries; therefore we assume that the coefficient matrix is
0

lower triangular. Secondly when testing for robustness with respect to the

normality assumption in case 5, we need to have EN = E B Thus we need

to generate multivariate random samples with equal covariances matrices. To

do this we first show that we can backsolve for both the normal and gamma

cases provided certain relationships among the entries of E are satisfied

(see equations 3.9 , 3.10 and 3.11). Since backsolving for the lognormal

case appears to be very difficult mathematically, we avoid it by choosing our

coefficient matrix A so that the resulting covariance matrix can be backsolved

for the normal and gamma cases. Finally we note that although the Clinic team

approached backsolving using basic algebraic manipulations, Cholesky decomposition

techniques could have been used. We now develop the backsolving methods used

for generating multivariate normal, gamma and lognormal data.

NORMAL

Constructing specified dependence between normal random variables was

relatively simple due to the fact that any linear combination of normally

distributed random variables is also normally distributed. By adding four

univariate random variables, yi, i1I,...,4, which are N(O,l), new random

variables were created as follows:

xi ailyI + ai2Y2 + ai3Y3 + a iY4 + 1i' i : 1,...,4

where a =0 fori< j 

23
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Each x, is distributed normally with mean

i 2
Var [xi] ak (3.1)

kxj i andk~l .'-

4
Cov Lxixi] aikajk (3.2)

k=1 i

eIn matrix form, the new equations look like:

x AL+ u

or equivalently,

(Xl' 11 32 3 0 'yl]

x2  21 :22 0 0 Y2 L2
xT x3  a3 a 32 a 33 0 Y3 "-

'41 a4 a 43  a 44 ~ 44 a 4 2 Y4 P 4J

Given a certain covariance matrix, r = (oiji, the objective is t:o

compute the coefficient matrix, or the A matrixtso that the cove iance

matrix of x is equal to -

* Using equations 3.1 and 3.2 , the a terms can be computed. For .

example, by equation 3.2

41 a 41 al1 + a42 a12 + a43 a13 a 44 a14
S

-a a
41 11

• ,.. • "..4

. .... .-.



since13=a 1  0. And by equation 3.1
13 1

01=a 1  or

Thus,

a a41
a41 a,__

The rest of the a 1  terms are computed in a similar way involving numerous

calculations, algebraic manipulations, and substitutions. They are

a11 2

a21

a22  o,0

013
31 a

2
01 0323 - 012c13

a32= 01 A'de t B

33= - t

41

2
01l 024 012014

42= 1/e

25



02 20 2 02 0 0

a 3  1 02 34 12 34 2 '13'14 '1 023' 24 a 0120o13024 a 012 0.149
43 i/d et B) deLtY7

a -detD
44 det C

Awhere

2
"1 012I

det B =det

021 2 2

2
al1 012 013

det C det '21 02 23 and

031 032 032

2
01 012 013 014

2
021 02 023 024

S det D det 01 3223

041 042 043 042
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GAMMA

The gamma distribution was chosen to represent a skewed distribution.

Through its parameters, n and X, the gamma has a great deal of versatility.

The density function of a gamma distribution is
xn n-1 l ;IIIY ;

fy (Y) : - pe yn,>O,

Its mean and variance are

E [y] =  and

Var [y]=-!- respectively.

To simulate multivariate gamma random samples we assume, as in the normal

case, that the coefficient matrix is lower triangular.

Let x= a

x2 =a 21Y1 + a22Y2

x3 31Y1 + a32Y2 + a33Y3

x4  a4 lYl + a4 . 2 + a 3y3 + a

where the yi are independent gamma random variables with parameters

(nixi) , i : 1,2,3,4. i.e.,y i  G(ni, i).-

In order for the xi to be distributed as gamma, certain restrictions

have to be imposed on the n. and Ai" These restrictions become clear when
1 1*

we look at the moment generating function. The moment generating function

(MGF) of y1 is
My (t) I tl -- ni," . .. .i. -...'

27
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Similarly,

xl

On the other hand, the MGF of x is

rS

M x (t) = E [et 21YI 22Y

a E L allj E ea22ty21 (by independence)P.

a ( 21) ( a2) 2

1 22

The MGF of x indicates that x will be distributed as a n1 In, 2

821 22a2

7 A2  (3.3)

By a similar analysis, two more restrictions are imposed for x 3andx4

to be gammna. They are

32.32 33 and (3.4)
1 2 3

a41 8 42 a 843 a 4 4

1 2 3 A4(35

*In summnary, if restrictions 3.3 ,3.4 ,and 3.5 hold, x. will be

distributed as

G n k~l

28



The mean of x1 is

4 nk  -
E [x.] E - akk=l aik

and the covariance matrix is

= cov[x i ,xj]

4I 4 n k 4 ajk 1 nk nk

= EW kaikyk k l t ai k l a a kk a j

k! nk 4 n k)j]

ik(Yk - { ik (Yk .
k I Lk=1 y

4 nk
E aikajk k
i=l

n0 kj
since kkk jS

Accordingly, the aij terms can be expressed in terms of aiji, I,

and ni. After tedious algebraic manipulations

a.. =0, for i < J

all n-

1 2 1

a21  a21 1
'/ a 1l 1 liiii,['

nS
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o22 2a22 - C o2(,n +n2

a31 - -31 1

/o11n1  -..-

32 2
a32 = 

_22(n,+n 2)

a33 = A 3

/0 o33 (nl+n2+n 3)

8 41 = 41 1
11

842 ~ 4 2 ______
a4

42x .i-i.i.

443 3 -

aa

a43 =i ) -
1/03 (nI +n2+n 3 j21;

44 4aL

4 44(n l+n2+n3+n4)

The covariance matrix, E is constrained due to the restrictions imposed on

the relationships between the aj terms by equations 3.3, 3.4 , and 3.5
- ,

From equation 3.3

..• 
.• Ail12

> 21 1 "22 ,2

_________nl 
'a22 (n +n2)
22 2 2

30
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21 022 (3.6)

I In 1  V/02 2 (nI+n 2)

S'milarly, from equation 3.4

031 = 032 33 (3.7)

Sn. 22 ( nl +n2 / 33(n +n2+n3)

and from equation 3.5

041 -042 - 43 044

/0ll n1  Vo22 (n+n2) 1/o33(n 1+n2+n3) / 44 (n 1+n2+n3+n4)

Combining 3.6 , 3.7 , and 3.8 , the restrictions on oi become

012 - 13 - 14

022 023 024 (3.9)

o23 - 024 (3.10)

33 "34

33 442 31 
(3.11)2

043
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LOGNORM4AL

The lognormal distribution is a skewed distribution which is related to the

normal distribution. Given that Y is normally distributed with mean 4b

and variance a2 then x = exp~y] is defined as a lognormal distribution.

The expected value of x is

2
E[x] exp(wi] -exp[u J

while the variance is

Var[x] = ep2]epa]kepa

Since x exp~yJ, the condition O<x<m must hold.

Let

xi =ex{ ajY + b~i i

Thus

x exp La1 y + b1

= exp La1 y + a b J

x exp (a1 y + a2 y + a3 y + b]

=4 exp [a 11y1 + a 22Y2 + a 33Y3 + a 40 4 + b 4]

where the a and b. are scalar constants, and the y. are independen~t standard.

normal distributions. i.e. yj "- N(0,1). Each x.i is lognormally distribut ed

i1
since [E a. .y. + b.J is distributed normally with mean b. arid varience

j=l JJ 1J

Using the model shown above, the expected value of x1  isS

2E~xiJ= exp~bil- x] kk /2]

32



The variances of the x. which are the main diagonal elements of the

covariance matrix, are

Viar[x.J exr[2bi + E 2 ep Ea )I

k~l kkkl k

Thus

.. exp [b. + b. + 12 a2~ + 2)] [ex 2' 1a 2)
13 l/2(Zkk -ak Le~ =lkkI-

(k I ~k 1 k

Please see appendix V for the actual equations for each a.

