
RD-R55 194 SECURITY CONCEPTS FOR MICROPROCESSOR BRSED KEY 1/i
GENERATOR CONTROLLERS(U) SYTEK INC MOUNTAIN VIEW CA
R K BRUER ET RL. 24 APR 84 SYTEK-TR-84889

UNCLRSSIFIED MDA904-82-C-0449 F/G 9/2 NL

ll'.l

2.5

,2.2

1161 L-0 111 112.5

.1.8
iiiiii,_,

111LII25I

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS-1963-A

L-L

SECUITY CONCEPTS
FOR MICROPROCESSOR BASED
KB! GENERATOR CONTROLLERS

SYTEK TR-84009

RK. Sauer
R.J. Felertag
B.L. Kahn
W.F. Wilson

24 April 1984

Contract MDA04-82-C-0449
4

A004: Final Report

Propared for:
Mr. Howard S. Weiss
Maryland Procurement Office
Attn: L433 (JLC)
9800 Savage Road
Ft. Geo. G. Meade, MD 20755

* DTIC
' I/ ELECTEDi!

SYTEK, Incorporated 11
1225 Charleston Rd.

Mountain View, California 94043
(415) 966-7300 G

APPROVED FOR PUBLIC RELEASE; "
DISTRIBUTION UNLIMITED

8 5 2. 8 S-226,997
Z,. ;64' -2

CURITY CLASSIFICATION OF THIS PAGE (WMn Date Enitered)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

REPORT NUMBER 2.GOVT ACCESSION No. 3. RECIPIENT'S CATALOG NUMBER0

iTEK TR-84009 IS-226, 997 ______________

TITLE (and SubItle) 5. TYPE OF REPORT & PERIOD COVERED

Final Report, 30 Sep 82 to
,CURITY CONCEPTS FOR MICROPROCESSOR BASED 31 Mar 84.
-Y GENERATOR CONTROLLERS G. PERFORMING ORO. REPORT NUMBER

AUTHOR(*) S. CONTRACT OR GRANT NUMBEROs)

K. Bauer, R. J. Feiertag, B. L. Kahn, MDA9O4-83--C-0449
F. Wilson

PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK

'TEK, Incorporated AREA & WORK UNIT NUMBERS9

Y'25 Charleston Road SHELBURNE
..untain View, California 94043

CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

karyland Procurement office 24 April 1984
\TTN: L433 (JLC) 20755 13. NUMBEROFPAGES

?800 Savage Road, Ft. Geo. G. M~eade, MD 71
~MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) IS. SECURITY CLASS. (of this report)

UNCLASSIFIED
I~.DECLASSIFICATION/DOWNGRADING

SCHEDULE

DISTRIBUTION STATEMENT (of this Report)

ipproved for public release; distribution unlimited Aoee~Sion For-

DISTRIBUTION STATEMENT (o1 the abstract entered In Block 20. if different from Report) icatie

C. SUPPLEMENTARY NOTES Avaraj r0

microprocessorss se
ur c nt ol er de ig

secure architectures iAPX-286
software verification

ABSTACT(C~ntft* am rvere sh N eaesawymd denifyby bocknuwsva

ie use of microprocessors in key generator controller designs can improvedevice
iroughput, reduce size and heat dissipation, and provide for greater function-

*Lity while reducing cost and energy requirements. However, there are many
nherent difficulties in using microprocessors in a key generator controller.
is study investigates how the three disciplines of architecture, software
2rification, and security failure analysis can be applied in a mutually support-
ig manner such the resulting microprocessor based controller could be attested
provide the level of security and reliability needed for correct operation.

:)e architezture study idantifies the importance of relatively isolated process-

F ORM143 EI(
I JAN 73 Eorn7#o INOV 6%IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (9bA. Date Entered)

- _~ S . ~

SECURITY CLASSIFICATION OF THIS PAGE(WVhn, Data Mitered)

BLOCK 20. (Contld.)

ing domains.- Every controller architecture must provide highly controlled
intercommunication between several processingdomains in order to provide for
red/black isolation, separation of security and nonsecurity processing, etc.
The software verification stady reviewed standard techniques and found them
entirely appropriate for this application. A high level security model is
-developedidescribing controller security. The traditional security fault
analysis subdivides a circuit according to a blockdiagram or grid pattern to
isolate the security relevant portions. The study analyzed these portions in
a "bottom-up" approach by assessing the effects of individual (and combinations)
or component failures on the circuit operation over a range of external
conditions. The study provides a theory that a system is "safe" if it will
continue to meet it's security requirements throughout its lifetime with some
stated probability.

/ 'I ~ I, , . .

A-

.1

p

.

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

7

I. .

CONTENTS

1. EXECUTIVE SUMMARY.. 1
S2. INTRODO3CT ION........................ 3"" '

• O°O.O0°OOOeeve oe o o eooooe'oooooooeoooooo oo oeeo ." .°32.1 CONCEPTS................... ,.........0............... 4 :

2.1.1 Processing Domains........................... 5
2.1.2 Standard Interface for a Domain IsolationMachine...................................... 7

2.1.3 Domain Machine Service Requirements.......... 8

3. OHERVIEW...... 10W3.1 10
3.2 THEB-286 MICROPROCESSOR........ 1

3.2.1 An Overview of the 296oo.................... 42
3.2.2 286 - Security Relevant Features............. 13
3.2.3 Task Definition............... 13

3.3 A SAMPLE APPLICATIN e.e. g...... .. 23
3.3.1 Software Design Using a Domain Machine 23
3.3.2 The Requirements For Our Sample Applica-

tion, 24
3.3.3 The High Level Design........................ 24

3.4 USING THE 286 AS A DOMAIN MACHINE................... 28
3.4.1 Problems With The 286g33

3.5 ALTERNATIVE DOMAIN MACHINE ARCHITECTURES............ 38
3.5.1 Processor Per Domain CPPD)e .e... .. e.e..gg000 39
3.5.2 PPD vs. 286e e.'' . eig... 41
3.5.3 Access Map Architecture (AMA)...... 44... .. 44
3.5.4 AMA vs. 2 8 6 46

3.6 ARCHITECTURE CONCLUSIONS 7e'.-e 47

4. VZRIFICATZONo o o o ,.o o *o , .o.,o oo oeoo ooo o o oo oo oo o , , . , , 49

4.1 VERIFICATION OF DOMAIN ISOLATION.................... 50
4.1.1 Communication Naps........... 51
4.1.2 Formalization of Domain Isolation 52
4.1.3 Verification of Application Programs 55

4.2 VERIFICATION CONCLUSIONS............................ 55

5. SAFETY ANALYSIS............... 57
5.1 Overview of Safety Analysis.........57

5.1.1 Definition of Safe Systems.................. 58
5.1.2 Model of Hardware Faults....... 59

5.2 Application of Markov Chains....................... 60
5.3 Aafety Analysis ... l............ 63

5.3.1 Coiponents................................... 64
5.3.2 States of the Markov Chain...9e*999e&99*e* 64
5.3.3 Transition Matrix...........e65

5.4 Calculations with Markov Chains.... e0*90**69969966. 66
5.5 SAFETY CONCLUSION 67

6. FINAL CONCLUSIONS....... g.... .. 69
6.1 FUTURE STUDIES e............. 69

.. .

8/16/84 KGC SECURITY CONCEPTS SYTEK-TR84009

1. EXECUTIVE SUMMARY

The use of microprocessors in key generator controller designs
can improve device throughput, reduce device size and heat dissi-
_pation, provide for greater functionality while reducing cost and
"energy requirements. However there are many inherent difficul-
ties in using microprocessors in a Key Generator Controller.
Microprocessors are more difficult to analyze for correct and
secure implementation due to the tremendous number of active dev-
ices, their failure modes and microscopic size. The introduction
of software raises issues of software correctness and failure
effects on software operation. While advancement of controller
technology through use of microprocessors is important, it
requires reexamination of security architecture concepts and
assurance techniques.

This study investigated how the three disciplines of arch-
tecture, software verification, and security failure analysis
could be applied in a mutually supporting manner such that the
resulting microprocessor based controller could be attested to
provide the level of security and reliability needed for correct
operation.

The architecture study rapidly identified the importance of
relatively isolated processing domains. Every controller archi-
tecture must provide highly controlled intercommunication between
several processing domains in order to provide for red/black iso-
lation, separation of security and nonsecurity processing etc.
The simplicity of this mechanism plays a fundamental role in sim-
plifying security fault analysis and software verification. The
Intel iAPX-286 architecture was examined in detail as it incor-
porates significant security mechanisms into the microprocessor
architecture and associated firnware kernel. The study
discovered that while the 286 was extremely adept at creating,
manipulating and deleting domains and objects, these mechanisms
had complex implementations, were nearly impossible to monitor,
and were not designed to meet the strict security requirements of
the agency. An operational example using the 286 is developed in
this paper and used for comparison against alternative architec-
tures.

Processor-per-Domain architectures were investigated. These
were found to have limited but adequate functionality for most
applications. On the other hand# confidence in fundamental
domain isolation is greatly improved due to static domains (no
need for processor sanitization) and implementation entirely in
hardware. An alternate Access Map architecture was developed
which retains the high security confidence of the processor-per-. .-.

domain approach while providing a large number of domains. The
domain isolation is accomplished in hardware apart from the
microprocessor(s), allowing it to be monitored or built in a
redundant fashion.

11.1 EXECUTIVE SUMMARY Page 1

..-.---..- : .- -..... *•

8/16/84 KGC SECURITY CONCEPTS SYTEK-TR84009

Traditional Security Fault Analysis (SPA) subdivides a cir-
cuit according to a block diagram or grid pattern to isolate the
security relevant portions. These are then analyzed in a wbottom
up" approach by assessing the effects of individual (and combina-
tiona) of component failures on the circuit operation over a

,range of external conditions. This requires computer support for
usable controllers, and becomes intractable when highly

:integrated components are used. To overcome the difficulties of
:this approachr the study proposed and developed a theory of safe
machines.

A system is "safe" if it will continue to meet it's security
requirements throughout its lifetime with some stated probabil-
ity. When a component fails in a controller, it is in a sense, a
new machine which is either safe or unsafe. If a controller in
normal operation is usafew (determined through design verifica-
tion), each subsequent component failure changes the machine tola
safe or unsafe state. Markov processes provide a mathematical
framework for analysis of problems of this type. If probabili-
ties are assigned to state transitions, a Markov analysis will
yield the probability that the system will remain safe for a
specified period of time. The study develops an example and
explores some of the difficulties involved in characterizing the

components of a machine which by design can be fairly coarse.

Software verification is the third topic of the study.
Standard techniques are reviewed and found entirely appropriate
for this application. A high level security model is developed
describing controller security.

In summary, the study identified several acceptable con-
troller architectures and evaluated their relative merits.
Software verification techniques were applied and found satisfac-
tory. Traditional SPA analysis was supplemented by the proposed
theory of safe machines.

1 * I EXECUTIVE SUNHARY Page 2

8/16/84 KGC SECURITY CONCEPTS SYTEK-TR84009

2. --INTRODUI

Microprocessors are creating a revolution in computer systems and
data communications equipment. Most new computer and data com-
munications equipment contain microprocessors as main components. -

:Alicroprocessors have been widely accepted because they are cor-
tlactr high-speed, relatively energy efficient, provide many use-
.ul functions, and can be programmed to fit a wide variety of
applications. However, microprocessors have been slow to be
adopted for use in secure communications equipment and have not
been used to their full advantage in this application. This cau-
tion is well advised as several microprocessor advantages become
drawbacks when they are applied to security critical equipment.
For example:

- The high-speed with which microprocessors operate allows data
to be processed quickly and in large amounts, but it can also
allow data to be compromised quickly and in large amounts.

- Microprocessor complexity which allows them to replace large
amounts of circuitry also makes them difficult to analyze for
correct and secure operation.

- The nature of the silicon medium and the microscopic size of
individual transistors within the microprocessor makes them
susceptible to many new types of failure that are often diffi-
cult to detect.

- Accurate means for evaluating the reliability and correct
function of microprocessor controlled software requires
further development.

Furthermore, the architectures of most microprocessors were not
designed for secure environments and their highly integrated
nature and pinout constraints make it extremely difficult to
retrofit security into such computer systems.

This study investigates how the three disciplines of archi-
tecture, software verification , and security failure analysis
can be applied in a mutually supporting manner such that the
resulting microprocessor based controller can be attested to pro-
vide a level of security and reliability as needed for correct
operation.

The body of this report is presented in three major sec-
lIons: KGC Architecture, Verification and Safety Analysis.

The Architecture section describes how verification and

Oafety issues present architectural constraints. The Intel
iAPX-286 microprocessor is reviewed, a sample KGC architecture
developed, and certain difficulties observed. A processor-per-
domain (PPD) type architecture is used as a starting point for
the development of an Access Map Architecture which combines the

12.1 XNTRODUCTION Page 3

- , . .,- , , 'l , u -- a h; , ;.,.--.:.. .a.:- m li m m llll _ ,.

8/16/84 KGC SECURITY CONCEPTS SYTEK-TR84009

security features of the Intel iAPX-286 chip with the verifica-
tion and safety benefits of the simpler PPD architecture.

The Verification section concentrates on techniques required
for formal verification of domain isolation and intercommunica-
tion properties of Domain Isolation Machines.

The Safety section develops a top down view of hardware
fault analysis as opposed to the bottom up view adopted by exist-
ing SPA techniques. The section begins by developing a model of
hardware faults in which a KGC with a failed component is
represented as a different machine or state. It is noted that
with suitable restrictions, Narkov Chain analysis techniques may
be used for analyzing the probability that a KGC will transform
into an unsafe machine after a certain period of time. The sec-
tion concludes by noting directions for continued development If
this technique.

2.1 WNCo PTs
For purposes of exposition, a sample application has been
selected which consists of a medium speed (19.2 kb) encryption
device using a key generator controller shown in Figure 1:

I !

I KEY I
I GENERATOR II I__ _ _ _ _ I

+--------------------------------- --------------------------------I I I .. .,

I __.,_____ ._v __ _ __ _ I"-
I I I------->i I------ >i i

... >1 RED I I ICRYPT I I BLACK I ------ >

I I I I- .:-
I I I
I I_ _ I -I
I I I I I I" =
I +--->I BYPASS I----+ .
I I iI K GC I":"
--

Figure 1. Key Generator Controller Application

The KGC contains four distinct processing environments: a RED
domain which accepts unencrypted data input, a BLACK domain which
transmits encrypted data output, an ENCRYPT domain which
converses with the key generator and performs the actual encryp-
tion and finally a BYPASS domain which allows selected informa-
tion to pass directly from the RED to the BLACK domains. This
section of the report describes and recommends particular

2 .11 INTRODUCTION Page 4
a•'.st.ttta t.:.,d2 .

8/16/84 KGC SECURITY CONCEPTS SYTEK-TR84009

architectural implementations for this application. However the
reader should bear in mind that this application is very easily
generalized and that the architectures described here are suit-
able for a wide range of security applications.

The primary function of a key generator controller (KGC) is
to provide data security. The system must not improperly release
any data. If a high degree of confidence cannot be gained in the
secure operation of the KGC, then the system does not fulfill its
primary purpose and is not useful. Historically, security has
been obtained by using careful design and implementation tech-
niques and by using redundancy to help detect and compensate for
component failures. Confidence has been heightened through the
use of Security Fault Analysis (SFA) techniques which analyze the
effects of hardware component failures.

The use of microprocessors and software in KGCs, while pri-
viding many benefits, greatly complicates the analysis process
required for security assurance. SPA analysis is rendered inade-
quate by the explosion of individual devices within microproces-
sors and its inability to address defects in software. So
dramatic is the impact of microprocessors and their associated
software that it is necessary to reexamine the entire confidence
building process. In a system incorporating programable
microprocessors, security analysis must rest evenly upon an
analysis foundation of software verification, testing and secu- .

rity fault analysis. Each of these techniques has particular
strengths, but no single method provides all the assurances
required of KGC's.

