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. address indices in the compact MLG data arrays. The data values for each object are stored at a location
(i,j,k) in the MLG such that the X positions of all the objects increase monotonically with index i, the Y
positions increase monotonically with index j, and the Z positions increase monotonically with index k. Such -
a well-structured mapping from the real positions to regular, compact data arrays can always be found.
Further, when object motions result in a local violation of spatial monotonicity, another MLG always can
be found nearby. This means that local changes in the object positions and hence spatial ordenng do not
trigger global changes in where these object data are stored in the MLG.<.-.. 7
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vectorized efficiently. The MLG algorithms will execute effectively in small array processors and partition
to take advantage of asynchronous parallel architectures in VLSI/VHSIC-based supercomputer systems of the
future. Using a commercially available distributed processing system, 5000 interacting objects could be
monitored and the MLG data base updated and restiuctured thousands of times in about 15 minutes, fast
enough to be useful for real time applications as well as physics simulations.
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A VECTORIZED “NEAREST-NEIGHBORS"” ALGORITHM
OF ORDER N USING A MONOTONIC LOGICAL GRID-

SECTION I. INTRODUCTION.AND BACKGROUND

When N independent objects imteract in space, N(¥-1)/2 interactions
might be important in dgtermining how a given object reacts to the others at
any instant. Usually exact pcsitions and,yeloqities of the néighboring
objecté must be known. Knowing statistical averagés and the general.
prope%ties of the distribution of objects nearby does not provide eﬁough
data ﬁo compute local interactions'accurately. At any instant ‘a given
object may interact stronglylwith only a few of the other$.~ Unfortunately,

keeping track of or repeatedly recomputing which ones are near neighbors is

- computationally expensive., The goal is efficient, simrle algorithmé which

select the nearest-neighbors without a computational premium scaling ;s N2,
iffort on the nearest-neighbors problem has persiscediin computational
physics and compuca;;onal geometry for several decades. This report
introduces an efficient 3D nearest-neizhbors algorithm whose cost scales as
N. and which vectorizes éasily using ;ontiguous memory'}ocations.

An effictient vector solﬁtion of the nearest-neighbo?s ?roblem would

advance manv important applications, For an important class of moleculsr

_'dynamicé probléms {nvolving. {nteractions among many ztoms and molecules, the

nearest neighbors exert the strongest forces and are the mpst'likely

candidates to enter into chemical reactions,. Many important physics
problems in gases, 1iquids, solids, and transitlons amoag these phases

require detailed manybody calcdlntions where the close encounters are most

"

important, : S

‘Manuseript approved February 19, 1985,




Fur graphics based on veFtex—edge representations of.compléx 3D shapes,
local relationships and orientations of nearby vertices detéfmine &ﬁich'.
surfaces are visible., It is clearly adyantageous to be able'to cohé;ruc: a
2D image of a complex 3D scene, for example, using the parailelism made .
possible by Very lLarge-Scale Intégration (VLSI), Terrain management
simulati;n models and multi-dimensional tgdiation franspotc mo&elsAhfe.‘<
currently limited in their aSility to compute geometric obscuratioﬁ. ?of
controlling-airlineltraffic over crowded airports, collisioné with'neérby
planes are Ehe most.immediage daﬁger‘- and demand shorter timgscéies-for
detection and corrective response., Consider a related scenérid for
futurisgic battle area management. A one-pass e@gagement against‘maﬁy
thousand§ of high-speed opponents requires fast rqdeterminatioéjof nearest
neighbors to ensure effec;ive reta:géﬁing in real time, Thesej#pplications
all require rapidly updatiné many distinct local configurationsnés the
objects move, |

For complex manybody problems with N = 5000 independent objects, more
than thirty thousand of degrees of free&om are ;equired,.and 12.5 million
interaétions exist which ideally ought to be considered. Cuffeqt

supercomputers deliver =50 Megaflops (millidn floating point qur&tions per

_ second) on optimized but realistic ptoblemé.f The straightforward

recalculation of ali interactions requires abéu: 60 vectorizeable operatichs-

'per interaction, or !0 - 15 seconds of dedicated supercomputer time. This

is not fast enough Ior real .time applicatibns whereftbe-déca base should be .

updated and the neighbors recalculatea every second or two.

0o




This report introduces a simple three—dimensional nearest-neighbors
algorithm whose cost scales as N, not as the square of N, and which
vectorizes easily using data frém contiguous memory locations. A compéct
data structure to store the object data, called a Monotonic Logical Grid
{MLG), is defiﬂed'dynamically so that objects which are adjacent in real
space automatically have close‘édd:ess indices in the MLG data ar}ays as
well, Aas two'objects move past each other in space, their data are
exchanged or "swapped” in ;he MLG data arrays to keep a strictly monotoné
nmapping bétween the geomgtric locations‘and the corresponding storége
location indices,

Tqicons;ruct an-MLG the data values for each object are stored at
location (i,j,k) in the MLG‘such that the X positiops of all the objects
increase monotonically with index i, the Y positions increase monotonica;ly
with index j, and the Z positions incréase‘monotonically with index k.,
Section III describes the algorithm in.some detgil.

It is not obvious but.it is true that such an organized logical
ordering of'even random Locacioﬁs can always bé éoqnd. In Section III aﬁ
order N log N constructive algorithm for'oné,such,MLC is provided'proving
eXistence.. Generally'mu;e than on2 MLG meeting all the monoionicityl
éondicions seens to be possible so thé'technical problem ;f selécting the

optimum MLG for a partiéular abplicatioa has.to be addressed. In one case,

'ﬁinimiztng average distancec to neighbors in the HLG'may_give the best gfid,

",In other broblems i:'may be test to maximize. the shortest distance to any

point which {s not a near neighbor in the logical grid.




(e.g. Fox and Otto, 1984).