The relationships needed between the entries of the covariance matrix

in order to backsolve for the normal and gamm~a cases are

U12 _ ? 03 - 013

22 23 24

023 - 24

33 34

2 >
043

Appendix VI shows these relationships will always hold for a multivariate

lognormal random variable defined as above.

33



Chapter IV - Skewness for Multivariate Distributions

The previously discussed distributions (Chapter III) were chosen in S

order to study the robustness of the Hotelling's T2-statistics. The Clinic

team decided to analyze the effect of relaxing the assumptions of normality

and equal covariance matrices. The relaxing of equal covariance matrices S

is discussed in Chapter V. To analyze robustness with respect to normality,

the normal distribution is used as a control since it is the distribution

on which the T2 statistics are based. Two descriptive statistics commonly S

used in the literature to measure the non-normality of multivariate

distributions are skewness and kurtosis. Skewness is a measure of how

symmetric a distribution is. A symmetric distribution, such as normal, will 0

have a skewness of zero. Kurtosis, or excess, is a measure of the probability

density in the tails of a distribution. The normal distribution is sa>r. to

have a standard level of kurtosis. By using these two measures in statistical .

tests, one can determine whether a distribution is normal or not [Kres (1983,

Table 26)] These tests for multivariate normality, developed by K. V. Mardia,

were not studied by the Clinic team; however, Mardia's theories of multivariate O

skewness and kurtosis were used extensively. In a Monte-Carlo study of the

T2-statistic in a univariate case, Mardia found that the level of skewness

had a much more significant effect on the test statistic than the level S

of kurtosis [Mardia (1975,p.167)J. Similar results are indicated throughout

the literature.

The following example will illustrate the effects of skewness. Figure 8 9

shows a non-normal skewed distribution centered at the correct meati and the

assumed normal distribution. This case can lead to two types of errors.

If a candidate entity falls outside the assumed acceptance region, it is S

considered a new entity and is added to the Base Data. Thus when the candidate

35
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entity falls in Region I, an error will be made since the assumed acceptance ... .

region is too small. This error will create a phantom entity in the Data Base.

The opposite problem accurs in Region II. Since the assumed acceptance

region is too large compared to the actual acceptance region, the tests will

incorrectly associate a candidate entity with a known entity in the Data Base.

Hence a new entity will not be detected when it enters the battlefield.

To analyze the effect of skewness, the gamma and lognormal distributions

were examined along with the normal. The gamma and lognormal are both skewed

distributions common to statistical analysis. This chapter will develop

the skewness model in general terms and then present the skewness formulas

for the gamma and lognormal distributions used in the Clinic teams's

analysis.

Most distributions can be characterized by their moments about the .

mean. Specifically, the third moment is the measure of skewness: -

1,p E{[( l(Z-z)Dj (4.1)

Here, x and y are independently and identically distributed random 0

variables, and p is the number of characteristics in each vector. For p=2,

the following theorem gives an alternate expression for 61,p*
• I*

Theoem Lt xY X ij12e,= (oi), I ( ), and p corr (xlx 2)

Also for 1 < r,s,t < 2 let

rst - EL(xr - xr)(xs - Us)(xt - P (4.2) ..

and ]rst r
and 0rst 

(4.3) 
mrst st

....................................- ,

. " ... .
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then

- 1 2y 2 + 3 (1+2p 2) (2 +  21,2 2 3 i Y2 22  (Y122  Y112 )

812=~7) j~ +(+p)2 + 2PYlllIY222 Illt(PY122 Y112

+ -- (2+p 2i-- + Y222(Yl12P - Y122 ) " 2 )Y122YI1211

?roof: 1112

61,2 E tjX2-12) K(Yy a 2) (Y2-12)1

Let

11 +21
a =((Xl-Il 1 )ol + (x 2 - )o )(y,.-u) and

b =((x1 -uI1 )a1 2 + (x2 - 2 )0 22 )(y 2- 2 )

then

'1,2 = E[(a + b)3]  J

3 2 2 3EL(a + 3a b + 3 ab + b

E[a3 + E[b] + E[3a 2b] + E[3ab ] (4.4)

The elements of E can be expressed in terms of p They are

1 * ~2
22 2 2 , 2 2 :2 (

11l 2 al (1-".-..
2 12 2 1 "

1  20 2F

38

.S :



22 1 22. 2 2 (4.6)

'1 2 2'122 01 012 \ 1,i
12'p

012 021 = 1 ___ 12 ~12
2 2 2- *(o) 2

al 02 -012 01 220(-212) 0 1 02 (-

01 02(47

It can easily be shown that

a 3= (y, - 1 ) P -il3 [(X 1 01 ) 3 + 3x-i)2( x21202

+ 3(x1 Wj1 oH (x j) 2 21 2

(X2 - 2
3 (21)3]

By using equation 4.2, the expected value of a can be written as

E[a] 1lJ11[1j11(0) + 311 12 ( )a + 3p, 110(21

+ 'J222 (a 1

Substitution of equations 4.5, 4.6, and 4.7 into ai,02 and 012 of the

above equation yields

~3] = (0 (;12
2 

3

+ ______+ 0 1 ll 4 1 9 2 2 :3~122222 T(1-J 122 6 6(12)-V:>
2013

1 01 1

2 (1



2

- 1 [2 1 3UI11112al2 3 Ul1 l 2 2a12
(1p2)3 )J111 al a16 aj2l2 + 06024

| 3
- Plll222012 jL 6 6 "

- 1  02

And by equation 4.3,

Ea3 1 [_ 2- 3__ + 3lll 2 31
E.a (1-p2)3 [l 3 IY1 1 2p I1 22) YI11222•

,A1

Similarly,

E[b 3] 0222 [wll10 1 2 )3 + 3112 22+ 3o12 (222

+ 'Jill(22) 2]

i By equations 4.3, 4.5 4.7,

E~b3] (1-p2)3  21222Y221112 " 32221122' + 22 :

(4 o

The same procedures also apply in calculatin E[a 2b]. First

a2b = (yl-Ul) 2(y2- 2) (Xl-Ii)3(011)212 + (x (21222

+ (x 1-') 2 (x 2-"P2 ) 2o11(a12)2 + (oIl) 222

+ (Xl-h)(x2 -u 2)2t 011021022 + (012)31]

1

I
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* -- rr r - " "I--

S

Its expected value is

Ea(0 )2a]2 2(021)2022
2 Ul2[Ill + ) .22 2(-

+ "1 12  20 11(012)2  + (11)22}

+ "l12 f 2a1 a12 + (12)3T

It can be expressed in terms of p such that 2

E[a 2b] = '112 ["ll* (6 2 3) + 222 612 3
L \1 2 (1P )/ 46 23

01r 12 2l 1
2

+ '112 21264 + 4_2 , 3)
+-p2)3 1 64 010o2 2(-p 2 )3 }

3 a 
12 12

+ "112 ( (- 2 3o '44 6 1 2 )
12 y ( Y24 1 o26(l1-p)

The final substitution yields

EDa2b]_It 2Y Y 2 P 2 2
E2) b112 + 112 222 + 112 (2( + +1)

- + yy(-p-p 3 )l.

