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! ABSTRACT

~"This thesis represents a contribution to the development of practical computer
systems for interactive construction of formal proofs. Beginning with a summary of current
research in automatic theorem proving, goal orlented systems, proof checking, and
program verification, this work aims at bridging the gap between proot checking and
theorem proving.

Specifically, it dascribes a system GOAL for the First Order Logic proot checker FOL.
GOAL helps the user of FOL in the creation of long proofs in three ways: 1) as a facility
for structured, top down proof construction; 2) as a semi-automatic theorem prover; and
3) as an extensible environment for the programming of theorem proving heuristics.

In GOAL, the user defines top level goals. These are then recursively decomposed
into subgoals. The main part of a goal is a well formed formula that one desires to prove,
but they Iinclude assertions, simplification sets, and other information. Goals can be tried
by three different types of elements: matchers, tactics, and strategles.

The matchers attempt to prove a goal directly -that is without reducing It into
subgoais- by calling decision procedures of FOL. Successful application of a matcher
causes the proved goal to be added to the FOL proof.

A tactic reduces a goal into one or more subgoals. Each tactic is the Inverse of some
inference rule of FOL; the goal structure records all the necessary information so that the
appropriate Inference rule Is called when all the subgoails of a goal are proved. In this
way the goal tree unwinds automatically, producing a FOL proof of the top level goal from
the proofs or its leaves.




) The strategies are programmed sequences of applications of tactics and matchers.f"""'\
They do not interface with FOL directly. instead, they simulate a virtual user of FOL.
They can cell the tactics, matchers, other strategles, or themselves recursively. The
success of this approach to theorem proving success is documented by one heuristic
strategy that has proved a number of theorems in Zermelo-Fraenkel Axiomatic Set Theory.
Analysis of this strategy leads to a discussion of some trade offs related to the use of
assertions and simplification sets in goal oriented theorem proving.

The user can add new tactics, matchers, and strategles to GOAL. These additions
cause the language to be extended In a uniform way. The description of new strategies
is done easily, at a fairly high level, and no faulty deduction is possibfe. Perhaps the main
contribution of GOAL is a high level environment for easy programming ot new theorem
proving applications in the First Order Predicate Calculus.

The thesis ends with two appendixes presenting complete proofs of Ramsey's
theorem in axiomatic Set Theory and of the correctness of the Takeuchi function.

(It is planned that both FOL and GOAL will be made avallable over the ARPANET this .
year. Inquiries regarding their use should be addressed to Dr. R. Weyhrauch at the
Stanford Artificlal Intelligence Laboratory, SU-At).
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1. INTRODUCTION.

The research presented in this doctoral thesis is a contribution to the development of
practical systems for interactive construction of mathematical proofs.

The availability of fully interactive proof checkers that permit their users to construct
proofs incrementally, gives rise to an activity which is best described by the term /nteractive
proof construction. This name has not yet found widespread usage in the computer science
literature; Instead, related research has generally been classified into the following
categories: proof checking, automatic theorem proving, and man-machine systems for these
tasks. This research is related to but takes a differant approach from that of previous
research in those areas.

Procs checkers generally embody a system of logic that includes both the recognition of
legal expressions in that logic, or well formed formulae (WFFs), and inference rules by which
new formulae are deduced from axioms and/or previously proved formulae.

In an interactive proof constructor, the inference rules are embodied in commands that can
be called by the user in order to increment a proof; normally, one new step of the proof is
produced by every successful call to an inference command. This leads to a bottom up mode
of proof construction, in contrast with the rather goal orlented thinking process of the working
mathematician.

The approach taken in this thesis is to provide users of an interactive proof constructor
with a language In which goals can be stated and reduced recursively into sub-goals, so that
the reduction rules correspond to the inference rules of the proof constructor. Thus the goal
commands are the inverse of the inference commands, and the system knows how to deduce a
goal from its sub-goals. This leads to a top down mode of proof construction.

When an Interactive proof constructor Is provided with an equally Interactive goal
oriented command language, both modes of proof construction, the /nference oriented,
bottom up mode and the goal oriented, top down one, can be combined to any desired extent
by the user, according to the particular problem and taste.

A novel approach to automatic theorem proving consists in replacing the human user by a
heuristic for sequencing the recursive application of the goal oriented commands and of some
inference commands that attempt to prove the sub-goals by using a set of facts or axioms.
Automatic proofs of a number of theorems, including the first 33 theorems in the Appendix on
Set Theory in [Kelley 1965], have been obtained with one heuristic of this type.

When a goal command language is designed to aliow for easy addition of such theorem
proving routines, it results in a high level programming environment for theorem proving
applications. Users can program thelr own heuristics to fit different styles of proof and imbed
them into the system without having to modify its structure. This can be done easily: the
algorithms can be described as programmed sequences of calls to the reduction rules and
inference commands, and priority queues or any other data structures can be used to control
the order in which sub-goals are tackled. Thus users can augment the power of the
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introduction. | 2

interactive proof constructor for specific domains of their interest by having their own
libraries of heuristics that can be added to the system and called using the aiready axisting
high level commands of the language.

The goal oriented command language GOAL for the system FOL, an interactive proof
constructor for the first order predicate calculus, is presented in this thesis. 1t has been
programmed by the author in LISP, on top of FOL, at the Stanford Artificial Intelligence
Laboratory DEC KL-10 computer system. The user can program new Inference rules, new
subgoaling commands, and new heuristic strategies as programmed sequences of calls to the
inference rules and subgoaling commands; these are added to the system by calling a GOAL
routine that automatically extends the language, and its syntax, to incorporate the new
commands. 10 our knowledge this is the first time that the following wish, expressed by
[Slagle 1878], is fulfilled.

"It is an attractive idea to write a program based on mathematical logic, since this is a well-
formulated and well-studied branch of mathematics. In addition, programming a computer is a way
to study mathematical logic. For example, the programmer may develop powerful, patural, intuitive
inference rules to which heuristics can be added easily.”

The Encyclopedia of Computer Sclence (page 1418, my emphasis).

1.1. The Research Program,

The research presented in this thesis bridges the gap between current research in the
disciplines of automatic theorem proving and proof checking. Indirectly, it also relates to some
research in program verification. Thus it is part of a collective endeavor that has a tradition
of at least 20 years.

Moreover, it is a contribution to a collective effort by the Formal Reasoning group at the
Stanford Artificial Inteiligence Laboratory (SAIL), that represents one current of thought within
the other, larger research program. Th!s does not Imply that the views expressed in this
thesis are held by other members of the Formal Reasoning project or by Its sponsors. It does
imply, however, that this research has been guided by the author's views of this coliective

effort.

Nowadays, most researchers in the fields of automatic theorem proving and proof checking
would agree that one of the general long term goals underlying their research is to provide
practical computer systems that can be used as a research tool by working mathematicians.
There are marked differences of opinion as to how this goal is to be accomplished. The
purpose of this section Is to give a broad overview of the main currents and thelr
shortcomings, in order to see our contribution in its relationship to that research tradition.

.......




Introduction. 3

AUTOMATIC THEOREM PROVING. The general goal of research in automatic theorem
proving has been to produce programs that can prove mathematical theorems automatically
and to find useful formalisms, decision procedures, and heuristics for this purpose. Some early
researchers thought that machines would eventually surpass humans in their capacity to find
proofs of mathematical theorems. While that assumption has not been disproved, progress has
been generally slow and the realization of that promise does not seem to lie in the near future.

The most successful general purpose algorithm used in automatic theorem proving is the
resolution principle by Robinson [Robinson 1865]. Many, if not the majority, of the successful
theorem proving programs are based on resolution. Resolution is a sem/-decision procedure
that Is sound and complete for the pure first order predicate calculus [Nilsson 1871,
Luckham 1967, Lee 1967, Slagle 1871]. Thus, while It Is theoretically possible to find
resolution proofs of any theorem that is provable within that logical caiculus, in actual practice
only rather simple theorems have been proved because the size of the space of possibilities
that must be searched by the computer rapidly explodes beyond the power of present days
computers for more difficult theorems.

The same Is true of other general purpose decision procedures. Thus much research effort
is invested Into finding heuristic! rules for pruning the search space. All of the more
successful theorem proving programs, whether they are resolution based or not, use heuristics
tfor guiding their search for a proof.

The problem with heuristics is that they tend to be domain specific. Just as
mathematicians develop competency in particular domalns of mathematics, it lies in the very
nature of heuristics that they gain power by loosing generality.

Thus the effort to Increase the power of theorem provers by incorporation of heuristic
algorithms, Inevitably leads to more specialized, domain specific theorem provers [Pastre
1978, Nevins 1975a, 1975b, Brown 1977a, 1977b, 1978, Bledsoe, Boyer and Henneman
1972, Goldstein 1973, Bundy 1973]. Given the large amount of work required to program a
theorem prover, this is not a desirable state of affairs.

Because of the specialization of theorem provers, they tend to incorporate into their
design the formalisms most suited for the domain for which they are intended. This forces the
user to express his problems in the formalism understood by the theorem prover and thereby
limits its usefulness.

PROOF CHECKING. The recognition that the correctness of proof in a logical formalism can
be mechanically veritied Is much older than the computer. However, research into practical
computer programs for this purpose came only after the Initial optimism regarding the
possibilities of automatic theorem provers had been tempered [McCarthy 1862, 1966,
Abrahams 1963, Bledsoe and Gilbert 1967].

A proot checker Is a program that incorporates the rules of a logical calculus so that it can
verity that a proof is actually correct according to that calculus. For this, it needs to
recognize the different objects of the calculus and to be able to perform its various inference
rules.

1 Heuwristic: ald to discovery.




introduction,

A proof checker is as general as the logical formalism it embodies. Some logical formalisms
are so general that practically every domain of mathematics can be expressed in it. Thus
proof checkers offer the possibility of verifying any formal proof.

Among the most general and successful proof checkers we find AUTOMATH [De Bruijn
1974), EXCHECK [Smith and Blaine 1976], and FOL [Weyhrauch 197T).

FOL is based on the well known first order predicate calculus [Mendeison 1964], and it
will be discussed extensively in this thesis.

Automath is based on a new formal language developed by the leader of the Automath
project, N. G. de Bruijn. The Automath language [De Bruijn 1970, 1871] is radically different
from the first order predicate calculus. It was conceived as a universal language for writing
mathematical books in a way that they can be proof-checked by machine, and it seems to be
as powerful as first order predicate calculus but it is much less well known to the
mathematical community. The largest proof checking project realized in Automath [Jutting
1977] is of a size and scope comparable to the projects undertaken in FOL, like the
construction of a proof for Ramsey's theorem by this author [Weyhrauch et al. 1979]. Unlike
FOL, the Automath proof checker is not interactive.

EXCHECK Is an interactive proof checker for first order logic like FOL, conceived
aespecially for mathematics instruction at the undergraduate level. It has been programmed by
a group at the Institute for Mathematical Studies in the Social Sciences, and is currently used
for teaching purposes at Stanford University [Suppes 1976].

Less general than FOL, but oriented by the same spirit towards /nteractive construction of
proofs, are the LCF proof checkers [Milner 1972b, Gordon, Milner and Wadsworth 1877].
They are based on a formalism suited for verification of correctness of computer programs.

The main shortcoming of present day proof checkers is that the logical deduction steps
they can check are too atomic, that is too small, as compared with the way humans reason.
Formalizing proofs in a formalism like first order predicate calculus, or Iin the Automath
language, is a tedious exercise comparable to programming a computer in assembly language2.
This is the reason why [Jutting 1977, Weyhrauch et al. 1978] are probably the largest
projects aver carried out on a proof checker.

in actual practice mathematiclans do not attempt to produce formal proofs in a logical
formalism. Their proofs are arguments whose validity is checked by other members of the
mathematical community; their standards of rigor are based on a living tradition and have not
been explicitly laid down. For almost all current mathematical theories, it is known that the
proofs given by mathematicians can be reduced to fully formalized proofs in the first order
predicate calculus [Shoentield 1867], and some mathematiclans have a falrly clear idea as to
how to do this, but they would almost never bothar to carry out this reduction because fully
formalized proofs are very long and tedious.

In order for proof checkers to become valuable tools in mathematical practice, it will be
necessary to either develop more powerful logical formalisms or to provide proof checkers

21t is In fact much more ditficult than assembly language programming.
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Introduction. 5

with the abllity to fill in many of the details of a proof. The later approach will be investigated
in this thesis.

INTERACTIVE SYSTEMS. There are Interactive theorem provers [Allen and Luckham
1970, Morales 1973, Bledsoe and Bruell 1974] and interactive proof checkers [Weyhrauch
1977, Milner 1972b, Gordon, Milner and Wadsworth 1977]. An interactive theorem prover
attempts to remedy the limitations of theorem provers by providing the possibility of human
guidance of the search for a proof. Interactive proof checkers construct the proof in an on-
line conversational process with the user; this kind of system we shall call /nteractive proof
constructors.

There is no clearly defined botindary between interactive theorem provers and proof
constructors. The distinction rather rests on the approach that gulded the development of the
system, so that some systems have more of the flavor of theorem provers and others that of
proof checkers. Thus an interactive theorem prover can become a tool for interactive
generation of proofs [Bledsoe and Bruell 1874].

On the other side, the power of an interactive proof checker can be expanded by the
inclusion of theorem proving facilities; this thesis develops a methodology for this.

GOAL ORIENTED SYSTEMS. A formal proof of a theorem starts with the axioms and
consists of a series of logical deductions which leads from those axioms to the theorem. Thus
it has a bottom up structure. It is the task of mathematicians to discover new theorems they
believe to be true and to prove their validity by giving proofs of them. Thus it is always the
case in mathematical practice that the apparently bottom up line of reasoning of the proof has
been constructed a posteriori to the discovery of the fact it proves, and that its construction
has been guided by this fact.

Several researchers, coming from the theorem proving side, have developed goal oriented
reduction rules to guide theorem provers towards the theorem [Bledsoe 1871, Nevins 1874,
1976b, Ernst 1971, Brown 19877a, 1978]. Similar reduction rules can be incorporated into
an interactive proof checker. This has been done first In the earlier LCF proof checker at
Stanford [Milner 1972b], and then independently Improved, along different lines, by the
Edinburgh group [Gordon, Milner and Wadsworth 1977] and by us.

PROGRAM VERIFICATION. Research in program verification is related to proof checking
because both problems are similar in nature. Researchers In this field look for formalisms in

W the conditions of correctness of a program can be formally stated, and develop
P 18 that can check the proofs of correctness in those formalisms. They hope that
proes. that verity the correctness of programs will become a practical tool in software
develo, nt.

Thus ne of the motivations for research In proof checking is that advances in this field
are likely ~ serve the more practical field of program verification, in two ways: because
practical con outer systems for both tasks are likely to be similar, and ailso because the
conditions of correctness of a program can be formalized in a logical language like the first
order predicate calculus [McCarthy 1963, 1966, 1977, McCarthy and Painter 1967,
Cartwright and McCarthy 1979, Milner and Weyhrauch 1872a, 1872b, Weyhrauch 1976,
Weyhrauch et al. 1879, Cartwright 1976, Wagner 1977], thus reducing one problem to the
other.
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INTERACTIVE PROOF CONSTRUCTION. The availability of the FOL system has spurred .
research In interactive construction of proofs of non-trivial theorems in various fields of
mathematics [Weyhrauch et al. 1978]. Refore starting work on the GOAL language
described in this thesis, the author constructed a proof of Ramsey's theorem in 600 steps,
and proofs of the first 88 theorems in [Kelley 1955] totalling 2000 steps. The complete .
proofs are presented in [Weyhrauch et al. 1978]. Because of the generality of first order -
predicate calculus as a means for the formalization of reasoning, the avalilability of FOL has \
also originated research into the axiomatization of several domalins in this calculus [McCarthy,
Sato, Hayashi and Igarashi 1978, McCarthy 1877, 1979].

AP AP RN YR

To our knowledge, the only interactive proof constructor comparable to FOL is the recently
developed LCF proof checker at the University of Edinburgh [Gordon, Milner and Wadsworth
1977]. Based on a formalism oriented towards program verification [Scott 1969, Scott and
Strachey 1972], it is less general than FOL but it shares much of the same spirit.

L

We do not know of any large size proofs produced with the LCF system, but we have
recently learned that they have developed a user oriented metalanguage ML for programming
proof strategles [Gordon, Milner, Morris, Newey and Wadsworth 1878]. Our language has
been developed independently, is quite different from theirs, and it appears to be an equally
flexible tool for programming user designed strategies, except for the fact that this can be
done using high level commands in ML but, for the time being, only at the LISP level in GOAL.

v
Yy g~ v

- v, e

v

Because of the greater generality of FOL, theories described in LCF can be axiomatized
and dealt with in FOL, while the converse is not always true. Also because of the flexibility
and extensibility of GOAL, we can program in GOAL any tactics or strategies one cean do in
LCF. Thus, if one wishes to use FOL for some domain of knowledge for which LCF appears to
be Initially better suited, for instance proving assertions about recursive programs, one has
first to find a suitable axiomatization in first order logic for that domain of knowledge
[(McCarthy 1977], and then one can program strategies that s/mulate the LCF deduction rules
in that axiomatization. Doing so, one would have a system where there is one GOAL command
for each deduction rule of LCF, and one can still chain these into more complex strategies,
thereby achieving the same effects as in the LCF metalanguage.

W MR, SR S AR A, gy w

1.2, Aims and scope of this thesis.

The research of the Formal Reasoning group at the Stanford Artificial Intelligence
Laboratory Is centered on the concept of Interactive construction of checked proofs and is
presently committed to the first order predicate calculus as an universal language for
expressing mathematical reasoning. The principal computer system used by this group is an '
interactive proof checker for this calctlus, FOL [Weyhrauch 1877, 1978a), developed and :
implemented mainly by Richard Weyhrauch. FOL is based on Gentzen type deduction rules .
[Gentzen 1935, Prawitz 1865]. In a later section, it will be described to the extent :
necessary for an understanding of this thesis. The research presented here depends on the -
avallability of an Interactive proof constructar. Thus we take FOL for granted and we shall )
not discuss the choice of the first order predicate calculus.
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This doctoral thesis presents a GOAL ORIENTED COMMAND LANGUAGE, GOAL, for FOL,
that has been developed and programmed by the author. To my knowledge, this is the first o
attempt to Implement a fac™ty of this type in an environment as general as FOL. GOAL has
benefited from some ideas Iimpiemented by Weyhrauch and Milner in a goal command language
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for the early version of LCF [Milner 1972b, 1972a], an interactive proof checker for Scott's
Logic of Computable Functions [Scott 1869, Milner 1973], that was a forerunner of FOL at T
the Stanford Artificial Inteiligence Laboratory. @

The main goal of this work has been to facilitate interactive construction of proofs by
providing a facility to work in a top down manner, that Is to work backwards from the goal (a
well formed formula) towards the simpler subgoals, Iterating this process until a set of
formulae Is obtained that can be proved more easily. When these are proved, the GOAL
system produceas the proof of the goal from those formulae. It does so by calling the very FOL '@
deduction rules that, if they had been called by the user, would produce the same proof, and
the proofs steps generated by GOAL are indistinguishable from those generated using the
forward proving commands of FOL. We have strived to keep our system consistent with FOL
in the sense just explained.

In FOL, proofs are constructed bottom up, that is from the simpler facts towards the goal H
which exists in the mind of the user. FOL offers a number of inference rules and decision s
procedures to carry out this task. Each inference command or decision procedure produces a e
new line of the proof, based on axioms and/or previous lines that must be explicitly referred N
to by the user. R

The commands available in GOAL for carrying out the reduction of a goal to simpler [‘.“
subgoals are the inverses of FOL commands, and the GOAL commands available for matching e
(l.e., directly proving) goals use the decision procedures available in FOL. e

..< LN\

Another aim of this work has been to provide the user of FOL with facilities for automatic ::f:::.’
generation of proofs of simple lemmas, so as to drastically reduce the amount of work e
nacessary for interactive proof construction. This aspect takes us into the reaim of automatic prace
theorem proving, and some of the ideas are novel. "‘!"'

independently, [Bledsoe 1871, Brown 1977a, Pastre 1978] have used the idea of S
subgoaling in theorem proving, and Bledsoe's group has developed and interactive theorem e
proving system. All these researchers h~-ve been concerned with theorem proving rather than
proof checking. ‘.

—

The automatic theorem proving routines presented hers are subordinated to the structure ?_:l:
of FOL and GOAL. They operate strictly by calling the simpler reduction rules of GOAL and the oo
decision procedures available in FOL. Thus they are heuristics for sequencing the commands r
available to the user, who could himself call the same sequence. It seems to be the first time I.:-j'.:
that theorem proving Is tackled from this angle, at least in a first order logic environment, and et
we understand this to be the sense of the desire shown in the quote from [Slagle 1876], in -.-
the introduction to this document. j-‘_ljj

SN

Furthermore, GOAL has been designed so as to allow for easy addition of new reduction j-'}
rules and new theorem proving facilities. These can be programmed by the user, and o
incorporated Into GOAL by passing their names to a routine that "introduces" them to the e
GOAL environment, after which they can be called using the GOAL syntax. 2

(]
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Introduction.

In this way, GOAL becomes something like a programming language for automatic theorem
proving. A user working on a particular domain of mathematical knowledge may observe his own
) behavior and identify the strategies that appear to be most fruitful in that particular domain,
- and may wish to program those strategies into GOAL.

The idea of a user oriented programming language for theorem proving applications has
been developed independently by the Edinburgh group [Gordon, Milner, Morris, Newey and
Wadsworth 1978], and is otherwise new. It has not been implemented at a sufficiently high
level in the present version of GOAL, in the sense that the user who wishes to add new
strategles will still have to understand some aspects of the GOAL code, and that for the time
being these additions have to be programmed at the LISP level. But, once a certain familiarity
with the code has been attained, powerful new strategies can be programmed in a few hours
and simple ones In less than one hour. For future work in an interactive proot construction
environment, we envision rescarchers having shared libraries of theorem proving strategies,
documented as to the nature of applications for which they are most useful.

While it was in the initial conception of the GOAL language that it should allow for easy
extension by the user, it was only after experimentation with this system that | realized the
practicability of a higher level programming language for user designed strategies in a first
order logic proof construction environment. In the environment of FOL and GOAL, a transiator
for such a language can be implemented fairly straightforwardly.

The results obtained with this approach to theorem proving are encouraging. We present
here a strategy, LOGIC, that has proved a number of theorems in Set Theory, including the
first 33 theorems in the Appendix in [Kelley 1955], fully automatically. More important is the
fact that in most cases failure of this routine does not mean complete failure; it rather means
that it carried out much of the work and it did not know how to prove one or more of the
subgoals it generated. The user can then either proceed towards those unproved subgoals or
cancel some branches of the goal structure that was generated and retry those goals.

Thus the GOAL language permits the FOL user to arbitrarily blend different styles of proof:
the deduction oriented, bottom up style; the goal oriented, top down style; and the automatic
theorem proving one.

An important building block of LOGIC is the FOL command for syntactic simplitication.
Syntactic simplification consists in recursively rewriting a formula by left to right replacements
by a user specified set of equalities and equivalences. This idea Is also found in Bledsoe
[Bledsoe 19871] and In the LCF proof chacker. It was first implemented in FOL by the author,
. then the code was improved by Andrew M. Robinson in order to deal with sorted variables.
. The FOL implementation of syntactic simplification allows for creation and naming of arbitrarily
: many user defined simplification sets. In GOAL some simplification sets are automatically
. created, used and expanded down the nodes of the goal tree. In axiomatic Set Theory,
- syntactic simplification turns out to be a very fruitful tactic.

The idea of syntactic simplification has already been recognized by several researchers -
as a powerful aid In theorem proving. In the theorem provers of [Bledsoe 1871, Pastre 1978,
Brown 1977a, 1978], we find that one fixed, though perhaps extensible, set of reduction
rules is presented as a knowledge base of the theorem prover. The knowledge bases thus
presented are domain specific, often fairly large, and the'' substantially contribute to the o
power of those theorem provers.

RIS
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We have found that the use of automatic simplification in theorem proving is not without
problems. Sometimes It Is crucial that the formulae are simplified early, at other times one
wishes to postpone simplification. In FOL, one can have as many different, user designed
simplification sets as one wishes, and one can add or subtract knowledge to them at any time.
They can be referred to by names. In this, FOL Is like the LCF proot checkers [Milner 1972b,
Gordon, Miiner and Wadsworth 1977].

in GOAL, the user has control over when simplification is effected, and we have strived to
give him a fair amount of control over what goes into the simplification sets (or, shortly,
simpsets) that are automatically created by the GOAL system. In any case, these
automatically created simpsets are not used unless the user, or a strategy, requests it. In
this, GOAL is unlike the goal language of the LCF proof checker, in which simplification Is often
done automatically, as a standarized proof mechanism, upon creation of subgoals3.

Conditional simplification has been implemented in GOAL, in a way that is quite different
from conditional simplification in the Edinburgh LCF system. In that system, conditional
simplification means that the system will not simplify against certain equivalence or equality
rules if there are certain variables and type variables that are shared between these rules
and the hypotheses on which they depend. The details of this, as described in [Gordon,
Milner and Wadsworth 1977] seem to be relavant only for an environment based on Scott's
loglc, but not for a first order logic environment. Also because the large amount of user control
over the creation and use of simplification sets in GOAL, we have never encountered problems
that would make that kind of conditional simplification necessary.

Our version of conditiona! simplification has been implemented only in the context of
automatic theorem proving strategies, and it consists in the following: when a WFF is being
simpliified, simplification of those sub-expressions (sub-WFFs) that are potentially unifiabled
against Vis in the list of facts not included in the simplification set will be inhibited.

in other words, while in the LCF system conditional simplification means that certain rules
will be inhibited, we have found this unnecessary, and instead we inhibit simplification of
certain parts of the wff baing simplified, while leaving all of the rules active (notice that the
part that is being inhibited might have been simplified not as a whole, but some part of it
might have been simplified by some rule in the simplification set; our version of conditional
simplification will inhibit rewriting of any subparts of the inhibited part, but the rules that could
have acted on it will still ba active in the rest of the WFFS,

3 White this is true for the early LCF proof checker developed at Stanford, the manual for Edinburgh LCF says little about the
goal structure and simplification, except that "the basic outline (of simplification) remains as In the original Stanford LCF system®
and that it is "the only standarized element of automatic proof in the system* (page A-39).

4 Because they have the same structure, In the sense described in the sections on UNIFY In this document.

8 See the PAIR exampie presented In this document.
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introduction. 10
1.3. Overview of the Goal Command Language.

GOAL consists of a tree like data structure called the goal structure, and of a set of
commands that operate on that structure. Each node of the goal structure is a goal. At the top
level, the user creates a goal by spacifying a WFF to be proved and, optionally, a set of facts
or assertions: axioms, previously proved lemmas, or WFFs to be assumed. This will become
clearer in chapter 3.

From a functional point of view, there are three main types of commands: tact/cs, matchers,
and strategles.

The tactics are commands that reduce a goal into subgoals (the term goal refers both to
goals created by the user and to subgoals created by tactics). The matchers attempt to prove
a goal directly; they either succead or fail, but they do not attempt to reduce the goal into
subgoals. The strategl/es are programmed sequences of applications of tactics and matchers.
With few exceptions, the subgoals created by tactics are necessary and sufficient conditions
for the goal to be true. Thus the goal trees are and-trees. We have not attempted to deal
with or-trees, although this can be done without major modifications to the goal structure. Our
reason for excluding or-trees is that they would drastically Increase the search space,
specially in the context of the strategies for automatic theorem proving. Where the user is
controlling the expansion of the goal tree, that is by using the tactics interactively rather that
using powerful search strategles, or-trees are probably an unnecessary waste of storage
space.

The reduction rules incorporated in the tactics of GOAL are similar to those in [Bledsoe
19871, Brown 1877a, 1878, Pastre 1878]. These researchers used reductions of goals into
subgoals as a tool in theorem proving. The most complete theoretical description of subgoaling
Is that of [Brown 19877a, 1978). He views a goal as a collection of assertions plus a
collection of WFFs to be proved from those assertions, and presents a set of reduction rules
more complete than the other two researchers above. Almost all of these rules are present in
our system, though sometimes in a different form. The main exception is his rule of
skolemization on assertions, in which an existentially quantitied variable of an assertion is
instantiated to a Skolem function; this rule is not present in our system In all generality, and
the UNIFY mechanism of FOL only partly makes up for its absence.

In order to do successful theorem proving, it Is as important to operate on the facts as it is
to operate on the goals. From a theoretical point of view, goals ought to be viewed as a
collection of both a WFF and a set of facts, and the reduction rules ought to be described as
operations on these collections, as in [Brown 1977a, 1978]. In our system, there is a
mechanism of goal preparation that does some of the work on the facts, or assertions, of
goals, and some of thae tactics operate on facts. It must be admitted, however, that the
treatment of assertions in GOAL lacks uniformity with respect to that of the WFFs of goals,
and that this s a weakness from the point of view of theorem proving. On the other hand, our
principal aim was to make an interactive goal command language for FOL, rather than to make
a successful theorem prover. The problems encountered with the treatment of facts will be
considered in more detall in the sections that deal with automatic theorem proving strategies
in GOAL.




11

2, THE FOL SYSTEM,

2.1. Brief description.

This section gives s brief description of FOL, intended to help those readers that do not
have the FOL manual [Weyhrauch 1877] at hand. A description of the more esoteric aspacts
of FOL, that do not concern us here, will be available shortly [Weyhrauch 1978a}.

FOL Is an interactive proof constructor based in the first order predicate calculus. its
deduction rules are of the Gentzen type. It has declarative commands, deduction commands,
and decision procedures.

The declarative commands serve to give names to variables, constants, predicate and
function symbols, and to introduce axioms. Thus various theories can be defined.

The deduction commands and the decision procedures serve to create new iines of the
proof. An axiom or a line of the proof will be called a VL.' Vls have the following parts: a line
number, or In, the case of an axiom a name; a well formed formula (WFF)2; a list of
dependencies; and a reason that tells how the VL was obtained. These parts will be explained
in the sequel,

ASSUMPTIONS. A line can be assumed, using the assume command. An assumed line
depends on itself, and any VL that depend on an assumed line carries with it the dependency
on that assumption. Thus FOL keeps track of dependencies.

DEDUCTION RULES. Dependencies on assumptions can be discharged using the deduction
command, also called /mplication Introduction: If a WFF B has been proved using an
assumption A, then one can deduce the WFF A>B which does not depend on A any more.

EXISTENTIAL RULES. If the main quantitier of a VL is the existential symbol 3, a name can
be assumed for the quantified variable; this is the rule of existent/al specilalization or
elimination. A new VL is generated In which the assumed name appears in place of the
quantified variable. This VL carries a dependency on itself because of the assumed name, but
this dependency cannot be discharged by the deduction command. If the assumed name
disappears from (or Is not free in) the WFF of a VL that has been proved with help of Vis that

1 The word "VL" will be used extensively in this document. It can be thought of as a line of the proof, i.e. an already proved or
assumed fact, if one bears in mind that axioms are to be subsumed In this concept. in FOL there are no predeciared axioms,

oxcept for the ruies of the loglc. Thus all axioms are entered by the user.
2 By an abus de langage we will sometimes use the word VL to refer to the WFF of a VL. The concept of VL is unnecessary In

mathematical logic, where a VL s simply a proved WFF, but it becomes necessary to Introduce this concept when talking about
the machine implementation of FOL.
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The FOL system. 12

depended on that assumed name, the dependency on the VL where the name was introduced
will disappear. However, there are some exceptions to the last statement: for instance, if the
same name was assumed for two diffarent existential eliminations, and if a VL is generated
that depends on both eliminations, then these depaendencies will not disappear even when the
assumed name is not present any more.

Conversely to the rule of existential specialization, there is one for ex/stential
generallzation: any subset of the occurrences of a term in the WFF of & VL can be
generalized to an existentially quantified variable.

UNIVERSAL RULES. If the main quantifier of the WFF of a VL is ¥, the quantified variable
can be specializad to any term, thereby eliminating the leading quantifier. Conversely, a free
variable can be generalized by introduction of the universal quantifier ¥, provided the variable
is not free in any axiom or in any VL upon which that one is dependent.

AND/OR RULES. From two Vis stating A and B, respectively, a new VL stating AAB can be
obtained; conversely, from AAB either A or B can be obtalined. From a VL A and for an
arbitrary WFF C, either AvC or CvA can be obtained.

REWRITE. The rewrite command effects syntact/ic simplification by a set of equivaiences
and/or equalities; such sets are called simpsets. Any occurrences of the left hand side of
these equivalences or equalities are replaced by the corresponding right hand sides, until the
process cannot be further iterated. When a VL is given to the rewrite command, an equivalent
VL is produced and added to the proof. When a WFF is given, if it rewrites to TRUE this WFF is
added to the proof as a new VL; if it rewrites to a different equivalent WFF, a new VL stating
this equivalence is generated. When a term Is given and It rewrites to a syntactically
different term, the equality of the two expressions is stated in a new VL.

Simpsets are defined by specifying a set of axioms and/or Vis. When new Vis are
obtained by the rewrite command, the simpset is part of the reason of the new VL, which
depends on any Vis of the simpset that were actually used In the simplification process. That
is, the rewrite command is smart enough so it does not make the new VL depend on the
dependencies of all the VLs in the simpset, but only on those that were applied as rewrite
rules in that particular call to the command. Rewrite, simplification sets, and match trees3 are
explained in pages 49 through 65 of the FOL manual [Weyhrauch 1977]. The rewrite
command obeys the following syntax.

3 Simpiification sets are represented intemally by LISP objects called match trees. But a user can think of the two words:

simpset and match tree, as synonyms. What is important, from the user's point of view, is that sets of rewrite nies can be
stored and refermred to by a identitiers. These Identifiers must be declared to be of type simpset.

- . .
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Syntax:
REWRITE ALT[ <WFF> | <VL> ] BY <simpsetexpr>;

Simplification set expressions are defined by the syntax below, where *," means to take
the union of the given expressions. The binding powers of “,* , “u" and "\* are that "," binds
least strongly, *\" has an intermediate binding power, and “v" is strongest.

Syntax:

<simpsetexpr> := { <vllist> } | <simpset> |
<simpsetexpr> , <simpsetexpr> |
<simpsetexpr> U <simpsetexpr> |
<simpsetexpr> \ <simpsetexpr>

In this BNF form, a s/impset is an idantifier that has been declared to be of type simpset.
And a VLLIST is a list of Vls and axioms, separated by commas. To form & simpsetexpr, that list
must be enclosed in curly brackets: {}.

DECISION PROCEDURES. FOL has saveral decision procedures. One of these is TAUT. If a
WFF is a tautology, or If it follows tautologically from a set of axioms and Vis, a new VL
stating this WFF can be obtained by the TAUT command. The new VL depends on the union of
the dependencies of the Vis that the user said were necessary to obtain the new one. That
Is, this command is not as smart as REWRITE in eliminating unnecessary dependencies; for
instance, if the WFF is a ground tautology per se but the user said it follows tautologically
from a certain /L that has dependencies, these will be carried over.

Similar to TAUT is TAUTEQ, that includes the rules of equality. Other decision procedures
are: MONADIC, that decides validity of WFFs whose prenex normal form [Mendelson 1864] is
such that all universal quantitiers precede all existential onesd, UNIFY, a decision procedure
that matches quantified WFFs whose matrices® are isomorphic® and attempts to find a set of
solutions to the quantified variables. UNIFY was developed by R. Weyhrauch and A. Chandra,
and is as yet undocumented?.

Sometimes REWRITE acts as a proof procedure: namely when the WFF rewrites to TRUE, in
which case the WFF is stated as a new VL. The same happens with SIMPLIFY, a command for
semantic simplification that will not be discussed in this thesis.

4 11 this seems confusing, see alse the fooinote about MONADIC in the section on matchers in the next chapter.

5 The WFF that remains after removal of the leading quantifiers.

6 in the sense that they have the same structure of logical connectives.

7 UNIFY is not related to the unification algorithm that is used in resolution theotem proving. May be it ought 1o be renamed to
avold this confusion.
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RESOLVE. A variation of UNIFY is RESOLVE. If a VL is a disjunction, perhaps preceded by
some quantifiers, and the negation of one of the disjuncts can be unified against another VL,
the other disjunct can be stated as a new VL., where some of the quantified variables are
instantlated according to the solutions obtained from the unification of the other. At present
RESOLVE has some bugs and some unresolved theoretical problems, nevertheless it has been
used in the GOAL because it is a powerful command for the purposes of automatic proof
generation.

SORTS. In FOL, variables can be declared to be of some sort. Predicates and functions can
be declared to take arguments of some sort. Functions can be declared to produce terms of
some sort. Thus some terms are recognized by FOL as being of a certain sort. Some sorts
can be declared to be at least as general as others using the MOREGENERAL declarative
command. For instance, in several versions of Set Theory there are sets and classes, the
later being more general than the former.

Sorts affect many of the previously mentioned commands. In particular, they affect the
quantifier rules and the simplification commands. They also affect the UNIFY command, but the
current version of UNIFY does not take sorts into account.

Sorts introduce many complications, some of which have not yet found a satisfactory
solution. They shall not be dealt with in this thesis.

ADMINISTRATIVE COMMANDS. There are also some strictly administrative commands, the
most important one being the SHOW command, used to display axioms, V/Ls, declarations, and
proofs. In GOAL there Is an analog to the show command. Another important one is the CANCEL
command, used to erase a proof or an arbitrary end segment of It; that is, all the VLs with line
numbers greater than or equal to the number passed as argument. There is also a GOAL
analog to this command.

2.2. The style of proof construction in FOL,

FOL has no facllities other than GOAL for goal oriented proof construction. Formal proofs in
FOL are much longer than the informal proofs of mathematics; this is true even for the more
formal domaing like axiomatic Set Theory. Tha user has to type at least as many commands as
there are VLs in the proof.

When constructing a proof, it is often difficult to keep track of its overall structure
because one's attention tends to get caught in the detall. This is because the commands are
so atomic: facts that appear obvious to the mathematician often require a dozen or more
commands and a considerable amount of detail work.

This problem does not rest with FOL, but with the first order predicate calculus. Logicians
seldom use this calculus to prove any theorems; rather, thay study it in order to make sure
that their theorems can be proved in the calculus. When they expound formal theories In

AT

L@
K AN
. . .
»




......

The FOL system. 16

books, the majority of the proofs given do not fill in all the detalls. These proofs aim at
convincing that one knows how to fill in the missing details. Complete formal proofs of some
simple theorems are only given as pedagogic examples. However, no formalisms that are
convincingly more powerful and equally general as this calculus are known at present.

One way of alaeviating this problem Iis to add to FOL facilities for automatic generation of
proofs of "obvious* facts. Another is to look for commands that produce shorter proofs. Of the
later kind, the simplification commands are very useful; so are also the decision procedures
TAUT, TAUTEQ, MONADIC and UNIFY and the related RESOLVE command. Of the first kind are
the strategles for automatic proof generation described in this thesis.

Yet the principal way in which GOAL attempts to aleviate the problem is by providing a
facility for goal orlented, top down proof construction. In any case, the final proof looks the
same; but the tree-like goal structure can be used as a recordkeeping facility that remembers
the structure of the proof and can be referenced at any time when the user wishes to remind
himself of what remains to be done.
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3. THE STRUCTURE OF GOAL.

3.1. Overview.

This chapter describes GOAL. First it describes the data structure upon which GOAL
commands operate, called the goal structure. Then it describes the GOAL commands.

The data structure is a list of goal trees. Each goal tree Is a recursive data structure in
which all nodes have the same structure. The root of the tree Is a top /evel goal, any nodes
below are subgoals. The term goal refers to either. Top level goals are created by the user
using the GOAL command. Any other goals are created by the tactics described below.

There are several types of GOAL commands. The GOAL command that creates top level
goals. The ABANDON command that prunes a branch of a goal tree. There is also an
administrative showgoal/ command. But the most important GOAL command is TRY. It is used to
invoke the operative elements that operate on the goal structure. There are three types of
operative eslements: tactics, matchers, and strategies.

The tactics create new subgoals by decomposing a goal. The matchers attempt to prove a
bottom level goal, or leaf of a goal tree, directly. The strategies are programmed sequences of
applications of tactics and matchers.

Goals have statuses; the three mutually exclusive statuses are: untried, tried, and proved.
At any time, the leaves of a goal tree are either untried or proved, and the other nodes are
tried. Trylng & goal means invoking an operative element on it. Only untried goals can be
tried. However, trying a goal changes its status only if the operative element succeeds; then
it becomes either proved or tried. Tried (but not proved) goals can be abandoned, in which
case they become again untried.

The difference between the three types of operative elements can be defined precisely
with regard to the GOAL code. However, from the point of view of the functional
characteristics of the operative elements, this classification Is not as clear cut: some tactics
may succeed in proving a goal directly, in which case they act like a matcher; and some
strategies may do little more than a tactic, while others may be powerful theorem provers.

Each goal has a number of parts, some of which may be empty. These parts carry data
that is used and changed in various ways by the GOAL commands that operate on and change
the goal structure., Among the parts of a goal we find facts and s/impsets. The operation of
trying a goal has a side effect called preparation of the goal, that often introduces changes
to these parts. The special command prepare can be invoked by the user to provoke this side
effect without actually trying the goal; this may add new facts or simpsets to the goal and
new lines to the proof.

Goals can be referred to by a numbering system. In most GOAL commands, the user can
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elther give an explicit reference to a goal or use the default for that command. There are
three basic defauits: the current, the next, and the /ast goal. These are pointed to by global
variables that change dynamically as the man-machine conversation unfolds.

3.2, Goals.

The Goal Structure is roughly speaking the converse of the proof structure in FOL. In the
proof structure, new lines of the proof are produced by invoking FOL inference commands or
decision procaedures. In the goal structure, the user specifies at the top level the WFF to be
proved, giving also some Information as to the facts that need be used and how they will be
used. Tactics decompose this WFF into sets of subgoals. The subgoals are sufficient, and
with a few exceptions also necessary, conditions for the original goal to be true.

This process of tearing apart goals can be applied recursively so that a tree structure is
generated. At any moment, the leaves of the tree represent sufficient conditions for the root
of the tree to be true, and the system knows how to produce a proof of the original goal when
all the leaves have been proved.

Top level goals are those created by the user directly. invocation of tactics create sub-
goals of a goal, which we call its sons. Thus, top level goals are those that do not have a
parent. The sons of a goal behave In every respect like a goal, therefore the term goal/ wiil
refer indistinctly to goals at any level in the tree.

At any time, a goal has one of the following statuses:
UNTRIED: it has no sons and it has not been proved;
TRIED: it has sons (these have been necessarily created by a tactic);

PROVED: the WFF of the goal has become a line of the proof
(and the structure remembers the number of that line).

When the last son of a tried goa! Is proved, the system immediately proves that goal; that
Is to say, it applles some deduction rule of FOL to the lines that correspond to the proved
sons, thereby generating a new line of the proof that matches the WFF of the goal whose
status then becomes proved. We cali this process unwinding; its result is a FOL proof that
fooks the same as one generated by a user of FOL.

When a goal is proved, its sons are ramoved and cannot be accessed any more (i.e., they
will be eventually disposed of by the LISP garbage collector).
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3.3. Treatment of assertions (or facts).

This section offers an overview of the treatment of facts or assertions in GOAL. It refers
to several concepts that will be explained in detall in the following sections. Facts are
treated mainly by the prepare mechanism. A complete description of this subject will be given
in the section on goa! preparation.

It has been said in the introduction, that “ne should view goals as sets of WFFs to be
proved and sets of facts or assertions. In the implementation of GOAL, the facts are attached
to the goal as an a-list. The facts are axioms or VLs. The user can also specify WFFs to be
attached to this list; in this case, the preparation mechanism (that will be explained later)
assumes these WFFs using the FOL command assume; thus they become Vis.

The facts of a goal are passed down to its sons. Often new facts are added to sons.
Thus, with a few exceptions, the facts of a goal are a subset of the facts of its sons.

The user can specify facts in two ways: using assume or sassume. The second option
causes the fact to be included into the list of simplification rules (simpsets) attached to the

goal.

Besides those facts given by the user, we find facts created by the mechanisms of GOAL.
Some tactics create new facts: for instance, when an implicational WFF of the form A>B is
tried by the "oi" tactic, a goal B Is obtained and A Is assumed (or sassumed, depending on the
structure of A). Also, when a goal is proved but some of its brothers are still unproved, that
goal is added to the facts of those unproved brothers and of their descendants as well. There
are still other ways in which new facts are generated; these will be discussed when we
explain the prepare mechanism,

GOAL does not offer the user as much control over the facts as it does with respect to the
treatment of the WFF of the goal. This can be seen as a drawback because it limits the kinds
of strategies that can be easily programmed.

it should be mentioned that there are two parts of a goal that hold facts: they are called
FACTS and ADDEDFACTS. Facts added to a goal, either upon its creation or later, usually go to
ADDEDFACTS, except for those created by the prepare mechanism itself. This mechanism
empties ADDEDFACTS and passes its conterts over to FACTS. There are several reasons of
implementation why we chose to do things that way; one of the effects obtained is that WFFs
given by the user using ASSUME and SASSUME are not added to the proof or put into the
simpsets until the goal is actually tried; the same delayed effect applies for other
transformations the prepare mechanism does to the facts.




See,

The structure of GOAL.

3.4. The parts of a goal.

The following parts are imbedded in the structure of unproved goals. When the goal is
untried, many of these parts are NiL. Proved goals have a different structure: they just have
a goal number, a VL (as opposed to a WFF), and sometimes a reason! that indicates how they
were obtained.

GOAL NUMBERS. They number brother goals starting with 1, Brother goals are those that
have a common parent; also the top level goals are considered to be brothers. Thus goals can
be referred by means of a list of natural numbers, each one preceeded by the token "#". For
instance: #3#1#1#2 means the second son of the first son of the first son of the third
element of the list of top level goals

GOALWFF. The WFF of the goal.

DESCENDANTS. The list of sons; these are goals.

REASON. Indicates how its sons were obtalned; it contains all the necessary Iinformation
so the unwinding mechanism can prove the WFF of the goal by referring to the Vis that prove
its sons.

FACTS. A collection of pointers to Vls that are stored with the goal; these Vis are used
by the matchers In various ways when trying to prove the goal; they are also used sometimes
by "CASES". They are stored in a list of association lists, because they may be used in a
number of different ways. Some of them may be assumptions indicated by the user, or created
by the GOAL system, or proved sub-goais that are brothers of the goal or of some of ancestor
of it.

SIMPSETLIST. A list of simpsets associated with a goal. It would be more logical to
condense all these simpsets into just one. That simpset would have to be expanded and
shrunk dynamically when the goal tree is created and traversed, and this poses problems of
implementation that make it more convenient to store lists of simpsets instead.

SIMPSETREASONLIST. A list of the VLs and names of simpsets in the S/IMPSETLIST, so that
the system can produce reasons for the steps of tha proof it generates, in the same way FOL
does. (Reasons for proof steps indicate how the V/Ls are obtained in FOL).

SIMPSETADDFLAG. A flag indicating whether additions have occurred to the SIMPSETLIST;

1 This Is not to be confused with the reason of a VL nor with the REASON of a tried goal,
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The structure of GOAL., 20

this flag Is used by some automatic theorem proving strategies in order to know whether it
makes sense to attempt rewriting anew.

ADDEDFACTS. Any information contalned here is eventually passed over to FACTS; here
there may be Vis or WFFs, indicated by the user or produced by the system; it was thought
convenient to have a separate list of this kind, because it permits to treat FACTS more
uniformly and also because it indicates whether any new facts have been added to the goal
since the last time it was tried (this information Is used by some automatic theorem proving
strategies).

QUANTELIMLIST. A list of the quantifier eliminations made down the goal tree; this has
many uses; it keeps track of bindings made in brother branches of the tree, to assumed
existential eliminations in the proof, so as to know whether a match may be such that the
proof would not unwind. It is also used by UNIFY so as to reconstruct some matches that could
not otherwise be unified. In these ways GOAL makes a limited amount of skolem/zation.

3.6. Skolemization and the Quantelimlist,

To Skolemize an existentlally quantified variable in a goal is to eliminate the quantifier and
to replace the quantified variable by a variable name that matches any term of the same sort.
An analogous operation can be done on an universally quantified varlable in an assertion of the
goal [Brown 1877a, 1978)].

For example: If a goal Is Y x.3 y.¥ 2.P(x.y,z), and we do an universal, an existential, and an
universal subgoaling operation, we obtain as a goal: P(x.,y.2). But x,y, and Z ought to have a
different status in that subgoal: x and z have to be free variables, while y could be matched
against (almost) any term. More precisely, y can be matched against any term that does not
depend on z; for instance, against a term t(x) which contains some free occurrences of x.
Skolemizing In this case means subgoaling to: P(x,/(x),z), where f(x) Is a Skolem function of
the variable x. The use of Skolem functions in theorem proving Is discussed in a number of
textbooks, for instance in [Nilsson 1971].

In GOAL, Skolemization is performed by recording quantifier eliminations in the
QUANTELIMLIST. When a variable that has besn Skolemized in this way is matched at some
node in the goal tree, then the same varlable cannot be matched again to a different term at
some other node, l.e. it is not free any more. The QUANTELIMLIST keeps track of such bindings
and records the node where the binding was made. The abandon command sometimes frees
again a variable that has been bound in this way: namely, it does so when the node at which
the binding was performed lies below the goal being abandoned.

For example, if the original gual were Yx.3y.Y2.(P(x,y,2)nQ(x,y.2)), after several subgoaling
operations we may have the two subgoals P(x,y,z) and Q(x.y.z). In this case GOAL would
remember, for either one of this two subgoals, the series of universal and existential
subgoaliing operations that were performed down the goal tree. it would be able to match the
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The structure of GOAL, 21

variable y, in either subgoal, against an arbitrary term provided it does not contain any free
occurrences of 2. Now suppose that one of the subgoals is matched. Say Q(x.y,z) is matched
against Q(x,t(x),z), for some term t(x). After that, GOAL will refuse to match y in P(x.y,z)
against anything else but t(x). We say y has become bound to t(x).

Now, what if the choice of t{x) was wrong in the first place, so that the user wants to
take it back? Both subgoals have a common parent, which Is P(x,y,.z)AQ(x,y,z). Upon this
parant (or some ancestor of it) being abandoned?, GOAL will free y so that it can again be
matched with some other appropriate term.

Further lllustration of the use of this feature of GOAL can be found later in this manuscript:
In the PAIR example shown in the section on automatic theorem proving, and in the description
of the matcher EQUNIFY.

3.6. Unwinding.

When a sub-goal (l.e. any goal that has a parent) is proved either by a matcher or by the
unwinding mechanism, its parent is looked at. If all the sons of that parent are proved, the
proof of the parent is produced; otherwise, the just proved sub-goal is added to the
ADDEDFACTS of its unproved brothers (the unproved sons of its parent), and of the
descendants of these, so they will be used by the matchers and sometimes added to the
simpsets (depending on the structure of the WFF of the proved goal).

When a goal Is matched, the unwinding mechanism also looks at the QUANTELIMLIST and
checks whether a Skolemized variable in the GOALWFF has been matched in a way that
makes it depend on some existential elimination in the proof. lL.e., it checks whether any
variables that came from existential eliminations performed in the goal tree appear as
assumed names for existential eliminations in any of the Vis on which the newly proved goal
depends. If this is the case, the said variables are bound In the QUANTELIMLIST, and these
bindings carry over to all the nodes that Jescend from the node where that existential
elimination was performed. For a proper understanding of this, the reader is referred to the
documentation of the FOL existential elimination rule in [Weyhrauch 1977].

3.7, Defaults: current, next and last goal.

There are three defaults. They are kept track by global variables. Initially they are all NIL.
If the user defaults by not specifying an optional argument in a call to a command and the
default variable for that command Is N/L at that time, the ensuing error message indicates that
the command does not know what goal to try. The defaults obey to the following rules.

2 With the ABANDON or with the RETAY command.
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The structure of GOAL. 22

NEXTGOAL. It is an untried goal. This is the default for the TRY command. Thus it can be
thought of as the next goal to be tried. It is the last goal created, prepared, or abandoned,
either by the user or by some GOAL command.

LASTGOAL. The last goal decomposed by an invocation of the TRY command. That is,
successfully tried by a user invoked tactic, or tried by a strategy that succeeds in
decomposing it.

CURRENTGOAL. The last goal tried by any tactic or matcher.

The unwinding mechanism causes the following Irregularities In the rules above: it resets
CURRENTGOAL to the tather of the last goal proved by either a matcher or the unwinding
mechanism, and NEXTGOAL to some unprovaed son of CURRENTGOAL, that is to a brother of the
last proved goal. If LASTGOAL becomes proved, then it is reset to the same as CURRENTGOAL.
When a top level goal is proved, all three defaults become NI/L.

3.8. The GOAL commands.

3.8.1. Goal creation.

GOAL. This command is used to create a top level goal. The user must specify the WFF
and can also indicate assumptions, sassumptions and simpsets. A sassumption Is an assumption
that gets also added to the simpset. The assumptions can be WFFs, VLs, or axioms. Those
that are WFFs are written onto the proof by the ASSUME command of FOL when the goal is
tried. By default, the special simpsets LOGICTREE, and COMPTREE (automatic instantiation of
the axiom scheme of comprehension for sets), are included, but the user can prevent this by
saying "NOTREES".

