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Real-Time Contour Surface Display Generation §

Michael J. Zyda

Naval Postgraduate Schoal,
Code 52, Dept. of Computer Science,
Monterey, California 93943

ABSTRACT

— We present in this study the architectural specification and
feasibility determination for a real-time contour surface display
generator. We begin by examining a recently reported, highly
decomposable algorithm for contour surface display generation.
We establish a piece of the total algorithm as the algorithm com-
ponent. The algorithm component is that part of the algorithm
that can be executed in parallel, independently from the computa-
tions performed on any other algorithm subpart. We propose an
architecture for the algorithm component, and model that archi-
tecture in order to determine the real-time capability of the algo-
ritbm. We then model the larger system of multiple algorithm
component processors. This modeling effort is performed with
respect to a particular application requiring real-time contour sur-
face display generation. A VLSI feasibility computation is then per-
formed on the proposed architecture. The study ends with a look
at the impact of real-time contour surface display generation on
the design of the graphics display system. > .. 7 3[? WAt e dn | e S

Categories and Subject Descriptors: 1.3.1 [ Hardware Architecture
): architectures, parallel processing, VLSI implementations; 1.3.2 {
Graphics Systems ]: multiprocessing systems; 13.3 [
Picture/Image Generation ): surface visualization; 1.3.5 [ Computa-
tional Geometry and Object Modeling ]: data structures, discrete
planar contours, modeling molecules, surface approximation, sur-
face generation, surface representation, surfaces, 3D graphics;
1.3.6 [ Methodslogy and Techniques ]: contouring, interactive sys-
tems, parallel processing; 1.3.7 [ Three-Dimensional Graphics and
Realism ): line drawings, line generation algerithms, real-time
graphics, surface plotting, surface visualization, surfaces; 1.3.m [
Miscellaneous ]: VLSI;

General Terms: Algorithms, architecture; . "1

Additional Key Words and Phrases: contouring, contourirg tree, o
contour surface display generation, real-time display generation;
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1. Introduction

Contour surface display generation is one of the most fregquentiy used
raphics algorithms [Barry,1973), [Faber,1979], [Wright,1979], [Zyv<a,15f :a),
Zyda,1984b], [Zyda,1983], [Zyda,1982)], [Zyda,1981]. A contour surface display

is a visual representation of a surface by the collection of lines formed when
tkat surface is intersected by a set of parallel planes. The lines formed on each
of those planes are called contours. A contour represents the set o points that
belong to both the surface and the particular intersecting plane. Contour sur-
face displays are used in X-ray crystallography, computer-aided tomography,
and other applications for which grid data is collected. Contour surface display
generation is generally depicted as a computationally slow operation whese out-
put is sent to a plotter or film recorder. A number of papers have been written
documenting “breakthroughs” that increase the speed of contour surface
display generation. One author has reported that his contour surface display
generation subroutine used one second of central processor time on NCAR's Con-
trol Data 7600 [Wright,1979]. Although a contour surface display generation pro-
gram of this speed is useful for static situations, it is found to be lacking for
interactive applications that generate a succession of contour surface disglays
in response to contour level changes read from a control dial

Interactive applications that cause the generation of a succession of images
require that the human intervention be acknowledged by a visual change to the
current display within a finite element of time, called real-time. For a system
that generates a new contour surface display in response to human intervention,
real-time means‘that we must be abie to produce and distribute a new picture in
the amount of time it takes the graphics hardware to change disglay frames.
This is typically one-thirticth of a second. Any greater amount of time is dis-
cernable by the viewer, eitlier as a flicker or a hesitation in the picture update.
In fact, one-thirtieth of a second is discernable to many people, making one-
sixtieth of a second a more desirable time for the change of display frames
[Newman, 1979).

One application in which real-time contour surface display generation is
important is the determination of molecular structures from the electrcn den-
sity data generated by X-ray crystallography [Barry,1979]. Such an operation is
executed interactively by using a computer graphics program that displays a
Dreiding (stick) model of the molecule, inside a contour surface display of the
corresponding region of the molecule's electron density grid. In addition to the
graphics function, the computer program monitors a series of signals generated
by the user, while the user is turning the various knobs on a control console
[Zyda,1980). The valucs read from these knobs are interpreted by the program
as modifications to either the molecule or the surface display. Medifications to
the molecule take the form of beond rotations or bcnd lengthenings.
Modificaticns to the contour surface display take the form of an increase or
decrease of the contour level. The goal of this process is to produce the stick
model of the molecule that best fits inside the given electron density data set.
The user can determine whether or not the model fits the density grid by modi-
fying the contour level, shrinking the contour surface to the molecule. Simi-
larly, the user can expand the contour surface from the stick model for better
visibility. This function requires that the hardware have the capability to rapidly
change the contour display as its contour level changes.

We know from [Zyda,1984a] that the generation of a contour surface
display, such as those required by the above application, cannot be accom-
plished in real-time using a conventional uniprocessor. This failure is due to the
fact that contour surface display generation algorithms require many more
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Figure 1
Contour Surface Display Generated from a Eydrogen Atom
Wavefunction Squared (3dxy orbital)

-
-
......... RN . . o {
............ >y P - e T, e e - P Y .
PRSP S -, s S A Y U S R N Y WAL PP Lt e e
3 . ] oy Ay Py Aeaton P Ao A ' [,

™




s e AUl b e e e e S

-3-

instructions executed per second than can be provided by currently available
uniprocessors. In the past, this limitation of the conventional processcr has
relegated such applications to either the non real-time environment (waiting a
few minutes for each display), or to the equally unsatisfying =nvironment of
motion picture film. Because of this, this study looks for multiprocessor solu-
tions to the real-time contour surface display generation problem. At the
present time, eflicient multiprocessor solutions generally mean VLEI solutions.
Consequently, the multiprocessor architectures examined in this study are
those implementable in the VLSI technologies.

2. Definitions and Decomposability

A contour surface is a visual display that represents all poirts in a particu-
lar region of three-space <x,y,z> which satisfy the relation f(<x,y.z>)=k, where k
is a constant known as the contour level. The function f represents a physical
quantity which is defined over the three-dimensional volume of interest. The
visual display created by this algorithm is the collection cf lines that belong to
the intersection of both the set of points that satisfy the relation f{<x,y.z>)=k,
and a set of regularly spaced parallel planes that pass through the region of
three-space for which the relation is defined.

For this study, the function f is approximated by a discrete, three-
dimensicnal grid created by sampling that function over the volume of interest.
The three-dimensional grid contains a value at each of its defired points that
corresponds to the physical quantity obtained from the function, Le. the value
associated with point (xn.y 1zg) Is vy, where f{x,y.20)=v(. In order to minimize
confusion, we will spec)'fpy t%e value at a particular grid point {x,y,z) by a{x,y,z),
and will specify the value at a particular point (x,y,z) of the function by f(x,y,z).