2.1.1 Processing Domains
The complexities of software verification can be eased by ,..-
appropriate choice of IGC architecture. The KGC architecture
should provide for multiple domains of execution with limited,
controlled intercommunication. This allows security critical
software such as the BYPASS and ENCRYPT domains to be separated
from software which deals with nonsecurity issues such as commun-
ications. This simplifies verification by eliminating the detail
and complexities of communications software from the software
requiring verification.

Similarly from the standpoint of safety analysis we soon
realize the advantages of this divide and conquer approach. Iso-
lation and minimization of security critical componentry is a
mainstay :of Security Fault Analysis. Critical circuitry can
employ high reliability components and can be supplemented by
Vhysically and/or functionally redundant circuitry. The need for -':,

relatively isolated domains of computation is a focal point for
our architectural discussion in that the overall quality of the
verification and safety analysis for an application is governed
by the quality of the underlying domain isolation and communica-
tions mechanism. This effectively motivates the layered archi-
tectural view illustrated in Figure 2:

[2.1.21 INTRODUCTION Page 5

-. .- - - - - - -

8/16/84 KGC SECURITY CONCEPTS SYTEK-TR84009

I Describes the Security Application in terms
IAPPLICATIONI of domain actions and communications.
I LAYER I (SOFTWARE)

I DOMAIN I Provides controlled communication between
I ISOLATION I processing domains
I LAYER I (HARDWARE / SOFTWARE)

I Actual hardware (processor# memory etc)
I PROCESSING (HARDWARE)
I LAYER

Figure 2. KGC Application as a Layered Machine

Each layer is dependent upon the services and security correct-
ness of the layer(s) below. Starting at the bottom, the physical
components must correctly implement their function and cannot
incorporate design or implementation flaws which might affect
their security performance. (E.g. if software memory addressing
mechanisms are relied upon for domain isolation, the processor
ALU must operate correctly in so far as it is used for address
computations.) SPA and functional testing play important roles
at this level.

The domain isolation layer uses the hardware devices of the
processing layer to establish separate domains of computation
with controlled intercommunication. This always requires
specific hardware support, and the simplest and perhaps best
approaches build the entire layer of hardware with no software
what so ever. To the extent that software is used towards this
goal, it must be rigorously verified, as all applications layer
software is dependent upon the correctness of the domain isola-
tion layer hardware and software. Again SPA plays an important
role in assessing the strength of the hardware supports for
domain isolation. Active health check testing is also important
as it can continually attempt to breach the domain isolation and
cause a shutdown if it is successful. Finally, if software must
be used to achieve the goals of this layer, software verification
techniques are also employed. The application layer describes " -

the security application, in this case a Key Generator Con-
troller. *Actions are described in software as computations in
various domains and interdomain transfers of information.

It is quite desirable to encapsulate the bottom two layers
into a Domain Isolation Machine (DIN) which would export a stan-
dard software interface usable as a base for implementing secu-
rity applications. Such a machine would enjoy several advantages
over existing hardware bases. First, it would be reusable. This
would allow much of the software and hardware analysis efforts

[2.1.13 INTRODUCTION Page 6

'-"- " .' .- -?..... '.- -- '.' . . .v ,,,.' .- " ' "' " ' . .'

6/16/84 KGC SECURITY CONCEPTS SYTEK-TR84009

invested at these levels to be shared amongst current and pros-
pective applications. Second, different Domain Isolation
Machines could be built providing equivalent security but varying
in implementation details such as data throughput potential, tem-
pest characteristics etc. These could be relatively interchange-
able amongst applications, providing the same functionality and
security but differing in terms of throughput, cost etc.

The concept of independent domains of computation, and our
confidence in the hardware and software mechanisms providing this
feature, is a security concern which overrides the security
details of the application built upon it. For this reason, the
architectures described later in this section dwell heavily on
this topic.

2.1.2 Standard Interface fo A nDomain Iaolation Machine
Let's take a few moments to examine Figure 2 in more detai],.
Figure 3 illustrates the interface objects and actions present At
the applications interface.

RAP DOMAIN SEND RECEIVE PROCESS APPLICATION
I I I I I LAYERI I I I I-

-I-----------------------------l-----------1----------------------
I I STORE FETCH II I I I

V I R T U A L A D D R E S S M A P I DOMAIN
I I ISOLATION
I I LAYER

PHYSICAL ADDRESS SPACEI
1 II

--------------- I--------------------I---------------------I II
MEMORY I/O EXECUTION PROCESSING

UNIT LAYER

Figure 3. Application/Domain Machine Interface

A domain is a set of computation resources, and the DOMAIN object
is a description of those resources to include quantity and loca-
tion of memory and I/O ports. MAP is an object defining allowed
inter domain communication. It can conveniently be thought of as
a matrix with sending domains on one axis and receiving domains
on the other. Presence of a one or zero in a cell designates
whether that one way communication path is allowable or not. At
this level the only appropriate actions are SEND some information
to domain X, RECEIVE information from domain Y or PROCESS some
information in the current domain. It is interesting to note
that the means of implementing interdomain communication, whether
it be shared memory or I/O based, is strongly rooted the Virtual
to Physical Address mapping. Furthermore that a main source of
processor complexity (e.g. everything else) is separate from this

12.1.21 INTRODUCTION Page 7

8/16/84 IGC SECURITY CONCEPTS SYTEK-TR84009

fundamental issue of domain isolation and intercommunication.

2.1.3 Domain Machine-Service Reaquirements
Different applications can place more or less strenuous service
requirements upon the domain isolation layer. For instance a

_particular application may need very fine grained security levels
-requiring a large number of processing domains. Or even worse,
be application may need to dynamically create processing domains

,,and destroy them. Such requirements can be met with existing
technology but always at the expense of complexity in the domain
isolation layer and confidence in its security. Fortunately the
KGC example, and for that matter the majority of communications
security applications, require only a limited fixed number of
processing domains. Figure 4 provides an overview of Domain
Machine Service requirements.

4

CRITERIA COMPLEX SIMPLE
APPLICATION APPLICATION

Granularity of Control 5 -.20 Domains 2 - 5 Domains

Dynamic Domains Creation /Deletion Static

Dynamic Objects Creation / Deletion Static

Implementation Issues

o Domain Switch Time Fast One Processor
per Domain OK

o Processor State
Sanitization on Switch Complete Unnecessary

o Interdomain Communication Fast Slow

Speeds

Figure 4. Processing Domain Requirements Issues

Gran " 'y of control refers to the number of domains which are
neces,. r useful. In the case of our KGC application at least
three a--e iuired: RED, BLACK and ENCRYPT/BYPASS. RED and
BLACK mus. be separate with no intercommunication allowed. The
DICRYPT/BYP? i domains may be combined although there may be some
utility to splitting them or having an even greater number of

.. available dc sins. Dynamic Domains refers to the ability to
4namically *reate or delete a processing domain. Certain pro-
*esing bases such as the Intel iAPX-286 provide this capability.
Dynamic Objects refers to the ability to dynamically create or
Selete objects such as I/O buffers. Finally Implementation
issues address certain aspects of implementing multiple domains
on a single processor. How long should an interdomain control
transfer take? How completely should the processor's externally
accessible and internal registers cleared upon a domain transfer?

[2.1.31 INTRODUCTION Page 8

8/16/84 KGC SECURITY CONCEPTS SYTEK-TR84009

know" concept familiar to anyone in the security community.

The descriptor tables may be altered dynamically to pass a
buffer from one domain to another. The descriptor tables
described in the Task Definition section are only useful if they
are protected. Only a very few routines are normally allowed to
change the descriptor tables.

This sort of block transfer will occur frequently in a secu-
rity application. In any sort of guard device, security filter,
or KGC system, there are many separate tasks that operate on the
same blocks of data. These are easily and securely passed from
one task to another by switching the access rights. This is
described in more detail in the KGC design analysis below.

We always want to keep our domains as isolated as possible,
to preclude the possibility of unexpected data leakage betweln
domains. On the other hand, for a domain to be useful, the e
must be some outlet to other domains.

The options available to the clever programmer are exten-
sive. This is good in the programmer's eyes, but can be a demon
in disguise. Here are a few of the possibilities offered by this
descriptor table scheme:

" Buffers of any size up to 64K can be shared by one or more
domains.

" Buffers can also be passed from one domain to another.

" Data segments may overlap, so that the buffers are partially -

shared.

" Partial buffers, pieces of buffers from one word to the
entire buffer, can be passed to another domain.

" The access rights of read, write, and execute are associated
with the domain, not the buffer.

" Any number of tasks may share a buffer.

" The access rights may differ for each task.

" The buffer size may differ for each task.

" Any of these may be changed during execution by altering the
descriptor tables.

[3.2.3.3 ARCBITECTURE Page 22

S •............. ,.. ..-. •_. _.- .. !•- -
..-. ..•_",.. -.. "-.-. .. '. -. -.-.. . . ".. -.-.- .--... .,, , _ ,:,

8/16/84 KGC SECURITY CONCEPTS SYTEK-TR84009

3.2.3.3 Data Llm Contro We have stresses isolation and
privacy over and over. Tasks often need to communicate with each
other, and sometimes share data.

The Memory access section above showed the advantages in -
minimizing the amount of shared memory. There still must be some
channels for inter-task communications.

There are three general intb:-task communications channels
controlled by the 286 microprocessor:

* Data created by one task and used by others

* Message and data blocks sent from one task to another

* Parameters passed to a routine accessed through a call gate

TASK A TASK B

~SHARED , ..

Figure 11. Tasks Sharing a Data/Code Area

The Memory access section above explained how each task on
the 286 has certain access rights to specified segments of
memory. A task is not allowed to read any segment of memory it
does not have 'read' rights for, and likewise it cannot alter
memory without 'read/write' rights. However, nothing prevents us
from granting read/write access on some memory to one task, and
read only:access on the same memory to other tasks.

Since the separate tasks in a security application are actu-
ally sub-tasks of a single job, it is more common for tasks to
share information. It must be considered common for data to be
used by several tasks, but only modified by one or two. In gen-
eral, a task that isn't required to alter some data will be
required NOT to alter that data. This is similar to the *need to

[3.2.3.3J ARCHITECTURE Page 21

8/16/84 KGC SECURITY CONCEPTS SYTEK-TR84009

.1

INTERLEVEL

INTRASEGMEN 6ATED
~ I NTERSE6NENT

I NTERSEGNENT

Figure 10. The Various kinds of Calls

These are calls that can be made within a domain. There is
no restriction on calls made to another code segment within the
current sub-domain, that is within the current domain at the same
or lower privilege level. However, calls to a higher privilege
domain require the use of a call gate, and the other kinds of
calls may be gated if desired.

Calls to a higher level are a special case of inter-task
calls. We are actually making a call to another sub-domain (see
Privilege Levels, above) which shares all of the current
resources, and has a few more of it's own. An inter-level call
activates the program stack used for the called level, automati-
cally copies a specified number of bytes from the old stack to
the new one, and transfers control to a predefined entry point.
An inter-task call, on the other hand, performs a complete task
Switch, swapping and storing all CPU registers and changing to
the new LDT (see Task Definition, above).

Calls within the same subdomain may be gated, but this only
helps when the caller doesn't know the level of the called rou-
tine.

13.2.3.21 ARCHITECTURE .,age 20

....." ". " ."-" " " . " -- " ' " ' " " "- "" '; " ' ' ""i ' ' :" ' i

8/16/84 KGC SECURITY CONCEPTS SYTEK-TR84009

example because there is rarely a mix of trusted code and
untrusted code within a single domain. The four privilege levels
within each task are handy for isolating data, restricting code
access, and protecting the 1/O ports from unauthorized use.

If the Intel task is considered to be a domain, the four
privilege levels can be thought of as nested sub-domains. Code
executing at a given privilege level can access data segments at
the same level or at lower levels.* Separate stacks are main-
tained for each privilege level, but the higher levels can still
access the stacks at the lower levels. Functionally, level 2 can
be thought of as everything in level 3 plus some new things only
available in level 2.

WARNING: Level 0 (the highest level) can bypass the protec-
tion mechanisms. Level 0 has some added abilities in every
domain. There are extra registers and functions available at
level 0 that can change the operation modes of the CPU. Level0-
must be used with cautioni Any code operating at level 0 must be
exhaustively analyzed. In a secure operation level 0 must not be
used for anything except those functions which can only be per-
formed at level 0. The cost, in verification effort, is very
high for anything done at this level.

3.2.3.2 Log±. !1 Cntrol The 286 controls execution in more
ways than just restricting memory access. The Task Definition
section above explained how each task on the 286 has certain
access rights to specified segments of memory. The 286 also con-
trols branching between domains and program segments. A task
must have permission to branch between code segments or to
another task. A previous section described what happens on a
task switch. This section describes when such a transfer is
allowed.

To facilitate this, the 286 maintains a set of tables
describing who calls who. Int'el refers to these as "call gates"
and stask gatesn. These gates are used for calls to routines
outside of the current memory segment, to a higher privilege
level, or to another task.

* Levels are named in a strange and unfortunate way. Higher
privilege levels have a lower number. Level 0 is the
highest.

13.2.3.21 ARCHITECTURE Page 19

...

3/16/84 KGC SECURITY CONCEPTS SYTEK-TR84009

levels, described in the next section below. Briefly, each of
the higher privilege levels has a separate stack. The Back Link
(offset 0) identifies the previous task, to make returning from a
task easier.

The register labeled Task LDT Selector (offset 42) is very
import3nt. This is a pointer to the task's Local Descriptor
'able (LDT). The TSS and the LDT together completely describe
the individual characteristics of a task at any point in time.

3.2.3.1 Eultiqa Privl-.iJa LevWls The 286 recognizes four
"privilege levels e . These levels form a hierarchy, which is best
visualized as four concentric rings. This forms a figure resem-
bling an archery target, in which the bullseye is the most
privileged level. Bach ring can access itself and any rings out-
side of itself.

Everything in the system has a privilege associated with it:
blocks of memory, routines, entry points (Logic Flow, below),
etc.

Figure 9. Privilege Levels in the Tasks

The multiple levels is an easy way to restrict access withi±n
a domain. As such, the effect on verification is similar to
using a high level programming language - the code will be easier
to read and well structured. Verified code differs from the OS

13.2.3.11 ARCfITECTURE Page 18

* *-°.-". o •

8/16/84 KGC SECURITY CONCEPTS SYTEX-TR84009

practically implemented as separate tasks.

The 286 performs a full sanitization during a task switch.
All registers are marked during a task switch, and each must be
associated with a descriptor from the GDT or the now LDT before
they can be used.

The task state is saved during a task switch. Every task
has a Task State Segment (TES) associated with it. The TSS
describes the current state of the task.

• ao

110

OWIS I Ie

910 20 Taf'tI .

umti' £ L _. .

- --- a .V.-- e na-',,

UNPCPU

ftm MeCI

tarnCf 032

Figure S. The Components of the TSS

Whenever control transfers to another task, the TSS of the exit-
Ing task is updated to show the current state. When the task
regains control of the CPU, all the internal registers are loaded--
In from the TSS, and execution continues as if control had never '

lef. - -

Most of the registers are pedestrian. The XP through DS
registers (byte offsets 14-40 above) are the same am those found
in the Intel 8086. The three extra sets of Stack pointers
(offsets 2-12) are initial values for the additional privilege .-"

13.2.31 ARCH XTBCTURE Page 17

8/16/84 KGC SECURITY CONCEPTS SYTEK-TR84009

owW" memo

tn -I -

*" I

L------------- jL---------------------------------

l- a,

i ai I

* •'a '* :

Intel --.

rigure 7. Computing the Physical Address "

individual tasks don't know what memory addresses they are actu-". ..

ally using, because memory references are napped into real %

memory. This facilitates the use of modular programs, because ".--
the code does not need to know where it will eventually reside. '--

A code or data descriptor indicates where the logical memory-
segment actually begins, how large that segment is, and what-
access rights are associated with that segment of memory. There :
a re four possible values of the access rights field: read only# ..
read/write, execute only, execute/write. These access rights ..
cover almost anything a programmer might want to do. Every memory :..
access is chocked for legitimacy. Any attempt to use memory
illegally generates a hardware interrupt, and stops the process.

