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ABSTRACT

This x-epeL* describes the application and evaluation of

several statistical models in the forecasting of cloud amount

and ceiling over selected-physioally--megee--areas of

the North Atlantic Ocean. The focus of this study is to

evaluate the applicability of previous Naval Postgraduate

School model output statistics research in the area of

horizontal marine visibility to the forecasting of cloud

amount and ceiling over ocean areas. The models, including

minimum probable error linear regression threshold techniques,

maximum conditional probability and natural regression, uti-

lize observed visibility data and model output parameters

from the Navy Operational Global Atmospheric Prediction

System (NOGAPS). Results show statistically similar results

for the linear regression and maximum conditional probability

models. Also included is the result of additional experi-

. mentation on the application of several measures of separa-

bility and cluster analysis to predictor selection.
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IV. PROCEDURES

A. TERMS AND SYMBOLS

The terms and statistical symbols defined below will

be used throughout the remainder of this report. The formal 0

mathematical definitions are described in Karl (1984).

1. Maximum probability strategy--choosing the forecast
weather element (e.g., cloud amount or ceiling)
category based upon the highest probability of
the weather element within a predictor interval,
hence conditional probability.

a. MAXPROB I--designation of the maximum probability
strategy in which ties of the highest conditional
probabilities in a predictor interval are S
resolved by the generation of a random number.

b. MAXPROB II--designation of the maximum probability
strategy in which ties of the highest conditional
probabilities in a predictor interval are
resolved by assigning the lowest element category,
of those tied, as the forecast category.

2. Natural regression strategy--choosing weather cate-
gories based upon the statistical average of the
conditional probabilities of the weather element
within a predictor interval.

3. AO--the probability of a zero-class weather element
category forecast error (e.g., if cloud amount
category I is forecast and observed). This is more
generally known as total percentage correct.

S
4. Al--the probability of a one-class weather element

category forecast error (e.g., if ceiling category
I is forecast and category II is observed).

5. A2--the probability of a two-class weather element
category forecast error (e.g., if ceiling category
I is forecast and category III is observed).

6. CE--class error parameter defined as Al+2A2, used as
the primary aid in identifying the first predictor
for the Preisendorfer strategies.

25
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D. TRAINING/TESTING DATA SETS

One-third of the observations were withheld from the

developmental model to use as an independent data set (the

teszing set). This was accomplished by the use of a counter

and transfer statement in the computer programs which pre-

vented every third observation from entering the develop-

mental computations. Although the approach has the advantage

of simplicity, there could be some sort of ordering in the

data base, hence the split runs a chance of being non-random.

To ensure that the dependent (the training data set) and

independent (the testing data set) data were representative

of the same population, a 95% confidence interval for propor-

tions (Miller and Freund, 1977) was established from the

entire data set, for each of the weather element categories;

the training and testing data sets were constrained to have

frequencies of occurrence within these established confidence

intervals.

24



co-located with the National Climatic Data Center (NCDC).

The observations which were obviously erroneous, as deter-

mined from the data quality indicators provided with the

data, were deleted from the working data sets.

4. Predictor Parameters

Fifty TAU-00, fifty-four TAU-24 and fifty-four TAU-48

model output predictors (MOP's) were provided by the Fleet

Numerical Oceanography Center (FNOC), Monterey, California.

These parameters are generated by their current operational

atmospheric prediction model, the Navy Operational Global

Atmospheric Prediction System (NOGAPS). All MOP's were

interpolated from model grid coordinates to synoptic ship

report position using a linear interpolation scheme. In

addition to the initial group of model output parameters,

ten derived parameters representing calculated quantities,

such as parameter gradients, products and advections, were

included as potential predictors. A listing of all avail-

able TAU-00, TAU-24 and TAU-48 MOP's are included in

Appendix D.

For each homogeneous area and model forecast projec-

tion, a set of two linear regression equations, in addition

to the aforementioned MOP's, were included as potential

MOP's for a separate evaluation of the Preisendorfer

methodology (the PR+BMD model). These two predictor

equations were obtained from a standardized linear regression

software package, P9R, an all possible subsets regression,

as addressed in the BMDP Statistical Software (University of

California, 1983).

23



2. Time Period

Data from mid-May 1983 to mid-July 1983 were combined

to form a more extensive data set, hereafter referred to

as FATJUNE 1983. FATJUNE 1983 was selected as the initial

data set for the visibility studies due to its high frequency

of occurrenoeof poor visibility observations, and it was

chosen for this study to maintain continuity on the overall

MOS project. 1200 GMT synoptic ship report data were used

exclusively in this study since 1200 GMT corresponds to general

daylight conditions over the North Atlantic Ocean during

FATJUNE. For the purpose of this study, TAU-00 model output

parameters (MOP) generally represent six-hour model forecasts

valid at 1200 GMT. However, three specific fields, namely

temperature, geopotential height and wind, are model initiali-

zation fields at 1200 GMT. TAU-24 and TAU-48 MOP's are 24-

hour and 48-hour model forecasts, respectively, valid at 1200

GMT. TAU-00, TAU-24 and TAU-48 MOP's (predictors) are

employed in the 00-, 24- and 48-h forecast schemes, respectively.

Summaries of the cloud amount and ceiling frequencies for ...

each category type, as a function of homogeneous area and

prediction time for FATJUNE 1983, are contained in Tables I

through IV, respectively.

3. Synoptic Weather Reports

All synoptic weather observations (predictand data)

for this study were provided by the Naval Oceanography

Command Detachment (NOCD), Asheville, North Carolina which is

22
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Ceiling Category Code Definition

I 0-3 1000 feet

II 4-5 1000-3500 feet

III 6-9 > 3500 feet

The above scheme is based on U.S. Navy operational

criteria:

1. Ceiling less than 1000 feet--U.S. Navy aircraft
carrier at-sea flight recovery operations require
controlled (IFR) approach guidelines (Department
of the Navy, 1979).

2. Ceiling 1000-3000 feet--flight recovery operations
require modified IFR approach guidelines.

3. Ceiling greater than 3000 feet--at-sea recovery
operations change to visual (VFR) approach guidelines.

C. NORTH ATLANTIC OCEAN DATA

1. Area

The North Atlantic Ocean, from 00 to 800 N latitude,

was divided into homogeneous oceanic areas following Lowe

(1984b), using a statistical cluster analysis technique.

The specific homogeneous areas evaluated in this study are

identified as areas 2 and 4 on Fig. 2. These areas were

selected because they contain the largest data samples and

represent two different relative frequencies of cloud cover.

Area 4 represents an area where the three categories are of

near equal population while area 2 represents an area where

the number of category I (clear and scattered) observations

is about one-half of those in categories two and three

(broken and overcast).

21
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as thin or partial. However, the synoptic Surface Marine

Observations data set does not give a direct observation of

ceiling height, thus making it necessary for the purpose of

this study to synthesize ceiling height from the data that

are given. The data set gives the following reported fields:

CLAMT: Cloud amount or total sky cover

LOAMT: Total sky cover by low clouds (middle clouds
if no low clouds are present)

CLHT: Height of the lowest clouds irrespective
of amount.

Cloud height is reported with a synoptic code from 0 to 9,

where 0 refers to heights from 0 to 50 feet and 9 refers

to heights greater than 6500 feet or cases where no clouds

are present. This 6500 foot height, corresponds roughly to

the upper boundary of the clouds reported in the low cloud

amount field, LOAMT, making possible the following definition

of ceiling for calculational purposes in this study:

If the reported LOAMT < 5/8 then the ceiling is
unlimited.

If the reported LOAMT > 5/8 then ceiling is taken
as the reported cloud height.

The ceiling observations are likewise treated as

categorized predictands and are divided into the following

categories for prediction purposes:

20
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III. DATA

A. CLOUD AMOUNT OBSERVATIONS AND SYNOPTIC CODES

Cloud amount is defined as the fractionof the celestial

dome covered by all clouds. The observations taken from

seagoing platforms are reported as values of zero to eight

oktas (eighths) such that 0 means no clouds, 1 means 1/8th

cloud cover, etc. In addition, 9 is used to report an

obscured sky (e.g., smoke, fog), for which a defined cloud

cover is not observable. The observations were treated as

categorized predictands and were divided into categories

conforming to the standard definitions of opaque sky cover

for clear, scattered, broken and overcast, as used for

aviation observations.

Cloud Amount Category Eighths Definition

I 0-4 clear/scattered

II 5-7 broken

III 8 overcast

The obscured observation was not used in the MOS development

reported on here.

B. CEILING OBSERVATIONS AND SYNOPTIC CODES

The definition of ceiling is the height ascribed to the

lowest layer of clouds or obscuring phenomena when it is

reported as broken, overcast, or obscured and not classified

19..



II. OBJECTIVES AND APPROACH

The objective of this study is to extend the previous

NPS research for predicting horizontal marine visibility

using model output statistics (MOS) (Karl, 1984; Diunizio,

1984) to the prediction of cloud ceiling and cloud cover

over coastal and open ocean areas of the North Atlantic

Ocean. The approach to the problem is as follows:

A. Define categorical groupings of cloud amount and
ceiling height which relate to operational use
at sea.

B. Determine if one element is important to the
prediction of the other and, therefore, should
be investigated first.

C. Apply the previously investigated methods for
forecasting visibility to cloud amount and ceiling,
and evaluate their performance. These methods
include Preisendorfer (1983 a,b,c) maximum proba-
bility and natural regression strategies, and linear
regression threshold models as proposed by Lowe
(1984a).

D. Compare and contrast the results of the two methodolo-
gies in C, above, and conduct some experimentation
to improve their applicability to cloud cover and
ceiling prediction.

E. Investigate alternative predictor selection schemes
to improve the ability of the MOS models to distin-
guish between the predictand categories.

F. Make recommendations on the usefulness of the
schemes investigated and potential avenues for
future work in this area.

1
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range of atmospheric visibility. Secondly, the number of

observed weather reports are not only limited in number, but

also come from moving platforms so that there is a lack of

weather trend information for a single (fixed) station as

is the case in land observations. Statistical methodologies

tested by Karl (1984) and Diunizio (1984) to overcome the

at-sea MOS problems, include a conditional probability

approach proposed by Preisendorfer (1983 a,b,c) and various

innovative threshold techniques, as applied to the linear

regression model, developed by Lowe (1984a).

This study represents a continuation of the North Atlantic

Ocean MOS studies on visibility, by Karl (1984) and Diunizio

(1984). However, in this case, the statistical methods

tested by the earlier visibility studies are applied to cloud

amount and ceiling. The methods used here have been designed

to be consistent with those of the previous studies in order

to allow for comparison of results, as appropriate.

7.
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Prediction Research Facility (NEPERF) in Monterey, California

sponsored a limited amount of research into naval applications

of MOS, with most of the effort going toward marine visi-

bility and fog. The results of these Navy studies and the

encouraging performances of the NWS and AWS MOS programs

prompted the Navy, in the spring of 1983, to begin develop-

ment of a MOS program under the guidance of NEPERF, to

forecast operational air/ocean parameters over the oceans of

the world. The proposed milestones of this ten year project

are summarized in Fig. 1. The first operational weather

parameter investigated in the program is horizontal visi-

bility over the North Atlantic Ocean using MOP's from the

Navy Operational Global Atmospheric Prediction System (NOGAPS),

a dynamical primitive equation (PE) model run operationally

at the Fleet Numerical Oceanography Center (FNOC) (Karl, 1984;

Diunizio, 1984).

Previous experimental work by the Navy to forecast

open-ocean fog and visibility using linear regression

equations (Aldinger, 1979; Yavorsky, 1980; Selsor, 1980;

Koziara et al. 1983; Renard and Thompson, 1984) shows skill

of marginal operational usefulness but exceeding that of

• persistence and/or climatology. Two factors limit the

potential for MOS forecasts of visiblity and fog at sea.

First, there is the lack of 'calibrated' fog and visiblity

observations in that shipboard weather observers lack suffi-

cient reference points to be able to accurately estimate the

16..
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assembled for a land station or region for a period of

several years, stratified by season or month.

The National Weather Service (NWS) has included MOS as S

an integral part of their weather forecasting operations

since the mid 1970's and currently forecasts for approximately

15 weather elements at forecasting times of 6 to 48 hours. 0

These MOS forecast equations, developed by the National Oceanic

and Atmospheric Administration's (NOAA) Techniques Development

Laboratory (TDL), are based on model output parameters S

(MOP's) from the U.S. regional model, LFM-II. In December

of 1980, the Air Force Air Weather Service (AWS) also imple-

mented and operated a MOS forecasting scheme at the Air

Force Global Weather Center (AFGWC), Offut AFB, Nebraska

(Best and Pryor, 1983) for approximately 18 months. The

program was terminated with the decision to replace their

hemispheric primitive equation model with a spectral global

dynamic model (Klein, 1981). The linear regression tech-

niques used by both the Air Force and NWS has demonstrated

operationally useful skill in forecasting weather elements

at locations over land throughout the world (Best and Pryor,

1983). In this technique, called Regression Estimated Event S

Probability (REEP) , predictor variables are discretized into

sets of dummy variables prior to regression.

The Navy's unique responsibilities of marine forecasting .

provides a motive for it to have its own MOS system. In

the late 1970's and early 1980's, the Naval Environmental

15
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I. INTRODUCTION AND BACKGROUND

Numerical weather prediction models have made great

progress in forecasting the basic meteorological variables

and fields on the synoptic scale, such as sea-level pressure,

wind, and moisture (e.g., relative humidity). However,

dynamic models have had little success in predicting sensi-

ble weather variables at the regional/local scale, and in

fact most models do not forecast many of these variables

directly. Stochastic-dynamic prediction is being explored;

it shows promise for operational use sometime in the future,

but it awaits much further development and more powerful

computers.

One of the most significant developments in weather pre-

diction is the combination of dynamical and statistical

methods, known as model output statistics (MOS) . The MOS

technique is the determination of a statistical relationship

between a weather element of interest (e.g., visiblity,

ceiling, precipitation) and a large menu of parameters output

from an operational numerical prediction model (e.g., boundary

layer wind, constant-pressure height, temperature). In the

case of the National Weather Service, the operational MOS

technique is based on multiple linear regression, where the

prediction equations are developed from f(recast model

parameters (predictors) and observed weather (predictands)

14
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39. Contingency table results for the area 2, TAU-00,
single-stage regression, MLDC model for ceiling ---- 172

40. Confidence intervals for significance with respect
to baseline--area 2, TAU-00, ceiling --------------- 173

41. Skill diagram and contingency table results for
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42. Contingency table results for the area 2, TAU-00,
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7. PP--the potential predictability of the weather
element by any given predictor. Potential predicta-
bility of a predictand/predictor pair is defined by
Karl (1984) as

m n
PP(211) n/(n-l) [ Pl(i) [ (P2 1 (jli) - 1/n)

.i=l j=l

where:

P1 (i) = the marginal probability of a
predictor;

P21 (Jii) = the conditional probability of thejth predictand, given the ith
predictor.