Syntax:

GOAL <WFF> [OPT ASSUME REPT(ALT[ <WFF> | <VL> J)]
(OPT SASSUME REPT(ALT[ <WFF> | <VL> )]
[OPT SIMPSET <simpsetexpr> ]
[OPT NOTREES ] ;

Along with the syntax of GOAL commands, we shall show examples of their use. In this
first example we start with some FOL definitions in order to set up the context of our
examples.
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The structure of GOAL, 23

Let us recall that the five asterisks: "sssss* is the prompting response of FOL. Most user's
commands end with one semicolon, except the AX/OM command that end with a double
semicolon. What comes after the semicolon, up to the next “sssss", is the response of GOAL or
FOL.

Example:

#233sDECLARE INDVARx y 22l uv w;
»++32DECLARE PREDCONST ¢ 2 [INF] ;
sexexAXIOM EXTENT: Yx y.{x=ysYu.(uéxsucy));

EXTENT: Vx y.(x=ysYu(ulxsucy))
*x¢¢AXIOM PAIR: Vx y.3w.Yu.(ucws(u=xvumy));
PAIR: ¥x y.3w.Yu(utwa(usxvym=y))

#3x5GOAL Vx y.3z.(Yw.(wezs{wexvwey)AVz]l (Vw.(wcz 1 s(weaxvwey))oz ] =2))
ASSUME PAIR SASSUME EXTENT;

Goal al: Vx y.3z(Vwiweza{waxvwey)AVz1.(Yw.(wézla{waxvwey))oz]1=2))

*35%%

3.8.2. Referencing goals.

Many commands take a goal as argument., Goals are referenced by a numbering system. A
goal reference is a list of natural numbers, each preceded by the token #. The first one is
the number of a top level goal; the next is the number of one of its sons; the following, the
number of a son of that son; and so forth. An error message ensues when a nonexistent goal
is referenced.

Syntax:

<goalref> ;= REPT(# <natnum>)

............
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' Examples: -2
#IN1H1H2

< #1

3.8.3. Addition of Facts to a Goal.

ADDFACTS. This command is used to add facts to an already existing, untried goal. It

/8.

uses almost the same syntax as the GOAL command, except that a goal reference must . .
appear instead of the WFF. This command does not have any default; the goal reference must R
be explicit. 3
= Syntax:
R.

ADDFACTS <goalref> [OPT ASSUME REPT(ALT[ <WFF> | <VL> })]
[OPT SASSUME REPT(ALT[ <WFF> | <VL> J)]
[OPT SIMPSET <simpsetexpr>]
[OPT NOTREES] ;

i The following two commands achieve the same effect as the previous example of goal
creation.

Example: .

s2233GOAL Vx y.3z.(Yw.(weza(wexvwey))AVz 1 (Vw.(w(z]1s{(w=xvwey))oz1=2))
Goal #1: VYx y.3z.(Ywiw(zs(wexvway)AVz1(Yw{w(zls{w=xvway))oz]s2))
N +24£xADDFACTS #1 ASSUME PAIR SASSUME EXTENT;

22558

3.8.4. Trying Goals.

’ The operative elements of GOAL are the tactics, matchers, and strateglies. All of these
b are called by the TRY command, using the same initial syntax; however, many of these require
additional information, that is parsed by the parser associated with that operative element.
This additional information is given at the end of the TRY command; its syntax depends on the
particular operative element and will be described In the sections on tactics, strategies, and
- matchers.
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TRY. This command is used to apply a tactic, strategy, or matcher, to a goal. The user may
specify the goal in two different ways: by a goal reference; or by an natural number, meaning
the number of a son of CURRENTGOAL. Otherwise the default NEXTGOAL is tried (if this is NIL,
an error message Is given). The user has to specify the tactic, strategy, or matcher, and give
any additional information that may be required by that particular operative element. Only an
untried goal may be tried by this command. In the syntax below, op_name is the name of a
tactic, matcher, or strategy; and op_/nfo is the additional information required by that
operative element (possibly none); these two items will be dascribed, for each element, in the
saction on the operative elements.

Syntax:
TRY [OPT ALT[ <goairef> | natnum ] ] USING <op_name> <op_info> ;

where
"<{op__name>" is the name of a tactic, matcher, or strategy, and
"<op__Infod>" is any additional, specific information required by that element.

Only untried goals may be tried; a goal whose status is tried can be abandoned and then
tried again. The following command combines these two functions.

RETRY. Combines ABANDON and TRY. This command does not admit a default: it requires an
explicit goal reference. If the goal is untried, it will be accepted and tried.

Syntax:
RETRY <goalref> USING <op_name> <op_info> ;

For an lllustration of the use of this command, see the examples in the section on ine
matcher UNIFY,

3.8.6. QED.

The QED command is to be used only when the GOALWFF is exactly equal {except for the
names of bound variables) to that of a VL. It does not cause any new line to be added to the
proof, instead it records that the goal is proved by that VL and it invokes the unwinding
mechanism.

The two arguments are optional. The defaults are: NEXTGOAL for the goal reference, and
the last VL In the proof, for the VL.
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Syntax:

QED [OPT <goairef> ] [OPT <VL> );

3.8.6. Abandoning Goals.

ABANDON. Applied to a tried goal, it makes it untried by garbage collecting its sons. The
user may specify the goal number, or by default the last goal that was tried is abandoned.

Syntax:
ABANDON [OPT <goalref>] ;

For an illustration of the use of this command, see the examples in the section on the
matcher UNIFY.

3.8.7. User invoked preparation.

PREPARE. This command invokes the preparation mechanism without actually trying a goal;
its main use Is for causing the assumed WFFs of a goal to be written onto the proof. it has a
"PLUS" switch that can be used to add facts to the goal. It uses the same initial syntax as
TRY for retferring the goal, and it has the same default, NEXTGOAL. It does not reset any of the
defauits.

Syntax:
PREPARE [OPT ALT[ <goairef> | <natnum> ]] ;

3.8.8. Displaying goals.

SHOWGOAL. It displays the goals together with their attached properties. It is a very
verbose command, but it has a TERSE option. |f no arguments are given, all top level goais and
all of their descendants are displayed. Optional arguments are: 1) a goal reference, or one of
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the words: nextgoal, lastgoal, or currentgoal; in this case only that goal and its descendants
are displayed; 2) "DEPTH <natural number>", in which case descendants only down to a
certain level are displayed (the number can be 0); 3) "TERSE" for the terse option. The terse
option is recommended for secing the goal tree in perspective. The verbose option is useful
for examining the parts of a goal; in this case it is recommended to use a small depth, 1 or O,
In order to limit the size of the typed response.

Syntax;

SHOWGOAL [OPT ALT[ <goairef> | NEXTGOAL | LASTGOAL | CURRENTGOAL ] ]
[OPT DEPTH <integer> ]
[OPT TERSE] ;

Exampiles:

»+333SHOWGOAL;

Goal #1: Vx y.3z.(Vw.(weze(wuxvw=y)AVz 1 (Vw.(w(zls(waxvway))oz]1=2))
VLSASSU: EXTENT Vx y.(x=ysVuluexzucy))
VLASSU: PAIR Vx y.3w.Yu.(ué¢we(u=xvu=y))
Simpsets: ( BY LOGICTREE COMPTREE)

*s33¢SHOWGOAL TERSE;
Goal »1: Yx y.3z(Yw.(weza(wexvw=y)AVz1.(Yw.({wez]a(wmxvway))oz]=2z))

L2222

3.8. The operative elements of GOAL,

The building blocks of GOAL are its operative elements: the tactics, the strategies, and the
matchers. GOAL has been designed to allow for easy addition of new operative elements; In
the section on expanding GOAL, we shall look at the structure of the operative elements in
more detail, For this section, it is enough to know that esach operative element has a name
and a parsing routine associated with it.

All the operative elements are called by the TRY command. As we described that command,
we introduced two syntactic items: op__name and op__/nfo. In this section, we shall look at the
operative elements that are now present in GOAL. For each one, its function will be described,
and the two syntactic items above will be defined.

.......................................................
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The structure of GOAL. 28
3.9.1. Tactlcs.

The tactics attempt to decompose the goal into (expectedly simpler) subgoals. Most
tactics transform the GOALWFF, the main exception being the tactic CASES. Any successful
application of a tactic produces one or more sons of the goal. Tactics do not try to decompose
those sons any further, The status of the goal becomes tried; the status of the newly
created sons is untried.

Most tactics create subgoals that are necessary and sufficient conditions for the goal to
be true; but some create subgoals that are only sufficient; when the later is the case, we
shall state it explicitly as we describe the tactic.

At present we have the following tactics.

3.9.1.1. Universal rule: Vi,

The maln symbol of the GOALWFF must be "V". The matrix of the WFF is produced as a
subgoal, i.e., the leading universals are eliminated. By default, the quantified variables are
Instantiated to the same variable names, but a different instantiation can be specified by the
user. The optional op__info Is a list of variable names wjthout repetitions; the parser also
checks whether these variables are free in some axiom afiti whether they are of sort at least
as general as the quantified variable, and gives error messages if it finds conditions that
would make it impossible to unwind the proof. The standard name Y/ refers to the FOL rule by
which the proof of the goai will be produced in the unwinding process.

<op_name>:= Y| | UG | ug
<op_info> = OPT[ REPT[ <variable name> ]]

The following examples start with the goal created in the previous example of the GOAL
command. They form a sequence of commands, except where noted otherwise. Thus the
default nextgoal, which Is the last goal created, applies to most of them.

Example:

xx22xTRY USING VI;
Goal slsl: 3z.(Yw.(weza(waxvwey)AYz].(Yw.(wezls{wexvwey))o2]=2))

L2212
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3.9.1.2. Existential rule: 3.

The main symbol of the GOALWFF must be "3". The matrix of the WFF Is produced as a
subgoal, i.e., the leading existentials are eliminated. By default, the quantified variables are
instantiated to the same variable names, but a different instantiation can be specified by the
user. The optional op__info is a list of terms. If these terms already appear in the WFF, a list
of occurrences Is kept s0 the proof will unwind properly.

<op_name>:= 3| | EG | eg

<op_info> := OPT[ REPT[ <term> ]]
Example:

sxsx2TRY USING 3j;
Goal wlulsl: Yw.(wezs{wexvw=y))AVz1.(Yw.(wéz]a(wexvwey))oz]lez)

L2222

3.0.1.3. Conjunction ruie: Al.

The main symbol of the GOALWFF must be "A"., The two conjuncts are produced as
subgoals. Op__info is nil.

<op_name> := Al | Al | ai
Example:

ss223TRY USING Aj;

Goal slnisln]l: Yw(w(zs(wexvway))
Goal slninle2: YVzl(Yw.iwézln(wexvway))oz]l=z)

SE5EE
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3.9.1.4. Equivalence rule: sl.

The main symbol of the GOALWFF must be "s". Two subgoals are produced: If the
GOALWFF Is " A« B *, the subgoals are " A> B " and * B> A ". Op__Info is nil.

<op_name> := &) | EQUIV | equiv
Example:

sxx43TRY 1 USING Vj;
Goal slsislelsl: wezs(wexvway)
sxx22TRY USING si;

Goal slslslslslal: wzo(wexvwey)
Goal #inlnlnlnle2: (w=xvwe=y)ow(z

L2222 2

3.8.1.6. Deduction rule: ol.

The main symbol of the GOALWFF must be ">". One subgoal is produced: if the GOALWFF
is "A > B", the wff of the subgoal is " B ", and " A " is added to it as an assumption or
sassumption. Whether it will be a sassumption or not, i.e. whether it will be added to the
simpset, depends on a test performed by the preparation mechanism; it will {f it is an
equivalence or equality, possibly preceded by some universal quantifications. Op__Info is nil.

<op_name>:= >| | DED | ded

Example:

¢ TRY USING ol;
Goal ulsinlulnlnel: wez

L2222
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In the last example, the antecedent w=xvw=y has been attached to the goal as a WFF to
be assumed. When the goal is tried, or prepared, that WFF will be written unto the FOL proof.
The next exampie will show this.

3.9.1.6. Rule of CASES.
The basic idea behind this tactic can be expressed in the following tautology:

((AvB)>C) = (A>C)A(B>C).

But the tactic can be used in several ways, depending on the arguments given by the user
in the optional op__info.

If the argument Is an axiom or VL, this must be a disjunction, possibly preceded by some
existential quantifications; then, if the GOALWFF is, say, " C ", and the axiom or VL is, say, " A
v B ", the following two subgoals are produced: "A> C " and " B> C*"; if that axiom or VL is
already among the facts of the goal being tried, it is removed from the facts of the sons.

If no argument Is given, the tactic searches for & disjunction, possibly preceded by
existential quantifications, among the facts of the goal, and proceeds as above.

The argument can also be a WFF, say, "A"; this producaes cases on the tautology "A v -~A",

<op_name> = CASES | cases

<op_info> = OPT[ VL | WFF ]
Exampie:

sexx2TRY USING CASES;
1 wexvwey (1)

Goal slsislnlnla2alsl: wexowz
Goal slululululu2ele?: weyswez

L 222 2]
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3.9.1.7. Syntactic simplification: REWRITE.

The GOALWFF is re-written using the syntactic simplifier. The user may specify a simpset-

expression; in addition to It, all the simpsets attached to the S/IMPSETLIST of the goal are
used.

If the GOALWFF rewrites to TRUE, this tactic acts like a matcher; if it rewrites to a WFF
other than the original one, one subgoal is produced, and the SIMPSETREASONLIST attached to
the goal, plus the user specified simpset-expression, are stored In the REASON of the goal.

When this tactic is called from some strategy, one can use a special flag to inhibit
simplification against WFFs In the FACTS of the goal that have the same structure® as the
expression or sub-expression being matched, because such sub-expressions are potentially
unifiable against those facts at a lower level in the goai tree. This option will be explained in
greatsr detail in the section on the LOGIC strategy.

<op_name> := REWRITE | rewrite
<op_info> := OPT[ ALT[ BY | by ] <simpsetexpr> ]

The syntax of <simpsetexpr> has bzen given in the previous chapter on FOL.
Example:

x:xxTRY USING REWRITE BY {EXTENT};
Goal #lelelulele2elu2sl: Vuluiwsuty)owiz

L2222

Since the axiom EXTENT was attached to the goal by the SASSUME option when the goal
v'as created, the shorter version "TRY USING REWRITE" would have the same effect in the
last example.

3.8.1.8. Semantic simplification: SIMPLIFY.

The GOALWFF Is simplified by the semantic simplifier using any semantic attachments that
are current. (The FOL mechanism of semantic attachm snt will be described in a forthcoming
publication by Weyhrauch.)

3 In the sense of the UNIFY command. See UNIFY.

'
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If the GOALWFF simplifies to TRUE, this tactic acts like a matcher; if it simplifies to a WFF
other than the original one, one subgoal is produced.
An example of the use of this tactic is the following: if the GOALWFF contains some sub-
expression SET(x), where x is a variable of sort SET, or of some /ess general sort, that sub-

expression will simplify to TRUE and the original WFF will simplify too.

At present, <op__Info> is nil.

<op_name> := SIMPLIFY | simplify

3.8.1.8, Special tactics.

We have at present three other tactics. The first two, IMPLICATION and vl (or-
introduction), constitute an exception to the rule that the subgoals are not only sufficlent, but
also necessary conditions for the goal. The third one, INDUCTION, Is special purpose: it was
designed for the work on Ramsey's theorem and it assumes and that the name of the empty
set is the /Individual constant A.

3.9.1.9.1. Disjunction rule: vi.

This tactlc Is used to subgoal to one of the disjuncts of a GOALWFF whose main quantifier
is "v", |t produces only one subgoal to the goal. The user has to spacify "1" or "2", meaning
the first or second conjunct is to become the GOALWFF of the subgoal.

<op_name>:= v| | ORI | ori

<op_info> = 1 | 2

Example:

]
xxsx2TRY #lulelulelsl USING oj; R
Goal wlsisislslels]l: wexvwey
sxexxTRY USING Vi 1; -
2wz (2) t "1

Goal slalululnlalulel: wex

b2t 21
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3.9.1.0.2. Implication rule,

Often times there is an implicational WFF, or perhaps a universally quantified implication
among the facts of the goal, such that it is possible to prove its antecedent and that the
consequent would make it easy to prove the goal. Or there may be a VL in the proof that has
those properties.

The op__info for this tactic is optional. The user may specify a VL whose WFF is a
(possibly universally quantitied) implication. If it is universally quantified, a list of
Instantiations for the universally quantified variables may be given.

If no op_info is given, the tactic attempts to find a VL with the required characteristics
among the facts of the goal. If it finds, it will still try to find some instantiation for the leading
universal quantifiers that would cause the GOALWFF to match against the consequent; the
tactic will fail if this does not succeed. The reason for making this tactic so "careful” is
because of its intended use in automatic theorem proving strategies: in those, we are
concerned with avoiding an explosion of the search space.

If the tactic succeeds, the antecedent of the Implication becomes the GOALWFF of the
subgoal. When the goal has been proved, the unwinding mechanism will first prove the
consequent by calling the FOL command RESOLVE on the following two Vils: the just proved
antecedent and the fact from which this antecedent was extracted. After this, the unwinder will
attempt to match the goal against the VL that proves the consequent.

<op_name> := |IMPLICATION | implication

<op_info> :=  OPT[ <VL> OPT[REP[ <variable name>]]]

3.9.1.0.3. Induction rule.

This tactic was designed for our work on Ramsey's theorem. It is assumed that the empty
set is the individual constant A4, [t checks that the GOALWFF is universally quantified and
that the variable bound by the first quantifier is of sort NATNUM.

It creates two subgoals: if the GOALWFF is Yi.PRED(l), then the subgoals are PRED(\) and
Yi.(PRED(i)>PRED(SUC(1))), whare SUC is assumed to be the name of the successor function.

<op_name> := INDUCTION | induction

4 The reasons for this cholce are only historical. The user wishing to use O Instead can change this tactic by redetining its
components, as will be explained In the next section,

ol
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3.9.2. Matchers.

The matchers attempt to prove the GOALWFF directly, that is without decomposing the
goal, by using some decision procedures of FOL and the facts of the goal. We have four
matchers at present, the main one being UNIFY. Their functions correspond to the FOL
commands by the same names. We have an additional special purpose matcher that does not
exist as a FOL command, EQUNIFY, in order to deal with a special case that UN/FY cannot
handle.

UNIFY and EQUNIFY inspect the QUANTELIMLIST of the goal and use it to reconstruct some
possible quantifier introductions, from those eliminations recorded in that list. Skolemi/zation is
achleved to a limited extent in this way.

3.9.2.1, UNIFY,

This is the main matcher. It uses the undocumented FOL procedure UN/FY written by
Weyhrauch and Chandra. This procedure attempts to match a WFF against an already
proved one, If both WFFs have the same structure of logical connectives after removal of the
leading quantifiers. The FOL command is further documented in [Weyhrauch 1877], and the
algorithm will be documented in a forthcoming paper by Weyhrauch.

if the user specifies a VL, the matcher attempts unification only against this one;
otherwise it does so against each one of the VLs in the facts of the goal.

<op_name> :» UNIFY | unify
<op_info> := OPT[ <VL> ]

The matcher does more than the FOL command: for each one of the VLs against which it
attempts unification, It loops trying to reconstruct the existential quantifier eliminations that
were made praviously in the goal tree.

For instance, assume that we are unifying against a VL that says Yx.3y.P(x,y). The FOL
command will unify 3y.P(z,y) but not P(x,y) against it, and this is Indeed correct. However, if
we have a subgoal P(2,w) and w is recorded in the QUANTELIMLIST as coming from some

application of the tactic 3i and being still free, then this matcher will produce unification
against the VL above.

Example:

*sx3sABANDON #lulsnlel;

Goal slslsalsl: Yw(wczs(w=xvw=y))  abandoned.
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se233TRY USING UNIFY PAIR;
3 z.VYwwzs(waxvway))

4 Yw.(weza(w=xvwey)) (4)

L2223 2]

obtaining the same effect.

Example:

*x333RETRY slulslul USING UNIFY;
Goal slslulul: Yw.iweze(waxvway))  abandoned.
3 3z.Yw.(wizs(w=xvw=y))

4 Yw.(wezs(w=xvway)) (4)

5332

3.9.2.1.1. EQUNIFY.

equality; the user can match it by calling EQUNIFY,

<op_name> := EQUNIFY | equnify

RS R R C T s L i el A RO ol
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in the last example, it is unnacessary to specify "PAIR" In the call to UNIFY, because this
axiom is already in the list of assumed facts of the goal. Also using RETRY would make it
unnecessary to abandon the goal. The following equivalent example shows a shorter way of

This is a special purpose matcher designed to deal with the following special case that
UNIFY does not handle. Suppose the goal is "x=y" and y is free In the QUANTELIMLIST; that is,
this subgoa! was part of a goal “3y.(x=yAP(x,y))". Then the matcher UNIFY will fail on this

Now we shall start up a new example in order to show the use of this matcher. The
following dialog shows also the effects of two matching attempts that failed because of
user's arror. See also the explanation after the example.

1
R
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Example:

s*32sDECLARE PREDCONST P 2;
s#3xsDECLARE INDCONST N;
sexxsAXIOM REFL: Yx.P(x,x);
REFL: ¥x.P(x,x)

s82xGOAL Ix.(x=AAP(X\))
Goal #2: Jx.(x=AAP(x,\))
sxx22TRY USING 3j;

Goal #2x%1: x=XAP(x,\)
sxsxxTRY USING Al;

Goal #2sls]: x=)
Goal u2#1%2: P(x,\)

sx25xTRY USING EQUNIFY;

The wif of this goal is not an equality.

sxxxxTRY 1 USING EQUNIFY;
3 Ix.x=x

4 x=x (4)

++xxaTRY USING UNIFY REFL;
No unification.

The tactic UNIFY can't be applied to goal
Goal #2#1w2: P(x\)
s+x£3TRY USING REWRITE;
Goal #2#1%2#]: P(AX)
ssex3TRY USING UNIFY REFL;
5 P(AA)

6 P(x\)sP(AX) (4)

7 P(x\) (4)

.......................
.............................................
.....................
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l 8 x=AAP(x,\) (4)
, 9 Ix.(x=AAP(X\))

25553

In the first call to EQUNIFY, the default nextgoal was goal #2#1#2, whereas the user
wanted to apply the matcher to goal #2#1#1; the next time he does this correctly. EQUNIFY
recognizes the fact that the variable x in the goal x=x can be matched against any term, so it
matches it with x itself.

As the next call to UNIFY fails, the user recognizes that he must first rewrite the goal. He
could have said: “"TRY USING REWRITE 4;%, that is stating explicitly that the fact that x=x
must be used to rewrite the goal. But this was unnecessary because the goal structure will
automatically use a fact proved in one branch of the goal tree in order to fert/lize the sibling

branch.
. After the last call to UNIFY, we can see the FOL proof being produced by the unwinding

. mechanism.

3.9.2.2. TAUT and TAUTEQ.

These two matchers use the FOL commands by the same names. They take any number of
Vls as optional arguments. They attempt to prove that the GOALWFF follows tautologically
from the collection of facts attached to the goal plus the VL-//st specified by the user.

The FOL command TAUT decides ground tautologies, while TAUTEQ adds the rules of
| equality. One shouid bear in mind that TAUTEQ is much siower that TAUT.

Using the op__name TAUTO the user can call both matchers at the same time. In this case,
TAUT is invoked first and the TAUTEQ is invoked if TAUT failed.

<op_name> := TAUT | taut | TAUTEQ | tauteq | TAUTO | tauto
<op_info> ;= OPT[ <VL-list> ]

We shall rehearse the last example once more In order to show the use of TAUTEQ.
Example:

323 TRY USING Al

Goal #2ule]l: x=

e M e e Lt e C T N O T
-t . DR N T S S S I N S S R S I S
...............

...................................................
.........................................
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Goal #2#1e2: P(x))
«xxx3TRY 1 USING EQUNIFY;
3 3x.x=2

4 x=\ (4)

saenaVE REFL )\

5 P(AN)

*x¢xxTRY USING TAUTEQ 1;
6 P(x\) (4)

7 x=AAP(x ) (4)

8 In.(x=AAP(x\))

b2 222

The command "YE REFL A%, after using EQUNIFY, is ~ FOL command. The call to the matcher
TAUTEQ indicates that the last line of the proof must be used; of course it is also necessary
to use line 4, but GOAL will do that in any case.

3.8.2.3. MONADIC.

This matchers uses the FOL command by the same name. Its syntax looks the same as
that of TAUT and TAUTEQ, but, unlike these, it does not attempt to match against the whole
collection of facts attached to the goal. There are two sets of reasons for this difference; we
shall discuss them below in this saction.

if the user does not specify a Vl-list, the matcher attempts to prove that the WFF is TRUE
by Itself. Otherwise it tries to prove that it follows, by the MONADIC decision procedure, from
the conjunction of those Vis.

<op_name> := MONADIC | monadic
<op_info> = OPT[ <VL-list> ]

The FOL decision procedure MONADIC was programmed by Bill Glassmire. Its name refers
to the monadic predicate calculus. The pure monadic predicate calculus is known to be a
decidable theory [Mendelson 1964]). However, since FOL deals with theories other than the
monadic predicate calculus, the actual implementation of this command makes it into a decision

..... Wt e Me ca m, e el s e
D R AT AT T T e N At TN e T
R IR I AL SRR S
L A A ) LT, -
. - -

‘--l‘ .- Y. - e t e ™A™ ‘- et " - » -
Samdemdidagednditdus dog fosdog don Sog Sog Soa g A"..l'n':l-n;:.n--.‘~ 2

st N P I S N T N P S S
Somadhe P i AP WP AU P wPRE WP ST ey P

T T T L R

T R e N A P UL LY AP
e . - " m” At " e "R " a" " L3

- wt.
S o Bl s gy




-

et ICIPRR AP
TN LI IR Py

The structure of GOAL. 40

Procedure for WFFs in universal-existential prenex normal formb.

Thus, if the WFF being decided does not reduce to that form, MONADIC recognizes it fails
out of its scope and informs the user accordingly., This is the first reason why we do not wish
to attach the whole list of facts of the goal to the VLl-/ist given by the user. For it is likely
there will be WFFs, among the facts, that do not reduce to universal-existential prenex form.

Fortunately, if A and B reduce to that form, so does AAB. Thus it would be theoretically
possible to keep track of which facts do reduce to it, and always add those facts to the Vis
given by the user when calling the MONADIC matcher. Doing so would greatly enhance the
power of this matcher, as well as the power of automatic theorem proving strategies like
LOGIC. This could be done easily if we were not running up against the physical limitations of
our machine. MONADIC uses an enormous amount of computing resources, and it often causes
LISP to run out of free storage. Thus we found that, if the list of those facts that do reduce to
the desired form is passed to MONADIC by default, the automatic theorem proving strategies
tend to abort most of the time for that reason.

Now let us rehearse the last example one more time.
Example:

w22xsGOAL In.(x=AAP(x,\))

Gosl #2: 3x.(x=AAP(x\))

2222 TRY USING MONADIC;

The MONADIC command decided that this formula is not valid.
s2x22TRY USING MONADIC REFL;

3 Ix.(x=AAP(X M)

EEERE

5 Bill Glassmire's implementation of MONADIC has not been documented and | am not famillar with it. Richard Weyhrauch offered
the following commentary: "MONADIC was implemented by Blil using Quine's method of reducing monadic sentences to sentences
of the form YYYVY3II33 called variousiy "universai-existential®, *AE", or "Y3". The decision procedure for these was well
known in the thirties. MONADIC actually uses thc more general decision procedure to decide Y3 formula that It has found.
Function symbols are handied in some reasonably but ad hoc way. | am not sure how." (Personal communication).

__________

PR
PR T Y
T Vet

P PR MR DR
Wt e tera® N
L B R WL R ] s e e,
¥ . - t LA
NS S T A R I I N S P R I R L PO

e,

A Lo

S 2 s

D

S e T et e
itk e die

-
v -
4

~

dnad




The structure of GOAL. 41
3.9.3. Strategies.

The strategles are called using the same syntax as the tactics and matchers, by the TRY
command. They effect cails to tactics and/or matchers. They may be very complex, or quite
simple. From the point of view of the GOAL code, any routine that after decomposing a goal
may attempt to either decompose, or match, any of the subgoals it created, is to be classified
as an strategy. The reason for this is that calls to tactics and matchers are mediated by one
master routine which can be applied only to untried goals, thus being impossible to mediate
calis to entities that call tactics through the same master routine.

At present we have three strategies, only one of which is a theorem prover. It is very
easy to add others. We have not done so because one of our aims was to develop one
powerful theorem proving strategy within the context of FOL and GOAL.

3.8.3.1. LOGIC.

This is our automatic theorem prover. As It will be described in detall in a special section,
here we shall only present its syntax. The optional op__info field begins with the word PLUS
and serves to add new elements to the FACTS of the goal; when using this switch, the user
does not have control over the assume/sassume option; instead, the prepare mechanism will
decide which Vls go Into the simpset In the same manner it decldes for Vis that are
generated by the goal structure.

<op_name> := LOGIC | logic
<op_info> := OPT[ PLUS <VL-list> ]

When called on a subgoal (i.e., on a goal that is not a top lavel one), If LOGIC succeeds in
proving it, it will backup further in the goal tree, attempting to prove all of its rel/atives: lL.e.,
any unproved descendants of any one of its ancastors.

3.9.3.2. ELIMINATION.

This strategy does not attempt to prove anything, i.e. it does not call any matchers. it tries
to recursively decompose the WFF using the following tactics: VI, 3i, Al, =i, ol, and CASES.

There can be no conflict of priorities between the first five tactics above, for each one of
the can be applied only to WFFs whose main quantifier Is the one indicated by the name of
the tactic. However, there may be a conflict with cases, for both CASES and one of those
tactics can be applied to the same goal. This conflict is always resolved to the disadvantage
of CASES.
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ELIMINATION does not call the tactics until it has checked that they can be applied, that
is by looking up the leading quantifier of the WFF, or by calling a routine that checks for the
existence of a disjunctive assertion in the factlist.

The optional op_info serves to limit the depth of the recursion. If used, elimination
proceeds at most to the maximum depth indicated, down the tree, starting from the goal.
Otherwise it dacomposes it as far down as possible,

<op_name> := ELIMINATION | elimination
<op_info> := QPT[ <DEPTH> <natnum> ]

The following examples are self-axplanatory; again we are rehearsing some of the
pravious examplas.

Examples:

*+22sABANDON #1;

Goal #1: Vx y.3z.(Yw. w(zs(wmxvwey)AVz1.(Yw.(wézls(waxvwe=y))oz]1=2))%
abandoned.

=x+x%TRY USING ELIMINATION;

Goal #1sl: Jz.(Yw.(wezs(wexvw=y)IAVz](Yw{wizls(wexvw=y))2zl=2))
Goal slxlsl: Vw.(weze(we=xvw=y)AYz1(Yw(wezls(w=xvw=y))d2]=2)
Goal slelslsl: Yw.(wiza(w=xvw=y))

Goal wlelsle2: Vzl(Yw(wezle(wexvw=y))}>z]=2)

Goal slulslulsl: wezs(wexvwey)

Goal sisisinlslel: wczo(wexvway)

Goal slslslaluln2: (wexvw=y)ow(z

Goal #lslslslalelsl: wexvwey

Goal slulsleluln2el: wez

3 waxvw=y (3)

Goal slslsnlnlnle2slsl: wexow(z

Goal wlnlulnluln2nle2: weayowcz

Goal sislulelsle2slalsl: w2

Goal slnlnlalule2nle2el: wez

Goal nlulslu2el: Yw(w(zla(wexvwey))ozl=z
Goal wlulnlu2elnl: 2l=2

s232sRETRY USING ELIMINATION DEPTH 4;

RETRY USING ELIMINATION DEPTH 4;
A
A goal number reference is required here.

sx253RETRY »]1 USING ELIMINATION DEPTH 4;
Goal #1: Yx y.3z.(Vw.(wizs(wexvw=y))AVz] (Yw.(wezls(waxvwey))oz]1=2))%
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abandoned.

Goal sls]l: Ja(Yw.(wezs{waxvwey))AVzZ1(Yw.(w(z]ls(w=xvway))2z]=2))
Goal slslsl: Yw.(weza(wexvway)AVz1.(Ywi{wezls(waxvway))oz]l=z)
Goal sislxlsl: Yw(w(zs(waxvway))

Goal #lulels2: Vzl(Vw.(wezla(wuxvway))ozl=z)

Goal slslslslal: weze(waxvway)

Goal slslsle2sl: Yw.(wezlas(wexvwey))oz]=z

L2 22 2

3.9.3.3. IFCASES.

This is a special purpose strategy for conditional expressions. Conditional expressions
[McCarthy 1963] are legal in FOL: there are both /F-WFFs and /F-terms. There are two
special simpsets for conditional expressions: WFFIFTREE and ARGIFTREE. The first deals /F-
WFFs, the second deals with /F-WFFs and IF-terms.

In the present implementation, the user must specify a WFF as argument to IFCASES. First
the strategy calls CASES on this WFF and >i on both subgoals; then it calls the tactic
REWRITE on both grandsons of the goal, making sure to include in the simpset: WFFIFTREE,
ARGIFTREE, and the antecedent of the just effected >l, in each case (that is, the WFF given
by the user and its negation, raspectively). .

<op_name> := |FCASES | ifcases
<op_info> := < WFF >

A variation of this strategy has been used in the example of the Takeuchl function, that
is presented in a separate chapter.

.............
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4, EXTENDING GOAL.

While the previous chapter described GOAL from the user's point of view, the purpose of
this chapter is to Introduce the reader to the programming of new operative elements. At
present this cannot be done without considering the FOL code. However, the documentation
in the following sections should be very helpful to any one wishing to extend GOAL. We shall
look at some Internal aspects of the GOAL implementation; in particular, at the system that R,
controls the activity of the operative elements. SRR

It is always difficult to present a total system in a linear manner, and even more difficult .
for the reader to find his way through the maze. Necessarily, this is only a partial description; - 4
a user will still have to look at the code when trying to program extensions to GOAL. We shall
follow an unconventional approach, trying to present the material in a sequence intended to —
make It easy to read. Thus we shall circle several times over some aspects, gaining depth .
each time. Wa shall begin with some general information about the GOAL implementation.

The strategies are easier to program than the other two types of operative elements, and -
they are also, expectedly, the most frequent and useful type of extension that users will .
want to make. Strategies are easier than matchers and tactics because the latter interact
more with the FOL routines; hence more knowledge of the FOL code is required to program
these. Strategies are almost entirely contained in GOAL; they are not concerned with
unwinding nor with updating the goal structure. But they perform nevertheless some operations
that require some knowledge of the FOL implementation: for example, a knowledge of the
internal representation of wffs in FOL is needed in order to determine which is the leading
quantifier of a wff.

Parts of goals can be accessed using MLISP macros that bear the same name as those
parts. Parts of WFFs, and Vls, are accessed using MLISP macros defined in the FOL rode.
Readers desiring to do their own strategies should look at the MLISP code of the existing
operative elements in order to get acquainted with these macros. o 4

4.1, The three components of the operative elements,

With each tact/ic there are three associated routines: the parser, the executer, and the
unwinder. The other two types of operative elements do not need an unwinder, but do have a
parser and an executer.

The executer performs the required actions: in the case of tactics, it creates subgoals; for -j.,-r'f -
matchers, it calls the FOL decislon procedures; and in the case of strategies, it calls other '
operative elements. The parser parses user's calls (by the TRY command) to the operative
element. And the unwinder, that Is automatically called when all sons of a goal have been
proved, produces the FOL forward proof of that goal, from the Vis that prove its sons.

In order to program a new operative element, the user has to supply the executer, the
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parser, and the unwinder if the element is a tactic. It is also necessary to provide a name for
the atom that will represent the new element, and to call a routine that /ntroduces this
oelement to the system; there Is one such routine for each type of operative element.

4.2, The internal representation of the operative elements.

The components of an operative element, that is the routines mentioned in the previous
s@action, are stored in the property list of a LISP atom that represents the operative element.

The name of this atom will be referred to as the standard name! of the operative element.

The names of operative elements are stored in the global variable OPELEMLIST. The global
variable STRATEGYLIST Is a subset of OPELEMLIST. The routines that /introduce new operative
elements will refuse to introduce an element whose standard name is aiready in this first list.
However, they will not check whether the names of the associated routines provided by the
usar conflict with other Identifier names used in the system. It is the user's responsibility to
make sure that no names are duplicated.

4.3, The control system.

in this section we shall cover the structure of the subsystem of GOAL that controls the
activity of the operative elements. This system is the core of GOAL, as well as its only
extensible part. It is entered by the TRY command.

The three routines associated with each operative element do not communicate with each
other directly. They are managed by master routines that control the operations of: parsing,
execution, and unwinding. These master routines are: TRY which controls parsing; TRYING
which controls execution of both tactics and matchers, TRYCMPL which controls execution of
strategies, and UNWIND, that is called either from TRYING or recursively by itself, and which
controls unwinding.

The only one of these master routines which must be called directly by the user Is TRYING:
this is the case in user programmed strategies. The others are mentioned because, in order to
program new operative elements, it Is helpful to have a general understanding of the control
structura. TRYING will be dealt with in a special section. The baslc conventions to be
observed will be described in the sections that explain how to program the different types of
operative elements.

The only operative elements that can call other operative elements, or themselves
recursively, are strategies. However, when they call a tactic or a matcher, the call must

1 i is a standard name from the point of view of the system, but it does not need to be the same name with which the tactic is
invoked by the user vis the TRY command.
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always be routed as a call to TRY/NG. We shall later see in more detail how to do this. Calling
any tactic or matcher directly, without mediating the call through TRY/ING, will always result in
a fatal error. On the other side, a strategy calling another strategy can, and should, make the
call diractly to the executer; thus the executer of a strategy can racursively, directly call
itself, Strategies can also call PREPARE.

The hierarchical structure of this system is shown in figure 1. The arrows indicate

possible calls from one routine to another; they do not indicate calls that will always occur.
Possible recursions are indicated accordingly.

4.3.1. FIGURE 1: Structure of TRY,
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4.4, Types of variables,

The reader must now become aware of the important distinction between the two following
types of variables that are used by the operative routines of GOAL: goals and threads.

A varlable of type goal is a pointer to a goal; threads are described in the next section.

The goal structure is generally updated using the LISP functions RPLACA and RPLACD. Thus
any local variables of type thread or goal will undergo the same updates.

4.4.1. Threads.

Most of the time, the GOAL routines are operating on some goal. However, they often
need to be able to find its parent, or to detect whether it is a top level goal. Sometimes it is
also necessary to determine whether a goal Is an ancestor of another.

For these reasons we have chosen threads as the most common way of pointing to goals.
Many routines pass threads to each other as arguments, but some take just a goal as
argument.

The thread associated with a goal is a /ist whose car is the goal, and whose cdr is the
thread of its parent. Thus the goal of a thread is the car of the thread. The last element of a
thread is always the global variable GOALLIST, which is the list of top level goals.

4.4.2. The three defaults.

The global variables that identify the three defaults discussed in chapter 3 are called:
"ASTGOALTHREAD, NEXTGOALTHREAD, and CURRENTGOALTHREAD.

The user should never assign values to these three variables. They are automatically
reset by the system. However, users may want to use local variables to keep track of
threads in a strategy?.

A thread is empty If it is a list of only one element, namely GOALLIST. The macro3
EMPTYTHREAD(THREAD) checks whether a thread is empty. The cdr of the thread of a top
level goal is empty.

The routine SUBTHREAD(THR1,THR2) checks whether the goal of THR1 Iis an ancestor of the
goal of THR2. This is equivalent to THR1 being equal to an end segment of the list THR2.

2 For Instance, the strategy LOGIC usos a quoue of threads in order to implement a breadth first search.
3 Here the word macro refers 10 a MLISP macro. A number of macros have been used to name the different parts of goals, and
for some other purposes. They are expanded when the MLISP code is translated into UCI-LISP.
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4.4.3. Status checking. g

A proved goal has a structure totally different from that of an unproved one. Trying to
access parts of a proved goal as if it were unproved will result in fatal errors. Also, a tried

'... .‘

goal cannot be tried again by any operative element unless it has previously been abandoned.
Thus, when programming strategies it may be necessary to check the status of a goal.
There are the following status checking predicates: the MLISP macros PROVED and UNTRIED,
and the function TRIED. All of these take cnly one argument, of type goal.
»
4.4.3.1. Abandoning.
Abandoning goals can be done from within strategies using the function ABNON(THR,PSWT ).
The first argument Is a thread. The second a printswitch: If this switch is NiL, then no .
message will be printed when the goal is abandoned. .
4.6, Rules for programming new operative elements,
Now we shall outline the conventions for programming the different components of :.
operative elements. This description cannot be exhaustive. o
We shall begin with the ¢ - siest, namely the parsers. N
In each case, we shall end the section with an example. 5
4.6.1. Parsers. .'f
Parsers take only one argument of type goal. The rules for the returned expression will be d
described below.
Let us recall that the syntax of the 7RY command is:
TRY [OPT ALT[ <goalref> | natnum ] ] USING <op_name> <op_info> ; )
L
The parsers parse <op_nar.¢)> and <op_Info>. The rest of the above syntax /ncluding
the semicolon is not parsed by the parser. Thus it is most important that the higher level -
parsing routines expect a semicolon, after the parser returns control.
The syntax for the Cop_nrame> and the Cop_info> is defined by the user in the act of
)
9
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programming the parser, The <op__name) is usually an alternative of twe words (i.e., upper or . '
lower case). The <op__info> may be more involved; for instance, in the case of the REWRITE T
tactic, the <op__info> may recognize a FOL expression for a simpset and call the FOL routine
SIMPSETE XPR that constructs the internal representation of a simpset.

AN NN

L
[

' 4.6.1.1. The expression returned by parsers.

1) If the parser does not recognize the <op__name>, then it must return NIL.
2) If the parser recognizes the Cop__name), it proceeds to parse the <op_/nfo).

3) If the scanned expression does not conform to the syntax for the <op_info>, the
system must pop up to the top level of FOL, while normally issuing some error message. There
are various ways of doing this, which will be illustrated in the examples; the FOL routine
ENDM is very useful for poping up.

4) If it is detected at parse time that the operative element cannot be applied to the goal,
then return a LISP atom. This atom will be considered to describe the name of the element
and wili be printed in a message by the TRY command.

b) Successful parsing: a /ist must be returned; the first element must be the standard
name of the operative element (i.e. the atom that represents this element Internally). The
following elements of the list are going to be the additional arguments taken by the executer,
if any; this point requires some further explanation.

Wa shall see that the first two arguments of any executer are: the thread of the goal, and
a printswitch. Some executers take additional arguments; these additional arguments are to
be passed in the list returned by the parser, and must be in the same order.

Thus, if the executer takes only the two standard arguments, the parser must return the
standard name consed with NIL. If the executer takes, say, four arguments, the parser must

return a list of three elements; the second and third elements of this list wiil be the third and
fourth arguments taken by the executer.

4.6.1.2. Examples of parsers. .

Wae shall now look at the MLISP code of several parsers and comment them.

BT T O R P P P Pt JPRE SRR LTI B
O P I L SPUL EPSL JR JDR  SE BT A 1 - . . L - - - . ... - - v LY o - Pl - - - - - .
TN At T et et SR SR NS DM I -
W S T D S LIPS Y DU PR IPE TSI T PIPNLIPA IP Ie I 1 PURITAT VRS AT PR R T R Y R T P




R T T T A i

Extending GOAL. 60

4.6.1.2.1. Conjunction rule: Al.

EXPR PARSAND(G);
IF CHECKI(’Al,’ai,?A) THEN IF MAINSYM(goaiwff(G))="?A THEN <’?Al> ELSE *?Al

The FOL routine CHECKI checks for the occurrence of the token: "Al" or "ai" or "Al". The
FOL MLISP macro MAINSYM returns the leading connective of a WFF. The GOAL MLISP macro

goalwff returns the goa/wff of a goal. The standard name of this tactic is the quoted atom
“/\l".

b - Thus this parser returns: NIL if the Cop__name? is not recognized, the quoted atom "Ai" if
- the tactic cannot be applied to the goal, and the standard name "Al" consed with NIL if it can,
= The <op__info) for this tactic is nil.

In the second case, the TRY command will issue the following message:
"The tactic Al can’t be applied to goal ... ”

and then it will display the goal.

Notice that there is no check for a semicolon in this parser; the command Is expected to
end here, and the check for the ending semicolon is performed at a higher level.

- 4.6.1.2.2. Disjunction rule: vi.
o EXPR PARSOR(G:SP);

::-. IF CHECKI('ORL,'ori,"?v) A (SP<NATNUM=()) THEN
IF MAINSYM(goalwtf(G))="?v THEN

IF (SP=1) v SP=2 THEN <'?v},SP>
. ELSE PARSORMSG()

- ELSE "?vI

SP Is here a local variable to hold the <op__info>, which must be 1 or 2, depending on
which one of the two disjuncts will become the new subgoal. NATNUM# is a FOL routine that

expects a natural number and pops up to the top level, while issuing an error message, if T:j- )
anything else is encountered. o
- »
Thus this parser first checks that the <op_info) is a natural number. If it is not, it will :
- pop up to the top level and the error message will be the standard FOL message that
indicates the type of token expected, with an arrow pointing to it. However, if a natural

number Is encountered, this parser will perform a second check to determine that it is 1 or 2;

.
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this check comes after examining the leading quantifier of the goa/wff; admittedly, the order
of this checks could be somewhat different.

In case of successful parsing, the returned expression is a list of two elements. The
second element, SP, will be passed as the third argument to the executer of this tactic, which
takes exactly three arguments.

PARSORMSG is a routine that prints an error message, specifically for this parser. The user
can add such routines to enhance the quality of error messages in the parsers. We can learn
something from the code of PARSORMSG.

EXPR PARSORMSG();
BEGIN TERPRI();
PRINC("The argument to PARSOR must be 1 or 2.);
ENDM();
END;

We seo that PARSORMSG does a carriage return, prints a message, and then it calls the
FOL routine ENDM.

ENDM is a FOL routine that ends scanning of a command line and pops up to the top level
of FOL.

4.6.1.2.3. The rule of CASES.

This is a more complicated parser.

EXPR PARSECASES(G);
BEGIN NEW X;
IF TK2@(’'CASES, cases) THEN
IF TK="?% THEN IF X«EXISTORASSU(G,?v ) THEN RETURN(<’CASES ,X>)
ELSE CASEPARSEMSG3(" disjunction”'CASES)
ELSE IF XeWFFe(NIL) THEN RETURN(<’CASES ,X>)
ELSE IF X«VLe®(NIL) THEN IF MAINCONN(WFFOF(X),"?v ,NIL,T)
THEN RETURN(<’CASES X>)
ELSE CASEPARSEMSG2(CAR X,"?v)
ELSE CASEPARSEMSGI("CASES);
RETURN(NIL)
END;

The FOL routine TK2@ is used to parse an alternative of two tokens.

The global varlable TK also belongs to FOL; at any time during command scanning, it
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contains the next token in the input stream; thus the coandition " IF TK='?; " checks whether
the next token Is a semicolon but it does not perform scanning of this token; this is important,
because scanning would advance the scanner, and we know that the parser must stop short
of the command closing semicolon.

This check for the semicolon is done because the Cop_Info> for this tactic is optional. If
no <op_Info> is given, the parser calls EXISTORASSU to determine whether among the facts
of this goal there is some disjunction. EXISTORASSU Is rather involved and will not be
presented here.

WFFe and VLse are FOL parsing routines that recognize WFFs and Vis, respectively.
4.5.1.2.4. The tautology matcher.

We also show the code of the parser that combines the TAUT and TAUTEQ rules of FOL,
because the code of the corresponding executer will be shown in a latar section.

EXPR PARSETAUT(G)
IF TK2@('TAUT , taut ) THEN RETURN( < *TAUT, 3, VLLISTe(NIL) ,NIL> )
ELSE IF TK2@('TAUTEQ , “tauteq ) THEN RETURN( < *TAUT , 4, VLLIST®(NIL) ,NIL> )
ELSE IF TK2@('TAUTO , *tauto ) THEN RETURN( < *TAUT , 5, VLLISTe(NIL) ,NIL> );

4.6.1.2.56. The elimination strategy.

The following is another example of an interface between a parser and an executer. The
exeacuter of this strategy will be shown later.

EXPR PARSELIM(G:DEPTH); IF TK2@('ELIMINATION,'elimination) THEN
<tELIM, IF TK2@('DEPTH,'depth) THEN
IF DEPTH-NATNUM®@() THEN DEPTH ELSE ENOM) ELSE 1000 > ;

4.6.2. Executers in general.

The first argument of any executer is the thread of the goal, and the second argument is a
printswitch. Additional arguments are optional. If the printswitch is NiL, printing of the
generated subgoals would be inhibited.

........................
....................

..............
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The executers for the three types of elements perform different functions and will be
described separately. However, the executers of tactics and matchers have more in common
than those of strategles. The later are safer, and in a sense easier, to program, because they
do not interact with FOL.

4.6.2.1. The master routinas.

Calls to the executers of tactics and matchers are mediated by TRYING, and they cannot
be calied directly by any other routine. The MLISP code of TRYING follows. When the tactic is
called from the 7RY command, the whole expression returned by the parser will be passed as
the argument X to TRYING. The conventions for this expression were outlined in the previous
sections.

EXPR TRYING(X,PSWT,THREAD,PREP});

BEGIN NEW OLDVL,REAS,G;

G « goal{THREAD);

IF PREP THEN PREPARE(G,PSWT);

IF REAS « APPLY(GET(CAR X,’EXECUTER),THREAD CONS (PSWT CONS CDR X))

THEN IF REAS = T THEN MATCHWORK(THREAD,PSWT,CAR PROOF)

ELSE CURRENTGOALTHREAD « THREAD
ALSO udreason{G,REAS);

RETURN REAS;

END;

The executers of strategies can be called directly by another strategy, or recursively by
itself. Thus the user does not need to call TRYCMPL. The TRY, command, however, uses
TRYCMPL In order to mediate calls to the executers of strategies. The code of TRYCMPL
follows.

EXPR TRYCMPL(X,PSWT,THREAD:G,REAS);
IF REASAPPLY(GET(CAR X,’EXECUTER),THREAD CONS (PSWT CONS CDR X))
THEN IF PROVED(Gegoal{ THREAD))
THEN RPLACD(CDR G,'PROVED? ? BY? CONS REAS)
ELSE REAS;

The code of these two routines was given hera only for ease of reference. The user need
not be concerned with this code, but looking at it may make it easler to understand the
conventions outlined in this chapter.

.........
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4.6.2.2. The expresslon returned by executers.

The expression returned by executers of tactics and matchers is of paramount importance.
it must obey the following rules. Failure to follow these rules will cause fatal errors.

1) NIL must be returned if the tactic could not be applied to the goal, or if the matcher
failed. In this casa, nothing happens to the goal structure. It Is a "no-operation*.

2) The LISP atom T must be returned if a match occurred; this condition applies to the
matchers and to some tactics that sometimes match a goal (l.e., REWRITE, SIMPLIFY).

3) In the case of successful subgoal creation by a tactic, the expression returned must be
the REASON: this expression is going to be stored as the goal REASON, by the master routine
TRYING, and the unwinder of the tactic will use this information at a later time. (The user that
programs a new tactic has complete freedom to choose this expression, as long as it Is
neither NIL nor T. The unwinder must be designed accordingly.)

In the case of strategies, the returned expression is not of the same importance. Only
minor errors will result from returning a different expression. However, in order for error
messages to work properly, it is convenlent to return NIL if the strategy did not achieve
anything at all (i.e., no tactic or matcher could be successfully applied), and otherwise a
quoted expression like the name of the strategy. This quoted expression will be used as
follows by TRYCMPL: if the goal was proved, it will append the information: "PROVED BY "
followed by the quoted expression, and the only effect will be its appearance when the user
displays the goal with the SHOWGOAL command.

4.6.2.3. Executers of tactics.

The executer of a tactic must update the goal structure by adding the newly created
subgoals, as sons to the goal being tried.

The addition of subgoals is accomplished by invoking the routine ADDSUBGOALS; the first
argument passed to this routine must be the thread of the goal being tried, and the second
must be the number of sons to be created.

Most of the parts attached to goals are passed down, hereditarily, to their sons which are
created by ADDSUBGOALS. But the goalwff must be updated, In every case, using the macro
udgoalwff. Some tactics update other parts, for instance: the quantifier rules update the
quantelimlist, and the tactic ol updates the factlist.

Wae shall see here Just two simple examples: the executers for Al and vi.
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EXPR TRYAND(THREAD,PSWT:G,W)

IF MAINSYM(Wegoalwff(Gegoal(THREAD)))="?A
THEN ADDSUBGOALS(THREAD,2)
ALSO udgoalwff(son(l,G),LFAND(W))
ALSO udgoalwft(son(2,G),RTAND(W))
ALSO (IF PSWT THEN PRINTDESC(THREAD))
ALSO RETURN(<?AI >);

EXPR TRYOR(THREAD,PSWT,SP:GW);
IF MAINSYM(Wegoalw!f(goal(T“SEAD))="?v
THEN GeADDSUBGOALS(THREAD, 1)
ALSO udgoalw!f(G,IF SP=1 THEN LFOR(W) ELSE RTOR(W))
ALSO (IF PSWT THEN PRINTDESC(THREAD))
ALSO RETURN(<'?VI ,SP>);

We shall see the unwinders of these two tactics in the section on unwlinders. The
unwinder UNWOR will use the information stored in the goal REASON by TRYOR.

