AD-A135 164 EYALUATION AND IMPLEMENTATION OF A FUNCTIONAL 1/3 -
MICROPROGRAN GENERATOR(U) NRVRL POSTGRRDUHTE SCHOOL
MONTEREY CA D B STILTNER DEC 8

UNCLASSIFIED F/G 9/2

P R

: >
§ .

A

T Y N

.

o
WL
g T e r—p R

e

o
iz

FEEEEEEE v

[l f e

o i

22 it s

——— 32 i
=k

Er
4
[

v T T e e v T,

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

. s v

. NAVAL POSTGRADUATE SCHOOL

Monterey, Galifornia

2
AD-A155 164

DTIC
€ i

L4
y/B

-y

THESIS

EVALUATION AND IMPLEMENTATION OF A
FUNCTIONAL MICROPROGRAM GENERATOR

by
Deborah Regina Stiltner

December 1984

Thesis Advisor: Alan A. Ross

DTIC FILE CORY

Approved for public release; distribution is unlimited

- DAL M /Ot St Jegh e St D BAiCIML MR el et e —T—T— ri.,v‘——v-v,'rvr'ﬁ—;frfrfv'—-‘]

INCLASSIEIED o

SECURITY CLASSIFICATION OF THIS PAGE (When Dats Entered) i . .]
READ INSTRUCTIONS el

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM SR

1. REPORT NUMBER 2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER - X S

\ L.
ND 41551 (Y R
a1 5. TYPE OF REPORT & PERIOD COVERED

. Master's Thesis
Evaluation and Implementation of a December 1984

Functional Microprogram Generator

4. TITLE (and Subtitle)

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(as) 8. CONTRACT OR GRANY NUMBER(a)

Deborah Regina Stiltner

\

9. PERFORMING ORGANIZATION NAME ANO ADORESS 10. PROGRAM ELEMENT PROJECT, TASK
AREA & WORK UNIT NUMBERS

; Naval Postgraduate School
Monterey, California 93943

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Naval Postgraduate School December 1984 -
Monterey, California 93943 3. oéuzugsn OF PAGES -

14, MONITORING AGENCY NAME & ADORESS(!/! dilferent from Controlling Olfice) 15. SECURITY CLASS. (of this report)

P S S W v

1S5e. DECLASSIFICATION. DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution is unlimited

17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse gide it necessary and identity by block number)
Microprogramming, microcode generator, microcode, computer-aided design, BRI
computer design, instruction set design, control unit, functional RN
programming, menu-driven. -

'

PRI R A A G

20. ABSTRACT (Continue on reverse side If necessary and identify by block number)

When a programmer writes a microprogram, as a part of a machine's
instruction set or to implement an algorithm in microcode for faster
execution, he must be concerned with the smallest details of the hard-
: ware in the machine. Microprogramming exists at the lowest (closest to
t'.¢ machine) level and is the most tedious computer "language' to pro-~
gram. In the field of computer design, where microprogramming is used
extensively, designers use microprogramming to perfect instruction

FORM
DD ,'on7s 1473 _oimiow oF 1 nOVv €313 omsoLETE

S N 0102- LF-014- 6601 UNCLASSIFIED

1 SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

LR

4

PR

M -

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Deta Entered)

9 ‘ |
wJ A

sets and to optimize frequently used routines.

A computer-aided design tool called a microcode generator is pro-
posed in this thesis. It is an interactive, menu-driven functional pro-
gramming tool. The user builds a microroutine by selecting functions from
a series of menus as they are presented in a logical sequence. It is
implemented in the language C on the Naval Postgraduate School Computer
Science Department's VAX 780 computer using the Unix program development
system components. The microcode generator is designed to produce
microroutines targeted for a specific machine, the Am29203 Evaluation
Board, an ALU implemented in bit-slice components.

Mriatpihntion/
i dwatlability Todes

Avall agd/or
Dist | Speelal

S/N 0102- LF- 014- 6601

UNCLASSIFIED
2 SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

e My Shts Sdc s iea Sen S Svan e e Zae St cub eaie s wd At Aed At Al R B A

| s v L g v bl -
R e

Approved for public release; distribution is unlimited
Evaluation and Implementation of a
Functional Microprogram Generator

by
Deborah Regina Stiltner

Lieutenant, United States Navy
B.S. in Applied Science, Miami University, 1977

Submitted in partial fulfillment of the
requirements for the degree of
MASTER OF SCIENCE IN ENGINEERING SCIENCE
from the

NAVAL POSTGRADUATE SCHOOL
December 1984

Dobnele Roguwo STLEZ

Deborah Regina Stiltner

Approved by: %s & /\)(/‘4-4

lan A. Ross, Thesis Adxisor

" Herschel H.rLoomf/s, Second ﬁ;‘der

7

Author:

g Bruce J. MacLennan, Chairman,
/ Department of Computer Science

/ Jbhn N. Dyer,
Dean of Science and Engineering

(O e e et . . e e e T E
L e e T e e e et e . oo - R L SR PRSI S St e T e
EREEN ., et e e e T e e e L e . - R L A PRSI N]
AP G Yl T, S0 S Yl WiV Sl W WA G20 O3 A S LAY -‘AM'-'A‘. W ST WY

SR

oL,
‘.‘u .o AR

oo,

. W S

ABSTRACT

h / When a programmer writes a microprogram, as a part of a machine’s
instruction set or to implement an algorithm in microcode for faster
execution, he must be concerned with the smallest details of the hard-
ware in the machine. Microprogramming exists at the lowest (closest to
the machine) level and is the most tedious computeri“language"‘.{o/ pro-
gram. In the field of computer design, where microprogramming is used
most extensively, desighers use microprogramming to perfect instruction
sets and to optimize frequently used routines.

A computer-aided design tool called a microcode generator is pro-

posed in this thesis. It is an interactive, menu-driven functional pro-

gramming tool. The user builds a microroutine by selecting functions

from a series of menus as they are presented in a logical sequence. It

is implemented in the language C on the Naval Postgraduate School Com- R

puter Science Department’'s VAX 780 computer using the Unix program B
development system components. The microcode generator is designed to 1
produce microroutines targeted for a specific machine, the Am29203 ;',jf:f:
Evaluation Board, an ALU implemented in bit-slice components. R
. RS

\ SO

\ -3

Y

]

IR

C e

A A RRA)
.+ 2

N - - a e 2 1
ot e 22 e

''''''''''''' .
St e e - R I . L P N -_-\-,~_~‘~.v',‘.‘.
CHY TR S W T W T B P S W S R P i i i P AP R o e w | dnteleadetedatuiolttbece it 4 A‘L“

e .
- - - - - P R a e a T L
PRIREIRP I I I IR Sl G L. Bl S A Y

CaT T m e T e ARSI N AN el L g e A MRS M At e At Det St St it b et AR i S AR A i a-b U B e S ST

e

s
)

e

"

-

]

TABLE OF CONTENTS . ey
A o
1

I INTRODUCTION 8 .
- d

A. MICROCODE GENERATOR PROPOSED 8 =

II. BACKGROUND 11

A, MICROPROGRAMMING 11

1. History - 12 - A

.-
2. Development -— 15 :
3. Am29203 Evaluation Board Description i8 :

Vo e

4, Microword Format - 19

III. DESIGN APPROACH 21

A, USING SOFTWARE ENGINEERING THEORY -~--——ee—emvmemeee 22

B. MAN/MACHINE INTERFACE CONSIDERATIONS ~---—m—cee——a- 25

C. METHODOLOGY USED - 2 g
1. Specification Phase 27 :::Ejjﬁz

2. Design Phase 30 i

-
3. Implementation Phase 31 4

4, Test and Evaluation Phase ---——————=———ommmme—_ 31

5. Maintenance Phase --—————— el 34 ;

D. SUMMARY e 35 f;':;_:._;i
Co e

Iv. IMPLEMENTATION 37

A. MENUS ——eemm e e e 37

]
. *A.e

B. DATA STRUCTURES 39 S

1. The Microword ——- 39

Lt 20’
.),
PV L

. .
Coa , y 5 ,

R o e e
et R .
. oS

Loato ek e ettt e

T e T S N L S

- . C I - .. Tet . T et et S tat o e - . - ST U L. ‘ . LT
. = St - T N - - . Py . - . - 5 . oty s - o Ve Tl T et et t et y
LV VT Sy i LI W S By bttt tdindbe VR TN AT G G e VAL TN G TR GGG LY GG PR W PR WS VA W WP DR R R W W S S i S |

L M 20 St g TR M Baai e i AW

F.

Gl

V. CONCLUSIONS AND RECOMMENDATIONS

A.

B.

C.

LIST OF REFERENCES
APPENDIX A - EXAMPLE SESSION
APPENDIX B - PROGRAM LISTING
APPENDIX C - COMPATIBILITY TEST PROGRAM
BIBLIOGRAPHY

INITIAL DISTRIBUTION LIST

2. The Docu-word

3. Docu Utility -- _—

4. Field_set Utility

UTILITIES

HEADER FILES

RUNNING THE MICROCODE GENERATOR

1. Main Menu

2. Sequencer

3. ALU

ALU IMPLEMENTATION DIFFICULTIES

SUMMARY

CONCLUSIONS

WHAT’S NEXT

SUMMARY

.........

41

12

48

48

49

49

O
o,

w
[$)]

wn
D

60

61

132

218

221

e T T T =y

ACKNOWLEDGEMENT

Thanks to family and special friends for their support during my
eleven quarters at NPS. Special thanks to Col. Ross, my advisor, who,
besides advising, wrote a significant amount of code in support of this

thesis project.

.

- P
B
.1
- .I..
7 RO

e
S
4

e "_. - -. - -
B A R RO T TS S I Tk It Jho it S, Il St S I . PP SN NP PP C U S S Sl TS S o0 Sl Sl SRR S S Rl S T R, S

I INTRODUCTION

A. MICROCODE GENERATOR PROPOSED

Programming in microcode is not like programming in a structured
language like Pascal or like machine level assembly language. High
order language programs aren’t written with concern for computer
hardware or any of the internal details concerning program execution.
Programmers concerned with the contents of registers; say, compiler
writers, must be more familiar with the internal components of the
computer. They can’t easily generalize their programs to work with
several different computers like a Fortran programmer, but it can be
done. Microcode programmers must be even more specific in their

concern for the hardware.

The microcode programmer is most likely to be a member of the
design team for a new processor or specifically involved with computer
control unit implementation. The ones and 2zeros (which make up the]
microword) are direct signals to the hardware components. Designs for -‘1
machine instruction sets and supporting registers, PROMs (Programmable -
ROMs), control lines, etc. involve extensive detail, at a level much closer
to the machine, which the microprogrammer must know.

Computer aided design is a relatively new field which sprang into '
being when we needed more complex computers to solve more complex

problems. Designers could no longer hold all the detail in their heads,

CaT » i+ nd
A]
VPR B S N AW T L)

.

they needed a computer to help in the design process. For example,

L]
.

A A
Y

computer systems generate circuit diagrams in seconds; graphics

1 ‘>4"
. -.".
lala d 8 oA

R
VPP S Y

stations display VLSI drawings, zooming in on selected areas and
modifying them with a few commands from the user. Few areas of
computer design are left where tedious tasks haven’t been automated.
One such area is microprogramming.

A microcode generator could aid the designer in several ways. The
generator promotes structured design since it hides the details of how
the microword is produced. The user could select a function such as
"add the contents of two registers” and the generator would provide
the microword which accomplishes the task. The function of microcoding
could be modularized so that the user only needs to know what input is
required and what output will be given by the generator. The
importance of modularization and information hiding was introduced by
D. L. Parnas in 1972. [Ref. 1] A microcode generator could also help
reduce the simple coding errors easily made such as writing a ‘1’
instead of a '0’, or putting the '1’ or '0’ in the wrong bit position.

A good comparison of the use of a microcode generator would be to
the use of a calculator. One knows how to add large strings of
numbers using pencil and paper but the overall task is done faster,
accurately and without tedious sidetrips by using the calculator. The
difference between the microcode generator and the calculator is that
while a parent may worry that with a calculator his sixth grader might
forget the multiplication tables; the chief designer needn’t worry that
the use of a microcode generator might spoil his young team members.
The point is that the programming level required to use a microcode

generator is already that of expert microprogrammer. The generator

ST et e T et e e et e T e L R Y PP L . et P L A
B T e N e O P PR P A e U e e e e N
LI LI PN WPECIPE W W P WA WS WL IPR W R WP IS WL UL TP WL W WU W SR R R YR R R A AP P VRSN P W W PR SRR ST W . PR WL Y

A e e e e i S S st S 2l 20 S 0 I - B Uy G g e A o RIS AoR B0 el B ot

merely frees the programmer to think higher level thoughts, and thus,
_is truly a needed utility in the area of computer aided design.

I have implemented a microcode generator for a specific machine;
the Am29203 Evaluation Board which will be described in the following
chapters. The generator is written in the high-level language C. C was
chosen since a well defined standard for the language exists so future
"porting" of the program to other machines will be easier. The utility
program is designed to be interactive with the user and operates in real
time like a language interpreter. The user selects functions from the
menus displayed and is provided the appropriate microword. Microwords
are saved in microroutines which can be stored for later use. The C
program is currently implemented on the NPS VAX/Unix system. Future
rgsearch prlans are to modify it for use with microcomputers.

Chapter two will provide some background information on micro-
programming and the microcode generator targeted machine, the Am29203
Evaluation Board. Chapter three will discuss the design approach used
in this project. Chapter four will address specific implementation
problems and data structures used. It will also introduce a preliminary
user’s manual. Chapter five will contain some conclusions and

recommendations.

10 o

. ‘ l. . W
WP T T U TELIN DRLTV

.

B A e S0P e i\ e it e 2y T —— PERARSES Ja Soua e e Jhate it g (man T,

II. BACKGROUND

A. MICROPROGRAMMING

In order to discuss microprogrammed computer architecture, a
reference point must be established. Computer architecture is the study
of the systematic method in which the basic components of computers
are arranged and interconnected. A convenient reference point is the
high-level abstraction of a general computer system called the von
Neumann machine. This idealized concept of the essential organization of
a computer, developed in the mid 1940’s, was the key to the con-
struction of early computers. The von Neumann machine consists of five
basic elements; the Control Unit, Arithmetic/Logic Unit (ALU), memory,
input and output. In today’s computer systems the elements containing
the Control Unit and the ALU have been combined to form the Central
Processing Unit (CPU) or the processor.

The Control Unit implements the designed machine level instruction
set. The machine level instructions or macroinstructions can be
executed in two ways. Implementation in hardware using combinatorial
lo.. 3 the method used in early computers and by some high speed
machine. oday. However, the focus of this thesis is on the modern
method ' .ich implements the control unit using memory or stored logic.

The conte: 's of the stored logic are called microinstructions. A micro-

programmed control unit is one in which the more complex macroinstruc- T
tions (op codes) are interpreted (executed one at a time) by sequences

of primitive microinstructions which are stored in the special memory

11

« e . . N B - - o . . PR, - . C T e T T e PRI B . B N L . PN . - . . - N o .
. - - ST L ST Y v ER St . . . e . . - ST . IR -t ST T e PNt . RS
. Akl o Bnd Y e L. . PR T S S, T + S I Y L Y WA S ST SR T Vel Su WAL '-'l

2L R e

B. MAN/MACHINE INTERFACE CONSIDERATIONS

Man/Machine interface discussions usually center on graphics
capabilities. However, the design of the microcode generator is not so
concerned with the way a general user views the screen, but with the
way an expert user thinks through the problem of microprogramming.
As stated in an earlier chapter, the user is assumed to be an expert in
microprogramming and familiar with the specific machine for which this
program is written to produce microcode. This new utility will improve
his productivity and provide ease and flexibility in his design work. As
he uses the program, he should be comfortable with the sequence of
menus presented so that as he decides what the next step of the
microprogram should be, the method to take that next step is before him
on the screen as one of the menu selections. The most common theme
heard from interactive systems designers is embodied in Hansen’s First
Principle: Know the User. [Ref. 11] This principle is of primary concern
in this software implementation project.

There are more general human characteristics which must be dealt
with in any interactive design. Humans have a short term memoryv
capacity of only about 5-7 objects. Memorization can be minimized by
using function selection versus command entry methods and using names
instead of numbers for the choices. The microcode generator program
menus do use names except when numbers are the object of the
selection. "Muscle memory" refers to the idea that users develop the
feel for frequently used keypresses. This means that the same function
in different menus should be initiated in the same way; help or return

to higher level, for example.

25

manipulation, it would have to vioclate the Security Principle. This
principle states that no program should violate the definition of the
language, or its own intended structure. [Ref. 9: p. 7] The C language
contains powerful features that give it considerable flexibility. Like
other languages in the structure. category, C supports strong data
typing, makes extensive use of pointers, and has a rich set of operators
for computation and data manipulation. [Ref. 7: p. 2771 So the definition
of the C language contains the needed features that Pascal must violate
its own definition to effect.

Modularity, information hiding and portability are a necessary
influence on the design of this project. In order to achieve portability
to other compilers and machines, some care is needed to provide for
information hiding, i.e., generality within the modules and passing the
machine and/or compiler dependent data through the interfaces between
modules. Thus the modules themselves can be used for any machine or
compiler and only the interfaces need be changed. The C language has
a preprocessor feature which allows constants to be defined (using
#define statements) and placed in a separate module to be "included”
{(using #include statements) as a separate file. Thus, we could have

separate definition "include" files for different machines and compilers.

This is a standard feature of the language. 1

The above principles are associated with good design and :":jy
programming practices. Using them as guidelines for the selection of J
the basic hardware and software tools for this project ensures quality R

of the end product. -~

.
2l

24

O
A
i

Py

e
P

PP PR AT T TRP I NS PRI PR P S UL PRI P L. DU I LD SR Sl S L TR TR Wl S DA NP Tt S ST SO W I SR U U

e —— Mane

Such a large, complicated and interactive program is more easily
developed on a medium to large computer. Using a microcomputer for
the program development would involve more work on the programmer’s
part to manage a small memory, the storage of data arrays and the
overhead of the interactive feature. The VAX 780 computer running the
Unix operating system was chosen for its easy-to-use program -
development system, convenience (located on campus), and because :,f:_j
previous thesis work on this project had been done on the VAX. |

The programming language used to implement the program needed to o
be a modern structured high level language available for use on the ‘
VAX but portable enough to allow the program to be adapted for use at :iij‘ -
a microcomputer workstation. I chose the C language for its portability, e
since a well-defined and accepted standard had been established by its .

authors, Kernighan and Ritchie, [Ref. 10] and for its success as a

systems programniing language. The latter is important since quick,
efficient code and access to system functions, the characteristics of a
systems programming language, is needed in an interactive program

performing in real time. The previous implementation of the microcode

sequencer portion of the target machine had been written in Berkeley

Pascal. I chose to rewrite this section in C since the two languages
employ different parameter passing modes and data couldn’t be passed - 4
between the different modules. Pascal, a language designed primarily as
an educational tool for teaching structured languages, was also ruled
out because of its limited capabilities in input/output processing. One .

of the main differences between Pascal and C is C’s capabilities in

AT

systems programming. For Pascal to do some of the same sort of data

23

e

o S T St IR S AL S SR S T e

2o e o 0 L N . ot
. Lttt Coe
LA_AA_LA e tatata'alalaia & a3 v 0

3
;
;
.
[l
y
2
y
A
5
4

T U T TR - T e e N e, P PP DO S S TN .
CAPULY NI A.-‘4'4'_."‘?4'_"_.'.--".'&_'«;' AR e oA Ry 2 e s

I..' .. » 0 o .—. '- -_—- -.-! .l- " .I.-. - I_Il-. '..l'l. - 'I- .l- v L Clgt bRt Aen Jhit i St iaai Rt Syt dhni Shatthngt. Saaih it o - . - . - < B - e

in the design approach to the problem of building a microcode

generator.

A. USING SOFTWARE ENGINEERING THEORY

The selection of the program development system and programming
language to use depends on the main features of the project to be
designed. The microcode generator utility is interactive, featuring
menu-driven versus command-driven microinstruction functions, i.e., the
functions are selected through a series of menus presented on a
monitor. The program acts very much like an interpreter; a one-pass,
step-by-step translator. The microcode generator functions are
modularized and separated into function procedures which can be
offered as possible selections by the user in one menu on one monitor
screen. The combination of this modularity and the use of menu-driven
function calls support the theory that structured software programs are
better in that they are more understandable and easier to implement
with structured programming languages. The program is relatively large
and complicated. It has two main modules, the sequencer module
contains eleven submodules and the ALU module contains fifteen

submodules. There is a main utilities module which contains fourteen

modules. The two main modules and a housekeeping module frequently
call on the procedures in the utilities module, which do most of the bit
manipulation within each microword. Thus, the main features of the
microcode generator are its use of interactive communication with the

user, menu-driven information flow and complexity.

+
2l

22

.
ll .
ol Lo

e v

R R

. Lo,
P]
P

e
R
e

t

R
A a2 P

P T S PR T N T T S T SR T T S Tt ST
[APRE RIS S DR NP AR IR aPuir SIPR AT S PRI oot Bodnesmstaandinio e it o L St e Bal el de de de adat b sinsdassdadsdeeds st il ded e i

. m " A P P o Ty

III. DESIGN APPROACH

Design may be defined as the process of applying various
techniques and principles for the purpose of defining a device, a
process, or a system in sufficient detail to permit its physical
realization. [Ref. 7: p. 128] The field of software engineering has two
general aspects. One aspect contains the general theories and
principles proposed and tested over the last fifteen years, as the art of
producing software became a science, i.e., a more disciplined approach

was needed to combat the recognized "software crisis" of skyrocketing
development costs of software beginning in the 1970s. For example,
Edsger W. Dijkstra wrote, in 1968, a now famous letter called "Go-To
Considered Harmful." [Ref. 8] He had discovered that the difficulty in
understanding programs making heavy use of go-to statements was a
result of the "conceptual gap" between the static structure of the
program in sgpatial terms and the dynamic structure of the program in
temporal terms. This is called the Structure Principle. [Ref. 9: p. 137]
Another accepted concept was mentioned in chapter one; the Information
Hiding Principle first proposed by D. L. Parnas in 1972, The second
aspect of software engineering is the large group of methodologies or
techniques available which are specific design tools and solutions for
virtually any software engineering problem in existence. Thus, we have

principles on one hand and practices on the other. In this chapter 1

will explain some software principles and accepted practices I have used

21

35-32: ALU function selection.

31-16: Control fields for the Am2904, Status & Shift
Control chip:

31-30: Controls carry-in.

29-24: Called 15-10. These six bits control the micro and
macro status registers. This field is highly depen-
dent on other fields, and is extremely difficult to
coordinate when programming.

23: Enables micro status register.
22: Enables macro status register.
21: Command enable to use 19-16 as a command field

for special functions of the ALU.
20: Shift enable to use 19-16 as shift control.

19-16: Used as a field for ALU special functions, for shift
control, or for status enable.

15: Monitor breakpoint bit.

14: Not used.

13-0: Control fields for Am2910 Sequencer:

13-4: Branch address; or in conjunction with bits 47-45
could be used for data constants or to specify ALU

registers as sources of data or addresses.

3-0: Sequencer instructions.

Following chapters will go into greater detail when addressing

the design approach to implementing the functions of the different fields

in the microword.

¥
¢ Lt e
AT W 4

"
<o
]
)

)
W
[
PO

.

v
t

¢
SNICPLN N

‘o .
e e

20

PR
AN
0

. - e 2 e e e AP TP AP . e

The Am29203 ALU Evaluation Board is set up with a monitor
which can display and load all memories and registers. To run micro-
programs, load the microwords in hex into WCS; the status registers and
macroinstruction registers should be loaded with appropriate data if
conditional testing is to be performed. Enter the command G (for Go).
After execution the registers and/or memory can be inspected (dis-
played) for indications of the intended results. The execution of a
microroutine can be halted or paused and breakpoints can be set. The
board is manipulated via the monitor much like a debug utility program.

4. Microword Format

The microword used to control the evaluation board is 48 bits
wide. It incorporates the techniques of bit steering; using a bit or
field of bits to determine the meaning of another field, [Ref. 5: p. 172]
and vertical programming in some fields. The microword is organized
into three main fields which control the three main IC’s mentioned
above. A discussion of the function of each bit of the microword
follows, starting with the most significant bits: [Ref. 6: pp. 3.10-3.12]

47-45: Controls the selection of the register address fields

which select the microinstruction pipeline register
(the output microword from WCS) or the macroin-
struction register as either the sources for the

ALU operands or the destination of the ALU opera-
tion result.

44-32: Control fields for the ALU:

44: Enables ALU output to ALU registers. -f::_':'
T

43: Enables ALU output to the Y bus (the main data B
bus). T

42-40: ALU source operand selection.

39-36: ALU destination selection.

. AT .
LT AN
P I WY W W S Yy

‘l"' T
PR VY

e A s e e o L'}"L“

Bt

D T R T i TR
LR BN L T TPy e W O T Y

DS A A D A S A S ARSI ANCIA i % EEEath Senar M e S i) Pr—— - P

allows pipelining, the overlapping of microinstruction execution with
control store fetches. While the microword in the pipeline register is
being executed, the next instruction is being fetched from WCS. All
these improvements over the simple three element control unit provide
the needed capabilities for an efficient microprogrammed control unit.

3. Am29203 Evaluation Board Description

An Am29203 Evaluation Board prototype is used for micropro-
gramming experimentation in the NPS Computer Science Department. The
evaluation board is built, using bit slice architecture, from wvarious
bipolar integrated circuits (IC's) produced by Advanced Micro Devices of
Sunnyvale, CA. The Am29203 is an implementation of an Arithmetic/Logic
Unit (ALU)., This board is presently used in research at NPS as a
representative microprogrammable digital system. As the target
microprogrammable device for the microcode generator, the evaluation
board is briefly described here, and in more detail in later chapters.

The board consists of three main IC types and memory for
Writable Control Store (WCS). [Ref. 6] It uses an Am29203 four bit ALU
slice. This ALU chip can perform seven arithmetic, nine logical and
sixteen special functions on two four bit operands. The evaluation
board cascades four Am29203's to provide a sixteen bit ALU. The board
also uses the Am2904 Status and Shift Control Unit, which supports the
functions of the ALU. The third main IC is the Am2910 Sequencer used

in the board’s control unit. It is the microprogram controller for the

@

sequence of execution of microinstructions stored in the WCS. It
provides both sequential access and conditional branching to addresses

in the WCS.

n‘~.-|
. ettt
. . S
ey AEEARNN
F DT WG Sy R BV

18

.t
v 4

‘s

Rt Y ——— T ~ b aregs —y
- ; S - B . R ERMETMAEI AN AN AL DI A O il i Ml st -/t i i i i e e St S

important in computer system research and real-time, embedded

computer systems (military applications) since updates and/or config-

m uration changes are more easily handled with the flexibility of
:::: microprograms which can be over-written.
e The simplest implementation of a microprogrammed control unit

consists of a register or buffer, timing signals and a ROM (Read Only
Memory). The register contains the macroinstruction which holds the op
code to be implemented with a microroutine. The op code is used to
derive the starting address in the ROM, called control store, of the
appropriate microroutine to be executed. Each microword contains a
code indicating that either it’s the last microword in the routine or that
the next sequential microword in control store is to be used next. This
scheme causes fragmentation or unused portions in control store since
' each starting address is equidistant from the others and thus, all micro-
E routines are alloted the same amount of space even though all routines
are not the same size.

A mapping PROM (Programmable ROM) can be used to improve
the addressing scheme. The fragmentation problem is solved since any

set of addresses in the control store can be placed in the mapping

PROM so the microroutines can be any size. With the use of a Writable
‘ Control Store (WCS) microroutines can be easily changed and new - 9
starting addresses updated in the mapping RAM (Random Access Mem- '
ory). A MUX (multiplexor) for conditional codes can be added to include i
conditional branching capability. 1

Another important improvement has been the addition of a buffer -

register at the output of control store; the pipeline register. Its use

17

T e e T T T T T e T . R A I LI B A L U AU I
IR S T TS S St WAOUA P S5 S UL APPSO PSP ST P PGP S R TSI NG L S S TSN SN Yt RIS Bl 5 St VAL

. A .v‘f.'.'.‘.‘."~'<"-'~'.l.'".f..('.'.""A!.l !.I.I '.' LA N

LR e e s Seg mat Mol g auen e S ga-m il oA gl g g b S S-S s S a

-

are critical. There must be sufficient time available per
macroinstruction for the microroutine instructions to be completed. The
diode control store method posed no speed problems since the speed
ratio was about twenty internal cycles per memory cycle. [Ref. 4: p.498]
The trend of smaller cycle ratios developed quickly, due to improve-
ments in memory technology. By the early 1960’s main memory cycle

speed had dropped to under one microsecond. [Ref. 4: p. 499] The ratio

of internal machine cycles to memory cycles became one or two to one.

It wasn’t possible to decrease the control store access speed so

parallelism was needed in data transfers. Multiple data transfers per
machine cycle resulted in simultaneous control of internal resources.
The microwords (microinstructions) were made wider to produce more
control signals per machine cycle. Parallelism was increased with the
addition of more control signals per microword. However, the use of
wider microwords required more space in control storage.

Emulation, the use of control stored microprograms to interpret

several different processors’ instruction sets on one host system, [Ref.

5: 405] was implemented by IBM on the System/360 in the mid 1960’s.
This new application for microprogramming was very important for
businesses which did not want to have to reprogram old software but
did want to use new programming languages and develop new appli-
cations on newer higher performance machines.

Fast read/write control store was developed in 1970 using

bipolar monolithic technology. [Ref. 4: p. 499] Thus, the control store
has the same access time as combinatorial-logic gating delays, since they : :":".:

are made of the same material. Writable control storage can be very

16

—

S aE 2t A 20t T Roas 2

T T —— P S —— S e e e e A e e, ey

Wilkes viewed the Control Store as consisting of two ferrite core
matrices, [Ref. 4: p. 497] (See fig. 2.1) A portion of the macro-
instruction called the operation code or op code was used as input to a
decoding logic tree. The logic component accepted n bits as input and
provided 2® possible output lines, only one of which was selected.
Thus, a four bit input line could select one of sixteen output lines
which were the microinstructions. Each output line was configured with
diodes to select any number of available control lines. The active
current in the selected output line was passed on by a diode to the
connected control line in the first matrix. So the configuration of
diodes on the output line determined which control lines were activated
for a particular clock cycle and a particular microword. When testing a
design, these diodes were easier to change than rewiring a new hard-
ware circuit for a particular function. The 2® possible diode configured
output lines represented primitive operations (the microinstructions)
which when selected in sequences formed short subroutines which
carried out the function specified by the op code. The second matrix
was used for sequence control. Each microinstruction could select the
next microinstruction to be executed. Wilkes’ implementation also
included a provision for some conditional testing and sequencing.
These diode arrays were the first microprogram memory or Control
Store.

2. Development

While macroinstructions generally effect changes to data in main

memory, micfoinstructions reflect register to register data transitions.

Cycle time ratios between main memory access and control store access

15

QAL A

I SR I I I P T DU R U P T G SR

i It aagi sl B gk ZEed st sadi s dry

.w yun jonuoy saxim L'z by
4 |
] doy4—dii4
v,. jouoijipuo)y wouy | 44
ST g
buipooag g
° g
®
: :
3= 4

—$
=
14

'
e
t .t
.

Ll
L 28 X 2R J v [2K

saun saul |043u0)
aouanbag

‘._m‘um_mm‘m ‘

A

i 13})ng “

[
PR,

ks
.
b
Y.
'
:
-

L GAGARNEE - B

D A
-

T
.
e

The disadvantages of hardware implementation are that any
changes could mean an entire redesign; documentation was scarce; and it
was difficult to test the implementation since much of it had to be
working just to test one small portion. The advantages are that it can
be the fastest running implementation, a small task (simple design) will
have a simpler soluticn and the complexity and lengthy design time can
be justified for high volume applications. In a microprogrammed
machine each machine-level or macroinstruction is carried out one
instruction at a time by an interpreter.

M. V. Wilkes, in 1951, first proposed a microprogrammed control
unit in a computer. [Ref. 3: pp. 16-18] The microprogrammed method
was easier to use in the computer design development and engineering
rhases, Wilkes proposed. He and his colleagues sought a means for
rearranging the circuit design into a systematic order which was easy
to implement, comprehend and maintain. They were more interested in
simplifying the design task than in any savings of hardware. It is
interesting to note that while Wilkes didn’t believe there was any need
for general purpose computers or the corresponding complex instruction
set, the microprogrammed control scneme he presented made the concept
of a general purpose computer feasible. The general purpose computers
in use today have instruction set sizes on the order of hundreds of
instructions. The design and implementation of a system of combi-
natorial logic with such a complex control system would be very expen-

sive to manufacture.

13

O e e e e e e e e L .