112YI22 J(2p'p3 (4.10)

Similarly,

ab2  = (yl-l)(y2-P2)2[(x1-,,)3(l22o11 + (x2-2)3b21 (022 2

+ (x-u) 2 (x2 ) 2012 0220 11  + 12)3)"

(X2' 12 2 22 11 22+ (X1-Wl)(x 2-1 2 ) ~z(j1)2 2  + a(,,2 )2 0

L
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and therefore,
121121(o22)2

E[ab 2] 122 "lI (' 12 2 11  + '222' 21 2

12 22 11 12 3'

+10112 2a 0 0 + (a)

+{j112 2fo 12 )222 + a11(a22)21

2 3

o122 a 12 2I222 012 / -2a12 12

O122 3 "111 a 6-4 a 2 a 6 + "112 a 40 42 0l 632
(1-p2 ) 3  0102 0 12 1 6 12

20G122 
1

+ 'J122 14 026 + 12 4 5

1 2 3 --
12)3 Y122YI Y122Y222p  + Y122Y1 (-2-p 3)

2 2
+122 (22 +1) (4.11)

Finally, results from 4.8, 4.9 , 4.10 , and 4.11 are substituted hack into

4.4 to give

1 2 2 0
01,2 = 1 3  Y 6 ,y1 1YI1 2P + 6yllY122"

(1-P2)

3 2
- 2yIIIy 22 2P + 6Y2 2 2Y112P -6Y222Y22P

2 2 3
+ 3112 (2p +1) + 6 y 1 2 2 y 1 1 2 (- 2 p-p

,+ 3Y (2 2+1)-
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I

Regrouping, we obtain the desired result:

(1-) 2 2 + 3 (1+2p 2 (Y l2 + 2

- 2 9YIIIY 2 2 + 6 P Yll(PYI2 2 -Y112
)

+ -Y222(YlI2P Y122) (2+p2)YI22yl211

This result corresponds to the work of Mardia in the two dimensional

case. [Mardia (1970, p. 523.] Mardia gives a general formula for the computing

of theoretical skewness of a multivariate random variable. To check Mardia's

results, the Clinic team developed a formula for the case p = 4. This derivation

is presented in Appendix VII. The team then implemented both Mardia's formula

and the team's in a computer program to compare results for p = 4. It was

found that Mardia's general skewness formula is correct. The formula is:

rr' ss' tt'
rst r's't'r,s,t r',s't'-

Thus, for a random sample from a multivariate population, S or E is computed,

and the theoretical moments inherent in each specific distribution are used

to ,et a measure of theoretical skewness. It is clear that if the distribution

type changes, so will the moments, and hence the value of skewness. The

theoretical measures of skewness, including the derivation of moments, for -. -

the multivariate normal, gamma, and lognormal distributions constructed in

Chapter III are presented next.
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NORMAL

The normal distribution is symmetric, and has a third moment equal to

zero; thus, its measure of skewness should also equal zero.

Given:

Xl = allyl + Pl 

x2  = a21Y1 + a22Y2 + 12

x3 = a3 1YI + a32Y2 + a3 3Y3 + l 3  5

x4 = a41Yl + a4 2Y2 + a4 3Y3 + a4 4Y4 +. 4

It can easily be shown that the following elements of Mardia's skewness equation *

which apply to the multivariate normal -. tribution are all equal to zero.

E [(xi-i) = 0 (4.12)

E [(xi-li) 2(xj-1j)] = 0 (4.13)

E [(xi-1i)(xj-1j)(Xk-2k)] = 0 (4.14)

In equation, 4.12

3 3
E [(xi-1i) 3] = E [(ailY 1 + ai2Y2 + ai3Y3 + a i4Y4 )

i11i ll iY

° 4 4

=E [ (a )3y. + 3 E (a )2a yj2
•j=l ij J j=l ksi j kiY

4
• ~+ 6 E . a i k k .

=1 iky
k#j

* The first and third terms of the equation on the right are equal to

zero since the mean and third moment of yi are equal to zero. Due to

independence among the yi ' and that E [yk ] = 0 , the second term will
kS

also be equal to zero
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In equation 4.13,

2 2
E [(x.-iw) (x.-i~) E[(aily1 + a1 y + aiay + a Zjk

12Y 3I iJ4 k-

-~~~~~~ E[ j=1(lk 'lk

44 4
E[~ E (alkklY (y a +

klk=l k ) lj

44 44 4
+~ ~ Ez aa jkatkyk2Y +E 8  ajkYm

k=1 k ktiy =l k L i

zero~~ sic th(en an th thr moen of(ac y ar eqa o eo

14 4S 4 4..

+ 2

45 Skky kikjyyy
0~ ~ ~ ~ ~
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GAMMA

Given

x =a
1 lll

x a + a2 y

x3= a 31YI + a 32Y2 + '33Y3

x 4 a 41YI + a 42Y2 + 443y3 + a44y.

where each y. is distributed as gammu~a (n.,X.) i~l,... ,4. The mean

variance, and third moment of the y.i are respectively

*n.
E [y.]

var [yi] =and

3 2n.i
E L(yi E[y.]) I

Define w. (y. E[y.])

Since the y,~ are independent, the w. are also independent. Some properties

of W are

E [w.] 2
1i

2n
3 A.

E [w.
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The third moment of x. is

3 1 -i 0
E [(xi  E[xi) 3  = [E(- Ea ik E

k=l ....k=l

= E ai Eyk

i kw

[ E( E a 3 w 3  + interaction termsklk k involving one w. to
the first power

Since the wi are independent, the interaction terms are equal to zero
1

(E [wi] = 0). Thus,

E [(xi  E [xi])3 E E a auwu3 :-:

1 i k3k 3

= E [a ]-
k= -.k kkn "--1.

3 2n•

= k lk K

3 k

k=l k

kS

Similarly,

2 2~ 2E [x.-Ex) (x. -E[x) E sak aikE wk for i~j1 1 xi k=l kj

and for i< < k, S

min(i,jk) 3
1[(x E [xi - k -EXk])] : E aiQaj akE [w, ]
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LOGNORMAL

2Given that y is N(O , then x = exp[y] is a lognormal distribution

and the coefficient of skewness is

E L(x E(x)) 3] 1

(varfxi /2)

For computational purposes, the important elements of Mardia's skewness equation,

81,4 are based on the following dependencies among the components of the

x vector:

xI  exp[a l l y l + b I]

x exp[a,,y 1 + a2 y2 + b2 ]

3 = exp[a1 Y1 + a22Y2 + a33Y3 + b2J

4 = exp[allY l + a2 2Y2 + a3 3Y3 + a4 4Y4 + b4]

Where the yi are indepenoently identically distributed N(O,l).

The elements of Mardia's skewness equation
2 + 2 + .

E L xi = exp [bi]  • exp 2;(a + aiiL

E Ex 2 = exp 12bi• exp[(a 11 2 + + a. 2)

E [x ] = exp [3b.] • exp[9  2 +"" + )"

E [axi - ui)(x )(x

= E [xi x xk] - piELxjXk] - jEExixk] . PkELxixj] + 2pi jk
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E Nx -U) (j UP E [. x 2vi1E~xixJ I vjELx. I + 2wi Wj

3

E L(xi -~d E [xi31 3vi1E (xi2] + 2,, i

For i'j,

2 2 2E Lx.i x.J =exp[2b. + b] exP[ ( 9akk + F a kk13 ~k=1 k=i+1

2 J~ 2E Lxi x. = exp~b.i + b. *exPL ( E 4 a i+ E a kk1 ~k=1 k=i+l

For i >j,

2 2 2,
E Lx.2 xj I exp[2b. + b.J *expt ( E 9 ak + z 4, ak 2)

1 31 ~k1 k=j+l

E [x ix. I exp~b. + b. ex+ 2 kk
k1 k kmj+lk

For i~j<Q,

Ex x xx exp[b + b + b] exp[, (~ 92 )J ~ii kI j 2akk. k=i+1 kk k j+j~ )

agS



These measures of skewness are specific to each distribution type

since each distribution has different values for the moments needed in the e

skewness equation. These results, then, are theoretical. It is also

possible to obtain an indication of sample skewness, b which is

not dependent on distribution type. This measure is: e

N N
b L(x i - s - 3
b'P N-2 i=l j=l1 (xj

S

b can be tested against zero to see if the sample is from a symmetric

distribution. This test is presented in [Kres, (1983,Table 26)]. By using

both the sample and theoretical measures of skewness, the Clinic team examined

the robustness of Hotelling's T2 statistic with respect to distribution

type.
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Chapter V - UneQual Covariance Matrices

Another assumption that the team relaxed was that of the equality of 0

the covariance matrices. It is important to analyze the robustness of the

T2-statistic when this assumption fails because there is no statistic derived

for the case of unknown and unequal covariance matrices (Case 6). If the test 0

statistic for case 5 is robust, then it would be acceptable for use in case 6;

if the statistic is not robust, however, using the wrong statistic would

lead to phantoms or other types of misinformation in the Base Data. To

illustrate this situation in the univariate case, Figure 9 shows two symmetric

distributions with the same means, but the actual distribution of the data has a

much greater variance than is assumed, i.e. the actual distribution is "fat- S

tailed." The effect of this incorrect assumption is an acceptance region which

is too small compared to that of the actual distribution. As in the case of

Region I, in Figure 3, phantors may occur because an estimate that falls in the

shaded region is from a known entity, but the test will indicate that any

estimate that falls outside the assumed acceptance region is a new entity.

