

REPORT ON

TEACHING ADA

(Revised)

APPROVED FO pUi'LIC RELEASE;

DISTRIBUTION IS UNLIMITED (A)

Ik.

SAI-81-313-WA ,Accesslon For
NTIS GRA&I

"-I DTIC TABDTIC Unannounced QSELECTE March 1980 Justification

• . JUN 1 7 1985 Revised ____-__-_____

December 1980 Distribution/
Availability Codes _

Avail and/or

Russell J. Abbott Dist special
Associate Professor

Department of Computer Science
California State University

Northridge, California 91330

This report was supported by the Defense Advanced
Research Projects Agency under DARPA Order No. 3456,
Contract No. MDA903-80-C-0188, monitored by the Defense
Supply Service, Washington, D.C. The views and con- _
clusions contained in this document are those of the
authors and should not be interpreted as necessarily
representing the official policies, either expressed
or implied of the Defense Advanced Research Projects
Agency or the United States Government.

XATLANTA 9 ANN ARBOR e BOSTON e CHICAGO o CLEVELAND* DENVER a HUNTSVILLE * LAJOLLA
if LITTLE ROCK * LOS ANGELES * SAN FRANCISCO * SANTA BARBARA * TUCSON * WASHINGTON

Science Applications, Inc.
1710 Goodridge Drive, McLean, Virginia 22102 0

1-. 17 pC

tp

Teaching Ada

i w .

I Fkussell J, Abbott
Dept, ot Cor'puter Science
California State University
Northridqe, Ca. 91330

* Tel. 213-*885-3398

L

Teachina Ada Pane 3

5. motivation

This section contains a 1 1/2 hour presentation which,

* outlines a program' desian philosophy and provides a motivation

for nany of the constructs of Ada.

,7

1 Teachina Ada iaae 10

2.1.2.2.2 The Keyword ME

The keyword "" is used for tuo functions :

m a) CASE constructs

) SLLECT constructs

A confusion rlght arise in that one of these

constructs is deterministic and the other is

pseudo-non-deterministic.

2.1.2,2.3 The keyvword RZZ.C

The keyword £E& UIXEL is used for two tunctions:

*a) Visibility from inside a module to other modules;

b) The restrictinq of private data types frof use in

assignment or tests for equality,

These two tunctions are quite different. Again, the

use of a single term may be confusing to new users,

7..

. -. . . . * . - - . - . . . - . . - . . • . . - . •o, . . .

Teachina Add Paae 11

,on 2.1.2.2.4 The RAQ.ULE. construct

-. The RAC.LAUG construct can be used for multiple

- purposes. All are valid uses and do not subvert the Intent

. of the construct.

a) A replacement for named common;

* -. b) Libraries of subroutinesi data types and constants;

c) Encapsulated data types;

" d) Isolated mooules (e.c. a "symbol table");

e) Co-routines;

- .f) An alternative to record-structureo data types;

q) Abstract machines;

. h) Levels of abstractions

It tiqht have been better (at the risk of expanding

the language still further) to identify sore of those

functions explicitly and provide individually named program

. iobjects for them,

L

2.1.2,2,5 The symbol =>

The symbol => is used for a number of functions:

* .a) CASE constructs

" b) SELECT constructs

* c) OoJect initialization

d) Parameter passing

e) Pepresentation association

* .*t'9

Teaching Ada Paae 12

The first two of these are control functions; the

second two are assignment functions; the last is a general

association function, While the first four are also

associations, their operational uses will probably

predominate In people's thinking, The use of a single

symbol may be confusino tc new users,

2.1.2.2.6 The keywords k and U

The keywords iUW and USE appear in the machine linkage

statement: .. go* =Leos, , They also have separate

functions elsewhere in the lanquage, Aoain, this way be a

* -source of contusion. In this case, however, the difference

between the functions is so great that the confusicn is

less likely to be severe,

=L

§ ..i 2.1.2.2.7 Summary of Overloaded Constructs

The issues discussed in this subsection were all,

presumably, deliberate desian decisions. They may be good

- . decisions; but they are also potential sources of

*.. confusion, If the same word or construct is used in

multiple places, new users tend to believe that they are

dealing with the same concept. In some of these cases,

there may be a risk of significant confusion to neu users,

f

o. .,..o..o.... o. ,°.° °.,°° .% . . .- o ,°

I Teachinq Add Faoe 13

2.1.2,3 Private Data types

Compilation reoutrements force private data types to

be declared in the visible, specification Portion of

U packaoes and tasks,

This is confusing in that it is not clear:

a) from the point of view of the package user, in what way

the Private type Is hidden--since it is plainly visible;

b) trom the point of view of the packaqe specifier (i.e.