. - . . P T e TR SR B] » ', B ety e L. P . - P T . . .
e . BN P et - N «®a et . . . - N L PR LT B

PSE; BV SN SR APRLIY WP ST VO T AT S lll Vol Vg NN SO Sug) LY NI/ i/ U G P ST G PR TR U T DA TP AT DR U Wi D DS T D W D

e p—

N AL R
NP SIS DN

LumNE AR SR e siir aSEL Mo aovs Jncel MBel RAdM e rd il e -ae GrAeh - AR Jaad Jeuk Sl seadh e Sl ionth ARt M St AR R aRb e SRt he e Sl wn Arw g 40 rte i~ A S an Al A S0 st Sube Sue S Same Sus

PR S e o8 v
I
.

called Control Store. These sequences of primitive microinstructions are
n called microprograms; stored prog:.ams that explicitly control the data-

flow through the physical components of a processor. This method is an

L e g
i)
et
LI 4

alternative to performing data-flow control with a network of sequential

*

ey
e
¥

*- logic circuits. [Ref. 2: p. 5]
1. History

b The early computers’ instructions for arithmetic and boolean

functions were directly implemented with hardware. One could look
inside the computer and trace the circuits responsible for a particular
function such as multiplication. These basic logic circuits such as AND,
OR, etc. were constructed from switching devices such as vacuum tubes,
diodes and transistors. The outputs of the resulting storage elements,
i.e., flip flops and latches, control the execution of arithmetic or logical
operations by issuing control pulses over the control lines to specific
gates in the data flow. In a relatively few machine cycles, information
is guided to flow over many paths and through many functional units in
the specific order required for the execution of the macroinstruction.
Hardware implemented control units require many basic components and
intricate wiring efforts in their design. They have a haphazard
appearance due to the mass of wires and circuits placed on the circuit
board in any place they could be fit., Complex instruction sets were
difficult to implement because the design task alone was a tremendous
undertaking. It was a lack of modularity in the design process which
forced the designers to maintain a complete understanding of the entire

design in their heads.

12

Another important interface consideration is the input device(s).
Thus far no other input devices are available for use with the VAX
development system used in this project. However, an excellent input
device for selection is the mouse. Its most common criticism is that it
takes the user’s hands from the keyboard, but this is important only to
word processing applications where speed typing is advantageous. The
microcode generator’s user will have his attention focused on the screen
which is perfect for using a mouse. When the code generator is
adapted for use on a microcomputer workstation a mouse could be
implemented as the input device for menu selection. Using a mouse also
creates muscle memory which improves the user’s productivity. Other
k. input devices include joysticks, speech recognizers, tablets, etc. Speech
._~_'_ﬁ synthesis and recognition quality is improving quickly but the mouse

has the characteristics of simplicity, flexibility and cost effectiveness

which make it a very popular device for use with interactive programs.

C. METHODOLOGY USED

Once software engineering concepts are understood, actual
implementation of a project is the next step. The explanations of what
is going to be done, using what guidelines, who is going to do it and
why it’s important, have all been presented. The next step is how to
implement the microcode generator. Every company and government
agency responsible for producing software has some formal or informal
development methodology, a collection of methods, chosen to complement

one another, along with rules for applying them. [Ref. 12: p. 14] The

26

. e e P D T L A R . - - LR LR " - PR R B PP S L S et
(PSPPI UL P Nl S AL LT A Wb LIV SPy_JPRELAPNE P UL JP0 TP Wy T T TR Ui WA TS S WP D i S < * R (WSR-S W WIS WY TRy Lreware

N N N TR T N Ny vy ——y——yp - g
[- RRACMICR A AN Jra Aen 44 T T — T T SRR AV S Sra SreLivi oves Aen e
"

F

methods chosen to design and implement the code generator will be

discussed in the following sections.

M-~

l. Specification Phase

2
a The basic requirements of the specification phase of a software
F.
r
3

development project are to describe the intended data flow and data

structure to be realized in the program, provide a description of the

program functions, and establish and maintain communication with the

3 user. [Ref. 7: p. 95]
F The internal structure of the C source program is modular in
. that each logical microprogramming function, selecting the branch

address to be used in the sequencer portion of the microword for
example, is implemented as a separate procedure. (Procedure is a
generic term for what is called a function in C.) Also the '"main"
procedure does little but initialize, call the modules selectable from the
master menu and help the user exit the program.

Thig modularity is necessary when a top-down design technique
is v3ed as in this program. Top-down or stepwise refinement begins
with a high-level representation of software procedure. First, the
"main”" program or driver program is defined; then each procedure
called by the driver program is written in code and soc on. [Ref. 7: p.
131] With this technique, the program can be written and tested in
more manageable pieces. This is a far better method of design than
writing the entire program before trying to run it. The most important
reason is that the user can be involved to provide early guidance from

his, the most important, point of view.

27

The external structure is the dynamic flow of the program from
the user's point of view. The motivation for writing the microcode
generator is to make microprogramming easier and less time consuming.
An example of a microcode generator in use is AMDASM™ which is
available on Advanced Micro Devices System/29™. [Ref. 13: p. 10] This
tool is not interactive and is quite complicated although it is quite
general. The interactive nature of this project’s code generator makes
the program more "user-friendly.” The menus help the user concentrate
on the problem to be solved rather than how to run the program.
Thus, the flow of the program is directed by the hierarchy of menus.

The descriptions of the functions implemented in the program
must be specified in this phase. Any changes to these specifications in
a later phase will mean a slow-down in the development of the software,
since most work must stop while the implementer backtracks to effect
the changes. A general description of the program’s functions follow.

a. Sequencer Functions

Once the user selects a sequencer code, the sequencer
module of the microcode generator determines what support data is
needed. If the selected code requires a branch address and/or
condition codes, it requests the data using further menus. Then it
provides informational messages if the sequencer code selected is
dependent on other sequencer codes which must precede or follow it.
Provisions must be made for "remembering” the user’s selections to
ensure that subsequent changes to the sequencer code in the same

microword remain consistent with other fields of the microword.

28

ey
.

TR e & 80 Sae Bno aue oy B ane

alatatasatatatal et

TV ——r———¢

b. Support Functions for the Sequencer

Shift and condition code fields implemented as a result of
selected sequencer code functions are incorporated into the sequencer
module of the program. Conflicts between shared function fields are to
be resolved or gracefully handled. That is error messages must be pro-
vided which don’t "crash" the program or cause undetected erroneocus
regults. A requested function may have up to seven possible bit pa‘-
terns. C language structures which hold constant data for comparison
of microword bit pattern options are used to resolve conflicts in shared
function fields. If none of the possible patterns are compatible in the
same microword fields then the wuser is informed and the requested
function is denied.

c. ALU Functions

Once the ALU function code is selected, the ALU module of
the program determines which type of ALU function it is, either a basic
function or a special function. Following the same guidelines as pro-
vided for sequencer functions, it determines what follow-on data is
needed to microcode the ALU fields of the microword. This is done by
presenting appropriate menus based on user choices already selected.
Each menu may lead to several additional menus, depending on the
selection made. After the ALU function is selected the user is prompted
for operand source data, results destination data with choices for shift
register manipulations on the results, a decision to enable the Y bus,
The same data structures and

and source register selections if any.

utilities that are applied in the sequencer module are used.

29

. R TR P TN S .o .
L S S NP P E-PS. SIS GAPLARIE E W, SAT SSE SU WE SE SE T W WL Rk YR S T S N Y

AL, N, S L S

bbb

A

d. Support Functions for the ALU
The microcode for the shift fields, command fields and
register selection fields associated with selected ALU functions are
incorporated into the ALU module of the program. The same data struc-
tures, utilities and constraints concerning conflicts and errors are used
as in the sequencer module.
e. Common Functions
Each menu has a selection available for help and return to
a higher level. When help is 8elected, an informational message is
displayed to clarify the menu presented and a reference to a manual or
data book is provided if possible. Selecting return to a higher level
displays the previous menu. The user can exit the program entirely by
repeating the return selection.
f. Housekeeping Functions
These functions comprise the third major module of the
program. They provide the capability for the user to build micro-
routines by adding microwords to a file as he creates them using the
sequencer and ALU modules. The user may also save, list, scan, modify,
delete and print microroutines. These latter functions will be available
from the master menu and some of them will be available from the
sequencer and ALU modules.
2. Design Phase

The design phase is the process through which requirements, as

determined in the specification phase, are translated into a
representation of software. [Ref. 7: p. 129] The goal in this phase is to

produce a "model” from which the final product will be built. This step .]

30

A
PR T I

' . et
| SISO

W TR S Ty S PP AP AP . P D R I O P L R P WA WU AL WS IPNE WL M VL TR W DR VA GRS W R

in the development of a software project can be compared to the build-
ing of a prototype in an engineering project.

The "models" used to represent the program are hierarchical
module organization charts. In figure 3.1 the hierarchical structure
between the major modules is shown. Figure 3.2 shows the relationship
between the menu calling procedures. This model reflects the rela-
tionships between the menus and shows the program structure from the

user’s point of view. These two models are adjusted until the internal

-
.j program structure (figure 3.1) supports the external structure (figure
3.2) which is the user’s point of view of the program.

3. Implementation Phase
’ In very general terms, the implementation or coding phase
translates a design representation of software into a programming
. language realization. This coding process begins when the programmer
]

puts source code on paper and continues until an executable form is
produced by the computer. Improper interpretation of design models is
a primary concern in this phase., [Ref. 7: p. 267} The characteristics of
the programming language used influence the way the programmer
thinks when implementing the design. Earlier in this chapter I

discussed the reasons why a modularly structured design should be

implemented using a structured language. The ease of design-to-code p
translation is an indication of how well the language mirrors the design 3
Y
- representation. C's support of structured programming and rich set of]
» 1
- operators make the design-to-code translation very smooth. T
%
"
R
> .
B :
- 31 9
‘_-_1
’]
. h
1

PR A P LU S S R T e '.~'::.~,."..-." R NP T PR

L PG A Sns S ol et G

TE———

L "
.........
..........
.......
.........
...................

v T WY

S9|NPOW UIDW }O 34N3}ONJ}S |DIIYDIDIBIH

1'¢ biyg

buideayesnoHy SalN

N1V

Jaouanbag

9|NPON UIDI

OO T e T
.......
......
. . .
........
.......

32

NS

Ve e e e ey,
DIV E S S)

NI L . S

. S

PR WP W LIPS APRAY A W YAE S SRl S VUi S)

ColE el i S i i L i el L et N - e s g LRI e M i et AR i S et et Seme st aantc

Main M

Seq
ALU
ALU
Rou

Sequen

odule

uencer Command Menu
Basic Function Menu
Special Function Menu
tine Manipulation Menu

cer Module

Seq
Seq

ALU Mo

Cal

ALU
ALU
ALU
ALU
ALU
ALU
ALU

i S B SR S NP S S) LRIV SIS ShiV Sy SR WDY S IR TN I S S W S W o PR TR Y S T G TR YAV N S U W

uencer Branch Address Menu
uencer Condition Select Menu
Am2904 Conditional Test Menu

dule

led from Main Module:
ALU Basic and Special Function Menus

Operand Source Menus

Result Destination Menu

Register Address Menu

Direct Source Menu

Instruction and Output Enable Menu
RAM A Register Select Menu

RAM B Register Select Menu

Fig. 3.2 User’s View of Menu System

33

. et
PR S I O 0 . S The

PR o 1

N
L e et Lt g T,
ct e et s @

4. Test and Evaluation Phase

Testing within the context of software engineering is actually a
series of four steps that are implemented sequentially. [Ref. 7: p. 295]
Unit testing is a test of each procedure as it is produced. Integration
testing addresses the issues associated with the problems of verification
and assembly of all modules in the program. Validation testing provides
assurance that the software meets all functional and performance
requirements. System testing verifies that the program meshes with
other systems in the usrv’s environment.

The procedures of the microcode generator were tested as units
and integrated with the program as they were coded. Thus, the first
two steps were executed concurrently.

E. W. Dijkstra is quoted as saying, "Program testing can be
used to show the presence of bugs but never their absence.” Could
exhaustive testing (even if possible) prove a program correct? No,
because you don’t know when all tests are exhausted. In testing the
code generator, the top-down design, modular structure of the program
made the task easier since functions were broken into small pieces as
procedures. Each unit was tested by running it with both expected and
unexpected data.

5. Maintenance Phase

Software maintenance is far more than just fixing errors in a
program, it consists of all support for the product once it released,
There may be several versions of the same program which need support.
The maintenance of existing software can account for over 60 percent of

all effort expended by a software development company. [Ref. 7: p. 322])

34

TR A S R Y c S T Tt AN REIALIA
LI IR SR S Pt S I JI, SO St SR WAt Vit A Uit Uil T G S . I 2 WP DY Aiodon o

adandad ol s s

. L P
NPT WIS BT

. e « oo
. . L -
[N SR S W W WV S Uy

LR LT Vol WA S T L AL A LA S .:;k*L"--'L-L--~L.-L-‘.L-gm_.-----k~-~-h~.-w“{ 3o o

Software maintenance may be defined by describing four ac-
tivities that are undertaken after a program is released. Corrective
maintenance includes diagnosis and correction of any errors which may
exist after the program is released. Adaptive maintenance is the
activity that modifies software to properly interface with changing
system support. Perfective maintenance provides the software package
with new capabilities, modification of existing functions and general
enhancements requested by wusers of the product. Preventive
maintenance is done to improve future maintainability or reliability.
This type of maintenance is still relatively rare. [Ref. 7: p. 323]

Academic research projects don’t have the same requirements for
maintenance as a new product in the commercial market. The
maintenance of the program generator will depend on the availability of
interested students for further research. However, further work is
needed in this project. This thesis is just a small step in the

development of a fully generalized functional microcode generator.

D. SUMMARY

Software engineering is still more of an art than a science, even
though the application of systematic methodologies began about a decade
ago when software developers faced the software crises. But, the use

of a more disciplined, engineering approach to software design has

helped developers manage more efficiently the large, complex type of
problem solutions undertaken in the 1980’s.
The microcode generator implementation is a large and complex j:-.-':-,

problem for one person. Thus, the "modularizing” of the process, i.e., ":'_:_.w

35

A L
‘l'v""

PR L I B

RIS G W B 2D S P Py

- » PN

b

- al

-

breaking the project up into the distinct steps of specification, design,
implementation, test and evaluation, and maintenance helped me to
conceptualize the entire process. In shipboard administration terms, I
formed a "Plan of Action and Milestones,” a POA&M, and carried it out.
The next chapter will address specific data structure
implementations, coding problems and introduce a preliminary user’s

manual.

36

o
-

O
et T e,

PP Y

R L rTm——————— - " e 2 e e TR T p———

IV. IMPLEMENTATION

The planned sequence of implementation was discussed in the
preceding chapter. In this chapter I will address specific decisions
concerning required data structures and the general composition of the
source program for the microcode generator. This discussion will
include the general utilities, the housekeeping utilities and the header
files. A section on how to run the program is provided as a guide to
using the microcode generator. The last section of this chapter

addresses some ALU implementation difficulties.

A. MENUS

Interactive programs can be designed to interface with the user in
two ways; command-driven or menu-driven. The command-driven method
requires the user to know what commands are available, and the rules
and syntax necessary to use them. The menu-driven method is more
"user-friendly" since the user is allowed to pick from a menu of
available functions; he doesn’t need to memorize a great deal of detail.
The tradeoffs between the two methods are speed and flexibility in the
first case and ease of use in the latter case. The main decision point
when choosing between the methods is at the point where a program
becomes too complicated for even experienced users to remember all the
commands needed to effectively use the program. The menu-driven
method was chosen for this reason, i.e., there are too many possible

functions available to be remembered in the command-driven method.

37

P M I R P IR T N T L R L L. P - . L. A -
R R e] - o Sl PURP W W U DN IS GAPIAY W) .. P R R LT W

PR Wy P WAL

F .

‘o

A.'A'J.".'.

“"q'n'l'x'f .

.,
PR W B

PP G Y

y e

e

"

MRS SR Aah " h L i o St e e Sae gt e i At CA At Sttt Ty Jheg i A S YA A T Y, ~

Current macro-assembler type microprogram generators use batch style
execution, are thus command-driven programs and are less
"user-friendly."

To estimate the number of commands that would be required in a
command-driven program is not difficult once the menu-driven version
exists. Each option on a menu represents a required command or
subcommand in a command-driven version. The sequencer portion of the
microcode generator program has 6 menus including a total of 54 options
to choose. The ALU portion has 20 menus including a total of 214
options to choose. This totals 268 commands. But, each menu in both
portions has a "Help" and "Return to Higher Level" option; so these can
be combined to function under only two commands for all menus. So, we
have a total of 268 - 2%(20 + 6) + 2 = 218 commands which would be
required in a command-driven method. The interdependencies of some
of the microword’s bit fields would further complicate a command-driven
structure, and these are only the functional microprogramming
commands. The housekeeping functions like saving, listing, scanning
and printing micro-routines also need commands. Since the average
number of options per menu is 10, that number should be added to
account for the housekeeping module. So, the final total of needed
commands in the command-driven method is at least 228, not counting
the effect of field dependencies. This is not a reasonable number of
commands to expect a user to remember in a task like microprogramming.

The microcode generator program was written using the following
general concept of program flow: Write a menu to the screen, and then

trap and test the wuser’s response using the C language SWITCH

38

construction (the equivalent of the Pascal CASE construct). [Ref. 10: p.
54-56] The SWITCH case which matches the user selected menu option
implements the function requested, perhaps displaying further menus
from which the user selects the proper parameters for the function
desired. This menu, SWITCH, implement, menu, SWITCH, implement

continues until the user selects the "Return to System" function. The

program is roughly half menus and half SWITCH constructs.

B. DATA STRUCTURES

1. The Microword
The forty-eight bit microword for the Am23203 Evaluation Board
was designed to provide a representation of the functions for a general
purpose sixteen bit ALU.} The microword, as designed, uses the
concepts of both horizontal and vertical microprogramming. [Ref. 4: p.
501] In a horizontal microword there are many bits for the control
lines, providing a parallelism in resource handling. This method is
costly in terms of memory space but is very fast since there is only one
level of control. A vertical microword has fewer bits and needs further
decoding to determine which control lines are affected. It is a memory
space efficient method but usually executes slower than the horizontal
word because it has several levels which are decoded to determine the

control lines activated.
The specific fields in the microword are described in chapter

two. Several of the Am29203 Evaluation Board functions share bit fields

I The Am239203 Evaluation Board was described in chapters one and
two.

39

[N .
A TS
PR WU W S

. o
OO Ve

sy

51
%

.

<4

\
1
|

-
‘.,4
S
i

PP LS VN PR W R I . e T T T e . . - . el e - o .
Drcantintndin dinisBualivndnBunduiifnoinednedsndindehdo oo dined ac andednadhie L:L';'.:-;.‘_L' L‘_._‘_Li.‘L'-‘

sources for ALU operations, the destinations for the ALU results, and

the selection of registers for the ALU.

F. ALU IMPLEMENTATION DIFFICULTIES

The ALU module presents some difficult implementation problems
since it involves more potential conflicts in the microword bit fields than
does the sequencer module. The ALU functions which involve shifting
and carry-in bits pose particular problems since they share bits with
the conditional testing fields and the command field. Another hot spot
in the microword is the sharing of the branch address fields and the
register A and register B fields.

Compatibility is possible, in some cases, between functions which
share fields since many of the shifting functions are satigfied with
several alternate bit patterns (some have up to seven possible patterns).
However, the program must be "smart"” enough to determine when the
conflicts occur and warn the user. This problem is the most difficult to
solve in the implementation of the microcode generator. To optimize
microprograms the programmer has to take every opportunity to code as
many functions in each microword as possible. If he codes onlv one
function per microword there would not be enough room in Control Store
for all his routines. This task is the most complex and time consuming
part of microprogramming. So, although the ALU implementation is not
complete, the solution, in the form of a sample algorithm, is provided for
the problem of automating the process of optimizing microroutines
{(Appendix C). This algorithm searches through C language STRUCTURES

[Ref. 10: p. 119-141] that are set-up to store all the possible bit

53

PN AP Nencoliomondin S S S VAP TP W WL FFEIPY W I vl DRI WA SR W DR W VI R LT i P PP IR

LI N VO U

FULPUR S T L)

P e ey _— T - T T oy ey e aren o o aren o

ALU SPECIAL FUNCTION MENU

Enter the value corresponding to the function you wish to
perform:

Unsigned multiply

BCD to Binary Conversion

Multiprecision BCD to Binary Conversion

Two’s Complement Multiply

Decrement by 1 or 2

Increment by 1 or 2

Sign/Magnitude to Two’s Complement Conversion
Two’'s Complement Multiply

BCD Divide by 2

Single Length Normalize

Binary to BCD Conversion

Multiprecision Binary to BCD Conversion

Double Length Normalize; First Division

BCD Add

Two's Complement Divide

BCD Subtract F = R - S - 1 + Carry In BCD

Two’s Complement Divide Correction and Remainder B
BCD Subtract F = S - R - 1 + Carry In BCD A
for HELP with this menu "o
to RETURN to higher level o]

VIO OOQWEPNOONODOMLEWNNIT—-O

Fig. 4.3 ALU Special Function Menu

P
A
MPSLEY W

52

i CVGVE S TR S W S ENP a PP PSSR T I PL IR o PSRN Py 'L-'.' I V.. "“

Laman R ta A S B e v DI B Bhde s de ateas 4 Padiae i e Y

ALU BASIC FUNCTION MENU

Enter the value corresponding to the function
perform:

you wish to

R e e I

0 F = High
l F =S -R-1+ Carry In)
2 F=R-5S-1+ Carry In 1
3 R+ S + Carry In i
4 S + Carry In e
5 (NOT S) + Carry In l;*i
6 R + Carry In f’}
7 F = (NOT R) + Carry In o]
B F = Low L
9 F = (NOT R) AND S ~
A F = R EXCLUSIVE OR S Co
B F = R EXCLUSIVE OR S RN
C F = R AND S el
D F = R NOR S
E F = R NAND S PR
F F = R OR S -
H for HELP with this program h
R to RETURN to higher level]
_iq
Fig 4.2 ALU Basic Function Menu
]
L
1
. -
-
T
K
_1
-1
51 :f
1
T e A e -;'_;“;'L.‘-:L_’..‘:"‘L:L..L'-\.AL..AS-.»\-_‘.\.-.L PR Rk ‘—~.“A1.“~."1-.' \. : L-.. aemaa ‘u.;:‘- , , a_a J

POP, and the TWB commands all require both branch addresses and con-
ditional tests. The two sets of menus are displayed and the user is

prompted for all selections as before.

AM2910 SEQUENCER COMMAND MENU

Which AM2910 Sequencer Command do you wish to chose?

JUMP ZERO - JZ

CONDITIONAL JUMP SUBROUTINE - CJS

JUMP MAP - JMAP

CONDITIONAL JUMP PIPELINE - CJP
PUSH/CONDITIONAL LOAD REGISTER/PIPELINE - PUSH
COND. JUMP SUB. VIA REG OR PIPELINE - JSRP
CONDITIONAL JUMP VECTOR - CJV

CONDITIONAL JUMP VIA REGISTER OR PIPELINE
REPEAT LOOP, COUNTER NOT EQUAL O - RFCT
REPEAT PIPELINE, COUNTER NOT EQUAL 0O - RPCT
CONDITIONAL RETURN FROM SUBROUTINE
CONDITIONAL JUMP PIPELINE AND POP

LOAD COUNTER AND CONTINUE - LDCT

TEST FOR END OF LOOP - LOOP

CONTINUE - CONT

THREE WAY BRANCH - TWB

HELP with this program

RETURN to higher level

Enter a

DX EBOAQT P> OO, WN O

Fig. 4.1 Sequencer Command Menu

3. ALU
The ALU module of the microcode generator, although not fully
implemented, will be used in the same fashion as the sequencer portion.
The user selects ALU Basic Functions (fig. 4.2) or ALU Special Functions
(fig. 4.3) from the main menu. The user is then prompted through

several different levels of menus. He provides input such as the

50

LD SR L IS TP SR S S 1 PP OSSO LD Sl U ST T TR SRR N P UM IR SRL U Y SO Ul W

L R

Gl e e et
e A g d e LA

L e .

Y

ey

YT Ty TR Y T T B St S e e e — ——r e BB s —— -

1. Main Menu
From the user’s point of view, this program is very easy to use.
After executing the program, the sequencer module, the ALU module, or
housekeeping functions like scan or print microroutines can be selected.
Also, the Help and "Return to System/Higher Level" options are available
as in nearly every menu in the program. Selecting Help in each menu
will cause an informational message to be written to the screen, then the
same menu is presented again. The "Return" function causes the user
to go back to the previous menu.
2. Sequencer
In the sequencer portion of the program, the Sequencer
Command Menu (fig. 4.1) 1is presented. This menu displays the
sequencer codes used by the Am2910 Sequencer chips on the Evaluation
Board. As discussed above, the sequencer codes are grouped in four
classes. The JZ, JMAP, RPCT and CONT codes do not use branches or
conditional testing, so only the sequencer code bits are set in the
microword. The LDCT command requires an entry in the branch
address field so the Branch Address Menu is then displayed and the

user enters the desired values for the address. The maximum address

that can be coded is 3FF hex. If a higher value is entered the user

will see an error message and the menu is presented again. The CJV, N
Conditional Return from Subroutine, and LOOP commands require that
conditional tests be set up. A menu called the Condition Select Menu is
displayed and prompts the user through several levels of menus until
the desired conditional test is set. The CJS, CJP, PUSH, JSRP, Con- 'I{j:.}

ditional Jump Via Register or Pipeline, Conditional Jump Pipeline and j

o

49 e
R

1

B . S EIR . . PR . - P B
R R oy DNt NP, Y 0 Nl e e P P G, LU UL. . O UL SR, SR, VT S W S

lookup table. For example, the user selects choice '8’ from a menu
which is to be set in a four bit field; the procedure hex_field is called.
Hex field is passed the starting bit and calls the procedures bit_set and
bit_clear to set the bit pattern 1000.

The housekeeping utilities will manage such functions as list, save
routines, scan, modify and print microroutines. These utilities can be

called from both the ALU and Sequencer modules.

D. HEADER FILES
The use of header files in C language programs increases flexibility

and organization in the management of program segments. The

microcode generator program uses two header files to centralize the T
definition of constants and externals. Declare.h contains all the
constants defined using the #define preprocessor feature. Extern.h
contains all the variables and pointers externally defined. The Declare.h ..<
file is "#included" with each module. The Extern.h file is included with

all but the main module. ';'.:.»"

E. RUNNING THE CODE GENERATOR o

As stated before, this tool is intended for the experienced micro-
programmer. The microprogramming techniques and structures for the '_E*
Am29203 Evaluation Board are contained in Reference 6, the Am29203
Evaluation Board User’s Guide, and Reference 14, AMD’s Data Book. The
program’s help messages, where implemented, are derived from these two

references.

LA SRS S AP T

48

ot
bt 4

A et 4

. N DR ot -~ T) - . .-- . PR 3 - - a - et .t TR
e e T e e e T e e e e e e e e e e e e Sandotnidindeani bl ocie dood

T ST TS TR TR T < 0y 3 -y ™ T ———
- - - A R - LY T Ty SIS At s anch e e g+

AM2910 SEQUENCER BRANCH ADDRESS MENU

You have chosen a command which requires a value in the
register/counter
ENTER YOUR BRANCH ADDRESS FIELD
H for HELP with this program
R to RETURN to a higher level
222
This is the address being used. 222

Docu-word:
00000O0O0O0OO0OCOOOOOO0O0O0OO-100SG00P024

Microword:
AXXXXNXXXXXXXXXXX XAXXXXXXXXXXXXXX XX10001000100111
ffff ffff e227
AM2910 SEQUENCER CONDITION SELECT MENU

You have chosen an AM2910 Sequencer Command which requires a
conditional test

What do you want to do next?
for FORCED PASS - unconditional

for FORCED FAIL

Type a P
F
T to TEST the condition
H
R

for HELP with this program
to RETURN to higher level

Docu—-word:
0 0000O0O02000O0O0O0O0O0O0O0O0O-100H0D0314

Microword:
XXXXXXXXXXXXXXXX XXYXXXXXXX0X1000 XX10001000100111
ffff ffds e227

C. UTILITIES

The Utilities module contains many support procedures. The pro-~
cedures binary_field, dual_field, octal field and hex_field convert a
selected function to the needed bit pattern in respective binary, dual,

octal and hex sized fields. This is done using a SWITCH statement as a

47

the paragraph above) depending on the value in the present docu-field.
The docu-field is reset with the code corresponding to the class of
conditional test newly requested, and the microword is set. The
resulting microword for the "conditional jump via register/pipeline” with
requested branch address and conditional test is displayed, and the
main menu is again written to the screen. The following is an edited
version of the sequence of events as seen on the monitor screen when
the above example is run using the microcode generator. Appendix A is

an unedited record of a sample session using the code generator.

MASTER AM2910 SEQUENCER MENU

What do you want to do next?
Enter a 0 to select SEQUENCER COMMAND
H for HELP with this program
R to RETURN to system

AM2910 SEQUENCER COMMAND MENU
Which AM2910 Sequencer Command do you wish to Chose?
JUMP ZERO - JZ

0
1 CONDITIONAL JUMP SUBROUTINE - CJS
2 JUMP MAP - JMAP

Enter a

7 CONDITIONAL JUMP VIA REGISTER OR PIPELINE

THREE WAY BRANCH - TWB
HELP with this program
RETURN to higher level

am

Docu-word:
000000GCGO0O000O0O0O0O0O0OO0OOGOO0OO0OOO0OOQOA14
Microword: %iq
XXXXXXXXXXXXXAXX XXNXXXXXXXXXXXXX XXXXXXXXXXXX011l1 Iﬂy
ffff ffff fff7 N

46

S ey e ppom— reepra——y -

address function needs no subdivision); and choice = "the pointer to the
first digit of the branch address entered.” The branch address’
corresponding docu-field status is checked; if it is not zero, the user is
again prompted to confirm the change. If the branch address docu-field
is zero, or confirmation to change the branch address is received, then
the address requested is placed (in binary) in the microword.

The branch address case (number 19) of Field_set also checks
the status of the docu-field function for register A and B selection.
This is done because the two functions; selecting the branch address
and selecting the A and B registers, share the bits from 36 to 43. The
compatibility algorithm is used to find a compatible bit pattern if
possible.

After the branch address is selected the menu for selecting the
desired conditional test is written to the screen. The user’s options are
to select a forced pass, forced fail or to go to another menu to select
the exact test desired. Field_set is called with field_cnt = 25 for the
conditional testing case of Field set’s SWITCH; sub_set = 1, 2, 3 or 4;
choice = "pointer to the choice for the particular test desired.” The
sub_set code is assigned according to which fields need to be set for
the conditional tests function. All the different conditional tests are set
using four different groups of physical fields. The value 1 means that
the Command Enable field (bit 26) is set; 2 means that the Command
Enable field and the Command field (bits 28-31) are set; 3 and 4 mean
that the fields at bit positions 26,28,18,20 are all set.

First the conditional tests function docu-field is checked; if it is

not zero then the appropriate physical fields are erased {(according to

45

-
. e e e T T e T e e T e e e e e T e e T e e L e s T e Y
R IR VP S SRR S J000 SR TRU. IS NS TR Y SRS SR WPV I S T) ‘\:"_. N T o I Tl S U SN TG NI PO DN W A 0 T WP U G W T G . . ;.._I

TP ——

'

‘m A e

sequencer); sub_set = 4 (the sequencer command function divides the
sequencer codes into four classes); and choice = ‘7. A sub_set value of
1 would mean that only the sequencer logical field is coded. (The
sequencer field is coded for all cases.) A 2 means that both the
sequencer and branch address fields are coded. A 3 means that
conditional tests are set. A 4 (the value in this example) means that all
three functions; the sequencer field, the branch address field and
conditional test fields are set.

The first step is to check the history of the function in the
appropriate docu-word field. If the docu-field’s value is zero, then it is
set to 4 (passed from the sub_set parameter), this stores the information
that a class 4 sequencer code is being set. Field_set then places the
proper bit pattern for a choice ‘7', ‘'conditional jump via
register/pipeline”, in the sequencer physical field; bits 44-47 are set to
0111.

However, if the docu-field for the sequencer function is already
1, 2, 3 or 4, then the sequencer code field has been set by a previous
request. The user is then prompted to confirm that he desires to
change the sequencer code. If so, then fields previously set are erased
(set to 'XXX...'; these are indicated by the code in the docu-field), the
new sequencer code is set, and the docu-field is set to 4.

After the sequencer code is set, the menu for selecting the
branch address is written to the screen. The user is then prompted to
enter the desired branch address. The branch address select procedure
then calls Field_set with field cnt = 19 (the SWITCH case in Field_set

which manages coding the branch address); sub_set = -1 (the branch

44

Y VR AT AT WA S TN WA Tl WA Sl ST WS W Wt 1) W WAl S S W, AP - b I e dhndh

[

Y
Aoob

1

Lo LSl g e o . - —_— — —
bt - PN T ~ Caeas ass s N L . n a N ” p——— w . g — >

has been set previously, and a message is written to the screen for the

user to confirm that he intends to change the furction. If the user

-~ ARG T
H
Ao

does not confirm, no changes are made to the microword or docu-word.