Turther, when object wotions result in a local violation of the
aonotonicity conditions on whizh the original ML. was based, another MLG can
be found nearby. This means that local changes in the objeci positions and

hence spatial ordering do not trigger global changes -in'where these cbject

data have to be stored in the MLG. The data relocaticns to maintain the MLG

as ébjects pass each other in space can be vectorized without inefficient
gather/scatter ﬁpzrations_or variable-length (scalar) linked lists. The MLG
data structure and algorithms allow contiguous-data vector opgrations which
arevlongAenough to -be efficient for physical force sums, for F = Ma otbit
integfations, and for the object data "swapping” used te restructure the MLG
whenever the monotonicity conditions are violated. |

" The cost to execute a simplg test version of the moéel is one hour on a
DEC VAX IL/780 for one thousand particles for 1000 timesteps. We used a
power series force law for the 124 nearest neighbors, assuming that the
average particle separation distince is smaller.bhan tha cutoff radius
Re of the force law. A commércial distributed processiﬁg system, a
minicoméUCer host with modeét'arrgy processors; would be fast enough using
aﬁ XLGAto intégrate SOOQ';nteracting objects and restructure‘the dat% basg
thdus;nds of times in about 15 minuteé, useful for'realtimé applicatfions
where ?urrent superéomputgrs using other algofichms will be inadequate."Tée
MLG also permits pa:;itioning to take advantage of ésynchronou; mulef-

processor paral. 2lism in VLSI/VHSICfBased distributed processing systems

"The ébmputational costs of several algorithms and ébmbinations of
algorithms which have been proposed to reduce the cost of flading nehrest

neighbors are discussed in Section 1I, Section III contains a description




of the MLG itself; an O(N log_N) sort algorithm to find a starting MLG ffom
arbitrary inizial data, and simple aigorithms which restructure the grid
dvnamically as the objects move. 'Qection III also presénts a few simple
tests of the metﬁod. Section iV considers several extensions. Section V

centains a summary and conclusions.
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SECTIGN II. THE CCMPUTATIONAL COST OF FINDING NEAREST NEIGHBORS

As described in Séction I, bruﬁe force recalculacion of all the
'interactions can be vectorized but is of order N and therefora costly, Tha
best nea:egt-néighbors algorithﬁs publishe?, Hockney and Eastwood (1981),
are of order N with minimal operation counts. However, these O(N)
algoritnms are intrinsically scalar and execute relatively poorly in
parallel or pipeline—architectﬁred supercémputérs. Further, memory isl
addressea essencially at random so'data buffering from disk or virtual
zemory for a larze problem is time consﬁming.

In the next few paragraphs thevéomputacional costs of simple strategies
t¢ reduce the Qeapest-neighbors pr5blem are compared. The assumed operation
counts are only répresencative values-sinée optimal implementations are
always machine ahd problem dependent (Gunsteren; et al,, 1984); There are
too many possible algorithms and variétions‘co compare all of the%t
operation counts. It is even harder_to compar; scalar and vector
algorithms, scmething we would like to dc in theory here but which can’
réallf only te done 1ﬁ practice. As a rule of thumb, efficient use of the

vector hardware in supercomputers or array processors generally produces

_over an order of magﬁitﬁde'speed up over reasonably well compiled scalar

coc2, In Some cases'chg vector speed-up factor will be greater and in
others, less.

For proslems where thé nuiber_qf near deighgogs is large so the
computationél.éosc is dpminaced by.che phyéical interaction'calculacigns
rather than. computational book-keebing to find the near neigﬁbors, the
algorithm introduced here calculates twolcd three times as many~idter5ctions

as mtnimallf necessdry,’ This i3 acccpted as the price for éimple logic




and vectorized computation ia zontiguous memorv, This means that a computer
whose vector speed is only a few time. the scalar speed may see no
imﬁrovement over the Hicknev-Eastwood PPPM techniques. In computers where
the vector-scalar ratio is large, an order of.magnitude imvrovement with an
MLGlis at least conceivable, More subsﬁantial gains are possible in highly
paraliel multi—p;ocessor systems because the MLG élgorithms partition
naturally. |
) Let No; = 60 be ;he total number of éloating point operations
(flops) used to evaluate each interaction tetween two of the N = 5000
objects. The main component of the ¢-st for a timestep will be |
# Flops to compute all interactions = Fcai
= Nox (NxN_)/2 | @

= 7,5 «x 108 flops' + 15 seconds/step at 50 Megaflops. .

Manybody calculations which compute all interactions havé become
prohiSitively expensive with even a few hundred objects because thousands of
timesteps are requirved for compiex problems., The operation couﬁﬁ per
timestep goes up quadrati-ally with the number of particles N bué the

effective resolution only increases zs the cube root of the ntuber of

particles. This scaling of cost with at least the sixth power of resolution

is prohibitive, If the number of timestepslalso haé'to be increased when
nore que;gs are simulated, the scaling'can be even worsek This brute fo;ce
OQNZ} algorithm is oflidteres: because it vectorizes énd,partitions easily
andiis exceedingl} simple.

'Redﬁction of ;ﬁis computétional expense i3 obtained Sy computing the.

details of the interdctions only for pairs cf objects closer than a cutoff

distance.Ré_.~ This basic neacest-neighbors concept takes its most




sophisticated form in the "Particle-Particle-Particla-Mesh (PoPY) aléori:hms
5% Hockney and Tastwood {1981). TFaster algorithms and data structures for
implamenting this rearest-neighbor. approximation have been the subject of
Buch computational research in the last few decades.

Checking two locations to see if they are within a distance R. of

each other requires about N 10 floating point operations. Nine or

ocC

ten flops are raquired éimply to calculate the square of the distance
between the two objects'and then compare it with the square of R..

To calculate the physical forces and sum them for each interaction pair

separated by less than R requires

= ) - N = 75 i ion : 2.2
Noi Jot oc ¢ fleoating point Qperatlors ( )

'

per interaction. This would be enough operations to calculate, for
example, -a simple force law with transcendental functions or to estimate a

collision cross-section, I[f “60 neighbors must be considered for

N\
Jnn =
each object, our fornula for the number of flops to compute near

iateractions is

# Flops to codpute near interaticns = Feni

= Nx (N2 <N AN YN _ (2.3)

'
.

= 1.4 x )03 flops -+ 2.8 seconds/step at 50 Megatlops.

Using the concept of a cutoff radius R, has reduced the operation count
by ‘over a fac:ér of five. Just checkiné all the 1nter;ccioh AISCances
' requires gppreciable time whea N = 5600 and Noé is a'modést fraction of
361. The computational éosc still scales as Nz ang the facgor of five

speedup shown above 1is largely il;ﬁsory‘as,it ignores the cost of organizing




o8
o
]

the neighbofing object data into contiguous vectors for efficient

computation of the,physical interactions., 1If this were not done, the

~interaction calculations would have tou be performed as scalar operations,

It would be worth organizing these vectors if enough objects interact with

each other on average but this Iurther thimi—zation'would be wasted if the

‘average particle separation distance were bigger than R..

In practice tﬁg N,n near neighbor variables have to be gathered

-

into vecfors, coéting about N 50 flops per neighbor per object.

gv -

The vectdr lengths are also shorter, engendering some additional overhead.

'

Thus a more accurate estimate of Fcni is

# Flops to compute near interactions = Fcni

h P h ! ._ { > . !
N <« (\1/2 x Noc + \Inn X *Ngv + Noi)) , (2.4)

1.75 k 108 flops + 3.5 séconds/steplar 50 megaflops.