8. EPI--equally populous interval used to discretize
the predictors (i.e., subintervals of equal popula-
tion size based on the predictor range of values)

9. Functional dependence--a measure of the stochastic
dependence of one predictor upon another. Functional
dependence is the probability that one of the predic-
tors will change when the other changes. High func-
tional dependence values between one already selected
predictor and another potential predictor indicates
that little additional information beyond the first
selected predictor is possible. Conversely, a low
functional dependence value between the same two
predictors, indicates that each predictor possesses
distinct information about the predictand. Functional
dependence range is 0.0 to 1.0 (1.0 = highest func-
tional dependence). The specific derivation and
mathematical description of the concept of "functional

Sdependence" is discussed in greater depth by
Preisendorfer (1983c).

10. Root-sum-squared functional dependence--the functional
dependence of a predictor on all predictors already
included in the developmental model. It is equal
to the square-root of the sum of the squares of the
individual functional dependence values.

11. TSl, TS2, TS3--threat score for weather element
category I, II and III, respectively, computed from
a contingency table (see Appendix E).
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B. COMPUTER PROGRAMS

Four computer programs were developed by Karl (1983) to test

rj the proposed Preisendorfer (1983 a,b,c) methodology for forecast-

ing visibility. These programs were rewritten to allow them to

be applied to cloud amount and ceiling forecasting and are on

file in the Department of Meteorology, Naval Postgraduate School,

Monterey, California, 93943.

1. A program to compute AO, Al, CE and PP for all predic-
tors, all strategies (MAXPROB I, MAXPROB II and natural
regression) for a particular number of equally populous
predictor intervals. Statistics for the three strate-
gies are based upon the predictor(s) that proved
optimal for each strategy.

2. A program to compute functional dependence for all predic-
tors, on a given predictor, for a given number of equally
populous intervals and to compute the associated 96%
critical confidence interval value (referred to as func-
tional dependence(96) in this study) by Monte Carlo means.

3. A program to construct contingency tables and to compute
skill and threat scores, for both the testing and training
data.

4. A program to generate 100 random data sets, from the
'. marginal probabilities of thp predictor(s) in the

developmental model, and to compute upper and lower
*5% critical confidence interval values for AO and Al

to be used for testing the significance of the results
for each of the Preisendorfer models against chance.
These confidence interval values are calculated via
Monte Carlo means. This study developed another testing
standard derived as a consequence of the central limit
theorem. It is used in the results section to discuss
the significance of the results of each of the models
used, and is presented later in this chapter.

A second set of programs was used to develop the regres-

sion equations taken mainly from the BMDP STatistical Soft-

ware Package (University of California, 1983).

1. BMDP P9R. An All Possible Subsets Regression program
used to initially select predictors beginning with
a general screening of the entire set of potential
predictors.
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2. BMDP PIR. A straight regression program to develop
the prediction equation using the variables selected
by the P9R.

3. BMDP P5D. This program takes the developed prediction
equation and produces histograms of the data set
divided into the prediction categories.

4. A program to generate the thresholds used with the
regression equations. (These will be discussed in
more detail later in this chapter.)

5. A program was developed to construct contingency
tables of skill and threat scores from the regression
equation experiments for both the training (dependent)
and testing (independent) data sets.

C. MODELS

1. Preisendorfer PR Model

This model represents the first of two different

applications of the basic Preisendorfer methodology

(Preisendorfer, 1983 a,b,c). Karl (1984), in his preliminary

research, provides a rigorous interpretation and results

associated with this approach. Karl's study provides the

necessary background for the continuing MOS studies using

this model. This material will not be repeated here.

The PR model utilizes the working set of NOGAPS model

output parameters (MOP's) and derived parameters (Appendix D)

as potential predictors in constructing a developmental model,

based upon the training data set, which provides the struc-

ture by which the testing data set is tested and evaluated.

In general, these potential predictors have their range of

values partitioned into discretized equally populous predic-

tor intervals ("cells"), and conditional probabilities of
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S

the predictand are calculated according to the three cate-

gories for cloud amount and ceiling, specified in Chapter

III. Three separate strategies, for determining the specific •

category which is to be identified with each predictor value,

are proposed. These strategies, two based upon maximum

probability and the third based on a natural regression •

approach, are addressed as MAXPROB I, MAXPROB II and natural

regression (NATR) in the remaining portions of the study.

Initial evaluation of this model involves varying S

the equally populous predictor intervals from sizes of four

through ten, and selecting an optimal first predictor which

provides one of the following requirements in the designated

order:

a. the lowest CE value of all the potential predictors;

b. the highest PP value of all the potential predictors. -

Once a first predictor is identified for each of the

four through ten equally populous predictor intervals,

corresponding category I, II and III threat and AO skill -1
scores (Appendix E) are calculated for both the dependent

and independent data sets. The practice of selecting an

optimal equally populous predictor interval (optimal in the I

sense of maximizing AO) from the eligible grouping sizes of

four through ten, was proposed by Karl (1984) and used by

Diunizio (1984) as a practical procedure which would permit S

the realization of peak skill scores as well as maintain

associated computer storage requirements at a manageable

level. An unfortunate consequence of this range of potential
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grouping sizes is that certain statistical calculations asso-

ciated with equally populous predictor intervals of eight,

nine and ten are terminated before completion due to a two

mega-byte storage ceiling at the NPS W.R. Church Computer

Center (Diunizio, 1984). When considering potential pre-

dictor intervals, the size of the interval is of obvious

importance, with lower values being the most desirable. In

the previous studies in the MOS series concerning visibility,

the criterion for determining the optimal equally populous

predictor interval was to select the smallest interval value

which maximized the dependent data set AO and independent

category I threat score. The threat score for category I

was selected for this purpose because it was felt that low

visibility (represented by category I) was uniquely important

to forecast. In dealing with cloud amount there is not a

single category that is obviously most important to fore-

case, and therefore, the selection of the interval was based

only on the maximized dependent AO. This in+-erval was then

fixed for all ensuing aspects of the model evaluate .

Consistent with the findings of the previous studies, t.

selection criteria are based on the MAXPROB II scores,

hence the MAXPROB I and natural regression strategies play

no role in the predictor selection scheme.

Once the first predictor and its associated equally

populous predictor interval have been identified, a functional

dependent test of the first predictor a,.ainst the remaining

potential predictors is run. The second, third and all

30

-- .- .t.S.? a<.Aa2 t. -" * - . . - . .



subsequent predictors are selected only if both of the

following criteria are met:

a. subsequent predictors must increase A0 over the
AO value attained at the preceding level, and

b. the selected predictor must have the lowest root-
sum-square functional dependence of all the
remaining potential predictors.

Significance tests were run on the developmental

model after each predictor selection stage had been completed

to determine if the results were suitably significant as

compared to random chance. This was accomplished using the

previously mentioned Monte Carlo method generating the 05

and 96 percentile confidence intervals using 100 randomly

generated data sets. Further consideration has brought out

that 100 cases may not be a large enough sample size for the

Monte Carlo test. For this reason a testing technique,

derived as a consequence of the central limit theorem more

fully described at the end of this chapter, was applied to

the results at the end of each run to demonstrate that the

results are significant in relation to chance.

The model development continues along these criteria

until computer storage limitations preclude further addition

of parameters. This generally occurred in previous studies,

and in every case in this study, at the fifth predictor

level. Once the developmental model is completed, contingency

tables of the forecast element category versus the observed

element category are constructed for both the dependent and

independent data sets, and threat and skill scores are

computed and compared.
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2. Preisendorfer PR+BMD Model

This model is still the PR model described above,

but now sets of two linear regression equations are added

to the list of potential predictors, namely, NOGAPS MOP's

and derived parameters.

3. Linear Regression Models

Linear regression represents the more traditional

approach to MOS. Regression Estimated Event Probability

(REEP) is the basis for the National Weather Service and

Air Weather Service regression models. In this study two

approaches to the regression model are explored, a single

stage and a two stage, and three threshold algorithms are

used: equal-variance, quadratic, and a modified maximum-

likelihood-decision-criteria. The procedures are outlined

here, but a more detailed explanation of the theories is

given in Appendix A.

a. Single Stage Regression

This model, referred to in the tables as BMD SS,

consists of generating a single linear regression equation

trained on the dependent data set, with the predictand set

equal to 1, 2 or 3, corresponding to weather element cate-

gories I, II or III, respectively. This equation is then

used with the dependent training set in the graphical plotting

program BMD P5D, from the BMDP Statistical Software, to

generate a set of three histograms and a listing of the

individual frequency of observation (P), mean (u), and standard

32

• . . . . . . . .. ... .• • - . . .



deviation (s) of each of the three predictand distributions. '

These statistics are then used in the threshold algorithms

to calculate two threshold values. Finally, the regression

equation and the two thresholds are used to process the

independent data to obtain a set of the observed weather

element versus the forecasted element results in contingency

table format. These tables and their calculated threat

scores are presented in Chapter V and Appendix I.

b. Two-Stage Regression

This model, referred to in the tables as BMD

TS, is based on a decision-tree scheme using two linear

regression equations trained on the dependent data. The A

first equation is generated by separating the largest frequency

category from the other two. In the cases of cloud amount

and ceiling this was accomplished by setting the values for

category I and II to 1 and the values for category III to

2 and then developing a regression equation and threshold

(as in the single stage above) to suitably describe the two

distributions. The second stage regression equation and

threshold are generated, based only on those observations

which did not exceed the first stage threshold value, effec-

tively eliminating cases evaluated by the first stage as

being category III. The second stage is thereby a separation

of category I from category II observations. In other words,

the first stage regression separates category III from the

combined grouping of categories I and II, while the second

33
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I

stage separates the remaining category II from category I

data. The two resulting equations and associated thresholds

are then applied to the independnet data to obtain the

forecast versus observed contingency tables and calculate

the threat scores.

c. Threshold Models

The equal variance model (referred to as EVAR)

uses an algorithm which requires the assumption that the

variances of the two normally distributed populations which

are to be separated by a threshold are equal, while their

means are unequal. The quadratic threshold (referred to as

QUAD) algorithm makes no assumptions about the means and

variances, but does take into consideration group apriori -.-

probability. The maximum likelihood decision criteria

(MLDC) was modified for use as a third threshold model in

order to separate the categories of scattered and broken

clouds, categories I and II (Cooley, 1978), historically a

difficult task. The MLDC is not based on apriori group

probabilities but requires only the event conditional proba-

bility functions of the observations, and is useful in pre-

dicting events of rare occurrence. In the study, the MLDC

threshold model consists of using the midpoint between the

category I and II distribution means with the EVAR thres-

hold between the category II and III distributions.

D. SIGNIFICANCE TESTING

The results of the experiments are tested against two

standards to demonstrate that the results are significant
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with respect to chance and to evaluate improvement over

classical MOS modeling methods.

1. Significance of the Skill of a Forecast versus Chance

This first test of the results is based on the pro-

posal that both percentage correct (AO) and threat scores

(TSl, TS2, TS3) can be presented as probabilities and the

fact that a binomial population, if large enough, can be

approximated by a normal distribution. As such the percentage -

correct and threat scores may be subjected to a null hypothe-

sis significance test derived as a consequence of the central

limit theorem. The actual significance testing is made with

respect to confidence intervals about the scores which would

be achieved by a uniform random distribution of category

I, II and III observations in a 3 x3 contingency table.

These scores represent the scores which would be achieved by

pure chance. The test can be stated that the null hypothesis

is

P(A < X < B) = .95

with lower limit

A y/n - 1.96 [y/n(l-y/n)/n]

and the upper limit

B y/n + 1.96[y/n(l-y/n)/n]
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A 95% confidence interval is made about the scores expected

if each category had an equally likely chance of being fore-

casted. If the procedure score lies within the interval

for the null hypothesis score then it is considered that

there is no statistically significant difference between the

two scores. The contingency tables and 95% confidence inter-

val calculations are shown in Figs. 3, 13, 20, 27 and 37.

2. Improvement Over Baseline

Since some form of regression is the traditional

method of developing MOS models, the baseline standard for

comparison of all the experiments in this study are confi-

dence intervals generated using the results from the single-

stage regression for each area, and time period. These 95%

confidence intervals are made using the same equations as

the test for significance of a score versus chance. Addi-

tionally, in area 2, the TAU-00 baseline is used to evaluate

degradation of the results with time. The baseline intervals

are shown in Figs. 10, 17, 24, 30 and 37.

E. MEASURES OF SEPARABILITY

As the testing proceeded through progressive time stages,

it became more apparent that the methods were struggling to

separate the categories of scattered and broken clouds,

categories I and II (Cooley, 1978). This problem required

investigation of some alternate predictor selection schemes ..
to improve the ability to discriminate between these cate-

gories. Two approaches of determining the optimal separation
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between the categories were combined and then applied in

a brief analysis on area 2, TAU-00. These methods are

termed Class Separability Measures and Cluster Analysis.

Unfortunately, time did not permit a detailed attempt at

using these two methods, but the results from area 2, TAU-00-

are included in this study and show sufficient potential to

deserve further study.

1. Class Separability Measures

The specific separability measures used were the

Bhattacharya Distance, the Divergence, and the Mahalanobis

distance (Hand, 1981), each of which is discussed in more

detail in Appendix B. These measures were calculated using

the means and variances, and in the case of the Mahalanobis,

pooled variances of the various predictors with the following

univariate form:

Bhattacharya Distance:

(I_ 2) 2 2 2
1 2 2 1 1 2Bh = (2 2 + 2 Zn ( 2

1Y -2

Divergence:

2 2 2
1 '2' 1 02

Div 2 + (2 +  2)2 2 2
01+02 01 02

Mahalanobis:

( 'l - 2 ) --
Mal P 2

2
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The predictors were separated by classes. In this case

categories I, II and III, and then the three measures were

calculated for category I versus II, category II versus

III, and category I versus III. It is important to note

that the variables that best discriminate between group I and

II may not be the same as those that best discriminate

between II and III or between I and III. In each case the

means and variances of the predictors were scaled from 0 to

100 to ease number handling and value comparisons. The

calculated distance measures are listed in Tables X, XI and

XII for area 2 at TAU-00.

2. Cluster Analysis

Cluster Analysis takes a sample of potential pre-

dictor variables of unknown classification and groups those

variables into natural classes or "clusters." The method is

fundamentally a tool for data exploration to determine if

natural and useful groupings do, in fact, exist. This method

was applied to the predictors by use of the BMDP Statistical

Program, PlM, which provides four measures of similarity for

clustering variables and three criteria for linking or

combining clusters. A more detailed discussion of cluster

analysis is also found in Appendix C. In general, cluster-

ing was used to determine groupings of predictors that carry

much the same information in relation to the predictand

classes.
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3. Experiments Using Separability and Clustering

It must be noted that time did not oermit an exten-

sive investigation of these methods, but rather only a

cursory look at their potential for usefulness. The basic

method consists of using the cluster analysis to develop groups

of variables to choose from, and then employs the separation

measures to select the "best" predictor from each of these

clusters. These parameters are then used to develop a linear

regression equation to predict the three cloud amount cate-

gories in the same manner as earlier testing in this study.

