

Stanford Artificial Intelligence Laboratory June 1979
Memo AIM-38

Computer Science Department

Accession,

Report No. STAN-CS-79-743 AjesInFor

* Tie

DTIC TAB
fly Cpy, Unlannounced

tnoJustificat o

GOAL:Ditiuon
A GOAL ORIENTED COMMAND LANGUAGE Availability Codes
FOR INTERACTIVE PROOF CONSTRUCTION Avall anid/or

ost Spe r-$
by/

/ Juan Bautista Bulnes-Rozas

ABSTRACT

-. 'This thesis represents a contribution to the development of practical computer
* systems for Interactive construction of formal proofs. Beginning with a summary of current

research In automatic theorem proving, goai oriented systems, proof checking, and
program verification, this work aims at bridging the gap between proof checking and
theorem proving.

Specificaliy, It describes a system GOAL for the First Order Logic proof checker FOL.
* GOAL helps the user of FOL In the creation of long proofs In three ways: 1) as a facility

for structured, top down proof construction. 2) as a semi-automatic theorem prover; and
3) as an extensible environment for the programming of theorem proving heuristics.

In GOAL, the user defines top level goas These are then recursively decomposed
* Into subgoals. The main part of a goal Is a well formed formula that one desires to prove,

but they Include assertions, simplification sets, and other Information. Goals can be tried
* by three different types of elements: mat chers, tactics, and strategie.

The matchers attempt to prove a goal directly -that Is without reducing It Into
subgoals- by calling decision procedures of FOL. Successful appication of a matcher
causes the proved goal to be added to the FOL proof.

A tactic reduces a goal Into one or more subgoals. Each tactic Is the Inverse of some
Inference rule of FOL; the goal structure records all the necessary information so that the

* appropriate Inference rule Is called when all the subgoais of a goal are proved. In this
way the goal tree unwinds automatically, producing a sOL proof of the top level goal from
the proofs or its ieaves.

Specf l L. '

GOL els heusrofFO I te retonoflog rof . In. .the.as) .. .faiiy..-'.'.
.. .. .or* stutrd to.onpof ntuto;)a. eiatmtctere rvr n-

3) , an.xteslb. eniromentforthe rogammig o th~rempvn heuristis. .:. 2.-

The strategies are programmed sequences of applications of tactics and matchers. ("" "

They do not Interface with FOL directly. Instead, they simulate a virtual user of FOL. 7
They can call the tactics, matchers, other strategies, or themselves recursively. The
success of this approach to theorem proving success is documented by one heuristic S-
strategy that has proved a number of theorems in Zermelo-Frasenkel Axiomatic Set Theory.
Analysis of this strategy leads to a discussion of some trade offs related to the use of
ssertions and aimplilficaton sets In goal oriented theorem proving.

The user can add new tactics, matchers, and strategies to GOAL. These additions
cause the language to be extended In a uniform way. The description of new strategies -
is done easily, at a fairly high level, and no faulty deduction is possible. Perhaps the main ;.%'.. %
contribution of GOAL is a high level environment for easy programming of new theorem !j.
proving applications In the First Order Predicate Calculus.

The thesis ends with two appendixes presenting complete proofs of Ramsey's
theorem in axiomatic Set Theory and of the correctness of the Takeuchi function.

(It Is planned that both FOL and GOAL will be made available over the ARPANET this
year. Inquiries regarding their use should be addressed to Dr. R. Weyhrauch at the
Stanford Artificial Intelligence Laboratory, SU-Al).

This thesis was submitted to the Department of Computer Science and the Committee on
Graduate Studies of Stanford University in Partial fulfillment of the requirements for the degree of
Doctor of Pdlosophy.

This research was supported by the Advanced Research Projects Agency of the Department of .
Defense under ARPA Order No. 2494, Contract MDA903.76-C..0206. The views and conclusions
contained In this document are those of the authors and should not be interpreted as necessarily
representing the official policies, either expressed or implied, of Stanford University, or any agency
of the U. S. Government.

..: ", .

0

* Copyright 1979

by p.

Juan Bautista Bulnes-Rozas

'a,

V 7 - •

.*u•• . • . • - -%
"

" . % % °

.-'.v ".-".'.'-.. -" . .'- v '- .,v :-v ''' . -... .'v '' ,-'-'-v '..,...'-v '' .- '.v '., ,.. ',. ... ,." . ,:." .. .

ACKNOWLEDGEMENTS

I am especially grateful to my adviser, John McCarthy, for his patient reading, advice, and
support while this research was being carried out. I am also deeply Indebted to Richard
Weyhrauch for his guidance.

The form of this thesis has been markedly Influenced by the criticism of Fernando Flores,
Jinnet Fowles, and Bill Scherlis, as well as by the PUB macros kindly provided by Juan Ludlow.

There are many other people who have contributed directly and Indirectly to the
completion of this work. Among them I would like to express my special thanks to Pat Suppes
for carefully reading the thesis, to my former adviser Jerry Feldman, to my teachers Volker
Strassen and Don Knuth, to Les Earnest, to Herschle Allen, and to the staff of the Stanford
Artificial Intelligence Laboratory, to Denny Brown, Carolyn TaJnal, and the staff of the
Computer Science Department; and to the other members of the Formal Reasoning Group, in
particular Andrew Robinson, Bill Glassmire, Bob Filman, Carolyn Talcott, and Chris Goad. All of
these people have gone well beyond their duties In helping create a supportive and
stimulating environment which made this thesis possible.

I would also like to extend my thanks to my colleagues working with AUTOMATH and
EXCHECK for their conversations and hospitality.

This work has been partially supported by ARPA and the National Science Foundation. ..

I wish to dedicate this thesis to my parents, Juan and Sara, and to acknowledge my family
and closest friends. .;..'.

F

-, 4. ..• _

Table of Contents

Section Page 9...