Reducing the number of nearest néighbors used does not help much as long

., as cutoff radius checking is being done ‘for ail possible inter-actions. 1In

fact, as'long as this is done, it hardly hurts to double the number of
neighbors kept for calculating the interactions., <Clearly, too much time is
spent checking 1htera¢tion distances which are too large to he significant,

It ié'ngtural to consider updating thé 1ists'of near neighbors less

. often, If the 0(N2) selection of ﬁeat neighbors 1is only doné every

'8sc = "2.3 cycles, the cost for this portion of the algorithﬁ 1s

redquced, However, there are additional costs and Nsé cannot be very
1argéQ The nuaber of near. neighbors has to be augmented to allow for motion
of particles near R, 1nto‘ahd out of the cutoff region. This increase is

roughly the same as'the relitive volume change due to particles moving into




and out of the sphere of radius R, during the Ny sSteps between

recomputation of the near neighbors lists. Let an average particle travel a
small fraction f of R, per timestep. The sphere of near neighbors will

increase in veolume by a factor of ~(! + f x N )3 in the Nsc steps

sc
until the neighbor lists are updated. When the sphere has roﬁghly doubled

in volume, a radial change of 25%, the lists wmust be updated since most of

the. neighbors will have changed., Thus, with £ = 0.1

Nsc = .ZS(f = 72,5 . : (2.5)

ahd Nnn must be multiplied by (1 + £« Nsc)3 = "2 in the above formula to

give

# Flops to - intermittently recalculate neighbors = F;..

= b 2 ; J 9 x IN
N = (N/2 x Noc/)«Sc +ON X2 \&gv +N D (2.6)

= 1.1 x 108 flops + 2,2 seconds/step at 50 megaflops;

\

Although the N2 seagch is a factar of 2.5 less {important, c;uateracting
effects eat up some of this gain, If { were reduced te 0.0}, probably
reasonable for molecular dynamics simulatioﬁs, some additional gains could
be realized. However, these would bg better by less than a éaccor of two

because the cdst is now in ‘computing the' near interactions as it should be.

In other applications, however, there would not neceséarily be a need to use

the short timesteps required by physical simulations such as molecular

dynamics,

10




r v

1

B P G I e

B 98

et amRT Y s

bl et AN SO N MR AR 7. PRire

MYRETE 0 A sof SeF ) ]

M e e Shes hen drou Sencive- e “ae e e S Bk e b St it el Yl A R A -t e S g v 0T VLRI S S S M e i A S N R

The only way to avoid.the Nz'premium is to update the'nearest-neighbors
list of each object using objects in a volume larger than Qould be required
for an interaction cutoff of R, but much smaller than the ebtife system,
Hccxney and Eastwood dgfine a PPPM “chaining mesh” where dX = dY =
dZ = R, and check distanégs.to objects known to.be:in only the nearest 131
= (33 - 1)/2 cells. Only these particles might be:within“ﬁé of a particle
in the chaining cell under consideraﬁion. On average only about 40% of the

particles in these 13 cells are actually within R.. Takihg L as a typical

‘system dimension, there are Ncc = N (RC/L)3 particles in each of the

-PPPM cells. The number of cutoff distance checks performed in a timestep is

then
# PPPM checks = N x 13 x Neoe oo : (2.

In the PPPM formulation, when R. is twice the avé#ége spacing, a typicél
particle has 1its distanc.e to 104 otﬁgr nearb& partiéles checked (13 c;lls x
§ particles per cell). The corresponding number iﬁ'fhe MLG would be.62 if
all interactions within two grid aisplacements 1in aqy direction are kept,

This nominal factor of two gain in the MLG apprdach_;s lost again because

~all the interactions would be calculated to maintain vectorization rather

than only 40% as possible with ﬁhe scalar PPPM algorichﬁ. The real gain is
the ability to use efficient, contiguous memory, vectot opérations |

throughout ‘the MLG algorithms and to cleanly paftition the problem into

compﬁtational subtasks. |

11
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The operation‘count for the overail MLG algorithm developed next
in Section III is also problem debendept; Using typical simulation
variables summarized in Table 2.1 beldw, the cost of the MLG'in vector
floating-point operations to execute a timéstep, exclusive of the rela-

tively dnexpensive orbit calculations, is

i# Flops for the Monotonic Logiéal'Grid'algorithm = leg
= N x (Nnn x Not for neighboring object interactions (2.%)
+ 3 x Ngg x Nyg) for swapping iteraticns in X, ¥, Z

= 2,25 x 107 flops + ~ O.S’§econds/step at 50 megaflops.

Here Ngy = ~4 is the number of iterations of vector swapping performed
over the entire grid to restructure the MLG after the object positions

change each timestep., N

os = ;60 is the number of floating point oper=-

ations to execute a single swap of two objects in the MLG. In the next
section the concepts and details of the Monotonichégical Grid Algorithm are '

presented.
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Table 2.1. _Typical Values of Manybody Simulation Variables

N = 5000‘ = # of objects intgracting in space
Nos QA:'SO -  # operatioﬂsAper vector swap in MLG algorithms
Nsi = _<4A = 'avefage # of vécﬁorized swapping'iteratiéns to
.‘ relocate opjeét data in the MLG
Nnn -%f '60' = # of near neighbors usually included inlthe‘inter—
action calculations .
Noc if_ ;lO = i of flops toﬂcheck distance bethen two objects
Noi = ~50"= it of_élops to interact two objects . '
ot ‘#v 60 = {# of flops total to qomputé an interaction
Ngv' = 50 = éqqivalen;l#~of arithmetic flops Fo gather
neighboring object data from random locations
in memory ‘
Nee = “2.5 = # of steps between recomputation of the nearest-
neighbors lists in scalar algorithms
Ncc = | ' #.of_obﬁects in the average cell of PP?M chaining

mesh.

- 13
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III. THE MONOTONIC LOGICAL GRID ALGORITHM

A Monotonic Logical Grid (MLG) is a simple, compact way of indexing and
storing-the data descfibing a number of objects woving in space. For N
~particles in three dimensions, the arrays of object locations, X(i,j,k),

Y(i,j,x), and 2(i,j,k), éonstitute an MLG if and only if

X(1,3,k) < X(i+1,3,k) for 1 < 1 < NE-I,
Y(1,5,0) < Y(4,i+1,k) for 1 < § < NY-1, and (3.1)

2(i,j,k) < 2(i,j,k+l) for 1 < k < NZ-l,

Given N = NX*NY*NZ random locations, the spatial ia:tice defined by an MLG
is'irregul;r. However, the cells defined by loé;cally néighboring locations
are distorted cubes and thus fofm.a'useful consistent partitioning of the
spatial volume, When the N object loca;ions satisfy Eqs. (3i1) and any
addi;ional constraints or relations specifying ot ar rpag infinite-space
bougdary cdnditions, they are 4in "MLG order”, This ordering 1s useful
because the direction for going from orne object to another 1in space and in
‘the MLG are the same. Further, other objects which are between two objects
in Qpace will also be between them in the MLG, Thus neighbors in real space
have neighboring address {ndices tn the MLG as well.