The Clinic team altered the equality of covariance matrices by allowing O

the input of an additional positive definite matrix to be added to the covariance

matrix of the test distribution. In this way it is possible to make either a

larger or a smaller covariance matrix for the test. S

Chapter VII contains the results obtained by relaxing the assumption

of equal covariance matrices.
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Figure 9
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Chapter VI - Computer Simulation

The programs written for the Claremont Graduate School Mathematics Clinic .

under the auspicetof the Jet Propulsion Laboratory are designed to simulate

data from various probability distributions and perform the Hotelling's T2-tests

to determine whether or not two sets of data are from the same distribution.

As described in the report, the T2-test assumes that the data from the two

populations are normally distributed. This program is used to study the

robustness of the test when the data is not properly distributed; in particular,

when the data follows a skewed distribution, i.e. a gamma or loqnormal. The

mathematics of these tests have already been presented. This chapter constitutes

a "user's manual" for the programs written by the Clinic team.

Since simulation requires a great €, l of computer time, the program

INPUT was written to create input data for the simulation program, SIMULATE.

With data generated from INPUT, SIMULATE is not interactive and requires no ..

user attention.

Specifically, INPUT sets all of the necessary parameters for SIMULATE to .-

run. These parameters are as follows:

1. The output file for the information from the simulations.

2. The distribution types for the test distribution. Here we

have l=Uniform; *2=Normal; 3=Exponential; *4=Gamma; *5=Lognormal;

6-Weibull; *7=Cauchy; *8=Gamma and Lognormal with the same

covariance matrix. The starred numbers are implemented completely

in SIMULATE. The other distributions are not complete and are

left for further development. The default is a Nornial distribution,

i.e. if no distribution is specified a normal distribution will

be used.
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3. The test number depending on the assumptions made about the

covariance matrices. The test number is I if the covariance

matrices are known and equal, 2 if the covariance matrix is

estimated from the test data, and 5 if the covariance matrices

are unknown and equal. Tests 3, 4, and 6 require further

work and are not implemented.

4. The parameters necessary to generate random observations from

the specific distribution. The specific method for obtaining

observations will be discussed later.

5. The amount by which the theoretical means of the Normal base

distribution should be varied from those of the test distribution.

6. The positive definite matrix by which the covariance matrix of

the base distribution should be varied from the test distribution.

7. The theoretical mean of the base distribution.

8. The theoretical covariance matrix of the base distribution.

9. The confidence level (1-significance level) for the test where

1=99% and 2=95%.

10. The sample size of the generated distributions. A large sample of

100 or a small sample of 20 are the sizes used. If other sample .

sizes are desired, then it is necessary to alter the critical test

values in the code to reflect the sample size.

11. The number of simulations using the parameters as described in

2 through 10 above.
S

INPUT allows the user to input data for as many runs as desired so SIMULATE may _-.

generate many sets of results. Given the above parameters, SIMULATE may generate

the prescribed data and perform the specified tests.

The flow of control of SIMULATE is straightforward. The parameters are
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read in, the observations from the specified distributions are generated, and

the particular test is performed. Clearly, there are many details to be

filled in, but rather than describing every line of code, a description

of each procedure is given here.

PROCEDURE RANDOMIZE

This procedure generates a seed integer to be used subsequently in

the function, RND, described below. This seed is generated by calling the

external system Math Library function FOR$SECONDS. The output of FOR$SECONDS

is a real value corresponding to the current time given by the computer's

internal clock. Since this value is given in milliseconds, it is improbable

that the same seed will be returned twice. This greatly improves the "randomness"

of this random number generator.

FUNCTION RND

This function is called throughout the program to return a random number

in the range (0,1). After every 500 calls, RND will generate a new seed to

be used in subsequent calls. RND calls the external system Math Library

function MTH$RANDOM to return the random number. See Appendix IX.

PROCEDURE INPUT PARAMS

INPUT PARAMS is the procedure which gets all of the necessary information

from the file created by INPUT. The actual parameters read in differ according

to the distributions to be generated.

PROCEDURE MAT OUT ONE

This procedure outputs an NxN matrix to the output file.

PROCEDUREMATOUT_TWO

This procedure outputs two NxN matrices to the output file, side by side.

PROCEDURE INVERT

This is an external procedure written in BASIC which computes the inverse

of the matrix passed to it. The BASIC matrix handling capabilities are much
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easier to use than trying to invert a matrix using brute force. At this

point, no investigation has been made concerning the accuracy of the BASIC

inverse routine. If a better routine is found (such as an IMSL routine)

it could replace the current inversion procedure.

FUNCTION MAT -MULTROWCOLUIN

A row vector and a column vector are sent to this function, and the

scalar result is returned. S

FUNCTION MATMULTROWMATRIX

A row vector and a matrix are sent to this function. The result, a

row vector, is returned.

FUNCTION TRANSPOSE

This function returns the row vector which is the transpose of the column

vector passed.

FUNCTION DETERM

This function computes the determinant of a 4x4 matrix along with its

sub-determinants. The particular determinant calculated depends on whether a

2, 3, or 4 is passed into the parameter SIZE. Each calculation is done by followin

* the general formula for the determinant of a matrix. No recursion is used.

PROCEDURE UNISETS

This procedure generates observations from a bivariate Uniform

distribution with parameters (Al, Bl) and A2, B2). This procedure was inserted

at the beginning of the program development and was recently updated to build

4-characteristic samples.

PROCEDURE NORMSETS

This procedure generates observations from a Normal distribution with tour

characteristics. This procedure requires the mean about which the observations
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are centered and the matrix which describes the dependencies between the

characteristics.

PROCEDURE EXPOSETS

Like UNISETS, this procedure is incomplete. It generates independent

observations from an exponential distribution with parameter x.

PROCEDURE GAMMASETS

This procedure generates 4-variate observations from a Gamma distribution

using a sum of exponential random variables.

PROCEDURE LOGNORMAL

This procedure generates 4-variate observations from a lognormal distribution.

The methodology used to build dependence between the parameters described in

Chapter III is used here. The local procedure AMAKER is used to generate an

A matrix and a B vector. These entities are generated randomly between

specified upper and lower bounds. These are used to generate the covariance

matrix which must be positive definite in order to solve for the dependence

matrix required to generate the data from the normal distribution used as the

base. A's and B's are generated until the covariance is positive definite. S

PROCEDURE CAUCHYSETS

This procedure generates 4-variate observations from a Cauchy distribution.

This distribution has "fat-tails" and may be used to test the robustness of

the T2-squared test on a fat-tailed distributinn.

PROCEDURE WEIBULL

This procedure may be used to generate data from a Weibull distribution,

but it is not completely coded.

PROCEDURE STAT TESTS

This is the main procedure of the program. It performs the statistical

tests described earlier. The local procedures GAMSKEW and LOGSKEW compute "
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the theoretical skewness using the moments of the distributions according

to Mardia. Within STATTESTS, a count of the number of acceptances and1
rejections is kept to summarize the results of the simulations. This procedure

also computes the estimated skewness and kurtosis of the test distribution.