Four experiments were attempted:

a. A single-stage regression using the variables which
had relatively high separability measure values
for category I versus IT.

b. A single-stage regression using the variables
which had relatively high separability measure
values for category II versus III.

c. A single-stage regression using the predictors with
the highest separation value from each clustered
croup of predictors.

A two-stage regression using separation and
-lustering to separate category I from II and III
and then category II from III.

i NERAL 

['he first area studied was cloud amount in area 4, TAU-

nd the procedure is an exact application of the

>tcodzology used in the previous MOS studies for visibility

-arl, 1984; Diunizio, 1984). The one exception is that the

' in-r rec:ression model is tested with both a single-stage

and two-stage regression technique. Next, area 2 of the
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its TS2 falls below the baseline significance. Its maximum

AO of 49.49 is not significantly different than baseline and

is attained at the first predictor level. By the fourth 6

predictor it has reached a TSI that is significant both to

chance and the baseline but only with severe degradation to

both its AO and TS3 scores. NATR does very poorly overall, 6

attaining its maximum AC (45.62) at four predictors, which

is within baseline interval, but only marginally within the

TAU-00 baseline confidence interval. Unlike MAXPROB I and

MAXPROB II, NATR is not able to predict category I with

any acceptable credibility, even after four predictors.

It, too, retained TS2 and TS3 values that are not significantly

different than the TAU-00 baseline.

On the other hand, the PR+BMD model (Fig. 26 a-c)

produced very different results. It selected a grouping "

size of six equally populous intervals, reaching its peak

AO for MAXPROB I and II at the second predictor. While

slightly lower than the AO for PR, the identical results of

.'AXPROB I and II show some skill at forecasting category

I. MAXPROB I shows a TSl of .13 and MAXPROB II shows a .17,

both of which are significant improvements over the baseline, B

and in the case of MAXPROB II is marginally significant with

respect to chance. Although still lagging behind in AC by

nearly 3%, NATR also shows significant improvement over

baseline in TSl but not enough to be considered significant

with respect to chance.
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Baseline Interval

AO 42.97 to 50.97

TSl: .00 to .02

TS2: .32 to .39

TS3: .36 to .44

The MLDC moves the threshold to 1.91, resulting in a decrease

in AC of nearly 5%, falling outside the baseline confidence

interval. Although the TSl was raised to .17, it is not

sianificant with respect to chance, and the TS2 suffered

severe degradation such that it is no longer significant

with respect to chance either.

The PR model (Fig. 25 a-c) selected eight for a group-

ing size, which limited the model to only four predictors

due to a 2 megabyte limitation at the NPS computer center

(this is addressed in Chapter IV of this paper and in Diunizio,

1984). All three strategies in this time period suffer the

same inability to forecast category I cloud amount. It is

not until the fourth predictor that any of the scemes, namely

NATR attains higher than a .04 TSl. MAXPROB I attains its

relatively high AO peak (50.31) at the second predictor, but

is unable to forecast any category I at this level. By the

fourth predictor it attains a TSl of .13 while droppings its

AC to 47.25 and its TS2 (.27) below baseline significance.

MAXPROB II strongly overpredicts the category III overcast

situation, which gives it a TS3 value of .45. While this

is a statistically significant improvement over the baselinc,
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The BMD single-staae regression (Figs. 21-23) starts

to show signs of deterioration with time as one would expect.

Again, EVAR has the highest AG at 46.97, which is significant

with respect to chance and is not significantly different

from the TAU-00 baseline, but it is near the lower limit of

that baseline confidence interval. Most of the degradation

takes place in the TSl category, which is not doing well at

TAU-00, but is doing even worse at TAU-24. BMD EVAR and

QUAD are almost unable to distinguish any category I obser-

vations from category II (TSI of .01). At the same time

both TS2 and TS3 remain within the confidence interval for

the TAU-00 baseline, showing no significant difference. The

BMD equation yields an even smaller separation between the

means of category I and II than was seen in TAU-00. In this

case, the mean for clear scattered case is 2.068 with a

standard deviation of .232, and for the broken group, the

mean is .214 with a standard deviation of .223. The obvious

problem here is that the separation between the means is

less than one-third that of the standard deviations! This

is a tough problem for any threshold model. EVAR and QUAD

produced thresholds of 1.679 and 1.614 respectively, both

well left of the mean of the scattered cloud group, account-

ing for the almost zero forecasting of category I cloud

amount. The BMD EVAR results lead to the following baseline

intervals (Fig. 24):
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NATR on the other hand attained the highest AO yet received

by any method or area at 53.43%. This fell .01% above the

baseline interval and therefore could be considered to be

a marginally significant improvement over the baseline BMD

model. NATR also showed significant improvement over base-

line in TSl (compare .42 with the upper limit of .39).

Although NATR remained within the interval of significance

for the baseline in TSl, it still fell short of statistical

significance with respect to chance.

It is clear by all measures that the PR+BMD method,

specifically the MAXPROB I strategy, achieved the best

results. It is significant that none of the methods could

forecast category I cloud amounts with a skill level better

than pure chance.

2. Area 2, TAU-24 (Table VII)

The TAU-24 time period has an extra five Model Output

Parameters (MOP's) added to the available predictors. All

other MOP's and derived parameters remained the same (see

Appendix D).

The following is the confidence intervals for signi-

ficance with respect to chance (Fig. 20):

Significance Test

AO 29.43 to 37.35

TSl: .11 to .17

TS2: .18 to .25

TS3: .20 to .27
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but also attaining better scores than baseline in all four

scores. This improvement over baseline however is not

enough to be above the confidence interval for improvement,

although nearly so in both TSl and TS2. NATR did not attain

peak AO until the third predictor (48.07) but still 3%

lower than MAXPROB I or II. NATR displayed an actual signi-

ficant improvement over the baseline interval in the TS2

score (.42) but fell below baseline significance in TS3.

When allowed to progress to five predictors not only did

NATR continue to improve at the next step, but also each of

the three schemes improved in TSI (MAXPROB II scored a

TSI = .20 at the fourth predictor) while degrading TS2,

TS3 and AO. This might be significant at some time if TSI

were decided to be the most important category to forecast.

The PR+BMD, Fig. 19 a-c, selected a grouping size

of six, and attained peak AG for MAXPROB I at four predictors,

and for MAXPROB II and NATR at three predictors. MAXPROB

I attained the same AG as it did in the PR model but improves

its TSI and TS3 scores. Although TSl did not improve to . -

significance with respect to chance, it did improve signi-

ficantly over the baseline (compare .17 to .11). TS2 was

nearly equal to baseline, but TS3 was at the upper limit

of the baseline confidence interval for improvement.

MAXPROB II did not fare as well as MAXPROB I overall but TS2

and TS3 did remain within the confidence interval of the

baseline, showing no significant difference or improvement.
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has a mean of 2.139 with a standard deviation of .246. With

the means of the two categories being separated by less

than one-half of a standard deviation, it is easy to see

why the TSl is so low. Both the EVAR and QUAD models place

the threshold value s.parating category I from II well to

the left of the mean of category I (EVAR threshold = 1.705

and QUAD threshold = 1.643). This situation holds throughout

the area 2 testing of the BMD model. The QUAD model shows

only slight variation from EVAR, which is not surprising

since the thresholds are very nearly the same. The MLDC

model moves the threshold between category I and II to 1.864.

This significantly raises the TSl above the testing confi-

dence interval, but loses 2% on AO and nearly reduces TS2

below significance levels. The resulting baseline confidence

intervals from Fig. 17 are:

Baseline Interval

AO : 45.40 to 53.42

TSl: .07 to .11

TS2: .32 to .39

TS3: .36 to .44

The PR model, Figs. 18 a-c, selected a grouping size

of six equally populous intervals and achieved its peak AO

at the second predictor level with MAXPROB I and MAXPROB II

(51.26). Both schemes have the same results at this stage,

not only showing significant results in AO, TS2 and TS3
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improvements accomplished by the other methods in that time

period. The TAU-00 baseline is used to compare all three

time frames so that a trend with time can be evaluated as 0

well.

1. Area 2, TAU-00 (Table VI)

The significance test with respect to chance is 0

calculated in Fig. 13 and yields the following intervals:

Significance Intervals

AO 29.52 to 37.08

TSI: .12 to .18

TS2: .18 to .25

TS3: .19 to .26

The first model evaluated is the BMD single-stage

regression using the EVAR threshold, the baseline for

evaluating other models (Fig. 14). It produced an AO that

is significantly better than chance (49.41% compared to

37.08%) and very significant values for TS2 and TS3. In P

fact, these TS values exceed the EVAR model in area 4,

TAU-00. However, the price is paid in the TSI value. The

EVAR model was able to obtain only a .09 threat score for S

the clear/scattered category, obviously well below the signi-

ficance test for chance. This is the result of the BMD

equations being unable to clearly separate the clear/

scattered category from the broken category. The historgrams

show that the equations result in category I having a mean

of 2.033 and a standard deviation of .257, while category II
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significantly different (although lower) than the baseline

interval. Both MAXPROB I and II improved over their PR

counterparts in every score except TS3.

An interesting difference between the Preisendorfer

models versus the linear regression models that holds

throughout the study is in the response of the dependent

scores. In the BMD models the dependent data (training

set) scores are very near to those of the testing (independent)

scores, whereas in the Preisendorfer schemes the dependent

AO scores typically rise to values above 90% with the addi-

tion of the fifth predictor. This may indicate that the

PR models do an excellent job of fitting the training sample

but do not make proper inference concerning the structure of

the population from which the sample was drawn.

B. NORTH ATLANTIC OCEAN AREA 2 CLOUD AMOUNT

Area 2 (Fig. 2) encompasses a geographic region that

extends from the southeastern tip of Newfoundland, across

the North Atlantic Ocean to the eastern coast of England,

north to the Five Fingers of Iceland and back to the Canadian

coast north of Newfoundland. Area 2 was studied through

all three time periods, TAU-00, TAU-24 and TAU-48, and each

will be discussed separately. As in area 4, a null hypothe-

sis is generated for each time period to evaluate the signi-

ficance of the results versus chance. Also, as in area 4,

a set of confidence intervals based on the BMD SS model for

each time period is used as the baseline for measuring
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The PR model results are shown in Figs. 11-12. The

model selected a grouping size of six and the peak results

were attained by all three strategies at the five predictor

level. Natural regression (NATR) produced the highest AO

(45.36) for this model, followed by MAXPROB I (44.14) and

MAXPROB II (41.14). Though all of the strategies had signi-

ficant AO values compared to chance, none of them improved

on the AO of the baseline. MAXPROB I improved on BMD for

TS3, but lagged in other scores. The scores all lie in or

below the confidence interval for the baseline and, therefore,

cannot be considered to be significantly different. MAXPROB

II did appreciably worse in that it showed significance

with respect to chance but its AO and TS2 were below the

baseline interval. NATR, with the best AO of the three PR

strategies, lost skill in category I, as indicated by TSl,

and this is not even significant with respect to chance. Its

TS2 and TS3 were not significantly different than the base-

line values. It is of interest to note that the PR scheme

and the BMD single-stage model did not select any common

predictors.

The PR+BMD scheme selected a grouping size of six and

attained peak AO values for MAXPROB I and II at two variables

and for NATR at three variables. In this case both the

MAXPROB I and II produce near equal results, with MAXPROB

II showing slightly higher AO, TSl and TS2. In all three

cases the AO was significant compared to chance but not
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again, by moving the thresholds with the MLDC model, a

decrease in AO is observed (43.67%) with significant in-

creases in TSl and TS3. This increase in TSI and TS3 is

also at the expense of decreasing TS2 below significance

levels.

Because the results of the single-stage regression

were so much better than the two-stage, and in view of the

fact that all the homogeneous areas of the North Atlantic

Ocean dispaly similar distributions, the single-stage model

was pursued for the remainder of the cloud amount experi-

ments. A single exception will be discussed later. In

Chapter IV it was mentioned that because linear regression,

of some form, is the traditional method for MOS studies and

operational models, it would be selected as a baseline

measurement (in addition to the confidence interval generated

by the null hypothesis contingency table) to measure the

skill of the other methods. The single-stage BMD with the

EVAR threshold model was selected as this "baseline" measure.

Fig. 10 shows the development of the confidence intervals

for area 4 baseline. The resulting intervals are:

Baseline Intervals

AO : 43.21 to 49.19

TSI: .25 to .31

TS2: .30 to .36

TS3: .24 to .30

44

,I'•.



However, the threat scores for category I and III are below

the confidence interval for pure chance. Th poor results

are most likely a reflection of the particular nature of

the frequency of occurrence in each of the observation

categories. The two-stage regression was chosen in the --

visibility studies because of a very low occurrence (most

cases less than 5% of total observations) of low visiblity.

Since low visiblity was the threat most desired to predict,

the two-stage regression was chosen to more skillfully pre-

dict a low frequency category. In area 4, on the other hand,

the frequency of observation is nearly the same for all three

categories of cloud amount. The thresholds of the two stages

were moved closer to the middle in the MLDC model (Fig. 6)

in order to better predict the outside two categories, I and

III. The resulting AG is 2% lower than the EVAR or QUAD

models, and an increase in threat scores for both categories

I and III occurred. Only the new threat score for category

I (.33) increased beyond the significance level, but a large

price was paid in the TS2, which dropped to .27, close to the

significance-level boundary.

Since the frequencies of occurrence for the three

categories are nearly equal, a single-stage regression model

was next attempted (Figs. 7-9). The EVAR threshold model

demonstrates only a 1.0% increase in AG, but much more

importantly, all three categories have threat scores signi-

ficantly above chance. The QUAD model has a slightly higher

AG (46.67%) than EVAR and very similar threat scores. Once
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attained by that particular strategy, while the dependent

scores reflect the results attained using the first five

predictors selected.

A. NORTH ATLANTIC OCEAN AREA 4 CLOUD AMOUNT

Area 4 was selected as the first for evaluation because

of its large sample size and nearly equally populous obser-

vation categories I, II and III. This area encompasses a

broad region of the North Atlantic Ocean with the southern

border reaching to the northeastern tip of Portugal and

extending northward through the English Channel to encompass

the southern portion of the North Sea (Fig. 2).

1. Area 4, TAU-00 (Table V)

The following are the confidence intervals for

significance with respect to chance (Fig. 3):

Significance Intervals

A0 : 30.53 to 36.19

TS1: .17 to .22

TS2: .20 to .25

TS3: .15 to .20

The first model tested is the two-stage BMD in the

same manner as the previous NPS visibility studies (Karl,

1984; Diunizio, 1984). The results, F. n in Figs. 4 and

5 (EVAR and QUAD), show an AO of 45.27% which is significant

with respect to chance and category II threat score (TS2)

of .40 which is also highly significant compared to chance.
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V. RESULTS

The procedures for the experimentations on predicting

cloud amount and ceiling, as specified in Chapter IV, were

followed for the North Atlantic Ocean homogeneous areas 2

and 4. These homogeneous areas are displayed in Fig. 2.