.Fiéufe 3,1 shows three differené épatial configuracions éf 16 objects
in ﬁhe lower fhree paneis. The objec;s are ordered into four rows’and foﬁr
‘columas’ in each of these'configurations correspoadin§ to regular steragévof
the object data in the two-diménsional MLG sﬁoyn above. The ceil§ of ;he
MLG move with the objeqfs and thus always,havé exactly one object in them.

‘When all the objects move to the upper left of the fegion, as ia the

‘lower right panel, the MLG {3 just as regular as ﬁheu-thg objects |

'




‘are uniformiy spaced. This mapping of irregular locations onto a very

regular data structure is what permits optimal use of vector and
multiprocessor‘hardware. |

Figure 3.2 iliustrates several different MLG mappings ;f the same 16
objezt locations, The upper left panel shows the 16 locations in a régular
spatial lattice, The obvious numbering Qf the 1bcati§ns into four rows of
four objects each is an MLG because the X and Y components of all the object

locations (dots) increase monotonically with the X and Y indices, i and j.

In the remaining three iower panels the locations have been displaced from

the regular spacing. 'Each of these panels contains the same data, but the
MLGs for storing these data, as indicated by the logical mesh lines, all
differ. The lower left panel is a recognizeable distortion of the regular

grid above, The indexing of the objects would be 'identical in both cases

~although the actual data stored would differ somewhat since: the objects have

moved away from their regular locations. The lower center and lower right

' panels show different logical indexing for the same physical data giving two

other Monotonic Logical Grids (MLGs). In the center the connections to

_ points in the second row frow above and from 'below have all been displaced

to the left., On the right, the connections to the second column from
objects located logiically in columns one and three have been displaced
downward.

These figures show that there can be a number of MLGs with the'same

Lagrangian object daté, all satisfying the required ménotonicity'conditions

from Eqs. (3,1), These spatial mohotonicity conditions constitute
3N = NXxNY = NYxNZ < NZxNX numerical comparisons which can be performed to

determine {f a particular organization of the object locations is in MLG
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order., ~ror each dimensicn'of the desired data structure such a monotonicity
condition can be defined,

In space the coordinates can be rotéted or redéfined and this
corresponds to a different family of MLGs.I The monotonicity conditions may
not change in the new coofdinate system but the object location coordinates
will, Even if the coordinate system.is held fixed, the object motions will
quickly invalidate at least some of tge relations (3.1) requiring a
reorganization of the object data in the arrays to store a completély
monotone mapping. WYsing the monotonicity conditions, a given data structure
can be checked efficiently to see if the locatioﬁs are in MLG order.
However, additional algorithms are needed when MLG order is violated,

If the objects are not in ¥LG order, the following algorithm using'a

vector sort routine O(N log N) can be used to rearrange them. First sort

all N locations into the ecrder of increasing Z. The first NX x NY of them,

+should be indexed k = 1, and sorted intb the order of Iincreasing Y. The

first NX of these, should be indexed j = 1 and then sorted into the order of
increasing X. These objects are indexed from ;Is 1 to 1 = NX. The next NX
loéationg, indexed j = 2 but ;till k = 1, are again ordered andiindexed from
i %1 todi = NX. This procedure is continued until‘the‘first NX x NY plane
of locgtigns has been.at?anged.' Since the locations were initially of&eted
in |Z, the subsequent reorderings Q?thin_the k -ll<plane cannut disturb th=
moqotonicity conéitiens relating the first'piane'to any shbsequent
rgordering of the secondwand subsequénﬁ planes.-‘Similaply,vall the

lodacions will éatisfy the monotonicity conditions in Y and X as well,

Once the first plane {is ordered; the next NX x NY locatioms are indexed

k = 2, and the MLG ordering within this plane 13 constructed just as for the

order
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NZ x NY x NX x (log NZ + log NY + log ¥X)
+ NZ x (NY x NX x (log NY + log NX) + NY x VX x log VK) (3.2)

NZ © NY x NX x (log NZ + 2 log NY + 3 log NX) -

operations tc construct the MLG. This sort algorithm could be repeated
every timestep.as necessary to restiucture the MLG when object motions‘in
one of the three coordinate directions cause some of the conditions (3.1) to
be violated. '

The existence of this constructive algorithm provés that at least one
MLG for even random locations always exists andvthai iﬁ is not hard to find.
As a consequence, data maniﬁﬁlation and summation algorithums in;the MLG can
‘always assume th2 rigorous spatial monotonicity of the MLG, - When se?eral

object locations are identical, any ordering the sort procedure comes up

with is correct as the conditioms (3.1) are satisfied. Locally degenerate

_grids are bpséible whén several locations overlap.

Although this aigorithm is fas;; it has two limitations: it is of order
N log N, not N, and ft may move data a long distance in index space 'to
correct even small changes in position. To counterlthese objections, ép
order N algorithm is described which executes local'buf vectorizeable
ex;hange or "swaﬁpiné” operations on the MLG data‘to résfore monotﬁnicity

<verywhere. The extra factor log N is removed'because small monotonicity

upsets from the pteviouS'sé; of_locations'generally do not require

information from the other side of the grid for their"cﬁrrection.v -

If tw§ objects move less than a typical separation distance per’ |
timestep, a condition generally required for accurate integration of the
equations of motion, a few {terations are usual.y gnough-to restore MLG

order, 'A "swap” is executed by testing the conditions in'Eqs. (3.1), and
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* then, when the corresponding monotonicity cordition is viclated, exchanging

the locations in the logical grid of all data pertainiang to the two objects
involved, Each direction is checked separately; A ;ed—black algorithm
(Adams and Jordan, 19§4) would allow at:least haif che_feéts in a given
direction to be performed simult;neously and thus vectorized while
converging as fast as a scalar iteration.

No more than five aritnmetic.operacions afe reduired to test for
monatonicity and to plLepare to swap any amount of'data. A floating point
0.3 is loglcally "or"ed with the sign bit of the coordinate difference to
obtain a number S which is 0.5 if the ‘twn coordinates are in MLG order and -
0.5 if they ‘are not. This takés cpree operations. Two mora operations give

the weignts'w and (1 - w) where .

The weight w is unity when the coordinates arz in order and zero when they

are'noc. If the test X(i,i,k) S X(i+1,j,k) 1is being performed, the X
comﬁonents of tne object locations can be exchanged using the foliowing

formulae (six operations):

T(1,,k) = w x X(1,4,k),
CUd,5.k) = (1 - w) x X(4,3,k), ' (3.4)
X(1,3,%) = T(1,3,k) + (1 = w) * X(1+1,3,k), and -

A(1+1;3,%) = w x X(i+1,§,k) +-C(1,5,k). .

