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address indices in the compact MLG data arrays. The data values for each object are stored at a location
(i,j,k) in the MLG such that the X positions of all the objects increase monotonically with index i. the Y
oositions increase monotonically with index j, and the Z positions increase monotonically'with index k. Such
a well-structured mapping from the real positions to regular, compact data arrays can always be found.
Further, when object motions result in a local violation of spatial monotonicity, another MLG always can
be found nearby. This means that local changes in the object positions and hence spatial ordering do not
trigger global changes in where these object data are stored in the MLG. r-

The data relocations required to maintain the MLG as objects pass~eacli other in space can also be
vectorized efficiently. The MLG algorithms will execute effectively in small array processors and partition
to take advantage of asynchronous parallel architectures in VLSI/VHSIC-based supercomputer systems of the
future. Using a commercially available distributed processing system, 5000 interacting objects could be
monitored and the MLG data base updated and rest-uctured thousands of times in about 15 minutes, fast
enough to be useful for real time applications as well as physics simulations.
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A VECTORIZED "NEAREST-NEIGHBORS" ALGORITHM
. OF ORDER N USING A MONOTONIC LOGICAL GRID

"SECTION I. INTRODUCTION AND BACKGROUND

When N independent objects interact in space, N(N-1)/2 interactions

might be important in determining how a given object reacts to the others at

- any instant. Usually exact positions and velocities of the neighboring

objects must be known. Knowing statistical averages and the general

properties of the distribution of objects nearby does not provide enough

data to compute local interactions, accurately. At any instant -a given

* object may interact strongly with only a few of the others., Unfortunately,

keeping track of or repeatedly recomputing which ones are near neighbors is

"computationally expensive. The goal is efficient, simtle algorithms which

Sselect the nearest-neighbors without a computational premium scaling as N2 .

"•ffort on the nearest-neighbors problem has persisted in computational

physics and computational geometry for several decades. This report

introduces an efficient 3D'nearest-neighbors algorithm whose cost scales as

N, and which vectorizes easily using contiguous memory locations.

An efficient'vector solution of the nearest-neighbors problem would

* advance many important applications. For an important class of molecular

"dynamics problems involving interactions 'among many atoms and molecales, the

nearest neighbors exert the strongest forces and are the most likely

candidates to enter into chemical reactions.. Many important physics

"problems in gases, liquids, solids, and, transitions among these phases

. ' require detailed' manybody calculations where the close encounters are most

important,

"-.Manuscript approved February 19, 1985.
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For graphics based on vertex-edge representations of complex 3D shapes,

- local relationships and orientations of nearby vertices determine which

surfaces are visible. It is clearly advantageous to be able to construct a

12D image of a complex 3D scene, for example, using the parallelism made

"possible by Very large-Scale Integration (VLSI). Terrain management

simulati.on models and multi-dimensional radiation transport models are

currently limited in their ability to compute geometric obscuration. For.

controlling airline traffic over crowded airports, collisions with nearby

planes are the most Immediate danger'- and demand shorter timescales -for

* detection and corrective response. Consider a related scenario for

futuristic battle area management. A one-pass engagement against many

- thousands of high-speed opponents requires fast redetermination of nearest

neighbors to ensure effective retargeting in real time. These applications

"* all require rapidly updating many distinct local configurations as tne

* objects move.

- . For complex manybody problems with N = 5000 independent objects, more

than thirty thousand of degrees of freedom are required,.and IZ.5 million

interactions exist which ideally ought to be considered. Current

supercomputers deliver "50 Megaflops (million floating point operations per

. second) on optimized but realistic problems., The straightforward

, recalculation of all interactions requires about 60 vectorizeable operations

per interaction. or 10 - 15 seconds of dedicated supercomputer time. This

is not fast enough for real' time applications where the data base should be

updated and the neighbors rer!.culaten every second or two.

* 2



This report introduces a simple three-dimensional nearest-neighbors

algorithm whose cost scales as N, not as the square of N, and which

vectorizes easily, using data from contiguous memory locations. A compact

data structure to store the object data, called a Monotonic Logical Grid

(MLG), is defined dynamically so that objects which are adjacent in real

space automatically have close address indices in the MLG data arrays as

well. As two objects move past each other in space, their data are

exchanged or "swapped" in the MLG data arrays to keep a strictly monotone

mapping between the geometric locations and the corresponding storage

location indices.

To construct an MLG the data values for each object are stored at

location (i,j,k) in the MLG such that the X positions of all the objects

increase monotonically with index i, the Y positions increase monotonically

with index j, and the Z positions increase monotonically with index k.

Section. 11I describes the algorithm in some detail.

It is not obvious but it is true that such an organized lugical

ordering of even random locations can always be found. In Section III an

order N log N constructive algorithm for one such ,MLC is provided proving

existence. Generally more than on2 MLG meeting all the monotonicity

conditions seems to be po3sible so the technical problem of selecting the

optimum %MLG for a particular application has to be addressed. TI one case,

minimizing average distances to, neighbors in the MLG may give the best grid.

In other problems it may be best, to maximize, the shortest distance to any

point which is not a near neighbor in the logical grid.
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Further, when object motions result in a local violatiod of the

- monotonicitv conditions on which the original 4L. was based, another MLG can

be found nearby. This means that local changes in the object positions and

hence spatial ordering do not trigger global changes ."nrwhere these object

data have to be stored in the MLG. The data relocations to maintain the MLG

as objects pass each other in Space can be veciorized without inefficient

* gather/scatter op~rations or variable-length (scalar) linked lists. The MLG

"data structure and algorithms allow contiguous-data vector operations which

are long enough to be efficient for physical force sums, fdr F = Ma otbit

integrations, and for the object data "swapping" used to restructure the MLG

whenever the monotonicity conditions are violated.