Sr the person who provides the reauirements specification

tor the package), why it is necessary for him to specify

those data types, As the person responsible for

defining the functional capabilities of the private

type, he is not supposed to need to be concerned about

It's implementation, Yet the private type must be

! declared in the specification portion of the package,

2.1,2.4 Subtypes and derived types

It ray re a source of contusion when one should use a

subtype and when a derived type, It should be made clear

that the only reason to detine a subtype is to Impcse a

range restriction on an existing type -- if It is, in tact,

correct to make that claim. Derived types, in contrast,

have much Pore siqnificanct uses and are motivated by

nigher level methodological considerations. Yet tte two

type aeclarations appear so similar that this significant

ditterence in their use ray be lost on nev users,

--

Teachinq Ad Paoe 14

2.1.2.5 IPange Fxpressions

It traY be confusing in which contexts range

U expressions are permitted, They may be used:

a) in array declarations and elaborations.

b) In array slice operations.

c) in subtype, derived type and anonymous type

declarations,

*d) In obJect initialization.
r,

e) In EUP statements.

f) In floatinq point and fixed point declarations.

q) In representation specifications.

h) In references to families,

It would be useful to develop a rule of thurb of the

form "rarge exnresslons are permissible whenever .

Perhaps the b~lank is truly filled in by "whenever

*convenient." IExpereince so far suggests that this mright be

the case. he have not had sufficient experience to enable

* . us to make that assertion with complete confidence, See

* .2,1.2,10 for an apparent example of a situation ir which a

range expression and a type name for that rance expression

are not freely interchangeable,

2,1.2.6 Visibility: the keywords &EUUCL and J.LSk

1he visibility features may be a source of cortusion

to rew users. The keyword B '-zTJ.-UiC serves both to

*Teaching Ada Page 15

restrict visirility (from, the normal ALGOL scope) ano

extend Visibility, It May be confusingQ that R&&=.1i

visitility is in some ways Qreater that un"LSZLj.rZ~

visibility.

The J±S.E clause may also cause trouble, Its utility is

not as great as one m~ight expect, The J.LS clause Is to be

applied only to modules--unlice PASCAL's &Ul or SIPVULA's

J.L"Z So It Is not a general Ounwrappino" function, On

the other hand, JLU does not extend visibility in any way,

Its advartage is minimal.

It iright have been better to make the modules

mentioned in a E"k.CXE list Ud by default, unless

otherwise specified.

*2.192,7 Proqrams and libraries

One of the most freauent questions new users ask about

Ada is: hhat does a complete proqran 10oK like?

Teaching Ada Fade it

It is a source ot confusion that there are no objects

called "proqranis", The library environment is a ne% concept

and needs careful explaination to new users.

2.1.2.8 The term "overloaded"

The tern "overloaded" was a poor choice. "Uverloaded"

connotes to most English speakers an unacceptable

condition. An overloaded operator in Ada is not

unacceptably burdened or ambiquous. The mechanisw which

supports overloadinq is very useful; the term Itself is

confusing.

2.1.2.9 Advanced proqramminq features

Ada includes a number of advanced programming features

which present some problem in teaching. While these

constructs are important, they do take some effort to

master.

2.1.2.9.1 Exceptions

The mechanism of declaring, raising and fielding

exceptions and the associated flow ot control are

unfamiliar to most nroqraiers.

2.1.2.9.2 Tasks

The creation and use of tasks are new concepts. New

students rust raster concurrency, oueues, asynchronicity,

....

Teachino Ada Paae 17

Pseuao-randomness and their appropriate uses.

2.3.2.10 Array declarations

It Is unclear when, ano to what extent, array bounds

must oe declared. For exarle:

lu" vector ±s.4.Azau (I..1O) at inteqer;

v : vector; -- is apparently ok, but

SuA index Ls integer La.g* 1..10;

Tupa vector a .a (index) a.t inteqer;

v : vector; - is apparently not leal.

- because the array bounds

-- are not declared. Yet

LZ&a vector .

size : r=sat Index;

v : aLJa(1..size);

v : vector; -- is ok without declarino

a value for size, and

v := (10,(1..10 => OM) -- is leoal as is

v := (100,(1.300 => 0)); -- immediately afterward,

It Is not clear just what does have to be Known at

elaboration time. (These examples are troff F. heqrer,

n . . .

Teaching Ada Paoe 24

The teaching of proqramminq has evolved through two stages.

During the first stage, the teachinq was syntax based; during

* the second stage, the teaching was semantics based. It is

sugqested that to do an adequate job of teaching Ada, a third

approach is reouired. In this approach the teaching should be

design based. This section provides a brief review of these

three teaching strategies.

3.1 Syntax based Teaching

The original approach to teaching programming terded to

I focus fairly heavily on the syntax of the programming lanquaae

under discussion. Students were taught the format of the

statements in the language--i.e, where the commas go, and the

i rules tor torming variable names, It was implicitly assumed

that once one could write syntactically valid statements in a

lanauage, it would be easy to write semantically meaningtul

programs. Of course this approach was not successful. tnea.

can teach a student the syntax of a language and he ill still

*- have no idea how he should use any particular construct or

even why the construct was invented in the first place.

p=, " -,

..

Teachinq Ada Paoe 25

N
3.2 Semantics based Teachinq

In reaction to the failure of the syntax based approach,

U teachers developed a semantics based teachlnq approach. Using

this approach one focusses explicitly on the semantic concepts

availacle in the programming lanauaqe, The syntax is brought

in only as necessary and as a vehicle to express the

semantics.