1. Introduction. 1
1.1. The Research Program. 2
1.2. Aims and scope of this thesis. 6
1.3. Overview of the Goal Command Language. 10

2. The FOL system. 11
2.1. Brief description. 11
2.2. The style of proof construction in FOL. 14

3. The structure of GOAL. 16
3.1. Overview. 16 L .
3.2. Goals. 17
3.3. Treatment of assertions (or facts). 18
3.4. The parts of a goal. 19
3.6. Skolemization and the Quantelimlist. 20
3.6. Unwinding. 21
3.7. Defaults: current, next and last goal. 21
3.8. The GOAL commands. 22

3.8.1. Goal creation. 22
3.8.2. Referencing goals. 23
3.8.3. Addition of Facts to a Goal. 24
3.8.4. Trying Goals. 24
3.8.6• QED. 26
3.8.6. Abandoning Goals. 26
3.8.7. User invoked preparation. 26
3.8.8. Displaying goals. 26

3.9. The operative elements of GOAL. 27
3.9.1. Tactics. 28 % .

3.9.1.1. Universal rule: VI. 28
3.9.1.2. Existential rule: 31. 29
3.9.1.3. Conjunction rule: Al. 29
3.9.1.4. Equivalence rule: eI. 30
3.9.1.5. Deduction rule: z1. 30
3.9.1.6. Rule of CASES. 31
3.9.1.7. Syntactic simplification: REWRITE. 32
3.9.1.8. Semantic simplification: SIMPLIFY. 32
3.9.1.9. Special tactics. 33

3.9.1.9.1. Disjunction rule: vl. 33
3.9.1.9.2. Implication rule. 34
3.9.1.9.3. Induction rule. 34

3.9.2. Matchers. 36
3.9.2.1. UNIFY. 36

3.9.2.1.1. EQUNIFY. 36
3.9.2.2. TAUT and TAUTEQ. 38
3.9.2.3. MONADIC. 39

IV-

.. ., o*

p.- .°. ,.

%7-'. W%..-,-.Z

Table of Contents

3.9.3. Strategies. 41
3.9.3.1. LOGIC. 41
3.9.3.2. ELIMINATION. 41
3.9.3.3. IFCASES. 43

4. Extending GOAL. 44
4.1. The three components of the operative elements. 44
4.2. The internal representation of the operative elements. 45
4.3. The control system. 45

4.3.1. FIGURE 1: Structure of TRY. 46
4.4. Types of variables. 47

4.4.1. Threads. 47
4.4.2. The three defaults. 47 Le
4.4.3. Status checking. 48

4.4.3.1. Abandoning. 48
4.6. Rules for programming new operative elements. 48

4.5.1. Parsers. 48
4.5.1.1. The expression returned by parsers. 49
4.5.1.2. Examples of parsers. 49 ,

4.5.1.2.1. Conjunction rule: Al. 50
4.6.1.2.2. Disjunction rule: vi. 50
4.6.1.2.3. The rule of CASES. 51
4.6.1.2.4. The tautology matcher. 52
4.5.1.2.6. The elimination strategy. 62

4.6.2. Executers In general. 52
4.5.2.1. The master routines. 53
4.5.2.2. The expression returned by executers. 54
4.5.2.3. Executers of tactics. 54
4.5.2.4. Executers of matchers. 65.
4.5.2.6. Executers of strategies. 66

4.5.2.5.1. Example: elimination. 56
4.5.2.5.2. Example: LOGIC. 67

4.5.3. Unwinders. 68
4.6. Introducinq a new element to GOAL. 59
4.7. Conclusion. 60

4.7.1. Summary of calls to tactics and matchers. 60

5. Automatic theorem proving In GOAL. 62
6.1. Automatic theorem proving by LOGIC. 62". . "

5.1.1. Summary of the LOGIC heuristics. 64
6.1.2. The PAIR example. 65

5.1.2.1. Statement of the problem. 66
5.1.2.2. The GOAL generated proof. 65

5.1.3. Commentary to the PAIR example. 68
5.1.4. The Initial theorems from Kelly. 69

6.1.4.1. An example from Kelly. 69
5.2. Issues In goal oriented theorem proving. 70

V

S*. -o*.-°.*.. .-.

Table of Contents

5.2.1. Subgoalng and assertions. 71
5.2.2. Working on the assertions. 71

5.2.2.1. RESOLVE. 71
5.2.2.2. Rewriting assertions vs. conditional simplification. 72

6. Some future oriented conclusions. 73
6.1. Ideal FOL and GOAL. 73
6.2. Extensibility and METAFOL. 74 .- " -.

7. Appendix 1: the Takeuchi Function. 75
7.1. Introduction. 75
7.2. A strategy for case analysis. 75
7.3. McCarthy's FOL proof. 77

7.3.1. Declarations. 77 J.

7.3.2. Axioms. 77
7.3.3. The proof. 78

7.4. The proof using GOAL. 82
7.4.1. Comparison of the user input. 82

7.4.1.1. Commands for the forward proof. 83
7.4.1.2. Commands for the goal oriented proof. 84

7.4.2. The complete man-machine dialog. 84
7.4.3. The FOL proof generated by GOAL. 91

8. Appendix 2: Ramsey's Theorem. 99
8.1. Introduction. gg
8.2. Axioms. 99 """

8.2.1. General Axioms. 100
8.2.2. Special axioms. 102 .. ,.
8.2.3. Auxiliary lemmas. 102

8.3. Proofs of some auxiliary theorems. 103
8.3.1. Restriction of a function. 104 6
8.3.2. Domain of the restriction. 106 .'

8.3.3. Restriction of a one-to-one function. 110
8.3.4. Domain and range of an one-to-one function. 114.-
8.3.5. Range of the restriction. 115

8.4. The GOAL proof of Ramsey's theorem. 116
8.5. Statistics of the proof. 163 S
8.6. Conclusion. 184

9. References. 165

10. Index. 171

vi

.

1.. INTRODUCTION.

The research presented In this doctoral thesis is a contribution to the development of
practical systems for Interactive construction of mathematical proofs.

The availability of fully Interactive proof checkers that permit their users to construct
proofs Incrementally, gives rise to an activity which Is best described by the term Interactive
proof construction. This name has not yet found widespread usage In the computer science
literature; Instead, related research has generally been classified Into the following
categories: proof checking, automatic theorem proving, and man-machine systems for these
tasks. This research Is related to but takes a different approach from that of previous
research In those areas.