The cost to execute a simple test version of the model is one hour on a

DEu VAX 11/780 for one thousand particles for 1000 timesteps. We used a

power series force law for the 124 nearest neighbors, assuming that the

average particle separation distance is smaller than the cutoff radi-is

IR of the force law. A commercial distributed processing system, a

. minicomputer host with modest array processors, would be fast enough using,

an MLG to integrate 5000 Interacting objects and restructure the data base

. thousands of times in about 15 minutes, useful for'realtime applications

"where current supercomputers using other algorithms will be inadequate. The

4 MLG also permits partitioning to take advantage of asynchronous mult -

processor paral. alism in VLSI/VHSIC-based distributed processing sys ems

(e.g. Fox and Otto, 1984).

* The computational costs of several algorithms and combinations )f

algorithms which. have been proposed to reduce the cost of finding nearest

neighbors are discussed in Section II. Section IIt contains a description

4,\\ .. , .



of the MLG itself, an O(N log N) sort algorithm to find a starting MLG from

arbitrary iniial data, and simple algorithms which restructure the grid

dynamically as the objects move. Section III also presentn a few simple

tests of the method. Section IV considers several extensions. Section V

ccntains a summary and conclusions.
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SECTION II. THE CCMPUTATIONAL COST OF FINDING NEAREST NEIGHBORS

As described in Section I, brute force recalculation of all the

'interactions can be vectorized but is of order N2 and therefore costly. The

"best nearest-neighbors algorithms publishe&, Hockney and Eastwood (1981),

are of order N witb minima] operation counts. However, these O(N)

* algorithms are intrinsically scalar and execute relatively poorly in

. parallel or pipeline-architectured supercomputers. Further, memory is

addressed essentially at random so data buffering from disk or virtual

memory for a large Problem is time consuming.

in the next few paragraphs the computational costs of simple strategies

* tc reduce the nearest-neighbors problem are compared. The assumed operation

counts are only representative values since optimal implementations are

always machine and problem dependent (Gunsteren; et al., 1984). There are

3 too many possible algoiithms and variations to compare all of their

* operation counts. It is even harder to compare scalar and vector

"- algorithms, something we would like to do in theory here but which can

really only be done in -practice. As a rule of thumb, efficient use of the

vector hardware in supercomputers or array processors generally produces

" over an order of magnitude speed up over reasonably well compiled scalar

code. In §ome cases the vector speed-up factor will be greater and in

others, less.

For problems where the number of near neighbors is large so the

computational cost is dominated by the physical interaction calculations

rather than computational book-keeping to find the near neighbors, the

algorithm introdiced here calculates two td three times as many interactions

as minimally necessary.- This is accepted as the price for simple logic

6
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and vectorized computation in contiguous memory. This means that a computer

whose vector speed is only a few time.-. 'the scalar speed may see no

improvement over the H-ckney-Eastwood PPPM techniques. In computers wbere

the vector-scalar ratio is large, an order of magnitude improvement with an

MLG is at least conceivable. More substantial gains are possible in highly

parallel multi-processor systems because the MLG algorithms partition

naturally.

Let Not -60 be the total number of floating point operations

(flops) used to evaluate each interaction between'two of the N 5000,

objects. The main component of the c-st for a timestep will be

4 Flops to compute all interactions Fcai

= N x (N x N ot)/2 (2.1)

= 7.5 x 108 flops' 15 seconds/qten at 50 Megaflops.,

Manybody calculations which compute all interactions have become

prohibitively expensive with even a few hundred objects because thousands of

timesteps are required' for complex problems. The operation count per

timestep goes up quadrati-'lly with the number of partizles N but the

effective resolution only increases as the .cube root of the ntviber of.

particles. This scaling of cost with at least the sixth power of resolution

is prohibitive. If the number of timesteps also has'to be increased when

more qbjects are simulated, the scaling can be even worse. This brute force

O(N2 ' algorithm is of interest because it vectorizes and~partitions easily

and is exceedingly simple.

'Reduction of this computational expense is obtained by computing the.

details of the interactions only for pairs of objects closer than a cutoff

distance.Rc.' This basic nearest-neighbors concept takes its most

7 '



sophi'sticated form in the "Particle-Particle-Particle-Mesh (PPPM) algorithms

D :H:oknev and Eastwood '98 1). Faster algorithms and data structures for

implementing this nearesc-neighbor. approximation have been the subject of

much computational research in the last few decades.

Checking two locations to see if they are within a distance R c of

each other requires about Noc 10 floating point operations. Nine or

ten flops are raquired simply to calculate the square of the distance

between the two objects and then compare it with the square of R .

To calculate the physical forces and sum them for each interaction pair

separated by less than Rc requires

N .= N - N = -50 floating point operations (2.2)O1. Ot oc

per interaction. This would be enough operations to calculate, for

example, a simple force law with transcendental functions or to estimate a

collision cross-section. If Nnn - "60 neighbors must be considered for

each object, our formula for the number of flops to compute near

interactions is

# Flops to compute near interations, Fcni

N x (N/2 x N N <ý N ) (2.3)"oc, nn oi

1.4 x 103 flops , 2.8 seconds/step ;t 50. Megat.lops.

Using the concept of a cutoff radius R' has reduced the operation count

by over a factor of five. Just checking all the inter-ction distances

requires appreciable time when N 5000 and Noc is a'modest fraction of

Noi. The computational cost still scales as N2 and the factor of five

speedup shown above is largely illusory as it ignores the cost of organizing

.08



the reighboring object data into contiguous vectors for efficient

computation of the physical interactions. If this were not done, the

Sinteraction calculations would have to be performed as scalar operations.

It would be worth organizing these vectors if enough objects interact with

each other on average but this further optimi-zation would be wasted if the

average particle separation distance were bigger than Rc.

In practice tl~e Nnn near neighbor variables have to be gathered

into vectors, costing about Ngv 50 flops per neighbor per object.

The vector lengths are also shorter, engendering some additional overhead.

Thus a more accurate estimate of Fcni is

# Flops to compute near interactions Fcni

.= N •(N/2 xN nn (N • No)) (2.4)
oc nn 'gv oi

= 1.75 x 103 flops 3.5 seconds/step at 50 megaflops.