4.6.2.4. Executers of matchers.

The executer of a matcher must call some FOL decision procedure; If the procedure
decides that the WFF of the goal is TRUE, then we have a match. In this case the matcher
must add the WFF as a new VL to the FOL PROOF, and then return the atom 7. At this point,
the last line of the PROOF must be the VL that matched the goal being tried.

These operations are done by calling the FOL routines that create VLs. This requires some
understanding of the FOL code that goes beyond the scope of this chapterd.

For the sake of completeness we show here the code of a matcher, that combines both
TAUT and TAUTEQ. It attempts to match the goal WFF against the list of facts of the goal plus
any list of VLs given by the user when calling this matcher using the TRY command. The user
given Vls are passed in the parameter VLLIST. TAUTMNG is a FOL routine that decides
tautologyhood, and NEWSTEP is the FOL routine that creates a new VL; care must be
exercised when using NEWSTEP, because there are several ways of invoking it depending on
the expressions returned by the different FOL decision procedures.

EXPR TRYTAUT(THREAD,PSWT,AVLLIST,TEST); ¥TEST to see if apply EQUTEST2 %
% A is 3 or 4 depending on whether TAUT or TAUTEQ is to be used. However,
if Ais 5 then both TAUT and TAUTEQ are tried. %
BEGIN NEW W,X,G,AL;
Wegoalwf{{Gegoal(THREAD));
IF ALefacts(G) THEN AL~CDR AL;

4 Admittediy this is not an ideal situation. But we shall elaborate on the remedies in the final chapter of this thesis.
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IF TEST A (A=8) A (-EQUTEST2(W CONS AL)) THEN A«3;

IF X« TAUTMNG(A, W,?«APPEND(AL,VLLIST)) THEN NEWSTEF(X)
ALSO RETURN(T);

IF (;SWT THEN TRYTAUTMSG(A) ALSO RETURN NIL;

END;

4.5.2.6. Executers of strategies.

The executer of a strategy sequences tha calls to the executers of other operative
elements.

It calls the executers of tactics and matchers indirectly, but those of strategies directly.
in each case, the user must make sure that the appropriate arguments are being passed to
each exeacuter.

4.6.2.6.1. Example: elimination.

EXPR TRYELIM(THREAD,PRINTSWITCH,DEPTH);
IF ?2+GREAT(DEPTH,Q) THEN
BEGIN NEW S,DESC,G;
IF ((S-MAINSYM(goalwff(Gegoal(THREAD)))) ¢ <7V 73 ?A 1D )75 >)
THEN S«GET(S,'TACTICALL)
ELSE IF SEXISTORASSWKG,?v ) THEN Se<’CASES ,S>
ELSE RETURN NIL;
IF TRYING(S,PRINTSWITCH,THREAD,T)
THEN DESC « REVERSE(descendants(G))
ALSO BEGIN
L; TRYELIM(CAR(DESC) CONS THREAD,PRINTSWITCH,DEPTH-1);
IF DESC+~CDR DESC THEN GO L;
END
ALSO RETURN(CELIM )
ELSE RETURN NIL;
END;

Notice that the strategy does not reset any of the defaults. For this particular strategy,
the calls to the executers of the five tactics: Yi, 3!, Al, oI, and si, have been attached to LISP
atoms in order to make the code compact. The GOAL routine EX/STORASSU detarmines
whether a goal has a disjunction among its facts.

First it is determined whether elimination can be applied any further, and the appropriate
calling expression is assigned to the variable S. The appropriate tactic is then called, and
TRYELIM cails itself recursively on the sons, thus expanding the tree depth first.
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4.5.2.56.2. Example: LOGIC. . TGS

We also show here the code of LOG/C, without comments. This strategy will be discussed '_:
extensively and a higher level description of its heuristics will be presented in the chapter on
automatic theorem proving.

EXPR TRYLOGIC(THR,PSWT,FCL);
BEGIN NEW THRQUEUE,G,THREAD,FAILQ,PASS,PREP,S,D, TEMP,N,|,SUC,TH1,OLFQ,LFQ;
Gegoal{ THREAD-THR); PASS«1;0LFQ«0;
IF FCL THEN addonefact(G,"PROVED CONS FCL);
SRCH; IF MATCHSEARCH(THREAD,T) THEN GO MTCH;
IF T=({PREP+TRYING(<'SIMPLIFY,NIL>PSWT,THREAD,NIL)) THEN GO MTCH
ELSE IF PREP THEN PREP«NIL ALSO GO DS;
IF simpsetaddflag(G) THEN
IF T=(PREP+TRYING(<’'REWRITE,T,NIL,<<NIL,NIL>>>PSWT,THREAD,NIL)) THEN GO MTCH
ELSE IF PREP THEN PREP«NIL ALSO GO DS;
GRIND; PREP«NIL;
IF {XTRYING(<’SIMPLIFY,NIL>,PSWT,THREAD,NIL)) THEN
IF QUANT(S«MAINSYM(goalwif(G)))
THEN TRYING(GET(S, TACTICALL),PSWT,THREAD,NIL)
ELSE IF simpsetaddflag(G)
A {X « TRYING(<’REWRITE,T,NIL,<<NIL,NIL>>>PSWT,THREAD,NIL)) i
THEN ( IF X=T THEN GO MTCH ) e
ELSE EIRA
(IF S ="?> THEN PREP«T ALSQO S«<?o)> -
ELSE IF S € <*?A 7= > THEN S«GET(S,' TACTICALL) :
ELSE IF S<EXISTORASSW(G,?v ) THEN Se<<’CASES ,5>
ELSE FAILQ-THREAD CONS FAILQ ALSO GO L2 )
ALSO TRYING(S,PSWT,THREAD,NIL) -
ELSE IF X=T THEN GO MTCH; S
DS; N-LENGTH(D«descendants(G)); l«1 ; SUCENIL; TEMPNIL; - il
LUP; Seson(l,G); - ..
IF MATCHSEARCH(TH] «S CONS THREAD,PREP) THEN SUCeT SRR
ELSE TEMP«TH1 CONS TEMP;
IF 7«GREAT(N,)) THEN lI+1 ALSO GO LUP;
IF SUC THEN IF ?sGREAT(N,2)
THEN THRQUEUE«~?+«APPEND(TEMP, THRQUEUE)
ELSE GO MTCH ' ’
ELSE THRQUEUE«?+APPEND(THRQUEUE, TEMP); L

L2; IF THRQUEUE THEN THREAD«CAR THRQUEUE ALSO THRQUEUE+CDR THRQUEUE s o]
ALSO IF UNTRIED(G+goal(THREAD)) THEN IF ATOM(addedfacts(G)) THEN GO GRIND R
ELSE GO SRCH R

ELSE GO L2;

TERPRI); e
iIF NULL(FAILQ) THEN PRINC("Strange behavior of LOGIC: failqueue is empty!”) T
ALSO RETURN NIL; -9

PRINC("We have a failqueue of length: ");PRINC(LENGTH(FAILQ));
TEMP«NIL; PASS-PASS+];
L3; IF FAILQ THEN THREAD«CAR FAILQ ALSO FAILQ-CDR FAILQ
ALSO ( IF UNTRIED(Gegoal(THREAD))
THEN {F addedfacts(G) THEN THRQUEUE+~THREAD CONS THRQUEUE
ELSE TEMP«THREAD CONS TEMP )

. e
CUIRD WP WY W T pR)

............
...............
....




Extending GOAL. 68

ALSO GO L3;

TERPRI();

IF OLFQ=(LFQeLENGTH(THRQUEUE))
THEN PRINC("Failure: can’t prove anything on failqueue.") ALSO RETURN NIL
ELSE PRINC("Starting a new ")
ALSO PRINC(PASS) ALSO PRINC("-th pass on new queue of length: ")
ALSO PRINC(OLFQ«LFQ) ALSO FAILQ-TEMP ALSO GO L2;

MTCH; IF EMPTYTHREAD(NEXTGOALTHREAD) THEN TERPRI() ALSO PRINC("LOGIC SUCCEEDED!")
ELSE Gegoal(THREAD<NEXTGOALTHREAD) ALSO GO SRCH;

RETURN *LOGIC CONS FCL;

END;

The routine MATCHSEARCH is used by LOGIC to try out all match possibilities. However, the
MONADIC matcher could be tried against some of the facts. This is not done because it often
causes the system to run out of storage space.

EXPR MATCHSEARCH(THREAD,PREP:W);
TRYING(<’UNIFY ,NIL>,NIL,THREAD,PREP)
v TRYING(<'TAUT , 3, NIL,NIL>NIL,THREAD,NIL)
v (IF MONASFLAG A QUICKTEST(Wegoalwff(goal(THREAD)),NIL)
THEN TRYING(<"MONADIC,NIL,T,NIL>NIL,THREAD,NIL) }
v TRYING(<’EQUNIFY>,NIL,THREAD,NIL) ;

In order to make this example complete, we also show the code of the corresponding
parser.

EXPR PARSELOGIC(G);
IF TK2@(’LOGIC,'logic) THEN
< 'LOGIC ,IF TK2@('PLUS,’plus) THEN VLLIST=()>;

4.6.3. Unwinders.

Only tactics have unwinders. The unwinder reads the unwinding information stored in the
goal REASON, obtains the VLs of the proven sons of the goal, reconstructs the expression that
must be passed to NEWSTEP in order for the new VL to be created, and returns this
expression without calling NEWSTEP.

The master routine UNWIND controls unwinders, and this master routine is going to pass
the returned expression to NEWSTEP. Thus, the convention to be followed Is that the
unwinder returns the expression that needs be passed to NEWSTEP in order for the new proof
step to be created.

L Lol
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As examples, we show the code of the unwinders of the tactics: Al, and vi. In these
examples, the macro viofpg accesses the VL of a proved goal. The second example
illustrates the use of the goal REASON, which is accessed with the macro reason(G), in order
for the unwinder to obtain the unwinding Information.

The rather incomprehensible code of both unwinders is due to the FOL system. We shall
elaborate more on this problem in the conclusion of this thesls,

EXPR UNWAND(G);
BEGIN NEW X,Y; .
DEPLIST«DEPOF (Xviofpg(son(1,G))) UNION2 DEPOF(Y«viofpg(son{2,G)))
RETURN (<goalwff(G),<THISLINE,'AI? ,<’LIST&,CAR(X),CAR(Y)>>>)
END;

EXPR UNWOR(G);
BEGIN NEW X,W;
DEPLIST«DEPQF(X«viofpgison(1,G))) ;
Wegoalwff(G);
RETURN (<goalwff(G),<THISLINE,'v1? ,
IF CADR(reason(G))=1 THEN <’0i&, NUMOF(X),’WFF& CONS RTOR(W)>
0 ELSE <’0i&,'WFF& CONS LFOR(W),NUMOF(X)>>>);
END;

4.8, Iintroducing a new element to GOAL.
After programming a new operative element, the user must /ntroduce it to the system and
then load the new routines.

The Introduction is accomplished by calling a GOAL routine that makes the components of
the element known to GOAL.

The following three examples are self-axplanatory.

NEWTACTIC ( *?2Al, "PARSAND , "TRYAND , "UNWAND ) ; :
NEWMATCHER( "TAUT , 'PARSETAUT , "TRYTAUT ) ; o |
NEWSTRATEGY( "LOGIC , 'PARSELOGIC , "TRYLOGIC ) ;
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In each case the first argument is the standard name. The associated routines will be
stored in the property list of that atom.

4.7, Conclusion,

In this chapter we have presented some documentation for the would-be hackers of GOAL.
We may conclude that the programming of new strategies should be encouraged, while the
programming of new tactics and matchers will remain, for the time being, a ground reseived for
hardy souls. This situation may change when FOL has been redesigned, as we shall attempt to
show in the final chapter of this thesis.

We conclude this chapter with a summary of the expressions needed in order to call the
presently available tactics and matchers, for easy reference for programmers of strategies.

4.7.1. Summary of calls to tactics and matchers.

Calling the executer of a tactic or matcher, from the executer of a strategy, must be
always done by calling TRYING, which takes four arguments. The first of these four Is itself a
list whose first element is the standard name of the callee. Any parameters that are specific
to an operating element must also be passed as part of this list.

For easy reference we shall now list the ways to use the first argument, for the most
common tactics and matchers. The second argument is a printswitch (normally T), the third one
Is the thread of the goal, and the fourth is a switch that should normally be T.

Thus the most usual, and simplest way to call them is:
TRYING ( EXPRESSION , T, THREAD , T )

where EXPRESSION is as follows:

<"?Al >
<"7a| >
<Pzl >
<Vl NIL>
<73 NIL>

<"SIMPLIFY,NIL>

_________
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<REWRITE,T,NIL,<<NIL,NIL>>>
<'CASES, NIL>

<UNIFY ,NIL>
<’MONADIC,NIL,T,NiL>
<EQUNIFY>

<TAUT, 3, NIL,NIL>

Some other calls are valid. In particular, in the call to TAUT, 3 can be replaced by 4 to
invoke TAUTEQ, or by 6 to invoke both TAUT and TAUTEQ. In the call to CASES, NIL can be
replaced by a pointer to a VL, and in the call to REWRITE the expression ({NIL,NIL>> can be
replaced by a simpset.

Also, in the calls to TAUT and to MONADIC the first NiL can be replaced by a list of Vis,
and In that to UN/FY it can be replaced by a pointer to a VL.

Though some other variations are also possible, the above list should take care of most
needs.
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5. AUTOMATIC THEOREM PROVING IN GOAL. o
Our research fringes on the area of automatic theorem proving, but differs in its spirit from
most of the current research in that discipline.

Whereas research in automatic theorem proving typically is machine oriented, and is
concerned with obtaining proofs efficiently by careful management of the available resources,
ours Is strictly based on heuristic sequencing of natural deduction rules for the First Order
Predicate Calculus.

One consequence of this approach is that, when a theorem is proved by a strategy, a
complete FOL proof of that theorem is produced, which the user can inspect and understand. o
This differs from the situation, common to many theorem provers, in which it is often very :
difficult to understand how a particular theorem was concluded to be valid by the machine.

Although we are only secondarily concerned with theorem proving, some effort was
invested in devising a heuristic that would be a powerful theorem prover of its own. This is the
strategy LOGIC, presented in the next section.

The effort to augment the power of LOGIC has forced us to deal with some unsolved
issues of current interest to researchers in automatic theorem proving. One of the purposes
of this chapter is to contribute our experience to these discussions.

.,.7

6.1, Automatic theorem proving by LOGIC. :

The routine LOGIC combines all the simple (or atomic) tactics and matchers available to _
date In GOAL. This section comments LOGIC in plain English, and the next section gives a an )

algorithmic summary description of it. The reader may be well advised to read both
descriptions in paraliel.

LOGIC expands the tree of sub-goals in breadth first manner, using a queue of unproved
sub-goals. The reason for the breadth first scheme is that in many cases the system is unable
to match sub-goals that have been decomposed too far down. Since a proved sub-goal is ®
frequently used in the proof of a descendant of one of its brothers, a depth first heuristic
fails in those cases where the "wrong" branch of the tree was decomposed first. This
happens in the pair example shown next; there, a depth first version of LOGIC (with which |
experimented first) succeeded only when the two conjuncts were given in the "correct"
order; whereas the presently implemented version succeeds either way.

At every node, LOGIC first attempts to match it using all the different matchers available:
UNIFY, TAUT or TAUTEQ and MONADIC; unification is attempted against every fact in the
attached FACTLIST; TAUT or TAUTEQ is called against the whole collection of facts; MONADIC
is, at present, called only against the GOALWFF alone, because calling it against a whole set e
of VLs dramatically slows down the system and it often causes the available storage capacity .
to be exceeded. ®
®
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if the GOALWFF is matched and the goal is not a top level one, the system looks up the
other descendants of the parent of the matched goal, i.e. it attempts unwinding the proof as
far up as possible, until it either proves a top level goal or it finds one or more unproved sons
of a parent of a just proved goal. In this event, it adds the just proved goal to the FACTLIST of
the unproved descendants of its parent, at all levels in these branches. [t also places any
unproved leaves of these branches in front of the queue (so they wiil be tried next) because
they stand a better chance now that a new fact has been added to their FACTLISTs.

If no match is obtained, LOGIC checks whether anything has been added to the R
SIMPSETLIST of that node! since the last attempt at rewriting that goal or any one of its e
ancestors. If this is the case, it attempts to rewrite the goal. If the GOALWFF rewrites to L ,'-ﬁ:
TRUE, this Is treated as a match, as described above. If the WFF rewrites to a different WFF, - -‘:4
a son to that goal is created and is treated as described below. If the WFF does not rewrite, PO

then other tactics will be tried in the following order. 1
Wt ‘

Now LOGIC first looks up whether the main symbol of the goalwff is V, 3, A, s or . In these .

cases It calls the corresponding tactic, thus generating one or more sons to that goal. If this

is not possible, It looks up whether there is any fact in the FACTLIST that is a disjunction; if so, RN
CASES is applied against that fact. —. -4
:. - . H
If none of the attempts to either match or decompose the goal succeeded, the goal i :jf.-‘_i-j:
placed on a list of fal/led goals. ]
If a successful decomposition is obtained, LOGIC immediately tries to match each one of L.
the just created sons. If a match (or perhaps more than one) is obtained, any unproved BE
siblings of the matched goal will be placed in front of the queue for the same reason o 1
mentioned earlier. If none matches, they are all placed at the end of the queue. -y
-
After this, LOGIC picks the first goal in the queue and repeats the whole process just j
described, with one variation: since an attempt to match is made before placing a goal in the .
queue, no new attempt is now made unless some fact has been added to the goal (as a 5 3
consequence of having proved a brother of some ancestor since It was placed in the queue). ..

It may also be the case that the goal was in the meantime tried or perhaps even proved (and
perhaps also "garbage collected” from the tree), because after a match unproved brothers
are put in front of the queue. The system is able to recognize all these situations and treat
them properly.

Now, what happens if the queue becomes empty? There must be some goals in the fail list,
or otherwise LOGIC would have already proved a top level goal by now. All the goals in the fai/
list are examined; if any of them have experienced any change since they were placed there
(i.e. additions of facts to them), these are placed in the queue of goals to be tried, and the
whole process continues. This does not cause an infinite loop, because every time that the
queue of goals to be tried becomes empty, LOGIC checks whether any changes to the list of
failed goals have occurred. If there is no change, it exits, leaving the tree in the state it has
gotten to, and announcing to the user the number of unproved leaves in the tree.

A successful exit occurs only when a top level goa!l is reached. If the original call to LOGIC

1 The SIMPSETADOFLAG is used for this purpose




CUAAPAIND Ar Al s Yot S sl - o S i P Ll e T T LIS 420 enc dvench s Seanc)

Automatic theorem proving in GOAL, 64

by the user was on a goal that is not top level, LOGIC will work below that node only as long
as the node does not become proved. But, if it succeeds in proving it, instead of exiting it will
continue working to its parent and down to its unproved brothers.

- 6.1.1. Summary of the LOGIC heuristics.

1.- Attempt MATCHING. If it succeeds then go MATCH.

‘ - TRYING: 2.- If SIMPSETADDFLAG, attempt REWRITING.
If it rewrites to TRUE, then go MATCH.
If it rewrites to a different WFF, then go SPLIT.
- 3.- Attempt one of the tactics: Vi, 3|, al, &l, or ol
- If one of these succeeds, then go SPLIT.

4.- Attempt CASES. If it succeeds then go SPLIT.
FAIL: b6.- Place goal in FAIL list, Go 7.

SPLIT: 6.- For each one of the sons, try MATCHING it.
If none matched, then place them at the
end of the QUEUE of goals to be tried.
If there is a match, then,
( if there are more than one still unmatched sons,
then place them in front of the QUEUE and
go NEXT, else go MATCH ).

7.- If QUEUE is empty then go 9.

NEXT: 8.- Pick first element of QUEUE., Attempt MATCHING.
if match succeeds then go MATCH else go TRYING.

8.- Have facts been added to any goals in the FAIL list?
if yes, place them in the QUEUE and go NEXT.
If no, EXIT { tailure ).

10.- If NULL(NEXTGOALTHREAD) then EXIT ( success ),
else place NEXTGOALTHREAD in front of the QUEUE and go NEXT.

Natice that after any match in the goal structure the global variable NEXTGOALTHREAD will
be pointing to some unproved descendant of the parent of soma just proved goal, unless a top
level goal was proved, in which case the variable will be NIL.
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6.1.2. The PAIR example.

The following example is interesting on several accounts. It illustrates the following
features of GOAL.

1. A proved subgoal is required in order to prove its brother; GOAL attaches it to this
brother, and to any one of its descendants; thus one proved subgoal fertilizes another branch
of the goal tree.

2. This proved subgoa! Is included in the simpset of the other branch, because it is a
universally quantified equivalence.

3. Conditional simplification. LOGIC would not succeed without this feature, although a
different heuristic would. However, that different heuristic would not succeed in the examples
trom [Kelley 1856], whereas LOGIC does.

4. The use of the quantelimlist. lts etfect is similar to Skolemization.

5.1.2.1. Statement of the problem.

Given the axiom of EXTENSION, which states that two sets are equal if and only if they
have the same elements, and the PAIR axiom, which states the existence of the uvnordered
palr of x and y (i.e., a set whose only elements are x and y), the goal is to prove that the
unordered pair is vnique.

LOGIC generates an eight step proof in FOL automatically. This proof is more compact than
what most sophisticated FOL users would normally achieve.

6.1.2.2. The GOAL generated proof.

The complete dialogue between the user and the system follows. Five asterisks is the
FOL prompt. User given commands begin immediately after the prompt and end with the first
semicolon or double semicolon. Anything else is typed by either FOL or GOAL. As an exception
to the above rule, the FOL command SHOW PROOF generates a type out of the complete FOL
proof, in which many lines beginning with five asterisks are typed by FOL (not by the user);
these lines indicate the reason for the next line of the proof, l.e. how that line was obtained in
FOL. Reasons generated by the GOAL unwinding mechanism are indistinguishable from those
that would result from direct use of FOL for Interactive construction of the same proof.
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*xxssDECLARE INDVARx y 2zl uv w;
x++x3DECLARE PREDCONST ¢ 2 [INF];
*x22xxAXIOM EXTENT: Vx y(x=yeVulutxsuty));
EXTENT: Vx y.(x=yaVu.{u(xzucy))

xxxexAXIOM PAIR: Vx y.3w.Yu{ulws{u=xvuey));
PAIR: Vx y.3w.Yu.(utwz(usxvu=y))

*+x33GOAL Vx y.3z(Vw.(w(zs(wexvw=y))AVz | (Yw.(w(z]8(we=xvwe=y))>z]=2))
ASSUME PAIR SASSUME EXTENT;

Goal a#l: Vx y.3zAVw.wzz{w=xvwey)AVz](Yw.(w(z]s(waxvw=y))2z]=2))

*+x¢xSHOWGOAL;

Goal #1: Vx y.dz.(Vw.(w(zs(w=xvw=y)AVzl(Vw.(wezla(wexvwey))oz]=2))
VLSASSU: EXTENT Vx y.x=y=Vu.(u(xauly))

VLASSU: PAIR Vx y.3w.Yululwze(u=xvu=y))
Simpsets: ( BY LOGICTREE COMPTREE)

COMMENT: the showgoal command shows that the axiom of EXTENT has been added as an
assumption and the axiom of PAIR as a sassumption. It also shows that (by default) the
simpsets LOGICTREE and COMPTREE have been attached. Next we show the result of invoking
the LOGIC tactic, and the proof it generates. A commentary follows.

=x+x2TRY USING LOGIC;

Goal s#lsl: Vx y.3z{Vwiwzs(w=xvw=y))AYzl.(Yw.(w(z]ls(w=xvwe=y))oVulucz1eucz)))
Goal slsale]l: Jz.(Vw {w(za{wexvw=y)aVz].(Vw.(wez]e(we=xvw=y))oVu.(ucz]suez)))
Goal slelelel: Ywlw(ze(w=xvw=y)AVz] (Vw.(w(zlz(w=xvw=y))>Yuluéz1au¢z))
Goal slslslulel: Yw.(wzs(w=xvwey))

Goal wlwinlelu2: Vzi(Yw(wzlg(w=xvwey))aVuluczlsucz))

1 3z.Yw.wizs{wexvwm=y))

2 Yw(w(zs{wexvwey)) (2)

3 Vzl(Yw.wzla(w=xvw=y))oVYu.luczlzu(z)) (2)

4 Yw.(wezs(wexvway))AVz 1 (Yw.(wizla(wexvw=y))aVu.(uczloucz)) (2)

5 J2(Vw.(w(zs(waxvw=y))AYz]1(Yw.{wez ] e(wexvway))oYu.(uczleucz)))

6 Yx y.Jz(Vw.(weza(waxvway))AVz | (Yw.(wiz]ls(w=xvway})2Yu.{ucz 1 aycz)))

7 ¥x y.3z.(Ywlwza{we=xvwesy DAYz 1. (Yw.(w(z]ls{w=xvwe=y))ozl=z)) &
Vx y. 3z Yw.(wezs(waxvwmy))AV2Z 1 (Yw.(wez 1 a{weaxvwey))oVu.(uez 1 su€z)))

............
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8 Yx y.3z.(Vw.(wezs(waxvwey DAY21.(Yw.(w(zls{(waxvw=y))o2]=2))

LOGIC SUCCEEDED!

COMMENT: everything following the command "TRY USING LOGIC* has been typed by the
system. The tirst subgoal that matches is #1#1#1#1#1 (line 2), and #1#1#1#1#2 matches
immediately thereafter (line 3). Line 3 depends on (2) because the system added (2) to the

simpset attached to goal #1#1#1#1#2 and It actually used line (2) to prove this goal. Finally
we use the FOL "SHOW PROOF* command to display the proof produced by the logic tactic.

s+x+sSHOW PROOF;
sxs5:UNIFY PAIR;

1 3z2.Vw.(wezs(w=xvw=y))
ssxesdE T 2;

2 Ywiw(zs{wexvway)) (2)

*++xx2REWRITE Vz1.(Yw.(w(zls(w=xvwsy))aVu(uzlsuz))
BY t EXTENT LOGICTREE COMPTREE;

3 Vzl(Yw.(wezla(wexvway))oVulutzlauez)) (2)

sssssAl (2 3);

4 Yw.(wézs(waxvwey)AYz].(Yw.wzls(w=xvw=y))oYu(uczlauez)) (2)
esxxedl T2 ;

5 3z.(Yw. wezs(wuxvw=y)AYz1(Yw.(wizls(w=xvway))d>Yu(uczlsucz)))
ssaas¥l T x y;

6 Vx y.3z2.(Vw.(weza(w=xvwey)AYz1.(Yw.(wezls(waxvwey))aVuluczlsuez))

22803REWRITE Vx y.3z(Vw.(wizs(waxvwey))a¥z].(Vw(wezls{w=xvway))oz]=z))
BY EXTENT LOGICTREE;

7 Vx y.3z(Yw.(wezs{waxvway))AVzL.(Yw.(w(zlx(wexvwey))ozl=2)) =
Vx y.3z.(Vw.(weza(w=xvw=y)AVz | (Vw{wez 1 s{waxvw=y))oVYu.(u€z 1 sucz)))

2202 TAUT Vx y.3z(Yw.(wzs(wexvway)AVzl(Yw{wizls(waxvwey))oz]=2)) 6,7;

8 Vx y.Jz.(Vw.(wezs(waxvwey)AVZ] (Yw.(wzls(wexvwey))oZ]1=2))

XL
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6.1.3. Commentary to the PAIR example.

The steps followed by the LOGIC tactic are explained in detail in this section.

When LOGIC is invoked on the goal #1, it first attempts to match the goal; it fails. Then it
attempts to rewrite the ,ual by syntactic simplification using the attached simpsets plus the
sassumed axiom of extent. This produces a different WFF, which becomes goal #1#1. This
WFF was obtained by rewriting "zl=z" by the axiom of extent. Why was "w=xvw=y" not
rewritten? The reason is that the rewrite tactic has noticed that this is part of the wff
"wezsw=xvw=y" which has the same structure as a wff in the assume list: namely, it has the
same structure, except for the leading quantifiers, as the assumed axiom PAIR. Recognizing
that that part of the goal is potentially matchable against that fact, it does not rewrite it.
This shows conditional simplification.

#1#141 is obtained from #1#1 by elimination of the leading universals.
The #1#1#14#1 is obtained by elimination of the leading existential.

This goal Is then decomposed into two sub-goals because its main logical connective is
llAll.

Next, #1#1#1#1#1 is unified by the UNIFY tactic against the axiom PAIR.. This tactic
recognizes that the wff "VYw.(w(zs(w=xvw=y))* cannot be directly unified against PAIR, but that,
by reintroducing the existential on z, which -as it remembers- was eliminated further up in the
tree, the WFF "Iz Vw.wze{lw=xvw=y))* can be unified against PAIR. Thus it produces this WFF
as a first line of the proof, and then it eliminates the existential, producing line 2 of the proof,
which matches the subgoal. This matched subgoal is added as a fact to its brother
#1#1#141822,

When trying #1#1#1#1#2, LOGIC recognizes that a fact has been added to this sub-goal,
namely line 2 which proves Its brother. it first tries the matchers, which fail. When the goal is
prepared by the first TRY, the system recognizes that the wff of the added fact,
"Vwiw(zsw=xvw=y)" should be added to the simpset since it is a universally quantified
equivalence. After the matchers fail, LOGIC recognizes that a new element has been added to
the simpset. Therefore it attempts a new rewrite on this sub-goal. In this event, the wff
rewrites to TRUE3, thus this subgoal has been proved. Since it was the last unproved leaf of
the tree, the proof now unwinds automatically.

If the two conjuncts of #1#1#1#1 had been switched as the goal was created (i.e. BAA
instead of AnB), LOGIC would have produced exactly the same proof. This is noteworthy
because proof of one of the two conjuncts is required in order to be able to prove the other.
Thus a strictly top-down scheme would succeed only if the conjuncts were given in the
"right" order. But LOGIC carries the search in a breadth first fashion.

2 A3 the variable z is matched against the existentlally eliminated variable in line 2, GOAL records this as a binding, meaning
that now 2z, in the other branch of the goal tree, is not free any more for matching against arbitrary terms, as it was before. Aiso
it records where In the goal tree that binding took piace, and in case of an adandoning of an ancestor of that goal, z would be
made free again.

3 It does o because the simpset LOGICTREE Is attached 1o the goa! by default.
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56.1.4. The initial theorems from Kelly.

LOGIC has generated automatic proofs of the first 32 theorems in the Appendix on Set
Theory in [Kelley 1955]. It has also generated automatic proofs of several further theorems,
in addition, for some theorems it has proved all but one of the subgoals it generated; in some
of these cases the unproved subgoal could be proved by one additional FOL command, and
then GOAL would unwind the proof,

[Kelley 1865] uses the following form of the comprehension axiom scheme:

COMPREHENSION: Vx.( x¢{y[P(y)} s SET(x) A P(x) ).

Comprehension terms are automatically rewritten by LOGIC according to that axiom
scheme. This Is accomplished by the simpset COMPTREE, which is attached to goals by
default.

The pattern of the proofs of those first 32 theorems is the same as in the following
example (Theorem 4, part 2). In each case, the user has to attach the appropriate set of
facts, using SASSUME, in order for LOGIC to succeed.

That pattern consists of a subgoaling by REWRITE, followed by a match by MONADIC.

6.1.4.1. An example from Kelly.

s+sx3sDECLARE INDVAR x y 2;

s2333sDECLARE PREDCONST ¢ 2 [INF};

*23x3sDECLARE OPCONST u 2 [INF];

ses2eAXIOM SET: Vx.(SET(x)ady.x¢y);

SET: Vx.(SET(x)a3y.x¢y)

23333 AXIOM UNION: Vx y.xuys={z|z(xvaz(y};

UNION: ¥x y.(xuy)={zjz¢xvzcy}

s2323GOAL Yx y 2.(2¢xuyszixva(y) SASSUME SET UNION;

Goal #l: Vx y z.(2¢(xuy)s(z¢xvziy))
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352 TRY USING LOGIC;
Goal slsl: Vx yl z{(3y.z¢ynz<xvacy | s(zexvziy 1) .
1 ¥x yl z.((3y.2¢yn(z¢xvzey 1 )m(zexvaiy)))
2 Yx y 2.(2((xuy)s(zeéxvzcyNeVx y1 2{(3y.z¢yn(zéxvzéy 1))a(zexvacy 1))

3 Vx y z.(2¢(xuy)e(zéxvzey))

LOGIC SUCCEEDED!

sx+53SHOW PROOF;

*x+52sMONADIC ;

1 ¥x yl 2(3y.2¢yn(z¢xva(y ) Ne(z(xvz(yl))

ss+xsREWRITE Yx y z.(2¢(xuy)s(2(xvacy)) BY UNION SET LOGICTREE COMPTREE;

2 ¥x y z.(z¢{xuy)e(zievazey)a¥x y1 2((3y.z¢yMzéxvady 1))s(zxvzeyl))
sxe2TAUT Vx y z(zd{xuy)s{zxvacy) 1,2;

3 Yx y z.(2¢(xvy)s(z<xvziy))

(2222

86.2. Issues in goal oriented theorem proving.

This chapter ends with a discussion of some problems for which we have not found any
satisfactory solution. These have to do with some trade offs between the amount of
manipulation of the assertions by theorem proving strategies and the complexity of these
strategies.

Not having found one generally good way of dealing with these trade offs, perhaps the
best approach would be to maximize the degree of user's control over the manipulations of
tha assertions In such a way that the strategias can control these manipulations with the
same flexibllity as they control the decomposition of goals.

This approach would be in keeping with the general conclusions suggested in this thesis. it
is better to strive for a flexible environment in which strategies can be programmed, and to
live with specialized onas, rather than with maximally powerful, heavy theorem provers. But a
good deal of thought is still needed before the fiexibility of GOAL can be sxtended to the
manipulation of the assertions.
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6.2.1. Subgoaling and assertions.

From our point of view as a user of GOAL, a goal is a WFF to be proved; attached to this
WFF, there are facts or assertions, simpsets, and some other information. This approach is
sensible because the reduction rules incorporated in the tactics are natural, in the sense that
they correspond to the natural deduction [Prawitz 1965] rules of FOL. This makes it easy for
the user to understand the description and to conduct interactive proof construction in GOAL.

From the point of view of the design of automatic theorem proving heuristics, the more
elegant approach taken by [Brown 1977a, 1977b, 1978] is better. This researcher defines
transformations between sequents, a sequent being a collection of assertions and goals. The
meaning of a sequent is that the disjunction of the goals (i.e., at least one of them) follows
from the conjunction of the assertions. That approach establishes a duality between goals
and assert/ons, so that the rules that manipulate the latter do not have a different status from
those that manipulate goals.

Our tactics can be described in that way, and most of the rules in Brown's papers are
indeed in GOAL. However, in our system goals and assertions (or facts) have a quite different
status because the latter are Vis of the FOL proof, while the goals are WFFs without any
FOL status. In line with our efforts to keep GOAL consistent with FOL, any WFFs in the
FACTLISTA of a goal are written as assumptions onto the FOL proof5 before the goal is tried.

This stringent requirement that the facts must always be VLs makes unwinding simple.

6.2.2. Working on the assertions.

Some theorems can be proved from the axioms mainly by manipulation of the goals. In
those cases, GOAL is generaliy successful. But some other theorems require many
manipulations of the axioms, before these can be used to prove the goals. For instance: the
axloms may be rewritten; conjunctive axioms may be decomposed into Vls that assert the
disjuncts separately; or several axioms may be combined in order to obtain a different
assertion.

6.2.2.1. RESOLVE.

In GOAL, some transformations of the facts, or assertions, have been built into the prepare
mechanism. In particular, PREPARE attempts to RESOLVE an assumption generated by the
Implication rule, a1, against the othar Vis in the FACTL/ST. RESOLVE Is a FOL inference rule
based on a variation of UNIFY that will perform some Inferences of the following type: from

4 For instance, the antecedent of an implication after subgoaling by the Implication rule.
8 Using the FOL ASSUME command.
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two assortions "Vx.(A(x)2B(x)" and "A(t)", an assertion "B(t)" may be inferred. RESOLVE is
as yet undocumented, like UNIFY, and it is still in a developmental stage; thus we will not
describe it any further.

For automatic theorem proving, it is often Iimportant that such inferences be drawn
automatically. But the generation of many possible inferences from a set of facts tends to
increase the complexity of the heuristics; it causes many new Vls to be generated, and in
many cases it causes the theorem prover to fall because it takes a wrong path.

6.2.2.2. Rewriting assertions vs. conditional simplification.

In the PAIR example discussed earlier, we saw that conditional simplification prevented
parts of the goal from being rewritten. If that part of the goal that claims the ex/stence of the
unordered pair had been rewritten, it would not have matched against the PAIR axiom that
asserts its existence, unless that axiom had also been rewritten by the axiom of EXTENT.

This situation occurs quite often. One would be tempted to rewrite every assertion in the
FACTLIST using the simpset attached to the goal, and to add the rewritten VLs to that
FACTLIST, in order to increase the power of the theorem prover. But doing this would cause a
large, probably exponential, increase in the running time, and it would heavily tax the storage
requirements. Also it would cause many useless Vls to be auued to the proof, and this would
make the proofs generated by GOAL much more unreadable and difficult to understand.

Thus we chose not to rewrite assertions. Instead conditional simplification is used in order
to prevent rewriting of those parts of goals that are potentially matchable against some fact.

Conditional simplification was implemented by testing, at each step in the (recursive)
rewrite loop, whether the subwff would pass the isomorphy test that UNIFY uses. If it does,
rewritting of that subwff, and of any one of its parts, is blocked.

This approach presents problems of its own, however. For instance, when there are some
facts whose main connective is the equality symbol "="6, the sides of any equality in the
GOALWFF would not be rewritten. In many cases this restriction is excessive and it prevents
effective theorem proving.

We have not found any near optimal solution to these trade offs. Instead, we have
provided the executer of the REWRITE tactic with a flag to activate conditional simplification.
When the tactic is called directly by the TRY command, the flag is off. In a user programmed
strategy, the flag can be controlled by the strategy.

The interested reader may refer back to the discussion of conditional simplification in the
introduction, where the difference between ours and the Edinburgh [Gordon, Milner and
Wadsworth 1977] version was pointed out.

6 The equality symbol Is a predicate constant In FOL.

.....
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6. SOME FUTURE ORIENTED CONCLUSIONS. -

The three main accomplishments of our research are: the creation of a command language
for top down construction of proofs in FOL and the demonstration of its usefulness; that this . N
language Is extensible; and the demonstration of the practibility of our approach to automatic E B

theorem proving.
Enough has been said about these three aspects in this thesis. But not much has been
said about what we have learned of how a first order logic proof checker could fit with a goal
command language. Therefore we want to conclude with some remarks about this.
-~
o
6.1. Ideal FOL and GOAL.
In an ideal FOL proof checker, the parsing of user's commands Is completely separated S :
from the "semantic" routines that effect the actions of these commands. The parsing routines o

and the semantic (or action) routines communicate through a carefully designed system of
Interfaces. Furthermore, the system of reasons' maps this system of interfaces so well that
they could themselves be passed as input to FOL.

The first consequence of this is that the programming of new tactics and of new matchers
in GOAL becomes as easy and reliable as the programming of strategies. At present, no faulty
deduction by strategles is possible if the tactics and matchers are sound. Thus we can
guarantee the user that extensions to GOAL will be foolproof If they are limited to the
addition of strategies. With ideal FOL we can make the programming of new tact/cs and
matchers foolproof as well.

For tactics, the programming of unwinders becomes unnecessary. They can be
automatically genarated. The user has to specify what FOL rule the tactic is inverse to, and
to make sure that the executer raturns an item that conforms to the rules for the FOL reasons
for the proof steps. At unwinding time, FOL will then know how to take the appropriate action
so as to generate the new step of the proof.

For matchers, the executer looks quite simple. It simply calls the appropriate FOL decision
procedure, through the corresponding interface.

All of this is fairly obvious. FOL is not far from having this structure, but its actual code is
not quite there yet.

1 That Is, the FOL reasons for the proot steps. ®
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6.2, Extensibility and METAFOL,

Research on the formalization of FOL in FOL has progressed in parallel to our research
[Weyhrauch 1978a]. That research aims at the mechanization of this formalization, so that
properties of FOL can be both formalized and easily proved in FOL.

It has been already pointed out that a high level language for the programming of
extensions by the user is both desirable and feasible. It appears that METAFOL offers both a
language for describing new modes of inference and the possibility of proving their
correctness !n FOL. This seems a fruitful direction for further research. | think that it
addresses the basic problems of describing new tactics, matchers, and strategies,
adequately. Appropriate attention should also be given to the full range of questions
regarding the type of facilities that ought to be given the user for manipulating facts and
simpsets In the context of theorem proving strategies, in order to make a powerful and high
level programming language for theorem proving applications.

This suggested research may bring about the exciting possibility that extensions to GOAL
can be described and proved correct in FOL using METAFOL; when the user convinces FOL of
the correctness of a proposed extension, it gets accepted and automatically converted into a
working extension to GOAL.
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7. APPENDIX 1: THE TAKEUCHI FUNCTINN,

The following proof illustrates two aspects of GOAL: top down proof construction, and the
use of extensibility. It Is also Interesting In that it shows the potential of First Order Logics
for program verification.

7.1. Introduction.

The Takeuchl function was devised by lkuo Takeuchi of the Electrical Communication
Laboratory of Nippon Telephone and Telegraph Co. for the purpose of comparing the speeds
of LISP systems. It can be made to run a long time without generating large numbers or using
much stack. It is defined as follows.

-

tak(x,y,z) « if xsy then y else tak(tak(x-1,y,z),tak(y=1,z,x ),tak(z=1,x,y))

[McCarthy 1978a] showed that this function is equal to the following simpler expression.

takO(x,y,z) = if x<y then y elseif y<z then z else x .

The same author [McCarthy 1878b] constructed a 50 step FOL proof of this fact, without
using GOAL. We shall compare the proof using GOAL with McCarthy's proof.

7.2. A strategy for case analysis.

A strategy was added to GOAL for this proof. We shall use the example in order to
lllustrate the process of extending GOAL in detail. This strategy is very similar to IFCASES. It
differs from it ir that it does not expand the conditional wifs and the conditional terms into
formulae wit'iout conditionals. Doing that expansion did not yield good results in this example.
We chose the name /FCASESHOAT, in order to distinguish it from /FCASES.

Let us first look at the parser. It was decided that the user had to explicitly tell to the
parser the WFF on which the case analysis was to be carried. The following two routines
implement the parser.



vy
S’

Cites aun son o 4
AL
'

Appendix 1: the Takeuchi Fu~_ion. 76

EXPR PARSEIFCASESHORT(G:X);

IF TK2@("IFCASESHORT, ifcaseshort)
THEN IF XeWFF#(NIL) THEN RETURN(<IFCASESHORT ,X>)
ELSE IFCASEPARSEMSGHI() ALSO ENDL();

EXPR IFCASEPARSEMSGHI();
BEGIN TERPRI()
PRINC("IF-CASES-SHORT requires that you specify a WFF.");
END;

Now let us look at the executer and comment the code. The parameter WF is the WFF
specified by the user. The executer first calls the CASES tactic on WF and ~WF. Thus, if the
original WFF of the goals is GWF, the two subgoals generated by this tactic are: WFoGWF and
-WF>GWF. For each of these two subgoals, our strategy will call the tactic ol and then the
REWRITE tactic. The calls to ol occur at the label REP in the code, which is executed twice. A
call to ol causes the antecedent to be attached to the subgoal as an assumption. Since it will
not necessarily be placed into the SIMPSET, the next three lines of code force this
assumption to be written onto the FOL proof and to be put into the SIMPSET before calling
REWRITE. The prepare mechanism causes a negation -WF to be also written as WFeFALSE
because this form happans to work better with the rewrite code.

EXPR TRYIFCASESHORT(THREAD,PSWT,WF);
BEGIN NEW S, S1, MT, G, THR;
TRYING(<’CASES,WF>PSWT,THREAD,T);
Seson(l,goal(THREAD))
Sleson(2,g0al(THREAD));

REP; TRYING(<'?21>,PSWT,S CONS THREAD,NIL);
PREPARC(Gegoal(THR-NEXTGOALTHREAD),NIL);
MT e«<<NIL,NIL>>;

VLADD(CAR PROOF,MT,’SUBSTLEAF&);
TRYING(<’REWRITE,NIL,<CAAR PROOF>MT>PSWT,THR,NIL);
IF S1 THEN S«S1 ALSO S1eNiL ALSO GO REP;
RETURNCIFCASESHORT )

END;

These routines must now be added to the system, together with the following statement.

NEWSTRATEGY(iFC.ASESHORT,'PARSEIFCASESHORT, TRYIFCASESHORT);

And now the extension is complete. The most difficult part of this code is that which has
to do with forcing the assumption into the SIMPSET. That part requires an understanding of the
REWRITE code, which users of FOL cannot be required to possess. The example thus
illustrates the importance of devising a high level ianguage for programming strategies. That
high level language should not be too restrictive in the amount of c~ntrol allowed over

assumptions, simpsets, Vils, and other items.
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) o

7.3, McCarthy's FOL proof.

The declarations, the axloms, and the whole proof devised by [McCarthy 1978b] follows.
Axiom LESS comprises nine lemmas, not all of which are actually used in the proof. | found that
LESS1, LESS3, and LESS6, are unnecessary. These lemmas are similar to the verification
conditions used by program verification systems.

TV

7.3.1. Declarations.

. dectare INDVAR x y z € REAL;

; deciare OPCONST pred(REAL) = REAL[PRE};

S declare OPCONST takO(REAL,REAL,REAL) = REAL;

' declare OPCONST takl1(REALREAL,REAL) = REAL;
declare PREDCONST <{REAL,REAL){L<455,R<455);
declare PREDCONST s(REAL,REAL)[L«455,R<455];

7.3.2. Axioms.

LESS: LESS!: Vx.pred x<x
LESS2: Yx.pred x<x
LESS3: Vx y.({x<yAl~{x =y IA~(y < MV{(=(x<y IA{xmy A~y <x)V(~(x <y JA(~(x =y ) Ay <x))))
LESS4: Vx y 2.({{x<yAy<z)ax<z)A((xsyAy<z)ox<2)N({(x<yAysz)ax<2)M(xSyAy$2)oxS2))))
LESSS: Vx y.(xsSye(x<yvx=y))
LESS6: Vx.~(x<x)
LESS7: Vx.xsx
LESS8: Vx y.{~(xgy)ey<x)
LESSY: Vx y.{y<xa~{xsy))

TAKO: Vx y 2.takO(x,y,2)=IF xsy THEN y ELSE IF ysz THEN z ELSE x

TAKL: Yx y z.takl{x,y,2)=IF xsy THEN y ELSE takO(takO(pred x,y,z),tak%
Olpred y,z,x),takO(pred 2,x,y))
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7.3.3. The proof.

"The proof is actually a cleaned up version of a 68 step proot that was in some ways more
informative. Namely, | used the REWRITE rule with what inequalities | had and looked at the right
hand side to see which ones | stili should look tor. In particular, the splitting of the main case into
subcases was determined empirically by seeing ‘vhat propositional terms appeared in the
conditional expressions. From this point of view, FOL helped in generating the proof and didn’t
merely check a pre-existing proof.”

[McCarthy 19878b]

*++6xASSUME xsgy;

1 xsy (1)

s+xx3REWRITE tak1(x,y,2)=takO(x,y,2) BY LOGICTREEU{ TAKO,TAK1,1};
2 takl(x,y,2)=tak0(x,y,2) (1)

*xxx2D| T107;

3 xsyotakl{x,y,z)=takO(x,y,z)

3228 ASSUME ~(xsy);

4 ~(xsy) (4)

sxxxsREWRITE y<x BY LOGICTREEU{ LESS9,4};
5 y<x (4)

*xx5xASSUME ysz;

6 ysz (6)

*+x+x:ASSUME pred xsy;

7 pred xsy (7)

sss22VE LESS2 y;
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8 pred y<y
sxxx2VE LESSA pred y,y,2;

9 ((pred y<yay<z)opred y<z)A{{(pred ySyny<z)opred y<z)
Al{(pred y<ynysz)apred y<z)A((pred ysyAysz)opred ysz)))

*xe02TAUT pred ysz 6,8:9;

10 pred ysz (6)

sxs3::REWRITE takl(x,y,z)=takO(x,y,2) BY LOGICTREEU{ TAKO,TAK1,4:7,10};
11 takl(x,y,z)=takO(x,y,2) (46 7)

sxxxx3] 751;

12 pred xsyotakl(x,y,z)=takO(x,y,z) (4 6)

*xx:xASSUME ~(pred xsy);

13 ~{pred xsy) (13)

+x+xxREWRITE takl(x,y,z)=takO(x,y,2) BY LOGICTREEu{ TAKO,TAK1,LESS7,4:6,10,13};
14 takl(x,y,z)=takO(x,y,2) (4 6 13)

sxxx32| T1o7T;

15 «(pred x<y)otakl(x,y,z)=takO(x,y,2) (4 6)

*sxx5TAUT takl{x,y,z)=takO(x,y,2) 12,15;

16 takl(x,y,2)=takO(x,y,z) (4 6)

sxx5%D) 607}

17 y<zotakl(x,y,z)=takO(x,y,z) (4)

sxxsxASSUME ~(ysz);

18 ~«(ysz) (18)

*+3#sREWRITE 2<y BY LOGICTREEU{ LESSY,I18}%

19 2<y (18)

ssxxaVE LESSA 2,y,x;

20 ((z<y Ay <x)oz<x)A(({2sy Ay<x)az<x)A({(2<y Ay $x)o2<x)A((ZSy Ay Sx)D25x)))

sseexYE LESSS 2,x;
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21 zsxa(z<xvz=x)
*sxexTAUT 2sx 5,19:21;
22 zsx (4 18)

sexaaVE LESSA pred 2,2,x;

23 ((pred z<znz<x)opred z<x)A(((pred zszAz<x)opred z<x)
A{(pred z<znzsx)opred z<x)n((pred zszazsx)opred zsx)))

sxxxsVE LESS2 2;
24 pred 252
*sxx2VE LESSA pred z,2,x;

25 ((pred z<znz<x)>pred 2<x)A({(pred zszAz<x)opred 2<x)
All(pred z<znzsx)opred 2<x)A({pred zszaz<x)opred z5x)))

ssxx3TAUT pred 25x 22,24:25;

26 pred zsx (4 18)

sxexsASSUME pred xsy;

27 pred xsy (27)

*exxASSUME pred ysz;

28 pred ysz (28)

*+xx3ASSUME ~(pred xsy);

29 ~(pred x<y) (29)

sxx2xASSUME ~(pred ysz);

30 ~(pred ysz} (30)

*+x23REWRITE tak I{x,y,2)=takO(x,y,2) BY FOOU{ 27:28};
31 taki(x,y,2)=takO(x,y,z) (4 18 27 28)
*xx0xREWRITE tak1(x,y,2)=takO(x,y,z) BY FOOu{ 27,30}
32 takl(x,y,z)=takO(x,y,2) (4 18 27 30)

*xxx3YE LESS4 pred x,2,y;

33 ((pred x<zaz<y)apred x<y)A{((pred xszAz<y)opred x<y)
Al{(pred x<zazsy)opred x<y)n{(pred xszazsy)>pred xsy)))
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sxxexxVE LESSS 2,y;

34 2gys(z<yvzey)

sxxexTAUT ~(pred xs2) 19,29,33:34;

35 ~(pred xs2) (18 29)

*x+2REWRITE takl(x,y,2)=takO(x,y,2) BY FOOu{ 28:29,35};
36 takl(x,y,z)=takO(x,y,2) (4 18 28 29)
*+xxsREWRITE taklix,y,2)=takO(x,y,2) BY FOOU{ 29:30};
37 takl(x,y,z)=takO(xy,z) (4 18 29 30)

*x¥x0| 28531;

38 pred yszotakl(x,y,z)=takO(x,y,2) (4 18 27)
s¥xx32| 30032;

39 ~(pred ysz)>takl(x,y,z)=takO(x,y,2) (4 18 27)
sxex3TAUT takl(x,y,2)=takO(x,y,z) 38:39;

40 takl(x,y,z)=takO(x,y,z) (4 18 27)

*xxx22| 28236;

4] pred yszotakl{x,y,2)=takO(x,y,2) (4 18 29)
sx22x3] 30237;

42 ~{pred ysz)atakl(x,y,z)=takO(x,y,2} (4 18 29)
=exexTAUT takl(x,y,2)=tak0(x,y,z) 41:42;

43 tak1(x,y,2)=takO(x,y,2) (4 18 29)

sxxx2| 272340;

44 pred xsy>tak1(x,y,2)=takO(x,y,2) (4 18)
sxxxxd] 29277

45 ~(pred xsy)>takl{x,y,z)=takO(x,y,2) (4 18)
sxexTAUT takl(x,y,z)=tak0(x,y,2) 44:45;

46 takl{x,y,2)=takO(x,y,z) (4 18)

ss322D] 1851;

.........
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47 ~(ysz)otakl(x,y,z)=takO(x,y,2) (4)
sexesTAUT takl(x,y,2)=takO(x,y,z) 17,47;
48 taki(x,y,z)=takO(x,y,2) (4)

*xts32| 401,

49 ~(xsy)otakl(x,y,z)=takQ{x,y,z)
sxx33TAUT tak1(x,y,2)=tak0(x,y,z) 3,49;
50 takl(x,y,z)=takO(x,y,z)

7.4. The proof using GOAL.

For the GOAL proof of the Takeuchi function we used exactly the same axioms shown
before. The number of user's command required by this proof is one third of the number of
commands required In the previous one. On the other side, the number of line in the FOL proof
generated by the GOAL unwinding mechanism is roughly the same as in the other proof.