The results of these procedures are summarized in Tables V

through IX, and detailed results are displayed in Figs. 3

to 44. This chapter discusses the results and significance

of each area and each model run using the information on

these figures. Cloud amount is pursued first in the study

since it is important to the prediction of ceilings, as noted

in Chapter III.

The terms used throughout this section are defined in

Chapter IV. The linear regression models are referred to

as BMD and the three threshold models are Equal Variance

(EVAR), Quadratic (QUAD) and Maximum Likelihood Decision

criteria (MLDC) . The Preisendorfer method is used both with

(PR+BMD) and without (PR) linear regression equation predic-

tors. In each model AO (total percent correct) is used as

the criterion for the "best" model. In the PR and PR+BMD

models, a contingency table is generated for all three

S strategies, MAXPROB I, MAXPROB II and natural regression,

with the addition of each new predictor. In all cases,

the independent score discussed reflects the best score

4
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North Atlantic Ocean was tested at all three time increments,

TAU-00, TAU-24 and TAU-48, in the same manner, but without

the two-stage regression. Finally area 2, TAU-00, was tested

using the measures of separability and clustering techniques.

Testing on ceiling height prediction was limited to

area 2, TAU-00, using initially the same methodology. An

experiment was then made to test the ability to forecast

ceilings given perfect skill at predicting cloud amounts.

In this case the categorized cloud amount was used as a

predictor in the ceiling prediction methodologies. The

results of each of these tests are discussed in the next

* chapter, and are summarized in Tables V through IX and Figs.

4 through 44.

4
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In general, it can be observed that an expected

degradation is experienced from TAU-00 to TAU-24 in all of

the methodologies. The inability to forecast category I is

the most glaring problem. At TAU-00 the skill levels are

poor in forecasting category I, but in TAU-24 they become

nearly zero in all but the PR+BMD method. In no case are

any of th.e methods able to attain significant skill in fore-

casting scattered clouds in comparison to pure chance.

However, it would be fair to observe that the AO degradations

in general are not as significant as one might have expected.

3. Area 2, TAU-48 (Table VIII)

The area 2 TAU-48 time period also has the five

extra predictors mentioned above in TAU-24. The following

is the confidence intervals for significance of the skill

scores with respect to iance for TAU-48, area 2 (see Fig.

27):

Significance Test

AO 29.30 to 37.11

TSI: .12 to .18

* TS2: .18 to .25

TS3: .20 to .26

As one would expect, the models continue to experience

a degradation with time. The BMD EVAR model attains only

an AO of 45.32 which, although well above the significance

test for chance, still falls below the TAU-00 baseline confi-

dence level indicating that it is significantly worse, and
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that considerable degradation has occurred. Additionally,

the threat scores for category II and III are only marginally

within the TAU-00 baseline confidence. Interestingly,

though only by a small amount (TSl = .04), the BMD TAU-48

is able to forecast category I better than TAU-24. The

overall degradation in performance is clearly seen in dis-

tributions of the three categories by the BMD equation.

Between the category means for I and II there is now only a

separation of .05 while the standard deviations are of the

order of .18. This same degradation is seen in the separation

of categories II and III, where the means are now 2.192 and

2.270 and the standard deviations are .178 and .189, respec-

tively. This shrinking of the separation of the means is to

the point at TAU-48 that the QUAD model is unable to produce

a non-imaginary threshold between category I and II. MLDC

also performs consistent with previous time periods, this

time reducing the AO to 42.93 which is only 6% better than

the upper limit on chance. In fact, only the MLDC TS3

proves to be significantly better than the pure chance

contingency table. These results lead to the following

TAU-48 baseline interval (Fig. 30):

Baseline Interval

AO 41.31 to 49.22

TSI: .02 to .06

TS2: .28 to .36

TS3: .32 to .40
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The PR model (Fig. 31 a-c) also experiences the same

degradation with time. The model selected grouping size

seven and reached peak AO at three predictors for MAXPROB I,

two predictors for MAXPROB II and four predictors for NATR.

MAXPROB I loses 3.5% in AO from TAU-24, and also drops below

the significance limit for baseline TS2. At the same time

though, it improves on the baseline for TSI, though not enough

to be considered significant with respect to chance. MAXPROB

II fares somewhat worse in every category except TS2 where

it maintains a score within the baseline interval. When com-

pared for time degradation with the TAU-00 baseline, it is

only marginally within the baseline interval for AO and TSI

and just below for TS3. Likewise, NATR scores are within

the 48-h baseline interval, with the exception of TSI, but

are significantly worse than the TAU-00 baseline in every

category with the exception of TSI.

The PR+BMD selected a grouping size of six and reached

its peak AO at the first predictor level. The identical

scores of MAXPROB I and MAXPROB II show statistically signi-

cant improvement over the TAU-48 baseline in both AO and

TS3. However, the TSI scores of zero reveal its inability

at this time period to forecast category I. When the model

runs out to five predictors, where NATR peaks on AO, then

it can be seen that all three schemes forecast category I

with a TSl equal to or in excesss of .20. For example,

MAXPROB II at the fourth predictor has an AO of 45.94, but
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is significant in all threat scores with respect to chance

(i.e., TSl .26, TS2 = .28, TS3 = .34). NATR again performs

well below the MAXPROB strategies, even though its AO, S

TS2 and TS3 scores are within the baseline confidence interval.

In general, it can be said that all the schemes

suffered significant degradations due to the 48-hour time 0

period. Forecasting category I (scattered/clear) remains

a problem through all time periods, and is only forecastable

at large cost to the other threat scores and the total 0

percentage correct.

4. Area 2, TAU-00 Experiments in Clustering and
Separability (Table VII)

A brief description of the separability and cluster

methods and procedures is found in Chapter IV, and a more

detailed theoretical description is found in Appendices B

and C. The results of the measures of separability program

are listed in Tables X-XII and the clustering of variables

is listed in Appendix C. The baseline for comparison in

these examples is the area 2, TAU-00 BMD using the EVAR

threshold, and the null hypothesis significance confidence

intervals used for TAU-00, area, 2.

The first test consisted of selecting the predictors

from the category I versus II grouping of the measures of

separability, using those predictors with the highest

divergences. As Table X shows, the values for the three

measures were very low in this grouping, which is a possible

clue to the low skill attained by all the methods in category
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I. Predictors were chosen that had a divergence of .08 or

higher; predictors were then used in the BMD EVAR model.

The results of the test are shown in Fig. 33. The model

attained an AO of 45.39 which is significant with respect

to chance, but is outside the low end of the confidence

interval for the baseline. The TS2 is not significantly

different from baseline but TS3 (.34) fell just below the

lower limit of the baseline value. Most importantly, though,

the model did not predict any category I. Although this is

well below the baseline value, the baseline values are

significantly worse than chance.

The second test, found in Fig. 34, is similar to the

first, with the exception that the variables were selected

from the category II versus III grouping of the measures of

separability (i.e., predictors with values above .35).

These measures showed much higher values, which is consistent

with the results of the methods in area 2, TAU-00 where the

threat scores for category II and II are very much higher

(i.e., the models are able to separate II from III much

easier). This time the AO improved to 48.91, nearly equaling

the baseline value. The model also equalled baseline per-

formance in threat scores TS2 and TS3. Once again, however,

the model is unable to forecast any category I observations.

The third test tries to combine the clustering infor-

mation with the measures of separability. In this case the

clusters, listed in Appendix C, were used as the initial

sorting of predictors. Next, the predictor from each cluster
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that has the highest divergence in the category I versus III

grouping, was selected as a variable. These variables were

then used in the BMD EVAR and the results are shown in Fig. S

35. This model did rather poorly and only stayed in the

confidence interval for the baseline in TS2. All other

scores dropped below the intervals for baseline while 0

remaining significant with respect to chance (except for

TSl).

The fourth test attempted to utilize all the informa- 0

tion available. The clustering technique was combined with

the measures of separability to select variables that would

best separate category I from II, and then those that would

best separate category II from III. These two sets of pre-

dictors were then used in a two-stage regression first

separating category I from II+III and then II from III.

The results, shown in Fig. 36, show much improvement over

the previous three tests. In fact, this model produced the

highest AO attained by any of the BMD models so far studied.

The EVAR threshold produced a 50.59 AO which is higher than

baseline but not significantly so, and TS2 showed modest

improvement over the baseline interval. This model also S

produced a smaller TSI (.05) than hoped for, but the fact

that it is greater than zero is encouraging.

It is unfortunate that more time was not available S

to pursue further these methods, but the initial testing shows

some potential lor usefulness in the MOS methods. There are " .""

several important points to be made. First, the results of
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the measures of separability program confirms that the

regression methods used in area 2 are not forecasting category

I with much skill, because the available predictors do not

have enough information. Secondly, the clustering proves

to be more valuable if the predictors are scaled some way

*to prevent all the velocity predictors being clustered and

the height predictors being clustered, etc. (It is possible

that this type of result is not due to scaling but rather to

characteristics of the model producing the parameters).

Thirdly, the measures of separability give high values to

most of the predictors chosen by the two methods generally

used in this study. That lends plausiblity to its usefulness

as a predictor screening agent to reduce the number of pre-

dictors being forced through the various prediction strategies.

C. NORTH ATLANTIC OCEAN AREA 2 CEILINGS

The first experiments in forecasting ceiling were carried

out using a direct application of the methods employed for

cloud amount and previously for visibility. The frequencies

of distribution of ceilng observations for the North Atlantic

Ocean are shown on Table IV. Area 2 was chosen for experi-

mentation, consistent with the concentration of MOS visibility

and cloud amount effort. The second set of experiments is

designed to evaluate the skill of forecasting ceiling given

that there exists perfect skill at forecasting cloud amount.

The cloud amount observations are then categorized and used

as a parameter in the various methods. As in the studies on
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cloud amount, a null hypothesis is established, using a

contingency table, based on each category having an equal

probability of being forecasted for each observation. This

yields the following 95% confidence intervals for evaluating

the significance of the results (see Fig. 37):

Significance Intervals

AO 29.23 ro 36.77

TSl: .13 to .19

TS2: .20 to .27

TS3: .17 to .23

1. Area 2, TAU-00 Ceiling Tests Without Cloud Amount

(Table IX)

The results of the BMD single-stage regression is shown .

in Fig. 38. The resulting AO is significant with respect

to chance and is very similar to the values obtained in the

cloud amount studies. Threat scores for category I and II

are both well above significance with TS2 being the highest

at 0.42. However, the single-stage model is unable to dis-

criminate between category II and III. This is shown in

the TS3 score of .00 and in the histograms displaying the

distributions of the BMD equations. The means have good

separation between category I and II (1.666 and 1.861 respec-

tively, with standard deviations of .254 and .225). The

problem occurs between category II and III where the means

and standard deviations are 1.852 and 0.192 for category II

and 1.873 and 0.183 for category III. The mean separation
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is nearly one-tenth that of the standard deviations. The

separation is so small that the QUAD model is unable to

resolve a non-imaginary threshold. In this case the MLDC

model shows promise. By moving the threshold halfway between

II and III, TS3 increased from .00 to .15, which is not enough

to be significant compared to chance, but it is noteworthy

that the AO also increased by 1% and there is little effect

(-.03) on TS2. As in the cloud amount studies, the BMD

single-stage regression will be used as the baseline for

evaluating other methods. In this case, however, the BMD

with MLDC threshold will be used. This produces the following

confidence intervals (see Fig. 40):

Baseline Interval

AO 41.56 to 49.56

TSI: .19 to .25

TS2: .35 to .42

TS3: .12 to .18

The PR+BMD model chose a grouping size of six and

attains peak AO for the MAXPROB strategies at the second

predictor and for NATR at the third predictor (Fig. 41 a-c).

MAXPROB I achieves the highest A0 (47.24) of the three

strategies and shows very different results in the threat

scores compared to the baseline. It scores well above the

baseline interval for TSl and TS3, while showing only

marginal improvement over chance in TS2. The most striking

fact is that the PR+BMD does so well in the category III
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(TS3 = .36) compared to the counterpart scores in the BMD

model. MAXPROB II shows similar results, although slightly

better in TSI but slightly poorer in AO, TS2, and TS3. 0

Actually, MAXPROB II shows no skill compared to chance in

category II. For NATR, AO peaks at the third predictor and

attains the second highest percentage correct. In general,

it does much poorer than the MAXPROB strategies, giving

results that more closely resemble the baseline results.

NATR shows no significant difference from baseline in either 0

AO or TS2, while scoring significantly higher in TS3 (though

only on the margin of being significant with respect to

chance). The TSl of 0.18 is not significant compared to S

chance, but it is significantly worse than baseline.

In general, the methods applied to ceilng heights

produced very similar results to those attained for cloud 0

amount, both in percentage correct and in threat scores.

BMD with MLDC or even EVAR does the best in forecasting

category II but is poor in forecasting category I or III.

Conversely, the MAXPROB strategies are much better at fore-

casting categories I and III, but at a cost of reducing the

results for category II below significant levels. 5

2. Area 2, TAU-00 Ceiling Using Cloud Amount Observations

In these experiments cloud amount observations were

categorized and used as a predictor for ceiling.

The results of the BMD model using cloud amount

(Figs. 5, 42-43) are excellent compared to the results

attained so far in this study. The EVAR model attained an
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A0 of 67.50 which is 18% higher than the baseline BMD. The

threat scores are consistently high as well, far exceeding

the baseline in every category by .10 to .44. QUAD provides

nearly identical results across all categories.

The PR+BMD model is then run making cloud amount

available as a predictor (Figs. 5, 44 a-c). The model chose

grouping size six and attains peak AO at the second predic-

tor. Cloud amount is the first predictor chosen and the

linear regression equation variable (not containing cloud

amount) is the second. MAXPROB I and MAXPROB II produce

identical results at this level with an AO of 68.60, about

1.0% higher than the BMD model using cloud amount. The

model's TS3 is an outstanding .72 and TS2 is .49, both of

which are very significant with respect to chance and the

baseline. However, the resulting TSI is only .24 which is

significant compared to chance but is not an improvement over

the baseline. The NATR model attains peak AO at the fourth

predictor, and does not perform as well as MAXPROB in any

category. The TS3 of .64 and the TS2 of .451 show signifi-

cance with respect to both chance and the baseline, but the

TSl value is not significantly different than baseline,

and only marginally significant compared to chance.