Reducing the number of nearest neighbors used does not help much as long

* as cutoff radius checking is being done ,for all possible inter-actions. In

fact, as long as this is done, it hatdly hurts to double the number of

neighbors kept for calculating the interactions. Clearly, too much time is

spent checking interaction distances which are'too large to be significant.

It is natural to consider updating the lists 'of near neighbors less

U often. If the (N)selection of near neighbors is only done every

"Nse "2.5 cycles, the cost for this portion of the algorithm-is

reduced. However, there are additional costs and Nsc cannot be very

large. The nuamber of near neighbors has to be augmented to allow for motion

of particles near R. into and out of the cutoff region. This increase is

roughly t-e same as the re intive volume change due to particles moving into

g s



"and out of the sphere of radius R during the Ns0 steps between

"recomputation of the near neighbors lists. Let an average particle travel a

small fraction f of Rc per timestep. The sphere of near neighbors will

increase in volume by a factor of "( + f < Nsc)3 in the Nsc

until the neighbor lists are updated. When the sphere has roughly doubled

in volume, a radial change of 25%, the lists must be. updated since most of

the. neighbors w.ll have changed. Thus, with f 0.1

N .25/f = 2.5 (2.5)

sc

ahd Nnn must be multiplied by (I + f Nsc )3 = "2 in the above formula to

-give

0 # Flops. to intermittently recalculate neighbors Fir

* - N x (N/2 x N ocIN c + Nn x 2 A (Ngv + N o)) (2.6)

S1.1 x 108 flops + 2.2 seconds/step at 50 megaflops.

kAthough the N2 search is a factor of 2.5 less important, counteracting

* ** . effects eat up some of this gain. If f were reduced to 0.01, probably

reasonable for molecular dynamics simulations, some additional gains could

be realized. However, these would be better by less than a factor of two

because the cost is now in computing the near interactions as it should be.

- In other applications, however, there would not necessarily be a need to use

the short timesteps' required by physical simulations such as molecular

dynamics.
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"The only way to avoid.the N2 premium is to update the nearest-neighbors

list of each object using objects in a volume larger than would be required

for an interaction cutoff of Rc but much smaller than the entire system.

Hockney and Eastwood define a PPPM "chaining mesh" where dX dY =

dZ = Rc and check distances to objects known to. be in only the nearest 13

= (33 - 1)/2 cells. Only these particles might be within Rc of a particle

in the chaining cell under consideration. On average, only about 40% of the

particles in these 13 cells are actually within Rc. Taking L as a typical

system.dimension, there are Ncc = N (Rc/L) 3 particles in each of the

PP•M cells. The number of cutoff distance checks performed in a timestep is

then

f PPPM checks = N x 13 x N . (2.7)
cc

In the PPPM formulation, when Rc is twice the average spacing, a typical5c
particle has its distaný= to 104 other nearby particles checked (13 culls x

8 particles per cell). The corresponding number in the MLG would be 62 if

all interactions within two grid displacements in any direction are kept.

This nominal factor of two gain in the.MLG approach is lost again because

all the interactions would be calculated to maintain vectorization rather

than only 40% as possible with the scalar PPPM algorithm. The real gain is

"the. ability to use efficient, contiguous memory, vector operations

throughoutthe MLG algorithms and to cleanly partition the probleminto

computational s~btasks..

-. 1



The operation count for the overall MLG algorithm developed next

in Section III is also problem dependent.' Using typical simulation

variables summarized in Table 2.1 below, the cost of the MLG in vector

floazing-point operations to execute a timestep, exclusive of the rela-

tively inexpensive orbit calculations, is

i Flops for the Monotonic Logical Grid algorithmi Fmlg

= N x (N x N for neighboring object interactions (2.3)

nn o

+ 3 x Nsi x Nos) for swapping iterations in X, Y, Z

= 2.25 x 107 flops + " 0.5 seconds/step at 50 megaflops.

Here Ns = 4 is the number of iterations of vector swapping' performed

over the entire grid to restructure the MLG after the object positions

change each timestep. Nos = 60 is the number of floating point oper-

ations to execute a single 3wap of two objects in the MLG. In the next

section the concepts and details of the Monotonic Logical Grid Algorithm are

presented.

12
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Table 2.1. Typical Values of Manybody Simulation Variables

N 5000 = # of objects interacting in space

N = 60 = # operations per vector swap in MLG algorithms

N = 4 = average # of vectorized swapping iterations to
si

relocate object data in the MLG

4 N .= ~60 = # of near neighbors usually included in the inter-
nnl

action calculations

No = 0 # of flops to check distance between two objects

oc

I N0 . = 50 # of flops to interact two objects

N ot 60 = # of flops total to compute an interaction

N = 50 = equivalent #,of arithmetic flops to gather
gv

neighboring object data from random locations

•.•i"in memory

'Nt2.5 # of steps between recomputation of the nearest-

neighbors lists in scalar algorithms

SN s M of objects in the average cell of PPPM chaining

mesh.

1
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III. THE MONOTONIC LOGICAL GRID ALGORIT1M

4A Monotonic Logical Grid (MLG) is a simple, compact way of indexing and

storing the data describing a number of objects moving in space. For N

particles in three dimensions, the arrays of object locations, X(i,j,k),

"Y(i,j,k), and Z(i,j,k), constitute an MLG if and only if

X(i,jk) < X(.i+l,jl) for 1 < i < NX-1,

Y(i,j,k) < Y(i,j+1,k) for I < j K NY-I, and (3.1)

Z(i,jk) < Z(i,jk+i) for I < k < NZ-1.

Given N = NX*NY*NZ random locations, the spatial lattice defiiued by an MLG

is' irregular. However, the cells defined by logically neighboring locations

are distorted cubes and thus form a useful consistent partitioning of the

spatial volume. Wh'cn the N object locations satisfy Eqs. (3.1) and any

additional constraints or relations specifying ot er than infinite-space

boundary conditions, they are in "MLG order". This ordering is useful

because the direction for going from one object to another in space and in

the MLG are the same. Furthe'r, other objects which are betwe.o two objects

in space will also be between them in the MLG. Thus neighbors in real space

have neighboring address indices in the MLG as well.