The formulae that appear in the GOAL proof are much bigger that in McCarthy's FOL proof.
But this does not serlously affect the usefulness of GOAL, In the case of this proof, | did not
really have to scan much of those formulae. The commands were guessed by inspecting the
main conditional of the WFF.

Our proof combined some forward proving with the GOAL commands. In total, it used nine
calls to TRY and five (forward) uses of the FOL command MONADIC.

7.4.1. Comparison of the user input.
For ease of comparison, we show first the commands typed by the user in each case. The

structure of the case analysis Is apparent in the commands for the GOAL proof.

7.4.1.1. Commands for the forward proof.

..........
..........
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ASSUME x<y;

REWRITE tak1(x,y,2)=takO(x,y,2) BY LOGICTREEU{ TAKO,TAK1,1}
ol t1o1;

ASSUME ~(x<y);

REWRITE y<x BY LOGICTREEU{ LESS9,4};
ASSUME y<z;

ASSUME pred xsy;

YE LESS2 y;

VE LESSA pred v,v,2;

TAUT pred y<z 6,8:9;

REWRITE taki(x,y,2)=takO(x,y,2) BY LOGICTREEU] TAKO,TAK1,4:7,10}
sl 7o1;

ASSUME ~(pred xsy);

REWRITE taki(x,y,z)=tak0O{x,y,2) BY LOGICTREEu{ TAKO,TAK!,LESS7,4:6,10,13};
ol 11o1;

TAUT takl{x,y,2)=takO(x,y,2) 12,15;

S| 627

ASSUME ~(ysz);

REWRITE z<y BY LOGICTREEY! LESS9,18});

YE LESSA z,y,x;

VE LESSS z,x;

TAUT 2¢x 5,19:21;

YE LESS4 pred z,2,x;

VE LESS2 z;

VE LESS4 pred z,2,%;

TAUT pred 2sx 22,24:25;

ASSUME pred xgy;

ASSUME pred ysz;

ASSUME ~(pred xsy);

ASSUME -~(pred ys<z);

REWRITE takl(x,y,z)=takO(x,y,z) BY FOOu{ 27:28};
REWRITE takl(x,y,z)=takO(x,y,z) BY FOQu{ 27,30};
VE LESS4 pred x,2,y;

YE LESSS z,y;

TAUT ~(pred x<2) 19,29,33:34;

REWRITE takl(x,y,2)=takO(x,y,2) BY FOOu{ 28:29,35};
REWRITE takl(x,y,2)=takO(x,y,2) BY FOOu{ 29:30};
o} 280313

o} 30032;

TAUT takl(x,y,z)=tak0(x,y,z) 38:39;

ol 28>36;

ol 30237;

TAUT takl(x,y,z)=takO(xy,z) 41:42;

ol 27240;

o| 29>11;

TAUT takl{x,y,2)=tak0(x,y,z) 44:45;

ol 18o1;

TAUT takl(x,y,z)=takO(x,y,2) 17,47;

ol 4o1;

TAUT takl{x,y,z)=tak0(x,y,z) 3,49;
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7.4.1.2. Commands for the goal oriented proof.

TRY USING VI;

TRY USING REWRITE BY {TAK1 TAKO};

TRY USING IFCASES x<y;

TRY USING IFCASES ysz;

MONADIC pred y < z LESS4 LESS2 6;

MONADIC IF pred x s y THEN y ELSE z < z LESS7 6;
TRY #lululse2aelulelslal USING REWRITE BY {T1,T}
MONADIC z<x 4 7 LESS8 LESS5 LESS4;

MONADIC pred z < x LESS2 LESS4 T;

MONADIC IF pred y £z THEN z ELSE x < x LESS7 TT;
TRY USING REWRITE BY {111,11,1,LESS7};

TRY USING IFCASES pred y < z,

TRY USING IFCASES pred x < y

TRY USING MONADIC 7 26 LESSS LESS4;

7.4.2. The complete man-machine dialog.

The following Is the complete protocol of the GOAL proof.

xxxx3GOAL Vx y z.(takl(x,y,z)=tak0(x,y,2));

Goal #1: VYx y z.takl(x,y,2)=takO(x,y,2)

xexxxTRY USING Vi

Goal #l=]: takl(xy,z)=takO(x,y,z)

#xxx¢TRY USING REWRITE BY {TAK1 TAKO};

Goal #1slul: IF xsy THEN y ELSE IF IF pred x<y THEN y ELSE IF ysz TH%
EN z ELSE pred x<IF pred ysz THEN z ELSE IF zsx THEN x ELSE pred y TH%
EN IF pred ysz THEN z ELSE IF zsx THEN x ELSE pred y ELSE IF IF pred %
ysz THEN z ELSE IF zsx THEN x ELSE pred ysIF pred zsx THEN x ELSE IF %
xSy THEN y ELSE pred z THEN IF pred zsx THEN x ELSE IF xsy THEN y ELS%
E pred z ELSE IF pred xsy THEN y ELSE IF ysz THEN z ELSE pred x=IF xs%
y THEN y ELSE IF ysz THEN z ELSE x

*#xx2xTRY USING IFCASESHORT xgy;

Goal #lulslsl: xsyoIF x<y THEN y ELSE IF IF pred xsy THEN y ELSE IF %
ysz THEN z ELSE pred xsIF pred ysz THEN z ELSE IF zsx THEN x ELSE pre%
dy THEN IF pred y<z THEN z ELSE IF z<x THEN x ELSE pred y ELSE IF IF%
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pred ysz THEN z ELSE IF 2<x THEN x ELSE pred y<IF pred zsx THEN x EL%
SE IF xsy THEN y ELSE pred 2 THEN IF pred zsx THEN x ELSE IF xsy THEN%
y ELSE pred z ELSE IF pred xsy THEN y ELSE IF ysz THEN z ELSE pred x¥%
=|F xSy THEN y ELSE IF ysz THEN z ELSE x

Goal slalnl»2: ~(xsy)oIF x<y THEN y ELSE IF IF pred xsy THEN y ELSE %
IF ysz THEN z ELSE pred x<IF pred y<z THEN 2 ELSE IF 2sx THEN x ELSE %
pred y THEN IF pred ysz THEN z ELSE IF zsx THEN x ELSE pred y ELSE IF%
IF pred y<z THEN z ELSE IF zsx THEN x ELSE pred ysIF pred zsx THEN x%
ELSE IF xsy THEN y ELSE pred z THEN IF pred z<x THEN x ELSE IF xsy T%
HEN y ELSE pred z ELSE IF pred xsy THEN y ELSE IF ysz THEN z ELSE pre%
d x=IF x<y THEN y ELSE IF y<z THEN z ELSE x

Goal slsulnlalel: IF x<y THEN y ELSE IF IF pred xsy THEN y ELSE IF y<X
Zz THEN z ELSE pred xsIF pred ysz THEN z ELSE IF zsx THEN x ELSE pred %
y THEN IF pred y<z THEN z ELSE IF z<x THEN x ELSE pred y ELSE IF IF p%
red ysz THEN z ELSE IF z<x THEN x ELSE pred y<IF pred zsx THEN x ELSE%
IF x<y THEN y ELSE pred z THEN IF pred z<x THEN x ELSE IF xSy THEN y¥%
ELSE pred z ELSE IF pred x<y THEN y ELSE IF ysz THEN z ELSE pred x=I¥
F xsy THEN y ELSE IF y<z THEN z ELSE x

1 xsy (1)

2 IF x<y THEN y ELSE IF IF pred x<y THEN y ELSE IF y<z THEN z ELSE pr%

ed x<IF pred ysz THEN z ELSE IF z<x THEN x ELSE pred y THEN IF pred y%
<z THEN z ELSE IF z<x THEN x ELSE pred y ELSE IF IF pred ysz THEN z E%

LSE IF 2sx THEN x ELSE pred ysiF pred zsx THEN x ELSE IF x<y THEN y E%
LSE pred 2 THEN IF pred 2<x THEN x ELSE IF x<y THEN y ELSE pred z ELS%
E IF pred xsy THEN y ELSE IF ysz THEN z ELSE pred x=IF xsy THEN y ELS¥
E IF ysz THEN 2 ELSE x (1)

3 xSy>IF xsy THEN y ELSE IF IF pred xsy THEN y ELSE IF y<z THEN z ELS¥
E pred x<IF pred y<z THEN z ELSE IF zsx THEN x ELSE pred y THEN iF pr¥%
ed y<z THEN z ELSE IF zsx THEN x ELSE pred y ELSE IF iF pred y<z THEN¥
2 ELSE IF z<x THEN x ELSE pred y<IF pred zsx THEN x ELSE IF xsy THEN%
y ELSE pred z THEN IF pred zsx THEN x ELSE IF xsy THEN y ELSE pred 2%
ELSE IF pred xsy THEN y ELSE IF y<z THEN z ELSE pred x=IF xsy THEN y%
ELSE IF y<z THEN z ELSE x

Goal #iulele2ul: IF xsy THEN y ELSE IF IF pred xsy THEN y ELSE IF ysX
2 THEN 2z ELSE pred x<IF pred y<z THEN z ELSE IF zsx THEN x ELSE pred %
y THEN IF pred y<z THEN z ELSE IF zsx THEN x ELSE pred y ELSE IF IF p¥

red y<z THEN z ELSE IF z<x THEN x ELSE pred y<IF pred z<x THEN x ELSE%
a xSy THEN y ELSE pred z THEN IF pred z<x THEN x ELSE IF xsy THEN y¥%
ELSE pred z ELSE IF pred x<y THEN y ELSE IF ysz THEN z ELSE pred x=i%
F xsy THEN y ELSE IF ysz THEN z ELSE x

4 ~(xsy) (4)

5 xsysFALSE (4)

Goal winlulu2ulnl: IF IF pred xsy THEN y ELSE IF ysz THEN z ELSE pre¥%
d x<IF pred y<z THEN z ELSE IF 2<x THEN x ELSE pred y THEN IF pred ys%

2 THEN z ELSE IF zsx THEN x ELSE pred y ELSE IF IF pred ysz THEN z EL%

SE IF 2sx THEN x ELSE pred ysIF pred zsx THEN x ELSE pred z THEN IF p%

red z<x THEN x ELSE pred z ELSE IF pred xsy THEN y ELSE IF ysz THEN z¥
ELSE pred x=IF ysz THEN z ELSE x

sx2x2TRY USING IFCASESHORT ysz;

.................
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Appendix 1: the Takeuchi Function,

Goal #lslslu2ulelel: y<zolF IF pred xsy THEN y ELSE IF ysz THEN z EL%
SE pred xsIF pred ysz THEN z ELSE IF z<x THEN x ELSE pred y THEN IF p%
red ysz THEN z ELSE IF zsx THEN x ELSE pred y ELSE IF IF pred y<z THE%
N 2 ELSE IF z<x THEN x ELSE pred ysIF pred z<x THEN x ELSE pred z THE%
N IF pred zsx THEN x ELSE pred z ELSE IF pred xsy THEN y ELSE IF y<z %
THEN z ELSE pred x=IF y<z THEN z ELSE x

Goal #ls#lsle2alels2: ~(ysz)oIF IF pred xsy THEN y ELSE IF y<z THEN 2%
ELSE pred x<IF pred ysz THEN z ELSE IF z<x THEN x ELSE pred y THEN 1%
F pred y<z THEN z ELSE IF zsx THEN x ELSE pred y ELSE IF IF pred ysz %
THEN z ELSE IF zsx THEN x ELSE pred ysIF pred z<x THEN x ELSE pred z %
THEN IF pred z<x THEN x ELSE pred z ELSE IF pred x<y THEN y ELSE IF y¥%
<z THEN z ELSE pred x=IF y<z THEN z ELSE x

Goal #lslsule2alulelsal: IF IF pred xsy THEN y ELSE IF y<z THEN z ELSE%
pred x<IF pred y<z THEN z ELSE IF z<x THEN x ELSE pred y THEN IF pre%
d y<z THEN z ELSE IF zsx THEN x ELSE pred y ELSE IF IF pred ysz THEN %
2 ELSE IF z<x THEN x ELSE pre | y<IF pred z<x THEN x ELSE pred z THEN %
IF pred zsx THEN x ELSE pred z ELSE IF pred xsy THEN y ELSE IF ysz TH%
EN z ELSE pred x=IF y<z THEN z ELSE x

6 y<z (6)

Goal #1ul#le2ulelelelsl: IF IF pred x<y THEN y ELSE z<IF pred y<z TH%
EN z ELSE IF zsx THEN x ELSE pred y THEN IF pred y<z THEN z ELSE IF 2%
<x THEN x ELSE pred y ELSE IF IF pred y<z THEN z ELSE IF 2$x THEN x E¥%
LSE pred ysIF pred z<x THEN x ELSE pred z THEN IF pred z<x THEN x ELS%
E pred z ELSE IF pred xsy THEN y ELSE z=z

Goal s#ls#lslu2slule2al: IF IF pred xsy THEN y ELSE IF ysz THEN z ELSE%
pred x<IF pred ysz THEN z ELSE IF z<x THEN x ELSE pred y THEN IF pre%
d ysz THEN z ELSE IF 2<x THEN x ELSE pred y ELSE IF IF pred y<z THEN %

2 ELSE IF zsx THEN x ELSE pred y<IF pred z<x THEN x ELSE pred z THEN %
IF pred zsx THEN x ELSE pred z ELSE IF pred xsy THEN y ELSE IF ysz TH%
EN z ELSE pred x=IF ysz THEN z ELSE x

7 «ysz) (7)

8 y<z=FALSE (7)

Goal #1s#lulu2alelu2alel: IF IF pred xsy THEN y ELSE pred x<IF pred y%
sz THEN z ELSE IF z<x THEN x ELSE pred y THEN IF pred y<z THEN z ELSE%
IF 2sx THEN x ELSE pred y ELSE IF IF pred y<z THEN z ELSE IF z<x THE%

N x ELSE pred ysIF pred z<x THEN x “LSE pred z THEN IF pred z<x THEN %
x ELSE pred z ELSE IF pred x<y THEN y ELSE pred x=x

*+xxxMONADIC pred y < z LESS4 LESS2 6;

9 pred y<z (6)

*x++*MONADIC IF pred x s y THEN y ELSE z < z LESS7 6;

10 IF pred x<y THEN y ELSE z<z (6)

*xxxxTRY #lelela2elelalelsl USING REWRITE BY {T1,1}

11 IF IF pred x<y THEN y ELSE z<IF pred y<z THEN z ELSE IF z<x THEN x%
ELSE pred y THEN IF pred y<z THEN z ELSE IF z<x THEN x ELSE pred y E%
LSE IF IF pred y<z THEN z ELSE IF z<x THEN x ELSE pred y<IF pred 2sx %
THEN x ELSE pred z THEN IF pred zsx THEN x ELSE pred z ELSE IF pred x%
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Sy THEN y ELSE z=z (6)

12 IF IF pred x<y THEN y ELSE IF y<z THEN z ELSE pred x<IF pred y<z T%
HEN z ELSE IF 2<x THEN x ELSE pred y THEN IF pred y<z THEN z ELSE IF ¥
z<x THEN x ELSE pred y ELSE IF IF pred y<z THEN z ELSE IF zsx THEN x %
ELSE pred ysIF pred 2sx THEN x ELSE pred z THEN IF pred z<x THEN x EL¥X
SE pred 2 ELSE IF pred xsy THEN y ELSE IF ysz THEN z ELSE pred x=IF y¥%
<2 THEN z ELSE x=IF IF pred xsy THEN y ELSE 2<IF pred ysz THEN z ELSE%
IF z<x THEN x ELSE pred y THEN IF pred y<z THEN z ELSE IF z<x THEN x%
ELSE pred y ELSE IF IF pred y<z THEN z ELSE IF zsx THEN x ELSE pred %
ysIF pred zsx THEN x L.SE pred z THEN IF pred z<x THEN x ELSE pred z %
ELSE IF pred xsy THEN y ELSE z=z (6)

13 IF IF pred xsy THEN y ELSE IF y<z THEN z ELSE pred x<IF pred y<z T%
HEN z ELSE IF z<x THEN x ELSE pred y THEN IF pred y<z THEN z ELSE IF %
z<x THEN x ELSE pred y ELSE IF IF pred ysz THEN z ELSE IF z<x THEN x %
ELSE pred y<IF pred z<x THEN x ELSE pred z THEN IF pred zsx THEN x EL%
SE pred z ELSE IF pred xsy THEN y ELSE IF ysz THEN z ELSE pred x=IF y%
sz THEN z ELSE x (6)

14 y<zolf IF pred xsy THEN y ELSE IF y<z THEN z ELSE pred xsIF pred y¥%
<z THEN 2z ELSE IF 2sx THEN x ELSE pred y THEN IF pred y<z THEN z ELSE%
IF z<x THEN x ELSC pred y ELSE IF IF pred ysz THEN 2z ELSE IF 2gx THE¥
N x ELSE pred y<IF pred zsx THEN x ELSE pred z THEN IF pred zsx THEN %
x ELSE pred z ELSE IF pred x<y THEN y ELSE iF y<z THEN z ELSE pred x=%

IF y<z THEN z ELSE x

*+xx2MONADIC 25x 4 7 LESS8 LESS5 LESS4;

16 zsx (4 7)

*+xxxMONADIC pred z < x LESS2 LESS4E T

16 pred zsx (4 7)

*33xxMONADIC IF pred y <z THEN 2 ELSE x < x LESS7 1T,
17 IF pred y<z THEN z ELSE xsx (4 7)

sx+32TRY USING REWAITE BY {TT1,T1,T,LESST7};

Goal slulnln2nlalu2slelsl: IFIF pred x<y THEN y ELSE pred x<IF pred%
ysz THEN z ELSE x THEN IF pred ysz THEN z ELSE x ELSE x=x

*x+x2TRY USING IFCASESHORT pred y < 2z;

Goal wlnlnlu2alelu2elalulsl: pred y<zolf IF pred x<y THEN y ELSE pre¥%
d x<iF pred ysz THEN z ELSE x THEN IF pred ysz THEN z ELSE x ELSE x=x
Goal ulslnluZelnlu2ululsele2: ~(pred y<z)aIF iF pred xSy THEN y ELSE %
pred x<IF pred y<z THEN z ELSE x THEN IF pred y<z THEN z ELSE x ELSE %
X=X

Goal ululsln2alnlu2ululalelul: IF IF pred xsy THEN y ELSE pred xsIF %
pred ysz THEN z ELSE x THEN IF pred ysz THEN z ELSE x ELSE x=x

18 pred ysz (18)

-, D S RN X
ST WS AP Rl S S TN T D SIS ST 0. DU W St W |

2 s AT alatal




Appendix 1: the Takeuchi Function, 88

Goal #1u#lelu2slula2slalalalnlel: IF IF pred xsy THEN y ELSE pred xsz%
THEN 2z ELSE x=x

Goal #lulsla2ulele2alalalesl: IF IF pred x<y THEN y ELSE pred xsIF %
pred y<z THEN z ELSE x THEN IF pred ysz THEN z ELSE x ELSE x=x

19 ~(pred ysz) (19)

20 pred yszsFALSE (19)

21 IF IF pred xsy THEN y ELSE pred xs<IF pred ysz THEN z SLSE x THEN 1%
F pred y<z THEN z ELSE x ELSE x=x (19)

22 ~(pred ysz)=IF IF pred xsy THEN y ELSE pred xsIF pred ysz THEN z E%
LSE x THEN IF pred y<z THEN z ELSE x ELSE x=x

*xxxxTRY USING IFCASESHORT pred x < y;

Goal #lalulu2elalu2alulelalalalsl: pred xsyolF IF pred xsy THEN y EL%
SE pred x<z THEN z ELSE x=x

Goal #l#lululaelelealslelslelelan2: ~(pred xsy)oIF IF pred xsy THEN y%
ELSE pred x<z THEN z ELSE x=x

Goal #l#lule2slula2elslelelalalelal: IFIF pred xsy THEN y ELSE pred%
x<z THEN z ELSE x=x

23 pred xsy (23)

24 IF IF prad xsy THEN y ELSE pred xsz THEN z ELSE x=x (7 23)

25 pred x<yolF IF pred x<y THEN y ELSE pred xsz THEN z ELSE x=x (7)

Goal #lalule2ulululelslelelelala2sl: IFIF pred xSy THEN y ELSE pred%
x<z THEN z ELSE x=x

26 ~(pred xsy) (26)

27 pred xsysFALSE (26)

Goal #lsls#la2elselelelsululelelela2elsl: IF pred x<z THEN z ELSE x=x

*xxxxTRY USING MONADIC 7 26 LESS8 LESS4;

28 IF pred x<z THEN z ELSE x=x (7 26)

29 IF IF pred x<y THEN y ELSE pred xsz THEN z ELSE x=xsIF pred xsz TH%
EN z ELSE x=x (26)

30 IF IF pred xsy THEN y ELSE pred xsz THEN z ELSE x=x (7 26)

31 ~(pred xsy)>IF IF pred x<y THEN y ELSE pred x<z THEN z ELSE x=x (%
7)

32 IF IF pred x<y THEN y ELSE pred x<z THEN z ELSE x=x (7)

33 IF IF pred x<y THEN y ELSE pred xsIF pred y<z THEN : £L8E x THEN 1%
F pred ysz THEN z ELSE x ELSE x=xsIF IF pred xsy THE'V y ELL. pred xsz%
THEN z ELSE x=x (18)
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ks 34 IF IF pred x<y THEN y ELSE pred x<IF pred ysz THEN z ELSE x THEN 1%
! F pred ysz THEN z ELSE x ELSE x=x (7 18)

35 pred yszoIF IF pred xSy THEN y ELSE pred x<IF pred y<z THEN z ELSE%
% THEN IF pred y<z THEN z ELSE < ELSE x=x (7)

' 36 IF IF pred xsy THEN y ELSE pred xsIF pred ysz THEN z ELSE x THEN I%
' F pred ysz THEN z ELSE x ELSE x=x (7)

37 IF IF pred xsy THEN y ELSE pred xsIF pred y<z THEN z ELSE IF 2<x T%
HEN x ELSE pred y THEN IF pred y<z THEN z ELSE IF zsx THEN x ELSE pre%
d y ELSE IF IF pred ysz THEN 2 ELSE IF zsx THEN x ELSE pred ysIF pred%
2<x THEN x ELSE pred z THEN IF pred z<x THEN x ELSE pred z ELSE IF p%
g red xsy THEN y ELSE pred x=xzIF IF pred x<y THEN y ELSE pred xsIF pre%
i d ysz THEN z ELSE x THEN IF pred ysz THEN z ELSE x ELSE x=x (4 7)

38 IF IF pred xsy THEN y ELSE pred x<IF pred ysz THEN z ELSE IF zsx T%
HEN x ELSE pred y THEN IF pred y<z THEN z ELSE IF z<x THEN x ELSE pre%
d y ELSE IF IF pred ysz THEN z ELSE IF zsx THEN x ELSE pred ysIF pred%
: 22x THEN x ELSE pred z THEN IF pred zsx THEN x ELSE pred z ELSE IF p%
F red xsy THEN y ELSE pred x=x (4 7)

39 IF IF pred xsy THEN y ELSE IF y<z THEN z ELSE pred x<IF pred ysz T%

- HEN z ELSE IF z<x THEN x ELSE pred y THEN IF pred y<z THEN z ELSE IF %
i zsx THEN x ELSE pred y ELSE IF IF pred y<z THEN z ELSE IF zsx THEN x %

. ELSE pred y<IF pred z<x THEN x ELSE pred z THEN IF pred z<x THEN x EL¥
1 SE pred z ELSE IF pred x<y THEN y ELSE IF y<z THCN z ELSE pred x=iIF y%
<z THEN z ELSE x=IF IF pred xsy THEN y ELSE pred x<IF pred ys<z THEN z%
ELSE IF z<x THEN x ELSE pred y THEN IF pred ysz THEN z ELSE IF zsx T%

HEN x ELSE pred y ELSE IF IF pred y<z THEN z ELSE IF z<x THEN x ELSE %

pred ysIF pred zsx THEN x ELSE pred z THEN IF pred z<x THEN x ELSE pr¥%
ed z ELSE IF pred x<y THENy ELSE pred x=x (7)

40 IF IF pred x<y THEN y ELSE IF y<z THEN z ELSE pred x<IF pred ysz T%

HEN z ELSE IF zsx THEN x ELSE pred y THEN IF pred y<z THEN z ELSE IF %
zsx THEN x ELSE pred y ELSE IF IF pred y<z THEN z ELSE IF zsx THEN x %

ELSE pred y<IF pred z<x THEN x ELSE pred z THEN IF pred z<x THEN x EL%
SE pred 2z ELSE IF pred x<y THEN y ELSE IF ysz THEN z ELSE pred x=IF y%
<z THEN z ELSE x (4 7)

SEPER e T

i 41 ~(ysz)>IF IF pred xsy THEN y ELSE IF y<z THEN z ELSE pred xsIF pre%
P d ysz THEN z ELSE IF z<x THEN x ELSE pred y THEN IF pred y<z THEN z E%
» LSE IF zsx THEN x ELSE pred y ELSE IF IF pred ysz THEN z ELSE IF 2<x %
THEN x ELSE pred v<IF pred z<x THEN x ELSE pred z THEN IF pred z<x TH%
EN x ELSE pred z ELSE IF pred x<y THEN y ELSE IF y<z THEN z ELSE pred%
x=IF y<z THEN z ELSE x (4)

42 IF IF pred xsy THEN y ELSE IF ysz THEN z ELSE pred x<IF pred ysz T%

HEN z ELSE IF zsx THEN x ELSE pred y THEN IF pred y<z THEN z ELSE IF %
z<x THEN x ELSE pred y ELSE IF IF pred y<z THEN z ELSE IF zsx THEN x %

ELSE pred y<IF pred z<x THEN x ELSE pred z THEN IF pred z<x THEN x EL%
SE pred z ELSE IF pred x<y THEN y ELSE IF y<z THEN z ELSE pred x=IF y%
<z THEN z ELSE x (4)

-y

43 IF xsy THEN y ELSE IF IF pred xsy THEN y ELSE IF y<z THEN z ELSE p%
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red x<IF pred ysz THEN z ELSE IF zsx THEN x ELSE pred y THEN IF pred %

ySz THEN z ELSE IF z<x THEN x ELSE pred y ELSE {F IF pred ysz THEN z %

ELSE IF 2<x THEN x ELSE pred y<iF pred zsx THEN x ELSE IF xsy THEN y %
ELSE pred z THEN IF pred z<x THEN x ELSE IF xsy THEN y ELSE pred 2 EL%
SE IF pred xsy THEN y ELSE IF ysz THEN z ELSE pred x=IF xsy THEN y EL%
SE IF y<z THEN 2 ELSE xslF IF pred xsy THEN y ELSE IF ysz THEN z ELSEX

pred xsiF pred ysz THEN z ELSE IF zsx THEN x ELSE pred y THEN IF pre% e,
d ysz THEN 2z ELSE IF 2sx THEN x ELSE pred y ELSE IF IF pred ysz THEN % et
z ELSE IF 2sx THEN x ELSE pred ysIF pred zsx THEN x ELSE pred z THEN X .

IF pred zsx THEN x ELSE pred z ELSE IF pred xsy THEN y ELSE IF ys2 TH¥ S

EN 2 ELSE pred x=IF y<z THEN z ELSE x (4)

LA 4

Lo s
a0

44 |F x<y THEN y ELSE IF IF pred xsy THEN y ELSE IF y<z THEN z ELSE p¥%
red x<IF pred y<z THEN z ELSE IF 2<x THEN x ELSE pred y THEN IF pred %
ysz THEN 2 ELSE IF zsx THEN x ELSE pred y ELSE IF IF pred ysz THEN z %
ELSE IF 25x THEN x ELSE pred y<!IF pred z<x THEN x ELSE IF xsy THEN y ¥
ELSE pred 2 THEN IF pred zsx THEN x ELSE IF xsy THEN y ELSE pred z ELY
SE IF pred xsy THEN y ELSE IF y<z THEN z ELSE pred x=IF xsy THEN y EL¥
SE IF y<z THEN z ELSE x (4)

45 ~(xsy)>IF x<y THEN y ELSE IF IF pred xsy THEN y ELSE IF y<z THEN 2%
ELSE pred xsIF pred y<z THEN z ELSE IF 2sx THEN x ELSE pred y THEN 1%
f pred ysz THEN z ELSE IF z<x THEN x ELSE pred y ELSE IF IF pred ysz X
THEN z ELSE IF 2sx THEN x ELSE pred y<IF pred zsx THEN x ELSE IF xsy %
THEN y ELSE pred z THEN IF pred z<x THEN x ELSE IF x<y THEN y ELSE pr¥
ed z ELSE IF pred xsy THEN y ELSE IF y<z THEN z ELSE pred x=IF xsy TH%
EN y ELSE IF ysz THEN z ELSE x

46 IF xsy THEN y ELSE IF IF pred xsy THEN y ELSE IF ysz THEN z ELSE p¥

red xsIF pred ysz THEN z ELSE IF 2<x THEN x ELSE pred y THEN IF pred %

yS$z THEN z ELSE IF 2<x THEN x ELSE pred y ELSE IF IF pred ysz THEN z ¥

ELSE IF 2sx THEN x ELSE pred y<iF pred 2sx THEN x ELSE IF xsy THEN y ¥
ELSE pred z THEN IF pred 2<x THEN x ELSE IF xSy THEN y ELSE pred z EL%
SE IF pred xsy THEN y ELSE IF ysz THEN z ELSE pred x=IF xSy THEN y ELX
SE IF y<z THEN z ELSE x

47 takl(x,y,2)=takO(x,y,2)slF xsy THEN y ELSE IF IF pred xsy THEN y E¥

LSE IF ysz THEN z ELSE pred xsiF pred ysz THEN z ELSE IF zsx THEN x EX
LSE pred y THEN IF pred ysz THEN z ELSE IF 2$x THEN x ELSE pred y ELS¥
€ IF IF pred y<z THEN 2z ELSE IF 2sx THEN x ELSE pred ysIF pred zsx TH¥
EN x ELSE IF xsy THEN y ELSE pred z THEN IF pred zsx THEN x ELSE IF x%
Sy THEN y ELSE pred z ELSE IF pred xsy THEN y ELSE IF ysz THEN z ELSE¥%
pred x=If xsy THEN y ELSE IF ysz THEN z ELSE x

48 tak1(x,y,z)=tak0(x,y,z)
49 Yx y z.taki(x,y,2)=tak0(x,y,2)
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7.4.3. The FOL proof generated by GOAL.

We have stressed the fact that GOAL always generates a FOL proof that Is
Indistinguishable from a user generated proof. For the sake of compieteness, we also show
here the FOL proot that rasuits from the previous dialog.

*s353SHOW PROOF;
*x4x3ASSUME xsy;
1 xsy (1)

*222+sREWRITE IF xSy THEN y ELSE IF IF pred x<y THEN y ELSE IF ysz THEX
N z ELSE pred x<IF pred y<z THEN z ELSE IF 2sx THEN x ELSE pred y THE%
N IF pred ysz THEN z ELSE IF zsx THEN x ELSE pred y ELSE iF IF pred y%
<2 THEN z ELSE IF 2<x THEN x ELSE pred y<IF pred zsx THEN x ELSE IF x¥
Sy THEN y ELSE pred z THEN IF pred zsx THEN x ELSE IF xsy THEN y ELSE%
pred 2 ELSE IF pred xsy THEN y ELSE IF y<z THEN z ELSE pred x=IF xsy%
THEN y ELSE IF y<z THEN z ELSE x BY LOGICTREE COMPTREE 1}

2 IF x<y THEN y ELSE IF IF pred xgy THEN y ELSE IF ysz THEN z ELSE pr¥%

ed x<IF pred y<z THEN z ELSE IF z<x THEN x ELSE pred y THEN IF pred y%
sz THEN z ELSE IF 2sx THEN x ELSE pred y ELSE IF IF pred ysz THEN z £%

LSE IF zsx THEN x ELSE pred ysIF pred zsx THEN x ELSE IF xsy THEN y EX
LSE pred 2 THEN IF pred zsx THEN x ELSE IF xsy THEN y ELSE pred z ELS%
E IF pred x<y THEN y ELSE IF ysz THEN z ELSE pred x=IF xsy THEN y ELS¥
E IF ysz THEN z ELSE x (1)

ssxxx0| T1o1;

3 xsyolF xsy THEN y ELSE IF IF pred xsy THEN y ELSE IF ysz THEN z ELS¥
E pred x<IF pred y<z THEN 2z ELSE IF zsx THEN x ELSE pred y THEN IF pr¥
ed ysz THEN z ELSE IF zsx THEN x ELSE pred y ELSE IF IF pred ysz THEN%
Zz ELSE IF z<x THEN x ELSE pred ysIF pred z<sx THEN x ELSE IF xsy THENY%
y ELSE pred z THEN IF pred z<x THEN x ELSE IF xsy THEN y ELSE pred 2%
ELSE IF pred xsy THEN y ELSE IF y<z THEN z ELSE pred x=IF xSy THEN y¥
ELSE IF ysz THEN z ELSE x

#2232 ASSUME ~(xsy);
4 ~{xsy) (4)
*2xxREWRITE T BY LOGICTREE;

5 xsysFALSE (4)
*s2223ASSUME ysz;
6 ysz (6)
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sxs22ASSUME ~(ysz);

7 Aysz) (7)

s*32sREWRITE T BY LOGICTREE;

8 ysasFALSE (7)

ssees;

9 pred ysz (6)

*aekh;

10 IF pred xsy THEN y ELSE 25z (6)

*++x3REWRITE IF IF pred xsy THEN y ELSE z<IF pred ysz THEN z ELSE IF %
2<x THEN x ELSE pred y THEN IF pred ysz THEN z ELSE IF zsx THEN x ELSX
E pred y ELSE IF IF pred ysz THEN z ELSE IF 2sx THEN x ELSE pred ysiF%
pred zsx THEN x ELSE pred z THEN IF pred z<x THEN x ELSE pred z ELSE¥X
iF pred xsy THEN y ELSE z=2 BY 5 LOGICTREE COMPTREE BY { 9:10};

11 IF IF pred x<y THEN y ELSE z<IF pred ysz THEN z ELSE IF 2sx THEN x%
ELSE pred y THEN IF pred ysz THEN z ELSE IF z<x THEN x ELSE pred y E%
LSE IF IF pred ysz THEN 2 ELSE IF zsx THEN x ELSE pred ysIF pred 2sx %
THEN x ELSE pred z THEN IF pred z<x THEN x ELSE pred z ELSE IF pred x%
Sy THEN y ELSE z=z (6) :

*x223REWRITE IF IF pred xsy THEN y ELSE IF ysz THEN z ELSE pred xsiF %
pred ysz THEN 2 ELSE IF z$x THEN x ELSE pred y THEN IF pred ysz THEN %
2 ELSE IF 2<x THEN x ELSE pred y ELSE IF IF pred ysz THEN z ELSE IF 2%
Sx THEN x ELSE pred y<IF pred 2sx THEN x ELSE pred z THEN IF pred 25x¥
THEN x ELSE pred 2z ELSE IF pred xSy THEN y ELSE IF ysz THEN z ELSE p¥%
red x=IF ysz THEN z ELSE x BY 5 LOGICTREE COMPTREES;

12 IF IF pred xsy THEN y ELSE IF ysz THEN z ELSE pred xsIF pred ysz T%
HEN z ELSE IF z<sx THEN x ELSE pred y THEN IF pred ysz THEN z ELSE IF %
2sx THEN x ELSE pred y ELSE IF IF pred y<z THEN z ELSE IF z$x THEN x ¥

ELSE pred ysIF pred zsx THEN x ELSE pred z THEN IF pred z<x THEN x EL%
SE pred z ELSE IF pred xSy THEN y ELSE IF ysz THEN z ELSE pred x=IF yX
sz THEN z ELSE xaiF IF pred xsy THEN y ELSE zsIF pred ysz THEN z ELSEX
IF z$x THEN x ELSE pred y THEN IF pred ysz THEN 2z ELSE IF 2sx THEN x%

ELSE pred y ELSE IF IF pred y<z THEN 2 ELSE IF 2¢x THEN x ELSE pred %
ySIF pred 2<x THEN x ELSE pred z THEN IF pred z<x THEN x ELSE pred z X
ELSE IF pred xsy THEN y ELSE 2=z (6)

ss232TAUT IF IF pred xSy THEN y ELSE IF y<z THEN z ELSE pred xsiF preX
d ysz THEN z ELSE IF zsx THEN x ELSE pred y THEN IF pred ysz THEN z EX
LSE IF 2sx THEN x ELSE pred y ELSE IF IF pred ysz THEN z ELSE IF 2sx %
THEN x ELSE pred ysiF pred zsx THEN x ELSE pred 2 THEN IF pred zsx TH¥
EN x ELSE pred 2 ELSE IF pred xsy THEN y ELSE IF y<z THEN z ELSE pred¥%
x=|F ysz THEN z ELSE x 11,12;

13 IF IF pred xsy THEN y ELSE IF ysz THEN 2 ELSE pred xsIF pred ysz T%

82
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HEN z ELSE IF 2sx THEN x ELSE pred y THEN iF pred ysz THEN z ELSE IF ¥

2<x THEN x ELSE pred y ELSE IF IF pred ys2 THEN z ELSE IF 2sx THEN x ¥

ELSE pred ysiF pred 2<x THEN x ELSE pred z THEN IF pred zsx THEN x ELX

SE pred 2z ELSE IF pred xsy THEN y ELSE IF ysz THEN z ELSE pred x=IF y%

Sz THEN 2z ELSE x (6)

*xx522| 607

14 y<zolF IF pred x<y THEN y ELSE IF y<z THEN z ELSE pred xsIF pred y%

Sz THEN 2 ELSE IF 25x THEN x ELSE pred y THEN IF pred ysz THEN z ELSE%X
IF 2sx THEN x ELSE pred y ELSE IF IF pred y<z THEN z ELSE IF zsx THEX

N x ELSE pred ysiF pred zsx THEN x ELSE pred z THEN IF pred zsx THEN ¥

% ELSE pred z ELSE IF pred xSy THEN y ELSE IF ysz THEN z ELSE pred x=%

IF ysz THEN z ELSE x

sa8e;

15 25x (47)

888

16 pred zsx (4 7)

sE88;

17 IF pred ysz THEN z ELSE xsx (4 7)

s*3x2ASSUME pred y<z;

18 pred ysz (18)

*23x2ASSUME ~(pred ysz);

19 ~(pred ys2) (19)

s2sx2REWRITE T BY LOGICTREE;

20 pred y<zsFALSE (19)

s232sREWRITE IF IF pred xsy THEN y ELSE pred x<IF pred ysz THEN z ELSX

$ X TI-;EN IF pred ysz THEN z ELSE x ELSE xwx BY T 8 5 LOGICTREE COMP%
REE 1;

21 IF IF pred xsy THEN y ELSE pred xsiF pred y<z THEN z ELSE x THEN 1%
F pred ysz THEN z ELSE x ELSE x=x (19)

ssxs22| 11121

22 ~(pred ys2)oIF IF pred xsy THEN y ELSE pred xsif pred ysz THEN z EX
LSE x THEN IF pred ysz THEN 2 ELSE x ELSE x=x

s2s3sASSUME pred xsy;
23 pred xsy (23)
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*++sx8REWRITE IF IF pred xsy THEN y ELSE pred xsz THEN z ELSE x=x BY % X
8 5 LOGICTREE COMPTREE ™; AT
24 IF IF pred xsy THEN y ELSE pred xsz THEN z ELSE x=x (7 23) Ii'\;:,_'_:
ss38220] 11T} ’-‘:;:”'::
25 pred xsy>IF IF pred xSy THEN y ELSE pred xsz THEN z ELSE xex (7) h-\..
#38$3ASSUME ~(pred xsy) ‘,-. ".: ;
[ NI

26 ~{pred xsy) (26)
*s23sREWRITE 1 BY LOGICTREE; L

" VeTy

B

27 pred xsysFALSE (26)
#+3x3sMONADIC LESSALESSS 1T 7;
28 IF pred xsz THEN z ELSE x=x (7 26)

**xx2+REWRITE F IF pred xSy THEN y ELSE pred xSz THEN z ELSE x=x BY %
11 8 5 LOGICTREE COMPTREE 11;

29 IF IF pred xsy THEN y ELSE pred x<z THEN 2 ELSE x=xsiF pred xsz TH¥
EN z ELSE x=x (26)

sxsx2TAUT IF IF pred xsy THEN y ELSE pred xsz THEN z ELSE x=x 28,29;
30 IF iF pred xSy THEN y ELSE pred xsz THEN z ELSE x=x (7 26)
sxax30| 267T;

31 ~pred xsy)>IF IF pred xsy THEN y ELSE pred xsz THEN z ELSE x=x (X
7)

*s22sTAUTEQ IF IF pred xSy THEN y ELSE pred xsz THEN z ELSE x=x 25,31%

32 IF IF pred xsy THEN y ELSE pred xsz THEN z ELSE xex (7)

*x2x3REWRITE IF IF pred xsy THEN y ELSE pred xsiF pred ysz THEN z ELS¥X
E x THEN IF pred ysz THEN 2 ELSE x ELSE x=x BY 8 5 LOGICTREE COMPTRY
EELS8;

33 IF IF pred xsy THEN y ELSE pred xsiIF pred ysz THEN z ELSE x THEN I¥
F pred ysz THEN z ELSE x ELSE x=xsif IF pred xsy THEN y ELSE pred xs2%
THEN z ELSE x=x (18)

s2203TAUT IF IF pred xSy THEN y ELSE pred xsiF pred ysz THEN 2 ELSE x¥
THEN IF pred ysz THEN z ELSE x ELSE x=x 32,33;

34 IF IF pred xsy THEN y ELSE pred xsIF pred ysz THEN z ELSE x THEN IX
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F pred ysz THEN z ELSE x ELSE x=x (7 18)
sxx380) 1857;

35 pred y<zolF IF pred x<y THEN y ELSE pred x<IF pred ysz THEN z ELSEY
x THEN IF pred ysz THEN z ELSE x ELSE x=x (7)

*xsxxTAUTEQ IF IF pred xsy THEN y ELSE pred x<IF pred ysz THEN z ELSEX
x THEN IF pred y<z THEN z ELSE x ELSE x=x 22,35;

36 IF IF pred xsy THEN y ELSE pred xsIF pred ysz THEN z ELSE x THEN 1%
F pred ysz THEN z ELSE x ELSE x=x (7)

*+2x2REWRITE IF IF pred x<y THEN y ELSE pred x<iF pred y<z THEN z ELSY%

E IF 2sx THEN x ELSE pred y THEN IF pred ysz THEN z ELSE IF zsx THEN ¥

x ELSE pred y ELSE IF IF pred y<z THEN 2z ELSE IF 2sx THEN x ELSE pred%
ySIF pred 2<x THEN x ELSE pred z THEN IF pred zsx THEN x ELSE pred 2%
ELSE IF pred xsy THEN y ELSE pred x=x BY 8 5 LOGICTREE COMPTREE BY%
{ LESS7,15:17})

37 IF IF pred x<y THEN y ELSE pred xs<IF pred y<z THEN z ELSE IF z<x T%
HEN x ELSE pred y THEN IF pred ysz THEN z ELSE IF 2sx THEN x ELSE pre¥%
d y ELSE IF IF pred ysz THEN z ELSE IF 2¢x THEN x ELSE pred ysIF pred¥%
25x THEN x ELSE pred z THEN IF pred z<x THEN x ELSE pred z ELSE IF p¥
red xsy THEN y ELSE pred x=xalF IF pred xSy THEN y ELSE pred xsiF pre%
d y$2 THEN z ELSE x THEN IF pred y<sz THEN z ELSE x ELSE x=x (4 7)

*+x22TAUT IF IF pred xSy THEN y ELSE pred x<iF pred y<z THEN z ELSE I¥

F 2sx THEN x ELSE pred y THEN IF pred ysz THEN z ELSE IF z<x THEN x EX
LSE pred y ELSE IF IF pred ysz THEN z ELSE IF zsx THEN x ELSE pred ys¥

IF pred zsx THEN x ELSE pred 2 THEN IF pred 2sx THEN x ELSE pred 2 ELX
SE IF pred xsy THEN y ELSE pred x=x 36,37;

38 IF IF pred xsy THEN y ELSE pred xsIF pred y<z THEN z ELSE IF 2sx T%
HEN x ELSE pred y THEN IF pred ysz THEN z ELSE IF zsx THEN x ELSE pre¥%
dy ELSE IF IF pred y<z THEN z ELSE IF 2¢x THEN x ELSE pred ysiF pred%
2$x THEN x ELSE pred z THEN IF pred z<x THEN x ELSE pred z ELSE IF p%
red xsy THEN y ELSE pred x~x (4 7)

*¢xx+REWRITE IF IF pred xsy THEN y ELSE IF y<z THEN 2 ELSE pred xsiF %
pred ysz THEN z ELSE IF zsx THEN x ELSE pred y THEN IF pred ysz THEN %
2 ELSE IF 2¢x THEN x ELSE pred y ELSE IF IF pred y<z THEN z ELSE IF 2%
Sx THEN x ELSE pred ysIF pred 2<x THEN x ELSE pred z THEN IF pred z2sx¥%
THEN x ELSE pred z ELSE IF pred xsy THEN y ELSE IF ysz THEN z ELSE p¥%
red x=IF ysz THEN z ELSE x BY 8 5 LOGICTREE COMPTREES;

39 IF IF pred xsy THEN y ELSE IF ysz THEN z ELSE pred xsiF pred ysz TX
HEN z ELSE IF 2<x THEN x ELSE pred y THEN IF pred ysz THEN z ELSE IF ¥
2$x THEN x ELSE pred y ELSE If IF pred ysz THEN z ELSE IF zsx THEN x ¥
ELSE pred ysiF pred zsx THEN x ELSE pred z THEN IF pred zsx THEN x EL¥
SE pred z ELSE IF pred xSy THEN y ELSE IF ysz THEN z ELSE pred x=IF y%
$2 THEN z ELSE xalF If pred xsy THEN y ELSE pred xsiF pred ysz THEN 2%
ELSE IF 25x THEN x ELSE pred y THEN IF pred ysz THEN z ELSE IF zsx T%
HEN x ELSE pred y ELSE IF IF pred ysz THEN z ELSE IF zsx THEN x ELSE ¥
pred ysIF pred zsx THEN x ELSE pred z THEN IF pred zsx THEN x ELSE pr¥

e’ s
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od z ELSE IF pred xsy THEN y ELSE pred x=x (7)

ssxxsTAUT (F (F pred xsy THEN y ELSE (F ysz THEN z ELSE pred xsIF pre%
d y<z THEN z ELSE IF zsx THEN x ELSE pred y THEN IF pred ysz THEN z EX
LSE IF 2¢x THEN x ELSE pred y ELSE iF IF pred ysz THEN z ELSE IF zsx ¥
THEN x ELSE pred y<IF pred zsx THEN x ELSE pred z THEN IF pred zsx THX
EN x ELSE pred z ELSE IF pred xsy THEN y ELSE IF ysz THEN z ELSE pred¥%
x=|F ysz THEN z ELSE x 38,39;

40 IF IF pred xsy THEN y ELSE IF y<z THEN z ELSE pred xsiF pred y<z T%X
HEN 2z ELSE IF z<x THEN x ELSE pred y THEN IF pred ysz THEN z ELSE IF %
2<$x THEN x ELSE pred y ELSE IF IF pred y<z THEN 2 ELSE IF 25x THEN x %
ELSE pred y<IF pred zsx THEN x ELSE pred z THEN IF pred zsx THEN x EL%
SE pred z ELSE IF pred xsy THEN y ELSE IF ysz THEN z ELSE pred x=IF y¥%
$2 THEN Z ELSE x (4 7)

-
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s*3382] 757;

4] {yzsz)=lIF IF pred x<y THEN y ELSE (F ysz THEN z ELSE pred xsIF pre%
d ysz THEN 2 ELSE IF zsx THEN x ELSE pred y THEN IF pred ysz THEN z €%
LSE IF zsx THEN x ELSE pred y ELSE IF IF pred ysz THEN z ELSE IF zsx %
THEN x ELSE pred ysIF pred zsx THEN x ELSE pred z THEN IF pred zsx TH%
EN x ELSE pred z ELSE IF pred xsy THEN y ELSE IF y<z THEN 2 ELSE pred%
x=lF y<z THEN z ELSE x (4)

*+222TAUTEQ IF IF pred xsy THEN y ELSE IF ysz THEN z ELSE pred xsIF p¥
red y<z THEN 2z ELSE IF z¢x THEN x ELSE pred y THEN IF pred ysz THEN z¥%
ELSE IF 2% THEN x ELSE pred y ELSE IF IF pred ysz THEN z ELSE IF 2s%

x THEN x ELSE pred ysiF pred zsx THEN x ELSE pred z THEN IF pred zsx ¥
THEN x ELSE pred z ELSE IF pred xsy THEN y ELSE IF ysz THEN z ELSE pr¥%
ed x=iF ysz THEN z ELSE x 14,4];

42 IF IF pred xsy THEN y ELSE IF y<z THEN z ELSE pred xsIF pred ysz T%
HEN z ELSE IF 2sx THEN x ELSE pred y THEN IF pred y<z THEN z ELSE IF %
zsx THEN x ELSE pred y ELSE IF IF pred ysz THEN 2 ELSE IF zsx THEN x &
ELSE pred y<IF pred z<sx THEN x ELSE pred z THEN IF pred zsx THEN x EL¥
SE pred z ELSE IF pred x<y THEN y ELSE IF y<z THEN z ELSE pred x=iF y¥%
<2 THEN 2 ELSE x (4)

*+24sREWRITE IF x<y THEN y ELSE IF IF pred xSy THEN y ELSE IF ysz THE¥X
N z ELSE pred xsIF pred ysz THEN z ELSE IF zsx THEN x ELSE pred y THE%
N IF pred ysz THEN z ELSE IF 25x THEN x ELSE pred y ELSE iF IF pred yX
<z THEN z ELSE IF 2sx THEN x ELSE pred ysIF pred zsx THEN x ELSE IF x¥
Sy THEN y ELSE pred z THEN IF pred zsx THEN x ELSE IF xsy THEN y ELSEX
pred z ELSE IF pred xsy THEN y ELSE IF ysz THEN 2z ELSE pred x=iF xsy%
THEN y ELSE IF y<sz THEN z ELSE x BY 5 LOGICTREE COMPTREES;

43 IF xsy THEN y ELSE IF IF pred xsy THEN y ELSE IF ysz THEN z ELSE p¥
red xsiF pred ysz THEN z ELSE IF 2sx THEN x ELSE pred y THEN IF pred ¥
ys$z THEN 2 ELSE IF z<x THEN x ELSE pred y ELSE IF IF pred ysz THEN 2 %
ELSE IF 2$x THEN x ELSE pred ysIF pred 2<x THEN x ELSE IF xsy THEN y %
ELSE pred z THEN IF pred 2sx THEN x ELSE IF xsy THEN y ELSE pred z ELY
SE IF pred xsy THEN y ELSE IF ysz THEN 2 ELSE pred x=IF xsy THEN y EL%
SE IF y<z THEN z ELSE xaIf IF pred xsy THEN y ELSE IF ysz THEN z ELSE¥
pred xsiF pred ysz THEN 2z ELSE IF zsx THEN x ELSE pred y THEN IF pre%

.................................
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d ysz THEN 2 ELSE IF 2<x THEN x ELSE pred y ELSE IF IF pred ysz THEN ¥
2 ELSE IF 2sx THEN x ELSE pred ys<IF pred zsx THEN x ELSE pred z THEN %
IF pred zsx THEN x ELSE pred z ELSE IF pred xsy THEN y ELSE IF ysz TH¥
EN z ELSE pred x=IF ysz THEN z ELSE x (4)

sxxee TAUT IF x<y THEN y ELSE IF IF pred x<y THEN y ELSE IF y<z THEN z¥
ELSE pred xsIF pred y<z THEN z ELSE IF 25x THEN x ELSE pred y THEN 1%
F pred y<z THEN z ELSE IF z<x THEN x ELSE pred y ELSE IF IF pred y<z %
THEN z ELSE IF 28x THEN x ELSE pred ysIF pred z<x THEN x ELSE IF xsy ¥
THEN y ELSE pred z THEN IF pred z<x THEN x ELSE IF x<y THEN y ELSE pr¥%
ed z ELSE IF pred xsy THEN y ELSE IF ysz THEN z ELSE pred x=IF xsy TH%
EN y ELSE IF ysz THEN z ELSE x 42,43;

44 iF x<y THEN y ELSE IF IF pred xgy THEN y ELSE IF y<z THEN 2 ELSE p¥%
red xsIF pred ysz THEN z ELSE IF 2<x THEN x ELSE pred y THEN IF pred ¥
y<z THEN z ELSE IF 2<x THEN x ELSE pred y ELSE IF IF pred ysz THEN z X
ELSE IF z<x THEN x ELSE pred y<IF pred z<x THEN x ELSE IF xsy THEN y ¥
ELSE pred z THEN 'F pred z<x THEN x ELSE IF xsy THEN y ELSE pred z EL¥
SE IF pred xsy THEN y ELSE IF y<z THEN z ELSE pred x=If xsy THEN y EL%
SE IF ysz THEN 2 ELSE x (4)

s13320) 457;

45 ~(x<y)olF x<y THEN y ELSE IF IF pred x<y THEN y ELSE IF ysz THEN zX
ELSE pred x<IF pred ysz THEN z ELSE IF zsx THEN x ELSE pred y THEN I%
F pred y<z THEN z ELSE IF zsx THEN x ELSE pred y ELSE IF IF pred y<z %X
THEN 2 ELSE IF 2<% THEN x ELSE pred ysiF pred z<x THEN x ELSE IF x<y %
THEN y ELSE pred z THEN IF pred 25x THEN x ELSE IF xsy THEN y ELSE pr%
ed z ELSE IF pred xSy THEN y ELSE IF ysz THEN z ELSE pred x=IF xgy TH%
ENy ELSE IF ysz THEN z ELSE x

sxx33TAUTEQ IF xsy THEN y ELSE IF IF pred xsy THEN y ELSE IF y<z THENY
2 ELSE pred xsIF pred ysz THEN z ELSE IF 2sx THEN x ELSE pred y THEN%
IF pred y<z THEN z ELSE IF zsx THEN x ELSE pred y ELSE IF IF pred y<¥%

2 THEN 2 ELSE IF 2gx THEN x ELSE pred y<IF pred zsx THEN x ELSE IF x<¥
y THEN y ELSE pred 2 THEN IF pred 2sx THEN x ELSE IF xsy THEN y ELSE %
pred 2z ELSE IF pred xsy THEN y ELSE IF ysz THEN z ELSE pred x=IF xsy ¥
THEN y ELSE IF y<z THEN 2 ELSE x 3,45;

46 IF xsy THEN y ELSE IF iF pred x<y THEN y ELSE IF y<z THEN 2 ELSE p¥

red x<IF pred y<z THEN z ELSE IF z<x THEN x ELSE pred y THEN IF pred %

ysSz THEN z ELSE IF 2sx THEN x ELSE pred y ELSE IF IF pred ysz THEN z %

ELSE IF 25x THEN x ELSE pred y<IF pred z<x THEN x ELSE IF xsy THEN y ¥
ELSE pred z THEN IF pred z<x THEN x ELSE IF x<y THEN y ELSE pred z EL¥
SE IF pred xsy THEN y ELSE IF ysz THEN z ELSE pred x=IF xsy THEN y EL¥
SE IF y<z THEN 2z ELSE x

uttT(RE}WRITE takl(x,y,2)=takO(x,y,2) BY LOGICTREE COMPTREE BY { TAK%
1,TAKO});

47 takl(x,y,2)=tak0(x,y,z)0lF x<y THEN y ELSE IF IF pred x<y THEN y E%
LSE IF ysz THEN z ELSE pred xsIF pred y<z THEN z ELSE IF 2<x THEN x €%
LSE pred y THEN IF pred ysz THEN 2 ELSE IF z<x THEN x ELSE pred y ELS%
E IF IF pred ysz THEN z ELSE IF 2sx THEN x ELSE pred y<IF pred 2sx TH¥
EN x ELSE IF xsy THEN y ELSE pred 2 THEN IF pred z<x THEN x ELSE IF x¥

........................................
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............................

