
D-155 164 EVALUATION AND IMPLEMENTATION 
OF A FUNCTIONAL 

1/3
MICROPROGRAM GENERRTOR(U) NAVAL POSTGRADUATE SCHOOL
MONTEREY CA D B STILTNER DEC 94

UNCLASSIFIED F/fl 9/2 N

mhhmomhhhhhmml

IIIIIIIIIIIIIl
EEIIIEIIIIEEEE



r; " -= -J "* ' " - .. . . ... . . . ." -. .. . .- . . .. . . .'- .. . . . . .-'

[ -.-

-4 -ii:

L1.1.

11111.jjj5 iii 1. [6'.r~lIN'1.2l Illg

11125- 111 11I

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

.......................................................................................................................



NAVAL POSTGRADUATE S'CHOOL
Monterey, California

* Lf
In

DTIC
JU 81985

THESIS

EVALUATION AND IM4PLEMENTATION OF A
FUNCTIONAL MICROPROGRAM GENERATOR

by

Deborah Regina Stiltner

December 1984

Thesis Advisor: Alan A. Ross

* C.2
Approved for public release; distribution is unlimited

85



UjV'TC TAcT1TTI .•

SECURITY CLASSIFICATION OF THIS PAGE (
1

,en Data Eneered) ,__

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED
Master's Thesis

Evaluation and Implementation of a December 1984

Functional Microprogram Generator 6 PERFORMING ORG REPORT NUMBER

7. AUTHOR(&) 6. CONTRACT OR GRANT NUMBER(a)

Deborah Regina Stiltner 0

S. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT. TASK
AREA & WORK UNIT NUMBERS

Naval Postgraduate School
Monterey, California 93943

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE 3
Naval Postgraduate School December 1984

Monterey, California 93943 13. NUMBER OF PAGES

222
14. MONITORING AGENCY NAME & ADDRESS(If different from Controllind Office) IS. SECURITY CLASS. (of this report)

Ioa. DECLASSIFICATION, DOWNGRADING
SCHEDULE

IS. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution is unlimited

17. DISTRIBUTION STATEMENT (ol the abstract entered In Block 20, i1 dillerent from Report)

IS. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side ii neceeeary and Identify by block number)

Microprogramming, microcode generator, microcode, computer-aided design, -.1
computer design, instruction set design, control unit, functional

programming, menu-driven.
I

20. ABSTRACT (Continue on reverse eide I necessa y and Identify by block number)

When a programmer writes a microprogram, as a part of a machine's

instruction set or to implement an algorithm in microcode for faster

execution, he must be concerned with the smallest details of the hard-

ware in the machine. Microprogramming exists at the lowest (closest to

t'.( machine) level and is the most tedious computer "language" to pro- .

gLdm. In the field of computer design, where microprogramming is used

extensively, designers use microprogramming to perfect instruction

DO '°"In 1473 L.OITION OF INOV 4, IS OSOLETE UNCLASSIFIED
S N 0102- LF.014- 6601 1 SECURITY CLASSIFICATION OF THIS PAGE (rWlen Dale Entered)



UNCLASSIFTF.D
SICURITY CLASSIFICATION OF THIS PAGE a'n Dwa Entr re

sets and to optimize frequently used routines.
A computer-aided design tool called a microcode generator is pro-

posed in this thesis. It is an interactive, menu-driven functional pro-
gramming tool. The user builds a microroutine by selecting functions from
a series of menus as they are presented in a logical sequence. It is
implemented in the language C on the Naval Postgraduate School Computer
Science Department's VAX 780 computer using the Unix program development
system components. The microcode generator is designed to produce
microroutines targeted for a specific machine, the Am29203 Evaluation
Board, an ALU implemented in bit-slice components.

--J-

S N 0 102- LF 014. 6601UCSF

2 SECURITY CLASSIFICATION 0F THIS5 PAGIE~Men Dsta Ent~ewd)

. . . . . . . .. . . . . . . . . . . . . .

. . . . ...... ..... ,.



Approved for public release; distribution is unlimited

Evaluation and Implementation of a

Functional Microprogram Generator

by

Deborah Regina Stiltner
Lieutenant, United States Navy

B.S. in Applied Science, Miami University, 1977

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ENGINEERING SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

December 1984

Author: ji Z
Deborah Regina Stiltner

Approved by: .-- . ., ,
Ian A. Ross, Thesis A so

H. Seceond der

/ Bruce J. MacLennan, Chairman,
Department of Computer Science

Dean of Science and Engineering

3

.li°l-



- . 7. 7 7 .. ~ ...

ABSTRACT

I When a programmer writes a microprogram, as a part of a machine's

instruction set or to implement an algorithm in microcode for faster

execution, he must be concerned with the smallest details of the hard-

ware in the machine. Microprogramming exists at the lowest (closest to

the machine) level and is the most tedious compute r' language" to pro-

gram. In the field of computer design, where microprogramming is used

most extensively, designers use microprogramming to perfect instruction

sets and to optimize frequently used routines.

A computer-aided design tool called a microcode generator is pro-

posed in this thesis. It is an interactive, menu-driven functional pro-

gramming tool. The user builds a microroutine by selecting functions

from a series of menus as they are presented in a logical sequence. It

is implemented in the language C on the Naval Postgraduate School Com-

puter Science Department's VAX 780 computer using the Unix program

development system components. The microcode generator is designed to

produce microroutines targeted for a specific machine, the Am29203

Evaluation Board, an ALU implemented in bit-slice components.

4

z"

- ".- ..



TABLE OF CONTENTS

I. INTRODUCTION------------------------------------------------- 8

A. MICROCODE GENERATOR PROPOSED---------------------------8

II. BACKGROUND---------------------------------------------------11

A. MICROPROGRAMMING-----------------------------------------11

1. History------------------------------------------------12

2. Development------------------------------------------ 15

3. Am292O3 Evaluation Board Description----------------- i

4. Microword Format---------------------------------------9

III. DESIGN APPROACH----------------------------------------------21

A. USING SOFTWARE ENGINEERING THEORY--------------------- 22

B. MAN/MACHINE INTERFACE CONSIDERATIONS-----------------25

C. METHODOLOGY USED-------------------------------------- 26

1. Specification Phase------------------------------------- 27

2. Design Phase----------------------------------------- 30

3. Implementation Phase----------------------------------- 31

4. Test and Evaluation Phase--------------------------- q

5. Maintenance Phase-------------------------------------34

D. SUMMARY---------------------------------------------------3 5

IV. IMPLEMENTATION---------------------------------------------- 37

A. MENUS--------------------------------------------------- 37

B. DATA STRUCTURES---------------------------------------- 39

1. The Microword-----------------------------------------39

5



2. The Docu-word----------------------------------------i

3. Docu Utility------------------------------------------- 41

4. Field-set Utility--------------------------------------- 42

C. UTILITIES-------------------------------------------------47

D. HEADER FILES---------------------------------------------48

E. RUNNING THE MICROCODE GENERATOR----------------------- 48

1. Main Menu---------------------------------------------49

2. Sequencer---------------------------------------------49

3. ALU-------------------------------------------------- 50

F. ALU IMPLEMENTATION DIFFICULTIES-----------------------53

G. SUMMARY-------------------------------------------------5 4

V. CONCLUSIONS AND RECOMMENDATIONS--------------------------55

A. CONCLUSIONS-------------------------------------------- 55

B. WHAT'S NEXT----------------------------------------------57

C. SUMMARY------------------------------------------------- 58

LIST OF REFERENCES------------------------------------------------60

APPENDIX A - EXAMPLE SESSION------------------------------------- 61

APPENDIX B - PROGRAM LISTING------------------------------------132

APPENDIX C -COMPATIBILITY TEST PROGRAM-----------------------2 18

BIBLIOGRAPHY------------------------------------------------------221

INITIAL DISTRIBUTION LIST------------------------------------------ 222

6



ACKNOWLEDGEMENT

Thanks to family and special friends for their support during my

eleven quarters at NPS. Special thanks to Col. Ross, my advisor, who,

besides advising, wrote a significant amount of code in support of this

thesis project.

7

..-. '



I _ _ H - _ _ _r a

I. INTRODUCTION

A. MICROCODE GENERATOR PROPOSED

Programming in microcode is not like programming in a structured

language like Pascal or like machine level assembly language. High

order language programs aren't written with concern for computer

hardware or any of the internal details concerning program execution.

Programmers concerned with the contents of registers; say, compiler

writers, must be more familiAr with the internal components of the

computer. They can't easily generalize their programs to work with

several different computers like a Fortran programmer, but it can be

done. Microcode programmers must be even more specific in their

concern for the hardware.

The microcode programmer is most likely to be a member of the

design team for a new processor or specifically involved with computer

control unit implementation. The ones and zeros (which make up the

microword) are direct signals to the hardware components. Designs for

machine instruction sets and supporting registers, PROMs (Programmable

ROMs), control lines, etc. involve extensive detail, at a level much closer

to the machine, which the microprogrammer must know.

Computer aided design is a relatively new field which sprang into

being when we needed more complex computers to solve more complex

problems. Designers could no longer hold all the detail in their heads,

they needed a computer to help in the design process. For example,

computer systems generate circuit diagrams in seconds; graphics

8

-°1

":' -': " ".". -'-' "" -"- - - -" ' . . . -. . . . . . .... .. -
' ' " " " ,"". - "



stations display VLSI drawings, zooming in on selected areas and

modifying them with a few commands from the user. Few areas of

computer design are left where tedious tasks haven't been automated.

One such area is microprogramming.

A microcode generator could aid the designer in several ways. The

generator promotes structured design since it hides the details of how

the microword is produced. The user could select a function such as

"add the contents of two registers" and the generator would provide

the microword which accomplishes the task. The function of microcoding

could be modularized so that the user only needs to know what input is

required and what output will be given by the generator. The

importance of modularization and information hiding was introduced by

D. L. Parnas in 1972. [Ref. 11 A microcode generator could also help

reduce the simple coding errors easily made such as writing a 'I'

instead of a 10', or putting the '1' or ' in the wrong bit position.

A good comparison of the use of a microcode generator would be to

the use of a calculator. One knows how to add large strings of

numbers using pencil and paper but the overall task is done faster,

accurately and without tedious sidetrips by using the calculator. The

difference between the microcode generator and the calculator is that ."'

while a parent may worry that with a calculator his sixth grader might

forget the multiplication tables; the chief designer needn't worry that

the use of a microcode generator might spoil his young team members.

The point is that the programming level required to use a microcode

generator is already that of expert microprogrammer. The generator

9



merely frees the programmer to think higher level thoughts, and thus,

is truly a needed utility in the area of computer aided design.

I have implemented a microcode generator for a specific machine;

the Am29203 Evaluation Board which will be described in the following

chapters. The generator is written in the high-level language C. C was

chosen since a well defined standard for the language exists so future

porting" of the program to other machines will be easier. The utility

program is designed to be interactive with the user and operates in real

time like a language interpreter. The user selects functions from the

menus displayed and is provided the appropriate microword. Microwords

are saved in microroutines which can be stored for later use. The C

program is currently implemented on the NPS VAX/Unix system. Future

research plans are to modify it for use with microcomputers.

Chapter two will provide some background information on micro-

programming and the microcode generator targeted machine, the Am29203

Evaluation Board. Chapter three will discuss the design approach used

in this project. Chapter four will address specific implementation

problems and data structures used. It will also introduce a preliminary

user's manual. Chapter five will contain some conclusions and

recommendations.

10



II. BACKGROUND

A. MICROPROGRAMMING

In order to discuss microprogrammed computer architecture, a

reference point must be established. Computer architecture is the study

of the systematic method in which the basic components of computers

are arranged and interconnected. A convenient reference point is the

high-level abstraction of a general computer system called the von

Neumann machine. This idealized concept of the essential organization of

a computer, developed in the mid 1940's, was the key to the con-

struction of early computers. The von Neumann machine consists of five

basic elements; the Control Unit, Arithmetic/Logic Unit (ALU), memory,

input and output. In today's computer systems the elements containing

the Control Unit and the ALU have been combined to form the Central

Processing Unit (CPU) or the processor.

The Control Unit implements the designed machine level instruction

set. The machine level instructions or macroinstructions can be

executed in two ways. Implementation in hardware using combinatorial

It,. j the method used in early computers and by some high speed

machine. oday. However, the focus of this thesis is on the modern

method L ich implements the control unit using memory or stored logic.

The contex 's of the stored logic are called microinstructions. A micro-

programmed control unit is one in which the more complex macroinstruc-

tions (op codes) are interpreted (executed one at a time) by sequences

of primitive microinstructions which are stored in the special memory

11

S i .m •I . . -•



B. MAN/IMACHINE INTERFACE CONSIDERATIONS

Man/Machine interface discussions usually center on graphics

capabilities. However, the design of the microcode generator is not so

concerned with the way a general user views the screen, but with the

way an expert. user thinks through the problem of microprogramming.

As stated in an earlier chapter, the user is assumed to be an expert in

microprogramming and familiar with the specific machine for which this

progr-am is written to produce microcode. This new utility will improve

his productivity and provide ease and flexibility in his design work. As

he uses the program, he should be comfortable with the sequence of

menus presented so that as he decides what the next step of the

microprogram should be, the method to take that next step is before him

on the screen as one of the menu selections. The most common theme

heard from interactive systems designers is embodied in Hansen's First

Principle: Know the User. [Ref. 11] This principle is of primary concern

in this software implementation project.

There are more general human characteristics which must be dealt

with in any interactive design. Humans have a short term memory

capacity of only about 5-7 objects. Memorization can be minimized by-

using function selection versus command entry methods and using names

instead of numbers for the choices. The microcode generator program

menus do use names except when numbers are the object of the

selection. "Muscle memory" refers to the idea that users develop the

feel for frequently used keypresses. This means that the same function

in differe'it menus should be initiated in the same way; help or return.-

to higher level, for example.

25



manipulation, it would have to violate the Security Principle. This

principle states that no program should violate the definition of the

language, or its own intended structure. [Ref. 9: p. 7] The C language

contains powerful features that give it considerable flexibility. Like

other languages in the structure,. category, C supports strong data

typing, makes extensive use of pointers, and has a rich set of operators

for computation and data manipulation. [Ref. 7: p. 277] So the definition

of the C language contains the needed features that Pascal must violate

its own definition to effect.

Modularity, information hiding and portability are a necessary

influence on the design of this project. In order to achieve portability

to other compilers and machines, some care is needed to provide for

information hiding, i.e., generality within the modules and passing the

machine and/or compiler dependent data through the interfaces between

modules. Thus the modules themselves can be used for any machine or

compiler and only the interfaces need be changed. The C language has

a preprocessor feature which allows constants to be defined (using

*define statements) and placed in a separate module to be "included"

(using *include statements) as a separate file. Thus, we could have

separate definition "include" files for different machines and compilers.

This is a standard feature of the language.

The above principles are associated with good design and

programming practices. Using them as guidelines for the selection of

the basic hardware and software tools for this project ensures quality -

of the end product.

24



Such a large, complicated and interactive program is more easily

developed on a medium to large computer. Using a microcomputer for

the program development would involve more work on the programmer's

part to manage a small memory, the storage of data arrays and the

overhead of the interactive feature. The VAX 780 computer running the

Unix operating system was chosen for its easy-to-use program

development system, convenience (located on campus), and because

previous thesis work on this project had been done on the VAX.

The programming language used to implement the program needed to

be a modern structured high level language available for use on the

VAX but portable enough to allow the program to be adapted for use at

a microcomputer workstation. I chose the C language for its portability,

since a well-defined and accepted standard had been established by its

authors, Kernighan and Ritchie, [Ref. 10] and for its success as a

systems programming language. The latter is important since quick,

efficient code and access to system functions, the characteristics of a.

systems programming language, is needed in an interactive program

performing in real time. The previous implementation of the microcode

sequencer portion of the target machine had been written in Berkeley .

Pascal. I chose to rewrite this section in C since the two languages

employ different parameter passing modes and data couldn't be passed

between the different modules. Pascal, a language designed primarily as

an educational tool for teaching structured languages, was also ruled

out because of its limited capabilities in input/output processing. One

of the main differences between Pascal and C is C's capabilities in

systems programming. For Pascal to do some of the same sort of data

23



. .. - - - -. - . • - , - • -] o - --I I . ' • '1 I -_ , - .

in the design approach to the problem of building a microcode

generator.

A. USING SOFTWARE ENGINEERING THEORY

The selection of the program development system and programming

language to use depends on the main features of the project to be

designed. The microcode generator utility is interactive, featuring

menu-driven versus command-driven microinstruction functions, i.e., the

functions are selected through a series of menus presented on a

monitor. The program acts very much like an interpreter; a one-pass,

step-by-step translator. The microcode generator functions are

modularized and separated into function procedures which can be

offered as possible selections by the user in one menu on one monitor . -

screen: The combination of this modularity and the use of menu-driven

function calls support the theory that structured software programs are

better in that they are more understandable and easier to implement

with structured programming languages. The program is relatively large

and complicated. It has two main modules, the sequencer module

contains eleven submodules and the ALU module contains fifteen

submodules. There is a main utilities module which contains fourteen

modules. The two main modules and a housekeeping module frequently

call on the procedures in the utilities module, which do most of the bit

manipulation within each microword. Thus, the main features of the

microcode generator are its use of interactive communication with the

user, menu-driven information flow and complexity.

22

7 -o



III. DESIGN APPROACH

Design may be defined as the process of applying various

techniques and principles for the purpose of defining a device, a

process, or a system in sufficient detail to permit its physical

realization. [Ref. 7: p. 128] The field of software engineering has two

general aspects. One aspect contains the general theories and

principles proposed and tested over the last fifteen years, as the art of

producing software became a science, i.e., a more disciplined approach

was needed to combat the recognized "software crisis" of skyrocketing

development costs of software beginning in the 1970s. For example,

Edsger W. Dijkstra wrote, in 1968, a now famous letter called "Go-To

Considered Harmful." (Ref. 8] He had discovered that the difficulty in

understanding programs making heavy use of go-to statements was a

result of the "conceptual gap" between the static structure of the

program in spatial terms and the dynamic structure of the program in

temporal terms. This is called the Structure Principle. [Ref. 9: p. 137]

Another accepted concept was mentioned in chapter one; the Information

Hiding Principle first proposed by D. L. Parnas in 1972. The second

aspect of software engineering is the large group of methodologies or

techniques available which are specific design tools and solutions for

virtually any software engineering problem in existence. Thus, we have

principles on one hand and p.ractices on the other. In this chapter I

will explain some software principles and accepted practices I have used

21



35-32: ALU function selection.

31-16: Control fields for the Am2904, Status & Shift
Control chip:

31-30: Controls carry-in.

29-24: Called 15-10. These six bits control the micro and
macro status registers. This field is highly depen-
dent on other fields, and is extremely difficult to
coordinate when programming.

23: Enables micro status register.

22: Enables macro status register.

21: Command enable to use 19-16 as a command field
for special functions of the ALU.

20: Shift enable to use 19-16 as shift control.

19-16: Used as a field for ALU special functions, for shift
control, or for status enable.

15: Monitor breakpoint bit.

14: Not used.

13-0: Control fields for Am2910 Sequencer:

13-4: Branch address; or in conjunction with bits 47-45
could be used for data constants or to specify ALU
registers as sources of data or addresses.

3-0: Sequencer instructions.

Following chapters will go into greater detail when addressing

the design approach to implementing the functions of the different fields

in the microword.

20

." -. |



The Am29203 ALU Evaluation Board is set up with a monitor

which can display and load all memories and registers. To run micro-

programs, load the microwords in hex into WCS; the status registers and

macroinstruction registers should be loaded with appropriate data if

conditional testing is to be performed. Enter the command G (for Go).

After execution the registers and/or memory can be inspected (dis-

played) for indications of the intended results. The execution of a

microroutine can be halted or paused and breakpoints can be set. The

board is manipulated via the monitor much like a debug utility program.

4. Microword Format

The microword used to control the evaluation board is 48 bits

wide. It incorporates the techniques of bit steering; using a bit or

field of bits to determine the meaning of another field, [Ref. 5: p. 172]

and vertical programming in some fields. The microword is organized

into three main fields which control the three main IC's mentioned

above. A discussion of the function of each bit of the microword

follows, starting with the most significant bits: [Ref. 6: pp. 3.10-3.12]

47-45: Controls the selection of the register address fields
which select the microinstruction pipeline register
(the output microword from WCS) or the macroin-
struction register as either the sources for the
ALU operands or the destination of the ALU opera-
tion result.

44-32: Control fields for the ALU:

44: Enables ALU output to ALU registers.

43: Enables ALU output to the Y bus (the main data
bus).

42-40: ALU source operand selection.

39-36: ALU destination selection.

19

. . -o



allows pipelining, the overlapping of microinstruction execution with

control store fetches. While the microword in the pipeline register is

being executed, the next instruction is being fetched from WCS. All

these improvements over the simple three element control unit provide

the needed capabilities for an efficient microprogrammed control unit.

3. Am29203 Evaluation Board Description

An Am29203 Evaluation Board prototype is used for micropro-

gramming experimentation in the NPS Computer Science Department. The

evaluation board is built, using bit slice architecture, from various

bipolar integrated circuits (IC's) produced by Advanced Micro Devices of

Sunnyvale, CA. The Am29203 is an implementation of an Arithmetic/Logic

Unit (ALU). This board is presently used in research at NPS as a

representative microprogrammable digital system. As the target

microprogrammable device for the microcode generator, the evaluation

board is briefly described here, and in more detail in later chapters.

The board consists of three main IC types and memory for

Writable Control Store (WCS). (Ref. 6] It uses an Am29203 four bit ALU

slice. This ALU chip can perform seven arithmetic, nine logical and

sixteen special functions on two four bit operands. The evaluation

board cascades four Am29203's to provide a sixteen bit ALU. The board

also uses the Am2904 Status and Shift Control Unit, which supports the

functions of the ALU. The third main IC is the Am2910 Sequencer used

in the board's control unit. It is the microprogram controller for the

sequence of execution of microinstructions stored in the WCS. It

provides both sequential access and conditional branching to addresses

in the WCS.

18



important in computer system research and real-time, embedded

computer systems (military applications) since updates and/or config-

uration changes are more easily handled with the flexibility of

microprograms which can be over-written.

The simplest implementation of a microprogrammed control unit

consists of a register or buffer, timing signals and a ROM (Read Only

Memory). The register contains the macroinstruction which holds the op

code to be implemented with a microroutine. The op code is used to

derive the starting address in the ROM, called control store, of the

appropriate microroutine to be executed. Each microword contains a

code indicating that either it's the last microword in the routine or that

the next sequential microword in control store is to be used next. This

scheme causes fragmentation or unused portions in control store since

each starting address is equidistant from the others and thus, all micro-

routines are alloted the same amount of space even though all routines

are not the same size.

A mapping PROM (Programmable ROM) can be used to improve

the addressing scheme. The fragmentation problem is solved since any

set of addresses in the control store can be placed in the mapping

PROM so the microroutines can be any size. With the use of a Writable

Control Store (WCS) microroutines can be easily changed and new

starting addresses updated in the mapping RAM (Random Access Mem-

ory). A MUX (multiplexor) for conditional codes can be added to include

conditional branching capability.

Another important improvement has been the addition of a buffer

register at the output of control store; the pipeline register. Its use

17

S,,i

.............................................................................



are critical. There must be sufficient time available per

macroinstruction for the microroutine instructions to be completed. The

diode control store method posed no speed problems since the speed

ratio was about twenty internal cycles per memory cycle. [Ref. 4: p.498]

The trend of smaller cycle ratios developed quickly, due to improve-

ments in memory technology. By the early 1960's main memory cycle

speed had dropped to under one microsecond. [Ref. 4: p. 499] The ratio

of internal machine cycles to memory cycles became one or two to one.

It wasn't possible to decrease the control store access speed so

parallelism was needed in data transfers. Multiple data transfers per

machine cycle resulted in simultaneous control of internal resources.

The microwords (microinstructions) were made wider to produce more

control signals per machine cycle. Parallelism was increased with the

addition of more control signals per microword. However, the use of

wider microwords required more space in control storage.

Emulation, the use of control stored microprograms to interpret

several different processors' instruction sets on one host system, [Ref.

5: 405] was implemented by IBM on the System/360 in the mid 1960's.

This new application for microprogramming was very important for

businesses which did not want to have to reprogram old software but

did want to use new programming languages and develop new appli-

cations on newer higher performance machines.

Fast read/write control store was developed in 1970 using

bipolar monolithic technology. [Ref. 4: p. 499] Thus, the control store

has the same access time as combinatorial-logic gating delays, since they

are made of the same material. Writable control storage can be very

16



Wilkes viewed the Control Store as consisting of two ferrite core

matrices. (Ref. 4: p. 497] (See fig. 2.1) A portion of the macro-

instruction called the operation code or op code was used as input to a

decoding logic tree. The logic component accepted n bits as input and

provided 20 possible output lines, only one of which was selected.

Thus, a four bit input line could select one of sixteen output lines

which were the microinstructions. Each output line was configured with

diodes to select any number of available control lines. The active

current in the selected output line was passed on by a diode to the

connected control line in the first matrix. So the configuration of

diodes on the output line determined which control lines were activated

for a particular clock cycle and a particular microword. When testing a

design, these diodes were easier to change than rewiring a new hard-

ware circuit for a particular function. The 2n possible diode configured

output lines represented primitive operations (the microinstructions)

which when selected in sequences formed short subroutines which

carried out the function specified by the op code. The second matrix

was used for sequence control. Each microinstruction could select the

next microinstruction to be executed. Wilkes' implementation also

included a provision for some conditional testing and sequencing.

These diode arrays were the first microprogram memory or Control

Store.

2. Development

While macroinstructions generally effect changes to data in main

memory, microinstructions reflect register to register data transitions.

Cycle time ratios between main memory access and control store access

o - o



.2
at

U ~ ~~ I -

C~ ~ T -..

LL

4--4



The disadvantages of hardware implementation are that any

changes could mean an entire redesign; documentation was scarce; and it

was difficult to test the implementation since much of it had to be

working just to test one small portion. The advantages are that it can

be the fastest running implementation, a small task (simple design) will

have a simpler solution and the complexity and lengthy design time can

be justified for high volume applications. In a microprogrammed

machine each machine-level or macroinstruction is carried out one

instruction at a time by an interpreter.