The value of good skill in predicting cloud amount

in forecasting ceiling is obvious by the above results. The

very high category III results (i.e., ceiling greater than

3500 feet or unlimited) is probably due to the definition
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of ceiling, namely that if cloud amount is less than 5/18

then the ceiling is unlimited. The strongest effect of

cloud amount in the forecast of ceiling is whether or not

a ceiling exists, thus the high threat score of category

III which contains all the observations of no ceiling.
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VI. CO:NCLLSIIU AZ S . ....., - - ! S

A. CONCLUSIONS

The primary objective -nis -'.,as tc begin the

investigation into statistic-C r,'astn of cloud amount

and ceiling by extending th.e metods researched by Karl

(1984) and applied by Diunizio 193n1' :n the area of visi-

bility. The ultimate goal is to develop a viable statisti-

cal forecasting scheme suitable for eventual employment in

an operational U.S. Navy marine ceiling and cloud amount

MOS forecasting system. This is certainly not an exhaustive

study of the subject, but does provide an important first

step in statistically forecasting these weather elements.

The results of the tests in the various areas and time

periods show that the methods evaluated are useful in fore-

casting both cloud amount and ceilings. Although the models

are not yet producing results as good as one might desire

for an operational MOS system, they are forecasting signifi-

cantly better than pure chance, giving them useful skill

levels. In area 4, TAU-00, the single-stage linear regression

performed the best, and became the "baseline" from which to

measure the other methods. In area 2 the model that scored

consistently highest in all three time periods is the PR+BMD.

The general problem experienced by all the approaches in

area 2 is the inability to forecast the scattered/clear condi-

tion (category I) with any skill. Significant skill in this

category is only attained in a very few cases and then only
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a great cost to the threat scores of the other two cate-

)ries. In the initial ceiling studies, PR+BMD gives the "

st overall results, but the linear regression is able to 5

)re skillfully forecast the category II. In contrast, when

perfect cloud amount forecast is added as a predictor to

ie ceiling models, linear regression gives much better S

asults overall, especially in forecasting low ceilings.

In the previous MOS studies in this series, a low visi-

ility situation was clearly the most threatening category 5

Dr operational Naval forces and, therefore, was selected

the criterion to maximize as well as to evaluate one model

gainst another. In cloud amount predictions, there does .

Dt exist a single category that is clearly more important

nan the other two. In the absence of a better measure,

bsolute percentage correct was utilized. The study does S

eveal a need to develop some evaluation criteria for cortin-

ency table output for the MOS project in general. This . .'......

ould be of great assistance in the developmental stages of S

arameter selection as well as evaluating the overall per-

ormance of a particular model. The two measures used in

his study to evaluate significance of the results proved S

o be very useful. The previous studies based significance

esting on a Monte Carlo scheme evaluating a set of 100

andomly generated data sets to produce upper and lower .05 5

ritical values for AO. The significance test used in this

tudy, derived as a consequence of the central limit theorem,
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z j 2 z!J12 c=l

(z) = exp 1/2 ( )0 - l) 0

l C=0

!re k (2-) 1 "2. Algebraic manipulation produces

2 z2  2 2 )-0 )  0 20 1 -l" 0~

c=1
2 2 2 2 22 (p0iP00 1

+ [ ( J0 'l) 1 2
0 1 in 0 1/p 0O <

c=O 0

.ch is recognizable as a quadratic equation in z.

(2  4ac l/2
z* -b (b 4ac)!/2a

re:

2 2a
1 0-

b 0 1 - i- 0 )

22 2 2 2 2ci0 0i - 2ulin (p

0 1 2S .-0

8l i .



Note that in this situation there are two thresholds. The

group having the smaller variance will lie between the two

thresholds.

E 1

E 0

Classification index (z)

The thresholds shown are typical of a situation where p1 < P0. "

Note that these thresholds lie between the two intersections

of the densities. If the inequality of prior probabilities

were reversed, the thresholds would lie outside of the

region between the two density intersections. Further, note

that the decision region for the group having the lesser

variance lies between the thresholds.

c. Case III: General Solution (Referred to as the
Quadratic Model (QUAD) in the text)

p(z E =1) = k/ exp ,(-1/2) (z

p(zE =0) = k/ 0 exp{(-l/2)(z - 2 / 2 .
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where . is the likelihood ratio and p0  p[E =0] and

P= p[E =1]. Thus, the threshold value is

z*= +l)/2 + 2 In(p 0/Pl)/(l 1 _ a0)

I

0 1

Classification index (z) I

The position of the threshold depends on the relative values
I

of n and p0 . The threshold moves toward the Lroup with the

smallest pi. If p1 = p0 the threshold will be the value of

z where the densities intersect (i.e., where the densities

are eiual)

b. Case II: Equal means; different variances

2 2. c~l
exp , (-1/2) (z - 2/ /2 "'

z exp, (-1/2) (z - 2/ 2 p1
1 '~ c=O

with the threshold

2 2 1/2

Z* In ( 2 l2( 21-_0 Pl 7
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These statements can be combined to give,

c=l

p(ziE =l)/p(z E =0) = A(z) < p[E =0]/p[E =i

c=O

Thresholds are the value(s) of z for which

A(z) = p[E =01/p[E =1]

This equation can be solved for z either analytically or

numerically depending on the forms of the density functions.

3. Threshold Cases

In order to exemplify the model, the assumption is S

made that the class conditional distributions are Gaussian.

There are essentially three distinct cases that can arise.

a. Case I: Equal variances; different means
(Referred to as the equal variance model (EVAR)
in the text)

p(zIE =1) = k exp{(-1/2)(z -0l) 2 2

p(zIE =0) = k exp{ (-1/2) (z 0) 2/o2

where:

k = (27) -1/2 -

2 2. c=l
exp (-1/2) (z - /P1(z) = < Pl__ _ __ _ __ _ _

exp (-1/2) (z - 2/
0 c=0
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then,

p p[E =0] f p(zlE =0)dz + pE =1)[1 f p(z'E =l)dzl G,z.e Z ~Z1

and algebraic rearrangement yields,

Pe pilE =11 -f (p[E=0] p(zlE=0) -p[E =1) p(zlE=l) dz3;
ZEZ

In order to minimize pe I Z (the decision region for C =1)

will include all those values of z for which the integrand

in the expression for pe will be negative. The decision regions

can be symbolically represented as follows:

Z0 {z: pilE =01 p(zjE =0) - p[E =1] p(zE =1) > 03

Z {z: pilE =0] p(ZIE =0) -pilE =1] p(z E =1) < 03

An alternative representation is given by,

Z z: p[E =01 p(zjE =0) >p[E =11 p(zjE =1)3J

- z: p [E =0 /p[E =1] p (zE 1) /p (z E 0)

Likewise,

Z = z: pE 0 /pi[E 1] p (zE1) /p (zE 0) 1
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The decision regions are mutually exclusive and exhaustive

(i.e., Z0  cL 0 and Z = Z0  ZI).

Thresholds E boundary(s) between decision regions.

p(zIE =0) class conditional density of z given
that E = 0.

p(zLE =1) class conditional density of z given
that E = 1.

A(z) = p(zE =l)/p(zlE =0) = the maximum likelihood
ratio (i.e., the ratio of class conditional
densities).

Pe = p [C = 1 E = 0] , [C =0 E=111 the total
probability of error.

2. Minimum Probability of Error Criterion

= probability of an incorrect classification.

Pe= p[C lJE 0] p[E =0]+ p[C =0 E =l p[E l]

where p[E =1] + p[E =0] = 1. Note that the events E 1

and E 0 are mutually exclusive and exhaustive. The objective

is to select decision regions (thresholds) so as to minimize p

p[C =OE =1] = f p(zIE =l)dz = the probability of
zZ

misclassifying E = 1.

p[C=OIE=l] f p(zE l)dz + f p(zJE l)dz
ZZ 0  z ZI

- f p(zlE =l)dz

z.Z I

p[C =0E =i = 1 - f p(zJE =l)dz these are
z,-Z substituted

1 into the
expression

p(C =lIE =0] = f p(z!E =0)dz for pe
z, Z
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B. THRESHOLDS (Lowe, 1984a)

1. Notation

E an event; this is an indicator variable which
when E = 1, the threatening event occurs, and
when E = 0, the non-threatening event occurs.

C H the classification of an unknown event which
when C = 1, the event is classified as a
threat, and when C = 0, the event is classi-
fied as a non-threat.

P[E =1] - unconditional probability of occurrence of
threat.

P[E =0] unconditional probability of occurrence of
non-threat.

Error of the 1st kind (false alarm) [C = 1 ,E =0].

Error of the 2nd kind (miss) [C = 0 n E =1].

P[C =1 n E =0] joint probability of an error of the 1st .-

kind.

P[C0 nE =1] joint probability of an error of the 2nd
kind.

P[C =1IE =0] H class conditional probability of misclassi-
fying a non-threat.

P[C =01E =1] class conditional probability of misclassi-
fying a threat.

P[C = 1 E =0] P[C =lE =0] P[E =0].

PC =0 E =] P[C =0E =] P[E =0.

z = a value of the predictive index (equivalent
to y, above).

Z = range of the predictive index on the real line.

For a dichotomous problem, Z is divided into two parts: Z0 , Z1 ,

C 0 if z Z

C 1 if z Z 1
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Independent variable selection for the BMDP9R program

begins with a general screening of the entire set of potential

predictors. Variables which are identified as redundant,

linear combinations of other variables, with respect to the

predictand, are deleted from further consideration. The t

statistics for the coefficients which minimize the Cp value

for each reviewed subset identifies the "best" subset. The

number of predictors assigned to each subset can be predefined

and for this study each subset equation was required to have

six predictors.

The role of regression, once appropriate predictor varia-

bles have been selected, is simply that of dimension reduction

(representing a multivariate structure by a univariate proxy

which constitutes a classificatory or predictive index).

This proxy takes the form of a polynomial, linear in its

coefficients, of the components of the multivariate structure.

The problem now becomes one of determining the form of the

state conditional distributions (one for each group of

interest; e.g., one, two and three for ceiling categories I,

II and III, as used in this study). Once an appropriate

form has been selected, it remains, then, to determine the

parameters of the class conditional distributions (e.g.,

means and variances) and then apply an appropriate decision

criterion or threshold model.

74

. . . . ."-



APPENDIX A

LINEAR REGRESSION AND THRESHOLD MODELS

A. LINEAR REGRESSION

The linear regression techniques used in the study were

first presented by Karl (1984) and extended by Diunizio (1984).

The least-squares multiple linear regression problem used in

the study is the BMDP9R, all possible subsets regression

computer program, found in the BMDP Statistical Software

Package (University of California, 1983).

The BMDP9R program employs a "best" possible subset,

derived independently of variables or variable sequence,

calculated from the group of potential predictors. Once this

"best" subset is identified, a linear regression equation is

fitted to the data, based only upon those selected predictors.

The "best" possible subset is identified, a linear regression

equation is fitted to the data, based only upon those selected

predictors. The "best" possible subset is calculated by a

Furnville-Wilson algorithm which provides the user with a

variety of subordinate subsets in addition to the "best" sub-

set. Three criteria are available to define the "best"

possible subset as a function of independent variables (pre-

dictors) and a dependent variable (predictand): the sample

R, the adjusted R, and Mallow's Cp. The Mallow's Cp criteria

is used in this study, where "best" is defined as the smallest

Cp value.
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dQ/dy(i,j) = [Q(i,j+l) Q(i,j-l)6/2K

where K is the north/south distance between grid points.

5. Develop a scaling process for the predictors, prior

to using the cluster analysis, that reduces dimensionality

while maintaining the structure of the predictor's character-

istics. This may be necessary in view of the widely ranging

values ot various MOP's.

6. Use the measures of separability to screen new

parameters in order to gain insight into their usefulness

without having to make an entire model run.

7. Further pursue the measures of separability combined

with cluster analysis as a parameter selection scheme in

association with the linear regression models.

8. Develop a system of general "measures of effective-

ness" for the MOS project, specifically for those predictands

that are categorized and utilize contingency tables. This

would provide a means for realistic evaluation of the per-

formance of the various models tested.
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an additional parameter. For example, if the particular

parameter at TAU-00, TAU-24 and TAU-48 is given the designa-

tion Si, S2 and S3, respectively, then the time differencing

could be accomplished thus:

TAU-00 forecast period would use forward difference

[3xS3 - 4xS2 + S1]/48

TAU-24 forecast period would use centered difference

[S3 - 2xS2 + S11/24

TAU-48 forecast period would use backward differencing

[-S1 + 4xS2 - S3]/48

These new parameters could then be used as predictors in the

models.

4. A new predictor also could be developed at each

time period by doing a spatial difference across the obser-

vation points to give a representation of advections (i.e.,

thermal, vorticity, moisture) A potential scheme would be

to use a centered difference at the observation position.

If the parameter at the observation point was labeled

Q(i,j) , the east/west advection could be represented by

dQ/dX(i,j) = [Q(i+l,j) - Q(i-l,j)1/2L

where L is the distance between gridpoints. A north/south

advection could be represented by
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point out one more sig.iificant fact. The low values of

separation between category I and II for all the predictors

in the area 2 cloud amount study very obviously coincide

with the inability of any of the forecast schemes to skill-

fully forecast category I. This, too, supports the position

that new predictors or new combinations of predictors are

necessary to improve significantly the results achieved in

this study.

It is of interest to note that the most frequently used

variables by both the Preisendorfer and regression methods

include vorticity (VOR500, VOR925, and DVRTDZ) , low level

winds (UBLW, U1000) , low level vapor pressures (EAIR, E850)

and products involving vapor pressure at 700 mb (VE700,

TE700).

B. RECOMMENDATIONS

Based on the observations made in this study and the

conclusions above, the following recommendations are offered

to future researchers:

1. Interpolate the 12 GMT data base to make TAU-00,

TAU-24 and TAU-48 MOP's available as predictors at every

observation position.

2. Interpolate 00 GMT MOP's to the 1200 GMT ship position

* to provide 12-hour history as a new predictor.

3. If the parameters described in 1. and 2. above were

* available, then a time differencing could be done on the

predictors to give time trend information to the models as
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caused both the PR and linear regression methods to gain

over 20% in percentage correct, or stated otherwise, they

experienced a 40% improvement in their overall percentage

correct (i.e., increasing AO from 47% to 67%). This leads

one to believe that the emphasis in further MOS research

should not be in pursuing new statistical methods, but rather

in pursuing new combinations of old predictors, and new

predictors.

The results of the separability measures and cluster

analysis individually are not very impressive. The combined

use, however, of the techniques with a two-stage regression

give the highest AO for the cloud amount regression schemes,

and shows some potential as a predictor selection scheme.

The benefits of the two techniques is that it gives the

experimenter some control over the parameter selection

process, in contrast to the "black box" parameter selection

by the BIMED statistical software package. These methods

allow the experimenter to adjust the parameter selection

according to the category desired to select. For example,

if the third category is the most difficult or most desired

category for forecasting, then the measures of separability

can be used to select predictors providing the maximum

separability between the desired categories. These two

methods also can provide a screening process for new param-

eters. With the present models, to evaluate the potential

of a single new parameter, the entire model must be run again

from the beginning. The results of the measures of separability
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proved to be much simpler and less time consuming to apply.

The test gives a good first approximation of the significance

*of any particular model run. The second tool for evaluating

the results, the 95% confidence intervals derived from a

baseline model contingency table, is very useful in comparing

the improvement of each model, and is especially insightful

in evaluating degradation of results over the 48-hour time

period.