. Figure 3,,1 shows three different spatial configurations of 16 object's

"in the lower three panels. The objects are ordered into four rows' and four

""columns' in each of these configurations corresponding to regular storage of

the object data in the two-dimensional MLG shown above. The cells of the

HLG move with the objects and thts always have exactly one object in them.

When all the objects move to the upper left of the region, as in the

" lower right panel, the, MLG is Just as regular as when the objects

"14
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are uniformly spaced. This mapping of irregular locations onto a very

regular data structure is what permits optimal use of vector and

multiprocessor hardware.

Figure 3.2 illustrates several different MLG mappings of the same 16

object locations. The upper left panel shows the 16 locations in a regular

spatial lattice. The obvious numbering of the locations into four rows of

four objects each is an MLG because the X and Y components of all the object

locations (dots) increase monotonically with the X and Y indices, i and j.

In the remaining three lower panels the locations have been displaced from

the regular spacing. Each of these panels contains the same data, but the

MLGs for storing these data, as indicated by the logical mesh lines, all

differ. The lower left panel is a recognizeable distortion of the regular

grid above. The indexing of the objects would be identical in both cases

although the actual data stored would differ somewhat since the objects have

moved away from their regular locations. The lower center and lower right

panels show different logical indexing for the same physical data giving two

other Monotonic Logical Grids (MLGs). In the center the connections to

points in the second roQ frow aboe and from-below have all been displaced

to the left. On the right, the connections to the second column from

objects located logically in columns one and three have been displaced

downward.

These figures show that there can be a number of MLGs with the same

Lagrangian object data, all satisfying the required monotonicity conditions

from Eqs. (3.1). These spatial monotonicity conditions constitute

3N - NXxNY NYxNZ - NZxNX numerical comparisons which can be performed to

determine if a part cular organization of the object locations is in MLG

15



orde r. For each dimension of the desired data structure such a monotonicity

condition can be defined.

4 In space the coordinates can De rotated or redefined and this

corresponds to a different family of MLGs. The monotonicity conditions may

* not change in the new coordinate system but the object location coordinates

will. Even if the coordinate system is held fixed, the object motions will

quickly invalidate at least some of the relations (3.1) requiring a

reorganization of the object data in the arrays to store a completely

monotohe mapping.. Using the monotonicity conditions, a given data structure

can be checked efficiently to see if the locations are in MLG order.

- However, additional algorithms are needed when MLG order is violated.

* If the objects are not in MLG order, the following algorithm using a

vector sort routine O(N log N) can be used to rearrange them. First sort

"- all N locations into the rrder of increasipg Z. The first NX x NY of them,

'should be indexed k 1, and sorted into the order of 4ncreasing Y. The

first NX of these, should, be indexed j I and then sorted into Lhe order of

increasing X. These objects are indexed from i I to i = NX. The next NX

locations, indexed j - 2 but still k - 1, are again ordered and indexed from

- i I to i NX. This procedure is continued until the first NX x NY plane

of locations has been arranged. Since the locations were initially ordered

Sin Z, the subsequent reorderings within the k I plane cannot disturb tbh

"mootonicity conditions relating the first 'plane to aniy subsequent

recrdering of the second and subsequent planes. Similarly, all the

locations will satisfy the monotonicity conditions in Y and X as well.

Once the first plane is ordered, the next NX x NY locations are indexed

* k 2, and the MLG ordering within this plane is constructed just as for the

* fitst plane. All NZ planes are organized this way. The process requi.es of

"order

"' ~16
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NZ x NY x NX x (log NZ + log NY + log NX)

+ NZ x (NY x NX x (log NY + log NX) + NY x NX x log NX) (3.2)

N NZ x , x NX x (log NZ + 2 log NY + 3 log NX)

operations to construct the MLG. This sort algorithm could be repeated

every timestep as necessary to restructure the MLG when object motions in

one of the three coordinate directions cause some of the conditions (3.1) to

be violated.

fThe existence of this constructive algorithm proves that at'least one

MLG for even random locations always exists and that it is not hard to find..

As a consequence, data manipulation and summation algorithms in the MLG can

always assume the rigorous soatial monotonicity of the MLG.o When several

object locations are identical, any ordering the sort procedure comes up

with is correct as the conditions (3.1) are satisfied. Locally degenerate

grids are possible when several locations overlap.

Although this algorithm is fast, it has two limitations: it is of order

IN log N, not N, and it may move data a long distance in index space to

correct even small changes in position. To counter these objections, an

order N algorithm is described which executes local but \,ectorizeable

* .exchange or "swapping" operations on the MLG data to restore monotonicity

everywhere. The extra factor log N is removed because small monotonicity

upsets from the previous see of locations generally do not require

information from the other side of the grid for their correction.

If two objects move less than a typical separation distance per

timestep, a condition generally required for accurate integration of the

equations of motion, a few iterations are usually enough to restore MLG

order. 'A "swap" is executed by testing the conditions in-Eqs. (3.1). and
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then, when the corresponding monotonicity condition is viclolted, exchanging

the locations in the logical grid of all data pertaining to the two objects

Sinvolved. Each direction is checked separately. A red-black algorithm

.(Adams and Jordan, 1964) would allow at least half the tests in a given

direction to be performed simultaneously and thus vectorized while

converging as fast as a scalar iteration.

1No more than five aritnmetic operations are required to test for

monotonicity and to piepare to swap any amount of data. A floating point

0.5 is logically "or"ed with the sign bit of the coordinate difference to

obtain a number S which is 0.5 if the'two coordinates are in MLG order and -

0.5 if they are not. This takes three operations. Two mote operations give

the weights-w and (1 - w) where

w = S + 0.5, (1 - w) - S - 0.5. (3.3)

The height w is unity when the coordinates are in order and zero when they

. are not. If the test X(i,j,k) < X(i+1,J,k) is being performed, the X

components of tne object locations can be exchanged using the following

formulae (six operations):

- T(i,J,k) - w x X(iJ,k),

U(i,jk) - (-w) X X(i,jk), (3.4)

"x(i,J,k) T(i,j,k) + (1 - w) x X(i+1,J,k), and

X(i+l, - w x X(i+l,jk) 'U~ i jk)

* When the locations are in "MLG oader, the swapping fozmulae change 'iothing.