* Using this approach, one would teach the semantics ot

looping, for example, and ther discuss the DO statement (in

Fortran) as the syntactic construct to be used to express

looping. Similarly, one would discuss the notion of program

variables (as, for example, names of boxes into which values

* ican be put) and only secondarily discuss the rules concerning

the spelling of variable names,

It one follows the semantics based anproach to teachinq

* programming, one can usually get across the iain features of a

programming language by considering the following aspects of

the language.

a) Objects and Data lypes

What are the Pre-detined and proarammer detinable,

prograr accessible, Objects which the lanouaoe makes

- ,. availanle. If they are grouped into classes, what sorts of

thinas are they and what cc the classes rerresent. That

'Teaching Ada Faae 26

is, what are the data types, it any.

b) Operations

U What operations can be Derformed on these oblects. In

what ways can they be manipulated by facilities tuilt into

the language. Normally these include at least the

arithmetic operations and assignment,

c) Control Structures

what facilities does the languaqe provide for

organizIng and controlling the operations.

t "
d) Input/Output

what facilities does the language provide for

I communication with the outside world,

e) Other Features

What other facilities does the language provide. This

cateaory includes services provided by the languaae as well

as lanauaae features like visibility rules and parameter L

passina modes,

• 3.3 Design Hased Teachinn

It one were to follow the serantics tased approach to

teachini Ada, one would find that areas a) Cviects arc e)

.

Teaching Ada Fade 27

* Other Features had grown considerably from even closely

. related languaqes like Pascal. Category c) Control Structures

.v .would also have grown, but to a much lesser extent. Compared

to Pascal, for example :U

a) Gojects include an enormous amount of new information about

data types, There is an entire new "time," elaboration

time, in the processing of programs which becomes

important.

c) Control structures include the new control structures for

g (exception handlin and tasking.

e) Other Features Incluce a oreat deal of new inforration,

including packages, scope rules and all the proorarmer

I conveniences defined in Ada.

In order to teach Ada successfully a higher level approach

* is needed. For just as syntax alone is not sufficient for the

.. rotivation and use of serantic constructs, the rotivatlor and use

of the Ada design constructs--especially the new Information in

categories a) and e)--ls not generally evident fro their

semantics.

3.3.1 Teaching Strategy

Syntax was the initial focus of teaching prograrming

because without correct syntax, one cannot write a program'

which will run. because of that undeniatle fact of life,

. when the teachino focus shifted to senantics, syntax still

had to be acco, modated. The accommodation is sirple: it

....- ***- *.. * .. *- -•..* .

Teacring Aaa raqe 2F

is expialned that there are syntactic constraints in

writing programs and that they will be explained, tut that

. they are on a lower level of importance than semantics.

A similar approach may be followed in a desigr based

apProach to teachina. Tt is explained that the specific

serantIcs of Ada rust be understood in order to write

correct Ada proorars, but that it is the design ccncepts

that drive the use of the semantic constructs (in the same

way as it Is semantic concept which drive the use t

syntactic constructs).

3.3.2 Ine undamental Desiqn Constructs

IL
What are the design concepts? There are a number of

design qualities which are now generally considered

U important for programs. The two most inclusive and highest

level are I=reanAha.LU and eaesu.s. It a proaram

posseses both ot these qualities, most ot the other desian

qualities follow.

In addition, it is just these two tasic desiqr

qualities %hich motivate most of the Ada features rot found

In most other languages.

" asically, the teachina approach to Ada should start

witn understandabllity and correctness as basic

requirements. These requirements should be used to derive

desion tecrriaues such as strono typino, data tve

... ~ ~ ~~~..-""'. "" "" " " " "" "...." ". /;""2._. .. .--

Teachina Ada Faqe 29

g eiicapsulatior, miodularity, inform~ation tLidino, levels of

abstraction, etc. O~nly as motivated by these design

technioues should the Specific features of Ada be presented

as mieans for their implem'entation, Section 5 presents a

talk which Provides a design-based moctivation for Ada

constructs. A video ta~e presentation of the talk is

available from. the Aerospace Corporation, El Segundo,

California, It was given there as a special forur or

program' design.

i L

Teaching Ada P-ace 30

- 4.1 First Year Graduate Course in Programming Langauge Semantics

(Fall '79)

4.1,1 Course Organization

Ada was Included in a first semester, graduate course in

proqramrwing languaae semantics. Normally, the course explores

operational m~odels ot several Programming lanouaqes. This

sem'ester about half the time was spent discussinq Ada. The

* SJGPLAN versions of the Preliminary Peference Mbanuel and

F ationale were used as texts.

The topics scheduled along with their associated sections of

the manuals are shown in table 1. Only the first seven topics

3 were actually covered in class. The teachina approach reported

above had not been developed by the time the class was taught.

The actual class was organized more alonq tte semantic lines than

along design lines.