It becomes clear after the first few uses of the various

models, that the linear regression techniques are much more

easily handled in the developmental stages than the PR or

*Q  PR+BMD models. When placed into an operational MOS system

the PR models will require several orders of magnitude more

computer memory storage space than its linear regression

counterpart. For these reasons, it would seem that if the

PR methods tested here are to be of viable use operationally,

they must be able to perform significantly better than the

linear regression models.

The results of the ceiling experiment are very encouraging

indeed. The first conclusion from this set of experiments

* is that the premise early in the study that good skill in

forecasting cloud amount will be valuable in forecasting

ceiling heights is correct. The second conclusion is that

the results support the idea that good skill in statistical

forecasting of weather elements is more dependent on having

good predictors and information than on model type. The

* addition of a single (perfect) predictor, c-oud amount,
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E=I
T1

~E=O

E 0

Classification index (z)

The remarks given for the figures in cases I and II are also

applicable here. More often than not, only one of a pair of

thresholds induced by differing variances will be of real

interest. If the variances of the two groups are radically

different, then both members of the threshold pair become

important.

4. The-Maximum-Likelihood-of-Detection Criteria

For this specific model the following background is

provided:

event space: 2 mutually exclusive populations

70' I, forecast decision space: 2 possible forecasts

d d
0' 1

d is a correct forecast if q actually occurs

* d I is a correct forecast if -tI actually occurs

Problem: select the decision rule d(z) which maps

the observation space Z into some forecast space

in some optimal manner.
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Z may be an observed variable or it may be an

univariate index derived from a number of variables.

For this two decision problem, Z is partitioned

into two parts, Z0 and ZI.

d(z) = do0 if z Z 0

d(z) = d if z z

where Z0 o Z =0 and Z0 u Z = Z

The maximum-likelihood-of-detection criteria repre-

sents the simplest decision model. The basic involves select-S

ing the forecast (decision) corresponding to the observation

(signal) which i's the most likely symptom of the event subse-

quently observed. Consider the following example:

problem: diagnose disease A or disease B.

The observed symptoms occur with probability 0.75

for A and 0.1 for B. By the maximum-likelihood-of-detection

criteria (MLDC), diagnose disease A because A is the most

likely cause of the observed symptoms (if there is no more

information). But if we know that A is rare and B is common,

the above decision may not be optimal and MLDC may not be

appropriate. MLDC requires only that we know the event

conditional probability density functions of the observations.

This is:
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p(zjr70) and p(z7 1i

Id 1 if p (z -,) > p z 0)
decision rule: d(z)

d0 if p(zT11  < p(Z!-r0

I In the following development the Gaussian density

is used to exemplify the model.

p Z -70 ) l/v'2-0~ exp(-l/2C G - 0 2

____ Z - 1  2
P~z'71 1/ -71 ep{-l/2(

p z Tn)
definition: likelihood ratio A(z)=

p z IT0

for convention sake we assume z> Z0,

2 2
1 0

/1 0  zl

zo
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2 2
1 0

7-10

zi zo z'

*note the class having the largest variance has a

bifurcated decision region.

In the case where the variances are equal, the

situation simplifies considerably.

2- 2 2-2 -2 <
2 o (Z-z 0) + '3 (Z 0 -z 1  > 0

d0

2- 2 2-2 -2 >
2(j (Z 1 -z 0 ) - (Z z1 -z 0  < 0

d
0

2 z (z 1 +Z 0

.' ( 1  0

z2 - *
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2 2a O = a l'
0 1

0*

It is obvious that z* is simply the average of the

means of the class-conditional distributions and is found

at the intersections of the two density curves.

In the foregoing, normal class conditional distribu-

tions were assumed. This was done because the Gaussian form

admits of a rather clean analytical solution. However, the

general concept of the minimum probable error decision

criteria may be applied to any form of density function.

Indeed, the density function of one group need not even be

the same form as that for another group (one might be exponen-

tial and the other Gaussian). The difficulty with most non-

Gaussian forms is that they seldom admit of closed analytical

forms and require numerical means in determination of

thresholds.
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APPENDIX B

MEASURES OF SEPARABILITY

As the testing proceeded through progressive time stages

in the study, it became apparent that the methods were unable

to separate the categories of scattered and broken clouds,

categories I and II. This problem required the investigation

of some alternate predictor selection schemes to improve the

ability to discriminate between these categories.

The decision information for discriminating between two

categories comes from two sources: the separation of the two

means and the difference in the variances. The three measures

considered in this study are the Divergence, the Bhattacharya

distance and the Mahalanobis distance. These three measures

attempt to combine both sources of information to come up

with a single measure of the ability of a predictor to des-

cribe the separation in the categories of the predictand.

These measures are applied in the study by stratifying each

predictor by event (i.e., predictand category), and calcu-

lating the mean and variance of the stratified predictors.

Then, for each predictor, the measures of separability are

calculated for category I versus II, category I versus III,

and category II versus III. The results are shown in tabular

form in Tables 11 to 13.

The Mahalanobis distance considers the variances as equal

and uses pooled variances of the predictor in the following
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univariate form:

2--

- 2
2 -<

It can be thought of as a signal-to-noise ratio where the

difference in the two means is the desired signal, and the

noise is the scatter within the whole set (the variance).

The Divergence does not assume equal variance, and,

therefore, does not use a pooled variance. It adds to the

signal-to-noise ratio two quotients of the variances adjusted

by the equal variance value (two). It has the effect of

combining the signal-to-noise ratio with information contained

in the variances. The Divergence is used in this study in "

its univariate form:

2 2 22(p _2 ) 2 21 22 2 + 2(--2 + -2- )-.

01 +02 1 02

The third measure of separability applied to the data

set, the Bhattacharyya distance, is a special case of the

Chernoff distance. Although more complicated than the

Divergence, it also combines the information contained in the

mean with that found in the variance. The Bhattacharyya is

used in the study in its univariate form as:

2 2
)2 2 1 01 +02)

2 2 2 ic 2
2 + 2 1
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The results of all three measures of separability applied . -

to the predictors used in the study, are shown in Tables X

through XII, for homogeneous area 2 at the time period

TAU-O0.
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APPENDIX C

CLUSTER ANALYSIS

The object of cluster analysis is to take a sample of

potential predictor variables of unknown classification and

group them into natural classes or clusters. The fact that

there is no a priori classification of the sample suggests

that cluster analysis is fundamentally a tool for data

exploration. That is to say, one wishes to study the data

to see if natural and useful groupings do, in fact, exist.

It is important to note that for any application of the method

there are many possible classifications which can be imposed

on a sample. Therefore, the sort of groupings which emerges

from an analysis will depend very much on the variables used

to represent the predictand. The poor choice of variables

can lead to a clustering which is useless for a particular

purpose.

The clustering done for cloud amount uses the BMDP Sta-

tistical Software (University of California, 1983) PlM program,

applied all available Model Output Parameters (MOP's). The

PlM provides four measures of similarity (association) for

clustering variables and three criteria for linking or com-

bining clusters. Initially, each variable is considered as

a separate cluster; then, the two most similar variables are

joined to form a cluster. The amalgamating process continues

in a stepwise fashion (joining variables or clusters of

90



variables) until a single cluster is formed that contains

all the variables.

As used in this study, the measure of similarity is the 5

absolute value of the correlation. The similarity measure

could also be obtained from a measure of the distance, such

as the angle between two variables (arccosine of the corre-

lation) or the acute angle corresponding to the arccosine

of the absolute value of the correlation.

The linkage rule (the criterion for combining two S

clusters) can be the minimum distance (or maximum similarity)

over all pairings of the variables between the two clusters,

the maximum distance (or minimum similarity), or the average

distance (or similarity). The average similarity is the

arithmetic average of the similarity using all possible

pairings of the variables between the two clusters. The

maximum similarity (minimum distance), single linkage is used

for the MOP's in this study.

The output of the PIM program for homogeneous ocean area

2, at time TAU-00, is:

Predictor Clusters

Cluster Predictors

1. D1000, D850, D925, D700, D500, D400, D300, D250

2. T500, T400, DDDP, T700, T300, TE700

3. VOR500, VOR925, DVRTDP

4. TAIR, T1000, T925

5. EAIR, El000, E850, E925, EPRD, TE925,
E700, E500, T250
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6. PBLD, STRTTK, RELH, STRTFQ

7. SMF, SHF

8. BVLW, V850, V925, V1000, V700, V500, D

V400, V300, V250, VT250, VE700, VT700,
UDVDZ

9. UBLW, U850, U925, U1000, U700, U500,
U400 , U300, U250

10. DRAG, ETRNMT
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APPENDIX D

NOGAPS PREDICTOR PARAMETERS AVAILABLE FOR THE NORTH
ATLANTIC OCEAN, 15 MAY-15 JULY 1983, EXPERIMENTS

ea: Entire North Atlantic Ocean and Mediterranean Sea

,del output time: 1200 GMT (TAU-00)

Model output Descriptive name of parameter
parameter

D1000 1000 mb geopotential height

D925 925 mb geopotential height

D850 850 mb geopotential height

D700 700 mb geopotential height

DS00 500 mb geopotential height

D400 400 mb geopotential height

D300 300 mb geopotential height

D250 250 mb geopotential height

TAIR Surface air temperature

T1000 1000 mb temperature

T925 925 mb temperature

T700 700 .b temperature

T500 500 mb temperature

T400 400 mb temperature

T300 300 mb temperature

T250 250 mb temperature

EAIR Surface vapor pressure

E1000 1000 mb vapor pressure

E925 925 mb vapor pressure

E850 850 mb vapor pressure

E700 700 mb vapor pressure

ES00 500 mb vapor pressure

UBLW Boundary layer zonal wind component

UI000 1000 mb zonal wind component

U925 925 mb zonal wind component

93

' " • " " t " i : " "m m " m " " " " " -" ' " -' -. ' ' ' " , ...:



I T -

U850 850 mb zonal wind component

U700 700 mb zonal wind component

U500 500 mb zonal wind component

U400 400 mb zonal wind component

U300 300 mb zonal wind component

U250 250 mb zonal wind component

VBLW Boundary layer meridional wind
component

Vi000 1000 mb meridional wind component

V925 925 mb meridional wind component

V850 850 mb meridional wind component

V700 700 mb meridional wind component

V500 500 mb meridional wind component

V400 400 mb meridional wind component

V300 300 mb meridional wind component

V250 250 mb meridional wind component

VOR925 925 mb vorticity

VOR500 500 mb vorticity

PS Surface pressuie

SMF Surface moisture flux

PBLD Planetary boundary-layer depth

STRTFQ Percent stratus frequency

STRTTH Stratus thickness

SHF Surface heat flux

ENTRN Entrainment at top of marine
boundary-layer

DRAG Drag coefficient (CD)

Derived parameters

RELH Surface relative humidity

DVRTDP Vertical gradient of vorticity
(VOR925 - VOR500)

EPRD Product of vapor pressures
(E1OOO',E850)

DDDP Height thiickness (D925-D250) 675

VT700 Approximation of thermal advection
(V700 ,T700)
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UDVDZ Approximation of thermal advection
(U700 (V1000-V500)

TE700 Product of temperature and vapor
pressurex(T700 E700)

VT250 Approximation of thermal advection
(T250 xV250)

TE925 Product of temperature and vapor
pressure (T925xe925)

3a: Entire North Atlantic Ocean and Mediterranean Sea

lel output time: 1200 GMT (TAU-24 and TAU-48)

Parameters available and derived parameters at TAU-24 and
j-48 are the same as those for TAU-00 with the addition of
a following five parameters:

Model output Descriptive name of parameter

P RECIP Total amount (mm.) of model precipitation
in the last six hours

SHWRS Total amount (mm.) of model precipi-
tation associated with cumulus
convection in the last six hours

INSTAB Boundary layer inversion instability

DIV925 925 mb Divergence

DIV500 500 mb Divergence

95



AD-fl55 10 AN EVALUATION OF DISCRETIZED CONDITIONAL PROBABILITY 2/2
AND LINEAR REGRESSIO..(U) NAVAL POSTGRADUATE SCHOOL
MONTEREV CA M H WOOSTER DEC 84

UNCLASSIFIED F/6 4/2 NL

mhhhmmmmhhhl
Ehmhmmhhmhhhhl
IIEEIIIIEIIIEE
lEllllllllllI
"IIIIIII'.



- 12.2
&j36

1 .25 LA'* 1ii11.6

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS-1963-A



APPENDIX E

VERIFICATION SCORES, DEFINITIONS

2 3

Total~~~~ R+ TUVWXY

AO prcet corec sX+VT/o

Al oe-casserrr (US+YW)/ota

TSI Thea sorefo cteor I /(+UX++Z

TS2~~~~~ UhetsoefrctgoyI /WVWSY

*Tota Thea R soT+frUateor II=+/(+Y+Z+Z

AO =perentcorect X+VT)/ota



APPENDIX F

BMDP LINEAR REGRESSION EQUATION PREDICTOR SETS.

NORTH ATLANTIC OCEAN (PR+BMD)

These are the derived linear regression equations used

as additional predictors in the PR+BMD model. The BMD value

of each equation represents an estimate of the category

predictand.

I. Area 4, TAU-00, Cloud amount

BMD1 =1.87764 + 0.57546E-07xU850 + 0.372xE700

-0.4595xT500 - 0.00837>xSTRFQ -9640.3555xV0R500

+ 28687.457xVOR925

BMD2 =-0.293341 -0.257147xTX + 0.OO08l9lxUBLW

-O.O55399xT500 - 3345.8lxVOR500

+8551.9xVOR925 - .002537xEPRD

II. Area 2, TAU-00, Cloud amount

BMD1 =2.05292 - 0.09055xEAIR + 0.19066E-O3xUBLW

- 5335.98438xV0R500 + 7474.707xV0R925

+ Q.0O5O5xEPRD + 0.78387E-O7xUDVDZ

BMD2 =2.51018 - 0.28119E-03xU700 + 0.3l987xE500

+ l.73O35xDVRTDP + 0.27946E-04xU700

-0.2993E-05xVT250 + 0.00236xTE925 --
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III. Area 2, TAU-24, Cloud amount

BMDl =2.98984 - 0.ll2llxEAIR + 0.88063xD700

- .Ol4l5xSHF - 8.28037xDIV925

-2.27441xVOR925 + 0.OO656xEPRD

BMD2 =1.95832 - 0.O5608xTAIR - 0.084347xEAIR

- .Ol297xSMF + 0.12733xDIV925

- . + 0.8508E-O5xt~lOOO + Q.l92768xD700

IV. Area 2, TAIJ-48, Cloud amount

BMDl =1.5808 + 0.35787E-O3xPS -0.OO998xEAIR

- .01438xV85Q + 0.14885E-O3xD5OO

+0.0412xV500 + 0.01165xTE700 .

