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ABSTRACT

Ties.

J This repert describes the application and evaluation of

several statistical models in the forecastlng of cloud amount
19 “ N e Y i

and ceiling over selec;ed:¥hy510ally gemegeneous*areas of
the North Atlantic Ocean. The focus of this study is to
evaluate the applicability of previous Naval Postgraduate
School model output statistics research in the area of
horizontal marine visibility to the forecasting of cloud
amount and ceiling over ocean areas. The models, including
minimum probable error linear regression threshold technigques,
maximum conditional probability and natural regrgssion, uti-
lize observed visibility data and model output parameters
from the Navy Operational Global Atmospheric Prediction
System (NOGAPS). Results show statistically similar results
for the linear regression and maximum conditiocnal probability
models. Also included is the result of additional experi-

mentation on the application of several measures of separa-
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IV. PROCEDURES

TERMS AND SYMBOLS

The terms and statistical symbols defined below will

be used throughout the remainder of this report. The formal

mathematical definitions are described in Xarl (1984).

1.

Maximum probability strategy--choosing the forecast
weather element (e.g., cloud amount or ceiling)
category based upon the highest probability of

the weather element within a predictor interval,
hence conditional probability.

a. MAXPROB I-~-designation of the maximum probability
strategy in which ties of the highest conditional
probabilities in a predictor interval are
resolved by the generation of a random number.

b. MAXPROB II--designation of the maximum probability
strategy in which ties of the highest conditional
probabilities in a predictor interval are
resolved by assigning the lowest element category,
of those tied, as the forecast category.

Natural regression strategy--choosing weather cate-
gories based upon the statistical average of the
conditional probabilities of the weather element
within a predictor interval.

AO0--the probability of a zero-class weather element
category forecast error (e.g., if cloud amount
category I is forecast and observed). This is more
generally known as total percentage correct.

Al--the probability of a one-class weather element
category forecast error (e.g., 1f ceiling category
I is forecast and category II is observed).

A2--the probability of a two-class weather element
category forecast error (e.g., if ceiling category

I is forecast and category III is observed).
CE--class error parameter defined as Al1+2A2, used as

the primary aid in identifying the first predictor
for the Preisendorfer strategies.

25
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D. TRAINING/TESTING DATA SETS

One-third of the observations were withheld from the
developmental model to use as an independent data set (the
testing set). This was accomplished by the use of a counter
and transfer statement in the computer programs which pre-
vented every third observation from entering the develop-
mental computations. Although the approach has the advantage
of simplicity, there could be some sort of ordering in the
data base, hence the split runs a chance of being non-random.
To ensure that the dependent (the training data set) and
independent (the testing data set) data were representative
of the same population, a 95% confidence interval for propor-
tions (Miller and Freund, 1977) was established from the
entire data set, for each of the weather element categories;
the training and testing data sets were constrained to have
frequencies of occurrence within these established confidence

intervals.

24
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co-located with the National Climatic Data Center (NCDC).
The observations which were obviously erroneous, as deter-
mined from the data quality indicators provided with the
data, were deleted from the working data sets.

4. Predictor Parameters

Fifty TAU-00, fifty-four TAU-24 and fifty-four TAU-48
model output predictors (MOP's) were provided by the Fleet
Numerical Oceanography Center (FNOC), Monterey, California.
These parameters are generated by their current operational
atmospheric prediction model, the Navy Operational Global
Atmospheric Prediction System (NOGAPS). All MOP's were
interpolated from model grid coordinates to synoptic ship
report position using a linear interpolation scheme. In
addition to the initial group of model output parameters,
teh derived parameters representing calculated quantities,
such as parameter gradients, products and advections, were
included as potential predictors. A listing of all avail-
able TAU-00, TAU-24 and TAU-48 MOP's are included in
Appendix D.

For each homogeneous area and model forecast projec-
tion, a set of two linear regression equations, in addition
to the aforementioned MOP's, were included as potential
MOP's for a separate evaluation of the Preisendorfer
methodology (the PR+BMD model). These two predictor
equations were obtained from a standardized linear regression
software package, P9R, an all possible subsets regression,
as addressed in the BMDP Statistical Software (University of
California, 1983).
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2. Time Period

Data from mid-May 1983 to mid-July 1983 were combined
to form a more extensive data set, hereafter referred to
as FATJUNE 1983. FATJUNE 1983 was selected as the initial
data set for the visibility studies due to its high frequency
of occurrenceof poor visibility observations, and it was
chosen for this study to maintain continuity on the overall
MOS project. 1200 GMT synoptic ship report data were used
exclusively in this study since 1200 GMT corresponds to general
daylight conditions over the North Atlantic Ocean during
FATJUNE. For the purpose of this study, TAU-00 model output
parameters (MOP) generally represent six-hour model forecasts
valid at 1200 GMT. However, three specific fields, namely
temperature, geopotential height and wind, are model initiali-
zation fields at 1200 GMT. TAU-24 and TAU-48 MOP's are 24-
hour and 48-hour model forecasts, respectively, valid at 1200
GMT. TAU-00, TAU-24 and TAU-48 MOP's (predictors) are
employed in the 00-, 24- and 48-h forecast schemes, respectively. =
Summaries of the cloud amount and ceiling frequencies for
each category type, as a function of homogeneous area and
prediction time for FATJUNE 1983, are contained in Tables I '»1
through IV, respectively.

3. Synoptic Weather Reports

All synoptic weather observations (predictand data) T3
for this study were provided by the Naval Oceanography ffﬁ

Command Detachment (NOCD), Asheville, North Carolina which is

22
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]
Ceiling Category Code Definition ;l&

I 0-3 < 1000 feet e
II 4-5 1000-3500 feet

III 6-9 > 3500 feet

The above scheme is based on U.S. Navy operational
criteria:

1. Ceiling less than 1000 feet-~U.S. Navy aircraft
carrier at-sea flight recovery operations require
controlled (IFR) approach guidelines (Department
of the Navy, 1979).

2. Ceiling 1000-3000 feet--flight recovery operations
require modified IFR approach guidelines.

3. Ceiling greater than 3000 feet--at-sea recovery

operations change to visual (VFR) approach guidelines.

C. NORTH ATLANTIC OCEAN DATA
1. Area
The North Atlantic Ocean, from 0° to 80°N latitude,

was divided into homogeneous oceanic areas following Lowe
(1984b), using a statistical cluster analysis technique.
The specific homogeneous areas evaluated in this study are
identified as areas 2 and 4 on Fig. 2. These areas were
selected because they contain the largest data samples and
represent two different relative frequencies of cloud cover.
Area 4 represents an area where the three categories are of
near equal population while area 2 represents an area where
the number of category I (clear and scattered) observations

is about one-half of those in categories two and three

(broken and overcast).
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as thin or partial. However, the synoptic Surface Marine
Observations data set does not give a direct observation of
ceiling height, thus making it necessary for the purpose of

this study to synthesize ceiling height from the data that

are given.

CLAMT:

LOAMT:

CLHT:

Cloud height is reported with a synoptic code from 0 to 9,
where 0 refers to heights from 0 to 50 feet and 9 refers
to heights greater than 6500 feet or cases where no clouds
are present.
the upper boundary of the cléuds reported in the low cloud
amount field, LOAMT, making possible the following definition
of ceiling for calculational purposes in this study:

If the reported LOAMT < 5/8 then the ceiling is e

unlimited. o

If the reported LOAMT > 5/8 then ceiling is taken

as the reported cloud height.

The ceiling observations are likewise treated as
categorized predictands and are divided into the following

categories for prediction purposes:

T P oy 200y S-S in 20ns e S-S Rt SRS S Indn Aot e ettt B el

The data set gives the following reported fields:

Cloud amount or total sky cover

Total sky cover by low clouds (middle clouds
if no low clouds are present)

Height of the lowest clouds irrespective
of amount.

This 6500 foot height, corresponds roughly to

()
e . .
. ks e e

20

.........




DAtV RO i T S S S0 Y00 TR S St T A n Sk B0 e e et 2are Jiiaet S o ettt o e Sl ik caeh o o o e e oy
LT T LT - e A AN - A A . >

ITI. DATA

A, CLOUD AMOUNT OBSERVATIONS AND SYNOPTIC CODES

Cloud amount is defined as the fractionof the celestial
dome covered by all clouds. The observations taken from
seagoing platforms are reported as values of zero to eight
oktas (eighths) such that 0 means no clouds, 1 means 1/8th
cloud cover, etc. 1In addition, 9 is used to report an
obscured sky (e.g., smoke, fog), for which a defined cloud
cover is not observable. The observations were treated as
categorized predictands and were divided into categories
conforming to the standard definitions of opaque sky cover
for clear, scattered, broken and overcast, as used for

aviation observations.

Cloud Amount Category Eighths Definition
I 0-4 clear/scattered
II 5-7 broken
ITI 8 overcast

The obscured observation was not used in the MOS development

reported on here.

B. CEILING OBSERVATIONS AND SYNOPTIC CODES

The definition of ceiling is the height ascribed to the

lowest layer of clouds or obscuring phenomena when it is

reported as broken, overcast, or obscured and not classified fﬁl

f;j
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II. OBJECTIVES AND APPROACH

The objective of this study is to extend the previous
NPS research for predicting horizontal marine visibility
using model output statistics (MOS) (Karl, 1984; Diunizio,
1984) to the prediction of cloud ceiling and cloud cover
over coastal and open ocean areas of the North Atlantic
Ocean. The approach to the problem is as follows:

A. Define categorical groupings of cloud amount and
ceiling height which relate to operational use
at sea.

B. Determine if one element is important to the
prediction of the other and, therefore, should
be investigated first.

C. Apply the previously investigated methods for
forecasting visibility to cloud amount and ceiling,
and evaluate their performance. These methods
include Preisendorfer (1983 a,b,c) maximum proba-
bility and natural regression strategies, and linear
regression threshold models as proposed by Lowe
(1984a) .

D. Compare and contrast the results of the two methodolo-
gies in C, above, and conduct some experimentation
to improve their applicability to cloud cover and
ceiling prediction.

E. Investigate alternative predictor selection schemes
to improve the ability of the MOS models to distin-
guish between the predictand categories.

F. Make recommendations on the usefulness of the

schemes investigated and potential avenues for
future work in this area.

18
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range of atmospheric visibility. Secondly, the number of

v

L g i el e o

f

observed weather reports are not only limited in number, but
also come from moving platforms so that there is a lack of
weather trend information for a single (fixed) station as

is the case in land observations. Statistical methodologies
tested by Karl (1984) and Diunizio (1984) to overcome the
at-sea MOS problems, include a conditional probability
approach proposed by Preisendorfer (1983 a,b,c) and various
innovative threshold techniques, as applied to the linear
regression model, developed by Lowe (1984a).

This study represents a continuation of the North Atlantic
Ocean MOS studies on visibility, by Karl (1984) and Diunizio
(1984) . However, in this case, the statistical methods
tested by the earlier visibility studies are applied to cloud
amount and ceiling. The methods used here have been designed
to be consistent with those of the previous studies in order

to allow for comparison of results, as appropriate.

17
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Prediction Research Facility (NEPERF) in Monterey, California
sponsored a limited amount of research into naval applications
of MOS, with most of the effort going toward marine visi-
bility and fog. The results of these Navy studies and the
encouraging performances of the NWS and AWS MOS programs
prompted the Navy, in the spring of 1983, to begin develop-
ment of a MOS program under the guidance of NEPERF, to
forecast operational air/ocean parameters over the oceans of

the world. The proposed milestones of this ten year project

are summarized in Fig. 1. The first operational weather
parameter investigated in the program is horizontal visi-
bility over the North Atlantic Ocean using MOP's from the

Navy Operational Global Atmospheric Prediction System (NOGAPS),
a dynamical primitive equation (PE) model run operationally

at the Fleet Numerical Oceanography Center (FNOC) (Karl, 1984;
Diunizio, 1984).

Previous experimental work by the Navy to forecast
open-ocean fog and visibility using linear regression
equations (Aldinger, 1979; vYavorsky, 1980; Selsor, 1980;
Koziara et al. 1983; Renard and Thompson, 1984) showé skill
of marginal operational usefulness but exceeding that of
persistence and/or climatology. Two factors limit the
potential for MOS forecasts of visiblity and fog at sea.

First, there is the lack of 'calibrated' fog and visiblity
observations in that shipboard weather observers lack suffi-

cient reference points to be able to accurately estimate the

16
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assembled for a land station or region for a period of
several years, stratified by season or month.

The National Weather Service (NWS) has included MOS as
an integral part of their weather forecasting operations

since the mid 1970's and currently forecasts for approximately

15 weather elements at forecasting times of 6 to 48 hours.
These MOS forecast equations, developed by the National Oceanic

and Atmospheric Administration's (NQAA) Techniques Development

- -
R

Laboratory (TDL), are based on model output parameters

(MOP's) from the U.S. regional model, LFM-II. In December ?J
of 1980, the Air Force Air Weather Service (AWS) also imple- E{
mented and operated a MOS forecasting scheme at the Air ;:;,

Force Global Weather Center (AFGWC), Offut AFB, Nebraska
(Best and Pryor, 1983) for approximately 18 months. The
program was terminated with the decision to replace their

hemispheric primitive equation model with a spectral global

dynamic model (Klein, 1981). The linear regression tech-

niques used by both the Air Force and NWS has demonstrated
operationally useful skill in forecasting weather elements
at locations over land throughout the world (Best and Pryor,

1983). In this technique, called Regression Estimated Event

Probability (REEP), predictor variables are discretized into
sets of dummy variables prior to regression.

The Navy's unique responsibilities of marine forecasting i,,‘
provides a motive for it to have its own MOS system. In

the late 1970's and early 1980's, the Naval Environmental

15
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I. INTRODUCTION AND BACKGROUND

Numerical weather prediction models have made great
progress in forecasting the basic meteorological variables
and fields on the synoptic scale, such as sea-~level pressure,

wind, and moisture (e.g., relative humidity). However,

dynamic models have had little success in predicting sensi-
ble weather variables at the regional/local scale, and in
fact most models do not forecast many of these variables
directly. Stochastic-dynamic prediction is being explored;
it shows promise for operational use sometime in the future,
but it awaits much further development and more powerful
computers.

One of the most significant developments in weather pre- .
diction is the combination of dynamical and statistical ;
methods, known as model output statistics (MOS). The MOS |
technique is the determination of a statistical relationship :
between a weather element of interest (e.g., visiblity,
ceiling, precipitation) and a large menu of parameters output
from an operational numerical prediction model (e.g., boundary
layer wind, constant-pressure height, temperature). In the
case of the National Weather Service, the operational MOS
technique is based on multiple linear regression, where the -
prediction equations are developed from furecast model

parameters (predictors) and observed weather (predictands)

14
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PP--the potential predictability of the weather
element by any given predictor. Potential predicta-
bility of a predictand/predictor pair is defined by
Karl (1984} as

m n

PP(2]1) = n/(n-1) J§ P (i) I (P, (3l1) - 1/m 2]
. 1 . 21
i=1 j=1

where:
Pl(i) = the marginal probability of a
predictor;
P,;(311) = the conditional probability of the

jth predictand, given the ith
predictor.