M. V. Wilkes, in 1951, first proposed a microprogrammed control

unit in a computer. [Ref. 3: pp. 16-18] The microprogrammed method

was easier to use in the computer design development and engineering

phases, Wilkes proposed. He and his colleagues sought a means for

rearranging the circuit design into a systematic order which was easy

to implement, comprehend and maintain. They were more interested in

simplifying the design task than in any savings of hardware. It is

interesting to note that while Wilkes didn't believe there was any need

for general purpose computers or the corresponding complex instruction

set, the microprogrammed control scneme he presented made the concept

of a general purpose computer feasible. The general purpose computers

in use today have instruction set sizes on the order of hundreds of

instructions. The design and implementation of a system of combi-

natorial logic with such a complex control system would be very expen-

sive to manufacture.

13



called Control Store. These sequences of primitive microinstructions are

called microprograms; stored prog,,,ams that explicitly control the data-

flow through the physical components of a processor. This method is an

alternative to performing data-flow control with a network of sequential

logic circuits. [Ref. 2: p. 5)

1. History

The early computers' instructions for arithmetic and boolean

functions were directly implemented with hardware. One could look

inside the computer and trace the circuits responsible for a particular

function such as multiplication. These basic logic circuits such as AND,

OR, etc. were constructed from switching devices such as vacuum tubes,

diodes and transistors. The outputs of the resulting storage elements,

i.e., flip flops and latches, control the execution of arithmetic or logical

operations by issuing control pulses over the control lines to specific

gates in the data flow. In a relatively few machine cycles, information

is guided to flow over many paths and through many functional units in

the specific order required for the execution of the macroinstruction.

Hardware implemented control units require many basic components and

intricate wiring efforts in their design. They have a haphazard

appearance due to the mass of wires and circuits placed on the circuit

board in any place they could be fit. Complex instruction sets were

difficult to implement because the design task alone was a tremendous

undertaking. It was a lack of modularity in the design process which

forced the designers to maintain a complete understanding of the entire

design in their heads.

12



Another important interface consideration is the input device(s).

Thus far no other input devices are available for use with the VAX

'A development system used in this project. However, an excellent input

device for selection is the mouse. Its most common criticism is that it

takes the user's hands from the keyboard, but this is important only to

word processing applications where speed typing is advantageous. The

microcode generator's user will have his attention focused on the screen

which is perfect for using a mouse. When the code generator is

,A adapted for use on a microcomputer workstation a mouse could be

implemented as the input device for menu selection. Using a mouse also

creates muscle memory which improves the user's productivity. Other

input devices include joysticks, speech recognizers, tablets, etc. Speech

synthesis and recognition quality is improving quickly but the mouse

has the characteristics of simplicity, flexibility and cost effectiveness

which make it a very popular device for use with interactive programs.

C. METHODOLOGY USED

Once software engineering concepts are understood, actual

implementation of a project is the next step. The explanations of what

is going to be done, using what guidelines, who is going to do it and

why it's important, have all been presented. The next step is how to

implement the microcode generator. Every company and government

agency responsible for producing software has some formal or informal

development methodology, a collection of methods, chosen to complement

one another, along with rules for applying them. [Ref. 12: p. 14] The

26



methods chosen to design and implement the code generator will be

discussed in the following sections.

1. Specification Phase

The basic requirements of the specification phase of a software

development project are to describe the intended data flow and data

structure to be realized in the program, provide a description of the

program functions, and establish and maintain communication with the

user. [Ref. 7: p. 951

The internal structure of the C source program is modular in

that each logical microprogramming function, selecting the branch

address to be used in the sequencer portion of the microword for

example, is implemented as a separate procedure. (Procedure is a

generic term for what is called a function in C.) Also the "main"

procedure does little but initialize, call the modules selectable from the

master menu and help the user exit the program.

This modularity is necessary when a top-down design technique

is used as in this program. Top-down or stepwise refinement begins

with a high-level representation of software procedure. First, the

main" program or driver program is defined; then each procedure

called by the driver program is written in code and so on. [Ref. 7: p.

1311 With this technique, the program can be written and tested in

more manageable pieces. This is a far better method of design than

writing the entire program before trying to run it. The most important

reason is that the user can be involved to provide early guidance from

his, the most important, point of view.

27

. " ". . " ." . . .. . " , , • • .. . • - ... " .



The external structure is the dynamic flow of the program fromn

the user's point of view. The motivation for writing the microcode

generator is to make microprogramming easier and less time consuming.

An example of a microcode generator in use is AMDASMTM which is

available on Advanced Micro Devices System/29TN. [Ref. 13: p. 10] This

tool is not interactive and is quite complicated although it is quite

general. The interactive nature of this project's code generator makes

the program more "user-friendly." The menus help the user concentrate

on the problem to be solved rather than how to run the program.

Thus, the flow of the program is directed by the hierarchy of menus.

The descriptions of the functions implemented in the program

must be specified in this phase. Any changes to these specifications in

a later phase will mean a slow-down in the development of the software,

since most work must stop while the implementer backtracks to effect

the changes. A general description of the program's functions follow.

a. Sequencer Functions

Once the user selects a sequencer code, the sequencer

module of the microcode generator determines what support data is

needed. If the selected code requires a branch address and/or

condition codes, it requests the data using further menus. Then it

provides informational messages if the sequencer code selected is

dependent on other sequencer codes which must precede or follow it.

Provisions must be made for "remembering" the user's selections to

ensure that subsequent changes to the sequencer code in the same

microword remain consistent with other fields of the microword.

28



b. Support Functions for the Sequencer

Shift and condition code fields implemented as a result of

selected sequencer code functions are incorporated into the sequencer

module of the program. Conflicts between shared function fields are to

be resolved or gracefully handled. That is error messages must be pro-

vided which don't "crash" the program or cause undetected erroneous

results. A requested function may have up to seven possible bit pa-

terns. C language structures which hold constant data for comparison

of microword bit pattern options are used to resolve conflicts in shared

function fields. If none of the possible patterns are compatible in the

same microword fields then the user is informed and the requested

function is denied.

c. ALU Functions

Once the ALU function code is selected, the ALU module of

the program determines which type of ALU function it is, either a basic

function or a special function. Following the same guidelines as pro-

vided for sequencer functions, it determines what follow-on data is

needed to microcode the ALU fields of the microword. This is done by

presenting appropriate menus based on user choices already selected.

Each menu may lead to several additional menus, depending on the

selection made. After the ALU function is selected the user is prompted

for operand source data, results destination data with choices for shift

register manipulations on the results, a decision to enable the Y bus,

and source register selections if any. The same data structures and

utilities that are applied in the sequencer module are used.

29

. . . ...-



d. Support Functions for the ALU

The microcode for the shift fields, command fields and

register selection fields associated with selected ALU functions are

incorporated into the ALU module of the program. The same data struc-

tures, utilities and constraints concerning conflicts and errors are used

as in the sequencer module.

e. Common Functions

Each menu has a selection available for help and return to

a higher level. When help is selected, an informational message is

displayed to clarify the menu presented and a reference to a manual or

data book is provided if possible. Selecting return to a higher level

displays the previous menu. The user can exit the program entirely by

repeating the return selection.

f. Housekeeping Functions

These functions comprise the third major module of the

program. They provide the capability for the user to build micro-

routines by adding microwords to a file as he creates them using the

sequencer and ALU modules. The user may also save, list, scan, modify,

delete and print microroutines. These latter functions will be available

from the master menu and some of them will be available from the

sequencer and ALU modules.

2. Design Phase

The design phase is the process through which requirements, as

determined in the specification phase, are translated into a

representation of software. [Ref. 7: p. 129] The goal in this phase is to

produce a "model" from which the final product will be built. This step

30



in the development of a software project can be compared to the build-

ing of a prototype in an engineering project.

The "models" used to represent the program are hierarchical

module organization charts. In figure 3.1 the hierarchical structure

between the major modules is shown. Figure 3.2 shows the relationship

between the menu calling procedures. This model reflects the rela-

tionships between the menus and shows the program structure from the

user's point of view. These two models are adjusted until the internal

program structure (figure 3.1) supports the external structure (figure

3.2) which is the user's point of view of the program.

3. Implementation Phase

In very general terms, the implementation or coding phase

translates a design representation of software into a programming

language realization. This coding process begins when the programmer

puts source code on paper and continues until an executable form is

produced by the computer. Improper interpretation of design models is

a primary concern in this phase, [Ref. 7: p. 267) The characteristics of

the programming language used influence the way the programmer

thinks when implementing the design. Earlier in this chapter I

discussed the reasons why a modularly structured design should be

implemented using a structured language. The ease of design-to-code

translation is an indication of how well the language mirrors the design

representation. C's support of structured programming and rich set of

operators make the design-to-code translation very smooth.

31

I

.. . .- - .. .. ... .-, "- '- - -.--- --- -.-''-.-' --" :- "'- - -"" "" -, -.' ,' ."-. -.", -.. ..,. ,., " . . f



V)

75
0

00

ci))
0n

0 L

o .4J32



Main Module

Sequencer Command Menu
ALU Basic Function Menu
ALU Special Function Menu
Routine Manipulation Menu

Sequencer Module

Sequencer Branch Address Menu
Sequencer Condition Select Menu

Am2904 Conditional Test Menu

ALU Module

Called from Main Module:
ALU Basic and Special Function Menus

ALU Operand Source Menus
ALU Result Destination Menu
ALU Register Address Menu
ALU Direct Source Menu
ALU Instruction and Output Enable Menu
ALU RAM A Register Select Menu
ALU RAM B Register Select Menu

Fig. 3.2 User's View of Menu System

33



4. Test and Evaluation Phase

Testing within the context of software engineering is actually a

series of four steps that are implemented sequentially. [Ref. 7: p. 295]

Unit testing is a test of each procedure as it is produced. Integration

testing addresses the issues associated with the problems of verification

and assembly of all modules in the program. Validation testing provides

assurance that the software meets all functional and performance

requirements. System testing verifies that the program meshes with

other systems in the user's environment.

The procedures of the microcode generator were tested as units

and integrated with the program as they were coded. Thus, the first

two steps were executed concurrently.

E. W. Dijkstra is quoted as saying, "Program testing can be

used to show the presence of bugs but never their absence." Could

exhaustive testing (even if possible) prove a program correct? No,

because you don't know when all tests are exhausted. In testing the

code generator, the top-down design, modular structure of the program

made the task easier since functions were broken into small pieces as

procedures. Each unit was tested by running it with both expected and

unexpected data.

5. Maintenance Phase

Software maintenance is far more than just fixing errors in a

program; it consists of all support for the product once it released.

There may be several versions of the same program which need support.

The maintenance of existing software can account for over 60 percent of

all effort expended by a software development company. [Ref. 7: p. 3221

34



Software maintenance may be defined by describing four ac-

tivities that are undertaken after a program is released. Corrective

maintenance includes diagnosis and correction of any errors which may

exist after the program is released. Adaptive maintenance is the

activity that modifies software to properly interface with changing

system support. Perfective maintenance provides the software package

with new capabilities, modification of existing functions and general

enhancements requested by users of the product. Preventive

maintenance is done to improve future maintainability or reliability.

This type of maintenance is still relatively rare. [Ref. 7: p. 323]

Academic research projects don't have the same requirements for

maintenance as a new product in the commercial market. The

maintenance of the program generator will depend on the availability of

interested students for further research. However, further work is

needed in this project. This thesis is just a small step in the

development of a fully generalized functional microcode generator.

D. SUMMARY

Software engineering is still more of an art than a science, even

though the application of systematic methodologies began about a decade

ago when software developers faced the software crises. But, the use

of a more disciplined, engineering approach to software design has

helped developers manage more efficiently the large, complex type of

problem solutions undertaken in the 1980's.

The microcode generator implementation is a large and complex

problem for one person. Thus, the "modularizing" of the process, i.e.,

35

- - . -..-



breaking the project up into the distinct steps of specification, design,

implementation, test and evaluation, and maintenance helped me to

conceptualize the entire process. In shipboard administration terms, I

formed a "Plan of Action and Milestones," a POA&M, and carried it out.

The next chapter will address specific data structure

implementations, coding problems and introduce a preliminary user's

manual.

36



IV. IMPLEMENTATION

The planned sequence of implementation was discussed in the

preceding chapter. In this chapter I will address specific decisions

concerning required data structures and the general compositiohi of the

source program for the microcode generator. This discussion will

include the general utilities, the housekeeping utilities and the header

files. A section on how to run the program is provided as a guide to

using the microcode generator. The last section of this chapter

addresses some ALU implementation difficulties.

A. MENUS

Interactive programs can be designed to interface with the user in

two ways; command-driven or menu-driven. The command-driven method

requires the user to know what commands are available, and the rules

and syntax necessary to use them. The menu-driven method is more

user-friendly" since the user is allowed to pick from a menu of

available functions; he doesn't need to memorize a great deal of detail.

The tradeoffs between the two methods are speed and flexibility in the

first case and ease of use in the latter case. The main decision point

when choosing between the methods is at the point where a program

becomes too complicated for even experienced users to remember all the

commands needed to effectively use the program. The menu-driven

method was chosen for this reason, i.e., there are too many possible

functions available to be remembered in the command-driven method.

37

- .'



Current macro-assembler type microprogram generators use batch style

execution, are thus command-driven programs and are less

user-friendly."t

To estimate the number of commands that would be required in a

command-driven program is not difficult once the menu-driven version

exists. Each option on a menu represents a required command or

subcommand in a command-driven version. The sequencer portion of the

microcode generator program has 6 menus including a total of 54 options

to choose. The ALU portion has 20 menus including a total of 214

options to choose. This totals 268 commands. But, each menu in both

portions has a "Help" and "Return to Higher Level" option; so these can

be combined to function under only two commands for all menus. So, we

have a total of 268 - 2*(20 + 6) + 2 r218 commands which would be

required in a command-driven method. The interdependencies of some

of the microword's bit fields would further complicate a command-driven

structure, and these are only the functional microprogramming

commands. The housekeeping functions like saving, listing, scanning

and printing micro-routines also need commands. Since the average

number of options per menu is 10, that number should be added to

account for the housekeeping module. So, the final total of needed

commands in the command-driven method is at least 228, not counting

the effect of field dependencies. This is not a reasonable number of

commands to expect a user to remember in a task like microprogramming.

The microcode generator program was written using the following

general concept of program flow: Write a menu to the screen, and then

trap and test the user's response using the C language SWITCH

38



construction (the equivalent of the Pascal CASE construct). [Ref. 10: p.

54-56] The SWITCH case which matches the user selected menu option

implements the function requested, perhaps displaying further menus

from which the user selects the proper parameters for the function

desired. This menu, SWITCH, implement, menu, SWITCH, implement ...

continues until the user selects the "Return to System" function. The

program is roughly half menus and half SWITCH constructs.

B. DATA STRUCTURES

1. The Microword

The forty-eight bit microword for the Am29203 Evaluation Board

was designed to provide a representation of the functions for a general

purpose sixteen bit ALU.1 The microword, as designed, uses the

concepts of both horizontal and vertical microprogramming. [Ref. 4: p.

501] In a horizontal microword there are many bits for the control

lines, providing a parallelism in resource handling. This method is

costly in terms of memory space but is very fast since there is only one

level of control. A vertical microword has fewer bits and needs further

decoding to determine which control lines are affected. It is a memory

space efficient method but usually executes slower than the horizontal • "

word because it has several levels which are decoded to determine the

control lines activated.

The specific fields in the microword are described in chapter

two. Several of the Am29203 Evaluation Board functions share bit fields

1 The Am29203 Evaluation Board was described in chapters one and

two.

39



sources for ALU operations, the destinations for the ALU results, and

the selection of registers for the ALU.

F. ALU IMPLEMENTATION DIFFICULTIES

The ALU module presents some difficult implementation problems

since it involves more potential conflicts in the microword bit fields than

does the sequencer module. The ALU functions which involve shifting

and carry-in bits pose particular problems since they share bits with

the conditional testing fields and the command field. Another hot spot

in the microword is the sharing of the branch address fields and the

register A and register B fields.

Compatibility is possible, in some cases, between functions which

share fields since many of the shifting functions are satisfied with

several alternate bit patterns (some have up to seven possible patterns).

However, the program must be "smart" enough to determine when the

.-onflicts occur and warn the user. This problem is the most difficult to

solve in the implementation of the microcode generator. To optimize

microprograms the programmer has to take every opportunity to code as

many functions in each microword as possible. If he codes only one

function per microword there would not be enough room in Control Storo

for all his routines. This task is the most complex and time consuming

part of microprogramming. So, although the ALU implementation is not

complete, the solution, in the form of a sample algorithm, is provided for

the problem of automating the process of optimizing microroutines

(Appendix C). This algorithm searches through C language STRUCTURES

[Ref. 10: p. 119-141] that are set-up to store all the possible bit

53



ALU SPECIAL FUNCTION MENU

Enter the value corresponding to the function you wish to
perform:

0 Unsigned multiply
1 BCD to Binary Conversion
M Multiprecision BCD to Binary Conversion

2 Two's Complement Multiply
3 Decrement by 1 or 2
4 Increment by 1 or 2
5 Sign/Magnitude to Two's Complement Conversion
6 Two's Complement Multiply
7 BCD Divide by 2
8 Single Length Normalize
9 Binary to BCD Conversion
Z Multiprecision Binary to BCD Conversion
A Double Length Normalize; First Division
B BCD Add
C Two's Complement Divide
D BCD Subtract F R - S - 1 + Carry In BCD
E Two's Complement Divide Correction and Remainder
F BCD Subtract F = S - R - 1 + Carry In BCD .7
H for HELP with this menu
R to RETURN to higher level

Fig. 4.3 ALU Special Function Menu

52



ALU BASIC FUNCTION MENU

Enter the value corresponding to the function you wish to
perform:

0 F =High
1 F =S - R - 1. + Carry In
2 F =R - S - 1 + Carry In
3 R +S + Carry In
4 S + Carry In
5 (NOT S) + Carry In
6 R + Carry In
7 F =(NOT R) +. Carry In
8 F =Low
9 F = (NOT R) AND S
A F = R EXCLUSIVE OR S
B F = R EXCLUSIVE OR S
C F =R AND S
D F =R NOR S
E F = R NAND S
F F =R OR S
H for HELP with this program
R to RETURN to higher level

Fig 4.2 ALU Basic Function Menu



POP, and the TWB commands all require both branch addresses and con-

ditional tests. The two sets of menus are displayed and the user is

prompted for all selections as before.

AM2910 SEQUENCER COMMAND MENU

Which AM2910 Sequencer Command do you wish to chose?

Enter a 0 JUMP ZERO - JZ
1 CONDITIONAL JUMP SUBROUTINE - CJS
2 JUMP MAP - JMAP
3 CONDITIONAL JUMP PIPELINE - CJP
4 PUSH/CONDITIONAL LOAD REGISTER/PIPELINE - PUSH
5 COND. JUMP SUB. VIA REG OR PIPELINE - JSRP
6 CONDITIONAL JUMP VECTOR - CJV
7 CONDITIONAL JUMP VIA REGISTER OR PIPELINE
8 REPEAT LOOP, COUNTER NOT EQUAL 0 - RFCT
9 REPEAT PIPELINE, COUNTER NOT EQUAL 0 - RPCT
A CONDITIONAL RETURN FROM SUBROUTINE
B CONDITIONAL JUMP PIPELINE AND POP
C LOAD COUNTER AND CONTINUE - LDCT
D TEST FOR END OF LOOP - LOOP
E CONTINUE - CONT
F THREE WAY BRANCH - TWB

H HELP with this program
R RETURN to higher level

Fig. 4.1 Sequencer Command Menu

3. ALU

The ALU module of the microcode generator, although not fully

implemented, will be used in the same fashion as the sequencer portion.

The user selects ALU Basic Functions (fig. 4.2) or ALU Special Functions

(fig. 4.3) from the main menu. The user is then prompted through

several different levels of menus. He provides input such as the

50

Iq



1. Main Menu

From the user's point of view, this program is very easy to use.

After executing the program, the sequencer module, the ALU module, or

housekeeping functions like scan or print microroutines can be selected.

Also, the Help and "Return to System/Higher Level" options are available

as in nearly every menu in the program. Selecting Help in each menu

will cause an informational message to be written to the screen, then the

same menu is presented again. The "Return" function causes the user

to go back to the previous menu.

2. Sequencer

In the sequencer portion of the program, the Sequencer

Command Menu (fig. 4.1) is presented. This menu displays the

sequencer codes used by the Am2910 Sequencer chips on the Evaluation

Board. As discussed above, the sequencer codes are grouped in four

classes. The JZ, JMAP, RPCT and CONT codes do not use branches or

conditional testing, so only the sequencer code bits are set in the

microword. The LDCT command requires an entry in the branch

address field so the Branch Address Menu is then displayed and the

user enters the desired values for the address. The maximum address

that can be coded is 3FF hex. If a higher value is entered the user

will see an error message and the menu is presented again. The CJV,

Conditional Return from Subroutine, and LOOP commands require that

conditional tests be set up. A menu called the Condition Select Menu is

displayed and prompts the user through several levels of menus until

the desired conditional test is set. The CJS, CJP, PUSH, JSRP, Con-

ditional Jump Via Register or Pipeline, Conditional Jump Pipeline and

49



lookup table. For example, the user selects choice '8' from a menu

which is to be set in a four bit field; the procedure hexfield is called.

Hex-field is passed the starting bit and calls the procedures bit-set and

bitclear to set the bit pattern 1000.

The housekeeping utilities will manage such functions as list, save

routines, scan, modify and print microroutines. These utilities can be

called from both the ALU and Sequencer modules.

D. HEADER FILES

The use of header files in C language programs increases flexibility

and organization in the management of program segments. The

microcode generator program uses two header files to centralize the

definition of constants and externals. Declare.h contains all the

constants defined using the #define preprocessor feature. Extern.h

contains all the variables and pointers externally defined. The Declare.h

file is "#included" with each module. The Extern.h file is included with

all but the main module.

E. RUNNING THE CODE GENERATOR

As stated before, this tool is intended for the experienced micro-

programmer. The microprogramming techniques and structures for the

Am29203 Evaluation Board are contained in Reference 6, the Am29203

Evaluation Board User's Guide, and Reference 14, AMD's Data Book. The

program's help messages, where implemented, are derived from these two

references.

48

. ". . . . . .



AM2910 SEQUENCER BRANCH ADDRESS MENU

You have chosen a command which requires a value in the

register/counter

ENTER YOUR BRANCH ADDRESS FIELD
H for HELP with this program
R to RETURN to a higher level

222
This is the address being used. 222

Docu-word:
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 4

Microword:
XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXlO0010001001I

ffff ffff e227

AM2910 SEQUENCER CONDITION SELECT MENU

You have chosen an AM2910 Sequencer Command which requires a
conditional test

What do you want to do next?

Type a P for FORCED PASS - unconditional
F for FORCED FAIL
T to TEST the condition
H for HELP with this program
R to RETURN to higher level

f

Docu-word:
000000020000000000-1 0000 4

Microword:
XXXXXXXXXXXXXXXX XXXXXXXXXXOX1000 XXIO0010001001 1

ffff ffd8 e227

C. UTILITIES

The Utilities module contains many support procedures. The pro-

cedures binaryfield, dualfield, octal-field and hex-field convert a

selected function to the needed bit pattern in respective binary, dual,

octal and hex sized fields. This is done using a SWITCH statement as a

47



the paragraph above) depending on the value in the present docu-field.

The docu-field. is reset with the code corresponding to the class of

conditional test newly requested, and the microword is set. The

resulting microword for the "conditional jump via register/pipeline" with

requested branch address and conditional test is displayed, and the

main menu is again written to the screen. The following is an edited

version of the sequence of events as seen on the monitor screen when

the above example is run using the microcode generator. Appendix A is

an unedited record of a sample session using the code generator.

MASTER AM2910 SEQUENCER MENU

What do you want to do next?
Enter a 0 to select SEQUENCER COMMAND

H for HELP with this program
R to RETURN to system

0

AM2910 SEQUENCER COMMAND MENU

Which AM2910 Sequencer Command do you wish to Chose?

Enter a 0 JUMP ZERO - JZ
1 CONDITIONAL JUMP SUBROUTINE - CJS
2 JUMP MAP - JMAP

7 CONDITIONAL JUMP VIA REGISTER OR PIPELINE

F THREE WAY BRANCH - TWB
H HELP with this program
R RETURN to higher level

7

Docu-word:
00000000000000000000000 4

Microword:
XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXO111

ffff ffff f f f7

46

. . .. . ... :....... ..... . . ... - .- ..- : ., ... ..... ..- .- .-. .. 1 ... - .- .. . . . . -. : .. . : .. ... ..



address function needs no subdivision); and choice "the pointer to the

first digit of the branch address entered." The branch address'

corresponding docu-field status is checked; if it is not zero, the user is

again prompted to confirm the change. Tf the branch address docu-field

is zero, or confirmation to change the branch address is received, then

the address requested is placed (in binary) in the microword.

The branch address case (number 19) of Field-set also checks

the status of the docu-field function for register A and B selection.

This is done because the two functions; selecting the branch address

and selecting the A and B registers, share the bits from 36 to 43. The

compatibility algorithm is used to find a compatible bit pattern if

possible.

After the branch address is selected the menu for selecting the

desired conditional test is written to the screen. The user's options are

to select a forced pass, forced fail or to go to another menu to select

the exact test desired. Field set is called with field cnt 25 for the

conditional testing case of Fieldset's SWITCH; subset z 1, 2, 3 or 4;

choice "pointer to the choice for the particular test desired." The

subset code is assigned according to which fields need to be set for

the conditional tests function. All the different conditional tests are set

using four different groups of physical fields. The value I means that

the Command Enable field (bit 26) is set; 2 means that the Command

Enable field and the Command field (bits 28-31) are set; 3 and 4 mean

that the fields at bit positions 26,28,18,20 are all set.

First the conditional tests function docu-field is checked; if it is

not zero then the appropriate physical fields are erased (according to

45



p

sequencer); sub set 4 (the sequencer command function divides the

sequencer codes into four classes); and choice = '7'. A subset value of

1 would mean that only the sequencer logical field is coded. (The

sequencer field is coded for all cases.) A 2 means that both the

sequencer and branch address fields are coded. A 3 means that

conditional tests are set. A 4 (the value in this example) means that all

three functions; the sequencer field, the branch address field and

conditional test fields are set.

The first step is to check the history of the function in the

appropriate docu-word field. If the docu-field's value is zero, then it is

set to 4 (passed from the subset parameter), this stores the information

that a class 4 sequencer code is being set. Fieldset then places the

proper bit pattern for a choice '7, "conditional jump via

register/pipeline", in the sequencer physical field; bits 44-47 are set to

0111.

However, if the docu-field for the sequencer function is already

1, 2, 3 or 4, then the sequencer code field has been set by a previous

request. The user is then prompted to confirm that he desires to

change the sequencer code. If so, then fields previously set are erased

(set to 'XXX...'; these are indicated by the code in the docu-field), the

new sequencer code is set, and the docu-field is set to 4.