PROCEDURE INFOOUT

This is the output procedure of the program. It outputs all of the vital

information needed to analyze the test statistics. This information

includes the test type, the test distribution, the mean vector, and the

covariance matrices of the test and base distribution, the parameters used

to generate the data, and the dependence matrix. After the summary information

is printed once, the user can suppress repeating the summary; in this case,

only information that changes is reported after the summary.

As mentioned above, the flow of SIMULATE is rather straightforward. The

only section of code that may seem unclear is case 8 in the FOR Z:=l TO RUNS loop.

When the program was originally developed, it was designed to generate data for

only one test distribution. When the decision was made to run LOGNORMAL and

GAMMA data with the same covariance matrix, it was easier to simply generate

lognormal date, perform the tests, generate the gamma' data, and then let the

program continue normally. Thus, the necessary code was exactly duplicated for

running the lognormal tests. This is not necessarily efficient, but it was the

best solution given the time constraints.

As a final note, the reader may refer to Appendix VIII for the

simulation techniques for qenerating the univariate random samples.
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Chapter VII - Robustness Results

The self-correlation stage uses statistical tests to check if one set

of data (New Data) is from the same population as another set of data (Base

Data). The tests are based on assumptions about the data, such as distribution

type and dependency relationships. The study of robustness concentrates on

a statistical test's ability to perform as expected even though the data does

not conform to the assumptions upon which the test is based; specifically, if

the data from the battlefield are not normal, or the assumptions on the S

covariance matrices are incorrect, will the tests still perform accurately? These

assumptions were addressed by the implementation of the mathematical techniques

and simulation program previously described (Chapters III-VI).

The first way in which the clinic --n analyzed the robustness of Hotelling's

T2-statistics was through the use of non-normal distributions. As mentioned in

Chapter IV, skewness has a detrimental effect on the performance of these tests

in the univariate case. The team used backsolving techniques (Chapter III) to

generate multivariate skewed distributions to be used to test the T -statistics

for cases 1, 2, and 5. (These were the only cases simulated since case 3 and

case 4 do not appear to have relevent applications and no test statistic was

derived for case 6.) A description of the 6 cases is contain in Figure 7,

Chapter II. There are two ways thdt the tests could fail to perform properly;

the test could reject the null hypothesis when the null hypothesis is really

true (Type I error), or it could accept the null hypothesis when it is really

false (Type II error). S

The Clinic team tested for Type I error by simulating Base Data and

New Data with equal mean vector and covariance matrices. At a 5% signigicance

level the null hypothesis should be accepted approximately 95% of the time whel it 0

is true. Figure 10 shows the results of the simulation. Si,6ce the statistici,
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EXPECT > 95%

IST

0T 0

1P 2 5

NORMAL 94 94 99

GAMMA 0 16 26

LOGNORMAL 73 9 95

Simulation Results I

Figure 10
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are based on the assumption that the data follow normal distributions, they should ]
be accurate when normally distributed data is used. That is, the null hypothesis

should be accepted approximately 95% of the time when it is true. The first row

shows that in each of the three cases the percentages are as expected. Since

the gamma and lognormal distributions are skewed distributions (i.e., not normal)
o

we would expect the tests to fail. The second and third rows indicate that the

tests do fail for skewed distributions. Except for the lognormal distribution

in case 5, neither the gamma nor the lognormal distributions lead to the

acceptance of the null hypothesis more than 63% of. the time when it is true;

in fact the gamma distribution never did better than 28%. The reasons why the

lognormal distribution performed well for case 5 are unclear at this point in

time. It is suspected that the use of pooled estimates for covariance matrices

from both the New Data and the Base Data could have compensated for the effect

of a slightly skewed distribution.

The Type II error, accepting the null hypothesis when it is not true, was

tested by generating data with equal covariance matrices but unequal mean

vectors. Hence we would expect the null hypothesis of equality of mean

vectors to be rejected a large percentage of the time. (That is, the null '

hypothesis would be accepted a small percentage of the time.) As shown in

Figure 11, the null hypothesis was accepted 0% of the time for all three

distribution types in cases 1, 2, and 5. Thus, for Type II error simulation,

the statistical tests performed well for both the normal and skewed distributions.

In other words, the statistical tests appear to be robust with respect to

Type II error for the distributions considered. S

The final simulation performed generated data from the three distributions. -

with equal mean vectors but with different dependency relationships; thus

= B but z I z This simulation was used to check the robustness of .0
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EXPECT -0%

1P 2 5

NORMAL 0 0 0

GAMMA 0 0 0

LOGNORMAL 0 0 0

Simulation Results 2

Figure 11
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equal covariance matrices in case 5. Once again, with equal mean vectors

we would expect the null hypothesis to be accepted approximately 95% of the

time. Figure 12 shows the results of this simulation. While the normally

distributed data performed well, the two skewed distributions did not (98c "

vs. 23% and 71%). We note that these results are similar to those shown -

in Figure 10 for case 5. Thus, these preliminary results seem to indicate

that small to moderate differences in the two covariance matrices have little

effect on the performance of the tests. These results imply that it is

the skewness of the distributions that causes the non-robustness of the tests.

We note that it is important to analyse robustness of equal covariance

matrices since there is no test statistic derived for the case of unknown

and unequal covariance matrices (case 6). If the test statistic for case

5 is robust, then it would be acceptable for use in case 6.

In summary, the Clinic team used a simulation approach to test the

robustness of Hotelling's T-statistics with respect to normality and equal .

covariance matrices. Three separate simulations were performed involving -

normal, gamma, and lognormal distributions. The results of the simulations

show that the T-statistical tests are not robust with respect to the normality .

(or symmetry) assumptions. In other words, if the data being analyzed comes

2_from a skewed distribution and a variation of Hotellings T -statistic is

used, the decision made by the test will probably be incorrect. More studies

2need to be made on the relationship between skewness and the T -statistics.

Using T-statistics that assume equal covariance matrices on datasets that

actually have slightly different covariance matrices, however, seems to

have an insignificant effect on the performance of the tests. .
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Simulation Results 3

Figure 12
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Chapter VIII - Concluding Remarks

In this report the Clinic team first developed the mathematical techniques .

and simulation program required to generate multivariate distributions with

component dependency. These results were then used to investigate the effects

of skewed distributions and unequal covariance matrices on the statistical tests

in the self-correlation alqorithm. (The results of these investigations are

contained in Chapter VII.) The Clinic team plans to continue working in this

area. In particular, since preliminary results indicate that skewed distributions

cause inaccurate conclusions in the statistical tests, the relationship between

the robustness of these tests with respect to multivariate skewness and kurtosis

will be studied further. This will be the main objective of the next report, S

Applications of Correlation Techniques .- Battlefield Identification II.

There are at least two other areas that clearly should be studied in

future reports. One topic would be the investigation of the robustness of the

statistical tests with respect to other assumptions. These assumptions include

1. The sensor data is unbiased.

2. The error term of the mean vector is independent of time.

3. The New Data describes only one entity.

4. The entities are stationary.

The Clinic also plans to develop a final computer package to implement results.

This package would be a user-friendly process which, among other things,

performs goodness-of-fit tests on the data to determine whether or not the

proposed statistical tests are appropriate. 0
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APPENDIX I

Finding the Maximum Likelihood Function for PV" A"

The likelihood function L(p';E ;x1,...,x N is given by

L exp [- N -1
= IN( - ) (- ) (AI(X)(2T) PNIIN S= x-a]"•'-

To find the maximum likelihood estimates for p and "  in Equation AI.l

we begin by taking the natural logarithm of Equation AI.l. Denoting _* and T*

to be the maximum likelihood estimates for p and E respectively, we get

N
In L = - pN ln(27r)+ N lnlw*l - E (x *) (x - W*) (AI.2)

where _ and j_ maximize ln L.

The following lemma will be useful in solving the above equation for ---

*_* and*.