L R R S Tt e v .~
el e et A A I IS A N T L T T I\ e S e
T T A T e T e R A oo : B TP R . R
R . B e A R SN S R TR S 1
PRI Y I L e S PP L A S S S L L R T N

v e e T N s ey s T e e T et et e . I . c e AT T e et e T et M et A et Y, P - = e, PR T PN
LR T S N P e I ST TSI I S ST - SR R st e e T e T e DI ~ AR

C
RO ] VUL LT e e . e PR S P N
Y PPN, Sl B anedbemedhatedamedh Ao S S S B B B o e B 8a A B e B M B A 8 e n R e A e




B A A P I~ ST S Mt v A i oo SR S St A W A s S Ny

Appendix 11 the Takeuchi Function.
Sy THEN y ELSE pred z ELSE IF pred xsy THEN y ELSE IF ysz THEN z ELSEX
pred x=IF xSy THEN y ELSE IF ysz THEN z ELSE x
saxaaTAUT tak1(x,y,2)=takO(x,y,2) 46,47;
48 takl(x,y,2)=takO(x,y,2)
sesas¥li tx y z;
49 Yx y z.tak1(x,y,2)=tak0(x,y,z)
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8. APPENDIX 2: RAMSEY'S THEOREM.

8.1. Introduction.

The foliowing is Ramsey's theorem for denumerably infinite graphs.

RAMSEY'S THEOREM: if G is a complete, denumerable graph each of whose edges has
been labeled RED or BLACK, then there is a complete, denumerable sub-graph of G whose
edges are all of the same color.

PROOF: Let G(1)=G. For i=12,..., tepeat the following process: pick a point
x(1)/G(i)/; it x(1) is connected to infinitely many points of G(/) by red edges let G(/+17) be
the set of points of G(/) that are connected to x(/) by red edges and label x(/) with RED,
otherwise let G(/+17) be the set of points of G(/) that are connected to x(/) by black edges
and label x(/) with BLACK. We see that, if G(/) is an infinite subset of G, so is G(/+17), and
all points of G(/+1) are connected to x(/) by edges of the color indicated by the label of
x(1); since G(1) Is an Infinite subset of G, so is G(/) for all /. Now consider the sequence
x(0)x(1)X(2)suneness  @ither infinitely many x(/) got labeled RED or Infinitely many got
BLACK. Those Infinitely many x(i) that got the same label form an Infinite one-colored sub-
graph of G. QED,

Carrying out this proof in FOL or in GOAL is a non-trivial exercise. The first difficulty is at
the logical level: choosing the correct way to express the iterative construction process
using the axiom of choice, choosing some form of an axiom about the existence of inductively
defined functions, and then bringing all these ends to match, requires painstaking attention to
detail. In 19756 | constructed a FOL proof in 689 steps. The detalls and a commentary of the
proof have been written up elsewhere [Weyhrauch et al. 1979). This proof wiil be referred
to as the old proof through this Appendix,

8.2, Axioms,

For the GOAL proof we are using the same axioms that were used in the earlier proof
[Weyhrauch et al. 1878]. The rationale for this decision is that in this way the effectiveness
of GOAL can be better appreciated.
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8.2.1. General Axioms.

The following general axioms for Set Theory were written by Weyhrauch. They follow the
spirit of Kelly's axiomatization in the Appendix to [Kelley 1968]. The /ndividual constant A
stands for the empty set.

DECLARE PREDCONST ¢ 2[INF];

DECLARE PREDCONST < 2[INF};

DCCLARE PREDCONST CONN 2[INFJL,ORD CARD NATNUM 1 WO(REL#){INFJ,CONG 2;
DECLARE PREDCONST REL FNC 1;

DECLARE PREDCONST SET 1;

Al;
v 2[R«455 L+450);

DECLARE PREDPAR
DECLARE OPCONST

DECLARE OPCONST
DECLARE OPCONST
DECLARE OPCONST
DECLARE OPCONST
DECLARE OPCONST
DECLARE OPCONST
DECLARE OPCONST
DECLARE OPCONST
DECLARE OPCONST
DECLARE OPCONST

DECLARE INDCONST
DECLARE INDCONST
DECLARE INDCONST

DECLARE INDVAR
DECLARE INDVAR
DECLARE INDVAR

DEFINE
AXIOM
AXIOM

DEFINE
AXIOM

DEFINE
AXIOM

DEFINE V:

SET:
KEXT:
KCOMP:

union:
kunion:

DOM,RNG(FNC)=#,MAPS 2,] 2[INF];
MIN,SUP 1,CONV(REL)=REL card()=0RD;
EXP2 EXP3 1,CROSS 2, 2[INF};

P 1;

INTER 1[R+1000};

\ 2[R+355,L<350}

- 1[PRE};

n 2[Re555 L5503

UNION 1[R«1000);

IMAGE(FNC,x)

E,ON,ALEPHO,omega;
Vi
ACSET;

abcdeal blcl;
uvwxy z¢SET;
r s t¢REL f g h¢FNC;

Ya.(SET(a)s3b.acb);
Ya b.(a=baVc.(cCasceb));;
Ya.(a¢{bJA(b)}aSET(a)AA(a));

SUBSET: VYa b.(acbsYc.(c<adceb));
KPOWER: Vx.3y.Ya(atysacx);

Ya b.(aub={ciccaveeb});
Vx y.SET(xuy);

V={ala=a};;

DECLARE OPCONST sing! 1;

DEFINE UNIT:

Ya(singi(a)={clacVAc=a});

DECLARE OPCONST pair 2;
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DEFINE

PAIR:  Va b.(pair(ab)=singl{a)usingi(b));;

DECLARE OPCONST opair 2;

DEFINE
DEFINE

OPAIR: Ya b.(opair(a,b)=pair(singl(a),pair(a,b)));
TUPLE2: Va b.(opair(a,b)=pair(singl(a),pair(a,b))}s

DECLARE OPCONST otriple 3;

DEFINE
DEFINE
DEFINE
DEFINE
AXIOM

DEFINE
AXIOM

DEFINE
DEFINE
AXIOM
AXIOM

DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE

DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE
DEFINE

DEFINE
DEFINE
DEFINE

TUPLE3: Va b c.(otriple(a,b,c)=opair(a,opair(b,c)));

REL: Ya.(REL(a)sYd.(d<an3b c.(d=opair(b,c)))s

FNC: Ya.(FNC(a)=REL(a)AYb ¢ d.{opair(b,c}canopair(b,d)¢adc=d));;
IMAGE:  Vf a(IMAGE(f,a)={c{3y.(ycanopair(y,ckf)})i

KSUBST: Vf y.SET(IMAGE(f,y)):

UNION:  Ya.(UNION(a)={c|3b.(b¢anceb)})s;
KUNION:  Vx.SET(UNION(x));

EMPTY: A={al~a=a};;

inter:  Ya b.(anb={c|ccanccb});;

REG: Va.(~a=A> 3y (yCanyna=A));
INF: I exAVy (y(xoyusingl(yXx));

COMPL:  VaJ{-a={c|~cca})ii

DIFF:  Va b.(a\b=an-b);

INTER:  Va.(INTER(a)={c|Vb.(b¢adctb)})s;

POWER: Va.(P(a)={c|cca});

EXP2:  Va.(EXP2(a)=lc|3x y.(x¢any<anc=opair(x,y))})

EXP3:  Va(EXP3(a)={c|3x y z.(x¢anyCanz¢anc=otriple(x,y,2))})i
CROSS:  Va b.(CROSS(a,b)={c|3d e.(c=opair(d,e)rdcanecb)})s

COMPO: Va b.(asb=
{c|3a] bl cl.(c=opair(al,bl)nopair(al,cl)canopair(cl,bl)eb)}ss

DOM: Vi.(DOM(f)={c|3a.0pair(c,a)f})
RNG: Yi.(RNG(f)={c|3a.opair(a,c)(f});
MAPS: Ya b.(MAPS(a,b)={t|FNC({f)ADOM(f)=bARNG(f)=a});;
RESTR:  Vf a.(fla=fnCROSS(a,V))i;
£: E={c|3a b.(c=opair(a,b)ralb)};;
CONN:  Vr a.(r CONN asVb c.(bCanccasopair(b,c)rvopair(c,b)rvb=c));
ORD: Va.(ORD(a)e(E CONN a A Vb.{b<aobca)));;
ON: ON={c|ORD(c)}::
MIN: Ya.(MiN(a)=INTER(ONua)nUNION(ONna));;
suP: Ya.(SUP(a)=MIN({c|ONnacc}));
CONV:  Yr{CONV(r)={c|3a b.(c=0pair(a,b)ropair(b,a)r)})i
CONG:  Va b.(CONG(a,b)s3f.(FNC(f)AFNC(CONV(f))ADOM(f)=aARNG(f)=b));
CARD:  Ya.(CARD(a)a(a(ONA-3b.(bcanCONG(a, b))

ard:  Ya(card(a)=INTER({c|CARD{c)ACONG(c,a)})}is

- Yr a.r WO aa{(r CONN a)AYb.(bcan-b=A>

Ix.(x¢bA-~3c.(cCbA~c=xAOpair{c,x Xr)AYd.(decasopair(d,d)r)))));

NATML. "2, (NATNUM(a)sORD(a)A(CONV(E) WO a));
ALEPHO: IHO={c|NATNUMI(c)};
omega: om. ={c|NATNUM(c)};

s,

COPEE N B I LR §

-
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8.2.2. Special axioms.

The following more advanced principles of Set Theory were also postulated for our work on '-'::'.
this theorem. Of these, APPLY, CHOICE, and INDUCTDEF were taken from [Mendelson 1964]. -
And the axiom EDGESET Is simply a definition so that Ramsey's theorem can be stated in -
suggestive terms. c

DECLARE PREDCONST LT NATNUM 2 [INF); COMMENT: 'LESS THAN":

DECLARE PREDCONST DENUM 1; .

DECLARE OPCONST SUC (NATNUM)=NATNUM; COMMENT: SUCCESSOR: o

DECLARE OPCONST " 2[INFJ; COMMENT: APPLY: ‘

DECLARE OPCONST EDGESET 1; b

DECLARE INDVAR G R B aa bb cc dd ee; :.-

DECLARE INDVAR i j k(NATNUM;

DECLARE INDVAR p¢FNC;

AXIOM INDUCTION: ACAYi.(AG)SA(SUCHMaYLAGY

AXIOM APPLY: Yb a.((3d.Yc.(d=czopair(a,cXb)oopair(a,b"a)b)A

(~3d.Yc.(d=csopair(a,c)eb)>b"a=)));
AXIOM INDUCTDEF: ¥x a.3c.¥b.(c~b x FNC(b)ADOMKb)=omeganb™A=x _
AYi(b"SUC(i)=a"(b"i))); -

AXIOM CHOICE:¥x.3f Va.(acxn-a=Aof"aca); 2

AXIOM EDGESET: Vb.(EDGESET(b)={al3c d.(cebAd<bA~cadnampair(c,d)}i =

AXIOM DENUM:Va.(DENUM(a)sCONG(omega,a)l; Z

AXIOM SUC: Yi.~A=SUC(i),Yi j{SUC(i)=SUC(j)i=j);

8.2.3. Auxiliary lemmas.

The following auxiliary lemmas are a subset of those that were postulated for the earlier
proof [Weyhrauch et al. 1879]. The first thrae concern the relation less than (LT). i)
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AXIOM LESS2: Vi j(~i=jui LT j v j LT i) :
- AXIOM LESSA: Vimi LT Az :
AXIOM LESS7: Vi j(i LT SUC(si=jvi LT jk;

MG SET2{NATNUM};
MG RELZ{FNC};
AXIOM AUX1: Ya.(DENUM(a)>SET(a));
AXIOM AUX2: Ya.(aca);
AXIOM AUX3: Ya(DENUM(a)2~a=)\);
AXIOM AUX4: Ya b.(atboSET(a));
AXIOM AUXS: Ya b.(SET(opair(a,b))zSET(a)ASET(b));:
, AXIOM AUX6: Ya b c.{a¢(buc)sacbvace);;
| AXIOM AUX9: Ya b.(DENUM(a)>DENUM(a\singl(b)));
! AXIOM AUX10: Ya b.(DENUM(aub)>DENUM(a)vDENUM(b));
. AXIOM AUX11: Yx b c.cc(b\singl(x))sccbAac=x);
AXIOM AUX12: Ya b c.(pair(a,b)¢EDGESET(c)eaccAbécA~amb);
AXIOM AUX13: Ya b ¢ d.(opair{a,b)=0pair(c,d)sa=cAb=d);
AXIOM AUX18: Ya b.(acboanb=a);
AXIOM AUX20:Ya b.(anbcananbeb);;
' AXIOM AUX22: Ya b.(anb=bna);
' AXIOM AUX23: Ya b c.{(acbAbceoace);
AXIOM AUX24: Ya b.(pair(a,b)=pair(b,a));
AXIOM AUX25: Ya b c.(acbncracbaacc);
AXIOM AUX27:¥a b ¢ d.(opair{a,b)=opair(c,d)sa=cAb=d);
. AXIOM AUX28: Ya b c.(a€babccaalc);
- AXIOM AUX29: Ya b.(a\bca);
i AXIOM AUX30: DENUM(omega);:
AXIOM AUX34:Va b.(DENUM(a)ACONG(a,b)>DENUM(b));
AXIOM AUX35: Ya b.(acaubabcaub);;

| 8.3. Proofs of some auxiliary theorems,

The first 184 lines of the earlier proof [Wey.irauch et al. 1879] proved several set
theoretic facts. For the GOAL proof we have used a subsat of these. In this section we shall
show an independent proof of those. Later they will be postulated for the main proof.

- The total number of commands used in the following proofs is 38: this figure includes both
the forward proof steps using FOL commands and the calls to TRY. If we add the commands
that create the goals, that is five instances of the GOAL command, then we come to a total of
44. In the old proof, this same set of facts required 184 lines. Thus we achieve a fourfold
reduction in the number of commands, for this particular saet of lemmas.
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8.3.1. Restriction of a function.

The tirst lemma says that the restriction of a function is again a function. The oli proof
required 27 lines. The following GOAL proof uses only eight Instances of the TRY command,
and generates a FOL proof of 27 linas.

=¢xx2GOAL VE a.FNC(f | a);

Goal #1: Yf a.FNC(f | a)

ssxesTRY USING REWRITE BY {RESTR);

Goal slsl: Yt a.FNC(fnCROSS(a,V))

sxx2xTRY USING VI al a;

Goal sixlal: FNC(al)>FNC(alnCROSS(a,V))

=xxx¢TRY USING REWRITE BY {FNC REL AUX25};

Goal slslnlel: (Yd(dcalo3b c.d=opair(b,c))AYb ¢ d{{opair(b,c)cal no¥
pair(b,d)al)>c=d))>(Vd.((dcal AdCCROSS(a,V))>3b c.d=opair{b,c))AYb ¢ ¥
d.(((opair(b,c)cal nopair(b,c)XCROSS(a,V))A(opair{b,d)¢al nopair(b,d}C¥%
ROSS(a,V)))=c=d))

ssx23TRY USING ELIMINATION DEPTH 4;

Goal slslwulalel: Vd.((dcalAd¢cCROSS(a,V))23b c.d=opair(b,cHAYb ¢ d(¥%
((?pair(b,c)(alAopair(b.ckCROSS(a,V))A(cpair(b,d)éalepair(b,d)eCROSX
S(a,V)))oc=d)

1 Yd.(d<alo3b c.d=opair(b,c))AYb ¢ d.((opair(bc)alropair(b,d)¢al)oc¥
=d) (1)

2 Yb ¢ d.(lopair(b,c)alaopair(bd)cal)oc=d) (1)
3 Vd.(dcal>3b c.d=opair(b,c)) (1)

Goal slslula]lelel: VYd((dcalAd¢(CROSS(a,V))>23b c.d=0pair(b,c))

Goal slslsinlnle2: VYb ¢ d.(((opair(b,c)alnropair(b,c)CROSS(a,V)IA(0X
pair(b,dXal ropair(b,dXCROSS(a,V)))>c=d)

Goal slslseleluinlel: (dalAd(CROSS(a,V))>3b c.d=opair{b,c)

Goal slslslalalnlnlel: 3b c.d=opair(b,c)

Goal slslelnlala2al: ((opair(b,cKalnopair(b,c)¢CROSS(a,V))A(0pair(b%
X alropair{b,dCROSS(a,V)))oc=d

Goal sin]lslulnle2slul: c=d

sx2ssTRY USING IMPLICATION;

4 (opair{b,c)<alropair(b,cCROSS(a,V))A(opair(b,d)¢al Aopair(b,dxCRO%
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SS(a,V)) (4)

5 opair(b,d)}CROSS(a,V) (4)

6 opair(b,dxal (4)

7 opair(b,cXCROSS(a,V) (4)

8 opair(b,clal (4)

Goal wlululululu2elalel: opair(bckalaopairibdial
3222 TRY USING TAUT;

9 opair(b,c)¢al Aopair(b,d)al (1 4)

RESOLVE (opair(b,c)alaopair(b,d)al)oc=d , opair{b,c)éalnopair(bd)%
al - c=d

10c=d (1 &)

11 ((opair(b,c)cal ropair(b,c)<CROSS(a,V))A(opair(b,d)<al Aopair(b,d)CX
ROSS(a,V)))ac=d (1)

12 Yb ¢ d.(((opair(b,c)calAopair(b,c)¢CROSS(a,V))A(opair(b,d)calAopaiX
r{b,d}CROSS(a,V)))oc=d) (1)

ssas2TRY USING IMPLICATION;

13 dcalAd(CROSS(a,V) (13)

14 d¢<CROSS(a,V) (13)

15 deal (13)

Goal siuisisnlelululelel: deéal

s2222TRY USING TAUT;

16 d¢al (1 13)

RESOLVE d¢ala3b c.d=opair(b,c) , déal += 3b c.d=opair(b,c)
17 3b c.d=opair(bc) (1 13)

18 (d¢a) AdCCROSS(a,V))=3b c.d=opair(b,c) (1)

19 Vd.((d<alAd¢CROSS(a,V))23b c.d=opair(b,e)) (1)

20 Yd{(d¢al Ad¢CROSS(3,V))23b c.d=opair(b,c))AYDb ¢ d.{{(opair(b,c)eal¥
mpoir(b.cXCROSS(-.V))A(opair(b.d)(a1Aopair(b.d)(CROSS(a.V))bc-d) %
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21 (Yd.(dcalo>3b c.d=opair(b,e)HAYb ¢ d{(opair(b,c)calAopair(b,d)al)¥%
dc=d))(Vd.((dcal Ad€CROSS(a,V))23b c.d=opair(b,c)AYb ¢ d.{((opair(b,%
c);)a) 1nopair(b,c XCROSS(a,V))A(opair(b,d)alAopair(b,d)}¢CROSS(a,V)))>cX
22 (FNC(a1)>FNC(a1nCROSS(a,V)))x((Vd.(d¢a123b c.d=opair(b,c)AYb ¢ d.¥
((opair(b,c)alaopair(b,d)al)>c=d))=>(Vd.((d¢al Ad¢CROSS(a,V))23b c.d=X
opair(b,c)AYb ¢ d.(((opair(b,c)calnopair{b,cXCROSS(s,V))A(opair(b,d¥%
¥alAopair{b,d}XCROSS(a,V)))oc=d)))

23 FNC(al)>FNC(a1nCR0OSS(a,V))

24 Yt a.(FNC(f)2FNC(InCROSS(a,V)))

25 Yf a.FNC(tnCROSS(a,V))

26 Yt a.FNC(f | a)sVf 8. FINC(fRCROSS(a,V))

27 Yt o FNC{t | 8)

bR 2 d2 ]

8.3.2. Domaln of the restriction.

The next lemma says that if we restrict a function to a subset of its domaln, the domain
of the restriction is equal to that subset. The GOAL proof takes nine instances of TRY, one
call to the QED command, plus four forward proving commands: two universal opoclcllutlona.
one call to RESOLVE and one to REWRITE. The old proof was in 64 lines.

s+x23GOAL VYt a.(acDOMK()SDOMKS | a)=a);

Goal #2: Vf a.(acDOM(f)2DOM(f | a)=a)

' s+332TRY USING REWRITE BY {SUBSET KEXT};

P Goal #21: ¥f a{¥c.{cCasccDOM)IoVe.(cDOM! | alcea))
sssxsVE DOM f | &

28 FNC(f | #)2DOM(! | a)={c|3al.opair(c,alX(f | 2)}
=+24sRESOLVE T L41;

RESOLVE FNC(f | a)oDOM(f | a)={c|3al.opair(c,al)(f | a)} , Y a.FNC(¥
f | a) +- DOM(f | #)={c|3al.opair(c,al X{f | a)}
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29 DOMK(f | a)={c|3al.opair{c,al)¢(f | a)}
*2s22TRY USING REWRITE BY { T AUX5 AUX13 AUX25 V CROSS SET DOM RESTR)

 gm—r%y ¥ B Ww- @

Goal #2slwl: Vi a2.(VYc.(cca2>(3b.cébaIa.opair(c,a)f))aVe.((3b.cebAIX :
;'l .(og)a)ir(c.olka((Bb.ctbABb.a1(b)A3d e.l{c=dnal=e)A(dca2A3b.ecb))))% .
cée -

ss32sTRY USING ELIMINATION DEPTH &;

Goal #2slslsl: Vc.(cca2a(3b.ccba3a.opair(c,axf)aVe.{(3b.ccbaIal.(o%

pair{c,al }fA({{3b.ccbA3b.al¢b)A3d e.({c=dnalw=e)r(dca2A3b.ecb)))))acta%

2) .

Goal #2ulslelnl: Yc{(3b.ccba3al.lopairic,al ia{(3b.ccba3b.aleb)A3dy :
e.((c=dAal=e)A(dca2ATb.ecb))))acea2) |

30 Yc.(cca2a(3b.ccbaTa.opair(c,akf)) (30) .

Goal s2slslslelsl: (3b.ccba3al.lopair(c,al XfA((3b.ccbAaIb.aleb)Ad e¥ |

{(c=dnal=e)A(d(a2A3b.ecb))))ecca2 |

Goal #2ulw]lnlnlnlsl: (Io.ccba3al.fopair{c,al XFA((3b.c¢bAa3b.aleb)AIdX |
e.((c=dAal=e)A{d(a2A3b.ecb)))))cca2

Goal #2ulnlnlulsln2: cca2a(3b.ccbadal.lopair(c,al)¢in((Ib.ccbaIb.ale¥

b)A3d e.((c=dAal=e)A(d(a2A3b.e<b)))))

Goal #2slslslnlulslsl: ca2

Goal #2slslslsiale2al: 3b.ccbadal.(opair(c,al XiA((Fb.ccbA3b.aleb)Ad¥

d e.((c=dAal=e)A(dca2A3b.ecb))))

31 cca2 (31)

RESOLVE c¢82>(3b.ccbaJa.opair(c,a)f) , c€a2 »- 3b.cebAa3a.opair(c,a)¥
f

32 3b.c<ba3a.opair(c,a)t (30 31)
33 3a.0pair{c,axt (30 31)
34 3b.ceb (30 31)

Goal #2uisnlulslnle2eiel: 3bccb

Gosl #2s]ulnlelela2ele2: 3al.(opair(c,al)efA((3b.ccbA3b.aleb)A3d o.(%

(c=dAal =e)A(dCa2A3b.eb))))

Goal s2¢1slninlelu2alulnl: cb

Gosl #2ulnlululale2ule2el: opair(c,alXfa((3b.ccbAdb.al¢b)A3d o.((c=X

dAal=e)A(dca2A3b.ecb)))

Goal s2slulnlaluin2ala2ulnl: opair(c,al)f

AG;;! s2¢lelninlnle2ele2eln2: (3b.ccba3b.aleb)rdd o.{(c=dral=e)A(dea2X
.e¢b))

sx232QED n2ulelululele2alal 34;
sesssTRY a2slulalelnln2ele2ulsl USING UNIFY 33;

35 3al.opair(c,alf (30 31)
36 opair(c,al)ef (36)
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s2s2sREWRITE AUX5 BY {SET};

3 substitutions were made

37 Ya bl.(3b.opair(a,bl)ba(3b.acbA3b.b1¢b))
sssxsVE T c 2l

38 3b.opair(c,al kba(3b.ccbadb.al¢h)

s3322TRY w2uiululelalu2ele2ule2 USING Al

Goal s2nlslslslule2els2ule2sl: 3b.ccbadb.al¢h
Goal #2slulelisnluleele2ela2e2: 3d e.({c=dnal=e)r(dca2A3b.e¢bh))

*x222TRY 1 USING MONADIC 36 38;

39 3b.ccba3db.aleb (36)

2223 TRY USING MONADIC 31 T;

40 3b.al¢b (36)

4] 3b.ccb (30 31)

42 3d e.((c=dnal=e)r(dca2A3b.ecb)) (31 36)

43 (3b.c¢bA3b.alb)A3d e.((c=dAal=e)r(d€a2A3b.ab)) (31 36)

44 o:;n)ir(c,al)(fA((]b.c(bA3b.a1<b)A3d e{(c=dnal=e)A(dca2Adb.e¢h))) %
(31 36

45 3al.(opair(c,al)fA{(3b.cebAab.al<b)AId e.{(c=dral =s)A(d¢a2A3b.o€bX
n) (30 31)

46 3b.ccba3al.(opair(c,al XIA((3b.ccbadb.al€b)AId e.{(cedral=e)A(dCa2%
A3b.ecb)))) (30 31)

47 cCa2>(3b.ccba3al(opair{c,al kfA((3b.ccbAb.al¢b)AId e.l{c=dral=e)¥
A{d¢a2n3b.eb))))) (30)

2222 TRY USING LOGIC;

48 3b.ccbadal.(opair(c,al)¢fA((3b.c¢bATb.al¢b)AId e.((cwdnal=e)n(dca2%
A3b.ecb)))) (48)

49 3al.(opair(c,a1 fA{(3b.c¢bA3b.al¢b)A3d e.{(c=dAal=e)A{d¢a2A3b.acb%
) (48)

50 3b.ccb (48)
51 3al d e.((c=dnal=s)A(dca2A3b.o¢b)) (48)
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52 3al b.alcb (48)

53 3al b.ccb (48)

54 3al.opair(c,al )t (48)
55 3al d e b.e¢b (48)
56 3al d e.dca2 (48)

57 3al d e.al=e (48)
58 3Jal d e.c=d (48)

We have a failqueue of length: |
Starting a new 2-th pass on new queue of length: |
We have a failqueue of length: |
Failure: can’t prove anything on failqueue.
The tactic LOGIC can't be applied to goal
Goal w2nlnisinlninlel;: ca2
IMPVL: 48 3b.c<bA3al.(opair(c,al)fA((3b.cebA3b.aleb)A3d o.((¥
c=dAal=e)A(dC(a2A3b.e¢b))))
FACTS: 30 Yc.(cca2>(3b.c¢bnda.opair(c,a)f))

55 3al d e b.ecb

56 3al d e.d(a2

57 3al d e.al=e

58 3al d e.c=d

51 3al d ed(c=dral=e)A(d¢a2A3b.ecb))

52 3al b.alch

53 3al b.ccb

54 3Jal.opair(c,al)f

49 3al.(opair(c,al XfA({3b.c(ba3b.aleb)A3d e{(c=dnal=e)A%
(d¢a2A3b.ecb))))

50 3b.cch

47 cea22(3b.ccba3al.{opair(c,al ¥fA{(3b.ccbA3b.al¢b)AId e¥
{(cmdral=e)A(dca2A3b.ecb)))))

48 3b.ccbn3al.(opair(c,al XfA((Jb.ccba3b.aleb)Add e.((c=d¥
Aal=e)A(d(a2A3b.ecb)))

Simpsets: { BY LOGICTREE COMPTREE)
Quantelimlist: ((c V) (a2 ¥) (f V)

ssx2sTRY USING MONADIC 561;
59 c<a2 (48)

60 (3b.c<bn3al.(opair(c,al KIA((3b.ccbAb.al¢b)A3d e.((c=dAal=e)A(d¢aX
2A3b.e<b)))))occa2

61 (3o.c<bA3al.(opair(c,al KfA((3b.cébA3b.al¢b)A3d e.((c=dAal=e)A(d¢aX
2A3b.ecb))))ncca2 (30)

62 Ve.((3b.ccba3al.(opairc,al )XfA((3b.ccbA3b.al¢b)A3d e.{(c=dral=e)A%X
(dca2Aa3b.ecb))))ecca) (30)
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63 Ve.(cca2o(3b.ccbaIa.opair(c,akf))aVe.((3b.ccbadal.(opair(c,al JefAX
((3b.ccbA3b.alcb)A3d e.((c=dAal=e)A(d¢a2A3b.e¢b)))))ncta2)

64 Vi a2.(Yc.(cca2>(3b.céba3a.opair(c,axf))=Ye.((3b.cecbA3al.(opair(ck
81 %fA((3b.c¢bnA3b.al¢b)A3d e.((c=dral=g)A(d¢a2Adb.e<b))))ac€a))

65 Yf a.(Vc.(ccadccDOM(f))oVe.(ccDOMKE | a)uca))sYf a2.(Vc.(c€a2>{(3b%
c¢baJa.opair(c,aXf))oYc.{(Ib.ccbaTal (opair{c,al }fA((Ib.ccba3b.aleX
b)A3d e.((c=dAal=e)a(d¢a2n3b.ecb)))))eccal))

66 Vi a.(Vc.(ccadccDOM(f))oVc.(c<DOMIf | a)acca))

67 VYt a.(acDOM)SDOME | a)=a)a¥f a.(Ve.(c€adc¢DOM())oYe.(c€DOM(f ¥
a)cea))

68 Vi a.(acDOM(f)>DOM(f | a)=a)

KX

8.3.3. Restriction of a one-to-one function.

The next lemma states (Iin somewhat diffarent terms) that the restrict/on ot an one-to-one
function is again one-to-one. The old proof took 58 steps. The following one requires six calls
to TRY, one to RETRY, two calls to QED, and the following four forward commands from FOL:
two universal specializations, one REWRITE, and one call to TAUT. A total of 13 commands
instead 568.

s#232GOAL Vf a.(FNC(CONV())>FNC(CONV(f | a)))
Goal #3: Vi a.(FNC(CONV(1))>FNC(CONV(f | a)))
sex2sYE CONV § | »;

;5}4 REL(f | a)>CONV(f | a)={c|3al b.(c=0pair(al,b)ropair(b,al)(f | a)%

»ss0sREWRITE L41 BY {FNC};
1 substitutions were made

55);/1 #.(REL(f | #)AYD ¢ d.((opair(b,c)(f | a)ropair(b,d)e(f | a))a¢X
-d

sssnaVE T € &;

56 REL(f | a)AYb ¢ d.((opair{b,c)(f | a)aopair(b,d)(f | a))oc=d)
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ssexsTAUT 02,1y
87 CONV(f | a)={c|3al b.{c=opair(al,b)ropair(b,al)e(f | a))}
*#¢xsTRY USING REWRITE BY { T FNC REL CONV RESTR AUX13 AUX25)%

Goal #3«}: VI a2.((Vd.((SET(d)AJa b.(d=0pair(a,b)ropair(b,a)f))>3b ¥
c.d=opair(b,c))AYb1 ¢ d.(((SET(opair(bl,c)A3a b.((bl=anc=b)ropair(b,X
a)Xt)HA(SET(opair(b1,d))AJa b.{(bl=and=b)ropair(b,a)f)))=c=d))>(¥Yd.(X
(SET(d)Adal b.(d=opair(al,b)A(opair(b,al)fAopair(b,al)cCROSS(a2,V)))¥
123b c.d=opair(b,c)AYbl ¢ d.{{(SET(opair(bi,c)n3al b.l(bl=alAc=b)A(¥
opair(b,al }faopair(b,al )} CROSS(a2,VINA(SET(opair(bl,d))A3al b.i(b1%
=alAd=b)Al{opair(b,al XfAopair(b,al XCROSS(a2,V)))))=c=d)))

sx+xxTRY USING ELIMINATION DEPTH 5;

Goal #3sl1#1: (Yd.((SET(d)AJa b.(d=opair(a,b)ropair(b,a)f))>3b c.d=0%
pair(b,c))AVYbl ¢ d{((SET(opair(bl,c))A3a b.l(bl=arc=b)Aopair{b,a)cf)¥%
N(SET(opair(bl,d))AJa b.{(b]=and=b)ropair(b,a)cf)))oc=d))>(Vd.(SET(X
d)adal b.(d=opair{al,b)A(opair(b,al XfAopair(b,al XCROSS(a2,V))))>3b %
c.d=opair(b,c)AYb] ¢ d.{({SET(opair(bl,c)A3al b.((bl=alAac=b)r(opair¥
(b,al)faopair(b,al XCROSS(a2,V))A(SET(opair(bl,d))A3al b.{{bi=alAad¥%
=b)A{opair(b,al XfAopair(b,al XCROSS(a2,V))))=¢c=d))

Goal #3s]sl«l: Vd.((SET(d)A3al b.{d=opair(al,b)r(opair(b,al)¢fropair¥
(b,al XCROSS(a2,V))))23b c.d=opair(b,c))AVb1 ¢ d.{((SET(opair(bl,c))n%
3al b.((bl=alAc=b)A(opair(b,al)fAopair(b,al KCROSS(a2,V))IA(SET(opa¥%
i;(b 1,d))A3al b.{(bl=alAad=b)A{opair(b,al)Xfropair(b,al)}cCROSS(a2,V)))%
N2c=d)

58 Yd.((SET(d)A3a b.(d=0pair(a,b)ropair(b,a)cf))>3b c.d=opair(b,c))AVE
bl ¢ d.(((SET(opair(bl,c))A3a b.{(bl=anc=b)ropair(b,a)f)A(SET(opair¥k
(b1,d)A3a b.{(bl=and=b)Aopair(b,a)f)))o¢c=d) (58)

59 Ybl ¢ d.(((SET(opair(bl,c))A3a b.{(bl=anc=b)Aopair(b,a}fIA(SET(0%
pair(bl,d))A3a b.{{(b1=aAd=b)ropair(b,a)i))ac=d) (58)

60 Yd.((SET(d)A3a b.(d=opair(a,b)ropair(b,a)¢t))>3b c.d=opair(be)) ¥
(58)

Goal #3s]slalel: Yd((SET(d)IA3al b.(d=opair(al,b)r(opair(b,al)fropa¥
ir(b,al XCROSS(a2,V)N=3b c.d=opair(b,c))

Goal #3slulnlu2: Vbl ¢ d.({((SET(opair(bl,cHA3al b.((bl=alAac=b)A{opa¥%
ir(b,al XfAopair(b,al XCROSS(a2,V)))A(SET(opair(bl,d))A3al b.((bl=al¥
Ad=b)A(opair(b,al XfAopair(b,al XCROSS(a2,V)))))acud)

Goal #3slslalnlel: (SET(d)AJal b.(d=opair(al,b)r(opair(b,al)fropair¥
{b,al XCROSS(a2,V)))>3b c.d=opair(b,c)

Goal «3nlsinlalnle]l: 3b c.d=opair(b,c)

Goal #3ulslele2sl: ((SET(opair(bl,c))adal b.i(bl=alac=b)A(opair(b,al%
YtAopair(b,al )} CROSS(a2, VINA{SET(opair(bl,d)AJal b.{(bl=alndsb)A(¥
opair(b,al XfAopair(b,al }CROSS(a2,V)))))oc=d

Goal #3#]slela2uln]l: ced

s3252RETRY #3slelnlal USING MONADIC;
Goal s3ulslulsl: Yd((SET(d)A3al b.(d=0pair(al,b)n(opair(b,al)fropa¥

111
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ir(b,a1)CROSS(a2,V))))>3b c.d=opair(b,c))  abandoned.

61 Vd.((SET(d)A3al b.(d=opair(al,b)A(opair(b,al fAopair(b,al}CROSS(X
a2, V))=>3b c.d=opair(b,c))

s+eesTRY USING IMPLICATION;

S Rl
r(b,al KCROSS(a2,V)))) (62)

63 Jal b.((bl=alAad=b)A(opair(b,alXtropair(b,al XCROSS(a2,V))) (62)
64 SET(opair(bl,d)) (62)

65 3al b.((bl=alAc=b)A(opair{b,al)Xfropair(b,al XCROSS(a2,V))) (62)
66 SET(opair(bl,c)) (62)

67 3al b.opair(b,al KCROSS(a2,V) (62)

68 Jal b.opair(b,alXf (62)

69 3al b.c=b (62)

70 3al b.bl=al (62)

71 3a) b.opair(b,a1)}CROSS(a2,V) (62)

72 3al b.opair(b,alXf (62)

73 3al b.d=b (62)

74 3al bbl=al (62)

Gosl #3ulululea2ulalal: (SET(opair(bl,c)A3a bi(bl=arc=b)Aopair(b,a)%
¢)OA(SET(opair(bl,d)A3a b.((bl=ands=b)ropair(b,a)t))

ss2xsTRY USING ELIMINATION DEPTH 2;

Goal s3sinixluw2slulnlal: SET(opair(bl,c)A3a b.(bl=anc=b)Aopair(b,a%
xt)

Goal #3si1slsln2ulnlele2: SET(opair(bl,d)A3a b.((bl=and=b)ropair(b,a%
xf)

Goal #3sinlnlu2alslsalelal: SET(opair(blc))

Goal #3ninlsln2elulaleln2: 3a b.((bl=anc=b)ropair(b,a)f)

Goal #3%1slnle2elnlule2sl: SET(opair(bl,d))

Goal #3sislnlu2ulnlele2s2: 3a b.((bl=and=b)ropair(baXkf)

sx223TRY USING MONADIC 63;
75 3a b.{(bl=and=b)Aopair(b,a)ef) (62)
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#2232 TRY #3s1s1ulu2s]lsluela]le2 USING MONADIC 65;
76 3a b.{(bl=anc=b)ropair(b,a)f) (62)

#35355QED a3nlulalu2ululnluin] 66;

77 SET(opair(bl,c))AJa b.((bl =anc=b)Aopair(b,a)¢f) (62)
#*x2xsQED 64;

78 SET(opair(bl,d))A3a b{(bl=and=b)ropair(b,a)f) (62)

79 (SET(opair(bl,c))A3a b.((bl=anc=b)ropair(b,a)f HIA(SET(opair(bl,d)%
AJa b.((bl=and=b)aopair(b,a)f)) (62)

RESOLVE ((SET(opair(b1,e))A3a b.{(bl=aAc=b)Aopair(b,a)f)MSET(opair% e
(b1,d)A3a b.{(bl=and=b)Aopair(b,a)ct}))>c=d , (SET(opair(bl,c))A3a b¥% Ry
{(bl=anc=b)ropair(b,a)fIA(SET(opair(bl,d))A3a b.{(bl=and=b)ropair(¥% s
b,a)¢f)) 2= c=d

80 c¢=d (58 62)

81 ((SET(opair{bl,c)n3al b.{{bl=alAc=b)A(opair(b,al)¢fArcpair(b,al)C¥%
ROSS(a2,VINA(SET(opair(bl,d))A3al b.((bl=alAd=b)A{opair{b,al)fAopa¥%
ir(b,al XCROSS(a2,VI)))ac=d (58)

82 Ybl ¢ d((SET(opair(bl,c))ndal b.((bl=alAac=b)a(opair(b,al)cfAropaiX
r{b,al X CROSS(a2,VI))ASET(opair(b1,d))Adal b.((bl=alad=b)A(opair(b,%

al)tAopair(b,al XCROSS(a2,V)))oc=d) (58) : o
83 Yd.((SET(d)A3al b.(d=opair(al,b)a(opair(b,al)fropair(b,al XCROSS(X AR
a2,V)))=3b c.d=opair(b,c))AYb1 ¢ d.(((SET(opair(bl,c))A3al b.{(bl=al% T ;
Ac=b)A{opair{b,al XfAopair(b,al )XCROSS(a2,VIA(SET(opair(bl,d)n3al% A
b.((bl=al Ad=b)A(opair(b,al )fAopair(b,al XCROSS(a2,V)))oc=d) (58)

84 (Vd.{(SET(d)n3a b.(d=0pair{a,b)Aopair(b,a)}))23b c.d=opair{b,c))A%
Ybl ¢ d.(((SET(opair(bl,c)A3a b.{(bl=anc=b)Aopair(b,a}f))NSET({opai%
r(b1,d)A3a b.{(bl=and=b)Aopair(b,a)(§N)oc=d)>(Vd.{(SET(dIA3al b.(d%
=apair(al,b)A(opair{b,al XfAopair(b,al }XCROSS(a2,V))))23b ¢c.d=opair(b¥
©)AYb1 ¢ dA((SET(opair(bl,c))AJal b.i(bl=alAc=b)a{opair(b,alXfrop¥
air(b,al XCROSS(a2,V)IA(SET(opair(bl,d))A3al b.((bl=alAd=b)A(opair(%
b,al)fAropair(b,al KCROSS(a2,V))))ac=d))

85 Vi a2.((Vd.{(SET(d)A3a b.{d=0pair(a,b)ropair(b,a)f))23b c.d=opair¥
(b,c)AYb1 ¢ d.(({SET(opair{bl,c))A3a b.((bl=aAnc=b)ropair(b,a)f))A(S% S
ET(opair(b1,d))A3a b.((bl=and=b)ropair(b,a)f)))oc=d))>(Vd.(SET(d)AI%
al b.(d=opair(al,b)A(opair(b,al)fAopair(b,al KCROSS(a2,VI)))23b c.d=¥% R
opair(b,c)AYbl ¢ d.({(SET(opair(bl,c))A3al b.{(bl=alac=b)A(opair{b,a¥% R
1)¢tAopair(b,al XCROSS(a2,V))IA(SET(opair(bl,d))A3al b.((bl=alAdsb)A% -
(opair(b,al XfAopair(b,al KCROSS(a2,V)))))=>c=d)})

86 ¥t 8.(FNC(CONV(1))oFNC(CONV(f | al)sVF a2.((Vd.((SET(d)A3a b.(d=o¥ ol
pair(a,b)Aopair(b,a){))23b c.d=opair(b,c)AYbl ¢ d.(((SET(opair(bl,c¥% OO
NA3a b.((bl=ancsb)nopair(b,a)}iIA(SET(opair(bl,d)A3a b.{(bl=and=b)% el
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Aopair(b,aXf)))oc=d))>(Vd.((SET(d)A3al b.(d=opair(al,b)a(opair(b,al)%
<fropair(b,al )XCROSS(a2,V)))23b c.d=0pair(b,cHAVb] ¢ {(SET(opair%
(bl,c))A3al b.(bl=alAc=b)A(opair(b,alXfropair(b,al KCROSS(a2,V)))A%
(SET(opair(bl,d))A3al b.((bl=alAd=b)A(opair(b,al)¢facpair(b,al)¢CROSSX
(a2,V))))oc=d)))

87 Vf a.(FNC(CONV(f)>FNC(CONV(f | a)))

T AL
.

Phete)s

L2232

v -

.3.4. Domain and range of an ona-to-one function.

The next lemma states that the domain and the range of a one-to-one function are
ongruent. It is proved by a single call to LOGIC, whereas the old proof was in eight
ommands.

*rxexGOAL YI.(FNC(CONV(f))>CONG(DOM(f),RNG(f))} SASSUME CONG;

Goal #4: Vf(FNC(CONV(f))>CONG(DOM(f),RNG(f)))

+xxexTRY USING LOGIC;

Goal #4w]: Yf1.(FNC(CONV(f1))23f.(FNC(f)AMFNC(CONV(f))A(DOM(f)=DOM(f¥
1)ARNG(f)=RNG(f 1))

(Goal né(u isl ) Y 1.(FNC(CONV(f 1)) 3f (FNC(CONV(f ))A(DOM(f)=DOM(f 1 )JARNGX
f)=RNG(f1)))

)88 Y1 1.(FNC(CONV(f 1))>31.(FNC(CONV(f))A(DOM(f)=DOM(f L JARNG(f)=RNG(f 1)%
N

89 VI 1.(FNC(CONV(f 1))o3f.(FNC(f)A(FNC(CONV(f))A(DOM(f)=DOM(f 1 JARNG()%

;)Rt;gg(xf)»g;w 1.(FNC(CONV(f 1 ))>31.(FNC(CONV(f ))A(DOM(f)=DOM(f 1 JARNG(X

- 1)

90 Vf1.(FNC(CONV(f 1))23f.(FNC(f)A(FNC(CONV(£))A(DOM(1)=DOM(f 1 JARNG(f)%
=RNG(f1)))))

91 YI.(FNC(CONV(f))>CONG(DOM(f),RNG(f)))eVf1.(FNC(CONV(f1))23f.(FNC(f¥
IA(FNC(CONV(tDA(DOM(f)=DOM(f 1 )ARNG(f)=RNG(f1))))

92 V£.(FNC(CONV())>CONG(DOM(f),RNG(f))
LOGIC SUCCEEDED!

(2224

Next we show the FOL proof generated by LOGIC for the above lemma.

.....................................................
............................................................
.............................................
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sx323SHOW PROOF 88:;
*x233MONADIC ;
)8)? Y 1.(FNC(CONV(f 1))23f.(FNC(CONV(f))A(DOM(f)=DOM(f 1 )JARNG(f)=RNG(f 1)%

sxex2SIMPLIFY V1 1.(FNC(CONV(f1))2>3f.(FNC(f)A(FNC(CONV(f))A{DOM(f)=DOMY%
(f 1)ARNG(f)=RNG(f 1))

89 Yf1.(FNC(CONV(f1))>3f.(FNC(f)A(FNC(CONV()A(DOM(f)=DOMI(f 1 JARNG(f)%
-)ngG(f 1 ))));lVf 1.(FNC(CONV(£ 1))231.(FNC(CONV())A(DOM(f)=DOM(f 1 )JARNG(%
f)=RNG(f 1))

wxexxTAUT VF1.(FNC(CONV(f 1))23f.(FNC(f)A(FNC(CONV{f)A{DOM(f)=DOM(f 1)%
ARNG(f)=RNG(f1))))) 88,89;

90 V1 .(FNC(CONW\ 1))23f (FNC(H)A(FNC(CONV(f))A(DOMIf)=DOMIf 1 )ARNG(f)%
=RNG(f1)))

*+x+xsREWRITE Y£.(FNC(CONV(f))>CONG(DOM(f),RNG(f))) BY CONG LOGICTRE%
£ COMPTREE;

91 VE(FNC(CONV(f))>CONG(DOM(1),RNG(f))aYt 1 (FNC(CONV(f1)>3f.(FNC(%
JACFNC(CONV(f))A(DOM(f)=DOM(f 1 )ARNG(f)=RNG(f 1)))))

srxx2TAUT YE.(FNC(CONV(f))>CONG(DOM(),RNG(f))) 90,91;
92 Vt.(FNC(CONV(f))>CONG(DOM(f),RNG(t))

b it 22 ]

8.3.6. Range of the restriction.

The last of these lemmas states that range of the restriction of a function is a subset of

the range of that function. The old proof was in 23 steps, while the new one takes three
steps: two FOL commands followed by a call to LOGIC.

»2x22GOAL Yf a.RNG(f | a)cRNG(f);
Goal #5: Vf a.RNG(f | a)cRNG(f)

s2303VE RNG f | a;
93 FNC(f | a)oRNG(f | a)={c|3al.opair(al,c)(f | a)}
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’
RPN B RN

*xx¢xDECLARE INDVAR a2 b2 ¢2 d2 e2;

*++++REWRITE T BY {L41JULOGICTREE;
2 substitutions were made
94 RNG(f | a)={c|3al.0pair(al,ck(f | a)} -
sx+x¢TRY USING LOGIC PLUS SUBSET RNG T RESTR SET AUX25; :_
Goal #5#1: Vf a2 c.((3b.ccba3al.(opair(al,c)kinopair(al,c)CROSS(a2,% ‘
V)))o(3b.c¢ba3a.opair(a,c )
95 ¥f a2 c.{(Ib.ccbnIal.(opair(al,clfAopair(al,c XCROSS(a2,V)))=(3b.%
c€bAda.opair(a,ckf)) .
96 Vf a.RNG(f | a)cRNG(f)sVf a2 c.((3b.ccba3al.(opair(al c)cfropair(a¥ I'.
1,cXCROSS(a2,V)))2(3b.ccbaTa.opair(a,c)ef)) -
97 Yf a.RNG(f | a)cRNG(f)
LOGIC SUCCEEDED! -
£ 222 2 g
8.4, The GOAL proof of Ramsey's theorem. '..»‘
[
H
We started the proof from scratch. To the axioms listed in the previous sections, we o
added the last five lemmas as axioms, as follows. The names L41, L85, etc., refer to the line :‘_
numbers these lemmas had in the old proof. -
-
o

*£xx5AXIOM LA1:VE aFNC( | a)y
L41: Vf a.FNC(f | a)
*#3x4AXIOM LI5:Vf a.(acDOM(f)2DOMKS | a)=a); K
L95: ¥t a.(acDOMf)>DOMS | a)=a)

222 AXIOM L153:Vf a.(FNC(CONV(f))2FNC(CONV(f | a)));
L153: Vi a.(FNC(CONV(1)2FNC(CONV(S | a)))

*a5xAXIOM L 16 1:V1.(FNC(CONV(1))2CONG(DOM(),RNG());
L161: YE.(FNC(CONV(f))>CONG(DOM(f),RNG(1)))
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*xx2xAXIOM L184:¥f a.RNG(f |a)eRNG(f);
L184: Yf a.RNG(f | a)eRNG(f)

p 2232 ]

The complete proof using GOAL follows. After the proof, we conclude with some statistics
about it.