After the sequencer code is set, the menu for selecting the

branch address is written to the screen. The user is then prompted to

enter the desired branch address. The branch address select procedure

then calls Field-set with field cnt 19 (the SWITCH case in Field-set

which manages coding the branch address); sub-set -1 (the branch .-

44

. .-...



vP

has been set previously, and a message is written to the screen for the

user to confirm that he intends to change the furtion. If the user

does not confirm, no changes are made to the microword or docu-word.

If a change is confirmed then the docu-field and microword are both

modified to represent the new choice. If the previous function set

other physical fields then the old docu-field value will indicate which

other physical fields need to be erased or reset.

When the requested function shares physical microword fields

with other functions, the status of the doc-u-field's of those other

functions must be checked also. If their docu-field values are zern

then no conflict exists. However, if they have been set, then a potential

conflict exists. If both functions have no alternate bit patterns, then a

message is written to the screen informing the user that a conflict

exists; no changes will be made. If one or both functions have alternate

bit patterns then a compatibility checking algorithm provides a

compatible bit pattern if one exists, or produces an error message. The

compatibility algorithm is discussed later in this chapter.

For a fairly complex example illustrating the use of Docu and

Fieldset consider the selection of a sequencer control code. The user.

selects "sequencer command" from the main menu; then selects, for

example, choice '7', the "conditional jump via register/pipeline" command.

This is a sequencer command which requires a value be placed in the

branch address field of the microword and provides for conditional

testing as well. The main SWITCH statement in the command select

procedure of the sequencer module calls the Field _set utility with

parameters fieldcnt 24 (the Fieldset SWITCH's case concerning the

43

. . d ' -

-.- _._ ._ _ .. . *. ' . ' _ f * = q ,"
'



data structures since they establish, in the cases of SWITCH statements,

the relationships and dependencies between the physical bit fields of

the microword and the functional docu fields. That is, they use the

function requests and the "documentation" or history of requests for a

particular microword as input and by following the logic contained in

the SWITCH cases, produce the properly coded bit pattern for that

microword.

4. Field set Utility

The Field-set utility consists of a SWITCH statement with a case

for each physical field. Fieldset is called whenever a user selects a

function to be microcoded. The parameters passed to Field-set are

field cnt, sub-set and choice. Fieldcnt is the argument to Field-set's

main SWITCH and indicates the case which refers to the appropriate

physical field. Subset contains the integer code which is used in the

docu-word to distinguish between classes of functions. Choice holds the

character pointer indicating the menu option the user selected. In most

menu functions, the "choice" is eventually converted by a SWITCH to the

bit pattern used in the microword.

Each case in Field set's SWITCH is a small procedure in itself.

In general, when a case is selected it first checks the status of the

corresponding docu-field. As discussed in the previous section, the

corresponding docu-field value will be zero if it isn't set and a -1 or

positive integer if it is set. When the appropriate case checks the

docu-field status, if the value is zero, then the proper coded bit

pattern is placed in the microword and the docu-field is set to -1 or a

positive integer. If, however, the docu-field value is not zero, then it

42

........-........ '..."............".-..........".................-" ........".............."........"....."........"...... " l" " ...



L

2. The Docu-word

The Docu-word is a 24 element, integer array data structure

used to "remember" the function choices requested by the user. This

"documentation" feature of saving all function choices made by the user

is necessary to provide such user-friendly features as warning the user

when he has requested functions which produce conflicting microcode

and allowing the user to change previously created microwords. A

docu-word is created as each microword is built. Each element of the

array corresponds to a "docu-field" which represents a function

available in the microinstruction.

Each Evaluation Board function is represented as an element of

the docu-word. The entire docu-word is initialized with zeros,

indicating that no functions are requested. A docu-field assigned the

value -1 means the function it represents has been requested by the

user and the particular choice can be obtained from reading the

appropriate bit field in the microword. This code is used when there is

no overlapping or multiple function. A positive integer in a docu-field

means the corresponding function has been requested and the value of

the integer indicates a particular sub-function choice.

3. Docu Utility

The Docu utility consists of a SWITCH construct using the

selected function's docu-field as the case value. Each case assigns the

proper code, as described above, to the selected docu-field to store the

user's function requests. Docu is called from the utility Field_set; both

* procedures are in the utilities module. Docu and Field set, (Field-set

will be described in the next section) although used as utilities, are also

41

0'.

. .-.



in the microword. The register select fields and branch address fields

share microword bits 36-43.2 The command and shift fields share bits

28-31. Steering bits 26 and 27 control the enabling of the command and

shift fields respectively. That is, when bit 26, the command enable field

is turned on, the command field is enabled in bits 28-31. When bit 27,

the shift enable field, is on the shift field is enabled in bits 28-31. If

both the steering bits are on then the field is shared in time as well as

spatially. The microword won't make sense unless a compatible bit

pattern between the shift and command functions can be found. When

microprogramming by hand, this is the problem the programmer must

solve in order to optimize his program. The ALU module of the design

tool implements a procedure which checks for compatible bit patterns

when potentially conflicting functions are requested. If no compatible

pattern can be found, the two functions must be coded in two separate

microwords. Further detail on the specific interrelationships of the

" . microword functions can be found in Reference 6.

The microword, itself, is implemented in a character array data

structure. It is initialized at the start of the program with X's which

represent unassigned or "don't cares"; if any remain after the process,

they are assigned a one automatically. The microword is displayed, at

appropriate points in the user's session, bit-by-bit and as twelve hexa-

decimal values, using the utilities Display word and Display in hex.

2 Chapter two uses the conventional bit numbering method of right
to left (47-0). However, in this chapter the microword bits are
numbered 0-47 from left to right. This conforms to the element numbers
in the microword array. This method is used since the programs'
source code is written this way, and the reader can more easily refer to

" . the listings provided in Appendix B.

40

o,



patterns. It compares the requested function's bit pattern against the

STRUCTURE, and then chooses a compatible pattern. Appendix C

contains the source code of the test program which demonstrates this.

This algorithm needs to be incorporated into Fieldset's cases which

incorporate the ALU functions. When there is a conflict, Fieldset needs

to read the microword's "history" by checking the docu-word and then

make the compatibility check. If a compatible pattern is found, the

microword is set, the docu-word is coded to reflect the new function

added to the word, plus an indication is needed of the possible conflict.

This is necessary in case the user wants to further modify the

microword.
0

G. SUMMARY

The microcode generator's program modules and function imple-

mentations have been described detailing the data structures used and

the support utilities an" files provided. To show how easy the program

is to use a guide to running the program was provided. The next

chapter will discuss some conclusions and recommendations derived from

this project.

54

0 l ' " "'-i ,-.. f' -, -. . -. . '" " . T - i -. , ' . i " - - - - - _ . ."- f - f . ."



V. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

The microcode generator is a needed tool for the microprogrammer

and/or computer designer. The coding of microwords at the level of the

machine's hardware involves detailed manipulation of the micro-

programmed control unit's control lines, registers and functional units.

The microword fields' complexity is directly correlated to the number of

parallel functions that the microword can invoke. As detailed in chapter

four, there are several shared bit fields in the microword used in the

microcode generator. The program's ability to manage function conflicts

in a "user-friendly" manner relieves the user of the "overhead" of

tracking the potential conflicts as he designs his routines. The solution

of this function conflict problem is demonstrated in the sample program

provided in Appendix C. This compatibility algorithm compares the bit

pattern of the requested function to a C STRUCTURE holding the

possible bit patterns of a conflicting, previously selected function. If it

exists, a compatible bit pattern is found and placed in the proper

position in the microword. The microcode generator also prevents the

user from making simple mistakes such as writing a '1' instead of a '0'.

The program "writes" the proper digit once the user chooses the

function desired.

The choice of C for the programming language in which to write the

code generator was perfect for the application. The VAX 780/Unix

system was predetermined in that it was convenient, accessible and the

55

0 . . .



most powerful system in the department. The C language is an integral

part of that system. C is difficult to learn because it is intended as a

production language, not an educational tool. It's error messages are

*not very specific (eg. BUS ERROR - CORE DUMPED). It is, being a

systems language, very flexible. There are few constructs to learn

since everything is done with functions. The standard C function

library provides all I/O functions since there are none in the language

itself. The housekeeping functions which require using system calls to

open/close files should be easier to implement in C. The Unix operating

system is mostly written in C, so the two environments, C and Unix, are

highly compatible.

The microcode generator design is approximately 75 percent opera-

tional. The Sequencer portion, most utilities and an elementary version

of the ALU is completed. Initial testing on the Sequencer is complete.

The program needs to be used in a design environment to find further

bugs in either concept or implementation. Algorithms have been tested

successfully which solve the shared field problems in the ALU. The

function compatibility solution test program is shown in Appendix C.

I am satisfied that the decision to use the menu-driven method Was

the best way to implement the code generator. As discussed in the

implementation chapter, the equivalent number of commands needed

would be too great to use the command-driven method. The menus do

become very familiar after prolonged use of the program. The slight

0 impatience felt is a small price for the program's simplicity of execution.

56



0

B. WHAT'S NEXT

The obvious next step is to finish the implementation of the AL!'

and fill in the ALU portions of the Docu and Field set utilities. The

housekeeping functions also need implementation. As discussed pre-

viously, the compatibility test program will solve the function conflict

problem. The housekeeping utilities can be completed by writing the

routines to open files, and then using system calls to save and print

the routines with user defined names.

A next step could be to adapt the program to run on a workstation

used for computer design. Some research is needed to select an appro-

priate workstation. Some attributes should be: that it runs Unix

(initially) and that it is readily accessible to students. A move to

another Unix system would facilitate benchmarking between the VAX and

the new system. Adapting the code generator to systems with different

input devices is essential to studying the man/machine interface aspects

of this project. As mentioned above, one drawback to the menu-driven

method of interaction is that the experienced user of the program can

become impatient as familiarity with the menus increases. The use of a

mouse, for example, as an alternative input device might improve this

situation. The mouse also presents the possibility of using more

creative graphics to enhance the use of menus. For example, sensitivP

selection areas could be provided on the screen for the execution of

frequently selected functions such as "display the microword", "erase a

string of bits in the microword," etc. Individuals have different ideas

of what the ideal method of communication with computers is; designers

have to try to deal with all, or at least most computer users.

57



The ultimate goal in the level of complexity for this microcode

generator is to be independent of the target machine. This project was

targeted for a specific machine and so has not yet reached the ultimate

goal. After this implementation is completed the next step is to write

the program to handle some area of generalization. The user should

enter certain constants concerning his machine either at the beginning

or during each coding session. In the context of the C language,

header files for many specific machines could be developed. The user

obtains only the header files he needs. A configuration program may

need to be developed so that the basic program could be configured by

the user at one initial session. There are an infinite number of

approaches to take in the continued development and maintenance of the

code generator. In any case, the non-specific microcode generator

would be an invaluable tool for a designer working with the development

of microprogrammed instruction sets.

C. SUMMARY

The general topic of microprogramming was discussed in terms of

the microprogrammed control unit. Software Engineering theory and

practice was outlined in chapter three. The design approach used in

this project was developed using these principles. Chapter four

discussed significant points as addressed in the implementation of the C

language program. An important point is that vertical microprogramming

techniques, the sharing of function fields in the microword, give rise to

potential conflicts between the bit patterns required for the conflicting

functions. This is one of many tedious tasks for the microprogrammer.

51



This thesis has addressed the problem of automating the process of

functional microprogramming and provided some solutions to the

approach and implementation of a microcode generator.

59

.°°*. .



LIST OF REFERENCES

1. "Parnas, D. L., "On the Criteria To Be Used in Decomposing Systems
into Modules," Communications of the ACM, December 1972.

2. Myers, G. J., Advances _in Computer Architecture 2nd ed., Wiley,
1978.

3. Wilkes, M. V., "The Best Way to Design an Automatic Calculating
Machine," paper presented at Manchester University Computer
Inaugural Conference, Manchester, England, July 1951.

4. Stone, H. S., gen. ed., Introduction to Computer Architecture 2nd
ed., SRA Computer Science Series, 1980.

5. Tanenbaum, A. S., Structured Computer Organization 2nd ed.,
Prentice-Hall, 1984.

6. Hartrum, T. C., Lamont, G. B. and Ross, A. A., "AMD Am29203
Evaluation Board User's Guide," preliminary draft, 1983.

7. Pressman, R. S., Software Engineering: A Practitioner's Approach,
McGraw-Hill, 1982.

8. Dijkstra, E. W., "Go-To Considered Harmful," Letter to the Editor,
Communications of the ACM, Vol 11, No. 3, March 1968.

9. MacLennan, B. J., Principles of Programming Languages, Holt,
Rinehart and Winston, 1983.

10. Kernighan, B. W. and Ritchie, D. M., The C Programming Language,
Prentice-Hall, 1978.

11. Shneiderman, B., "Human Factors Experiments in DesPinin.
Interactive Systems," IEEE Computer, December 1979.

12. Freeman, P., "Fundamentals of Design," Tutorial on Software
Design Techniques, 4th ed., IEEE Computer Society Press, 1983.

13. Mick, J. and Brick, J., Bit-Slice Microprocessor Design, McGraw-
Hill, 1980.

14. Advanced Micro Devices, Bipolar Microprocessor Logic and
Interface Data Book, 1983.

60

• .:-. ,.: ,. .-...-....-.-.....-. ; -.--.--------------- -..-------.----.--------- -.------ .."-------- -. :----------.-.----



APPENDIX A

The following is a record of a terminal session running the Sequencer

module.

test3
MASTER AM2910 SEQUENCER MENU

XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX

ffff ffff ffff

The X s indicate bits which are not yet defined.

What do you want to do next?
Enter a 0 to select SEQUENCER COMMAND

H for HELP with this program

R to RETURN to system

0

61

I - I



AM2910 SEQUENCER COMMAND MENU

Which AM2910 Sequencer Command do you wish to Chose?

Enter a 0 JUMP ZERO - JZ
1 CONDITIONAL JUMP SUBROUTINE - CJS
2 JUMP MAP - JMAP
3 CONDITIONAL JUMP PIPELINE - CJP
4 PUSH/CONDITIONAL LOAD REGISTER/PIPELINE - PUSH
5 CONDITIONAL JUMP SUB. VIA REG OR PIPELINE - JSRP
6 CONDITIONAL JUMP VECTOR - CJV
7 CONDITIONAL JUMP VIA REGISTER OR PIPELINE
8 REPEAT LOOP, COUNTER NOT EQUAL 0 - RFCT
9 REPEAT PIPELINE, COUNTER NOT EQUAL 0 - RPCT
A CONDITIONAL RETURN FROM SUBROUTINE
B CONDITIONAL JUMP PIPELINE AND POP
C LOAD COUNTER AND CONTINUE - LDCT
D TEST FOR END OF LOOP - LOOP
E CONTINUE - CONT

F THREE WAY BRANCH - TWB
H HELP with this program
R RETURN to higher level

0

62

. ....



MASTER AM2910 SEQUENCER MENU

xxxxxxxxxxxxxxxx XXXXXXXXXXXXXXXX XXXXXXXXXXXXOOOO

ffff ffff fffO

The X s indicate bits which are not yet defined.

What do you want to do next?

Enter a 0 to select SEQUENCER COMM4AND

H for HELP with this program
R to RETURN to system

0

63



AM2910 SEQUENCER COMMAND MENU

Which AM2910 Sequencer Command do you wish to Chose?

Enter a 0 JUMP ZERO - JZ
1 CONDITIONAL JUMP SUBROUTINE - CJS
2 JUMP MAP - JMAP
3 CONDITIONAL JUMP PIPELINE - CJP

4 PUSH/CONDITIONAL LOAD REGISTER/PIPELINE - PUSH

5 CONDITIONAL JUMP SUB. VIA REG OR PIPELINE - JSRP
6 CONDITIONAL JUMP VECTOR - CJV
7 CONDITIONAL JUMP VIA REGISTER OR PIPELINE

8 REPEAT LOOP, COUNTER NOT EQUAL 0 - RFCT
9 REPEAT PIPELINE, COUNTER NOT EQUAL 0 - RPCT

A CONDITIONAL RETURN FROM SUBROUTINE

B CONDITIONAL JUMP PIPELINE AND POP
C LOAD COUNTER AND CONTINUE - LDCT

D TEST FOR END OF LOOP - LOOP
E CONTINUE - CONT
F THREE WAY BRANCH - TWB
H HELP with this program
R RETURN to higher level

4
The sequencer code is already set.
Do you want to change it?

y

64 .

* - . -.- -t ~2.-ta,.4a.Z.2.. . . . . .--



AM2910 SEQUENCER BRANCH ADDRESS MENU

You have chosen a command which requires a value in the
register/counter

What do you want to do next?

ENTER YOUR BRANCH ADDRESS FIELD
H for HELP with this program
R to RETURN to a higher level

123
This is the address being used.123

65



AM2910 SEQUENCER CONDITION SELECT MENU

You have chosen an AM2910 Sequencer Command which requires a
conditional test

What do you want to do next?

Type a P for FORCED PASS - unconditional
F for FORCED FAIL
T to TEST the condition
H for HELP with this program
R to RETURN to higher level

f

66 R



REMINDER INFORMATION

You have chosen a PUSH'CONDITIONAL LOAD REGISTER COU"NTER

PUSH
as the AM2910 Sequencer Command

This command MUST precede the following commands:

RFCT REPEAT LOOP, COUNTER NOT EQUAL 0

CJPP CONDITIONAL JUMP PIPELINE AND POP

LOOP TEST FOR END OF LOOP

TWB THREE WAY BRANCH

Press enter to continue

67



AM-9904 CONDITIONAL TEST MENU:

There are two steps to selecting a test condition

1, select a REGISTER to be used
2', select a TEST on that register

This menu selects the register ot two special tests

which combine two registers

What do you want to do?

Type a 0 for the Micro status register
1 for the MACRO Status Register
2 for the Immediate Status Inputs
3 for Immediate Sign EXOR MACRO Sign

4 for Immediate Sign EXNOR MARCO Sign

H for HELP with this menu
R to RETURN to a higher level

0



AM29l0 SEQUENCER CONDITION SELECT MENUt

You have chosen an AM2910 Sequencer Command which requires a
conditional test

What do you want to do next?

Type a P for FORCED PASS - unconditional
F for FORCED FAIL
T to TEST the condition
H for HELP with this program
R to RETURN to higher level

t

80



AM2910 SEQUENCER COMMAND MENU

Which AM2910 Sequencer Command do you wish to Chos,?

Enter a 0 JUMP ZERO - JZ
1 CONDITIONAL JUMP SUBROUTINE - CJS
2 JUMP MAP - JMAP
3 CONDITIONAL JUMP PIPELINE - CJP

4 PUSH/CONDITIONAL LOAD REGISTER/PIPELINE - PUSH
5 CONDITIONAL JUMP SUB. VIA REG OR PIPELINE - JSRP
6 CONDITIONAL JUMP VECTOR - CJV
7 CONDITIONAL JUMP VIA REGISTER OR PIPELINE
8 REPEAT LOOP, COUNTER NOT EQUAL 0 - RFCT
9 REPEAT PIPELINE, COUNTER NOT EQUAL 0 - RPCT
A CONDITIONAL RETURN FROM SUBROUTINE
B CONDITIONAL JUMP PIPELINE AND POP
C LOAD COUNTER AND CONTINUE - LDCT

D TEST FOR END OF LOOP - LOOP
E CONTINUE - CONT
F THREE WAY BRANCH - TWB

H HELP with this program
R RETURN to higher level

d
The sequencer code is already set.
Do you want to change it?

y

79

" °



MASTER AM2910 SEQUENCER MENU

XXXXXXXXXXXXXXXX XXXXXXXXXX1XXXXX XXXXXXXXXXXXIO 10
ffff ffff fffa

The X s indicate bits which are not yet defined.

What do you want to do next?
Enter a 0 to select SEQUENCER COMMAND

H for HELP with this program
R to RETURN to system

0

78



AM2910 SEQUENCER CONDITION SELECT MENU

You have chosen an AM2910 Sequencer Command which requires
conditional test

What do you want to do next?

Type a P for FORCED PASS -unconditional

F for FORCED FAIL
T to TEST the condition
H for HELP with this program
R to RETURN to higher level

P

77



AM2910 SEQUENCER COMMAND MENU

Which AM2910 Sequencer Command do you wish to Chose?

Enter a 0 JUMP ZERO - JZ
1 CONDITIONAL JUMP SUBROUTINE - CJS

2 JUMP MAP - JMAP
3 CONDITIONAL JUMP PIPELINE - CJP

4 PUSH/CONDITIONAL LOAD REGISTER/PIPELINE - PUSH
5 CONDITIONAL JUMP SUB. VIA REG OR PIPELINE - JSRP
6 CONDITIONAL JUMP VECTOR - CJV
7 CONDITIONAL JUMP VIA REGISTER OR PIPELINE
8 REPEAT LOOP, COUNTER NOT EQUAL 0 - RFCT
9 REPEAT PIPELINE, COUNTER NOT EQ1'AL 0 - RPCT

A CONDITIONAL RETURN FROM SUBROUTINE
B CONDITIONAL JUMP PIPELINE AND POP
C LOAD COUNTER AND CONTINUE - LDCT
D TEST FOR END OF LOOP - LOOP

E CONTINUE - CONT
F THREE WAY BRANCH - TWB

H HELP with this program
R RETURN to higher level

a
The sequencer code is already set.
Do you want to change it?

y

76

i- -- --- . • .- - . - -" i -" - - .' .- -.- -- . . - -.. . . - .- _' . ! . - . ,-. -. . - . . -N . -



MASTER AM2910 SEQUENCER MENU

xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx XX1000 1000111 100
ffff ffff e23c

The X s indicate bits which are not yet defined.

What do you want to do next?
Enter a 0 to select SEQUENCER COMMAND

H for HELP with this program
R to RETURN to system

0

75



REMINDER INFORMATION

You have chosen a LOAD COUNTER AND CONTINUE -LDCT- as the

AM2910 Sequencer Command

This command MUST precede the following:

JRP CONDITIONAL JUMP REGISTER OR PIPELINE
RPCT REPEAT PIPELINE, COUNTER NOT EQUAL 0

Press enter to continue

74



AM2910 SEQUENCER BRANCH ADDRESS MENU

You have chosen a command which requires a value in the
register/counter

What do you want to do next?

ENTER YOUR BRANCH ADDRESS FIELD
H for HELP with this program
R to RETURN to a higher level

223
This is the address being used.223

73



AM2910 SEQUENCER COMMAND MENU

Which AM2910 Sequencer Command do you wish to Chose?

Enter a 0 JUMP ZERO - JZ
1 CONDITIONAL JUMP SUBROUTINE - CJS
2 JUMP MAP - JMAP
3 CONDITIONAL JUMP PIPELINE - CJP
4 PUSH/CONDITIONAL LOAD REGISTER/PIPELINE - PUSH
5 CONDITIONAL JUMP SUB. VIA REG OR PIPELINE - JSRP
6 CONDITIONAL JUMP VECTOR - CJV
7 CONDITIONAL JUMP VIA REGISTER OR PIPELINE
8 REPEAT LOOP, COUNTER NOT EQUAL 0 - RFCT
9 REPEAT PIPELINE, COUNTER NOT EQUAL 0 - RPCT
A CONDITIONAL RETURN FROM SUBROUTINE

B CONDITIONAL JUMP PIPELINE AND POP
C LOAD COUNTER AND CONTINUE - LDCT
D TEST FOR END OF LOOP - LOOP

E CONTINUE - CONT
F THREE WAY BRANCH - TWB
H HELP with this program
R RETURN to higher level

c
The sequencer code is already set.
Do you want to change it?
y

72



II
MASTER AM2910 SEQUENCER MENU

XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXI001

ffff ffff fff9

The X s indicate bits which are not yet defined.

What do you want to do next?
Enter a 0 to select SEQUENCER COMMAND

H for HELP with this program
R to RETURN to system

0

71

• i

- ,

S °,.

-.

--1*

.I?



REMINDER INFORMATION

You have chosen one of the following AM2910 Sequencer
Commands:

JRP JUMP REGISTER OR PIPELINE
RPCT REPEAT PIPELINE, COUNTER NOT EQUAL 0

These commands MUST be preceded by a
LDCT - LOAD COUNTER AND CONTINUE

Press enter to continue

700.



AM2910 SEQUENCER COMMAND MEN:

Which AM2910 Sequencer Command do you wish to Chose.

Enter a 0 JUMP ZERO - JZ
1 CONDITIONAL JUMP SUBROUTINE - CJS
2 JUMP MAP - JMAP
3 CONDITIONAL JUMP PIPELINE - CJP
4 PUSH/CONDITIONAL LOAD REGISTER/PIPELINE - PUSH
5 CONDITIONAL JUMP SUB. VIA REG OR PIPELINE - JSRP
6 CONDITIONAL JUMP VECTOR - CJV
7 CONDITIONAL JUMP VIA REGISTER OR PIPELINE
8 REPEAT LOOP, COUNTER NOT EQUAL 0 - RFCT
9 REPEAT PIPELINE, COUNTER NOT EQUAL 0 - RPCT
A CONDITIONAL RETURN FROM SUBROUTINE
B CONDITIONAL JUMP PIPELINE AND POP
C LOAD COUNTER AND CONTINUE - LDCT
D TEST FOR END OF LOOP - LOOP
E CONTINUE - CONT
F THREE WAY BRANCH - TWB
H HELP with this program
R RETURN to higher level

9
The sequencer code is already set.
Do you want to change it?
V

6

69

0!

: - - .. - .- A.- 4a s .- " _ - i " . . - I - ..



MASTER AM2910 SEQUENCER MENU

XXXXXXXXXXXXXXXX XXXXXXXXXXOXlOOO XX0O001OO1 10100
ffff ffd8 d234

The X s indicate bits which are not yet defined.

What do you want to do next?
Enter a 3 to select SEQUENCER COMMAND

H for HELP with this program
R to RETURN to system

0

58



AM2904 CONDITIONAL TEST MENU

What condition do you want reflected by the condition'

Type a 0 for (SIGN exor OVR) or ZERO

1 for (SIGN exnor OVR) and not ZERO

2 for (SIGN exor OVR)

3 for (SIGN exnor OVR)
4 for ZERO
5 for not ZERO

6 for OVR
7 for not OVR
8 for (CARRY or ZERO)

9 for (not CARRY) or not ZERO)

A for CARRY
B for not CARRY

C for (not CARRY or ZERO)

D for (CARRY or not ZERO)

E for SIGN

F for not SIGN

H for HELP with this menu

R to RETURN to a higher level

0

82

-0 - - - - - - -



REMINDER INFORMATION

You have chosen one of the following 2910 Sequencer Commands

RFCT REPEAT LOOP, COUNTER NOT EQUAL 0
CJPP CONDITIONAL JUMP PIPELINE AND POP
LOOP TEST FOR END OF LOOP
TWB THREE WAY BRANCH

These commands MUST be preceded by a

PUSH - PUSH/CONDITIONAL LOAD REGISTER/COUNTER

Press enter to continue

83

.0



MASTER AM2910 SEQUENCER MENU'

XXXXXXXXXXXXXXXX xxoxololxxoxlool XXXXXXXXXXXXlI1
4ffff d5d9 fffd

The X s indicate bits which are not yet defined.