The visual display of the contour surface is created from this three-
dimensional grid by taking two-dimensional slices of the grid, and constructing
the two-dimensional, planar contours for each slice at the designated contour
level. A slice of a three-dimensional grid is a planar, orthogonal, two-
dimensional grid assigned a constant coordinate in three-space, i.e. an x-y slice
of a(<x,y,z>) corresponds notationally to a(<x,y>) for a particular z coordinate.
The two-dimensional, planar contours created are the lines that satisfy the rela-
tion a{<x,y,z>)=k for a particular planar coordinate, either x, y, or z, where
again k is the constant contour level. If we contour all x-» slices of the three-
dimensional grid at contour level k, we will have a stack oi parallel contours
approximating the contour surface, each planar set of contours corresponding
to a particular z coordinate. If we contour all x-z slices of the three dimensional
grid, we again will have a stack of parallel contours approximating the contour
surface, each planar set of contours corresponding to a particular y coordinate.
Likewise, if we contour all y-z slices of the three-dimensional grid, we will have a
stack of parallel contours approximating the contour surface, each planar set of
contours corresponding to a partictlar x ccordinate. The assemblage of the
three sets of parallel, planar contours, i.e. the simultan=cus display of all the
contours created for the x-y, x-z, and y-z planes of the three-dimensional grid,
produces a "chicken-wire-like" contour surface display (see Figure 1). The
three-dimensicnal contour surface display described in this study is created by
such a procedure.

A decompecsatle algorithm for contour surface display genecration has been
described in [Zyda,1984b]. That algorithm is constructed from a two-
dimensional contouring algorithm that is used to contour all the possible planar,
orthcgonal, two-dimensional grids of a larger three-dimensional grid. The two-
dimensional contouring algorithm of that paper is comprised of compcnents,
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Example Contour Grid with Contours Drawn for Level 50
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called algorithm components, that operate on individual 2 x 2 subgrids of a
larger two-dimensional grid. In the algorithm, the computaticns necessary fcr
generating the contour lines for a single 2 x 2 subgrid are independent frem
those required for any other 2 x 2 subgrid. (Note: 2 2 x 2 subgrid is defired to be
that portion of the two-dimensional grid bounded by four adjacent grid points.
In the two-dimensional grid of Figure 2, the lower, lefthand 2 x 2 sukbgrid is
bounded by points (1,1), (2,1), (2,2), and (1,2).) If we compute the contours
corresponding to contour level k for all 2 x 2 subgrids of a two-dimensional grid,
then we will have determined the complete set of contours for that grid. If we
compute the contours corresponding to contour level k for all possible 2x2
subgrids of the larger three-dimensional grid, then we will have the complete
contour surface display for that grid. We use this formulation for the contouring
algorithm in this study.

3. The Contouring Tree

The contouring algorithm in [Zyda,1984b] is based upon a data structure
called the contouring tree. A contouring tree represents the edge value rela-
tionships of a 2 x 2 subgrid in a form that permits the rapid generation of the
contour display for any contour level contained within the represented subgrid
(see Figure 4). The formulaticn of the contouring tree is based upon the obser-
vation that for any two-dimensional grid a continuous series of contour disglays
can be created for contour levels in the range of the minimum and maximum
grid values (see Figure 5, and [Zyda,1984a], [Zyda,1984b], [Zyda,1583],
[Zyda,1982], [Zyda,1981]).

The use of the contouring tree is cutlined best with an example of a small
two-dimensional grid. TFigures 2 and 3 depict the contours generated for con-
tour levels 50 and 1C0. The contecurs at level 100 are closed contours, forming
simple, connected loops. The contours at level 50 are open contours. Figures 4
and 8 present the contouring trees created for two 2 x 2 subgrids of the 4 x5
plane. The edges of the contouring trees correspond to the directed, downhill
edzes inscribed on the 2 x 2 subgrids of the figures. There are eight directed
edges on each subgrid, four for the boundary edges and four for the edges to the
subzrid’s center peint. The value used for the center point is the average of the
four values comprising the corners of the 2 x 2 subgrid. (A reference as to the
usefulness of the center point average value in generating smooth contours is
found in [Sutcliffe, 1980].) The edges of the ccntcuring trees are ordered, main-
taining the same counterclockwise ordering as in the criginal subgrids. A "1"
un. - ndeindicates that a setpoint display command should be genrerated for
any cu. ate that is created along an edge that has that conrectivity on its
lower va: node. A "0"” indicates a drawto display commend in a similar
fashion ant. "2 indicates a drawpoint.

Disple _eneration from a contouring tree is accomplished ty performing a
pre-order raversal of that contouring tree, producing a coordinate and drawing
instructio. whenever the desired contour level is found to be within the range cf
an edge ol the contouring tree. A pre-order traversal visits the root, the leflt
subtree, th2 middle subtree, and then the right subtree. An edge's range is
defined to be the set of values between those associated with the nodes on either
end of the edze. More precisely, we say a contour level is within an edz=2 if the
following cecnditicn helds:

lower_node’s_value < contour_level < hizher_node's_value

For examgle, in Figure 4a at contour level 100, we issue cocrdinates and drawing
instructions for the edges (2,2)-(2,2), (2,2)-(2.5,2.5). and {2,2)-(2,3}). Tae drawing
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FIGURE 1
ALGOR!ITHMW COUPONENT ARCHITECTURAL WODEL
DRAM Chip Characteristics
Manufacturer !  Chip Chip Size ' Access Time | Reference |
AMD | AM9128 | 18K DRAM | 70ns Micro, Feb. 83 |
Mostek  © MK43HB4 | 64K DRAM | 8Cns \ficro, Aug. 83 |
[ | 100ns
1 | 120ns
ROM Chip Characteristics
Manufacturer T Chip | Chip Size | Access Time | Reference
Sigretics | 23236A | 256K ROM | 20Cns | Combouter, Jun. 83,
Svnertek | SY23128 ‘A | 128K ROM | 200ns i Compguter, Jul 83 |
| SY23256. /A | 256K ROM | 2C0ns !
American ! S23128A | 128K KOM | 250ns Computer, Jul. 83
Microsvstoms ! l * * !

Figure 12

DRAM and FGM Chip Access Time taken {rom 1383 issues
of Computer, and IECE Micro
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current_node’s_value £ ccntour_level < previcus_node’'s_value

If a coordinate is generated for an edze, the sukbtree delineated by the
"next edge” field of the table is examined for equivalued edges al tne contour
level. If such =wquivalued edges are encountered, coordirnates and drawing
instructions appropriate to that edg > are generated. Note that the traversal list
tables of Figures 9 and 10 are in terms of the subgrid numbering scheme rather
than in terms of explicit grid values. In the design of the architecture for the
contour surface display generator, we use the configuration number to find the
traversal list for the contouring tree, and use that traversal list to gererate the
display coordinates. This is instead cf actually constructing and traversiiizg the
contouring tree.