The task gate descriptors provide the means for transferring-
control to another tsk. The only way for one task to make a-.
Jump or call t~o another task in by using a task gate. This means
that for any given task, examination of the descriptor tables
will provide a list of the tasks that may be branched to. This..
can simplify code verification considerably. :':

Transition from one task to another is done as a result of a ...
single instruction, and is thus very fast. Most of the work
involved in switching from one task to another is performed in 22 :::
microseconds. This allows extensive use of task isolation .
without incurring a serious speed sacrifice. Even interrupt,-.,
handlers# normally kept as short and fast as possible# can be -.

13.2.3) ARCH ITBCTUR Page 16

6/16/84 ROC OSCURITY CONCRPTS BYTEK-TR84009

It in Important to understand the two descriptor tables that
pertain to any given task, the Global Descriptor Table (GDT) and
that task's Local Descriptor Table (LDT). The GDT is shared by
all tasks. Any descriptors (resources) listed in the GDT are
shared by all tasks. The LDT is associated with exactly one

-..task, and the descriptors listed in an LDT apply only to that
task. The LDT gives each task it's individual characteristics.
The LDT makes it possible to isolate the individual tasks to
Vhatever extent desired or to share memory between a few tasks.
Putting a descriptor into the GDT is equivalent to putting that
descriptor into every task's LDT. The LDT and the GDT together
completely describe everything that can be done by the task.*

A descriptor table may contain any of the following types of
descriptors:

* Code Segment

, Data Segment

" Call Gate

" Task Gate

The code and data segment descriptors are machine resources
in the traditional sense. These are physical blocks of memory,
identified as either code or data. We will describe these first.

The call gate descriptors are an unusual kind of machine
resource l the processor must have permission to branch to code
in another code segment. These descriptors provide entry points
to other procedures and programs within the same domain. These
are covered in the section below on Logic Flow Control.

The task gates provide the capability to transfer control to
another task. This is described later in this section.

First, the code and data segment descriptors. The 286
incorporates a memory management facility that provides thorough
control over memory use. The processor maintains a set of tables
that map logical memory to physical memory. The term "logical
memory" means that when a task tries to access memory in one seg-
sent of memory, the processor automatically and invisibly routes
the access to another segment of memory.

This discussion ignores the Interrupt Descriptor Table for
simplicity's sake. The interrupt gates are similar to call
gates, and deserve no special attention.

13.2.3) ARCHITBCTURE Page 15

8/16/84 KOC BECURIT¥ CONCEPTS SYTEK-TR84009

The Intel task definition scheme allows the creation of
separate and useful execution domains. A domain is a set of
machine resources, and the 286 fully defines the machine
resources available to each task. This definition is detailed
.enough to allow a full range of definition. Domains may share no
resources at all, they may share a single data buffer and two
code segments, or they my share all resources except two code
segments, whatever is desired. This flexibility and power of the
286 task definition scheme is sufficient to create the Domain
Isolation Layer described above (see Figure 5).

GLOBAL

UTILITIE
I ERVICES E ' D:I

DB PLI CY 1/0l--.0S S

W IIKERNEL LL GATES

/00/
TASK A TASK C

A C

G mDataBB
- Code TASK B

Figure 6. Tasks in the O.S. example

The Intel task is defined by two Descriptor Tables that list
te resources of that task. Bach descriptor defines some object,
or resource, A descriptor is a pointer to a data segment or an
entry point into some code. Combining the resources listed on
the two tables with the internal CPU registers gives a complete
list of the task's resources, and so it is a complete definition
of the domain.

13.2.31 ARCHITBCTURB Page 14
... ... 4

8/16/64 EGC SECURITY CONCZPTS SYTEX-TR84009

ever mess up the disk. To keep everything in order, the routines
that actually manipulate the disk are hidden from the users.
Calls are only allowed to high level, idiot-proof routines.

DATA FLOW CONTROL: Blocks of memory are frequently passed
between a user and the OS. Whenever possible, the Os will handle
input and output (1/O) in chunks, using blocks of memory usually
-called "buffers". Typical parameters used in a call to the OS
1/O routine are the size and location of the buffer, not the
buffer itself. The 06 can temporarily change the access rights
of that segment, perform the I/O, and restore the original access
rights.

3.2.2 296 - gecurity Relevant Features
The 286 has four general features that are security relevant. We
will discuss both how these features work, and what they are good
for. The next five sections will explain the security featurds
of the 286, and will also outline the underlying concepts of the
Domain Machine. With these concepts in mind, we will be able to
discuss both the 286 and other possible domain machines.

* Task Definition

Intel tasks have firm perimeters, with no loopholes.
Tasks are defined by the objects that they have access to.

* Multiple Privilege Levels

The four privilege levels are actually a hierarchy of
sub-tasks. Bach privilege level has access to everything in
the levels below it.

* Logic Flow Control

There are several controls on who calls who, especially
jumps between tasks or privilege levels.

* Data Flow Control

Tasks can be totally isolated from each other, or they
can share a selected set of objects.

3.2.3 Yask Definition
We are eaimining the Intel 80286 because of its ability to iso-
late tasks from one another. The 286 is designed to support a
large number of tasks in multi-tasking systems. The 286 allows
the scope and capabilities of these tasks to be completely
defined. If the tasks in the system are carefully defined so
that they are mostly isolated from each other, with very little
resource sharing, they will be the sort of domains that we are
discussing in this paper.

13.2.33 ARCHITECTURE Page 13

8/16/84 EGC SECURITY CONCEPTS SYTEK-TR84009

systems. The requirements of the market niche that Intel origi-
nally targeted have been met. The requirements for a secure KGC
system, however, are far stricter.

.3.2.1 An Overvlew of the 216 o e h wdi"The security relevant features of the 286 which we will discuss ::"'

in the next section are rather detailed and technical. We will
ease into it by presenting a short example. We will illustrate
the "normal* use of the 286's capabilities through details of an
imaginary Operating System (OS) that uses all four of the secu-
rity features discussed below. This common and hopefully fami-
liar example should aid understanding. Examples drawn from an
imaginary multiuser OS demonstrate the significance of these
features.

TASK DEVINITIONt A multiuser OS provides timesharing of tk~e
single CPU. The OS will switch rapidly between users, granti g "
each user a short burst of microprocessor time. This is invisible
to the individual user. A user may notice that his job is taking
longer one time than it did on some previous run, but otherwise
everything looks the same.

It is important to the individual user that nothing gets
changed in his individual area while the CPU is off serving some-
one else. This constitutes leakage from one task to another, and
would cause behavior certain to confound and bewilder the unknow-
ing user. All CPU registers, as well as the private data and
code, must be intact after any number of "invisible" task
switches.

Who uses what is a major issue in any shared environment.
In general, every user would like to imagine himself the only one
on the machine, with all of the machine's resources at his dispo-
sal. Any user would be very unhappy to discover that his data
has been altered by someone else. Some users would be equally
disturbed by the thought that others might even be reading their
data.

MULTIPLE PRIVILEGE LEVELS: Generally speaking, a multi-user
operating system has two responsibilities: provide user services
and coordinate use of the system resources.

The system can rely on the users' good sense and hope that
everyone asks the OS to provide these services. After all, users
know they:will cause problems if they blithely utilize resources
whenever and however they want to. On the other hand, the system
can reserve certain privileges for itself. Needless to say, the
latter is the most commonly chosen path.

LOGIC FLOW CONTROLS The OS performs centralized, coordinated
services for the users. Consider the case of disk usage. The OS
wants to provide fast and easy access to the mass storage disk.
Since the disk is shared hy all, it is important that no user

13.2.1] ARCBIZTCTURE Page 12

• • • . -. ,, . .. o - .. .+ - %,.•....o.,.......... °

- -•e -- l . . a'h. "-

8/16/84 ZGC SECURITY CONCEPTS 8YTE-TR84009

Isolation layer in Figure S.

* I APPLICATION I Domain actions and communications
LAYER (SOFTWARE)

DOMAIN I Restricted access to system resources
I ISOLATION I Controlled inter-domain communications
I LAYER. (SOFTWARE/HARD1fARE)

I PROCESSING I Code execution and data manipulation
LAYER I (HARDWARE)

Figure 5. Domain Isolation Machine

There are many ways hardvare can help provide this layering.
The goal is to find a hardware/software combination which is
capable of dependably IshapingO the domain, yet is easy to under-
stand, use, and verify.

3.2 THE 80296 NICROPROCESSOR
The 80286 microprocessor was designed to support process separa-
tion. The 286 has many features not usually found on a micropro-
cessor chip which make process separation much easier. Some of
these features, such as the virtual memory management facility,
have many uses. Other features are oriented entirely towards
process separation.

Intel contemplated security issues from the earliest design
stages. Intel had design analysis performed by security experts
to determine the performance of their planned 80286 in a security
environment. Advanced modeling was performed by this group in an
effort to uncover flaws and weaknesses in the 286 design. Intel
considered the results of these studies in their final design.

Intel's goal vas to build a fast processor with the ability
to enforce varying degrees of isolation on individual processes.
The market they targeted wanted a processor that would handle a
complex system of interlocking processes. They wanted to satisfy
a wide range of applications, some of which were quite elaborate.
Intel plahned a chip with tremendous flexibility and power.

Intel came very close to their goal The 286 is very good
for many customers, with applications ranging from PBX switching
networks to small multi-user business computers. the process
isolation built into the iAPX-286 system is stronger than on any
other commonly used microprocessor. Customers can have higher
confidence in the hardware based protection mechanisms on the 286
than in the software protections that must be used in other

(3.21 ARCHITECTURE Page 11

"" " " '" " * " '* " m
"

" ra* ' 11
"

" "11 " "1I " "* "*
"/

* .* " *" e • * *:" "-- " -" . ' -L..* " .

8/16/84 KGC SECURITY CONCEPTS SYTEK-TR84009

3. ARCH TZC!=JB

3.1 D3IERJLIB
This chapter will dive into the architecture of Key GeneratorControllers (KGC). We will refer to verification and safety

issues where these affect the hardware and software design.

We have presented the conceptual base. The following
chapter will explain in more detail what a domain is and how
domains are used in verification. The chapter on Safety will
show the benefits of distributing responsibility over small
modules or 8chunks8 in the hardware design. This chapter will
demonstrate how the theories of Safety and Verification can be
applied to useful, functioning architectures. We now tie the
theory to the real world.

We will cover four areas in this chapter:

* The 80286 Microprocessor

Security features on the 286. Also presents the basic
" .concepts needed to discuss the implementation of a domain

machine.

* A Sample Application

A KGC system software design. This example is used to
illustrate the use of a domain machine in a secure environ-
ment.

* Using the 286 as a Domain Machine

How to use the security features of the 286 for domain
isolation. Describes specifics of the sample application.
Problems with the 286 are summarized.

* Alternative Domain Machine Architectures

Two alternative hardware designs are described and com-*pared to the 286. The designs are then abstracted so they
can be implemented in other ways.

- .At this point the reader should have an understanding of
what a domain is and why domains are desirable. Since a domain
i a limited set of resources, there is less much less to prove
about a section of code executing inside of a domain. This sim-

" ple fact will eliminate many pages of complicated argument during
code verification and results in a much stronger proof.

This chapter will show how much easier it is to implement
domains on a machine designed to support them. Through example
and analysis, we will show what must be provided (through some

"" combination of hardware and software) to create the Domain

13.11 ARCH ITBCTURE Page 10

8/16/84 KGC SECURIfTY CONCEPTS SYTEK-TR84009

The main issue here is that different applications may make
greater or lesser demands upon the Domain Isolation Machine base.
The more demands, the greater the complexity of the underlying
DIM# and presumably the more complicated its verification and
safety issues. In the architecture descriptions which follow, to
the complexity of supported applications is addressed.

12.1.31 INTRODUCTION Page 9

8/16/84 KGC SECURITY CONCEPTS SYTEK-TR84009

3.3 A SAMPLE APPLICATION
We now present a software design for a KG Controller. The sample
KGC will help us demonstrate the use of a domain machine in a
secure application. We will discuss the implementation of this
KGC design on the Intel iAPX-286 system, and compare this with an
implementation on a sophisticated alternative architecture of our
own design.

This example will illustrate the usefulness of the domain
machine in security critical applications. We will also derive
the characteristics that are most important in the design of the
domain machine itself. These characteristics will provide us
with a yardstick for evaluating domain machines. Later in this
chapter, we will take this 'yardstick' and evaluate several pos-
sible designs for domain machines.

3.3.1 Software Design Uing a Domain Machine
The domain machine is a unique environment. A software designdr
working on a domain machine has control unlike any other program-
ming environment. The modern high level, block structured pro-
gramming languages offer powerful data scoping and logic flow
controls. These structured and clearly defined tools speed
applications development and enhance confidence. The domain
machine takes the same concepts several steps further. Software
design on a domain machine is like having an extraordinary high
level language built specifically for the application at hand.

Isolation provides both protection and restraint. Each
individual domain receives a double benefit from domain isola-
tion. First, the integrity of the domain's private data and code
space is guaranteed. There is no way that any other domain can
access private areas. Second, the domain is only allowed access
to certain restricted shared areas. This makes it very easy to
satisfy requirements that a particular domain does not do certain
things. In many cases, the domain machine will prevent the
domain from doing these forbidden things. For example, it is
easy to demonstrate that a certain module doesn't corrupt the
disk if the domain doesn't have write access.

The domain machine allows tailored capabilities. The defin-
ition of each domain identifies what that domain can or cannot
read, write, call, etc. In any high level language, there are
complicated rules that identify the same thing for every pro-
cedure, but these rules are much less flexible and somewhat more
difficult to understand. Only the most elaborate languages, such
as DOD's ADA, even approach the thoroughness and flexibility of
the domain machines we are discussing here.

The domain machine provides better security properties than
any high level language can. The exacting code verification
required for KGCs demands advanced data and logic flow analysis.
Languages such as Pascal simply don't offer the data hiding and
definable scoping needed to implement this level of design.

13.3.11 ARCfITECTURE Page 23

.' - .,:":' -:- ::. '". - +- -:- - : : '--++ '" /< " '" : ' '""'":: " ": ".+ '" " " '" """""

-" . .~- ~ *-~

8/16/84 KGC SECURITY CONCEPTS SYTEK-TR84009

Additionally, it is not possible to verify the operation of com-
pilers. Compilers are far too complex. A language such as ADA
makes a fine companion for the domain machine, but it is not an
adequate to replacement.

Good design will make verification much easier. As the
Verification chapter will show, the work involved in code verifi-
cation is considerable. The use of a high level language can cut
the verification effort to a fraction of the work required for a
low level language. The benefits from using a domain machine are
similar. The money saved by building on a domain machine is sur-
passed only by the increased confidence in the security of the
system.

3.3.2 The Requirements Por Our Sample Application
We will now begin using a sample application for illustration of
concepts. A few specifics are needed.

The sample application will encrypt messages travelling from
a highly trusted (RED) environment to some less trusted communi-
cations net (BLACK). The messages will have a maximum size of
four thousand characters (4M). The message headers will vary in
length, and the headers will not be encrypted. The messages will
be released with an unencrypted header and an encrypted body.

The messages will arrive continuously. The data rate will
not be exceptionally high, but the KGC must have as little impact
on the sender as possible. Causing the RED sender to wait for
the KGC to encrypt a message is unacceptable.

3.3,3 The High Level Design

The first step in any high level design is to determine the
major functions of the target system. When working with a domain
machine we also want to break down the job into blocks with as
little functional overlap as possible, so that we can isolate
them. The sharing of data or low level code must be kept to a
minimum. In this case, the first step is fairly easy. The
Introduction to this paper described the job of a XGC with the
diagram below.