What do you want to do next?
Enter a 0 to select SEQUENCER COMMAND

H for HELP with this program
R to RETURN to system

0

84



AM2910 SEQUENCER COMMAND MENU7

Which AM2910 Sequencer Command do you wish to Chose?

Enter a 0 JUMP ZERO - JZ
1 CONDITIONAL JUMP SUBROUTINE - CJS

2 JUMP MAP - JMAP
3 CONDITIONAL JUMP PIPELINE - CJP

4 PUSH/CONDITIONAL LOAD REGISTER/PIPELINE - PUSH
5 CONDITIONAL JUMP SUB. VIA REG OR PIPELINE - JSRP
6 CONDITIONAL JUMP VECTOR - CJV
7 CONDITIONAL JUMP VIA REGISTER OR PIPELINE
8 REPEAT LOOP, COUNTER NOT EQUAL 0 - RFCT
9 REPEAT PIPELINE, COUNTER NOT EQUAL 0 - RPCT
A CONDITIONAL RETURN FROM SUBROUTINE
B CONDITIONAL JUMP PIPELINE AND POP

C LOAD COUNTER AND CONTINUE - LDCT
D TEST FOR END OF LOOP - LOOP
E CONTINUE - CONT

F THREE WAY BRANCH - TWB
H HELP with this program
R RETURN to higher level

7
The sequencer code is already set.

Do you want to change it?

y

85

.... o .



AM2910 SEQUENCER BRANCH ADDRESS MENU

You have chosen a command which requires a value in the
register/counter

What do you want to do next?

ENTER YOUR BRANCH ADDRESS FIELD
H for HELP with this program
R to RETURN to a higher level

fff
This is the address being used.fff
Invalid input, the max hex number is 3FF.
Press enter to continue

86



AM2910 SEQUENCER BRANCH ADDRESS MENU

You have chosen a command which requires a value in the
register/counter

What do you want to do next?

ENTER YOUR BRANCH ADDRESS FIELD
H for HELP with this program
R to RETURN to a higher level

333
This is the address being used.333

87



AM2910 SEQUENCER CONDITION SELECT MENU

You have chosen an AM2910 Sequencer Command which requires a

conditional test

What do you want to do next?

Type a P for FORCED PASS - unconditional
F for FORCED FAIL
T to TEST the condition
H for HELP with this program
R to RETURN to higher level

t

88



AM2904 CONDITIONAL TEST MEN[.

There are two steps to selecting a test condition
1) select a REGISTER to be used
2' select a TEST on that register

This menu selects the register ot two special tests

which combine two registers

What do you want to do?

Type a 0 for the Micro status register
1 for the MACRO Status Register
2 for the Immediate Status Inputs
3 for Immediate Sign EXOR MACRO Sign
4 for Immediate Sign EXNOR MARCO Sign
H for HELP with this menu
R to RETURN to a higher level

4



REMINDER INFORMATION

You have chosen one of the following AM2910 Sequencer

Commands:

JRP JUMP REGISTER OR PIPELINE

RPCT REPEAT PIPELINE, COUNTER NOT EQUAL 0

These commands MUST be preceded by a

LDCT - LOAD COUNTER AND CONTINUE

Press enter to continue

90



MASTER AM92910 SEQUENCER MENU

XXXXXXXXXXXXXXXX XX0O1llIXXOX100l XXllOO110011OI1l
f ff f cfd9 f 3 37

The X s indicate bits which are not yet defined.

What do you want to do next?,
Enter a 0 to select SEQUENCER COMMAND

H for HELP with this programi
R to RETURN to system

0

91



AM2910 SEQUENCER COMMAND MENU

Which AM2910 Sequencer Command do you wish to Chospf?

Enter a 0 JUMP ZERO - JZ
1 CONDITIONAL JUMP SUBROUTINE - CJS
2 JUMP MAP - JMAP

3 CONDITIONAL JUMP PIPELINE - CJP
4 PUSH/CONDITIONAL LOAD REGISTER/PIPELINE - PUSH
5 CONDITIONAL JUMP SUB. VIA REG OR PIPELINE - JSRP
6 CONDITIONAL JUMP VECTOR - CJV

7 CONDITIONAL JUMP VIA REGISTER OR PIPELINE
8 REPEAT LOOP, COUNTER NOT EQUAL 0 - RFCT

9 REPEAT PIPELINE, COUNTER NOT EQUAL 0 - RPCT
A CONDITIONAL RETURN FROM SUBROUTINE
B CONDITIONAL JUMP PIPELINE AND POP

C LOAD COUNTER AND CONTINUE - LDCT
D TEST FOR END OF LOOP - LOOP
E CONTINUE - CONT
F THREE WAY BRANCH - TWB
H HELP with this program
R RETURN to higher level

f
The sequencer code is already set.

Do you want to change it?

y

92



AM2910 SEQUENCER BRANCH ADDRESS MENU

You have chosen a command which requires a value in the

register' counter

What do you want to do next?

ENTER YOUR BRANCH ADDRESS FIELD
H for HELP with this program
R to RETURN to a higher level

211
This is the address being used.211

93



AM2910 SEQUENCER CONDITION SELECT MENU

You have chosen an AM2910 Sequencer Command which requires a
conditional test

What do you want to do next?

Type a P for FORCED PASS - unconditional

F for FORCED FAIL
T to TEST the condition
H for HELP with this program
R to RETURN to higher level

t

94



AM2904 CONDITIONAL TEST MENU

There are two steps to selecting a test condition

1) select a REGISTER to be used
2) select a TEST on that register

This menu selects the register ot two special tests

which combine two registers

What do you want to do?

Type a 0 for the Micro status register
1 for the MACRO Status Register
2 for the Immediate Status Inputs

3 for Immediate Sign EXOR MACRO Sign
4 for Immediate Sign EXNOR MARCO Sign
H for HELP with this menu
R to RETURN to a higher level

95



= D-Ri55 164 EALUTION AND IMPLEENTTION 
OF A FUNCTIONL 

2/3
MICROPROGRAM GENERATOR(U) NAVAL POSTGRADUATE SCHOOL
MONTEREY CA D 8 STILTNER DEC 84

UNCLASSIFIED F/a 9/2 N



7. i

-- 4

,.I ic I Ifj2.5 -

t13.

W- 111112.r

1.8

jjj~I2 1111'* 1(111.6

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

...................................................................



AM2904 CONDITIONAL TEST MENU

What condition do you want reflected by the condition?

Type a 0 for (SIGN exor OVR) or ZERO
1 for (SIGN exnor OVR) and not ZERO
2 for (SIGN exor OVR)
3 for (SIGN exnor OVR)
4 for ZERO
5 for not ZERO
6 for OVR
7 for not OVR
8 for (CARRY or ZERO)
9 for (not CARRY) or (not ZERO)
A for CARRY
B for not CARRY
C for (not CARRY or ZERO)
D for (CARRY or not ZERO)
E for SIGN
F for not SIGN
H for HELP with this menu
R to RETURN to a higher level

f

96



REMINDER INFORMATION

You have chosen one of the following 2910 Sequencer Commands

RFCT REPEAT LOOP, COUNTER NOT EQUAL 0
CJPP CONDITIONAL JUMP PIPELINE AND POP
LOOP TEST FOR END OF LOOP
TWB THREE WAY BRANCH

These commands MUST be preceded by a

PUSH - PUSH/CONDITIONAL LOAD REGISTER/COUNTER

Press enter to continue

9.

97a""



MASTER AM2910 SEQUENCER MENU

XxxXXXXXXXXXXXXX XXl1ll1.XXOXlO0l XXlQOOOIOO0l1 11
ffff efd9 ellf

The X s indicate bits which are not yet defined..-

What do you want to do next?
Enter a 0 to select SEQUENCER COMMAND.

H for HELP with this program
R to RETURN to system

0

98



AM2910 SEQUENCER COMMAND MENU
K° .

Which AM2910 Sequencer Command do you wish to Chose?

Enter a 0 JUMP ZERO - JZ
1 CONDITIONAL JUMP SUBROUTINE - CJS
2 JUMP MAP - JMAP
3 CONDITIONAL JUMP PIPELINE - CJP
4 PUSH/CONDITIONAL LOAD REGISTER/PIPELINE - PUSH
5 CONDITIONAL JUMP SUB. VIA REG OR PIPELINE - JSRP
6 CONDITIONAL JUMP VECTOR - CJV
7 CONDITIONAL JUMP VIA REGISTER OR PIPELINE
8 REPEAT LOOP, COUNTER NOT EQUAL 0 - RFCT
9 REPEAT PIPELINE, COUNTER NOT EQUAL 0 -RPCT "

A CONDITIONAL RETURN FROM SUBROUTINE
B CONDITIONAL JUMP PIPELINE AND POP
C LOAD COUNTER AND CONTINUE - LDCT
D TEST FOR END OF LOOP - LOOP
E CONTINUE - CONT
F THREE WAY BRANCH - TWB

H HELP with this program
R RETURN to higher level

r

99

. . ..



MASTER AM2910 SEQUENCER MENU

XXXXXXXXXXXXXXX XXl0l1llXXOXlO0l XX10000LOO0l 1111
Iffff efd9 elif

The X s indicate bits which are not yet defined.

What do you want to do next?
Enter a 0 to select SEQUENCER COMMAND

H for HELP with this program
*1R to RETURN to system

r
Do you really want to leave?
y

100



The following is a record of a terminal session running the ALU module.

% test2
MASTER AM29203 ALU MENU

XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX ''.-

ffff ffff ffff
The X s indicate bits which are not yet defined
The defaults for the AM29203 ALU are:

Register Address Select - bits 47-45 - A,B pipeline =
111

Instruction Enable - bit 44 - Disable = 1
Output Enable - bit 43 - Disable = 1
Source - bits 42-40 - DAQ 111
Destination - bits 39-36 - YBUS 1111
ALU Function - bits 35-32 - OR = 1111

What do you want to do next?
type a B to choose ALU FUNCTIONS

S to choose SPECIAL FUNCTIONS
H for HELP with this program
R to RETURN to higher level

b

101

................... .•



1-. : .7

AM29203 ALU BASIC FUNCTION SELECT

Enter the value corresponding to the function you wish to
perform

0 F = High
1 F = S - R - 1 + Carry In
2 F R - S - I + Carry In
3 R + S + Carry In
4 S + Carry In
5 (NOT S) + Carry In
6 R + Carry In
7 F = (NOT R) + Carry In
8 F = Low
9 F = (NOT R) AND S
A F = R EXCLUSIVE OR S
B F = R EXCLUSIVE OR S
C F = R AND S
D F = R NOR S
E F = R NAND S
F F = R OR S
H for HELp with this program
R to RETURN to higher level

0

102

S °Ii



AM29203 ALU SOURCE MENU

You have chosen one of the following AM29203 ALU functions:
F = High
F = R + Carry In
F + (NOT R) + Carry In
F = LOW

For these functions, the only allowed AM29203 ALU Sources
are:

Operand R Operand S Mnemonic

RAMA Q Register RAMAQ
Direct A Q Register DAQ

Type a 2 for RAMAQ
6 for DAQ
H for HELP with this program
R to RETURN to a higher level

6

103

.~~ ~ ~~ .. .-

. . 4

"- ,I

............... . . ....



AM29203 ALU DESTINATION MENU

Enter the value corresponding to the destination you
desire

0 RAMDA - F to RAM, Arithmetic Down Shift
1 RAMDL - F to RAM, Logical Down Shift
2 RAMQDA - Double Precision Arithmetic Down Shift
3 RAMQDL - Double Precision Logical Down Shift
4 RAM - F to RAM with parity
5 QD - F to Y, Down Shift Q
6 LOADQ - F to Q with parity
7 RAMQ - F to RAM with parity
8 RAMUPA - F to RAM, Arithmetic Up Shift
9 RAMUPL - F to RAM, Logical Up Shift
A RAMQUPA - Double Precision Arithmetic Up SHift
B RAMQUPL - Double Procision Logical Up SHift
C - F to Y only
D - F to Y, Up SHift Q
E SIGNEXT - SIOO to Y(i)
F RAMEXT - F to Y, Sign extend LSB
I Instruction Register
M Main Memory
H for HELP with this program
R to RETURN to higher level

104



You have chosen a down shift for this microword. There are

16 possible shift patterns, coded 0 thru F in bits 19

thru 16. Choose the shift pattern you desire from the

following set:
zero = 0 ->RAMn, 0 ->Qn

one = 1 ->RAMn, 1 -)Qn

two 0 -)RAMn, RAMO -)Mc, Mn -~Qn

three I - RAMn, RAMO ->Qn

four = Mc - RAMn, RAMO -)Qn

five = Mn ->RAMn, RAMO -) n

six = 0 -)RAMn, RAMO ->Qn

seven = 0 ->RAMn, RAMO -) n, QO -)Mc

eight = RAMO ->RAMn, QO - Qn, RAMO ->Mc

nine = Mc - RAMn, 00 - Qn, RAMO ->Mc

A = RAMO -)RAMn, QO -> n

B = Ic -)RAMn, RAMO -)Qn

C = Mc RAMn, RAMO ->Qn, 00 -Mc

D = Q0 - RAMn, RAMO -)Qn, 00O - Mc

E = In exor IOvr ->RAMn, RAMO ->Qn

F = Q0 - RAMn, RAMO -)Qn

H to get help with this procedure

N to back up one frame.

4

105



AM29203 ALU INSTRUCTION AND OUTPUT ENABLE MENU

Do you want the ALU results to appear on the Y-bus?
Type an Y for YES
Type a N for NO

y
Do you want to change the contents of any ALU

register
during this ALU operation?

Type an Y for YES
Type an N for NO

y

106



MASTER AM29203 ALU MENU

XXXO011001010000 XXXXXXXXXXXO0100 XXXXXXXXXXXXXXXX
e650 ffe4 ffff 

The X s indicate bits which are not yet defined
The defaults for the AM29203 ALU are:

Register Address Select - bits 47-45 - AB pipeline
111

Instruction Enable - bit 44 - Disable 1
Output Enable - bit 43 - Disable = 1
Source - bits 42-40 - DAQ = 111
Destination - bits 39-36 - YBUS = 1111
ALU Function - bits 35-32 - OR = 1111

What do you want to do next?
type a B to choose ALU FUNCTIONS

S to choose SPECIAL FUNCTIONS
H for HELP with this program
R to RETURN to higher level

r
Do you really want to return to mastermenu?

y
test2

107

7 . 6: "



MASTER AM29203 ALU MENU

XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX

ffff ffff ffff .,

The X s indicate bits which are not yet defined
The defaults for the AM29203 ALU are:

Register Address Select - bits 47-45 - A,B pipeline

Instruction Enable - bit 44 - Disable 1
Output Enable - bit 43 - Disable 1
Source - bits 42-40 - DAQ Ill
Destination - bits 39-36 - YBUS 1111
ALU Function - bits 35-32 - OR 1111

What do you want to do next?
type a B to choose ALU FUNCTIONS

S to choose SPECIAL FUNCTIONS
H for HELP with this program
R t-o RETURN to higher level

b

121

. . . -.- "



MASTER AM29203 ALU MENU

XXX0010101111100 XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX
e57c ffff ffff

The X s indicate bits which are not yet defined

The defaults for the AM29203 ALU are:
Register Address Select - bits 47-45 - A,B pipeline

Instruction Enable - bit 44 - Disable 1
Output Enable - bit 43 - Disable 1
Source - bits 42-40 - DAQ 11
Destination - bits 39-36 - YBUS 1111
ALU Function - bits 35-32 - OR 1111

What do you want to do next?
type a B to choose ALU FUNCTIONS

S to choose SPECIAL FUNCTIONS
H for HELP with this program
R to RETURN to higher level

r
Do you really want to return to mastermenu?
y
% test2

120

. . . . . . . ...



AM29203 ALU INSTRUCTION AND OUTPUT ENABLE MENU

Do you want the ALU results to appear on the Y--bus?

Type an Y for YES

Type a N for NO

y
Do you want to change the contents of any ALU

register
during this ALU operation?

Type an Y for YES
Type an N for NO

y

119



AM29203 ALU DESTINATION MENU

Enter the value corresponding to the destination you
desire

0 RAMDA - F to RAM, Arithmetic Down Shift
1 RAMDL - F to RAM, Logical Down Shift
2 RAMQDA - Double Precision Arithmetic Down Shift ""-
3 RAMQDL - Double Precision Logical Down Shift
4 RAM - F to RAM with parity
5 QD - F to Y, Down Shift Q
6 LOADQ - F to Q with parity
7 RAMQ - F to RAM with parity
8 RAMUPA - F to RAM, Arithmetic Up Shift
9 RAMUPL - F to RAM, Logical Up Shift
A RAMQUPA - Double Precision Arithmetic Up SHift
B RAMQUPL - Double Procision Logical Up SHift
C - F to Y only
D - F to Y, Up SHift Q
E SIGNEXT - SIOO to Y(i)
F RAMEXT - F to Y, Sign extend LSB
I Instruction Register
M Main Memory
H for HELP with this program
R to RETURN to higher level

7

118

- .7, A6.



AM29203 ALU SOURCE MENU

The souirce control default is DAQ

Operand R Operand S Mnemonic
Enter a 0 RAMA RAMB RAMAB

I RAMA Direct B RAMADB
2 RAMA Q Register RAMAQ
4 Direct A RAMB DARAMB
5 Direct A DirectB DADB
6 Direct A Q Register DAQ
I Instruction Register
P Pipeline Register
H for H with this program
R to RETURN to higher level

117

...........

. . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .. '.



AM29203 ALU BASIC FUNCTION SELECT

Enter the value corresponding to the function you wish to
perform

0 F = High

1 F = S - R - 1 + Carry In
2 F = R - S - 1 + Carry In
3 R + S + Carry In
4 S + Carry In
5 (NOT S) + Carry In
6 R + Carry In
7 F = (NOT R) + Carry In
8 F = Low
9 F = (NOT R) AND S
A F = R EXCLUSIVE OR S
B F = R EXCLUSIVE OR S
C F = R AND S

D F = R NOR S
E F = R NAND S

F F = R OR S
H for HELp with this program
R to RETURN to higher level

c

116 . .

. o



MASTER AM29203 ALU MENU

XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX--

ffff ffff ffff
The X s indicate bits which are not yet defined
The defaults for the AM29203 ALU are:

Register Address Select - bits 47-45 - A,B pipeline
111

Instruction Enable - bit 44 - Disable 1 1
Output Enable - bit 43 - Disable 1
Source - bits 42-40 - DAQ 111
Destination - bits 39-36 - YBUS 1111
ALU Function - bits 35-32 - OR 1111

What do you want to do next?
type a B to choose ALU FUNCTIONS

S to choose SPECIAL FUNCTIONS
H for HELP with this program
R to RETURN to higher level

b

115



MASTER AM29203 ALU MENU

0011000101110000 XXXXXXXXXXXXXXXX XXXXO101XXXXXXXX
3170 ffff f5ff 

The X s indicate bits which are not yet defined
The defaults for the AM29203 ALU are:

Register Address Select - bits 47-45 - A,B pipeline =

Instruction Enable - bit 44 - Disable = 1
Output Enable - bit 43 - Disable 1
Source - bits 42-40 - DAQ 111
Destination - bits 39-36 - YBUS 1111
ALU Function - bits 35-32 - OR = 1111

What do you want to do next?
type a B to choose ALU FUNCTIONS

S to choose SPECIAL FUNCTIONS
H for HELP with this program
R to RETURN to higher level

r
Do you really want to return to mastermenu?

y
% test2

114



AM29203 ALU RAM A REGISTER SELECT

Enter the value corresponding to the RAM A

Register
you wish to select

0 RAMA A Register 0
1 RAMA A Register 1
2 RAMA A Register 2
3 RAMA A Register 3
4 RAMA A Register 4

5 RAMA A Register 5
6 RAMA A Register 6
7 RAMA A Register 7
8 RAMA A Register 8
9 RAMA A Register 9
A RAMA A Register A
B RAMA A Register B
C RAMA A Register C

D RAMA A Register D
E RAMA A Register E
F RAMA A Register F

H for HELP with this menu
R to RETURN to a higher level

113"

5 '.

i4

°' '.

. ., "

.... .... ... .... .... ... .... .... ... .... ...



AM29203 ALU REGISTER ADDRESS MENU

The default source selection is Source A - pipeline,
Source B - pipeline, Destination C - pipeline

Enter the value corresponding to the register address
you desire

Source A Source B Destination C
0 Pipeline Pipeline Pipeline
1 Instruction Pipeline Pipeline
2 Pipeline Instruction Pipeline
3 Instruction Instruction Pipeline
4 Pipeline Pipeline Instruction
5 Instruction Pipeline Instruction
6 Pipeline Instruction Instruction
7 Instruction Instruction Instruction

112. , .



AM29203 ALU INSTRUCTION AND OUTPUT ENABLE MENU

Do you want the ALU results to appear on the Y-bus?
Type an Y for YES
Type a N for NO

y
Do you want to change the contents of any ALU

register
during this ALU operation?

Type an Y for YES

Type an N for NO

n
I

1.

I"ll



AM29203 ALU SOURCE SELECT

You have chosen an AM29203 ALU Special Function

What sources do you want to use

Operand R Operand S Mnemonic
Enter a 0 RAMA A RAM B RAMAB

1 RAM A DIRECT B RAMADB
4 DIRECT A RAM A DARAMB
5 DIRECT A DIRECT B DADB
H for HELP with this menu
R to RETURN to a higher level

110



AM29203 ALU SPECIAL FUNCTION MENU

Enter the value corresponding to the function you wish to
perform

- 0 Unsigned multiply
1 BCD to Binary Conversion

" M Multiprecision BCD to Binary Conversion
2 Two's Compleiment Multiply
3 Decrement by 1 or 2
4 Increment by 1 or 2
5 Sign/Magnitude to Two's Complement Conversion
6 Two's Complement Multiply
7 BCD Divide by 2
8 Single Length Mormalize
9 Binary to BCD Conversion
Z Multiprecision Binary to BCD Conversion
A Double Length Normalize; First Division
B BCD Add
C Two's Complement Divide
D *BCD Subtract F = R - S - 1 + Carry In BCD
E Two's Complement Divide Correction and Remainder
F BCD Subtract F = S - R - 1 + Carry In BCD
H for HELP with this menu
R to RETURN to higher level

7

109



MASTER AM29203 ALU MENU

XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX
ffff ffff ffff

The X s indicate bits which are not yet defined
The defaults for the AM29203 ALU are:

Register Address Select - hits 47-45 - A,B pipeline

Instruction Enable - bit 44 - Disable 1
Output Enable - bit 43 - Disable = I.
Source - bits 42-40 - DAQ = Ill
Destination - bits 39-36 - YBUS 1111
ALU Function - bits 35-32 - OR 1111

What do you want to do next?
type a B to choose ALU FUNCTIONS

S to choose SPECIAL FUNCTIONS
H for HELP with this program
R to RETURN to higher level

s

108

.. . . . . . . . . . . . . . . . ...



AM29203 ALU BASIC FUNCTION SELECT

Enter the value corresponding to the function you wish to
perform

0 F = High
1 F =S - R - 1 + Carry In
2 F = R - S - 1 + Carry In
3 R + S + Carry In
4 S + Carry In
5 (NOT S) + Carry In
6 R + Carry In
7 F kiNOT R) + Carry In
8 F =Low

9 F =(NOT R) AND S
A F =R EXCLUSIVE OR S
B F =R EXCLUSIVE OR S
C F =R AND S
D F = R NOR S
E F = R NAND S
F F=R OR S
H for HELp with this program
R to RETURN to higher level

2

122



The Carry into the least significant stage of the ALU
is controlled by bits 112 and II, and sometimes bits
15, 13, 12, and Il. There are seven possible choices:

Type a zero to select ZERO as the carry-in.
Type a one to select ONE as the carry-in.
Type a two to select Cx, the Z output of the 29203.
Type a three to select the carry bit from the micro reg
Type a four to select the micro carry bit complemented
Type a five to select the MACRO carry bit
Type a six to select the MACRO carry bit complemented
Type an H for help.

1

0

.123

0~



AM29203 ALU SOURCE MENU

The source control default is DAQ

Operand R Operand S Mnemonic
Enter a 0 RAMA RAMB RAMAB

1 RAMA Direct B RAMADB
2 RAMA Q Register RAMAQ
4 Direct A RAMB DARAMB
5 Direct A DirectB DADB
6 Direct A Q Register DAQ
I Instruction Register
P Pipeline Register
H for H with this program
R to RETURN to higher level

0

124



AM29203 ALU DESTINATION MENU

Enter the value corresponding to the destination you
desire

0 RAMDA - F to RAM, Arithmetic Down Shift
1 RAMDL - F to RAM, Logical Down Shift
2 RAMQDA - Double Precision Arithmetic Down Shift
3 RAMQDL - Double Precision Logical Down Shift
4 RAM - F to RAM with parity

5 QD - F to Y, Down Shift Q
6 LOADQ - F to Q with parity
7 RAMQ - F to RAM with parity
8 RAMUPA - F to RAM, Arithmetic Up Shift
9 RAMUPL - F to RAM, Logical Up Shift
A RAMQUPA - Double Precision Arithmetic Up SHift
B RAMQUPL - Double Procision Logical Up SHift
C - F to Y only
D - F to Y, Up SHift Q
E SIGNEXT - SIO0 to Y(i)

F RAMEXT - F to Y, Sign extend LSB
I Instruction Register
M Main Memory
H for HELP with this program
R to RETURN to higher level

125



You have chosen a down shift for this microword. There ar?
16 possible shift patterns, coded 0 thru F in bits 19
thru 16. Choose the shift pattern you desire from the
following set:

zero 7 0 -) RAMn, 0 - On
one 1 -> RAMn, - On
two 0 -) RAMn, RAMO -> Mc, Mn - Qn

three 1 -> RAMn, RAMO -) On
four Mc -> RAMn, RAMO -> On
five Mn -> RAMn, RAMO -> Qn
six 0 -> RAMn, RAMO On

seven 0 -> RAMn, RAMO -> On, 00 -> Mc
eight = RAMO - RAMn, QO -O On, RAMO - Mc
nine Mc -> RAMn, QO - Qn, RAMO - Mc

A RAMO -> RAMn, QO -> Qn
B Ic -> RAMn, RAMO -> On
C Mc -> RAMn, RAMO -> On, QO - Mc
D QO -> RAMn, RAMO -> Qn, QO - Mc
E In exor IOvr - RAMn, RAMO - Qn
F = QO -> RAMn, RAMO -> On
H to get help with this procedure
N to back up one frame.