EPI--equally populous interval used to discretize
the predictors (i.e., subintervals of equal popula-
tion size based on the predictor range of values).

Functional dependence--a measure of the stochastic
dependence of one predictor upon another. Functional
dependence is the probability that one of the predic~-
tors will change when the other changes. High func-
tional dependence values between one already selected
predictor and another potential predictor indicates
that little additional information beyond the first
selected predictor is possible. Conversely, a low
functional dependence value between the same two
predictors, indicates that each predictor possesses
distinct information about the predictand. Functional
dependence range is 0.0 to 1.0 (1.0 = highest func-
tional dependence). The specific derivation and
mathematical description of the concept of "functional
dependence" is discussed in greater depth by
Preisendorfer (1983c).

Root-sum-squared functional dependence--the functional
dependence of a predictor on all predictors already
included in the developmental model. It is equal

to the square-root of the sum of the squares of the
individual functional dependence values.

TS1l, TS2, TS3--threat score for weather element
category I, II and III, respectively, computed from
a contingency table (see Appendix E).
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COMPUTER PROGRAMS

Four computer programs were developed by Karl (1983) to test
the proposed Preisendorfer (1983 a,b,c) methodology for forecast-
ing visibility. These programs were rewritten to allow them to
be applied to cloud amount and ceiling forecasting and are on
file in the Department of Meteorology, Naval Postgraduate School,

Monterey, California, 93943.

A program to compute A0, Al, CE and PP for all predic-
tors, all strategies (MAXPROB I, MAXPROB II and natural
regression) for a particular number of equally populous
predictor intervals. Statistics for the three strate-
gies are based upon the predictor(s) that proved
optimal for each strategy.

A program to compute functional dependence for all predic-
tors, on a given predictor, for a given number of equally
populous intervals and to compute the associated 96%
critical confidence interval value (referred to as func-
tional dependence({26) in this study) by Monte Carlo means.

A program to construct contingency tables and to compute
skill and threat scores, for both the testing and training
data.

A program to generate 100 random data sets, from the
marginal probabilities of the predictor(s) in the
develovmental model, and to compute upper and lower

5% critical confidence interval values for A0 and Al
to be used for testing the significance of the results
for each of the Preisendorfer models against chance.
These confidence interval values are calculated via
Monte Carlo means. This study developed another testing
standard derived as a conseguence of the central limit
theorem. It is used in the results section to discuss
the significance of the results of each of the models
used, and is presented later in this chapter.

A second set of programs was used to develop the regres-
sion equations taken mainly from the BMDP STatistical Soft-

ware Package (University of California, 1983).

BMDP P9R. An All Possible Subsets Regression program
used to initially select predictors beginning with

a general screening of the entire set of potential
predictors.
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2. BMDP PlR. A straight regression procgram to develop
the prediction equation using the variables selected
by the P9R.

3. BMDP P5D. This program takes the developed prediction
equation and produces histograms of the data set
divided into the prediction categories.

4. A program to generate the thresholds used with the
regression equations. (These will be discussed in
more detail later in this chapter.)

5. A program was developed to construct contingency
tables of skill and threat scores from the regression

equation experiments for both the training (dependent)
and testing (independent) data sets.

C. MODELS

1. Preisendorfer PR Model

This model represents the first of two different
applications of the basic Preisendorfer methodology
(Preisendorfer, 1983 a,b,c). Karl (1984), in his preliminary
research, provides a rigorous interpretation and results
associated with this approach. Karl's study provides the
necessary background for the continuing MOS studies using
this model. This material will not be repeated here.

The PR model utilizes the working set of NOGAPS model
output parameters (MOP's) and derived parameters (Appendix D)
as potential predictors in constructing a developmental model,
based upon the training data set, which provides the struc-
ture by which the testing data set is tested and evaluated.
In general, these potential predictors have their range of
values partitioned into discretized equally populous predic-

tor intervals ("cells"), and conditional probabilities of
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the predictand are calculated according to the three cate-
gories for cloud amount and ceiling, specified in Chapter
III. Three separate strategies, for determining the specific
category which is to be identified with each predictor value,
are proposed. These strategies, two based upon maximum
probability and the third based on a natural regression
approach, are addressed as MAXPROB I, MAXPROB II and natural
regression (NATR) in the remaining portions of the study.
Initial evaluation of this model involves varying

the equally populous predictor intervals from sizes of four
through ten, and selecting an optimal first predictor which
provides one of the following requirements in the designated
order:

a. the lowest CE value of all the potential predictors;

b. the highest PP value of all the potential predictors.

Once a first predictor is identified for each of the

four through ten equally populous predictor intervals,
corresponding category I, II and III threat and A0 skill
scores (Appendix E) are calculated for both the dependent
and independent data sets. The practice of selecting an
optimal equally populous predictor interval (optimal in the
sense of maximizing AO) from the eligible grouping sizes of
four through ten, was proposed by Karl (1984) and used by
Diunizio (1984) as a practical procedure which would permit
the realization of peak skill scores as well as maintain
associated computer storage requirements at a manageable

level. An unfortunate consequence of this range of potential
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grouping sizes is that certain statistical calculations asso-
ciated with equally populous predictor intervals of eight,
nine and ten are terminated before completion due to a two
mega-byte storage ceiling at the NPS W.R. Church Computer
Center (Diunizio, 1984). When considering potential pre-
dictor intervals, the size of the interval is of obvious
importance, with lower values being the most desirable. 1In
the previous studies in the MOS series concerning visibility,
the criterion for determining the optimal equally populous
predictor interval was to select the smallest interval value
which maximized the dependent data set A0 and independent
category I threat score. The threat score for category I

was selected for this purpose because it was felt that low
visibility (represented by category I) was uniquely important
to forecast. 1In dealing with cloud amount there is not a
single category that 1s obviously most important to fore-
case, and therefore, the selection of the interval was based
only on the maximized dependent A0. This interval was then
fixed for all ensuing aspects of the model evaluat:
Consistent with the findings of the previous studies, t.
selection criteria are based on the MAXPROB II scores,

hence the MAXPROB I and natural regression strategies play

no role 1in the predictor selection scheme.

Once the first predictor and its associated equally -

populous predictor interval have been identified, a functional
dependent test of the first predictor against the remaining

potential predictors 1is run. The second, third and all
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subsequent predictors are selected only if both of the
following criteria are met:

a. subsequent predictors must increase A0 over the
A0 value attained at the preceding level, and

-

[ ] .
T T
Te fata N

b. the selected predictor must have the lowest root-
sum-square functional dependence of all the
remaining potential predictors.

P )
L L,
Alaa’a'g's a.

Significance tests were run on the developmental
model after each predictor selection stage had been completed
to determine if the results were suitably significant as
compared to random chance. This was accomplished using the
previously mentioned Monte Carlo method generating the 05
and 96 percentile confidence intervals using 100 randomly :ﬁj
generated data sets. Further consideration has brought out

that 100 cases may not be a large enough sample size for the iiﬁ

Monte Carlo test. For this reason a testing technique,
derived as a consequence of the central limit theorem more
fully described at the end of this chapter, was applied to

the results at the end of each run to demonstrate that the

results are significant in relation to chance.

The model development continues along these criteria
unt1l computer storage limitations preclude further addition
of parameters. This generally occurred in previous studies,
and 1in every case in this study, at the fifth predictor
level. Once the developmental model is completed, contingency fi
tables of the forecast element category versus the observed
element category are constructed for both the dependent and
independent data sets, and threat and skill scores are ?1

computed and compared. o4

)
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2. Preisendorfer PR+BMD Model

This model is still the PR model described above,
but now sets of two linear regression equations are added
to the list of potential predictors, namely, NOGAPS MOP's
and derived parameters.

3. Linear Regression Models

Linear regression represents the more traditional
approach to MOS. Regression Estimated Event Probability
(REEP) is the basis for the National Weather Service and
Air Weather Service regression models. 1In this study two
approaches to the regression model are explored, a single
stage and a two stage, and three threshold algorithms are
used: equal-variance, quadratic, and a modified maximum-
likelihood-decision=-criteria. The procedures are cutlined
here, but a more detailed explanation of the theories is
given in Appendix A.

a. Single Stage Regression

This model, referred to in the tables as BMD SS,
consists of generating a single linear regression equation
trained on the dependent data set, with the predictand set
equal to 1, 2 or 3, corresponding to weather element cate-
gories I, II or III, respectively. This equation is then
used with the dependent training set in the graphical plotting
program BMD P5D, from the BMDP Statistical Software, to
generate a set of three histograms and a listing of the

individual frequency of observation (P}, mean (u), and standard
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deviation (s) of each of the three predictand distributions.
These statistics are then used in the threshold algorithms
to calculate two threshold values. Finally, the regression
equation and the two thresholds are used to process the
independent data to obtain a set of the observed weather
element versus the forecasted element results in contingency
table format. These tables and their calculated threat
scores are presented in Chapter V and Appendix I.
b. Two-Stage Regression

This model, referred to in the tables as BMD
TS, is based on a decision-tree scheme using two linear
regression equations trained on the dependent data. The
first equation is generated by separating the largest frequency
category from the other two. 1In the cases of cloud amount
and ceiling this was accomplished by setting the values for
category I and II to 1 and the values for category III to
2 and then developing a regression equation and threshold
(as in the single stage above) to suitably describe the two
distributions. The second stage regression equation and
threshold are generated, based only on those observations
which did not exceed the first stage threshold value, effec-
tively eliminating cases evaluated by the first stage as
being category III. The second stage is thereby a separation
of category I from category II observations. In other words,
the first stage regression separates category III from the

combined grouping of categories I and II, while the second
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stage separates the remaining category II from category I
data. The two resulting equations and associated thresholds
are then applied to the independnet data to obtain the
forecast versus observed contingency tables and calculate
the threat scores.
c. Threshold Models

The equal variance model (referred to as EVAR)
uses an algorithm which requires the assumption that the
variances of the two normally distributed populations which
are to be separated by a threshold are equal, while their
means are unequal. The quadratic threshold (referred to as
QUAD) algorithm makes no assumptions about the means and
variances, but does take into consideration group apriori
probability. The maximum likelihood decision criteria
(MLDC) was modified for use as a third threshold model in
order to separate the categories of scattered and broken
clouds, categories I and II (Cooley, 1978), historically a
difficult task. The MLDC is not based on apriori group
probabilities but requires only the event conditional proba-
bility functions of the observations, and is useful in pre-
dicting events of rare occurrence. In the study, the MLDC
threshold model consists of using the midpoint between the
category I and II distribution means with the EVAR thres-

hold between the category II and III distributions.

D. SIGNIFICANCE TESTING
The results of the experiments are tested against two

standards to demonstrate that the results are significant
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with respect to chance and to evaluate improvement over
classical MOS modeling methods.

1. Significance of the Skill of a Forecast versus Chance

Ntk s T

This first test of the results is based on the pro-
posal that both percentage correct (A0) and threat scores
(TSl, TS2, TS3) can be presented as probabilities and the

fact that a binomial population, if large enocugh, can be

approximated by a normal distribution. As such the percentage

correct and threat scores may be subjected to a null hypothe-
sis significance test derived as a consequence of the central
limit theorem. The actual significance testing is made with

respect to confidence intervals about the scores which would

be achieved by a uniform random distribution of category

I, II and III observations in a 3 x3 contingency table.

These scores represent the scores which would be achieved by

pure chance. The test can be stated that the null hypothesis

is

P(A < X < B) = .95

with lower limit

A = y/n - 1.96[y/n(l-y/n)/nl

and the upper limit

B = y/n + 1.96[ly/n(l-y/n)/n] .
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A 95% confidence interval is made about the scores expected
if each category had an equally likely chance of being fore-
casted. TIf the procedure score lies within the interval

for the null hypothesis score then it is considered that
there is no statistically significant difference between the
two scores. The contingency tables and 95% confidence inter-
val calculations are shown in Figs. 3, 13, 20, 27 and 37.

2. Improvement Over Baseline

Since some form of regression is the traditional
method of developing MOS models, the baseline standard for
comparison of all the experiments in this study are confi-
dence intervals generated using the results from the single-
stage regression for each area, and time period. These 95%
confidence intervals are made using the same equations as
the test for significance of a score versus chance. Addi-
tionally, in area 2, the TAU-00 baseline is used to evaluate
degradation of the results with time. The baseline intervals

are shown in Figs. 10, 17, 24, 30 and 237.

E. MEASURES OF SEPARABILITY

As the testing proceeded through progressive time stages,
it became more apparent that the methods were struggling to
separate the categories of scattered and broken clouds,
categories I and II (Cooley, 1978). This problem required
investigation of some alternate predictor selection schemes
to improve the ability to discriminate between these cate-

gories. Two approaches of determining the optimal separation
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between the categories were combined and then applied in

a brief analysis on area 2, TAU-00. These methods are
termed Class Separability Measures and Cluster Analysis.
Unfortunately, time did not permit a detailed attempt at
using these two methods, but the results from area 2, TAU-00
are included in this study and show sufficient potential to
deserve further study.

l. Class Separability Measures

The specific separability measures used were the
Bhattacharya Distance, the Divergence, and the Mahalanobis
distance (Hand, 1981), each of which is discussed in more
detail in Appendix B. These measures were calculated using
the means and variances, and in the case of the Mahalanobis,
pooled variances of the various predictors with the following
univariate form:

Bhattacharya Distance:

2 2
(u -H ) o7 +0
Bh = —+1 20 (2 , .1, (1 "2
02 +02 2 2 010,
1 2
Divergence:
2 2 2
2(p, = u,) o o}
L 1_ "2 1,72 1
DlV—-—T+——2—-+§(O—§‘+—§ 2)
91 792 1 92
Mahalanobis:
2
(ul u2)
Mal = 5
o
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The predictors were separated by classes. In this case
categories I, II and III, and then the three measures were
calculated for category I versus II, category II versus
ITIT, and category I versus III. It is important to note
that the variables that best discriminate between group I and
IT may not be the same as those that best discriminate
between II and III or between I and III. In each case the
means and variances of the predictors were scaled from 0 to
100 to ease number handling and value comparisons. The
calculated distance measures are listed in Tables X, XI and
XII for area 2 at TAU-00.

2. Cluster Analysis

Cluster Analysis takes a sample of potential pre-
dictor variables of unknown classification and groups those
variables into natural classes or "clusters." The method is
fundamentally a tool for data exploration to determine if
natural and useful groupings do, in fact, exist. This method
was applied to the predictors by use of the BMDP Statistical

Program, P1M, which provides four measures of similarity for

clustering variables and three criteria for linking or

combining clusters. A more detailed discussion of cluster 4
analysis is also found in Appendix C. In general, cluster-
ing was used to determine groupings of predictors that carry
much the same information in relation to the predictand 1

classes. O
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3. Experiments Using Separability and Clustering

It must be noted that time did not permit an exten-
sive investigation of these methods, but rather only a

cursory look at their potential for usefulness. The basic

BRI
Ak bt b

method consists of using the cluster analysis to develop groups

of variables to choose from, and then employs the separation i )
measures to select the "best" predictor from each of these
clusters. These parameters are then used to develop a linear
regression equation to predict the three cloud amount cate-
gories in the same manner as earlier testing in this study.