13.3.3J ARCHITECTURE Page 24

6/16/64 OGC SECURITY CONCEPS SYTEK-TR84009

I I

I KEY I
I GENERATOR I

----- -- --
I I I _ _ _V_ _ _I

I I I-......)I I - .. .> 1 I I
---- >I RED I I ENCRYPT I I BLACK I ------ >I I_____I-+ I______I +--->1 _____ I I

- - I I I
II I I-

I a_____ __ I III I I I I
I+--> IDBYPASS I ---- + .1

II _ _ _ _ _ I 'I
I GC I

*---

Figure 12. MGC Conceptual Block Diagram

This is fine conceptual breakdown, but it needs to altered
slightl) to work as our design breakdown. Taken literally, this
diagram suggests that data somehow sends itself to either the
WCAYPT or BYPASS blocks. Curiously, the BYPASS block does noth-
ing but let data pass through. There is an intelligence implied
for the system by the figure above, but that intelligence doesn't
reside in any of the conceptual blocks. The main ideas of the
systam ar shown, but a Functional Block Diagram must assign all
the decision making to some block to be complete.

The design pictured below contains a block with the respon-
sibility for whether data will be encrypted or bypassed. This is
the PROCEBS block. It replaces the BYPASS block, because bypass
is one of it's functions. The PROCESS block acts as the system's
traffic cop, routing the correct portions of messages to the
right places. The main difference between the two diagrams is
that one block is responsible for analyzing the message and rout-
ing it properly.

13.3.3] ARCHITECTURE Page 25

............ ,,i ',,; ,.:-- " d'" '':,n,;,,-...,.........."'."".:..--......-......'.. ... , '. ' ." " -.

8/16/84 KGC SECURITY CONCEPTS SYTEK-TR84009

I I

I KEY I
I GENERATOR I

+ I_ +I'

---------------------------------- --------------------------------
I I I

-. I ___ _v ___ _ _I

* I I I I I I I I
--- > I RED I I ENCRYPT I I BLACK I ------ >

I I_____I-- I_____I +,---> I _ ___I •
I I * I II
I I I I II
I I I~v.___.~ II
I I I I II
I +-->I PROCESS I----+I I _ _ _ _ _ _ I el
I KGC
+--

Figure 13. KGC Functional Block Diagram

The design at this point encompasses four tasks. The four
tasks correspond closely to the original four functions: Red,
Black, Process, and Encrypt. RED and BLACK handle the input and
output, respectively. Neither has any inter-domain communication
skills. RED writes the input data into a buffer and flags PRO-
CESS when the message is completely received. BLACK outputs a
buffer, and flags PROCESS when the message has been completely
transmitted. ENCRYPT utilizes the Key Generator to encrypt a
buffer, and flags PROCESS when the encryption is complete. PRO-
CESS takes a message from RED, sends the body of the message
through ENCRYPT, and releases the message to BLACK.

The next step in design breakdown is to simplify each of the
domains as much as possible. Every capability added to a domain
increases the effort needed to verify it. Only RED and ENCRYPT
can zite into the message buffers, while all of them can ZMW
the message buffers. Only PROCESS needs to recognize the flags
that RED, BLACK and ENCRYPT use to indicate when their tasks are
completed. Only PROCESS is allowed to transfer buffers between
domains. There is no sharing or communication between domains
except for the buffers moved by PROCESS and the flags recognized
by PROCESS. This will simplify the verification of any domain
machine implementation of this system.

One very good example of restricting the capabilities of
domains is demonstrated by our handling of the ENCRYPT block. It
is tempting to allow the ENCRYPT block to exit directly to the
BLACK output block instead of returning to the PROCESS block.
(Note that this is actually implied by the Conceptual Block
Diagram above.) This would be a mistake, because the ENCRYPT

13.3.31 ARCHITECTURE Pa;e 26

-, -. "~*.*~*n a..

8/16/84 KGC SECURITY CONCEPTS SYTEK-TR84009

block does not need the ability to move messages between domains.
The PROCESS block is the only one who can move messages, so all
requirements regarding the release of messages to the BLACK out-
put block can be satisfied by analyzing the PROCESS block code.

.. We will take the idea one step further. In each of the four
blocks abover there is some smaller portion of the block that
must handle the message buffer itself. These portions do require
access to the same areas as the whole block, but they have one
extra capability. Since handling the message buffer is important
and dangerous, it may be useful to handle these portions
separately when possible. In the diagram below, each domain is
split into two sub-domains. The inner ring in each domain con-
tains the code which is allowed to manipulate the message
buffers. Bach of the several implementations discussed later in
the chapter will handle this part of the design differently.

Note that the code in the higher levels is not more trustld
than the code in the lower levels. The ring concept is used to
add an extra measure of data/code isolation. The advantage
gained is a limiting of what needs to be proven about each sec-
tion of code during the verification process. The message

- buffers will always be security critical, so any code which mani-
- pulates them will be closely restricted.

di PROCESS

i

RECORD TASKS

RECORD:

RED 1/0 BLACK 1/0 -

ALGORITHM

ENCRYPT ..:.

Figure 14. KGC Software Design

The highest level design is very important step, and should
be performed carefully. The implementations of this design will

13.3.31 ARCHITECTURE Page 27

8/16/84 IGC SICORITY CONCRPS SYTEX-TRO4009

be somewhat different on the different domain machines, but the
isolation in this high level design will be maintained in each
implementation.* Notice how much attention was given to security
issues brj= tja LZZ" machine had been ktormi1ned This is a
crucial element in successful creation of a secure system.

3.4 DGIMt THE 286 _N A DOMAIN MACHNE"
Pirst we must outline the hardware design for a domain machine
using the 286. The 286 can be used to provide a fairly substan-
tial Domain Isolation Layer. There are several important
hardware requirements, but overall the design is quite straight-
forward.

The most important restriction is that the 286 must be the
only intelligence in the system. This means that no other chip
will be able to take control of the bus. This precludes the use
of Direct Memory Access, intelligent floating point chips thit
can access memory, and slave processors.

The 1/O must be memory mapped. The I/0 handlers are some-
thing of a problem because the I/0 ports are not mappable. Unlike
memory, I/O ports cannot be restricted to one domain. The 286
supports an 1/O privilege level (IOPL), which restricts the use
of I/0 opcodes to code executing at the IOPL or higher. Unfor-
tunately, this means that any routine which can access a port can
read or write ANY port. Because of this# our hardware design
will use memory mapping for 1/O. Memory mapped 1/O provides the
I/O handlers with as much protection as the rest of the system.
The main disadvantage of this approach is the I/0 instructions
which perform block moves cannot be used.

With these hardware restrictions in mind, we can create a
sample hardware to run the sample application.

*Any domain machine will handle the domain isolation, but each
domain machine will differ, just as computers differ.

93.4J ARCHITRCTUR3 Page 28

. . -.

* . - ~ . -- .111

8/16/84 KGC SECURITY CONCEPTS BYTEK-TR84009

Figure 15. IGC Hardware Design Using a 286

The Serial I/O (510) chips are the connections to the outside
world. The RED and BLACK domains will each have access to one of
these chips. The box labeled ENC is an interface to a Key Gen-
erator, which will be used in the encryption process. The
ENCRYPT domain will have access to this.

Now that we have a hardware base, we can proceed to the
software portion of the domain machine. The 286 offers a great
deal of support for the domain machine in hardware, but there is
still a great deal that must be done in software. The method
chosen for buffer passing must be described and the domains must
be defined.

The buffers are passed between domains by modifying the
domain definitions. The 286 allows very large (up to 64K) seg-
ments of memory to be logically transferred from one domain to
another almost instantaneously. This capability is exploited to
save the time involved in copying buffers from one domain to
another.

All it takes to pass a buffer from one domain to another is
changing pointers in the Local Descriptor Tables (LDT) of the
domains involved. Of course, there is nothing new about passing

inters to data instead of the data itself. The difference here
s that the 286 memory management maps all logical addresses to

other physical addresses based on the contents of the pointers in
the current task's LDT. When we change the LDT, the 286 will
automatically reroute the same logical memory accesses to a dif-
ferent section of physical memory.

When the RED domain signals that it has a full messagebuffer, the PROCESS domain trades it for an empty buffer. From

the point of view of the RED I/O domain, that previously full
buffer has been instantaneously replaced by an empty buffer. The

13.41 ARCBITCTURE Page 29

8/16/84 IGC SECURITY CONCEPTS SYTE-TR84009

task itself, the RED domain, works with a logical object. When
the definition of that logical object changes, the task can't
even tell. The RED domain doesn't know where the full buffer
went, and could not access the buffer even if it did know.

| ~DATA ""

iU

DAA IAT

A--- DATA. R/W

Fiue16 oiyigte.oantoPs aBfe

LDT LDT eahft

TABLE--
TABLE -.,.j

TABLE ,
GDT "'

Figure 16. Modifying the Domain to Pass a Buffer

This is all performed through manipulation of the Local Descrip- --
tor Tables (LDT) in the various tasks. The figure above shows ."
three LDTs and the Global Descriptor Table (GDT). There are .
descriptors in the GDT that identify each of the LDTs. This is""
the normal operating condition. There must be a Global Descrip-
tor for every LDT. The unusual activity here is the aliasing of
two of the LDTs through the third LDT. Aliasing refers to situa-
tions where the same object is referred to by two different
names, often with different characteristics, as is being done in
the diagram above. In this situation, the third task views the
LDTs of the other two tasks as Data Segments. This allows the
third task to alter the LDTs of the first two tasks.

The PROCESS domain manages the movement of messages in the
MaC. It does this by altering the LDTs of the RED, BLACK, and
ENCRYPT domains. The LDT for the PROCESS domain gives PROCESS
Read/Write access to the other three LDTs. When PROCESS moves a
buffer from RED to ENCRYPT, it moves the descriptor pointer to
that buffer from RED's LDT to ENCRYPT's LDT.

13.41 ARCHITECTURE Page 30

..
+ -- ".."'+5" " ""' "

8/16/84 KGC SECURITY CONCEPTS BYTEK-TR84009

There in one other aspect to aliasing worth mentioning.
Nothing says that buffers need to be made entirely available to
each domain. For example, the messages have headers which are
not to be encrypted. Descriptors associate a task with a seg-
ment, not with an object. This allows painless dissection of
buffers. There is no reason for the ENCRYPT domain to ever see
that header. This is illustrated in the figure below.

FULL e

BUFFER
DATA. R

S
S

PARTIAL
BUFFER

LDT

•DATA. ..

LDT

Figure 17. Aliasing of Partial Buffers

The descriptor tables must be properly handled by the
software. Passing buffers from one domain to another is the
fastest method for sharing data objects. The alternative to
passing the buffer is copying one buffer into another, which can
take considerable time.

The access rights and buffer size are associated with the
domain, and so can differ for the same object.

A walk-through of the code, tracing a record through the
NOC, should clear up any remaining questions.

The 286 is in unprotected mode at power-on. The start-up
code must set up all the descriptor tables properlyr and then
jump into protected mode. The correctness of all code associated

[3.41 ARCHITECTURE Page 31

3/16/84 KGC SECURITY CONCEPTS BYTEK-TR84009

with the descriptor tables must be solidly proven, because this
is part of the domain machine and the verification will depend
heavily on this.

-The contents of the descriptor tables themselves must be
-verified. The construction of these tables cannot be trusted to
Intel's automatic tools. The output from Intel's support tools
--could be verified, but it is probably easier to build these com-
"Plicated tools by hand than to wade through a data file. To sim-
plify the analysis of these domains, the Sample Application will
put nothing in the GDT except what must be there - descriptors
pointing to each of the tasks. No code or data segments, no call
gates will be allowed in the GDT. The LDTs will be built as
structures in the C programming language and linked to the Pascal
used for the rest of the code. LDTs described in Pascal or in
assembler are both very difficult to comprehend, although for
opposite reasons. Pascal hides the machine representation df
data from the programmer, and assembly requires the specification
of every byte. Considerable support will have to be shown during
code verification to argue that this is all done properly. The
tables are full of pointers that refer to each other, and many
pointers that must refer to the same area of memory.

Once in protected mode, the PROCESS domain must allocate
buffers. PROCESS has the power to alter the other domains, and
it uses this ability to allocate buffers. Since it would be too
dangerous for PROCESS to be able to alter it's own domain, the
choice was made to give PROCESS Read access to all buffers at all
times. PROCESS gives an empty buffer to the RED, BLACK, and
ENCRYPT domains. BLACK and ENCRYPT ignore empty buffers, but RED
will fill up it's empty as data comes in. The start-up procedure
is now complete.

The RED domain fills the buffer as the message arrives. RED
takes care of all the low level protocol, and manages the Serial
I/O (SlO) port. When the message is completely received, RED
will set the staus flag *message complete' and wait for the
status flag to reset.

The PROCESS domain waits for this flag to be set. When PRO-
CESS sees this flag, it replaces the descriptor in RED's LDT
pointing to this full buffer with a descriptor pointing to an
unused buffer. PROCESS then determines where the message body
begins within the buffer, and manufactures a descriptor that only
zrefers to this part of the buffer. This new descriptor replaces
-the empty buffer in the ENCRYPT domain, and the status flag is
,et to Oplease perform encryptionm.

The ENCRYPT domain uses the Key Generator to perform encryp-
tion on the message, and then sets the status flag to Bready to
gon. ENCRYPT will now wait until the staus flag is reset to
*please perform encryption'.

(3.41 ARCHITECTURE Page 32

.., i..-,, ." .. "..-

8/16/84 KGC SECURITY CONCEPTS SYTEK-TR84009

PROCESS will nov release the message by swapping the
descriptor held by BLACK's LDT with a descriptor for the current
message, header and body. If RED filled another buffer in the
interim, the PROCESS task will shoot this over to ENCRYPT. If
there. are no new messages, ENCRYPT will get a null buffer again.

The BLACK domain performs a job similar to RED, except that -
it cannot alter the buffer. The message is released, and any
protocol is handled as necessary. Again, BLACK will alter the
status flag when it in finished, and wait for the flag to be
reset by a new buffer.

If BLACK or ENCRYPT are still busy with the last message
when a new one is ready for them, PROCESS will place that
message's descriptor onto a waiting queue. There must be a wait-
ing queue for both BLACK and ENCRYPT. If we run out of memory,
the RED domain will have to wait for a buffer to free up.

We have to stress the importance of the proper handling of
these buffers. Any mistakes in the buffer passing could comprom-
ise security. The algorithms themselves are not too difficult,
but there is concern that human verifiers may have difficulty
tracing through the Descriptor Tables. Well written code should
support verification, but it has been our experience that the
programmers must have a good understanding of the verification
process to produce code clear enough for high confidence. Any
project using the 286 must take great care in this area.

3.4.1 Problms With The 2B6
A number of problems have been noted so far. We will summarize
these and discuss problems with the 286 in more detail here.
There are five classes of problems with the 286:

* Invisible- *Too Integrated'

Is it designed right? Is it working?

* Invariable - OToo Bad"

You had better like Intel's ideas.

* Inextensable - Too Lonely"

security properties cannot extend to other chips.

* Incoiplete - *Too FewO

Design compromises cause security problems.

* Incomprehensible - gToo Tricky"

Complexity reduces confidence - mistakes can be subtle.

13.4.11 ARCHITECTURE Page 33
.: 1'

8/16/84 KGC SECURITY CONCEPTS SYTER-TR84009

3.4.1.1 Invisible Intel has packed an astounding level of func-
tionality onto a single chip. This has benefits in higher speed
and lover cost. Unfortunately, for the purposes examined in this
paper there are many difficulties caused by the high integration.

We need the highest confidence in the domain machine for our
"'C controller. The verification for many portions of the
software will depend heavily upon flawless operation of the
domain machine. The confidence of the whole system will increase
with testing and analysis of the domain mechanisms.

There is no reasonable method for testing the domain mechan-
isms on the 286. The activity takes place entirely within the
processor chip. There are no external manifestations. If there
were some diagnostic mode on the 286 that would send information
about the domain isolation and mapping activities to pins on the
edge of the chip, we could make a start towards testing the..
domain mechanisms. This would still be uncertain howevet,
because there is no way to tell exactly what the domain mechanism
would be using as it's inputs. The 286 has no such diagnostic
mode, and Intel has no public plans of doing anything like this
in the future.