When the locations are in ﬂLé order, éﬁe syapping‘fo:mulaé éhange hoﬁhing. , ;
When tw§ locatiops are 6uc of érder; these formuLae incarehangéréhe'objec;

daté on the MLG.so they will be in order tor the next Lcaration; All object

data at every grid point can be téeaCed identically:&tth this procedure.

~
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The algoritﬁm vectorizes easily even though some of the pairs of objects
have to trade piaces in the MLG and others do not.

These six operations must be repeated to swap each data variable stored
in the MLG. As a ainimum these inélude the three components of the objecf
locations and an idéﬁtification numkter, iD#(i,j,k),'to mark which of the N
particles currently is at 1,j,k in the MLG. To vectorize the complete
algorithm, the velocity cumponents VX(i,j,k), Ve(i,j,k), vz(i,j,k), the.mass
M(i,j,%), and another force law constant FC(i,j,k) must also be moved about
dynamically. These nine variables require 54 operaéibns to' be roved between -
ad}acent cells for each swapping iteration. Thus Nés = 60 éperations are
required for each iteratio: in each direction for eéch object. This is
about as much work as cilculating. three compenents of the force act/ng
between two objects which are neat_neighbors in the MLG. With Nsi = “4
swapping igerations.being performed'in each direction, the tﬁtal cost of
restoring the MLG every timestep is about the same as calculating forces
from 12 neighbors, When timesteps are short, this can be. reduced even
further.' |

When the MLG algorithm is used, the cost in vector floating-point

‘operations to execute the geometric and force summing in a timestep 1is. given

by Eq. (2.8). The speedup expected using this algorithm is large, a factor

greater than thirty for 5000 objects. Not. only 13 the N2 dépendence removed

but the actual neatest-neighbor'intefac:ions can be computed with very high

efficiency,'compatable to the best order=N scalar algorithms, Only about a
fifth,of the computa:ion 1s expended on maintaining the MLG data structure,
The rest 1s used in computing pairs of 1nteractioqs at .full vector

efficiency.
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The random motion of point narticles in a cubical domain is taken as a
rest problem to illustrate ;he coacepts, A topologically regular 8 x.8 x 8
3D grid is defined for storing the position and velocity components of 512
randomly located Sbjects. The domain is doubly periodic in X and Y.and.is
bounded in Z by two reflécting end walls at Z = C cm and 2 = Zhax =V8 dZ.

A number of short calculations have beea performed using this system to tést
aad develop various aspects of the model., Figure 3.3 shows the first of
eight planes of this 3D MLG, plotting the X and Y locations of thé 64
objects currently on that plane, The inittal conditions for the~éalculatiqn
are shown in the upper right, rugulérly-spacéd locations with random
velocities uniformlf distributed iﬁ each coordinate from -107 cm/sec to +107
ca/sec. The three remaining panels show piocs of the 64 locatiods in the
same MLG data plane at three times. As the objects move in che plane and
between planes, a éomplicated but clearly sﬁructured MLG is always '
maintained.

Undef a number of different physical circumstances and pumeious
differentrinitial conditions the model has been able to find an:MLG after
only a few swapping iterations. The average néar-néighbor ée@aracions
increase somewhat at first over their almest minimal initial valueéf"Ragher
quickly, howevér,.ranQOm'swapping halts the increase of this average |
distance ;é'the near neighbors. Figure 3,4'displays the frequency
distriﬁution for the number of swapping iterat;ons.reqpired to restore the .
MLJ.afcgr relative mécion ofrthe'objects'has disrupted ic, Tﬁfee cases were
run from the same physical {nitial conditions and zero-sized.non—éolii&ihg

particles, with timesteps St = 2.5 x10718 sec, 1.0 x 10713 sec, and
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4,0 x 10715 sec. The lightly shaded Sars in Figure 3.4 correspond to the
intermediate case with 107!% sec as.tﬁe‘timeetep. For thig case dlmax = ,lA
meaning that the f;stest particle traverse 1/i0 of the regular initial
spacing of & = 1977 cm per :imestep. The data with unshaded bafs,

dlmax = ,025 A, shos ﬁhe resuits when St is smaller by a factor of four

and the data depiéted 4ith dark bars shows rasults ;hen St 1s a factor of
fo;: }arger, ise. dlmax = .43;

To interpret the figure consider dlmax = Q.IA. About 46% of the
timéstéps (frequgncy 0.38) required 4 iterations of swapping to restore the
MLG., Less than 10% of the timesteps required 6 or more iterations., The
average number of iteraticns required is 4.0 for-dlu.lax uIO.lA. When
dlmax = 0.0ZSA,ithe average number of swapping iterations is 2.85,'about
2/2, When dlma; = 0,4 A ihe aQérage 13 5.0 swapping iterations per
timestep. Thus the actual cdmputacional work decreases‘per unit integfatidn
time with longer timesteps because the num?er of swapping iterations
increases much more slcwlylchan the timestep increases,

A great deal of Swapping goes on 1n the first'few iterations out to the
' average number for the particular timestep chpsen. For timesteps with
relatively large numbers of fterations I, :hellikelihood of this extra work
beihg required decregsés ﬁy a factor of two or three for each extra
iteration. These timééteps réquiring'a relatively large émdunt of work

contribute very little to the average computation load needed to restore the

MLG- because they occur so 1nffequencly.
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In test calculatioans, with nonzero particle size, forces were
cai:ulated betweén‘a g;ven object and theIS x 5 x 5 cubical aearest
neizhbors interacticn template of 125 neighbbring objects centered on it in
the MLG. Since the interaction has to be computed only once for a pair of
nbjects and can bé iguored fqr self interactions, the tests had the

following aumber of near neighbors

N, o® (3 x5x5=1)/2 = 62 = 760, (3.6

#hen many objects are within the cutoff distance R,, the inteiaction
:template should be extended, perhaps to 7 x 7 x 7. An appreciable fraction
2f the ﬁorces calculated will be beyond' the cutoff distance but this extira
work 1is compensatea by the fact.that all the work can now be performed by
vec. r operations working from contiguous locations in the éompucer storage.
This gain ic typically an order of magnitude or more -in speed and is,still
worthwhile even if a factor of two or three is wasted calculating
,,ungecessary interactions.
. Wheh objecté are far apart compared to the cutoff radius RC, onlyA:he
13 neighbor interactions from the 3 x 3 x 3 interaction template need be
considered. This ﬁumber 13 is the same as the number of chaining cells
whiéh.haye to bg consideraed in'Hockney's PPPM data stfuctgre‘to find all
objects within the cutoff radius R.. Figure 3,5 shows a schematic
' rendition of these different in?eraction templateé. Only the half of the
template wfch iadex 6ffset larger than zecto has EO»be considered since ;11
‘interactions with objects h;ving alower Qﬂorage a@dtess'1n¢ex.will have
been Eélculéted préviously. AAs shown, shells of'inceractioh can hLe defined
yhichvwill correspond éﬁp?oximately to neighbors at.dtffé;enn physigal

dlstances, The 16 heighboring nodes indicated with grey squares form the
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closest shell, The 30 triangle nodes are a bit further away, on average,
and the 16 circle nodes form the furthest shell of the nearest neighbors

i : ‘ template.
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SECTION IV. ADDITIONAL ASPECTS OF MONOTONIC LGGICAL GRIDS

IV.A Possibilities for Further Optimication

By a fully vectorizeable process of exchanging or “swapping” objects
between adjacent logical cells every few timesteps, the nearest-ﬁeighbo; MLG
ordering is kept intact eveﬁ though the onects move from cell to cell.