4, Architectural Kcdeling

The architectural modeling necessary to determine if a VL] multiprocesscr
for real-time contour surface display generation is feasible is accomplished in
two steps. The first step is the modeling of the algorithm component level {see
Figure 11). The purpose of this step is to determine if the amount of code
specified for the algorithm component computation is executable in real-tirre.
In this step, an implementation of the algorithm component is analyzed. The
analysis is performed in the context of a processcr whose characteristics are
similar to those of a general purpose microprocessor, the MCE2000. The mcdel
constructed is a register transfer model of the algorithm component. In this
model, the memocry references that are made for each instructicn's operatizsn R
and for each operand's retrieval during the execution of the algorithm com- e
ponent are counted and recorded. Since the number of memory references a
program makes is proportional to its run time, we only have to multiply by the
amount of time a memory reference requires in crder to obtain a measure of RN
the real-time capatility of the algorithm component prccessor ([Zyda,1881], e
[Zyda,1582], [Zyda,1983], [Zyda.1984a), [Aho,1974], and [Fuiler,1977]). The Tl
value used in this study is 250 nsec per memory reference. This value is the al
slowest access time indicated for dynamic RAM (DRAM), and ROM chips
announced over the last year in the IEEE journals Computer, and Yicro (see Fig-
ure 12). Since there are access times indicated that are less than half that
value, i.e. 70 nsec, we are conservative in the choice of 250 nsec as the time
required to complete a memory reference.

The second step in the architectural feasibility mocdeling is the modeling of
the total system cf algorithm component processcrs (see Figure 13). The pur-
pose of this step is to determine the total number of processors we can use in
parallel, the load (number of algorithm components) per prccessor, and the
total real-time capability of that system, i.e. the size cf the largest three-
dimensional grid for which we are able to generate the contour surface display

in real-time. This part of the modeling effort extends the algorithm componen 1
modeling results to a mode! of the total system architecture for the reeal-time T
contour surface display generator, Vith the structure and real-time capeatility e
of the algorithm ccmponent processor established, we determine the capatili- e
ties cf a system utilizing multiple copies of that processor. The parameters of j-.'_'_~'.
the comglete system modeled are derived from the requirements of the aprlica- J
tions. The parameters utilized include such factors as the total size of the

inputs and outputs, and the total number of algorithm components (and hence, 1

the tctal number of algorithm compcnent processors).
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Traversal List Representation of the Ceontouring Tree of Figure 6
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Tree Number 1 has 9 edges.

Bdge # | Current | Previous | Next Edge | Connectivity

Node’'s Nede's if coord.
Subgrid# | Suberidf is gen'd.

1 1 1 10 2

2 2 1 3 | 1

3 5 1 7 0

4 2 5 5 0

5 3 5 7 0

6 2 3 7 0

7 4 3 8 1

8 4 5 9 0

i 9 | 4 1 10 0

Figure 9

Traversal List Pepresentation of the Contouring Tree of Figure 4
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a problem because for such devices electron beam movement is expensive. A
contour display that causes the maximum movement of the electron beam every
other subgrid greatly decreases the the vector capability of tue calligrapkic
display device.

There are three possible solutions to the first problem, that of duplicate
vectors. The easiest solution is to choose an output display device for which
such picture inefficiencies do not matter, i.e. a raster display. Vector ordering
is also eliminated as a problem with this solution. The second solution to the
vector duplication problem is to set aside points and lines at the contour level
that correspond to subgrid boundaries. A final pass at the end of the computa-
tion for a complete two-dimensional plane could readily cull the duplicates. This
second solution does nothing for the vector ordering problem. This solution also
requires a join operation on the results of the algorithm component cemputa-
tions for each two-dimensional grid, and consegquently, diminishes the
algorithm's concurrency potential. The third solution, and the most expensive
of the three, is to merge the set of trees generated for the two-dimensicnal grid
such that duplicate edges in separate trees are eliminated. This solution has
the added benefit that the resultant contours are generated in an order that
solves the beam movement problem. This solution is not described in detail
here and the reader is referred to [2yda,1981] for further detail For this study,
the first and simplest solution is assumed for purposes of maximizing the con-
currency potential of the algorithm. Conseguently, the expected output display
device is the raster display.

3.2. Contouring Algorithm Simplifications

Before we lock in detail at a special architecture for computing the contour
lines for a 2 x 2 subgrid, we first consider simplifications to that algorithm that
greatly increase its speed. The first simplification we consider is one that elim-
inates contouring tree construction for the 2 x2 subgrid. In [Zyda, 1984a), a
procedure for contouring tree construction is described. That procedure begins
with the composition of a 5 x 5 adjacency matrix that represents the directed
graph of the edzes inscribed on the four grid points and center average value
point of the 2 x 2 subgrid. Using a 5 x5 adjacency matrix to describe a graph
that bas a constant set of eight edges, whose only changes are in the directions
of those edzes, is quite expensive. We can replace that adjacency matrix by a
field of eight bits, with a cne indicating one direction and a zero the other. This
replacement makes quite clear the fact that there are really only 256 possible
configurations of contouring trees. If we remember that the center point is not
ever chosen as maxima, and that subgrid digraphs without maxima have no con-
touring trees, this reduces the total to 120 possible configurations of contouring
trees [Zyda.1984a]. With these simplifications, we can lock up the tree
configuration for a 2x2 subgrid from a small table once we have its
conflguration number. The configuration number is composed by an assignment
of edges and directions to each bit of the eight bit number (see Figure 8).

The second simplification we consider is cne that speeds up the use of the
contouring tree in its generation of the contours. The time consuming portion
of this process is the traversel of the contouring tree. One speed up is to pre-
compute the tree traversals for each contouring tree by forming a lirear list of
each tree’'s edges in traversal order. The data necessary for the contouring
trees represented in this form for the example trees of Figures 4 and & can be
seen in Figures 9 and 10. The traversal is accomplished by steppinz through the
linear list of edges using the same edge evaluation scheme as described previ-
ously, i.e. a contour level is within an edge (and hence a coordinate should be
generated) if:
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# Check subtrees of this node for equivalued edges.
VISIT_SUBTREE(LEFT(NODE),NODE)
VISIT_SUBTREE(MIDDLE(NODE),NODE)
VISIT_SUBTREE(RIGHT(NODE),NODE)

[.. PP .

return # no need to examine the subtree further.

S,

Fv Lteter,
e g 2 ‘s,

{ # endif coordinates were generated for an edge.

P
o .

VISIT(LEFT(NODE),NODE) # visit left subtree.
VISIT(MIDDLE(NCDE).NODE) # visit middle suttree.
VISIT(RICET(NCDE),NODE) # visit right subtree.
return

end

Procedure VISIT_SUBTREL({SUBNODE, SUBANCESTOR)
if(SUBNODE == NULL)
t .

return
if(VALUE(SUBNODE) == CONTOUR_LEVEL)
}

Issue coordinates for the equivalued edge.
Setpoint on XYZ(SUBANCESI'OR).
Drawto  XYZ(SUBNODE).

VISIT_SUBTREL(LEFT(SUBNODE).SUBNCDE)
VISIT_SUBTREE{MIDDLE(SUBNODL),SUBNODE)
VISIT_SUBTREE(RIGHT(SUBNODL),SUBNODLE)

return

end

B }

Figure 7 (zontinued)
Pseudocode of the Traversal Aigorithm for the Contouring Tree
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Contouring Tree Descripticn
Pointers to descendent ncdes:
LEFT(NODE)

MIDDLE(NCDE)
RIGHT(NODE)

Values associated with each node:
VALUE{NODE): grid value

XYZ{NODE) : coordinate of that grid value.
CONN(NODE) : drawing instruction.
Procedure CONTOUR_SUBGRID(RQ0T)

VISIT(RCOT,ROQT) # begin the traversal of the pointed at
# contouring tree,

end.