Lenmia I: Let xI ,..., N be N (p-characteristic) vectors. Then for any S

vector b,

N N .
( (x -b)(x -b)'- Z (x -x)(x - )'+N(x-b)(x-b).
.-*. --a -a -In- -

N N -
Proof: Z(x -b)(x -b),- Z[(x -x)+(x-b)][(x -x)+(x-b) ].

ala -a - -a -a--a .
N

- Z [(x -x)(x -x)'+ (x -x)-(x-b)a-b)(x -.xY+(x-b)(x-b)'] 0

N N N

.(x -x)(x -7)'+[ Z(x -xf)(x-b)+(x-b) Z (x -x)'+N(x-b)(x-b)a-1 awl - - -- ."-

(__ ) ... 0. .
The second and third terms are equal to zero since E(x -x) = xN( -

-n %-o- N

Thus, let b=u* and apply Lemma 1, to obtain that

N N
Z Cx -_*) (_ -( , Z (x -x) (x ) + _*)N x_-*)" (n '

a. -a -a a=la - -a -
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N
where A z (x- _(x_ x)

Recall the properties of the trace of a matrix:

If C is mxn and 0 is nxm then

ni n
tr(CD) E E c. .d.. tr(DC)

i=l j=l133

tr(C+D) =tr(C) + tr(D)

Applying Equation A1.3 and the properties of the trace of a matrix to the

third term of the right side of Equation AI.2, we have

N N
x (x tr Z(*Y*xj )

a:1ai

N

N
=tr Z~ (x_~~)x.~)

a1i

- ~ (Al 4)

With the result of Equation AI.4, Equation AI.2 can be rewritten as

in L - -pNln(21y)+ N 1nI4,*tj-tr(**A)- _ (AI.5)

We only need to maximize the second and third terms of the right side of

Equation (AI.5) because the first term is a constant, and the fourth term is

equal to zero thenk*x

To maximize the second and third terms, which are N lnlqw*l and tr(, *A)
respectively, we must use the following lemmia.
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Lemia 2: Let f(c) N mInd X r ): whetre~
ti ji

c =(c.) is positive semidefinite and D 04 )d ' is positive definite. Then

the maximum of f(c) is taken at C=ND and the maximum is

bf(Nrf 1  = pN (1n N) - N in IDl -;pN.

Applying Lemmia 2 to Equation A1.5 by letting C=p* and D=A, we obtain

in L - pN ln (2r) + pN In N - N in JAI - & pN. (AI.b)

or, when the second and third term of the right side are combined, we obtain

in L =- pN in (2n) + N[ln -j A- J p N(A.)

After taking the exponential of Equation AI.7, the result is

max -
-1 L(k (2w ) = JI exp [- pN]

w h e r e N = A - N I R I -

weezIN IA-' N
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V APPENDIX 11

20

The Distribution of T2 for Case 2

Unknown Variance-Covariance Matrix, H0:~O

We wish to find the distribution fo T2=N(N-l)(- )'A_ (x-j ), where0

x is distributed as N(20 This will be done by several transformations

which associate T2with a simple and known statistical distribution.

Remember that the matrix A is defined as

N_

A N x-x(_)

N X a .XJ (
Z _ (L.,. alii-) j-,.,

Note that (Xlx>is not independent because each x. is dependent on the

ap p

corresponding x. This dependency can be eliminated by summing up to N-1,
N-1

i.e.,A is distributed independently as E z z -. z is independent dand is

distributed as N(QE). We denote the sample covariance matrix by S.

Our first transformation is to let T 2 y'S -1ly where y = Vxp)and y

is distributed as N(]L,E). The objective of this transformation is to simplify

* the mean so that it will become zero under the null hypothesis. In notation,

Y -EIX] -E( /jN(x- -\IN u''E[(x-,)]

00 04



Varjyj Var N'(2-L01-N Var (xk0

- N(Var(x)+Var(j0)-Cov(x,4) I

-N-Var(x)-N -

N

Our second transformation is to let D be a nonsingular matrix such that

DzD'I, and define D

* DSI)'

T snow equal to '*Y,

because T2  L

XI) S'(Iy)S

- yj[D'(D*) I S (D D)X

-(DX)'(DSD') (Dy)

= *D*l* S

Sis distributed as N(1*,I).

The third transformation is to let the first row of a pxp orthogonal

matrix, Qbe defined by

y

In other words,

N YX yIy y*

L anything~ so that 1) is orthogonal j
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The rest of the matrix Q, other than row 1, can be anything as long as

orthogonality is maintained.

P *2 2

q 2 ___.- -..

Y q1  1 be,-- c Yu*t
Lail i P . .-

I-eIu uyy = ; P
22

i- li * 0

Q, as defined, is a random matrix. What we want to do is to express T2 in

a scalar form rather than in a matrix form. This can be done by letting

B = Q(N-I)S* 0'

With the above definitions, the first component of U now becomes
P
p, 0

= q qliqi/* * .i.

i= 1

P 2
Z (q1 )

i= I.' •'-.

X_

The remaining components of U become -

p
u = q j

i-l

p
a ZZq i(ql qx*Iz*)

0 .. 0- 5 ;i) 0
Therefore, 0i
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0

n T2 . u-Iu (AIl.I)
Then, N-1 - -

because U'e- (qZ*)"(Q(N-.)S*Qa)-1 .
( I (s,)

-* Q(S*)-

- --i (recall y*-Dy and S*-DSD )

(Dy) (DSD')1  (Dy)

yD-I ( PDy)
.y'D" (D,)-Is-1D-1Dy,

N-I T

N-I N-i

Re-expressing Equation AII.l

N-1 (U 1  l... b)  2... ) b 2 -

U12 b 11 where (b ij  B-

In Anderson's notation,

-L bz- b(1)B-lb2 1

b " 11 2

. . .

is a partitioned matrix. .

Hence,
T2 U 2-"

Ul .* * "

= -I 1  Ub 2 ,...Up~ bl.2 .. \l
N- 1

74

- 1
2 b 1  hre ( i) - _B ,. 1  -. .. ..

In Anderson, notaion_ -. -- :-"
". i .'- . ." i" - '" " . . .... . .... . .. .. -_a ._ .m y - -' -",-S



2

The denominator is conditionally distributed as x (chi-square) with N-p

degrees of freedom; it is the sum from 1 to N-p of the square of w where w

is distributed as N(O,1). The numerator, on the other hand, is distributed as

a noncentral X with p degrees of freedom and noncentrality parameter
T*z y* y~y. Thus r N -}!L .p +l) is distributed as a noncentral F wi

*"*= .Thus, L P 'nnenrlFwNw p
p and N - p + 1 degrees of freedom. The noncentrality parameter is =

7

0

75

.. . . . . . . ..6 .. - . _ . ,-- . .. . . ' - " i - - - - -- --- - ' -, , ?



APPENDIX III

Using Likelihood Ratio Criteria to

Test the Equality of Variance-Covariance Matrices

Let x. be an observation from the gt population where

C%=l,... ,N and g=l,. ..,q. (q is the total number of populations.)
9

_~g is N j)Z )z, and is a column vector of size p. Let

p =number of characteristics ,

Ng number of observations in the g thpopulation

N =total number of observations

A M ( ) 0(. (g) -(g)

A' - 1( - -X # ,1 **.i ,and

A S Sum of A 's.9

We want t o test H 0 : 1  ~2 -

The likelihood function is

q 1 Ng ~(g (g),- g g'
L 1 fl jN exp [-41 E (x a -1- )Z (xa -

ginl (2 TT) pNgg N awl -

99

~()is any vector. Define w as the parameter space where El=

and is any vector. Then the maximizing values are

U ig) (g),- A Ioe
- g N9

and

x g over
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Therefore, the likelihood ratio criterion to test H 0is

q N /2 q A N /2

IT I E 19 Na

N/2N/

q N
11 Ag g (AIII.1)

Nl q N pN

9=1 9

AA(ai) where X(ci) is defined such that Equation AIII.1 holds with probability

CL when H is true.
0
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APPENDIX IV

The Distribution of T2 for Case 5

Unknown but Equal Variance-Covariance Matrices

(1) (2)

This derivation uses the results of Appendix II to show that

T 2 N IN2 
(- (1)-(2) (1) (2)

follows an F distribution with p and NI + N2-p-l degrees of freedom. Recall

that

[2 Nk (k)_(k))(xk) -()
S N N+N2z_2

Set 2 [

N1N2  (1) -(2)
Ni+N_ (X -

Under the null hypothesis z is distributed as N(_,Z). Defining z

this way accomplishes the same goal as the first transformation in Appendix I1

Therefore, the remaining transformations of Appendix I1, when applied to z - '

will yield the desired result. Specifically: 0

2 (N 1+N 2-2)p
2F (a)

0+ 1 2

N + 2-P-1 .-....