Four experiments were attempted:

a. A single-stage
had relatively
for category I

b. A single-stage

regression using the variables which
high separability measure values
versus IT.

regression using the variables

which had relatively high separability measure
values for category II versus III.

)

A single-stage regression using the predictors with
the highest separation value from each clustered
group of predictors.

. '
. v e o
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A two-stage regression using separation and
slustering to separate category I from II and III
ard then category II from III.
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The first area studied was cloud amount in area 4, TAU-

i, ard the procedure is an exact application of the

Deombiodiicdheed e

methodology used in the previous MOS studies for visibility

A

¥arl, 1384; Diunizio, 1984). The one exception is that the .

r1near resression model is tested with both a single-stage

ST
RPN

and two-stage regression technique. Next, area 2 of the

A
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its TS2 falls below the baseline significance. Its maximum
A0 of 49.49 is not significantly different than baseline and
1s attained at the first predictor level. By the fourth
predictor it has reached a TSl that is significant both to
chance and the baseline but only with severe degradation to
both its A0 and TS3 scores. NATR does very poorly overall,
attaining its maximum A0 (45.62) at four predictors, which
1s within baseline interval, but only marginally within the
TAU-00 baseline confidence interval. Unlike MAXPROB I and
MAXPROB II, NATR is not able to predict category I with

any acceptable credibility, even after four predictors.

It, too, retained TS2 and TS3 values that are not significantly
different than the TAU-00 baseline.

On the other hand, the PR+BMD model (Fig. 26 a-c)
prcduced very different results. It selected a grouping
size of six equally populous intervals, reaching its peak
A0 for MAXPROB I and II at the second predictor. While
slightly lower than the A0 for PR, the identical results of
MAXPROB I and II show some skill at forecasting category
I. MAXPROB I shows a TSl of .13 and MAXPROB II shows a .17,
both of which are significant improvements over the baseline,
and in the case of MAXPROB II is marginally significant with
respect to chance. Although still lagging behind in A0 by
nearly 3%, NATR also shows significant improvement over
baseline in TSl but not enough to be considered significant

wlith respect to chance.
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Baseline Interval

AQO : 42.97 to 50.97
TS1: .00 to .02
TS2: .32 to .39

TS3: .36 to .44

The MLDC moves the threshold to 1.91, resulting in a decrease
in A0 of nearly 5%, falling outside the baseline confidence
interval. Although the TSl was raised to .17, it is not
slignificant with respect to chance, and the TS2 suffered
severe degradation such that it is no longer significant
with respect to chance either.

The PR model (Fig. 25 a-c) selected eight for a group-
ing size, which limited the model to only four predictors
due to a 2 megabyte limitation at the NPS computer center
(this 1is addresséd in Chapter IV of this paper and in Diunizio,
1984). All three strategies in this time period suffer the
same inability to forecast category I cloud amount. It 1is
not until the fourth predictor that any of the scemes, namely
NATR attains higher than a .04 TS1. MAXPROB I attains its
relatively high A0 peak (50.31) at the second predictor, but
1s unable to forecast any category I at this level. By the
fourth predictor it attains a TSl of .13 while droppings its
A0 to 47.25 and 1i1ts TS2 (.27) below baseline significance.
MAXPROB II1 strongly overpredicts the category III overcast
situation, which gives it a TS3 value of .45. While this

1s a statistically significant improvement over the baseline,
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The BMD single-stage regression (Figs. 21-23) starts

to show signs of detericration with time as one would expect.

'
.

Again, EVAR has the highest A0 at 46.97, which 1is significant
with respect to chance and is not significantly different

from the TAU-00 baseline, but it is near the lower limit of

Tl
e
IO RN OF G WS SN

that baseline confidence interval. Most of the degradation
takes place in the TSl category, which is not doing well at

TAU-00, but is doing even worse at TAU~-24. BMD EVAR and

PPV WD S Y

QUAD are almost unable to distinguish any category I obser-

vations from category II (TSl of .0l). At the same time

‘aal o

both TS2 and TS3 remain within the confidence interval for

the TAU-00 baseline, showing no significant difference. The
BMD equation yields an even smaller separation between the
means of category I and II than was seen in TAU-00. In this
case, the mean for clear scattered case is 2.068 with a
standard deviation of .232, and for the broken group, the
mean is .214 with a standard deviation of .223. The obvious

problem here is that the separation between the means is

less than one-third that of the standard deviations! This
is a tough problem for any threshold model. EVAR and QUAD
produced thresholds of 1.679 and 1.614 respectively, both

well left of the mean of the scattered cloud group, account-~

A Y
snhedeioncaniaad

ing for the almost zero forecasting of category I cloud
amount. The BMD EVAR results lead to the following baseline

intervals (Fig. 24): ]

P
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NATR on the other hand attained the highest A0 vet received
by any method or area at 53.43%. This fell .0l1% above the
baseline interval and therefore could be considered to be

a marginally significant improvement over the baseline BMD
model. NATR also showed significant improvement over base-
line in TS1 (compare .42 with the upper limit of .39).
Although NATR remained within the interval of significance
for the baseline in TSl, it still fell short of statistical
significance with respect tc chance.

It is clear by all measures that the PR+BMD method,
specifically the MAXPROB I strategy, achieved the best
results. It is significant that none of the methods could
forecast category I cloud amounts with a skill level better
than pure chance.

2. Area 2, TAU-24 (Table VII)

The TAU-24 time period has an extra five Model Output
Parameters (MOP's) added to the available predictors. All

other MOP's and derived parameters remained the same (see

Appendix D).
The following is the confidence intervals for signi-

ficance with respect to chance (Fig. 20):

Significance Test

A0 : 29.43 to 37.35 S
Tsl: .11 to .17

TS2: .18 to .25

TS3: .20 to .27
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but also attaining better scores than baseline in all four

scores. This improvement over baseline however is not

enough to be above the confidence interval for improvement,

although nearly so in both TSl and TS2. NATR did not attain

peak A0 until the third predictor (48.07) but still 3%

lower than MAXPROB I or II. NATR displayed an actual signi-

ficant improvement over the baseline interval in the TS2

score (.42) but fell below baseline significance in TS3.

When allowed to progress to five predictors not only did

NATR continue to improve at the next step, but also each of

the three schemes improved in TS1 (MAXPROB II scored a

TS1 = .20 at the fourth predictor) while degrading TSZ,

TS3 and A0. This might be significant at some time if TSl

were decided to be the most important category to forecast.
The PR+BMD, Fig. 19 a-c, selected a grouping size

of six, and attained peak A0 for MAXPROB I at four predictors,

and for MAXPROB II and NATR at three predictors. MAXPROB

I attained the same A0 as it did in the PR model but improves

its TS1 and TS3 scores. Although TSl did not improve to

significance with respect to chance, it did improve signi-

ficantly over the baseline (compare .17 to .l1l). TS2 was

nearly equal to baseline, but TS3 was at the upper limit

of the baseline confidence interval for improvement.

MAXPROB II did not fare as well as MAXPROB I overall but TS2

and TS3 did remain within the confidence interval of the

baseline, showing no significant difference or improvement.
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has a mean of 2.139 with a standard deviation of .246. With
the means of the two categories being separated by less

than one-half of a standard deviation, it is easy to see

why the TS1 is so low. Both the EVAR and QUAD models place
the threshold value s:parating category I from II well to
the left of the mean of category I (EVAR threshold = 1.705
and QUAD threshold = 1.643). This situation holds throughout
the area 2 testing of the BMD model. The QUAD model shows
only slight variation from EVAR, which is not surprising
since the thresholds are very nearly the same. The MLDC
model moves the threshold between category I and II to 1.864.
This significantly raises the TSl above the testing confi-
dence interval, but loses 2% on A0 and nearly reduces TS2
below significance levels. The resulting baseline confidence

intervals from Fig. 17 are:

Baseline Interval

A0 : 45.40 to 53.42
Tsl: .07 to .11
TS2: .32 to .39

TS3: .36 to .44

The PR model, Figs. 18 a-c, selected a grouping size
of six equally populous intervals and achieved its peak A0
at the second predictor level with MAXPROB I and MAXPROB II
(51.26). Both schemes have the same results at this stage,

not only showing significant results in A0, TS2 and TS3
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improvements accomplished by the other methods in that time 'J
period. The TAU-00 baseline is used to compare all three .
time frames so that a trend with time can be evaluated as ;;—;J

well.

l. Area 2, TAU-00 (Table VI)

The significance test with respect to chance is

calculated in Fig. 13 and yields the following intervals: 'fﬁ;j
Significance Intervals T

e

A0 : 29.52 to 37.08 :

TS1: .12 to .18
TS2: .18 to .25 Y

TS3: .19 to .26

The first model evaluated is the BMD single-stage

regression using the EVAR threshold, the baseline for
evaluating other models (Fig. 14). It produced an A0 that
is significantly better than chance (49.41% compared to

37.08%) and very significant values for TS2 and Ts3. 1In

fact, these TS values exceed the EVAR model in area 4,
TAU-00. However, the price is paid in the TSl value. The ;fﬁﬁ
EVAR model was able to obtain only a .09 threat score for o
the clear/scattered category, obviously well below the signi- |
ficance test for chance. This is the result of the BMD ;;ZQ
equations being unable to clearly separate the clear/ ;;;]
scattered category from the broken category. The historgrams
show that the equations result in category I having a mean

of 2.033 and a standard deviation of .257, while category II [ ]
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significantly different (although lower) than the baseline

L

interval. Both MAXPROB I and II improved over their PR
counterparts in every score except TS3.

An interesting difference between the Preisendorfer

£ 0 o1

S
At g bl

models versus the linear regression models that holds

throughout the study is in the response of the dependent

nduadeatenshadth

scores. In the BMD models the dependent data (training

set) écores are very near to those of the testing (independent)
scores, whereas in the Preisendorfer schemes the dependent

A0 scores typically rise to values above 90% with the addi-
tion of the fifth predictor. This may indicate that the  13
PR models do an excellent job of fitting the training sample :;1

but do not make proper inference concerning the structure of N

the population from which the sample was drawn.

B. NORTH ATLANTIC OCEAN AREA 2 CLOUD AMOQUNT
Area 2 (Fig. 2) encompasses a geographic region that

extends from the southeastern tip of Newfoundland, across

the North Atlantic Ocean to the eastern coast of England,
north to the Five Fingers of Iceland and back to the Canadian
coast north of Newfoundland. Area 2 was studied through

all three time periods, TAU-00, TAU-24 and TAU-48, and each
will be discussed separately. As in area 4, a null hypothe- iﬁf
sis is generated for each time period to evaluate the signi-  ;
ficance of the results versus chance. Also, as in area 4, ;ay
a set of confidence intervals based on the BMD SS model for 533

each time period is used as the baseline for measuring
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The PR model results are shown in Figs. 11-12. The
model selected a grouping size of six and the peak results
were attained by all three strategies at the five predictor
level. Natural regression (NATR) produced the highest A0
(45.36) for this model, followed by MAXPROB I (44.14) and
MAXPROB II (41.14). Though all of the strategies had signi-
ficant A0 values compared to chance, none of them improved
on the A0 of the baseline., MAXPROB I improved on BMD for
TS3, but lagged in other scores. The scores all lie in or
below the confidence interval for the baseline and, therefore,
cannot be considered to be significantly different. MAXPROB
II did appreciably worse in that it showed significance

with respect to chance but its A0 and TS2 were below the

and the BMD single-stage model did not select any common

predictors.

and for NATR at three variables. 1In this case both the
MAXPROB I and II produce near equal results, with MAXPROB
IT showing slightly higher A0, TS1 and TS2. 1In all three

cases the A0 was significant compared to chance but not

o

=y

L

._-.,_-‘

baseline interval. NATR, with the best A0 of the three PR s;j
strategies, lost skill in category I, as indicated by TS1, 1
and this is not even significant with respect to chance. 1Its ?f
TS2 and TS3 were not significantly different than the base- o
e |

line values. It is of interest to note that the PR scheme * ]
3

The PR+BMD scheme selected a grouping size of six and R
attained peak A0 values for MAXPROB I and II at twoc variables };ﬁ
:
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again, by moving the thresholds with the MLDC model, a
decrease in A0 is observed (43.67%) with significant in-
creases in TS1 and TS3. This increase in TSl and TS3 is
also at the expense of decreasing TS2 below significance
levels.

Because the results of the single-stage regression
were so much better than the two-stage, and in view of the
fact that all the homogeneous areas of the North Atlantic
Ocean dispaly similar distributions, the single-stage model
was pursued for the remainder of the cloud amount experi-
ments. A single exception will be discussed later. 1In
Chapter IV it was mentioned that because linear regression,
of some form, is the traditional method for MOS studies and
operational models, it would be selected as a baseline
measurement (in addition to the confidence interval generated
by the null hypothesis contingency table) to measure the
skill of the other methods. The single-stage BMD with the
EVAR threshold model was selected as this "baseline" measure.
Fig. 10 shows the development of the confidence intervals

for area 4 baseline. The resulting intervals are:

Baseline Intervals

A0 : 43.21 to 49.19
TS1l: .25 to .31
TS2: .30 to .36

TS3: .24 to .30
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However, the threat scores for category I and III are below
the confidence interval for pure chance. Th poor results

are most likely a reflection of the particular nature of

the frequency of occurrence in each of the observation
categories. The two-stage regression was chosen in the
visibility studies because of a very low occurrence (most
cases less than 5% of total observations) of low visiblity.
Since low visiblity was the threat most desired to predict,
the two-stage regression was chosen to more skillfully pre-
dict a low frequency category. In area 4, on the other hand,
the frequency of observation is nearly the same for all three
categories of cloud amount. The thresholds of the two stages

were moved closer to the middle in the MLDC model (Fig. 6)

in order to better predict the ocutside two categories, I and o

IIT. The resulting A0 is 2% lower than the EVAR or QUAD
models, and an increase in threat scores for both categories

I and III occurred. Only the new threat score for category

I (.33) increased beyond the significance level, but a large .

price was paid in the TS2, which dropped to .27, close to the
significance-level boundary.

