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BISTABILITY, BASINS OF ATTRACTION, AND PREDICTABILITY
IN A FORCED MASS-REACTION MODEL

1. INTRODUCTION

/ Bistable phenomena can occur in many physical, chemical, and biological models of natural .*.

phenomena [e.g., 1, 2, 3, 4, 5, 6, 71. An important subset of problems exhibiting bistability consists of

those models employing mass-reaction kinetics; Crucial to understanding any mass-reaction model is a

knowledge of the parameter corresponding to the rate of contact between two or more species. In cer-

tain applications, the contact rate may be time dependent, and in fact, periodic. For example, the pro-

cess of temporally increasing and decreasing the solar intensity respectively changes the probability of

contact between two reacting species in the atmosphere [8, 9, 101. In addition to perturbing reactants

in the atmosphere, periodic forcing of contact rates plays an important role in modelling recurrent epi-

demic outbreaks (11,i7. It is important to note that both physical and biological phenomena exhibit

oscillations which are longer than the forcing period, or not periodic at all [10, 2 Furthermore, it is

not uncommon for periodically forced differential equaion models to exhibit two or more stable

subharmonic solutions for a given set of parameters [e.g., 2, 7,131. The question we consider here is,

how well can one predict the asymptotic final state given initial conditions having finite precision for a

problem that exhibits two different stable periodic orbits.

In particular,.-we considera simple mass-reaction model with a periodically forced contact rate.

The following is shown numerically:

*t)J)There exist parameter values for which the model exhibits at least two distinct stable subhar-

monic periodic orbits.
.3 .'-'-"

f)-(it) he basins of attraction of each orbit can be very complicated, thus affecting final state

predictability as a function of precision in initial conditions

(iJhe dimension (capacity) of the basin boundary is estimated using the techniques in [141.

2. A SIMPLE MASS-REACTION MODEL
... - -.

Let cl denote the fraction of concentrations, i - 1, 4. The model used is:

C - A( - C1) - 0(t)CC3

C2 - 0(t)cc 3 - (a + A.)c 2  (MR)

c3'- aC - (Y + )c3 -

C-" IfC3- A c4,
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where g, a * are constants. Periodicity in the contact rate is incorporated by assuming

p(t) - po0l + P, cos 21rt), and the forcing amplitude, P1, is the parameter to be v#sied. Note that
4

I~~ for all time, and therefore it is sufficient to study the first three equations in (MR), C4 being

3
given by I - C

When -0, equation (MR) has two steady states: (1, 0, 0, 0) and ao~ - UPe, CY CY, C40)

where c 1 - + a) (A + vY)/prp -/Q, Cf - (I + vY),d Q - l)/Poa, C? - -A( 0)/00- Parame-

ters are chosen so that (1, 0, 0, 0) is unstable and zc. is stable. Assume Q > 1, IA (Q - 1) is small, a'

and introduce the change of variables: pA(Q - 1) - e, A& + a - 42 /e, IA + -y - A3/a, where e is a small

parameter and 42, A3 are positive constants. Letting c, - c1
0(l + x1), 1 1, 2, 3 and using the above

scaling results in the system:

xj - -eR?)n + pi cos 2irr)xl + (Q + p, cos 2irt)X3

+,81, cos 2irt + XIX 3(l + P, cos 2wt)]

x- 42 L81 cos 2irt + (XI + X3)(1 + p, cos 2t) (MS)

-X2 + XIX 3(Q + 01 cos 21rt)/e

X- A 3 (X 2 -X 3 )/, w here 71 - Q1/(Q - 1)>l1.

The non-trivial equilibrium point is moved to the origin, and the eigenvalues of the linearized vector

field at the origin are given by X :h (a) - Er :k 1v + 0(e2),Of() - -(42 + 4 3 )/ + O(E) where

r - (421&3 - (U2 + 43 )2711/2(1&2 + 13 )2 < 0, and V 2 _ 4243/ (A2 + 43). Thus there is a strong attrac-

tion onto a surface in the direction corresponding to X3, and a weak attraction in which orbits slowly P

spiral into the origin. Since the orbits appear to lie approximately in two dimensions where

C2 0t) ==( + V)C3(t)/G, we examine variations in cl and C3. The initial conditions (C1, C2, C3), are

restricted to satisfying C2 - C3(LL + y)/a from here on.