»+342GOAL VG R B.( DENUM(G) A EDGESET(G) = RUB A RnB = A

> 3a.(acGADENUM(a)A(EDGESET(a)cBVEDGESET(a)eR)));

Goal #1: VG R B.((DENUM(G)A(EDGESET(G)=(RuB)A(RNB)=A))>3a.(ac GA(DENU%

M(a)A(EDGESET(a)cBVEDGESET(a)<R))))
sk TRY USING VI;

Goal #1#1: (DENUM(G)A(EDGESET(G)=(RuB)A(RNB)=A))>3a.(acGA(DENUM(a)A(%

EDGESET(a)cBVEDGESET(a)eR)))
s TRY USING ol;

Goal #1sls): 3a.(acGA(DENUM(a)A(EDGESET(a)cBVEDGESET(a)cR))

*+xx2PREPARE;

1 DENUM(G)A(EDGESET(G)=(RuBJA(RNB)=\) (1)
2 (RnB)=x (1)

3 EDGESET(G)=(RuB) (1)

4 DENUM(G) (1)

*xxxx ABEL DENUMG T;

*+xx¢LABEL NOTRB;

sxxsREWRITE 2 BY {KEXT AUX25 EMPTY}ULOGICTREEUCOMPTREE;
8 substitutions were made

5 Ve.~(c€RAceB) (1)

s»+e2 ABEL EGETRB;

*sx2sREWRITE 3 BY {KEXT AUX6};

2 substitutions were made

.........................................
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Appendix 2: Ramsey's Theorem. 118

6 Yc.(c¢EDGESET(G)s(ccRvceB)) (1)
sssss| ABEL EDGERB 1;

sxxx:L ABEL EDGER;

s+3x3sMONADIC Vc.(ccRoTislal) T

7 Ye.lcCRoc<EDGESET(G)) (1)
ssxs3 ABEL EDGES;

*x2x#sMONADIC Ve.(cRaTT:nlsl) TT;
8 Y¢.(c¢Roc¢<EDGESET(G)) (1)
sxs2sLABEL SETG;

*xxx«RESOLVE DENUMG AUX1;
RESOLVE DENUM(a)>SET(a) , DENUM(G) -~ SET(G)
9 SET(G) (1)

sxsssL ABEL NONOG;

=+252RESOLVE DENUMG AUX3;

RESOLVE DENUM(a)o>~(a=)) , DENUM(G) == ~(G=))

10 «G=x) (1)

ssx22YE CHOICE G;

11 SET(G)23f.Va((acGA~{a=)))>(f"a)ka)

sseasTAUT T:42 SETG T;

12 31.VallacGa~(a=r))>(f"aka) (1)

ssassL ABEL CHOOSEP;

ss293ES T p;

13 Ya.((acGA~(a=A))>(p"aks) (13)

ss2esYE INDUCTDEF G {b]3c d.(b=opair(c,d)AccGA(~c=))

s A d=IF DENUM({blbCcApair(pc,bXR})

s THEN {blb<cApair{p”c,bXR)

] ELSE {blbtcapair(p c,bXBD) -
14 SET(G)>(UNIVERSAL({b|3c d.(b=opair(c,d)A(ccGA(~{car)Ad=IF DENUMK{b% ’*:_::.g":':-... .

|b<cApair(p”c,bXR}) THEN {blb¢capair(p"c,bXR} ELSE {blbecapair(p”c,%
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bXB}))})=3c.Yb.(c=ba(FNC{b)ADOM(b)=omegan({b"™A)=GAVi.(b"SUC(i))=({% [
bj3c d.(b=opair(c,d)MccGA(~{c=A)Ad=IF DENUM({blbtcApair(p”c,b}XR}) T¥ .
HEN {b|b¢capair{pc,bXR} ELSE {blb¢cApair(p”c,b}B}N}"(b"NN) % .
sesexEVAL T g

15 SET(G)>3c.Vb.(c=be(FNC(b)A(DOM(b)=omega(({b "\ )}=GAYi.(b"SUC(i))=({b%
|3c d{b=opair{c,d)A(ccGA(~(c=r)Ad=IF DENUM({blbccapair(p"c,b)¢R}) THY -
EN {blbccapair(p”c,bXR} ELSE {bib¢cApair(pc,b)BINI (")) ..

*»++xxREWRITE T BY {SETG}ULOGICTREE;

2 substitutions were made :‘_'::-.'_ .'::
16 3c.Yb.(c=ba(FNC(b)A(DOM(b)=omegan((b"\)=GAYi.(b"SUC(i))=({b|3c d.% SRS
b=opair{c,d)A{ccGA(~(c=A)Ad=IF DENUM({blbccapair(pc,b)cR}) THEN {blb% t‘.

¢cApair(p”c,bXR} ELSE {blbccapair(p”c,bXBIN} (0NN (1)
sx#x3ES T ee;
17 Yb.(ee=bs(FNC(b)A(DOM(b)=0omegan((b"\)=GAYi.(b"SUC(i))=({b|3c d.(b=%
opair(c,d)A{ccGA(~{c=\)Ad=IF DENUM({blbccApair(p"c,oXXR}) THEN {blbec% S
Apair(p™c,b)R] ELSE {blbccapair(p™e,b)XBINI"G I (17) 9-.
= ssxxaVE T eg;
18 ee=ees(FNC(ee)A(DOM(ee)=omegan{(ee"\)=GAVi(ee"SUC(i))=({bj3c d.(b¥%
=opair{c,d)A(ccGA(~{c=r)Ad=IF DENUM({b|bCcApair(p"c,b}R}) THEN {blbe¥
cApair(p"c,b)R} ELSE {blb¢capair(p“c,o)XB})} (e iN)) (17)
sxsxsL ABEL IFUNG;
*++x+REWRITE T BY LOGICTREE;
2 substitutions were made
19 FNC(ee)A(DOM(ee)=omegan{{ee"r)=GAYil{ee"SUC())=({b|3¢ d.(b=opair(¥ o
¢,d)A(ceGA(~(c=X\)Ad=IF DENUM({blbccapair(p c,b)(R}) THEN {blbécapair(¥ )
p"c,bXR} ELSE {bib<capair(p”c,b}B})))} (ee”i}))) (17) Rt
exx22GOAL T:4264282 ASSUME T;

Goal #2: Vi(ee"SUC(i))=({bJ3¢ d.(b=opair(c,d)A(ccGA(~(c=A)Ad=IF DEN% .

UM({blbccapair(pc,bXR}) THEN {b|b¢capair{p"c,b)¢R} ELSE {blb¢capair¥ ——
(p"c,oXBIN}"(ee™) i
sxs3xPREPARE;

20 Yi(ee"SUC(iN)=({b|3c d.(b=opair(c,d)A(ccGA(~(c=A)Ad=IF DENUM({bjb¥
(cApair{p"c,bXR}) THEN {blb¢cApair(p™c,b)(R} ELSE {blb¢capair(p™c,b)¥%
<BIMN}"(ee™)) (17)

21 (ee"™\)=G (17)
22 DOM(ee)=0omega (17)
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Appendix 2: Ramsey's Theorem.

23 FNC(ee) (17)
sex22QED T11T;

s++xx ABEL EEDEF 1111;
ssexsLABEL EEO T11;
s+3xxLABEL DOMEE  11;
seassLABEL FUNEE  1;

s*xsxeGOAL DENUM((kIDENUM({b]b((ee"k)/\pair(p"(ee"k),b)(R})})
* v DENUKM{kl'-DENUM({blb((ee"k)/\pair(p"(ee"k),b)(R})}) ;

Goal #3: DENUM({kIDENUM({bIb((ee"k)/\pair(p"(ee"k),b)(R})})VDENUM({kl%
~DENUM({blb<(ee"k)Apair(p“(ee"k),bXR})})

#xs22VE AUX10 {k|DENUM({bb¢(ee"k)Apair(p™(ee”k),bXR})}
* {KINDENUM({blbc(ee "k)Apair(p™(ee "k),b IR} )

24 UNIVERSAL({leENUM({b!b((ee"k)/\pair(p“(ee"k),b)(R)))):(UNIVERSAL({%
kl-DENUM({blb((ee"k)Apair(p"(ee"k),b)eR})})D(DENUM({kIDENUM({bIbG(eo"%
k)Apair(p"(ee"k),b)(R})}u{kl~DENUM({b|b((ee"k)/\pair(p"(ee"k).b)(R})})%
::(DENUM({leENUM({bIb((ee"k)Apair(p'(ee"k).b)(R))))VDENUM({ki-DENUM({"
bb¢(ee"k)apair(p”(ee"k),b)R})})))

ssenxEVAL T4

25 DENUM({kIDENUM({bIb((ee“k)/\pair(p"(ee"k),b)(R})}U(kl-‘DENUM({bIbG(e%
e"k)Apair(p"(ee"k).b)(R})})ﬁ(DENUM({kIDENUM({b]b((ee"k)/\pair(p“(eo'k)%

b R} }IvDENUMK{K I-DENUM {blbc(ee “k)Apair(p*(ee"k),b)R})})

*x222GOAL omega = {KIDENUMI{blbc(ee"k)Apair(p"(ee"k),b)XR}))
* v {kl~DENUM({blb((ee"K)Apair(p"(ee"k).b)<R})};

Goal #4: omega=({k|IDENUM({blb<(ee"k)Apair(p"(ee"k),b)R})}u{k|~DENUMY
({blbc(ee"k)Apair(p"(ee"k),b}R})})

ss+02SIMPLIFY SET(i)

26 SET(i)

s»xxsL ABEL NATSET;

exsesY) T iep;

27 Ya(NATNUM(a)>SET(a))

s+#22TRY USING REWRITE BY {KEXT AUX6 omega};

Goal s4el: Vc.((SET(c)ANATNUM(C))l((NATNUM(C)ADENUM({blb((ee'C)/\plir%
(p"(eo"c).b)<R}))V(NATNUM(c)mDENUM({blb((ee"c)Apair(p"(ee"c),b)(R}))))
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Appendix 2: Ramsey's Theorem. 121

xsxxsTRY USING MONADIC NATSET;

28 Y. ((SET(c)ANATNUM(c))=((NATNUM(c)ADENUM({blb(ee"c)Apair(p"(ee”c)%
D XRIIVINATNUM(c)A-DENUM( {b]b¢(ee"c)Apair(p“(ee“c),b}¢R}))

29 omega=({k|DENUMI({b]bC(ee"k)Apair(p"“(ee"k),b)R})IU{kI~DENUM({bJb<(%
ee"k)Apair(p“(ee"k),b X R})}aVc ((SET(c)ANATNUM(c))=((NATNUM(c)ADENUMY
{{blbt{ee"c)npair{p™(ee"c),bXRDIVINATNUM(c)A-DENUM({blb¢leec)apairk
(p"(eec)bXRMMN

30 omega=({k]DENUM({blb¢{ee"k)Apair(p“(ee"k),b)¢R}IU{k|"DENUM({b|be(%
ee"k)Apair(p"(ee"k),bXR}}})

s#ex2TRY #3 USING MONADIC 7,7TT11T AUX30;

31 DENUM({k|DENUM({blbc(ee"k)Apair{p"(ee"k),b)}R})})VDENUM({k|-DENUM(%
{blb¢(ee™k)Apair(p™(ee"k),b)R}})

ss333TRY slu)ul USING EG RNG({b|3k.b=opair(k,p"(ee"k))} |

* IF DENUM({KIDENUM{{blb¢{ee"k)Apair(p"(ee"k),b)€RD}
* THEN {k|DENUM({b]b¢({ee"k)Apair(p"(ee"k),b)}R})}
* ELSE {k|-DENUM({blb¢(ee"k)Apair(p“(ee"k),b}R}}) ;

Goal #1slslal: RNG({b|3k.b=opair(k,p"(ee"k))} | IF DENUM({kIDENUM({b%
|b¢(ee"k)Apair(p"(ee"k),b)<R}}}} THEN {k|DENUM({blb<(ee"k}Apair(p“(ee%
"k),b)R})} ELSE {k|~DENUM({blb¢{ee k)npair(p"(ee"k),b)(R})})cGA(DENUY
M(RNG{{b]|3k.b=0pair(k,p"(ee"k))} | IF DENUM({k|DENUM({blb<(ee"k)Apair¥
(p"(ee"k),b)}R})}) THEN {k|DENUM({b|bc({ee"k)npair(p"(ee"k),b}R}} EL¥%
SE {k|~DENUM({blb¢(ee"k)Apair{p"(ee"k), 0} R})INA(EDGESET(RNG({bf3k.b%
=opair(k,p"(ee"k))) | IF DENUM({k|DENUM({blbc(ee"k)Apair(p“(ee"k),b)%
RDH}) THEN {k|DENUM({blbc{ee"k)Apair(p"(ee"k),b)¢R})} ELSE {k|~DENUM(%
{b]b¢{ee"k)Apair(p“"(ee"k),b)R})}))cBVEDGESET(RNG{{b|3k.b=0pair(k,p"(%
ee"k))} | IF DENUM({KIDENUM({b|b¢{ee"k)Apair(p“(ee"k),b)¢R})}) THEN {¥
k|DENUM({blb¢lee k)Apair(p"(ee"k),b)XR})} ELSE {k|~DENUM({blb¢(ee"k)A%
pair(p"(ee”k),b}R}}))cR))

+sx22GOAL FNC({b|3k.b=0pair(k,p"(ee"k))})

Goal #5: FNC({b|3k.b=opair(k,p"(ee"w))})

*+2xxTRY USING REWRITE BY {FNC REL AUX27};

Goal #5s1: Yd.((SET(d)A3Kk.d=opair(k,p"(ee"k))23b c.d=opair(b,c))AVYb%
¢ d.{((SET(opair(b,c)AIk.(b=kAc={p"(ee"kKMA(SET(opair(b,d))A3k.(b%
=kAd=(p"(ee"k)))))>c=d)

s+222TRY USING ELIMINATION DEPTH 2;

Goal #5xl1sl: Yd.((SET(d)A3k.d=opair(k,p"(ee"k)))23b c.d=opair(b,c))
Goal #5u1e2: Vb ¢ d.(((SET(opair(b,c)A3k.(b=knc=(p“(ee"k)NA(SET(0%
pair(b,d)A3k.(b=kAd=(p"(ee"k))))>c=d)

Goal #5slalsel: (SET(d)A3k.d=opair(k,p"(ee"k)))>3b c.d=opair(b,c)
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Goal s5ule2sl: ((SET(opair(b,c))A3k.(b=kAc={p™(ee "k IIN(SET(opair(b¥
,dNAIK.(b=kAd=(p"(ee"k)))))oc=d

ssaxsTRY #5elelel USING LOGIC;

32 (SET(d)AIk.dwopair(k,p"(ee"k)))>3b c.d=opair(b,c)
33 Vd.((SET(d)A3k.d=opair(k,p"(ee"k)))>3b c.d=opair(b,c))
Goal #58le2slul: c=d

34 (SET(opair(b,c DA3K(b=kAc=(p"(ee "k IMA(SET(opair(b,d)A3k.(D=kAd%
=(p“(ee"k)))) (34)

35 3k.(b=kad=(p"(ee"k))} (34)

36 SET(opair(b,d)) (34)

37 Ix({b=knc=(p"(ee”k}))) (34)

38 SET(opair(b,c)) (34)

We have a failqueue of length: !
Starting a new 2-th pass on new queue of length: }
We have a failqueue of length: 1

Failure: can't prove anything on failqueue.
The tactic LOGIC can’t be applied to goal
Goal #Swlslsel: Proven. 32 (SET(d)A3k.d=opair(k,p"(ee"k)))>3b c.d¥
=opair(b,c)

ssxxsES TT11 k;

39 b=knd=(p"(ee"k)) (39)

ssxsES 111 j;

40 b=jAc=(p“(ee”j)) (40)

3232 TAUTEQ k= 113

4] k=j (39 40)

sss2sREWRITE 111 BY {1}

2 substitutions were made

42 b=jrd=(p"(ee”j)) (34 40)

»3s23TRY USING TAUTEQ 111,T;

43 ¢=d (34)

122
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44 ((SET(opair(b,c))AIk.(b=knc=(p"“(ee "k)I)NMSET(opair(b,d))AIk.(b=kA%
d=(p"(ee"k)))))oc=d

45 Yb ¢ d(((SET(opair(b,c))A3n{b=kAcn(p (e " )NA(SET(opair(b,d))A%
3x.(b=knd=(p"(ee"k)))))>c=d)

46 Vd.((SET(d)A3k.d=opair(k,p"(ee”"k}))>3b c.d=opair(b,c)AYb ¢ d((S%
ET(opair(b,c))AIk.(b=kAc=(p"(ee"k))A(SET(opair(b,d))A3k.(b=kAd=(p"(%
ee"k)))))c=d)

47 FNC({b{3k.b=opair(k,p"(ee"k))})2(Yd.(SET(d)A3k.d=0pair(k,p"(ee k)%
N23b c.d=opair(b,c)AYb ¢ d.(((SET(opair(b,c))A3k.(b=kAc=(p"(ee"k)))¥
SET(opair(b,d))A3Kk.(b=kad=(p"(ee"k)))))oc=d))

48 FNC({b|3k.b=opair(k,p"(ee"k))})

sssxxL ABEL FUNCC 1;

ssx2VE AUX10 {b|b¢cApair(a,b)R} {blbccApair{a,b)B};

49 UNIVERSAL({blbtcApair{a,b XR}>(UNIVERSAL({b|b¢cApair(a,b)B})>(DE%
NUM({blbceApair(a,bXR}u{bjbccapair(a,b}B})>({DENUM({b[b¢cApair(a,b)e¥
RIVDENUM({b]b¢cApair(a,bXB})))

sxessEVAL 15

50 DENUM({blbccApair(a,b}R}ulblbccApair(a,b)<B})o(DENUM({blbccApair(X
8,bXR})VDENUM({b]b¢cApair(a,b}B}))

#2233GOAL Ye a.(ccGAaccot:alul=c\singl(a));

Goal #6: Yc af(ccGaacc)a({blb<cApair(a,bXR}u{blbécapair(a,b)B})=(X
¢ \ singl(a)))

*+x33TRY USING REWRITE BY {KEXT SUBSET AUX6};

Goal #681: Vel a((VedeccloceGInacel)oVe.(((SET(c)Acéc 1 Apair(a,c )X
RIV(SET(c)n(cec Apair{a,ckB)))scc(ct \ singi(a))))

*s+x22TRY USING REWRITE BY {DIFF COMPL AUX25 UNIT V};

Goal #6«lsl: Ycl a((Ve(ceclaceG)nacel)aVe {({SET(c)n{cec 1npair(a,cX

;;R))V(SET(c)A(c(clApair(a,c)(B))):(c(clA(SET(c)Aw(SET(c)A(SET(l)Ac-a'l
m

s+s+2TRY USING ELIMINATION DEPTH 3;

Goal sb#lulel: (VelcccloccGlracc!)oVel({SET{c)A(cec 1 apair{a,c XR)%
V(SET(c)A(ccc 1 Apair(a,c)B))x(cec I A(SET(c)ASET(c)ASET(a)Ac=a))))
Goal wbulmlelel: Yel((SET(c)n(ccclApair(a,cRIVISET(c)A(ccc 1 ApairY
(a,cXBm(ccc IA(SET(CIA(SET(c)A(SET(a)Ac=a)))))

B1 VelcecloeeGnaec! (51)
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62 accl (51)
53 Ye.(cccla¢¢G) (Bl1)

Goal «6slslulslel: ((SET(c)A(cCclnpair(a,c)RIVISET(c)Alcccinpair(a¥
L XB(cee IASET(c)ASET(cIA(SET(a)Ac=a))))

seexsVE AUX12 a ¢ G;

54 pair(a,c XEDGESET(G)s(a¢GA(c€GAa~{a=c)))
=xxxxREWRITE T BY {3 AUX6};

2 substitutions were made

55 (pair(a,c)Rvpair{a,c)Ba(a¢GA{ccGA~{a=c))) (1)
+xxx£TRY USING MONADIC 1111,111,T;

56 ((SET(c)A(ceclApair(a,c XRIWV(SET(c)A(cec 1 Apair(a,c)eB)))s(cec IA(S%
ET(c)ASET(c)A(SET(a)Ac=a)))) (1 51)

57 Ve {((SET(c)A(ccc 1 Apair(a,c X RIVISET(c)A(ctc 1 apair{a,c)B))a(céc%
IA(SET(c)A~SET(c)A(SET(a)Ac=a)))) (1 51)

58 (Ye.{cccIoceGlaace1)oVe (({SET(c)n(cce 1 Apair{a,c ) RIV(SET(c)n(ceck
Inpair{a,c)B)))s(cecc IN(SET(c)ASET(cIMSET(a)ac=a))))) (1)

59 Yel a.l{Ve.(cCciaecGnacel 2Ye (((SET{cIMcccInpair(a,c)eRIVISET(%
cIn(cec 1 apair(a,cXB))s(cec I A(SET(c)ANSET(CIA(SET(a)Ac=a)))))) (1)

60 Vel a.((YelcecloceGnace] oYe.({(SET(ec)nlcec i pair(a,c XKRIVISET(%
c)n(cec 1 apair{a,cXBMecclc] \ singl{a))))aVel a((Vele¢cloceGnacek

1)2Ve (((SET(c)n(ccc 1 Apair(a,c XRIVISET(c)A(ccc L apair(a,c)¢B))a(ccck
IA{SET(c)A~{SET(c)MSET(a)Ac=a))})))

61 Yel a((Velccc1oceGInacel)aVe (({SET(c)Alcec i Apair(a,c XRIV(SET(X
cIn{ccclapair{aclBscc(cl \ singl{a)))) (1)

62 Yc al{ccGnace)a({blbccapair(a,b)<RIu{blbccapair(a,b}¢B})=(c \ sin¥%
giaa¥el af(Ve.(ecclacGlnaccl)aVe ({((SET(c)A(ccc 1 Apair{a,c)kRIVE
(SET(c)n(ccc 1 apair(a,cXB))acecl \ singl(a))))

63 Yc a.((ccGaace)>({blbccapair(a,b)RIu{blbécApair(a,b)cB})=(c \ sin%
gita) (1)

=+x33G0AL Ve a.(ccGADENUM(c)Aa¢co50:42)

Goal #7: Yc a.((ccGA(DENUM(c)Aa¢c))2(DENUM([bibecnpair(a,b )R} )VDENU%X
M({bjbccapair(a,bXB})))

*2x2sTRY USING ELIMINATION;




Appendix 2: Ramsey's Theorem,

Goal #7s1: (ccGA(DENUM(c)Aa€c))>(DENUM({blb¢capair(a,b)eRVDENUM({bY
ICt;’t::I,\a':;iutr(lat;tl’z(BIJ}Q‘JUM({bIb(cI\pair(a.b)(R})VDENUM({bIbéc'\pair(a,l:a)ea})
s+xssTRY USING IMPLICATION 50;

64 ccGA(DENUM(c)nacc) (64)

65 acc (64)

66 DENUMI(c) (64)

67 ccG (64)

Goal »7slslal: DENUM({bbCcApair(ab)tRIu{blbccapair(ab)B})
ssaeVE 63 ¢ »;

68 (ccGaacc)({blbccapair(a,b)R}u{blb¢capair(a,b)B})=(c \ singi{a)) (1)
seeexTAUT T:42 64 T;

69 ({blbCcApair(a,b)XR}u{bjoccApair(ab)B})=(c \ singl(a)) (1 64)
ss#22RESOLVE 66 AUXS;

RESOLVE DENUM(a)=DENUM(a \ singl(b)) , DENUM(c) -+~ Yb.DENUMI(c \ singl(b})

70 Yb.DENUM(c \ singi(b)) (64)

w223 TRY USING REWRITE BY {11,1};

71 DENUM({blb¢capair{a,b}Rlu{bfbccapair(a,b)B}) (1 64)

RESOLVE DENUM({b[bccApair(a,b)R}u{blbccApair(a,b)B})>(DENUM({blbécaX
pair({a,b)}XR})IVDENUM({blb<cApair(a,b}B})) , DENUM({b|bccApair(a,b)}¢R}%
u{blbCcApair(a,b)B}) -- DENUM({blbccApair(a,b)(R}IVDENUM({bjbécApairk
(a,0XB})

72 DENUM({blb<cApair{a,b)R})VDENUM({blbccApair(a,bXB}) (1 64)

73 (ccGADENUM(c)Aace))>(DENUM({blb¢cApair(a,b X RHVDENUM({blbecApair¥
(a,bkB}) (1)

74 Ye a.{(ccGA(DENUM(c)Aa¢c))2(DENUM({blbceapair(a,b)R}VDENUM({blbe%
cApair(a,bXxB}))) (1)

=x223GOAL Vi(ee"icGADENUM(ee™));

Goal #8: Vi((ee"i)cGADENUM(ee"i))
2238 TRY USING INDUCTION;
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Goal #8#1: (ee"™\)cGADENUM(ee"\)
Goal #8x2: Vi.(((ee"i)cGADENUM(ee"i))o{(ee"SUC(i))cGADENUM(ee"SUC(IN)

s+s52TRY 1 USING REWRITE BY {SUBSET EEO DENUMG);
75 (ee"\)cGADENUM(ee™) (1 17)

#x2x2TRY USING ELIMINATION;
76 DENUM(ee™\) (1 17)
77 (ee™\)eG (1 17)

Goal #8«#2s1: ({ee"i)cGADENUM(ee"i))a({ee"SUC())cGADENUM(ee"SUCKi)))
Goal uBa2slal: (ee"SUC(icGADENUM(ee"SUC())
78 (ee”i})cGADENUM(ee"i) (78)

79 DENUM(ee"i) (78)
80 (ee"i)cG (78)

Goal #8s2slslel: (ee"SUC(i)cG
Goal #8u2sluls2: DENUM(ee"SUC(i))

sexxxVE APPLY EEDEF:#]u2%] ee"i;

81 UNIVERSAL({b|3¢c d.{b=opair(c,d)n{ccGA(~(c=A)nd=iF DENUM({b|b¢cApai%
r{p"c,b)(R}) THEN {blbceapair(p”c,b)R} ELSE {b|bccapair{p”c,bXB}HN%
}=((3d.Ve.(d=ceopair(ee”i,c ) {b|3c d.(b=opair(c,d)A{ccCA(~(c=A)Ad=IF%
DENUM({blbccApair(p"c,b)R}) THEN Iblbccapair(p“c,b)XR} ELSE {b|béca%
pair(p"c,b)}XB}))})20pair(ee”i,{bldc dib=opair(c,d)A(ccCA(~(c=r)nd=I%

F DENUM({b]b¢cApair(p”c,b)XR}) THEN {blbceapair(p“c,b)(R} ELSE {blbcc¥
Apair{p"c,b X B} }"(ee"i)){b|3c d.(b=opair{c,d)A(ccGA(~{c=X)Ad=IF D¥
ENUM({b|bCcApair(p”c,bXR}) THEN {blb<capair(p”c,bXR} ELSE {blb<capa%
ir{p"c,bXBIMPA(-3d.Ve(d=ceopair(ee"ic)({b|3c d{b=0opair{c,d)n(c%
cGA{~(c=x)nd=IF DENUM({b|bceApair(p“c,b)R}) THEN {b|b¢cnpair(p”c,b)e¥
R} ELSE {b|bccApair(p”c,bXBIN})2({bjIc d.{b=opair(c,d)r{ccGA(~(c=A¥
Ind=IF DENUM({bjbccapair(p“c,bXR}) THEN {bfbccapair(p“c,b)¢R} ELSE {%
blbccApair(p”c,b)<B})))}"(ee"i))=A))

sxxx2EVAL T;

82 (3d.Ye.{d=ceopair(ee”i,c)({b|3c d.(b=0pair(c,d)A{ceGA(~(c=A)Ad=IF %
DENUM({blbccApair(pc,b)(R}) THEN [blbccapair(pc,bXR} ELSE {blb<cAp¥
air(p"c,b ) B )oopair(ee”i,{b[Ic d.(b=opair(c,d)r(ccGA(~(car)nd=IF%
DENUM({b|bccApair(pc,bXR}) THEN {b|bccApair{p“c,b)XR} ELSE {blb¢cA%
pair(p"c,b BN} (ee"iNib|3c d.({b=0pair(c,d)A(ccGA(~{c=\)ad=iF DE%
NUM({blb<cApair(p"c,b)XR}) THEN {blb¢cApair(p“c,b)¢R} ELSE {blb<cApai%
r{p"c,bX BINNAM~3d.Ve.{d=csopair{ee”i,c)({b|3¢c d.{b=0pair{c,d)r{ce%
GA(~{c=\)Ad=IF DENUM({blb<capair(p”c,b)R}) THEN {blbccApair(p”c,b)eR%
} ELSE {blbccapair(pc,b)XB}M})2{{b|3c d.(b=opair(c,d)A(ccGA(~{c=A)%
Ads=IF DENUM({b{bccApair{p”c,b)¢R}) THEN {b[b<capair(p“c,b)<R} ELSE {b%
|bccApair(p”c,bXXB})))}"(ee"i))=A)

e eamas-® -2 s & @
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sseesnE T 1

83 3d.Ve.{d=cropair{ee”i,c){bl3c d.{b=opair{c,d)A(ccGA(~(c=r)ad=IF D%
ENUM({blbccApair(p“c,b)XR}) THEN {blbccapair{p”c,b)¢R} ELSE {blbécApa¥
ir(p"c,b) BN )oopair(ee”,{bj3c d.(b=opair{c,d)A(ccGA(~{c=A)Ad=iF %
DENUM({b|bccapair(p”c,b}R}) THEN {blb¢cApair(p“c,b)R} ELSE {b|b¢cap¥
air(p c,bXB})N}"(ee”i)){b|3c d.(b=opair{c,d)A(ccGA(~(c=A)Ad=IF DEN¥
UM({bjbccapair(p”c,bXR}) THEN {blb¢capair(pc,b)R} ELSE {blb¢cApair¥
(p"c,bXB))N}

=exx2GOAL T:#2 ASSUME T;

Goal #9: opair{ee”i,{b|3c d.(b=opair(c,d)n{ccGA(~{c=A)Ad=IF DENUM({b%
|becApair(p”c,bXR}) THEN [blbécApair(p”c,b)R} ELSE {bjb¢cApair(p“c,%
b)XBIN}"(ee”iN¢{b|3c d.(b=opair{c,d)A{ccGA(~(c=r)Ad=IF DENUM({blb¢c¥
Apair(p”c,b)R}) THEN {blb¢capair(p"c,b)R} ELSE {bjbécapair(p"c,b)}B}))}

sx2xxTRY USING IMPLICATION;

Goal #9#]: 3d.Vc.(d=cropair(ee"ic)e{b|3c d.(b=opair(c,d)A(ccBA(~{c=¥
AAd=IF DENUM({blbécapair(p“c,bXR}) THEN {blb¢capair(p”c,b}R} ELSE %
{blb¢cApair(p c,bXB}HN})

*x323TRY USING EG IF DENUM({{b|b<ee"inpair({p“(ee”i),bXR})
s THEN {b]bcee"iApair(p"(ee”i),b)¢R}
s ELSE {blb¢ee”inpair(p™(ee"i),b)B};

Goal #9slel: Vc.(IF DENUM({blbclee"i)Apair(p"(ee"i),b)¢R}) THEN {blb¥
<(ee"i)Apair(p(ee"i),b}R} ELSE {blb¢(ee"i)npair(p"(ee"i)b)B}=csop%
sir(ee”ic)¢{bj3c d.(b=opair(c.d)n{ccGA(~{c=)Ad=IF DENUM({blbécApair¥
(p"c,b)R}) THEN {blb¢cApair(p"c,0)R} ELSE {blb¢cApair(p"c,bXB}))})

sx233TRY USING REWRITE BY {AUXS AUX27};

Goal #9slalsnl: Ve (IF DENUM({b|b¢(ee"i)Apair(p"{ee”i),b)¢R}) THEN {b¥
[bc(ee"i)Apair(p™(ee”i),bXR} ELSE {blbe(ee"i)rpair(p™(ee”i),b)¢B}=cs¥
((SET(ee™)ASET(c))A3c] d.{((ee"i)=ciAcud)r{clcGA{~(c]1=)Ad=IF DENUM(%
{bibec1Apair(p”cl,bXR}) THEN {blbeclApair(p"cl,b)R} ELSE {blbéclinpa¥
ir(p“c1,b)}8}M)

sssasTRY USING ELIMINATION DEPTH 3;

Goal #9alslslel: IF DENUM({blbc(ee"i)Apair(p"(ee”i),b)R}) THEN {bjb%
¢(ee")Apair(p"(ee”i)bXR} ELSE {blbc(ee"i)Apair(p“(ee”i),b}B}=cs((%
SET(ee")ASET(c)A3c] d.((ee™)=clAc=d)A(c1cGA(~{c]=\)Ad=IF DENUM({b%
lbéc i Apair(p™cl,bXR}) THEN {blbéclApair(pcl,bXR} ELSE {blb¢clApair¥
{p"c1,6XB))

Goal s9nlslelslsl: IF DENUM({bJbc(ee"i)apair(p"(ee”i),b)R}) THEN {b¥%
|bc{ee”i)Apair(p™(ee”i),bXR)} ELSE {bibc(ee”i)Apair(p"(ee”i),b)B}mco%
((SET(ee")ASET(c))A3c] d.(((ee"i)=clAac=d)A(clcGA(~{c]1=A)Ad=lF DENUMY
{blbcc1Apair(p"c1,b}R)) THEN {blbéc1Apair(p”c1,b)R} ELSE {blbcclApa¥
ir(p®c1,b)8}))
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Goal #9slnlelule2: ((SET(ee"i)ASET(c))Adcl d.({{ee"i)=clAc=d)A(c1cGAK
(~(c1=))Ad=IF DENUM({bibCclApair(p“c1,b}<R}) THEN {blb¢clApair(p”cl,b%
YR} ELSE {b|b<cinpair(p”c1,b}XB}))))=iF DENUM({blbé(ee"i)Apair(p (ee%
“i),b)R}) THEN {b|b¢{ee”i)Apair(p"(ee”i)b}R} ELSE {blb¢(ee"i)npair¥
(p"(ee"i),b)}B}=c

Goal #9ulalslslelal: (SET(ee"ASET(c)A3c] d.{((ee"i)=clac=d)M(clecG¥
Al~(c1=\)Ad=IF DENUM({bjb¢clApair(p“c1,b}R}) THEN {bib¢cinpair(p™c1,%
b)R} ELSE {b|bcciApair(p”cl,b}B}))

Goal #9slululnln2el: IF DENUM({blb¢(ee")npair(p"(ee"i)b)¢R}) THEN %
{blb¢(ee”i)rpair(p™(ee™i),b)R} ELSE {blb¢(ee"i)Apair(p"(ee”i),b)B}=c
*sx3xPREPARE;

84 (SET(ee"iASET(c))A3cl d.({(ee"i)=cl1nc=d)n(c1cBA(~(c]=A)Ad=IF DENU¥
M({b|b¢c1Apair(p”cl,bXR}) THEN {bloccinpair(p“cl,b}R} ELSE {blbéclA%
pair(p“cl,b}B})) (84)

85 3cl d.((ee”i)mc1nc=d)a(c1cGA(~{cl=A)Ad=IF DENUM({blb¢c1Apair(p“cl¥
JXR}) THEN {blbtctapair(p"c1,bXR} ELSE {blbcclnpair(p“cl,b)eB})) (84)

86 SET(c) (84)
87 SET(ee"i) (84)
sxx22ES 111 ¢l d;

88 ((ee"i)=c 1Ac=d)A{c 1cGA(~{c 1 =X )Ad=IF DENUM({b]b¢clApair{p"cl,b)ER})¥
THEN {bjbeclapair{p"cl,b}R} ELSE {blb¢clapair(p”cl,b)B}) (88)

*x33xADDFACTS #9slsululnle2s]l ASSUME t;

Goal #9%1slnlnln2«l: IF DENUM({b|bc{eei)rpair(p"(ee™i),b)¢R}) THEN %
{blb¢(ee”i)Apair(p™(ea”i),b)R} ELSE {bjbelee"i)Apair(p"(ee”i),b}¢B}=c

*x:33PREPARE;

89 d=iF DENUM({blb¢ciApair(p“cl,bXR}) THEN {blb¢clApair{p"cl bR} EX
LSE {blb¢clapair(p™cl,b}B} (88)

90 ~(c1=2) (88)

91 clcG (88)

92 c=d (88)

93 (ee”i)=cl (88)

94 cl=xsFALSE (88)

w2x2TRY USING REWRITE BY {T1,111,T11111};

95 IF DENUM({blb¢(ee™)Apair(p"(es”i),b)XR}) THEN {bjb¢(ee™)Apair(p™%
(ee"i),b)R} ELSE {blb¢(ee™)Apair(p™(ee”i)b)B}=c (84)

............................

....................................

............................




A i e e poe e L, ‘_.m_‘__.ﬁ,—‘<r~ o aae PP

Appendix 2: Ramsey's Theorem. 129

96 ((SET(ee")ASET(c)A3c] d.{((ee"i)=clAc=d)A(c1eGA(~(cl=A)Ad=IF DENX
UM({blbcc1Apair(p"c1,b)R}) THEN {blb<clApair(p"cl,b)¢R} ELSE {blb¢cl¥
Apair(p"c1,b)XB}M)oIF DENUM({blbc(ee"idnpair(p"(ee"i)b}R}} THEN %
blb¢(ee”i)Apair(p™(ee”i)bXR} ELSE {bloc(ee"i)Apair(p"(ee"i)b)cB}=c¥%

wxxxxTRY USING A);

97 IF DENUM({b]b<(ee"i)npair{p™(ee"i),b}XR}) THEN {blot{ee™)Apair(p“%
(ee"i),b)R} ELSE {blb<(ee")npair(p"(ee"i)b)B}=c (97)

Goal #9slslslululalal: SET(ee"i)ASET(c)

Goal #9nlslsulslalale: el dillee™)=clac=d)AlcleGA(-{cl=A)Ad=IF DE%
NUM({b|bCc 1 Apair(p”c1,0)R}) THEN {blb¢clapair{p“cl,b)¢R} ELSE {blbéc¥
1Apair(p”c1,bXBIN

sxxxxTRY USING EG ee"i T:a#];

Goal #9slsinlulaleleal: ((ee”i)=(ee”)Ac=IF DENUM({blb«(ee")Apair(%
p“(ee"i),b}R}) THEN {blb<(ee"Inpair(p"(ee”i)b)XR} ELSE {bloc(ee"i)%
Apair(p"(ee"i),b)BHAl(ee™)cGA(~((ee"i)=M)AIF DENUM({blb((ee"i)Apai%
r(p"(ee"i),b}R}) THEN {blbi(ee"i)npair(p"(ee"i)b)}R} ELSE {blb¢{ee"%
Apair(p"(ee”i),b ) B}=IF DENUM({b]b¢{ee"i)apair(p"(ee"i),b)(R}) THEN%
{blo¢(ee")npair(p"(ee”i)b)R} ELSE {b[b¢(ee"i)Apair(p"(ee”i),b)B}))

sxexxVE AUX3 ee”i;

98 DENUM(ee"i)>~((ee"i)=)\)

sxeesTAUT T:42 79 T;

99 ~({ee"i)=A) (78)

s+xaxTRY USING REWRITE BY {80 1,T1T};

100 {(ee"i)=(ee"i)Ac=IF DENUM({blbc(ee")Apair(p"(ee"i)b)¢R}) THEN {%
bib¢(ee"i)Apair(p"(ee"i),b)(R} ELSE {blbc(ee"npair(p“(ee"i),b)¢B}AY
((ee™)cGA(~{(ee™) = \AIF DENUM({b|b¢(ee"i)Apair(p"(ee"i),b)XR}) THEN%
{blb{ee")npair{p"(ee”i)b)(R} ELSE {blbt{ee")Apair{p"(ee"i),b)B}%
=IF DENUM({blb¢(ee"i)apair(p"(ee"i)b)}R}) THEN {blb((ee")Apair(p“(e%
e"i),b)}R} ELSE {blbt{ee"i)Apair(p"(ee"i),b)B})) (78 97)

101 el d{({ee”i)=c1Ac=d)A{c 1cBA(~(c 1 =A)Ad=IF DENUM({blb¢ciApair(p“cl,b)%
€R}) THEN {bjbcclApair(p"c1,b)R} ELSE {blocciApair(p"cl,b)BH)) (78 97)

sxs32VE 74 ee”i p"(ee”i);

ll“ ".I-X' '4. .
SN AP
. PO

102 ((ee”i)cGA(DENUM(ee"i)n(p"(ee"i) X (ee"i)))2(DENUM({blb¢(ee"i)Apai%

r{p"(ee"i),b}XR})VOENUM({blb<(ee"i)rpair(p"(ee"i)b)B})) (1)

sx238YE CHOOSEP ee™; R

103 ((ee"i)cGA~(ee")=n)a(p"(ee i)(ee™) (13)
e

.....................................
.........................
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sxexaTAUT DENUM(97:81) 79 80 99 1T

104 DENUM(IF DENUM({b|b¢{ee"i)Apair(p"(ee"i),b)<R}) THEN {b|b¢(ee"i)A%
pair(p"(ee”i),b)<R} ELSE {blb¢{es"i)Apair(p"(ee”i)bXB}) (1 13 78)

«x+exREWRITE T BY {97}

1 substitutions were made

105 DENUM(c) (1 13 78 97)
xx&xTRY USING MONADIC 79 T AUXI;
106 SET(ee"i)ASET(c) (1 13 78 97)

107 (SET(ee"DIASET(c)n3cl dll({ee"i)=clAacad)n{clcGA{~{cl=A)Ad=IF DEN%
UM({blbc¢c1apair(p“c1,b)(R}) THEN {bjbcclApair(p“cl,b)R} ELSE {blb¢cl¥%
Apair(p“c1,b)B})») (1 1378 97)

108 IF DENUM({b]bc(ee™i)Apair{p"(ee"i},b)<R}) THEN {blb¢{ee"i)Apair(p¥
"(ee"i),b)(R} ELSE {bjb¢(ee"i)Apair(p"(ee"i),b}B}=c>{(SET(ee"i)ASET(¥X

e)ndel d.({(ee"i)=cinc=d)n(c1cGA(~(c]1=\)Ad=IF DENUM({b|b¢éc1Apair(p”cl,b)%
(R}) THEN {b[bcc1Apair(p"cl,b)R} ELSE {bjb¢clapair(p"cl,b}B})) (1 13 78)

109 IF DENUM({bJb¢(ee")Apair(p“(ee"i),b)R}) THEN {blbc(ee"i)Apair(p%
"(ee"i),b}R} ELSE {blbc(ee")Apair(p"(ee"i),b)<B}=ce((SET(ee IASET(%

eNAZe] dd((ee"id=c 1 Ac=d)A(c1cBA(~(c] =A)Ad=IF DENUM({blbéc 1 Apair(p”c1,b)%
€R}) THEN {bjocc1Apair(p”cl,b)R} ELSE {blbéc1Apair(p"cl,b}B})) (1 13 78)

110 Ve.(IF DENUM({blbc¢(ee")Apair{p"(ee”i),b)¢R}) THEN {blb¢(ee"i)Apa%
ir(p"(ee"i),b)(R} ELSE {b|b¢(ee"i)Apair(p"(ee"i),b)Bl=cz((SET(ee"i)A%
SET(c)a3ke!l ddl(ee"i)=clnc=d}r(c1cGA(~(c]1=A)Ad=IF DENUM({b|b¢c1Apair¥
(P"c1,b)R}) THEN {blb<c1Apair(p”cl,b)R} ELSE {bjb¢ciApair(p™cl,b)}B%
P (113 78)

111 Ve.(IF DENUM({blb¢(ee"i)npair(p“(ee"i),b)R}) THEN {blb¢(ee"i)Apa¥
ir(p"(ee”i),b)R} ELSE {bjoc(ee"i)rpair(p"(ee"i),bXB}=csopair{ee"i,c%

Y {bl3c d.(b=opair(c,d)A(ccGA(~(c=A)rd=IF DENUM(IblbcApair(p"c,b}R}%

) THEN {b|bccApair(p“¢,b)R} ELSE {bibCcApair(pc,bXBIMN=Ye(IF D%
ENUM({b|b¢(ee"i)Apair{p"(ee"i},b}R}) THEN {b|bc{ee"i)Apair(p"(ee"i),%
b)(R} ELSE {blbt(ee"i)Apair(p"(ee"i),b)(B}=c=((SET(ee"IASET(c))A3cl %
d.({(ee"i)=clnc=d)A(c1cGA(~(c 1 =A)Ad=IF DENUM({b]bc¢clApair(pcl,b)}R}%
THEN {blb¢clApair(p"c1,bXXR} ELSE {blbcclapair(p"cl,b}B}W))

112 Ye(IF DENUM({b|bc(ee"i)Apair(p"(ee"i),b)R}) THEN {blb¢(ee")Apa%
ir(p“"(ee"i),b)R} ELSE {blb¢(ee"i)Apair(p"(ee"i),b)(Bi=czopair(ee”i,c%

Y {b}3c d{b=opair(c,d)MccGA(~(c=x)ad=IF DENUM({b|bccApair({p”c,b)¢R}%
) THEN {b]bccApair(p"c,b)R} ELSE {bjb¢cApair(p”c,b}BIN}) (1 13 78)

113 3d.Ve(d=csopair(ee”i,c){b|3c d.(b=opair{c,d)A(ccGA(~{cmAAd=IF %
DENUM({blbccApair(pc,b)(R}) THEN {blbccApair(p“c,b)XR} ELSE {b|b¢cAp¥
air(p"c,oXB})}) (1 13 78)

RESOLVE 3d.Yc.(d=cmopair{ee”i,c)¢{b|3¢ d.{b=0pair{c,d)A(ccGA(~(c=A)Ad%

..........................

.................................
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=IF DENUM({blb¢cApair(p"c,b)R}) THEN {blb¢cApair(p”c,b)R} ELSE {bjb% R
cnpair(p”c,bXB)}M})>opair(ee”i{bj3c d.{b=0pair(c,d)A(ccGA(~{c=A)A% _.... )
d=IF DENUM({blb¢capair{p"c,b}R}) THEN {blb¢cApair(p”c,o)R} ELSE {b]% REREN

bccapair(pc,bXB}}"(ee"id){b|3c d.(b=opair(c,d)A(ccGA(~(c=A\)nd=I%

F DENUM({blb¢cApair(p”c,b)(R}) THEN {blb(cApair(p"c,b)(R} ELSE {blbe¢c¥
Apair(p c,bXB}M)} , 3d.Ye.(d=czopair(ee"i,c)¢{b[3c d.(b=opair(c,d)r%
(ccGA(~(c=x)Ad=IF DENUM({blbtcApair(p“c,b)R}) THEN {blb<cApair(p”c,b%
R} ELSE {b]|bccapair(pc,bXB})))}) == opair(ee"i,{b|3c d.(b=0opair(c% -
yAA(ceGA(~(c=x)Ad=IF DENUM({bjbccApair({p“c,b)(R}) THEN {blbecapair(p% .9
"c,b)(R} ELSE {blbccapair(pc,b)B})))}"(ee")X{b]|3c d.(b=opair{c,d)%
AlecGA(~{c=))Ad=IF DENUM({b|b<cApair(p"c,bXXR}) THEN {blbtcapair(pc,%

b)<R} ELSE {bjbccAapair{p"c,b)(B}))}

114 opair(ee”i,{b|3¢c d.(b=opair(c,d)a{ccGA(~{c=A)Ad=IF DENUM({blb¢cnp¥ S
air(p"c,b)R}) THEN {blb<capair(p”c,b)R} ELSE {blbccapair(p”c,b)B})% -
N} (ee”i)x{b|3c d.(b=opair{c,d)A(ccGA(~{c=A)Ad=IF DENUM({blb¢capair¥ : . -
(p"c,b)XR}) THEN {bJbccapair(p"c,b)}<R} ELSE {blb¢capair(p”c,b}B})} (1 13 78) e

xxr3aVE 112 Tisla2;

115 IF DENUM({bjb{ee"i)Apair(p"(ee"i),b)¢R}) THEN {blb{ee“i)Apair(p¥% [y
"(ee"i),b)}R} ELSE {bjbc(ee"i)Apair{p"(ee"i),b)}B}=({b|3c d.({b=opair(% P. .
¢,d)A(ccGA(~(c=\)Ad=IF DENUM({bjbCcApair(p“c,b)(R}) THEN {blb¢capair(%
p"c,b )R} ELSE {blbccapair(p”c,b)B})))} (ee"iNeopair(ee”i,{bl3c d.(%

b=opair{c,d)n(ccGA(~(c=A)Ad=IF DENUM({b|b<cApair(p”c,b)(R}) THEN {b|b%
<cApair(p“c,b)R} ELSE {b|b<capair(p"c,b)B}M}"(ee"i))¢{b|3¢ d.(b=0% S
pair{c,d)A(ccGA(~(c=A)Ad=IF DENUM({blb<cApair(p"c,b)(R}) THEN {b|bécA%
pair(p"c,b)R} ELSE {blb¢cApair(p”c,o)XBI)} (1 13 78) "o
sx+22YE EEDEF i; g .
116 (e8"SUC(i))=({b{3c d.(b=opair(c,dIA(ccGA(~c=AIndeIF DENUM({blbcc% R
Apair(p"c,b)R}) THEN {blb¢capair{p”c,b)(R} ELSE {blb¢capair{p”c,b)}B% "
I} ee"i)) (17) AT

s
sxx:+REWRITE 11 BY {T1TJUuLOGICTREE; '!‘“

2 substitutions were made

117 IF DENUM({bjb¢{ee"i)Apair(p“(ee"i),b)}R}) THEN {bloc(ee"i)Apair(p¥%
"(ee"),b)<R} ELSE {bjbc(ee"i)npair(p"(ee"i),b)B}=({{b|3¢c d.(b=0pair(%
c,d)A(ccGA(~{c=)\)Ad=IF DENUM({blb¢cApair(p"c,b)¢R}) THEN {b|b¢capair(¥ ‘@

p"c,b)¢R} ELSE {blb¢capair(p”c,b)XB})))} (ee”)) (1 13 78) pED
+2222SUBSTR 1IN 11;
118 (ee"SUC(i)=IF DENUM({blbc(ee")Apair(p"(ee"i)b)cR}) THEN {bjbe(% S
ee"i)Apair(p“(ee”i),b)R} ELSE {blb¢(ee"i)Apair(p"(ee”i),b)B} (1 13 17 78)
s+e44SUBSTR 1 IN 104; ' -‘~
119 DENUM(ee"SUC()) (1 13 17 78) S

o

e

...............................................
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s+xxxQED #8u2unlu2;

- *x323TRY USING REWRITE BY {11,SUBSET}JUARGIFTREE;

Goal w8u2uislulel: Vc(((DENUM({blb¢(ee"i)Apair(p"(ee”i)b)R})>{SETX
{c)n(cc(ee™)Apair(p"(ee”i),c XRIA(-DENUM({b|b<(ee")Apair(p"(ee™i)%
LD XR}ASET(c)A(cc(ee i)npair(p™(ee”i),c )X B2¢¢G)

*xxexTRY USING ELIMINATION;

. PP D

g o e e

L tat e

oo e e

Goal #8s2ululululnl: ((DENUM(/bibc(ee"i)npair(p“(ee"i),b)¢R})2(SET(cX
A(ct(eenpair(p”(ee”i),c XRMA(-DENUM({bibt(ee"i)Apair(p"(ee”i),b% L
XR}(SET(c)A(cc{ee")Apair(p™(ee”i),c kB))))oc¢G B

g

Goal #Bu2«isuiulelalnl: <G 2w
*x2xxPREPARE; »

120 (DENUM({bJb<(ee"i)Apair(p™(ee"i),b)(RI)2(SET(c)n(ct(ee"i)Apair(p™%
(ee”i),e )X RIN(-DENUM({blb(({ee"i)npair(p"(ee"i),b)¢R})2(SET(c)n(c¢(e%
e"i)Apair(p™(ee”i),cXB)) (120)

N N . .y -
* . [ . LN
[P ) L
A [ ‘ . C '
o te e N -
N .
1Yt e
K Lty .
Sttt T e Lot e
AL ', [N ’

121 ~DENUM({blbc(ee"i)Apair(p"(ee"i),b}R})2(SET(c)n{c¢(ee i)Apair(p"%

(ee™i),cXB)) (120)

122 DENUM({blb¢(ee"i)npair(p(ee"i),b)<R})2(SET{c)n{c{ee"i)Apair(p"(%

ee™),ckR)) (120)

sx+32VE EDGERB pair(p"(ee"i)c); [ 4 . q

123 pair(p"(ee”i),c ) EDGESET(G)=(pair(p"(ee"i),c)cRvpair(p"(ee"i),cB) (1) ',:::L-'_-‘}_

s+x+¢REWRITE 1 BY {EDGESET AUX12); )

1 substitutions were made ,.«..La.-q
"]

124 ((p"(ee" )X GA(c¢GA~{(p"(ee"i))=c)))z(pair(p“(ee"i),c)XRvpair(p"(%

ee")c)B) (1) ]
“ .\‘_'.:‘

sexxsTRY USING TAUT 120 113 f:::.:-'_::-j

125 ¢¢G (1 13 17 78 120) SR

126 ((DENUM({blbc¢(ee"i)Apair{p™(ee"i),b}R})2{SET(c)A(cc(ee i)Apair{p¥
~"(ee”i),c XRNA(-DENUM({bjb<(ee"i)Apair(p"(ee"i),b)cR})2(SET(c)A(ce(%
ee"i)Apair{p™(ee”i),c XB)>e<G (1 13 17 78)

127 Ye.(((DENUM({b]b¢{ee"i)Apair(p"(ee"i),b)R})(SET(c)n(cé(ee i) npa¥
ir(p"(ee"i),c XRA(-DENUM({b]b¢(ee i)Apair(p"(ee"i),b)¢R})2(SET(c)A%
(c¢{ee™)Apair(p™(ee”i),cXB))))2ccG) (1 13 17 78)

128 (ee"SUC(iNcGaYc.(((DENUM{{b]bc(ee"i)Apair{p"(ee”i),b)¢R})>(SET(c%
In(ce(ee”i)Apair(p"(ee”i),c X RMIA(-DENUM([b|b¢(ee™)apair(p“(ee"i),b%
XR}>(SET(c)A(ce(ee i)Apair(p"(ee”i),c)B))o¢€G) (1 13 17 78)
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129 (ee"SUC(iNcG (1 1317 78)
130 (ee"SUC(i))c GADENUM(ee "SUCKi)) (1 13 17 78)
131 ((ee"i)}c GADENUM(ee "i))>{(ee "SUC(i))c GADENUM(ee"SUC())) (1 13 17)