Thus the meﬁhod can bevapplied to gas, solid, and liquid systems using the
same logical strﬁcture fpr»problems of interesting'size, i;e. 1,000 ~ '
10,000 particles. The MLG algorithms forego a regﬁiar grid in space with a
variable number of.objects in each cell for an i:regular spatial grid which
has exactly one object per cell ?y construction. This logical
siaplification, brought about by the MLG mapping, pérmiCS extensive
optimiz;cion under éurrent and planned supercomputer architectures (e.g. Fox
and Otto, 1984) without sacrificing the‘generality.needed to make it

usefpl.

Optimization of neare;t-neighbor algorithms for particle dynamics is
both machine and problem dependent; Vectorization'céchniques to achieve
very high rates of computatioﬁ require that all logical and atithmetic
gperations'be performed'on organi;ed arfays of inéepeudenc'data;

Distributed processing approaches to massive patalléiism rely or a aumber of

‘self-controlled processing centers operating asynéhronousiy, but according

to fixedArules-oﬁ,cooperacion, on aﬂ eveivigg data base, To take édvantage,‘
of both apptoaches simultaneously requires being'gble'to define a number of
vectorizeable segments Qf the problem @hich‘caa'be ¢alculated independeatiy.
Futtﬁetmore, the vectors must be lon;’enough fo Se compqtaticnally efficient

but short enough that tue memccy needed in each asynchronous processing
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- would result. This is accomplished by collapsing several indices into one

center is not prohibitively expensive., The MLG algorithms presented in the

previous section can be partitioned for multi-taskipg across a number of
independent processors,

To maximize fhe length of vectors within each partition when the
typical MLG dimension, NX % NY = NZ = N!/3, is only about 20 (8,000 objects)
requires treating a substantial fraction of a plane as a single vector, In
the 8 x 8 x 8 test problem, vectors of length 64 can be used throughout

except for the X-direction mpnotonicity tests where vectors half as long

irdex and by paying careful attention to the boun&ary conditions,

Optimum computational efficiencj resvlts when the last few swapping -
operations are performed only for the grid points which might have geCUme
non-monotone due to adjacent swaps taking place during the previous
iteration. Reductions of up to a factor of tﬁo in computer work to maintain
monotonicity might be obtained by reducing the number of ianactive vector
swap attempts greatly at the cost of considerably 1ncreaséd'program
complexity, The sc?lar program to perform the few rgmaining swaps and keep'
track of which few nodes might havé had their ﬁonotonicity conditions

affected by the previous swaps is complicated. To date, convergence of the

number of vector swapping i{terations required has been so fast that this
‘extra work has not been indicated. In the future it may be worth the effort

for. production Ealculacions.

The same kind of gain can ba obtained by trimming the nea- neighbors

 :emp1ate defining which logical neighbors are likely enough to be close

spatial neighbors that they shdula‘be {ncluded in the vector interaction

calculations automatically, When a scalatl“clean*up" portion is added to
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‘vector cost. The expense of keeping track of X

the vector fqrce summing algorithm, the number of logically neighboring
nodes which are élways considered can be reduced significantly below that
required to ensure no close uncountefs. Figure 3,5 shows three shells of
logical interactions in the nearest neighbors template, eéch succeeding
shell taking neighbors whichlare logically, and usually physicaily,'farther
away, |

By keeping track‘of ﬁaximum X, Y, and Z displacements along each row,
column, and plane in the nearest neigﬁbors template, a smaller template can
be used with assurance that there will be no close “uncounters”, After
performiﬁg the intéraction analysis on the objects within the vector shell,
the boundaries of the shell can be checked to ensure that objects on the
logical boundary are far‘enough away spatially. These checks over all the
objects in the grid can also be vectorized., If the template has been pared
sufficiently to ensure a worthwhile reduction in the number of objects that
have to be considered most of the time, there will generally be a fraction

for which one or more of the neighbors in the vector shell were not far

enough away to ensure that the next neighbor, which is outside the vector

shell, can safely be neglected,

For the few objebts which may'have spatially close neighbors which are
removed more than two or three locations logically, a scalar calculation can.

be performed. It would probably save a factor of twe or so in overall

computational cost to reduce the vector shells of the nearest neighbors

templite until the scalar cost cowgetes with the significaatly reduced

.
max’ Ymax’ and max are

minimal, three vector operations per object per near neighbor interaction.

The test to determine which few 6bjects require extra (scalar) work is even:
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cheaper, a few vector operations per object. Once an object has beeh found.
to require extra work, the scalar search can be éxten@ed‘to whatever 1ogicél
distance is necessary to ensure that thysically nearby obiects do not go
uncounted,

| A5 x 5 x 5 cubical nearest neightors eemplate has 62 interactions |
which will be considered for each object. From empiricél evidence t6 date
this is adequate provided the critical radius of consideration ié_somewhac o
less than the avefage separation, here taken to be the origin;l oﬁjeCt
spacing. Relatively few close uncounters ;an occur because neglecteé:
objects are logically at least 3 and generally 4, 5, or 6 ngdeé away.,

Holes can. be a@ded to the MLG, locations which move or stay fiXéﬂ in
space but which don't contain an object. Any object neighboring one of
these ﬂ§les has one fewer real object in its interaction template bédause of
the hole but this obvious disadvantage is balanced by the féct that'hale
locations can be updated any way necessary to‘improve the locality and
structure of the MLG, By adding or shifting holes aSOut judiciously it may
be possible to avoid highly distortéd MLGs. The holes would be subjeét to

swapping with cbjects just as if they werelobjects but their equations of

‘motion can be different and their 1n;eractiods with real objects zero,

'Figﬁré 6'1 was computed ﬁsing the 512 particlé model w*th péintAdon-
interacting particles and the complece 5 x S x 5 interaction template shown
in Figure 3.5. The volume arOund each patticle was divided into shells of
thickness 1 Angstrom and the number of pa;tic]es in egch radial shell was -

counted for particles logically outside the 5 x 5 x5 template to determine

" how often “close uncounters”. occur. A tlose uncounter occurs when an object

gets close physically to another object without coming within the MLG -
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nearast neighbors template and thus ensuring that ;he iﬁtefaétion is;
"counted” in the vector sum. Cofhcentracing firsf on thé comﬁdn features of
the two physically identical calculaﬁions shown ié the figure,-we see that
probability of an uncounted particle penetrating the interéttiop'volume
drops off very rapidlf as the di§tan§e becomes small 5nd'hénée the physical
interaction would be important. It is one hundred timésfleéévlikely to find
an undetected particle coming within 10 Angstroms than to find one coming
within 20. Angstroms., It is another one hundréd<times less likely to find
one coming with 5 Angst;oﬁs and no close unéouncers,ﬁéfe’QVet found less |
than about 3 Angstroms.