3. BISTABLE BEAVO

For given values of P > 0, there exist periodic orbits which have period I as well as subhar-

monic periods. Both stable and unstable orbits were computed as a function of )9 using the techniques

in [151. The fixed values of the parameters used in the computations are listed in Table 1. If 0(t)

denotes the vector solution to (MS) of a periodic solution of period n for a given value of P1, define

the norm of 0 as P

2 a



II¢,t~l2- (/n)fo'() 0(t dt. ...""","

A plot of 1 II as a function of € is shown in Fig. 1. Emanating from the stable steady state is a small

amplitude period 1 orbit. At a critical value of #, the period I orbit goes unstable (dashed line) and a

stable period 2 bifurcates from the period 1 branch. Notice that there also exist large amplitude

saddle-node (stable-unstable) bifurcations of periods 3 and 4. Examples of the period 3 and period 2

orbits are shown in Figs. 2a and 2b. From Fig. 1, it is clear that there exist at least two stable periodic

orbits for certain values of 1. Thus the model exhibits bistability for several ranges of forcing ampli-

tude.

Table 1 - Parameter Values Used for Numerical Simulation

-0 1575

- 0.02

az - 1/0.0279

A - 1/0.01

4. PREDICTABILITY AND DIMENSION OF THE BASINS OF ATTRACTION

When EL - 0.1, Fig. 1 shows that there co-exist stable period 1 (SPI) and stable period 3 (SP3)

orbits. To find the basins of attraction, we simplify the problem by assuming initial conditions,

(c1 , c2, c3), are restricted by satisfying c2 - (4Js + y)/a)c3 as described above. We pick a pair (c1 , c3)

at random using a uniform probability distribution and then determine if the trajectory converges to an

SPI or SP3 orbit. If it converges to SPI, (C1, c3) is plotted. Otherwise, the trajectory converges to SP3

and the point is not plotted. (No other periodic orbit was observed.) Figure 3a illustrated the basin of "-.

attraction for SPI (dotted) over a given region. The blank areas denote the basin for SP3. A uniform

grid was initially chosen, and approximately 24 per cent of the initial conditions converged to SP3. The

same procedure was performed for a small region in Fig. 3a, except that the points were chosen at ran-

dom. Figure 3b shows the result. Clearly the basins of attraction for SPI and SP3 are intertwined in a

complex manner.

3
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In [14] it is shown that a discrete map in two dimensions possessing a complicated basin structure

results in an obstruction to predictability. Here we follow their procedure for measuring the predictabil-

ity of equation (MR). Given a random initial condition, (c1, c3), we consider perturbed initial condi-

tions (c1, c3 h ) for a given i > 0. If at least one of the perturbed initial conditions converges to an
orbit other than the orbit passing through the unperturbed initial condition, we say (cl, c3) is uncertain.

Four thousand random initial points were chosen, and the fraction, F, of uncertain initial points was

computed. The procedure was then repeated for several values of i.

Figure 4 illustrates the scaling of F as a function of i. Using a linear least squares fit, it is found

that F is proportional to i0 68 . Thus the capacity [16] of the basin boundary is approximately 1.32.

5. CONCLUSIONS -

We have demonstrated bistability for a simple periodically forced mass-reaction model. Further-

more, we have illustrated that the basins of attraction of the periodic orbits are intertwined. The effect

of the complicated basin structure is to obstruct the predictability of the final state given imprecision in

initial conditions. That is, given the slope of 0.68 in Fig. 4, to decrease the fraction of uncertain initial

conditions in phase space by an order of magnitude requires more than an order of magnitude reduc-

tion in uncertainty.. Therefore, requiring a high degree of predictability can result in the need to per-

form extraordinary high precision computations.
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Fill. 2a - An example of unstable and stable period 3 orbits when 0.075.
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Fig. 2b - A period doubted orbit. Here =z 0. 12.

.. ........ .* . . . . .



.so.

. . . . . . .

C
3

.022

01 0C2

Fig. 3a - Basins of attraction for a bistable case are shown when 0 - 0.1. Dotted regions depict the basin
of attraction for the SPI orbit, and the white regions depict the basin for the SP3 cycle. The grid of initial
conditions was uniform.
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Fig. 3b - Basins of :action depicting a blow-uP of a $manl region on Fig. 3a. The initial conditions
are chosen at random. The fractal-like structure is evident.
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Fig. 4 - Fraction of uncertain points are plotted as a function of imprecision in the initial conditions.
The dimension of the basin boundary was found to be approximately 1.32.
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