126



-~ ~~~~~~~ -------- r--- . ' . . -

AM29203 ALU INSTRUCTION AND OUTPUT ENABLE MENU

Do you want the ALU results to appear on the Y-bus?
IType an Y for YES

Type a N for NO

I y
Do you want to change the contents of any ALU

regis ter
during this ALU operation?

Type an Y for YES
Type an N for NO

III y

127



AM29203 ALU REGISTER ADDRESS MENU

The default source selection is Source A - pipe lLne,
S~urce B - pipeline, Destination C - pipeline

Enter the value corresponding to the register address
you desire

Source A Source B Destination C
O Pipeline Pipeline Pipeline
1 Instruction Pipeline Pipeline
2 Pipeline Instruction Pipeline
3 Instruction Instruction Pipeline
4 Pipeline Pipeline Instruction
5 Instruction Pipeline Instruction
6 Pipeline Instruction Instruction
7 Instruction Instruction Instruction

2

128



AM29203 ALU RAM A REGISTER SELECT

Enter the value corresponding to the RAM A
Register

you wish to select

0 RAMA A Register 0
1 RAMA A Register 1
2 RAMA A Register 2

3 RAMA A Register 3
4 RAMA A Register 4
5 RAMA A Register 5
6 RAMA A Register 6
7 RAMA A Register 7
8 RAMA A Register 8
9 RAMA A Register 9
A RAMA A Register A
B RAMA A Register B
C RAMA A Register C
D RAMA A Register D
E RAMA A Register E
F RAMA A Register F
H for HELP with this menu
R to RETURN to a higher level

129

8. . RA.A e is e.



AM29203 ALU RAM B REGISTER SELECT

Enter the value corresponding to the RAM B
Register

you wish to select

0 RAM B Register 0
1 RAM B Register 1
2 RAM B Register 2
3 RAM B Register 3
4 RAM B Register 4
5 RAM B Register 5
6 RAM B Register 6
7 RAM B Register 7
8 RAM B Register 8
9 RAM B Register 9
A RAM B Register A
B RAM B Register B
C RAM B Register C
D RAM B Register D
E RAM B Register E
F RAM B Register F
H for HELP with this menu
R to RETURN to a higher level

e

130



MASTER AM29203 ALU MENU

0100000000010010 O1XXXXXXXXx0001l XXXX00011110XXXX
4012 7fe3 flef

The X s indicate bits which are not yet defined

The defaults for the AM29203 ALU are:

Register Address Select - bits 47-45 - A,B pipeline :

Instruction Enable - bit 44 - Disable I

Output Enable - bit 43 - Disable = 1
Source - bits 42-40 - DAQ = III
Destination - bits 39-36 - YBUS = 1111
ALU Function - bits 35-32 - OR = 1111

What do you want to do next?
type a B to choose ALU FUNCTIONS

S to choose SPECIAL FUNCTIONS
H for HELP with this program
R to RETURN to higher level

r
Do you really want to return to mastermenu?

y
% test2

131



APPENDIX B

Program Name: Seqmake
Purpose: The Makefile used to compile the Sequencer

module and its submodules. The name
Seqmake must be changed to makefile before using.

test3: 2910.o utils.o
cc 2910.o utils.o -o test3

132



Program name: 2910.c
Purpose: Source code for Sequencer module.

*include Kstdio.h.,
*include "declare.h"

1* these defines refer to the logical fields of the
microword they are used to pass field_ set the fields --note:
these defines are commented out!' they are provided for
readability only.

#define regsel 1
*define ien_ fid 2
*define oeyfld 3
*define source_ fld 4
*define dest _fld 5
#define function _fld 6
*define carryinfld 7
*define 1514 fld 8
*define 13 10 fld 9
*define 15 _10 fld 10
*define ceu_ fid 11
*define cern fld 12
*define cmden fld 13
*define shiften _fld 14
*define command_ fid 15
*define shift fld 16
*define breakpoint _ fid 17
*define notused _fld 18
*define msb _br_ fid 19
*define mid-br_ fld 20
*define lsb _br_ fld 21
*define regafld 22
*define regbfld 23
*define seq fid 24
*define no_ sub 0

int KEEPgoing,goback,docuword[24];
char cmd linef80],*pcmd,*pmwd,micro _word[491:
main(

int i,helpset;
char CONTINUEcommand[4] ,am29l0command[801;

1Initialize micro _word to 'X' and docu _word to 0*

micro _wordr48] \;
for (i0O;i <' 48; i--)

133



micro word-''=''

docu-_word'i 0:

KEEPgoing true;
heipset false;
goback false;

while (KEEPgoing ::helpset) 7* Need both KEEPgoing and *

{ /* helpset = 0 to get out of*,
helpset =false; /"* main program section.
am29l0menu( am29l0command'; 114 KEEPgoing is global and

/* can be set from ex<t proc.*,,
if (*am29l0command =='0')

CONIMANDselecto
if (goback)

t.

helpset true;
goback false;

else
if (*am2910command 'H' *am29l0command 'h')

helpset =true;
puts("Help will be coming soon!.\0");
puts("Press enter to continue\0%);
gets(CONTINUEcommand);

else
if ((*am29l0command 'R' *am29l0command 'r',

(KEEPgoing == false,"

puts("Do you really want to leave?\0"):
gets(CONTINUEcommand);
switch( *CONTINUEcommand)

case 'YES':
case 'yes'
case 'Y':
case 'y

KEEPgoing false;
break;

else

heipset true;

134



puts'"~Your input is invalid, enter O,h,H,r,H only. C-
sleepk 3

'*while *

-.*procedure am29l0master *

,' * AM12910 MENU PROCEDURES*

am29l0menu~am29l0command)

char *am29l0cornmand;

puts (erase _screen);
puts( ' \t'\t\tMASTER AM2910 SEQUENCER MENU\\n\O0'-:
display wordo;
display in hex')
display docu(;
puts<-',tThe X s indicate bits which are not yet

defined.\n' 10"
puts("\tWhat do you want to do next?\0");
putsU'\t\tEnter a 0 to select SEQUENCER CONIMAND\0"':
puts ,-\t\t H for HELP with this program\0":
puts("\t\t R to RETURN to system\0%);
gets(am2910command);

/* procedure AM29l0menu *

S EQUE NC ERmenu(S EQUE NC ERcommand

char *SEQUENCERcommand;

puts~erase _screen):
puts( "\t 't\ tAM29lO SEQUENCER COMMAND MENU\n\0")
puts >\tWhich AM92910 Sequencer Command do you wish to

Chose?' n 0"'
puts("Enter a 0 JUMP ZERO - JZ\'0'
puts<' I CONDITIONAL JUMP SUBROUTINE - CJS'\0"2
puts" 2 JUMP MAP - JMlAP%'0")
puts~ 3 CONDITIONAL JUMP PIPELINE - C:JP\0";
puts," 4 PUSH/CONDITIONAL LOAD REGISTERPIPELINE

- PPSH\0"

135



case 13
case 13
case 14
case 17:
case 18:

case 19:
case 20:

docuword[field-1] -1;
break;

case 8: /* The conditional testing function includes
physical fields 8,9,13,15. This will be
covered by docu field ;8 (case 8 in the
docu procedure,. Sub _set will hold an
integer representing the function chosen.
(i.e. forced pass, forced fail, condition,!
testing.) In going backwards, a table or
big switch will be needed to translate.

docu word[7,>sub _set;
break;

case 24:
docu _ word[field-l1 subset;
break:

f /* end switch */

displaydocu.-i;
* end docu *1

field _ set(field _ cntsub_set,choice:
int field cntsub set:
char *choice:

,*There are 25 defined fields in the 29203 eval board "
microword, and several of them have multiple definitions. In
this routine, we accept a pointer to the field and to the
definition of the subset, and a pointer to a character hi .:
represents the actual choice. We generate a data structur,,
which holds the choice and the actual bit pattern in the

microword. *,

char scrapj4 :•
switch'field _ cnt

case 1: * regsel fld, register address source
octal field 0, hoie •
bre'k;

case 2: ,, ien fid, 29203 instruct ion Pnable *
binary _ field 2,choice
break: "

1 4 9 -

. . ............. .. ... -..-... ..... ... . . . . .- :;



Program Name: Utils.c
Purpose: Source code for the Utilities module.

#include "extern.h"
#include "declare.h"
*include <stdio.h,

badchoice(choice)
char *choice;

puts("bad_ choice called.,,O");
putchar(*choice);
sleep (I);

docu (field,sub _set,choice)

int field,sub _set;
char *choice;

puts("docunew called\O");
/*This procedure sets the elements in an array called
docu _word. Each element corresponds to a docu field Kan
int) which has a code in it indicating whether the docu
field is being used. Unfortunately the docu fields don't
necessarily match the physical fields used by field set.
This was necessary since each physical field doesn't always
stand alone. Ex. the three physical fields for the branch
address are always set together. So docu has only one field
for that function. So the size of the docu _ word array will
be changing as new modules are added. At the end, it can be
adjusted to try for some matching of names or numbers or
both. *1

'* The code for each element is:

a = means which sub set function was selected.
-1 means this element is a selected docu fLeLd

the values can be obtained from the
micro word.

0 means not set. *,
switch field

case 1:
case 2:
case 3:
case 4
case 5:
case 6
case 7
case l1"

148

, . , . i. . " ,i -- -, . , .' . " .



BRANCHaddress

if *SEQUENCEeRninmand 7-'1'' *SEOUENCERuomnand ''I

(*SEQUENCERcommand '4' *SEQUENCERcommand '5'
'*SEQUENCERcommand '6'', *SEQUENCERcommand 'T''
*SEQUENCERcommand 'A', (*SEQUENCERcornmand 1B'
*SEQUENCERcommand 'a') (*SEQUENCERcommand 'b
(*SEQUENCERcommand 'D') (*SEQUENCERcommand 'F'
(*SEQUENCERcommand 'I') .(*SEQUENCERcomnand 'f'.,

(& goback'
CONDITIONsequencer();

if ((*SEQUENCE~command '4') && (!goback))
PUSHmenuo;

else
if ((*SEQUENCE~command 'C' ':*SEQUENCERcornmand

&& (!goback' '
LDCTmenuf,,

else
ifW,((*SEQUENCERcommand =='8'):' (*SEQUENCE~icommand 'B

(*SEQUENCERcommand 'd') (*SEQUENCERcomnand If

(*SEQUENCERcommand 'D') .(*SEQUENCERcommand 'F'
&& !goba1~:

NEEDPUSHmenu
else
if((,*SEQUENCE~command '7'): (*SEQUENCERcominand ''

&& '!goback

NEEDLDCTmenu"'

if( goback)
f
helpset true;
goback false;

while! heipset )
procedure COMMAND select*

1-47



seq. code can be done cleanly i.e. without
leaving branch addr and cond codes from
previous settings of the seq _fid. The
docu _word entry can be read and "decodfe&'
to reset any appropriate fields.

case '0'
case '2'
case '8':
case '9':
case e
caseE

field set (seq fld,1, SEQUENCERcommand);
break;

case 'c:
case ' C:

field _ set(seqfld,2,SEQUENCERcommand):
break;

case '6':
case 'a':
case 'A':
case 'd':
case 'D':

field set(seq fld,3,SEQUENCERcommand)
break:

case ' 1 ':
case '3':
case ' 4'
case '5':
case '7'
case
case ' B':
case ''
case ' F':

field _setseqfld,4,SEQUENCERcommand',:
break;

default:
heipset true;
puts('Invalid in~put, digits or ALL CAPS or

r, R,h, H\0'
puts("Press enter to continue.'0>' :
gets CONTINUEcommand')
break;

if (SQ EC}om n il *E U NE cm ad ' '
if(*SEQUENCERcommand '' *SEQUENCERcommand '3
*SEQUENCERcommand '4' (*SEQUENCERcommand '5'
*SEQUENCERcorumand 'C'' (*SEQUENCERcommand 'B')
(*SEQUENCERcommand 'c') (*SEQUENCERcommand I= f'

(*SEQUENCERcommand 'b')



while(helpl,..
break:

default:
helpset true;
putst"lnvalid input, wait for menu. O"),;
sleep( 1)
break;

}"

while(helpset);
/* procedure CONDITION sequencer *i

COMMANDselect )

char CONTINUEcommand[4],*SEQUENCERcommand,comd line' 80] ;
int helpset;

SEQUENCERcommand comd line;

do

helpset false;
SEQUENCERmenu(SEQUENCERcommand)-

switch('* SEQUENCERcommand

case r
case 'R'

/* do nothing, keeps helpset false */

break;
case 'h':
case H':

helpset =true;
puts("Help is coming, Real Soon Now!\O"):
puts("Press enter to continue.\0"' -
gets(CONTlNUEcommand);
break;

/* The sub_set parameter of the field _set
procedure is being used here to indicate
four groupings of the choices for the
sequencer field:
1 means seq. field only is set.
2 means branch address field is set.
3 means conditional codes are set.
4 means all three of above are set.

The above codes are put into the docu _word
so that subsequent attempts to change the

145

• . , ~~~~. .. ........ . .. .... ,........... .." . . . ,., "



case 'F': /* FORCED FAIL *

field _set(condtest _fld,2,CONDITtONcommand

break;
case t
case 'T': /* TEST the condition *

do

helpi false;
TESTlmenu(CONDITIONcommand)';
switch( *CONDITIONcommand)

case 'r:
case 'R':
helpset true;
break;

case 'h':
case 'H':

helpl =true;
puts("Here's where help would be niceK",0':
puts("Press enter to continue.\O"i;
gets(CONTINUEcommand);
break;

default:
if(condl I set(CONDITIONcommand)

do

helP2 =false;

TEST2menu(CONDITIONcommand)
switch( *CONDITIONcommand) .

case 'r:
case 'R':

helpset true;
break-,

case ''
case 'H':

help2 =true;
puts("Help goes here!\O",;
puts("Press enter to cont.\O");
gets(CONTINUEcommand);
break;

default:
cond _2 _set(CONDITTONcommand);

break;

while help2);

break;

144



field_ set,%msb _br _fld,0,branchselect',:

else

heipset true;
puts("Invalid input, the max hex number is

3 F F. 0
puts("Press enter to continue\10");
gets(CONTINUEcommand);

break;

'*while *
}/* procedure branch address select *

CONDlTIONsequencer()

char *CONTINUEcommand,*CONDITIONcommand,cmd line 801,
cont line[101;

int helpset,helpl,help2;

CONDITIONcoinmand cmd_ line;
CONTINUEcommand cont line; .

do

helpset =false;

CONDITIONmenu(CONDITIONcommand);
switch( *CONDITIONcommand)

case ''
case 'H':

helpset. true;
puts("Help is coming Real Soon Now''O";
puts("Press enter to continue.\VY,,
gets(CONTINUEcommand&;
break;

case 'r:
case 'R':

goback true;
break:

case 'p':
case 'P': /* FORCED PASS--unconditional *

field _setcondtest fld,l,CONDITIONcommand
break;

casef

143



1* AM2910 PROCESSING PROCEDURES

BRANCHaddress (

char *branchselect,*CONTINUEcommand,cmd_ line[80],
cont -line(j10];

int heipset;

branchselect = cmd _ line;
CONTINUEconimand = cant _line;
helpset =true;
while (helpset)

helpset =false;
BRANCHmenu(branchselect);
switch( *branchselect)

case 'H':
case 'h': 7 help *

heipset =true;
puts("The branch address field is 12 bits

long,\O!
puts("the max hex address is 3FF.\0");
puts("Enter anything to continue.\0");
gets(CONTINUEcommand);
break;

case ''
case 'r' : *Return *

goback true;
break;

default:
printf("This is the address being

used.'s\n",branchselectl,;
CONTINUEcommand =branchselect;

if((*CONTINUEcommand,='3'&&*CONTINUEcommand ='O''

&&((*(++CONTINUEcommand)>='O'&&*CONTINUEcommand,='7'
:(*CONTINUEcomnand>='A'&&*CONTINUEcommand<='F')
:(*CONTINUEcommand>='a'&&*CONTINUEcommand ='f'

&&((*(-.--CONTINUEcommand)='0'&&*CONTINUEcommand<j'7fl
:(*CONTINUEcommand>='A'&&*CONTINUEcommand7 '='F'

:(*CONTINUEcommand. ='a'&&*CONTINUEcommands2='f' ',

142



!* procedure TEST2 *,'

cond 2 _set(pchar)
char (*pchar);

/* This is the second level selection of the cond. test */

switch (*pchar)

case '0': /* SIGN exor OVR or ZERO */
case '1': /* SIGN exnor OVR and not ZERO */
case '2': /* SIGN exor OVR */
case '3': /* SIGN exnor OVR *7
case '4': /* ZERO */
case '5': /* not ZERO *7
case '6': /* OVR */
case '7': /* not OVR *'

case '8': /* CARRY or ZERO */
case '9': /* not CARRY or not ZERO */
case 'A': /* CARRY */
case a':
case 'B': /* not CARRY *7
case b:
case 'C': /* not CARRY or ZERO */
case 'c':
case 'D': /* CARRY or not ZERO */
case 'd':

field _set(condtest_fld,4,pchar;
if (micro _word[105 04] =='0')

bit _erase(104 _04);
break;

case 'E': /* SIGN */
case 'e':
case 'F': /* not SIGN */
case 'f':

field_ set(condtest_fld,4,pchar);
break;

f * end procedure cond 2 set */

141

- - . .- ~ . ~ at ~ tat .. c.-.,,



case '2': *Immediate Inputs. *

bit _set 105 _04);
bit-_setf104-_04?;
break;

case '3': /* Imm. sign exor MSR sign *

*pchar 'e'
field_ set(condtest _fld,3,pchar);
next _ level =FALSE;
break;

case '4': /* 1mm. sign exnor MSR sign *
*pchar =''
field_- set( condtest _fld,3,pchar);
next -level FALSE;
break;

return (next _level);
} /* end cond_ 1 _set *

TESTmenu( TESTselect)

char *TEST2select:

puts(erase _screen);
puts("'\t\t\tAM29O4 CONDITIONAL TEST MENU\n\0");
puts(" What condition do you want reflected by the

condition?\n\O").
puts(" Type a 0 for (SIGN exor OVR) or ZERO\0"):
puts(" 1 for (SIGN exnor OVR) and not

ZERO\ 0111
puts(" 2 for (SIGN exor OVR)\0');
puts(" 3 for (SIGN exnor OVR)\0");
puts(" 4 for ZERO\0");
puts( 5 for not ZERO\0")>;
puts(" 6 for OVR\0");
puts(" 7 for not OVR\0");
puts(" 8 for (CARRY or ZERO)\0");
puts(" 9 for (not CARRY) or (not ZERO)\0");
puts(" A for CARRY\0");
puts(" B for not CARRY\0");
puts(" C for (not CARRY or ZERO)\0'Y;
puts(" D for (CARRY or not ZERO)\0");
puts(" E for SIGN\0" );.-1
p ut s( F for not SIGN\0");
puts(" H for HELP with this menu\0"':
puts(" R to RETURN to a higher level\0",:
gets(TEST2select)

140

................................... .. .. .. .. .. .. ..............



TESTlmenu TESTIselert

char *TESTlselect:

puts erase _screen ;
puts "".t\t\ tAM2904 CONDITIONAL TEST MENU n 0"
puts"' There are two steps to selecting a test

condit ion 0"
putsi" 1) select a REGISTER to be used 0".:
putsk" 2 select a TEST on that register nO"
puts"" This menu selects the register ot two special

tests 0"
puts," which combine two registers'n\O"
puts<" What do you want to dol'n\O"'

puts(" Type a 0 for the Micro status registerO"'
puts " 1 for the MACRO Status Register 0"
puts " 2 for the Immediate Status Inputs 0"
puts(" 3 for Immediate Sign EXOR MACRO

Sign 0"
puts'" 4 for Immediate Sign EXNOR MARCO

Sign 0"
puts(" H for HELP with this menu 0"
puts(" R to RETURN to a higher level\O"':
gets(TESTlselect);
/* procedure TESTlmenu *"

cond_ 1 _set(pchar"
* This is the first level cond. code select, and matches

TESTlmenu. *

char *pchar;

int next level;
char *field,field_line[4];
next level TRUE;

switch (*pchar',-

case '0': /* Micro status register selected. *,

bitclear(105_04);
bit set( 104 04);

/* Note that 104 can be cleared for many cases, see Tbl. 4,
Pg 5-79 *

break;

case '1': /* Macro status register. *.
bit _set(I05 04);
bit clear(104 04"
break;

139



puts "Press enter to cont inue'4- 0":
gets CONTINUEcomnand:;

/* procedure need _push menu*

NEED LDCTmenu

char CONTINUEcommand [41
puts(erase screen);
puts("\t\t\tREMINDER INFORMATION\n\O");
puts("You have chosen one of the following AM2910

Sequencer Commands:'n,0"
puts("\t\tJRP JUMP REGISTER OR PIPELINE\0" :
puts("\t\tRPCT REPEAT PIPELINE, COUNTER NOT EQUAL

0' n 0'
puts("These commands MUST be preceded by a\O": .
puts("\t\tLDCT - LOAD COUNTERl AND CONTINUE\n\,n\n'0"
puts("Press enter to continue'\O"';
gets(CONTINUEcommand);

* } ~/* need _ldct menu *

CONDiITlONmenu ,.CONDITIONcommand)

char *CONDITIONcommand;

puts(erase _screen);
puts("\t\tAM29lO SEQUENCER CONDITION SELECT MENU\n\O"';,
puts("You have chosen an AM2910 Sequencer Command which

requires a\0"

*puts("What do you want to do next?'n,0"':
puts("\tType a P for FORCED PASS - unconditional 0",
puts("\t F for FORCED FAIL\0");
puts("\t T to TEST the condition\O");
puts("\t H for HELP with this progr-am\0");
puts("\t R to RETURN to higher level\.O');
gets(CONDITIONcommand);

* } /* procedure condition menu *

138



puts<' tas the AM2910 Sequencer Comrnand,,n\O",:
puts"This command MUST precede the following

comnmandls 11 0"
puts"'\t\tRFCT REPEAT LOOP, COUNTER NOT EQUAL 0 0'
puts "'t\tCJPP CONDITIONAL. JU-MP PIPELINE AND POP 0"
putsf"'t\tLOOP TEST FOR END OF LOOP10",
puts("\t\tTWB THREE WAY BRANCH\n\,n.n\'0".;
puts("Press enter to continue\0O"';
gets(CONTINUEcommand);

} ,* procedure PUSHmenu*'

LDCTmenu

char CONTINUEcommandr4];
puts (erase _screen,
puts("\t\t\tREMINDER INFORMATION\n\0">1i
puts("You have chosen a LOAD COUNTER AND CONTINUE -LDCT-

as the'\0"
puts("\tAM29lO Sequencer Command\n' 0"';
puts("This command MUST precede the following: f\Q'")
puts("\t\tJRP CONDITIONAL JUMP REGISTER OR PIPELINE 0"
puts("\,tl~tRPCT REPEAT PIPELINE, COUNTER NOT EQOUAL.