"When two locations are out of order, these formulae interchange the object

data on the MLG so they will be in order tor the next iteration. All object

. data at every grid point can be treated identically with this procedure.

* .*** .,. ,,,..



* The algorithm vectorizes easily even though some of the pairs of objects

have to trade piaces in the MLG and others do not.

I These six operations mvst be repeated to swap each data variable stored

in the MLG. As a minimum these include the three components of the object

locations and an identification number, ID#.(i,j,k), to mark which of the N

- particles currently is at i,j,k in the MLG. To vectorize the complete

algorithm, the velocity ctmponents VX(i,j,k), VY(i,j,k), VZ(i,j,k), the mass

* M(i,j,k), and another force law constant FC(i,j,k) must also be moved about

dynamically. These nine variables require 54 operati ons to-be moved between

adjacent cells for each swapping iteration. Thus Nos - "60 operations are

required for each iteratio.: in each direction for each object. This is

about as much work as cdIculating. three components of the force act!ng

between two objects which are near neighbors in the MLG. With Nsi - -4

swapping iterations being performed in each direction, the total cost of

restoring the MLG every timestep is about the same as calculating forces

from 12 neighbors. When timesteps are short, this can be. reduced even

further.

When the-MLG algorithm is used, the cost in vector floating-point

operations to execute the geometric and force summing in a timestep is. given

by Eq'. (2.8). The speedup expected using this algorithm is large',afactor

greater than thirty for 5000 objects. Not. only is the N2 dependence removed

*but the actual nearest-neighbor interactions can be computed with very high

Sefficiency, comparable to the best order-N scalar algorithms. Only about a

fifth of the computation is expended on maintaining the MLG data structure.

The rest is used in computing pairs of interactions at full vector

efficiency.
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The random motion of point narticles in a cubical domain is taken as a

test pioblem to illustrate the coacepts. A topologically regular 8 x 3 x 8

3D grid is defined for storing the position and velocity components of 512

randomly located objects. The domain is doubly periodic in X and Y and is

bounded in Z by two reflecting end walls at Z = 0 cm and Z Z 8 dZ..
max

A number of short calculations have been performed using this system to test

"* and develop various aspects of the model. Figure 3.3 shows the first of

eight planes of this 3D MLG, plotting the X and Y locations of the 64

*objects currently on that plane. The initial conditions for the calculation

are shown in -he upper right, regularly-spaced locations with random

velocities uniformly distributed in each coordinate from -_07 cm/sec to +107

* cm/sec. The three remaining panels show plots of the 64 locations in tLe

same MLG data plane at three times. As the objects move in che plane and

Sbetween planes, a complicated but clearly structured IILG is always

I maintained.

Under a number of different physical circumstances and numerous

* different initial conditions the model has been able to find an MLG after

*only a few swapping iterations. The average near-neighbor separations

increase' somewhat at first over their almost minimal initial values. Rather

"" quickly, however, random 'swapping halts the increase of this average

distance 'o the near neighbors. Figure 3.4 displays the frequency

"" distribution for the'number of swapping iterations required to restore the

-. MiLJ. after relative motion of.the objects has disrupted it. Three cases were

run from the same physical initial conditions and zero-sized.non--colliding

particles, wiLh timesteps St 2.5 xIO-16 sec, 1.0 x 1 0-15 sec, and

2
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4.0 10-15 sec. The lightly shaded bars in Figure 3.4 correspond to the

intermediate case with I0-15 sec as the timc;tep. For this case dlmax .1A

meaning that the fastest particle traverse 1/iO of the regular initial -

spacing of A 10-7 cm per timestep. The data with unshaded bars,

dl .025 A, sho 3 the results when St is smaller by a factor of four
max

and the data depicted with dark bars shows results when St is a factor of

four larger, iie. dl a .4A.
max

To interpret the figure consider dl 0.1A. About 40% of the
max

timesteps (frequency 0.38) required 4 iterations of swapping to restore the

MLG. Less than 10% of the timesteps required 6 or more iterations. The

average number of iterati'cns required is 4.0 for dlmax O.IA. When

d! m 0.025A, the average number of swapping iterations is 2.85, aboutmax

2/2. When dl = 0.4 A, the average is 5.0 swapping iterations per
max

timestep. Thus Lhe actual computational work decreases per unit integration

time with longer timesteps because the number of swapping iterations

increases much more slowly than the timestep increases.

A great deal of swapping goes on in the first few iterations out to the

average number for the particular timestep chosen. For timesteps with

relatively large numbers of iterations 1, the likelihood of this extra work

being required decreases by a factor of two or three for each extra

iteration. These timesteps requiring a relatively large amount of work

contribute very little to the average computation load needed to restore the

MLG because they occur so infrequently.
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In test calculations, with nonzero particle size, forces were

calculated between a given object and the 5 x 5 x 5 cubical nearest

neighbors interaction template of 125 neighboring objects centered on it in

the •fLG. Since the interaction has to be computed only once for a pair of

objects and can be ignored for self interactions, the tests had the

'following number of near neighbors

N = (5 x 5 x 5 - 1)/2 = 62 "60. (3.6)

When many objects are within the cutoff distance Rc, the interaction

template should be extended, perhaps to 7 x 7 x 7. An appreciable fraction

of the forces calculated will be beyond' the cutoff distance but th•is extia

work is compensated by the factthat all the work can now be performed by

vec. r operations working, from contiguou. locations in the computer storage.

This gain is typically ai; order of magnitude or more-in speed and is still

worthwhile even if a factor of two or three is wasted calculating

unnecessary interactions.