If a change is confirmed then the docu-field and microword are both

Ty
. .
'
2

modified to represent the new choice. If the previous function set :
1o d

other physical fields then the old docu-~field value will indicate which
other physical fields need to be erased or reset.]
When the requested function shares phyvsical microword fields J

with other functions, the status of the docu-field’s of those other
functions must be checked also. If their docu-field values are zern
then no conflict exists. However, if they have been set, then a potential
conflict exists., If both functions have no alternate bit patterns, then a

message is written to the screen informing the user that a conflict

'.’..'." as b [N

exists; no changes will be made. If one or both functions have alternate - i
bit patterns then a compatibility checking algorithm provides a ‘J
compatible bit pattern if one exists, or produces an error message. The
compatibility algorithm is discussed later in this chapter.

For a fairly complex example illustrating the use of Docu and
Field_set consider the selection of a sequencer control code. The user
selects "sequencer command” from the main menu; then selects, for %
example, choice ‘7', the "conditional jump via register/pipeline” command.
This is a sequencer command which requires a value be placed in the
branch address field of the microword and provides for conditional

testing as well. The main SWITCH statement in the command select

‘
NP DT Y W SAY WY T S T

.
« pte
e e

procedure of the sequencer module calls the Field set utility with :;‘::-

parameters field_cnt = 24 (the Field_set SWITCH’s case concerning the

e

43

A]
PRPST ST ol B R NN

ten lesmdmbinlotiintnituiatibitsiinndeidocfondembanbdiniedtodsmnait . PP O U G TN U WA DA D R P S AT Y

L’ . J‘A .'.A

P ———————————~ — LI S m e e s od ae sed u AN cn Mentecai Shan Sescmen 4 S Sie Se e A S & e St S S St St A

data structures since theyv establish, in the cases of SWITCH statements,
the relationships and dependencies between the physical bit fields of
the microword and the functional docu_fields. That is, they use the
function requests and the "documentation” or history of requests for a :-f
particular microword as input and by following the logic contained in

the SWITCH cases, produce the properly coded bit pattern for that

— T T T
L A B) L) y X
AR . .

a7 A PR .

microword.
} 4. Field_set Utility
The Field_set utility consists of a SWITCH statement with a case

[for each physical field. Field_set is called whenever a user selects a

function to be microcoded. The parameters passed to Field set are
field_cnt, sub_set and choice. Field_cnt is the argument to Field_set's
main SWITCH and indicates the case which refers to the appropriate
physical field. Sub_set contains the integer code which is used in the
docu-word to distinguish between classes of functions. Choice holds the
A__'f:; character pointer indicating the menu option the user selected. In most
menu functions, the "choice" is eventually converted by a SWITCH to the
bit pattern used in the microword.

Each case in Field _set’s SWITCH is a small procedure in itself.
In general, when a case is selected it first checks the status of the
corresponding docu-field. As discussed in the previous section, the
corresponding docu-field value will be zero if it isn’t set and a -1 or
positive integer if it is set. When the appropriate case checks the
docu-field status, if the value is 2zero, then the proper coded bit

pattern is placed in the microword and the docu-field is set to -1 or a

positive integer. If, however, the docu-field value is not zero, then it

™

b

k -
L-
by
¥
h

3

b

gy r———— I AN SNe S o v S
. . R
. Leoa e e
o . PP .

L e g §

’

I il . e
. AP
. R T
v AR

P

T —

2. The Docu-word

The Docu-word is a 24 element, integer array data structure
used to "remember" the function choices requested by the user. This
"documentation" feature of saving all function choices made by the user
is necessary to provide such user-~friendly features as warning the user
when he has requested functions which produce conflicting microcode
and allowing the user to change previously created microwords. A
docu-word is created as each microword is built. Each element of the
array corresponds to a "docu-field” which represents a function
available in the microinstruction.

Each Evaluation Board function is represented as an element of
the docu-word. The entire docu-word is initialized with zeros,
indicating that no functions are requested. A docu-field assigned the
value -1 means the function it represents has been requested by the
user and the particular choice can be obtained from reading the
appropriate bit field in the microword. This code is used when there is
no overlapping or multiple function. A positive integer in a docu-field
means the corresponding function has been requested and the value of
the integer indicates a particular sub-function choice.

3. Docu Utility

The Docu utility consists of a SWITCH construct using the
selected function’s docu-field as the case value. Each case assigns the
proper code, as described above, to the selected docu-field to store the
user’s function requests. Docu is called from the utility Field_set; both
procedures are in the utilities module. Docu and Field_set, (Field_set

will be described in the next section) although used as utilities, are also

41

tal e ® a® ol o’ Rl d ol B PP WP L W P e e LR S S il WA - PR SRR YUY W S SO .L~’—.L.‘A_.L.L‘.L.'L..L'

. A2 Ui e e 20 e Py v o IR ket DA e DA AR i Sutis dhmie S St e Stn Sran i SE Slwa S Jnes Sye ma esn e Shen Sae

in the microword. The register select fields and branch address fields
share microword bits 36-43.2 The command and shift fields share bits
28-31. Steering bits 26 and 27 control the enabling of the command and
shift fields respectively. That is, when bit 26, the command enable field
is turned on, the command field is enabled in bits 28-31. When bit 27,
the shift enable field, is on the shift field is enabled in bits 28-31. If
both the steering bits are on then the field is shared in time as well as
spatially. The microword won’t make sense unless a compatible bit
pattern between the shift and command functions can be found. When
microprogramming by hand, this is the problem the programmer must
solve in order to optimize his program. The ALU module of the design
tool implements a procedure which checks for compatible bit patterns
when potentially conflicting functions are requested. If no compatible
pattern can be found, the two functions must be coded in two separate
microwords. Further detail on the specific interrelationships of the
microword functions can be found in Reference 6.

The microword, itself, is implemented in a character array data
structure. It is initialized at the start of the program with X’s which
represent unassigned or "don't cares"; if any remain after the process,
they are assigned a one automatically. The microword is displayed, at
appropriate points in the user’s gession, bit-by-bit and as twelve hexa-

decimal values, using the utilities Display_word and Display in_ hex.

2 Chapter two uses the conventional bit numbering method of right

to left (47-0). However, in this chapter the microword bits are
numbered 0-47 from left to right. This conforms to the element numbers
in the microword array. This method is used since the programs’

source code is written this way, and the reader can more easily refer to
the listings provided in Appendix B.

40

ORISR S S AP IR ST SN

ML S SO e o 4

oYy

I TR L S W

patterns. It compares the requested function’s bit pattern against the
STRUCTURE, and then chooses a compatible pattern. Appendix C
contains the source code of the test program which demonstrates this.
This algorithm needs to be incorporated into Field_set’s cases which
incorporate the ALU functions. When there is a conflict, Field_set needs
to read the microword’s "history" by checking the docu-word and then
make the compatibility check. If a compatible pattern is found, the
microword is set, the docu-word is coded to reflect the new function
added to the word, plus an indication is needed of the possible conflict.
This is necessary in case the user wants to further modify the

microword.

G. SUMMARY

The microcode generator’s program modules and function imple-
mentations have been described detailing the data structures used and
the support utilities anu files provided. To show how easy the program
is to use a guide to running the program was provided. The next
chapter will discuss some conclusions and recommendations derived from

this project.

LI M Satm Sen Jamet - R W e P W o

b, T S

a i .m w e

V. CONCLUSIONS AND RECOMMENDATIONS

A, CONCLUSIONS

The microcode generator is a needed tool for the microprogrammer
and/or computer designer. The coding of microwords at the level of the
machine’s hardware involves detailed manipulation of the micro-
programmed control unit’s control lines, registers and functional units.
The microword fields' complexity is directly correlated to the number of
parallel functions that the microword can invoke. As detailed in chapter
four, there are several shared bit fields in the microword used in the
microcode generator. The program’s ability to manage function conflicts
in a "user-friendly" manner relieves the user of the "overhead" of
tracking the potential conflicts as he designs his routines. The solution
of this function conflict problem is demonstrated in the sample program
provided in Appendix C. This compatibility algorithm compares the bit
pattern of the requested function to a C STRUCTURE holding the
possible bit patterns of a conflicting, previously selected function. If it
exists, a compatible bit pattern is found and placed in the proper
position in the microword. The microcode generator also prevents the
user from making simple mistakes such as writing a '1’ instead of a ‘0.
The program '"writes" the proper digit once the wuser chooses the
function desired.

The choice of C for the programming language in which to write the
code generator was perfect for the application. The VAX 780/Unix

system was predetermined in that it was convenient, accessible and the

55

most powerful system in the department. The C language is an integral
) part of that system. C is difficult to learn because it is intended as a
F production language, not an educational tool. It’s error messages are
not wvery specific (eg. BUS ERROR - CORE DUMPED). It 1is, being a
systems language, very flexible. There are few constructs to learn
since everything is done with functions. The standard C function

library provides all I/0 functions since there are none in the language

itself. The housekeeping functions which require using system calls to
open/close files should be easier to implement in C. The Unix operating
system is mostly written in C, so the two environments, C and Unix, are
highly compatible.

The micro:ode generator design is approximately 75 percent opera-
tional. The Sequencer portion, most utilities and an elementary version
of the ALU is completed. Initial testing on the Sequencer is complete.
The program needs to be used in a design environment to find further
bugs in either concept or implementation. Algorithms have been tested
successfully which solve the shared field problems in the ALU. The
function compatibility solution test program is shown in Appendix C.

I am satisfied that the decision to use the menu-driven method was
the best way to implement the code generator. As discussed in the
implementation chapter, the equivalent number of commands needed
would be too great to use the command-driven method. The menus do
become very familiar after prolonged use of the program. The slight

impatience felt is a small price for the program’s simplicity of execution.

56

ey —p— S Sy
. . . b Jiath A S s bt Sl A i g an e - P T ——

B. WHAT’S NEXT

The obvious next step is to finish the implementation of the AL
and fill in the ALU portions of the Docu and Field_set utilities. The
housekeeping functions alsc need implementation. As discussed pre-
viously, the compatibility test program will solve the function conflict
problem. The housekeeping utilities can be completed by writing the
routines to open files, and then using system calls to save and print
the routines with user defined names.

A next step could be to adapt the program to run on a workstation
used for computer design. Some research is needed to select an appro-
priate workstation. Some attributes should be: that it runs Unix
(initially) and that it is readily accessible to students, A move to

another Unix system would facilitate benchmarking between the VAX and

the new system. Adapting the code generator to systems with different
input devices is essential to studying the man/machine interface aspects
of this project. As mentioned above, one drawback to the menu-driven
method of interaction is that the experienced user of the program can
become impatient as familiarity with the menus increases. The use of a
mouse, for example, as an alternative input device might improve this

situation. The mouse also presents the possibility of using more

creative graphics to enhance the use of menus. For example, sensitive

selection areas could be provided on the screen for the execution of
frequently selected functions such as "display the microword”, "erase a
string of bits in the microword,” etc. Individuals have different ideas 1
of what the ideal method of communication with computers is; designers

4
have to try to deal with all, or at least most computer users. S
. T4

S t O
. STLTe T
N

57

,,v,..
N NN
PR

h e a P o VU . b - =) I WS SR NEAL VLA Solll WL SLA ol Ul S W S S SR S PP PR R A F.A'.-.FA.. ca kA taadadlac oy

Ty

The ultimate goal in the level of complexity for this microcode
generator is to be independent of the target machine. This project was
I targeted for a specific machine and so has not yet reached the ultimate)
goal. After this implementation is completed the next step is to write
the program to handle some area of generalization. The user should . :.fj.
l enter certain constants concerning his machine either at the beginning
or during each coding session. In the context of the C language,

header files for many specific machines could be developed. The user

&

obtains only the header files he needs. A configuration program may
need to be developed so that the basic program could be configured by

the user at one initial session. There are an infinite number of

approaches to take in the continued development and maintenance of the o
code generator. In any case, the non-specific microcode generator o
would be an invaluable tool for a designer working with the development - ',:.

e
i of microprogrammed instruction sets. 4

C. SUMMARY

The general topic of microprogramming was discussed in terms of #
the microprogrammed control unit. Software Engineering theory and
practice was outlined in chapter three. The design approach used in

this project was developed using these principles. Chapter four

discussed significant points as addressed in the implementation of the C

language program. An important point is that vertical microprogramming

PRI W SR T WS

techniques, the sharing of function fields in the microword, give rise to
potential conflicts between the bit faat.terns required for the conflicting

functions. This is one of many tedious tasks for the microprogrammer.

‘. .
el b B

fah

58

P NI ERSY WP U TP YL L S YD LA G WP U S GSP Ry Th S YL W T W

LR A

L - v T A S S e S e hentaan e S ML Gen e Sdn Ant Sune Sene Jaes ean

This thesis has addressed the problem of automating the process of
functional microprogramming and provided some solutions to the

approach and implementation of a microcode generator.

59

e e
PR

TR S N S I P L TP T S SUC EA ..

LIST OF REFERENCES

1. Parnas, D. L., "On the Criteria To Be Used in Decomposing Systems
into Modules,” Communications of the ACM, December 1972.

2. Myers, G. J., Advances in Computer Architecture 2nd ed., Wiley,
1978.

3. Wilkes, M. V., "The Best Way to Design an Automatic Calculating
Machine,”" paper presented at Manchester University Computer
Inaugural Conference, Manchester, England, July 1951.

4. Stone, H. S., gen. ed., Introduction to Computer Architecture 2nd
ed., SRA Computer Science Series, 1980.

5. Tanenbaum, A. S., Structured Computer Organization 2nd ed,,
Prentice-Hall, 1984.

6. Hartrum, T. C., Lamont, G. B. and Ross, A. A., "AMD Am29203
Evaluation Board User’s Guide,"” preliminary draft, 1983,

7. Pressman, R. S., Software Engineering: A Practitioner’s Approach,
McGraw-Hill, 1982.

8. Dijkstra, E. W., "Go-To Considered Harmful," Letter to the Editor,
Communications of the ACM, Vol 11, No. 3, March 1968.

9. MacLennan, B. J., Principles of Programming Languages, Holt,
Rinehart and Winston, 1983.

10. Kernighan, B. W. and Ritchie, D. M., The C Programming Language,
Prentice-Hall, 1978.

11. Shneiderman, B., "Human Factors Experiments in Designing :'.j'-‘_'.;
Interactive Systems,” IEEE Computer, December 1979. -
R
12. Freeman, P., "Fundamentals of Design,” Tutorial on Software
Design Techniques, 4th ed., IEEE Computer Society Press, 1983. 1
13. Mick, J. and Brick, J., Bit-Slice Microprocessor Design, McGraw- lf:’:"--'.'
Hill, 1980. i
14. Advanced Micro Devices, Bipolar Microprocessor Logic and :
Interface Data Book, 1983.
N
TN
S
o
\
60 _,{‘..-]
]
1
g

T y—
IR I Lt PEMAEIN - B -t S et S S W —p P ol

APPENDIX A

The following is a record of a terminal session running the Sequencer

module.

% test3
MASTER
XXXXXXXXXXXXXXXX

ffff
The X s indicate

What do you want
Enter a O

H

R

AM2910 SEQUENCER MENU

AXXXXXXXKXXXXXKX XXXXXXXXXXXXXXXX
ffff ffff

bits which are not yet defined.
to do next?
to select SEQUENCER COMMAND

for HELP with this program
to RETURN to system

61

T T

I-

DU o Y 'L‘

" 'V " » '3
PO S S

—— W v v " T — g TYL v P S it N T PR S

AM2910 SEQUENCER COMMAND MENU
Which AM2910 Sequencer Command do you wish to Chose? -

JUMP ZERO - JZ : e
CONDITIONAL JUMP SUBROUTINE - CJS ;3
JUMP MAP - JMAP B
CONDITIONAL JUMP PIPELINE - CJP N e
PUSH/CONDITIONAL LOAD REGISTER/PIPELINE - PUSH o
CONDITIONAL JUMP SUB. VIA REG OR PIPELINE - JSRP
CONDITIONAL JUMP VECTOR - CJV

CONDITIONAL JUMP VIA REGISTER OR PIPELINE

REPEAT LOOP, COUNTER NOT EQUAL 0 - RFCT

REPEAT PIPELINE, COUNTER NOT EQUAL 0 - RPCT
CONDITIONAL RETURN FROM SUBROUTINE

CONDITIONAL JUMP PIPELINE AND POP

LOAD COUNTER AND CONTINUE - LDCT

TEST FOR END OF LOOP -~ LOOP

CONTINUE - CONT

THREE WAY BRANCH - TWB

HELP with this program

RETURN to higher level

Enter a

AT EHOoOAQEP»OO~NHTNLAWNNH—O

62

.:-.t'cl
e
el od

bl "l'l ’ o
R a v iy oo

D . S e . A . AR . e - B P e . R
DA Tl T U G LI TR IR S SR U S SR S Jh S) - b ladad P SO W AP SO JO S Sl L . WYL WA, L ST T

it Rt Snh o iei Beur M g ik S SN ad ASh At IR L MR Y " T —p— " -

MASTER AM2910 SEQUENCER MENU

YXXXXXXXXXXXXNXXE XXXXXXXXXXXXXXXX XXXXXXXXXXXX0000
ffff ffff fffo

The X s indicate bits which are not yet defined.
What do you want to do next?
Enter a 0 to select SEQUENCER COMMAND

H for HELP with this program
R to RETURN to system

63

PR VR UL R T L S e T SR LI SOk ST G ol

st .
PP I T
Aaala ‘a2

i

2

f s .
Y L e

PP . B
DN S A U W WY S D D 3

Aoa g d .y

nd P T ——— . Y — ——— T T T Y YT Y

AM2910 SEQUENCER COMMAND MENU
Which AM2910 Sequencer Command do you wish to Chose?

JUMP ZERO - JZ

CONDITIONAL JUMP SUBROUTINE - CJS

JUMP MAP - JMAP

CONDITIONAL JUMP PIPELINE - CJP
PUSH/CONDITIONAL LOAD REGISTER/PIPELINE - PUSH
CONDITIONAL JUMP SUB. VIA REG OR PIPELINE - JSRP
CONDITIONAL JUMP VECTOR - CJV

CONDITIONAL JUMP VIA REGISTER OR PIPELINE
REPEAT LOOP, COUNTER NOT EQUAL 0 - RFCT
REPEAT PIPELINE, COUNTER NOT EQUAL 0 - RPCT
CONDITIONAL RETURN FROM SUBROUTINE

CONDITIONAL JUMP PIPELINE AND POP

LOAD COUNTER AND CONTINUE - LDCT

TEST FOR END OF LOOP - LOOP

CONTINUE - CONT

THREE WAY BRANCH - TWB

HELP with this program

RETURN to higher level

Enter a

VDD OHOoOOPFOONT000& WD - O

4

The sequencer code is already set.
Do you want to change it?

y

LL'A,‘."'":'

LR I W bt AP S W - o WV, N & I WO A L U Y VP Y WA Vi W Sl W, W W P - P] P LA G Y Y Ve Wt LIPS VO L VA G R S S

——_—— T——— — g— — n - ilhati Snin s Jhath i St e maay ader Shete mh g s

AM2910 SEQUENCER BRANCH ADDRESS MENU

You have chosen a command which requires a value in the
register/counter

What do you want to do next?

ENTER YOUR BRANCH ADDRESS FIELD
H for HELP with this program
R to RETURN to a higher level
123
This is the address being used.123

]
65 N

1

i

VT T T

You have chosen

What

AMZ2910 SEQUENCER CONDITION SELECT MENU

conditional test

do you want to do next?

Type a

P
F
T
H
R

for FORCED PASS - unconditional
for FORCED FAIL

to TEST the condition

for HELP with this program

to RETURN to higher level

66

an AM2910 Sequencer Command which requires a

PSS Vol SO VLAY SN Sadl SR AT T U

b ol alh

WP VWL A

REMINDER INFORMATION

You have chosen a PUSH CONDITIONAL LCAD REGISTER ‘COUNTER - :
PUSH 4
as the AM2910 Sequencer Command 1

This command MUST precede the following commands:

RFCT REPEAT LOOP, COUNTER NOT EQUAL O

CJPP CONDITIONAL JUMP PIPELINE AND POP
LOOP TEST FOR END OF LOOP 4
TWB THREE WAY BRANCH '

LT Tt
4 PP

Py

Press enter to continue

A e mal e e - e e T2 A s SA'emtalalalataatar .oean e _'ah_‘J

AM2904 CONDITIONAL TEST MENU

There are two steps to selecting a test condition
1: select a REGISTER to be used
27 select a TEST on that register

This menu selects the register ot two special tests
which combine two registers

What do you want to do?

Type a 0 for the Micro status register

1 for the MACRO Status Register

2 for the Immediate Status Inputs

3 for Immediate Sign EXOR MACRO Sign
4 for Immediate Sign EXNOR MARCO Sign
H for HELP with this menu

R

to RETURN to a higher level

81

et AT e A e A e W e B B B B R A At a & aaalal.

e

AL h aa e 4 2

P

P

P

P

‘All.‘ M
RO YC S T T D DG

oAl ol St th Sl dng S —ahan et

AM2910 SEQUENCER CONDITION SELECT MENU

gk agl Sodr e st oy A B duat -aah stk DORcaRa Sad el mass e

You have chosen an AM2910 Sequencer Command which requires a
conditional test

What do you want to do next?

Type a P for FORCED PASS - unconditional g
F for FORCED FAIL]
T to TEST the condition

H for HELP with this program
R to RETURN to higher level %
t j
]
i
-
)
'.:_]
-
.»4
4
¥
41
)
80 g
1
q
1
FRTIIEABAN RRI - - R y

— .. e — RSl linre Red At it et St I A ATl e At e), |

AM2910 SEQUENCER COMMAND MENU :

2

Which AM2910 Sequencer Command do vou wish to Chose:

JUMP ZERO - JZ

CONDITIONAL JUMP SUBROUTINE - CJS -
JUMP MAP - JMAP SO
CONDITIONAL JUMP PIPELINE - CJP ORI
PUSH/CONDITIONAL LOAD REGISTER/PIPELINE - PUSH RS
CONDITIONAL JUMP SUB. VIA REG OR PIPELINE - JSRP ‘ >
CONDITIONAL JUMP VECTOR - CJV

CONDITIONAL JUMP VIA REGISTER OR PIPELINE o
REPEAT LOOP, COUNTER NOT EQUAL O - RFCT J
REPEAT PIPELINE, COUNTER NOT EQUAL 0 - RPCT

CONDITIONAL RETURN FROM SUBROUTINE

CONDITIONAL JUMP PIPELINE AND POP 4
LOAD COUNTER AND CONTINUE -~ LDCT
TEST FOR END OF LOOP - LOOP
CONTINUE - CONT

THREE WAY BRANCH - TWB

HELP with this program

RETURN to higher level

Enter a

WIHTMMOoOOQWE» OO~ WMesWN—O

d

The sequencer code is already set.
Do you want to change 1it?

Yy

Y ‘, u’=.'.¢
e i
anddedende to s A

Y

PR WP S W Aol IR R U S LT A s .. R Coe . .o .
B sl — Y . — e e i e e e —— ST N A S G S

MASTER AMZ910 SEQUENCER MENU

XXXXAXXXXXXXXXXX XXXYXXYXXXXIXXXXX XXXXXXXXXXXX1010
ffff ffff fffa

The X s indicate bits which are not yet defined.

What do you want to do next?
Enter a 0 to select SEQUENCER COMMAND
H for HELP with this program
R to RETURN to system

e D
LGP B

P e PRI D Yy

AM2910 SEQUENCER CONDITION SELECT MENU

You have chosen an AM2910 Sequencer Command which requires a
conditional test

What do you want to do next?

Type a

P
F
T
H
R

for FORCED PASS - unconditional
for FORCED FAIL

to TEST the condition

for HELP with this program

to RETURN to higher level

77

PR SRR |

TN YOS

MPRPADUPE Y WY I B

4

Py ——— P w —— L T T — o

AM2310 SEQUENCER COMMAND MENU
Which AM2910 Sequencer Command do vou wish to Chose?

Enter a 0 JUMP ZERO - JZ

1 CONDITIONAL JUMP SUBROUTINE - CJS

2 JUMP MAP - JMAP

3 CONDITIONAL JUMP PIPELINE - CJP

4 PUSH/CONDITICNAL LOAD REGISTER/PIPELINE - PUSH
5 CONDITIONAL JUMP SUB. VIA REG OR PIPELINE - JSRP
6 CONDITIONAL JUMP VECTOR - CJV

7 CONDITIONAL JUMP VIA REGISTER OR PIPELINE

8 REPEAT LOOP, COUNTER NOT EQUAL 0 - RFCT

9 REPEAT PIPELINE, COUNTER NOT EQUAL 0 - RPCT

A CONDITIONAL RETURN FROM SUBROUTINE

B CONDITIONAL JUMP PIPELINE AND POP

C LOAD COUNTER AND CONTINUE - LDCT

D TEST FOR END OF LOOP - LOOP

E CONTINUE - CONT

F THREE WAY BRANCH - TWB

H HELP with this program

R RETURN to higher level

a

The sequencer code is already set.
Do you want to change 1it?

v

76 _ e

R T T e P e e N
. A T T T T P SN RN . SN e e
IO AP AP SP I AP VAT NoAr ST T UL ST W Wl Sl VO TR Vo EEPUL. SO, WOUL V. WU S oy . M, S AU SN G S S, SO S S AU . SR, SO,

B
MASTER AM2910 SEQUENCER MENU -
YXXXYXXXXXXXXXXX NXXXXXXXXXXXXXXX XX10001000111100
ffff ffff e23c¢c -

The X s indicate bits which are not yet defined.

o
o .
N Abenciin

What do you want to do next?
Enter a 0 to select SEQUENCER COMMAND
H for HELP with this program
R to RETURN to system

, . oo
) BP0 N)

e T e e T e e B S - [N TR N
PG NP VAT UL W WAy SO S S W PYR Cad VLAWY W PP P L P R WA G U Sy i U ST O WP Wi P S P o P PRI,

P AR S A At e B AR A e S PR A B Sl i e g Stat Jnan ave " T T

REMINDER INFORMATION

You have chosen a LOAD COUNTER AND CONTINUE -LDCT- as the
AM2310 Sequencer Command

This command MUST precede the following:

JRP CONDITIONAL JUMP REGISTER OR PIPELINE
RPCT REPEAT PIPELINE, COUNTER NOT EQUAL O

Press enter to continue

2 e sl a4 o

AL O
. o

PRI [

POrvl s Ty

. ¥

LT
. St
‘o ekt

74

L L
B e et e
Al b bd et a0

SRR, ETUIL PRI R SO - SO ST S S T ST T o VP AT VAL R R U U A AT SR Ry NP

WIS P Yol Rl WGP S

Catd Sl Sndh Jnss tegs e i —— el vy Ty - T ————————

AM2910 SEQUENCER BRANCH ADDRESS MENU

You have chosen a command which requires a value in the
register/counter

What do you want to do next?

ENTER YOUR BRANCH ADDRESS FIELD
H for HELP with this program
R to RETURN to a higher level
223
This is the address being used.223

73

T

se
ale
oo g

.

.
13

D
e . .
i s '
alaa’a o o

v -
Py

ar

AM2910 SEQUENCER COMMAND MENU

AN BN ANl ae vt o)

Which AM2910 Sequencer Command do you wish to Chose?

Enter a

C

VDE\MEHOQEP>OONNOOAWNHO

JUMP ZERO - JZ
CONDITIONAL JUMP SUBRO
JUMP MAP - JMAP
CONDITIONAL JUMP PIPEL
PUSH/CONDITIONAL LOAD
CONDITIONAL JUMP SUB.
CONDITIONAL JUMP VECTO

UTINE - CJS

INE - CJP
REGISTER/PIPELINE -
VIA REG OR PIPELINE
R - CJvV

CONDITIONAL JUMP VIA REGISTER OR PIPELINE
REPEAT LOOP, COUNTER NOT EQUAL 0 - RFCT

REPEAT PIPELINE, COUNTER NOT EQUAL 0 - RPCT

CONDITIONAL RETURN FROM SUBROUTINE

CONDITIONAL JUMP PIPEL
LOAD COUNTER AND CONTI
TEST FOR END OF LOOP -
CONTINUE - CONT

THREE WAY BRANCH - TWB
HELP with this program
RETURN to higher level

The sequencer code is already set.
Do you want to change it?

y

PR SN S T S Y

DI ELIT W ¥

INE AND POP
NUE - LDCT
LOOP

PUSH

JSRP

-]

L)

e e Rt e

The X s indicate

What do vou want

Enter a O

bits which are not yet defined.

to do next?
to select SEQUENCER COMMAND

H for HELP with this program
R to RETURN to system
0
71
R AT PSS I LT TN i e e aa

MASTER AM2910 SEQUENCER MENU
KXXXNXNXNKXXXXXYXX XXXXXKXXXXXXXXXX XXXXXXXNXXXX100]
ffff ffff fff9

- Al ialaliaalaia e ar

[

| PN

r————r v PO Yy y— - an e e e g oy

REMINDER INFORMATION

You have chosen one of the following AM2910 Sequencer
Commands:

JRP JUMP REGISTER OR PIPELINE
RPCT REPEAT PIPELINE, COUNTER NOT EQUAL O

These commands MUST be preceded by a
LDCT -~ LOAD COUNTER AND CONTINUE

Press enter to continue

70

P
PR}
. .

.)
e
LA‘AA

LSNP ST PR W W PR)

sadh

&

PP

Which

Enter a

9

DM\ mMOoOOQE»OO~TMe WO

AMZ2910 SEQUENCER COMMAND MENU

AM2910 Sequencer Command do vou wish to Chose?

JUMP ZERO - JZ

CONDITIONAL JUMP SUBROUTINE - CJS

JUMP MAP - JMAP

CONDITIONAL JUMP PIPELINE - CJP
PUSH/CONDITIONAL LOAD REGISTER/PIPELINE - PUSH
CONDITIONAL JUMP SUB. VIA REG OR PIPELINE - JSRP
CONDITIONAL JUMP VECTOR - CJV

CONDITIONAL JUMP VIA REGISTER OR PIPELINE
REPEAT LOOP, COUNTER NOT EQUAL 0 - RFCT
REPEAT PIPELINE, COUNTER NOT EQUAL 0 -~ RPCT
CONDITIONAL RETURN FROM SUBROUTINE

CONDITIONAL JUMP PIPELINE AND POP

LOAD COUNTER AND CONTINUE - LDCT

TEST FOR END OF LOOP - LOOP

CONTINUE - CONT

THREE WAY BRANCH -~ TWB

HELP with this program

RETURN to higher level

’ The sequencer code is already set.
Do you want to change it?

y

PSS S S S TR SPNPSI il - WP

MASTER AM2910 SEQUENCER MENU

CXXXXNXNYNKKXEEX XXXXXXXXXXOX1000 XX01001000110100
r- FEEF ££d8 4234

The X s indicate bits which are not yet defined.

What do you want to do next?
Enter a 0 to select SEQUENCER COMMAND

H for HELP with this program
R to RETURN to system

T

68

WAL P NP P S S PR I SO RN DU SUEP T S WL YU AT I i P TG PP) - -

AM2304 CONDITIONAL TEST MENU

What condition do you want reflected by the condition”

Type a 0 for (SIGN exor OVR) or ZERO
1 for (SIGN exnor OVR) and not ZERO
2 for (SIGN exor OVR)
3 for {SIGN exnor OVR)
4 for ZERO
5 for not ZERO
6 for OVR
{ 7 for not OVR
i 8 for (CARRY or ZERO)}
9 for (not CARRY) or (not ZERO)
A for CARRY
B for not CARRY
ol C for (not CARRY or ZERO)
D for (CARRY or not ZERO)
| E for SIGN
[F for not SIGN
i H for HELP with this menu
R to RETURN to a higher level
L 5

B2

.- R . RS R BRI NS N S S U T Wil G VAT YT S VO Wl WU TUE U Gl Wl W P S WA W W W e |

pr—— AR S o e — v — PP ——y —y
i e PO A E . s Ty oy L BREE s b e o pep— v T——

L

. REMINDER INFORMATION

; You have chosen one of the following 2910 Sequencer Commands
ﬁ‘ RFCT REPEAT LOOP, COUNTER NOT EQUAL O

- CJPP CONDITIONAL JUMP PIPELINE AND POP
v LOOP TEST FOR END OF LOOP
TwWB THREE WAY BRANCH

These commands MUST be preceded by a

PUSH - PUSH/CONDITIONAL LOAD REGISTER/COUNTER

Press enter to continue

83

LRI P NP S g LA, " Y W T . Y PR SO T TOW- WP S S U S AT ol W ¥ Sl S W O Sl Ul Sl oy S ol S WP LIS S UL S W P U S . D

MASTER

XXXXXXXXXXXXXXXX
ffff

The X s indicate

What do you want
Enter a 0

H

R

S . - PR W e PSP UL ST O G

. . Py e T———— A M Som Sen e e e - T Y

AM2910 SEQUENCER MENU

XX0X0101XX0X1001 XXXXXXXXXXXX1101
d5d9 fffd

bits which are not yet defined.

to do next?

to select SEQUENCER COMMAND
for HELP with this program
to RETURN to system

P
et
Vo e
N Wil W Y

s
et
P P Y WY

84

]
Sy
)

K

PP LG . . YL

O O A Y B ST P Y

Which
Enter a O
1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

H

R

-

{

AM2910 SEQUENCER COMMAND MENU

AM2910 Sequencer Command do vou wish to Chose?