Proof checkers generally embody a system of logic that Includes both the recognition of
legal expressions In that logic, or well formed formulae (WFFs), and Inference rules by which
new formulae are deduced from axioms and/or previously proved formulae.

In an Interactive proof constructor, the Inference rules are embodied In commands that can
be called by the user In order to Increment a proof; normally, one new step of the proof Is
produced by every successful call to an Inference command. This leads to a bottom up mode
of proof construction, In contrast with the rather goal oriented thinking process of the working
mathematician.

The approach taken In this thesis is to provide users of an Interactive proof constructor
with a language In which goals can be stated and reduced recursively Into sub-goals, so that
the reduction rules correspond to the inference rules of the proof constructor. Thus the goal
commands are the Inverse of the Inference commands, and the System knows how to deduce a
goal from Its sub-goals. This leads to a top down mode of proof construction.

When an Interactive proof constructor Is provided with an equally Inter active goal
oriented command language, both modes of proof construction, the Inference oriented,
bottom up mode and the goa/ oriented, top down one, can be combined to any desired extent
by the user, according to the particular problem and taste.

A novel approach to automatic theorem proving consists In replacing the human user by a-
heuristic for sequencing the recursive application of the goal oriented commands and of some
Inference commands that attempt to prove the sub-goals by using a set of facts or axioms.
Automatic proofs of a number of theorems, Including the first 33 theorems In the Appendix on
Set Theory In [Kelley 1966], have been obtained with one heuristic of this type.

When a goal command language Is designed to allow for easy addition of such theorem
proving routines, It results in a high level programming environment for theorem proving
applications. Users can program their own heuristics to fit different styles of proof and Imbed
them into the system without having to modify its structure. This can be done easily: the
algorithms can be described as programmed sequences of calls to the reduction rules and
Inference commands, and priority queues or any other data structures can be used to control..
the order In which sub-goals are tackled. Thus users can augment the power of the .--.-.

with alanguae in wich gols canbe st....................v.ly.nto..u-go ... so tha . . .
theredctin ule coreson to th. neec ue ftepofcntutr hstega .. "

.

-•
.

-,%°-7-7 -77

re•

Introduction. 2

Interactive proof constructor for specific domains of their interest by having their own
libraries of heuristics that can be added to the system and called using the already existing
high level commands of the language.

The goal oriented command language GOAL for the system FOL, an interactive proof
constructor for the first order predicate calculus, is presented in this thesis. it has been
programmed by the author in LISP, on top of FOL, at the Stanford Artificial intelligence
Laboratory DEC KL-10 computer system. The user can program new inference rules, new
subgoaling commands, and new heuristic strategies as programmed sequences of calls to the
inference rules and subgoaling commands; these are added to the system by calling a GOAL
routine that automatically extends the language, and its syntax, to incorporate the new
commands. lo our knowledge this is the first time that the following wish, expressed by
[Slagle 1976], 1 fulfilled.

"it is an attractive idea to write a program based on mathematical logic, since this is a well-
formulated and well-studied branch of mathematics. In addition, programming a computer is a way
to study mathematical logic. For example.Le proframmer may develop powerful. natural intuitive '
inference rules Lo whigh heu7ris-tics can e added easily."

The Encyclopedia of Computer Science (page 1419, my emphasis).

1.1. The Research Program.

The research presented In this thesis bridges the gap between current research in the
disciplines of automatic theorem proving and proof checking. Indirectly, it also relates to some
research in program verification. Thus it is part of a collective endeavor that has a tradition
of at least 20 years.

Moreover, it is a contribution to a collective effort by the Formal Reasoning group at the
Stanford Artificial Intelligence Laboratory (SAIL), that represents one current of thought within
the other, larger research program. Th!s does not Imply that the views expressed In this
thesis are held by other members of the Formal Reasoning project or by Its sponsors. It does
Imply, however, that this research has been guided by the author's views of this collective
effort.

Nowadays, most researchers in the fields of automatic theorem proving and proof checking
would agree that one of the general long term goals underlying their research is to provide
practical computer systems that can be used as a research tool by working mathematicians.
There are marked differences of opinion as to how this goal Is to be accomplished. The
purpose of this section Is to give a broad overview of the main currents and their
shortcomings, in order to see our contribution in Its relationship to that research tradition.

......................................
. -.."

-@

Introduction. 3

AUTOMATIC THEOREM PROVING. The general goal of research in automatic theorem 6
proving has been to produce programs that can prove mathematical theorems automatically
and to find useful formalisms, decision procedures, and heuristics for this purpose. Some early
researchers thought that machines would eventually surpass humans in their capacity to find
proofs of mathematical theorems. While that assumption has not been disproved, progress has
been generally slow and the realization of that promise does not seem to lie in the near future.

The most successful general purpose algorithm used in automatic theorem proving is the
resolution principle by Robinson [Robinson 1965]. Many, if not the majority, of the successful
theorem proving programs are based on resolution. Resolution is a semi-decison procedure
that is sound and complete for the pure first order predicate calculus [Nilsson 1971,
Luckham 1967, Lee 1967, Slagle 1971]. Thus, while It Is theoretically possible to find -

resolution proofs of any theorem that is provable within that logical calculus, in actual practice •
only rather simple theorems have been proved because the size of the space of possibilities
that must be searched by the computer rapidly explodes beyond the power of present days
computers for more difficult theorems.

The same is true of other general purpose decision procedures. Thus much research effort
is invested into finding heuristic1 rules for pruning the search space. All of the more S
successful theorem proving programs, whether they are resolution based or not, use heuristics
for guiding their search for a proof.

The problem with heuristics is that they tend to be domain specific. Just as
mathematicians develop competency In particular domains of mathematics, it lies in the very
nature of heuristics that they gain power by loosing generality.

Thus the effort to Increase the power of theorem provers by incorporation of heuristic
algorithms, inevitably leads to more specialized, domain specific theorem provers [Pastre
1978, Nevins 1976a, 1975b, Brown 1977a, 1977b, 1978, Bledsoe, Boyer and Henneman
1972, Goldstein 1973, Bundy 1973]. Given the large amount of work required to program a
theorem prover, this is not a desirable state of affairs.