When objects are far apart compared to the cutoff radius Rc, only the

13 neighbor interactions from the 3 x 3 x 3 interaction template need be

considered. This number 13 is, the same as the number of chaining cells

which have to be considered in Hockney's PPR4 data structure to find all

objects within the cutoff radius Rc. Figure 3.5 shows a schematic

rendition of these different interaction templates. Only the half of the

template with index offset larger than zero has to be considered since all

-interactions with object3 having a lower storage address 'index will have

been calculated previously. As shown, shells of interaction can fe defined

which will correspond approximately to neighbors at-different physical

distances. The J6 neighboring nodes indicated with .grey squares form the
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closest shell. The 30 triangle nodes ,are a bit further away, on average,

and the 16 circle nodes form the furthest shell of the nearest neighbors

4 template.
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SECTION IV. ADDITIONAL ASPECTS OF MONOTONIC LOGICAL GRIDS

S.4

IV.A Possibilities for Further Optimination

By a fully vectorizeable process of exchanging or "swapping" objects

between adjacent logical cells every few timesteps, the nearest-neighbor MLG

ordering is kept, intact even though the objects move from cell to cell.

Thus the method can be applied to gas, solid, and liquid systems using the

same logical structure for problems of interesting size, i.e. 1,000 -

10,000 particles. The MLG algorithms forego a regular grid in space with a

variable number of objects in each cell for an irregular spatial grid which

has exactly oje object per cell by construction. This logical

. simplification, brought about by the MLG mapping, permits extensive

"optimization under current and planned supercomputer architectures (e.g. Fox

"and Otto, 1984) without sacrificing the generality~needed to make it

U useful.

. Optimization 6f nearest-neighbor algorithms for particle dynamics is

both machine and problem dependent. Vectorization techniques to achieve

very high rates of computation require that all logical and arithmetic

operations be performed on organized arrays of independent data.

Distributed processing approaches to massive parallelism rely on a number of

self-controlfed processing centers operat-ing asynchronously, btic according

to fixed rules of. cooperation, on an evolving data base. To take advantage

of both approaches simultaneously requires being able to define a number of

* vectorizeable segments of the problem which can be calculated independently.

Furthermore, the vectors must be lors enough to be computtaionally efficient

but short enough thad the metrrry needed in each asynchronous processing

. g24
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center is not prohibitively expensive. The MLG algorithms presented in the

"previous section can be partitioned for multi-tasking across a number of

( independent processors.

. To maximize the length of vectors within each partition when the

typical MLG dimension, NX v NY - NZ 4 N11 3 , is only about 20 (8,000 objects)

requires treating a substantial fraction of a plane as a single vector. In

the 8 x 8 x 8 test problem, vectors of length 64 can be used throughout

except for the X-direction monotonicity tests where vectors half as long

would result. This is accomplished by collapsing several indices into one

index and by paying careful attention to the boundary conditions.

Optimum computational efficiency results when the last few swapping

operations are performed only for the grid points which might have becume

non-monotone due to adjacent swaps taking place during the previous

iteration. Reductions of up to a factor of two in computer work to maintain

monotonicity might be obtained by reducing the number of inactive vector

swap attempts greatly at the cost of considerably increased program

complexity. The scalar program to perform the few remaining swaps and keep

track of which few nodes might have had their monotonicity conditions

affected by the previous swaps is complicated. To date, convergence of the

number of vector swapping iterations required has been so fast that this

extra work has not been indicated. In the future it may be, worth the effort

for. production calculations.

The same kind of gain can be obtained by trimming the nea- neighbors

template defining which logical neighbors are likely enough to be close

spatial neighbors that they should be included in the vector interaction

"calculations automatically. When a scalar. "clean-up" portion is added to

I
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the vector force summing algorithm, the number of logically neighboring

nodes which are always considered can be reduced significantly below that

"4 required to ersure no close uncounters. Figure 3.5 shows three shells of

logical interactions in the nearest neighbors template, each succeeding

"shell taking neighbors which are logically, and usually physically, farther

away.

By keeping track of maximum X, Y, and Z displacements along each row,

" column, and plane in the nearest neighbors template, a smaller template can

4be used with assurance that there will be no close "uncounters". After

* performing the interaction analysis on the objects within the vector shell,

Sthe boundaries of the -shell can. be checked to ensure that objects on the

logical boundar-i are far enough away spatially. These checks over all the

* objects in the grid can also be vectorized. If the template has been pared

sufficiently to ensure a worthwhile reduction in the number of objects that

have to be considered most of the time, there will generally be a fraction

for which one or more of the neighbors in the vector shell were not far

*• enough *away to ensure that the next neighbor, which is outsidl the vector

shell, can safely be neglected.

- For the few objects which may have spatially close neighbors which are

removed more than two or three locations logically, a 'scalar calculation can.

be performed. It would probably save a factor'of two or so in overall

* 'computational cost to reduce the vector shells of the nearest neighbors

template until the scalar cost competes with the significantly reduced

I vector cost. The expense of keeping track of Xmax, Ymax' and Zmax are

* minimal,' three vector operations per object per near neighbor interaction.

* The test 'to determine which few objects require extra (scalar) work is even'

26
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cheaper, a few vector operations per object. Once an object has been found

- .to require extra work, the scalar search can be extended to whatever logical

distance is necessary to ensure that physically nearby objects do-.not go

uncounted.

- A 5 c 5 x. 5 cubical nearest neighbors template has 62 interactions

which will be considered for each object. From empirical evidence to date

this is adequate provided the critical radius of consideration is somewhat

less than the average separation,.here, taken to be the original object

spacing. Relatively few close uncounters can occur because neglected.

objects are logically at least 3 and generally 4, 5, or 6 nodes away.

Holes can be added to the MLG, locations which mo're or stay fixed in

space but which don't contain an object. Any objedt neighboring one of

these holes has one fewer real object in its interaction template because of

the hole but this obvious disadvantage is balanced by the fact that hole

locations can be updated any way necessary to improve the locality and

structure of the MLG. By adding or shifting holes about judiciously it may

be possible to avoid highly distorted MLGs. The holes would be subject to

swapping with objects just as if they were objects but their equations of

motion can be different and.their interactions with real objects zero.