Procedure VISIT(NODL,ANCESTOR)

if(NODE == NULL)
{

return

§
if((VALUB(NODE) <= CONTOUR_LEVEL < VALUC(ANCESTORY))
OR

(VALUE(NODE) == CONTOCUR_LEVEL AND NODE == ANCESTCR))

# Edze contains the contour level. 1
. L. . . - ]
Issue a coordinate computed via linear interpolation -

alcng the edge.

‘e et 4

Issue CONN(NODT) as the drawing instructicn.
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Figure 7 o
Pseudocnde of the Traversal Algnrithm for the Contouring Tree '
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»
instruction issued for each of these edges is again the one associated with the RRRR
lower valued node of the edge. The coordinate for each of these edges is gen- -..‘_-.f-.‘
erated by a linear interpolation of the edge's endpoint coordinates according to S

the decrease in contour level along the edge. The coordinates and drawing
instructions generated for the contouring trees of Figures 4a and 6a are
represented in Figures 4b and 6b.

There are some subtleties not evident from the above that are best detailed
using a pseudocode description of the traversal algorithm. Figure 7 depicts the
traversal procedure for the contouring tree assuming a particular data organi-
zation. The notation is quite standard. The pointers to the descendent nodes cf )
NODE are LEFT(NODE), MIDDLE(NODE), and RIGHT(NODE). For each nocde of the
contouring tree, there are three pieces of information: the value associated with
the node, VALUE(NODE), the coordinate associated with the node, XYZ(NODE),
and the connectivity associated with the node, CONN(NODE).

Tke generation of coordinates and drawing instructions from a contouring
tree begins with routine CONTOUR_SUBGRID of Figure 7. That routine receives a
pointer to the root node of the contouring tree. It then starts the traversal by
calling routine VISIT with that root node. Routine VISIT checks to see if the edge
defined by the passed in node and that node’s ancestor, NODE and ANCESTOEF,
contains the contour level. If the edge does contain the contour level, the edge
intersection coordinate is computed using linear interpolation and issued to the
display along with the connectivity associated with that node, CONN(NGDE). If
we issue a coordinate and connectivity for a node, we need to check the subtree
under that node for equivalued edges. If an equivalued edge at the contour level
is found, a coordinate and drawing instruction pair are issued for that
equivalued edge {routine VISIT_SUBTREE). Once a coordinate and drawing
instruction pair have been issued for an edge, and once the subtree beneath
that edge has been investigated for equivalued edges, further traversal of that
subtree is terminated. If an edge is found not to contain the contour level, the
traversal continues as depicted at the bottom of routine VISIT.

The pre-order traversal procedure described generates the coordinates and
drawing instructions for the part of the 2 x2 subgrid the contouring tree
represents. To generate the coordinates for a larger two-dimensicnal grid, we
generate the contouring trees for each 2 x 2 subgrid of that grid, and then apply
the traversal procedure to those trees. We note here that no ordering is
required in the generation of coordinates for the 2 x 2 subgrids. The coordinate
and drawing instruction set generated for each 2 x 2 subgrid is complete and
independent of the picture generated for any neighboring 2 x 2.

3.1. Contouring Trez Use Discussion

Having presented the use of the contouring tree, we must discuss its limite-
tions. The initial impression is that the contouring tree provides a nice, uniform
framework for generating the coordinates and drawing instructions appropriate
to the 2 x 2 subgrid. This is close to correct but there are problems. These
problems all concern issues of picture efliciency. Since the display generatad
for each 2 x2 subgrid is generated independently of any neighboring 2x2
subgrids, equivalued lines at the contour level cn the border of a subgrid will be
duplicated. A similar protlem occurs for subgrid corner values tha* equal the
contour level. If we display either of the above cases cn a calligraphic display
device, we will see a tright line for the equivalued edge, and a bright point for
the grid value equal to the contour level. Another problem, also due to the
independent computation of each 2 x 2 subgrid, is that no ordering is providad R
for cocrdinates that come out of this algorithm. For calligraphic disglays, this is oo
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:] Tree rooted at value 90
Level 50
_ X Y yA D
" 3.0000 1.80GC0 1.0000 1
- 2.8824 1.8824 1.0000 0
: 2.0000 1.0000 1.0000 1
2.0000 1.CC00 1.0000 0
.[:-. Level 100
X Y Z D
no coordinates generated
(S
g Tree rooted at value 150
L Level 50
- X Y z D
' 2.0000 1.0000 1.0CC0 1
, 2.0000 1.0000 1.0000 0
= 2.8824 1.8824 1.0000 1
-:'_} 2.9C91 2.0000 1.0000 0
H Level 100
. X Y Z D
. 2.0000 1.5000 1.0000 1
2.3704 1.6296 1.0000 0 .
: 2.4515 2.0000 1.0000 0 .
'b Column D is the drawing command, ie. 1 = SETPOINT, 0 = DRAWTO. )
: Figure Bb S
; Coordinates Generated for Sample 2 x 2 Subgrid with Saddle Point g
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FI GURE 6A
SANPLE CONTQURING TREE FOR A 2 X 2 SUBGRID WITH SADDLE POINT
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i Leve. 30 o

; X Y z D .

L 2.9091 2.0000 1.00CO 1 =

* 2.8333 2.1667 1.0000 0 o

g 3.0000 2.5000 1.0000 0 o

I 2.6667 3.0000 1.0000 1 .

‘ 2.2500 2.7500 1.0000 0 :
2.0000 2.8333 1.0C00 0

b .

! Level 100 .-
X Y Z D 5

| 2.4545 2.00090 1.0000 y

; 2.3125 2.3125 1.0000 0

} 2.0000 2.4167 1.0000 0

Column D is the drawing command, ie. 1 = SCTPOINT, 0 = DRAWTIO.

Figure 4b
Coordinates Generated for Sample 2 x 2 Subgrid
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SAMPLE CONTOQURI NG TREE FOR A 2 X 2 SUBGRID
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© 4.1. Architecture for the Algorithm Component

We begin the description of the architecture for the algorithm componsnt
with an overview diagram (see Figure 14). Inthat figure the important architec-
tural pieces of the processor and their interconnections are depicted. The
pieces shown are found in most processors. The importart topics for our discus-
sion are (1) the use of the hardware in the implementation of the algorithm
component, and (2) the sizes of the hardware elements depicted in the figure.

In order to detail the sizes of the hardware elements in the figure, we first
describe the operations expected of the algorithm component processor. There
are only four: (1) reset the entire system of algorithm component prccessors,
(2) accept a 2 x 2 subgrid description into a particular algorithm compcnent
processor, (3) place the coocrdinates generated for a particular 2 x 2 sutgrid
onto tke system bus, and (4) generate the contours for the 2 x 2 subgrid held in
the algorithm component processor. The first operation, the reset operation for
the entire system of algorithm component processors, is clearly required. Com-
puting systems are never constructed without some mechanism for providing a
known initial state of the hardware.