JUMP ZERO - JZ

CONDITIONAL JUMP SUBROUTINE - CJS

JUMP MAP - JMAP

CONDITIONAL JUMP PIPELINE - CJP
PUSH/CONDITIONAL LOAD REGISTER/PIPELINE - PUSH
CONDITIONAL JUMP SUB. VIA REG OR PIPELINE - JSRP
CONDITIONAL JUMP VECTOR - CJV

CONDITIONAL JUMP VIA REGISTER OR PIPELINE
REPEAT LOOP, COUNTER NOT EQUAL 0 - RFCT
REPEAT PIPELINE, COUNTER NOT EQUAL 0 - RPCT
CONDITIONAL RETURN FROM SUBROUTINE

CONDITIONAL JUMP PIPELINE AND POP

LOAD COUNTER AND CONTINUE - LDCT

TEST FOR END OF LOOP - LOOP

CONTINUE - CONT

THREE WAY BRANCH - TWB

HELP with this program

RETURN to higher level

The sequencer code is already set.
Do you want to change it?

y

T I W " ST

85

. Ve
PP

Aecdoot ot

S
i
Dt cdnad et aion At .

[

v " A e e e s e e e e e ban g an gen se aee s e o

AMZ2910 SEQUENCER BRANCH ADDRESS MENU

You have chosen a command which requires a value
register/counter

What do you want to do next?

ENTER YOUR BRANCH ADDRESS FIELD
H for HELP with this program
R to RETURN to a higher level
fff .
This is the address being used.fff
Invalid input, the max hex number is 3FF.
Press enter to continue

86

PTTT————

in the

LGP S P A

IR
A
MR NN

EaliCaf At ek Ao i e o R —— ——— - B P et e e e e e e e e LI B 2

y

B

AM2910 SEQUENCER BRANCH ADDRESS MENU

You have chosen a command which requires a value in the R
register/counter - 4
o

What do you want to do next? -]
ENTER YOUR BRANCH ADDRESS FIELD _if'}i']

H for HELP with this program D

-4

R to RETURN to a higher level
333
This is the address being used.333

PPy

., . I'.)

O W PSP S HERTEE Al IR Lo
PN DOV DRI W DAL Ol PR

R ar— e 4

AM2910 SEQUENCER CONDITION SELECT MENU

You have chosen an AM2910 Sequencer Command which requires a
conditional test

What do you want to do next?

Type a P for FORCED PASS - unconditional
F for FORCED FAIL

T to TEST the condition

H for HELP with this program

R

to RETURN to higher level

sy,
2l 4

.

et
PRI :
PP P

Db,

88 . -1

]

".A ..1

PO P s S W'y . - P T Wy P i RPN PR T W LT S G Th I ST S T WA LAY S Uil WL TOIIAY W) Vel Wl T o l-A.A.A;A‘A;j

P ———— N —— A e

AMZ2904 CONDITIONAL TEST MENU

There are two steps to selecting a test condition
1) select a REGISTER to be used
2} select a TEST on that register

This menu selects the register ot two special tests
which combine two registers

What do you want to do~?

Type a 0 for the Micro status register

1 for the MACRO Status Register

2 for the Immediate Status Inputs

3 for Immediate Sign EXOR MACRO Sign
1 for Immediate Sign EXNOR MARCO Sign
H for HELP with this menu

R

to RETURN to a higher level

89

L T P - N . B LT

L e e ., - P R I P _’i ii . "i-l-l- PRI PP T DS N T . R PN I TP

g T ~ IRl g R e R G A T iR e

REMINDER INFORMATION

You have chosen one of the following AM2910 Sequencer
Commands:

JRP JUMP REGISTER OR PIPELINE
RPCT REPEAT PIPELINE, COUNTER NOT EQUAL O

These commands MUST be preceded by a
LDCT - LOAD COUNTER AND CONTINUE

Press enter to continue

B e
\

e *L‘.J‘ £ oa a2 .

Y

90

IR SAREL

oebalaa e Al o PR YO S LRI . S i i W 3ot smandh amasdisemndl Lol B as alal P a - - PSP WA Vit Y0P UM oY WD TP Wi VAP § MIPIE U D YL |

MASTER AM2910 SEQUENCER MENVU

YXYXXXNXXXXXXXXXX XX001111XX0X1001 XX11001100110111
ffff cfdg f337

The X s indicate bits which are not yet defined.

What do you want to do next?
Enter a 0 to select SEQUENCER COMMAND
H for HELP with this program
R to RETURN to system

g1

..]

4
B
e
1

PovY

. .’A

PPN AP N SN S S R P P L, P R O I T S '.~..>.'.A'.-.'.._l

Which

Enter a

f

WMo QE» OO~ WO

AM23910 SEQUENCER COMMAND MENU

2

AM2910 Sequencer Command do you wish to Chose’

JUMP ZERO - JZ

CONDITIONAL JUMP SUBROUTINE - CJS

JUMP MAP - JMAP

CONDITIONAL JUMP PIPELINE - CJP
PUSH/CONDITIONAL LOAD REGISTER/PIPELINE - PUSH
CONDITIONAL JUMP SUB. VIA REG OR PIPELINE - JSRP
CONDITIONAL JUMP VECTOR - CJV

CONDITIONAL JUMP VIA REGISTER OR PIPELINE
REPEAT LOOP, COUNTER NOT EQUAL O - RFCT
REPEAT PIPELINE, COUNTER NOT EQUAL 0 - RPCT
CONDITIONAL RETURN FROM SUBROUTINE

CONDITIONAL JUMP PIPELINE AND POP

LOAD COUNTER AND CONTINUE - LDCT

TEST FOR END OF LOOP - LOOP

CONTINUE - CONT

THREE WAY BRANCH - TWB

HELP with this program

RETURN to higher level

The sequencer code is already set.
Do you want to change it?

y

92

PRI R P A R . AP PN I TS S S WA S S T Sy A . U 4 PR T T L

PP .

AM2910 SEQUENCER BRANCH ADDRESS MENU

You have chosen a command which requires a value in the
reglster/counter

What do you want to do next?

ENTER YOUR BRANCH ADDRESS FIELD
H for HELP with this program
R to RETURN to a higher level
211
This is the address being used.211

4
1
93

L ‘

AM2910 SEQUENCER CONDITION SELECT MENU
You have chosen an AM2910 Sequencer Command which requires a
conditional test
¥
What do you want to do next?]
Tvpe a P for FORCED PASS - unconditional }f
F for FORCED FAIL -1
T to TEST the condition
H for HELP with this program 1
R to RETURN to higher level]
t]
E |
-
]
- 9
4
1
E
g
}
94

1

T SRIPRL I AP PR AL D I R R LA R L A A LD U R .

AM2904 CONDITIONAL TEST MENU

There are two steps to selecting a test condition

1l select a
2; select a

REGISTER to be used
TEST on that register

This menu selects the register ot two special tests
which combine two registers

What do you want to do?

Type a 0 for
1 for
2 for
3 for
4 for
H for
R

the Micro status register

the MACRO Status Register

the Immediate Status Inputs
Immediate Sign EXOR MACRO Sign
Immediate Sign EXNOR MARCO Sign
HELP with this menu

to RETURN to a higher level

’

. c v
ind a g

PO Y SRR A APy

AD-A155 164 EVALUATION AND IMPLENENTATION OF A FUNCTIONAL 2/3 .
MICROPROGRAM GENERRTOR(U) NAYAL POSTGRADUATE SCHOOL
MONTEREY CA B STILTNER DEC 84

UNCLASSIFIED F/G 972

.0 =z p2s
s s
- Em =
L Pl
lle

L2 fiie s

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

-AM2904 CONDITIONAL TEST MENU

What condition do you want reflected by the condition?

Type a 0 for (SIGN exor OVR) or ZERO

1 for (SIGN exnor OVR) and not ZERO
2 for (SIGN exor OVR) e
3 for (SIGN exnor OVR)) e
4 for ZERO n
5 for not ZERO '
6 for OVR
7 for not OVR
8 for (CARRY or ZERO)
9 for (not CARRY) or {(not ZERO)
A for CARRY .
B for not CARRY \
C for (not CARRY or ZERO)
D for (CARRY or not ZERO)
E for SIGN
F for not SIGN
H for HELP with this menu -
R to RETURN to a higher level]

f .

96 -2

REMINDER INFORMATION T

You have chosen one of the following 2910 Sequencer Commands i&j
RFCT REPEAT LOOP, COUNTER NOT EQUAL © gy:

CJPP CONDITIONAL JUMP PIPELINE AND POP if}

LOOP TEST FOR END OF LOOP :31

TWB THREE WAY BRANCH =

e

These commands MUST be preceded by a -
{

PUSH - PUSH/CONDITIONAL LOAD REGISTER/COUNTER _fg

”jX

Press enter to continue

97

....................................... el e

DAY P N T P

I e Gt mr ol . . T et e e .

P atata At A A e e Bl S e LSPGO - PRI .t - o te 0 . A e LR Sl DA S .
o IR e P, hd o A A aAlom o 2 alm'a'aa'a a”a a'as’a a*a"atitaatatatar

MASTER AM2910 SEQUENCER MENU

XAXXXXXXXXXXXXXX XX101111¥X0Xx1001 XX10000100011111
ffff efd9 ellf

The X s indicate bits which are not yet defined.

What do you want to do next?
Enter a 0 to select SEQUENCER COMMAND
H for HELP with this program
R to RETURN to system

- .4

'A.l

LI

S~

-.--—1

S

RS

- p

E

4

‘J

d

--'

o

4

-

R

98 el

r..'..:ﬂ

RS

KRS

‘..q

vy

------- AT T RN Ct et s
ot PRI VA L S PN Y TP St
AR I RTINS R TR R G L L S GP I T P Y G

Pofiat e St Badt Sade Shate Shai hef S i "Bt 2 - S 20 -t i o o

L antan]
+

AM2910 SEQUENCER COMMAND MENU

Which AM2910 Sequencer Command do you wish to Chose?

s YIS Y Y= A
p "n'-‘f-"""'i. AR
v

JUMP ZERO - JZ
CONDITIONAL JUMP
JUMP MAP - JMAP
CONDITIONAL JUMP
PUSH/CONDITIONAL
CONDITIONAL JUMP
CONDITIONAL JUMP
CONDITIONAL JUMP
REPEAT LOOP,

Enter a

COUNTER NOT EQUAL 0 -

SUBROUTINE - CJS

PIPELINE - CJP

LOAD REGISTER/PIPELINE - PUSH
SUB. VIA REG OR PIPELINE -~ JSRP
VECTOR ~ CJV

VIA REGISTER OR PIPELINE

RFCT

COUNTER NOT EQUAL 0 ~ RPCT

CONDITIONAL RETURN FROM SUBROUTINE
CONDITIONAL JUMP PIPELINE AND POP
LOAD COUNTER AND CONTINUE - LDCT
TEST FOR END OF LOOP - LOOP
CONTINUE -~ CONT

THREE WAY BRANCH - TWB

HELP with this program

0
1
2
3
4
5
6
7
B
9 REPEAT PIPELINE,
A
B
c
D
E
F
H
R RETURN to higher level

99

i..

I-'
.
B

@
:

ML A A

........

.....................
.............

............
.........

» - - . ~ - - - g - N - . . - P . - “
PO PR X W VR WL VR WO WA AT W PRE AL s A i S S R IS SRS |

[W

"4

L P
I IR TR
R ERCTRR I
. AP
oo AR
A P
) g o g 4 o

' P
P ',‘v'..
o s

.
U

B N T N R e N T Ty - DN LA e Sadh e bl At PR At S e A N

MASTER AM2910 SEQUENCER MENU

XXXXXXXXXXXXXXXX XX101111XX0X1001 XX10000100011111
ffff efd9 ellf

The X s indicate bils which are not yet defined.

What do you want to do next?
. Enter a 0 to select SEQUENCER COMMAND .
g H for HELP with this program
l R to RETURN to system
r
Do you really want to leave?

y
%

| 2]

100

b

The following is a record of a terminal session running the ALU module.

% test2 Y
MASTER AM29203 ALU MENU L

XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX
ffff ffff ffff

The X s indicate bits which are not yet defined

The defaults for the AM29203 ALU are: .-
Register Address Select - bits 47-45 - A,B pipeline = RS

111 e
Instruction Enable - bit 44 - Disable = 1
Output Enable - bit 43 - Disable = 1
Source - bits 42-40 - DAQ = 111
Destination - bits 39-36 - YBUS = 1111
ALU Function - bits 35-32 - OR = 1111

RPN Wy YRRy

What do you want to do next?
type a B to choose ALU FUNCTIONS
S to choose SPECIAL FUNCTIONS
H for HELP with this program
R to RETURN to higher level

'
1] A
’

»

' :
AR
-"'A‘A.‘ A.‘

t
.

101 ‘

P I T A S Y I R .. o
PP S R PURPE 2PN I S T S S e e T ..'J

TR WG T T T YIS g w T R v Tv o, wo .=

AM29203 ALU BASIC FUNCTION SELECT

Enter the value corresponding to the function you wish to

perform

0 F = High

l F=S8S-R-1+ Carry In

2 F=R-S8S -1+ Carry In

3 R+ S + Carry In g

4 S + Carry In

5 (NOT S) + Carry In

6 R + Carry In

7T F = (NOT R) + Carry In

8 F = Low

9 F = (NOT R) AND S

A F = R EXCLUSIVE OR S

B F = R EXCLUSIVE OR S

C F = R AND S

D F = R NOR S

E F = R NAND S

F F =R OR S

H for HELp with this program

R to RETURN to higher level
0

102

AM29203 ALU SCGURCE MENU

You have chosen one of the following AM29203 ALU functions:
F High

R + Carry In

(NOT R) + Carry In

LOW

i+ 1 un

F
F
F

For these functions, the only allowed AM29203 ALU Sources
are:

Operand R Operand S Mnemonic

RAMA Q Register RAMAQ
Direct A Q Register DAQ

2 for RAMAQ

6 for DAQ

B for HELP with this program
R to RETURN to a higher level

Type a

103

P R e T B N S S AT TSP ISR P S S
........................

AR
N

PN RPN W SN S

[Eu—
.~ .-"
- '..-1
e
-
- »
K

- -
R
R
' .‘. -

“

AM29203 ALU DESTINATION MENU

Enter the value corresponding to the destination you

desire
0 RAMDA - F to RAM, Arithmetic Down Shift
1 RAMDL - F to RAM, Logical Down Shift
2 RAMQDA - Double Precision Arithmetic Down Shift
3 RAMQDL - Double Precision Logical Down Shift
4 RAM - F to RAM with parity
5 QD - F to Y, Down Shift Q
6 LOADQ - F to Q with parity
7 RAMQ - F to RAM with parity
8 RAMUPA - F to RAM, Arithmetic Up Shift
9 RAMUPL - F to RAM, Logical Up Shift
A RAMQUPA - Double Precision Arithmetic Up SHift
B RAMQUPL - Double Procision Logical Up SHift
C - F to Y only
D - F to Y, Up SHift Q
E SIGNEXT - SI00 to Y(i)
F RAMEXT - F to Y, Sign extend LSB
I Instruction Register
M Main Memory
H for HELP with this program
R to RETURN to higher level
5

104

<

- . 1
OIS e T . T A e . A DDA -

PRI N ol i U P T N S S . . S D T Jul N U SOt YO N PRISPUAD S PRGN iy S SIS SO0 T Sl -G SN S Sy SO ST) -)‘

AR A D AL MCEI NN Sl wib A S it A A AN S S A M A U R r AT S ﬁ*
.
You have chosen a down shift for this microword. There are]
16 possible shift patterns, coded 0 thru F in bits 19 T
thru I6. Choose the shift pattern you desire from the .
following set: T
zero = 0 —> RAMn, 0 ->@an o]
one = 1 -> RAMn, 1 ->Qn e
two = 0 ~> RAMn, RAMO -> Mc, Mn -> Qn R
three = 1 -> RAMn, RAMO -> Qn Ll
four = Mc -> RAMn, RAMO -> Qn f*;
five = Mn -> RAMn, RAMO -> Qn
six = 0 -> RAMn, RAMO -> Qn)
seven = 0 ~> RAMn, RAMO -> Qn, Q0 -> Mc
eight = RAMO -> RAMn, Q0 -> Qn, RAMO -> Mc
nine = Mc -> RAMn, Q0 -> Qn, RAMO -> Mc
A = RAMO -> RAMn, Q0 -> @Qn
B = Ic -> RAMn, RAMO -> @Qn
C = Mc -> RAMnN, RAMO -> @Qn, Q0 -> Mc
D = Q0 -> RAMn, RAMO -> Qn, Q0 -> Mc
E = In exor I0vr -> RAMn, RAMO -> Qn
F = Q0 -> RAMn, RAMO -> @Qn
H to get help with this procedure :
N to back up one frame. -
4
=
s |
.
=
2T
3
105 :
4
e
. \‘V\;-‘ o .:';.-';‘ '-- e "7. ‘A’ "-.:"_"-. "y ‘-.4'-‘ '.. X. .A' ‘l. o "‘.L'A“‘—.-'-..:L» '..'_"__A. ‘-. Y A-‘:-’L ‘-. - . U S PP -~ SO . -:;..JA‘:L ; - -L '& _.l:

TP, A e e . ye— T ————— ™ T —

AM29203 ALU INSTRUCTION AND OUTPUT ENABLE MENU

Do you want the ALU results to appear on the Y-bus?
Type an Y for YES
Type a N for NO

h 4

Do you want to change the contents of any ALU
register

during this ALU operation?

Type an Y for YES
Type an N for NO

106

o o

PR I A

D

. . y
. ottt
. . PR A
. PR)
i et e den e

N e LT .
Y Y S TR IR

P

e Aod

RACURIMEL R R ol NN L SR e i A et et & e SE-stl aOul et L It Rt i =it e - Rl

MASTER AM29203 ALU MENU

XXX0011001010000 XXXXXXXXXXX00100 XXXXXXXXXXXXXXXX
e650 ffed ffff

The X s indicate bits which are not yet defined
The defaults for the AM29203 ALU are:

Register Address Select - bits 47-45 - A,B pipeline =
111

Instruction Enable - bit 44 - Disable = 1

Output Enable - bit 43 - Disable = 1

Source - bits 42-40 - DAQ = 111

Destination - bits 39-36 ~ YBUS = 1111

ALU Function - bits 35-32 - OR = 1111

What do you want to do next?
type a B to choose ALU FUNCTIONS
S to choose SPECIAL FUNCTIONS
H for HELP with this program
R to RETURN to higher level

r
Do you really want to return to mastermenu?
y

% test?2

107

i
=
E

’-

MASTER AMZ29203 ALU MENU

XXXXXXXXXXXXXXXX KXXXXXXXXXXXXXXYX XXXXXXXYXXXXXXXX
ffff ffff frff
The X s indicate bits which are not yet defined
The defaults for the AM29203 ALU are:
Register Address Select - bits 47-45 - A,B pipeline =
111

daate a's ara A elaldes ool

Instruction Enable - bit 44 ~ Disable = 1
Output Enable - bit 43 - Disable = 1
Source - bits 42-40 - DAQ = 111
Destination - bits 39-36 - YBUS = 1111
ALU Function - bits 35-32 - OR = 1111 }

What do you want to do next?
tvpe a B to choose ALU FUNCTIONS j
S to choose SPECIAL FUNCTIONS
d for HELP with this program
R to RETURN to higher level

121

MASTER AMZ239203 ALU MENU

XXX0010101111100 XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX -
e57c ffff ffff
The X s indicate bits which are not yet defined
The defaults for the AM28203 ALU are: NN
Register Address Select - bits 47-45 - A,B pipeline = R
111 - -

Instruction Enable -~ bit 44 - Disable = 1 T
Output Enable - bit 43 - Disable = 1 . }
Source - bits 42-40 - DAQ = .11

Destination - bits 39-36 - YBUS = 1111
ALU Function - bits 35-32 - OR = 1111

What do you want to do next?
type a B to choose ALU FUNCTIONS
S to choose SPECIAL FUNCTIONS

H for HELP with this program]

R to RETURN to higher level]

r <

Do you really want to return to mastermenu? i

y

% test?2

B

A

2

1

o e e
A aa‘acs

LA
DU P B BTN

120

Lttt
A
a's a2 42

"""" L T S P)

o e e Lt i e i e - sl e i e

AM29203 ALU INSTRUCTION

A AR it i et and ik il A il L v sl arniCasan coti il ik MR Jaoull SR Bl

AND OUTPUT ENABLE MENU

Do you want the ALU results to appear on the Y-bus?

Type an Y for YES
Type a N for NO

y

Do you want to change the contents of any ALU

register
during this ALU operation?

Type an Y for YES
Type an N for NO

119

. * o » » - - . 2" » e Ce o' " . - - . . . ‘.
o A aa e - g e PELE WSV I VY T

P E G AP T W N W T WP W S NI UAP WS W G S YU TUN WA S Sy y

CRtul omn ame s

Lt

PPN OT S I

ST A "R "Nt e e Sthn fvie g S A > B T hn B St S A i i R Sl - AL A A N TN S A A A I B AP S Srety

AM29203 ALU DESTINATION MENU

Enter the value corresponding to the destination you

desire
0 RAMDA - F to RAM, Arithmetic Down Shift
1 RAMDL - F to RAM, Logical Down Shift
2 RAMQDA - Double Precision Arithmetic Down Shift
3 RAMQDL - Double Precision Logical Down Shift
4 RAM - F to RAM with parity
5 QD - F to Y, Down Shift Q
6 LOADQ - F to Q with parity
7 RAMQ - F to RAM with parity
8 RAMUPA - F to RAM, Arithmetic Up Shift
9 RAMUPL - F to RAM, Logical Up Shift
A RAMQUPA - Double Precision Arithmetic Up SHift
B RAMQUPL - Double Procision Logical Up SHift
C ~ F to Y only
D - F to Y, Up SHift Q
E SIGNEXT - SI0O0 to Y(i)
F RAMEXT - F to Y, Sign extend LSB
I Instruction Register
M Main Memory
H for HELP with this program
R to RETURN to higher level
7

Aot

118 2o

L
PP W S S

A/ /At Sanis e e 2ty et e e e

AM29203 ALU SOURCE MENU

The source control default is DAQ

Operand R Operand S Mnemonic
Enter a 0 RAMA RAMB RAMAB
1 RAMA Direct B RAMADB
2 RAMA Q Register RAMAQ
4 Direct A RAMB DARAMB
5 Direct A DirectB DADB
6 Direct A Q Register DAQ
I Instruction Register
P Pipeline Register
H for H with this program
R to RETURN to higher level ;
5
E
-
117 i
N
S
So

LA i, A i et e At S A e AT A A S A A A S S B A T

AM29203 ALU BASIC FUNCTION SELECT

Enter the value corresponding to the function you wish to

perform

0 F = High

l1 F=8-R-1+ Carry In

2 F=R-S -1+ Carry In

3 R+ S + Carry In

4 S + Carry In

5 (NOT S) + Carry In

6 R + Carry In

7 F = (NOT R) + Carry In

8 F = Low

9 F = (NOT R) AND S

A F = R EXCLUSIVE OR S

B F = R EXCLUSIVE OR S

C F = R AND S

D F = R NOR S

E F = R NAND S

F F = R OR S

H for HELp with this program

R to RETURN to higher level
c

116

.............

of
o
<
R P R A e e e e e e ., . . : Tt e e .
LA, S . S S A PO RN R NN TR S G ST Gy S PO A P VNV PRI A WA WIS WS DR W W SO w wa Wy A:J

M At AP SIS St Sl Sl e Bt et g

.
4
XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX °¥j
X

The defaults for the AMZ29203 ALU are: S
Register Address Select - bits 47-45 - A,B pipeline = S

Instruction Enable - bit 44 - Disable = 1

The X s ind
111
Output
Source

Destin

ALU Function - bits 35-32 - OR = 1111]

What do you
type a

S

H

R

. L e T A R S T N T TR Je T v vre T pesper—w——w Paftn ae Lo e am o e ae o - . " v

MASTER AM29203 ALU MENU

ffff ffff ffff
icate bits which are not yet defined -

Enable - bit 43 - Disable = 1
- bits 42-40 - DAQ = 111
ation - bits 39-36 - YBUS = 1111

P

want to do next?
B to choose ALU FUNCTIONS
to choose SPECIAL FUNCTIONS
for HELP with this program
to RETURN to higher level

e e .
PRI R RSN

115 i

Lnnds et Rt i Bt SIS S i A S - i AR I M AU A

MASTER AM29203 ALU MENU

0011000101110000 XXXXXXXXXXXXXXXX XXXXOlOLXXXXXXXX
3170 ffff f5ff

The X s indicate bits which are not yet defined
The defaults for the AM29203 ALU are:

Register Address Select - bits 47-45 - A,B pipeline =
111

Instruction Enable - bit 44 - Disable =1

Output Enable - bit 43 - Disable = 1

Source - bits 42-40 - DAQ = 111

Destination - bits 39-36 - YBUS = 1111

ALU Function - bits 35-32 - OR = 1111

What do you want to do next?
type a B to choose ALU FUNCTIONS
S to choose SPECIAL FUNCTIONS
H for HELP with this program
R to RETURN to higher level

r

Do you really want to return to mastermenu?
y

% test2

114

i AT R I IR S S i gt A AR T SO BT T AR A it arub AN S e S S r i A AR A A T e i)

)
AM29203 ALU RAM A REGISTER SELECT

: Enter the value corresponding to the RAM A
y Register
i you wish to select
M 0 RAMA A Register O
by 1 RAMA A Register 1
" 2 RAMA A Register 2
| 3 RAMA A Register 3

4 RAMA A Register 4

5 RAMA A Register 5

6 RAMA A Register 6

7 RAMA A Register 7

8 RAMA A Register 8
f 9 RAMA A Register 9
: A RAMA A Register A
i B RAMA A Register B
) C RAMA A Hegister C
) D RAMA A Register D
. E RAMA A Register E
» F RAMA A Register F
. H for HELP with this menu
B R to RETURN to a higher level
- 5
-
]
[|
»
» 2
- S
~ R0
o :i;:
. ~
5 ~
- 113 T
. ' S
. B

o

T L T L e e e e e S

L aun e gne abos
T

Une YanpDam |

v) o g g ey g A o RARAnam
- S ..Iljn?{, Ao
. ') ! ‘.'.".I‘IAI e e -

The default source selection is Source A - pipeline,

Source B Destination C

Enter the value corresponding to the register address

you desire

SN ONL WO

Az e S e A e e an Ao Buie Sl Jme S

AM29203 ALU REGISTER ADDRESS MENU

Source A
Pipeline
Instruction
Pipeline
Instruction
Pipeline
Instruction
Pipeline
Instruction

- pipeline,

Source B
Pipeline
Pipeline
Instruction
Instruction
Pipeline
Pipeline
Instruction
Instruction

~ pipeline

Destination C

Pipeline
Pipeline
Pipeline
Pipeline
Instruction
Instruction
Instruction
Instruction

L e B S M e s, S e 8 e B 2ty 20y Mty oy " v
. Lt e R N AR A MM A A S s T Ty Ty

AM29203 ALU INSTRUCTION AND OUTPUT ENABLE MENU T

Do you want the ALU results to appear on the Y-bus?
Type an Y for YES
Type a N for NO

y :_':',-‘:
Do you want to change the contents of any ALU
register
during this ALU operation? A

Type an Y for YES
Type an N for NO

N S - e T e e T T T s T T o R
PRAUPLIPE PP VL PR AT NRCAE JE WAL WA A S W W TR WA W A A s . A I T AN
- L] S = -+ _a _a".a a.

AM29203 ALU SOURCE SELECT
You have chosen an AM29203 ALU Special Function

What sources do you want to use

Operand R Operand S Mnemonic
Enter a 0 RAMA A RAM B RAMAB
1 RAM A DIRECT B RAMADB
4 DIRECT A RAM A DARAMB
5 DIRECT A DIRECT B DADB
H for HELP with this menu
R to RETURN to a higher level

110

SR |

R SN s il are

AM29203 ALU SPECTAL FUNCTION MENU

Enter the value corresponding to the function you wish to
perform

Unsigned multiply

BCD to Binary Conversion

Multiprecision BCD to Binary Conversion

Two's Complen:at Multiply

Decrement by 1 or 2

Increment by 1 or 2

Sign/Magnitude to Two’s Complement Conversion
Two’'s Complement Multiply

BCD Divide by 2

Single Length Mormalize

Binary to BCD Conversion

Multiprecision Binary to BCD Conversion
Double Length Normalize; First Division

BCD Add

Two’'s Complement Divide

*BCD Subtract F = R - S - 1 + Carry In BCD
Two’s Complement Divide Correction and Remainder
BCD Subtract F = S - R - 1 + Carry In BCD
for HELP with this menu

to RETURN to higher level

v R

A .'?f-'f"r-rfr
P] . - .
R IR

’

VT HOQIPFPFNOOIOOLWNR—~O

AR JB SE A S Sun g

. AR
A

A

109

e

R N . B . PR T U A W e e e ST T
DI T IS I T N Yo SN WIS S T BP0 S B SR T TP R S LIPS - S I e S

DDA i e et St A I Aot AUl S S BOR RAA A MAC i ARR R e e o A B IR e ar S - Eair e A S S S et

MASTER AM29203 ALU MENU

XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX
ffff ffff ffff

The X s indicate bits which are not yet defined
The defaults for the AM29203 ALU are:

Register Address Select - uits 47-45 - A,B pipeline =
111

Instruction Enable - bit 44 - Disable = 1

Output Enable - bit 43 - Disable = 1

Source ~ bits 42-40 - DAQ = 111

Destination - bits 39-36 - YBUS = 1111

ALU Function - bits 35-32 - OR = 1111

What do you want to do next?
type a B to choose ALU FUNCTIONS
S to choose SPECIAL FUNCTIONS
H for HELP with this program
R to RETURN to higher level

108

Ty T e ee—

AM28203 ALU BASIC FUNCTION SELECT

Enter the value corresponding to the function you wish to
perform

High

S - R -1+ Carry In
R-S -1+ Carry In
S + Carry In

Carry In
T S) + Carry In

Carry In

{NOT R) + Carry In
Low

{NOT R) AND S
EXCLUSIVE OR S
EXCLUSIVE OR S
AND S
NOR S
NAND S
OR S
for HELp with this program
to RETURN to higher level

N

a9+ O+ + 1o

o o g e e T~ 0 g
{1 T 1 1 O ¥ I T I T] |

W EBOoOQ»OO~I0O0N&sWN—O
T IVT

122

A A e Mt ote S0 LR o i o - amn Padintaginge aure S S et A\ o dinis Sate A Suaed Sote Beaes s Segs e s e o

The Carry into the least significant stage of the ALU
is controlled by bits I12 and Ill, and sometimes bits
I5, I3, I2, and I1. There are seven possible choices:

Type a zero to select ZERO as the carry-in.

Type a one to select ONE as the carry-in.

Type a two to select Cx, the Z output of the 29203.
Type a three to select the carry bit from the micro reg
Type a four to select the micro carry bit complemented
Type a five to select the MACRO carry bit

Type a six to select the MACRO carry bit complemented
Type an H for help.

- ‘ﬁr-r \an

Enter a

D " o WU FONL TR Wiy TP

WMROHODNLN-O

AM238203 ALU SOURCE MENU

The source control default is DAQ

Operand R Operand S Mnemonic
RAMA RAMB RAMAB
RAMA Direct B RAMADB
RAMA Q Register RAMAQ
Direct A RAMB DARAMB
Direct A DirectB DADB
Direct A Q Register DAQ

Instruction Register
Pipeline Register

for H with this program
to RETURN to higher level

124

T b
SRR
L
AM29203 ALU DESTINATION MENU -3
Enter the value corresponding to the destination you ;;j
desire
0 RAMDA - F to RAM, Arithmetic Down Shift :
1 RAMDL - F to RAM, Logical Down Shift -
2 RAMQDA - Double Precision Arithmetic Down Shift g
3 RAMQDL - Double Precision Logical Down Shift -
4 RAM - F to RAM with parity -
5 QD - F to Y, Down Shift Q
6 LOADQ - F to Q with parity |
7 RAMQ - F to RAM with parity
8 RAMUPA - F to RAM, Arithmetic Up Shift 1
3 RAMUPL - F to RAM, Logical Up Shift T
A RAMQUPA - Double Precision Arithmetic Up SHift o
B RAMQUPL - Double Procision Logical Up SHift
C - F to Y only 1
D - F to Y, Up SHift Q !
E SIGNEXT - SIOO0 to Y(i)
F RAMEXT - F to Y, Sign extend LSB
I Instruction Register o
M Main Memory 1
H for HELP with this program :
R to RETURN to higher level]
1
PR |
s
]
o
B
=
A
"
]
" 9
.fd
4
" 3
125 Sy
-
S
D

Rt e Jane Sage Jaa anes seae sugw

You have chosen a down shift for this microword.
16 possible shift patterns,

thru I6.
following set:

ﬂ zero = 0 -
: one = 1 ->
P two = 0 ->
- three = 1 -
. four = Mc -
_ five = Mn ->
i six = 0 -
' seven = 0 ->
eight = RAMO ->

. nine = Mc ->
- A = RAMO ->
' B = Ic ->
[i C = Mc >
: b = Q0 >
. E = In exor
) F = Q0 >

RAMND,
RAMn,
RAMn,
RAMN,
RAMn,
RAMnN,
RAMN,
RAMDN,
RAMn,
RAMn,
RAMn,
RAMnN,
RAMn,
RAMn,
I0vr

RAMN,

>

CEN S SR, S TS S

0 -

1 -»
RAMO ->
RAMO -»
RAMO ->
RAMO ->
RAMO ->
RAMO ->
Q0 —»
Q0 -
Q0 -
RAMO ->
RAMO >
RAMO ->
RAMnD,
RAMO ->

126

Qn

Qn

Mc, Mn -

Qn

Qn

Qn

Qn

Qn, Q0 ->

Qn, RAMO ->

Qn, RAMO -

Qn

Qn

Qn, Q0 --

Qn, Q0 -»
RAMO -, Qn

Qn

H to get help with this procedure
N to back up one frame.