Analysis of the inner workings of the 286 is also very dif-
ficult. First, the internals of any processor chip are enor-
mously elaborate. The 286 is one of the densest and busiest pro-
cessors being made. Second, the domain isolation section of the
CPU is deeply intertwined with the CPUs processing section. Most
of the major components of the 286 processing section are in some
way connected to and controlled by the domain isolation mechan-
isms. Even if Intel were willing to sell a detailed, carefully
documented picture of the screen used to make the chip, analysis
would be close to futile.

The 286 is Too Integrated.

3.4.1.2 Invariable Intel did their best job at designing the
286. Now it is set in silicon, and will experience only minor
changes. There are a number of characteristics of the 286 which
are not optimal for our domain machine. The next two paragraphs
detail a few of these shortcomings. Undoubtedly, any designer
using the 286 will find other problems. Some things simply can-
not be done. Other things must be done, even if they cause prob-
lms.

Possibly the most extreme case of this is the required use
of privilege level 0. There are a number of things that can only
be done at privilege level 01 flags that must be set and cleared,
modes that can only be altered in that privilege level. Unfor-
tunately, level 0 is very dangerous. There is an "undocumented"
instruction called LOADALL, which allows any task running at
level 0 to bypass the protection mechanisms. One may wish to
simply avoid using level 0, but sometimes this is impossible.

13.4.1.21 ARCBITECTURE Page 34

8/16/84 KGC SECURITY CONCEPTS SYTEK-TR84009

Using other designs, such as the ones presented in the fol-
loving sections, the domain machine might be changed to suit par-
ticular needs of the application.

Xf you don't like the way the 286 was designed, Too Bad.

l.4.1.3 Inextensablz The 286 must be the only intelligence on
the system bus to maintain the security properties. The memory
access controls built into the 286 can only govern the 286
Itself. Because of this the 286 must not be used with any chip
able to perform Direct Memory Access (DMA), with advanced float-
ing point chips that access memory, or with other CPUs performing
slave processing. If the 286 is mixed with other intelligent
chips, some other mechanism must be used to ensure data
integrity.

Just as the processing power of the 286 cannot be extende.
it is also impossible to extend the protection mechanisms. If We
are concerned about the proper operation of the domain isolation,
one reasonable approach is to build another sub-system that per-
forms exactly the same functions, but is implemented slightly
differently. This is called Ofunctional redundancy". The idea
is that the likelihood of the two different implementations hav-
ing the same design error is very small. Unfortunately, this is
impossible on the 286 because of the way the domain isolation is
interwoven with the processing section.

The 286 must be the only processor in the system, so we call
it Too Lonely.

3.4.1.4 t The 286 is both too elaborate in pursuit of
flexibility and too restricting. The design of a general purpose
microprocessor, especially one targeted for such a large market,
requires a series of design compromises.

The I/O scheme built into the 286 is a mess. The only pro-
tection offered to the 256 I/O ports is the I/O Privilege Level
(IOPL) register. The 286 forbids any process operating at less
than the required level cannot execute the special I/O instruc-
tions. The two main problems with this scheme are:

1. The IOPL must be set while in level 0, which is a very
dangerous place to be. Level 0 should be avoided because it
can bypass all the protection mechanisms. Also, any other
entry to Level 0 might change the IOPL.

,72o Any I/0 routine has read and write access to all ports and
4control over the interrupt structure. This will cause a
considerable amount of extra work in verification.

The 286 instruction set is lacking desirable features for
using memory mapped I/O. Block moves to and from a port are not
possible when the I/0 is mapped into the main 286 memory space.

13.4.1.41 ARCHITECTURE Page 35

--" ---" " -"- --:': ":- "- ...:--: i.::- • : : :.:::- :, -:-2: : -,- :-

8/16/84 KGC SECURITY CONCEPTS SYTEK-TR84009

The 286 also lacks modern bit manipulation instructions, which
are useful in many applications besides I/O.

Each memory segment in the 286 has one of four attributes:
Read Only, Read/Write, Execute Only, Read/Execute. It is not
possible to grant Write Only, Write/Execute, or
Read/Write/Execute status to a segment. Of these, Write Only is
the most useful.

Our sample application contains a use for write only
buffers. If the RED domain can only write to the message
buffers, it would not matter if there were information left over
in the buffers from a previous operation. There would be no
requirement on the PROCESS domain to clear buffers before giving
them to RED. This may not seem like a difficult requirement in
our system because of it's simplicity, but if the same applica-
tion were extended to multiple REDs and BLACKs with bidirectionq1
flow (encryption/decryption), the requirement would become more
difficult to prove. The ability to label some segments as Write
Only can be very useful. There are probably applications that
would also benefit from all combinations of attributes.

The Descriptor Tables are dynamically altered by the 286,
even when the domains themselves are static. There are a number
of flags set and cleared in the descriptors themselves by the 286
during normal operation. The location of the descriptor tables
being used is also dynamically determined, as a special register
must be loaded from Level 0 to point to the Global Descriptor
Table (GDT). Because of these two quirks, it is difficult to put
the descriptor tables into RON and execute with a set of domains
determined entirely by the hardware. In fact, all Level 0 code
and any code which locates the descriptor tables in RAM must be
scrutinized before analysis of the domain definitions can even
begin.

The 286 has many fine features, but when it is missinq the
one an application needs we can only say that it has Too Few.

3.4.1.5 Incomprehennibi. Complexity in hardware or software
reduces confidence in the system, because mistakes can be very
subtle and yet tragic. The 286 is extremely complex. One amus-
ing analogy compares the flexibility of the 286 to a car with two
steering wheels -,one for each front tire. It certainly is more
flexible, but who can use such a thing? This is overly harsh
because the flexibility of the 286 can be very useful, but it is
a two edged sword.

* There are two general problems caused by the 286's complex-
ity. First, it is hard to program correctly. This will extend
development time for a secure application, and will likely gen-
erate more errors that the code verification process can only
hope to catch. Second, analysis of the domain structures and
their interrelations are quite difficult. This undermines the

(3.4.1.51 ARCBITECTURE Page 36

8/16/84 KGC SECURITY CONCEPTS SYTEK-TR84009

I APPLICATION I Domain actions and communication,'
I LAYER (SOFTWARE)

I DOMAIN I Restricted access to system resources
I ISOLATION I Controlled inter-domain communications

LAYER (SOFTWARE/HARDWARE)

I PROCESSING I Code execution and data manipulation
I LAYER I (HARDWARE)

Figure 22. Domain Isolation Machine
46

The problem of verifying security properties of systels
structured vith a domain isolation layer can then be divided into
the following steps. First, verify that the domain isolation
mechanism actually implements domains which are isolated except
for the communication paths explicitly specified. Second, decom-
pose the overall security requirements on the system into
requirements on application programs running in separate domains.
Third, verify that the application programs satisfy their
requirements.

In the remainder of this section we will discuss each

4.1 VERIFICATION OF DOMAIN ISOLATION

The essential property which must be proved about the domain
isolation mechanism in that the only interdomain communications
it allows are those which have been specified. In order to pre-
cisely state this property it is necessary first to have a means
of specifying intended communications and second to have a way to
determine the communications which the domain isolation mechanism
allows. The communication map described below gives a method for
specifying intended communications. Some definitions are then
developed which allow a precise statement of the communication
allowed by a domain isolation mechanism. The correctness pro-
perty for domain isolation can then be stated in terms of the
relation between the desired communication map and the communica-
tion allowed by the mechanism.

(4.11 VERIFICATION Page 50

- - - -- - -- - - -1

8/16/84 KGC SECURITY CONCEPTS SYTEK-TR84009

4. VERIFICATION

The purpose of security verification is to demonstrate that
a system meets its security requirements. It has long been
recognized that to make a credible demonstration possible, a
divide and conquer approach is required. That is, the system is
divided into parts which have distinct responsibilities with
respect to enforcing the security requirements of the system as a
whole. Some parts of the system may bear no responsibility for
security enforcement, and hence not require any verification.
The division of the system should isolate the substantive, diffi-
cult to verify properties into as small a portion of the system
as possible.

One way to achieve this division of responsibility is to
consider the system to be layered with each layer implementing an
abstract machine which the next layer can use. This is the idea
behind the security kernel approach to developing general purpose
operating systems. The security kernel provides an abstract
machine on which operating system utilities and application pro-
grams can run. Ideally the security kernel would enforce a secu-
rity policy in such a way that programs using the abstract
machine it creates bear no Lesponsibility for security enforce-
ment. In practice it turns out that some of the responsibility
for security in a kernelized system resides in trusted processes
with specialized requirements.

For small special purpose systems such as a KG controller
there is no natural division into policy enforcer and application
programs such that the application programs have no responsibil-
ity for enforcing security. However, if communication between
application programs is completely unrestrained, verification
will be extremely difficult because of the complex interaction
possible between different parts of the system. The divide and
conquer approach will not be available.

Thus a layered architecture is still appropriate for small
special purpose systems, but the layering is different than for a
general purpose operating system. An appropriate architecture
should include a layer which implements separate virtual machines
for different programs or program groups so that the communica-
tion between the virtual machines is explicitly specified. We
refer to these virtual machines as domains, and we refer to the
architectural layer which implements these machines as the domain
Isolation layer.*

* John Rushby has advocated a similar approach to building
verified systems using a separation kernel to creates regimes
which are analagous to our domains.

(4.]VERIFICATION Page 49

8/16/84 KGC SECURITY CONCEPTS SYTEK-TR84009

" The ANA protection mechanism can surround any group of pro-
cessors or intelligent chips.

" The protection mechanism is separate and visible, so it is -..

available for safety analysis.

" The protection mechanism itself can implemented vith com-
ponent and/or functional redundancy, to guard against
hardware failure and design error.

13.61 ARCH ITECTURE Page 48

.

8/16/54 KGC SECURITY CONCEPTS SYTEK-TR84009

complexity.

Only a few chips are required for the AMA protection mechan-
is. The chip count for any system is moderate.

An ARA design allows any number of processors to be used
together, in man combinations. If more processing power is
needed for an application, more CPUs can be added in. In this
vay, an AMA architecture can far exceed the performance of a 286,
or any other single CPU.

The design of an AMA determines the style of buffer passing
available. This is the main reason to choose dynamic domains
over static domains. If the the speed advantage of passing
buffers instead of copying is required for an application, the
ANA is implemented with some alteration or selection possible in
the AccesL Map.

The ARA seems to be the best of both worlds. In every case,
ANA either is rated as good as the PPD or 286, or the AMA offers
a range of implementations that will satisfy any application with
extra money and effort. We must remember that PPD is one very
simple case of an AMA. It is not thoroughly fair to compare AMAs
in general with PPD architectures.

3 .6 ARCH ITECTME CONCLUS IONS
The Intel iAPX-286 is a significant player in the security arena,
but it does not provide the confidence desired for a state of the
art Key Generator Controller. However, it is in many ways a use-
ful chip, and it may be adequate for some applications. The 286
is a reasonable choice in applications other than the KGC, appli-
cations that don't require as high a level of confidence.

" The 286 is a high performance chip.

" The 286 transfers buffers between domains quickly.

" The 286 is available in off the shelf computer boards, and
will soon be used in commercial systems.

Access Map Architecture (ANA) is one general class of
designs which is superior to the 286. Using an AMA design has
many advantages over using the 286:

* The design may utilize any processor (even the 2861).

* The design can be optimized for the application, increasing
speed or decreasing complexity an desired.

* ANA designs are not inherently expensive, and in fact can be
much cheaper because of their flexibility.

13.61 ARCHITBCTURE Page 47

8/16/84 KGC SECURITY CONCEPTS SYTEK-TR04009

Domain Latch, the Processor Block must reset all internal
resources to some known state. In a simple system, this amounts
to nothing more than saving the current contents of the internal
CPU registers and then clearing these registers. The requirement
is that anything within the processor block that contains state,
,such as high speed cache RAM or slave processors, must be set to
a known state. Many chips will only need their RESET pins tog-
gled to go through this zeroization process.

3.5.4 ANA vs- 299
The following chart summarizes the advantages and disadvantages
to the two systems we have discussed so far.

PPD vs. 286 vs. AMA
...................

PPD 286 AMA

Number of Domains Hardware Software Either

Domain Definition Hardware Software Either

Safety Granularity Fine Course Fine

Software Complexity Low High Medium

Chip Count # of Domains Moderate Moderate

Processing Load Distributed System Load Distributed

Data Flow Buffer Copy Domain Modify Either
(slow) (fast)

The number of domains and the domain definitions can be
determined either by hardware or software on an AMA architecture,
depending on the implementation. Probably the most common imple-
mentation would be a mix of these two. The crucial section is
the Access Map. This map can be implemented with RAM, allowing
total flexibility as on the 286, implemented with an 8 bit latch
manipulating one portion of the Access Map structure, or imple-
mented entirely in ROM for the solidity of the PPD architecture.

An ANA has a Fine safety granularity, because the protection
mechanisms are so accessible and distributed. Any spot where a
single failure can compromise the system, component or functional
.edundancy may be used to increase the safety.

The AMA is listed as Medium software complexity because of
the possible manipulation of the Access Map. Even using dynamic
domains, an AMA architecture is not as complex as the 286,
because the mapping mechanism is straightforward and direct. If
the dynamic domains are not used, the software remains at a Low

13.5.41 ARCHITECTURE Page 46

",.--,.,-,-.,- ." -..-. ,,,'." " ',.,, , ,i..:,-'- 'd :- ,,Iill - " "" " " "" " " - "" * ' "

8/16/84 KOC SECURITY CONCEPTS SYTEK-TR84009

3.5.3.1 Eulti2l Dma" A small, reasonably simple addition to
the Functional Block Diagram turns the generic PPD architecture
into a generic Access Map Architecture, supporting multiple
domains in a single processor block.

" ZERO
"_ _ DOMAIN

DOMAIN LATCH

PROCESSOR D
BLOCK LOCAL 0

BUS A

I
N °

ACCESS MAP

Figure 21. Generic Multiple Domain AMA

There are only two new functions needed to transform our PPD

Access Map Architecture into a multiple domain machine.

1. Zero Processor Block

Any resources within the Processor Block must be reset
to some known state. This usually consists of clearing the
CPU registers.

2. Map Selection

The Access Hap contains a map for every domain. The
Access Map must select the map that applies to the current
domain.

The Functional Block Diagram for the multiple domain Access
.Nap Architecture above shows a Domain Latch which performs these
two functions. The Domain Latch remembers the current domain,
and provides the Access Nap with this information. If the Access
mtp is implemented by a ROM, as above, the output lines from the
Domain Latch are simply treated as more inputs to the RON.

The Domain Latch also sends a Zero signal to the Processor
Block whenever the domain changes. This is a new requirement on
the Processor Block. Whenever a Zero signal comes from the

13.5.3.11 ARCBITECTURE Page 45

. .
-

.

6/16/84 1GC SECURITY CONCBPTS BYTEK-TR84009

3.5.3 Acces Map Architecture (AnA)
The Processor Per Domain (PPD) architecture is one very simple
implementation of a more general design approach we call the
Access Map Architecture (AMA). The PPD provides rock solid
domain isolation without complication by restricting the the
•resources that can be physically accessed by each processor.

The isolation may be physical, as above, or it may be logi-
cal. We can reimplement the dual-port RAM interface using a logi-
cal Access Map instead of a physical Access Map. The processor
in the ENCRYPT domain is given physical access to the system bus,
but it's use of that bus is monitored. If the ECRYPT domain
tries to access any resource except the allowed dual-port RAM,
the system is halted.

The logical Access Map is functionally identical to the phy-
sical Access Map. The question is, can this logical mechanism ie
made as simple and trustworthy as the physical isolation? The
answer is Yesi The simplest Access Map requires only a single,
of f the shelf chip.