Since the frequencies of occurrence for the three
categories are nearly equal, a single-stage regression model

was next attempted (Figs. 7-9). The EVAR threshold model

demonstrates only a 1.0% increase in A0, but much more -

importantly, all three categories have threat scores signi-

ficantly above chance. The QUAD model has a slightly higher

A0 (46.67%) than EVAR and very similar threat scores. Once -
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- attained by that particular strategy, while the dependent
scores reflect the results attained using the first five

t. predictors selected.

j:I A. NORTH ATLANTIC OCEAN AREA 4 CLOUD AMOUNT :}.'f'_
.. Area 4 was selected as the first for evaluation because _
of its large sample size and nearly equally populous obser-

vation categories I, II and III. This area encompasses a

broad region of the North Atlantic Ocean with the southern -
border reaching to the northeastern tip of Portugal and

extending northward through the English Channel to encompass

the southern portion of the North Sea (Fig. 2). -

1. Area 4, TAU-00 (Table V)

The following are the confidence intervals for -

significance with respect to chance (Fig. 3): .=

Significance Intervals

A0 : 30.53 to 36.19
TSl: .17 to .22
TS2: .20 to .25

TS3: .15 to .20

The first model tested is the two-stage BMD in the

same manner as the previous NPS visibility studies (Karl,

1984; Diunizio, 1984). The results, r. n in Figs. 4 and
5 (EVAR and QUAD), show an A0 of 45.27% which is significant ;;
with respect to chance and category II threat score (TS2)

of .40 which is also highly significant compared to chance.
42 :-’-
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V. RESULTS

The procedures for the experimentations on predicting
cloud amount and ceiling, as specified in Chapter IV, were
followed for the North Atlantic Ocean homogeneous areas 2
and 4. These homogeneous areas are displayed in Fig. 2.

The results of these procedures are summarized in Tables V
through IX, and detailed results are displayed in Figs. 3

to 44. This chapter discusses the results and significance
of each area and each model run using the information on
these figures. Cloud amount is pursued first in the study
since it is important to the prediction of ceilings, as noted
in Chapter III.

The terms used throughout this section are defined in
Chapter IV. The linear regression models are referred to
as BMD and the three threshold models are Equal Variance
(EVAR) , Quadratic (QUAD) and Maximum Likelihood Decision
criteria (MLDC). The Preisendorfer method is used both with
(PR+BMD) and without (PR) linear regression equation predic-
tors. In each model A0 (total percent correct) is used as
the criterion for the "best" model. 1In the PR and PR+BMD
models, a contingency table is generated for all three
strategies, MAXPROB I, MAXPROB II and natural régression,
with the addition of each new predictor. 1In all cases,

the independent score discussed reflects the best score

41
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North Atlantic Ocean was tested at all three time increments,

TAU-00, TAU-24 and TAU-48, in the same manner, but without

the two-stage regression. Finally area 2, TAU-00, was tested

using the measures of separability and clustering technigues.

9 Testing on ceiling height prediction was limited to

ﬁi area 2, TAU-00, using initially the same methodology. An
experiment was then made to test the ability to forecast
ceilings given perfect skill at predicting cloud amounts.

#d In this case the categorized cloud amount was used as a

predictor in the ceiling prediction methodologies. The

results of each of these tests are discussed in the next

k chapter, and are summarized in Tables V through IX and Figs.

4 through 44.
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In general, it can be observed that an expected

.}, degradation is experienced from TAU-00 to TAU-24 in all of
*] the methodologies. The inability to forecast category I is
the most glaring problem. At TAU-00 the skill levels are
poor in forecasting category I, but in TAU-24 they become

nearly zero in all but the PR+BMD method. In no case are

{ any of ti.e methods able to attain significant skill in fore-
- casting scattered clouds in comparison to pure chance,

However, it would be fair to observe that the A0 degradations
in general are not as significant as one might have expected.

3. Area 2, TAU-48 (Table VIII)

The area 2 TAU-48 time period also has the five
extra predictors mentioned above in TAU-24. The following
is the confidence intervals for significance of the skill
scores with respect to ance for TAU-48, area 2 (see Fig.

27) :

Significance Test

AO : 29.30 to 37.11
TSsl: .12 to .18
TS2: .18 to .25
TS3: .20 to .26

As one would expect, the models continue to experience
a degradation with time. The BMD EVAR model attains only
an A0 of 45.32 which, although well above the significance
test for chance, still falls below the TAU-00 baseline confi-

dence level indicating that it is significantly worse, and
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that considerable degradation has occurred. Additicrally,

the threat scores for category II and III are only marginally
within the TAU-00 baseline confidence. Interestingly,

though only by a small amount (TSl = .04), the BMD TAU-48 b
is able to forecast category I better than TAU-24. The -

overall degradation in performance is clearly seen in dis-

tributions of the three categories by the BMD equation.
Between the category means for I and II there is now only a )
!‘ separation of .05 while the standard deviations are of the '

order of .18. This same degradation is seen in the separation

of categories II and III, where the means are now 2.192 and
2.270 and the standard deviations are .178 and .189, respec-
tively. This shrinking of the separation of the means is to 5
the point at TAU-48 that the QUAD model is unable to produce
a non-imaginary threshold between category I and II. MLDC
also performs consistent with previous time periods, this
time reducing the A0 to 42.93 which is only 6% better than
the upper limit on chance. In fact, only the MLDC TS3

proves to be significantly better than the pure chance

contingency table. These results lead to the following

TAU-48 baseline interval (Fig. 30):

Baseline Interval

A0 : 41.31 to 49.22
TSl: .02 to .06
TS2: .28 to .36

TS3: .32 to .40
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The PR model (Fig. 31 a-c) also experiences the same 5 ]

degradation with time. The model selected grouping size

seven and reached peak A0 at three predictors for MAXPROB I,

two predictors for MAXPROB II and four predictors for NATR.

MAXPROB I loses 3.5% in A0 from TAU-24, and also drops below . ﬁﬁ}
Zhd

the significance limit for baseline TS2. At the same time
though, it improves on the baseline for TS1l, though not enough

to be considered significant with respect to chance. MAXPROB

II fares somewhat worse in every category except TS2 where

it maintains a score within the baseline interval. When com-
pared for time degradation with the TAU-00 baseline, it is
only marginally within the baseline interval for A0 and TS1

and just below for TS3. Likewise, NATR scores are within

ot AR AR
WLIAPUR VI T Y W DRL UL

the 48-h baseline interval, with the exception of TS1l, but
are significantly worse than the TAU-00 baseline in every
category with the exception of TS1.

The PR+BMD selected a grouping size of six and reached
its peak A0 at the first predictor level. The identical

scores of MAXPROB I and MAXPROB II show statistically signi-

cant improvement over the TAU-48 baseline in both A0 and {i}
TS3. However, the TSl scores of zero reveal its inability
at this time period to forecast category I. When the model

runs out to five predictors, where NATR peaks on A0, then

it can be seen that all three schemes forecast category I

L, P BRI T
a'a A 4 & e e idea a A e aalal et

with a TSl equal to or in excesss of .20. For example,
MAXPROB II at the fourth predictor has an A0 of. 45.94, but . i;j
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is significant in all threat scores with respect to chance

(i.e., TS1 = .26, TS2 = .28, TS3 = .34). NATR again performs

well below the MAXPROB strategies, even though its A0,

TS2 and TS3 scores are within the baseline confidence interval.
In general, it can be said that all the schemes

suffered significant degradations due to the 48-hour time

period. Forecasting category I (scattered/clear) remains

a problem through all time periods, and is only forecastable

at large cost to the other threat scores and the total

percentage correct.

4. Area 2, TAU-00 Experiments in Clustering and
Separability (Table VII)

A brief description of the separability and cluster
methods and procedures is found in Chapter IV, and a more
detailed theoretical description is found in Appendices B
and C. The results of the measures of separability program
are listed in Tables X-XII and the clustering of variables
is listed in Appendix C. The baseline for comparison in
these examples is the area 2, TAU-00 BMD using the EVAR
threshold, and the null hypothesis significance confidence
intervals used for TAU-00, area, 2.

The first test consisted of selecting the predictors
from the category I versus II grouping of the measures of

separability, using those predictors with the highest

divergences. As Table X shows, the values for the three

measures were very low in this grouping, which is a possible

clue to the low skill attained by all the methods in category
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I. Predictors were chosen that had a divergence of .08 or
higher; predictors were then used in the BMD EVAR model.
The results of the test are shown in Fig. 33. The model
attained an A0 of 45.39 which is significant with respect
to chance, but is outside the low end of the confidence
interval for the baseline. The TS2 is not significantly
different from baseline but TS3 (.34) fell just below the
lower limit of the baseline value. Most importantly, though,
the model did not predict any category I. Although this is
well below the baseline value, the baseline values are
significantly worse than chance.

The second test, found in Fig. 34, is similar to the
first, with the exception that the variables were selected
from the category II versus III grouping of the measures of
separability (i.e., predictors with values above .35).

These measures showed much higher values, which is consistent
with the results of the methods in area 2, TAU-00 where the
threat scores for category II and II are very much higher
(i.e., the models are able to separate II from III much
easlier). This time the A0 improved to 48.91, nearly equaling

the baseline value. The model also equalled baseline per-

formance in threat scores TS2 and TS3. Once again, however,
the model is unable to forecast any category I observations.
The third test tries to combine the clustering infor-
mation with the measures of separability. In this case the
clusters, listed in Appendix C, were used as the initial

sorting of predictors. Next, the predictor from each cluster
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that has the highest divergence in the category I versus III j;;[‘
grouping, was selected as a variable. These variables were :
then used in the BMD EVAR and the results are shown in Fig.
35. This model did rather poorly and only stayed in the

confidence interval for the baseline in TS2. All other

scores dropped below the intervals for baseline while
remaining significant with respect to chance (except for
TS1) .

The fourth test attempted to utilize all the informa- °

ettt e b

tion available. The clustering technigque was combined with
the measures of separability to select variables that would
best separate category I from II, and then those that would [ ]
best separate category II from III. These two sets of pre-
dictors were then used in a two-stage regression first
separating category I from II+III and then II from III. o
The results, shown in Fig. 36, show much improvement over
the previous three tests. 1In fact, this model produced the .
highest A0 attained by any of the BMD models so far studied. ;m
The EVAR threshold produced a 50.59 A0 which is higher than |
baseline but not significantly so, and TS2 showed modest

improvement over the baseline interval. This model also o

1
..'l

produced a smaller TS1 (.05) than hoped for, but the fact
that it is greater than zero is encouraging.
It is unfortunate that more time was not available L

to pursue further these methods, but the initial testing shows

’ * - ',".
o’ L .
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some potential Ior usefulness in the MOS methods. There are

several important points to be made. First, the results of
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the measures of separability program confirms that the
regression methods used in area 2 are not forecasting category
I with much skill, because the available predictors do not
have enough information. Secondly, the clustering proves

to be more valuable if the predictors are scaled some way

-to prevent all the velocity predictors being clustered and
the height predictors being clustered, etc. (It is possible
that this type of result is not due to scaling but rather to
characteristics of the model producing the parameters).
Thirdly, the measures of separability give high values to
most of the predictors chosen by the two methods generally
used in this study. That lends plausiblity to its usefulness
as a predictor screening agent to reduce the number of pre-

dictors being forced through the various prediction strategies.

C. NORTH ATLANTIC OCEAN AREA 2 CEILINGS

The first experiments in forecasting ceiling were carried

out using a direct application of the methods employed for
cloud amount and previously for visibility. The frequencies L

of distribution of ceilng observations for the North Atlantic

Lo e
rovas SR

Ocean are shown on Table IV. Area 2 was chosen for experi-

mentation, consistent with the concentration of MOS visibility
and cloud amount effort. The second set of experiments is i;h
designed to evaluate the skill of forecasting ceiling given ;
that there exists perfect skill at forecasting cloud amount. ;?;
The cloud amount observations are then categorized and used

as a parameter in the various methods. As in the studies on .
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cloud amount, a null hypothesis is established, using a
contingency table, based on each category having an equal
probability of being forecasted for each observation. This
yields the following 95% confidence intervals for evaluating

the significance of the results (see Fig. 37):

Significance Intervals

A0 : 29.23 ro 36.77
TS1l: .13 to .19
TS2: .20 to .27

TS3: .17 to .23

1. Area 2, TAU-00 Ceiling Tests Without Cloud Amount
(Table IX)

The results of the BMD single-stage regression is shown
in Fig. 38. The resulting A0 is significant with respect
to chance and is very similar to the values obtained in the
cloud amount studies. Threat scores for category I and II
are both well above significance with TS2 being the highest
at 0.42. However, the single-stage model is unable to dis-
criminate between category II and III. This is shown in

the TS3 score of .00 and in the histograms displaying the

distributions of the BMD equations. The means have good
separation between category I and II (1.666 and 1.861 respec-
tively, with standard deviations of .254 and .225). The

problem occurs between category II and III where the means

s
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and standard deviations are 1.852 and 0.192 for category II

and 1.873 and 0.183 for category III. The mean separation

)
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is nearly one-tenth that of the standard deviations. The
separation is so small that the QUAD model is unable to
resolve a non-imaginary threshold. In this case the MLDC
model shows promise. By moving the threshold halfway between
II and III, TS3 increased from .00 to .15, which is not enough
to be significant compared to chance, but it is noteworthy
that the A0 also increased by 1% and there is little effect
(=.03) on TS2. As in the cloud amount studies, the BMD
single-stage regression will be used as the baseline for
evaluating other methods. 1In this case, however, the BMD
with MLDC threshold will be used. This produces the following

confidence intervals (see Fig. 40):

Baseline Interval

A0 : 41.56 to 49.56
TS1l: .19 to .25
TS2: .35 to .42

TS3: .12 to .18

The PR+BMD model chose a grouping size of six and
attains peak A0 for the MAXPROB strategies at the second
predictor and for NATR at the third predictor (Fig. 41 a-c).
MAXPROB I achieves the highest A0 (47.24) of the three
strategies and shows very different results in the threat

scores compared to the baseline. It scores well above the

baseline interval for TSl and TS3, while showing only
marginal improvement over chance in TS2. The most striking fﬁ3

fact is that the PR+BMD does so well in the category III o
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(TS3 = .36) compared to the counterpart scores in the BMD
model. MAXPROB II shows similar results, although slightly
better in TS1 but slightly poorer in A0, TS2, and TS3.
Actually, MAXPROB II shows no skill compared to chance in
category II. For NATR, AO peaks at the third predictor and
attains the second highest percentage correct. In general, ]
it does much poorer than the MAXPROB strategies, giving
results that more closely resemble the baseline results.
NATR shows no significant difference from baseline in either
AQ or TS2, while scoring significantly higher in TS3 (though

only on the margin of being significant with respect to

~

chance). The TSl of 0.18 is not significant compared to R

Py

chance, but it is significantly worse than baseline.

(R

In general, the methods applied to ceilng heights

produced very similar results to those attained for cloud

re

amount, both in percentage correct and in threat scores.
BMD with MLDC or even EVAR does the best in forecasting
category II but is poor in forecasting category I or III. 1
Conversely, the MAXPROB strategies are much better at fore- 'EA
casting categories I and III, but at a cost of reducing the ‘
results for category II below significant levels. T

2. Area 2, TAU-00 Ceiling Using Cloud Amount Observations ‘:?fw

In these experiments cloud amount observations were
categorized and used as a predictor for ceiling.
The results of the BMD model using cloud amount

{Figs. 5, 42-43) are excellent compared to the results

AL L
. L e N

attained so far in this study. The EVAR model attained an
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A0 of 67.50 which is 18% higher than the baseline BMD. The
threat scores are consistently high as well, far exceeding
the baseline in every category by .10 to .44. QUAD provides
nearly identical results across all categories.