Teacrin9 Aaa Paoe 31

Tatle I

1. Types P3,P4,R6

2. Staterrents/OperationS P4,P5,R3

3. Suroroutines P8,P6.1R7,P9

4. Exceptions PIl,Fl1.P12

5. PaCKaqes P7,PB,P8,P9

6. Nulti-1?8skiflq P9,P4

7. Generic Types P12,R13

8. Litrary System ~ P8,R91RlO

9. input/output P14,F'15

10,Numfbers P3,H5

1l.Proorar PI,F2,R14

Note : P -Prelimiinary Reference IPanual

rF i-Rationale

Numbers shown are section num bers

Teachino Ada Paqe 3P

S 4.2 Junior Level Course in Proqram resign (Sprino and Fall '80)

Tnis was the appropriate course in which to teach Ada.

Although the first trial was not perfect, It brouoht to light a

* number of points which should be incorporated in future courses.

4.2.1 hacKground to the Course

The intent of tnis course is to teach program design to

students who have a reasonable facility %ith prooramming tools.

It follows twc years in which students learn the basics of

proaramming. It has as prereouisites three Sophomore courses and

three Freshran courses.

L Introduction to Alaorlths

-.A first course in programming using a high level

language.

Introduction to Computers

A first course in computer organization -i ioe,

assenblv language Prooramming.

Data Structures

An introduction to data structures and their

implementation.
I

*... Computer Oroanization

An introcuction to computer organization and

• systems proqrarrnino. Students write a slirle

assembler and an emulator for a P1,PI1 type

..-..- -. . -..- .. *...... . -. *..

Teaching Ada Paoe 3S

dmachine.

Concepts ot Programming Lanouages

A survey of programming language concepts and

facilities as provided by a variety of high level

programming lanquapes.

Introduction to File Croanization

An introduction to the storage of large amounts of

information outside the direct control of a

program.

This background gives our Junior students two solid years of

training, They have been exposed to most of the basic tools of

proqramminq. They are tauqht top down desian and structured

programming techniques as part of their normal proaramring

courses, This bacKground would cualify them for jobs as program

Implementers: given a description of a desired module (requiring

up to about 500 lines of HOL code), they could design arc produce

a reasonable implementation,

These students have not had experience with large programs,

he prooras they build in developing their assembler/emulator

* grows during the semester into quite a big program, Out the

separate pieces are given to them one by one, They do rct have

. to worry too mucr on their own ahout how they fit together,

The Program Deslan course in wlich Ada was used is Intended

*to teach techniques for dealino %ith programs too laroe to keer

S"-" In one's heao all at once. This seems to be the perfect course

In which Ada (as oistinct, for example, from Pascal) is uniouely

. .- •" • e,

Teachina Pda Paae 40

valuable. Ada's PaCKage construct is ideal for larqe rrograr

oesign. In addition, it is just this Situation -- i.e. in which

.-. the proarar under consideration is too big to hold in one's mind

all at once -- tor which Ada was designed.
U

4.2.2 Course Entrance Test

Althouah the prerequisites to the course are fairly rigorous, it

cften is the case that students do not core fully prepared. In

an attenpt to calibrate the level ot rreparedness of the

students, trne tollowina examination was given.

Students were given copies of Charter I of (weaner]. They

were told to read sections 1,2,4,5,6,8,9,10 and 11 froff that

I chapter. They were told to write down any specific items they

did not understano. They were told they would be quizzed on the

material. The next week, they were told to hand in their list of

-• questionable iters. Then, with no assistance they were given the

followina quiz.

Teaching Ada Faae 41

Answer the tollowinq cuestions. It any rertain to any ot

the Items you nave marked as not understandatle, mark tPat

UI cuestion "deleted," You have 20 minutes. The oulz is open book.

L-rdr Simple-add' As

x,y,z: inteqer:

get(x);

oet(v);

z :: X+y;

p'It(z) ;

F..

I

1. The variables x,v and z are

(a) local variables to the procedure;

(b) formal parameters to the procedure;

" . (c) global variables to the proceoure;

2. The character . means

(a) subtraction

,.- (b) notninq; It is part of the name

3. Vhat does the construct "2 ,, 10" in the folloirq mean

£a I tD 2 .. 10 Jz".

(a) 2 raised to the poer 10

(o) tte ranoe of integers fron, 2 to I0 irclusive

(c) the ranae of real numbers from 2 to 10 inclusive,

Teacring Ada Faae 42

0 4. In

£Lzce.uz Sort (a :m r= ~, vector) .J4.

the words OID, a= mean

(a) the vector a is not oriqinaill sorted

(n) the vector a may he accessed bY the procedure

and ffay also be chanoed by it

(c) the vector a wray have components interchanged by

the procedure.

Teactina Ada Faae 43

5. The basic program unit In Ada is called a "program" and

is generally of the form .

<declarations>

<statements>

(a) lrue

(b) False

6. The formal paraneters to a functio, ray be declared IL

a.t and may be modified tv the function to return additional

inforr, ation to the caller of the function. (True or False).

7. Consider:

kaza Math-functions 14

±.cnt..LQl sin(x:real) xZetr.n real

U z±n jaC cos(x:real) Z.z.zz real

lucZ..n tan(x:real) ztz.L. real

The above packaae specification gathers togetrer the names

ot tre functions sin, cos and tan. 1heir actual definitions

are taken from the Piath library of alatt. tunctions as cart of

the run-time support of the language. (true or False)

S. An operator is overloadec if

(a) it nas more than one interpretatlon

(o) it has too vrany interpretations,

9. 'Ine relationship between a package sreciticatior and a

Teachina Ada Fade 44

pacKaqe bocy is

(a) the body detines the things that were declared in

the specitication

(b) the body uses the things that were declared in the

specification (as a procedure body uses the parameters

and local variables).