Because of the specialization of theorem provers, they tend to incorporate into their
design the formalisms most suited for the domain for which they are Intended. This forces the
user to express his problems in the formalism understood by the theorem prover and thereby
limits its usefulness.

PROOF CHECKING. The recognition that the correctness of proof In a logical formalism can
be mechanically verified is much older than the computer. However, research into practical
computer programs for this purpose came only after the initial optimism regarding the
possibilities of automatic theorem provers had been tempered [McCarthy 1962, 1966,
Abrahams 1963, Bledsoe and Gilbert 1967].

A proof checker Is a program that Incorporates the rules of a logical calculus so that it can
verify that a proof is actually correct according to that calculus. For this, It needs to
recognize the different objects of the calculus and to be able to perform its various inference
rules.

I H im lalic aid to discovery. ,

Introduction. 4

A proof checker Is as general as the logical formalism It embodies. Some logical formalisms "
are so general that practically every domain of mathematics can be expressed in it. Thus
proof checkers offer the possibility of verifying any formal proof.

Among the most general and successful proof checkers we find AUTOMATH [Do BrulJn
1974], EXCHECK [Smith and Blaine 1976], and FOL [Weyhrauch 1977].

FOL Is based on the well known first order predicate calculus [Mendelson 1964], and it
will be discussed extensively In this thesis.

Automath is based on a new formal language developed by the leader of the Automath
project, N. G. de Bruijn. The Automath language [De Bruijn 1970, 1971] is radically different
from the first order predicate calculus. It was conceived as a universal language for writing .
mathematical books in a way that they can be proof-checked by machine, and it seems to be
as powerful as first order predicate calculus but it is much less well known to the
mathematical community. The largest proof checking project realized In Automath [Jutting
1977] Is of a size and scope comparable to the projects undertaken In FOL, like the
construction of a proof for Ramsey's theorem by this author [Weyhrauch at al. 1979]. Unlike
FOL, the Automath proof checker is not Interactive.

EXCHECK is an interactive proof checker for first order logic like FOL, conceived ..

especially for mathematics instruction at the undergraduate level. It has been programmed by
a group at the Institute for Mathematical Studies in the Social Sciences, and is currently used
for teaching purposes at Stanford University [Suppes 1976].

Less general than FOL, but oriented by the same spirit towards interactive construction of-.
proofs, are the LCF proof checkers [Milner 1972b, Gordon, Milner and Wadsworth 1977].
They are based on a formalism suited for verification of correctness of computer programs.

The main shortcoming of present day proof checkers is that the logical deduction steps
they can check are too atomic, that is too small, as compared with the way humans reason.
Formalizing proofs in a formalism like first order predicate calculus, or In the Automath
language, is a tedious exercise comparable to programming a computer in assembly language2.
This is the reason why [Jutting 1977, Weyhrauch at al. 1979] are probably the largest,-.
projects ever carried out on a proof checker.

In actual practice mathematicians do not attempt to produce formal proofs In a logical
formalism. Their proofs are arguments whose validity is checked by other members of the
mathematical community; their standards of rigor are based on a living tradition and have not
been explicitly laid down. For almost all current mathematical theories, it is known that the
proofs given by mathematicians can be reduced to fully formalized proofs In the first order
predicate calculus [Shoenfield 1967], and some mathematicians have a fairly clear Idea as to
how to do this, but they would almost never bother to carry out this reduction because fully
formalized proofs are very long and tedious.

In order for proof checkers to become valuable tools in mathematical practice, it will be
necessary to either develop more powerful logical formalisms or to provide proof checkers .'-

2 It Is In fact much more difficult than aasctbly language programming.

* - .--.--

. . . .,.,.,..,....... , ,......... .. ,•... ,... ,...,-.,,-, '"_"

Introduction. 5

with the ability to fill In many of the details of a proof. The later approach will be Investigated S
in this thesis.

INTERACTIVE SYSTEMS. There are Interactive theorem provers [Allen and Luckham
1970, Morales 1973, Bledsoe and Bruell 1974] and interactive proof checkers [Weyhrauch
1977, Milner 1972b, Gordon, Milner and Wadsworth 1977]. An interactive theorem prover
attempts to remedy the limitations of theorem provers by providing the possibility of human
guidance of the search for a proof. Interactive proof checkers construct the proof in an on-
line conversational process with the user; this kind of system we shall call interactive proof
constructors.

There is no clearly defined boundary between interactive theorem provers and proof
constructors. The distinction rather rests on the approach that guided the development of the
system, so that some systems have more of the flavor of theorem provers and others that of
proof checkers. Thus an interactive theorem prover can become a tool for Interactive
generation of proofs [Bledsoe and Bruell 1974].

On the other side, the power of an interactive proof checker can be expanded by the
inclusion of theorem proving facilities; this thesis develops a methodology for this.

GOAL ORIENTED SYSTEMS. A formal proof of a theorem starts with the axioms and
consists of a series of logical deductions which leads from those axioms to the theorem. Thus
It has a bottom up structure. It is the task of mathematicians to discover new theorems they
believe to be true and to prove their validity by giving proofs of them. Thus it Is always the
case in mathematical practice that the apparently bottom up line of reasoning of the proof has
been constructed a posteriori to the discovery of the fact it proves, and that its construction
has been guided by this fact.

Several researchers, coming from the theorem proving side, have developed goal oriented
reduction rules to guide theorem provers towards the theorem [Bledsoe 1971, Nevins 1974,
1976b, Ernst 1971, Brown 1977a, 1978). Similar reduction rules can be incorporated into
an interactive proof checker. This has been done first In the earlier LCF proof checker at
Stanford [Milner 1972b], and then independently Improved, along different lines, by the
Edinburgh group [Gordon, Milner and Wadsworth 1977] and by us.

PROGRAM VERIFICATION. Research in program verification is related to proof checking "
because both problems are similar in nature. Researchers in this field look for formalisms in

', the conditions of correctness of a program can be formally stated, and develop
p1 -is that can check the proofs of correctness in those formalisms. They hope that
pro,. that verify the correctness of programs will become a practical tool in software
develo. nt.