The problenm was repeated with a ainth plane of5§4 locations added to
the'calculation for hcles. The holes were given thé;averagé locatién of
their six nearest logical ﬁeighbérs as a propagation law and rapidl? mixed
chroughout.che voiume with the particles. As cean be séen, the prqbabili;}
of unrecorded close encounters is essentiall& unchanged. In.this test, at
least, holes don't seem to'hélp much, This is probably becaﬁsé tﬁe"
propagapipn law used took no detailed account of local grid i;regulaticies
signalling a possible “close uncounter” prcblem, Ciqarly research is negded'
to ;efine tgis generalization to the point where it~épp¥eciébly pptimiies

the MLG representation,

1V.3 . Fluid Dynamic Applications of the MLG

A few words';boﬁt thé application ofithe Miﬁ to ﬁagrangién £luid
dynamics is appropriaﬁe héte. Each héde of the grid caa be identified with
é fluid or vpntex-element. The advantage i3 in having é reguiat grid

available to solve the physical evnlution equations, ,Elliptic equacions;
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» place where it is most needed. Co
likely that local swapping may be necessary to reestablish monotonicity,

. locally to control resolution has to be measured (or estimated) for each

- configuration being constdered. Certalnly the specific additions, deletiong

" not make sense to execute a vector swapping iteration over the whole grid

for example, become amenable to highly efficient, vectorized aultigrid

methods (DeVore, 1984) on regular N, x N, X N, grids even though the

y
flﬁidieléments themselves move randomly. Two-dimensional and four-
dimeﬁsional problems.can bé handled just as easily by the saﬁe‘methods.

Work is needed telling howlto evaluate spatial derivatives accurately
on the distorted MLG;F When points are far apart spatially, the fluid caﬁnot
be as accurately represented as when they are closé.‘ To keep the resolution
nore nearly uniform than the specific fluid flow may bg capable of, it can
become necessary to reﬁove-n;deé where they are crowded and to inject them
elsewher§ to better resolve some regions. To do this in the MLb involves
finding a fluid element which can be merged with a 1argef ore nearby in a
manner whiéh conserves mass, momentum, ahd energy. This frees up a
Iocation which can be "shif;ed" to the cérrect row, column, and plane to
improve a aeteriorating local resolution. The process in 2D is quite

analogous to the operations needed to order slidiag tiles numbered 1 to iS

7

in the 4 x 4 spaces of a popular child's game. The hole is shifted to the

|

‘After a shift operation, the same as an ordered series of swaps, it is

Shifting a line in one direction may well trigger swaps in the other two

directions, so the real cost of adding and subtracting Lagrargian nodes

and shifts will have a significant scalar component of computation. It does

unless avsignificant fraction of the objects are being swapped, Howeveg; as
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long as at least 5% of the objects are being merd;'the overall vector
swapping iteration probably pays.

For comparison consider another free‘Lagrangiad approach, the
Lagrangian Triangular (Tetrahedroaal) Grid (Crowley, 1972; Boris and Fritts,
1975; Fritts and Boris; 1979). 1In this approach the logical grid structure
varies in ! .me as the nodes move. The number of nearest neighbors can vary
f{rom node to node and ;he number -and identity, K of these neighbors can vary at
a given node as the Lagrangian configurations change. This extra freedom,
not allowed in the MLG, is used to maintain a local grid structure optimiied
to guarantee diagonal dominance of the simplest conservative finite-
difference elliptic operator. The price is the loss of local order in the
grid and hence no vectorization,

Generalizing this Lagrangian Triangular Grid ¢(LTG) to 3D is
straightfdrward but operationally very complicated. The grid is composed of_
adaptively restructuring arrangeménts.of tetrahedra in this case. The local
grid structure can4still be changed as needed to maintain diagonal dominance
of.the elliptic obefago; and resolution can be increased or decreased
iocally as needgd. Scalar linked lists become a necessary!evil.to keep
track of'nearest neighbors fhough the reéultinglglgorithmﬂ are still of
orcer N.l' | | | |

Clearly'the local spatial structure ofithe MLG i{s not| as "good” as in

the.generally structured LTG but the global structure compensates for thié.

The monotonicity conditions specify a meaningfdl and usefulvrelacionship

between spatial derivatives and grid differences. As a result, fluid flbws

with.Long fange correlations, unlike the random particle motiouns used in

earlier tests, may lead to an additional computahional.eprnse at specific
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times. In the smooth flow of large rotating and translatling vortices, an
initially rectiliﬁear grid might survive many timesteps before any of the
local mgnotonicity cqnstraints are violated. Nearby points would move in
almost the same way. Once the fluid rotates far enqugh, however,
monotonicity vioiétions'woula have to occur. Because of the lbng'range
correlation of the motions, a numbérlof swapéing iterations may be necessary
ro reset the MﬂG.

In a :utbuient flow with coherent flow structures at seyeralvspatial
scales, we éadﬁexpect incermittant bﬁrsts of swapping activity frém
different scales at different temporal frequencies. Small coherent
structures in the flow requiré fewer swapping iterations to restore
monotonicity but will require them more cftén‘thap large structures when the
rotation rates are higher. Though the inCegraEed number of these swapping
iterations 15 larée, it 15 unlikely to be larger than cﬁe number of swaps
required for random‘object motion with the same typical distances |
traversed, '

fhe strong possibilitylexiSCS that statistics on the number and
‘requency séectfum of grid swaés.mayvprove to be a very good diagnostic of
the'progressbof turbulenc mixing.and flow interpenetration. Each swap can

~ be viewed as a single quantﬁm of geomécriéal'ubsét. The object swapping
process 1is necessarily 1nterﬁict5nt and thus érg;ents the possiblility of
easy'integrallmeasureé of local inCermittanéy anq tgrbulence specirum.
Studying the objgc:lsﬁépping time series might provide a very di;ec; way of

diagnqsing‘suéh fluid simulations for the onset and character of chaos,
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IV.C Other Apolications of a Monotonic Logiéal Grid

The MLG suggests itself for use in multiphase fluid problems., Each
grid node could be used to represent a droplet in a spray or a grain of sand

in a sandstorm. Droplets cerld have varying sizes which increase or

decrease in time due to local surface effects like condensationm,

evaporation, or abfasion and all the droplets would nét'have to be
simulated., The accumulation of temporal averages over times.and distances
short compared to changes in the background flow means that only a smali
fraction of all thé droplets or particles would have to be followed in the

YMLG to get a good estimate of the interactions of the whole distribution of

particles with the background gzas.