10. If a data type is declared ";zUA. in a package

specitication, it Is

(a) available for use ry the user, but its components

are not directly accessible

(b) not availakle for use by the user

(c) available for use by the user it given permission

by the definer.

11. A task in Ada is

(a) a proiram unit which can run concurrently with

other rroqram units

(D) a %ell defined component of a large proorawrino

proJect Ahicn can be set off by itself using the

steprise refinemrent anproach to proara, design

12. An a.&a&.t statement permits a task to accept

(a) data from another task

(b) cortrol tror another task

(c) tott, of these

(d) relther ot these

(1) all ot the above

..........

Teacrirq Pda Paoe 52

LX-Qz.&.=eLe discard(t: Jx"" tree);

LW=..1LL is.leaf(t: tree) .Le.. BOOLEAN;

14u±p-L~ tree Lis &ce

tree.or.leaf : (T,L);

Cas& tree-or-leaf t

exatree-stutt;

,-da Pile 1,%I
u.,& tree-stuti

.-".e pile ±._Laat£;

±.11nzZlom is-enpty (p:pile) Z.*X. boolean;

rza"au.L reset (p: 4m.QJ pile);

=Dzaduza Put-on-pile (t: 1za tree, p: /Jx-_gu p~le);

4 ."zgdma Dull-off-pile (t: zuL tree, p: in aula pile);

|.x1A"£-u stack i

~ tree;

ea pile;

Althouqh the assignment was for the students to qive only

the specifications for the three packaqes, the bodies were worked

cut In class. Th~e class seemed much more coirfortable if they

i could sep how the boaies would work. Otherwise, they felt a lack

of concreteness. (It should be noted that altbouqh the example

• : -~~~~~~~~~~~~~~~~... .- iL. ..,._.. . . _, ,, _..... ,.....- -..

Teachina ACa Pace 53

g ir section 5 rade use of a "pile" data type, this solution

defines the sinqle pile reouired as an encapsulated data obJect.)

P~~j =d COUNTElm-,PACKAGE Is.

Zx"ar l ncrerrent (C: Innn CCIINTEI,) 4.

kxo&.uztL FESE1 (C: IDuj. COUINJEF) .Ls

t~-.a 1LY1c-UIE eui REAL ,is

",d Counter-.Packaop;

t.tree-.or-.leaf =L

~.~8u.*trear-.in..half (t: aij tree, l,r: zm tree)

r ::t~r;

xm tear -in-half;

4mz~z oiscard(t: .LD.aiZ tree) Is

top 0;

1eacr.ina Ada Paae 54

Lza a..uL& vut-on-pile (t: .z tree) .1 s

top :: top + 1;

P(ton) := t;
It

rzaaeJ£&. pull-off-pile (t: D= tree) JA

- £..J top > 0;

t :: p(tor);

tor top - 1;

.. zg. u" reset J.% top := 0;

top : i.JtL'Pz..rgA1 0 100 :: 0;

r a- = pile;

4.2.7.2 The Second Assig nent

The next assiqnment was to do the saire Job (i.e. create

packaaes) for another Problem. This Problem was one that one of

the other instructors uses In his verslon of the class. He has

written a set of notes for the class. (Gilbert] Those notes have

teen used as a class text, so Ie used some of the probleis tro"-

their .

"ROCKy Pacoon kecords Is trVira to Jirprove record sales.

Teachino Aca paqe 55

For this purpose, the company has put toqether a list of names

and aodresses, ard has hired the Random SamplinQ Cc. to interview

the people on tnis list every month. Peorle on the list will be

grouped into tour cateqories, according to their aqe (age < 20 or

aae > 19) aiod sex (male or fevale), so that the company can

examina the various crours who buy their records.

"Each nerson on the list will be askec to state which

records of the lov Vorty he or she would rank Ist, 2nd, 3rd, ..

9th, 10th. This intormation tooether with the interviewee's name

and address, will be Punched on cards for input into a program.

"The progran is desired which will process these cards and

I print out various lists:

(a) to find out which records are popular

" (1) a list of the Tor 40 titles, in alphabetical order,

with the number of tires the title was mentioned. =

(2) a list of the 10 most popular titles, in order

of their popularity.

(b) to find out who are the best record customers

- (3) a list of all people who mentioned at least b out

ot the titles in list 2

(4) tour serarate lists (one for each of the four

categories), each list namino all Interviewees in the

cateaory who ranc Ist one ot three titles most popular

with people in the catecory."

Teachinq Ad Paae b6

PAiain, the SCiutior Was found by first aeneratinq ar

intuitive solution -- including a data flou graph. Then the

* objects and operations in the Intuitive solution were to be

napped onto Ada packages,

It turned out that all that was needeo was a single package

%itr the tollowir.Q types ana operations.