The Access Map can be implemented by one
PROM. For simplicity in explanation, let's
assume for a moment that the only system
resources available are the CPU registers and
64K words of memory. When the LOCAL BUS goes
through the Access Map, the 16 address lines
are connected in parallel to the 16 (address)'
inputs of a 64K x 1 bit PROM. The one bit
output of the PROM indicates whether the
memory access is a legal one or not. If the
output of the PROM is ever low# the system
clock is stopped, killing the whole system.
The Access Map never interferes under normal
operation. The Access Map sits by and
observes, making sure that nothing illegal is
attempted. If an anomaly is detected, the
Access Map throws a monkey wrench into the
works.

This example is simplified, but the same procedure can be
followed to monitor more signal lines. The Read/Write,
Data/Code, or Memory/I-O lines can be included as inputs to the
PROM. The memory can be monitored in larger chunks by ignoring
the lower- address lines. Two PROMs can be used if there is a
need to monitor more than 16 bus lines.

13.5.31 ARCHITECTURE Page 44

8/16/84 KGC SECURITY CONCEPTS SYTEK-TR84009

In summary, the PPD is superior for verification and safety
reasons, but due to performance and design restrictions PPD can-
not support some applications which the 286 can support.

3.5.2.1 rianeriaix" Pl The processors in each domain under PPD
are physically isolated from most of the resources. Examination
of the board layout quickly reveals which resources are available
to each Processor Block. The RED and BLACK domains are isolated
from all machine resources except for the single bit SIO connec-
tion to the PROCESS domain. It is physically impossible for RED
and BLACK to communicate directly.

The diagram below shows a Functional Block Diagram of a gen-
eric PPD domain.

PROCESSOR
BLOCK LOCAL

BUS

ACCESS MAP

Figure 20. Generic PPD Architecture

Let's compare Figures 19 and 20:
In Figure 20, the Access Map controls which system resources are
available to the Processor Block. The Access Map represents the
isolation method used on a particular domain. The processor,
U.N, and ROM in the I/O Domains from Figure 19 implement the Pro-
cessor Block shown in Figure 20. The SlO chips (and the lack of
any other bus interface) implement the Access Map.

The Access Map can be implemented in many ways. The sim-
plest is to disable control and address lines leaving the domain.
Imagine if 16 address lines go into the Access Map, but only the
lower four come out - the Processor Block will only share the
lowest 16 bytes of memory with other domains. The dual port RAM
method is an extension of this.

[3.5.2.11 ARCHITECTURE Page 43

- -" - "--' '--""'. '-" ,. '-=:'- '=- ..-:-=........,.,........"..".".....".."...."."..".'."-...........".............."........ '

8/16/84 KGC BSCURITY CONCEPTS BYTEK-TR84009

should be fine for KGCs, and verification of these static domains
is much more convincing.

The safety granularity of the 286 is listed as Course
because almost all of the protection mechanism is included in the
CPU. Strictly speaking, the memory containing the Descriptor
Tables is also a component of the protection mechanism, but it is
very difficult to even double up on the crucial chips (component
redundancy). Component redundancy on the entire protection
mechanism dramatically increases the safety of the system,
because *bit-hits" can be detected. Unfortunately, this requires
duplication of the entire system when using the 286. The 286 is
especially vulnerable to this sort of error, because once a
descriptor is loaded into the 286 registers, it remains unchanged
for an extended period. The results of a single corrupted bit on
a single memory access can be tremendous.

6

The PPD design has a Fine safety granularity, because the
protection mechanisms are so accessible and distributed. Any
spot where a single failure can compromise the system, component
or functional redundancy may be used to increase the safety.

The term Ofunctional redundancy' refers to the reimplementa-
tion of some system component, so that the function is performed
in two different ways. This has all the advantages of component

• "redundancy, and also provides extra protection against design
error. Functional redundancy is possible for crucial portions of
a PPD design (such as the dual port RAM arbiter), but is totally
impossible for the crucial portions of the 286.

The software complexity of the two designs has been dis-
cussed extensively. Listing them as Low and High is generous.

The PPD is not suitable for a system with a large number of
domains. The chip count in a PPD system is not unreasonably high.
The microprocessors can be easily replaced by microcomputers,
eliminating a number of support chips. This would decrease the
chip count for a three domain PPD system to around twice that for
the 286. In a system with many domains, however, the 286 design
remains unchanged while the PPD design increases many times over.

The PPD design is inherently suited to distributed process-
ing, sharing the workload between a number of processors. It is
unreasonably difficult to use multiple 286s in a single system.
(Unless they are used as the CPUs in a PPD Processing Blocki)

The main performance problem in the PPD design is the flow
of data between domains. In the simplest PPD designs, the only
method available to transfer data from one domain to another is
the relatively slow block copy method. This is fine for a KGC
running at a low transmission rate such as 19.2 Kb, but too slow
for higher speeds. The 286 is descriptor based, and can transfer
buffers by changing descriptors.

13.5.2] ARCHITECTURE Page 42

. - - - - - - -

8/16/84 KGC SECURITY CONCEPTS SYTEK-TR84009

in dual port RAM, and then resets the semaphore.

The PROCESS domain then retrieves the encrypted message
body, and sends the entire message out through the SI chips to
the BLACK domain.

• - The BLACK domain buffers up the message sent by the PROCESS

rt on, and then sends the message out through the other port on
t. 6510 chip. The BLACK Processing Block handles the low level

protocol as necessary.

Comparing this with the section on Using the 286 as a Domain
Machine, one can't help but be impressed by the elegant simpli-
city of this design. There are no problems with initialization,
no tricky maneuvering to keep the buffers straight. This level
of clarity affords a marked decrease in the cost and effort of
verification, and a corresponding increase in security conf4i-
dence.

3.5.2 PPD vs- 296
The following chart summarizes the advantages and disadvantages
to the two systems we have discussed so far.

PPD vs. 286

PPD 286

Number of Domains Hardware Software

Domain Definition Hardware Software

Safety Granularity Fine Course

Software Complexity Low High

Chip Count # of Domains Moderate

Processing Load Distributed System Load

Data Flow Buffer Copy Domain Modify
(slow) (fast)

The oumber of domains and the domain definitions under PPD
are determined entirely by the hardware. In the 286 these a-?
both determined by the contents of the descriptor tables. If the
application requires dynamic domain creation and destruction, as
in a general purpose operating system, the PPD architecture will
be inadequate. It is, however, eztrmely difficult to prove the
correctness of a system using dynamic domains. As was mentioned
in the 286 Sample Application walkthrough, the initialization of
domains in the 286 can also be very tricky. Static domains

13.5.21 ARCHITECTURE Page 41

". ".e.. . .,.,.. .d .L--'--...'.......".........................,.......,...........-*,*,', *. ..- , -

8/16/84 KGC SECURITY CONCEPTS SYTEK-TR84009

1. The hardware is static. The domain definition can be deter-
mined without examining the code. The domains cannot be
altered by an "updatedO version of the software.

A2. The hardware isolation mechanisms are accessible to valida-
tion testing. The isolation mechanisms are not hidden
inside some other chip.

-3. The isolation mechanisms can be made simple and obvious.
Simpler designs are resistant to hardware failure. Obvious
designs are resistant to design error.

Two domain isolation methods are shown here. Neither one is
inherently superior. We show both to clarify the concepts
involved. The two most common isolation methods are demonstrated
here, but many other methods can be imagined.

The I/0 blocks are isolated by an SIO channel. The RED and
BLACK Processor Blocks share nothing with the ENCRYPT domain, and
the only connection to the PROCESS domain is a single SIO chan-
nel. If buffer chips are only included in one direction, then
RED can only send over the channel (Write Only) and BLACK can
only receive (Read Only).

The ENCRYPT block is isolated by dual-port RAM. The ENCRYPT
domain and the PROCESS domain share this block of RAN. The
ENCRYPT Processing Block shares no other resources with any other
domain.

3.5.1.1 171n MD an A namain acine The PPD is so simple that
a short walkthrough of our Sample Application as it would be
implemented should adequately describe the use of the PPD as a
domain machine.

On power-up, each domain comes alive under it's own code.
Bach domain waits until it has something to do. Naturally, there
is not much activity until a message arrives.

The message arrives, one byte at a time, into one port of
the RED's SO chip. The RED Processor Block performs the low
level protocols as necessary, and buffers up the entire message.
When the message is complete, RED sends the entire message to
PROCESS's 810 chip.

The PROCESS domain buffers up the message and determines
Ihere the beginning of the message body is. PROCESS then copies
sue body of the message into the dual port RAN that the PROCESS
"domain shares with the ENCRYPT domain. PROCESS then sets a sema-
pbore in dual port RAN to indicate a request for encryption and
waits for ENCRYPT to respond.

The ENCRYPT domain monitors the semaphore. When it is set,
ENCRYPT utilizes the Key Generator to encrypt the buffer residing

[3.5.1.1J ARCHITECTURE Page 40

8/16/84 KGC SECURITY CONCEPTS SYTEX-TR84009

3.5.1 Processor Per Domain (PPD)
This architecture is well described by it's name - Processor Per
Domain (PPD). Each domain in the high level software design is
supported by a separate Processor Block. A Processor Block is
some combination of chips with enough intelligence to perform the
task required by that domain. Typically, a Processor Block will
consist of a CPU, some RON and RAM, and I/O support chips. A
rough block diagram is shown below.

The technique for creating a PPD architecture is easy to
see. The central portion of this figure is very similar to the
figure used earlier in the implementation of the 286 system, *KGC
Hardware Design Using a 286". The difference is simply stated:
A Processor Block has been added for every domain.

There are four Processor Blocks in this architecture, one
for each domain. The central block, resembling the 286 architeo-
ture# executes the PROCESS domain. A block containing a CPO,
some RAN and ROMP and some Serial I/0 (SIO) support chips has
been added on each side. These two Processor Blocks execute the
RED and BLACK domains. There is a fourth Processor Block
separated from the PROCESS block by dual ported RAN. This block
executes the ENCRYPT domain.

I/0 CHANNEL

RO

R
RAM

ENC ROM

CPU

DUAL PORT RAM

Figure 19. Processor Per Domain - Isolation Nethods

The hardware provides domain isolation. The domains are
defined by the resources physically shared by the Processor
Blocks. This is a significant advantage for several reasons:

13.5.13 ARCHITECTURE Page 39

8/16/84 KGC SECURITY CONCEPTS SYTEK-TR84009

built into the chip. Unfortunately, the infrequently documented
instruction called LOADALL can bypass all the protection mechan-
isms from Level 0. This level violates the concept of a domain
machine, and will be a glaring exception to all other rules.

The 286 supports another feature called Requested Privilege
(RPL). The full implications of this feature are as convo-

luted as it's implementation. Roughly speaking, the RPL allows a
process operating at one privilege level to temporarily operate
at a lower privilege level. It is tempting to use this feature
to dodge verification of highly privileged code. One task can
wear many hats, depending upon some variety of variables. Unfor-
tunately, the argument rapidly becomes insubstantial because it
is difficult to trace when and where the process is wearing which
'hat'. Static analyses such as those presented in the verifica-
tion chapter below are rendered useless.

Because of the secretive nature of these little tricks, we
may have missed a few. One can be certain that inventive pro-
grammers will find and exploit any of the little loopholes that
have been missed in this paper. This is perhaps the most damag-
ing statement we make: The 286 is so complex that after studying
the security properties of this CPU for over a year, we cannot
state with certainty that there aren't more problems yet to be
found.

With all the little things the programmers must watch out
for, the chip is just Too Tricky.

3.5 ALTERNATIVE DOMAIN MACHINE ARCHITECTURES
This section will present alternatives to the 286. We will apply
strict requirements to these architectures. To be seriously con-
sidered as a replacement, alternative architectures must solvethe problems identified in the 286 without significantly increas-
ing the chip count or cost. The architecture also must be able
to equal or surpass the performance of the 286.

We will present two complete architectures here. The first,
called Processor Per Domain (PPD), is extremely simple and
secure. Although it is best suited to a limited set of applica-
tions, it's function and design are so clear and indisputable
that the PPD design is very impressive. The PPD design is then
abstracted to show the general principal. This same principal is
then altered to support multiple domains on a block of proces-
sors. A design is then presented that easily and cheaply imple-
ments this new concept, called the Access Map Architecture (AMA).
both the PPD and AMA designs are c')mpared to the 286.

[3.5] ARCHITECTURE Page 38

". ' -. -...-." . . ., -" .-.• . ' , - . . -, , - -., -. .i .. - --- - ..- . , , -. ' .

8/16/84 KGC SECURITY CONCEPTS SYTEK-TR84009

solidity of the domain machine, our motivation for using the 286.
These two problems translate to an increase in cost and a
decrease in confidence.

Figure 18 only shows the main components involved in a task
switch. This is just one aspect of the interrelationship and
structure of domains in the system. These are the basis of the
domain isolation, and so require a perfectly clear comprehension.
The task switch pictured here is actually one of the easier
domain characteristics to map, but this graphically illustrates
the difficulty of one highly important step in verification.

IVW

Figure 18. The Complexity Involved in a Task Switch

Any security conscious application using the 286 will have
to forbid the use of some of the features available on this CPU.
Bow can anyone be sure that nothing was overlooked? How can a
project manager enforce the absnce~. of certain instructions with
the certainty required?

As mentioned before, there are problems associated with
* using the 1/0 ports, and restrictions on the use of intelligent

support chips or multiple processors. These requirements are
fairly straightforward, assuming that the security assurance team
has veto power over the hardware designers. (A rather large
assumption)

2 -rThe software issues are subtler. As with the hardware
Aesign, dn active and highly expert security assurance team may

be able to catch all mistakes. Nonetheless, we consider this to
* be another major failing of the 286.

The use of Level 0 is recommended by Intel frequently in
their otherwise excellent literature for the 286. In a two
privilege level system, Intel recommends using levels 0 and 3.
Of courser Level 0 must be used for certain operations, this is

[-.Si ss ARCBITECTURE Page 37

8/16/84 KGC SECURITY CONCEPITS SYTEK-TR84009

4.1.1 Communication Maps

The explicitly allowed communication between domains can be
represented by a communication map. This map is a directed graph
with domains for nodes and communication paths for edges. For
example, consider a KG controller for encrypting messages entered
at a red interface and sending the encrypted message out a black
interface. In addition, a bypass is included for control infor-
mation. The communication map is shown in Figure 23.

DIRECTED GRAPH

--
I I
I I I I I I I Jl

.--- >I RED I I ENCRYPT I I BLACK I------>I I_______ I---+ I_______ I +--->I_ _____ I I
II" I I

II I I II
I IV_ III I I II
+--->I PROCESS I -----

I KG C
+ ---

Figur. 23. KGC Communications Map

A directed graph can also be shown as a matrix. The communica-
tion map can be represented by a matrix whose rows and columns
are labelled by the domains. A one in position (a,b) indicates
communication is allowed from domain a to domain b, and a zero
indicates no communication is allowed. The matrix representation

"- of the communication map in Figure 23 is given by the MATRIX in
Figure 24. Since this will typically be a sparse matrix, it may
also be convenient to simply list the permissible communications

* using the notation A -> B to indicate communication from A to B
is allowed. For example, the communication map shown above is
given by the LIST in Figure 24.

14.1.11 VERIFICATION Page 51

.•, "+... .L ,,Id .. m
'' '

l ,-,.;la-'e , ,

8/16/84 KGC SECURITY CONCEPTS SYTEK-TR84009

MATRIX Red Encrypt Process Black

Red I 1 0 1 0 1

Encrypt 0 1 1 0 1
I I

Process 0 1 1 1 1
1 1

Black 1 0 0 0 1 1

LIST Red ---------- > Process
---- Process ------ > Encryption

Process ------- > Black
Encryption---> Process

Figure 24. MATRIX and LIST Representations of a Communications
Map

The example above is typical in that there are domains (the
interfaces) such that information can flow from one to the other
but only by going through intermediate domains. Software in the
intermediate domains can control what information is passed. The
black interface domain is relatively isolated from the red inter-
face domain in the sense that information can not be passed
directly from the red interface domain to the black interface
domain. Domains B is absolutely isolated from domain A if there
is no route for information to flow from A to B. These ideas are
formalized below.