There are
coded 0 thru F in bits I9
Choose the shift pattern vou desire from the

Qn

Mc
Mc
Mc

Mc
Mc

e

A
LTS R O I ST

.",. .. o

-
' -

%
o

PR

PR
» ey

oo
ittt atal sl hs aa

AR IR Are S a e i S A SE A Dl et it s B B e e s S S —

&
-4
B
4
AM29203 ALU INSTRUCTION AND OUTPUT ENABLE MENU '3
.
Do you want the ALU results to appear on the Y-bus? S
Type an Y for YES i
Type a N for NO >
R
oy
Y]
Do you want to change the contents of any ALU |
register
during this ALU operation?
Type an Y for YES
Type an N for NO :
y :
1
)
[
.~-.v<
1
)
-]
4
-
R
127]
3;5
B
.
Ll . i AN
NP S LI W Sy SR T, o i b e e et LJ‘J

S ol tat

P ——

The

AM293203 ALU REGISTER ADDRESS MENU

default source selection
S.urce B - pipeline,

- pipeline

is Source A - pipeline,
Destination C

Enter the value corresponding to the register address

you desire

~NOOeWN — O

Source A
Pipeline
Instruction
Pipeline
Instruction
Pipeline
Instruction
Pipeline
Instruction

VRPN WAL, YL SE WL WL YPUR, WP SPNE W |

WIS VA W W . W

Source B
Pipeline
Pipeline
Instruction
Instruction
Pipeline
Pipeline
Instruction
Instruction

128

Destination C

Pipeline
Pipeline
Pipeline
Pipeline
Instruction
Instruction
Instruction
Instruction

At ala s A A e tnt i

Tt et

choh
o L
PSP S SN

5 -
Py

l" . l‘

et
P S ST SR R

ORI

)
NN

PR
Calel e

v]

Lo]
. .
A A'K'E

P O
Tt

B T—— " e y——— LI S e e s 0l e oed e nen 2 —— g — p— r

AM29203 ALU RAM A REGISTER SELECT

Enter the value corresponding to the RAM A

Register -
you wish to select N
RN
0 RAMA A Register 0 S
1 RAMA A Register 1 A
2 RAMA A Register 2 3

3 RAMA A Register 3 '

4 RAMA A Register 4 o
5 RAMA A Register 5 R
6 RAMA A Register 6 SECRN
7 RAMA A Register 7 Z;;J
8 RAMA A Register 8 .
9 RAMA A Register 9 -
A RAMA A Register A 4
B HRAMA A Register B ,;

C RAMA A Register C -

D RAMA A Register D e

E RAMA A Register E s
F RAMA A Register F -
H for HELP with this menu T
R to RETURN to a higher level -
1 !
LV

o

]

9

N

.}ﬁ

e

T

o

129 ARRR

AL

=

R

»

]

o

RO U I LR e VU O A L‘.’L':;.)‘—:L.L.-~ O ".

Ty
. . e N

R Ee Aroh S Suh Smm gl Sk el

AM29203 ALU RAM B REGISTER SELECT

Enter the value corresponding to the RAM B

Register

you wish

WX HEHOQW> OO NOUEsEWN~O

RAM
RAM
RAM
RAM
RAM
RAM
RAM
RAM
RAM
RAM
RAM
RAM
RAM
RAM
RAM
RAM
for

Do o oot W Wt

HELP with this menu
to RETURN to a higher level

to select

Register
Register
Register
Register
Register
Register
Register
Register
Register
Register
Register
Register
Register
Register
Register
Register

130

TEOOQOE»>POO0TOONLWNHFO

.............

010000

The X s ind
The default

Regist
111
Instru
Output
Source
Destin
ALU Fu
What do you
type a
S
H
R
r
Do you real
Yy
% test2

'
A Ao

md

MASTER AM29203 ALU MENU

0000010010 OLXXXXXXXXX00011 XXXX00011110XXXX
4012 7fe3 flef

icate bits which are not yet defined

s for the AMZ29203 ALU are:

er Address Select ~ bits 47-45 - A,B pipeline =

!
T VPR

ction Enable - bit 44 - Disable = 1
Enable - bit 43 - Disable =1
- bits 42-40 - DAQ = 111 o
ation - bits 39-36 - YBUS = 1111 »
nction - bits 35-32 - OR = 1111]

want to do next?
B to choose ALU FUNCTIONS
to choose SPECIAL FUNCTIONS B
for HELP with this program ST
to RETURN to higher level B

ly want to return to mastermenu?

131

AU
PPRLPEL U YOV S ST ¢

P
. <
q

i Lo R CPRERE R - o RICTAEN Pt et e A el et T T N T R N
PSP S WP I TS UGPSR YL NN TP S I S I T o Tt IR P AT I JRPCIGY T, S ST .4‘.:‘.:‘-’-‘-'-'.a'-'.s_;-.;L'_a'—'.1"..‘.;";'4‘4;:'_.“‘-"_.1

B AGVL REURL ol Bt Aonm subaL MG il ol cunt UL ot e d il VNS Anu aineade. e L o ia L SNt olu-aieant Samhy soey-atedoe

APPENDIX B

Program Name: Seqmake
Purpose: The Makefile used to compile the Sequencer
module and its submodules. The name
Seqmake must be changed to makefile before using.

test3: 2910.0 utils.o
cc 2910.0 utils.o -0 test3

p
P
L
N
~

PRI WP 2 WP

. -
.
YL) Y

t 4

..... S el R T

NPT I SN R P IS BN P PP NP TR SRl S S S I N RO A RV PR S J

Program name: 2910.c
Purpose: Source code for Sequencer module.

#include <stdio.h~ o
#include "declare.h" L

/¥ these defines refer to the logical fields of the o
microword they are used to pass field _set the fields --note: R
these defines are commented out!! they are provided for
readability only.

#define regsel 1 .
#define ien_fld 2 R
#define oey_fld 3 }
#define source_fld 4

#define dest_fld 5

#define function_fld 6

#define carryin_fld 7

#define I514_f1d 8

#define I3_10_fld 9

#define I5_10_f1ld 10

#define ceu_fld 11 -
#define cem_fld 12
#define cmden_fld 13 -
#define shiften_ fld 14 -
#define command_fld 15 N
#¢define shift_fld 16 .
#define breakpoint_fld 17 -
#define notused_fld 18 X
#define msb_br fld 19 -
#define mid_br_fld 20 g
#define 1sb_br_fld 21 2
#define rega_fld 22)
#define regb_fld 23)
#define seq_fld 24

#define no_sub 0

X/

int KEEPgoing,goback,docu_word{24]; 1
char cmd_line(80], *pcmd, *pmwd,micro_word{49]; o

main()

int i,helpset;

char CONTINUEcommand(4],am2910command{80]; 1
/% Initialize micro_word to 'X’ and docu_word to 0 x~ ' ig%
micro_word[48] = ’\0’; iﬁﬁ

for (i=0;1i < 48: i++)

. ' E
. Lot BTN
PR BY 30 SR WL I

P B G P P P R G L SRR VAL WA WA A WA S o SO

micro word i’ = 'X’:

for «1i=0:1 <« 24:i++:
docu word' il = 0:

KEEPgoing = true;
helpset = false;
goback = false;

while (KEEPgoing !! helpset) /%
{ /%
helpset = false; /%
am2910menu(am2910command; ; IS
/X

if (*am2910command == '0’)

J

COMMANDselect() ;
if (goback)
{.
helpset = true;
goback = false;
}
}
else
if ‘*am2910command == ’'H’

helpset = true;

Need both KEEPgoing and

X/

helpset = 0 to get out ofx~-

main program section.
KEEPgoing is global and

X
*

can be set from ext proc. ./

¥xam2910command == ’'h’)

puts("Help will be coming soon'.\0");
puts("Press enter to continue\0");

gets{CONTINUEcommand) ;
}

else

if ((xam2910command == ’R’ !! *am2810command == ’'r’"
. (KEEPgoing == false

[

buts("Do you really want to leave?\0"):

gets(CONTINUEcommand) :
switch(*CONTINUEcommand)
{
case 'YES’:
case ’'yes’:
case ’Y’:
case 'y’
KEEPgoing = false;
break;

else

Helpset = true;

134

DI I D Y R W T T B D .

acs e e

- m -

P -, .
aealataa’alw i, £l

it

T S
PP BRI S W By

puts:”"Your input is invalid, enter O,h,H,r,R only. C°
sleep. 3.

‘¥ while %~

exit: :;
- % procedure am2910master ¥~

/% Kk kK K K K kK K K K K K K K0k ok K K K K KK K K K K K K KK K K K K KKK K K K K K KKK KK K K KK K K K

PR X/
/¥ AM2310 MENU PROCEDURES X
/X x

/KR Kk kK K K 0K KOk K K K K K KK K K K KKK K K KK KK K K K K KKK KK K K K KK KK K KK KOK K K Kk X X

am2910menu(am2910command)
char *am2910command;

{

puts (erase_screen);

puts("\t\t\tMASTER AM2910 SEQUENCER MENU\n\(O"::

display word();

display_in_hex{):

display_docu();

putst " tThe X s indicate bits which are not yet
defined.\n>0" ::

puts{"\tWhat do you want to do next?\0"};

puts{"\t\tEnter a 0 to select SEQUENCER COMMAND\O"

puts{"\t\t H for HELP with this program\Q0":;

puts{"\t\t R to RETURN to system\0");

gets(am2910command) ;

} /% procedure AM2810menu x/

SEQUENCERmenu{ SEQUENCERcommand ;

char *SEQUENCERcommand;

putsferase_screen::

puts{ "t t\tAM2910 SEQUENCER COMMAND MENU\ANA\NO");

putsi"\tWhich AM23910 Sequencer Command do you wish to
Chose? n 0" "

puts("Enter a JUMP ZERO - JZ20";:

0
puts¢” 1 CONDITIONAL JUMP SUBROUTINE - CJS 0"
puts’ " 2 JUMP MAP - JMAP 0"
puts” 3 CONDITIONAL JUMP PIPELINE - CJPVOQ" ¢,
puts’” 4 PUSH/CONDITIONAL LOAD REGISTER/PIPELINE

- PUSHNO™

135

PP S ST I W) . " PR S . W P Ao lod AL G S " U I S Sy i O G WYL, . W S O, Y. _»-‘_L'LL-_'LJ

I A R A A i S S A e e e T——y A s e a e e ——r - —

case |2:
case 13:
case 14:
case 17:
case 18:
case 19:
case 20:
docu word[field-1] = -1;
break;
case 8: /% The conditional testing function includes
physical fields 8,9,13,15. This will be
covered by docu field #8 {case 8 in the
docu procedure}). Sub _set will hold an
integer representing the function chosen.
(i.e. forced pass, forced fail, conditional
testing.) In going backwards, a table or
big switch will be needed to translate. *

docu_word{7 =sub_set;
break;

case 24:
docu_word[field-1] = sub_set;
break:

} /% end switch %/

display_docu(;;

} ‘% end docu %/

field set{field _cnt,sub_set,choice’
int field_cnt,sub_set:
char *choice:

. *There are 25 defined fields in the 29203 eval board
microword, and several of them have multiple definitions. In
this routine, we accept a pointer to the field and to the
definition of the subset, and a pointer to a character which
represents the actual choice. We generate a data structure
which holds the choice and the actual bit pattern in the
microword. %/

<
char scrapid!:
switch field cnt

i

case 1: % regsel fld, register address source ¥
octal field.0,choice
break;

case 2: /% ien fld, 29203 instruction enuable X
binary field'3,choice
break:

149

PP]

ik

Program Name: Utils.c
Purpose: Source code for the Utilities module.

#include "extern.h"
#include "declare.h”
#include {stdio.h”>

bad_choice{choice)

char *choice;
{
puts{"bad_choice called.\0");
putchar(*choice);

sleep (1);
]

s

docu (field,sub _set,choice}
int field,sub_set;
char xchoice;

puts("docunew called\0");
/*¥This procedure sets the elements in an array called
docu_word. Each element corresponds to a docu field :an
int) which has a code in it indicating whether the docu
field is being used. Unfortunately the docu fields don’t
necessarily match the physical fields used by field_set.
This was necessary since each physical field doesn't alwavys
stand alone. Ex. the three physical fields for the branch
address are always set together. So docu has only one field
for that function. So the size of the docu_word array will
be changing as new modules are added. At the end, 1t can be
adjusted to try for some matching of names or numbers or
both. */

‘* The code for each element is:
a # means which sub_set function was selected.
-1 means this element is a selected docu field
the values can be obtained from the
micro_word.
0 means not set. L 4
switch/field)

case
case
case
case
case
case
case e
case 11: R

~N D) O W —

148

BRANCHaddress

if- *SEQUENCERcommand -~ "1’ “%xSEQUENCERcommand -- '3’
{ *"SEQUENCERcommand == '4° " {*SEQUENCERcommand == '5':
"*SEQUENCERcommand == '6’) (*SEQUENCERcommand == 7’
{ *SEQUENCERcommand == ’A’ ' . (*SEQUENCERcommand == ’'B’
' *SEQUENCERcommand == ’a’) .. (*SEQUENCERcommand == ’'b’
(*SEQUENCERcommand == ’'D’} ' ! (*SEQUENCERcommand == ’'F’
(XSEQUENCERcommand == ’d’}) .. (*SEQUENCERcommand == ’'f’:)
&& (‘!'goback
CONDITIONsequencer(
if ((*SEQUENCERcommand == ’4’) && (!'goback))
PUSHmenu() ;
else
if {(*SEQUENCERcommand == °'C’ ! XxSEQUENCERcommand == ’:'
&& ('goback:}
LDCTmenu: };
else
if({ ((*SEQUENCERcommand == ’8’).!(*SEQUENCERcommand -= "RBR’"
(*SEQUENCERcommand == ’d’) . (*SEQUENCERcommand == 'f’
(*SEQUENCERcommand == ’'D’) (¥SEQUENCERcommand == ’'F’ . :
&& t('!'goback:
NEEDPUSHmenu¢ };
else
if({(: *SEQUENCERcommand == ’7’').: (*SEQUENCERcommand == '9’ -
&& {'goback
NEEDLDCTmenu{ ::

if(goback)
{
helpset = true;
goback = false;
}
}
whilethelpset
i /% procedure COMMAND select %

P P ML W S AP s W V3 W Bl B A B Al A im" a s s s . a’aa>

A s A’ s ia’alialaTaa

PP ORI UL |

Are

4

seq. code can be done cleanly i.e. without 4
leaving branch addr and cond codes from o]
4

previous settings of the seq_fld. The :
docu_word entry can be read and "decoded” -
to reset any appropriate fields. X
case '0’:]
case '2’: L
case ’'8’:
case '9’:
case 'e’:

case ’E’:

field_set(seq_fld,1,SEQUENCERcommand);

break;

case 'c¢’:

case 'C’:
field_set(seq_fld,2,SEQUENCERcommand;;

break;

case '6’: -

case 'a’:

case 'A’:

case 'd’:

case 'D’':
field_set(seq_fld,3,SEQUENCERcommand):

PGPS VU B R P

break;
case ’'1°':
case '3’:
case '4°’: .;i
case ’'5°: T
case 'T7°:]
case ’b’: S
case 'B': R
o ad
case 'f’:)
case 'F': 1
field_seti(seq_fld,4,SEQUENCERcommand}: Lo
break; S
default: c
helpset = true;
puts(”"Invalid irput, digits or ALL CAPS or
r,R,h,H\O" . : R
puts("Press enter to continue. 0"!: A
gets (CONTINUEcommand’ ; R
break; o
) .
1f((*SEQUENCERcommand == "1’ ' (*SEQUENCERcommand == ’3'°)
(*SEQUENCEHRcommand == '4’: :: (*SEQUENCERcommand == 'S5’
{*SEQUENCERcommand == '7°) t *SEQUENCERcommand =="'B’)
(*SEQUENCERcommand == ’C’) ! (*SEQUENCERcommand == 'F’°
{ *SEQUENCERcommand == ’c¢c’) (*"SEQUENCERcommand == ’f’
(*SEQUENCERcommand == ’'b’))

146

[A AN, L. S) — . b SR VT S WL T S S SNy VT SO Sl SO Sy S W M VLl S S S Y P AT A 5 S WY Ui T WP GAA S UID W W N, AP . W TP, sad

oWV

L L e “add ~ s

Sl et B Aiast. Jhute Bone Snse Jemet 4

while(helpl):
break:

default:

}

Y

J

helpset = true;

puts{"Invalid input, wait for menu.-0"};

sleep(l);
break;

while(helpset);
} /% procedure CONDITION sequencer %/

COMMANDselect:)

char CONTINUEcommand{[4)], *SEQUENCERcommand, comd_line{80];
int helpset;

SEQUENCERcommand = comd_line;

do

helpset

= false;

SEQUENCERmenu(SEQUENCERcommand};

switch(*x SEQUENCERcommand)

case
case

case
case

r’:
R’
/% do nothing,
break;
lhi:
)H’:

helpset =true;

keeps helpset = false %/

puts("Help is coming, Real Soon Now!\0"':
puts("Press enter to continue.\0");
gets{CONTINUEcommand?;

break;

/% The sub_set parameter of the field_set
procedure is being used here to indicate
four groupings of the choices for the
sequencer field:

1 means
2 means
3 means
4 means

seq. field only is set.
branch address field is set.
conditional codes are set.
all three of above are set.

The above codes are put into the docu _word
so that subsequent attempts to change the

145

P S WP PN YA

e s e

.
ey .
AL s 8 -‘ A

oo
LY
IR N

- e e
e as b T -

| RSN

ek

PR

Dot Ul et aoe oms s aumh s ot oced aln mien i aueh stull e sost send ade na and ewl math scwm stk cuwi Jualh Shed RN RSN M Snbie RENMA Sal aifh SuME - v

. L P et - . R N . St e ot . .
PR UV S YRl S TRy . g A'.L')'n_‘;'_44'-'_4'4*44'4_‘4441 . PR S SR G IR SRR S W S . PP SR) = LY ‘J—Qq

case 'F’': /% FORCED FAIL x-
field set(condtest f1d,2,CONDITIONcommand
break;
case 't’':
case 'T’: /% TEST the condition %/
do
{
helpl = false;
TESTlmenu(CONDITIONcommand);
switch(*CONDITIONcommand)
{
case ’'r
case 'R’:
helpset = true;
break;
case 'h’:
case 'H':
helpl = true;
puts("Here’s where help would be nice!*0"":
puts("Press enter to continue.\0");
gets (CONTINUEcommand) ;
break;
default:
if(cond_l_set(CONDITIONcommand) }
{
do

4

) .,

HelpZ = false;
TESTZ2menu(CONDITIONcommand’ :
switch(*CONDITIONcommand)

{
case ’r’:
case 'R’:
helpset = true;
break;

case ’'h’:

case 'H':
help2 = true;
puts("Help goes here!\Q0");
puts("Press enter to cont.\0");
gets (CONTINUEcommand) ;
break;

default:
cond_2 _set(CONDITIONcommand);
break;

}

} - 4
while(help2); .
} o)

break: jﬂf
i -
144

P
MPGIFER N S

il

Ce W W v e e

else

brea
o
h /% whi
} /* procedur

CONDITIONsequ

{

v Mant aam S o v - T

;
field setimsb _br_fld,0,branchselect’:

L

helpset = true:

puts("Invalid input, the max hex number is

3FF.-0":

\

puts{"Press enter to continue\0");
gets (CONTINUEcommand) ;

}
k;

le x/
e branch address select x/

encer ()

char *CONTINUEcommand, ¥*CONDITIONcommand,cmd _line {801},

cont_lin
int helpset,h

e(l10};
elpl,help?2;

CONDITIONcommand = cmd_line;
CONTINUEcommand = cont_line;

do
{

helpset = false;

CONDITIONme

nu(CONDITIONcommand) ;

switch(*¥CONDITIONcommand)

{

case 'h’:
case 'H’:

helpset = true;

puts("Help is coming Real Soon Now!''0"::
puts("Press enter to continue.\Q0"::
gets(CONTINUEcommand) .

break;
case ’r’:
case 'R’:
goback = true;
break:
case ’'p’:
case 'P’': /% FORCED PASS~-unconditional x~/

field_seticondtest fi1d,1,CONDITIONcommand :
break;

case 'f’:

143

c At et T S TR A N = L Do
2 e ~ . S P VU T T W S S S YT Sl Sl VAT VLl W W SR SR Sl G ety W S S L LA, |

Lo
S
e
-
R
.", .‘_"
™ '.]
R
g
\\:..‘
- - '4
<

- 4
.

4

!

-9

y

4

-

© »i
4

1
.

,A
. . ‘. T .
AN

TRKKKEKEKIKKKKKKRKKKRKK KKK RKKKK KKK KKK KKK KK R RKR KR KKK KAk KKKK KK kR X/

/* * I |
/x AM2910 PROCESSING PROCEDURES X
/¥ * -]

7 RXEEKRKEK KRR KKK KKK KKK KKKRKKKKK KKK KKK KKKKKRKRK KKKk KKKRKKKX Kk k% / L

BRANCHaddress ()

{
char %*branchselect, *CONTINUEcommand,cmd_line[80],

cont_line[1l0];)
int helpset; y

branchselect = cmd_line;
CONTINUEcommand = cont _line;
helpset = true;
while (helpset) -
{ |
helpset = false;
BRANCHmenu(branchselect);
switch(*branchselect)

{ z%éi**

ta o L

case ’H’: o
case 'h’: /% help X / T

helpset = true;
puts("The branch address field is 12 bits

long,\Q" :: e
puts("the max hex address is 3FF.\0");]
puts("Enter anything to continue.\0"); o]
gets (CONTINUEcommand) ; e
break; p

case 'R’: ;
case ’'r’: /%¥ Return X/ -
goback = true;]

break; k

1

default: R
printf("This is the address being 3
used.%s\n",branchselect!: R

CONTINUEcommand = branchselect: e
if{(*XCONTINUEcommand<="3’&&*XCONTINUEcommand>="0""]
&& ((X (++CONTINUEcommand)>="0’&&*¥CONTINUEcommand:« =’
+» (XCONTINUEcommand>="A"&&*¥CONTINUEcommand<="F

' (®*CONTINUEcommand->='a’'&&*%CONTINUEcommand =’ f

&&((Xk (++CONTINUEcommand)>="0’&&*¥CONTINUEcommand«< ="
' ' (*¥CONTINUEcommand>="A'&&*%CONTINUEcommand-"='F

. (XCONTINUEcommand->="a’&&*¥CONTINUEcommand«="'f"

) .9
b
)

7
k]
1
7
b

1)

142

. e
PR
e % ta Ak

=

P Y VAP SO WA S LI WP Wy M WP Wl Vol Wl WA W o e b a = LN

y /% procedure

TEST2 %/

cond_2 _set(pchar)
char (*pchar);
/% This is the second level selection of the cond. test x/

{

switch (*pchar)

{

case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case

case
case
case
case

3

0’ /%
)1’: /*
2 /X
'3 /¥
4’ /%
57 / X
’61: /
7 /%
’8’: / X
g’ /%
A /X
,al.
'B’: /X
’ba:
’C?: /X
’c,.
D’ /X
’d’:

SIGN exor OVR or ZERO %/

SIGN exnor OVR and not ZERO x/
SIGN exor OVR %/

SIGN exnor OVR X/

ZERO x/

not ZERO x/

OVR x/

not OVR X/

CARRY or ZERO x/
not CARRY or not ZERO x/
CARRY x/

not CARRY x/

not CARRY or ZERO x/

CARRY or not ZERO x/

field set{condtest _f1d,4,pchar);
if (micro _word[I05_04] ==70"
bit_erase(104_04);

break;

'E’: /% SIGN x/

’e):

PF? /% not SIGN %/

)f):

field set(condtest_fld,4,pchar);

break;

i /% end procedure cond_2 set X/

S

LI TSR TORE TR SR

141

T gp—

P

-l

e ShE Mancais o o She e o ae B4 O e ——

return
} /% end cond_1l_set x/

J

Lol s b et - -

case '2’: x Immediate Inputs. x.
bit _set:105_04);
bit_set(I104_04:;

break;
case '3’: /% Imm.
*pchar = ’e’;

sign exor MSR sign %

field_set(condtest fld,3,pchar);

next_level =

break;
case '4’: /x Imnm.
*pchar = *'f’;

}

FALSE;

sign exnor MSR sign */

field_set(condtest fld,3,pchar);

next_level =
break;

(next_level);

TEST2menu{TEST2select)

char *TEST2select;

puts(erase_screen/;
puts("\Nt\t\tAM2904 CONDITIONAL TEST MENU\n\O"):

puts ("

puts ("
puts("”

puts ("
puts ("
puts ("
puts(”
puts ("
puts("
puts("
puts("
puts ("
puts ("
puts ("
puts ("
puts(”
puts ("
puts ("
puts("”

What condition

for
for

Type a

O

for
for
for
for
for
for
for
for
for
for
for
for
for
for
for

W TEOHOoOQP» OO0 WN

gets(TEST2select);

FALSE;

do you want reflected by the

condition?\n\0"};

(SIGN exor OVR) or ZERO\NO"):
(SIGN exnor OVR) and not

ZERONO ™"}

(SIGN exor OVR)\O"):
(SIGN exnor OVR)\OQ0");
ZERONO");

not ZERO\O");

OVR\O"):

not OVR\O");

(CARRY or ZERO)\O");
(not CARRY) or (not ZERO)\O0"};
CARRY\O") ;

not CARRY\0");

(not CARRY or ZERO)\O0"};
(CARRY or not ZERO)Y\0");
SIGN\NO");

not SIGN\O");

HELP with this menu\0"};:

to RETURN to a higher level: 0" ‘'

140

[
[
ORIV s L

o . - ‘.' .
. R
P Sy ey

Py

r‘ T T B T T T - p— P——— —p————

)

TESTImenu: TESTlselect

'A\

A e o

char *TESTlselect:

{ o]
puts erase _screen’; Ty
puts " t\t> tAM2904 CONDITIONAL TEST MENU n 07 ':
puts” There are two steps to selecting a test J%j

condition 0" S
puts:” 1) select a REGISTER to be used 0" ' :]
puts("” 2; select a TEST on that register n 0" a
puts("” This menu selects the register ot two special

tests 0"
puts’” which combine two registers' n*0"
puts:” What do you want to do?'n: 0",
puts(” Type a 0 for the Micro status register 0" ‘
puts(” 1 for the MACRO Status Register 07
puts " 2 for the Immediate Status Inputs 07 1
puts (" 3 for Immediate Sign EXOR MACRO "
Sign-0" 4
puts " 4 for Immediate Sign EXNOR MARCO ;
Sign 07
puts("” H for HELP with this menu 0")
puts(” R to RETURN to a higher level)\0"':

gets(TESTlselect?;
V' /% procedure TESTlmenu */

cond_1 _set(pchar)
‘% This is the first level cond. code select, and matches
TESTlmenu. *

char *pchar;
[
int next_level;
char *field,field line(4];
next_level = TRUE;

R
s e T Te e
PR R RN

switch (*pchar’

4
S

case '0’: /% Micro status register selected. X
bit_clear(I105_04,: o]
bit_set(104 04); -]

/% Note that I04 can be cleared for many cases, see Tbl. 1, 3
Pg 5-79 *- R
break; 1

case '1°’: /¥ Macro status register. x/ X
bit_set(I05_04); N
bit_clear(104_04); AN

- RN
break; -
.. o

]

139 T
RSN

1

R AT R N PR A R R AP A LA
PG) S e o S S P i PO AT LA AR S S LA Tell el Wit W Mit o aa Al e alNatalaSato et aaanamlat et A L e

N
>
J

}

{

— ——— T B AR Sst Sven S wn ade Ja e sten Ras Se 4

puts’"Press enter to continue Q" .
gets' CONTINUEcommand: ;

/% procedure need push menu %

NEEDLDCTmenu ()

char CONTINUEcommand[4];

puts(erase_screen);

puts("\t\Vt tREMINDER INFORMATION\n\O0");

puts("You have chosen one of the following AM2910
Sequencer Commands: ' n 0"

puts{"\t\tJRP JUMP REGISTER OR PIPELINE:0":;

puts("\t\tRPCT REPEAT PIPELINE, COUNTER NOT EQUAL

0n-0"

puts("These commands MUST be preceded by a‘Q"

puts("\t\tLDCT - LOAD COUNTER AND CONTINUEAn\nyn:0"';

puts("Press enter to continue\0";;

gets (CONTINUEcommand) ;

/% need_ldct menu %/

CONDITIONmenu {(CONDITIONcommand)

char *CONDITIONcommand;

puts(erase_screen);

puts("\t\tAM2910 SEQUENCER CONDITION SELECT MENU\n\O0"},;

puts("You have chosen an AM2910 Sequencer Command which
requires a*0"’

putsi "\ tconditional test\n\0");

puts("What do you want to do next? n.0"}':

puts{"\tType a P for FORCED PASS - unconditional:0" '

puts("\t F for FORCED FAIL\O");

puts("\t T ¢to TEST the condition\0");
puts("\t H for HELP with this program\0");
puts("\t R to RETURN to higher level®0"):

gets (CONDITIONcommand) ;

/% procedure condition menu x/

138

e . i S - . P N TR B I S e T et s e
e O P PP N S * e/ . TPor P P P, S SO S Y V- RGE LS VO WL VLT Pl Sl Sy Sty v PR PSR W

Do BER Sues sten Sren San Sen Sres Mee soen e S e T B e aone aa aatas ey Sea S fute amac

.....

r**.*-v T W W e TTTTE B ARE cous s o R G It st s S — — WP Y — - —— ey

- puts: "+ tas the AM2910 Sequencer Command: n 0"

r puts’"This command MUST precede the following

. commands: n 07
puts{"\t\tRFCT REPEAT LOOP, COUNTER NOT EQUAL 0 0"
puts: "Nt \tCIJPP CONDITIONAL JUMP PIPELINE AND POP O©
puts!{ " t\tLOOP TEST FOR END OF LOOP:0";:

puts{"\t\tTWB THREE WAY BRANCH:\n:n:n:0";

puts("Press enter to continue:\0"};

gets (CONTINUEcommand) ;

} /% procedure PUSHmenu */

LDCTmenu {)

char CONTINUEcommandi{4}:

puts(erase_screen, ;

puts("\t\t\tREMINDER INFORMATION\AN\O"};

puts("You have chosen a LOAD COUNTER AND CONTINUE -LDCT-
as the 0"

puts("\tAM2910 Sequencer Command\n 0"";

puts("This command MUST precede the following: -n:0"';

puts{("\t\tJRP CONDITIONAL JUMP REGISTER OR PIPELINE 0~

puts{"\Vt\tRPCT REPEAT PIPELINE, COUNTER NOT EQUAL
Ovninn Q"

puts("Press enter to continue\0"};

gets(CONTINUEcommand) ;

} /% procedure LDCTmenu X/

NEEDPUSHmenu()

char CONTINUEcommand({4];

puts{erase_screen);

puts("\t\t\tREMINDER INFORMATION\n: 0"

puts{"You have chosen one of the following 2910 Sequencer

Commands\n:0"

puts("\t\tRFCT REPEAT LOOP, COUNTER NOT EQUAL 0.0"::

puts("\t\NtCIJPP CONDITIONAL JUMP PIPELINE AND POP:0"}:

puts("\t\tLOOP TEST FOR END OF LOOP\O":;

puts("\t\tTWB THREE WAY BRANCHA\NDn\0"};

puts(”"These commands MUST be preceded by a.vn.0"';:

puts("\t\tPUSH - PUSH/CONDITIONAL LOAD
REGISTER/COUNTER\n\n n\0" :

137

puts(" b} CONDITIONAL JUMP SUB. VIA REG OR
PIPELINE - JSRP O"
CONDITIONAL JUMP VECTOR - CJV:.0" ' :
CONDITIONAL JUMP VIA REGISTER OR
PIPELINE 0" :
puts (" 8 REPEAT LOOP, COUNTER NOT EQUAL 0O -
RFCT~0" " :
REPEAT PIPELINE, COUNTER NOT EQUAL O -
RPCT\NO")
CONDITIONAL RETURN FROM SUBROUTINENO" ::
CONDITIONAL JUMP PIPELINE AND POP\NO" -:
LOAD COUNTER AND CONTINUE - LDCTMO" -;
TEST FOR END OF LOOP - LOOPNO";
CONTINUE - CONT\NO";;
THREE WAY BRANCH - TWB\O");
puts (" HELP with this program\0"):
puts (" RETURN to higher level\0"):
gets (SEQUENCERcommand) ;

"

puts’
putsi

~N o

"

[{e]

puts ("

puts ("
puts ("
puts ("
puts "
puts(”
puts ("

DInmmo Qo

} /% procedure SEQUENCER menu x/

BRANCHmenu(branchselect:

char *branchselect;

5 ¢
ﬁi puts(erase_screen);
- puts{"\t\tAM2910 SEQUENCER BRANCH ADDRESS MENU:n»0"j;
puts("You have chosen a command which requires a value 1in
the\0"):
- puts{"register/counter\n\0");
; puts("What do you want to do next?\n\0");
F‘ puts("\tENTER YOUR BRANCH ADDRESS FIELD\OQO"):
puts('"\t H for HELP with this program\0"):
. puts('"\t R to RETURN to a higher level\0");
a8 gets{branchselect);
9 } /% procedure branch menu %/

PUSHmenu ()

char CONTINUEcommand{4];

puts{erase_screen};

- puts("Vt\t\tREMINDER INFORMATION\n\O");

o puts{"You have chosen a PUSH/CONDITIONAL LOAD

. REGISTER/COUNTER -PUSH\OQO"';:

136

— ——— — r— v ML/ 2t Sty Jecm an s 2o T = v g ———t—

s P R L. . e - R e e, . s e e T
C et ea'atatat At tataNtatatata tatatstataal Ao waaal S el at W PO ST S SR VN e e

fu

. e aatriatrintt sumily PR B SR S Yo e
. o ! e T

R : I e d i - p il ol g TP —

case 3: 'x oey fld, 29203 output enable x
binary field 4,choice :
break:
case 4: /¥ source_fld, source fieid for the 29203, =
octal_field:5,choice
break;

case 5: /% dest_fld, destination field. X
hex_field(8,choice;;

break;
case 6: /% function_ fld, function field. ¥~
hex field(12,choice};
break;
case 7: /% carryin_fld, carry-in mux control for the

2904. x:
dual_field(16,choice);
break;

case 8: /% I514 fld, bits I05_04, two MSB’'s x-
/% of conditional test codes. X
dual field(18,choice;;
break;

case 9:/% 13 _ 10, bits I03_04 thru I00_04, four LSB’sx

;% of conditional test codes. £
hex field{(20,choice};
break;

case 10: /% bits I05 04 thru I100_04
/¥ don’t know how to use this field yet. &

break;

case 11: /% ceu fld, micro status enable bit ¥
binary field(24,choice
break:

case 12: /% cem_fld, macro status enable bit. ¥
binary_field(25,choice;;
break;

case 13: /% cmden_fld, command enable field x
binary_field(26,choice;:
break;

case 14: /% shiften_fld, shift enable field. ¥
binary field/27,choice;;
break;

150

case 15: :x comand_fld, command field. *
hex field(28,choice):
break:

case 16: /x shift_fld, shift field. x -
hex field(28,choice);
break;

case 17: /% breakpt_fld, breakpoint field. X/
binary_field(32,choice);
break;

case 18: /% notused_fld, this field not used. X/
binary_field{33,choice);
break;

case 19:/¥msb br_f1d,2 MSB’s of branch addressfield *.
/*Flrst test for conflicts by testing L 3
/*docu_word. If no conflicts, finish settingx/
/*branch address fields with recursive callsx-

—r T Wr

/
@ /*to field_set with cases 20 and 21. '
if (docu_word[19]==0)
{
if (docu_word[18]==0)
{
docu(field_cnt,no_sub,choice;;
dual_field(34,choice);
field_set(mid_br_fld,no_sub,++choice:
field_set(lsb_br_fld,no_sub,++choice’;
}
else
if (docu_word([18] == -1)
{
puts("Branch Address is already set. “0""‘:

puts("Do you want to change 1t?\0"):
gets(scrap) ;
switch (*scrap)
{
case 'YES’:
case ’yes’
case 'y’:
case 'Y’:
docu(19,no0_sub,choice);
dual _field(34,choice);
field_set(mid_br_fld,no_sub,++choice:
field_set(lsb_br_fld,no_sub,++choice
break;
default:

151

.................