TWP (Private)

Title, Response, Person, lable..otItles, 7able-.of-.People,

r Tanle-.ot-F.esponses

Sort..titles(.2LL MI able..of-.Titles);

I ~Add-.to-m~entions(1z Responses, J~z= table..ot-.titles);

Cal cuiate.popu lar it y C ±A tab le...ot.responses,

pOck-.best.choosersC±, title-table,

!L response-tablet

au.L People-.table);

Pick..niostrepresentative.of-.category("L title-.table,

.U. response-.table,

- 4.2.7.3 Exercise and Quiz on data structures

It tiirred out that the students in the class had a nuch

poorer packaround in defininq data structures than they ShoUlo

* have hdd. ve spent a gocd vart of the next feu clesses %or~i'nq

or data structures ard on A~da facilities tor their exrression.

Teachina Ama Fae 57

Folloina that, this cuiz tested what they had learned.

This quiz represents a rackaae to keep track of infertration

about students, teachers and courses. The three data tyres are

defined:

U" student II "cess

nare : strina;

current.qpa: qpa;

uritsatter-pted, units -passed: units;

updated :serester;

courses: axzas (natural) zI course;

-- all courses ever attejipted

= course Is azre s.

nare: ticket;

-- a 5 dialt ticket number

teacher; instructor;

offered: semester;

-- all sections ever offered are kept in

the data base

students: azzau (natural) =t

Person: student;

Teaching Ada Pace bf-

ve decided to design a general araph handler to model

possible user interaction paths. It was also necessary to detine

a general input type checking module. Here Ada was not easy to

use unless one wanted to build generic modules, in addition, we
p

wanted to build facilities to construct calls to unspecified

input processors. Aaain, Ada was difficult to use because the

details about the innut processors would not be available until

after the prograr was written. That information would be

provided by the application programmers. Ada is not very

suitable in that one cannot build procedure calls dynamically and

then execute theR, The problem was worthwhile, however, since it

did lead to some useful packages. For those situations in which

Ada was weak, we specified augmented capabilities which would

make the problem easier. That too was a useful exercise in

specification.

The peneral outline of the design has five packages.

Terminal Screen. This package is a specification of the user

* terrinal screen. The actual screen is assumed implemented

in hardware.

terminal Keyboaro. This package specifies the user keyboard.6

Terminal Handler. Ttis package handles the user input. It

groups together innut characters accordinq to formats passed

to it tre#f the graph handler. It accurulates a nurber of

" ,"items" in specified tormats and within specified ranges.

-ach such collection of items corresponds to a single

Teacnira Ada Page 67

"screenful" of informatlon -- e.g. perhaps a form or a

collection of responses to a menu, If the user incut does

not match the reauired formats, the terminal hanoler

interacts with the user to help him correct his mistakes.

when the user input is complete, the terminal handler hands

the input ccllection over to the graph handler.

Graph handler. This package is the central controllinc part of

the system. It follows the user around the paths provided

by the application programmer. Each application provides a

graph wnch indicates the Possible user interactions. Each

node of the graph is associated with a single user

- interaction sub-session handled by the terminal handler.

Each such node has a collection of items associated with it.

-. * These items, and whatever promptino material goes along with

them, is passed to the terminal handler for display to the

user and for data collection. In many cases, a node is a

menu requiring a selection by the user. In other cases, a

node is a form to be tilled In by the user. In all cases,
I,

the graph handler receives the input back from the terminal

handler. It then packages that information as arguments to

*a procedure call associated with the node and calls that
I

. proceoure.

Graph Data Base. This packaae Is the data base In vhich the

various graphs are stored. Each graph corresponds to an

application package arid is not known to the svster ahead of

tirie. A qrapr may be any seauence of nodes and edces

. . - -4 . , . - . - .

Teacrira Aoa aae tS

sirilar tc a graph qra'mar. That is, It may have subgraphs

associated with some of Its nodes. For those nodes *rich

correspond to user selection roints, e.q. menus, the

multiple edoes leading out of such nodes are labelled. ThemI

user input is used to determine which exit eage to follow.

Application Library. Ilis packaae represents the aprlication

packaaes. It has one entry for each avplication package

operation -- an operation is associated with each user

interacticn node ard is called by the graph handler after

recelvinq input from the user. The system does not know

about these operations ahead ct time.

7"1

• -I

Ii

• °

Teacrino Ada Faoe 69

1 4.3 Ire Fall '80 Semester Course

During the Fall '80 semester the same Junior Level Program

Design course is again beinq taught. The course is following the

recormendations outlined in this report. Since the course is

still in progress at the time of this writinp, a final conclusion

is not possible. The basic outline of the course has emerged:

Fart 1.

in this Part of the course, a great deal of emphasis

is placed on two foundation stones:

A, Fundamental Programming Techniques. These Include gata

istructures and recursive programming. For the most part,

this is review material and is covered by the course

prerecuisites.

P. Formal Specifications. In this part, the eaphasis is on

predicate calculus. A areat deal of tim.e is spent on

specifying programs formally and distinquishing between

what one does in specityinq a proqrar versus what one does

in realizing, or Implementing, a program to satisfy a

specification. This is a relatively new concept for the

students and it takes them a while to catch on. It is

also fairly difficult for them to aet a feeling fcr a

specification langauae and what it means to be precise in-

making specifications.

