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Null Synthesis With Phase and Amplitude
Controls at the Subarray Qutputs

1. INTRODUCTION

As the microwave spectrum becomes more and more crowded with users,
interference rejection techniques become increasingly necessary. One way to re-
duce the interference is to generate a null in the antenna pattern sidelobes in the
direction of the interference. It is possible to form these nulls for a phased array
antenna by adjusting the phase and amplitude of the signals received at each element,
L.arge arrays require expensive hardware or a lot of time to form the nulls, In
contrast, the nulls can be formed quickly if there are receivers or correlators at
every element. Normally, this equipment is not part of the antenna and must be
add. d at considerable cost. On the other hand, forming nulls by ''searching" for
the best phase and amplitude settings avoids the expensive equipment, but takes
considerable time to form the nulls.

One way to reduce either the amount of extra hardware or the time to form the
null is to control the signal characteristics at the subarray output rather than at

the individual element outputs, 1.2 Often a large array is divided into subarrays

(Received for publication 18 September 1984)

1. Chapman, D.J. (1976) Partial adaptivity for the large array, IEEE Trans,
Antennas Propag., AP-24:685-696.
WMAAAA~

2, Morgan, D.R., (1978) Partially adaptive array techniques, IEEE Trans.
Antennas Propag. AP-26:823-833,
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in order to place time delay units at the subarray outputs. Arrays sometimes
need time delay units to receive wide bandwidth signals properly. Time delay
units are very expensive and bulky so they are usually not placed at every element
in the array. Thus, only the subarray outputs receive a true time delay. Subarray
outputs also offer convenient locations to put controls that modify the signals to
generate nulls in the far-field pattern, Fewer signals to control implies either
less hardware or less time needed to form nulls. These advantages make sub-
array nulling very attractive.

The problem of antenna pattern distortion due to subarray nulling is well known,
Reducing the number of signal controls in the array in turn reduces the amount

control over the far-field pattern, This report illustrates why that distortion occurs.

2. NULL SYNTHESIS

This section explores the limitations to forming nulls with phase and amplitude
controls at the subarray outputs. Figure 1 is a linear array divided into M con-
tiguous subarrays of N elements per subarray. Each array element has a beam-
steering phase shifter. For the purpose of this analysis, the phase shifters are
assumed to be set for maximum gain at boresite. The amplitude weights corres-
pond to an amplitude taper, such as a Taylor distribution. In addition, a phase
shifter and time delay unit appear at the output of each subarray. Since the main
beam is assumed to be at boresite, then all the time delay units are set at zero and
can be ignored in the analysis.

Equation (1) gives the far-field pattern of a linear array of M subarrays and
N elements per subarray.

M N

F(u) = Z (l+am+j8m) 2 a

exp(jkd__ u) (1)
n m
m=1 n=1

m n

where

1+ a + iB m- adjusiable complex weight at subarray m
a = amplitude weight at element n of subarray m
k = wave number = 27/
A = wavelength

d = distance in A from center of array to element n
in subarray m

u = s8in 8

= direction from boresite
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Figure 1. Linear Array Divided Into Subarrays

Ideally, the antenna forms a null in the direction of interference. In other
words, F(u ) = 0 when u_ is in the direction of an interference source and
g=1, 2,... Q. The nulls appear in the desired direction when the complex weights
at the subarray outputs (written here in real and imaginary form) are set at the
proper values.
If nulls form in Q desired directions then3
M N

) ) i ): . =
mz=:1 (1+ a + JBm n2=:1 ann exp(.]kdmn uq 0;9=1, 2, ... Q (2)

M N
2

M N
e = 3 hn eXpiikd uq) + :EI (o + JBm\ n; 3 n exp(Jkdmn uq) =0

(3)

3. Haupt, R.L. (1983) Nulling With Limited Degrees of Freedom, RADC-TR-83-114,
AD A132276.
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exp(jk drn uq) .