132 Vi(((ee"i)cGADENUM(ee"i))>((ee"SUC(i))cGADENUM(ee"SUC() (1 13 17)

133 Vi.((ee"i)cGADENUMKee")) (1 13 17)

*32x3GOAL Yi(ee"SUC(i)c(ee"i)\singl(p"(ee i)

Goal #10; Vi(ee"SUC(i)lc({ee”i) \ singl(p™(ee®i)))

ss2x3DED 78 118;

134 ((ee"i)cGADENUM(ee"i))2(ee"SUC(i))=IF DENUM({blb¢(ee"i)Apair(p™(e¥%
@"i),bXR}) THEN {blbc(ee"i)Apair(p"(ee”i)b)}R} ELSE {blb¢(ee"i)Apai%
r(p“(ee"),bXB) (1 1317)

»xxx+REWRITE T BY {17}ULOGICTREE;

2 substitutions were made

135 (ee"SUC(i))=IF DENUM({blb({ee"i)Apair(p"(ee"i),b}cR}) THEN {blbe(%
ee"i)Apair(p"(ee”i),b)XXR} ELSE {b|bé(ee™i)Apair(p™(ee”i)b}B} (1 13 17)

sxxes ABEL SUCI ;
sxxx2Y) T i;

136 Vi.(ee"SUC(i))=IF DENUM({blb¢(ee"i)apair(p™(ee”i)b)<R}) THEN {bl%
bc(ee"i)Apair(p™(ee”i),b)R} ELSE {blbc(ee")Apair(p“(ee”i)b)B} (1 13 17)

ssaxaVE AUX11 p“(ee”i) ee"j;

137 SET(p"(ee"i))>Vc.(cel(ee™) \ singl(p“(ee"))u(ct(ee i)A~(cm(p"(ee"))))
ssx2sMONADIC 1:#1 133 AUX3 AUX4 103;

138 SET(p™(ee™)) (1 1317)

23 TAUT 11T:42 173

139 Ye.(cel(ee™) \ singl(p"(ee”)x(cc(ee"ilA~(c=(p (ee"iM) (1 13 17)
se22sTRY USING REWRITE BY {SUCI SUBSET T}JUARGIFTREE;

Goal #10#1;: Vi c.{((DENUM({b|b¢(ee"i)Apair(p"(ee"i),b)(R})D(SET(cIN¥

cc(ee")Apair(p"(ee”i)c X RMA(-DENUM({blb(ee"i)Apair(p"(ee"i)b)R%
DASET(c)IN(ct(ee IApair(p™(ee"i)c kBN (celee iN(c=(p"(ea"i)))

133
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sx2x2TRY USING V};

Goal »10w1sl: ((DENUM({bjbc{ee")npair(p“(ee”i),b)R}>(SET(c)n(cc(e%
e"Apair(p®(ee"i),c XRNA(-DENUM({blb¢(ee"i)apair(p"(ee"i),b)(R})>(%
SET(c)A(cc(ee”i)npair{p“(ee”i),c XB))))=(ce(ee"i)A~{c=(p"(ee"i))))
ssxx:TRY USING TAUTEQ 124;

140 ((DENUM({blbt{ee"i)Apair(p"(ee”i),b)R}N(SET{(c)A(c¢(ee"i)Apair(p%
"(ee"i),e KRINA(-DENUM({b]b((ee"i)Apair(p™(ee"i),b)R})>(SET(c)A{cc(¥%
ee”i)Apair(p"(ee”i),cXB))))o(cc(ee”i)A-(c=(p (ee")))) (1)

141 Vi ¢.(((DENUM({blbt(ee"i)Apair(p™(ee"i),b XR}(SET(¢c)A(cc(ee™i)A%
pair(p"(ee”i),c X RINA(-DENUM({b]bc({ee"i)Apair(p"(ee"i),b)(R})>(SET(c¥
IN(cc(ee”i)apair(p (ee”i)c XB))))a(cc(ee”i)n~(c=(p"(ee")))) (1)

142 Yi(ee"SUC(iNc((ee"i) \ singl{p"(ee"i)))=Yi c.(((DENUM({b]bC(ee"%
i)Apair(p“(ee”i),b} RDHSET(c)A(ce(ee"i)Apair(p"(ee"i),c )X R))A(-DEN%
UM({b]b<(ee"i)Apair(p"(ee”i)b)<R})(SET(c)A(c¢(ee i)apair(p (ee"i)cX
)eBN)=(ce(ee"In~(c=(p(ee”i))))) (1 13 17)

143 Yi{ee"SUC())c((ee”i) \ singl{p“(ee"i))) (1 13 17)

wxsx£GOAL V| i.(j LT ioee"icee”"SUC(j))

Goal #11: Vji(j LT i=(ee"i)c(ee"SUC(j)))

=x2x2TRY USING VI j;

Goal #1lwl: Vi(j LT in{ee"i)c(ee"SUC(j))

sxx23TRY USING INDUCTION;

Goal sllslsl: j LT A2(ee™)c(ee"SUC())

Goal w11ele2: Yi((j LT io{ee"i)c{ee"SUC(j)))a(j LT SUC(i)>{ee"SUC(i¥%
Ne(ee"SUC())

s+3¢TRY | USING REWRITE BY {LESSA};

144 j LT A>{ee™\)c(ee"SUC(j))

sx2x2TRY USING REWRITE BY {LESS7};

Goal #1lulw2sl: Yi((j LT ia(ee")c(ee"SUC(N)a((j=ivj LT i)>(ee"SU%
C(inc(ee"sSUC()

=223 TRY USING ELIMINATION;

Goal #llwle2slnl: (j LT in{ee"ilc(ea"SUC(j)a((jmivj LT i)>(ee"SUC(%
i))c(ee"SUC()))

Goal #llsle2elulel: (j=ivj LT i)o{ee"SUC(i))c{ee"SUC())

145 j LT io(ee"i)c(ee"SUC(j)) (145)

134




......................................................................
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Goal #]llslu2alulninl: (ee"SUC(i))c(ee"SUC(j)
146 jmivj LT i (146)

Goal #llulu2alulaelulal: j=id{ee"SUC(i)c(ee"SUC)))
Goal sllslu2elululnle2: jLT in(ee"SUCi)c(ee"SUC)))
Goal sllslu2ulalulislalal: (ee"SUC())c(ee”SUC())
Goal #linlu2slnlslelu2el: (ee"SUC(i))c(ee"SUC())
*+x3+PREPARE;

147 j LY i (147)

RESOLVE j LT in{ee"i)c{ea"SUC(j)) , j LT i »= (ee"i}c(ee"SUC()
148 (ee"i)c(ee"SUC(j)) (145 147)

*x323YE 143 i;

149 (ee"SUC(i))c((ee™) \ singl(p“(ee"i))) (1 13 17)
sexxxVE AUX29 ee"i singl(p™(ee”i));

150 ((ee"i) \ singl(p"(ee"i)))c(ee™i)

sxexsVE AUX23 149:01 149:42 150:42;

151 ((ee"SUC(i))c({ee"i) \ singl{p"(ee"i))n((ee") \ singl(p“(ee"i))%
Ye(ee"i))>{ee"SUC(i))c(ee"i)

sxxs3VE AUX23 T:#24] T:4242 148:42;

152 {(ee"SUC(i))c(ee i)A(ee "i)c(ee"SUC(j))>{ee"SUCi))c(ee "SUC()))
2222 TRY USING TAUT 148;

153 (ee"SUC(iNc(ee"SUC(j)) (1 13 17 145 147)

154 j LT io{ee"SUC(i))c(ee"SUC() (1 13 17 145)

sxxesTRY USING REWRITE BY {SUBSET});

155 j=i (15%5)

156 (ee"SUC(i))c(ee"SUC(j)) (155)

157 j=io(ee"SUC(i))c(ee"SUC())

158 (ee"SUC(i))c(ee"SUC(j) (1 13 17 145 146)

159 (j=ivj LT i)>(ee"SUC(i))c(ee"SUC(j)) (1 13 17 145)

160 (j LT ix{ee"i)c(ee"SUC()o((j=ivj LT i)>{ee"SUC(i))c{ee™SUC(j)) (1 13 17)
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161 Vi((j LT in(ee"i)c(ee"SUC(M((j=ivj LT i}>(ee"SUCKic(ee"SUC(I) (1 13 17) . o

162 ViA(j LT io(ee"i)c(ee"SUC(j))a(j LT SUC(i)>{ee"SUC(i))c(ee"SUC(jN)%
sYid(j LT in(ee"i)c(ee"SUC(N=((j=ivj LT i)>(ee"SUC(i))c(ee"SUC(j))

163 Vi((j LT in(ee"i)c(ee"SUC(Ma(j LT SUC(i)o(ee"SUC(iNc(ea "SUCHM) (1 13 17)
164 Vigj LT in(ee"i)c(ee"SUC(i) (1 13 17)

165 Vj ij LT in{ee"i)c(eesUC(i) (1 13 17) «;i:f_i'-;’-_f_i.;__
*x+xxsGOAL FNC(CONV(48:81 )ADOM(48:#1)=0meganRNG(48:41)cG; e

Goal #12: FNC(CONV({b|3k.b=0pair{k,p"(ee"k))}NADOM({b]3k.b=opair(k% S
,p"(ee"k)})=omegaARNG({bj3k.b=0pair(k,p"(ee"k}}})cG) i

sxxx2VE DOM 48:8};

166 FNC({b|3k.b=opair(k,p"(ee"k))})>DOM({b|Ik.b=0pair(k,p"(ee"k)})={%
c)3a.opair{c,a){b|3k.b=0pair(k,p"(ee"k))}}

=x+£sYE RNG 48:#1;

167 FNC({b|3k.b=opair(k,p"(ee"k)})>RNG({b|3k.b=0pair(k,p"(ee"k))})={%
¢|3a.opair(a,c)¢(b]3k.b=opair(k,p"(ee"k))}}

sxxexVYE CONV 48:¢];

168 REL({b]3k.b=opair(k,p"(ee"k})})>CONV({b|3k.b=0pair(k,p"(ee k) })=%
{¢|3a b.(c=opair{a,b)ropair(b,a){b|3k.b=opair{k,p"(ee"k))})}

=x2x:REWRITE 48 BY {FNC};
1 substitutions were made

169 REL({b]3k.b=opair(k,p"(ee"k))})AVDb ¢ d.{(opair(b,c)¢{b|3k.b=0pair¥
(k,p"(ee"k))}ropair(b,d){b|3k.b=opair{k,p"(ee"k)}})oc=d)

sxxxxTAUT T111:02 1111 48;
170 DOM({b|3k.b=opair(k,p"(ee"k))}}={c[Ja.0pair(c,a)¢[b|Ik.b=0pair(k,p"(ee"k))}}
exexsTAUT T117:602 1117 48;

171 RNG({b]3k.b=opair(k,p"(ee"k))})={c|3a.0pair(a,c)¢ {b|3k.bmopair(k,p"(e6"k))}}
sseasTAUT 11112 TTT1,111,

172 CONV({b|3k.b=0pair(k,p"(ee"k))})={c|3a b.(c=opair(ab)ropair(b,a)% e
¢{b|3k.b=0pair(k,p"(ee"k))})}

*x222REWRITE c=omega 8Y {KEXT});

.....................

............
..............
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1 substitutions were made

173 c=omegas¥cl.(cl<caclcomega)

ssxx3¥l T ¢;

174 Ye{c=omegasVel.(clécecicomega))

sxx22TRY USING REWRITE BY {FNC REL SUBSET AUX5 AUX27 omega T,111,1111,11117);

Goal #12#]1: (Yd.((SET(d)A3a b.(d=opair{a,bIM(SET(DIASET(a))AIk.(b=k¥
Aa=({p"(ee"k))))))>3b c.d=opair(b,c))AVbl ¢ d{(((SET(b1IASET(c))A3a b¥%
{(bl=anc=b)A((SET(D)ASET(a))AIk.(b=kAa=(p"(ee"kNMA(SET(b 1)ASET(X
d))A3a b.((bl=and=b)A{(SET(DIASET(a))A3k.(b=kna=(p"(ee"k)))))))>c=d))¥%
AVl ((SET(c1)A3a.((SET(c 1)ASET(a))AIK.(c 1 =kAa=(p"(ee"k)))))=(SET(c1)%
ANATNUM(c I MAYC.((SET(c)ATa.((SET(a)ASET(c))IA3k.(a=kAc=(p"(ee"k))))=c€G))

»xx2xTRY USING ELIMINATION DEPTH 3;

Goal #12ulwl: Vd.((SET(d)A3a b.(d=0pair(a,b)A{(SET(bINSET(a)A3k.(b=%
kna=(p“(ee"k))INM>3b ¢.d=opair(b,c)AVb! ¢ d.({{((SET(b1)ASET(c))AJa ¥
b.{{bl=anc=b)A((SET(b)ASET(a)A3k.(b=kna=(p"(ee"K)IMNAUSET(b1)ASET%
(d))n3a b.((b1=and=b)A((SET(b)ASET(a))ATk.(b=kAa=(p"(ee"k)))})))>¢c=d)
Goal #12«1#2: VYel.((SET(c1)A3a.((SET(c1)ASET(a)A3k.(cl =kAa=(p"(ee k%
IMNE(SET(c HANATNUM(c DAV ((SET(c)nZa.((SET(a)ASET(cIA3Kk.(a=kAcK
=(p"(ee"k))))2c(G)

Goal #12«1ulsl: Yd.((SET(d)A3a b.(d=0pair(a,b)A((SET(b)ASET(2))A3k.(¥X
b=kAa=(p"(ee"k)))))>3b ¢.d=0pair(b,c))

Goal #12u1ul182: Ybl ¢ d.((({SET(b1)ASET(c))A3a b.({bl=anc=b)A{(SET(b%
NSET(a))ATk.(b=kAa=(p"(ee"kKNNINA(SET(b1)ASET(d))A3a b.{(bl=and=b)%
AUSET(bIASET(a)A3Kk.(b=kAa=(p"(ee"k))))))ac=d)

Goal s12slslalal: (SET(d)A3a b.(d=opair{a,b)A((SET(DIASET(a))A3K.(b=¥%
kAa=(p“(ee"k))))>3b c.d=opair(b,c)

Goal #12uinle2ul: (((SET(b1)ASET(c))A3a b.{(bl=ance=b)A((SET(b)ASET(a%
NAIK.(b=kAa=(p"(ee "k MINASET(b 1 IASET(d))A3a b.{(bl=and=b)A((SET(X
b)ASET(a))A3k.(b=kAa=(p“(ee"k)))))))>c=d

Goal #12«1w2#1: Vel.((SET(c1)A3a{{SET(c1)ASET(a))A3Kk.{cl=knan({p"(ee¥
"kINNE(SET(c 1) ANATNUM(c 1))}

Goal #1281#2#2: Yc.((SET(c)A3a.((SET(a)ASET{c))Ak.(a=knc=({p"(ee"k)))))2¢c¢G)
Goal sl2ulu2elsl: (SET(c1)AJa.((SET(cIINSET(a))AIK.(cl=kna=(p"(ea" k)X
MH(SET(c1)ANATNUM(c 1))

Goal #12ul#282ul: (SET(c)A3a.{{SET(a)ASET(c))n3k.(avkAc=(p"(ee"k)))))=>c€G

sx+e:REWRITE 133 BY {SUBSET);

1 substitutions were made

175 Yi{Yc.(cc(ee"i)ac¢GIADENUM(ea")) (1 13 17)
»++2REWRITE 103 BY {SUBSET);

1 substitutions were made

176 (Yedcc(ea")accGIA~{(ee"i)=\))>(p"(ee"i))c(ee"i) (13)




...........
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*xs3:YE AUX3 ee”;

177 DENUM(ee")>~((ee"i)=))

seessVE T17 i;

178 Vc.(ct(ee™i)ac¢G)ADENUM(ee") (1 13 17)

*xx23MONADIC p™(ee”i}G T11;

179 (p"(ee"i))<G (1 13 17)

xxxxa¥| T §;

180 Yi{p™(ee™i)G (1 13 17)

*x22:TRY USING MONADIC T;

181 (SET(c)A3a.((SET(a)ASET(c))A3k.(a=kAc=(p"(ee"k))))2¢¢G (1 13 17)
182 Yc((SET(c)AJa((SET(a)ASET(c)IAIr.(a=kAc=(p"(ee"k)))2c<G) (1 13 17)

xxxxxYE SET p"(ee”i);

183 SET(p"(ee"i))x3b.(p"(ee"i))b

*xx2sMONADIC T:#1 TTT11,T;

184 SET(p"(ee™)) (1 13 17)

sxxxsL ABEL SETPEE;

exxes¥| T j;

185 Vi.SET{(p"(ee™)) (1 13 17)

=252 TRY USING ELIMINATION;

Goal #12«1w2ulsulsnl: (SET(c1)A3a.((SET(c1)ASET(a))A3K.(c1=kAa=(p"(ee™%
KIMND(SET(c 1)ANATNUM(c 1))

Goal #12ul#2u)uln2: (SET(c1)ANATNUM(c1N2(SET(c1)A3a.((SET(c ASET(a%
NA3k.(c1=kna=(p"(ee"k))))

Goal sl2ulu2ulnlsnls]l: SET(c1)ANATNUM(c!)

186 SET(c1)A3a.((SET(c1)ASET(a))A3k.(cl=kna=(p"(ee"k)))) (186)

187 3a{(SET(c1)ASET(a))A3k.{cl=kna=(p"(ee"k)}))) (186)

188 SET(cl) (186)

Goal #12s]#2«)nlulslel: SET(cl)

Goal #12alu2ululelnle2: NATNUM(c!)
Goal #128l92slule2al: SET(c1)A3a((SET(c1)ASET(a))A3K.(c1=kAan=(p"(00"k)))
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189 SET(c1)ANATNUM(c1) (189)

190 NATNUM(c1) (189)

191 SET(cl) (189)

Goal #12«i1a2uleln2alal: SET(c1)

Goal s12ul42elulu2ale2: 3a((SET(c1IASET(a))A3k.(c1=kAa=(p"(ee"k)))
Goal ul2«#)u2alulu2ela2al: (SET(c1)ASET(a))A3k.(cl=kna=(p"(ee"k)))
Goal #12uiu2ululu2elu2alel: SET(c1)ASET(a)

Goal #12«¢1u2slulu2u]la2u8l82: 3k.(cl=kna=(p“(ee"k)))
Goal #12u1u2alslu2a]la2alsalul: SET(cl)

Goal #12u1u2ululn2ule2alela?2: SET(a)

Goal #12ul#2nlnle2nlu2ula2el: cl=kAa=(p"(ee"k))
Goal #12«lu2slnlua2ule2nlualal: cl=k

Goal s12ulu2uleln2uluelu2ulu2: a=(p"(ee"k))
=x+x2TAUTEQ cl=cl;

192 cl=¢l

s2x03EG T clek OCC 2;

193 NATNUM(c1)>3k.c1=k

sxxx3TAUT T:02 T111,1;

194 3k.cl=k (189)

«xxxxTRY 1 USING UNIFY T;

195 3k.cl=k (189)

196 cl=k (196)

sx+22TRY USING EQUNIFY;

197 3a.a=(p"(ee"k))

198 a=(p™(ee"k)) (198)

199 cl=kna=(p"(ee"k)) (196 198)
200 3k.{cl=kna=(p"(ee"k))) (196 198)

#2222 TRY USING MONADIC SETPEEI T11;
201 SET(a) (1 1317 198)
2xxx2SIMPLIFY YVi.NATNUM();
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202 Vi.NATNUM()
sxx35TRY #1208 w2ululnlnle2 USING MONADIC 187 1;
203 NATNUM(c1) (186)

2exx2TRY #]12ulelale]l USING MONADIC;

204 (SET(d)A3a b.{d=0pair(a,bIM{SET(bIASET(a))n3k.(b=kna=(p"(ee"kIN¥

")=3b ¢.d=opair(b,c)

205 Yd.((SET(d)A3a b.(d=0pair(a,b)A((SET(b)ASET(a))A3k.(b=kAa=(p"(ee"%

K)IMN)>3b c.d=opair(b,c))

s+xx2GOAL Vi j.(j LT io-~ee"j=ee"i) ASSUME 165;
Goal #13: Vi j.(j LT io~((ee”j)=(ce"))
=322 TRY USING LOGIC;

The wit of this goal does not rewrite. Sorry.
Goal #13#l: | LT io~{(ee"ji=(ee"i)

The wff of this goal does not rewrite. Sorry.
Goal #13#is]: ~({ee"j)=(ee"i))

206 j LT i (206)

RESOLVE j LT ia{ee"i)c(ee"SUC(j)) , j LT i »= (ee"i)c{ee"SUC()))
207 (ee"i)c(ee"SUC()) (1 13 17 206)

The wff of this goal does not rewrite. Sorry.

We have a failqueue of length: 1

Starting a new 2-th pass on new queue of length: 1
The wif of this goal does not rewrite. Sorry.

We have a failqueue of length: 1

Failure: can't prove anything on failqueue.

The tactic LOGIC can't be applied to goal

Goal #13: Vi j(j LT io~((ee"j)=(ee")))

FACTS: 165 VjifjLT io{ee"i)c(ee"SUC(j)))
Simpsets: ( BY LOGICTREE COMPTREE)
Reasons: (¥I ((j i) j i) NIL)

Number of sons: 1

ssxasVE 143 ;
208 (ee"SUC(j))c((ee”)) \ singl(p"(ee"j))) (1 13 17)
sxaasYE AUX23 T1:8]1 Tis] T:02;

209 ({ee"i)c(ee"SUC()n{ee"SUC(;)=((ee”)) \ singlp"(ee")))))>{ee"i%
Xl(ee”j) \ singl(p"(ee"})))

..............
......
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sxxxsTAUT 1:02 1173

210 (ee™)c((ee”)) \ singlp“(ee”))) (1 13 17 206)

*s2ssMONADIC p"(ee”i) ¢ ee"i 103 133 AUX3;

211 (p"(ee™))(ee"™) (1 13 17)

ssxxsL ABEL PINEE;

sxeeaV] T

212 VYi(p“"(ee"))(ee™) (1 13 17)

sexesVE AUX1L p"(ee”j) ee”j;

213 SET(p"(ee”j))aVe.(cc((ee”]) \ singl{p"(ee")))z(cc(ee”j)n~(c=(p"(ee"I))
+xxx+RESOLVE SETPEEI T;

RESOLVE SET(p"(ee"j))aVe.(ct((ee”)) \ singl(p“(ee"iMalcc{ee"j}n~{c=%
(p"(ee"jM) , Vi.SET(p"(ee"i)) =+~ Vc.(c(({ee")) \ singl(p“(ee"jN)s%
(cc(ee™j)A~(c=(p"(ee”j))))

214 Ye(cc((ee™j) \ singl(p"(ee”j))x{c(ee”))n-(c=(p"(ee”))))) (1 13 17)
s+xexREWRITE 210 BY {SUBSET};

1 substitutions were made

215 Ve.(cc{ee™)acc((ee”)) \ singlp(ee"})))) (1 13 17 206)
*2xxeMONADIC - p"(ee”j) ¢ ee"i 113

216 ~{(p"(ee”j)<(ee”™)) (1 13 17 206)

*xx52TRY USING REWRITE BY [KEXT PINEE T};

Goal »13slslisl: -~Vc(ct(ee"))zc{ee™))

x222TRY USING MONADIC PINEE T;

217 ~Yelcc(ee™j)xcc(ee™)) (1 13 17 206)

218 ~({ee"j)=(ee"i))n-Yc.(ci(ee"))scc{ee™)

219 ~((ee”j)=(ece™)) (1 13 17 206)

220 j LT io~{(ee”j)=(ee"i)) (1 13 17)

221 Vi j{j LT io~((ee”j)=(ee™))) (1 13 17)
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*x+x*MONADIC Vi j.(~i=jo~ee"i=ee"j) LESS2 T;
222 Vi j(~li=j)>~((ee"i)=(ee"}))) (1 13 17)
*xxxsMONADIC -p"(ee"j)=p"(ee"i) PINEE 216;

223 ~((p"(ee"N=(p"(ee"i))) (1 13 17 206)
*xxxxDED 206 T;

224 j LT is~{(p"(ee"N)=(p"(ee"))) (1 1317)
xxeex¥| T ) s

225 Yj i(j LT i=~((p"(ee"jN=(p"(ee"))) (1 13 17)
xxxxxVE T j;

226 i LT jo-((p"(ee"i))=(p"(ee"j)) (1 13 17)
++xx+MONADIC T:42#12i=j LESS2 T11,T;

227 (p"(ee"))=(p"(ee"jN)ai=j (1 13 17)

xxxx ABEL INJPEE;

sxxxx¥| T j;

228 Vi j{(p"(ee"i))=(p"(ee"))2i=j) (1 13 17)
s¥xxx| ABEL INJEE 222;

*xx:xTRY #]12a]#]424] USING ol;

Goal #12#]u]lu2slsl: c=d |
+x+xxPREPARE;

229 ((SET(b1)ASET(c))A3a b.((bl=anc=b)A(SET(b)ASET(a))A3k(b=kna=(p"%
(ee"K)MANSET(b1)ASET(d))A3a b.((bl=and=b)A((SET(b)ASET(a))A3k.(b%
=kAa=(p"(ee"k))))) (229)

230 3a b.{(bl=and=b)A((SET(b)ASET(a))A3k.(b=kAa=(p"(ee"kK)))} (229)
231 SET(d) (229)

232 SET(b1) (229)

233 3a b.((bl=aAc=b)A((SET(b)IASET(a))A3k.(b=kAa=(p"(ee"k))))) (229)
234 SET(c) (229)

235 SET(bl) (229)
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=xx¢2ES TTT11T a b;

236 (bl=and=b)A((SET(b)ASET(a))A3k.(b=kAa=(p"(ee"k))}) (236)

sexxeES T11T al ¢l

237 (bl=alAcecl)A{{SET(c1)ASET(alNA3k.(cl=knal=(p"“(ee"k)))) (237}
wxxx2TAUT TT:9242 11;

238 3k(b=kna=(p"(ee"k))) (236)

=xxexTAUT T1:8202 11;

239 Jk.(cl=kAal=(p"(ee"k))) (237)

saeexfES 1T 4

240 b=ina=(p"(ee"i)) (240)

sxx33EG 11 j;

241 cl=jnal=(p"(ee”})) (24])

sexxeVE INJPEE i j;

242 (p"(ee"i))=(p"(ee”™j))=i=j (I 13 17)

sxxxxTRY USING TAUTEQ 1,11,11T,7 111111111111,

243 c=d (1 1317 229)

244 (((SET(b1)ASET(c))A3a b.{{bl=anc=b)A{SET(b)ASET(a))AIk.(b=kAa=(p%
"(ee"kNNNAUSET(b1)ASET(d))A3a b.({bl=and=bIA{{SET(bIASET(a))A3K.(%
b=kAa=(p"(ee"k))))))2c=d (1 13 17)

245 Vbl ¢ d({({SET(b1)ASET(cHA3a b.{{bl=anc=bJA{{SET(bIASET(a))A3K.%
(b=kAa=(p"(ee"K)NMAUSET(b1)ASET(d))A3a bl(bl=and=bIA((SET(b)ASETY
(a))A3k.(b=kAa=(p"(ee"k)))))ac=d) (1 13 17)

246 Yd.((SET(d)n3a b.(d=0pair(a,0)A((SET(DIASET(a))A3k.(b=kAa=(p"(ee"%
KINN23b c.d=opair(b,e)aVbl ¢ d{(SET(b1)ASET(c))ATa b.((bl=anc=%
BIA((SET(b)ASET(a))A3k.(b=kAa=(p"(ee"KINMNASET(b1)ASET(d))ATa b.(%
{bl=and=b)A((SET(b)ASET(a))A3k.(b=kAa=(p"(ea"k))))2c=d) (1 13 17)
«xxxxTRY USING LOGIC;

247 Ybl ¢ d{({(SET(b1IASET(c))ATa b.((bl=anc=b)A((SET(bIASET(a))AIn.%
(b=kAa=(p"(ee"k))NAUSET(b1IASET(d))A3a b.{{b1wand=b)A({SET(DIASETY
(adA3k.(b=kAa=(p"(ee "k )N))2¢=d) (1 13 17)

248 Yd.((SET(d)A3a b.{d=opair{a,b)A((SET(b)ASET(a))AK.(b=kram(p"(ee"%

.......................
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KN30 c.d=opair(b,e)) (1 13 17) »'--
249 SET(cl) (189)

250 SET(c1)ASET(a) (1 13 17 189 198)

251 (SET(c1)ASET(a))A3k.(c1=kna=(p"(ee"k))) (1 13 17 189 196 198)
252 3a{(SET(c1)ASET(a))A3k.(c 1 =kna=(p"(ee"k)))} (I 13 17 189)

253 Vbl ¢ d{({(SET(b1)ASET(c)A3a b.{{bl=anc=b)A((SET(b)ASET(a))A3k.%
(b=kna=(p"(ee"kK)NMNAHSET(b1)ASET(d))A3a b.{(bl=and=b)A{(SET(b)ASETY
(aNA3k.(b=kna=(p"(ee"k)N)>c=d) (1 13 17)

254 Vd.((SET(d)AJa b.(d=0pair(3,b)A((SET(DIASET(a))A3k.(b=kna=(p"(ee"%
kK)IMN>23b c.d=opair(be)) (1 13 17)

255 SET(cl) (189)
256 SET{c1)AZa((SET(c1)ASET(a)A3k.{c 1 =kna=(p"(ee"k)))) (1 13 17 189)

257 (SET(c )ANATNUMI(c1)>(SET(c1)A3a.{(SET(c 1)ASET(a))A3k{c 1 =kna=(p"%
(ee"k))))) (113 17)

258 ¥bl ¢ d.((((SET(b1)ASET(c))A3a b.((bl=anc=b)A((SET(b)ASET(a))A3K.%
(b=kna=(p"(ee"k)NMAUSET(b1)ASET(d))A3a b.{(b]1=and=b)A((SET(b)ASETY%
(a))A3k(b=kna=(p"(ee"k))))))>c=d) (Il 13 17)

259 Vd.((SET(d)A3a b.(d=opair{a,b)A((SET(b)ASET(a))ATk.(b=kna=(p"(ee"%
kNMM=23b c.d=opair(b,e)) (1 13 1) -

260 SET(c1) (186) -
261 SET(c1)ANATNUM(c1) (186)
262 (SET(c1)A3a.((SET(c1)ASET(a))ATk.(c L =kAa=(p"(ea")))2(SET(c1)ANATNUM(c 1)) ;

263 (SET(c1)n3a.((SET(c 1 )ASET(a))A3k{c 1 =kAa=(p"(ee"k)))))s(SET(c 1)ANY
ATNUM(c1)) (1 1317)

264 Vcl.((SET(c1)A3a.((SET(c1)ASET(a)A3K.(c 1 =kAa=(p"(ee"k))))=(SET(X
CLIANATNUM(c 1)) (1 13 17)

265 Ve 1.U(SET(c1)A3a{(SET(c1)ASET(a)A3K{c1=kAa=(p"(ee"k)))))=(SET(c1)% -
ANATNUM(c DIDAYC(SET(c)A3a((SET(a)ASET(c))AIK.(amkAc=(p"(ee"k)))oc€G) (1 13 17) -

266 (Yd.((SET(d)A3a b.(d=opair{a,b)A{{SET(bIASET(a))AIk.(be=kra=(p"(ee%
"KINN23b c.d=opair(b,c))AVb] ¢ d.({(((SET(b1)ASET(c)IA3a b.{(bl=anc%
=b)A((SET(b)ASET(a))A3k.(b=kAa=(p"(ee"kKNINAWSET(D1)ASET(d))A3a b.% -
({(bl=and=b)A((SET(b)ASET{a))A3k.(bekna=(p"(ee"k))))))2c=d))A(¥ec 1.((S% {
ET(c1)A3a.((SET(c I)ASET(a))A3K.(c I =kna=(p"(ee"k)))))=(SET(c 1 ANATNUM(Y

¢ INAYC.((SET(c)A3a.((SET(a)ASET(c))nIk.(a=kAc=(p"(ee "k))))2c(B)) (1 13 17)

267 (FNC(CONV({b|3k.b=opair(k,p"(ee"k))})IANDOM({b|3k.b=0pair(k,p"(ee%




Appendix 2: Ramsey's Theorem. 146

"Kk))})=omeg aARNG{{b]Ik.b=opair(k,p"(ee"kN})cG))=({Vd.((SET(d)A3a b.{% X
d=opair(a,bINM(SET(bIASET(a))A3k.(b=kna=(p"(ee"k)}))))>3b c.d=opair(b%

LNAYDL ¢ dA(((SET(b1)ASET(c))A3a b.{(bl=anc=b)A((SET(b)ASET(a))A3k¥%
{b=kna=(p"(ee"KIMNA{SET(b1)ASET(d))A3a b.((bl=and=b)A{(SET(b)ASE¥
T(a))ATk.(b=kna=(p"(ee"k)INMN2c=d))A(Ve 1.((SET(c1)A3a((SET(c 1 )JASET% .
(a)A3k.(c1=kaa=(p"(ee"k)))E(SET(c1)ANATNUM(c 1 AYe.((SET(c)ATa.((% .
SET(a)ASET(c))A3k.(a=kAc=(p"(ee"kIN))2c(G))) !

268 FNC(CONV({b|3k.b=0pair(k,p"(ee"k)) NADOM({b]Ik.b=0pair(k,p"(ea" %
k) })=omeganRNG({b|3k.b=opair(k,p"(ee"k))})cG) (1 13 17)

LOGIC SUCCEEDED!
*xxkkTRY 2lululal USING Al; 9

Goal slslslelul: RNG({b|3k.b=opair(k,p"(ee"k))} | IF DENUM({k|DENUM(%
{blb¢(ee"K)Apair(p"(ee"k),b)R}}}) THEN {k|DENUM({blbt{ee"k)Apair(p"(%
ee"k),b}R})} ELSE {k|-DENUM({blbc(ee"k)npair(p"(ee"k),b)R}))cG

Goal #lslalala2: DENUM(RNG({b|3k.b=opair(k,p"(ee"k))} | IF DENUM({k]%
DENUM({blbc(ee"k)Apair(p"(ee"k),b)(R})}) THEN {k|DENUM({bib¢(ee"k)Apa% -
ir(p"(eek),b)R})} ELSE {k|~DENUM({blbc({ee"K)Apair(p“(ee"k)b)R}}% -
)A(EDGESET(RNG({b|3k.b=opair(k,p"(ee"k))} [ IF DENUM({K|DENUM({blb<(e% N
e"k)Apair(p”(ee"k),bXR})}) THEN {k|DENUM({b|bc({ee"k)Apair{p"(ee"k),b%

XR}} ELSE {k|-DENUM({blbt{ec"k)Apair(p"(ee"k),b}R})}))cBVEDGESET(R%

NG({b)3k.b=0pair(k,p"(ee"k))} | IF DENUM({k|DENUM({blbc{ee"k)Apair(p"%

(ee”k),b)R})}) THEN {k|DENUM({blbc({ee"k)Apair(p“(ee”k)b)R})} ELSE %
{k|~-DENUM({b]b<(ee"k)Apair(p"(ee"k),b)XR}ICR)

*x+x2VE L184 {b[Ik.b=opair(k,p“(ee"k}}} b
* IF DENUM({KIDENUM({blbt{ee"k)Apair(p"(ee"k),bXR}D}) ;
* THEN {kIDENUM({bjoc(ee"k)apair(p"(ee"k),b)¢R})}
* ELSE {k|-DENUM({blb¢{ee"k)npair(p“(ee"k),b)R})} ;
f 269 FNC({b|3k.b=0pair(k,p"(ee"k))})>RNG({bl3k.b=0pair(k,p"(ee"k))} | % .
I IF DENUM({k]DENUM({bjb<(ee"k)Apair{p"(ee"k),b}R})}) THEN {k|DENUM({b% .

[bc(eek)npair(p™(ee"k),b)XR})} ELSE {k|~-DENUM({blb¢(ee"k)npair{p"(ee% N,
"k),b}X R} NeRNG({b|3k.b=opair(k,p"(ee"k))})

sxxexVE AUX23 1:2#221 T:0282 G; '

270 (RNG({b|3k.b=0pair(k,p"(ee"k))} | IF DENUM({{k|DENUM({b]b¢(ee"k)Ap%

air(p™(ee"k),bX RN} THEN {k|DENUM({blbc(ee"k)Apair(p"(ee"k),b)R}}I%
ELSE {k|~-DENUM({blbc{ee"k)npair(p"(ee"k),bXR})}CRNG({b|3k.b=0pair{X R
k,p"(ee"kNNARNG({b|3k.b=0pair(k,p"(ee"k))})cG)oRNG({b|3k.b=0pair(k,%

p"(ee"k))} | IF DENUM({k|DENUM({blb¢(ee"k)Apair(p"(ee"k),0)cR})}) THE%

N {k|DENUM({b|b¢({ee"k)Apair{p"(ee"k),b)¢R})} ELSE {k|-DENUM({b|be(ee"X

k)Apair(p"(ee"k),bXR})})cG

sexaxTRY 1 USING TAUT 48 1115 | ]
271 RNG({b}3k.b=opair(k,p"(ee"k))} | IF DENUM({k|DENUM({b|b¢(ee"k)Apa%
ir({p"(ee"k),b)}R})}) THEN {K|DENUM({b|b((ee"k)Apair(p"(ee"k),b)}R}} ¥
ELSE {k]~DENUM({blb¢{ee"k)rpair(p"(ee"k)},b)R}I}EG (1 13 17)

=333 TRY USING Al;

—'
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Goal sisluinluZel: DENUM(RNG({b{3k.b=opair(k,p"(ee"k))} | IF DENUM({%
kIDENUM({blbc(ee"k)apair(p™(ee k),b)(R})}) THEN {k|DENUM( [blbc(ee"k)A%
pair(p“(ee"k),b)(R}))} ELSE {k|-DENUM({b|b<(ee k)Apair(p™(ee k) b} R}%

m

Goal slululunle2a2: EDGESET(RNG({b|3k.b=0pair(k,p™(ee*k))} | IF DENUMY%
({kIDENUM({blbc(ee"k)Apair(p“(ee"k),b)R}}) THEN {k|DENUM({blb(ee"k%
)Apair(p™(ee”),b)(R})} ELSE {k|~DENUM{blbc(ee k)Apair(p"(ee”k)b)XRY
})}))CBVEDGESET(RNG({blBk.btopair(k,p"(ee"k))} | IF DENUM({k]DENUM(!{b%
[bt(ee”k)npair(p"(ee"k),b )R} THEN {k|DENUM({blbc(ee"k)Apair(p™(ee%
"k),b)XR})} ELSE {k|~-DENUM({b|b<(ee"k)Apair(p"(ee"k),b)}R})}))cR

*xex2YE L95 Tinlwlinl Tinlula2;

272 FNC({b|3k.b=opair(k,p"(ee k) })>(F DENUM({kIDENUM({bjb<(ee"k)Apa%
ir(p“(ee"k),b)(RN}) THEN {k|DENUM({bjb<(ee"k)Apair(p™(ee"k),b)XR})} %
ELSE {k|-DENUM({blbc(ee"k)Apair(p"(ee"k),b)R}) }cDOM({bi3k.b=0pair(k,%
p"(ee"k)})>DOM({b|3k.b=opair(k,p"(ee"k))} | IF DENUM({K|DENUM({b]b<(%
ee"k)Apair(p™(ee”"k),b}R})}) THEN {k|DENUM({bjoc(ee"k)Apair(p*(ee" k)%
b)R})} ELSE {k]-DENUM({b|b<(ee"k)Apair(p"(ee"k),b)(R}) })=IF DENUM({k%
IDENUM({blb<(ee"k)npair(p"(ee"k),b)R})}) THEN {k|DENUM({bjb¢(ee"k)np%
air(p"(ee"k),b)(R})} ELSE {k|~DENUM({b|b((ee"k)Apair(p"(ee"k),b)R])})

skrexTAUT DENUM(TT:8#1uls2) 31;

273 DENUM(IF bENUM({kIDENUM({b|b((ee"k)Apair(p"(ee"K),b)(R})}) THEN {%
kIDENUM({blbc(ee k)npair(p"(ee"k)b)R})} ELSE {k|-DENUM({blo¢(ee"k)n%
pair(p"(ee"k),bXR)})

sxxxaVE AUX3D 30:428] 30:422;

274 UNIVERSAL({k|DENUM({b|b¢(ee"k)Apair(p"(ee"k),b)¢R})}I>(UNIVERSAL(%
{kI-'DENUM({bIb((ee"k)/\pair(p"(ee"k),b)(R})})D({k]DENUM({bIb((ee"K)/\pa%
ir(p"(ee"k),b)R})}c({k [DENUM({b|bC(ee"k)Apair(p™(ee"k),b )R} julk|~D%
ENUM({b]b{ee"k)Apair(p“(ee"k),b)X RIDALKISDENUM({blb{ee"k)Apair(p"%
(ee"k),b)R})}c({kIDENUM({b|bc{ee"k)Apair(p"(ee"k),b) R}JUIk]~DENUM(%
{blbc(ee™k)npair(p“(ee"k)bXRHI))

sxs2xE VAL T,

275 {kIDENUM({bIb((ee"k)/\pair(p"(ee"k),b)(R})}c({kIDENUM({blb((ee“k)/\%
pair(p"“(ee"k),b)}R})}Ju{k|-DENUM({blbc(ee"k)Apair(p"(ee"k),b )} RDDA[KY
|=DENUM({blb({ee"k)Apair(p"(ee"k),b)(R})}c({kIDENUM({b|b¢(ee k)npair(%
p"(ee"k),b)(R})}u{kI~DENUM({blbc{ea"k)Apair{p™(ee"k),bXRN})

*xe0aVE L153 48:8] T11:u];

276 FNC({b|3k.b=0pair.%,p"(ee"k))})2(FNC(CONV({b|3k.b=0pair(k,p"(ee"k%
NI>FNC(CONV({b|3k.b=opair(k,p"(ee"k))} | IF DENUM({k|DENUM({b|be(e%
e"k)Apair(p™(ee"k),b)R})}) THEN {k|DENUM({b|b¢{ee"k)Apair(p“(ee"k),b%
)R]} ELSE {k|-DENUM({blb¢(eek)Apair(p"(ee"k),b)R})}))

ssxexVE L16] 48:8] | 111T:0];

277 FNC({b|3k.b=opair(k,p"(ee"k)}} | IF DENUM({kIDENUM({b|b¢(ee"k)Apa%
ir(p™(ee"k),b)R}}) THEN {k|DENUM({blbc(ee"k)npair(p™(ee"k),b)R})} %
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ELSE {k]-DENUM({bjb<(ee"k)Apair{p"(ee"k),b)(R})})>(FNC(CONV({b]3k.b=0%
pair(k,p"(ee"k))} | IF DENUM({k|DENUM({bjbt(ee"k)Apair(p"(ee"k),b)¢R}%
)}) THEN {k[DENUM({bbc(ee"k)npair(p*(ee"k),b}XR})} ELSE {k|-DENUM({b%
lbc{ee"k)Apair(p"(ee"k),b)(R})}N>CONG(DOM({bIIk.b=0pair(k,p"(ee"k))}%

| IF DENUM({KIDENUM({blb¢(ee"k)Apair(p"(ee"k),b}R]}) THEN {k|DENUM¥
({blbc(ee"k)Apair(p"(ee"k)b)XR})} ELSE {k|-DENUM({blb¢(ee"k)Apair(p™%
(ee"K),b)R}N},RNG({b|3k.b=0pair(k,p"(ee"k))} | IF DENUM({KIDENUM({b%
lb<(ee” k)Apair(p™(ee"k),b)(R})}) THEN {k[DENUM({blb<(ee"k)npair(p"{ee%
"k),b)R})} ELSE {k]-DENUM({blb¢(ee"k)Apair{p"(ee"k),b)¢R}IM

#xxxxVE AUX34 271:¢1al82 271:8];

278 (DENUM(IF DENUM({k[DENUM({blb<(ee"k)Apair(p"(ee”k},b)CR}}}) THEN %
{k|DENUM({bjot{ee"k)Apair(p“(ee"k),b)(R})} ELSE {k|-DENUM({blbt(ee k)%
I Apair(p"(ee"k),b XRDPACONG(IF DENUM({K|DENUM({bJot(ee"k)rpair(p™(ee%
- "k)b)CR})}) THEN {k|DENUM({blb¢(ee"k)Apair(p"(ee"k),b)XR})} ELSE {k|%
~DENUM({b|bc{ee"K)Apair(p"(ee"k),b)}R})},RNG({b|3k.b=0pair(k,p"(ee"k)%
)} | IF DENUM({k|DENUM({blb<(ee"k)rpair(p"(ee"k),b}R})}) THEN {k|DEN%
UM({b]b¢(ee"k)Apair(p"(ee"k),b)R})} ELSE {k}-DENUM({blb¢{ee"k)Apair(%
. p"(ee”k),b)RPINDDENUMRNG({b|3k.b=opair(k,p"(ee"k))} | IF DENUM({%
- k|DENUM({blb¢(ee"r)Apair(p"(ee"k},b)(R})}) THEN {KIDENUM({blbc{ee k)A%
A pair{p"(ee"k),b)<R})} ELSE {k|-DENUM({blb¢(ee"k)Apair(p“(ee”k),b)R})}IN

s+4xsVE L4] 48:w1 27301,

279 FNC({b|3k.b=opair(k,p"(ee"k))})>FNC({b|3k.b=0pair(k,p"(ee"k))} | %

IF DENUM({K|DENUM({blb<(ee"k)Apair(p"(ee"k),b}XR})}) THEN {kIDENUM({bfbe%
(ee™k)pair(p™(ee")b)R})} ELSE {ki-DENUMK{blb¢(ee"k)npair(p™(ee"k)b)RID

#++xxREWRITE 1 BY {48}ULOGICTREE;

2 substitutions were made

: 280 FNC({b|3k.b=0pair(k,p"(ee"k))} [ IF DENUM({k|DENUM({blbt{ee"k)Apa%
P ir(p"(ee"k),bX RN} THEN {kIDENUM({blbc(ee"k)Apair(p“(ee"k),b)R}} %

i ELSE {k|~-DENUM({b|bc(ee"k)Apair(p“(ee"k),b}R})}

a2 TAUT 268:#1 268;

281 FNC(CONV({b]|3k.b=opair(k,p"(ee"k)})) (1 13 17)

sexexTAUT 268:4241 268;

282 DOM({b|3k.b=0pair(k,p"(ee"k))})=omega (1 13 17)
«xx2eREWRITE 276 BY {48 TTJULOGICTREE;
4 substitutions were made
» 283 FNC(CONV({b|3x.b=opair{k,p"(ee"k))} | IF DENUM({k|DENUM({b]b¢{ee™%
. k)Apair(p“(ee"k),b}R})}) THEN {k]DENUM({b|b<(ee"k)Apair(p"(ee"k),b)¢%
R})} ELSE {k|~DENUM({blb<(ee"k)Apair(p“(ee"k)bXRNI (1 13 17)
) ss23sREWRITE 277 BY {280 T}uLOGICTREE;
» )
’ .
‘-.'f»;:.";]
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4 substitutions were made

284 CONG(DOM({b|3k.b=opair(k,p"(ee"k))} | IF DENUM({k|DENUM({blbt(ee"%
k)apair(p™(ee"k),bXR}}) THEN {k|IDENUM(!blbt{ee"k)Apair(p™(ee"k),b)¢%
R})} ELSE {k|~-DENUM({blbc{ee"k)Apair{p"“(ee"k),b)(R})}),RNG({b|3k.b=0p¥%
air(k,p"(ee"k))} | iF DENUM({k|DENUM({b|b<(ee"k)Apair(p"(ee"k),bXR}%

}) THEN {k|DENUM({bbc(ee"k)Apair(p“(ee"k),b}R})} ELSE {k|~DENUM({b]%
b¢(ee"k)Apair(p™(ee"k),bXRH}) (1 13 17)

*x+x2SUBSTR 30 IN 275;

285 {«|DENUM({b|b¢(ee"K)Apair(p“(ee k),b)R})}comegan{k|~-DENUM({blbe(%
ee"K)Apair(p“(ee"k),b)XR})}comega

sxxx3TAUT Tiul 1)

286 {k|DENUM({blb¢{ee"k)Apair(p"(ee"k),bXR}}}comega

*xexxTAUT 11:842 T1;

287 {k]-DENUM({bJb<(ee"k)Apair(p"(ee"k),b}R})}comega

s+++*REWRITE 272:42¢1 BY {282 11,1 }JuLOGICTREEUARGIF TREE;

9 substitutions were made

288 IF DENUM({k [DENUM({blbc(ee"k)Apair(p™(ee”k),b}R})}) THEN {k|DENU%
M({blb<(ee"k)Apair(p"(ee"k)b)R})} ELSE {k|~DENUM({blb((ee"k)Apair(p%
"(ee"k),bXR})}cDOM({b|3k.b=opair(k,p"(ee"k)})}) (1 13 17)

s2x22REWRITE 272 BY {48 1JULOGICTREE;

4 substitutions were made

289 DOM({b|3k.b=0pair(k,p"(ee"k))} | IF DENUM({k|DENUM({blb¢(ee k)npa%
ir(p"(ee"k),b)(R})}) THEN {k|DENUM({blbt{ee"k)Apair(p“(ee"k),b)¢R})} %
ELSE {k|-DENUM({blb<({ee”k)Apair(p"(ee"k),b)CR})})=IF DENUM({K|DENUM({%
blbc(ee"k)Apair(p"(ee"k),b)(R})}) THEN {k|DENUM({blb¢(ee"k)Apair(p“(e%
e"k),bXR})} ELSE {k|-DENUM({blbc(ee"k)Apair(p"(ee k),0}R}} (1 13 17)
*33x:REWRITE 284 BY {1};

1 subslitutions were made

290 CONG(IF DENUM({k|DENUM({b|b¢(ee"k)Apair(p"(ee“k),b)(R})}) THEN {k%
[DENUM({blbC(ee"k)Apair(p"(ee™k),b)(R})} ELSE {k[~DENUM({b]b(ee"k)Ap%
air(p"(ee"k),b}R})},RNG({b|3k.b=0pair(k,p"(ee"k))} | IF DENUMI({k]DEN%
UM({blbc(ee"k)Apair(p“(ee™k),b}<R})}) THEN {k|DENUM({b]b¢(ee"k)Apair(%
p"(ee"k),b)}R})} ELSE {k|-DENUM({b]bc(ee"k)Apair(p“(ee™k),bXR}}) (1 13 17)
*++23REWRITE 278 BY {273 1}uLOGICTREE;

4 substitutions were made
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291 DENUM(RNG({b|3k.b=opair(k,p"(ee"k))} | IF DENUM({{K]DENUM({b]b¢(ee%
“k)Apair{p(ee"k),b)}R})}) THEN {k|DENUM({blb¢(ee"k)Apair(p"(ee"k),b)%
€R))} ELSE {k|~DENUM({bjbt(ee"k)Apair(p"(ee"k)bXRII (1 13 17)
24333QED #lulnlelu2ul;

=x522YE RNG {b[3k.b=opair(k,p"(ee"k))} |

* IF DENUM({K|DENUM({blbc(ee"k)Apair(p"(ee"k),b)}R})})
* THEN {k[DENUM({blbc(ee"k)Apair(p“(ee"k),b)(R})}
* ELSE {k|-DENUM({blb¢{ee"k)Apair(p"(ee"k)},b)}R})} ;

292 FNC({b]|3k.b=0pair{k,p"(ee"k))} | IF DENUM({K|DENUM({blb¢{ee"k)npa%
ir(p“(ee"k),b)R}Y THEN {k|IDENUM({blbc(ee"k)Apair(p"(ee"k)b)eR})} %
ELSE {k|-DENUM({blbt{ee"k)Apair(p"(ee"k)bXRN})>RNG({b|3k.b=0pair{k¥
,p"(ee"k))} | IF DENUM({K|DENUM({b|b<{ee"k)Apair(p"(ee"k),bXR})}) THX
EN {KIDENUM({blb{ee"k)Apair(p"(ee"k)b)R})} ELSE {k|-DENUM({b|bc(ee%
"K)Apair(p"(ee"k),b}XR}})={c|3a.opair{a,c)({b|3k.b=opair(k,p"(ee k)%

)} | IF DENUM({k|DENUM({blb¢{ee"k)npair{p"(ee"k),bXR})}) THEN {k|DEN%
UM({blbc(ee"k)Apair{p"(ee"k),b)R})} ELSE {k|-DENUM({blb¢(ee"k)Apair(X
p"(ee”k),bXR}I}}

sexxxVE L] Tislula] Tiwlsla2;

293 FNC({b|3k.b=0pair(k,p"(ee"k))})oFNC(!{bi3r.b=opair(k,p"(ee"k))} | IF %
DENUM({K|DENUM {blbc(ee"k)Apair{p"(ee"k),b)(R}}}) THEN {k|DENUM({bjbe%
(ee"k)Apair{p“(ee"k),b)R})} ELSE {k|~DENUM({blb¢(ee"k)npair(p“(ee"k),b)R})}
s3x23VE RESTR THiwlaulal TT:ulsle2;