In tnis part of the course, students are introduced

p - - - = : - " " - , ,,- , , . , , , w j ,:- ." :- . .,:':; - - -.. ' . ' - '

Teactiro Aoa Faae 70

to tne basic iaeas of proqran proofs. heV are taught hoo

to taKe a specification and a proposed realizaticr and

then prove that the Proposed prograr does, in fact,

implemert the specification. While the basic ideas behind

proaraR verification are introduced, the course does not

a'tempt to teach the subject in any depth. Program

verification is used as a motivation for the need for

precise specifications and for well oroanized

implenertations.

Prograr verification does serve as a cood brldqe.

For students who are comfortable with proaramming, the

idea that a specification can be linkea to more familiar

objects (i.e. programs) helps ther understana the

difference between specifications and proarams ane also

helps tre develop a facility for writina specification.

The nasic ideas behind the definition and use of

abstract cata types in sPecifications are covered in this

part of the course. The talk from section 5 of ttis

report is typical of the material covered In Part I of the

course. The book: Jones, C.H., .

. Prentice Hall, 1980 is a reasoratle

text for this part of the course.

PAWI 11.

In this part of the course, the tone chanqes

dramaticallv. Part I was anUte iornal and had a Qocd deal

.- ".

Cd,

I---

=0
-JJ

-J 0J
1= C

CA>

- LU C. L.

zj
o- 0) LU LLU

- <)-4L
>-~ 0)
SLUJ CL. >

W CLL

LL. C., L-

~ <>- o CD

CL 0- LU LC.
0 z LU

W <j L< Ln
CL~(CLU

< 0A C)

LUL

cimA CA

LJ

LiU

LHU

30

I--J

ZL.J

LUW-

:>0

CLL

- 0-

CL -j (im

C-) <> z

~LLJ U

<~~ < LU

z0 <

<LL - L

LU C.:) C-)

LL I-- .

00

-a-

= LLLJ

00

- C)-

_A 0
LU 0 ~ - L-

0 V

o -J

QA LU

LU 0J

-AJ0

LU LJ.J

0U X

UA wj

-D in LU

I-J LUJ LUA (L

-JL

LLJ- >

_ -D -. j (AL-A= .

0 00

-JLJ L

LcUL LLUL

0U ;r C

-JJ = z
(AD L C--

OLLJ

=) 0

(A

I_ < LLU
C)< C1-

U-) C- ()A

5z m LUJ

LUJ

__ F.- Z L

Z LUJ

- 0
LU C.D LU

cl: LU - 0

--JA < 7 LL
LU~CL

__ <j LU w <(

V) LU < w Lw

- z L 0 0
-J LUJ V)

< -<

) <j 0 U- - (A

< LU
< CD LUD LU

-J .7 z. (A -
ZA -JJ -

-AJ 0 0. 0

0 L U (A0 (A. C(A u.4

2) LU I- .
0 Cy

LU LU) L LU LU LUJ

z LU
LU LU

(A<

-<

(DnJ 0 CL

-L LAJ L&

V 0 L.J

- 00

LU 5
<U Ly

= ()

Ln w

'-/ w- w0

LL1

LAI

-w LaJ

z L61

LJ

LL-J

0 LL0

uJ V C

LL CA

z
< V)

j0 0

C.-

LU 0

0
I-
0zz U

LU 0
0 U-

C.D
LU

0 ~- L#~

Cd, >-
-J C,= LU

C-)
o 0 ~

U- ~ (17

- 0

LU

o Cd~
0
-~ LU _

> o~ ~
o LU)< LU
= 0 LU

-

0

LAJ

1- L LLU

LU LL

<1-V) L-

=A -LJ
LLJ ~ ~ -LA .i

0-.

LUi

LU 1 LLU V)
LU (V) - < 0i

IOL L. oJ cL
0L L&J

L6. L L#-

-L W-L L

o ~LU LJ

LL.L Lig-JI

LU LJ

1- -1.U Ji~ -J

L LJL -
>U1

LMi-

L61 LU J~

LUJ

LLLU

L) Ln

r-+-

-JJ

LAJ

L~LU

LUL
LUJAJ=<

LL

CLU

LU c01;

LL,

(A LLA- LJ
I-s

-0- _j-.z

z!± (A-A J ;>..LL-J M- Lzoj w. -J

= L0 L
LUJ
Z) LLL LU *

LU L- LU -

< I= = C)

- I- LU L L

LU <0LL LU L (

V)-

LU< LUJ LUJ
-. = CL.