m=1 n=1 n m=1 n=1 T8 n
(4)
Equation (4) represents a set of equations with M unknowns. Consequently, the
equation may be written in the matrix form AX = B where
N N ]
_Z an, exp(jk din ul) N Z: ayp e*pkdy ul)
n=1 n=1
A = :
= N N
_Z a exp(jk dln uQ) 2 aMn exp(jk dMn uQ)
n=1 n=1
[ a4 jB
1 1
X = .
am + 3B m
M N ]
- a exp(jkd u,)
m=1 no] mn mn 1
B -
>
- 2 a exp(jkd u.)
m=1 n=1 M0 mn Q
- —

X has 4 unique solution when Q = M. Usually, though, Q < M and several
different values of X satisfv the equation AX = B. Small values for the complex
weights will disturb the faur-field pattern less than larger values. Thus, of the
many possible values for X, the best results occur from minimizing 23(012 + B 2).
Solving AX = B while minimizing the complex weights gives4

x =AM aah s (5)

4. sShore, R.A., and Steyskal, Hans (1982) Nulling in Linear Array Patterns With
Minimization of Weight Perturbations, RADC-TR-82-32, AD A118695.




where éT is the transpose conjugate of matrix A. Solving Eq. (4) in matrix form
form gives the following values for the elements in the complex matrix X:

N
a_ = ‘z‘: Z 8n (Yq costkdug)+ Z sinfed )] 6)

uMz

Q
ﬁm=§

amn [Zq cos(kd uq) - Yq sin(k dmn uq)] . (7

The variables Yq and Zq are elements of a complex array W given by

w=(aah s, (8)

Figure 2 shows the quiescent far-field pattern of a 24-element array of isotropic
sources spaced 0.5 A apart and having a uniform amplitude distribution. Figures 3a,
4a, and 5a show the results of nulling with an interference source at 8° and with 24,
8, and 4 subarrays, respectively. As the number of subarrays decrease, the
distortion to the antenna pattern increases. The increase in distortion is not

significant, though.
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Figure 2. Quiescent Far-Field Pattern of a Twenty-Four
Element Uniform Arrayv
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Figure 3. Placing a Null at 8° With Twenty-Four Subarrays.
(a) Far-Field Pattern, (b) Cancellation Beam Superimposed
on Quiescent Pattern

Problems with pattern distortion occur when the null is formed outside of the
subarray mainbeam pattern. A subarray pattern is the far-field pattern of an indivi-

dual subarray with its peak centered at 0°. Although the amplitude tapers for each
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sub  ravare different, their beamwidths are about equal because they are all the
same size. The null-to-null beamwidth BW of a uniformly illuminated array with
N elen nts spaced 0.5 X apart is given by
7
o e o e g,
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Atz eNULL the peak of the cancellation beam is the same height as one of the first
grating lobes. Beyond this angle the grating lobe gain becomes larger than that of
the mainbeam. Figure 14b is an example where the cancellation beam main lobe
and first grating lobe gains are nearly equal. They would be the same level at
GNULL = 20.9°.

One final point worth mentioning is that the distortion would be greater in the
neighborhood of a null in the subarray pattern. The amount of distortion would
improve when the null was place. in the same location as the peak of a subarray
pattern sidelobe. For instance, a null placed at 38° with eight subarrays produces
considerably more distortion than a null placed at 60°, The null at 38° is close to
the null in the subarray pattern while 60° is almost at the peak of the subarray
pattern sidelobe.

4. CONCLUSIONS

This report illustrates theoretically the pattern distortion problem associated
with subarray nulling, The amount of distortion to the far-field antenna pattern is
inversely proportional to the gain of the subarray far-field pattern. Thus, sub-

array nulling near the mainbeam produces little distortion. On the other hand, the

distortion increases dramatically when the null is placed further from the mainbeam.
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The relative levels of the subarray pattern at the array factor mainbeam loca~
tion and some grating lobe locations are given in Table 1. Also the relative levels
of the cancellation beam at these locations are given. The subarray pattern and
the cancellation beam have the same relative difference between them at the
locations listed. This proportional difference results from the product of the array
factor and the subarray pattern that leads to the cancellation beam.