The PR+BMD model is then run making cloud amount
available as a predictor (Figs. 5, 44 a-c). The model chose
grouping size six and attains peak A0 at the second predic-
tor. Cloud amount is the first predictor chosen and the
linear regression eguation variable (not containing cloud
amount) is the second. MAXPROB I and MAXPROB II produce
identical results at this level with an A0 of 68.60, about
1.0% higher than the BMD model using cloud amount. The
model's TS3 is an outstanding .72 and TS2 is .49, both of
which are very significant with respect to chance and the
baseline. However, the resulting TSl is only .24 which is
significant compared to chance but is not an improvement over
the baseline. The NATR model attains peak A0 at the fourth
predictor, and does not perform as well as MAXPROB in any
category. The TS3 of .64 and the TS2 of .451 show signifi-

cance with respect to both chance and the baseline, but the

TSl value is not significantly different than baseline,
and only marginally significant compared to chance.

The value of good skill in predicting cloud amount
in forecasting ceiling is obvious by the above results. The ::;1
very high category III results (i.e., ceiling greater than ‘Efu

3500 feet or unlimited) is probably due to the definition R

64

Lot
ek dod i

-

- i - a’a S < : C ac m L al s PO VA - W e A B B AP T U Snll VO Vel WA WA TS WA W Whdl VOl Wk U "Wl W'




————r w— T — TR —— ——

of ceiling, namely that if cloud amount is less than 5/8
then the ceiling is unlimited. The strongest effect of
cloud amount in the forecast of ceiling is whether or not
a ceiling exists, thus the high threat score of category

III which contains all the observations of no ceiling.
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VI. CONCLUSICNZ AL Rel MMilLATISNS

A. CONCLUSIONS
The primary objective 0f «+rnis s+udy was tc begin the
investigation into statistica’! for<casting of cloud amount

and ceiling by extending the methocds researched by Karl

[#s)

(1984) and applied by Diunizic 19%1' in the area of visi-
bility. The ultimate goal is to develop a viable statisti-
cal forecasting scheme suitable for eventual employment in
an operational U.S. Navy marine ceiling and cloud amount

MOS forecasting system. This is certainly not an exhaustive
study of the subject, but does provide an important first
Step 1n statistically forecasting these weather elements.

The results of the tests in the various areas and time
periods show that the methods evaluated are useful in fore-
casting both cloud amount and ceilings. Although the models
are not yet producing results as good as one might desire
for an operational MOS system, they are forecasting signifi-
cantly better than pure chance, giving them useful skill
levels. In area 4, TAU-00, the single-stage linear regression
performed the best, and became the "baseline" from which to
measure the other methods. 1In area 2 the model that scored
consistently highest in all three time periods is the PR+BMD.
The general problem experienced by all the approaches in
area 2 is the inability to forecast the scattered/clear condi-
tion (category I) with any skill. Significant skill in this

category is only attained in a very few cases and then only
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a great cost to the threat scores of the other two cate-
)ries. In the initial ceiling studies, PR+BMD gives the
'st overall results, but the linear regression is able to
re skillfully forecast the category II. 1In contrast, when
perfect cloud amount forecast is added as a predictor to
le celling models, linear regression gives much better
:sults overall, especially in forecasting low ceilings.

In the previous MOS studies in this series, a low visi-
ility situation was clearly the most threatening category
>r operational Naval forces and, therefore, was selected
5 the criterion to maximize as well as to evaluate one model
jainst another. In cloud amount predictions, there does
Ot exist a single category that is clearly more important
han the other two. Irn the absence of a better measure,
bsolute percentage correct was utilized. The study does
eveal a need to develop some evaluation criteria for contin-
ency table output for the MOS project in general. This
ould be of great assistance in the developmental stages of
arameter selection as well as evaluating the overall per-
ormance of a particular model. The two measures used 1in
his study to evaluate significance of the results proved
o be very useful. The previous studies based significance
esting on a Monte Carlo scheme evaluating a set of 100
andomly generated data sets to produce upper and lower .05
ritical values for A0. The significance test used in this

tudy, derived as a consequence of the central limit theorem,
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Z -U, 2 Z-U; 2 c=L o
(z) = expil/2 | (— % - (T3 RS
70 71 R S!
c=0
- 172 . - ~ .
ire k (27) Algebraic manipulation produces

.ch 1s recognizable as a quadratic equation in z.

1/2

z* = -b * (b® - dac) /2a
rec:
L. 22
1™ o
— v2 _ ~2,
b = 20t - 2L
22 _ 22 _ .22
€ = Uphg T JgHp) T 2974 In(pgo /P 9g)
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Note that in this situation there are two thresholds. The
group having the smaller variance will lie between the two

thresholds.

Densily

Classification index (z)

The thresholds shown are typical of a situation where Py <P
Note that these thresholds lie between the two intersections
of the densities. If the inequality of prior probabilities
were reversed, the thresholds would lie outside of the
region between the two density intersections. Further, note
that the decision region for the group having the lesser
variance lies between the thresholds.

c. Case III: General Solution (Referred to as the
Quadratic Model (QUAD) in the text)

plz E=1) = k/3y exp*_(-l/2)(z-ul)2/‘3§}
(z E=0) = k/ ((=1/2) (z - u.) 2/a%
pl(z E = = %9 exp / 2 Mg 97

80

P S R S S S S S AT, e e o s s s B il o bl ol ol ek Cop " m o8 " n s " ma o a

0

y

PP

W v‘ v. . ‘-
R e e
PP T T LI

A

.
el
A .

1
P

.
I3

[
PN

. AT
BT . .o
[ IR U LN




—— . e M ATE v e s e e e e i e i S S e 2 Sne A Aes i Bnts dune Ao e nte s Se

o
where ' 1s the likelihood ratio and Py = plE =0] and
Py = plE =1]. Thus, the threshold value is i
»
z* = (uny tLy) /2 + 52 In(p,/py)/ (uy = uy) '-.1:"'-'.-'."-:-
0 "1 N 0’ %1 1 0 S
»
D
@
5 J
@)
Classification index (z) ’
The position of the threshold depends on the relative values o
]
of < and Py - The threshold moves toward the sroup with the
smallest p;- If P, = Py the threshold will be the value of .
z where the densities intersect (i.e., where the densities '5
’
are egual). L
b. Case II: Equal means; different variances Lf
"
. = ’
pexp (=l/2) (2 =u Py d ST g 1
(Z) = — <
2,2 : p
- . - / _ /- .
T18XP (=1/2) (z HO) T =0 1
’
with the threshold ]
222 D 1/2 L
071 01 R
A A I L -y T
(Jl—CO) 1°0 ) 4
]
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These statements can be combined to give,

Q
sl
—

p(z{E=1)/p(zE=0) = A(z) plE=0]/plE =1]
C

A

Thresholds are the value(s) of z for which

A(z) = plE=0]/plE =1]

This equation can be solved for z either analytically or

numerically depending on the forms of the density functions.

3. Threshold Cases

In order to exemplify the model, the assumption is
made that the class conditional distributions are Gaussian.
There are essentially three distinct cases that can arise.

a. Case I: Equal variances; different means

(Referred to as the equal variance model (EVAR)
in the text)

p(z|[E=1) = k exp((-1/2)(z -u)?/0%)
2,2
p(z|E=0) = k exp{(-1/2)(z -yuy)"/c"}
where:
k = (27) 12571
exp! (-1/2) (z ‘ul)z/oz} Cfl Py
Sz) = ) —

exp’ (-1/2) (z —uo)z/oz} Lo Pl
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then,
Pe = plE=0] [ p(z|E=0)dz + plE=1)[1 - | p(z|E =1)dz]
z2:2 VAR
1 1
and algebraic rearrangement yields,
P = PIE=1] - / {plE=0] p(z|]E=0) - plE=1) p(z|E=1) dz:
2c¢?
1
In order to minimize Pe’ Zl (the decision region for C = 1)

will include all those values of z for which the integrand
in the expression for Pe will be negative. The decision regions
can be symbolically represented as follows:

z2y = f{z: plE=0] p(z|E=0) - p[E=1] p(z,E=1) > 0}

z, = {z: p[E=0] p(z|E=0) - p[(E=1]) p(z|E=1) < 0}

An alternative representation is given by,

Z, = {z: p[E=0] p(z|E=0) > plE=1] p(z|E=1):

{z: plE=0]/plE=1] > p(z|E=1)/p(2|E =0)}

Likewise,
® -
, ‘ | _ N
Zl = iz: plE=0)/plE=1] - p(z,E=1)/p(z2 E=0); s
- .1
. L
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The decision regions are mutually exclusive and exhaustive

(1.e., Z, 0. =0 and Z = 2 Z,).

0“1 0 "1

Thresholds = boundary(s) between decision regions.

p(z|E =0) = class conditional density of z given
that E = 0.

p(z|E =1) = class conditional density of z given T
that E = 1. -

A(z) = p(z|E=1)/p(z|E=0) = the maximum likelihood o
ratio (i.e., the ratio of class conditional d
densities).

Pe = pllC=1rE=0] , [C=0rE=1)} = the total
probability of error.

2. Minimum Probability of Error Criterion -

Pe = probability of an incorrect classification. fﬁﬁ

P, = Pl =1|E=0] plE=0] + p[C=0/E=1] plE =1]

e
where p[E =1] + p[(E=0] = 1. Note that the events E = 1

and E = 0 are mutually exclusive and exhaustive. The objective

is to select decision regions (thresholds) so as to minimize Pg-

plC=0[E =1]

| p(z|E=1)dz = the probability of

z:2, fg%
misclassifying E = 1. o
"
pic=0lE=1] = /| p(z|E=1)dz + [ p(z|E=1)dz ]
AN z2:Z
0 1
- [ p(z|]E=1)dz
2« Zl
4
plC=0/E=1] = 1 - [ p(z|E=1l)dz these are 4
z,-Zl substituted
into the
expression ‘
p(C=1|E=0] = [ pl(z|E=0)dz for pg -

Zﬂ;Zl

76

i L
.
at a4 A

A

Kl

AT A S S oy WP P W SR U WP Wl Ly WL A WOl VAT WY Wl e © ol W W Whar Wil W Wi LI . P 'j




RS A AN SRS S Aa S B At ARr i ettt e e i g B A B B i e A e e e e

B. THRESHOLDS (Lowe, 1984a)
1. Notation

E = an event; this is an indicator variable which
when E 1, the threatening event occurs, and
[4

when E 0, the non-threatening event occurs. ::;
C = the classification of an unknown event which oot
when C = 1, the event is classified as a - 4

threat, and when C = 0, the event is classi-
fied as a non-threat.

P[E=1] = wunconditional probability of occurrence of
threat.
P[E=0] = unconditional probability of occurrence of
non-threat. oA
-
Error of the 1lst kind (false alarm) [C=1,E=0]. 1
Error of the 2nd kind (miss) (C=0nE=1]. - 4
P[C=1nE=0] = joint probability of an error of the 1lst Ef}
kind. A
P[C=0nE=1] = Jjoint probability of an error of the 2nd "]
kind. :
P[C=1|E=0] = <class conditional probability of misclassi-
fying a non-threat.
P[C =0]E =1]) = class conditional probability of misclassi-
fying a threat.
P[C=1nE =0] P[C=1|E=0) P[E=0].
P[C=0-E=1] = P[C=0|E=1] PIE=0]. ;
2 = a value of the predictive index (equivalent :
to y, above). S
Z = range of the predictive index on the real line. 1:;
For a dichotomous problem, Z is divided into two parts: ZO’ Zl’ Q
- - =
C = 0 1f VA ZO :-;
cC = 1 if =z - Zl o
1
s
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Independent variable selection for the BMDPY9R program
begins with a general screening of the entire set of potential
predictors. Variables which are identified as redundant,
linear combinations of other variables, with respect to the
predictand, are deleted from further consideration. The t
statistics for the coefficients which minimize the Cp value
for each reviewed subset identifies the "best” subset. The
number of predictors assigned to each subset can be predefined
and for this study each subset equation was required to have
six predictors.

The role of regression, once appropriate predictor varia-
bles have been selected, is simply that of dimension reduction
(representing a multivariate structure by a univariate proxy
which constitutes a classificatory or predictive index).

This proxy takes the form of a polynomial, linear in its
coefficients, of the components of the multivariate structure.
The problem now becomes one of determining the form of the
state conditional distributions (one for each group of
interest; e.g., one, two and three for ceiling categories I,
IT and III, as used in this study). Once an appropriate

form has been selected, it remains, then, to determine the
parameters of the class conditional distributions (e.g.,

means and variances) and then apply an appropriate decision

criterion or threshold model.
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APPENDIX A

LINEAR REGRESSION AND THRESHOLD MODELS

A. LINEAR REGRESSION

The linear regression techniques used in the study were

first presented by Karl (1984) and extended by Diunizio (1984).

The least-sguares multiple linear regression problem used in
the study is the BMDP9R, all possible subsets regression
computer program, found in the BMDP Statistical Software
Package (University of California, 1983).

The BMDPY9R program employs a "best" possible subset,
derived independently of variables or variable seaguence,
calculated from the group of potential predictors. Once this
"best" subset is identified, a linear regression equation is
fitted to the data, based only upon those selected predictors.
The "best" possible subset is identified, a linear regression
equation is fitted to the data, based only upon those selected
predictors. The "best" possible subset is calculated by a
Furnville-Wilson algorithm which provides the user with a
variety of subordinate subsets in addition to the "best" sub-
set. Three criteria are available to define the "best"
possible subset as a function of independent variables (pre-
dictors) and a dependent variable (predictand): the sample
R, the adjusted R, and Mallow's Cp. The Mallow's Cp criteria
is used in this study, where "best" is defined as the smallest

Cp value.
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dQ/dy (1,3) (Q(i,3+1) - Q(1i,j-1)6/2K

where K is the north/south distance between grid points.

5. Develop a scaling process for the predictors, prior
to using the cluster analysis, that reduces dimensionality
while maintaining the structure of the predictor's character-
istics. This may be necessary in view of the widely ranging
values ot *“e various MOP's.

6. Use the measures of separability to screen new
parameters in order to gain insight into their usefulness
without having to make an entire model run.

7. Further pursue the measures of separability combined
with cluster analysis as a parameter selection scheme in
association with the linear regression models.

8. Develop a system of general "measures of effective-
ness" for the MOS project, specifically for those predictands
that are categorized and utilize contingency tables. This
would provide a means for realistic evaluatinn of the per-

formance of the various models tested.
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an additional parameter. For example, if the particular
parameter at TAU-00, TAU-24 and TAU-48 is given the designa-
tion 81, S2 and S3, respectively, then the time differencing

could be accomplished thus:

TAU-00 forecast period would use forward difference

[3xS3 - 4xS2 + S11/48

TAU-24 forecast period would use centered difference

[S3 - 2x82 + s1]/24

TAU~48 forecast period would use backward differencing

[-S1 + 4xS2 - S31/48

These new parameters could then be used as predictors in the
models. ——
4. A new predictor also could be developed at each
time period by doing a spatial difference across the obser-
vation points to give a representation of advections (i.e., .
thermal, vorticity, moisture). A potential scheme would be
to use a centered difference at the observation position.