Ty

~re TR W T R —— R A P —————— N A

printf("OKAY-~it hasn’t been

changed!' .n”

break:
B
}
else
puts(”"Garbage in the docu_word for #19, br.
add.>N0"
}
else
{

puts("Can’t use this field for both register desig\0");
puts("nation AND branch address in the same micro-.0"':
puts("word. Right now it’s being used to select \0"7:

puts("register A and register B.\O0");

}

break;

case 20: /% mid _br fld, 4 middle bits of branch

address field */

hex _field(36,choice);
break;

case 21: /% 1lsb_br_fld, 4 LSB’s of branch address
field..
hex_field(40,choice);
break;

case 22: /% rega_fld, specify register A as source
hex_field(36,choice);
break;

case 23: /% regb_fld, specify register B as source
hex_field(40,choice);
break;

case 24: /% seq_fld, sequencer code
/% This case has been modified to allow changing
the seq code after it has already been set.

if(docu_word(23] '= 0)
{

b 3

puts("The sequencer code is already set. 0" ':

puts("Do you want to change it?\0"):
gets(scrap);
switch(*xscrap)

{

case ’'YES':

case 'vyes’:

case 'Y’:

case 'y':

152

PAIRT IR SR TR TR PP I W Uiy Tl Sy TN T ST W PN WAY SPE WG W I U U UL L - L R AR,) ';A"'L_‘:n‘- COR T YOI Y

N

e P S Y L_'q

P Y G

PR W

"y

ek b

a

F—

Y]

- TR

switchitdocu word 23"

case 2: ¥ clear previous branch address «
string erase(34,43 ;
docu_word{18] = 0;
string_erase(44,47);
docu_word{23] = 0;
break;:
case 4: /% clear br.addr. and cond. test *:
string_erase(34,43);
docu_word{18] =0;
case 3: /% clear conditional test codesx.
switch(docu_word([7])

{

case 4:

case 3:
string_erase(18,23);

case 2:
string_erase(28,31);

case 1:
bit_erase(Cmd_En);
docu_word{7] = 0;
break;

}

case 1: /% clear sequencer code %/
string_erase(44,47";
docu_word([23] = 0;
break;

i
docu(field_cnt,sub_set,choice);
hex field(44,choice);
break;
default:
puts("It hasn’t been changed. \0");
break;
} /% end switch %/
} /% end if %/
else
{
docu(field_cnt,sub_set,choice);
hex_field(44,choice);

3

break:

case 25: /% Conditional Tests field--still not
coordinated with shift codes. Check to see if conditional

testing already set. If yes, erase previous micro_word
entries. If no, go on to set proper code. X/
if (docu _word{7] '= 0)
153

PNy NI

PR
PR A

. |'A_..<"“

IR

« e

R S P) s i-'l'.' R I I I -',‘41'." ‘ -'ﬂ'u‘g N ST P G PGl N 5. TR

.
a‘ata’

puts{"We got to docu_word’'7! not = 0. 0"
switch(docu word{7])

[
8

case 3: /% erase logical fields 8 & 9 x
case 4:
string_erase(18,23);
case 2: /% erase logical field 15, command_fld %~
string_erase(28,31);
case 1: /% erase logical field 13, Command_en_ flx.
bit_erase(Cmd_En);
docu_word[7] = 0;
display_docu();
display_word():
display_in_hex{();
break;
default:
puts("Garbage in sub_set of case 25 in
field set. 0"
break;
} /¥ end switch x/
} /% end if X/

/% Set proper conditional testing bits. ¥/
switch(sub_set)

case 1: /% Forced Pass x/
docu(8,1,choice:
bit_set(Cmd_En);
break;

case 2: /% Forced Fail x/
docu(8,2,choice);
bit_clear(Cmd_En);
*scrap = ’'8’;
field_set(command_fld,no_sub,scrap);
break;

case 3: /% Single level testing %/
bit_clear(Cmd_En);
*scrap = '9’;
field_set{command_fld,no_sub,scrap;;
docu(8,3,choice);
xscrap = '0’;
field_set(I5I4_fld,no_sub,scrap}:
field_set(I3_I0_fld,no_sub,choice);
break;

case 4: /% Second Level Testing x/
bit clear(Cmd _En):
*scrap = '9’;
field_set(command_fld,no_sub,scrap):
docu(8,4,choice;;
field_set(I3_I0_fld,no_sub,choice!:
break:

154

_ 3
*
default:]
putsi{"Garbage in sub_set for field set case)
25..0" C]
break:
} /% end switch x/ j
} /% end switch x/ 1
} /% end field_set %/)
]
binary_field(bit_num,choice)
int bit_num; o
char *choice; © 4
if “%choice == ’0’) j
bit_clear{bit num;: -
else if (*choice == '1')]
bit_set(bit_num); 1
else 1
bad_choice(choice);) }
) <3
dual field(bit_num,choice) k
int bit_nunm; *
char x%choice;
{ ::l:;:_
switch (*choice) e
éase 0’ ﬁ
bit_clear{bit_num): .
bit _clear(bit_num+l);
break:
case '1’:
bit_clear{(bit_num}; E
bit_set(bit _num+1l): »
break; 9
case '2’: T
bit _set(bit num):)
bit_clear(bit_num+1); _,j
break: e
case '3': ﬁﬁ{
bit_set:bit num): e
e
155 e
R
A
R

bit_seti(bit_num+1l):
break:

default:
bad choice{choice):
break:

}
octal_field(bit_num,choice)

int bit_num;
char *choice;

{

switch (*choice)
{

case '0’:
bit_clear(bit_num);
bit_clear(bit_num+1l);
bit_clear(bit_num+2);
break;

case '1°':
bit_clear(bit_num);
bit_clear(bit_num+l);
bit_set(bit_num+2);
break;

case ’'2°:
bit_clear(bit_num);
bit_set(bit_num+1);
bit_clear(bit_num+2;;
break;

case '3’:
bit_clear(bit_num);
bit_set(bit_num+1l);
bit_set(bit_num+2);
break;

case ’'4°':
bit_set(bit_num)}:
bit_clear(bit_num+1);
bit clear(bit_num+2);
break:

case ’'5’:
bit_set(bit_numj;
bit_clear(bit_num+1l);
bit_set(bit_num+2)};
break;

case '6’:
bit_set(bit_num);
bit_set(bit_num+1l);
bit _clear(bit _num+2);

156

D B SRR SRR S TSR SR YLV R R U A Hav S i Vg Y Yl Yl Tl w Ly

T Y T Ty

'

LI

. "
VT W R Y I Py

v

LRSI WIT W T W W BN

AP WP

ae o

v

D e R e 2

. .
. P, . A

bit_seti(bit_num+2);
break;

default:
bad_choice(choice);
break;

e

hex field{bit_num,choice)

int bit_num;
char xchoice;

éwitch {*choice?

{

case '0':
bit_clear(bit_num);
bit_clear(bit_num+1l);
bit_clear(bit_num+2);
bit_clear(bit_num+3);
break;

case 1’
bit _clear(bit_num):
bit_clear/bit_num+1l);
bit_clear(bit_num+2);
bit_set(bit_num+3);
break;

case '2':
bit _clear(bit_num):
bit _clear(bit_num+1):
bit_set(bit_num+2);
bit_clear(bit_num+3);
break;

case '3':
bit_clear{(bit_num);
bit clear(bit_num+1l)};
bit_scti{bit_num+2;:
bit_set(bit_num+3);
break;

case '4°':

bit _clear(bit_num;;
bit_set(bit_num+1l);

157

R

i
break:)
case 7' b
bit_set(bit_num:;]
bit_set(bit_num+lj; ')

PO

.

. ‘ P
P
A a2 2 4 o y

ey

PR

2 2

e e ’ -

P} . .

P R A
LSS LPLP DY G wou Oy

bit clear(bit_num-2::
bit_clear‘bit_num+3::
break:

case '5’:
bit_clear(bit_num);
bit_set(bit_num+l); S
bit_clear(bit_num+2); ”ﬁq
bit_set(bit_num+3); -
break;

case '6':
bit clear(bit_num);
bit _set(bit_num+1);

bit_set(bit_num+2); |
bit_clear/bit_num+3);
break;

Y et

case '7’:
bit_clear(bit_num);]
bit _set(bit_num+1);
bit_set(bit_num+2);
bit_set(bit_num+3);
break;

PP AP G o

case ’'8’:
bit_set(bit_num’; -
bit clear(bit_num+l};
bit_clear(bit_num+2);
bit clear(bit_num+3};)
break; !?

A

’ v
PO U W VY

case ’*97: -
bit_set(bit_num); SR
bit_clear(bit_num+1); '
bit_clear(bit_num+2);
bit set(bit num+3);
break;

case ’a’: - 4

case 'A’:
bit_set(bit_num);
bit_clear(bit_num+l Ll
bit_set(bit _num+2); B
bit clear(bit_num~+3;:
break; 1

case 'b’:
case 'B’:
bit _set(bit_num;:
bit _clear(bit_num+1);

158

P o, ..
e a s el e e

oL IPCILSP IR TPt YL TN Wiyl JUUL T ST W ML TR T WP ST S T SR WL L |

]
bit _setibit_num-2.:
bit set:bit_num+3)
break:]
case 'c’: f
case 'C’': "
bit_set(bit_num); X
bit_set{bit_num+1}: -3
bit_clearibit_num+2); 3
bit_clear{(bit_num=37;
break;
case 'd’:
case ’D’:)
bit_set(bit_num:;)
bit seti(bit_num+l);
bit clear{bit_num-2"]
bit_set(bit_num+3
break; -
.{
case ’e':]
case 'E’:
bit_set(bit_num);)
bit_set(bit_num+1l); g
bit_set(bit_num+2}; i
bit_clearibit_num+3); -
break; i
case 'f’: :E
case 'F’':]
bit_set(bit_num;: T
bit set(bit_num+1l); .
bit_set{(bit_num+2;; S
bit_set(bit num+3); “f
break: 1
default:
bad choicetchoice::
break;
p
"'_T
display_word: : 1
) -
int i,J;]
printf:. " "o)
for = j=0 ; j-47 : j=j+16) 1
159 ﬁ;i
]
]
1
D
-9
. " 9
------------------------------------- e e e e T T T

T T T R T T — T — — T, T rr— T i e S mem s Sl Sui Shass

for © 1i=j ;3 1 <« 16+j i 1++"
putchar micro word i}

putchar:’ °

putchar:’ '

putchar(’\n':

display_in_hex ()

i
1

int 1,J;

printf (" "
for ¢ j=0; j<47; j=j+16)
{

for ¢ i=j; i < 16+j; 1 += 4)
hex _display(µ_word i} };
printf({" ")
]
putchar(’\n’);

}

hex display(pchar)
char x*xpchar;
{
int i,value;
value = 0;
for (1=0; 1 < 4; 1i++)
switch (*(pchar+i))
{
case '0°’:
value = 2x%value;
break;

case 'X’:

case ’1°:
value = 1 + 2%value;
break;

case ’7?':
putchar{’?’;

return;
break;
}

} o
printf("%.1x",value); o
} e

display_docut T
-

160 R

.

Aj

-

1

P — " —— T —— s -~

int 1
putchar '’ n’ '
for 1=0:;1:24;1++" -

printf(”%d ",docu _word’i:
putchar(’\n’J;

; L

bit_set{1i)
int 1,
{
int error;
error = 0;
micro_word’i] = '1°
returnierrori;

bit_clearti)
int 1;
:
int error;
error = 0;
micro _word[i! = ’0’;
return {error?};

3
bit _erase:i) -
int 1i; -
micro_word([i] = 'X’;
3
J
string_erase(i, j)
int i, j;
i L p
U o
for(; 1<=j;i++ T
micro _word{i] = ’X’:)
R
K
R
-
- .1
4
161 R
T4
L

Program Name: Alumake

Purpose: The Makefile used to compile the ALU module and
its submodules. Tne name alumake must be changed to
makefile to be used.

test: ALU.o 203.menus.o 23904.supp.o alutils.o
cc ALU.o 203.menus.o 2904.supp.o alutils.o ~o test?l

162

Program Name: ALU.c

Pu

X

1
#1

ch

1n

ma

ch
in

g0

——— ——— w W —— —y T e —— 3 —— ‘-ﬂ

rpose: Source code for the ALU module.

This 1is the draft of the 29203 section of the microcode ' 4
generation system as of 27 Dec 1984. X/ :
nclude “stdio.h '1 :
nclude "declare.h” el
q
)
]
ar cmd _line{ 80 ,*pcmd,micro_word{49], *pmwd:
t KEEPgoing,goback,docu wordi24j;
in: 4
)
ar contin_ 10.: {
t 1,lim _src,spc_src,rt_shift,left shift,rama,ramb,helpsct: j
md = cmd_line;
r i=0; 1748;i++) micro _word[i] = ’*X’; P
r :1i=0; 1-.24:1i+-) docu_wordf{i! = 0: :
back = false;

KEEPgoing = true;
helpset = false;

rt_shift = false;
left _shift = false:
rama = false,;

ramb = false;

ST, ‘
. A .
harhonidbec it oo dende i s

am29203menu!pcemd ;) ;
switch (*pcmd:

"

case 'h’:
case 'H':
helpset = true;
KEEPgoing = false:
puts "The 29203 alu 1s documented in chapter 5 of the

AMD- 0"
puts: "data book. There are two types of functions it
can> (0" 1
puts. "perform, regular functions and special)
functions. 97 L
puts/"The rest of the decisions vou must make are f{ff
based on.0" L

DS R SASIPG W U AT

W Ty T T —— " " p— ————

break:

case 12: /% cem_fld, macro status enable bit %~
binary_field ' 25,choice
docut 12,0, choice:;

break:

case 13: ¥ cmden_fld, command enable field %~
binary field’26,choice;;
docu(13,0,choice);
break;

case 14: “x shiften fld, shift enable field «x
binary field(27,choice"
docu{ 14,0, choice
break;

case 15: /x command fld, command *+.. .1 x
hex field'28,choice
docu{15,0,choice :
break;

case 16: ¥ shift fld, shaift ... v
hex field(28,choice
docu:t16,0,choice ;
break:

case 17: ;X% breakpt fld, hres; ' .
binary field{(3Z,choice
docut 17,0, choice
break;

case 18: /% notused fld, this field4 (s nor aser
binary_field/33,choice
docu{18,0,choice:

break;
case 19: ¥ msb _br fld, 2 MSBE's ot branch oddress]
fieitd + g
dual field: 34,chcice
docui¢19,G,choice; {
break:
)
case 20: ¥ mid br fld, 4 middle bits of branch '
address field *
hex fieldi{36,choice :
docut 20,0, choice;:]
break; X
-4
case 21: % lsb br fld, 4 LSB's of branch address i
field * R
177 :
3
A At ~ 8 L L N S Y S k‘.;;“_'_;_f‘;l A_ i 4. - - - . -_J

e e o - . MiNite Jhum e decs Secs i s ete Snas Shde et v St et

case 2: ¥ ien_fld, 29203 1instruction enable *
binary field:3,choice;:
docut 2,0, choice;
break:

case 3: ‘X oey_ fld, 29203 output enable x/
binary_field{(4,choice:’:
docu(3,0,choice);
break;

case 4: /% source_fld, source field for the 29203. L3
octal field(5,choice);
docu(4,0,choice);

break;
case 5: /% dest_fld, destination field. x/
hex_field(8,choice:;) |
docu(5,0,choice;; :
break;]
case 6: /% function_fld, function field t 4 i
hex field{(12,choice’;
docuit6,0,choice}; .J
break;]

case 7: /% carryin_fld, carry-in mux control for the

2904 «x :
dual _fieldi16,choice:: ©
docu.7,0,choice);]
break: R

case 8:/xI514_fld, bits 105_04 and I04_04, two MSB’sx/]
/% of conditional test codes. X i i
dual_field(18,choice): S
docu(8,0,choice;; . }
break: R
case 9:/%I3_I0, bits I03_04 thru I00 04, four LSB’'s *: U
/% of conditional test codes. ¥ R

hex field(20,choice);]
docu(9,0,choice); J
break; :
case 10: /% bits I05_04 thru I[00_04 x/ -
/% don’t know how to use this field yet x~ e
docu(10,0,choice:; 1
break; f

case 11: ,/% ceu_fld, micro status enable bit x,
binary_field(24,choice};
docu(l1,0,choice);

L oaa’ & & s s

r
. L .
Catas R T P PRy PR R P S T NIRRT PP . S PP TR PN DS D PRy DAY B I P PP S S . O

Program Name: Alutils.c
Purpose: Source code for Utilities module which is compiled
with the ALU module.

%2include ~stdio.h>
#include "declare.h"
#include "extern.h"

docu{field,sub_set,choice)

int field,sub_set;
char *choice;

éuts<"docu called\0");
sleep(2):

bad_choice(choice)

char *choice;
y
puts("bad_choice called.\0");
putchar(*choice);
sleep (2);

>
J

field_set{field_cnt,sub_set,choice)

int field_cnt,sub_set;
char xchoice;

X There are 13 defined fields in the 29203 eval boar.d
microword, and several of them have multiple definitions.
In this routine, we accept a pointer to the field and to th.
definition of the subset, and a pointer to a character which
represents the actual choice. We generate a data structure
which holds the choice and the actual bit pattern in the
microword. L 4

i

switch field_cnt:

case l: "% regsel fld, register address source ¥
octal field{0,choice’;
docu:1,0,choice’;
break:

P S A PR R R R I St .‘.L_! e mne sl

vy

Al oo

ek

W R ———— L Aat ana B aeg o aos B ————

RAMBmenu' cmd_line

switch *cmd_line)
case 'H’:
case 'h’:
puts(“"This menu describes the register
selections for 0~
puts("the ALU. They are documented on:\0");
puts("page 5-XXX of the AMD data book. 0" .:
puts{("type a C to continue. 0");
gets{contin';
break;
case 'R’:
case ’'r’:
break;
case ‘0’
case '1’:
case '2°':
case '3’:
case '47:
case '57:
case '6’:
case '7’:
case '8’:
case '9’:
case 'a’:
case 'A’:
case ’'b’:
case 'B’:
case ’'c¢’:
case 'C’':
case ’‘d’:
case 'D’:
case ’'e’:
case 'E’:
case 'f':
case 'F’:
field_set(regb_ fld,0,cmd _liine);
docui{regb_fld,0,cmd _line};
break;
}
}
}
while(helpset ' KEEPgoing);
exit();

} /% the end of 29203master %/

T I

PP U e P S WP ST S S P W YN W, W

St

. .
PURPUNCY S W)

Bl

if rama =
“.

RAMAmenu

switch ¢

case

case

case
case

case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case

1 ramb -

= true && (KEEPgoing;:

ccmd_lined:
¥cmd_line)

)H,:
’h):
puts("This menu describes the register

selections for 0"

puts("the ALU. They are documented on:\Q"

puts("page 5-XXX of the AMD data book. 0" ::

puts’!"tvpe a C to continue. 0" :
gets . contin);
break:

VR,:
!r),

break:

0’
17
*20
'3
'3
15’:
16):
17’:
’8’:
’9’:
:aa,
)A,:
b’
B’
’C"
CO
td
D
Tet
B
Tfr
TF
tfield set - rega fld,0,cmd line.
docu rega f1d,0,cmd_line :
break:

- true && KEEPgoing.

TS Y0 T S W, S) i a et 3 0l MR Sl SNy VAN G)

N T .t T .A . M . - . »
WIS - UYL I SO T @g',‘;J

ta

.'t_‘ . .
P TSI

P

o

field setidest fld,0,cmd_line
docuidest_f1d,0,cmd_line:;
/% Need to add things here'!'!’¥
break;
default:
helpset = true;
puts("Illegal entry, type a C to
repeat. 0"
gets{continj;
break;
}
} /% end while ¥/
if('KEEPgoing) helpset = true;

I3

if (rt_shift == true && (KEEPgoing))
éhiftﬂnmenu();
gets(cmd_line);
if {(shift_set(cmd_line)) goto dest start;
bit clear(27);

v

if (left shift == true && (KEEPgoing;

;
shift3_menu();
getstcmd_line':
if ‘shift_set(cmd linei) goto dest _start:
bit_clear(27); /% the shift enable for the 2904. x
}

1f (KEEPgoing)

{
ENABLEmenu(cmd _line,contin);

if (*cmd_line == 'Y’ !! %cmd_line == ’y’)
*cmd _line = ’07;
else
*cmd_line = 17
field_set(ien_fld,0,cmd_line :
if (*contin == 'Y’ . *contin == ’'y’)
*contin = ’0’;
else
*contin = ’1°; T
field_set(oey_fld,0,contin ; R
if (rama == true .’ ramb == true && {KEEPgoing;: 7

REGISTERmenu(cmd _line);
field _set{(reg_src,0,cmd _line);
docu(reg_src,0,cmd line);

PR S I

172

coat
St et
PRI
I
PP PSP AP

PPN s P PP AN PR EY “-""._i-.";"-_‘-.'-‘.k' RV PP PP PP W P . VLS, L. 'LILL-‘

[N, TR P . S b U L IR W T W D S RS S - R T U T T D T SR TP TTAT U Wi T T T IR TP 1P WO DN A TP TR Y Sy P -2

v hARARSE B (Yt A v s N N aad - b e T = e Bt Seae i a (o s e 3

puts!"the ALU result. They are documented
onx0" ¢
"page 5-XXX of the AMD data
book. 0"

puts’

puts("type a C to continue.*C"
gets{contin);
break;

case 'R’:
case 'r’;:
KEEPgoing = false;

break:

case '0’:
case '17:
case '2°:
case '37:
case

’]

Mhwt

rt_shift = true:
field set(dest fld,0,cmd _line:;
docu(dest_fld,0,cmd_line::
break:

case ’'8':

case '9°’:

case 'a’:

case 'A':

case 'b’':

case 'B’:

case ’'d’:

case ’'D’:
left _shift = true;
field_set(dest_fld,0,cmd_line::
docu(dest _fld,0,cmd_line);
break;

case '4°’:

case ’'6°:

case '7’:

case 'c¢’:
case 'C’':
case ’'e’:

case 'E’:

case 'f’:

case 'F’:
field_sett(dest fld,0,cmd_line:
docuitdest _fld,0,cmd_line;;

break:
case 'M':
case 'm’:
case 'I':
case "1':
xcmd_line = '0°';

171

OS .

“a' .
2aa’a'a's”
RPN A

P Su W

i e aiania

PP S S

-

Py

PP Y

- — ~—w w LI s S e Sat G NS A e nara e T T T Ty YT Y Y YT T

puts("The special functions require that

10=0"0"
puts{"Therefore the sources are limited to

the 0"
puts("set on this menu. The sources are

described 0" ;
puts{"on page 5-XXX of the AMD data
book. 0" . :
puts("type a C to continue.\G");
gets(contin);
break;

case 'R’:
case ’'r’:

break;

case ’0':

ramb = true;
case '1°:
rama = true;

field_set(src_fld,0,cmd_line;;
docu(src_fld,0,cmd_line};
break;
case ’4’:
ramb = true;
case '5°’:
field_set(src_fld,0,cmd _line);
docu(src_fld,0,cmd _line;;
break;
default:
puts("Illegal entry, type a C to repeat.:\0"};
gets(contin);
break;
}
}
if (spc_src '= true && (KEEPgoing))
!
helpset = true;
while(helpset)
{

helpset = false;
dest_start: DESTINATIONmenu(cmd_line}:
switch(*xcmd _line)
{
case 'H':
case 'h’:
helpset = true;
puts("This menu describes the destinations
for\0” .

—
~J
o
PR B S
e
RS R
T
S
PRSP RERIONEN

P NP I B U A I AP B S I P I S S I - PRSP OO U VA U UTP S P LI WA WO Sl S

| ‘4".4‘4

[V

N S et i R I S T T Fiaire - T - T T T Ty e

while(helpset"
<
helpset = false;
srcl start: SOURCElmenu(cmd_line
switch (*cmd line.
(
case 'H’:
case 'h’:
helpset = true;
puts("Because of the use of the IO bit to
indicate 0" :;
puts("special functions, there are limits to

the 0"

puts{"sources for ALU operands. These limits

are. 0" .

puts{("described on page 5-XXX of the AMD data
book. 0"

puts("type a C to continue.\0");
gets(contin);
break;

case 'R’:

case 'r’:

KEEPgoing = false;
break;

case '2’:
rama = true:

case '6’:
field_set(src_fld,0,cmd_line);
docu(src_fld,0,cmd_line);
break:

default:
helpset = true;

puts{"Illegal entry, type a C to repeat.:

gets(contin);

break:
Y /% end While %/
if('KEEPgoing) helpset = true;

else if (KEEPgoing)

ércz_start: SOURCEZmenu(cmd_line;:
switch(%cmd line)

case 'H’:

case 'h’:

169

. P LAP A - Wy - - PPN P PPN PR PR VPR TP N < L;-L‘ L“g"_’:‘ Cada

RN s PR

o e
AA A S

‘A

-
. -'.‘.. ',“
A W S

)

helps
while

hd N ol Ny Sy ——

et = true:
(helpset

Helpset = false:
srcstart: SOURCEmenuicmd_linej;

switch
J

IS

case
case

(*cmd_line)

lR):
’r!:

KEEPgoing = false;
break;

case
case

)H’:
)h’:
helpset = true;

puts ("Sources for ALU operations are

described~0":;
puts ("on page 5-XXX of the AMD data book
0

puts ("Type a C to continue.\0");
gets (contin);
break;

case

’0’:

ramb = true;

case
case

)1).
ros .,

rama = true;
field_set(src_fld,0,cmd_line):
docu(src_fld,0,cmd_line);
break;

case

’4):

ramb = true;

case
case

’5!:
,6,:

field_set(src_fld,0,cmd_line):
docuisrc_fld,0,cmd_linej;
break;

default:
helpset = true;

puts("Illegal entry,

gets(contin:;
break;

}

' /% end while x/
if ('KEEPgoing) helpset = true:

}

else if
f

(lim_src == true && (KEEPgoing))

helpset = true;

168

type a C to repeat.\0"';

‘a o d

Ty T T ———r

field set{dest fld,0,pcmd);
xpemd = 0’
field_set(func_f1d,0,pcmd;;
break;

case 'M’:

case 'm’:
spc_src = true,;
docu(dest_fl1d,0,pcmd);
¥pcmd = ’1°;
field_set(dest_f1d,0,pcmd);
¥pemd = '8’
field_set(func_fld,0,pcmd;;
break;

case 'Z’:

case 'z2°':
spc_src = true;
docu(dest fld,0,pcmd);
¥pcmd = '3’ ;
field_set(dest fld,0,pcmd);
*pcmd = '8’;
field_set(func fld,0,pcmd);
break;

default:
helpset = true;
puts("Illegal entry.\0");
puts("Press enter to continue.\0");
gets(contin);
break;
{
} /% end while %/
while(helpset && KEEPgoing);
if('KEEPgoing)
{
helpset = true;

}

break;

default:
helpset = true;
KEEPgoing = false;
puts{("Illegal entry.\0");
puts{"Press enter to continue.\0"};
gets(contin);
break;

; /% end main switch x/

if (lim_src != true && spc_src '= true

k& (KEEPgoing))

167

|
p

I‘ . . l’ N l‘ ’

. e L l' .