0\n',n'n 0"
puts("Press enter to continue\0',);
gets CONTINUEcommand);

}/* procedure LDCTmenu *

NEEDPUSHmenu.

char CONTINUEcommand'4l
0 putscerase _screen);

puts("\t\t\tREMINDER INFORMATION\nNO">:
puts("You have chosen one of the following 2910 Sequencer

Commands' n\0"*
puts("\t\tRFCT REPEAT LOOP, COUNTER NOT EQUAL OxO" :
puts("\t\tCJPP CONDITIONAL JUMP PIPELINE AND POP\0O"':

0 puts(" xt\tLOOP TEST FOR END OF LOOP\0",;
puts("\t\tTWB THREE WAY BRANCH\n\0";
puts("These commands MUST be preceded by a',nxO"',
puts("'\t\tPUSH -. PUSH/CONDITIONAL LOAD

REGISTER,/COUNTER\n~n' n'0"'

137

-0



puts(" 5 CONDITIONAL JUMP SUB. VIA REG OR
PIPELINE - JSRP 0"

puts:" 6 CONDITIONAL JUMP VECTOR - CJV,0"
puts<" 7 CONDITIONAL JUMP VIA REGISTER OR

PIPELINE 0'"
puts(" 8 REPEAT LOOP, COUNTER NOT EQUAL 0 -

RFCT',0" :
puts(" 9 REPEAT PIPELINE, COUNTER NOT EQUAL 0 -

RPCT\O"
puts(" A CONDITIONAL RETURN FROM SUBROUTINE\0"
puts(" B CONDITIONAL JUMP PIPELINE AND POP\0"
puts(" C LOAD COUNTER AND CONTINUE - LDCT\O"-;
puts(" D TEST FOR END OF LOOP - LOOP\0"2;
puts(" E CONTINUE - CONT\0"-;
puts(" F THREE WAY BRANCH - TWB\0");
puts(" H HELP with this program\O"):
puts(" R RETURN to higher level\O");
gets(SEQUENCERcommand);

} /* procedure SEQUENCER menu */

BRANCHmenu(branchselect'

char *branchselect;

puts(erase_screen);
puts("\t\tAM2910 SEQUENCER BRANCH ADDRESS MENUn\,O");
puts("You have chosen a command which requires a value in

the\0")
puts("register/counter\n\O");
puts("What do you want to do next?\n\O");
puts("\tENTER YOUR BRANCH ADDRESS FIELD\0"):
puts("\t H for HELP with this program\O"):
puts("\t R to RETURN to a higher level\O");
gets(branchselect);

} /* procedure branch menu */

PUSHmenu

*char CONTINUEcommand[4];
puts erase _screen';
puts(",,t\t\tREMINDER INFORMATION\n\O" ;
puts("You have chosen a PUSH/CONDITIONAL LOAD

REGISTER/COUNTER -PUSH\O '

136



case 3: ,* oev_ fld, 29203 output enable *
binary field 4,choice
break:

case 4: /* source fid, source field for the 2'J20:. ,
octal field5,choice;
break;

case 5: /* dest_ fld, destination field. *'

hexfield(8,choice);
break;

case 6: 7* function _ fld, function field. *,

hex _ field(12,choice);

break;

case 7: ,* carryinfld, carry-in mux control for the
2904. *

dual _ field(16,choice);
break;

case 8: /* 1514_ffld, bits I05_04, two MSB's
/* of conditional test codes. *

dualfield(18,choice);
break;

case 9:/* 13 _ O, bits 103 _ 04 thru 100 _04, four LSB's*
,* of conditional test codes. *

hex _field(20,choice);
break;

case 10: /* bits 105 04 thru 100 04
/* don't know how to use this field yet.

break;

case 11: /* ceu _fld, micro status enable hit
binary_field(24,choice,;
break;

case 12: /* cem _fld, macro status enable bit.
binaryfield(25,choice);
break;

case 13: /* cmden _fld, command enable field
binaryfield(26,choice):

* break;

case 14: /* shiften fld, shift enable field. *
binary field 27,choice ;
break;

150



case 15: '*comand fid, command field.
hex _ field(28,choice)-

b r eak:

case 16: /* shift _ fid, shift field.
hex _field(28,choice);
break;

case 17: /* breakpt~fld, breakpoint field. *

binary f ield( 32, choice);
break;

case 18: /* notused _ fld, this field not used. K

binary_ field(33,choice);
break-,

case 19:/*rnsb _ br fld,2 MSB's of branch addressfield
/*First test for conflicts by testing*
/*docu _ word. If no conflicts, finish setting*/
/*branch address fields with recursive calls*
/*to field-_set with cases 20 and 21.

if (docu wordil9]==O)

if (docu _word[l8]=0))

docu(field_cnt,no_ sub,choice};
dual _field(34,choice);
field -set(mid -brfld,nosub,++choice,:
field set(lsb _br fld,no_ sub,-t+choice,;

else
if (docuword[18] -)

puts("Branch Address is already set. "0"":
puts( "Do you want to change it?\0":;
gets(scrap);
switch (*scrap)

case 'YES':
case 'yes':

case 'y:
case 'Y':

docu(19,no _sub,choice);
* dual _field(34,choice);

field _set(mid _br _fld,no _sub,+-choice,:

field set(lsb _br _fld,nosub, -- choice
break;
default:

151



printf("OKAY--it hasn't been
changed! n"

break:I)

else
puts("Garbage in the docuword for #19, br.

add.\0",:
}

else
{

puts("Can't use this field for both register desig\O":
puts("nation AND branch address in the same micro-\.O"
puts('word. Right now it's being used to select \0" :
puts("register A and register B.\O");

break;

case 20: /* midbr _fld, 4 middle bits of branch
address field *

hex field(36,choice);
break;

case 21: /* lsb_br_fld, 4 LSB's of branch address
field.. -

hex field(40,choice);
break;

case 22: /* rega fld, specify register A as source *

hexfield(36,choice);
break;

case 23: /* regbfld, specify register B as source *7
hexfield(40,choice);
break;

case 24: /* seqfld, sequencer code
/* This case has been modified to allow changing of

the seq code after it has already been set. *

if(docu_word[23] != 0)

puts("The sequencer code is already set. ,O":
puts("Do you want to change it?\O"):
gets( scrap);

switch(*scrap)

case 'YES':
case 'yes':
case 'Y':
case 'y':

152

"0 .• ,



switchldocu wordi 231-

case 2: * clear previous branch address *
stringerase,34,43
docu _word(18] = 0:
string erase(44,47)
docu word[23] 0;
break;

case 4: /* clear br.addr. and cond. test *

stringerase(34,43);
docu-word[18] =0;

case 3: /* clear conditional test codes*,
switch(docu word[7])

K
case 4:
case 3:

string_erase[18,23) ;
case 2:

string _erase 28,31);
case 1:

bit _ erase(Cmd En);
docu word[7] = 0;
break;

}
case 1: /* clear sequencer code */

string erase(44,471"
docu_word[231 0;
break;

docu(field_cnt,sub_set,choice,);
hexfield(44,choice);
break;

default:
puts("It hasn't been changed. \0");
break;

/* end switch */
} /* end if */
else

docu(field_cntsub _setchoice);
hex field(44,choice);

break;

case 25: /* Conditional Tests field--still not
coordinated with shift codes. Check to see if conditional
testing already set. If yes, erase previous micro word
entries. If no, go on to set proper code. */

if 'docu word[7] ' 0)

153

153 ..-

I



putsU"We got to docu _word 71 not 0 0. 0"
switch(docuword[71)

case 3: /* erase logical fields 8 & 9 *
case 4:

stringerase(18,23);
case 2: /* erase logical field 15, commandfld *

stringerase(28,31);
case 1: /* erase logical field 13, Command en fl*.

bit_erase(CmdEn);
docuword[7] = 0;
displaydocu();
displayword(;
displayinhex();
break;

default:
puts("Garbage in sub set of case 25 in

field set. 0"
break;
} /* end switch */
/* end if */

/* Set proper conditional testing bits. *'

switch(sub set)

case 1: 7* Forced Pass */
docu(8,1,choice);
bit _set(CmdEn);

break;
case 2: /* Forced Fail */

docu(8,2,choice);
bit _clear(Cmd En);
*scrap = '8';
field _ set(commandfldnosub,scrap);
break;

case 3: /* Single level testing */
bit _ clear Cmd En ;.
*scrap '9';

field set(command fld,no subscrap",;
docu(8,3,choice);
*scrap = '0';
field _ set(I5I4_fldno_sub,scrap);
field_ set(13_IOfld,nosub,choice,)
break;

case 4: /* Second Level Testing */
bit clear(Cmd En):
*scrap = '9';
field _ set(commandfldno_subscrap);
docu(8,4,choice;
field _ set(13 O fid,no _sub,choice:-
break:

154



default:
puts("Garbage in sub set for field set case:

25. 0"
break:
S,/* end switch */

} /* end switch */
/* end field_ set */

binaryfield(bit_num, choice)

int bit num;
char *choice;

{
if -'*choice '0')

bit clear(bit num):

else if (*choice == 'i')
bit _set(bit num);

else
bad choice choice);

dual _field(bit num,choice)

int bit _ num;
char *choice;

switch (*choice)

case '0':
bit _clear(bit _num):
bitciear bitnum+l:.;
break:

case '1':
bit _ clear(bit _ num);:
bit _ set(bitnum+l);
break;

case '2':
bit set(bit num);
bit clear(bit num+l);
break:

case '3':
bit set:bit num);:

155

.. ..- ',



bit _ set(bit num+l):
break:

default:
bad _choice~choice);
break;

octal _field(bit _num,choice)

int bit _num;
char *choice;

switch (*choice)

case ' 0'
bit -clear(bit~num);
bit _ clear(bit~num+l);
bit _ clear(bit~num+2);
break;

case '1':
bit _clear(bit num);
b it _ clear(bit~num+l);
bit _ set(bit _num-);
break;

case ' 2'
bit _ clear(bit~num);
bit _set(bit numsl);
bit _clear(bit num-;
break;

case ' 3'
bit _ clear(bit~num)
bit _set(bit num+l);
bit _set(bitnum+2);

break;
case ' 4'

bit _ set(bit~num):
bit _clear( bit _ num+l);
bit _clear(bit-num+2);
break:

case '5':
bit _set~bit _num);

bit _clear(bit _num~l);

bit _set(bitnum+-2,;
break;

case '6':
bit _set(bit _num);

bit _set(bit _num+l);

bit _clearcbit num+2);

156



break:
case '7'

b it se t kb it num;
bit _set(bit num+t1);
bit set(bit num+2);
break;

default:
bad -choice(choice);
break;-

hex _field(bit-_num,choice)

int bit _num;
char *choice,

switch (*choice)

case ' 0:
bit -clear(bit num);
bit _clear(bit~num+l);
bit _clear(bit~num+2);
bit _clear(bit~num+3);
break;

case ''
bit _clear(bit~num);
bit _clear~bit _num*l);

bit clear(bit num+92);
bit _set(bit _num+3);

break;

case '2'
b it _clear(bit _num);:

bit _clear(bit _num*l);

bit _set(bit _num"-2);

bit _clear(bit _num+3);

break,

case '3':
b it _clear('b it _ fumi;
bit _clear( 'bit _num.-1);

b it s sct (b it _num--2,

b it _set(bit _num+3);

break;

case '4':
b it _ clear(bit nurn,
bit _set(bit~num~l);

157



bit _clear~bit _num-2 :
b it _clearb it num -3:
break;

case ' 5'
bit _clear~bit _num);

bit _set(bit. num±1);
bit clear(bit num-2);
bit _set(bit num+3);
break;

case ' 6' :
bit _clearbit _ num);
bit _set(bit -num+1);

bit _set(bit num-2);
bit _ clearbit num+3);
break;

case ' 7'
bit _ clearrbit _num);
bit _set(bit _num+1);

bit _set(bit num+2);
bit _set(bit num+3);
break;

case '8':
bit set(bit num);
bit _ clear(bit~num+1);
bit _ clear(bitnum+2);
bit _ clear(bit _num+3);
break;

case '9':
b it _ set(bit num);
b it _clear('bit _num+ 1)
bit _clear(bit _num-r2);

b it _set(bit num+3,;
break;

case 'a'
case 'A':

b it s se t bit _num);
bit _clear(bit _num+1 ;
bit _set(bit -num-t2);
bit clear(bit num,3):
break;

case 'b':
case ' B'

b it _set b it num;:
bit _clearbit numi-l);

158



bit _setbit num-2.
bit set~bit num+-3
break:

case c
case ''

bit _set(bit _num);

bit _set,"bit _num~l;,

bit _clear~bit _nums2);

bit _clear ,bit _num-3'!;

break;

case 'd':
case D

bit-set~bit _num.,;
bit _setbit _num~l);

bit _clear(bit _num-2'

bit _setibit _num--3

break;

case e
caseE

bit _set(bit-_num);
bit _set(bit num.l)
bit _set~bit _ nums2,)
b it _ clear~bit _num--3);
break;

case V
case 'F':

bit _set(bit -num);

bit _set(bit _num+l);

bit-_set,,bit num±+2,,
bit _setbit _num+3);

bad _choiceichoice.;
break;

disp lay word !

i nt i~j
print f
f or j~o; j'47 ;jzj+].6

159



for i~j i 16 -j -
putchar~micro _wordf',

putchar '

putchar

put char~ \n''

display in hex(

int i ,j;
printf("
for 02; j 47; j=j+l6)

for jz ij; j K, 16+j-; i 4)
hex _display( &micro word~i>:;

printf(

putchar( '\n')

hex _display,,pchar)
char *pchar;

i nt i value;
value 0;
for (i=O; i 4, i+

switch (*(pchar+i))

case '0'
value 2*value;
break;

case XN'
case '1'

value I +~ 2*value;
break;

case
putchar')
return;
break;

printf( ~ lx" ,value)

display docu ,

160



i nt i;
putchar(,''n''*
for ,i=0 i 24,; V---

printf("*%d ",docu _word>i

put char( x'

bit _set V)
int i;

mnt error;
error 0;

micro _word'il '
return~ error;

bit _clear~i
i nt i;

int error;
error =0;
micro _word> 1 

2 '0';
return (errorY;

bit _erase 19

micro _wordlji] 'X'

string erase( i, j)
mnt i,j;

micro _wordr19 'X'

161



Program Name: Alumake
Purpose: The Makefile used to compile the ALU module and

its submodules. Tne name alumake must be changed to
makefile to be used.

test: ALU.o 203.menus.o 2904.supp.o alutils.o
cc ALU.o 203.menus.o 2904.supp.o alutils.o -oD test2

162



Program Name: ALU.c
Purpose: Source code for the ALU module.

* This is the draft of the 29203 section of the microcode
generation system as of 27 Dec 1984.

*include ' stdio. h
*include "declare.h"

char cmd line[80],*pcmd,micro _word[49],*pmwd

int KEEPgoing,goback, docu _word [ 24>

main

char cont in 10 "

int i, lim-src,spcsrcrt_shift,left_shift,rama,rumb,heipse t:

pcmd = cmdline;
for i=O; i 48; i-- microword[i] 'X''
for i=O; i, 24: i-- docu-wordri] 0:

goback z false;

do

KEEPgoing = true;
helpset = false;

rtshift false;
left shift = false:
rama = false;
ramb = false;

am29203menupcmd;
switch *pcmd,

case 'h'
case 'H':

helpset = true;

KEEPgoing = false:
puts "The 29203 alu is documented in chapter 5 of the

AMD, 0"
puts "data book. There are two types of functions it

can, 0
puts "perform, regular functions and special

funct ions. 0"
puts "The rest of the decisions you must make are

based onO

1 3



b re ak

case 12: *cemn_ fid, macro status enable bit *

binary field'25,choice
docu, 2,0, choice;

break;

case 13: *cmden _fid, command enable field *
binary field'26,choice,;
docu( 13, 0, choice);
break;

case 14: '* shiften _fid, shift enabip fiold
binary-field" '27, choice
doc-u, 14,0,choice-
break;

case 15: ' * command fid, command +,,
hex _ field'28,choice
docuwI5,0,cho ice
break;

case 16: *shift _fld, sh,,f' :

hex _ field(28,choice
docu 16, 0,choice
break:

case 17: *breakpf "'d,
binary field'32,choic
docu 17,0,choice
break;

case 18: 7*notused _fld, this fe
binary field(33,choirH
docu: 18,0,choice:
break;

Case 1H:! msb _ r _fld, 2!S's bralnch .drs

dual _field 34,choic-e
docuw 9,0,choice ;
b re ak :

case 20: *mid _br _fld, 4 middle bits of branch
address field

hex _fie-ld(36,choice:
docu: 20,0,choice,,
break;

cas I1 s sb b hr fId(1 -1 L S B o f bra n ch d d rs;
field *



case 2: * en-_fid, 29203 instruction enable
b in a ry f ield: 3 , cho ice;
docu 2, 0, choice
b r eak:

case 3: '*oey _fld, 29203 output enable *

binary fieldtC4,choice,-
docu 3,0,choice);
break;

case 4: 7* source _fld, source field for the 20203.
octal _field(5,choice);
docu(4, 0, choice);
break;

case 5: ,'* dest _fld, destination field. *
hex _field(8, choice,;
docu(5,0,choice,)
break;

case 6: 7* function I fld, function field *

hex _field(12,choice:,
docu 6,0,choice);
break;

case 7: /,* carryin~fld, carry-in mux control for tho
2904

dual _field(16,choice :
dIocu;7,0,choice);
b re ak;

case 8: '*1514 _fld, bits 105 _04 and 104 _04, two MSB's*/
7* of conditional test codes.

dual _ fieldl18,choice);
docuB, 0, choice);
break;

case 9:,,'*13 _10, bits 103 _04 thru 100 _04, four LSB's*
7of conditional test codes.*

hex _field'20,choice);
docu(9,0,choice):
break;

case 10: ,'* bits 105 _04 thru 100 _04 *

7*don't know how to use this field yet *

docu 10, 0, choice
break;

case 11: ,* ce-u _fid micro status enable bit *

binary f ield(24, choice',
docu(11i, 0, choice);

176



Program Name: Alutils.c
Purpose: Source code for Utilities module which is compiled

with the ALU module.

4include stdio.h>
xinclude "declare.h"
#include "extern.h"

docu(field,sub_setchoice)

int field,sub _set;
char *choice;

putsC'docu called\O");
sleep(2);

badchoice(choice)

char *choice;

puts("bad_ choice called.\O");
putchar(*choice);
sleep (2);

field set(field cntsub _set,choice)

int field_cnt,sub _set;
char *choice;

• There are 13 defined fields in the 29203 eval boar,'
microword, and several of them have multiple definitions.
In this routine, we accept a pointer to the field and to tli
definition of the subset, and a pointer to a character which
represents the actual choice. We generate a data structure
which holds the choice and the actual bit pattern in tih

microword. *1

switch 'field cnt

case 1: * regsel _fld, register address source
octalfield,0,choice,;
docu: 1,0,choice?:
break:

175



RAMBmenu'cmd line
switch *cmd line,

case 'H':
case 'h'

puts"This menu describes the register
selections for0".

puts<"the ALU. They are documented on\0"';
puts("page 5-XXX of the AMD data book. ',0 "
puts("type a C to continue. ,0");
gets contin':
break;

case 'R':
case 'r'

break:

case 0':
case '1:
case 2':
case 3':
case 4':
case 5
case 6':
case 7':
case 8':
case 9':
case a':
case ' A':
case 'b':
case B':
case c
case 'C':
case 'd':
case D
case e
case E
case f
case F':

field_set(regb_fld,0,cmd line);
docu(regbfld,O,cmdline;
break;

)
while(helpset H KEEPgoing);
exit( ;

/* the end of 29203master */

174



if rama true && :KEEPgoing:;

RAM~Amenu~crd I line:
switch (*cmd _line)

case 'H':
case ' h':

puts("This menu describes the register
selections for 0'

puts("the ALU. They are documented on\0'
puts("page 5-XXX of the AMD data book. x0.;
puts <type a C to continue.'O<:
gets: contin)
b re a k

case 'R':
case ' r'

case '0'
case '1'
case '2'
case '3'
case '4'
case '5'
case '6':
case '7'
case '8':
case '9':
cases a'
case 'A':
case'b
case 'B':
case 'c:

caseC

case e
rase 'E'
case f
case 'F'

field set regafldA,0 cmd i ne
doc'u rega_ fId, 0, cmd_ line:

I f r:Imb true && KEEPgoing:,

173



field -set~dest _fld,0,cmd line
docudest _fid,0 cmd _ line':

'Need to add things here'-*
break;

default :
helpset =true;
puts("Illegal entry, type a C to

repeat. ."
gets( cont in);
break;

} * end while *
if(!KEEPgoing) helpset true;

if (rt _shift true && (KEEPgoing))

shift2 _menu;
getscmd _line);
if (shift _set .cmd_ line)) goto dest _start;
bit _clear(27);

if (left-shift ==true && (KEEPgoing,,)

shift3 menu(;
getscemd _ line ;:
i f shift-set (cmd _line)) goto dest _start:,
bit-_clear(27); /* the shift enable for the 2904.*

if (KEEPgoing)

ENABLEmenu(cmd_ line,contin);
if (*cmd _line =='Y' ::*cmd _line
*cmd _line -''

else
*cmd _line =''

field set~ien _fld,0,cmd _line,;

if *contin 'Y' :*contin 'y')
*contin 2'0';

Pelse-
*contin '1'

field setoey fld,0,contin

if (rama 2=true .ramb =true && (KEEPgoing))

REGISTERmenu(cmd _line);
field _set(reg _src,0 cmd I line)
docu(regsrc,0,cmd _line);

172



puts:"the ALU result. They are documented
on'%

puts '"page 5-XXX of the AMD data
book. 0" :

puts("type a C to continue.O" :

gets( contin);

break;

case 'R':
case r :

KEEPgoing = false;
break:

case '0'
case '1'
case 2
case '3'
case 5

rt shift = true;
field _ set(dest fld,O,cmd_ line ;

docu(dest_fld,O,cmd line):
break,

case ' 8':
case '9':
case $ a'
case 'A':
case b
case B
case d':
case ' D

left shift true;
field set(dest -fld,0,cmd line':
docu(dest_fld, 0 cmd_l ine);
break;

case '4':
case 6':
case 7':
case c'
case C':
case e'
case E':
case f :
case F':

field set(dest fld,0,cmd line:;
docu dest_fld 0,tcrodline,:
break:

case 'M'
case m'
case ' I' : [j:
case

*cmd line '0';

171



puts'"The special functions require that
T0=0\ 0"

puts("Therefore the sources are limited to-
the\ 0"

puts("set on this menu. The sources are
des c ribed \ 0"

puts("on page 5-XXX of the AMD data
book. .0",:

puts("type a C to continue.\O");
gets( cant in);
break;

case ''
case 'r'

break;

case '0' :
ramb true;

case '1':
rama true;
field _set(src _fld,O,cmd line),;
docu(srcfld,0,cmd_ line);,
break;

case '4':
ramb true;

case '5':
field _set(src _fld,O,cmd _line);

docu(src _fid,0 cmd _line);
break;

default:
puts("Illegal entry, type a C to repeat.\0");
gets(contin);
break;

if (spc src 2true && (KEEPgoing))

helpset true;
while(helpset)

heipset =false;
dest _ start: DESTINATTONmenucmd _line-;
switch(*cmd _line)

case 'H':
case h

helpset 2true;

puts("This menu describes the destinations
for\0"

170



while heipset

heipset = false;
srcl _ s t art: SOURCElmenu(cmd _line
switch (,*cmd _line.

case 'H':
case ''

heipset ztrue;

puts("Because of the use of the 10 bit to
indicate, 0"

puts("special functions, there are limits to
the ,0":

puts("sources for ALU operands. These limits
are, 0"

puts("described on page 5-XXX of the ANT) data
book. 0

puts("type a C to continue.\O0");
gets ,cont in);
break;

case R1'
case r'

KEEPgoing false;
break;

case '2':
rama =true:

case ' 6' :
field _set(src _fld,O,cmd _line);

docu(src _fld,0 cmd _line);
break-,

default:
helpset =true;
puts("Illegal entry, type a C to repeat. 0,.
gets(cont in);
break:

,'* end While *
if( 'KEEPgoing) helpset true;

else if (KEEPgoing)

src2 _ start: S0URCE'-menucmd line);
switch(*cmd _line)

case 'H':
case ''

169



heipset true:
while) heipset)

heipset =false:
srcstart: SOTJRCEmenu~cmd _line);

switch (*cmd_ line)

case 'R':
case 'r:

KEEPgoing false;
break;

case 'H':
case 'h':

helpset =true;
puts ("Sources for ALU operations are

describe&~ 0"
puts ("on page 5-XXX of the AMD data book.

0'
puts ("Type a C to continue.\0");
gets ( cont in);
break;

case '0':
ramb t true;

case ''
case '2':

rama ztrue;

field _set~src _fld,0,cmd _line);

docu(src fld, 0,cmd _line);
break;

case '4':
ramb true;

case '5':
case '6':

field_ set(src fld,0,cmd _line):
docu(src _fld,0 cmd _line':,
break;

d ef aulIt:
helpset =true;
puts("Illegal entry, type a C to repeat.\0"';
gets(contin';
break;

/* end while*'
if (!KEEPgoing) helpset true:

else if (limn src true && (KEEPgoing))

helpset t rue;

168



field _set,,dest _fld,O,pcmd);

*pcmd =2
field _ set~func _fld,O,pcmd,;
break;

case 'Mi'
case IM

spcsrc 2true;

docu(dest _fld,O,pcmd);
*pcmd 2''

field set(dest _fld,O,pcmd);
*pcmd =' 8' ;
field _set(func _fld,O,pcmd);

break;
case ''
case'z :

spcsrc =true;
docu(dest fld,O,pcmd);
*pcmd =''
field set(dest _fld,O,pcmd);
*pcmd ='8
field _ set(func_ fld,O,pcmd);
break,

d ef a uIt:
heipset = true;
puts("Illegal entry.\O");
puts("Fress enter to continue.\O'-;
gets( cont in)
break;

}/* end while *
while(helpset && KEEPgoing);
if( 'KEEPgoing)

helpset 2true;

break;

def ault:
helpset 2true;

KEEPgoing = false;
puts("Illegal entry.\O");
puts("Press enter to continue.\O')
gets (cont in,
break;

/* end main switch *

if (lim src 2true && s pc-src 2true

&&KEEPgoing)

167



break;

case S
case s

do

spcsrc = false;
helpset = false;
SPECIALmenu(pcmd);
switch(*pcmd)
{
case 'H':
case 'h':

helpset = true;
puts("These special functions are described on

page 0"
puts("5-XXX of the AMD data book. 0"
puts("Press enter to continue. \0");
gets(contin);
break;

case 'R':
case ' r'

KEEPgoing = false;
break;

case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6' :
case '7':
case '8':
case '9'
case 'a
case 'A':
case 'b':
case 'B':
case 'c
case 'C'
case B
case D
case 0
case E
case f

case F'
spc src 2 true;
docu(dest _fld,O,pcmd);

16

166,'

10 -" -



case '6: *codes 6 and 7 require limits on the
source field.*,"

case7
lrn src true;

case ''

case 2
case '3':
case '4'
case

field_ set(func~fld,O,pcmd);
docu(func _fld,0 pcmd);
carryinmenu);
gets(cmd -line);
carry set~cmd _line);
break;

case '0': "/*F~high *

case ' 8' : /*F= low *

/* codes 0 and 8 require limits on the source
f ield.*/

lim src true;

case 9':
case 'A':
case a'
case 'B'
case 'b':
case 'C'
case c
case 'D'
case 'd':
case'E
case e'
case 'F':
casef

field _set(func _fld,0 pcmd);
docufunc _fld,0,pcmd;:
break;

* default:
helpset, true;

puts("Press enter to continue.\'0",;
gets( cont in);
break;

} *end while *
whilehelpset && KEEPgoing);
if(!KEEPgoing)

helpset true;

165



putsC'which of these you chose.%,"
puts("Press enter to continue. 0"
gets 'contin';
break:

case 'r'
case ''
puts("Do you really want to return to mastermenu 7 0';
gets(cont in);
switch( *cont in)

case 'YES':
case 'yes':
case ''
case 'y':

KEEPgoing =false;
break;

def aulIt:
KEEPgoing =false;
heipset true;
break;

*
break;

case 'b':
case 'B':

do

heipset false;
FUNCTIONmenu(pcmd;
lrn src false;
spc src = false;
SW itch(*pcmd)

rase h
case 'H':

heipset = true;
puts; "The 29203 ALU functions are described on

page 5-XXX' 0"
0 puts("of the AMD data book. \0");

puts<'Press enter to enter.\0");
gets cont in);
break;

case ' r
* case 'R':

KEEPgoing false;
break;

164



hex _field(40,cho;->.,
docu ,21 0,,noice.;
break;

case 2 2: ,* rega~fid, specify register A as source ~
hex field( 36,choice),
docu( 22, 0, choice)
break;

case 293: /* regb~fld, specify register B as source
hex _field(40,choice',;
docu( 23, 0, choice);
break;

case 2)4: /* seq fid, sequencer code *
hex _field(44,choice.,;
docu( 24,0, choice);
break;

0j

binary_ field(bit _num,choice)

int bit _num;
char *choice:

if (*choice
bit _clear(bit~num);

else if (*choice '1')l

bit _set(bitnum);

else
bad _choiceechoice);

dual _field(bit-num, choice)

int bit _num;
char *choice:

swiLtch (*choice)

rase '0'
bit clearbit num):
bit _clear(bjt _num~l);