The second operation, that of accepting a subgrid definition into a particu-
lar algorithm component processor, has implications for both the size of the
RAM of the processcr, and for the performance of its external communication
mechanism. For that operation, the algorithm component processor needs to
be able to recognize when a subgrid definition is addressed to it, and then needs
to be able to store that information into its RAM. For both parts of this opera-
tion, we need to evaluate the size of the input to the algorithm ccmponent pro-
cessor. This is accomplished by making a short list of the data input for a single
algorithm compcnent: :

(1) 4 quantities for the grid values on the corners
of the 2 x 2 subzrid (18 bytes)

(2) 2 values representing the lower lefthand coordinate
of the 2 x 2 subgrid (2 bytes)

(3) 2 values representing the orthogonal coordinate and
the orthogonal coordinate type (2 bytes)

(4) 1 valce for the contour level (4 bytes)

If we assume 32-bit transfers to the algorithm component processor, this is a
total of 6 references per 2 x 2 for the input cperation, requiring an equivalent
amount of RAM storage.

The third operation, that of placing the coordinates generated in a particu-
lar algorithm component processor onto the system bus, has implications simi-
lar to that of the input operation. For the output operation, the algorithm com-
ponent processor needs to ke atle to recognize when it should deposit its coor-
dinates onto the systemn bus, and needs to be atle to provide RAM storage for
those output coordinates baforehand. From [Zyda.198:a), we know that the
largest output that can be generated for a 2 x2 subgrid is 8 coordinate and
drawing instruction quadrugles (78 bytes). If we count the byte indicating the
number cf coordinates output, we need to perform 20 32-bit transfers for the
output cperation, and need to provide an equivalent amount of RA\ storage.
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‘ The fourth operation, that of generating the contcurs for the 2 x 2 whose
definition is held in the algorithm component processor, effects the size of all
the memories in the algorithm component processor. If we use the algorithm
simplifications described above, this means we need to provide space for the - — 4
tree traversal list tables (2881 bytes), the algorithm component miscellanecus ®

' variables (45 bytes), and the code that performs the algorithm component com- '
putation (3080 bytes). (A comprehensive listing of all the data reguired ir the

algorithm component computation can be found in [Zyda,1984a], Figure 3.1.).

The estimates for the input, output, tree traversal tables, and miscellaneous are
derived directly from the data and data sizes required for the computation of PR
the algorithm component. All the data sizes are rounded to the nearest byte, .

4 except for the large tree traversal tables where estimates are qucted in terms of
the number of bits needed. The bit-wise specifications for the traversal tables
are combined and then divided by the number needed to form a total specifiatle
in bytes. '

The estimate for the size of the code required in the algorithm component
| processor is computed by totaling the number of instructicns used in the four
1 routines that comprise the register transfer model of that algorithm ccm-
ponent. A value of four bytes per instruction is assumed. The values obtained
for each of the four modeled routines are (1) 792 bytes for the control program
of the contouring operation, (2) 500 bytes for computing the subgrid coordi-
nates and average value point, (3) 304 bytes for computing the ccentouring tree
configuration number, and (4) 1484 tytes for the traversal list usage and cocrdi-
nate generation routine.

Combining the data and code totals, the algorithm component processor is
seen to require 5309 bytes of storage, 148 bytes for input, output, miscellane-
ous, and temporaries (read,/write memories), and 5761 bytes for the code and
tree traversal lists (read-only memories). In our computation of the size of the
algorithm component processor, the above values represent the space needed
for registers, random-access and read-cnly memories. Space estimates for the
rest of the hardware are not included. In order to provide a size value for the
remainder of the architectural features in the algorittm componznt processor,
we need to enumerate those hardware requirements.

The control portion of the algorithm component processor is shown in the
right half of Figure 14. It is composed of the external instruction register, the
microprogram logic, the decoder, and the microcode ROM. There is nothing spe-
cial expected for this control section that is not standard among most proces-
sors. The only important feature is the relatively large microcode ROM that con-
tains the actual contouring program. Above, we stated that this ROM required a
minimum of 20£0 bytes in order to be able to perform the expected operations.
Rounding this to a power of two, and assuming horizental microprogramming
for the algorithm component precesscr, a 1024 by 32-bit memery is the esti-
mate that is used in cur VLSI feasibility determination.

Continuing with the topic of rounding the memory sizes and widths of the
ROMs and RAMs specified on Figure 14, we find that the tree traversal RO, orizi-
nally specified as requiring a minimum of 2581 bytes, is test confizur=d as 2049
by 18 bits. The reason fcr this large increase in the space requirement for the
tree traversal tables is that the edge entries are expanded to 15 bits rather than
the original 12 bits as specified above. The RAM of Figure 14, used to hcld the
subgrid definition, the coordinates generated, and any temporaries, is assumed
to be 64 by 32-bits, up from the originally specified minimum of 148 bytes. Ve ST
should note at this point that the ROMs and RAMs specified are expected to con- d 4
sume the majcrity of the area on the VL3I chip. ‘
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The ALU and the register tlock of Figure 14 are the remaining items for
which we must develop a size estimate. The register block has no special
reguirements other than that there be about eight 32-bit registers. This is nct a
measured requirement but rather one suggested ty the designs of other
microprocessors. The ALU shown in Figure 14 is dealt with in the same way as
the rest of the hardware in that we asstume it too is little different than ALUs
found in currently produced microprocessors. This means it has the capability
to perform integer addition, integer subtraction, integer division, and integer
multiplication. It would be nice to have floating point operations directly in the
ALU but this is expensive and consurmes considerable area on the VLS] chip. Any
floating point operations we need to perform can be simulated using the integer
arithmetic capabilities provided by this minimal ALU. 't should te ncted that
the algorithm component of the contour surface display generation algorithm
was originally implemented entirely with integer arithmetic.

4.2. Real-Time Capability of the Algorithm Compcnent Precessor

In order to determine if the amount of computation specified for the algo-
rithm component is executable in real-time, one-thirtieth of a second, we need
to put together a register transfer model of that algorithm and then to execute
that model with the worst case inputs for the algorithm. As indicated above, a
register transfer model counts the total number of memory references made by
the algcrithm component for both operation executions, and operand retrievals.
There are four parts to the register transfer model of the algorithm component:
(1) the input of the 2 x 2 subgrid to the algorithm component processor, (2) the
output from the algorithm component processor, (3) the tree construction
(traversal list indexing), and (4) the contour generation (traversal list usage).
The memory reference count for each of these parts of the algorithm com-
ponent needs to be modeled and totaled in order to determine the feasibility of

‘executing in real-time a comglete, worst-case set of input data.