294 FNC({b|3k.b=opair(k,p"(ee"k))})>({b|3k.b=0pair(k,p"(ee"k))} | IF %
DENUM({K|DENUM({blbc(ee"k)Apair{p"{ce"k),b)R}}}) THEN {kIDENUMI{blbe%
(ee"k)Apair{p"(ee"k),b)(R})} ELSE {k|~DENUM({bjb(ee"k)Apair{p"(ee k)%

,b )R D=({bj3k.b=opairk,p"(ee"k)) INCROSS(IF DENUM({k{CENUM({blb¢(e%
e"k)Apair(p"(ee”k),b}R}}) THEN {k|DENUM({blb¢{ee"k)npair(p"“(ee"k),b%
}R})} ELSE {k|~-DENUM({bjoc(ee"k)Apair(p“(ee"k),bI¢R})},V))

++xxsREWRITE 11 BY {48}uLOGICTREE;

2 substitutions were made

295 FNC({b|3k.b=opair(k,p"(ee"k))} | IF DENUM({k|DENUM({blb¢(ee"k)npa%
ir(p"(ee"k),b)(R})}) THEN {k|DENUM({bJbc(ee"k)Apair(p"(ee"k),bXR})} %
ELSE {k]-DENUM({blbc(ee"k)Apair(p"(ee"k),b}R})})

se+esREWRITE 11 BY {48]uLOGICTREE;

2 substitutions were made

296 ({b|3k.b=0pair(k,p"(ee"k))} | IF DENUM({k|DENUM({blb({ee "k)Apair(¥%
p"(ee"k),b)(R}}}) THEN {k|DENUM({bjb<{ee"k)Apair(p"(ee"k),b)(R}})} ELS¥

E {k]-DENUM({blb<(ee"k)apair(p™(ee"k),bXR})})=({b|3k.b=0pair(k,p"(ee%
"k))}NCROSS(IF DENUM({k|DENUM({blbc(ee"k)Apair(p"(ee"k),b)XR})}) THEN%
{RIDENUM({blb¢(ee"k)Apair{p"(ee"k),b)(R})} ELSE {k|-DENUM({blbc(ee"k%
)Apair(p"(ee"k), b} RH},V))

148
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+*xx+xREWRITE 11117 BY {11}JuLOGICTREE;
2 substitutions were made

297 RNG({b|3k.b=opair(k,p"(ee"k))} | IF DENUM({K|DENUM({b]b<(ee"k)Apa%
ir(p"(ee"k),b)R})}) THEN {k|DENUM({b|b¢(ee"k)Apair(p"(ee"k),b)cR})} %
ELSE {k|-DENUM({blbt(ee"k)Apair(p“(ee"k),b)R})})={c|3a.0pair(a,c)c({%
b|3k.b=opair(k,p"(ee"k))} | IF DENUM({k|DENUM({b|b¢(ee"k)Apair(p"(ee"%
k),b)R]}) THEN {k|DENUM({blbc(ee"k)Apair(p"(ee”k),b)}R})} ELSE {k|-%
DENUM({b|b<(ee"k)Apair(p"(ee"k),b)cR})})}

+++x2TRY USING REWRITE BY {1,11};

Goal #l#lelulu2e24]: EDGESET({c|3a.opair(a,c)(({b|3k.b=0pair(k,p"(ee% ‘
"k))}JnCROSS(IF DENUM({k|DENUM({b|b¢(ee"k)apair(p"(ee"k),b)R})}) THEN% ‘
{kIDENUM({blbc(ee"k)Apair(p"(ee"k),b)(R})} ELSE {k|~DENUM({bJb¢(ee k% .
)Apair(p“(ee"k),b)R}},V)}BVEDGESET({c[3a.0pair(a,c)¢({b|3k.b=opa%

ir(k,p"(ee"k))}nCROSS(IF DENUM({k|DENUM({b|b¢(ee"k)Apair(p"(ee"k),b)c%

R}}) THEN {k|DENUM({blb¢(ee"k)Apair(p"(ee"k),b)¢R})} ELSE {k|~-DENUM(%

{b|bt(ee"k)Apair(p"(ee"k),b)R}},V))})cR

+xxxxTRY USING IFCASES DENUM({k|DENUM({b|bcee"kApair(p"(ee"k),b)R}});
Goal #ls#lslula2u2elel: DENUM({KIDENUM({blb¢(ee"k)Apair(p"(ee"k),b)¢R%

})})2(EDGESE T({c|3a.0pair(a,c)c({b|3k b=opair(k,p"(ee"K))}NCROSS(IF D%
ENUM({KIDENUM({b|bc(ee"k)pair(p"(ee"k)o)XR})}) THEN {KIDENUM({blbe(%

ee"k)Apair(p“(ee"k),b)R})} ELSE {k|-DENUM({blb¢(ee"k)Apair(p"(ee"k),% ‘
b)R}},V)}eBVEDGESET({c|3a.0pair(a,c)({b|3k.b=0pair(k,p"(ee"k))}n% |
CROSS(IF DENUM({k|DENUM({bb<(ee"k)Apair(p"(ee"k),b)¢R})}) THEN {k|DE% |

NUM({b|bc(ee"k)Apair(p"(ee"k),b)¢R})} ELSE {k|-DENUM({b|b¢(ee"k)Apair%

(p"(ee"k),bXRNLVI}ER)

Goal #]l#lale]a2s22]u2: ~DENUM({k|DENUM({b|b¢(ee"k)Apair(p"(ee"k),b)e%
RP1>(EDGESET({c|3a.opair(a,c)c({b|3k.b=0pair(k,p"(ee"k))INCROSS(IF %

DENUM({k|DENUM({b|b¢(ee"k)Apair(p“(ee"k),bXR}N}) THEN {k|DENUM({b|be% ]
(ee"k)Apair(p"(ee"k),b)R})} ELSE {k|~DENUM({blbc(ee"k)Apair(p"(ee"k)% 1
0)R}}LVN}eBVEDGESET({c|3a.0pair(a,cX({b|3k.b=0pair(k,p"(ee"k))}%
NCROSS(IF DENUM({k[DENUM({blbc¢(ee"k)Apair(p“(ee"k),b)R})}) THEN {k|D%
ENUM({bb<(ee"k)Apair(p"(ee"k),b)R})} ELSE {k|~DENUM({bjb¢(ee"k)Apai%
r(p"(ee"k),b)RN}VNNER)

Goal #lalelelu2e2elalel: EDGESET({c|3a.0pair(a,c)<({b|Ik.b=0opair{k,p%
"(ee"k))}nNCROSS(IF DENUM({k|DENUM({bjbc(ee"k)Apair(p"(ee"k),b)}R})}) % i
THEN {k|DENUM({b|b¢(ee"k)Apair(p"(ee"k),b)<R})} ELSE {k|-DENUM({b|b&(% §
ee"k)Apair(p“(ee"k),b)}XR}},V))}EBVEDGESET({c|3a.0pair(a,cie({bj3k.b% K
=opair(k,p"(ee"k))}nNCROSS(IF DENUM({k|DENUM({b|b<(ee"k)Apair(p“(ee"k)% £
)R} THEN {kIDENUM({bjbc({ee"k)Apair(p"(ee"k),b)¢<R})} ELSE {k|-DE% ¥
NUM({b|bc(ee"k)Apair(p"(ee"k),b)R}},V)) )R Y
298 DENUM({k|DENUM({b|b¢(ee"k)Apair(p"(ee"k),b)R})}) (298) v

> amm

Goal #lslelela2e2elalelel: EDGESET({c|3a.opair(ac)({b|3k.b=opair(k% #
,p"(ee"k))InCROSS({k|DENUM({b|b<(ee"k)Apair(p"(ee"k),b)R})}, V) }eBvY 4
EDGESET({c|Ja.opair(a,c)({b|3r.b=0pair(k,p"(ee"k))}NCROSS({k|DENUM({% v
bl|b¢(ee"k)Apair(p"(ee"k),b)(R}}, V)R &
Goal #lalslel«e2e2a]a2a]l; EDGESET({c|3a.0pair(a,c)({b|Ik.b=0pair(k,p%
"(ee"k))INCROSS(IF DENUM({k|DENUM({b|b<(ee"k)Apair(p“(ee"k),b}R}}) %
THEN {k|DENUM({blb<(ee"kinpair(p“(ee"k),b)XR})} ELSE {k|~DENUM{b]be(%




................
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ee"k)Apair(p"(ee"k),b}R})}, VN eBVEDGESET({c|Ja.0pair(a,c)({b|3k.b¥
=opair(k,p"(ee"k))JNCROSSUF DENUM({KIDENUM({blo¢(ee"k)Apair(p”(ee k)X
LR} THEN {kIDENUM({blb<(ee"k)Apair(p“(ee”k),bXR})} ELSE {ki~DE%
NUM({blbc{ee"k)Apair(p™(ee”k),bX RN} VINER

299 ~DENUM({k]DENUM({blb¢{ee"k)Apair(p"(ee"k),bXR})}) (299)

300 DENUM {KIDENUM({blo¢(ee"k)Apair(p“(ee”k),b)XR})})=FALSE (299)

Goal slululs]ln2u2slelelal: EDGESET({c|Ja.0pair(a,c)é({b|3k.b=0pair(k%
P (ee"k))INCROSS({k|-DENUM({blbt(ee"K)Apair(p“(ee"k),b}RD}LVN e BY%
VvEDGESET({c|3a.0pair{a,c)({b|3k.b=0pair{k,p"(ee"))}INCROSS({k|-DENUM¥
({b|bc(ee"k)Apair(p"(ee"k),b)R}},V))}IcR

s+2xTRY USING ORI 1;

Goal #lslulule2e2alu2ulselal: EDGESET({c|3a.0pair(a,c)({b|3k.b=opair¥
(k,p"(ee"k))}NCROSS({k|]-DENUM({bjb<(ee"k)Apair(p"(ee"k),b)R})},V)})cB

»+xx2TRY USING REWRITE BY {EDGESET AUX27 AUX25 CROSS V SUBSET AUX5};

Goal nlwlslule2e2elalelelelal: Vel((SET(c1)A3c d1.((SET(c)A3a{((SE%
T(a)ASET(cNAIK(a=kac=(p"(ee"k)INA{(SET(a)ASET(c))A3d e.((a=dAc=e)A%
((NATNUM(d)A-DENUM({blbc(ee"d)npair(p“(ee”d),b XRINASET(e)))INA(SEX
T(A1)A3a.({(SET(a)ASET(d1))A3k.(a=knd 1 =(p"(ee"kK)INA{SET(a)ASET(d1))%
A3d e.((a=dAd]=e)A((NATNUM(dIA-DENUM({b[b<(ee"d)Apair(p“(ee"d),b)eR}¥
ASET(e)IMMA(~{c=d1)ncl=pair{c,d1 NN)=c1¢B)

sex22TRY slnlalele2u2a]lslale]l USING OR! 2;

Goal #lslulslu2s2alalelelul: EDGESET({c|3a.opair(ac)({bj3n.b=0pair¥
(k,p"(ee"k))}INCROSS({k|DENUM({blbc(ee"k)Apair(p"(ee"k),bXRN},VIeR

x+x22TRY USING REWRITE BY {EDGESET AUX27 AUX25 CROSS V SUBSET AUX5};

Goal #lululein2u2ulelelulelsal: Vcl((SET(c1)A3c d1{(SET(c)A3a.(((SE%
T(ASET(cHAIK.(a=knc=(p"(ee"kRNNANSET(a)ASET(c))A3d e.l(amdhc=e)n%
((NATNUM(d)ADENUM({bjb<(ee "d)apair(p"(ee”d),b ) R})ASET(e))INA((SETY
(d1)A3a.(((SET(a)ASET(d 1))AIK.(a=kAd 1 =(p"(ee"kINIA{SET(a)ASET{d1))A%

3d e.((a=dAd] =e)A(NATNUM(d)ADENUM({bjbc{ee"d)Apair(p"(ee"d),bIR)IN%
SET(eNIMNA(~{c=d|)Acl=pair(c,d]))))>¢c1¢R)

=xxxxGOAL Vi j.(i LT joIF DENUM({blb¢ee"inpair(p"(ee"i)b)R})
* THEN pair{p"(ee™i),p™(ee”j)XR
* ELSE pair(p"(ee”i)p"(ee")B );

Goal #14: Vi j.(i LT joIF DENUM({blb<(ee"i)Apair(p“(ee"i),b)}R}) THEN %
pair(p™(ee”i),p"(ee”))XR ELSE pair(p"(ee”i),p"(ee"})))}B)

s3222TRY USING ELIMINATION;

Goal #14«1: i LT joIF DENUM({bjbc{ee"i)Apair(p“(ee"i),b)(R}) THEN pa¥
ir(p"(ee"i),p"(ee"j)XR ELSE pair(p"(ee"i)p"(ce”))KB

Goal #1dslsl: IF DENUM({blbc(ee"i)rpair(p"(ee"i)b)¢R}) THEN pair(p™X
(ee"i),p"(ee”j)R ELSE pair(p"(ee”i)p"(ee”j)B
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*+++xPREPARE;

301ilLTj (301)

**s#+YE 165 i j;

302i LT j=2(ee"j)clee™SUCH) (1 13 17)
xaaaTAUT Tie2 113

303 (ee"j)c(ee"SUC() (1 13 17 301)
»xxxxREWRITE T BY {SUBSET SUCI};

2 substitutions were made

3048 Ve (c{ee"j)ac(F DENUM({blbc{ee )npair(p"(ee"i),b)R}} THEN {bl%
b(ee"i)npair(p”(ee”i),b)XR} ELSE {blbc{ee"i)npair(p“(ee”i),bXB}) (1 13 17 301)

sxx5xVE T p"(ee”j);

305 (p"(ee”jN{ee”})>{p"(ee”)XIF DENUM({blo¢(ee")Apair(p“(ee"i),b¥%
XR}) THEN {b|b({ee"i)npair(p“(ee"i),b)R} ELSE {b|b(ee"i)Apair(p"(e%
e"i)bXB} (11317 301)

sxxxxREWRITE T BY {PINEE}JuCOMPTREEULOGICTREEUARGIF TREEUWFFIFTREE;
6 substitutions were made

306 (DENUM({blbc{ee"i)Apair{p"(ee"i),bXR})>(SET{p"(ee"iNA((p"(ee" )%
((ee"i)npair(p"(ee”i),p"(ee” )N RIMA-DENUM({bbc(ee"i)Apair(p"(ee"i),b)%
€R})2{SET(p"(ee"j)In((p"(ee"j))clee")Apair(p“(ee"i),p"(ee"))¢B))) (1 13 17 301)

sxxxxTRY USING TAUT T;

307 IF DENUM({blbt(ee")npair(p"(ee”"i),bXR}) THEN pair{p"(ee"i),p"(e%
e”j)}R ELSE pair(p"(ee”i)p"(ee"j))B (1 13 17 301)

308 i LT joIF DENUM({b]b¢{ee"i)rpair{p"(ee”i),b)XR}) THEN pair(p"(ee"™%
iLp"(ee"))R ELSE pair(p"(ee"i),p"(ee"j)B (113 17)

309 Vi j(i LT joIF DENUM({blb<(ee”i)npair(p“(ee”i),b)XR}) THEN pair(¥%
p"(ee"i),p"(ee”j)}R ELSE pair(p"(ee”i),p"(ee")B) (1 13 17)

s£35xTRY #lujulula2u22uinlelalnlal USING ELIMINATION;

Goal slslnlnlu2n2uinlalululalal: (SET(c1)A3c dl.((SET(c)AIa.{{(SET(a%
NSET(c A3k (a=kAc=(p"(ee "k )INASET(2)ASET(cNAId e.({a=dAc=e)A((NY
ATNUM(d)ADENUM({b|b¢{ee"d)apair(p“(ee"d)b )X RINASET(e )MA((SET(d1%
IN3a(((SET(AINSET(d 1 NA3K(a=hAd ={p"(ee "R INAM{SET(a)ASET(d1 ))A3d %
e.{(a=dAd | =e)A(INATNUM(d)ADENUM({blb({ee"d)Apair(p™(ee"d),b}¢R}IASET¥
(@)))MA(~(c=d])Acl=pair(c,dl)))))ac iR

Goal slululslale2alalalulalulalel: cl¢R
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+x+xsPREPARE;

310 SET(c1)A3c d1{(SET(c)AJa.(((SET(a)ASET(c))Ak.(a=kAc=(p"(ee"kIN%
IN(SET(a)ASET(c))A3d e.{(a=dAc=e)A((NATNUM(d)ADENUM({bib¢(ee" d)Apair¥
(p"(ee"d),bXRINASET(eMMAUSET(d1)A3a.{((SET(a)ASET(d 1 )A3k.(a=k¥
Ad1=(p"(ee"kINAUSET(2)ASET(d1))A3d e.{(a=dAd]=e)A((NATNUM(d)ADENUM%
({blb<(ee"d)Apair(p™(ee"d),b)R}ASET(eNNA(~(cad 1 )Ac L =pair(c,d 1)) (310)
311 3c d1.{(SET(c)A3a.(((SET(a)ASET(c))nIk(a=knc=(p"(ee "k)INM(SET(X
aASET(c)HAId e.{(a=dAc=e)A((NATNUM(d)ADENUM({blb¢(ee"d)Apair(p"(ee"d%
WX RINASET(eMIMAUSET(d1)A3a.({((SET(a)ASET(d1))AIk.(a=kAd1=(p“(%
ee"kKNNA((SET(a)ASET(d1))A3d e.((a=dAd ] =e)A((NATNUM(d)ADENUM({b]b¢(e%
e"dnpair(p"(ee"d),bXRINASET(e MNA(~(c=d 1 )Ac L =pair{c,di ) (310)

312 SET(cl) (310)

zxxx3ES 11 ¢ di;

313 (SET(c)A3a{(SET(a)ASET(c))AIk.(a=knc=(p"(ee"kINA((SET()ASET(%
eI el(a=dAc=e)A((NATNUM(dIADENUM({b[bc{ee”d)npair(p"(ee”d),b)¢R}%
NASET(e MMAUSET{d1)ATa(SET(a)ASET(d 1 NATk(a=hnd L =(p"(ee k)%
IA(SET(a)ASET(d1))A3d e.{{a=dAd] =e)A((NATNUM(d)ADENUM({blb<(ea"d)Apa¥
ir(p"(ee"d),bXRIASET{e)IMA(~(c=d1)acl=pair(c,d1))) (313)

#3353 ADDFACTS slulsalalaZu2alalalalslalale] ASSUME T}

Goal #lulalulu2u2ululalalulalalal: cleR

sx+xxPREPARE;

314 ¢l=pair{c,dl) (313)

315 ~(c=dl) (313)

316 3a.(((SET(a)ASET(d1)A3K.(a=knd 1 =(p"(ee"kNA(SET(a)ASET(d1)A3d e.%
((a=dAd 1 =e)A((NATNUM(d)ADENUM({b]bc(ee"d)Apair(p"(ee"d),b)CR}IASET(e)))) (313)

317 SET(d1) (313)

318 Ja.l((SET(a)ASET(cHA3K.(a=kAc=(p"(ee "k INAI(SET(a)ASET(c)Ad e.%
((a=dAc=e)A{(INATNUM(d)ADENUM({b|bc{ee"d)Apair(p"(ee"d),b)XR}IASET(e))))) (313)

319 SET(c) (313)
320 c=d1sFALSE (313)
sxx23ES 316 a;

321 ((SET(a)ASET(d1))A3k(a=kndl=(p"(ee"KINANSET(a)ASET(d1)A3d e.%
((a=dAd1=e)A((NATNUM(d)ADENUM({b|o¢(ee"d)rpair(p(es”d),bXRINASET(e)))) (321)

sssxsES 318 al;

322 ((SET(al)ASET(c)A3K.(al=kAc=(p"(ee "k)A(SET(al)ASET(c))A3d e.%
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((al=dAc=e)A((NATNUM(d)ADENUMI( {bjbc(ee"d)Apair(p"(ee"d),b)RINASET(e)))) (322)
*x553ADOFACTS wisininlu2u2alalalslainlinlal ASSUME T,1%;

Goal slulsluln2u2ulnlslalnlulalsl: clR

*s+sx3:PREPARE;

323 3d e.((a) =dAc=e)A{(NATNUM(d)ADENUM({bjb¢{ee"d)npair(p“(ee”"d),bXR}NIASET(e))) (322)
324 SET(c) (313)

325 SET(al) (310)

326 3k.(al=knc=(p (ee”k))) (310)

327 SET(c) (310)

328 SET(al) (310)

329 3d e.((a=dAd ] =e)A((NATNUM(d)ADENUM({b|b<(ee"d)npair(p"(ee"d),b)¢R})IASET(e))) (321)
330 SET(d1) (313)

331 SET(a) (310)

332 3k.(a=knd1=(p"(ee"k))) (310)

333 SET(d1) (310)

334 SET(a) (310)

s+x32ES 323 d ¢;

335 (al=dAc=e)A((NATNUM()ADENUM({bjb<(ee"d)Apair(p"(ee"d),b}¢R})ASET(e)) (335)
sxxx:ES 326 k;

336 al=knc=(p"(ee"k)) (336)

wxxxsES 329 d2 e2;

337 (a=d2Aa i =6 Z)AM((NATNUM(d2)ADENUM({blb¢(ee"d2)Apair(p"(ee"d2),bXR}NIASET(e2)) (337)
s*xx22ES 332 j;

338 a=jAdl=(p"(ee"j)} (338)
s+2x2TAUTEQ c=p"(ee™k) 335;
339 c=(p"(ee"k)) (310 313 322 336)

s TAUTEQ di=p”(ee”j} 335;;
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340 d1=(p"(ee"j)) (310 313 321 338) -
«xs23TAUTEQ d2=; 335;

341 d2=j (310 313 321 337 338)

*oexxTAUTEQ d=k 335;

342 d=k (310 313 322 335 336)

wxxxxTRY USING REWRITE BY {314 1117,711};

Goal silslelnlu2e2ululalalulelalalal: pair(p"(ee"k),p"(ee”))ER :
*2x2xASSUME k=j; N
343 k=) (343)
=xxxxREWRITE 339 BY {1};
1 substitutions were made
344 c=(p"(ee”j)) (310 313 322 336 343) v
+xx2sTAUTEQ FALSE 315 340 1;

345 FALSE (310 313 321 322 336 338 343) -
*sxx3+| T 343; .
346 ~(k=j) (310 313 321 322 336 338)
+++xxREWRITE 335 BY {342};

4 substitutions were made

347 (al=knc=e)M(NATNUM(K)ADENUM({blb¢(ee"k)Apair(p"(ee"k),b)¢R}))ASE% .
T(e)) (310 313 322 335 336)

*+xxxREWRITE 337 BY {341}
4 substitutions were made

348 (a=jAd1=e2)A((NATNUM()ADENUM({bb¢(ee"j)Apair(p“(ee"j),b)¢R}IASY -
ET(e2)) (310 313 321 337 338) .

s2x02REWRITE 111 BY {LESS2};

1 substitutions were made _
349 k LT jvj LT k (310 313 321 322 336 338) '
ssxxxVE 309 Kk j; .

..........................................................................
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350 k LT joIF DENUM({b|b<(ee"k)Apair(p“(ee"k),b)¢R}) THEN pair(p"“(ee"%
k),p"(ee")XR ELSE pair(p"(ee"k),p"(ee"j))B (1 13 17)

*xxxxVE 309 j k;

351 j LT koIF DENUM({b|b¢(ee"j)apair(p"(ee"j),b)(R}) THEN pair(p"(ee"%
" p"(ee"k))R ELSE pair(p"(ee"j),p"(ee"k))B (1 13 17)

wxexxVE AUX24 p"(ee"k) p"(ee"j)

352 pair(p"(ee"k),p"(ee"}))=pair(p"(ee"j),p"(ee"k))

*x£xxTAUTEQ T:#1(R TTTT1Ty

353 pair(p"(ee"k),p"(ee")))¢R (1 13 17 310 313 321 322 336 338)
*xxxxQED;

354 c1(R=pair(p"(ee"k),p"(ee"j))}R (310 313 321 322 336 338)
355 cl(R (1 13 17 310)

356 (SET(c1)adc d1.{(SET(c)A3a.(((SET(a)ASET(c)HA3k.(a=knc=(p"(ee"k))%
DA((SET(a)ASET(c))A3d e.{(a=dAc=e)A((NATNUM(d)ADENUM({b|b¢(ee"d)Apai%
r(p"(ee"d),b)RINASET(e)INASET(d1)A3a.(((SET(a)ASET(d1))AK.(a=%
kad1=(p"(ee"k))A((SET(a)ASET(d1))A3d e.((a=dAd1=e)A((NATNUM(d)ADENU%
M({b|b<(ee"d)Apair(p"(ee"d),b)RINASET(e)MNA(~(c=d1)Ac L =pair(c,d1%
MN=elR (1 13 17)

357 Vel.((SET(c1)A3e d1.((SET(c)AJa.(((SET(a)ASET(c))A3k.(a=kAc=(p"(e%
e"KINASET(a)ASET(c))A3d e.((a=dAc=e)A((NATNUM(d)ADENUM({b|b¢(ee"d%
)Apair(p"(ee"d),b)X RIASET(e))ANSET(d1)A3a(((SET(a)ASET(d1))A3%
k.{a=kAd1l=(p"(ee"k)NA((SET(a)ASET(d1))A3d e.((a=dAd]=e)A((NATNUM(c)%
ADENUM({b|b¢(ee"d)Apair(p"(ee"d),b)}RIASET(e))NA(~(c=d1)Acl =pair¥%
(c,d1)))=clcR) (1 13 17)

358 EDGESET({c|3a.opair(a,c)¢({b|3k.b=0pair(k,p"(ee"k))}nNCROSS({k|DEN%
UM({b|bt(ee"k)Apair(p"(ee"k),b}R}}V))eReVe 1.((SET(c1)A3c d1.((SE%

T(c)AJa(((SET(a)ASET(c))AIk.(2 =kAc=(p"(ee"k))IA(SET(a)ASET(c))A3d %
e.((a=dAc=e)A((INATNUM(d)ADENUM({b|bc(ee"d)Apair(p"(ee"d),b)RIIASET(%
e)MNA(SET(d1)A3a.(((SET(a)ASET(d1))A3k.(a=kAd L =(p"(ee"k)IA((SET%

(a)ASET(d1))A3d e.((a=dAd]=e)A((NATNUM(d)ADENUM({b|b¢(ee"d)Apair(p"(e%
e"d),bIRINASET{eMMA{~{c=d1)acl=pair(c,d1)))))=c1¢R) ‘

359 EDGESET({c]|3a.opair(a,c)¢({b|3k.b=opair(k,p"(ee"k)) JNCROSS({k|DEN% :
UM({b|bc(ee"k)Apair(p"(ee"k),b)RDLVIIER (1 13 17) {

360 EDGESET({c|3a.opair(a,c)({b|3k.b=opair(k,p"(ee"k))InCROSS({k|DEN%
UM({b|b¢(ee"k)Apair(p"(ee"k),b)<R})}, V) NeBVEDGESET({c|3a.0pair(a,c)¥%
({b|3k.b=0pair(k,p"(ee"k))}NCROSS({k|DENUM({b|b¢(ee"k)Apair(p"(ee"k)%
DOXRDLVIDER (1 13 17)

361 (EDGESET({c|3a.0pair(a,c)({b|3k.b=0pair(k,p"(ee"k))}INCROSS(IF DE%
NUM({k|DENUM({b|b¢(ee"k)Apair(p“(ee"k),b)XR})}) THEN {k|DENUM({blb¢(e%

........................
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e"k)Apair(p"(ee"k),b)R})} ELSE {k|-DENUM({b]o¢(ee"k)Apair(p"(ee"k),b%
XRDLVN)eBVEDGESET({c|3a.0pair(a,c)é({b|3k.b=0pair(k,p"(ee"k))}nNC%
ROSS(IF DENUM({k|DENUM({blb¢(ee"k)Apair(p"(ee"k),b)R})}) THEN {k|DEN%
UM({b|b¢(ee"k)Apair(p"(ee"k),0)XR})} ELSE {k|DENUM({b|bc(ee"k)Apair(%
p“(ee"k),bXXRN}LVNNER)=(EDGESET({c|3a.0pair(a,c)({b|3k.b=opair(k,%
p"(ee"k))INCROSS({kIDENUM({b|b<(ee"k)Apair(p"(ee"k),b)(R})},V))})eBVE%
DGESET({c|3a.opair(a,c)({b|3k.b=0pair(k,p"(ee"k)) INCROSS({k|DENUM({b%
|bc(ee"k)apair(p"(ee"k),b)XR}LVICR) (298)

362 EDGESET({c|3a.opair(a,c)(({bj3k.b=opair(k,p"(ee"k))INCROSS(IF DEN%
UM({k|DENUM({b|b¢(ee"k)Apairip"(ee"k),b)¢R})}) THEN {k|DENUM({b|b¢(ee%
"k)npair(p"(ee"k),b)}R})} ELSE {k|-DENUM({b|b<(ee"k)Apair(p"(ee"k),b)%
C(RP}LV)}eBVEDGESET({c[3a.0pair(a,c)({b]3k.b=cpair(k,p"(ee"k))}nCR%
OSS(IF DENUM({k|DENUM({blb<({ee"k)Apair(p"(ee"k),b)¢R})}) THEN {k|DENU%
M({b|bc(ee"k)Apair(p"(ee"k),b)¢R})} ELSE {k|-DENUM({b|b¢(ee"k)Apair(p%
"(ee"k)bXRDLVINER (1 13 17 298)

363 DENUM({k|DENUM({b|b¢(ee"k)npair{p"(ee"k),b)(R})})=(EDGESET({c|3a.%
! opair(a,c)<({b|3k.b=0opair(k,p"(ee"k))INCROSS(IF DENUM({k|DENUM({blb¢(%
] ee"k)Apair(p"(ee"k),b)¢R})}) THEN {k|DENUM({b|bc(ee"k)Apair(p"(ee"k),%
i b)¢R})} ELSE {k|-DENUM({b|bc{ee"k)Apair(p"(ee"k),b)R}},V))})cBVEDGE%
SET({c|3a.opair(a,c)({b|3k.b=0opair(k,p"(ee"k))}NCROSS(IF DENUM({k|DE%
NUM({b]|bc(ee"k)Apair(p"(ee"k),b)CR})}) THEN {k|DENUM({b|b¢{ee"k)Apair%
. (p"(ee"k),b)R})} ELSE {k|]-DENUM({blbt(ee"k)Apair(p"(ee"k)b)RDLVIPER) (1 13 17)

*xxxxTRY USING ELIMINATION;

§ Goal #lslulslu2u2elealsalslalel: (SET(cl)Ade d1.((SET(c)AJa.(((SET(2%
l ASET(c))A3k.(a=knc=(p"(ee"k))NAUSET(a)ASET(c))A3d e.((a=dnc=e)A((N%
ATNUM(d)A-DENUM({b]b¢(ee"d)apair(p"(ee"d),b ) R}IASET(e)))))A((SET(d%
1)A3a(((SET(a)ASET(d1))A3k.(a=knd 1 =(p"(ee"k)))IA{SET(a)ASET(d1))A3d%
e.((a=dAd 1 =e)A((NATNUM(d)A-DENUM({b|b<(ee"d)Apair{p"(ee"d),b)¢R}))AS%
ET(e))IMA(~(c=d1)Acl=pair(c,d1)))))>cl¢B
Goal #lululaial2elalulelslalelalal: clB

| #++++PREPARE;

364 SET(c1)A3c d1.((SET(c)A3a(((SET(a)ASET(c))A3K.(a=kAc=(p"(ee"k)))%
IM(SET(a)ASET(c))A3d e.((a=dAc=e)A((NATNUM(d)A-DENUM({b|b¢(ee"d)Apai%
r(p"(ee"d),b)XRIMASET(e)ANSET(d1)A3a(((SET(a)ASET(d1))A3K.(a=%
kAdl=(p"(ee"KNINAUSET(a)ASET(d1))A3d e.((a=dAd]1=e)A((NATNUM(d)A-~DENUM%
({blbe(ee"d)Apair(p"(ee"d),b)RINASET(e))NA(~(c=d1)Acl=pair(c,d1)))) (364)

i 365 3¢ d1.((SET(c)A3a.({((SET(a)ASET(c))Ak.(a=kAc=(p"(ee"kKINA(SET(%
5 a)ASET(c))A3d e.((a=dAc=e)A((NATNUM(d)A-DENUM({b|b¢(ee"d)Apair(p"(ee"%
d),bXRIIASET(e)INANSET(d1)ATa.((SET(a)ASET(d 1))A3k.(a=kAd 1 =(p"%
(ee"k)NA(SET(a)ASET(d1))A3d e.((a=dAd1=e)A((NATNUM(d)A-DENUM({b|b€%
(ee"d)Apair(p"(ee"d),b)RINASET(e))A(~(c=d1)Acl=pair(c,d’)))) (364)

| 366 SET(c1) (364)
*xx£xES 11 ¢ dl;

367 (SET(c)A3a{({SET(a)ASET(¢))Ak.(a=kAc=(p"(ee"k)NIAM(SET(a)ASET(%
cHAId e.((a=dAc=e)A((NATNUM(dIA-DENUM({b|bc(ee"d)Apair(p“(ee"d)b)¢R%

¢
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INASET(eIMNAUSET(d1)A3a{{SET(a)ASET(d1))A3K.(a=kAd 1 =(p"(ee k)%
NAUSET(AIASET(d1 )ATd e.({a=dAd]=e)A((NATNUM(d)A-DENUM({b|b<(ee"d)A%
pair(p"(ee"d),b ) RMASET(eMMn{~(c=d1)acl=pair(c,dl})} (367)
*+xx+ADDFACTS #ls#lslula2u2alu2alalalalalsl ASSUME T;

Goal sislulsluu2ulu2alalalelalal: cl<B

*#+++xPREPARE;

368 cle=pair(c,dl) (367)

369 ~(c=dl) (367)

370 3a{((SET(a)ASET(d1)A3k.(a=knad 1 =(p"(ee"kIMA(SET(a)ASET(d1 NA3d e.%
((a=dAd ] =e)A((NATNUM(d)A-DENUM({blbc(ee"d)Apair(p"(ee"d),b XR})IASET(e))))) (367)

371 SET(d1) (367)

372 3a.(((SET(a)ASET(c))AIk.(a=kAc=(p"(ee"kKIMNA(SET(a)ASET(c)A3d e.%
((a=dAc=e)A((NATNUM(dIA-DENUM({blb¢(ee"d)Apair(p"{ee"d),b)ER}IASET(e)))) (367)

373 SET(c) (367)
374 c=d1sFALSE (367)
xxxx4ES TTTTT a;

375 ((SET(a)ASET(dINATk.(a=knd 1 ={p"(ee "k DIM(SET(a)ASET(d1))A3d e.%
((amdAd 1 =e)A((NATNUM(d)A-DENUM({bibc(ee"d)Apair(p"(ee"d),b XR})ASET(e))) (375)

wxxxxES 11717 al;

376 ((SET(al)ASET(c)A3k.(al =knc=(p"(ee"KIMA(SET(al)ASET(c))A3d e.%
((al=dAc=e)A((NATNUM(d)A-DENUM({blbc(ee"d)Apair(p“(ee"d),b XR}DIASET(e)))) (376)

*++xeADDFACTS #lululela2u2ela2alsalalalalel ASSUME TI,T;

Goal #lslaleln2u2alu2s]lulslulalal: clB

**x*xxPREPARE;

377 3d e{(a=dnd]=e)A{(NATNUM(d)A-DENUM({blb<(ee"d)Apair(p"(ee"d),b}RINASET(e))) (375)
378 SET(d1) (367)

379 SET(a) (364)

380 3k.{a=kndle={p"(ee"k))) (364)

381 SET(d1) (364)

382 SET(a) (364)
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h_ 383 3d e.((al=dAc=e)A(INATNUM{dIA-DENUM({b[bc({ee"d)Apair(p“(ee"d),bJ¢R}IASET(e))) (376) ,.'.. .
; 384 SET() (367) e
: 385 SET(al) (364)
386 3k(al=kncx(p(ee"k)) (364) L
L J

387 SET(c) (364)
388 SET(al) (364)
sxxx:ES 377 d e;
389 (a=dnd1=e)A((NATNUM()IA-DENUMK {blbc(ee "d)apair(p"(ee"d),b)RIIASET(e)) (389) e
sx+44ES 383 d2 e2; s

390 (al =d2Ac=e2)A((NATNUM(2)A-DENUM({blb¢{ee"d2)Apair(p"(ee"d2),b)¢R}NASET(e2)%
) (390)

xk+xxes 380 k; / .
391 a=kndl=(p"(ee"™k) (391) L
sxx3xes 386 j;

392 al=jac=(p"(ee"})) (392)
sxsxsnE 11 2;

393 di=(p"(ee"k)) (391)

rxxxxnE 11 2;

394 c=(p“(ee"j)) (392)

=xxx2TRY USING REWRITE BY {T1,T 368}

Goal #lululelu2u2ulelelelelalulalnl: pair(p(ee"j)p"(ee"k))B
exexsTAUTEQ d2=j 111,71111;

. Lo R e S AT
. . T . ¢ e N et
ot . e ! ' DRI
1 . . . i e e v s s

395 d2=j (390 392)
sxexxeTAUTEQ duk 1HTTRITIT1TY; S
396 d=k (389 391) Ry
sxx2xTAUT 389:428142 389;

397 -DENUM({b|b¢(ee"d)npair{p"(ee"d),b)R}) (389)
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sex32TAUT 390:828182 390;

398 ~DENUM({b|b¢(ee"d2)Apair(p“(ee"d2),b)R}) (390)
=xxsREWRITE 11 BY {111}

2 substitutions were made

399 ~DENUM({blo({ee"k)npair(p"(ee k)b XR}) (375 391)
=e20xREWRITE 11 BY {11111}

2 substitutions were made

400 ~DENUM({b|bc(ee"j)apair(p"(ee”j),b)(R}) (376 392)
*xxsxASSUME ke=j;

401 k=j (401)

sx+02REWRITE 391 BY {1}

2 substitutions were made

402 a=jndl=(p"(ee"j)) (391 401)

xxxxTAUTEQ FALSE 369 392 T;

403 FALSE (367 391 392 401)

weaxx-| T 401;

404 ~(k=j) (367 391 392)

x+54REWRITE T BY {LESS2};

1 substitutions were made

405 k LT jvj LT k (367 391 392)

sxexsTAUTEQ 352:42¢B 350:352 399 400 1;

406 pair(p“(ee”j},p"(ee"k}B (1 13 17 367 375 376 391 392)
s+23:QED;

407 cl¢Bspair(p"(ee”j),p"lee™k)B (367 391 392)
408 c1¢B (1 13 17 364)

409 (SET(c1)A3c d1.((SET(c)A3a.(((SET(2)ASET(cHAIK.(a=kAc={p"(ee"k))%
NAUSET(a)ASET(c))A3d e.((a=dAc=e)A(NATNUM(d)A~DENUM({b|bé(ee"d)Apa%
ir(p"“(ee"d),b XX RIIASET(eIMNA(SET(d1)A3a.(((SET(a)ASET(d 1 )A3K.(a%
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=kAd]=(p"(ee"k)NA(SET(a)ASET(d1)A3d e.{(a=dAd] =e)A((NATNUM(d)A-DENUM({b%
Joclee"d)Apair(p™(ee”d),bXRMASET(eMMA(~{c=d1)Acl =pairic,d1)N)>c1€eB (1 13 17)

410 Vel ((SET(c1)A3c d1.((SET(c)A3a{({(SET(a)ASET(c))AIKk.(a=knc=(p"(e%

e "KIMA{SET(a)ASET(¢))AId e.((axdAc=e)A((NATNUM(dIA-DENUM({b(b¢(ee ™%
d)apair(p"(ee"d),bXRINASET(e MINA(SET(d1)A3a.(((SET(a)ASET(d1))AX
Ik.(a~kAd 1 =(p"(ee"KMNAUSET(a)ASET(d1))A3d e{(a=dAd ! =e)A((NATNUM(dY%
)A-DENUM({bb¢(ee"d)Apair(p"(ee"d),b ) RINSET(e)MNA(~{c=d1)Acl =pa%
ir(c,d1)M)acieB) (1 1317)

411 EDGESET({c|3a.0pair(a,cX({b]3k.b=opair(k,p"(ee"k))INCROSS({k|-DE%
NUM({b|bc{ee"k)Apair(p"(ee"k),b} R}, V) })eBsYe 1.USET(c1)Adc d1{(S%
ET(c)AJa(((SET(a)ASET(cHAIk.(a=knc=(p (e "k)INA(SET(a)ASET(c))A3dX
e.{{a=dAc=e)A((NATNUM(d)A-DENUM({blbc(ee"d)Apair(p"(ee"d) b XR}IASE%
T(eNNAUSET(d1)ATa(({SET(a)ASET(d 1 NA3k.(a=knd ] =(p"(ee " k)INA(SY
ET(a)ASET(d1))A3d e{(a=dAd ] =e )AUNATNUM(dIA~DENUM({blb¢(ee"d)Apair(p%
"(ee"d),b}RINASET(eMMNA(~{c=d 1 )Acl=pair(c,d 1 NN)Dc1¢B)

412 EDGESET({c|3a.0pair(a,c)({b|3k.b=0pair(k,p"(ee"k))}NCROSS({k|~DE%
NUM({blb<(ee"k)Apair(p“(ee"k),bXR}D}VI}EB (1 13 17)

413 EDGESET({c|3a.0pair(a,c)({bj3k.b=opair(k,p"(ee"k))}NCROSS({k|-DE%
NUM({b|b<(ee"k)Apair(p"(ee"k),b)R}},V)) )cBVEDGESET({c|3a.0pair(a,c¥
}({b|3k.b=0pair(k,p"(ee"k))INCROS S{{kI-DENUM({blb¢(ee"k)rpair(p"(ee™%
KLOXRDLVINER (1 13 17)

4148 (EDGESET({c|Ja.opair{a,c}{{b|3k.b=opair{k,p"(ee"k)}}NCROSS(F DE%
NUM({k|IDENUM({blb{ee"K)Apair(p"(ee"k),b)(R})}) THEN {k|DENUM({b|b¢{e%
e"k)Apair(p"(ee”k),b)R})} ELSE (k|-DENUM({b|bc(ee"k)Apair(p“(ee"k),b%
YR}V cBVEDGESET({c|3a.0pair(a,cX({b|3k.b=0pair(k,p"(ee"k)}nC%
ROSS(IF DENUM(IKIDENUM({blb(({ee"k)Apair(p"(ee"k),b)(R})}) THEN {k[DEN¥
UM({b]bc(ee"k)Apair{p"(ee"k)bXR})} ELSE {k]-DENUM({blb¢({ee"k)Apair{%
p"{ee"K),bYRNLYNNCR)HEDGESET({c|3a.0pair{a,c)(({bl3k.b=0pair(k%
p"(ee"k))}NCROSS({k[~DENUM({blb<(ee"k)Apair(p“(ee"k),b)(RD},V)I BV
EDGESET({c|3a.opair(a,c)({b]3k.b=opair(k,p"(ee"k))}NCROSS({k|-DENUM(%
{blbc(ee"k)Apair(p"(ee"k),0)R}N}VNNER) (299)

415 EDGESET({c|3a.0pair{a,c){{b|3k.b=0pair(k,p"(ee"k))}nCROSS(IF DEN¥
UM({k|DENUM({b|bc{ee"k)npair(p"(ee"k),b)R})}) THEN {k[DENUM({blb<(ee%
"k)Apair(p"(ee"k),b)R})} ELSE {k|-DENUM({blb¢(ee k)Apair(p"(ee"k),b)%
(RDLVN}eBVEDGESET({c|3a.0pair(a,c)(]b|3k.b=0pair(k,p"(ee"k))}NCRY
OSS(IF DENUM({k|DENUM({blb¢(ee"k)Apair(p"(ee"k),b}R}}})} THEN {k]DENU%
M({b|b{ee"k)Apair(p"(ee"k),b)}R})} ELSE {k|-DENUM({blb¢(ee"k)Apair(p%
"(ee"k),bXRP}VNNER (1 13 17 299)

416 ~DENUM({k|DENUM({blb<(ee"k)Apair(p"(ee"k),b)}R}})>(EDGESET({c[3a%
.opair(a,c)({b|3k.b=0pair(k,p"(ee"k))}ACROSS(IF DENUM{k|DENUM({blbeX
{ee"k)Apair(p"(ee"k),b)RN}) THEN {k|DENUM(blbc(ee"k)Apair(p"(ee"k)¥

bXR}D} ELSE {k|~DENUM({blbc(ee"k)Apair(p”(ee"k),b)(R}}V))})cBVEDG%
ESET({c|3a.0pair(a,c)({bl3k.b=opair(k,p"{ee"k))}NCROSS(IF DENUM({k]D%
ENUM({blbc(ee"k)Apair(p"(ee”k),b)(R}}) THEN {k[DENUM({b|b¢(ee"k)Apair%
(p"(ee”k),oXR})} ELSE {k|-DENUM({blbc(ee k)Apair(p"(ee"k),bXRN}LVI]ER) (1 13 17)

417 EDGESET({c|3a.0pair{a,c){{b|3k.b=opair{k,p"(ee"k))}NCROSS(IF DEN%X
UM({k|DENUM({b]b¢(ee"k)Apair(p"(ee"k),b)R})}) THEN {KIDENUM({b|b¢(ee%
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“kinpair(p“(ee"k)bXR})} ELSE {k|~DENUM({blbt{ee k)Apair{p“(ee"k),0)%
(R} LV eBVEDGESET({c|3a.opair(a,c)({b|3k.b=0pair(k,p"(ee"k))}nCR%
OSS(IF DENUM({K[DENUM({b|bc(ee"k)Apair(p™(ea”k),b)R})}) THEN {k|DENU% g
M({blbt(ee"k)Apair(p"(ee"k),b)}R})} ELSE {k|~DENUM({b|bé(ee" k)Apair(p% -
"(ee"k),bXRDLVINER (1 1317)

418 (EDGESET(RNG! {b|3k.b=opair(k,p"(ee"k))} | IF DENUM({KIDENUM({b]bec%
(ee"k)Apair{p™(ee"k),bXR})}) THEN {k|DENUM{!b]b¢(ee“k)Apair(p"(ee”k)%
JbXR})} ELSE {k|"DENUM({b]bc(ee"k)Apair(p“(ee”k),b)<R})}))cBVEDGESET%
(RNG({b|3k.b=opair(k,p"(ee"k))} | IF DENUM({KIDENUM({blb¢(ee"k)Apair{%
p(ee"k),bXR}}) THEN {k|DENUM({b|b¢{ee"k)Apair(p"(ee"k),b)ER})} ELSY

E {k|-DENUM({blbc(ee"k)Apair(p"(ee"k)b)RIN<RI(EDGESET({c|3a.0pa%
ir(a,c)({b|Ik.b=opair(k,p"(ee k) INCROSS(IF DENUM({k|DENUM({blb¢(ee™%
k)apair(p™(ee”k),bXR})}) THEN {k|DENUM({bjbc{ee"k)Apair{p“(ee"k),b)%
R})} ELSE {k|-DEN/IM({blb<(eek)Apair(p"(ee"k),b)cR})},V))})cBVEDGESETY
({c|3a.0pair(a,c)({biZ. b=opair(k,p"(ee"k))}NCROSS(IF DENUM({k|DENUMY
{{bJb<{ee"k)Apair(p™(ee"k),b}XR})}) THEN {kJDENUM({blb<(ee"k)Apair(p™%
(ee"k),bXR})} ELSE {kINDENUM({blb¢(ee k)apair(p™(ee“k),bXR}},VI}cR)

419 EDGESET(RNG({b|3k.b=opair(k,p"(ee”"k)}} | IF DENUM(KIDENUM({b|be(%
ee"k)Apair(p"(ee"k),b)XR})}) THEN {k|DENUM({blbc(ee"k)Apair(p"(ee™k),%
bXR})} ELSE {k|-DENUM({bibc(ee"k)Apair(p“{ee"k),b)}R})}))cBVEDGESET(%
RNG({b|3k.b=opair(k,p"(ee"k)}} | IF DENUM({k|DENUM({b|b¢(ee"k)Apair(p%
"(ee"Kk),0XR})}) THEN {k|DENUM({blbc(ee"k)Apair(p“(ee"k),b)¢R})} ELSEX
{k|~DENUM({bJbc({ee"k)Apair(p“(ee"k),b)R}NINER (1 13 17)
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420 DENUM(RNG({b|3k.b=opair(k,p"(ee"k)}} | IF DENUM({K|DENUM({blbé(ee%
"k)Apair(p"(ee"k),bXR}}) THEN {K|DENUM({blb{ee"k)Apair({p"(ee"k),b)%
€R})} ELSE {k|-DENUM({blb¢(ee"k)Apair{p“(ee"k),b)¢R}) IIANEDGESET(RNGY
{{b|3k.b=0pair(k,p"(ee"k))} | IF DENUM({k|DENUM({blb¢{ee"k)Apair{p"(e%
e"k),b}R})}) THEN {k|DENUM({blb¢(ee"k)Apair(p“(ee"k),b)R})} ELSE {k%
[-DENUM({b{b<(ee”k)Apair(p"(ee "k),b}R}})}))cBVEDGESET(RNG({b]3k.b=~0pa¥%
ir(k,p"(ee"k))} | IF DENUM({K|DENUM{blb<(ee"k)Apair(p"(ee"k),b)CR}}%

) THEN {k|DENUM({b]b<(ee"k)Apair(p"(ee"k),b)R})} ELSE {k|~DENUM({blb%
«(ee"k)Apair(p"(ee"k),bXRINICR) (1 13 17)

421 RNG({b|3k.b=opair(k,p"(ee"k))} | IF DENUM({K|DENUM({blb¢(ee"k)Apa¥
ir(p"(ee"k),b)}R})}) THEN {k|DENUM({blb¢(ee"k)Apair(p"(ee*k),b)CR})} %
ELSE {k|-DENUM({bjb((ee"k)Apair(p"(ee"k),bXR})}cGADENUMRNG({b|3r.%
b=opair(k,p"(ee"k))} | IF DENUM({k|DENUM({bib¢(ee"k)Apair(p"(ee"k),b)¥
€R})}) THEN {KIDENUM({blb¢(ee"k)Apair(p“(ee”k),b}R})} ELSE {k|~DENUM%
({blb{ee"k)Apair(p"(ee"k),bXR}IAEDGESET(RNG({b|3k.b=0pair(k,p"(%
ee"k))} | IF DENUM({kIDENUM({b|b<(ee"k)Apair(p“(ee"k),bXR})}) THEN {%
k|DENUM({bjbc(eek)Apair(p"(ee"k),b)(R})} ELSE {k|-DENUM({blb¢(ee k)A% -
pair(p"(ee"k),b)}XR})}))cBVEDGESET(RNG({b|3k.b=0pair(k,p"(ee"k))} | IF% |
DENUM({k|DENUM({bjb¢(ee"k)Apair(p“(ee"k)b)}R}N}) THEN {k]DENUM({blb%
<(ee"k)Apair(p"(ee”k),b)}R})} ELSE {k|-DENUM({blb(({ee"k)Apair{p™(ee” k%
JOXRPER) (1 1317)

422 3a.(acGA(DENUM(a)A(EDGESET(a)cBVEDGESET(a)cR))) (1) -

423 (DENUM(G)A(EDGESET(G)=(RUB)A(RNB)=A)}>3a.(ac GADENUM(a)AMEDGESET(%
a)cBVEDGESET(a)ecR)))

424 VG R B.((DENUM(G)A(EDGESET(G)=(RuB)A(RNB)=X))23a.(ac GA(DENUM(a)A(%

IR N

v
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EDGESET(a)cBVEDGESET(a)cR))

8.5, Statistics of the proof.

For the proof shown in the last section, the user typed 309 commands. Of these, 199 were
forward FOL commands. 110 were GOAL commands properly, Including 14 commands for goal
creation, 6 for addition of facts, and 72 calls to TRY. '

The complete statistics are shown next.

Goal commands:

GOAL 14
ADDFACTS 6
QED 6
PREPARE 14
TRY 72
TOTAL 110

Detail of TRY:

i
ol

Al

REWRITE
MONADIC

3
ELIMINATION
LOGIC

TAUT
TAUTEQ
IMPLICATION
INDUCTION
UNIFY
EQUNIFY
IFCASES

vl

-

N

3
2
3
2
9
3
1
3
4
3
2
2
1
1
]
2
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Summary of FOL commands:

LABEL 21
REWRITE 35
MONADIC 10
RESOLVE 4
VE 46
Yi 8
JE 23
3 1
TAUT 20
TAUTEQ 12
SIMPLIFY 2
EVAL 5
AE 3
SUBSTR 3
DED 2
ASSUME 2
- 2
TOTAL 199

8.6. Conclusion,

Summing up the statistics just shown with the 44 commands used in the proof of the
auxiliary lemmas, we can conclude that the old proof required roughly twice as many user
commands as this one.

This is not as great a gain as we had hoped for, in terms of just the number of commands.
However, there are other gains: the proof of Ramsey's theorem is very complex, and the
ability to work on several goal trees seams to make It much easier to construct the proof. At
least this is true in my own experience.

Ramsey's doaes not seem to be the Kind of theoram where the reduction in the number of
commands Is largest. In the auxiliary theorems proved earlier, the raduction was by a factor of
four. Those theorems are of medium size: their FOL proofs were between 10 and 50 lines
each. It probably is for small and medium size theorems where the greatest reduction in the
number of user commands can be achieved by GOAL. At the same time, It Is probably for the
more complex theorems like Ramsey's that the advantage of GOAL as an ald for structured,
top down proof construction Is more likely to be felt.
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