PP

ot L
VRS SN

s
A d s L

PRIV I N O SN

Yy e e .-,'.".".’
kﬂ.hg‘.A b Pl

Sep——————

§

TR T
Ado ot 8 s

A\

pep—y

breék;

case ’S’:
case ’'s’:
do
{
spc_src = false;
helpset = false;
SPECIALmenu(pcmd);
switch(*pcmd)
{
case 'H’:
case 'h’:
helpset = true;
puts("These special functions are described on
page 07
puts("5-XXX of the AMD data book.>0""
puts("Press enter to continue. \0");
gets(contin);
break;

case 'R’:
case ’'r’:
KEEPgoing = false;
break;

case ’0’:
case '1’:
case '2°’:
case '3’:
case '4°’:
case ’'5’:
case '6°':
case 'T77:
case '8’':
case '9’:
case 'a’:
case 'A’:
case 'b’:
case 'B’:
case 'c¢c’:
case 'C’:
case 'd’:
case 'D’:
case ’'e’:
case 'E’:
case 'f':
case 'F’:
spc_src = true;
docu(dest _fld,0,pcmd);

166

P .
e
PSRV S BT N

PR

e~ T

RAMARaTER . R ARAATE A e

case '6': X codes 6 and 7 require limits on the
source field. x/
case '7’:
lim src = true;
case '1°’:
case '2°:
case '3':
case 4’
case '5’:

field_set(func_fld,0,pcmd);
docu(func_f1ld,0,pcmd};
carryin_menug j;
gets(cmd_line;;
carry_seticmd _line);

break;
case ’'0’: /xF=high x/
case '8’: /XF=1low X /

/% codes 0 and 8 require limits on the source
field.x/

lim_src = true;
case ’9’:
case ’A’:
case ’'a’:

case 'B’:
case 'b’:
case ’'C’:
case ’'c’:
case 'D’:
case ’d’:
case 'E’:

b I

case 'e
case 'F’:
case 'f’:

field_set(func_fld,0,pcmd);
docu{ func_fld,0,pcmd;
break;

default:
helpset = true;
puts("Invalid input.\0"};
puts("Press enter to continue.:\0");
gets(contin);
break;
)
i /% end while %/
while(helpset && KEEPgoing):
if('KEEPgoing)
1
helpset = true;

165

DI WO I T S R U WA TN Ty St I W G S . o PR AP L SR S S .

putst”"which of these vou chose. 0"
puts("Press enter to continue. 0"
gets ‘contin:;

break:
case 'r’:
case 'R’:

puts{"Do you really want to return to mastermenu? 0"
gets(contin);
switch{(*contin)

{

case 'YES’:
case ’'yes’:
case 'Y’:
case 'y’

KEEPgoing = false;

break;

default:

KEEPgoing = false;
helpset = true;
break;

N
1S
J

break;

case 'b’':
case 'B’:
do

helpset = false;
FUNCTIONmenu(pcmd};
lim_src = false;
spc_src = false;
switch(*pcmd)

Ease "h’:
case 'H':
helpset = true;

puts:"The 289203 ALU functions are described on
page 5-XXX-0"
puts("of the AMD data book. \0");
puts{"Press enter to enter.\0");
gets{contin);
break;
case 'r’:
case 'R’:
KEEPgoing = false;
break;

164

S R S SR ot T T e S i S N T N S N A N S
. SEE ST S S A VT Sl S SR TR Tt WD SR Vel Vol A § B Bt FEEPRA G WL P WA YA 1 RS WO VK WD R WA S W WO i W Y IR P L

hex_field(40,choizc,
docut 21 .7, cnoice ! ;

p
E break;
K‘ case 22: /% rega fld, specify register A as source ¥/)
[hex_field(36,choice;;
g docu{(22,0,choice);
. break;
case 23: /% regb fld, specify register B as source x-

hex_field(40,choice};
docu(23,0,choice);
break;

case 24: /% seq_fld, sequencer code x/
hex field{(44,choice’;
docu(24,0,choice);
break;

binary field(bit num,choice)

int bit_num;
char *choice;

{
if (*choice == ’0’}
bit_clear(bit _num};

else if (*choice == ’17)
bit_set(bit_num);

else
bad_choice(choice?;

dual field(bit num,choice)

int bit_num,;
char *choice;

switch {(*choice)}

{

case '07:
bit_clear(bit _num);
bit_clear(bit_num+1);

AP S S I ST SR M SRR I N NI P S L S BT I S Dl W P L N L PO T S

P —— T —r—— T T r————————

- breal:

case 1
bit_cleartbit_num,:
bit_setibit_num+1)
break;

case '2°:
bit_set(bit_num};
bit _clear(bit_num+1l);
break;

! case '3’:
) bit_set(bit_num':
bit _set(bit_num+1;);

break;
E default:
: bad_choice(choice;;
3 break;
4 }
[|
¢ octal field(bit_num,choice)
-
¢ int bit_num;
- char *choice;:
f switch {¥choice)

case '0’:
bit _clear(bit_num);
bit_clear{bit_num+l);
bit _clear(bit_num+2),;
break;

case '1’:
bit_cleari(bit_num),;
bit cleartbit_num+];:
bit setibit num+2);
break;

case ’'27:
bit_cleartbit_num:;
bit _set:bit_num+1:;
bit clear(bit_num-2;:
break;

case '3’:
bit_cleartbit_num};
bit_set(bit_num+1l};
bit _setibit_ num+2;;:
break;

. . . . e -t . s '-‘.‘ --‘~ - -'~.
P SO AP TP I TR LRV ST P IR I N 1Py, W TP PR VP WAy UAE G ST U JD PG Dl W Pl Uiy S

case '47:
bit_set:bit_num:;
bit_clearibit_num-1::
bit_clear(bit_num+2):
break;

case '5°’:
bit_setibit_num;};
bit clear(bit_num+1);
bit_set(bit_num+2);
break;

case '6’:

bit_set(bit_num); 4
bit_set(bit_num+l); :
bit cleartbit num+2;;
break;
- case '77: 4
ol bit _set(bit_ num); !
bit_set(bit_num+1); {
bit_set(bit_num+2);
break;
default:
bad_choice(choice);
® break;)
3 _
’ T
) .
hex field{(bit_num,choice) tj
-9 e 1
| int bit_num; 4
char %*choice;]
{
switch (%choice))
{ - -4
1‘ case '0°’: 4
bit_clear(bit_num, : 5
bit clear(bit num+1);
bit_cleari(bit_num-2:;:
bit_clear(bit_num+3);
break;
¢ 1
' case '1': o
bit _clear(bit_num); o
bit_clear(bit_num+17; e
bit _clear(bit _num+2); KR
» bit_set(bit_num+3); o
e break; 1
case ’2': -;
bit clear/bit _num): g
bit clear(bit num+1); f
® 4
. 180 ﬂ
'- -]
- |
-7
1
© !
. A
T T e T S CVEBEEEOR e DR R P o tinnai it

P T Sl O o

P P P —————

bit _set(bit_num+2:;
bit clear¢bit_num+3};
break:

case '3':
bit _clear(bit_num);
bit clear(bit_num+1l);
bit _set(bit_num+2};
bit _set(bit_num+3};
break;

case *4°’:
bit clear{bit_num:;
bit_set(bit_num+1}:
bit_clear(bit_num+2;;
bit _clear(bit_num+3};

break:

case '5
bit clear(bit_num);
bit_set(bit_num+1);
bit_clear(bit_num+2);
bit set(bit_num+3);
break;

LI

case '67:
bit _clearibit_num);
bit _set(bit_num+1);
bit_set(bit_num+2};
bit_clear(bit_num+3);
break;

case ’'7°:
bit_clear(bit_num);
bit _set(bit_num+1};
bit set(bit_num+2;:
bit seti(bit_num+3);
break:

case ’'8’:
bit_set{bit_num);
bit_clear(bit_num+1);
bit_clear{(bit_num+2);
bit_clear(bit _num+3};
break;

case 'G’:
bit_set(bit_num);
bit_clear¢bit_num+1};
bit_clear{bit_num+2;;
bit_set'bit_num+3};

181

LS andh a2

P LI .

PRI W HAT T UL WL VLA Sl S Gl W SUIE WO WG Sy St

PO Vel VLAY SO Nl

e a g g)

. -
PN

PR

Al

o o, PP

N
PR O G SN

.o B I
(S PURE Y W

PRy

:.', A
Lma

break;

case "A’:

case 'a’:
bit_set(bit_num);
bit_clear(bit_num+1);
bit_set(bit_num+2);
bit_clear(bit_num+3);
break;

case 'B’:

case ’'b’:
bit_set(bit_npum);
bit clear(bit num+1);
bit_set(bit_num+2;;
bit_set(bit_num+3};
break;

case ’C’:

case ’c¢’:
bit_set(bit_num);
bit_set(bit_num+l);
bit_clear(bit_num+2);
bit_clear(bit_num+3);
break;

case 'D’:

case ’'d’:
bit_set(bit_num);
bit_set(bit_num+l);
bit_clear(bit _num+2);
bit_set(bit_num+3);
break;

case 'E’:

case 'e’:
bit_set(bit num;;
bit_set(bit_num+1l):
bit _set{(bit num+2);
bit_clear(bit_pum+3);
break;

case 'F’:

case 'f’:
bit_set(bit_num):
bit_set(bit num+l);
bit_set(bit num+2};
bit_set{bit _num+3);
break:

default:

,,
P
Ad 4

P
O
PP LT S WY

e e
U B PGaR .]

~ - ~ v —— Ty
4
o
4
bad choicetchoice : g
break: " 4
R
display_word() !
!
int i, J;
printf (" "y
for (j=0 ; gj<47 ; j=j+16
!
L <
for { i=j ; 1 < 16+j 1 1++) 1
putchar(micro_word i)
putchar?{’ ’;]
putchar(’ ') '
}
putchar(’\n’); {
displ?y_in_hex() ﬁj
int i,j: 1
printf(" "o R
for { j=0; j<47; j=j+16. ‘
ﬁ" P
for (i=j; 1 < 16+j; i +~= 4) N
hex _display!{ µ_word{i]); -
printf (" ") -
putchar(’\n’); ~:
hex display{pchar) g
char *pchar: J
int i,value;)
value = 0; 1
for (1=0; 1 d; i++) .
{ 0
switch (*x{pchar+i)) 3
{
L
case '0:)
value = Zxvalue; -
break: -]
case 'X’: 3
case '1’: 9
1
183

79
R
e
A
1
<
O
Kl
®

laia i SRo Mt S S a v

value = 1
break;

15y

case '7’:
putchar(’?’;
return;
break;

printf("%.1x",value);
y

4

bit_set(i)

int i;
int error;
error = 0;
switch (micro_word{i])
{
case 'X’: /% Don’'t care, therefore set {t'#%:
micro word(i] = ’'1°';
break;
case '1’: /% Already set, therefore OK. ¢
break; .
case '0’: /% Cleared, therefore an error. 3
micro _word{i] = ’7’;
error = 1;
break;
case '?’: /x Already in the error state. X/
break;
default: /% Garbage in the microword!' *: jjf
puts ("Garbage 1in the
microword'''!' n.0"
sleep(2);
break;
return {(error;;
|
bit_clear(i) .
int 1, .
{ 3
int error; 1
3
-
184 <
1
i
S
e
W A-VL [L'.&~.L--L..L .A.'A- Ah;' A --A .-L-.L. ‘;"\';" L".k.;F a8 'L L.~L->L. o -_'_‘A“L "‘L-.Ll' ,Ll' \;V.S_' _‘-3-:L >3_ L‘ A .' . e 1-1- - x‘j

W

+ 2%value:

error = 0:

switch ‘micro_word: i]

T

case 'X':/% Don’t care, therefore clear

micro_word!i] = '0’:
break;

case '0°’:

itk

i

/% Already clear, therefore OK.

break;

case '1’: /% set, therefore an error.
micro_word{i! = '?7:
error = 1;
break:

case '?’: /% Already in the error state
break:

default: /% Garbage in the microword!

puts

("Garbage in the
microword!'!’'' '

sleep(2);
break;

}

return (error)

bit_erase(i)

.
’

int 1;
{
micro _word{i] = X’
185
LU S A . R - L . - .
rs r Al dtt - - » AL - .A.‘.__‘.4‘..‘-)-‘..‘4‘"-‘.‘..‘ ‘A'_A'_L'_A"'._I.J'..-_A

£
*’,
; £
%
n 0"

CHRIY TP IS YRRt T W SR WOV SAIN TR YAt G S

..... T T —— Y CARMCRE S S

Program Name: 203.menus.c
Purpose: Source code for the menus used in the ALU module.

#define erase_screen "\033[2J\033/0:0H"
#include stdio.h’

2222222202323 3003 3232223223202 223 0333323322230 232 2232322332 ¥

/X X/
/X AM29203 MENU PROCEDURES X/
/¥ b

B 2332033220222 3232232333323 3832002222208 0333083320033233303¢8 W
am29203menu(am29203select)

char xam29203select;

puts(erase_screen);

puts("\t\t\tMASTER AM29203 ALU MENU\n\n\O0");

display word();

display_in_hex{(};

puts("The X s indicate bits which are not yet defined 0" .:

puts("The defaults for the AM29203 ALU are: 0" . ;

puts("\tRegister Address Select - bits 47-45 - A,B
pipeline = 111 0"

puts{”"\tInstruction Enable - bit 44 - Disable = 1.0"

puts (" tOutput Enable - bit 43 - Disable = 1\0"):

puts{"\tSource - bits 42-40 - DAQ = 111\0"};

puts("\tDestination - bits 39-36 - YBUS = 1111\0");

puts("\tALU Function - bits 35-32 - OR = 1111\n\0");

puts("What do you want to do next?\0");

puts{"\ttype a B to choose ALU FUNCTIONS:\O");

puts("\t\tS to choose SPECIAL FUNCTIONS\O");

puts/"\t\tH for HELP with this program\0":;

puts{ "\t tR to RETURN to higher level 0"};

gets(am29203select ' :

‘% procedure am239203menu %/

FUNCTIONmenu(FUNCTIONselect:
char XxFUNCTIONselect:
puts(erase_screen);
puts{"\ty tAM29203 ALU BASIC FUNCTION SELECT\n\O0O");

puts("Enter the value corresponding to the function vou
wish to perform\0");

186

- . - - N . - - - - N A . <O I I oAt "7.. . - . - T e Tt e Tt Lt e - -~ - - . - g - .
DI WL VG R WA WY Y AT SR ST WEIE U S VAN G SRR ST Yokl Vool “Weoll W Dl et e DL WP DU P WL AP WG DI WA W VI S S WA W W W W Sy

puts: "t t0 F = High 0"

puts " ttl1 F =S - R - 1 - Carry In 0"
puts " t tZ F = R ~ S -~ 1 + Carry In 0" ;:
puts:™ t°t3 R + S + Carry In 0",

puts " t-td4 S + Carry In~0" :

puts(”"\Nt\t5 {NOT S) + Carry In-0"";
puts{ "t t6 + Carry In\O"};

puts ("t t7 {NOT R) + Carry In\O0"};
puts("\t\t8 Low\O0");

puts{”\t\t9 (NOT R) AND S\NO");

CRCEC RO R RO RO RR-

puts("\t\tA = R EXCLUSIVE OR S\O0");
puts: " t\tB = R EXCLUSIVE OR S\O");
puts "\t\tC = R AND S\O");
puts¢"\t\tD = R NOR S\O0");
puts:"wt\tE = R NAND S\0");
putsi{"\t\tF = R OR S\O");

putsit"\t\tH for HELP with this program\0";:
puts "t tR to RETURN to higher level\0"';
gets(FUNCTIONselect :

s /% procedure FUNCTIONselect x/

’

SPECIALmenu(SPECIALselect)

{

puts(erase_screen;;

puts("\t\tAM29203 ALU SPECIAL FUNCTION MENU\n-0");

puts("Enter the value corresponding to the function you wish
to perform 0™ }:

puts(” 0 Unsigned multiply\0"):
puts¢” 1 BCD to Binary Conversion\0");
puts’” M Multiprecision BCD to Binary Conversion\0" ::
puts’” 2 Two's Complement Multiply\0");
puts " 3 Decrement by 1 or 2\0"):
puts” } Increment by 1 or 2.0"}):
puts " 5 Sign/Magnitude to Two's Complement
Conversion 0"
putsi{” 6 Two's Complement Multiply\Q":;
putsi” 7 BCD Divide by 2:0");
puts:” 8 Single Length Mormalize\0":;
puts¢” 9 Binary to BCD Conversion\0"':
puts- " Z Multiprecision Binary to BCD Conversion:0"
puts(” A Double Length Normalize; First Division:0"
puts " B BCD AddMNO"}:
puts("” C Two’s Complement Divide\0"}:
puts’ " b BCD Subtract F = R - S - 1 + Carry In
gep Q"o
puts’ " E Two’s Complement Divide Correction and

Remainder: 0" :

187

PPN N N Y RS DR R DR I R T S P P U S L S L . L. Sy W Sl S A N T

T

- d

Lada,

puts¢” F BCD Subtract F = S - R - 1 + Carry In

BCD 0"
puts H for HELP with this menu\0"::
putsi(” R to RETURN to higher level:0"1;
gets SPECITALselect ::
} /% procedure SPECIALselect x/
SOURCEmenu’ SOURCEselect)
char *SOURCEselect:
puts(erase_screen’;
puts: "\Nt\t\tAM29203 ALU SOURCE MENUANMNO":;
puts (" The source control default is DAQ\n\0"};
puts: ” Operand R Operand S Mnemonic 0"
puts("Enter a 0 RAMA RAMB RAMABNO "
puts’"” 1 RAMA Direct B RAMADR- 0"
puts(” 2 RAMA Q Register RAMAQANO"
puts " 4 Direct A RAMB DARAMBMO"
putst(” 5 Direct A DirectB DADBNO" .
puts ' " 6 Direct A Q Register DAQMNO"
puts’” I Instruction HRegister:\0""';
puts " P Pipeline Register 0" -
puts¢” H for H with this program\0"): .-
puts (" R to RETURN to higher level\O0":: 1
gets(SOURCEselect); RS
} /% procedure SOURCEmenu %/ e
SOURCElmenu(SOURCElselect) "
4
char *SOURCElselect; K
puts:erase_screenj; f.:

puts("\t\t\tAM29203 ALU SOURCE MENU\Nn:\0"):
puts({"You have chosen one of the following AM29203 ALU
functions: 07

puts{("\tF High\0");
puts{"\tF R + Carry In\0"); S
puts’/"\tF (NOT R) + Carry In\O0"); _

+
puts:”"\tF = LOW\n:\0");
puts/"For these functions, the only allowed AM29203 ALU
Sources are:*n 07

PN

puts("\tOperand R Operand S Mnemonic\n\0" ' -
puts¢”" tRAMA Q Register RAMAQANO") R
puts{ " tDirect A Q Register DAQ\n\O") ;)

188

JPr GEIP LI P WP WP PN\

1
)
1
1
puts “Type a 2 for RAMAQ-.O0"
puts: " t6 for DAQ 07 -
puts " tH for HELP with this program-0" R
puts:” tR to RETURN t, a higher level: 0" ::)
gets i SOURCElselect
; /% procedure SOURCElmenu % i
.4
4
SOURCE2menu! SOURCE2select |)
4
char *xSOURCE2select; !
puts - erase_screen:’: 4
puts. ™ t t.tAM29203 ALU SOURCE SELECT\n\0":: 1
puts:” You have chosen an AMZ29203 ALU Special {
Functionn 0" 1
puts: " What sources do you want to use.n.0" ; S
puts” Operand R Operand S Mnemonic 0"
puts " Enter a 0 RAMA A RAM B RAMAB 0°©
puts(” 1 RAM A DIRECT B RAMADB Q" "
puts " 4 DIRECT A RAM A DARAMB O
puts:” 53 DIRECT A DIRECT B DADBNQ"
puts” H for HELP with this menu-0" ;
puts (" R to RETURN to a higher level:0"":

gets/SOURCE2select

/% procedure SOURCEZ2menu %/

DESTINATIONmenu(DESTINATIONselect) :ﬁf
char *DESTINATIONselect; B
putsterase _screen:;]

puts{ "ty t tAMZ29203 ALU DESTINATION MENU'n-0"':
" Enter the value corresponding to the

puts
destination you desire 07 R
puts " 0 RAMDA - F to RAM, Arithmetic Down Shift - 0" : L.
puts("” 1 RAMDL - F to RAM, Logical Down Shift 0" : KL
puts’” 2 RAMQDA - Double Precision Arithmetic Down S
Shift\0"": T
puts’” 3 RAMQDL - Double Precision Logical Down
Shift\0" : -]
puts’” 4 RAM - F to RAM with parity“0"}): e
puts¢” 5 QD - F to Y, Down Shift Q\0" ., *i;
puts” " 6 LOADQ - F to Q with parity~0".: AR
puts:” 7 RAMQ - F to RAM with parity\0"): o

189

‘,...
PR U G G B DY U]

e ~ RPN P S S, . e PRI W S S W R W VR SR G U Wl W N S SO U Sl S S S s s 2 in " aleaa " a " aala’

puts " R RAMUPA - F to RAM, Arithmetic Up Shift:0"

puts " 9 RAMUPL - F te RAM, Logical Up Shift 07

puts " A RAMQUPA - Double Precision Arithmetic Up
Shift Q"

puts " B RAMQUPL - Double Procision Logical Up
Shift-0"

puts " C - F to Y only:\0".:

puts:” D - F to Y, Up SHift Q\N0"};

puts.” E SIGNEXT - SIOO0 to Y/i)}\O0"‘:;

puts:” F RAMEXT - F to Y, Sign extend LSB\O"!:

puts: " I Instruction Register\0");

puts:” M Main Memory:0":

puts. " H for HELP with this program: 0"

puts R to RETURN to higher level:0";;

gets ! DESTINATIONselect ::
¥ procedure DESTINATIONmenu X/

EGISTERmenu REGISTERselect:

har *REGISTERselect;

»

4

puts'erase_screen!; {f

puts. "ttt tAM29203 ALU REGISTER ADDRESS MENU'n.0"; 'j

puts " The default source selection is Source A - o4

pipeline, 07 ’ 1

puts °” Source B - pipeline, Destination C - 4 !

pipeline n 0" _J

puts’ " Enter the value corresponding to the register .

address 0" :: X

putsi"you desire 0" ;]

puts«” Source A Source B Destination CY0" : P

puts(” 0 Pipeline Pipeline Pipeline 0" - ’ '
puts:” 1 Instruction Pipeline Pipeline* 0"
puts 2 Pipeline Instruction Pipeline 0"
purs: "3 [nstruction Instruction Pipeline 07

puts 4 FVFipeline Pipeline~ Instruction 0"

puts- " 5 Instruction Pipeline Instruction 0" 1

puts:” 6 Pipeline Instruction Instruction. 0" ’)

puts/" 7 Instruction Instruction Instruction-~0" : :

gets REGISTERselect]

¥ procedure REGISTER menu %/ S

IRECTmenu constantl,constant2: 4 1

har *constantl, ¥constant2: Q"ﬂ

puts '‘erase screen;

190

et L w2 A e 2l a s A A el Al PP AP S 7 SO S S S - WPIDAS S I W P 1 A adod

NS B Sk Sl Sa i e bl oo e e 4

puts 7t t (tAMIZ8203 ALU DIRECT SOURCE MENU-n 07
puts “You have chosen an ALU function, source, or
destination which 07

puts requires a constant or Ra and Rb tes bhe
entered into the 07
puts " the branch address field of the
microinstruction n 07
puts'” This constant or the RAM register

designations is 1.0"

puts: byte in length\0":;
puts (" Please enter the constant or the RAM register
designation 07
puts " Enter a H for HELP with this program 07
puts . ” Enter a R to RETURN to a higher level 0"
gets:constantl,constant?2
* procedure DIRECT menu X/
NABLEmenu/!/ INSTRUCTIONselect,OUTPUTselect
char *INSTRUCTIONselect, *OUTPUTselect;
puts:. erase_screen . .
puts Tt tAM29203 ALU TINSTRUCTION AND OUTPUT ENABLE
MENU'n Q7
puts " Do vou want the ALU results to appear on the
Y bus: §7
puts:” Type an Y for YES)NO0"::
puts: " Tvpe a N for NO n\n\n:0" 1
gets OUTPUTselect
puts” Do you want to change the contents of anv ALU
register 0"
puts " during this ALU operation? n:0" ;
puts " Tvpe an Y for YES 0"':
puts " Type an N for NO-Q"

gets: INSTRUCTIONselect
* procedure ENABLEmenu

TAMAmenu: HAMAselect

~har *RAMAselect:

puts erase screen::

puts "t tAM29203 ALU RAM A REGISTER SELECT n O

puts- " t Enter the value corresponding to the gaM 2
Register 07

puts " tyou wish to select n 0"

191

UV S TS T

.'.AJI I

i)

ol ol

[

AD-A155 164 EVALUATION AND IMPLEMENTATION OF A FUNCTIONAL 3/3.
MICROPROGRAM GENERRTDR(U) NRVHL POSTGRADUATE SCHOOL)
MONTEREY CA D B STILTNER DEC 8

UNCLASSIFIED F/G 9/2

. .. " - R FE Bt T
__. N g... ...-... ...-.-.b . %A..O‘.t..n ..r~.P.\.-|' \-\-.\s.¢-|h<’h‘. \s\-\\.r‘ P..... .-. -1.-... .-.. .t. ‘s
)
.
.
4
‘.
]
S
v
o
L}
’
.h.
N
)
._
-
p
| 3
ﬁ: N R
v..) - ‘
b : -
b To# B
. \ .,*
N .
~.
: -
o Sl Sl <l o :
. N o i . 3
. o= = == S— (3]
, E———— — nv\vv %
: OH woe
dAaa ° 3
-
: | ¥ 4————_ W m
. EEREEEY 3 . =
3 EEEFEPET =i 53
2 = 22
. _— it} m
" o *32
—
. . s wuH x oz
; — — N S E:
3 . S S
. —— — = &=
p. _ == = 3
-.-
'- -
-
'
p.
-.
b
.
a
2
b,
0
w*
:A
ud
'\
¥
]
L]
~\ *
..4 .
. R
.- .

A . AU S
1] A e e .

L/ A
[l B

puts{"\t
puts("\t
puts/{"\t
puts("\t
puts("\t
puts("\t
puts("\t
puts(”\t
puts("\t
puts("\t
puts("\t
puts("\t
puts("\t
puts("\t
puts("\t
puts("\t
puts("\t
puts("\t

VT EHODQE» OO~ WN O

gets(RAMAselect);

RAMA
RAMA
- RAMA
RAMA
RAMA
RAMA
RAMA
RAMA
RAMA
RAMA
RAMA
RAMA
RAMA
RAMA
RAMA
RAMA

Register
Register
Register
Register
Register
Register
Register
Register
Register
Register
Register
Register
Register
Register
Register
Register

i i i e i i B -

0\O0");
1\N0")Y;
2\0")
3\0")
4\0");
5\0")
6\0");
7\0");
8\0");
9\0");
ANO")
B\O");
C\O0");
D\O");
ENO");
FNO™) 5

for HELP with this menu\0");
to RETURN to a higher level\0"};

} /% procedure RAMAmenu X/

RAMBmenu(RAMBselect)

char *RAMBselect;

{

puts(erase_screen);
puts("\t\t\tAM29203 ALU RAM B REGISTER SELECT\n\O0");:

puts("\t

puts("\tyou wish
puts("\t
puts("\t
puts("\t
puts("\t
puts({"\t
puts("\t
puts("\t
puts("\t
puts("\t
puts ("\t
puts("\t
puts("\t
puts("\t
puts("\t
puts("\t
puts("\t
puts("\t
puts("\t

WD ENMEBOQEP>OONIOONAWN-O

to se
RAM
RAM
RAM
RAM
RAM
RAM
RAM
RAM
RAM
RAM
RAM
RAM
RAM
RAM
RAM
RAM
for

to RETURN to a higher level\0"};

lect\n\0");
Register
Register
Register
Register
Register
Register
Register
Register
Register
Register
Register
Register
Register
Register
Register
Register
HELP with t

W QWD oDooowo

192

B\O");
C\O");

Enter the value corresponding to the RAM B

Register \0");

0\NO0");
1\0"};
2\0");
3\0");
a4\0");
5\0");
6\0");
7\0");
8\0");
9\0");
ANO™);

D\O");
ENO")
F\NO");
his menu\0");

Ll i N

N . .‘i_‘l'"\»

EARS

e

.,

LA Sl

AL

A augh

.

ECI ok

.
b4

/% procedure RAMBmenu %/

gets(RAMBselect)

h!
g

P AP P N

-

-

AT Y A2

gy

Program Name: 2904.supp.c
Purpose: Source code for the utilities used with the Alu module.

/X This version of the 2904 code is included to allow
the testing of other modules. The utilities have been
removed, as has the main program portion. 13 July 1984. %/

/X This program will aid the 2900 system designer in the

programming of a 2904 "glue" chip. x/
/X This version is not as current as the utilities used
with the Sequencer module. 27 Dec. 1984 ¥4

/*¥ This source is set up to work with the vt100 from
VAX/unix. %/

#include <stdio.h>
#define erase_screen "\033[2J\033([0;0H" /% vtl00 erase
screen and home cursor x:
: #define TRUE 1
. #define FALSE 0

/% These defines relate to the 29203ET board, and
should be contained in a routine to initialize them, rather
than as defines. x/

- #define 112_04 16
| #define 111 04 17
: #define 110_04 8
#define 109_04 28
#define 108_04 29
#define 107_04 30
’ #define 106_04 31
] #define 105 04 18
#define 104_04 19
#define 103_04 20
#define I062_04 21
#define 101_04 22
#define 100_04 23
#define Ceu_04 24
#define CeM_04 25
#define Se_04 27
#define Cmd_En 26
#define Cmd_3 28
#define Cmd_2 29
#define Cmd_1 30
#define Cmd_0 31

-
194 gy

/% Variable Declarations x/

extern char cmd_line{80],*pcmd,micro_word[49], xpmwd;

/% We need a static data structure which holds the
different choices available for bits I5 to I0 of the 2904.%/

char *choices_04(n) /% return a pointer to the n-th choicex/
int n;

{

u carry, first choice -0 */
u carry, second choice -1 %/

static char *choice {]
"OX0XXX", /% carry in
"O0XX1XX", /% carry in

"0XXX1X", /¥ carry in = u carry, third choice -2 %/
"1X0XXX", /% carry in = Macro carry, first choice -3%/
"1XX1XX", /% carry in = Macro carry, second choice -4x/
"1XXX1X", /% carry in = Macro carry, third choice -5 X/
"00011X", /* Load u register, retain overflow bit -6 %,
"X1100X", /% Load u reg,invert carry, first choice -7x%~
"1X100X", /% Load u reg,invert carry,second choice -8x-
"XX010X", /% Load u reg, immed., first choice. -9 %/
"X10XXX", /% Load u reg, immed., second choice. -10 X/
"X1XX1X", /% Load u reg, immed., third choice. -11 %/
"X1X1XX", /% Load u reg, immed., fourth choice. -12 %~
"1X0XXX", /¥ Load u reg, immed., fifth choice. -13 %/,
"1XXX1X", /% Load u reg, immed., sixth choice. -14 x-
"1XX1XX", /x Load u reg, immed., seventh choice. -15 %/
"XX100X", /% Load M reg, invert carry -16 %/
"XXX11X", /x Load M reg, immed, first choice -17 X/
"XX1X1X", /¥ Load M reg, immed, second choice -18 x/
"XX11XX", /* Load M reg, immed, third choice -19 %/
"X10XXX", /% Load M reg, immed, fourth choice -20 x/
"1X0XXX" /% Load M reg, immed, fifth choice -21 %/
}s

return (choice [n]);
}

/¥ Now we need a structure to manipulate this data.
Each time we invoke a function with a choice, a pointer to
that choice gets added to the list of such pointers. When
we display or save a microword, we will search this list to
find an entry which matches all of the chosen functions. L

dummy ()

{
puts ("Dummy called\n\n\0");
}

195

’

'l « o ¢
e e S % s
Loldln 2* 2" ad

]
. S
L

T Y 3

SR VI A S i e A S

shift2_menu(:
I

puts{erase_screen);

puts{"You have chosen a down shift for this microword.
There are-0" ' :

puts("16 possible shift patterns, coded 0 thru F in

bits I9\0"}:
puts("thru I6. Choose the shift pattern you desire from
the\0");
puts(”"following set:\(0");
puts("\tzero = 0 -> RAMn, 0 -> an\0");
puts("\t one =)| ~> RAMn, 1 -> Qn\NO0"};
puts("\t two = 0 -> RAMn, RAMO -> Mc, Mn -
Qn\Q0"
puts("\tthree = 1 -> RAMn, RAMO -> @Qn\O0"::
puts("\tfour = Mc -> RAMn, RAMO -> Qn\O0");
puts(”"\tfive = Mn -> RAMn, RAMO -> @Qn\0");
puts(”"\t six = 0 -> RAMn, RAMO -> Qn\QO");
puts("\tseven = 0 -> RAMn, RAMO -> Qn, Q0 -
Mc\0");
puts("\teight = RAMO -> RAMn, Q0 -> Qn, RAMO -~
McA0")
puts("\tnine = Mc -> RAMn, Q0 -> @Qn, RAMO -~
Mc\0");
puts{"\t A = RAMO -> RAMn, Q0 -> Qn\0");
puts("\t B = Ic -> RAMn, RAMO -> Qn\0"):
puts("\t ¢ = Mc -> RAMn, RAMO -> @Qn, Q0 -
Mc\O") ;
puts("\t D = Q0 -> RAMn, RAMO -> @n, Q0 ->
Mc\0");
puts(”\t E = In exor IOvr -> RAMn, RAMO -> Qn\0");
puts("\t F = Q0 -> RAMN, RAMO -> Qn\O");

puts("\t H to get help with this procedure\0");
puts(”"\t N to back up one frame.\0");
}

shift3 _menu()

{

puts(erase_screen);

puts("You have chosen an up shift for this microword.
There are\0";:

puts("16 possible shift patterns, coded 0 thru F in

bits I9\0"):

puts("thru I6. Choose the shift pattern you desire fronm

- the\0");
puts("following set:\0");

puts(”"\tzero = 0 -> RAMO, 0 -> Q0, RAMn -

Mc\O0",;

puts("\t one = 1 -> RAMO, 1 -> Q0, RAMn --

Mc\0"};

196

puts("\t two
puts("\tthree
puts{"\tfour

puts("\tfive

puts("\t six
puts{"\tseven
puts{"\teight

puts("\tnine

puts("\t A
puts(”"\t B
puts("\t C

puts{("\t D

puts("\t E
puts("\t F
puts("\t H t
puts(”"\t N t
1

J

carryin_menu()
éuts(erase_sc
puts("\tThe C
puts(”is cont
puts("I15, I3,
puts("\tType

puts{("\tType
puts("\tType

puts("\tType
puts("\tType

puts("\tType
puts("\tType

puts("\tType
}

statusl_menu()

{

puts(erase_sc

A . . PR AP T et e Pt et et te T et et s St T s
PR TP U S BIPRLo . T SRV RYN AL L T L 1 T ThY VP AL WA UhE Tt I W U TV UM YD AR TP U Ul Wi U W T

0 -+ RAMO, 0 -- Q0 NO"::

= 1 -> RAMO, 1 -> Q0~0"::

= Qn -> RAMO, 0 -> Q0, RAMn -.
Mch 0")

= Qn -> RAMO, 1 -> Q0, RAMn -
Mc\0" i

= Qn -> RAMO, 0 -> QO0NO0"::

= Qn -> RAMO, 1 ~-» Q0NO0");

= RAMn -> RAMO, Qn -> Q0, RAMn -~
Mc\N0")

= Mc -> RAMO, Qn -> Q0, RAMn -~
Mc 0" -

= RAMn -> RAMO, Qn -> QO0N\O0":;

= Mc -> RAMO, 0 -> QO0\NO0");

= Qn -> RAMO, Mc -» Q0, RAMn --
Mer 0

= Qn -> RAMO, RAMn -> QO, RAMD -
Mey0 o

= Qn -> RAMO, Mc -> Q00" :

= Qn -> RAMO, RAMn -> QO\O");

o get help with this procedure\0":;
o back up one frame.\0");

reen);
arry into the least significant stage of
the ALUNOY
rolled by bits Il2 and I1l, and sometimes
bits 0" ::

I2, and I1. There are seven possible
choices:\0";:
a zero to select ZERO as the carry
-in.\Q0";
a one to select ONE as the carry-in.:0":
a two to select Cx, the Z output of the
29203.° 0" .
a three to select the carry bit from the
micro regi\0"7;
a four to select the micro carry bit
complemented:\0"":
a five to select the MACRO carry bit: 0" ' :
a six to select the MACRO carry bit
complemented 07
an H for help.\0");

reenj;

197 R

I

puts{("\tBits

I0 through I35 control the two different

status\0"";

puts("registers which may be selected. There are three
main\y0"” '

puts("choices to be made, and you can change either or
both. 0"}

puts("of the
puts("\tType

puts{("\tType
puts("\tType

puts("\tType
}

status2_menu(}

e

P YA TR IO M
DR IR Sl RN)Py

2

T e

......