The first part of the register transfer model is the number of memory refer-
ences required to complete the input of the 2 x 2 subgrid to the algorithm com-
ponent processor. The total number of 32-bit transfers for this operation was
obtained in the previous section -~ 6 32-bit transfers per 2 x2 subgrid. The
second part of the register transfer model, the number of memory references
required to complete the maximum sized output, was also cbtained in the previ-
ous secticn — 20 32-bit transfers per 2 x 2 subgrid. The third part of the regis-
ter transfer model, the tree construction (traversal list indexing), requires
602 32-bit references to (1) compute the center average value pcint from the
four subgrid points (263 references), (2) determine if the points are in range of
the current contour level (177 references), and (3) compute the configuration
number (162 references). The fourth part of the register transfer model, the
contour generation (traversal list usage), requires a maximum of 2048 32-bit
references. It should be noted that this maximum is obtained for the subgrid
that gznerates the maximum number of coordinate and drawing instruction qua-
druples, six quadruples per 2 x 2. For typical applications, the average number
of coordinate and drawing instruction quadruples generated for the set of 2 x 2
subgrids that generate coordinates at all is 2.54 quadruples per 2 x 2. This value
was obtained empirically through the mcnitoring of the execution of the ccn-
touring algorithm on several data sets typical of the expected applications.
Though the use of this average number of coordinates cculd significantly lessen
the number of memory references found for the contour generztion (traversal
list use) part of the register transfer model, the worst case of six guadruples,
corresponding to 2043 memory references, must be used in the determination
of the real-time capability of the algorithm component processor. The worst
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case must be used because that case indicates the longest time the system of
algorithm component processors will require for the completion of the conteur-
ing operation.

Once we have obtained the memory reference count for all four parts cf the
register transfer model of the algorithm component, we can total the memory
references and determine if that component can be executed in real-time. For
the register transfer model of the algorithm component, a total of 2576 memory
references are required for (1) the input to the algorithm component processor
(6 memory references), (2) the output from the algorithm component processor
(20 memory references), (3) the tree construction, or traversal list indexing, for
the 2 x 2 subgrid (602 memory references), and (4) the contour generaticn from
the trees generated, or traversal lists indexed, (2048 memory references). At
250 nsec per reference, this is about 669 microseconds —~ clearly under the one-
thirtieth of a second (33,333 microseconds) goal we set for the algerithm com-
ponent processor. In fact, given one-thirtieth of a second, we can acccmplish
about £0 algorithm component computations in serial. Now that we have esta-
blished the feasibility of computing the algorithm component in real-time with
the architecture proposed, we need to design a larger system of multiple algo-
rithm component processors.

5. larger System of Hultiple Algorithm Component Processors

The first issue of importance that must be covered when considering the
design of the larger system is the issue of how cperations and data are commun-
icated. Figure 15 contains a view of the proposed interccnnection scheme for
the algorithm component processors. In that figure, each processor is depicted
as being connected to a system bus, and a serial control line called the count-
enable line. As indicated in Figure 14, the system bus provides toth data and
instructions to the algorithm component processor. It also provides the path-
way for data output back to the display controller. Not so clear in that figure is
the function of the count-enable line. The count-enable line is a one bit control
line that runs in a daisy-chain fashion from one algorithm component processor
to the next. Its function is to provide a processor addressed capability for
operations indicated to the larger system of processors. Its effect is to serialize
the execution of processor addressed cperations such as data input and output.
This is accomplished in the following manner. Each algorithm component pro-
cesscr uses the logical OR of the glcbal contrel line contained in the system bus
and the court-enable line to determine if it should gate in the instruction
currently presented on the system bus. A signal on the global control line indi-
cates a global operation, and means that all processors of the system should
perform the specified operation. Global operations are used to initiate the
highly parallel computations of the algorithm component. A signal on the
count-enatle in line for an algorithm component processor indicales a proces-
sor addressed operation, and means that the instruction and any following data
on the system bus are addressed to that specific processor. Once an algorithm
component processor has gated in a processor addressed instruction and its
data, it then sets the count-enable cut line high. The setting of the count-enable
out line to high indicates to the next prccesser in the chain that it should gate in
the instruction and data next on the system bus. The count-enable mechanism
is used to propagate processor addressed instructions throughout the system in
an orderly fashion. Its effect is to serialize the executicn of operations such as
the input of data to and the output of data from each algorithm component pro-
cessor.

It should be noted at this point that other processzor interconnection
schemes such as multiple buses for parallel data output have not been
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considered in this study. The reason for this limitation is that the currently
available display devices to which the output is directed, only have a single, 8 io
32 bit wide pathway for display list modification. The design of a display device
with multiple, parallel pathways for display list modification is outside the scope
of this study.

In order to complete our description of the communication mechanism for
the systern of multiple algorithm component processors, we need to estimale
the widths of (1) the system bus data and control lines, {2) the count-enable
lines, (3) the external instruction register, and (4) the external data register.
The system bus and count-enable lines sizes are the most important because
they extend across VLSI chip boundaries, and hence require package pins. The
count-enable lines require two bits, one into and one out of each algorithm com-
ponent processor. This requires two pins on the VLS] chip. The systemn bus
specification is more difficult in that we have both data and control line widths
to specify. The width of the data portion of the system bus is chosen to be 22
bits. This figure is based upon the number of pins we expect to be able to spare
on the VLSI chip, and upon the fact that we assume a 32-bit processor, and 32-
bit transfers in our register transfer models. In order to determine the width of
the control line portion of the systemn bus, we need to compose a list of the sig-
nals we expect it to carry:

(1) global/processor addressed bit (1 bit)
(2) instruction bits . (3 bits)

(3) data transfer control lines (B bits)
(4) miscellaneous cantrol lines (6 bits)

The sizes indicated for the data transfer and miscellaneous control lines are
taken from the bus designs for similarly sized processors and are not exact
[Fayes,1978]. The velues quoted only serve as an estimate on the number of
control signals expected. Consequently, the total estimate for the control por-
tion of the system bus is 186 bits for a bus total of 48 bits. Adding the two pins
for the count-enable lines, this means a minimum of 50 pins on the VLSI chip.
This is somewhat under the current package limit of 84 pins, and allows room for
additional pin requirements.

The sizes of the external data register and the external instruction register
are set by the data width assignments made for the system bus. The instruction
portion of the system bus was set at three bits based upcn the fact that there
are only four operations we expect to signal to the algorithm component proces-
sor. Consequently the external instruction register cnly needs three bits. The
purpose of the external instruction register is to hold a signaled instruction
until the control portiocn of the algorithm component processor is finished with
its previous operation and ready to execute a new one.

The external data register is used to transfer data to/from the algorithm
cocmponent processor from/to the data porticn of the system bus. The data that
is transfered into the algorithm component processor is data such as the
subgrid definition and the new contour level. The data transfered out of the
algorithm component processor is the set of coordinate and drawing instruction
quadruples generated by the last execution of the generate contour instruction.
Since the data width portion of the system bus is set at 32 bits, the external
data register is also 32 bits. The initiation cf data transfers through the exter-
nal data register is carried out by the control secticn of the algorithm
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component processor.

5.1. Modeling the Larger System of Algorithm Component Processcrs

The purpose of the model for the larger system of algorithm compecrent
processors is to answer the question of exactly how many algorithm component
computations can be executed in parallel in one-thirtieth of a second, with the
only limitation being that the coordinates and drawing instructicns rmust be
delivered within that same time period. For this model, we assume an infinite
capability for processors. ‘We also assume that to obtain the highest processer
utilization, the individual processor may be responsible for multiple, serial algo-
rithm compenent computations. The timing values for this step are obtained by
extending the register transfer model developed for the algorithm component
processor.