Thus ie of the motivations for research In proof checking is that advances in this field
are likely 1 serve the more practical field of program verification, in two ways: because
practical coi, outer systems for both tasks are likely to be similar, and also because the
conditions of correctness of a program can be formalized in a logical language like the first
order predicate calculus [McCarthy 1963, 1966, 1977, McCarthy and Painter 1967,
Cartwright and McCarthy 1979, Milner and Weyhrauch 1972a, 1972b, Weyhrauch 1975,
Weyhrauch at &l. 1979, Cartwright 1976, Wagner 1977], thus reducing one problem to the
other.

..° °. ° .°

Introduction. 6

INTERACTIVE PROOF CONSTRUCTION. The availability of the FOL system has spurred
research in Interactive construction of proofs of non-trivial theorems in various fields of
mathematics [Weyhrauch et al. 1979]. Before starting work on the GOAL language
described in this thesis, the author constructed a proof of Ramsey's theorem In 600 steps,
and proofs of the first 98 thPorems in [Kelley 1965] totalling 2000 steps. The complete

* proofs are presented in [Weyhrauch et al. 1979]. Because of the generality of first order
predicate calculus as a means for the formalization of reasoning, the availability of FOL has
also originated research into the axiomatization of several domains in this calculus [McCarthy,

*'" Sato, Hayashi and Igarashi 1978, McCarthy 1977, 1979].

To our knowledge, the only Interactive proof constructor comparable to FOL is the recently
*developed LCF proof checker at the University of Edinburgh [Gordon, Milner and Wadsworth

1977]. Based on a formalism oriented towards program verification [Scott 1969, Scott and
Strachey 1972], It is less general than FOL but it shares much of the same spirit.

We do not know of any large size proofs produced with the LCF system, but we have
recently learned that they have developed a user oriented metalanguage ML for programming
proof strategies [Gordon, Milner, Morris, Newey and Wadsworth 1978]. Our language has
been developed independently, is quite different from theirs, and it appears to be an equally
flexible tool for programming user designed strategies, except for the fact that this can be
done using high level commands in ML but, for the time being, only at the LISP level in GOAL.

Because of the greater generality of FOL, theories described in LCF can be axiomatized
and dealt with in FOL, while the converse is not always true. Also because of the flexibility
and extensibility of GOAL, we can program in GOAL any tactics or strategies one can do In
LCF. Thus, If one wishes to use FOL for some domain of knowledge for which LCF appears to
be Initially better suited, for instance proving assertions about recursive programs, one has

,- first to find a suitable axiomatization in first order logic for that domain of knowledge
[McCarthy 1977], and then one can program strategies that simulate the LCF deduction rules
in that axiomatization. Doing so, one would have a system where there is one GOAL command

* for each deduction rule of LCF, and one can still chain these into more complex strategies,
thereby achieving the same effects as in the LCF metalanguage.

1.2. Aims and scope of this thesis.

The research of the Formal Reasoning group at the Stanford Artificial Intelligence
Laboratory is centered on the concept of Interactive construction of checked proofs and Is

* presently committed to the first order predicate calculus as an universal language for
expressing mathematical reasoning. The principal computer system used by this group is an
Interactive proof checker for this calculus, FOL [Weyhrauch 1977, 1978a], developed and
Implemented mainly by Richard Weyhrauch. FOL is based on Gentzen type deduction rules

- [Gentzen 1936, Prawitz 1965]. In a later section, it will be described to the extent
necessary for an understanding of this thesis. The research presented here depends on the
availability of an Interactive proof constructor. Thus we take FOL for granted and we shall
not discuss the choice of the first order predicate calculus.

. *.* * . . *

rI '0-

Introduction. 7

This doctoral thesis presents a GOAL ORIENTED COMMAND LANGUAGE, GOAL, for FOL, 9
that has been developed and programmed by the author. To my knowledge, this is the first
attempt to Implement a fac"v of this type in an environment as general as FOL. GOAL has
benefited from some ideas Implemented by Weyhrauch and Milner in a goal command language
for the early version of LCF [Milner 1972b, 1972a], an interactive proof checker for Scott's
Logic of Computable Functions [Scott 1969, Milner 1973], that was a forerunner of FOL at
the Stanford Artificial Intelligence Laboratory.

The main goal of this work has been to facilitate interactive construction of proofs by
providing a facility to work in a top down manner, that Is to work backwards from the goal (a
well formed formula) towards the simpler subgoals, Iterating this process until a set of
formulae Is obtained that can be proved more easily. When these are proved, the GOAL
system produces the proof of the goal from those formulae. It does so by calling the very FOL
deduction rules that, if they had bean called by the user, would produce the same proof, and
the proofs steps generated by GOAL are indistinguishable from those generated using the
forward proving commands of FOL. We have strived to keep our system consistent with FOL
in the sense just explained.

In FOL, proofs are constructed bottom up, that Is from the simpler facts towards the goal
which exists In the mind of the user. FOL offers a number of inference rules and decision
procedures to carry out this task. Each Inference command or decision procedure produces a
new line of the proof, based on axioms and/or previous lines that must be explicitly referred

*, to by the user.

The commands available in GOAL for carrying out the reduction of a goal to simpler
subgoals are the inverses of FOL commands, and the GOAL commands available for matching
(i.e., directly proving) goals use the decision procedures available in FOL.

Another aim of this work has been to provide the user of FOL with facilities for automatic
generation of proofs of simple lemmas, so as to drastically reduce the amount of work
necessary for Interactive proof construction. This aspect takes us Into the realm of automatic
theorem proving, and some of the ideas are novel.

Independently, [Bledsoe 1971, Brown 1977a, Pastre 1978] have used the idea of
subgoaling In theorem proving, and Bledsoe's group has developed and Interactive theorem
proving system. All these researchers h- ve been concerned with theorem proving rather than
proof checking.