[

Collisions of two drops could occasion merging or fragmentation. The

MLG can accomodate either by shift operations which transport nodes from

where they are no longer needed to new sites where fresh drnplets are formed

or enter the system, The gaseous background could be répresented on a

Eulerian mesh to facilitate swapping of mass, momentum and energy back and

forth between particles and gas. The volume overlap of MLG cells with cells

" _of the Eulerian grid'can be used to circumvent a major complication of Monte

Carlo methods, choosing thé values of continuum functions at places where

thera are no particies or'Lagra;gian nodes,’ The MLG cells provide a nagufal
way to intefpdléce Sack and fd;th between the tﬁo representations.

. When insolation .of duét or droplet clouds }; importa#c, the MLG
p;oviaes a simple way to ‘assess the radiation‘opacity albng any particular

direction, The grid axes can be chosen in a given directiod ahd'the

swapping algorithm used to resort the points along that direction, There
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are a number of line-of-sight obscuration problems where this flexibility
will be useful,

The Monotonic Logical Grid (MLQ) has Seen given only a geometric
context so far. In the applicacions and examples above, the moving objects
are being arranged relstive to each otber in 3D>Cartesian space, Other more
abstract applicatioﬁs suggest thgmselves. The MLG can just as easily
represent multidimensional phase spaces for Boltzmann and Vlasov Equatioﬁs.
The grid may also be useful for some classes of problems invclving more
abstract data organization. The MLG i; constructed using'a'set“of
monotonicity operators, one for each dimension. These are really relational

or comparison operators that return a logical "ves”, "maybe”, or "no”

depending on the results of a generalized comparison between two logical
entities, Tﬁe operafprs can be black b;xes.implementing'complex, possibly
subjective comparison algoritﬁms which need have qothiﬁg to do with geometry
or physical nearness, The meaning hehind the reiational operétors can ﬁe
almost anything; for example, "degree of difficulty“,‘“techniéal mgri:" and
"artisvic mérit" may be separate awards in the rating gf an athletic

contest,
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V. SUMMARY AND CONCLUSIONS

This report introduced a simple, vectorized algorithm to determine

nearest neighbors whose cost scales as the number N of indepandent objects

"or locations. This is accomplished by defining a Monotonic Logical Grid

(MLC) for storing the object data dynamically so that objects which are
adjacent in real space are automatically close neighbots'in the logiéal grid
as well, As a simple geometric test problem, a regular 8 x 8 x 8 3D.grid
was used to store the Qosition and~velocity.com§§nehts of 512 randomly
iocated particles in a cubical domain. For this 1dealizedlsyscem the points
were given random velccities and the MLG was evoived for many transits of
the system by the faster particles, Sgacistics on near encounters of
logically far away po£6ts gnd on the nuamber of restructuring operaci;hs
%equired were presented,

It was found that the reconrections of the dynamically changing MLG can
zenerally be computed locally in a very few Qectogized iterations w;thout’
using lnefficient gather or scatter oéerations. ‘Almost all of the grid
restructuringvoccasioned by particles passing each,othér occurs in the first
two or three veetérizeg,i:erations. Eunéﬂer optimization is possfble by
changing Eo local scalarvswapping'aftep a few kte:ations. It is also fodnd
that almost all the spaciélly closest nodes are nearby ia the HLG as well,
Two or three logical grid locations éffecfively defines the spatial near
neighborhood excepé for a vanishing small Qumber_of cﬁses which can be
detected and corrected iﬂexpensively. |

The MLG differs from previous nearest-neighbor algerithms. it

etfectively removes the constraint of having to associate a.cell of the
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logicaI zrid with a fixed region of real space, but introduces the
constraint of only one particle per computational cell., When many of the
objects cluster somewhere, a corresponding fraction of tne storage locations
in the MLG are automatically associated with that regiom. This means that
substantial variations in'objéot density are adaptively gridded by the MLG
and large regions of space, as well as computer memory, are not occupied‘by
empty cells, |

This algorithm gives regular global orderings of the object data and so
allows efficiént contigubus vector operations which are longer.than the'
relatively small number of neighbors considered for each object but can be
much shorter than the total number N. Ihe algorithm will executo
efficiently in_smali array processors and permits direct partitioning to
rake advantage of massive asynchronous paralielism in VLSI/VHSIC-based
dist: ?buted processing systems.' The cost to execute the simplest version of
the'model is one hour on a DEC VAX 11/780 for one thousand particles forl
10C0 timesteps when a simple fdrce law for the 124 nearest oeighbors is
used, With a commercially available Distributed Processing System, SOOO
‘1teract1ﬂg objects could be monitored and the data base upda:ed and then
restructured thoosands of times in about'}S minuteo, fast‘enough for
realtioe applications. ' | |

A number of potehtiai applications were disoussed briofly. - Obviously
othér'uoes will suggest themselves as tho good properties and reétrictions

of the interestinyg multivaluéd gcometrio ﬁLG oapping between real space aad

relative (logical or computer storage) space becomes better understood.

" These probltm-indppendeqt properties will be necessary to the successful

application of the representation to practical problems with other

mathematical, logical or pihysical codnstraints, Swapping and shift;ng




i |

1

operations and holes were introduced to allow efficient local and global .
grid readjust@ents, Practical experience with thé #afG is étill small,
howevar, so malor pathologies may vet be uncovered in som2 applications.

Many MLG configurations may be possible for theisame'physical node
arrargements and simple examples suggest that the best configurations are.
mﬁch batter thar the wcrsi. Thus efficient methods of op;imizing local and‘
global structure within the monoconieity constraints will eventualiy'be
imperative: Additional work is needed on the following question;:

1. What is the mathematiéal nature of the simple representations for

spatial derivative opeéators and integral conservation bpetators and how can
they be optihized computationallyé

2. . Is there-an algorithm to optimize the grid structu;é using hoies

an@/o: adaptively varied local modifications of the mogotouicity .

functions?

3, What is the cost of not reaching m(notoniciﬁy every cycle?

4, What is the geometric or informacion cheorecic meaping‘behind-the

ambiguity of possible representations, f{.e. what kind of an unceftainty

orinciple does this represent?

.36 . oo . .
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