In order to determine the number of maximal algorithm component compu-
tations we can execute in parallel, we compose a mocdel cf that system:

Real-Time = Input Time + CcmputationTime+ Output Time
Available

The model forms a simple linear equation, with the real-time availakle on one
side and the input, output, and computation times on the other. For this model,
we meake the following assumptions: (1) the amount of real-time available is
33.333 x 107° seconds, (2) all of the algorithm component ccmputations occur in
parallel, so only one maximal computaticn is added to the model’'s equation
(2650 references 8250 nsec/reference), (3) the only input is the single 32 bit
new contour level, distributed to all processors via a global command (1 refer-
ence 8250 nsec/reference), (4) the size of the output from each algorithm com-
ponent computation is of average size (2.54 coordinates and drawing instruction
quadruples, or 9 references, for each 2 x 2 subgrid that generates coordinates
[Zyda,1984a]). The model has the following equation:

33.333 msec = 1ref + 2650 refs + X(9 refs)
@250 nsec €250 nsec ©250 nsec
per ref per ref per ref

The variable X stands for the maximum number of algorithm compcnent compu-
tations that the modeled system can handle. Solving for X, we find that we can
compute in parallel, in one-thirtieth of a second, 14,520 algorithm compcnent
computations, generating a total of 36,880 coordirate and drawing instruction
quadruples. Again, this requires some 14,520 processors, each operating in
parallel.

6. Furtker 2pplications Details

Once we have an idea of approximately how many algorithm component
computations we can perform in one-thirtieth of a second, we then need to
further examine the particular real-time application in order to determine if we
are able to handle the expected mavimum input data grid. Using the molecular
modeling program presented above as the typical application, we find that the
largest three-dimensional grid of interest is a cube of 30 units on each side
[Barry,1979). As discussed, a contour surface display is created for a three-
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dimensional grid by generating the coordinates and drawing instructicns for all
possible orthogonal two-dimensional grids of that larger grid. For the
30 x 30 x 30 grid, this is 90 30 x 30 grids. Specifying this in total 2 x 2 subgrids,
this is 75,690 2 x 2s that must be computed in one-thirtieth of a secornd. Frem
our architectural discussion, we found that we have the capability for generating
coordinates from 14,520 2 x 2 subgrids in one-thirtieth of a second. Given that
this is considerably under the total number of 2 x 2s, there are several questions
for which we must provide answers:

(1) For the applications of interest, what is the maximum number of 2 x 2s (of
the 75,690 total) for which we expect to generate coordinates and drawing
instructions?

(2) What is the maximum number of coordinates we expect to generate for those
applications?

(3) How do we handle 2 x 2s that do not generate coordinates?

(a) Do we send the 2 x 2 subgrids to the algorithm component prcces-
sors each time a new contour level is set, eliminating non-productive 2
x 2s at a higher level?

(b) or do we double up the processors we can handle with 2 x 2s of
non-overlapping grid value ranges?

The first and second questions are related so we answer them by referring
to studies of the applications of contour surface display generation. For those
applications, we see that the maximum observed percentage of 2 x 2s that gen-
erate coordinates is 13 percent, or around 9900 2 x 2s. The number of coordi-
nates generated for that system, the maximum number for our applications pur-
poses, is 25,150 coordinate and drawing instruction quadruples. Clearly this is
within the capabilities shown above for the system cof algorithm component pro-
cessors.

The third question, that of how we handle 2 x 25 that do nct generate coor-
dinates, is more difficult to answer. One possibility, as indicated in 3a, is to
eliminate non-productive 2 x 25 at a higher level, sending only the coordinate
productive ones to the algorithm component processors each time a new con-
tour level is indicated. If we model this situation in a manner similar to that
shown above, and assume an average number of coordinates generated for each
2 x2, we find that the system can handle a maximum of 8712 2 x 2s in one-
thirtieth of a seccnd, not counting the time required for filtering out the non-
productive 2 x 2s. This is not large enough to handle the maximal protlem of
9900 2 x 2s computed in parallel though it is not a bad solution. The only prob-
lem with this solution is that it requires a higher level mechanism of some intel-
ligence. We prefer to place all of the operations required for contour surface
display generation into the multiprocessor system. If we were to build tke mul-
ticomputer based upen this, it would require 8712 algcrithm component precces-
sors of the type described above.

The second possibility, that mentioned in 3b, is to double up the alzorithm
component processors with 2 x 2s of non-overlapping grid pcint value rangs.
Nen-overlapping 2 < 2s never generate coordinates for the same contour level. If
we keep track of the ranges for each 2 x2, and the processor range in each
algorithm compcnent processor, we have a method for examining and comput-
ing coordinates for all 75,630 2 x 2s in roughly the same amount of time it takes
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to perform the calculation on only those 2 x s that generate coordinates. The
only question is can we find enough non-overlapping 2 x 2s in the typical grok-
lem to allow this solution? The answer is certainly we can. From studies of the
value ranges of the grids we expect to encounter, we find that for a system of
75,690 2 x 2s the maximum number of non-overlapping partitions is about
16,000. This is an average of five 2 x 2 subgrids per partition, with an observed
maximum of fifteen 2 x 2 subgrids in a single partition. Extra:olating these
figures to the architecture, we find a requirement of 16,000 algorithm coms-
ponent processors, with a storage capacity of 15 2 x 2 subgrids in each proces-
sor.

The above has discussed one architecture for real-time contcur surface
display generation. The goal that guided the design of that architzcture was the
use of all of the paralielism available from the decomposition of the complete
algorithm. There are clearly alternate architectures, not all of which can be dis-
cussed in this study. One such architecture is suggested by our original note, in
the discussion of the real-time capability of the algorithm component processor,
that each algorithm component processor could accomplish about 80 algorithm
component computations in serial in cne-thirtieth of a second. Before we can
close the discussion of architecture for the contour surface display generator,
we must consider a system of multiple algorithm component computations
being performed in serial by a single algorithm component processor.

The model for such a system is easily composed from the data computed
and derived for the highly parallel system. We will skip the preliminary con-
siderations and model the system with the following assumptions. The input
subgrids are already loaded into each algorithm component processor. The out-
put from the total system of algorithm component processors is of average size,
i.e. 2.54 coordinate and drawing instruction quadruples are generated from S9C0
2 x 2 subgrids, for a tctal cf 25,146 quadruples, or 89,100 memory references,
The cutput is 32 bits wide, again due to the design of the display processor. In
one-thirtieth of a second, there are 133,333 memory references using the figure
of 250 nsec per memory reference. Subtracting the total number of memory
references required for the output from the total number of memory references
in cne-thirtieth of a second, we find that 44,233 memcry references are available
for the computation of multiple subgrids in a single algorithm component pro-
cessor. Dividing the total avaiiable computation time by the maximum amount
of time an algorithm component prcecessor could spend on a single algorithm
component computation, 2650 memory references, we find that each algorithm
component processor can compute the display for 186 subgrids in serial, with the
system still being able to deliver the output in real-time. Dividing the total
numter of subgrids considered for our applications, 75,690 subgrids, by 18, we
find that we need 4731 algorithm component processors.