178



b real:

case ''
bit _clear .bit _nuin.::
bit _ set'bit num±l);
break;

case '2':
b it_ set(bit _num):
bit _clearbit _num+l);

break;

case '3'
bit _set(bit _num'

bit _set(,bit numsl);
break;

bad _choice(choice)
break;

octal _field(bit _num choice)

int bit _num:

char *choice;

switch (*choice)

case ' 0'
bit _clear(bit _num);

bit _clearikbit _num~l);

bit _clear(bit _nunii2);

break;
case ''

b it clIear b it _num);
bit clearrbit _num--1:
b it _ settbit _numi2):
break;

case ' 2'
bit _clear~bit _num',;

bit _set bit _num+l);
bit _clearbit _num-2

break;
case '3'

b it _ ce ar (b it _num;

bit setlbit num--l);
bit set b it num-2;
break:

17 9



case ' 4':
bit setbit _nuin):

bit clearibit _num-1
bit _clear(bit _num-2,);

b rea k;
case ' 5 ': I

bit _set~bit _num',;

bit _ clear(bit _num'l);
bit _set(bit _num±2);

break;K case '6':
bit _set(bit _num);

bit _set(bit numl1);
bit _cleart.bit _num-'-2);

break;
r-case ' :

bit _set(bit~num);
bit set(bit _num-i-);
bit _set(bit _num+2);

break;
default:

bad_ choice(choice);
S break;

hex< _field(bit-_num,choice'j

mnt bit num;
char *choice;

switch (*choice)

case ' 0'
bit _clear(bit _num.:

b it c c1ear,,b it _num+lI);
bit _clear~bit _num--2

bit _clear(bit _nuxn+3);

break;

case ''
bit _clear(bitnum);
bit _clear~bit _num+l);

bit _clear(bit _num+2);

bit _set(bit _num+3);

break;

case '2':
bit _clearbit num):
bit _clear(bit num-~1

180



bit _set~bit _num'-21;

bit _clear~bit num'3 ;
break-

case '3:
bit _clear(bit-num);
b it _clear~bit _num-f1);

b it _setcbit _num-2);

bit _set(bit _numi-3);

break;

case '4'
b it _clear,'bit _num);

b it s set b it num+1:
bit _clearbit _num+2;;

bit _clear~bit _num+3):

break;

case5
bit _clear(bit _num,;

bit _set(bit _num+l);

bit _clear(bit _ num±2);
bit _set(bit _num+3);

break;

case '6':
bit _clearbit _num,';

bit _setbit _num+1);

bit _set(bit~num+2);
bit _clear~bit _num+3);

break;

case '7'
b it _clear(bit _nuzn);

bit _set(bit _numn-t);

bit _setbit _num+-2:

b it s se t(b it _num--3);
break:

case ''
b it s e t (b it _num);
bit _clearbit _num-*1);

b it_ cle a r( b it_ num-'2)
b it _clear(bit _num+3;

break;

case '9':
b it s set (b it _num);
bit _clearbit _num+1P;

bit _clear(bit num+2,;
bit setbit num+3)1;

"18d



break,

rase'A
case 'a'

bit _set~bit _numn;

bit _cleartbit _num-1-);

bit _set(bit _num±2);

b it clear(bit num+3);
break;

case 'B':
case ''

bit set(bit _num) ;
bit _clear~bit _num-l);

bit _set(bit _num- 2);
bit _set(bit _num±3);

break;

case 'C' :
case ':

bit _set(bit _nuni);

b it s set (b it _num+ 1)
bit _clear(bit _nums2);

bit _clear(bit _num+3);

break;

caseD
case 'd':

bit _set(bit _num);

bit _set(bit _num+l);

bit _clear(bit _num+2);

bit set(bit _num'3);
break;

case 'E':
case e

b it s se tb it _numn;
bit _set(bit _numtl):

b it s se t(bi t _numt2);
bit _clear(bit _numi3);

break;

case 'F':
caseV

bit set(bit _num):
bit _set(bit _numt-);

bit _set(bit _num+2);

bit _set(bit nuzn-'3);
break:

def ault:

182



bad _choice choice':
break:

display word()

int i'j;
printf ( " V
for ( j0O j<47 jzj- 16

f

for (i~j ; i 16+.j i +

putcharcmicro _wordlij,
putchar, 'I;

putchar('

putchar('\';)

display in _hex()

i nt i j;
printf
for j=O; jA47; jj±16;

for ( i=j; i < 16-*j; i -~4)

hex _display( &micro _word[i]);
printf(

putchar( '\n' );

hex displayf pchar)
char *pchar;

mt i,value;
value =0;
for izQO; i 4; i++

switch (*(pchar-*i))
f

case ' 0'
value 2*value;
break:

case
case ''

183



value 1 + 2*value:
break;

case
putchar( ' ' ;
return;
break;

}
printf("%.lx",value);

bit set(i)
int i;

int error;
error = 0;
switch (microword[i])

case 'X': /* Don't care, therefore set it'*
micro word[il '1';
break;

case '1': /* Already set, therefore OK.
break;

case '0': /* Cleared, therefore an error. *
micro word>i] = ''
error = 1;
break;

case '7' '* Already in the error state. *
break;

default: /* Garbage in the microword! *,"
puts ("Garbage in the

microword ! ! ! nxO"
sleep(2)
break;

return (error ;

bit clear(i)
int i;

int error;

184



error 0:
switch :micro word'i]

case 'X' :/* Don't care, therefore clear lt'

microwordri : '0':

break;

case '0': /* Already clear, therefore OK. *"

break;

case '1': /* set, therefore an error.
micro _wordi' '

error 1;
break;
,,

case '9 : ,* Already in the error state. t

break;

default: /* Garbage in the microword
puts ("Garbage in the

microword"I'' n O"
sleep(2);
break;

return (error);

bit erase' i)
nt i.

micro word[i] 'X':

185. .



Program Name: 2O3.menus.c
Purpose: Source code for the menus used in the ALL module.

#define erase _screen 0~.33' 2J\03310:OH"
*include tdoh

1* AM129203 MENU PROCEDURES

am29203menu~am292O3select)

char *am292O3select;

puts(erase screen);
puts("\t\t\tMASrER AM29203 ALU MENU\n\n\0");
displayword()
display _ in _ hex(,)
puts('The X s indicate bits which are not yet defined 0",:
puts( "The defaults for the AM29203 ALU are:\"O"
puts("\tRegister Address Select - bits 47-45 - A,B

pipeline =111 0"
puts("\tlnstruction Enable - bit 44 -Disable = 1\O"
puts('\tOutput Enable - bit 43 - Disable= \")
puts('t\tSource - bits 42-40 - DAQ =111\0"',;
puts "\tlestination -bits 39-36 -YBUS 1111\0");
puts("\tALU Function -bits 35-32 -OR llll\n\O");
puts("What do you want to do next?\O%);
puts("\ttype a B to choose ALU FUNCTIONS\O"u,
puts('"\t\tS to choose SPECIAL FUNCTIONS\O");
puts' \t\tH for HELP with this program\O")
puts ',t\tR to RETURN to higher level 0-;
gets(am29203select

*procedure am292O3menu *

FUNCTIONmenu( FUNCTIONselect,

char *FUNCTIONselect:

puts(erase _screen);
puts("t"tAN29203 ALU BASIC FUNCTION SELECT\n\Ofl;
puts("Enter the value corresponding to the function you

wish to perform\0");

186



puts, ".t tO F High\O"';
puts " t tl F S - R I Carry In 0"
puts " t t2 F R - S - 1 Carry In";O",:
puts. t t3 R + S Carry In,,'O :
puts " t t4 S - Carry In,,O",:
puts "\t\t5 NOT S) + Carry In',O"';

puts " t, t6 R - Carry In"\0"!;
puts "',t' t7 F 7 NOT R) Carry In\0"};
puts("\t\t8 F = Low\O" ;
puts("\,t\t9 F = (NOT R) AND S\O");
puts("\t\tA F = R EXCLUSIVE OR S\O");
puts("',t\tB F =  R EXCLUSIVE OR S\O");
puts, "\t\tC F = R AND S\O")
puts \t\,tD F =  R NOR S\O");
puts "',t\tE F = R NAND S\O");
puts'"\,t\tF F =  R OR S\O");
puts "\t\tH for HELP with this program\O")
puts'" t"tR to RETURN to higher level\O"1;
gets(FUNCTIONselect.,:
/* procedure FUNCTIONselect */

SPECIALmenu(SPECIALselect)

puts erase_screen,,;
puts("\,t\tAM29203 ALU SPECIAL FUNCTION MENU\n.,O");
puts("Enter the value corresponding to the function you wish

to perform0".
puts " 0 Unsigned multiply\O")
puts(" I BCD to Binary Conversion\O");
puts," M Multiprecision BCD to Binary Conversion\O":
puts'" 2 Two's Complement Multiply\1O");
puts 3 Decrement by 1 or 2\0"):
puts u I Increment by I or, 2',, ;
puts " 5 Sign/Magnitude to Two's Complement

Conversion 0"
puts " 6 Two's Complement Multiply\0");
puts(" 7 BCD Divide by 2\0");
puts." 8 Single Length Mormalize\O";
puts " 9 Binary to BCD Conversion\O""
puts" Z Multiprecision Binary to BCD ConversionO"
puts<" A Double Length Normalize; First DivisionO0"
puts " B BCD Add\ O") :
puts(" C Two's Complement Divide\O");
puts' " D BCD Subtract F = R - S - 1 Carry In

B CD o"
puts," E Two's Complement Divide Correction and

Remainder,0".

187

''.."-.



puts(" F BCD Subtract F S -- R I Carry In
BCD) 0"

puts H for HELP with this menu\0";:
puts("' R to RETURN to higher level\10";
gets SPECIAIselect :

iprocedure SPECIALselect *

SOURCEmenu(SOURCEselect)

char *SOURCEselect:

puts(erase _screen);
puts<'\t\t\tAM29203 ALU SOURCE MENU\n\.0"',;
puts("The source control default is DAQ\n\0Th;
puts:" Operand R Operand S Ninenionic 0"
puts( , Enter a 0 RAMA RAMB RAMAB\0" :
puts,'- 1 RAMA Direct B RAMADB 0"
puts' 2 RAMA Q Register RAMAQ\0 :
puts "4 Direct A RAMB DARAMB\0",
puts(" 5 Direct A DirectB DADB\0",:
puts'" 6 Direct A Q Register DAQ\.0",
puts'', I Instruction Register\0"
puts" P Pipeline Register .0"
puts' H for H with this program\O"):
puts(" R to RETURN to higher level\0"':
gets(SOURCEselect);

}/* procedure SOURCEmenu*,

SOURCElmenu( SOURCElselect)

char *SOURCElselect;

p u ts erase _screen);
puts("\t\t'\tAM292O3 ALU SOURCE MENU\n\0");
puts("You have chosen one of the following AM29203 ALIT

functions: (V'
puts("\tF =High\O%;
p u t s tF =R -Carry In\0");
puts'"\tF +(NOT R) + Carry In\0");
p u t s:* '\tF =LOW\n'\0");
puts'"For these functions, the only allowed AM292031 ALU

Sources are: .rn 0"
puts("\tOperand R Operand S Mnemonic\n\0" ':

puts " tRAMA Q Register RAMAQ\10fl
puts:'"xtDirect A Q Register DAQ\n\O>;

188



puts Tv ,v a 2 for RAMAQ',0"
puts t6 :or DAQ 0- :
puts tE f.: HELP ,ith this program0"
puts ' tR to RET 1-'q N a higher level, 0"
gets SOURCElselect :
/* procedure SOURCElmenu *.'

SOURCE2menu(SOURCE2select"

char *SOURCE2select;

puts erasescreen::
puts " t t' tAM29203 ALU SOURCE SELECT\n\O" ;
puts " You have chosen an AM9203 ALI -Special

Function',n 0"
puts What sources do you want to use n,0" "
puts<" Operand R Operand S Mnemonic0"':
puts'" Enter a 0 RAMA A RAM B RAMAB 0"
puts " 1 RAM A DIRECT B RAMADB 0"
puts " 4 DIRECT A RAM A DARAMB 0"
puts " 5 DIRECT A DIRECT B DADB',0"
puts(" H for HELP with this menu 0",;
puts " R to RETURN to a higher levelO"
gets SOURCE2select

'* procedure SOURCE2menu */

DESTINATIONmenu(DESTINATIONselect)

char *DESTINATIONselect;

puts erase screen':
puts "' t'..t',tAM29203 ALU DESTINAT[ON MENL'n 0"':
puts Enter the value corresponding to the

destination you desire 0"
puts'" 0 RAMDA - F to RAM, Arithmetic Down Shift '"
puts(" 1 RAMDL - F to RAM, Logical Down ShiftO", "
puts'" 2 RAMQDA - Double Precision Arithmetic Down

Shift\0"-
puts " 3 RAMQDL - Double Precision Logical Down

Shift\O"
puts " - RAM - F to RAM with parity",O"):
putsi 5 QD - F to Y, Down Shift 0\0";"
puts' " 6 LOADQ - F to Q with parity" 0".
puts'', - RAMO - F to RAM with parity"O"):

189



I

puts RAMITPA - F to RAM, Arithmetic Up Shift,O"
puts 9 RAMUPL - F to RA.1, Logical Up Shift 0, '
puts A RAMQUPA Double Precision A rithmetic Up

Shi ft 0'
puts " B RAMQUPL - Double Procision Logical Up

Shift 0
puts " C - F to Y only\,O"
puts " D - F to Y, Up SHift Q\,O"',;
puts E SIGNEXT - SIOO to Y' i\O"
puts " F RAMEXT - F to Y, Sign extend LSB\,O" ;
puts " I Instruction Register\O");
puts;" M Main MemoryO"-;

puts " H for HELP with this programn\O"';
puts " R to RETURN to higher level\O");
gets DESTINATIONselect :
* procedure DESTINATIONmenu *,

EGISTERmenu REGISTERselect;

har *REGISTERselect;
I

puts erase screen ;
puts. ' t\t'tAM29203 ALU REGISTER ADDRESS MENU' n0""
puts The default source selection is Source A

pipe Iine' , 0"

puts Source B - pipeline, Destination C -

pipeline' n 0"
puts Enter the value corresponding to the register

address, 0".
puts "you desire',O", ;
puts( Source A Source B Destination C 0"
puts(" 0 Pipeline Pipeline PipelineO"
puts(" I Instruction Pipeline Pipeline'O"
puts 2 Pipeline Instruction Pipeline 0"
puts 3 Instruction Instruction Pipeline_ 0"
puts 4 Fipeline Pipelin- Instruction 0"

puts 5 Instruction Pipeline Instruction0"
puts " 6 Pipeline Instruction Instruction 0"
putse" 7 Instruction Instruction Instruction 0"
gets REGTSTERselect:

procedure REGISTER menu *1

IRECTmenuconstantl,constant2

har *constantl,*constant2:

puts erase screen):
I

190



puts t t tAM29203 ALU D IRECT SOURCE ME.17 n 0"
puts "You have chosen an ALU function, source, or

dest inat i on which 0
puts requires a constant or Ra and Ph to

en t e r ed in t o t h 
puts the branch address field of the

microinstruct ion n 0"
puts This constant or the RAM register

designations is 1 6'"

puts:" byte in length\'0"';

puts " Please enter the constant or the RAM register
designat inn 0"

puts Enter a H for HELP with this program 0"
puts Enter a R to RETURN to a higher level'0"
gets constantl,constant2

* procedure DIRECT menu *"

'NABLEmenu' INSTRUCTIONselect,OUTPUTselect

-har *INSTRUCTIONselect,*OUTPUTselect;

puts erase_screen

puts " t tAM29203 ALU INSTRUCTION AND OUTPUT ENABLE

MENU n 0

puts Do you want the ALU results to appear on thH,
Y bus! "

puts " Type an Y for YESO",:
puts Type a N for NOn'n\nO";
gets OUTPUTselect':
puts Do you want to change the contents of any ALI

register 0" :

puts' during this ALU operation?\n 0'","
puts Type an Y for YES'O"'
puts Type an N for NO 0"
gets INSTRUCT ONseLect : 

* procedure ENABLEmenu *

?AMAmenu RAMAselect

-har *RAMAselect:

puts erase scre.en :
puts t tAM2920, ALL RAM A REGISTER SELELT]" n 0"
puts t Enter the vaLuH cor-res oi .ing to thoi - .

Reg i S t r" o '

puts " tvou wish to select n 0"

tg -.1



AD-Ri55 164 EVALUATION AND IMPLEMENTATION OF A FUNCTIONAL 313.
M ICIROPROGRAM GENERRTOR(U) NAVARL POSTGRADUATE SCHOOL

UNCLSSIIED MONTEREY CA D 8 STILTNER DEC 84FG92 NEhEE7hhi
U nCLSSFEDFGn/



1111 111
ILI~ 3.-1&

1III.8
II11I1= AII=III

%3

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS- 1963-A



puts("\t 0 RAMA A Reistr00

puts( "\t 1 RAMA A Register 0\0'fl
puts( "\t 2 RAMA A Register 1\0")
puts 1,"\,t 2 RAMA A Register 2~\0")
puts("\t 4 RAMA A Register 3\0");
puts("\t 4 RAMA A Register 4\0");
puts t'\t 6 RAMA A Register 5\0";
puts(",\t 6 RAMA A Register 6\0");
puts("\t 8 RAMA A Register 7\0");
puts("\t 9 RAMA A Register 8\0"Y);
puts("\t A RAMA A Register A\0");
puts("\t B RAMA A Register B\0");
puts("\t C RAMA A Register C\0");
puts(1"\t C RAMA A Register D\O");
puts('\t E RAMA A Register E\0");
puts("\t F RAMA A Register FE\0");

puts("\t H for HELP with this menu\0");
puts("\t R to RETURN to a higher level\0");
gets(RAMAselect);

} * procedure RAMAmenu *

RAMBmenu(RAMBselect)

char *RAMBselect;

puts(erase_ screen);
puts("\t\t\tAM29203 ALU RAM B REGISTER SELECT\n\0"); -

puts("\t Enter the value corresponding to the RAM B
Register \0");

puts("\tyou wish to select\n\0");
puts(t \t 0 RAM B Register 0\0");
puts("\t 1 RAM B Register 1\0");
putsU'"\t 2 RAM B Register 2\0");
pu t S t 3 RAM B Register 3\0");
put S("t 4 RAM B Register 4\0");
puts("\t 5 RAM B Register 5\0");
puts(t 1\t 6 RAM B Register 6\0");
puts("\ 7 RAM B Register 7\0");
puts("\t 8 RAM B Register 8\0");
puts("\t 9 RAM B Register 9\0");
puts("\t A RAM B Register A\0");
puts("\t B RAM B Register B\0");
puts("\t C RAM C Register C\0"); 1
p Ut S"t. D RAM B Register IJ\0");
p ut s t, E RAM B Register E\0");
p ut S("t F RAM B Register F\O");
puts("\t H for HELP with this menu\0");
puts('\t R to RETURN to a higher level'\'";

192



gets(RAMBselect.);
}/* procedure RAMBmenu *

I

193

. .. . . . . . . . . . .



- . . . r"

Program Name: 2904.supp.c
Purpose: Source code for the utilities used with the Alu module.

/* This version of the 2904 code is included to allow
the testing of other modules. The utilities have been
removed, as has the main program portion. 13 July 1984. *.

/* This program will aid the 2900 system designer in the
programming of a 2904 "glue" chip. */

/* This version is not as current as the utilities used
with the Sequencer module. 27 Dec. 1984

/* This source is set up to work with the vtlOO from
VAX/unix. */

*include <stdio.h>
#define erase_screen "\033[2J\033[0;OH" /* vtlOO erase

screen and home cursor *

#define TRUE 1
*define FALSE 0

/* These defines relate to the 29203ET board, and
should be contained in a routine to initialize them, rather
than as defines. */

#define 112 _04 16
*define 11104 17
#define 110 04 8
#define 109 04 28
*define I08_04 29
*define 107_04 30
*define 106_04 3].
*define 105 04 18
*define 104 04 19
*define 103 04 20
*define 10204 21
#define 101 _04 22
#define 100_04 23
*define Ceu04 24
#define CeM_04 25
*define Se 04 27
#define Cmd En 26
#define Cmd 3 28
#define Cmd 2 29
*define Cmdi1 30
#define CmdO 31

194

. . "-' . .... "'.% - ".. '.. . '"....'..'...... ~ %,-o % . . . . o.o".. .. ,.-.- . -. o.. . . . ..........



/* Variable Declarations *,.

extern char cmdline[801,*pcmd,microword[49],*pmwd;

i* We need a static data structure which holds the
different choices available for bits 15 to 10 of the 2904.*, "--

char *choices 04(n) /* return a pointer to the n-th choice*/
int n;

static char *choice [ = .
"OXOXXX", /* carry in = u carry, first choice -0 *.
"OXXlXX", /* carry in = u carry, second choice -1 /-
"OXXXlX", /* carry in = u carry, third choice -2 *'
"IXOXXX", /* carry in = Macro carry, first choice -3*/
"lXXlXX", /* carry in = Macro carry, second choice -4*-.
"IXXXIX", /* carry in = Macro carry, third choice -5 -.
"OOO1X", /* Load u register, retain overflow bit -6 *,'
"X1OOX", /* Load u reg,invert carry, first choice -7*,'
"IXIOOX", /* Load u reg,invert carry,second choice -8*-
"XXOI0X", /* Load u reg, immed., first choice. -9 */
"XlOXXX", /* Load u reg, immed., second choice. -10 */
"XlXXIX", /* Load u reg, immed., third choice. -Ii */
"X1XlXX", /* Load u reg, immed., fourth choice. -12 *-
"IXOXXX", /* Load u reg, immed., fifth choice. -13 */
"IxxxIX", /* Load u reg, immed., sixth choice. -14 *,
"IXXlXX", /* Load u reg, immed., seventh choice. -15 *'
"XXIOOX", /* Load M reg, invert carry -16 */
"XXXIIX", /* Load M reg, immed, first choice -17 *,

"XXlXlX", /* Load M reg, imned, second choice -18 *,!
"XXIIXX", /* Load M reg, immed, third choice -19 */
"XIOXXX", /* Load M reg, immed, fourth choice -20 *"-
"lXOXXX" /* Load M reg, immed, fifth choice -21 */

return (choice [n]);

/* Now we need a structure to manipulate this data. --
Each time we invoke a function with a choice, a pointer to
that choice gets added to the list of such pointers. When
we display or save a microword, we will search this list to
find an entry which matches all of the chosen functions. *'

dummy()

puts ("Dummy called\n\n\O");

195

d d -1 W



shift2 menu(,

puts'erase _screen);
puts("You have chosen a down shift for this microword.

There are'.0"-
puts("16 possible shift patterns, coded 0 thru F in

bits I9\0 1';
puts("thru 16. Choose the shift pattern you desire from

the\0");
puts("following set:\0");
puts("\tzero 0 -)RAMn, 0 -Qn\0"):

puts("\t one = 1 -)RAMn, 1 -) n\O"',
puts("\t two 0 -)RAMn, RAMO -)Mc, Mn-

Qn\0"
puts("\tthree 1 ->RAMn, RAMO ->Qn\0"):

puts("\tfour = Mc ->RAMn, RAMO -Q n\0");
puts("\tfive = Mn -)RAMn, RAMO -)Qn\0");

puts("\t six = 0 -)RAMn, RANG - Qn\0");
puts("\tseven = 0 ->RAMn, RAMO -On, 00

Mc\0")
puts("\teight =RAMO ->RAMn, QO -> n, RANG -

Mc \0")
puts("\tnine Mc ->RAMn, 00 ->On, RAMO-

puts("\t A =RANG - RAMn, 00 ->Qn\0");

puts("\t B Ic RAMn, RANG - Qn\0"):
puts("\t C Mc -)RAMn, RAMO -O n, QO-

Mc\~0")
puts("\t D - QO -)RAMn, RAMO ->On, QO -

Mc\0");
puts("\t E =In exor IOvr -)RAMn, RAMO -> \")
puts("\t F - 00 -)RAMn, RAMO -> Qn\0");
puts("\t H to get help with this procedure\0");
puts("\t N to back up one frame.\0");

shift3 _menu()

puts(erase screen);
puts("You have chosen an up shift for this microword.