I- J CD) CD CD
LL(A

- L LU -

0L6U

C0
ui

a DD

L&&J

wi
>JCLa=u

LUL
L

co 0

L&U Ln

LU

Ln LU

LU

LUL

Ln cc

uj diKj L
-~ ~B0

IA. -

tz-

LiLU

* I-. C.LL5
L&U

I-I

LL. a

LJJ

U, <LU

LU LU ULU

W4 LL.~

LaJ ~Lai

LU -<0

I-L LL

wA LUo - LU
0 -

K LA.I

LJ

LLL0

CIO

L4LJ

L61 LA-L6

cc LU
LUJ

LU

LoLU

LUJ

L&U

LUJ

jLAI
LLJ- -L

<"LL

-l LU 0

<LU-

cn Ln

LL =- LUi

z= Li- j

0i z
L&J~I LA- ,,

LL-J
LLJ~~ <L L

LUFE

LU V7 0 - = L
C%!U

LU

U--u

I-

0l

I-

LAU

LUJ -

LL-L6LL La LL

0r

L6z
_Az

L6- I

uJ -I

-JJ

CL0

CD,

. .-

-- -. - . --. . -. . . . - . - - , . , - . * - - -- 1..

LLIJ

cl--

UU
c(A

w(A 0jw

<LJh

~~wi
LU a.0. I><(V)

* 0 LaJ = (A LJ

<LU4

I--i =L

P I- LL

CL LUJ

LUL0

pI-- a

0LU

U-
*1LI. LU1 LU 'L -

LLJ LL:

0=

-I;!)

LU LU 0. LU.
* ~ 0..

LU -

UL

LL I

LU 0

z I

LUJ

I--

<U 0

LUU

F uj

LU L L

* L)

ol

L61

UL-

zz

L LiJ

zL LU

co

Ci- zL

Z W(U-J -JL.

LAIA

A 0 I.-
LU UA J L 6A LA-

__J L U L*Z 60
I A - I A 0P

LL.

CdC,

L&JJ

LICL

LtU

LUn

*j 0

; LUJ

- z UU

I- ~ ~ ~ ~ L ,. J i U ii I L
V)-W

UUL~
L.6 u

-. - -- v - . . W'VVXr.t ~ -

I,

U

+

U U

LI.'
LaJ~ =

-J (~) -J

C,,
*

z

I-
= ~o LI.'

* ZO
* 0 c.

I- <

o ~u~

0

<LU

-J 0

LUJ

LL- LUJ LUj-
L-

(AA

z LU

L 0 LU
- LUJ

LAL&

LH LU LU

U-J LU

V)- <(W

LUJ LU 2L La.I
V; LA

_A LUL zL

-LL LL. <

LaJ L..) () L

i 5jU

C- LAU

zI
-LJ

LLJ

VM- = I

< z
L L a -L >

3: < LU -
oL LJ w Li w-

~~ LL

-JJ 14: 0

LU~- -JL - -

+ I-

V)~

o.. <
(.f) LLLL

LJ LA- <
-J Laj = J

LL <0 __jL ~

9- CL- -J
LAJJ

.... w...< vfn

C-)

o- V) LU

< LU L

I . S -

-- <
LUU

I I . -
>LC

LU s- i...::z <
C) II -I::o

-JJ u
0 **

I-L

.........

LI.I

LJ

CC,

CL

L.iJ

Cl-

Ul

L'L

LU CL

< -

LU LU
LU

LU U LU

LUu

L U -: z
-n. - jw L

> .- J

<U It~

L-"LUJ U I
X x x. -~

LLU

LL0LL

LU -

= J

~C LJJZ O
L- .

(1)J

< ~ LL LI
L&J<J

U--

CL

L
Z Ln Ln C

LAJ LLJ Z C

Ln V)

LU
-

C--J

U-
Ln

0L 6 LUJ

LLLU

-11 CA

LL- LU -

A N .. <

~CL
-I=

0 -J

CAJ LU. U

o Ln

< -<< uC

=J -A A -j

CL 0<C
LU I-

.

LI,

N CC)

LUH

LL. LA-

LLLU

LULa0

U" C- U-J

C) 0

-L LUJ
LLLU

-j LU LUL.i 4
oL <~ =LU::o

C) c=L

LU& CLL L
-L - - LUJ

Ul 0
a LU Z

-JL

L.LU

(. I- L LUJ

LUJ LU) A

-J ;-4 L

= LUJ

C., - 0j

V) 0
LUJ

LAU C<L

L&U

0 LL LU -
I-<- A =I

0LU LU 0 j

C I

-j5

C.,,

LU U

- < L LfJ 1- U .I

0- CL 0

LU UD 0L LUJ 0) <1- L

VI) o.. L
LAJ LA-L U 1-0

=JLL

LW >
LUJ

LL <

> LL ~LLI

LLJ uj

-JL

<L>LL

LU

0Ln
o

* J LULJ ZL

LH 5

_j _ L

-' LU = 0

LU~

LUL

LLJU

-JA

LL&J

LaJ -

LC-,=L Il- *A

za LL.=

ILa C-L
LAJ

LiJ UJ

o CC)(n) -z

LLaJ

IL OLLJ pL

-0D

LU LJ

LUA

- -.-
U L CDI U ~)

LUJ -JIA

LA-~ CD) =I.

LLLU

L*L L L

0M

LL.Z

C-) LUL L LI J (

-LJ LU L

<C-)
LW LUOU

Z A L . ~ L L
LA- -

0 U0 L LUJ
LU L

LUJ

I-z-

1

CL

I-- Z --

<L.
Z .

<Ca)J