Table 1. Comparison of the Relative Power Level of the Cancellation Patterns
and Subarray Patterns

Relative Relative
Mainbeam and Levels* Levels
Null Number of Grating Lobe of Cancellation of Subarray Associated
Location Subarrays Locations Pattern Pattern Figures
8° 8 8° -15.6 dB -18.6 dB 7, 4b
33.8° -28.4 -31.4
21° 8 21° -24 -22.2 7, 10b
20. 8° -23.9 -22,1
38° 8 38° -26.5 -38.4 7, 14b
-3.8° -46. 3 -18.2
8° 4 8° -15.6 -14.6 8, 5b
-11.5° -18. 8 -17.8
-33.8° -27.6 -26.6
21° 4 21° -24 -34.8 8, 11ib
1.5° -1.3 -12.1
-20, 8° -25.1 -35.9
38° 4 38° -26.5 -32.6 8, 15b
18.5° -31.5 -37.6
-3.8° -6.5 -12.6

*
in dB relative to the peak gain of a uniform array of 24 elements.

The relative levels of the subarray pattern and cancellation pattern at the array
factor mainbeam and grating lobe locations gives an idea of how much the antenna
pattern will be distorted due to nulling. Look at the figures associated with the
entries in Table 1 and see how the far-field pattern distortion relates to the sub-
array pattern. The lower the level of the subarray pattern in the direction of the
desgired null, the greater the pattern distortion becomes when the null is formed.

A conservative estimate of the angular limit of subarray nulling is given in
Eq. (11)

6 yuLp = *0-5 sin”! (1/(Nd) . (11)
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Placing a Null at 21°
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Figure 15.
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Figure 14. Placing a Null at 21° With Eight Subarrays.
(a) Far-Field Pattern, (b) Cancellation Beam Superimposed

on Quiescent Pattern
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The problem of pattern distortion associated with subarray nulling is due to the
grating lobes in the array factor. As the array factor's mainbeam moves away
from boresite, the product of the array factor's mainbeam and subarray pattern
decreases. In addition, the first grating lobe begins to move inside the subarray
pattern's mainbeam. Consequently, the peak of the cancellation beam reduces in
size while the grating lobe becomes larger in size. Adding the cancellation pattern
to the quiescent pattern creates a null in the direction of the cancellation pattern's
main beam, but causes distortion to the pattern in the direction of the grating lobe.

Consider what happens when a null is placed in the antenna pattern with eight
subarrays. The three-element subarray pattern is shown in Figure 7. From the
above discussion, one would expect little distortion to the antenna pattern when
nulling at the peak of a sidelobe between 9° and 15°, because the cancellation
pattern's grating lobe is less than the cancellation pattern's main beam. Between
15° and 30°, the cancellation pattern's first grating lobe grows and gradually be-
comes larger than the cancellation pattern's main lobe. From 30° to 40°, the
cancellation pattern's grating lobe is significantly higher than its mainbeam.

Figures 4a and 4b show the results of placing a null at 8°, Figures 14a and 14b
result from a null at 21°, and Figures 10a and 10b result from a null at 38°. Note
how the cancellation pattern's mainbeam grows smaller as its grating lobe grows
larger when the null moves further away from boresite. This increase in the can-
cellation pattern’'s grating lobe corresponds to the increase in distortion to the
nulled pattern.

A similar analysis is possible with the four subarray example, except the
amount and location of the distortion changes. Since the subarray pattern (Figure 7)
has a much narrower main beam, distortion becomes more of a problem as the null
moves away from boresite. This fact is evident in Figures 5a, 15a, and 11a. The
corresponding (b) parts of these figures show the change in the cancellation beam's
main lobe and grating lobe.

The amount of distortion to the antenna pattern may be estimated from the loca-
tion of the grating lobes, the subarray pattern, and the height of the quiescent side-
lobe before nulling. Below is a list of the grating lobe locations for the 8-element
array factor and 4-element array factor. These were calculated from Eq. (10) and
can be seen in Figures 12 and 13.