The automatic theorem proving routines presented here are subordinated to the structure
of FOL and GOAL. They operate strictly by calling the simpler reduction rules of GOAL and the
decision procedures available in FOL. Thus they are heuristics for sequencing the commands
available to the user, who could himself call the same sequence. It seems to be the first time
that theorem proving is tackled from this angle, at least in a first order logic environment, and
we understand this to be the sense of the desire shown in the quote from [Slagle 1976], in

-" the Introduction to this document.

Furthermore, GOAL has been designed so as to allow for easy addition of new reduction
rules and new theorem proving facilities. These can be programmed by the user, and .:-v
Incorporated Into GOAL by passing their names to a routine that "introduces" them to the

-- GOAL environment, after which they can be called using the GOAL syntax.

-.-

...-.... . *-. - . . .•.°o .-.- . -..* -..-. * . ..%°-- °.. .° '° °.•-°.* •-. ..

...

Introduction. 8

In this way, GOAL becomes something like a programming language for automatic theorem
proving. A user working on a particular domain of mathematical knowledge may observe his own
behavior and identify the strategies that appear to be most fruitful in that particular domain,
and may wish to program those strategies into GOAL.

The idea of a user oriented programming language for theorem proving applications has
been developed independently by the Edinburgh group [Gordon, Milner, Morris, Newsy and
Wadsworth 1978], and is otherwise new. It has not been implemented at a sufficiently high
level in the present version of GOAL, In the sense that the user who wishes to add new
strategies will still have to understand some aspects of the GOAL code, and that for the time
being these additions have to be programmed at the LISP level. But, once a certain familiarity
with the code has been attained, powerful new strategies can be programmed in a few hours
and simple ones in less than one hour. For future work in an interactive proof construction
environment, we envision resoarchers having shared libraries of theorem proving strategies,
documented as to the nature of applications for which they are most useful.

While it was in the initial conception of the GOAL language that it should allow for easy .-

extension by the user, it was only after experimentation with this system that I realized the
practicability of a higher level programming language for user designed strategies in a first
order logic proof construction environment. In the environment of FOL and GOAL, a translator
for such a language can be implemented fairly straightforwardly.

The results obtained with this approach to theorem proving are encouraging. We present
here a strategy, LOGIC, that has proved a number of theorems in Set Theory, including the
first 33 theorems in the Appendix In [Kelley 1955], fully automatically. More important is the
fact that in most cases failure of this routine does not mean complete failure; it rather means
that It carried out much of the work and it did not know how to prove one or more of the
subgoals it generated. The user can then either proceed towards those unproved subgoals or
cancel some branches of the goal structure that was generated and retry those goals.

Thus the GOAL language permits the FOL user to arbitrarily blend different styles of proof:
the deduction oriented, bottom up style; the goal oriented, top down style; and the automatic F.

* theorem proving one.

An Important building block of LOGIC is the FOL command for syntactic simplification.
Syntactic simplification consists in recursively rewriting a formula by left to right replacements
by a user specified set of equalities and equivalences. This idea Is also found In Bledsoe
[Bledsoe 1971] and In the LCF proof checker. It was first implemented in FOL by the author, 0

then the code was improved by Andrew M. Robinson In order to deal with sorted variables.
* The FOL Implementation of syntactic simplification allows for creation and naming of arbitrarily

many user defined simplification sets. In GOAL some simplification sets are automatically
. created, used and expanded down the nodes of the goal tree. In axiomatic Set Theory,

syntactic simplification turns out to be a very fruitful tactic.

The idea of syntactic simplification has already been recognized by several researchers
as a powerful aid in theorem proving. In the theorem provers of [Bledsoe 1971, Pastre 1978,
Brown 1977a, 1978], we find that one fixed, though perhaps extensible, set of reduction
rules is presented as a knowledge base of the theorem prover. The knowledge bases thus
presented are domain specific, often fairly large, and the%, substantially contribute to the
power of those theorem provers.

:..l. .
.-- '.............--...

. 7.7.7... .

Introduction. 9

We have found that the use of automatic simplification in theorem proving Is not without , .t
problems. Sometimes It is crucial that the formulae are simplified early, at other times one
wishes to postpone simplification. In FOL, one can have as many different, user designed
simplification sets as one wishes, and one can add or subtract knowledge to them at any time.
They can be referred to by names. In this, FOL Is like the LCF proof checkers [Milner 1972b,
Gordon, Milner and Wadsworth 1977]. -

In GOAL, the user has control over when simplification is effected, and we have strived to
give him a fair amount of control over what goes into the simplification sets (or, shortly, ...

simpsets) that are automatically created by the GOAL system. In any case, these
automatically created simpsets are not used unless the user, or a strategy, requests It. In
this, GOAL Is unlike the goal language of the LCF proof checker, In which simplification is often
done automatically, as a standarized proof mechanism, upon creation of subgoals 3 .

Conditional simplification has been implemented in GOAL, in a way that is quite different
from conditional simplification in the Edinburgh LCF system. In that system, conditional
simplification means that the system will not simplify against certain equivalence or equality
rules If there are certain variables and type variables that are shared between these rules
and the hypotheses on which they depend. The details of this, as described in [Gordon, ,, ...
Milner and Wadsworth 1977] seem to be relevant only for an environment based on Scott's
logic, but not for a first order logic environment. Also because the large amount of user control

over the creation and use of simplification sets in GOAL, we have never encountered problems
that would make that kind of conditional simplification necessary.

Our version of conditional simplification has been implemented only in the context of
automatic theorem proving strategies, and it consists in the following: when a WFF is being
simplified, simplification of those sub-expressions (sub-WFFs) that are potentially uniflable4

against VLs in the list of facts not Included In the simplification set will be inhibited.

In other words, while In the LCF system conditional simplification means that certain rules
will be Inhibited, we have found this unnecessary, and instead we Inhibit simplification of
certain parts of the wff being simplified, while leaving all of the rules active (notice that the
part that Is being Inhibited might have been simplified not as a whole, but some part of it
might have been simplified by some rule In the simplification set; our version of conditional
simplification will Inhibit rewriting of any subparts of the inhibited part, but the rules that could. . .

have acted on It will still be active In the rest of the WFF6 .