4.1.2 Formalization of Domain ISOlation

In order to state what it means for a domain isolation
mechanism to implement a particular communication map, a few
definitions are needed. We consider the abstract machine created
by the domain isolation mechanism as a state machine. A state
machine N can be characterized as a four-tuple, - (V,I,Oinit)
where V is a set of variables, I a set of input ports, 0 a set of
operations, and init is the initial state of the machine. For
each varlable v in V, there is an associated set of possible
values called the type of v and denoted T(v). A state of the
machine is a function s on V such that for all v in V, s(v) is in
T(M). Like variables, input ports have associated types indicat-
ing the set of possible inputs to that port. An input value is
given by a function c on I such that c(i) is in T(i) for all i in
I. Let C stand for the set of all such functions. An operator o
in 0 is a function from SiC to S. This functions determines the

[(4.1.] VERIFICATION Page 52

-i-..................i.....'." -. ".-.."- .".-.........--.... •..........-.-.....

8/16/84 KGC SECURITY CONCEPTS SYTEK-TR84009

new state from the old state and the input value.

We have not explicitly mentioned either outputs or the
determination of the next operation, To keep the notation from
becoming more cumbersome than it already is, we will assume that
among the variables are histories for each output port. Also, we
will assume that the state includes sufficient information to
determine the next operation, denoted next(s).

We can now define a domain. In order to consider the
sequencing of functions it is convenient to consider a next
operation to be defined for the domain A for any state of M,
although this operation will only coincide with the next opera-
tion for N when next(s) is an operation of A. A domain A of N is
a machine together with a next operation function for A satisfy-
ing the following requirements:

1. The variables of A are variables of N.

2. The input ports of A are input ports of M.

3. The operations of A are restrictions of operations of M
which do not depend on inputs or variables outside of A and
don't change variables outside of A.

4. The initial state for A is the initial state of M restricted
to variables in A.

5. When the next operation of M corresponds to an operation of
A, then it equals the next operation for A.

Formally the definition can be stated as:

A domain A of X is a state machine A - (VA, IA , A init) and a
function nextAfrom the set of states of N to 0A such that:
1. vC cv

2. IGI

3. For every o in 0A , there is an o' in 0 such that for any
state s of A, input value c of A, state e' of N with
s(v) - a'(v) for v in V, input value c' of N with c(i) -
c'(i)
for i in 1At o"(s',c')(v) , o(sc)(v) for v in A and
o'(s1 ,c')(v) - s(v) for v not in A. These conditions deter-
mine a unique o' and by identifying o with o' we may simply
say the operations of A are operations of N

4. initA(v) - init(v) for v in A

5. nextA(a) = next(s) if next(s) is in A.

[4.1.21 VERIFICATION Page 53

-- R

8/16/84 KGC SECURITY CONCEPTS SYTEK-TR84009

N is said to be divided into domains Al ... An if

I. V VA1U .. UVAn.

2. I - IA1U ".. UIAn

3. 0 OA U ... UOAn

4. For all J, k with j - k, OAjA OAk" -

If A is a domain of M, the state of A corresponding to
a state of N is the restriction of the state of M to the
variables in A. With these definitions we can now state
what it means for domains to be isolated and then give a
correctness property for a domain mechanism. Domain B is
said to be isolated from domain A relative to a set of
domains D if for any starting state s and any sequence of
operations from domains in D and inputs from D, the result-
ing state of B and the next operation for B are the same as
for the sequence with operations from A removed. B is said
to be locally isolated from A if B is isolated from A rela-
tive to {A,B). B is said to be absolutely isolated from A
if B is isolated from A relative to the set of all domains
of N. The correctness property for a domain isolation
mechanism can now be stated.

The domain mechanism M is correct with respect to the com-
munication map CM if: For every pair of domains AB of M, B
is locally isolated from A if and only if A -> B is not in
CM.

The definition above gives a model of domain isolation.
Since the application programs will typically want to rely on
information about the objects used for communicating between
domains, a natural next step in modelling domain isolation would
be to model domain communication in terms of communication with
respect to particular variables in the state machine.

In practice the approach to verifying the correctness of a
domain isolation mechanism depends on the architecture used for
the mechanism. If the access map architecture is used, most of
the domain mechanism is implemented in hardware. Although
hardware verification has not been extensively studied, the pro-
perties of the hardware which are used for maintaining domain
isolation-are simple enough that inspection would yield a degree
of credibility greater than any currently possible software
verification. The access map would have to be checked to deter-
mine that it corresponds to the desired communication map, but
this comparison would be significantly easier than software
verification.

[4.1.21 VERIFICATION Page 54

S , - -. • .• % . . " -' , . - ., .. . " " ' , .- " .- , ." . , -. , -.- " .' , • , " ." -" - " . • " , " -" ." -" • " • "
•
" • ' -" "

8/16/84 KGC SECURITY CONCEPTS SBYTEK-TR84009

For the IAPX 286 architecture, some software would defin-
itely be required to implement the domain machine. Current
approaches to software verification could be used. In fact the
verification would be a form of flow analysis. However, if the
verification of a domain machine implemented on the IAPX 286 is
to be done to an equivalent degree of detail to that for the

* access map architecture, all the software for the domain machine
would have to be verified at the code level. This is a formid-
able task.

4.1.3 Verification of Aplication Programs

The verification of a secure system built ona trusted
domain isolation mechanism can make important use of the con-
trolled communication provided by the domain isolation mechanism.
The security requirements for the system form a system-specific
security policy which can be formalized as a security model. 0

Because the domain isolation mechanism allows pieces of the
system to be divided into programs running in separate domains,
te policy can be decomposed into requirements for the software
in the various domains. This decomposition must be done in such
a way that the totality of requirements for the various domains
implies the system security policy. A proof that the require-
ments for individual domains implies the system policy must be
part of the system verification. The decomposition may proceed
in such a way that there are no security requirements on the
software in some domains. This software is called untrusted
software. Software in domains where there are some security
requirements is called trusted software, and its requirements
must be verified.

It is useful to return to the example described by the KGC
Communications Map (Figure 23). The overall security policy to be
demonstrated is that no information is passed from the RED input
to the BLACK output except ciphertext and specified control
information. This system requirement will be enforced if the
ENCRYPT domain sends only ciphertext to the PROCESS domain and
the PROCESS domain sends only information received from the
ENCRYPT domain and the specified control information to the BLACK
domain. Notice that the software in the RED and BLACK domains is
untrusted and hence need not be verified.

4.2 VERIFICATION CONCLUSION9

The use of a domain isolation mechanism provides a con-
venient factoring of system verification. In fact if the domains
are used effectively, significant amounts of software will be
untrusted and not need to be verified. The domain mechanism
itself must, of course, be verified. This is a consideration in
the choice of architecture for the domain isolation mechanism.
The simpler the mechanism the easier the verification. If a lim-
ited set of static domains will suffice, a simple hardware