Figure 4.1 was computed using the 512 particle model with point non-

interacting particles'and the complete.5 x 5 x 5 interaction template shown-

in Figure 3.5. The volume around each particle was divided into shells of

thickness I Angstrom and the number of particJes in each radial shell was

counted for particles logically outside the 5 x 5 x 5 template to determine

how often "close uncounters".occur. A close uncounter occurs when an object

* gets close physically to another object without coming within the MLG
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"nearest neighbors template and thus ensuri.ng that the interaction is

"counted" in the vector sum. Cohcentra'ing first on the commdn features of

the two physically identical calculations shown in the figure, we see that

probability of an uncounted particle penetrating the interaction volume

"drops off very rapidly as the distance becomes small and hence the physical

interaction would be important. It is one hundred times less likely to find

an undetected particle coming within 10 Angstroms than to find'one coming

within 20. Angstroms. It is another one hundred times less likely to find

one coming with 5 Angstroms and no close uncounters.were ever found less

than about 3 Angstroms.

The problem was repeated with a ninth plane of :64 locations added to

the calculation for holes. The holes were given the-average location of

their six nearest logical neighbors as a propagation' law and rapidly mixed

throughout the volume with the particles. As can be Seen, the probability

of unrecorded close encounters is essentially unchanged. In this test, at

"least, holes don't seem to help much. This is probably because the

propagation law used took no detailed account of local grid irregularities

signalling a possible "close uncounter" problem. Clearly research is needed'

to refine this generalization to the point where it appreciably optimizes

the MLG representation.

MIV3 Fluid. Dynamic Applications of the MLG

A few words about the application of tha MLG to Lagrangian fluid

* dynamics is appropriate here. Each node of the grid can be identified with

a fluid or vortex element. The advantage is in. having a regular grid

. available to solve the physical evolution equations. Elliptic equations,
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""or example, become amenable to highly efficient, vectorized multigrid

methods (DeVore, 1984) on regular Nx 'y x N. grids even though the

4 . flvid elements themselves move randomly. Two-dimensional and four-

dimensional problems can be handled just, as easily by the same methods.

Work is needed telling how to evaluate spatial derivatives accurately

S . on the distorted MLG. When points are far apart spatially, the fluid cannot

*be as accurately represented as when they are close. To keep the resolution

more nearly uniform than the specific fluid flow may be capable of, it can

become necessary to remove nodes where they are crowded and to inject them

elsewhere to better resolve some regions. To do this in the NLG involves

finding a fluid element which can be merged with a larger one nearby in a

manner which conserves mass, momentum, ahd energy. This frees up a

"location which can be "shifted" to the correct row, column, and plane to

improve a deteriorating local resolution. The process in 2D is quite

Sanalogous to the operations needed to order sliding tiles numbered 1 to 15

in the 4 x 4 spaces of a popular child's game. The hole is shifted to the

place where it. is most needed.

After a shift operation, the same as an ordered series of swaps, it is

likely that local swapping may be necessary to reestablish monotonicity.

Shifting a line in one direction may well trigger swaps in the other two

directions, so the real cost' of adding and subtracting Lagrargian nodes

locally to control resolution has to be measured (or estimated) for each

"" .configuration being cbnsidered. Certainly the specific additions, deletions
I .

and shifts wtll- have a significant scalar component of computation. It does

not make sense to execute a vector swapping iteration over the whole grid

" unless a significant fraction of the objects are being swapped. However; as

I
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i long as at least 5% of the objects are being moved, the overall vector

swapping iteration probably pays.

For comparison consider another free Lagrangian approach, the

Lagrangian Triangular (Tetrahedroaal) Grid (Crowley, 1972; Boris and Fritts,

1975; Fritts and Boris, 1979). In this approach the logical grid structure

varies in [.me as the nodes move. The number of nearest neighbors can vary

from node to node and the number-and identity of these neighbors can vary at

. a given node as the Lagrangian configurations change. This extra freedom,

r not allowed in the MLG, is used to maintain a lodal grid structure optimized

to guarantee diagonal dominance of the simplest conservative finite-

difference elliptic operator. The price is the loss of local order in the

" grid and hence no vectorization.

* Generalizing this Lagrangian Triangular Grid (LTG) to 3D is

straightforward but operationally very complicated. The grid is composed of

adaptively restructuring arrangements of tetrahedra in-this case. The local

grid strticture can still be changed as needed to maintain diagonal dominance

of the elliptic operator and resolution can *be increased or decreased

locally as needed. Scalar linked lists become a necessary evil to keep

track of nearest neighbors though the resulting algorithms are still of

"-•" order N.

_ Clearly the local spatial structure of'the MLG is not as "good" as in

"the generally structured LTG but tie global structure compensates for this.

The monotonicity conditions specify a meaningful and useful relationship

0 between spatial derivatives and grid differences. As a result, fluid flows

with long tange correlations, unlike the random particle mtions used in

earlier tests, may lead to an additional computational exp ense at specific

030
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times. In the smooth flow of large rotating and translating vortices, an

initially rectilinear grid might survive many timesteps before any of the

local monotonicity constraints are violated. Nearby points would move in

almost the same way. Once the fluid rotates far enough, however,

monotonicity violations would have to occur. Because of the long range

correlation of the motions, a number of swapping iterations may be necessary

to reset the MLG.

In a turbulent flow with coherent flow structures at several spatial

scales, we can expect int:ermittant bursts of swapping activity from

different scales at different temporal frequencies. Small coherent

structures in the flow require fewer swapping iterations to restore

monotonicity but will req~uire them more cften.than large structures when the

rotation rates are higher. Though the integrated number of these swapping

iterations is large, it 15 unlikely to be larger than the number of swaps

required for random object motion with the same typical distances

traversed.

The strong possibility exists that statistics on the number and

frequency spectrum of grid swaps may prove to be a very good diagnostic of

the progress of turbulent mixing and flow interpenetration. Each swap can

S--viewed as a single quantum of geometrical upset. The object swapping

process is necessarily intermittant and thus presents the possibility of

easy integral measures of local intermittancy and turbulence spectrum.