8 elements - x41.8°

4 elements - +19.5°, +41.8°, £90°,

16
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3. CAUSES OF FAR FIELD PATTERN DISTORTION

Far field pattern distortion caused by subarray nulling limits its use. The
limitations are fundamental and do not depend on the technique that generates the
nuils. This limitation is best illustrated by examining the cancellation beam that
adds to the quiescent pattern to form the null. Equation (3) is written in the form

QUIESCENT PATTERN + CANCELLATION PATTERN = 0

at the desired null location. The nulling technique forms a cancellation pattern
that has the same amplitude, but is 180° out of phase with the quiescent pattern at
the interference location. Adding the two patterns together produces a null in the
direction of the interference.

The cancellation beams that produce the adapted patterns in part (a) of Figures
3, 4, 5, 9, 10, and 11 are shown in part (b) of those same figures. When the array
is fully adaptive (24 subarrays), the cancellation beam has one peak and no grating
lobes. Grating lobes do not enter real space in the array factor because the
elements are spaced 0.5 A apart. Since the element pattern is isotropic, the can-
cellation pattern and array factor are identical.

When the array is divided into subarrays, it may be considered as an array
of M elements spaced NA /2 apart. Each array element, or subarray, now consists
of N isotropic antennas. The subarray patterns appear in VFigures 7 and 8. Ad-
justing the phase and amplitude of the signals at the subarray outputs does not change
the subarray patterns; however, controlling the subarray output signals can modify
the array factor. Figures 12 and 13 show the quiescent array factors for M = 8 and 4,
respectively. The array factors have grating lobes because of the large element

(subarray) spacing. Grating lobes appear at the angles

8 =+ sin ! |x/Nd] (10)
where
x =1, 2, 3

d = element spacing .

14




60 NI ¥3M0d 3AILVYIN

AZIMUTH ANGLE IN DEGREES

SOLID LINE IS QUIESCENT PATTERN
DASHED LINE IS CANCELLATION PATTERN

€0 NI ¥3M0d 3AILv13d

AZIMUTH ANGLE IN DEGREES

Cancellation Beam Superimposed

Placing a Null at 38° With Four Subarrays.

(a) Far-Field Pattern, (b)
on Quiescent Pattern

Figure 11.
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Figure 9. Placing a Null at 38° With Twenty-Four Subarrays. . )
(a) Far-Field Pattern, (b) Cancellation Beam Superimposed e
on Quiescent Pattern )
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equally in all directions. Figures 6, 7, and 8 show the subarray patterns super-

i ,‘T“’ N

imposed on the quies -nt pattern for N= 1, 3, and 6 elements. If our initial ..-‘ :
premise of nulling inside the subarray pattern produces less distortion than nulling .
outside the subarray pattern is true, then an interference source at 38° should

produce more distortion than one at 8°. The distortion should not change for the

24 subarray case because the subarray pattern is isotropic (see Figure 6), How- By
ever, the 8 and 4 subarrays cases should show a marked degradation. »

5 [ ]

a b -
z -

o 1 .
" b
g -

Y ] i
a .

5 =
4 1
] -

g ,
- L_kd ]

og
AZIMUTH ANGLE IN DEGREES

s

Figure 6. Far-Field Pattern of an Isotropic Element
Superimposed on the Quiescent Pattern

Figures 9a, 10a, and lla are the resulting patterns after placing a null at 38°,
As predicted, when there were 24 subarrays, the amount of distortion did not
change when the interference location moved. Because the interference location
moved outside or nearly outside the subarray pattern, the amount of distortion to

the far-field pattern increased substantially. The next section offers an explanation
of this distortion phenomenon,
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Figure 5. Placing a Null at 8° With Four Subarrays. (a) Far- g
Field Pattern, (b) Cancellation Beam Superimposed on .
Quiescent Pattern .
BW = 2 sin 1(2/N) . (9) F
The null -to-null beamwidths for three and six elements are 84° and 39° re- -
spectively. An isotropic element has no null-to-null beamwidth because it radiates D
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