{

registers:\n\0"};

a ’0’ to make no changes to the status
registers\0");
a ’1l’ to change the micro status
register.\0");
a 2’ to change the MACRO status
register. 0"},
a 'D’ to exit from this section.\0"):

puts(erase_screenj;
puts("\tYou have chosen to modify the micro status

puts (" (abbreviated uSR).

puts("\tType
puts("\tType
puts("\tType
puts{"\tType
puts{"\tType
puts("\tType
puts("\tType
puts("\tType
puts("\tType
puts("\tType
puts("\tType
puts("\tType
puts("\tType
puts("\tType
puts("\tType

puts("\tType

register \0":
There are 15 different
choices:\0"};
zero to load the MSR into the uSR.\0";;
one to set all bits in the uSR\0");
two to swap the MSR and the uSR\O0"):
three to reset all bits to 0 in the
uSRNO" i
four to load the uSR from the immed.
inputs\0");
a five to load all uSR from I except
overflow\0");
invert carry

o oo e

[+

a six to load all uSR from I,

bit\0");
a seven to reset only the zero flag in the
uSR\O" 1 :
an eight to set only the zero flag in the
uSR\O"}:
a nine to reset only the carry flag in the
uSR\O" !
an A to set only the carry flag in the
uSRVO"
a B to reset only the sign flag in the
uSR\O" }:
a C to set only the sign flag in the
uSR\O");
a D to reset only the overflow flag in the
uSR\O"};
an E to set only the overflow flag in the
uSR\O");

an H to get help\0");

198

R B
.lv’-/l"-'."

,...,
. R

NI
PR LR |

RN SRR T R Lt g St L S A R At e B e Sl S Tl At BB A Dt e i g ~ ————r
. AR N . . . e ™ . - - " ~ - Pt e T Y R N - - - - . A - - .

’

mic_stat_set(pchar)
/% This routine sets up the microstatus register, in
agreement with the status2_menu. %/

char x*xpchar;

{
switch (*pchar)

case '0’: /% load the microstatus from the MACRO

status ¥/
bit_clear (I05_04);
bit_clear (I04_04);
bit_clear (I03_04);
bit_clear (I102_04);
bit_clear (101_04);
bit_clear (I00_04);
break;

case '1’: /x set the microstatus register. */

bit_clear (I05_04);

bit_clear (104_04);

bit_clear (I03_04);

bit_clear (102_04);

bit_clear (101_04);

bit_set (I100_04);

break;

case '2’: /x Swap the micro and MACRO status
words. x:

bit_clear (I05_04);

bit_clear (104_04);

bit_clear (I03_04);

bit_clear (I102_04);

bit_set (I01_04);

bit_clear (I00_04);

break;

case ’3’: /% zero the microstatus register. %/
bit_clear (I05_04);
bit_clear (I04_04);
bit_clear (I03_04);
bit_clear (I02_04);
bit_set (I01_04); L
bit_set (I00_04); R

break; .

case '4’: /x Load the microstatus register from f}j

the I pins. Many possible inputs here, need an auxillary R
data structure. X/ C;%
199 "

R

.......

case

case

case

case

case

bit_set (I05_04;
bit_set (104_04);
bit_set (I03_04);
bit_set (102_04);
bit_set (I01_04);
bit_set (I00_04);
break:;

'5°: /% Load from I, with overflow retain. %/
bit_clear (I05_04);

bit_clear (I04_04);

bit_clear (I03_04);

bit_set (102_04);

bit_set (I01_04);

break;

'6’: /x Load from I, with carry invert. Need
to turn on 15 or 14 or both. X/

bit_set (I03_04);

bit_clear (I02_04);

bit_clear (I01_04);

break;

*7': /% Reset the zero flag. */
bit_clear (I05_04);

bit_clear (104_04);

bit_set (I03_04);

bit_clear (102_04);

bit_clear (I01_04);

bit_clear (I100_04);

break;

'8': /x Set the zero flag. */
bit_clear (I05_04);

bit_clear (I104_04);

bit_set (I03_04);

bit_clear (I02_04);

bit_clear (I01_04);

bit_set (I00_04);

break;

'9’: /% Reset the carry flag. X/
bit_clear (I05_04);

bit_clear (I04_04);

bit_set (I103_04);

bit_clear (I02_04);

bit_set (I01_04);

bit_clear (I00_04);

break;

200

et e,
S eoeL ottt T
s 'a A 8 a4 ' a'aaa a

(Y
LA

I
o
t
i
s
AaBandd P,

PLIRAEIAAC RESICI-I S ae it ot 20 Jn e Ao e ety oo v PN AV e San et S e aweis S Svdne Shdi Jeate - Bern Jodi e e Sews e 20 s J

case ’a
case 'A': /% Set the carry flag. */

bit_clear (I05_04):

bit_clear (104_04);

bit_set (I03_04);

bit_clear (I02_04);

bit_set (I01_04);

bit_set (I00_04);

break;

case ’b’:
case 'B’: /% Reset the sign bit. %/
bit_clear (105_04);
bit_clear (104_04);
bit_set (I03_04);
bit_set (I02_04);
bit_clear (I01_04);
bit_clear (100_04);
break;

case ’c¢’:

case ’C’: /% Set the sign bit. x/
bit_clear (I05_04);

bit_clear (104_04);

bit_set (I03_04);

bit_set (I02_04);

bit_clear (I01 _04);

bit_set (I00_04);

break;

case 'qd’:
case ’D’: /% Reset the overflow bit. x/
bit_clear (I05_04);
bit_clear (104 04);
bit_set (I03_04):
bit_set (I102_04);
bit_set (I01_04);
bit_clear (I00_04);
break;
case ’e’:
case ’E’: /% Set the overflow bit. x/
bit_clear (I05_04);
bit_clear (I04_04);
bit_set (I03_04);
bit_set (I02_04);
bit_set (I01_04);
bit_set (I00_04);
break;

default:

puts (" No help implemented yet. “n\0":;
sleep (2}
break;

}

status3_menu()

{
puts(erase_screen);
puts("\tYou have chosen to modify the MACRO status
register 0" :
puts (" (abbreviated MSR). The MSR is also controlled byv
five 0"
puts{”enable bits, which are set on the next menu. 0~
puts("There are 8 different choices in this menu:\0"::
puts("\tType a zero to load the Y inputs into the
“SR\O’ T
puts("\tType a one to set all bits (if enabled)\0":;
puts"\tType a two to swap the MSR and the uSR\O0");
puts{"\tType a three to reset all bits (if
enabled)\0"
puts("\tType a four to swap the Mc and the Movr:0"):
puts("\tType five to complement all bits\0");
puts("\tType a six to load all MSR from I, invert
carry 0"
puts{"\tType a seven to load all MSR from I-.0"

\
4

[+

macro_stat_set(pchar)

et ta Yt e

PUREREAPNT DL WL WAL WA Wl AT Wl Dl ey el W v

/% This routine deals with the loading of the
Macro status register.x,
char *pchar;

{
switch (*pchar)
{
case '0’: /¥ Load Y inputs into the MSR ¥

bit_clear (I05_04);
bit_clear (104_04);
bit_clear (103_04);
bit _clear (102_04);:
bit_clear (I01_04);
bit_clear (I00_04);
break;

case '1’: /% Set all bits in the MSR x/
bit_clear (I05_04);
bit_clear (I04_04);
bit_clear (I03_04);
bit_clear (102_04);
bit _clear (I01_04);

202

A
PR G

'
D B) (D

oo
‘e td

case

case

case

case

case
inverted.

~- t e

care. X/

case

- Tadale®alaleal dl skl S e, - b PP -~ b WP A VA Wl U Y AT] PP S AP AP AP S P P L AR e L

bit_set (I100_04:;
break;

>20: /¥ Swap the MSR and the uSR %/
bit_clear (I05_04);

bit_clear (I104_04);

bit_clear (I03_04);

bit_clear (I02_04);

bit_set (I01_04);

bit_clear (I00_04);

break;

'3 /% Reset all bits in the MSR x/
bit_clear (I05_04);

bit_clear (1I04_04);

bit_clear (I03_04);

bit_clear (I1I02_04);

bit_set (I01_04,;

bit_set (I00_04);

break;

'4’: /% Swap the Mc and the Movr X/
bit_clear (I05_04):

bit_clear (I04_04);

bit_clear (I03_04};

bit_set (I1I02_04);

bit_clear (I01_04:;

bit_clear (I00_04);

break;

5. /% Complement all bits in the MSR x-
bit_clear (I05_04);

bit_clear (I04_04);

bit_clear (I03_04);

bit_set (I02_04);

bit_clear (IOl _04;

bit_set (I00_04):

break:

’6’: /% Load the MSR, with the carry

Several choices here, need to implement the
decision process.

Turn on 104 or 105, or both. I00 is a

bit_set (I03_04);
bit_clear (I02_04):
bit_clear (I01_04);
break:

T /% Load the MSR from the I inputs.

/¥ Many choices here. X
bit_set ‘105 04);

203

Ce e e .
BT A
B A
e, .

A

‘s

2
[

Program Name: extern.h

Purpose: This file is included in all modules which are not
"main" programs. It must reside in the same directory
in which all compilations are made.

/*¥ This header file used to assign external definitions to
all files except the main program. The original definitions
should be contained in the main program. X/

/% LAST UPDATE: 5 Sep 1984 x/

extern int docu_word([24];
extern char cmd_1line[80}, kpcmd,micro_word 49}, xpmwd:

W RPN T W D Y

a’aa

ry—"r W T — g . W T T S e W T

/% these defines refer to. the phvsical fields c¢f the

microword. They are used to pass field set the fields x.
#define reg_src 1
#define ien_fld 2
#define oey_fld 3
#define src_fld 4
#define dest_fld 5
#define func_f1ld 6
#define carryin_£f1ld 7
#define I514_f1d 8
#define I3_I0_f1d 9
#define I5_I0 fld 10
#define ceu_fld 11
#define cem_fld 12
#define cmden_f1ld 13
#define shiften_fld 14
#define command_fld 15
#define shift_fld 16
#define breakpoint_fld 17
#define notused_fld 18
#define msb_br_f1ld 19
#define mid_br_fld 20
#define 1sb_br_fid 21
#define rega_fld 22
#define ragb_fld 23
#define seq_fld 24
#define condtest_fld 25

SR AP I TR B I S R R R S e T S A P IS B L S R I SR ST LI
Pl P I 3 ‘!lL.L‘lIQOL(Qri‘ﬂ‘lAl!-\'ﬂﬂ‘-l‘\A"\F"l_'li\l"!l

e

Program Name: declare.h

Purpose: This file is included with all other modules.
When compiling the modules, this file must be
in the same directory.

/% declare.h is the latest header file for declarations for
use with the 2900 system functional microprograming effort.
This source is set up to work with the vt1l00 from
VAX/unix.x/

/* This header file should be "#included" with all
modules. x/

/% LAST UPDATE: 5 sep 1984 %/

#define erase_screen "\033[2J\033[0:0H" . ¥ vtl00 erase
screen and home cursor %:

#define TRUE 1
#define FALSE 0
#define false 0
#define true 1
#define no_sub 0

/% These defines relate to the 29203ET board, and should be
contained in a routine to initialize them, rather than as
defines. %/

#define 112_04 16
#define I111_04 17
#define 110_04 8
#define 109_04 28
#define 108_04 29
#define 107 _04 30
#define 106_04 31
#define I105_04 18
#define 104_04 19
#define 103_04 20
#define 102_04 21
#define 101_04 22
#define 100_04 23
#define Ceu_04 24
#define CeM_04 25
#define Se 04 27
#define Cmd_En 26
#define Cmd_3 28
#define Cmd_2 29
#define Cmd_1 30
#define Cmd_0 31

215

bit_set(Il11_04);
bit_set(I05_04};
bit_set(I03_04:};
bit_clear(102_04});
bit_clear(I01_04);
break;

default: /% Help message on default x/
puts("No help available yet!!\n\0");
sleep(2);
break;

214

carry_set(pchar)
char xpchar;
{
switch (*pchar)
{
case '0’: /% carryin of zero x/
bit_clear(Il2_04);
bit_clear(111_04);
break;

case ’'17: /% carryin of one %/
bit_clear(Il2_04);
bit_set(Il1_04);
break;

case ’2’: /% carryin of Cx x/
bit_set(I12_04);
bit_clear(I11_04);
break;

case '3’: /% carryin of micro carry %/
/* Three possible choices here, how do we record and
decide? x-

bit_set(I12_04);

bit_set(I11_04);

bit_clear(I05_04);

bit_clear(I103_04);

break;

case '4’: /% carryin of micro carry not %/

bit_set(I12_04);

bit_set(Il11_04);

bit_clear(I05_04);

bit_set(I03_04);

bit_clear(102_04);

bit_clear(I01_04);

break;

case ’5’: /% carryin of MACRO carry %/

/% Two other choices here, same problem as case 3 % U
bit_set(I12 _04); Ti’
bit_set(Ill1_04); .
bit_set(I05_04);
bit_clear(103_04); Ta o
break; R

LY W)

)

case '6’: /X% carryin of MACRO carry not % o
bit_set(I112_04);

.
«
Lttty

213 md

return

}

P —— “""'F'-_','.-. " MRS Ml b A Sa R i A trad Sl i SV aie 2 MiC T - AR o o

case
case

case
case

case
case

case
case

case
case

default:

}

(backout);

bit_set(I109_04);

bit_clear(108_04);

bit_set{107_04):

bit_set(I06_04);

break; -
e’

'C:

bit_set(I109_04);)
bit_set(108_04);

bit_clear(I07_04);

bit_clear(I06_04);

break;

’d’:

’D’:
bit_set(I109_04);
bit_set(I08_04;;
bit_clear(I07_04);
bit_set(I06_04);
break;

’e!:

’E,:
bit_set(I09_04);
bit_set(I08_04);
bit_set(I07_04);
bit_clear(106_04);

break;

’f,:

)F’:
bit_set(I09_04);
bit_set(I08_04);
bit_set(I07_04);
bit_set(I1I06_04);
break;

’n’:

’N’:
backout =1;
break;

puts(”"Sorry, No help yet - you’re on yvour
own.\n\0"

sleep(2);

break;

| P
K R T
) A IR
*, 0, l [P
o btk

212

bit_clear(109_04"';
bit_set(I08_04);
bit_clear(I07_04):
bit_clear(I06_04i:
break:

case '5’':
bit_clear(1I09_04);
bit_set(I08_04);
bit_clear(107_04);
bit_set(I06_04);
break;

case '6’:
bit _clear(I109_04);
bit_set(I08_04);
bit_set(I07_04);
bit_clear(I06_04);
break;

case '7’:
bit_clear(I09_04);
bit_set(I08_04);
bit_set(107_04);
bit set(I06_04);
break;

case ’'8’:
bit_set(I09_04);
bit_clear(I108_04);
bit_clear(107_04);
bit_clear(I06_04);
break;

case '9':
bit_set(I109_04);
bit_clear(108_04);
bit_clear(I07_04:;
bit_set(106_04);
break;

case 'a’:

case 'A’:
bit_set(109_04);
bit_clear(I108_04);
bit_set(I107_04);
bit_clear(I106_04);
break;

case 'b’:
case ’'B’:

211 RN

- <ol
o e
LG AP)

e o A A A A S A et A A A, R S A A S S B A A A i St A 8 T AT S AT
o T, N . Lo o ~ . MR - . PN -

.......

break;

default:

}

puts(" No help available yet.

next_level = FALSE;
sleep(2);
break;

return (next_level);

}

shift_set(pchar)
char *pchar;

{

int backout;

backout =

0;

switch (xpchar)

case

case

case

case

case

0’
bit_clear(109_04);
bit_clear(I108_04);
bit_clear(I07_04};
bit_clear(I106_04);
break;

S
bit_clear(I09_04);
bit_clear(108_04);
bit_clear(I07_04);
bit_set(I06_04);
break;

199,
bit_clear(I09_04);
bit_clear(I08_04,;
bit_set(I07_04);
bit_clear(106_04);
break;

'3
bit_clear(109_04);
bit_clear(108_04);
bit_set(I07_04);
bit_set(I106_04);
break;

’49:

210

n.0"
puts(" Start this process from the beginning

again.

n- 0"

S i
WSttt
LIV 2V

et
. .

el - D TgTT——————— R Seon en . T ——— M asul aane SENR o ame - T

puts¢ "\ tType a one for the MACRO status register 0" '
puts{"\tType a two for the Immediate status inputs 0"
puts("\tType a three for Immediate SIGN exor Macro

SIGN Q" -
puts{("\tType a four for Imm. SIGN exnor MACRO SIGN' 0"
}
cond_1_set{pchar)
/% This is the first level cond. code select, and
matches status7_menu. L
char *pchar;
{
int next_level;
next_level = TRUE;
switch (*pchar)
{
case '0’: /x Micro status register selected. ¥~

bit_clear(I05_04);

bit_set(I104_04);
/% Note that 104 can be cleared for many cases, see Tbl. 4,
Pg 5-79 x/

break;

case '1’: /% Macro status register. x/
bit_set(I1I05_04);
bit_clear(I04_04);
break;

case '2’: /% Immediate Inputs. X/
bit_set(I05_04);
bit_set(I04_04);
break;

case '3’: /x Imm. sign exor MSR sign %/
bit_clear(I05_04);
bit_clear(I04_04);
bit_set(103_04);
bit_set(I02_04);
bit_set(I01_04};
bit_clear(100_04);
next_level = FALSE;
break:

case '4’: /x Imm. sign exnor MSR sign x/
bit_clear(I05_04);
bit_clear(104_04);
bit_set(I103_04);

bit_set(I02_04); e
bit_set(I01_04); QF?
bit_set(I00_04); S
next_level = FALSE; Kiﬂ

;71

209

D
e ‘2 a

’
e)
PPy W Y)

et Ty s

(L Enaie St sede Auni Saa G Snddh aa Send By thate Sige aat o dran g

bit_clear(100_04;;

if (micro_word{I105_04]
5 bit_erase(I04_04);
l break;

’0’\

. case ’d’:
: case 'D’: /% CARRY or not ZERO %/
K bit_set(I03_04);
bit_set(I02_04);
| bit_clear(I01_04);
bit_set(I00_04);
if (micro_word[I05_04]
bit_erase(I04_04);
break;

1]
il

’0’)

case ’e’:

case 'E’: /% SIGN x/
bit_set(I03_04);
bit_set(I02_04);
bit_set(I01_04);
bit_clear(I00_04);

break;

| End

case 'f’:
case 'F’: /% not SIGN x/
bit_set(I03_04);
bit_set(102_04);
| bit_set(I01_04);
B bit_set(I00_04);
- break;

default:
. puts("No help yet.\n\0");
i sleep (2);
. break;

St

Y
§

f status7_menu()
) {
puts(erase_screen);
puts("\tThere are two steps to selecting a test
condition. The' 0" ':

puts("first is to select a register to be used, and the N
second \0"); - 4
) puts("is to select a test on that register. This menu -
- selects \0"; DA
- puts(”"the register, or two special tests which combine T
- two\0" '&3
~ puts("registers.\n\0"); jﬁ
- puts("\tType a zero for the micro status register\0"); e
)
. S
- 208 1§§
- . ‘.?.‘
- DY
)

............

case

case

case
case

case
case

case
case

bit_clear(103_04);
bit_set{I02 _04}:
bit_set(I01_04;;
bit_set(I100_04):

if (micro_word[I05_04, == 0’
bit_erase(104_04);
break;

'8’ /% CARRY or ZERO x/
bit_set(103_04);
bit_clear(102_04);
bit_clear(I101_04);
bit_clear(100_04);

if (micro_word[I05_04] == '0')
bit_erase(104_04);

break;

g /% not CARRY or not ZERO %~/

bit_set(I103_04);
bit_clear(I02_04);
bit_clear(101_04);
bit_set(I00_04);

if (micro_word[I05_04] == '0’)
bit_erase(I104_04);

break;

’a’:

A /% CARRY x/

bit_set(I03_04);

bit_clear(I02_04);

bit_set(I01_04);

bit_clear(I100_04);

if (micro_word([I05_04] == ’0’}
bit_erase(I04_04);

break;

'bY:

‘B’ /% not CARRY x/
bit_set(103_04);
bit_clear{(I02_04);
bit_set(I01_04);
bit_set(I00_04);

if (micro_word{[I05_04] == ’0")
bit_erase(104_04);

break;

’C’:

¢ /¥ not CARRY or ZERO x/

bit_set(I103_04";
bit_set(I02_04";
bit_clear(I01_04);

207

bit_set{100_04::

if ‘micro_word{I05 _04; == ’0")
bit_erase(104_04);
break;
case *2’: /% SIGN exor OVR x/ ~
bit_clear(103_04); 3
bit_clear(I02_04); D
bit_set(I01_04); o0
bit_clear(I100_04);
if (micro_word{I105_04] == *0’)
bit_erase(104_04);
break;
: case ’37’: /¥ SIGN exnor OVR x/ -
k; bit_clear(I03_04);
bit_clear(I02_04);
bit_set(I01_04);
bit_set(I00_04);
if (micro_word[I05_04] == ’0’) S
bit_erase(104_04); o

break;

case ’4’: /x ZERO x/
bit_clear(I03_04);
bit_set(102_04); - S
bit_clear(I01_04’; —
bit_clear(100_04);
if (micro_word{I05_04]

bit_erase(104_04);
break; .

1]
1}
o

case '5’: /% not ZERO x/
bit_clear(I03_04);
bit_set(I02_04);
bit_clear(I01_04);
bit_set(I00_04);
if (micro_word({I05_04] == 0’

bit_erase(I04_04);
break;

case ’'6’': /% OVR x/
bit_clear(I03_04);
bit_set(I02_04);
bit_set(I01_04);
bit_clear(I00_04);
if (micro_word[I05_04]

bit_erase(I04_04);
break;

1]
1]
O

case '7’: /% not OVR %/

206

puts{"\tTvpe a two to output the immediate inputs
from Q"

puts’ " tytthe ALUNDT):

puts("\tType a three for no ocutput:\0"";

}

status6_menu()
{
puts(erase_screen);
puts("\tWhat condition do you want reflected by the
condition 0"
puts{("code output?\0");
E puts("\tType a zerc for (SIGN exor OVR) or ZERO.0"::
- - puts{"\tType a one for (SIGN exnor OVR) and not

ZERONO"
puts("\tType a two for (SIGN exor OVR)“0":;
puts("\tType a three for (SIGN exnor OVR\O":,;
puts("\tType a four for ZERO\O");
puts("\tType a five for not ZERO\DO");
puts("\tType a six for OVR\O");
puts("\tType a seven for not OVR\O");

puts{"\tType an eight for (CARRY or ZERO)\0".:
puts("\tType a nine for (not CARRY) or {(not ZERO:' 0"
puts("\tType an A for CARRY\O0";;

puts("\tType a B for not CARRY\0");

puts("\tType a C for (not CARRY or ZERO)\0"):
puts("\tType a D for (CARRY or not ZERO)\0"):
puts("\tType an E for SIGN\O0");

puts("\tType an F for not SIGN\O");

}

cond_2_set(pchar)
/% This is the second level selection of the cond.
test x-
char (*pchar);
{
switch (*pchar)
It
L
case '0’: /% SIGN exor OVR or ZERO x/
bit_clear(103_04);
bit_clear(102_04);
bit_clear(I01_04);
bit_clear(I00_04);
if (micro_word{I05_04]
bit_erase{104_04);
break;

= ’0’)

case '1’: /% SIGN exnor OVR and not ZERO %/
bit_clear(I03_04):
bit_clear(I02_04);
bit_clear(I01_04;;

205

bit_set (104_04);
bit_set {(I03_04);
bit_set (I02_04:;
bit_set (I01_04):
bit_set (I00_3C4);
break:

~

}

/¥ The statusd_menu is not used with the eval board, since
/% the individual status enables are not in the microword. *
status4 _menu()

i
puts(erase_screen);
puts("\tThere are six enable inputs to the status
registers- Q0"
puts("on the 2904, They are a master enable for the
uSR, 0" .
puts("a master enable for the MSR, and individual
. enable for:0"
puts("the four bits of the MSR (zero, carry, sign,
overflowi. Q0" :
puts("You must chose which of these enables to
activate. 0"
puts("\tType a zero to activate the micro status
register: Q"
puts(”"\tType a one to activate the MACRO status
register 0", :
puts{"\tType a two to activate the zero flag in the

MSRNO ™
puts("\tType a three to activate the carry flag in the
MSRANO™
puts{"\tType a four to activate the sign flag in the
MSR 0"
puts("\tType a five to activate the overflow flag in
the MSR- 0"

puts{" tType a six if you want the rest of the flags
disabled 0" ::

puts("\tType an H for help.\0",;

1

J

status5_menu()
puts(erase_screen),;
puts("\tYou can output something from the 2904
onto:0""

puts("the Y-bus. What do you want on the bus?\0"
puts("\tType a zero to output the micro-status

register 0" :
puts("\tType a one to output the macro-status

register 0",

204

APPENDIX C]
The following is the Compatibility Test program. It demonstrates the
algorithm for finding compatible bit patterns when conflicts occur in -
shared microword fields. o
]
#include <(stdio.h>
/% We need a static data structure which holds the different :
choices available for bits I5 to I0 of the 2904. X [
char *choices_04(n) /% return a pointer to the nth choice. .
int n;
{
static char *choice [] = { .
"OX0XXX",/* carry in = u carry, first choice -0 x]
"OXX1XX",/* carry in = u carry, second choice -1 k-
"OXXX1X",/* carry in = u carry, third choice -2 x,/
"1X0XXX",/* carry in=Macro carry,first choice -3 %/
"1XX1XX",/* carry in=Macro carry, second choice -4 %
"1XXX1X",/% carry in=Macro carry, third choice -5 % .
"00011X",/* Load u register,retain overflow bit -5 #]
"X1100X",/x*x Load u reg,invert carry,first choice -7 -
"1X100X",/* Load u reg,invert carry,second choice -8 *
"XX010X",/% Load u reg, immed., first choice. -9 ¥«
"X10XXX",/* Load u reg, immed., second choice. -10 x%.
"X1XX1X",,/¥ Load u reg, immed., third choice. -11 % .
"X1X1XX",/*% Load u reg, immed., fourth choice. -12 x 1
"1X0XXX",/x Load u reg, immed., fifth choice. -13 x/ :
"1XXX1X",/% Load u reg, immed., sixth choice. -14 x
"1XX1XX",/* Load u reg, immed., seventh choice. -15 «*
"XX100X",/* Load M reg, invert carry -16 x.
"XXX11X",/* Load M reg, immed, first choice -17 x.
"XX1X1X",/* Load M reg, immed, second choice -18 x 1
"XX11XX",/* Load M reg, immed, third choice -19 x/
"X10XXX",/%* Load M reg, immed, fourth choice -20 x

"1X0XXX"/*% Load M reg, immed, fifth choice -21 x/
}s

return (choice [n]); 1
} .
main{)

4
L

int n,i,conflict;
char *result;

static char *ptrarray!:;
printf("Pick your first choice for bits I5-10, 0-21l'n
scanf("%d",&n;
result = choices_04i{n);
ptrarray{0]=choices_04(n);
printf("%d\n",result);
printf("The nth choice picked is, %d, the bits are,
%s\n",n,result);
printf("Pick your second choice for bits I5-I0, 0-21\n"
scanf("%d",&n);
result = choices_04(n);
ptrarray{l]=choices_04(n);
printf(”"The nth choice picked is, %d, the bits are,
%s\n",n, result

1)

printf("Ptrarray{0]l= %c\n",*ptrarray[0])
printt{"Ptrarray{ll= %c\n",*ptrarray{1l]);
printf{"the value which starts at ptrarray[0] is
%s\n",ptrarray(0] :
printf("the value which starts at ptrarray(l] is
%s\n",ptrarray{1l];;

conflict=0;

for (i1i=0:1<6:1i++)

[
¢

if((x(ptrarray{0] + i)==
(k(ptrarray[0] + i)=
{
conflict=0;
printf("conflict=0\n");
}
else {
conflict=1;
printf("conflict=1\n");
break;
\
printf("conflict = %d\n",conflict);
printf("The index, i= %d\n",1i);
if {(conflict == 1)
printf("Had a conflict!'\n");
else
printf(”"No conflicts!\n");

>

trarray([l] + i)).
> i x(ptrarrayl[l] +i'=="X" " s

JEEERKKERKEKREKRKKERKKRKKR KK KKK K KRR RKKKK KR KRR K KKK KK KK /

*ptrarray{0]="
xptrarray(1l]="
if(xptrarray(0

0’
17
]==%ptrarray(l])

218

PPN T PP I PSR

else

printf("They were equal”:;

printf/"They were not equal"};

220

————
-

MCRACE S J o e o i ot o B e e e e e pe e P ————— e .

BIBLIOGRAPHY - -

Brooks, F. P., The Mythical Man-Month, Addison-Wesley, 1975.

Kraft, G. D. and Toy, W. N., Microprogrammed Control and Reliable Design
of Small Computers, Prentice~Hall, 1981.

Purdum, J., C Programming Guide, Que, 1983.

Siewiorek, D. B., Bell, C. G., and Newell, A., Computer Structures:
Principles and Examples, McGraw-Hill, 1982.

White, D. E., Bit-Slice Design: Controllers and ALUs, Garland, 1981.

te
t2
—
. ". ". '.. ". "<
Sl Soaa ad

PN PPN D WU WA TR PR Py i u

1

1.

- L aa DR N Y W W W R e v e e v LaPi AN

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexandria, Virginia 22314

Library, Code 0142
Naval Postgraduate School
Monterey, California 93943

LtCol. Alan A. Ross, USAF

Code 52Rs

Department of Computer Science
Naval Postgraduate School
Monterey, California 93943

Herschel H. Loomis

Code 62Lm

Department of Electrical Engineering
Naval Postgraduate School
Monterey, California 93943

LT Deborah R. Stiltner, USN
Long Beach Naval Shipyard
Long Beach, California 90822

No. Copies

2