If the parameter at the observation point was labeled

Q(i,j), the east/west advection could be represented by

dQ/dxX(i,j) = [Q(i+l,3) - Q(i-1,3)]/2L

where L is the distance between gridpoints. A north/south

advection could be represented by :iﬁ
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point out one more sigaificant fact. The low values of
separation between category I and II for all the predictors
in the area 2 cloud amount study very obviously coincide
with the inability of any of the forecast schemes to skill-
fully forecast category I. This, too, supports the position
that new predictors or new combinations of predictors are
necessary to improve significantly the results achieved in
this study.

It is of interest to note that the most frequently used
variables by both the Preisendorfer and regression methods
include vorticity (VOR500, VOR925, and DVRTDZ), low level
winds (UBLW, U1l000), low level vapor pressures (EAIR, E850)
and products involving vapor pressure at 700 mb (VE700,

TE700) .

B. RECOMMENDATIONS
Based on the observations made in this study and the

conclusions above, the following recommendations are offered -

to future researchers:
1. Interpolate the 12 GMT data base to make TAU-00,

TAU-24 and TAU-48 MOP's available as predictors at every

MY

observation position.

2. Interpolate 00 GMT MOP's to the 1200 GMT ship position

to provide
3. If
available,

predictors

l12-hour history as a new
the parameters described

then a time differencing

predictor.
in 1. and 2. above were

could be done on the

to give time trend information to the models as
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caused both the PR and linear regression methods to gain
over 20% in percentage correct, or stated otherwise, they
experienced a 40% improvement in their overall percentage
correct (i.e., increasing A0 from 47% to 67%). This leads
one to believe that the emphasis in further MOS research
should not be in pursuing new statistical methods, but rather
in pursuing new combinations of o0ld predictors, and new
predictors.

The results of the separability measures and cluster
analysis individually are not very impressive. The combined
use, however, of the technigues with a two-étage regression
give the highest A0 for the cloud amount regression schemes,
and shows some potential as a predictor selection scheme.
The benefits of the two techniques is that it gives the
experimenter some control over the parameter selection -
process, in contrast to the "black box" parameter selection
by the BIMED statistical software package. These methods
allow the experimenter to adjust the parameter selection
according to the category desired to select. For example,
if the third category is the most difficult or most desired
category for forecasting, then the measures of separability
can be used to select predictors providing the maximum
separability between the desired categories. These two
methods also can provide a screening process for new param-
eters. With the present models, to evaluate the potential
of a single new parameter, the entire model must be run again

from the beginning. The results of the measures of separability

69

DIPTSR S P o B meeecomidtuntetnibontrssiinctrondeatsotBinionsil e i . S Al At tat et At et e At e




LS

r

BRARRE

LA e e ISt et 2o LA B StE i Rates Sk ntie: SUNGC SN At ol AvE et Sl 8- antS engh - SREELSASEC SES Jeds “agin Eaal S st e A S

proved to be much simpler and less time consuming to apply.
The test gives a good first approximation of the significance
of any particular model run. The second tool for evaluating
the results, the 95% confidence intervals derived from a
baseline model contingency table, is very useful in comparing
the improvement of each model, and is especially insightful
in evaluating degradation of results over the 48-hour time
period.

It becomes clear after the first few uses of the various
models, that the linear regression techniques are much more
easily handled in the developmental stages than the PR or
PR+BMD models. When placed into an operational MOS system
the PR models will require several orders of magnitude more
computer memory storage space than its linear regression
counterpart. For these reasons, it would seem that if the
PR methods tested here are to be of viable use operationally,
they must be able to perform significantly better than the
linear regression models.

The results of the ceiling experiment are very encouraging
indeed. The first conclusion from this set of experiments
is that the premise early in the study that good skill in
forecasting cloud amount will be valuable in forecasting
ceiling heights is correct. The second conclusion is that
the results support the idea that good skill in statistical
forecasting of weather elements is more depeﬁdent on having
good predictors and information than on model type. The

addition of a single (perfect) predictor, c.oud amount,
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Density

N

Classification index (z)

The remarks given for the figures in cases I and II are also
applicable here. More often than not, only one of a pair of
thresholds induced by differing variances will be of real
interest. If the variances of the two groups are radically
different, then both members of the threshold pair become
important.

4. The-Maximum-Likelihood-of-Detection Criteria

For this specific model the following backaground is

provided:

event space: 2 mutually exclusive populations

Tgr T, forecast decision space: 2 possible forecasts
dor 91

d, is a correct forecast if n, actually occurs

0

dl is a correct forecast if T actually occurs

Problem: select the decision rule d(z) which maps
the observation space Z into some forecast space

1n some optimal manner.
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Z may be an observed variable or it may be an

univariate index derived from a number of variables.

For this two decision problem, Z is partitioned

into two parts, Z, and Z,.

0 1
d(z) = dO if =z = Z0
d(z) = dl if 2z =« Zl
where ZO n Zl = 0 and ZO U Zl = Z

The maximum-likelihood-of-detection criteria repre-
sents the simplest decision model. The basic involves select-
ing the forecast (decision) corresponding to the observation
(signal) which is the most likely symptom of the event subse-

quently observed. Consider the following example:

problem: diagnose disease A or disease B.

The observed symptoms occur with probability 0.75
for A and 0.1 for B. By the maximum-likelihood-of-detection
criteria (MLDC), diagnose disease A because A is the most
likely cause of the observed symptoms (if there is no more
information). But if we know that A is rare and B is common,
the above decision may not be optimal and MLDC may not be
appropriate. MLDC requires only that we know the event
conditional probability density functions of the observations.

This is:
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‘ p(z[no) = l//2wco exp{-1/2( Yy}
0
L z —El p
p(z|n,) = 1//2mnc, exp{-1/2¢ )7}
1 1 04
®
L plz|m,)
- ‘definition: likelihood ratio A(z) 1
L p(z ﬂo>
— -
] for convention sake we assume z; > zo,
2 .2
- 91 0
. _
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0
o Hg ' 1, z*
Z
0 Z, ZO
]
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1s used

plzi7,) and p(zjwl)

’ ‘ H
dl if p(z,nl) > p(z!wo)
decision rule: d(z) =

4, if p(z}nl) < p(z!no)

In the following development the Gaussian density

tc exemplify the model.
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1 Zo 21

* note the class having the largest variance has a

bifurcated decision region.

In the case where the variances are equal, the

situation simplifies considerably.

4
ZOZ(Ei -Eb) + 02(28-§§) > 0
%
4
202(51-50) - oz(Ei-E§) < 0
dO
dO
2z i (El-+50)
dl
] : (zl +zo) _
85
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It is obvious that z* is simply the average of the
means of the class-conditional distributions and is found
at the intersections of the two density curves.

In the foregoing, normal class conditional distribu-
tions were assumed. This was done because the Gaussian form
admits of a rather clean analytical solution. However, the
general concept of the minimum probable error decision
criteria may be applied to any form of density function.
Indeed, the density function of one group need not even be
the same form as that for another group (one might be exponen-
tial and the other Gaussian). The difficulty with most non-

Gaussian forms is that they seldom admit of closed analytical

forms and require numerical means in determination of

thresholds.
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APPENDIX B

MEASURES OF SEPARABILITY

As the testing proceeded through progressive time stages
in the study, it became apparent that the methods were unable
to separate the categories of scattered and broken clouds,
categories I and II. This problem required the investigation
of some alternate predictor selection schemes to improve the
ability to discriminate between these categories.

The decision information for discriminating between two
categories comes from two sources: the separation of the two
means and the difference in the variances. The three measures
considered in this study are the Divergence, the Bhattacharya
distance and the Mahalanobis distance. These three measures
attempt to combine both sources of information to come up
with a single measure of the ability of a predictor to des-
cribe the separation in the categories of the predictand.
These measures are applied in the study by stratifying each
predictor by event (i.e., predictand category), and calcu-
lating the mean and variance of the stratified predictors.
Then, for each predictor, the measures of separability are
calculated for category I versus II, category I versus III,
and category II versus III. The results are shown in tabular
form in Tables 11 to 13.

The Mahalanobis distance considers the variances as equal

and uses pooled variances of the predictor in the following
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univariate form:

(By -uz)

52

It can be thought of as a signal-to-noise ratio where the
difference in the two means is the desired signal, and the
noise is the scatter within the whole set (the variance).

The Divergence does not assume equal variance, and,
therefore, does not use a pooled variance. It adds to the
signal-to-noise ratio two quotients of the variances adjusted
by the equal variance value (two). It has the effect of
combining the signal-to-noise ratio with information contained
in the variances. The Divergence is used in this study in

its univariate form:

2(u, -y )2 02 02
___l__g_. + i(_z + _!: - 2)
o2 + 02 2 02 02
1 2 1 2

The third measure of separability applied to the data

set, the Bhattacharyya distance, is a special case of the :
Chernoff distance. Although more complicated than the R
Divergence, it also combines the information contained in the ﬁ~-f
mean with that found in the variance. The Bhattacharyya is

used in the study in its univariate form as:

R
L .
o a g g’ s

'Y
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The results of all three measures of separability applied
to the predictors used in the study, are shown in Tables X
through XII, for homogeneous area 2 at the time period

TAU-00.
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APPENDIX C -

CLUSTER ANALYSIS

The object of cluster analysis is to take a sample of
potential predictor variables of unknown classification and
group them into natural classes or clusters. The fact that
there is no a priori classification of the sample suggests
that cluster analysis is fundamentally a tool for data
exploration. That is to say, one wishes to study the data
to see if natural and useful groupings do, in fact, exist.

It is important to note that for any application of the method
there are many possible classifications which can be imposed
on a sample. Therefore, the sort of groupings which emerges
from an analysis will depend very much on the variables used
to represent the predictand. The poor choice of variables

can lead to a clustering which is useless for a particular
purpose.

The clustering done for cloud amount uses the BMDP Sta-
tistical Software (University of California, 1983) P1lM program,
applied all available Model OQutput Parameters (MOP's). The
P1M provides four measures of similarity (association) for

clustering variables and three criteria for linking or com-

bining clusters. 1Initially, each variable is considered as
a separate cluster; then, the two most similar variables are
joined to form a cluster. The amalgamating process continues

in a stepwise fashion (joining variables or clusters of K

90

e m s e et e tmtata et atata A a T B e P T el el Tt et el e e L




TR e i AR SR S A A SRt et D ol Seg e v*-w
]
o
variables) until a single cluster is formed that contains
all the variables. 3 ]
As used in this study, the measure of similarity is the !_ q
absolute value of the correlation. The similarity measure ,_;
could also be obtained from a measure of the distance, such fiii
as the angle between two variables (arccosine of the corre- ._ 1
lation) or the acute angle corresponding to the arccosine g
of the absolute value of the correlation. . ‘;
The linkage rule (the criterion for combining two » ;
clusters) can be the minimum distance (or maximum similarity) j
over all pairings of the variables between the two clusters, ?:‘j
the maximum distance {(or minimum similarity), or the average !_
distance (or similarity). The average similarity is the éf -
arithmetic average of the similarity using all possible ;E‘
pairings of the variables between the two clusters. The »
maximum similarity (minimum distance)}, single linkage is used ;;
for the MOP's in this study. i?
The output of the P1M program for homogeneous ocean area !
2, at time TAU-00, is: -
Predictor Clusters ;
Cluster Predictors ) ?
1. D1000, D850, D925, D700, D500, D400, D300, D250 ?
2. T500, T400, DDDP, T700, T300, TE700 ' j
3. VOR500, VOR925, DVRTDP S
4. TAIR, TL000, T925 L
5. EAIR, E1000, E850, E925, EPRD, TE925, .
E700, ES500, T250 ‘;
R
91 -
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10.

PBLD, STRTTK, RELH, STRTFQ

SMF, SHF

BVLW, V850, v925, v1000, v700, v500,
v400, v300, v250, vT250, VE700, V1700,
UDVDZ

UBLW, U850, U925, Ul000, U700, U500,
U400, U300, U250

DRAG, ETRNMT
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APPENDIX D

NOGAPS PREDICTOR PARAMETERS AVAILABLE FOR THE NORTH
ATLANTIC OCEAN, 15 MAY-15 JULY 1983, EXPERIMENTS

‘ea: Entire North Atlantic Ocean and Mediterranean Sea

del output time: 1200 GMT (TAU-00)

Model output Descriptive name of parameter
parameter

D10Q0 1000 mb geopotential height
D925 925 mb geopotential height
D850 850 mb geopotential height
D700 700 mb geopotential height
D500 500 mb geopotential height
D4GO0 400 mb geopotential height
D300 300 mb geopotential height
D250 250 mb geopotential height
TAIR Surface air temperature
T1000 1000 mb temperature

T925 925 mb temperature

T700 700 mb temperature

T500 500 mb temperature

T400 400 mb temperature

T300 300 mb temperature

T250 250 mb temperature

EAIR Surface vapor pressure

E1000 1000 mb vapor pressure

E925 925 mb vapor pressure

E850 850 mb vapor pressure

E700 700 mb vapor pressure

E500 500 mb vapor pressure

UBLW Boundary layer zonal wind component
Ulooo 1000 mb zonal wind component
U925 925 mb zonal wind component
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U850
U700
Us00
U400
U300
U250
VBLW

v1io00
V925
V850
V700
V500
V400
v300
V250
VOR925
VORS500
PS

SMF
PBLD
STRTFQ
S>TRTTH
SHF
ENTRN

DRAG

Derived parameters

RELH
DVRTDP

EPRD

DDDP
vT700

850 mb zonal wind component
700 mb zonal wind component
500 mb zonal wind component
400 mb zonal wind component
300 mb zonal wind component
250 mb zonal wind component

Boundary layer meridional wind
component

1000 mb meridional wind component
925 mb meridional wind component
850 mb meridional wind component
700 mb meridional wind component
500 mb meridional wind component
400 mb meridional wind component
300 mb meridional wind component
250 mb meridional wind component
925 mb vorticity

500 mb vorticity

Surface pressure

Surface moisture flux

Planetary boundary-layer depth
Percent stratus fregquency
Stratus thickness

Surface heat flux

Entrainment at top of marine
boundary-layer

Drag coefficient (CD)

Surface relative humidity

Vertical gradient of vorticity
(VOR925 - VOR500)

Product oS vapor pressures
(E1000+<E850)

Height thickness (D925-D250) /675

Approximation of thermal advection
{(Vv700-T700)
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UDVvDZ Approximation of thermal advection
(U700%(V1000-~-v500)

TE700 Product of temperature and vapor ~
pressurex(T700 E700)

VT250 Approximation of thermal advection
(T250xV250)

TE925 Product of temperature and vapor

pressure (T925xe925)

2a: Entire North Atlantic Ocean and Mediterranean Sea
Jel output time: 1200 GMT (TAU-24 and TAU-48)

Parameters available and derived parameters at TAU-24 and
J~-48 are the same as those for TAU~00 with the addition of

following five parameters:

Model output Descriptive name of parameter

PRECIP Total amount (mm.) of model precipitation
in the last six hours

SHWRS Total amount (mm.) of model precipi-
tation associated with cumulus
convection in the last six hours

INSTAB Boundary layer inversion instability
DIV925 925 mb Divergence
DIV500 500 mb Divergence
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Total
A0 =
Al =
TS1 =
TS2 =
TS3 =

APPENDIX E

VERIFICATION SCORES, DEFINITIONS

FORECAST

= R+S+T+U
percent correct
one-class error
Threat score for
Threat score for

Threat score for

R | S T
U \ W
X Y r4
1 2 3
OBSERVED

+V+W+X+Y+ 2

category I

category II

category III
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(X+V+T) /Total

(U+S+Y+W) /Total

X/ (R+U+X+Y+2Z)

V/ {U+V+W+S+Y)

T/ (R+S+T+W+2)
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APPENDIX F

BMDP LINEAR REGRESSION EQUATION PREDICTOR SETS.
NORTH ATLANTIC OCEAN (PR+BMD)

These are the derived linear regression equations used
as additional predictors in the PR+BMD model. The BMD value
of each equation represents an estimate of the category

predictand.