BMD2 =2.45617 - .5245xEA1R + 0.15573xE500

+ 0.06068xE925 - .2383E-03xSTRFQ

+ 0.O837xSTRTK -6.19808xDIV925

V. Area 2, TAU-00, Ceiling

BMD1 2.56681 -0.03478xE850 + 0.1884xE-03xV700

-0.035l3xT925 + 0.4294E-O3xDRAG

-2759.3096xVOR500 -0.63253E-04xVE700

BMD2 =3.78741 -0.15939xCLAMT -0.5971E-O4xUBLW

+ 0.1187E-03xV700 -0.06O54xE925

-2607/68OlxVOR500 -0.4057E-04xVE700
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APPENDIX G

BMDP LINEAR REGRESSION EQUATION PREDICTOR SETS.

NORTH ATLANTIC FOR REGRESSION MODELS

These are the derived linear regression equations used

in the one and two stage regression models. The BMD value

of each equation represents an estimate of the category

predictand.

I. Area 4, TAU-0O, Cloud amount

a. Two stage regression

V1 0.763701 -0.145506xTX -0.004O5lxSHF

+ 0.l3055xT1000 + 0.OOO2O8xUBLW

-0.000l745xUl000 + 0.073322xE850

V2 =0.290741 -0.12764xTX -0.010425xSHF

+ 0.0O0l7xUBLW + 0.ll457xTlOOO

-0.00076lxUl000 + Q.0792243xE850

b. Single stage regression

Vl 0.29334 -0.025715xTX + 0.OOO8191xUBLW

-0.055399xT500 - 3345.8lxVOR500

+ 8551.8xV0R925 -0.002537xEPRD

II. Area 2, TAU-00, Cloud amount

a. Single stage regression

V1 2.05292 - 0.Q9O55xEAIR + 0.19066E-O3xUBLW

-5335.9844xVOR500 + 7474.707xVOR925

+ 0.OO5O5xEPRD + 0.78387E-7xUDVDZ
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b. Single stage regression Separation Test 1

Vl 1.87611 + 0.98222E-O4xtJBLW - 0.22933E-04xtJ1000

- 0.66081xE-04xD850 + .5844E-04xD700

- 0.02909xSHF + 4128.51953xVOR925

C. Single stage regression Separation Test 2

Vl 1.73895 + 0.05728xE850 + 0.19578xE700

-0.04394x.L500 + l.56723xDVRTDP

+0.21519E-O4xVE700 - .00557xTE925

d. Single stage regression Separation &Cluster

Vi 2.56562 - 0.75713E-O3xPS - 0.05658xEAIR

+ 0.49973E-04xU1000 + 0.07972xT925

+ 0.OO93lxSTRTTK + 4624.29688xVOR925

+ 0.20189E-04xVT700 + 0.00127xTE700

e. Two stage regression separation test

Vl 1.3457 + 0.43966E-04xUBLW + 0.5055E-05xDl000

+ 0.64366E-04xU1000 - 0.61831E-05xD85O

+ 0.00285xSHF + 2488.08984xVOR925

V2 =2.3040 -0.0i869xE850 + 0.13171xE700

- 0.062l5xE500 + 1.46893xDVRTDP

+ 0.39909e-O5xVE700 -0.2294e-04xTE925

II.Area 2, TAU-24, Cloud Amount

a. Single stage regression

Vl 2.98984 - 0.1i2ilxEAIR + 0.88063xD700

- 0.O1415xSHF - 8.28037xDIV925

- 2.27441xVOR925 + 0.0O656xEPRD
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IV. Area 2, TAU-48, Cloud Amount

a. Single stage regression

V1 2.45617 - .05245xEA1R + 0.l5573xE500

" 0.06068xE925 -0.2383E-O3xSTRFQ

" 0.OO837xSTRTK -6.19809xDIV925

V. Area 2, TAU-00, Ceiling

a. Single stage regression--no cloud amount variable

Vl =2.56681 -0.03478xE950 + O.18836E-03xV700

- 0.O35l3xT925 + O.4294E-O3xDRAG

- 2759.3096xVOR500 -0.63253E-O4xVE700

b. Single stage regression with cloud amount variable

Vl =3.78741 - .l5939xCLAMT - .5971E-O4xUBLW

+ O.1187E-03xV700 - .06054xE925

-2607/6801xVOR500 -0.4057E-04xVE700
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APPENDIX H

TABLES ""

TABLE I

A summary of 1200 GMT cloud amount
observations, 15 May to 07 July 1983,
North Atlantic Ocean homogeneous areas
as shown in Fig. 1: TAU-00

Area Total CAT I CAT II CAT III

All 11428 4022 4485 2921
(.35) (.39) (.26)

1 1686 297 675 714
(.18) (.40) (.42)

2 1766 359 704 672
(.20) (.40) (.38)

3 1129 324 355 450
(.29) (.31) (.40)

4 3182 1019 1286 877
(.32) (.40) (.28)

5 2425 1259 868 298
(.52) (.36) (.12)

6 2067 842 829 396
(.41) (.40) (.19)

7 564 157 280 127
(.28) (.50) (.09)

8 1015 522 402 91
(.52) (.40) (.09)
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TABLE II

A summary of 1200 GMT cloud amount
observations, 15 May to 07 July 1983,
North Atlantic Ocean homogeneous areas
as shown in Fig. 1: TAU-24

Area Total CAT I CAT II CAT III

All 9416 3378 3616 2422
(.36) (.38) (.26)

1 1460 281 583 596
(.19) (.40) (.41)

2 1422 290 550 582
(.20) (.39) (.41)

3 916 259 298 359
(.28) (.33) (.39)

4 2592 857 988 747
(.33) (.38) (.29)

5 1992 1050 719 223
(.53) (.36) (.11)

6 1684 690 652 342
(.41) (.39) (.20)

7 458 140 207 il1
(.31) (.45) (.24)

8 874 457 351 66
(.52) (.40) (.08)
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TABLE III

A summary of 1200 GMT cloud amount
observations, 15 May to 07 July 1983,
North Atlantic Ocean homogeneous areas
as shown in Fig. 1: TAU-48

Area Total CAT I CAT II CAT III

All 10775 3817 4150 2808
(.35) (.39) (.26)

1 1676 339 691 646
(.20) (.41) (.39)

2 1644 327 656 661
(.20) (.40) (.40)

3 1046 308 336 402
(.29) (.32) (.38)

4 2976 947 1145 884
(.32) (.38) (.30)

5 2264 1166 823 275
(.52) (.36) (.12)

6 1949 804 753 392
(.41) (.39) (.20)

7 524 158 234 132
(.30) (.45) (.25)

8 976 505 382 89
(.52) (.39) (.09)
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TABLE IV

A summary of 1200 GMT ceiling
observations, 15 May to 07 July 1983,
North Atlantic ocean homogeneous area
2 for TAU-00

Area Total CAT I CAT II CAT III

2 1791 415 672 704
(.23) (.38) (.39)
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CEPENDENT DATA

I AO(% ):).44.4 7

~ 1 4TS1 .18

2521 7 35 5Q02~
______TS2 .39

.1 39 171 27
I TS3 .11

2 3

OB SERVED

INDE PE NDE NT DATA

A 0 (o'%) 4 5.2 7
38 237

~2263 375124O 0 1
c TS2 .40

7 I TS3 .11
I 2 3

0 Bl S E R~ V E D

Figure 5. Contingency table results for the
area 4, TAU-OO, two-stage regression,
QUAD model for cloud amount
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CEPENDENT DATA

AO(%: 44.47
3 1 7 '47

TS1 .18
521 17351502'

- I' S2 .39

'1 39 71 27 TS3 .11

OBSERVED

INDEPENDE NT DATA

8 2 3 AO(%) 45.2 7

4TS1 .18
2263 375 1240

-.--- TS2 .40

71 36 15 TS3 .11

2 3

Figure 4. Contingency table results for the
area 4, TAU-OO, two-stage regression,
EVAR model for cloud amount
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SIGNIFICANCE TEST
Null Hypothesis Contingency

Table (Chance)

AJ 0O(%) 3 3.3 6

F-, 4 !_145 98 s62
2111149 TS2 .20

2114 144 97
TS3 .22

2

Area 4 TAUOO

95%/ CONFIDENCE INTERVAL

AO(%). 30.5 3 -36. 19

TS1 .17 -. 22

TS2 .20 -. 25

TS3 .15 -. 20

Figure 3. Confidence intervals for significance
with respect to chance--area 4,
TAU-OO, cloud amount
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APPENDIX I

FIGURES
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TABLE XII (Continued)

VARIABLE BHATTACHARYYA DIVERGENCE MAHALANOBIS

T300 0.21056 0.22100 0.20881

u300 0.01408 0.02348 0.01272

V300 0.07071 0.07155 0.07062

D925 0.00771 0.00836 0.00762

T925 0.20461 0.21458 0.20294

E925 0.20111 0.30206 0.18641

U925 0.00317 0.01440 0.00158

v925 0.12695 0.13894 0.12507

D250 0.19249 0.19258 0.19250

T250 0.01740 0.02707 0.01600

U250 0.01320 0.02348 0.01172

V250 0.06705 0.06854 0.06687

PBLD 0.01446 0.01503 0.01438

STFQ 0.06272 0.06298 0.06267

STSK 0.01442 0.01972 0.01367

SHF 0.36083 0.36084 0.36084

ETRN 0.01873 0.09273 0.00844

DRAG 0.08309 0.22548 0.06334

VORS 0.13266 0.13638 0.13223

VOR9 0.00003 0.00005 0.00003

RHSU 0.01062 0.02140 0.00910

DDDP 0.27874 0.28099 0.27825

DVRT 0.35180 0.36540 0.34936

EPRD 0.21446 0.34633 0.19553

VT70 0.02794 0.21941 0.00217

VE70 0.17673 0.46591 0.13800

UDVZ 0.00548 0.03222 0.00169

TE70 0.18493 0.32513 0.16501

VT25 0.06871 0.07051 0.06849

TE92 0.24765 0.39902 0.22596

RH50 0.12367 0.12393 0.12361
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TABLE XII

Listing of the measures of separability,
by predictor, for cloud amount categories
II versus III, North Atlantic Ocean
homogeneous area 2 at time period TAU-00

VARIABLE BHATTACHARYYA DIVERGENCE MAHALANOBIS

PS 0.00117 0.00218 0.00103

TX 0.12979 0.13784 0.12850

EX 0.07575 0.09323 0.07315

SMF 0.20953 0.22308 0.20791

UBLW 0.00386 0.02460 0.00092

VBLW 0.12082 0.14304 0.11745

D100 0.00137 0.00229 0.00124

T100 0.12849 0.13413 0.12757

E100 0.10728 0.14164 0.10219

Ul00 0.00279 0.01875 0.00052

Vi00 0.10973 0.13279 0.10625

D850 0.02216 0.02261 0.02210
E850 03550.44064 0.028520

U850 0.00403 0.01390 0.00262
V850 0.12095 0.12695 0.11997

D700 0.07096 0.07210 0.07083

T700 0.31687 0.32132 0.31640

E700 0.50219 0.59661 0.48725

U700 0.00688 0.01573 0.00561

V700 0.08627 0.08864 0.08588

D500 0.14117 0.14293 0.14100

T500 0.22404 0.22409 0.24405

E500 0.34663 0.41264 0.33632

U500 0.01009 0.01637 0.00919

V500 0.07677 0.07727 0.07667

D400 0.16929 0.17051 0.16919

T400 0.22131 0.22215 0.22110

U400 0.01272 0.01996 0.01168

V400 0.07573 0.07575 0.07573

D300 0.18786 0.18828 0.18785
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TABLE XI (Continued)

VARIABLE BHATTACHARYYA DIVERGENCE MAHALANOBIS

T300 0.20562 0.24049 0.19159

U300 0.03037 0.03054 0.03045

V300 0.16807 0.16866 0.16694

D925 0.04597 0.04739 0.04533

T925 0.06919 0.07071 0.06829

E925 0.14805 0.25984 0.12245

U925 0.06896 0.09353 0.06296

V925 0.21093 0.26951 0.19104

D250 0.04663 0.04671 0.04651

T250 0.10538 0.12246 0.09963

U250 0.02878 0.02899 0.02886

V250 0.16161 0.16237 0.16037

PBLD 0.09085 0.09125 0.09032

STFQ 0.15207 0.15208 0.15220

STSK 0.09857 0.-09902 0.09797

SHF 0.28824 0.35556 0.26172

ETRN 0.01747 0.04776 0.01380

DRAG 0.06575 0.26496 0.03517

VOR5 0.01224 0.01355 0.01195

VOR9 0.12924 0.14618 0.12275

RHSU 0.06157 0.06976 0.06183

DDDP 0.15300 0.15966 0.14893

DVRT 0.27339 0.27967 0.26707

EPRD 0.13559 0.24367 0.11154

VT70 0.00997 0.07588 0.00080

VE70 0.28308 0.76258 0.19313

UDVZ 0.01686 0.05881 0.01041

TE70 0.04632 0.15561 0.02886

VT25 0.17008 0.17019 0.16961
TE92 0.12640 0.21771 0.10574

PH50 0.28494 0.30526 0.27214
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TABLE XI

Listing of the measures of separability,
by predictor, for cloud amount categories
I versus III, North Atlantic Ocean
homogeneous area 2 at time period TAU-00

VARIABLE BHATTACHARYYA DIVERGENCE MAHALANOBIS

PS 0.08177 0.14363 0.07800

TX 0.04016 0.04056 0.03990

EX 0.00637 0.01161 0.00552

SMF 0.13855 0.13888 0.13915

UBLW 0.08358 0.15122 0.06957

VBLW 0.21032 0.30548 0.18303

DI00 0.06498 0.06676 0.06403

TI00 0.07172 0.07229 0.07120

E100 0.04262 0.07060 0.03708

UI00 0.07400 0.14819 0.05957
Vl00 0.18603 0.28651 0.15951

D850 0.02559 0.02626 0.02532

E850 0.29357 0.45542 0.24720

U850 0.06046 0.07166 0.05731

V850 0.20114 0.23462 0.18768

D700 0.00182 0.00210 0.00178

T700 0.11150 0.12273 0.11297

E700 0.65337 0.77698 0.58537

U700 0.04171 0.04595 0.04043

V700 0.15351 0.16135 0.14901

D500 0.00839 0.01025 0.00821

T500 0.09364 0.09505 0.09255

E500 0.36905 0.51689 0.31872

U500 0.03106 0.03106 0.03106

V500 0.15269 0.15338 0.151.57

D400 0.02288 0.02363 0.02294

T400 0.13030 0.14202 0.12517

U400 0.03115 0.03k38 0.03124

V400 0.16649 0.16697 0.16550

D300 0.03975 0.03976 0.03978
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TABLE X (Continued)