Studying the object swapping time series might provide a very direct way of

diagnosing such fluid simulations for the onset and character of chaos.
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IV.C Other Applications of a Monotonic Logical Grid

The M.LG suggests itself for use in multiphase fluid pioblems. Each

grid node could be used to represent a droplet in a spray or a grain of sand

4n a sandstorm. Droplets c¢'.tld have varying sizes which increase or

decrease in time due to local surface effects like condensation,

Sevaporation, or abrasion and all the droplets would not have &o be

simulated. The accumulation of temporal averages over times.and distances

short compared to changes in' the background flow means that only a small

I fraction of all the droplets or particles would have to be followed in the

ILG to get a good estimate of the interactions of the whole distribution of

particles with the background gas.

Collisions of two drops could occasion merging or fragmentation. The

"MLG can accomodate either by shift operations which transport nodes from

where they are no longer needed to new sites where fresh drnolets are formed

Sor enter the system. The gaseous. background could be represented on a

Eulerian mesh to facilitate swapping of mass, momentum and energy back and

forth between particles and gas. The volume overlap of MLG cells with cells

of the Eulerian grid can be used to circumvent a major complication of Monte

Carlo methods, choosing the values of continuum functions. at, places where

__ there are no particles or Lagrangian nodes.' The MLG cells provide a natural

way to interpolate back and forth between the two representations.

"When insolation ,of dust or droplet clouds is important, the MLG

provides a simple way to 'assess the radiation opacity along any particular

direction. The gr.id axes can be chosen in a given direction and the

swapping algorithm used to resort'the points along that direction. There

0
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are a number of line-of-sight obscuration problems where this flexibility

will be useful.

The Monotonic Logical Grid (MLG) has been given only a geometric

context so far. In the applications and examples above, the moving objects

are being arranged relitive to each other in 3D Cartesian space. Other-more

abstract applications suggest themselves. The MLG can just as easily

represent multidimensional phase spaces for Boltzmann and Vlasov Equations.

The grid may also be useful for some classes of problems involving more

abstract data organization. The MLG is constructed using a set of

monotonicity operators, one for each dimension. These are really relational

or comparison operators that return a logical "yes", "maybe", or "no"

depending on the results of a generalized comparison between two logical

entities. The operators can be black bexes implementing complex, possibly

subjective comparison algorithms which need have nothing to do with geometry

or physical nearness. The meaning behind the relational operators can be

almost anything; for example, "degree of difficulty", "technical merit" and

"artistic merit" may be separate awards in the rating of an athletic

contest.
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V. SUM4ARY AND CONCLUSIONS

This report introduced a simple, vectorized algorithm to determine

nearest neighbors whose cost scales as the number N of independent objects

or locations. This is accomplished by defining a Monotonic Logical Grid

i (MLG) for storing the object data dynamically so that objects which are

adjacent in real space are automatically close neighbors in the logical grid

as well. As a simple geometric test problem, a regular 8 x 8 x 8 3D grid

'I was used to store the position and-velocity components of 512 randomly

located particles in a cubical domain. For this idealized system the points

were given random velocities and the MLG was evolved for many transits of

R. the system by the faster particles. Statistics on near encounters of

logically far away points and on the number of restructuring operations

required were presented.

It was found that the reconr.ections of the dynamically changing MLG can

generally be computed locally in a very few vectorized iterations without

using inefficient gather or scatter operations. 'Almost all of the grid

restructuring occasioned by particles passing each other occurs in the first

two or three veatorized iterations. Further optimization is possible by

changing to local scalar swapping after a few iterations. It is also found

that almost all the spatially closest nodes are nearby in the MLG as well.

T-Two or three logical grid locations effectively defines the spatial near

* neighborhood except for a vanishing small number of cases which can be

detected and corrected inexpensively.

The MLG differs from previous nearest-neighbor'algorithms. it

effectively removes the constraint of having to dssociate a cell of the
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logical: grid with a fixed region of real space, but introduces the

constraint of only one particle per computational cell. When many of the

objects cluster somewhere, a corresponding fraction of the storage locations

in the MLG are automatically associated with that region. This means that

substantial variations in object density are adaptively gridded by the MLG

and large regions of space, as well as computer memory, are not occupied by

empty cells.

This algorithm gives regular global orderings of the object data and *so

allows efficient contigubus vector operations which are longer than the

relatively small number of neighbors considered for each object but can be

much shorter than the total number N. The algorithm will execute

efficiently in small array processors and permits direct partitionirg to

take advantage of massive asynchronous parallelism in VLSI/VHSIC-based

dist:'buted processing systems. The cost to execute the simplest version of

the model is one hour on a DEC VAX 11/780 for one thousand particles for

1000 timesteps when a simple f6rce law for the 124 nearest neighbors is

used.. With a commercially available Distributed Processing System, 5000

interacting objects could be monitored and the data base updated and then

restructured thousands of times in about 15 minutes, fast enough for

realtime applications.

A number of potential applications were discussed briefly. Obviously

other uses will suggest themselves as the good properties and restrictions

of the interesting multivalued gcometric MLG mapping between real space aad

relative (logical or computer storage) space becomes better understood.

These problem-independent properties will be necessary to the successful

application of the representation to practical problems with other

mathematical, logical or pi'ysical constraints. Swapping and shifting
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operations and holes were introduced to allow efficient local and global

grid readjustments. Practical experience with the .ifG is still small,

howe'.er, so ma-or pathologies may vet be uncovered in some applications.

Many MLG configurations may be possible for the same physical node

arrargements.and simple examples suggest that the best configurations are

much better thar the werst. Thus efficient methods of optimizing local and

global structure within the monotonicity constraints will eventually'be

imperative. Additional work ib needed on the following questions:

1 1. 'What is the mathematical nature of the simple representations for

spatial derivative operators and integral conservation operators and how can

they be optimized conputationally?

2. Is there an algorithm to optimize the grid structure using holes

and/or adaptively varied local modifications of the monotonicity

functions?

3. 'What is the cost of not reaching m notonicity every cycle?

4. 'What is the geometric or information theoretic meaning behind the

ambiguity of possible representations, i.e. what kind of an uncertainty

* Jprinciple does this represent?
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