I. Area 4, TAU-00, Cloud amount
BMD1 = 1.87764 + 0.57546E-07xU850 + 0.372xE700
- 0.4595xT500 - 0.00837xSTRFQ - 9640.3555xVOR500
+ 28687.457xVORS25
BMD2 = =0.293341 - 0.257147xTX + 0.0008191xUBLW

-0.055399xT500 - 3345.81xVOR500

+8551.9xVOR925 - 0.002537xEPRD

II. Area 2, TAU-00, Cloud amount

BMDlI = 2.05292 - 0.09055xEAIR + 0.19066E-03xUBLW
~ 5335.98438xVOR500 + 7474.707xVOR925
+ 0.00505xEPRD + 0,78387E-07xUDVDZ

BMD2 = 2.51018 - 0.28119E-03xU700 + 0.31987xE500

+ 1.73035xDVRTDP + 0.27946E~04xU700

-0.2993E-05xVT250 + 0.00236xTE925
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III.

Area 2,

BMD1

BMD2

Area

BMD1

BMD2

Area

BMD1

BMD2

TAU-24, Cloud amount
2.98984 - 0.11211xEAIR + 0.88063xD700

0.01415xSHF - 8.28037xDIV925

2.27441xVOR925 + 0.00656%xEPRD

1.95832 - 0.05608xTAIR - 0.084347xEAIR

0.01297xSMF + 0.12733xDIV925

+ 0.8508E-05xUl1000 + 0.192768xD700

TAU~-48, Cloud amount
1.5808 + 0.35787E-03xPS - 0.00998xEAIR

0.01438xv850 + 0.14885E-03xD500

0.0412xv500 + 0.01165xTE700

+

2.45617 - 0.5245%XEAIR + 0.15573xE500
+ 0.06068xE925 - 0.2383E-03xSTRFQ

0.0837xSTRTK - 6.19808xDIV925

+

TAU-00, Ceiling

2.56681 - 0.03478xE850 + 0.1884xE-03xV700

0.03513xT925 + 0.4294E-03xDRAG

2759.3096xVOR500 - 0.63253E-04xVE700

3.78741 - 0.15939xCLAMT - 0.5971E-04xUBLW

+ 0.1187E-03xv700 - 0.06054xE925

2607/6801xVOR500 - 0.4057E-04xVE700
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APPENDIX G

BMDP LINEAR REGRESSION EQUATION PREDICTOR SETS.
NORTH ATLANTIC FOR REGRESSION MODELS

These are the derived linear regression equations used
in the one and two stage regression models. The BMD value
of each equation represents an estimate of the category

predictand.

I. Area 4, TAU-00, Cloud amount

a. Two stage regression

J Vl = 0.763701 - 0.145506xTX ~ 0.004051xSHF
: + 0.13055xT1000 + 0.000208xUBLW

] ~ 0.0001745xUL000 + 0.073322xE850

i

:¢ V2 = 0.290741 - 0.12764xTX - 0.010425xSHF
; + 0.00017xUBLW + 0.11457xT1000

i - 0.000761xUL000 + 0.0792243xE850

b. 8Single stage regression
Vi = =-0.29334 - 0.025715xTX + 0.0008191xUBLW

! - 0.055399xT500 - 3345.81xVOR500

. + 8551.8xVOR925 - 0.002537xEPRD
E II. Area 2, TAU-00, Cloud amount L;%
a. Single stage regression z;gﬁ
Vl = 2.05292 - 0.09055xEAIR + 0.19066E-03xUBLW {if;
i - 5335.9844xVOR500 + 7474.707xVOR925 ;;;
' + 0.00505xEPRD + 0.78387E-7xUDVDZ iaﬁ
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b. Single stage regression Separation Test 1

vl

= 1.87611 + 0.98222E-04xUBLW - 0.22933E-04xU1000
- 0.66081xE~04xD850 + .5844E-04xD700

- 0.02909xSHF + 4128.51953xVOR925

c. Single stage regression Separation Test 2

vl

= 1,73895 + 0.05728xE850 + 0.19578xE700
- 0.04394x.500 + 1.56723xDVRTDP

+ 0.21519E-04xVE700 - 0.00557xTE925

d. Single stage regression Separation & Cluster

vl

vl

V2

+ 0.39909e-05xVE700 - 0.2294e-04xTE925 %

»

=

III. Area 2, TAU-24, Cloud Amount -
a. Single stage regression o

vl

= 2.56562 - 0.75713E-03xPS - 0.05658xEAIR
+ 0.49973E-04xU1000 + 0.07972xT925
+ 0.00931xSTRTTK + 4624.29688xVOR925

+ 0.20189E-04xVT700 + 0.00127xTE700

stage regression separation test
= 1.3457 + 0.43966E-04xUBLW + 0.5055E-05xD1000

+ 0.64366E-04xU1000 - 0.61831E-05xD850

+

0.00285xSHF + 2488.08984xVOR925

= 2.3040 - 0.01869xE850 + 0.13171xE700

0.06215xE500 + 1.46893xDVRTDP

= 2.98984 - 0.11211xEAIR + 0.88063xD700 e
~ 0.01415xSHF - 8.28037xDIV925 _—

~ 2.27441xVOR925 + 0.00656xEPRD R
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IV. Area 2, TAU-48, Cloud Amount
a. Single stage regression
Vl = 2.45617 - 0.05245xEAIR + 0.15573xE500
+ 0.06068xE925 - (0.2383E-03xSTRFQ

+ 0.00837xSTRTK - 6.19809xDIV925

v. Area 2, TAU-00, Ceiling
a. Single stage regression--no cloud amount variable
Vl = 2.56681 - 0.03478xE950 + 0.18836E-03xV700
-~ 0.03513xT925 + 0.4294E-03xDRAG
~ 2759.3096xVOR500 -~ 0.63253E-04xVE700

b. Single stage regression with cloud amount variable
vl = 3.78741 - 0.15939xCLAMT - 0.5971E-04xUBLW
+ 0.1187E-03xvV700 - 0.06054xE925

~ 2607/6801xVOR500 - 0.4057E-04xVE700
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APPENDIX H

TABLES

TABLE I

A summary of 1200 GMT cloud amount
observations, 15 May to 07 July 1983,
North Atlantic Ocean homogeneous areas
as shown in Fig. 1: TAU-00

Area Total CAT I CAT II CAT III
All 11428 4022 4485 2921
(.35) (.39) (.26)

1 1686 297 675 714
(.18) (.40) (.42)

2 1766 359 704 672
(.20) (.40) (.38)

3 1129 324 355 450
(.29) (.31) (.40)

4 3182 1019 1286 877
(.32) (.40) (.28)

5 2425 1259 868 298
(.52) (.36) (.12)

6 2067 842 829 396
(.41) (.40) (.19)

7 564 157 280 127
(.28) (.50) (.09)

8 1015 522 402 91
(.52) (.40) (.09)
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TABLE II >

A summary of 1200 GMT cloud amount L

observations, 15 May to 07 July 1983, ——d

North Atlantic Ocean homogeneous areas o

as shown in Fig. 1: TAU-24 o

Area Total CAT I CAT II CAT III *
All 9416 3378 3616 2422
(.36) (.38) {.26)
1 1460 281 583 596
(.19) (.40) (.41)
2 1422 290 550 582
(.20) (.39) (.41)
3 916 259 298 359
(.28) (.33) (.39)
4 2592 857 988 747
(.33) (.38) (.29)
5 1992 1050 719 223
(.53) (.36) (.11)
6 1684 690 652 342
(.41) (.39) (.20)
7 458 140 207 111
(.31) (.45) (.24)
8 874 457 351 66
(.52) (.40) (.08)

e

273

T

-

103

1

L s e 5




Area

All

TABLE III

A summary of 1200 GMT cloud amount
observations, 15 May to 07 July 1983,
North Atlantic Ocean homogeneous areas
as shown in Fig. 1: TAU-48

Total CAT I CAT II
10775 3817 4150
(.35) (.39)

1676 339 691
(.20) (.41)

1644 327 656
(.20) (.40)

1046 308 336
(.29) (.32)

2976 947 1145
(.32) (.38)

2264 1166 823
(.52) (.36)

1949 804 753
(.41) (.39)

524 158 234
(.30) (.45)

976 505 382
(.52) (.39)
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CAT III

2808
(.26)

646
(.39)

661
(.40)

402
(.38)

884
(.30)

275
(.12)

392
(.20)

132
(.25)

89
(.09)




TABLE IV

A summary of 1200 GMT ceiling
observations, 15 May to 07 July 1983,
North Atlantic Ocean homogeneous area
2 for TAU-00

Area Total CAT I CAT II CAT III

2 1791 415 672 704
(.23) (.38) (.39)
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Figure 5. Contingency table results for the

area 4, TAU-00, two-stage regression,
QUAD model for cloud amount
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Contingency table results for the

area 4, two-stage regression,

a

OBSERVED

3

TAU-00,

A0(%): 44 47

TS1 : .18
Ts2 . .39
TS3 .11

A0(%). 4527

TSH .18
TS2 : .40
TS3 : .11

EVAR model for cloud amount
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SIGNIFICANCE TEST

Null Hypothesis Contingency

Table (Chance)

- 1 A0(%) 33.36
3114 145‘ 98
‘;‘ ___q_____{.*_ TS 1 .20
;? 114 144} 97
T ! TS2 : .22
11114 }144’ 97 f 1S3 8
1

1 2 3
ORASERVED

Area 4 TAUQO
95% CONFIDENCE INTERVAL

A0(%). 30.53 - 36,19
TS A7 -.22

TS2 . .20 - .25

1S3 .15 - 20

Figure 3. Confidence intervals for significance
with respect to chance--area 4,
TAU-00, cloud amount
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...........................

TABLE XII (Continued)

VARIABLE  BHATTACHARYYA DIVERGENCE  MAHALANOBIS

T300 0.21056 0.22100 0.20881

U300 0.01408 0.02348 0.01272

V300 0.07071 0.07155 0.07062

D925 0.00771 0.00836 0.00762

7925 0.20461 0.21458 0.20294

E925 0.20111 0.30206 0.18641

U925 0.00317 0.01440 0.00158

V925 0.12695 0.13894 0.12507

D250 0.19249 0.19258 0.19250

T250 0.01740 0.02707 0.01600

U250 0.01320 0.02348 0.01172

V250 0.06705 0.06854 0.06687

PBLD 0.01446 0.01503 0.01438

STFQ 0.06272 0.06298 0.06267

STSK 0.01442 0.01972 0.01367

SHF 0.36083 0.36084 0.36084

ETRN 0.01873 0.09273 0.00844

DRAG 0.08309 0.22548 0.06334

VORS 0.13266 0.13638 0.13223

VORY 0.00003 0.00005 0.00003

RHSU 0.01062 0.02140 0.00910

DDDP 0.27874 0.28099 0.27825

DVRT 0.35180 0.36540 0.34936

EPRD 0.21446 0.34633 0.19553

VT 70 0.02794 0.21941 0.00217 o

VE70 0.17673 0.46591 0.13800 o

UDVZ 0.00548 0.03222 0.00169 L

TE70 0.18493 0.32513 0.16501 L'l

vT25 0.06871 0.07051 0.06849 L

TE92 0.24765 0.39902 0.22596 o

RHS50 0.12367 0.12393 0.12361 ;ﬁq
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TABLE XII

Listing of the measures of separability,
by predictor, for cloud amount categories
II versus III, North Atlantic Ocean

homogeneous area 2 at time period TAU-00

VARIABLE BHATTACHARYYA DIVERGENCE MAHALANOBIS
PS 0.00117 0.00218 0.00103
TX 0.12979 0.13784 0.12850
EX 0.07575 0.09323 0.07315
SMF 0.20953 0.22308 0.20791
UBLW 0.00386 0.02460 0.00092
VBIW 0.12082 0.14304 0.11745
D100 0.00137 0.00229 0.00124
T100 0.12849 0.13413 0.12757
E100 0.10728 0.14164 0.10219
Uloo0 0.00279 0.01875 0.00052
v100 0.10973 0.13279 0.10625
D850 0.02216 0.02261 0.02210
E850 9.30505 0.44064 0.028520
U850 0.00403 0.01390 0.00262
V850 0.12095 0.12695 0.11997
D700 0.07096 0.07210 0.07083
T700 0.31687 0.32132 0.31640
E700 0.50219 0.59661 0.48725
U700 0.00688 0.01573 0.00561
V700 0.08627 0.08864 0.08588
D500 0.14117 0.14293 0.14100
T500 0.22404 0.22409 0.24405
ES00 0.34663 0.41264 0.33632
U500 0.01009 0.01637 0.00919
V500 0.07677 0.07727 0.07667
D400 0.16929 0.17051 0.16919
T400 0.22131 0.22215 0.22110
U400 0.01272 0.01996 0.01168
v400 0.07573 0.07575 0.07573
D300 0.18786 0.18828 0.18785
115
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VARIABLE
T300
U300
v300
D925
T925
E925
U925
V925
D250
T250
U250
V250
PBLD
STFQ
STSK
SHF
ETRN
DRAG
VORS5
VOR9
RHSU
DDDP
DVRT
EPRD
vT70
VE70
UDvVvZ
TE70
VT25
TES2
RH50

TABLE XI (Continued)

BHATTACHARYYA

0.20562
0.03037
0.16807
0.04597
0.06919
0.14805
0.06896
0.21093
0.04663
0.10538
0.02878
0.16161
0.09085
0.15207
0.09857
0.28824
0.01747
0.06575
0.01224
0.12924
0.06157
0.15300
0.27339
0.13559
0.00997
0.28308
0.01686
0.04632
0.17008
0.12640
0.28494