14.21 VERIFICATION Page 55

~~~~~~~~~... --. --. - --- . ---, .. i. ,. -.-..-. ,..../...........-. ,.;....,......-......-..



8/16/84 KGC SECURITY CONCEPTS SYTEK-TR84009

mechanism may be used to create the domain machine. The analysis
of this mechanism will be much easier than verification of
software required for more complex domain machines. An area
which needs further study is a technique for formally stating the
system requirements and domain requirements of typical systems
which might use a domain mechanism. This is necessary to allow -
formal proof that the system requirements have been properly
decomposed; that is, the domain requirements imply the system
requirements.

14.2" VERIFICATION Page 56



8/16/84 KGC SECURITY CONCEPTS SYTEK-TR84009

5. SAFETY ANAL-YR TA

As discussed in the previous section, verification tech-
niques are used to demonstrate that a system operates in a manner
consistent with its security requirements. However, one of the

-assumptions of the verification is the absence of hardware
failures. That is, the verification demonstrates that the system
Is secure when functioning as designed. Hardware failures alter
-the behavior of the system. Generally the system will not exhi-
bit its originally intended functionality in the presence of
hardware failures. For secure systems it would be desirable to
show that the system will not allow violations of its security
requirements even in the face of failures. In practice it will
generally only be possible to show that the probability of a com-
bination of failures which would permit security violations is
acceptably low. In this section we will present an approach to
determining an upper bound for the probability of failuree
resulting in a security violation. We will also give an example
illustrating the application of this technique. However, further
work will certainly be needed to determine the practicality and
usefulness of this technique in the development of real systems.

5.1 Overview of Safety Analysis

The ultimate goal of verification and safety analysis is to
allow the development of systems which can be relied on to meet
their security requirements throughout their lifetime with a high
degree of probability. There are two types of problems which can
allow the system to violate its security requirements. First,
there may be errors in the design and implementation of the
software or hardware. Verification addresses this problem. Of
course, even if formal code verification is used, there are still
some aspects of the systems of operation which cannot be formally
verified with the current state-of-the-art. For example, the
compiler and hardware are not usually formally verified. One
technique which can be used to decrease the impact of errors in
the design and implementation of the system is to use functional
redundancy for critical system elements. That is, the elements
are independently designed and implemented to perform the same
function, both are used in the system, and their operation is
compared to determine any inconsistencies. While verification
and functional redundancy can be used to decrease the likelihood
of residual design and implementation, it is not possible
currently to quantify the probability of errors in the imple-
mented system.

The safety analysis described here is concerned with the
becond type of problem, failures which occur after the system is
implemented. There are techniques for lessening the probability
of such failures or at least reducing the impact of the failures
on security. These techniques include redundancy, special robust
construction techniques, rigorous testing under extreme condi-
tions and simplicity of design. However, in order to determine

[5.11 SAFETY ANALYSIS Page 57



8/16/84 KGC SECURITY CONCEPTS SYTEK-TR84009

which of these techniques should be applied, to what degree, and
to which parts of the system, it is necessary to have a way of
quantifying the probability of a security related failure in the
system. That is the purpose of safety analysis.

The problem of assessing the impact of hardware failures has
been addressed by security fault analysis and by general relia-
bility analysis. The safety analysis described in this section
ts closely related to both techniques. The distinction between
the approach discussed here and a typical security fault analysis
lies in the complexity oi the circuits which are being analyzed.
A system using currently available microprocessor technology is
simply too complex to allow analysis of the consequences of the
failures at the level of discrete devices. Although information
about the probability of failure within a given period of time
can be obtained for integrated circuits, this information typi-
cally says little about the exact nature of the failure. Thus
the system must be analyzed by a technique which can be applid.
at a larger level of granularity than the discrete device level
which has been used in security fault analysis. Safety analysis
differs from general reliability analysis in that certain failure
modes are of paramount interest. The failures of interest are
those which allow some violation of the system security require-
ments.

5.1.1 Definition of Safe System.

The first step in developing a technique to analyze safety
is the definition of a safe system. We can consider a hierarchy
of information compromise properties for communication systems.
Ranked in order of decreasing acceptability these are:

1. Always operates without information compromise.

2. Shuts down or ceases communication if it cannot operate
without information compromise.

3. If compromised, notification is given.

4. Can be compromised without notification.

In practice there will be a non-zero probability of a combi-
nation of faults which results in compromise without notifica-
tion. Thus the definition of safe system must be stated in terms
of a max.mum probability that the system violates its security
requirements. Moreover, since we are dealing with safety
analysis for hardware failures the calculation of probability
Must be in terms of requirements for the hardware. For a given
system there will be several aspects of the operation of the
hardware which are important for security. The types of hardware
failure which are important are those which enaA result in a
security compromise of types 3 or 4 in the list above. As noted .'-
in the introduction some types of hardware failure are more

[5.1.1] SAFETY ANALYSIS Page 58

., .' - .-. ' . . .": ., . . .. .. .-. . " : . . . . , •. -.- ,-.-.- . .. . . L - -.-. L -- • - .-



816/84 KGC SECURITY CONCEPTS SYTEK-TR84009

likely than others to result in significant information comprom-
ise. Thus it may be appropriate to require that the hardware meet
different requirements with different probabilities. The
required probability of meeting specific requirements must be
stated in terms of a period of operation. That is because the
.probability of any possible random event occurring within a given
time interval approaches certainty as the time interval
approaches infinity. We can now state our definition of a safe
system.

A system is safe with respect to-requirement R with proba-
bility P for time T if during operation for a period of
length T the probability that the system does not violate R
at any time is greater than or equal to P. *

5.1.2 Model of Hardware Faults

In order to analyze safety it is necessary to have a model
of the the evolution of a system as faults occur. The approach
used here is the state machine approach. With a given hardware
status the system can be modelled as a state machine. That is,
it can be represented by a set of variables, each of which can
take on values from some set. The current state of the machine
is determined by the values of the variables. The operations on
the machine would be represented by transitions in the machine
state. The state machine approach forms the basis for modelling
systems in some formal specification languages such as SPECIAL
and Ina Jo. For our purposes, we must take into account the pos-
sLbLLty that a fault or intentional reconfLguration will occur
which will change the machine to some different machine. The
ordered pair consisting of the particular machine which currently
exists and its current state forms the overall system state.
Safety analysis then requires that machines be categorized into
*secure' and =insecures with respect to the requirement under
consLdeiatLon. Once this is done, the next step is to calculate
the probability of reaching the insecure region.

Figure 25 shows this model of safe systems in its most gen-
eral form. Each circle represents a particular machine. The
arrows represent possible migration paths from one machine to
another. With each such path there will be an associated proba-
bility representing the likelihood that the transition
represented by the arrow occurs. In some instances the probabil-
ity of moving to another machine may be dependent on the state of
the current machine. For example, the system may be built so
that certain states automatically trigger a shutdown. In this

* The definition could also be stated in terms of a minimum
requirement for the mean time M until requirement R is
violated. For a typical system the two forms of definition
would be interchangeable in the sense that for a given value
of K there would be values of P and T such that the two
definitions are equivalent.

15.1.21 SAFETY ANALYSIS Page 59

° o o ... - . -..o . .. .. .. . -. °..o ° ° ° ° . . . . . - - . ° - °-° ...- °. .



8/16/84 KGC SECURITY CONCEPTS SYTEK-TR84009

case, the machine would move to the 'shutdown' machine. The
dependence on the current state of the machine is represented by
the broken lines dividing some machines into multiple state
regions.

Pj

INECRE SECUREREIO

Figure 25. Model for Quantifying Safety

The correct determination of secure and insecure machines
depends on the absence of design and implementation errors
affecting security. Finally, the probability of occurrence of a
particular kind of failure in a component is frequently difficult -,.
to determine. Thus, in general it will be necessary to overstate
the probability of reaching an insecure machine. That is, pre-
cise calculation of the probability of reaching an insecure state
will not generally be possible. However, if the analysis yields
an upper bound for the probability which falls in the acceptable
range, the system will have been shown to be safe for the partic-
ular requirement.

5.2 Apication of Marko, Chains

The evolution of machines in the presence of hardware faults
can be considered a stochastic process. A stochastic process has
a set of possible states which the process can be in at any given
time. Stochastic processes can be divided into continuous sto-
chastic processes and discrete stochastic processes depending on .-

whether the process to observable at any time after some initial
ime or observable only at specified times. Although a hardware
ult might occur at any time, it is reasonable to only consider

the state of the system at discrete times. The interval between
times can be made small enough that the behavior of the system
only matters at these discrete times. For example, the time
interval could correspond to a clock cycle although a larger time
interval may simplify calculations. The advantage of considering
the transition from one machine to another as a discrete

[5.23 SAFETY ANALYSIS Page 60



3/16/84 KGC SECURITY CONCEPTS SYTEK-TR84009

stochastic process is that it much easier to calculate properties
of a discrete stochastic process. A discrete stochastic process
is characterized by the set of possible states and probabilities
for each observation time indicating the probability that the
process will be in a particular state at the next observation.

i In general the probability of being in a given state i at - -

time t + 1 may depend on the entire history of the process up
through time t. However, an important special case of stochastic
processes is the Markov Chain. A Harkov Chain is a stochastic
process in which the probability that the process is in state i
at time t + I depends only on the state of the process at time t.
The sequence of system states in our analysis of safe systems is
a Narkov Chain. The significance of viewing the sequence of sys-
tem states as a Markov Chain is that there are well known methods
for calculating the probability that a Markov Chain reaches a
particular state in a given amount of time. This will allow thl
computation of the probability of reaching an insecure state, and
hence determination of whether the system is safe.*

Since the probability that a Markov Chain is in state j at
time t+l depends only on the state i of the system at time t, the
probabilities can be arranged in a matrix. Let p(i,j) represent
the probability that the next state of the Markov Chain is j
given that the current state is i. If there are n states, these
probabilities form an nxn matrix called the transition matrix.
(See Figure 26.) The individual probabilities are called transi-
tion probabilities.

There Is precedent for this approach in a 1bmewhat different
context. The observation that Narkov Chain analysis could be
applied to the measure of probabilities of types of system -
failures was made on the Software Implemented Fault Tolerant
computer project. (See Vensley et. al., "SIFT: Design and
Analysis of a Fault-Tolerant Computer for Aircraft Control,*
Proceedings of the INEE, Vol. 66, No. 10, October 1978.) In
that project the focus was on correct computation of flight
control functions rather than secure operation.

15.21 SAFETY ANALYSIS Page 61

* * - * * -. .. . ~ :.,. #



8/16/84 KGC SECURITY CONCEPTS SYTEK-TR84009

States s .o., Sn

Transition probabilities Pj

Transition Matrix Pll ... Pln

* S

* S

* S

] S

Figure 26. Markov Process

In order to use Markov Chain analysis, it is necessary to
determine what the states of the Harkov Chain will be. Of
course, ye could consider each possible system state to represent
a different state for the Markov Chain. This would mean that the
state of the Markov Chain would consist of an ordered pair with
the first element a machine resulting from the initial machine
changed by some sequence of failures and reconfigurations, and
the second element the execution state of that machine. The
problem with this selection of states is that the number of pos-
sible states is too great to permit analysis.

As a result the states must be considered at a larger level
of granularity. Instead of considering the exact nature of the
machine resulting from failures, it is sufficient to consider the
current machine to be characterized by the components which have
failed. The execution states can also be grouped together. Typ-
ically all that will be important about the current execution
state is the configuration, for example whether the system is
shutdown, has its external communication disabled, or is in a
full functioning mode. Thus the states of the arkov Chain can
be considered as ordered pairs of the form (failure set, confi-
guration). The choice of components is important in the practi-
cal application of this approach. Since any failure of a com-
ponent must be considered as the worst possible failure from the
point of view of security, components which are too large will
cesult in an overly pessimistic calculation of the probability of
reaching an insecure machine. In order to make the calculation
of the transition probabilities easier, it is desirable to pick
components whose failure is mutually independent.

15.2] SAFETY ANALYSIS Page 62



8/16/84 KGC SECURITY CONCEPTS SYTEK-TR84009

Even with this aggregation of system states into states for
the Markov Chain analysis there still would be so many states
that the computations required for the determination of the
safety of a system would be very difficult. Fortunately, in par-
ticular instances it is possible to group the states even
further. This is best illustrated with an example.

5.3 Rafety Analysis Riample

Consider the system shown in Figure 27. In this example
system a single CPU accesses memory through an access map which
divides the memory into domains. The domain changer records the
current domain and resets the CPU when the domain is changed.
For robustness the domain change and access map are duplicated.
If the CPU tries to access memory outside of the current domain,
the access maps signal a violation. The outputs of the two
access maps are compared and a violation signal from eithev
access map causes the comparator to prevent the memory accesS.
If only one map signals a violation, the system is shutdown. We
will analyze the safety of this example with respect to the
domain isolation mechanism.

DOMAIN

M~V PUCOMPARE violation

reset

Figure 27. System Diagram with Component Redundancy

(5.31 SAFETY ANALYSIS Page 63

+ "~ ~~~~~~ ~ ~~~ ' ,. - .- .. . .+ : .. .- . .. 
, 

.... 
= , , .- ,." ... . m . i + ' . . . . ." "



3/16/84 KGC SECURITY CONCEPTS SYTEK-TR84009

5.3.1 Cmaet

We now need to consider the 'components' of the system. A
Eailure of any part of the CPU other than the reset mechanism can
mot result in a violation of domain separation. Hence we do not
med to consider the CPU as a component here. In addition to the
aosponents of the system drawn in Figure 27, we must consider a
memory failure which causes a write access to one memory location
Lo modify another location or a read access to one memory loca-
tion to depend on another memory location. A failure in either a
domain changer or its associated access map will have the same
effect of making unreliable the calculation of whether the memory
address requested is in the current domain. Hence we can con-
sider the combination of a domain changer and an access map to be
a single component for our analysis. The probability of failure
of this combined component can be calculated in terms of the pro-
bability of failure of its two individual hardware entities. %e
will refer to the combination of an access map and domain changer
as a domain mechanism. The list of components to be considered
then is:

* Domain mechanisms

* Reset mechanism

* Comparator

* Memory (addressing)

* Shutdown mechanism

5.3.2 attes of the Markov Chain

Since there are six components, there are 2 6 = 64 possible
sets of failures. There are two configurations, shutdown and
operational. The result is 2*64 - 128 states for the Markov
Chain. Fortunately, a preliminary analysis allows many of the
states to be grouped together. Since we are interested in the
probability of reaching an insecure state, we can group all the
insecure states together. A failure of the comparator, the
memory address mechanism or the comparator yields an insecure
state unless the system is shutdown. If both the domain mechan-
isms fail, the system is insecure. Because of the symmetry of
the example system, a failure of either domain mechanism is
equivalent. Finally, if the system is shutdown, the system
behavior does not depend on the failure set. We will consider
Shutdown as a single state. Thus the preliminary analysis yields
Niz states: no failures, failed domain mechanism, failed shutdown
mechanism, failed domain mechanism and shutdown mechanism, system
shutdown, and system insecure. We will denote these states by
nf, di, sin, di-sm, shutdown, and insecure respectively. The next
step in our analysis is to calculate the 6x6 transition matrix.

15.3.2J SAFETY ANALYSIS Page 64



.

K

8/16/84 KGC SECURITY CONCEPTS SYTEK-TR84009

5.3.3 Transition Matrix

The calculation of probabilities for the transition matrix
must be based on standard data which will be available for
hardware components. The information we will use in this example
Is the rate of failure for the components. Data about failure
rates is typically available in the form of mean time between
failures. With the assumption that the failure rate a standard
exponential distribution, this data can be converted into a fig-
ure for the probability of failure in a fixed period of time. In
particular the time can be chosen to be the unit of time selected
for transitions of the Markov Chain. We will use Pi] to denote
the probability of failure of component i in unit time.

Several of the 36 values in the 6x6 transition matrix can be
quickly determined. We will make the assumption that once a com-
ponent has failed it can no longer be trusted and hence will Ve
considered failed from that time on. This means, for example,
that P(dmnf) - 0 because the fact that the first state has a
failed domain mechanism means the domain mechanism must be in the
failure set in the next state as well. The only exception to the
rule that no components are removed from the failure set is the
case where the system is shutdown. In this case components will
be repaired or replaced before the system is re-activated. As a
result the next state will certainly be the no failure state.
The row of the transition matrix corresponding to the shutdown
state will have a 1 in the no failure column and 0 in other
columns. If the system is in the insecure state we will assume
that it remains insecure in the next state.* The row of the tran-
sition matrix for the insecure state will have a 1 in the column
for insecure and 0 elsewhere. P(nfshutdown) - 0 because the
system will not shutdown when all components are working prop-
erly. If the shutdown mechanism has failed, we will make the
conservative assumption that the system can no longer shutdown.
If more data is available about the nature of failures of the
shutdown mechanism, the data could be used instead of this
assumption and the calculations would be more precise. All
assumptions have been made to overstate the probability of reach-

* Ing the insecure state.

After this preliminary analysis, the transition matrix can
be written in the form shown in Figure 28.

* In fact, if we are only interested in the probability that
* the insecure state is reached, it makes no differences what

probabilities are used for moving Ito other states from the
insecure state.

1 (5.3.3] SAFETY ANALYSIS Page 65



8/16/84 KGC SECURITY CONCEPTS SYTEK-TR84009

1021- (1 - pliJmj) + P2ImIJ + Plzm2, + + PINmNJ,
. mzj -(1 - p,,m) + p~amij + pz2m~j + ."+ p,,m,

M ( - P3JmJ) + P3I m IJ + p32 m2j + + P3NmNj.

* mNJi (1 - PiPJJ) + PI maj + p, 2 m2 j + + PX)v mvi .

Figure 28. Computation of Mean First Passage Time

There are 14 entries which must be calculated from information
about the failure rates of components. Most of these can be cal-
culated from the probability of failure in unit time, FLU. For
those entries which depend on the probability of reaching the
shutdown state we must use a value for the mean time between
accesses to memory. The smaller this value, the less likely the
system is to reach the insecure state instead of the shutdowp
state in the event of failures. This is an example of An
instance where a simple self test, attempting a memory access
during a prolonged idle period, can increase the safety of the
system. The probability F' [il of failure of component i in the
mean time between memory accesses can then be calculated from the
MXTF for components.

5.4 Calculations with Narkov Chains

Once the transition matrix has been determined, standard
techniques can be used to calculate the probability of reaching
the insecure state in a given period of time. Alternatively, the
transition matrix can be used to calculate the mean time to reach
the insecure state.

The entry P(i,j) in the transition matrix T gives the proba-
bility of going from state i to state j in one unit of time. The
probability of going from state i to state j in k units of time
can be easily determined from the kth power of T. The (i,j)
entry of T-k is the probability that if the Markov Chain is in
state i at time t, it will be in state j at time t + k. The pro-
bability needed to determine the safety of a system with respect
to a particular requirement is the (nf,insecure) entry of T~k
where nf indicates no failures (the initial state) and k is the
length of time from the definition of safety given in units of
time used for the Markov Chain.

The mean time to reach the insecure state can be calculated
b using-the concept of mean first passage time. The mean first
pasage time from state i to state J, denoted m(i,j), represents

e mean time required to reach state j starting in state i. The
u(irj) can be computed from the entries in T by using the equa-
tions given in Figure 29. For a fixed j, there are n linear
equations in n unknowns where n is the number of states in the
Narkov Chain. The value of interest for safety is
m (nf, insecure).

[5.41 SAFETY ANALYSIS Page 66

.. ........



8/16/84 KGC SECURITY CONCEPTS SYTEK-TR84009

nf dm sm dm-sm shutdown Insecure

no_fallure Pnf nf Pnf dm Pnfm Pnf On m 0 Pnf Insecure

domain imechanism 0 Pdo dm 0 Pdm dn-smn Pdm shutdown Pdm Insecure

shutdown mechanism 0 0 -Psm Pdm sm 0 Psm Insecure

donain and shutdown 0 0 0 Pdm-sm d-sm 0 Pdm sm Insecure
mechani sims

shutdown 1 0 0 0 0 0

Insecure 0 0 0 0 0 1

Figure 29. Transition Matrix

For the large time values of interest in the calculation of
safety the probability of reaching the insecure state at a given
time will approximate an exponential distribution. As a result
the mean time to reach the insecure state can be calculated
directly from the probability of reaching the insecure state in a
given period of time and vice versa.

5.5 SAFETY CONCLUJS ION

This section has introduced a technique for determining an
" upper bound for the probability of security compromises as a

result of hardware failures. Application of the technique will
* certainly identify useful refinements. However, certain conclu-

sions can be drawn which will be valid for any analysis of safety
* with respect to hardware failures.

It is important to choose a reasonable level of granularity
for the analysis. The safety analysis described here does not
dictate a particular granularity. The choice of components can
be optimized for the particular application. In general, com-

* ponents which are too large will result in an overstatement of
the probability of a security failure. The result will be that
It Is impossible to demonstrate that the system meets its safety
.equirements. If the components are too small, the analysis will
be too complex to be practical.

The need to be able to choose reasonable components for the
analysis puts some demands on the architecture chosen. If the
architecture makes use of devices which integrate important

[5.5] SAFETY ANALYSIS Page 67

. . . .. . • . • • . . • , .. . . . . .



8/16/84 KGC SECURITY CONCEPTS SYTEK-TR84009

security controls with other complex functions, it will be diffi-
cult to get information about the failure characteristics of
those portions of the device which implement the security con-
trols. The failure rate of the device will be the only available
measure of the robustness of any portion of the device. The only

.choices are to do a detailed determination of the failure charac-
"teristics of the security relevant portions of the device or con-
sider the entire device as a component in the safety analysis.
The first option will be impractical for most modern microproces-
sors. The second option will yield a measure of failure proba-
bility which will be too high for some very critical application.
Thus, just as software verification places some constraints on
the structure of verifiable programs and their implementation
languages, the need to damonstratl safety puts some constraints
on the architecture of a system. Of course, the separation of
important security functions onto separate devices is not only
useful for demonstrating safety. An architecture which uses
separate devices for security functions also allows for a more
credible demonstration that the functions are correctly imple-
mented.

Finally, the safety analysis must be closely coordinated
with the design and implementation verification. The verifica-
tion process must include identification of those properties of
the hardware which are required for the verification. This is
the first step in determining which hardware requirements must be
subjected to safety analysis.

15.5J SAFETY ANALYSIS Page 68

. °

- . . . . . . . .. . . . . . . . . . .- •

-. : ..,, -.. .-.-,.,,,-:. :...- ,,.. n,. :..,..u :.... ,.-a,,,-,i -,,,,. . ,,;,:,.,,;,. . .. . . . ., .. .. ....... . .-..... .. .- .-. .... ..-.. .,.. ....- ,...



8/16/84 KGC SECURITY CONCEPTS SYTEK-TR84009

6. FINAL CONCLUSIONS

This study investigated how the three disciplines of architec-
ture, software verification, and security failure analysis could
be applied in a mutually supporting manner such that the result-
ing microprocessor based controller could be attested to provide
the level of security and reliability needed for correct opera-
tion. We successfully achieved this goal. We formulated safety
and verification techniques for analyzing the correctness and
reliability of secure communications equipment. We identified
the domain machine and isolation kernel as an architectural
approach for building secure communications equipment to which
the above techniques are applicable in practice.

6.1 fUJTURE STUDIES
We can now identify several avenues for future study. Each of
these should take up where this paper leaves off.

* Further Work in Safety Analysis

This new science needs significant work on techniques
and tools. Safety analysis needs development of the general
approach and further definition of the different types of
failures. The ideas presented here demonstrate the possi-
bility of such an analysis, but the data needed for evalua-
tion is either unavailable or in some unusable form.

• Linguistic Constructs for Security Specifications

The very best efforts in architecture, safety, and
verification will fail if the Security Specifications for an
application are imprecise or misstated. The current state
of the art is to construct formal models of english specifi-
cations. The models are exact, but the step from a formal
model to an english description is long and unsure.

• Design of a Security Chip Set

The Access Map Architecture is simple enough that fully
functional, high performance systems can be put together
today. However, the basic concepts can be used to guide the
development of VLSI circuits combining significant power
into single chips without making the 286's mistakes. For
example, a two chip set implementing a powerful Processor
Block and a flexible, straightforward Access Map could be
designed that allows validation of the protection mechan-
isms, functional and component redundancy, and high speed
performance.

This paper shows how orchestrating architecture, verifica-
tion, and safety will deliver the confidence required for a KGC
utilizing high speed, low cost microprocessor components. As the
work and study continues, so will the benefits continue.

[6.1] FINAL CONCLUSIONS Page 69



S

S

S

S

S

FILMED
L

S

7-85
S

I

S

DTIC
S

S

...........................................................
....................

................ .