3 While this Is true for the early LCF proof checker developed at Stanford, the manual for Edinburgh LCF says little about the
goal structure and slmlpllflcation, except that "the basic outline (of s mplification) remains as In the original Stanford LCF system"
and that It Is "the only standarlzed element of automatic proof in the system" (page A-39).
4 Because they have the same structure, In the sense described In the sections on UNIFY In this document.
6 See the PAIR exanmle presented In this document.

.-...-...

Introduction. 10

1.3. Overview of the Goal Command Language.

GOAL consists of a tree like data structure called the goal structure, and of a set of
commands that operate on that structure. Each node of the goal structure Is a goal. At the top
level, the user creates a goal by specifying a WFF to be proved and, optionally, a set of facts '..

or assertions: axioms, previously proved lemmas, or WFFs to be assumed. This will become
clearer in chapter 3.

From a functional point of view, there are three main types of commands: tactics, matchers,
and strategies.

The tactics are commands that reduce a goal into subgoals (the term goal refers both to
goals created by the user and to subgoals created by tactics). The matchers attempt to prove P
a goal directly; they either succeed or fall, but they do not attempt to reduce the goal Into
subgoals. The strategies are programmed sequences of applications of tactics and matchers.

'm With few exceptions, the subgoals created by tactics are necessary and sufficient conditions
for the goal to be true. Thus the goal trees are and-trees. We have not attempted to deal
with or-trees, although this can be done without major modifications to the goal structure. Our
reason for excluding or-trees Is that they would drastically Increase the search space,
specially in the context of the strategies for automatic theorem proving. Where the user is
controlling the expansion of the goal tree, that is by using the tactics interactively rather that 7.
using powerful search strategies, or-trees are probably an unnecessary waste of storage

space.

The reduction rules incorporated in the tactics of GOAL are similar to those in [Bledsoe
1971, Brown 1977a, 1978, Pastre 1978]. These researchers used reductions of goals into

subgoals as a tool in theorem proving. The most complete theoretical description of subgoallng
is that of [Brown 1977a, 1978]. He views a goal as a collection of assertions plus a ..

collection of WFFs to be proved from those assertions, and presents a set of reduction rules
more complete than the other two researchers above. Almost all of these rules are present in
our system, though sometimes in a different form. The main exception is his rule of
skolemization on assertions, in which an existentially quantified variable of an assertion Is
Instantiated to a Skolem function; this rule is not present in our system In all generality, and
the UNIFY mechanism of FOL only partly makes up for its absence.

In order to do successful theorem proving, it Is as important to operate on the facts as It Is
to operate on the goals. From a theoretical point of view, goals ought to be viewed as a S
collection of both a WFF and a set of facts, and the reduction rules ought to be described as
operations on these collections, as in [Brown 1977a, 1978]. In our system, there is a
mechanism of goal preparation that does some of the work on the facts, or assertions, of
goals, and some of the tactics operate on facts. It must be admitted, however, that the
treatment of assertions In GOAL lacks uniformity with respect to that of the WFFs of goals,
and that this Is a weakness from the point of view of theorem proving. On the other hand, our
principal aim was to make an interactive goal command language for FOL, rather than to make
a successful theorem prover. The problems encountered with the treatment of facts will be
considered In more detail in the sections that deal with automatic theorem proving strategies
In GOAL.

S.

.................. *..h... °%'%
. -. ::.

.f
. * -,- -.- .. * *%*

,'..'.> .7 -

- ...-...

2, THE FOL SYSTEM.

2.1. Brief description. 0

This section gives s brief description of FOL, intended to help those readers that do not
have the FOL manual [Weyhrauch 1977] at hand. A description of the more esoteric aspects
of FOL, that do not concern us here, will be available shortly [Weyhrauch 1978a].

FOL is an Interactive proof constructor based in the first order predicate calculus. Its
deduction rules are of the Gentzen type. It has declarative commands, deduction commands,
and decision procedures.

The declarative commands serve to give names to variables, constants, predicate and
function symbols, and to Introduce axioms. Thus various theories can be defined.

The deduction commands and the decision procedures serve to create new lines of the
proof. An axiom or a line of the proof will be called a VL.' VLs have the following parts: a line
number, or ln* the case of an axiom a name; a well formed formula (WFF) 2; a list of
dependencies; and a reason that tells how the VL was obtained. These parts will be explained
in the sequel.

ASSUMPTIONS. A line can be assumed, using the assume command. An assumed line
depends on itself, and any L/L that depend on an assumed line carries with it the dependency
on that assumption. Thus FOL keeps track of dependencies.

DEDUCTION RULES. Dependencies on assumptions can be discharged using the deduction
command, also called implication introduction: if a WFF B has been proved using an
assumption A, then one can deduce the WFF AB which does not depend on A any more.

EXISTENTIAL RULES. If the main quantifier of a VL is the existential symbol 3, a name can O
be assumed for the quantified variable; this is the rule of existential specialization or
elimination. A new VL Is generated In which the assumed name appears In place of the
quantified variable. This VL carries a dependency on itself because of the assumed name, but
this dependency cannot be discharged by the deduction command. If the assumed name
disappears from (or Is not free In) the WFF of a VL that has been proved with help of VLs that -.- -

1 The word 'VL* will be used extensively In this document. It can be thought of as a line of the proof, I.e. an already proved or
assumed fact, If one bears In mind that axioms are to be subsumed In this concept. In FOL there are no predclared axioms,
except for the rules of the logic. Thus all axioms are entered by the user.
2 By an abus de lngag. we will sometimes use the word VL to refer to the WFF of a I., The concept of V. Is unnecessary In

mathematical logic, where a VL Is sImply a proved WFF, but It becomes necessary to Introduce this concept when talking about
e m n i0ementatio of FOL.

.i

.....................

... _:. ",, r, .- . .,..,, ,e "....

The FOL system. 12

depended on that assumed name, the dependency on the VL where the name was introduced
will disappear. However, there are some exceptions to the last statement: for instance, If the
same name was assumed for two different existential eliminations, and if a VL is generated
that depends on both eliminations, then these dependencies will not disappear even when the
assumed name is not present any more.