0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0

o O O
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DIVERGENCE

24049
03054
16866
04739
07071
25984
09353
26951
04671
12246
02899
16237
09125
15208
09902
35556
04776
26496
01355
14618
06976
15966
27967
24367
07588
76258
05881

.15561
.17019
.21771
.30526

0

O O O O O O O O O O O O 0O O © O O O O O O o © O O o o o ©o o

MAHALANOBIS

.19159
.03045
.16694
.04533
.06829
.12245
.06296
.19104
.04651
.09963
.02886
.16037
.09032
.15220
.09797
.26172
.01380
.03517
.01195
.12275
.06183
.14893
.26707
.11154
.00080
.19313
.01041
.02886
.16961
.10574
.27214
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VARIABLE
PS
TX
EX
SMF
UBLW
VBLW
D100
T100
E100
Uloo
V100
D850
E850
U850
V850
D700
T700
E700
U700
V700
D500
T500
ES500
U500
V500
D400
T400
U400
V400
D300

---------

TABLE XI

Listing of the measures of separability,
by predictor, for cloud amount categories
I versus III, North Atlantic Ocean
homogeneous area 2 at time period TAU-00

BHATTACHARYYA

0.08177
0.04016
0.00637
0.13855
0.08358
0.21032
0.06498
0.07172
0.04262
0.07400
0.18603
0.02559
0.29357
0.060456
0.20114
0.00182
0.11150
0.65337
0.04171
0.15351
0.00839
0.09364
0.36905
0.03106
0.15269
0.02288
0.13030
0.03115
0.16649
0.03975

DIVERGENCE MAHALANOBIS
0.14363 0.07800
0.04056 0.03990
0.01161 0.00552
0.13888 0.13915
0.15122 0.06957
0.30548 0.18303
0.06676 0.06403
0.07229 0.07120
0.07060 0.03708
0.14819 0.05957
0.28651 0.15951
0.02626 0.02532
0.45542 0.24720
0.071686 0.05731
0.23462 0.18768
0.00210 0.00178
0.12273 0.11297
0.77698 0.58537
0.04595 0.04043
0.16135 0.14901
0.01025 0.00821
0.09505 0.09255
0.51689 0.31872
0.03106 0.03106
0.15338 0.15157
0.02363 0.02294
0.14202 0.12517
0.03k38 0.03124
0.16697 0.16550
0.03976 0.03978
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VARIABLE

T300
U300
v300
D925
T925
E925
U925
V925
D250
T250
U250
v250
PBLD
STFQ
STSK
SHF

ETRN
DRAG
VORS
VOR9
RHSU
DDDP
DVRT
EPRD
vT70
VE70
UDvVZ
TE70
VT25
TE92
RG50

.........

TABLE X (Continued)

BHATTACHARYYA

0.00155
0.00636
0.01923
0.09076
0.03484
0.00652
0.05098
0.00562
0.05071
0.04040
0.00656
0.01878
0.03187
0.02029
0.03631
0.02615
0.00162
0,00550
0.06948
0.12475
0.02086
0.02176
0.00438
0.01150
0.00871
0.01574
0.00476
0.06954
0.02086
0.02343
0.02931
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DIVERGENCE

0.008e61
0.01845
0.02207
0.09473
0.03853
0.00678
0.05353
0.02688
0.05106
0.04144
0.02001
0.02316
0.03379
0.02066
0.04517
0.09518
0.01092
0.00977
0.07893
0.14278
0.02103
0.02293
0.00577
0.01259
0.03907
0.03484
0.00643
0.07131
0.02366
0.03042
0.04528

......................

MAHALANOBIS

0.00053
0.00477
0.01858
0.08882
0.03483
0.00646
0.04999
0.00695
0.05043
0.03994
0.00478
0.01786
0.03126
0.02033
0.03426
0.01552
0.00029
0.00482
0.06654
0.11831
0.02076
0.02142
0.00422
0.01144
0.00423
0.01260
0.00448
0.07002
0.02020
0.02291
0.02623
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TABLE X

Listing of the measures of separability,

by predictor, for cloud amount categories

I versus II, North Atlantic Ocean homogeneous
area 2 at time period TAU-00

VARIABLE BHATTACHARYYA DIVERGENCE MAHALANOBIS
PS 0.09467 0.14153 0.09295
TX 0.02457 0.02943 0.02429
EX 0.04045 0.04401 0.04054
SMF 0.01079 0.02040 0.00920
UBLW 0.06747 0.08060 0.06381
- VBLW 0.01148 0.03612 0.00770
b D100 0.08318 0.08845 0.09098
- 7100 0.00768 0.01029 0.00740
i" E100 0.01717 0.01749 0.01720
U100 0.06117 0.08200 0.05623
V100 0.00962 0.03601 0.00566
D850 0.09544 0.09767 0.09403
E£850 0.00064 0.00169 0.00048
U850 0.03957 0.03961 0.03950
V850 0.00910 0.02012 0.00735
D700 0.09371 0.09400 0.09329
7700 0.04722 0.04876 0.04746
E700 0.01074 0.01257 0.01037
u700 0.01787 0.01871 0.01788
V700 0.00922 0.01080 0.00891
D500 0.07878 0.07878 0.07881 .
T500 0.03095 0.03293 0.03033 o
E500 0.00232 0.01756 0.00015 o
US00 0.00822 0.01458 0.00746 -
V500 0.01307 0.01308 0.01305 -
D400 0.06663 0.06669 0.06650 ]
T400 0.01693 0.02318 0.01573 E?S
U400 0.00697 0.01702 0.00568 R
V400 0.01696 0.01763 0.01676 =
D300 0.05530 0.05561 0.05502 i
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CEPENDENT DATA

o | ) A0(%): 4578
3,48 {102 1144
e - | TS1 .36
:2]192 396‘ 8 2!
: l | TS2 : .30
“\14 1

i 37355 178[ 1S3 . 19

1 I

OBSERVED

INCEPENDENT DATA

[ A0(%) 4330
3|28 |51 ] 72
f TSt - .33
«2/109{185{134
o TS2 . .27
1|205|197| 86 1S3 .

] 2 J
OBSERVED

Figure 6. Contingency table results for the
area 4, TAU-00, two-stage regression,
MLDC model for cloud amount
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2 | B
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Figure 7. Contingency table results for the
area 4, TAU-00, single-stage regression,
EVAR model for cloud amount
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CEPENDENT DATA

INDEPENDENT

FORECAST

FORECAST

Figure 8.
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PR W SR VP RIAE WP WP T Wy

................

! ‘ 1 AD(%). 47.98 N
3,31 |104 181 | .
; i TS1 : .30 )
21366(563|353
l | TS2 .36
/|
/280|186 70 1S3 . 24
1 2 3 -
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3 16 | 43 { 87 .
— TS1 . .27 -
21195 |280 (175 -
- TS2 : .35 S
1131111030 1S3 . 25 -
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Contingency table results for the
area 4, TAU-00, single-stage regression,
QUAD model for cloud amount
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CEPENDENT DATA

. T A0(%):47.00
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Figure 9. Contingency table results for the
area 4, TAU-00, single-stage regression,
MLDC model for cloud amount
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2 BASELINE INTERVAL

Baseline model : Area 4 TAUQO BMD-EVAR

b ] A0(%).46.20
3119 531197
P e TS1 : .28
;?186 259’163
. TS2 - 33
'113711211 32 TS3 27

) 2 J
OBSERVED

BASELINE CONFIDENCE INTERVAL

AQ(%) 43.21 - 49.19
TS1 .25 - .31
TS2 30 - 36

1S3 .24 - 30

Figure 10. Confidence intervals for significance i
with respect to baseline~-area 4, o
)

TAU~-00, cloud amount T
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SIGNIFICANCE TEST

Null Hypothesis Contingency

Table (Chance)

- N T
1| 44 77 79
S , : TSt .15
2 44 | 76 | 79
o , TS2 .22

1 43 | 76 | 79

A0(%) 33.17

FORECAST

TS3 . .22

' ? 3
OCHStRVED

Area 2 TAUO0O

95% CONFIDENCE INTERVAL

A0(%):29.52 -37 08

TS1 0 12- /18
TS2 © 18- .25

TS3 ~ 19 - 26

Figure 13. Confidence intervals for significance
with respect to chance--area 2,
TAU-00, cloud amount <
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Figure l14. Contingency table results for the
single-stage regression,
EVAR model for cloud amount
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15. Contingency table results for the
area 2, TAU-00, single-stage regression,
QUAD model for cloud amount
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BASELINE INTERVAL

Baseline model : Area 2 TAU24 BMD-EVAR

FORFCAST

Figure 24.

B AQ(%) 4697
30 | 89 ;127 ‘ ( '
TS 01
82 1120 loa
L — 782 33
1 8 3
| TS3 .40

OBSERVED

BASELINE CONFIDENCE HITERVAL

AOL%) 42,97 - 5097
TS! .00 - 02

152 32 - 39

1S3 36 - 44

Confidence intervals for significance
with respect to baseline--area 2,
TAU-24, cloud amount
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Figure 23.
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Contingency table results for the

area 2,

TAU-24,

single~stage regression,

MLDC model for cloud amount
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Figure 22. Contingency table results for the
area. 2, TAU-24, single~stage regression,
QUAD model for cloud amount
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Figure 21. Contingency table results for the
area 2, TAU-24, single-stage regression,
EVAR model for cloud amount
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SIGNIFICANCE TEST

Null Hypothesis Contingency

Table (Chance)

—

A0(%) 3339
336 1 70 | 77 ‘
o : TS1 .14
22035 {70176
20| | TS2 .22
‘)35 | 70| 76 1S3 .23

) ? 3
ofnstwrvtD

Area 2 TAU24

95% CONFIDENCE INTERVAL

AQ(%): 29.43 - 3735

TSt 11 - 17

TS2 : .18 - 25

TS3 .20- .27

- o
-
o

Figure 20. Confidence intervals for significance
with respect to chance--area 2, -
mAU-24, cloud amount o
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BASELINE INTERVAL

| Baseline model : Area TAU0O BMD-EVAR

L ! AO(%)  49.41
kL ] 71 }133 '
A f | 1 TS 09
-2 89 \149\100
n | 1S2 . .36
013 s 39
1 2 3

OBSERVED

BASELINE CONFIDENCE INTERVAL

AQ0(%) 45.40 - 5342

1S1 - .07 - 1%
152 . .32-.39

TS3 .36 - 44

Figure 17. Confidence intervals for significance
with respect to baseline--area 2,
TAU-00, cloud amount
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Figure 16. Contingency table results for the
area 2, TaU-00, single-stage regression,
MLDC modeli for cloud amount
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SIGNIFICANCE TEST

Null Hypothesis Contingency

Table (Chance)

. AO0(%) 33.51
40 69 \ 80

(=)
[ —

S TS s
~2| 40 l 69 | 79

s | TS2 - .21
“{40 bal 79 1S3 . 23

1 2 3
OfRStRVED

Area 2 TAU 48

95% CONFIDENCE INTERVAL

A0(%) 29.30 - 37.11

TS1 - .12 - 18

TS2 .18 - .20

TS3 .20 - .26

Figure 27. Confidence intervals for significance
with respect to chance--area 2,
TAU-48, cloud amount
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CEPENDENT DATA

} AD(%): 48.68

(3059 171 272 |
::§159 284]175 |
= l | TS2 :35
o ’ } )
B 21 17
' B i TS3 .39

1 -

OBSERVED

INDEPENDENT DATA

| AQ(%) 45.32
3|4 93 !134

S T TS1 - .04

[

=21 75 | 126 ) o1

o ‘ TS2 : .32
1| 6 12 ) ) J 1S3 .38

1 2 3
OBSEtRVED

Figure 28. Contingency table results for the
area 2, TAU-48, single-stage regression,
EVAR model for cloud amount
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Pt . ) SRR ns ames

CEPENDENT DATA

INDEPENDENT DATA

Figure

AQ(%): 45.96

1
_3.59 {171 3272 |
v - ’ ‘ TS1 . 16
~2113 l206{136!
Z ! } TS2 - 28
o | T
“al 62 ’ 99 | g7
| TS3 - 39
1 2 k)

OBSERVED

B [ AO(%): 42.93
_3l41 o3 |134
2 . TSy 15
22051 |88 ‘ 69
o ; TS2 : 25
1130 {s0 |31 S3 - 36
1 2 3 '

OBSERVED

29. Contingency table results for the
area 2, TAU-48, single-stage regression,
MLDC model for cloud amount
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Figure 30.

BASELINE INTERVAL

Baseline model : Areag 2 TAU48 BMD-EVAR
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";': 75 | 126 | 9f

c — ———

vl 6 12 9
T 2 3
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TS
TS2

TS3

4532

.04

- 32

.36

BASELINE CONFIDENCE INTERVAL

AD(%) 41,31 - 49.22

TS

752

TS83

.02

.28

32

Confidence intervals for significance

with respect to baseline--area 2,
TAU-48, cloud amount
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Figure 42. Contingency table results for the
area 2, TAU-00, single-stage
regression, using cloud amount as a
predictor EVAR model for ceiling
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BASELINE INTERVAL

Baseline mode! : Area 2 TAUQO BMD-MLDC
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44 l19 rs3 15

' 2 3
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BASELINE CONFIDENCE INTERVAL

AQ(%) 41.56 - 49.56

TS1 .19 - .25
TS2 .35 - 42

TS3 12 - .18

Figure 40. Confidence intervals for significance _
with respect to baseline--area 2, >‘f:l
TAU-00, ceiling
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39. Contingency table results for the
area 2, TAU-00, single-stage
regression, MLDC model for ceiling
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Contingency table results for the
single-stage

regression, EVAR model for ceiling
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SIGNIFICANCE TEST

Null Hypothesis Contingency

Table (Chance)

L I A0(%) 3333
3| 47 | 87 | 66
e TS1 .16
© 2l 46 | 87 | 86
S R S TS2 - .23
1| 46 | 86 | 66 rs3 20

1 2 3
OBStRVED

Area 2 TAUOO

95% CONFIDENCE INTERVAL

AO(%) 29.23 -3677

TSt . 13 - 19
TS2 .20 - .27 ]
=
TS3 17 - 23
1
3
Figure 37. Confidence intervals for significance ]
with respect to chance--area 2,
TAU-00, ceiling 4
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Figure 36b.
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Contingency table results for the
area 2, TAU-00, two-stage regression,

predictors chosen by combination
of clustering and separability
techniques for cloud amount
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Figure 34. Contingency table results for the
area 2, TAU~-00, single-stage regression,
predictors chosen by highest
measures of separability for category II
versus III for cloud amount
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33. Contingency table results for the X
area 2, TAU-00, single-stage regression, -
predictors chosen by highest
measures of separability for category 1
versus 1I for cloud amount
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Figure 43. Contingency table results for the
area 2, TAU-00, single-stage
regression, using cloud amount as a
predictor QUAD model for ceiling
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