There are\0",-:
puts("16 possible shift patterns, coded 0 thru F in

bits 19\"):
puts("thru r6. Choose the shift pattern you desire from

the\0")
puts("following set:\0");
puts("\tzero = 0 ->RANG, 0 -) 0, RAMn -

puts("\t one 1 I > RAMO, 1 ->00, RAMn
Mc\0'";

196



puts("\t two 0 RAMO, 0 -QO \0
puts("\tthree = 1 - > RAMO, 1 QO
puts(,"\\tfour Qn -> RAMO, 0 Q, QO, RANn

Mc\0"
puts("\tfive Qn ->RAMO, 1 ->QO, RAMn-

Mc\O"
puts("\t six Qn -> RAMO, 0 >) QO\0I
puts("\tseven Qn -)RAMO, I Q0\O");
puts("\teight =RAMn ->RAMO, Qn ->QO, RAMn-

Mc\0")
puts("\tnine Mc ->RAMO, Qn ->QO, RAMn-

puts("\t A RAMn ->RAMO, Qn -?Q0\O" ;
puts( "\t B - Mc -RAMO, 0 Q-\->,

puts("\t C O n -)RAMO, Mc -~QO, RAMn-
M(,- 0"

puts("\t D - n -RAMO, RAMn ->QO, RAMn -

M(-, 0'

puts;"\t E = n ->RAMO, MC - Q0>0O",

puts("\t F = n -)RAMO, RAMn ->QO\0");

puts("\t H to get help with this procedure\0"'.;-
puts("\t N to back up one frame.\0");

carryinmenu()

puts (erase screen);
puts("\tThe Carry into the least significant stage of

the ALU\0";
puts("is controlled by bits 112 and 1ll, and sometimes

bits \0"l

puts("15, 13, [2, and Il. There are seven possible
choices: 0",

puts("\tType a zero to select ZERO as the carry
- in .\0"

puts("\tType a one to select ONE as the carry-in.\ '0"':

puts("\tType a two to select Cx, the Z output of the
29203."0**

puts("\tType a three to select the carry bit from the

micro reg\0"2;
puts("\tType a four to select the micro carry bit

complemented\0O"'
puts("\tType a five to select the MACRO carry bitO"
puts(""\tType a six to select the MACRO carry bit

complemented' 0"
puts("\tType an H for help.\0");

statusl menu()

puts (erase-screen);

197



puts("\tBits 10 through 1-5 control the two different
status\0"'

puts("registers which may be selected. There are thr'e
main\ 0"

puts("choices to be made, and you can change either or
both\0O"':-

puts("of the registers:\n\0");
puts("\tType a '0' to make no changes to the status -

registers\10");
puts("\tType a 'I' to change the micro status

register. \QY)

puts("\tType a '2' to change the MACRO status
register..0'

puts("\tType a 'D' to exit from this section.\0"):

status2 _menu()

puts(erase_ screen);
puts("\tYou have chosen to modify the micro status

register \0"':
puts("(abbreviated uSR). There are 15 different

choices: \0"
puts("\tType a zero to load the MSR into the uSR.\0". ;
puts("\tType a one to set all bits in the uSR\ 0");
puts("\tType a two to swap the MSR and the uSR\0"):
putsU.\tType a three to reset all bits to 0 in the-

uSR\0";
puts("\tType a four to load the uSR from the immed.

inputs\0");
puts("\tType a five to load all uSR from I except

overflow\0');
puts("\tType a six to load all uSR from I, invert carry

b i t \ 0"
puts("\tType a seven to reset only the zero flag in the

uSR\0"',
puts("\tType an eight to set only the zero flag in thlw

uSR\O"',)
puts("\tType a nine to reset only the carry flag in the

uSR\0"
puts("\tType an A to set only the carry flag in the

USR\ 0"'
puts("\tType a B to reset only the sign flag in the

uSR\0"):
puts("\tType a C to set only the sign flag in the

uSR\0");
puts("\tType a D to reset only the overflow flag in the

puts("\tType an E to set only the overflow flag in the
uSR\O")

puts("\tType an H to get help\0");

198



mic _stat_set(pchar)
/* This routine sets up the microstatus register, in

agreement with the status2 menu. */

char *pchar;

switch (*pchar)
{
case '0': /* load the microstatus from the MACRO

status *'

bit clear (I05_04);
bit _clear (104_04);
bit _ clear (I03_04);
bit _ clear (102_04);
bit clear (101_04);
bit clear (100 04);
break;

case '1': /* set the microstatus register. */
bit clear (I05_04);
bit _ clear (104_04);
bit _clear (I03_04);
bit clear (102_04);
bit clear (101_04);

bit set (I00_04);
break;

case '2': /* Swap the micro and MACRO status
words. *,

bit-clear (105_04);
bit _ clear (104_04);
bit _ clear (103_04);

bit clear (102_04);
bit set (IO104);
bit clear (IO0 _04);

break;

case '3': /* zero the microstatus register. */

bitclear (I05_04);
bitclear (104_04);
bit clear (103_04);
bit clear (102 04);
bit set (I01_04);
bit-set (100_04);
break;

case '4': /* Load the microstatus register from
the I pins. Many possible inputs here, need an auxiliary
data structure. *'

199

JlJ~~..jJ .......



bit set 105 04:
bit-set (I04_04);
bit-set (103_04y;
bit set (102 _04)

bit set (101 _04);
bit set (10004);
break;

case '5': /* Load from I, with overflow retain. */
bit _clear (I05_04);
bit _clear (104_04);
bit _clear (103_04);

bitset (102_04);
bitset (101-04);
break;

case '6': /* Load from I, with carry invert. Need
to turn on 15 or 14 or both. *

bitset (103_04);
bit clear (102_04);
bit clear (101_04);
break;

case '7': /* Reset the zero flag. */
bit clear (105_04);
bit clear (104_04);
bit set (103 04);
bit clear (102 _04);
bit clear (I01_04);
bit clear (I00_04);
break;

case '8': /* Set the zero flag. */
bit clear (105 04);
bit _ clear (104_04);
bit set (103_04);
bit clear (102_04);
bitclear (I01_04);
bit-set (100_04);
break;

case '9': /* Reset the carry flag. */
bit clear (I05_04);
bit clear (104_04);
bit-set (103_04);
bit clear (102_04);

bit-set (101-04);
bit _ clear (I00_04);
break;

200

................

... ... ... ... ... .. . •



case 'a':
case 'A': /* Set the carry flag. *,.

bit_clear (105_04):
bit _ clear (104 04);

bit_set (103_04);
bit _clear (102 04);
bit-set (101-04);
bit set (10004);
break;

case 'b'
case 'B': /* Reset the sign bit. */

bit clear (I05_04);
bit clear (104 _04);
bit_set (103_04);
bit set (102-04);
bit_clear (101_04);
bit clear (100 _04);
break;

case 'c'
case 'C': /* Set the sign bit. */

bitclear (105 _04):
bit clear (104_04);
bit _set (103_04);
bitset (102_04);
bit _clear (101 _04);-

bitset (100 _04);

break;

case 'd'
case 'D': /* Reset the overflow bit. */

bit clear (I05_04);
bit clear (104_04);
bit_set (103_04);
bit set (102 04);
bit set (I0104);
bit clear (100_04);
break;

case 'e'*
case 'E': /* Set the overflow bit. */

bit clear (105 04);
bit clear (I04 _04);
bitset (103_04,;
bitset (10204);
bit set (101 04);
bitset (I00_04);
break;

default:

201

. .



puts (" No help implemented yet. \n\O" :
sleep (2,,
break;

}

status3 menu()

puts(erasescreen);
puts("\tYou have chosen to modify the MACRO status

register',O" '
puts("(abbreviated MSR). The MSR is also controlled by

five\0"
puts("enable bits, which are set on the next menu. 0"
puts("There are 8 different choices in this menu:\0" :
puts("\tType a zero to load the Y inputs into the

M SR 0'
puts("\tType a one to set all bits (if enabled)\O".;
puts("\tType a two to swap the MSR and the uSR\O");
puts("\tType a three to reset all bits (if

enabled)\O" :
puts("\tType a four to swap the Mc and the Movr\'0":
puts("\tType a five to complement all bits\O");
puts("\tType a six to load all MSR from I, invert

carry\0O")"
puts("\tType a seven to load all MSR from I\-0"

macrostat_set(pchar)
/* This routine deals with the loading of the

Macro status register.*/
char *pchar;

switch (*pchar)

case '0': /* Load Y inputs into the MSR *
bit-clear (105_04);
bitclear (104 04);
bitclear (103_04);
bit _ clear I02_04);
bit-clear (I01_04);
bit-clear (100_04);

break;

case '1': /* Set all bits in the MSR */
bit_clear (I05_04);
bit _clear (104 04);
bit _clear (103_04);
bitclear (102_04);
bit_clear (I01_04);

202



bit set (100 04;
break;

case '2': ., Swap the MSR and the uSR
bit _clear (105_04);
bit clear (104 _04);
bit clear (103_04);
bit clear 10204);
bit _ set (101-04);
bit _ clear (IOO_04);
break;

case '3': /* Reset all bits in the MSR '.

bit _ clear (105_04);
bit _ clear (I04 _04);
bit clear (103 04);
bit clear (102 04);

bit set (I01_041;
bit set (I00_04);
break;

case '4': /* Swap the Mc and the Movr *,

bit clear (105_04);
bit clear (104_04);
bit clear (103_04);
bit _set (102_04);.
bit clear (I01 04 :
bit _ clear (100_04);
break;

case '5': /* Complement all bits in the MSR *

bit _clear (I05_04);
bit _ clear (104_04);
bit-clear (103_04);
bit _set (102_04);

bit clear (I01 _041;
bit set (100 04):
break:

case '6': i* Load the MSR, with the carry
inverted. Several choices here, need to implement the
decision process. Turn on 104 or 105, or both. 100 is a

care. *,

bit _set 103 _04);
bit clear (102 _ 041:
bit _ clear (101-04);
break;

case '7': /* Load the MSR from the I inputs.
/* Many choices here. "

bit set '105 04);

203



Program Name: extern.h
Purpose: This file is included in all modules which are not

"main" programs. It must reside in the same directory
in which all compilations are made.

/* This header file used to assign external definitions to
all files except the main program. The original definitions
should be contained in the main program. *"

/* LAST UPDATE: 5 Sep 1984 */

extern int docu _word[24];
extern char cmdline[80,*pcmd,micro-wordr49,*pmwd:

217

.'1 2" i ': ". ". - . - .''. ". " " . . . - -. .- . ,. . . . .- . . . . . " ..



/these defines refer to. the physical fields of the
inicroword. They are used to pass field-set the fields *-

#define regsrc 1
*define ien_ fld 2
*define oey_ fld 3
*define src_ fid 4
*define dest-fld 5
*define func_ fld 6
*define carryinfld 7
*define 1514 fld 8
*define 13 10 _fld 9
*define 15 _10 _fld 10
*define ceu_ fid 11
*define cernfld 12
#define cmden _fld 13
*define shiften _fld 14
*define command fld 15
*define shift _fld 16
#define breakpoint _ fld 17
*define notused_ fld 18
*define msb _br_ fid 19
*define mid br _fld 20
*define lsb _br _fld 21
*define rega _fld 22
*define regb _fld 23
#define seq_ fld 24
*define condtest _fid 25

216



Program Name: declare.h
Purpose: This file is included with all other modules.

When compiling the modules, this file must be
in the same directory.

1* declare.h is the latest header file for declarations for
use with the 2900 system functional microprograming effort.
This source is set up to work with the vtlOO from
VAX/unix. */

/* This header file should be "*included" with all
modules.*

/* LAST UPDATE: 5 sep 1984 *

*define erase_-screen "\033[2J\033[0:0H" '*vtlOO erase
screen and home cursor *

*define TRUE I
*define FALSE 0
*define false 0
*define true 1
*define no-sub 0

'These defines relate to the 29203ET board, and should be
contained in a routine to initialize them, rather than as
defines. *

*define 112 _04 16.
*define 1ll1 04 17
*define 110 _04 8
#define 109_04 28
*define 108 04 29
*define 107 _04 30
#define 106 04 31
*define 105 _04 18
*def ine 104 _04 19
*define 103 04 20
*define 102 04 21
*define 101 _04 22
*define 100 04 23
*define Ceu _04 24
*define CeM _04 25
*define Se_ 04 27
*define Cud En 26
*define Cmd_ 3 28
*define Cud 2 29
*define Cmdi1 30
*define Cud-O 31

215

...............................................-. A



bit-_set('ll 04);
bit-_set(I05-_04);
bit-_set (10304 1;--
bit _clear( 102_ 0,1';
bit-clear(IOl 04);
break;

default: /* Help message on default *
puts("No help available yet!!\n\0");
sleep(2);
break;

214



carry set (pchar)
char *pchar;

switch (*pchar)

case '0': /* carryin of zero *
bit clear(Il2_04);
bit _clear(Ill_04);
break;

case '1': /* carryin of one *
bit _clear(I12_04);
bit set( Ill_04);
break;

case '2': /* carryin of Cx *
bit-set(112-04);
bit _clear(Ill _04);
break;

case '3': /* carryin of micro carry *
/* Three possible choices here, how do we record and

decide?
bit-set( 112-04):
bit set (11104);
bit _clear(I05_04);
bit clear(103 _04);
break;

case '4': /* carryin of micro carry not *
bit-set(I12-04);
bit -set(I111_ 04);
bit _clear(05 _ 04);
bit _set(103_04);
bit _clear(102 _04);

bit-_c].ear( 101 _04);

break;

case '5': /* carryin of MACRO carry *
7* Two other choices here, same problem as case 3 *

bit set( 112_04);
bit-set(Ill-04);
bit-set(I05-_04);
bit _ clear(103_04);
break;

case '6': /* carryin of MACRO carry not *

bit set(112-04);

213



bit-_set(109-04);
bit _clear(108 04);
bit-set (107-04;
bit _set(106_ 04);
break;

case'c
case C

bit-set(109-04);
bit set( 108_04);
bit _clear(107 04);
bit _clear(106 04);
break;

case ''
case 'D':

bit-set( 109-04);
bit-set(I10804);
bit _clear(107_04);
bit set( 106_04);
break;

case le'
case ''

bit _set('109_04);
bit-_set(108-04);
bit-_set(107-_04);
bit-clear( 106_04);
break;

case ''
case 'F':

bit-set(109-04);
bit set(I08_04);
bit-set (107-04);
bit-set(106-04);
break;

case 'n:
case 'N':

backout =1;
break;

default:
puts("Sorry, Na help yet -you're on your

own.\n\0"
sleep(2);
break;..

return (backout),

212



bit clear(109 _04';
b it _set( 108 _04)
b it clea r(107_04);
bit _clear(106-_04):
break;

case '5'
b it _clear( 109 _04);
bit set(108_04);
bit _ clear(107-04);
bit-set(106-04);
break;

case '6':
bit _clear(109 _04);

bit _set(108- 04);
bit set(107 _04);
bit _clear(106 _04);

break;

case ' 7'
bit clear(109- 04);
bit _set(I08-04);
bit _set 107 _04);
bit _set(I06_04);
break;

case '8':
bit set(109_ 04);
bit clea r(108 04);
bit _clear(107 _04);

bit~ clea r(106-04);
break;

case '9':
bit _set(109-04);
bit clear(108 _04);
b it _clear(107-_04i;
b it _set(106 04);
break;

case 'a'
case ' A':

bit set(109_ 04);
bit clear(108_04);
bit set( 107_04);
b it _ clear(106_04);
break;

case ''
case 'B':

211



break;

default:
puts(" No help available yet. n.O-
puts(" Start this process from the beginning

again. n 0"
next level =FALSE;

sleep(2);
break;

return (next-_level);

shift _set(pchar)
char *pchar;

int backout;
backout =0;
switch (*pchar)

case '0':
bit _ clear(109_04);

bit~ clea r(107_04);
bit-clear(106 04);

break;

case ''
bit _clear(109 04);
bit _clear(108 04);
bit-_clear(107_04);
bit _set(106_04);
break;

case '2':
bit~ clea r(109_04);
bit clear(108_04);
bit-set( 107_04);
bit -clea r(106_04);
break;

case '3':
bit _ clear(109_04);
bit -clea r(108_04);
bit-set(107 _04);
bit set (106 04);
break;

case '4':

210



puts "\.tType a one for the MACRO status register-O",.
puts("\tType a two for the Immediate status inputsO"'
puts("'\tType a three for Immediate SIGN exor Macro

SIGN'0"
puts("\tType a four for Imm. SIGN exnor MACRO SIGN'O"

cond _set(pchar)
/* This is the first level cond. code select, and

matches status7 menu.
char *pchar;
{
int nextlevel;
next level = TRUE;
switch (*pchar)

{
case '0': /* Micro status register selected. *'

bit clear(105 04);
bit_set(104_04);

/* Note that 104 can be cleared for many cases, see Tbl. 4,
Pg 5-79 */ -.

break;

case '1': /* Macro status register. */
bit-set(IO5 04);
bit _ clear(104_04);
break;

case '2': /* Immediate Inputs. */
bitset(I05_04);
bitset(104_04);
break;

case '3': /* Imm. sign exor MSR sign */
bit _clear(I05_04 ';
bit _clear(104_04);

bit_set(103_04);
bit _set(102 _04);

bitset(I01_04);
bit _ clear(IO0_04);
next level = FALSE;
break;

case '4': /* Imm. sign exnor MSR sign /1
bit clear(I05 _04);
bit clear(104 04);
bit _set(103 04);

bit set(102_04);
bit set(IO1 04);
bit set(IO0 04);
nextlevel = FALSE;

209

. . . . .

. . . . .. . . . . . . . . . . . . . . . . . . . . . . .



bit _clear(100-04):
if (micro _word[105-_04] 0'

bit erase(104 _04);
break;

case 'd':
case 'D': /* CARRY or not ZERO *

bit _set(103_04);
bit _set(102_04);
bit _ clear(I1104);
bit _set(IO0 04);
if (micro_wordi105_04] '0')

bit erase(104_04);
break;

case $e:
case 'E': /* SIGN *

bit -set(I03 _04);
bit-_set(102_04);
bit set(I1104);
bit clear(I00 04);
break;

case ''
case 'F": /* not SIGN *

bit-_set(103-04);
bit _set(102-04);

j bit set(I1104);
bit _set(I00 04);
break;

default:
puts("No help yet.\n\0");
sleep (2);
break;

status7 _menu()

puts(erase _screen);
puts("\tThere are two steps to selecting a test

condition. ThexO"':
puts("first is to select a register to be used, and the

second \0");
puts("is to select a test on that register. This menu

selects \0,
puts('"the register, or two special tests which combine .

two\0')
puts("registers.\n\0");
puts("\tType a zero for the micro status register\0"); .-

208



r. bit _clear(,103_04):
bit _set)1002 0l,;
bit _ set I01_04,
bit _ setIO100 04):
if (micro-word[105-04; '0')

b it erase(104 04);
break;

case '8': ! CARRY o r ZERO *
bit _ set(103-04);
bit -clear(102_04);
b it _ clear(I01 04)
bit _ clearJ.OO _04;
if (micro_word[105_04] '0')

bit _erase(104_04);
break;

case '9': ' not CARRY or not ZERO *

bit _set(I03_04);
bit cl ear(102 _04);
bit cl ear(I01 04);
bit _set(100_04);
if (micro word[105 04] '0')

bit erase( 104_04);
break;

case 'a:
case 'A': /* CARRY *

bit _set(103 _04);

bit-clear(102_04);
bit set(I01 _04);
bit _clear(100_04);
if (micro word[105 04] '0'

bit erase( 104_04);
break;

case 'b':
case ' B': not CARRY *

b it set(103 _04);
bit _clear(102 _04);

bit set(I01 _04);
bit _set(I00 04);
if (micro _word[105_04] '0')

bit-_erase(104-04);
break;

case v c
case 'C': /* not CARRY or ZERO *

b it _set(103 04',
bit _set(102 _04);

b it clear(I0 _ 04';

207



bit _set(100-04:
if (micro-word[105-_04' '0')

bit _erase( 104 04):
break;

case '2': /* SIGN exor OVR *
bit-c lear(I03_04);
bit clear(I02_ 04);
bit _set(I01-04);

bit _clear(I0O_ 04);
if (micro-wordf 105-041 '0')

bit _erase( 104 _04);
break;

case '3': ,'* SIGN exnor OVR *
bit _ clear(103_04);
bit _ clear(102 _04);
bit _ set(I0l 04)
bit-set(I0O _04);
if (micro~word(IO5_O4] '0')

bit _erase(104_04);
break;

case '4': /* ZERO *
bit-_clear(103_04);
bit-_set(102_04);
bit _ clear(I01 _049;-
bit _ clear(I00-_04);
if (micro wordjll05_04] '0')

bit _erase(104_04);
break;

case '5': /* not ZERO *
bit -clear(103 _04);
bit-_set(102_04);
bit c lear(I01_04);
bit _set(IOO_04);
if (micro~word[I05_O4J '0'.

bit-_erase,'104 04);
break;

case '6': /* OVR *
bit-c lear(103 _04);
bit _set(102-_04);
bit -s et(I01_04);
bit _ clear(I0 _ 04);
if (micro_wordE lOS 04] '0':

b it _erase(104_04);
break;

case '7': /* not OVH *

206



puts("\,tType a two to output the immediate inputs
f rom 0"*

puts' ,t\tthe ALU\.0",:
puts("\.tType a three for no output\0-

status6 menu(.)

puts(erase _screen);
puts(Y\,tWhat condition do you want reflected by the

condition 0"
puts( "code output?\O");
puts("\tType a zero for (SIGN exor OVR) or ZERO' 0"::
puts("\tType a one for (SIGN exnor OVR) and not

puts("\tType a two for (SIGN exor V ,'.- ZE0":

puts("\\tType a three for ."SIGN exnor OVR\.O":
puts("\tType a four for ZERO\0");
puts("\tType a five for not ZERO\O");
puts("\tType a six for OVR\O");
puts("\tType a seven for not OVR\0');
puts("\tType an eight for (CARRY or ZERO)\O",,
puts("\tType a nine for (not CARRY) or (not ZERO-.0-
puts("\tType an A for CARRY\0");
puts("\tType a B for not CARRY\0");
puts("\tType a C for (not CARRY or ZERO'\0");
puts("\tType a D for (CARRY or not ZERO)\O'fl;
puts("'\tType an E for SIGN\0");
puts("\tType an F for not SIGN\0");

cond_set(pchar)
/* This is the second level selection of the cond.

test*
char (*pchar);

switch (*pchar)

case '0': /* SIGN exor OVH or ZERO*,
bit -clear(103_04);
bit-_clear(102 _04);
bit _clear(I0l 04);
bit _clear(IOO _04);

if (micro _word(IO5_043 '0')
bit _erase(104 _04);

break;

case '1': ,'* SIGN exnor OVR and not ZERO *
bit _clear(I03 _04):

bit-_clear(102-_04);
bit c lear( 101 04);

205



bit-set (104_04);
bit set I03 04);
bit set (J02_04.;
bit set (101 _04):
bit-set (100 4 ;
break:

/* The status4_menu is not used with the eval board, since
/* the individual status enables are not in the microword.*
status4_menu()

puts(erase_screen);
puts("\tThere are six enable inputs to the status

registers- 0-
puts("on the 2904. They are a master enable for the

uSR,\O"!:
puts("a master enable for the MSR, and individual

enable for'O"
puts("the four bits of the MSR (zero, carry, sign,

overflow). 0"':
puts("You must chose which of these enables to

activate. \0"
puts("\tType a zero to activate the micro status

registerO"
puts("\tType a one to activate the MACRO status

register', C)'
puts("\tType a two to activate the zero flag in the

MSR\ 0" ;
puts("\tType a three to activate the carry flag in the

MSR\0"
puts("\tType a four to activate the sign flag in the

MSR0"
puts("\tType a five to activate the overflow flag in

the MSR 0"
puts("",tType a six if you want the rest of the fl3gs

disabled\O"
puts("\tType an H for help.\0");

status5_menu()

puts(erasescreen);
puts("\tYou can output something from the 2904

* onto 0"
puts("the Y-bus. What do you want on the bus?\O"
puts("\tType a zero to output the micro-status

register\0"
puts("\tType a one to output the macro-status

register 0"

204

. . ..°.



APPENDIX C

The following is the Compatibility Test program. It demonstrates the
algorithm for finding compatible bit patterns when conflicts occur in
shared microword fields.

*include <stdio.h>

/* We need a static data structure which holds the different
choices available for bits 15 to 10 of the 2904. *

char *choices 04(n) /* return a pointer to the nth choict?.
int n;

static char *choice [] =
"OXOXXX",/* carry in = u carry, first choice -0 *
"OXXIXX",/* carry in = u carry, second choice -1 *:
"OXXXlX",/* carry in = u carry, third choice -2 *,
"IXOXXX",/* carry in=Macro carry,first choice -3 *'
"lXXIXX",/* carry in=Macro carry, second choice -4 *
"1XXXIX",/* carry in=Macro carry, third choice -.5
"0OOOlX",/* Load u register,retain overflow bit --6 *
"XllOOX",/* Load u reginvert carry,first choice 7
"IXOOX",/* Load u reginvert carry,second choice -

"XXOIOX",/* Load u reg, immed., first choice. -9 '

"XIOXXX",/* Load u reg, immed., second choice. -10 *
"XIXXlX",,'* Load u reg, immed., third choice. -I1 *

"XlXlXX",/* Load u reg, immed., fourth choice. -12 *
"IXOXXX",/* Load u reg, immed., fifth choice. -13 *
"IXXXlX",/* Load u reg, immed., sixth choice. -14 *
"'IXXlXX",/* Load u reg, immed., seventh choice. --15
"XXlOOX",/* Load M reg, invert carry -16 *
"XXX1lX",/* Load M reg, immed, first choice -17 *
"XXlXIX",/* Load M reg, immed, second choice -18 * |
"XX1IXX",/* Load M reg, immed, third choice -19 */

"XlOXXX",/* Load M reg, immed, fourth choice -20 *
"IXOXXX"/* Load M reg, immed, fifth choice -21 */

return (choice [nj);}
main( )

int n,i,conflict;
char *result;

218



static char *ptrarray".;
printf( 'Pick your first choice for bits 15-10, 0-21-n"
scan f("%d",&n;
result =choices _ 04(n.;
ptrarray(L0]choicesQ04 n);
printf( '%d\n",result);
printf("The nth choice picked is, %d, the bits are,

%s\n" , nresult);
printf("Pick your second choice for bits 15-10, 0-21'\n"
scanf( "% d"',&
result =choices-_04(n);
ptrarrayillchoices-04(n);
printf("The nth choice picked is, %d, the bits are,

ls\n" ,n, resuli t

printf("Ptrarrayj03= ?c\n",*ptrarrayI0]);
printf("Ptrarrayfl]= %*c\n",*ptrarray~lI,);
printf("the value which starts at ptrarray[0] is

?%s\n",ptrarrayA0i:
printf("the value which starts at ptrarray[l] is

c'Is\n",ptrarray[lI

confi ict0O;

for (i=0;i(6,i+s)

if ,(*(ptrarraylO] + i)==*(ptrarray[l] +- i')):
(*(ptrarray[O] + i)=='X':H*(ptrarray[l] -- i='VX>

confl1ict0O;
printf("conflict=0\n");

else{
conflict~l;
printf("conflict=l\n");
break;

printf("conflict = d\n",conflict);
printf("The index, i= 3d\n",i);
if conflict ==1)

printf("Had a conflict!\n");
else

printf("No conflicts!\n");

- . *ptrarray[01='0';
*ptrarray[lJ='l';
if(*ptrarray[0]==*ptrarray[l])

219



printf("Thev were equal"'.-;
(-lse

printf'"They were not equa1" ;

220



BIBLIOGRAPHY

Brooks, F. P., The Mythical Man-Month, Addison-Wesley, 1975.

Kraft, G. D. and Toy, W. N., Microprogrammed Control and Reliable Design
of Small Computers, Prentice-Hall, 1981.

Purdum, J., C Programming Guide, Que, 1983.

Siewiorek, D. B., Bell, C. G., and Newell, A., Computer Structures:
Principles and Examples, McGraw-Hill, 1982.

White, D. E., Bit-Slice Design: Controllers and ALUs, Garland, 1981.

22

"21 -



INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22314

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93943

3. LtCol. Alan A. Ross, USAF 3
Code 52Rs
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943

Iq

4. Herschel H. Loomis
Code 62Lm
Department of Electrical Engineering
Naval Postgraduate School
Monterey, California 93943

5. LT Deborah R. Stiltner. USN 2
Long Beach Naval Shipyard
Long Beach, California 90822

-2-

222....,

. . . . ..

~~~. .. .......•...........- ....-..............................-..........-..... :,..-
"." . ,'L-1,,t, - , almila

a ,, ~ bi 
,-,

l lil ii.i i . . .. ... . . .



* - * - * - J. .- J .1 '. L*I'J*U P

0

0

0

p

FILMED
p.
I...

7-85

0

'-S

DTIC

I..
...........................*-.*...-~t~*.-*.*-~*.. - .-.-.... *-. -.-. **,~*... - -