0 0O

"?. i--TL7-

0 0

o . . . . . .. . . . .



APPENDIX V

Elements of Covariance Matrix of a Lognormal PREVIOUS PAGE

Given: X, exp[a1 y + b]

x2exp~a 11y] + a 22Y'2 + b 2]

x3=exp[a 11y1 + a 22.Y2 + a 33Y3 + b 3]

x4=exp[a 11y1 + a 22Y2  a a33Y3 + a 44 y4 + b 4 j

and the yi are i.i.d, N(O.1),

and E a..y.) + b.-'- N(b.. E a.. 2 for i1l,..,4.
j=1 ii 3 J j=1 J

The covariance matrix elements are:

[1 exp(2b1 + al2)J [exp(a11 
2) 1

2  2 )-1
03 L~ 3 + 1+ a 2 + a 3) [exp(a 1 + a 2 +a 3 )-1

* ~044 = exp(2b 2 a11 2a 2 +1 a 2 +a) 22 2+a 2 +a 3
2 +a 4 )

+ 2 2 2 a 2
01 =2 = Lexp(b1 + a + 2 [exp(a 1  -1]

2 2a 2 2 2a+2 2 2 2423 [x032b 4 cp + a b3 a2 + 2 33 +) Lexp(a + a 22  -1] 3 a4

2a 2 22 2
0 =~ ~ ~~~2 0 a2  a 3  a3  ep 224 42 Lexp(b + b + 21++ )2+a2 1

12 02 22 (xp~aS

2821
2a + a +S



2a 2 2a2+ 2a 2+
cy34 0r43 =(exp (b 3 + b4+ 122 33 44

2 2 2[exp(a 1  + a2 + a3 1

21 22 23

+ a, + a8 +22 + a33 2
Y13 a31 =Lexp(bi + b+ 2 1 - exp(a 11 ) -1]

04 4]= [exp(b1 + b+ 2a1 2 + a 22 +8a33 2 + a 2 4 2 [exp(a 1
2 ) 1

'14 '4 421

K
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APPENDIX VI

Covariance Matrix Restrictions for Lognormal Case

Proof that the restrictions on the covariance matrix also hold true in the

lognormal case. Let

1 1 0°12 013 a14

021 022 o23 024

= 031 a32 a33 a34

041 '42 a43 044
J 0

The following relationships must be satisfied in order to backsolve for

the Gammua or Normal distributions.

012 _ 013 _14(AJ)
022 (23 24

023 24 (AVl.2) 1

33 c34

33044
2 > 1 (AV1.3)

043 "-0..

Using the results of Appendix V, AVI.1 becomes

a 2  2

[exp(b I + b2 + al1  + 2 [exp(all ) -1)
[ep22 + ~ +a 22

2)] Lexpdall 2 +a 22
2) -1]. .

2 a 2 2 - 02ai122 + a 2 + a3 )] exp(a ) -13 i

2 11 22 33 2 2

lexp(bl + b3 + 2 )] [ep iaI )-1'
222 22a + a +a 2 2

[exp(b2 + b3 + 22 3 , [exp(a + a222)-1]
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[exp(b + + 2a112 + a222 + a332 + a4P 2 -. 

2 2 )] [exp(a1 l ) -1] 

(epb+b+2a 11+ 2a 2+ a3 2+a 24 2 2[exp(b 2 + b41+ 2 )] [exp(a1  + a 22 ) J

After simplifying each ratio,

2 2 2

exp [b -b 2  2 a22] = exp[b I -b 2  a22 a221 2 2 1 b2 2eb b2 2 ]  •

Clearly, relationship AVI.1 holds in lognormal case. For the relationship

023 024

033 034 , AV.2)

2 + 2a222 a332 2 2
[exp (b2 + b+ 2 )]• [exp(a1 + -I .J

12 2 2 2 2 2[exp(2b + a + a22 + a33 [exp(a + a22 + a332) -I.

28 2+- 28 22all + 2a22 + a33 + a42 -"
+epb 211 222 33 44 - * 2 + 2[exp(b + + 2 -- "exp(a) -l -

2aii + 2a22  + a33 + 4 • [exp(a + a222 a33  ) -[exp(b 3 + b4 + - [ 12 + )+ a +.

or
2 2

a3 a33'Ti-Texp[b2 " b3  833 exp[b2 3

e2p3b2  332
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For the relationship

33 44 2 >1, (AVI.3)
043

(exp(2b + a1 + a2  + a33 ) [exp(a1 2 + a2 + a) 1

[exp(2b4 + a112+ 8222 + 8332 + a 2) [exp(a 2 + 8222 + a 2 + 844)-Ii 0

20(+2 2+ 2~ a4 )]*exp(al 12~ 2+ 2)_

exp(a 1
2 + 8222 + a332 + 8442)-

exp(a1  + 82 + 83a l>

* Since all three relationships are valid, backsolving from a lognormally generated

* covariance matrix to a normal or gammia distribution,is possible.
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APPENDIX VII

Derivation of 81,4

Let x and z be independently and identically distributed random

variables Define:

14 E-1 (z 38 =, E E{(x - _) x (z - ,_)}3 -.j

- - 11 012 13 a14 " _ W

21 22 23 24
2 - P2 2 0 - P2

31 32 33 34x3- 143 0 0 0 0 3 -u

41 42 43 44[ 4/-1 4 w4

Let Yi = xi -i and w. = z i - Ii for i = 1,...,4, then
1- 1

11 12 13 14 3

2 21 a22 023 a24 w

a 194 =E
1 31 32 33 34 l

41 42 43 44y a_ a a a 4

"~ ~ 4 i2 4 4'-"": "E w E Y°i + w 2 y~i + w3 Yi3 + w4 YiOi4}3 -

1= {w _1 i i=l " i i -.-1-1=-

by matrix multiplication.
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Let

4 i

a = wI  E yi (AVII.I)

4
b = w E i (AVII.3)

2 : lYi o

4 4
d = w4  YiO  (AVII.4)

The problem restated is

61,4= E[(a + b + c + d)3] , (AVII.5) -.

It can be shown that

(a + b + c + d)3  (a3 + b3 + c3 + d3) + (3a b + 3ab 2 + 3c2d + 3cd2

+ 3a 2 c + 3ad 2 + 3bc 2 + 3bd2 + 3ac 2 + 3a2d

2 2+ 3b2c + 3b d) + (6abc + 6abd + 6oad + 6bcd) (AVII.6) -

Note that equation AVII.6 consists of three groups of like terms.

Substituting equations AVII.1 through AVII. 4 into AVII.6 and

expanding:

4 i 4 44 43 313 i 3 +23joji ii I , - .' '
a3  E (Yi + 3 (y YJ + 6 yio

i=1 i:I j~i j=1 1=.
jfi ij

S.i." ? ili

S. , '- .



The first group becomes

3 3 3 3 4 34 lk3 4 4 ik 2 ojk

(a3 + b3 + c + d) = w ( + 3 z ' (yi o )yCyj

4 4 oi k

+ 6 E E Yi ] (AVII.7)
j=1 i=l

1#j

In the second group.