VARIABLE BHATTACHARYYA DIVERGENCE MAHALANOBIS

T300 0.00155 0.00861 0.00053

-U300 0.00636 0.01845 0.00477

*V300 0.01923 0.02207 0.01858

*D925 0.09076 0.09473 0.08882

*T925 0.03484 0.03853 0.03483

*E925 0.00652 0.00678 0.00646

U925 0.05098 0.05353 0.04999

*V925 0.00962 0.02688 0.00695

D250 0.05071 0.05106 0.05043

T250 0.04040 0.04144 0.03994

U250 0.00656 0.02001 0.00478

V250 0.01878 0.02316 0.01786

PBLD 0.03187 0.03379 0.03126

*STFQ 0.02029 0.02066 0.02033

STSK 0.03631 0.04517 0.03426

*SHF 0.02615 0.09518 0.01552

*ETRN 0.00162 0.01092 0.00029

*DRAG 0,00550 0.00977 0.00482

*VOR5 0.06948 0.07893 0.06654

VOR9 0.12475 0.14278 0.11831

RHSU 0.02086 0.02103 0.02076

DDDP 0.02176 0.02293 0.02142

DVRT 0.00438 0.00577 0.00422

EPRD 0.01150 0.01259 0.01144

VT70 0.00871 0.03907 0.00423

VE70 0.01574 0.03484 0.01260

*UDVZ 0.00476 0.00643 0.00448

TE70 0.06954 0.07131 0.07002

VT25 0.02086 0.02366 0.02020

*TE92 0.02343 0.03042 0.02291

RG50 0.02931 0.04528 0.02623

112



TABLE X

Listing of the measures of separability,
by predictor, for cloud amount categories
I versus II, North Atlantic Ocean homogeneous
area 2 at time period TAU-00

VARIABLE BHATTACHARYYA DIVERGENCE MAHALANOBIS

PS 0.09467 0.14153 0.09295

TX 0.02457 0.02943 0.02429

EX 0.04045 0.04401 0.04054

SMF 0.01079 0.02040 0.00920

UBLW 0.06747 0.08060 0.06381

VBLW 0.01148 0.03612 0.00770

D100 0.08318 0.08845 0.09098

T100 0.00768 0.01029 0.00740

El00 0.01717 0.01749 0.01720 -.-

UI00 0.06117 0.08200 0.05623

V100 0.00962 0.03601 0.00566

D850 0.09544 0.09767 0.09403

E850 0.00064 0.00169 0.00048

U850 0.03957 0.03961 0.03950

V850 0.00910 0.02012 0.00735

D700 0.09371 0.09400 0.09329

T700 0.04722 0.04876 0.04746

E700 0.01074 0.01257 0.01037

U700 0.01787 0.01871 0.01788

V700 0.00922 0.01080 0.00891

D500 0.07878 0.07878 0.07881

T500 0.03095 0.03293 0.03033

E500 0.00232 0.01756 0.00015

U500 0.00822 0.01458 0.00746

V500 0.01307 0.01308 0.01305

D400 0.06663 0.06669 0.06650

T400 0.01693 0.02318 0.01573

U400 0.00697 0.01702 0.00568

V400 0.01696 0.01763 0.01676

D300 0.05530 0.05561 0.05502
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CEPENDENT DATA

A 0 %0/): 4 5.7 8
3~ 48 102 1144 T1:3

- .. 36

'43 71355 1 78 TS3 .19
OBSERVED

INUEPENDENT DATA

AO0 (0') J43.3 0
..3 2a15 1 72

TS1 .33
~109 185 134

___ TS2 .

205[197{8 6 TS3 .19

1 2
OBS ER VED

Figure 6. Contingency table results for the
* area 4, TAU-OO, two-stage regression,

MLDC model for cloud amount
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CEPENDENT DATA

AO(%): 4 7.7 0
:34 1 1 22 1 9 8

TS 1 .31
'213 4 2526 3331 S 3

11292 2051 73TS .2

OBSERVED

INDEPENDENT DATA

1 19 53 97

-IL---- S1 .28
18612591163

0

1 13 12 32TS3 .27
1 2 3

OBSERVED

Figure 7. Contingency table results for the
area 4, TAL7-OO, single-stage regression,
EVA. model for cloud amount
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DEPENDENT DATA

A0(00: 4 7.9 8
3~ 31 104 1181Ti .3

2~3 6 6 5631353
_______TS2 .36

p28 18 70TS3 .24

085LRVEO

INDEPENDE NT DATA

AO0(% ) i46,6 7
3 16 43 8 7

TS1 :.27
~195 280 175TS .3

13 11 10130'" TS3 .25
1 2 3

OBESRVED

Figure 8. Contingency table results for the
area 4, TAU-OO, single-stage regression,
QUAD model for cloud amount
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DEPENDENT DATA

3,126 AO(%:47.0o

____ _-,TS1 .36

2!156 260~ 144;
=i I , I i TS2 .23

ZI i I T33 .3 4
1 2 3

OBSERVED

INDEPENDENT DATA

AI A(/1): 4 3.6 7
360 O144 170

4 iiTSI :.31
~10711211 67

____TS2 .20
0

1 17116t55TS3 .34
2 3

OBSERVE D

Figure 9. Contingency table results for the
area 4, TAU-OO, single-stage regression,
MLDC model for cloud amount
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BASELINE INTERVAL

Baseline model Area 4 TAUCO BMD-EVAR

K 1AO(%,) 46.20
1 1 5 9 7

4 -- --- SI : .28

Z186 2591163

1132TS2 .33

B3ASELINE CONFIDLN(2L IN I [V AL

AO(%;) 4 3.21 - 49.19

TS1 .25 -. 31

TS2 .30 -. 36

TS3 .24 - .30

Figure 10. Confidence intervals for significance
with respect to baseline--area 4,
TAtJ-OO, cloud amount
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* ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 77 7.. .. . . ... *.. ~ ---.---

SIGNIFICANCE TEST
Null Hypothesis Contingency

Table (Chance)

AC)33.17

3 44 77 79 T 1

2.~ 44 76 79
TS2 .22

L 43 1 76 79 TS3 .22

0115k VED

Area 2 TAUOO

95% CONFIDENCE INTERVAL

AO(%') 29.52 -37.08

TS1 .12 - .18

TS2 .18 - .25

TS3 .19 - .26

Figure 13. Confidence intervals for sicnificance
with respect to chance--area 2,
TAU-OO, cloud amount
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CEDENCE%7 DATA

I AO(%O); 54.02
3 38 ,128 298

TSI .06
~2 174 331 189

- I TS2 .. 39

1616 4
___ __ __TS3 .4 5

2 3
OBSERVED

NDE DENDE NT DATA

AO(0 49.41
329 71 133

4 T~i .09
'89 149i 100

13TS2 .36

TS3 .39
2 3

OBSER~V ED

Figure 14. Contingency table results for the
area 2, TAU-OO, single-stage regression,
EVAR model for cloud amount
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CEP NDENT DATA

AO(%): 53.7635 1121 284
TS1 .05

179 339 1204
_ _ _ _TS2 .41

1 4 1 5 4 TS3 .42

OBSERvED

tNDEPENDENT DATA

j2 8 6 125 A(%) 4 9.02
1 6 4 1 25...

TS1 .08
: 91 160 1108 '

C 2 .---11 TS2 .38

1 2 5 4
TS3 .37

1 2 , l "

OBS E R v ED

Figure 15. Contingency table results for the
area 2, TAU-00, single-stage regression,
QUAD model for cloud amount
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BASELINE INTERVAL

Baseline model Area 2 TAU24 BMD-EVAR

AO('o) 46.97
30 89 127

6: TS 01

' 82 120 68

F __ T S 2 3 3

S 1 8 3
' S3 .40

I 2 3
OBSEvED.

BASELINE OONFIDENUL INTERVAL

AO %) 42.97- 50.97

TS1 .00 - .02

TS2 .32 - .39

TS3 .36 - .44

Figure 24. Confidence intervals for significance
with respect to baseline--area 2,
TAU-24, cloud amount
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CEDENCENT DATA

3 57A O( ): 43.94
112 69

~ 71TS1 .20
266 1V13:90

- 2TS2 .20

82 1132 76
ITS3 .41

B S E H V E C

NDE PE ^4DE NT DATA

I AO(%b 42.05
30 89 127

STS2 .19

2 3

Figure 23. Contincency table results for the
area 2,' TAU-24, single-stage regression,
IMLDC model for cloud amount
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CE'DENCENT DATA

IAO(%'): 48.11
3- 3 126 1226

TS1 .02

2167 278 20 0
- ________TS2 .36

4 1 ~TS3 :.38
1 .3

OBSERVED

tNDEPENDENT DATA

1~AO(%')- 46.59
j 21 68 104

TS1 ol
2 91 141 9

91 TS2 ..35

1 -8 3TS3 .36

OBSERVED

Figure 22. Contingency table results for the
area.2, TAU-24, single-stage regression,
QUAD model for cloud amount
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CEPENDENT DATA

I I AOM% J 47.92
3: 57 171 2 69

-TS1 .02

~2 144 2331 157
ITS2 .3

4 12 9
I TS3 .41

OBSE RVED

INDEPENDENT DATA

A O('/1). 46.9 7j 30{89 127
4TS1 .01

2? 82 120 68
___ ___TS2 ..33

8 3 TS3 :.40

2 3
OBSERVED

Figure 21. Contingency table results for the
area 2, TAU-24, single-stage regression,
EVAR model for cloud amount
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SIGNIFICANCE TEST
Null Hypothesis Contingency

Table (Chance)

A AO(%) 3 3.39
36 70 77

TS1 A1

~2 35 70 76
TS2 .22

3.5 70 76 TS3 .23

2 3
0 (ISE L D

Area 2 TAU24

95% CONFIDENCE INTERVAL

AO(%f'): 29.43 - 37.35 -

TS1 .1-.17

TS2 .18 -. 2 5

TS3 .20 - .27

Figure 20. Confidence intervals for significance
with respect to chance--area 2,

TAU-24, cloud amount
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BASELINE INTERVAL

Basel'ne model Area TAUQO BMD-EVAR

AOV,') 49.41
S29 71 133

T S1 .09

:2 ~j49 ~ S2 .36

13 4 TS3 .39

OBS ER~VED

BASELINE CONFIU)ENUE IN,,Tt:HVAL

AWo) 45.40 - 53.42

TSI .07 - '11

TS2 .32 -. 39

TS3 .36 .44

Figure 17. Confidence intervals for significance
with respect to baseline--area 2,

TAU-OO, cloud amount
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CEPENDENT DATA

,38 128298~ AO(%J) 51.76

TS1 .27
~2 69 199 114~

___ _ I TS2 .30

121 148~ 79
TS3 .45

2 3
OBSERVED

INDEPEN DENT DATA

29 71 133 AO (% Jo: 47.40

-4 - TS 1 .26
37 85 60

___ TS2 .26
0

6523 4 TS3 .39
OBSERVED

Figure 16. Contingency table results for the
area 2, TZMJ-OO, single-stage regression,
MLDC mo~de' for cloud amount
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SIGNIFICANCE TEST
Null Hypothesis Contingency

Table (Chance)

3~4 6 8 AO(?,) 33,51

TS1 .15

~2 4069 79
ITS2 .21

40 68TS3 .23

2 3
0 AS~ k VE

Area 2 TAU 48

95% CONFIDENCE INTERVAL

A(%)02 9 .30 - 37.11

TS1 .12 -. 18

TS2 .18 -. 20

TS3 .20 -. 26

Ficure 27. Confidence intervals for significanlce

with respect to chance--area 2,

TAU-48, cloud amount
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CE_NDENT DATA

~A000): 48. 683, 59 171 272 F4

TSi : 06

2 11 59 284 176
TS2 .35

S16 21, 17 TS3 :.39

1 2 3

OBSERVED

INDEPENDENT DATA

i A0(9.): 45.32 2L

241 93 134

• | --- TS1 .04
2 75 126 

.91o TS2 .32
6 12 9_'-611 9 TS3 .36

I 2 3
OBStkvED

Figure 28. Contingency table results for the
area 2, TAU-48, single-stage regression,
EVAR model for cloud amount
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CEPENDENT DATA

-~ AOC%/): 45.96
59 171 272

TS .16
2,113 2Q6 136~

_ _ _ _ _ _TS2 .28

i62 99 TS373

3S 3

OBSERVED

IND EPENDE NT D AT A

134AO( ,O) 42.93

TSi . 15
2 ~51 88 69

~ KTS2 .25

ti3 TS3 .36
2 3

OBE RVED0

Figure 29. Contingency table results for the
area 2, TAU-48, single-stage regression,
MLDC model for cloud amount
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BASELINE INTERVAL

Baseline model Area 2 TAU48 EIMD-EVAR

IA 0% 4 5.32
41 93 134

T TS .04

2 75 126 91
TS2 32

>L~ 12TS3 .36

BASELINE CONFIDENCE INTERVAL

AO%), 41.31 -49.2 2

TS1 .02 -. 06

TS2 .28 -. 36

1S3 .32 -. 40

Figure 30. Confidence intervals for significance
with respect to baseline--area 2,
TAU-48, cloud amount
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Figure 42. Contincency table results for the
area 2, TAEJ-OO, single-stage
regression, using cloud amount as a

p redictor EVAR model for ceiling
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BASELINE INTERVAL

Baseline model Area 2 TAUOO BMD-MLDO

AO10 45.56
6 2 81 34

T131 .22
289 194 145 2.

44 138 19 f3 .15

2
OflSE R E 0

13ASELINE CONFIDENCCU IN I EVAL

AO(.%I 41.56 - 49.56

131 .19 - .25

TS2 .35 -. 4 2

TS3 .12 -. 18

Figure 40. Confidence intervals for significance
with respect to baseline--area 2,
TAtJ-00, ceiling
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Figure 39. Contingency table results for the
area 2, TAU-QO, single-stage
regression, MLDC model for ceiling
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Figure 38. Contingency table results for the
area 2, TAU-OO, single-stage
regression, EVAR model for ceiling
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SIGNIFICANCE TEST
Null HyPothesis Contingency

Table (Chance)

4 7 87 66A0 33.3

TS1 .16
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95% CONFIDENCE INTERVAL
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Figure 37. Confidence intervals for significance
with respect to chance--area 2,
TAU-OO, ceiling
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Figure 36b. Contingency table results for the
area 2, TAU-OO, two-stage regression,
predictors chosen by combination
of clustering and separability
techniques for cloud amount
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Figure 36a. Contingency table results for the
area 2, TAU-00, two-stage regression,
EVAR, predictors chosen by combina-
tion of clustering and separability
techniques for cloud amount
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Figure 35. Contingency table results for the
area 2, TAU-00, single-stage regression,
predictors chosen by combination
of clustering and separability
techniques for cloud amount
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Figure 34. Contingency table results for the
area 2, TAU-OO, single-stage regression,
predictors chosen by highest
measures of separability for category II

0 versus III for cloud amount
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Figure 33. Contingency table results for the
area 2, TAU-OO, single-stage regression,

predictors chosen by highest
measures of separability for category I
versus II for cloud amount
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Figure 43. Contingency table results for the
area 2, TAU-OO, single-stage
regression, using cloud amount as a
predictor QUAD model for ceiling
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