Referring back to the discussion of our ability to coalesce the 75,630
subgrids into 18,000 partitions, each partition containing a maximum of 15
subgrids of non-overlapping grid values, we find that we really only have a
requiremen’, for 16,000 subzrid computations. If we design each algorithm com-
ponent processor to hold i8 of these partitions, i.e. each processor has the
capatility for 15 times 16 subgrids, then we really cnly need 1000 proccessors,
The only differences from the algorithm ccmponent processor previously
described are (1) a larger RAM for the extra subgrid definitions, (2) a larger
microcode ROM for the value range acceptance mechanism, and (3) a wider
instruction portion of the system bus. The additional memory requirements are
shown in Figure 16.
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7. VL3I Feasibility for the Contour Surface Display Generator

The above discussion has left us with an outline of the architeciure neces-
sary for real-time contour surface display generation. An importart factor to
consider at this point is the actual feasibility of implementing such a system in
the YLSI technology. For this feasibility determination, we need to compute a
value for the hardware complexity. The chief componzants of this comgplexity are
the total number of transistors required, and the t»tal number of VLSI chips.
Once these values are obtained, we can then make a jlatement as to the feasibil-
ity of actually constructing the real-time contour surface display generator.

From the architectural specification, we can compute a value for the circuit
complexity if we make some fairly simple assuumptions. The first assumption is
that if we obtain a circuit complexity for the algorithm component processcr,
then all we have to do to get the total system complexity is multiply by the total
number of processors required. The second assumption is that the complexity
of the algcrithm component processor is less than or equal to the complexity of
a known microprocessor, say perhagps the MC6880C0 used in our evaluation of the
algoritbm compcnent’s real-time capability. One paper, [Frank,1581], provides
a comparison of the Motorola MC58000 and the Zilog Z80C0 with figures for the
total number of transistors. For the MCB80C0, the total transister count is
approximately 88,000, with 50,000 of those transistors being in the microcede
ROMs and PLAs and the remaining 18,000 being in the registers and randcm
logic. For the Z8000, the total transistor count is specified as 17,500. Conse-
quently, a good estimate for the circuit complexily of a processor such as the
one we propose for the algorithm component processor is 18,000 devices, not
counting the RAM space, or the RCM space.

Figure 17 is a short table showing the breakdown of the algcrithm com-
ponent processor into pieces of similar circuit complexity. Using figures of two
devices per bit for the random access memory (DRAM), and cne device per bit
for the read-only memory {ROM), we find that 195K devices are required for the
storage alcne. Adding that value onto the 1€K devices that form the rest of the
algorithm component processor, we ncte that the tctal number of devices the
processor requires is on the order 215K From the literature, we note that cne
million device VLSI chips are already being prcduced in the research lab
[Gwynne,1583], with ten million device VLSI chips promised in the time period
ranzing from the year 1985 to the year 2001 [Uhr,1284]. This means 4 algorithm
component processors per chip at the one million devices per chip level, and 4%
algorithm component processors per chip at the ten millicn devices per chip
level. For the 1000 processors needed for the contour surface disglay genera-
tor, this means a total system size in the range of 250 to 21 VLSI chips.

8. large System Diszussion

For most of the uniprocessor, von Neumann world a system design consist-
ing of 1,CC0 processors seems infeasible. In fact, even systems of 0 intercen-
nected processors are not viewed as particularly viable. A larze part of this
skepticism derives from the dificulties involved in early multicomputer
attempts such 2s the [lliac 1V, and the Carnegie-Mellon C.MMP and CM* projects
([Fuller,1377], [Barnes, 1558}, and [Wulf,1972]). These initial multicomputer
efforts "p=aked" at the level of around 50 processors. The focus of th=2se pro-
jects has tecen to grovide gencral purpose multicemputing. The econcmics of
the design and construction efort dictated this slant. None of these multicem-
puters was paruczularly successful in fulfilling the need for general purpose mul-
ticomputir.z, and none cf them was particularly useful fer any specific applica-
tion. Since the lendmark 1977 article by Sutherland and Meed,
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(1) RAM space — (2 devices/bit)
2048 x 32 bits

(2) RO\ space -- (1 device/bit)

- tree tables
2048 x 16 bits

— microcode
1024 x 32 bits

(3) Rest of processor space —

- ALU

— register block

— control section

— external registers

— data and control buses

Device total

131,072 devices

32,768 devices

32,768 devices

18,0C0 devices

214,608 devices (215K devices)

Figure 17

Algorithm Component Processor's Circuit Complexity Estimate

R ——

PV Sl W AP

LA Wl P et

f
¢
ola e o

'
A J‘.“'.

. [

PSP
P

alaacea

R

bt _a




Ll Pubiihrs i S Mies Jaean e Mot Jeon Ao shatet Mo shan T —— LB St R Sh e S I s G- S ST A G AR e S e A 0 S0 S ]

-17-

———— '—vvv‘wﬂ
‘ Lo

[Sutherland,1977], the economics and the focus of computer architecture
research have changed. The VLSI revolution heralded bty Sutherland and \Mead
has provided the capability for large scale, special architectures. Cne special
architecture, the Massively Parallel Processor (MPP) delivered to NASA in
December 1982, has 16,000 processors on 2,000 LSI chips [ Potter,1952]. its pur-
pose is to solve large two-dimensional image processing applications in real-
time. It is “general purpose” in the sense that it is good for a wide range of two-
dimensional image processing applications, but it is still a special architecture,.
The contour surface display generator is an even more specialized architecture
than the MPP, although it is just as feasible.
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9. Conclusions

This study has focused on the architectural specificaticn and feasibility
determination of the real-time contour surface display generator. The conclu-
sions we draw are that yes, we can put together such a multiprocessor. Once we
have made such an assessment, we then need to consider the next steps in this
research effort. Two directions come tc mind, the second following directly
from the first. The first direction concerns the details of how the real-time ccn-
tour surface display generator is interfaced to a display system. The imrcor-
. tance of this research direction becomes evident if we compute a value for the
1 output data rate of the contour surface display generator. In Figure 15, the out-
put is shown to be destined for a display device, with that output passing
- through a display controller. The assumption for that data transfer has been
o that it is accomplished via a DMA transfer mechanism of 32 bits width similar in
: cperation to that of the DEC Unibus. Assuming that the output display is of aver-
- age size, 89,100 32-bit memory references, this is a data rate of 10.7 megabytes
h per seccnd. The delivery of data to the display system at the rate of 10.7 mega-

bytes per second is somewhat faster than current display system technology
allows. Compounded with this problem, is the fact that besides being able to
deliver the picture within the given time constraints, we also need to maintain

- the functionality of the display system. This means that if we add the contour
- surface display generatcor to a display systermn that we cannot reduce or elim-
inate the display system's capability for real-time display rotaticn, scaling,

h translation, eclipping, and other assorted, real-time operations. The full

specification of the architectural changes required for the display system by the
contour surface display generator are left as an area for further study.

1

[ Once we have answered the questicns with respect to the contour surface
1 display generator’s impact on the design of the display system, the second
F. research direction is to examine other graphics algorithms for implementation
3 in VLSI. If we then perform the same study of the interfacing of those special
: purpose display generators with the display system. we can see if there are any
3 general principles we can establish. It is not until this question is answered in
'; v the general case, that we can actually begin the systemetic implementation in
- VLS] of special purpose, real-time display generators.
}
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