44a b W w2I E YiCi)w 2 " Yi Cy

W w 2w[ 1 (yi )2 + 2 42 Yi CY yj a °  + 2 43 Y22yj-
i- j= j: 3

31 41 4 i2
+ 2y3a y4c4 j y.,

i=l S

Multiplication and collection of terms yields

2 2 4 4 2i2j2 4 4 4 •lj

a2b w 2w2 E ( 2( il)2yjoa 2 + E E E yily jly k2
i=1 I k=l i=l , j k

S

S . .
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The remaining terms in the second group of equation AVII.7 are calculated

similarly, and

3La 2b + a2c + a2d + b2a + b2c + b2d + c2a + c2b + c2d + d2a + d2b + d2c_

44k iy 4 4 4 mi ki
3[ E 4 wi2w( 4 4 E k i2J + E F E ymykyzl a all)]
i=l j#i x=1 k=l x=l m=l k=l

j=1 k~m (AVII 
.8)

Finally,

4 iI  4 j2 4 k3
abc= wIw 2WB( lyi  )(3 E )( yla )

i=l j=l k=l

4 4 4 il j22k3WLb 1 ab 2 ac 3 bd E 6[WE Wiy i Yk aiyyk

i=l jjl k=l

Therefore, the last group is

4 4 4~~~Y il j2 0
6labc abd + acd + bcd] 6[w1w2w3 E E E i l a k3

i= j=l k=l k

4 4 4
+ W IW32W 41 E E Eyiyjyka l o j2..k

i=l j=l k=l • K

4 4 4 y il j3k4
1 3 4.EYyyki=l j=l k=1 l

+ W2 W3w 4 F . i Yk 0 (k ] (AVII.9)

W1 j=l W=

90 .. . °



Substituting equations AVII.7, AVII.8, and AVII.9 into AVII.5, and using the

properties of the expected value operator, then

4 3 4 3 Ak3 4 4 Ey 2y.~ 1k )2 k

~1,4 = k1 wk ~ ~ 1 ]a )+~i1j1 1.
kj 1

+ 6 (E [yly 2y3]0 ak a kO + E[yly 2y4 a lak 0 4 + E[y ly3y4]0 lk03k4 +

+ E IY y3y4]a 2k a 3k c;4

+ 3 E E[wi 2 w~ E 2 ki )2 zj

1 ~ j~ t=l k=l~ k

+ E i ki J
k=1 m=1 k~l1ymkJ

kVm

E~w w ~ 4 ~i j2 k4
+ 6 JEw E[y y y ao

124 i=ljk=lk=

+ E~w 1w 2, w1 E E[y iy Yk ]il a ~k 4 S

- 134Ji1l j1l k=l

+E[w 2 w3 w4 1 E E[Y.Yjykk 0
i-I j=1 k=1
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APPENDIX VIII

Generation of Univariate Random Samples

Most computer systems only supply random numbers from the Uniform

distributions: U[Ol). The best of these random number generators is

discussed in Appendix IX. To generate data from multivariate distributionu,

it is necessary to use observations from other univarlate distributions.

This appendix presents methods to generate data from the following distributions:

U(a,b), E(X),W(b,c), N(P,o), LN(Y ,). and C(aj). 0

UNIFORM

The uniform distribution has a distribution function S- "

U(a,b) x-a
b-a

A standard technique used for many distributions is Inversion. Recall that

any distribution, r = F(x), is distributed U[O,l ). Therefore if F is

invertible, x F'l(r) will be from the desired distribution. Specifically -

x = a + (b-a)r

EXPONENTIAL

The exponential distribution also uses the Inversion technique to

generate a random observation given an observation from a U(O,1). The •

exponential is

ECA) = 1 - exp(-Xx)

Set r= F(X). Since r is random between 0 and 1, so is 1hr. Thus .

r*= l-r = exp(-Ax)

ln(r*) "-lx S
x = Iz* "'.'"-
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WE IBULL

The Weibull distribution is given by

W(bc) I - exPL-( c

By the same analysis as before.

x =b(- lnr)l/

NORMAL

Some distributions cannot be inverted easily. These must be handled

by other methods. The Normal distribution is the most important in our

study. Let r, and r2 be observations from a U [0,l)1

x I CF'Z*2TWrjcos(21rr2) + ui.

x a/'21Wlsin(2rr 2) + Pz

are tdo observations from a N (~ao.(Note that the operators sin and

cos act on radian arguments. )

LOGNORMAL

The Lognormal distribution can be generated easily once we have

two normal observations. Thus, to generate from a Ln(y,a) ,set

P mny - hln(-- + 1)

a 2 In( +1)
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Then, if nl,n 2 NA(,v)

n 
0

and
n
1 e.

are from the desired distribution.

The gamma distribution is generated by summing observations from the

exponential distribution. Specifically

r

1=1.0..

CAUCHY

The Cauchy is a symetric, fat tailed distribution with parameters median

a and scale 8. c gives a measure of location while a provides an indication

of dispersion. The probability density function for the Cauchy is

2' *0

The following generation techniques will lead to the generation of C(r,q),

where r is real and q is rational.

* Let N and N2 be independently identically distributed N(0,1). Then

N1  "C(o l)
N
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Neat, use the fact that

n n n
£C(a 1,b1) -C Fa ,bi)

to see that *

k
z C(O,l) -~ C(O~k)
Jul

Another useful relationship is that

By comnbining the preceding techniques, a C (oq) where q = is

rational can be generated as follows:

I k
~ .C(O11)f 1 - C(O,- -

The final transformation is that for any real number, r,

C(O~q) + r "- C(r~q)

Thus, in order to generate a random sample from a C (r,q), use the

following transformation

I k N1  -
{~~~ r[ E-)-C (rq)

Jul Jul N2
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APPENDIX IX

An Evaluation of Several Random Number Generators

When we began performing the simulations of normally distributed data,

some anomalies were present in our results. Consequently, it was decided

to test the quality of the random number generator used in the simulation

program, and determine if there were any alternative generators which

performed better.

The following random number generators were studied:

1) The standard VAX BASIC random number generator.

2) MTH-RANDOM a VAX Run-Time Library procedure.

3) GGUW, the IMSL routine for generating random numbers with 6

shuffl ing. ....

4) The algorithm RND=(25173*RND+13849) MOD 65536, which is included

in Peter Grogono's book PROGRAMMING IN PASCAL. .

5) The algorithm RND=(1061*RND+9533) MOD 65536, which was developed

by G. Silberberg for use as part of a previous project.

A KolmogorovSmirnov test was used to measure the randomness of the

generators. The Kolmogorov -Smirnov test is a standard statistical procedure

to determine whether a set of data can be generated from a specified 6

distribution. The K-S statistic D is defined as

D max (F(i/n) - F (t), F (i) - F((i-l)/n))

where F (i/n) is the i0 ordered observation in the data set and F is

0

the distribution function which the data is to be tested against.

If D Is greater the 1.22//-n (where n is the number of observations .-

in the data set), then it can be stated with 90% confidence.that the data
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does not follow the given distribution.

The following results were obtained using a sample of 199 numbers. S

50 trials were performed for each algorithm.

# Trials
Generator Average D Randomness Rejected

BASIC .06143 4

VAX RTL .06308 8

INSL .06058 5

Grogono's .25837 50

Silberberg's .07324 10

Another set of trials was performed, this time with a sample size of

2000.

# Trials Rejected
Generator Average 0 out of 20

BASIC .01269 0

VAX RTL .01419 0 e -i

IMSL .02314 4

Grogono's .31935 20
.31935"20

Sllberberg's .07074 20

Conclusions: The BASIC random number generator showed the best

performance. and was placed in our simulation program. Unfortunately, we found

problems in sending the random numbers from BASIC to Pascal. The system

generator used by BASIC is MTH$RANDOM; therefore, we used this system function

to generate random numbers with the Pascal program. The RTL generator performed

nearly as well, and may be appropriate for use in certain circumstances. Th.2

others, especially Grogono's algorithm, should be avoided.
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