Conversely to the rule of existential specialization, there is one for existential
generalization: any subset of the occurrences of a term in the WFF of a VL can be
generalized to an existentially quantified variable.

UNIVERSAL RULES. If the main quantifier of the WFF of a VL is V, the quantified variable
can be specialized to any term, thereby eliminating the leading quantifier. Conversely, a free
variable can be generalized by Introduction of the universal quantifier Y, provided the variable
is not free In any axiom or In any VL upon which that one is dependent.

AND/OR RULES. From two VLa stating A and B, respectively, a new VL stating AAB can be
obtained; conversely, from AMB either A or B can be obtained. From a VL A and for an
arbitrary WFF C, either AvC or CvA can be obtained.

REWRITE. The rewrite command effects syntactic simplifioat/on by a set of equivalences
and/or equalities; such sets are called simpsets. Any occurrences of the left hand side of
these equivalences or equalities are replaced by the corresponding right hand sides, until the
process cannot be further iterated. When a VL is given to the rewrite command, an equivalent
VL is produced and added to the proof. When a WFF is given, if it rewrites to TRUE this WFF is
added to the proof as a new VL; if it rewrites to a different equivalent WFF, a new VL stating
this equivalence is generated. When a term is given and It rewrites to a syntactically
different term, the equality of the two expressions is stated In a new VL.

Simpsets are defined by specifying a set of axioms and/or VLs. When new ILs are
obtained by the rewrite command, the simpset is part of the reason of the new VL, which
depends on any VLs of the slmpset that were actually used In the simplification process. That
Is, the rewrite command is smart enough so it does not make the new VL depend on the
dependencies of all the VLs in the simpset, but only on those that were applied as rewrite
rules in that particular call to the command. Rewrite, simplification sets, and match trees3 are
explained In pages 49 through 55 of the FOL manual [Weyhrauch 1977]. The rewrite S
command obeys the following syntax.

",V%..

3 1mplMification set. are relremted Internally by LISP objects called match trees. M a user can 11" of the two words: *.'. '.

Imlpeet and match tree, as synonyms. What Is important, from the users pOInt of view, Is that seta of rewrite ries an be
stored and refeffed to by a identifiers. These Identifiers must be declared to be of type almo.pet.

.., A.....-..

-- J,-- -. 0- -.7-- 7-. - . :

'O

The .system. 1

Syntax.

REWRITE ALT[<WFF> I VL>] BY <simpsetexpr>;

Simplification set expressions are defined by the syntax below, where "," means to take
the union of the given expressions. The binding powers of ", u", u and "\" are that "," binds
least strongly, "\ has an Intermediate binding power, and "u" Is strongest.

Syntax:

<sinpsetexpr> :- { <vllist> } I <simpset> I
<simpsetexpr> , <simpsetexpr> I
<simpsetexpr> u <simpsetexpr> I
<simpsetexpr> \ <Simpsetexpr>

In this BNF form, a simpeat Is an identifier that has been declared to be of type simpset.
And a VLLIST Is a list of VLs and axioms, separated by commas. To form a sJmpsetexpr, that list
must be enclosed in curly brackets: {).

DECISION PROCEDURES. FOL has several decision procedures. One of these is TAUT. If a
WFF is a tautology, or If it follows tautologically from a set of axioms and VLs, a new VL
stating this WFF can be obtained by the TAUT command. The new VL depends on the union of
the dependencies of the VLs that the user said were necessary to obtain the new one. That
is, this command Is not as smart as REWRITE In eliminating unnecessary dependencies; for
instance, if the WFF Is a ground tautology per se but the user said It follows tautologically
from a certain V/L that has dependencies, these will be carried over.

Similar to TAUT is TAUTEG, that includes the rules of equality. Other decision procedures
are: MONADIC, that decides validity of WFFs whose prenex normal form [Mendolson 1964] is
such that all universal quantifiers precede all existential ones4 . UNIFY, a decision procedure
that matches quantified WFFs whose matrices6 are Isomorphici and attempts to find a set of
solutions to the quantified variables. UNIFY was developed by R. Weyhrauch and A. Chandra,
and Is as yet undocumented7.

Sometimes REWRITE acts as a proof procedure: namely when the WFF rewrites to TRUE, in
which case the WFF Is stated as a new VL. The same happens with SIMPLIFY, a command for .

semantic simplification that will not be discussed In this thesis.

4 It Vhla soes confusing. soe also the footnote about MONADIC In the section on matchers In the next chapter.

6 The WFF that remin after removal of the loading quantiflers.

8 In the son" that they have the ame structure of logical connectives.

7 UNIFY io not related to the unification algorithm that 4 used In resolution theo m provinig. May be It ought to be renamed to

avoid Nis confusin.

.-°. °

77. 77 777

The FOL system. 14

RESOLVE. A variation of UNIFY is RESOLVE. If a VL is a disjunction, perhaps preceded by
some quantifiers, and the negation of one of the disjuncts can be unified against another VL,
the other disjunct can be stated as a new VL, where some of the quantified variables are
instantiated according to the solutions obtained from the unification of the other. At present
RESOLVE has some bugs and some unresolved theoretical problems, nevertheless it has been
used in the GOAL because it is a powerful command for the purposes of automatic proof
generation.

SORTS. In FOL, variables can be declared to be of some sort. Predicates and functions can
be declared to take arguments of some sort. Functions can be declared to produce terms of
some sort. Thus some terms are recognized by FOL as being of a certain sort. Some sorts
can be declared to be at least as general as others using the MOREGENERAL declarative
command. For instance, in several versions of Set Theory there are sets and classes, the
later being more general than the former.

Sorts affect many of the previously mentioned commands. In particular, they affect the
quantifier rules and the simplification commands. They also affect the UNIFY command, but the. .-

current version of UNIFY does not take sorts Into account.

Sorts Introduce many complications, some of which have not yet found a satisfactory
solution. They shall not be dealt with in this thesis.

ADMINISTRATIVE COMMANDS. There are also some strictly administrative commands, the
most important one being the SHOW command, used to display axioms, VLs, declarations, and
proofs. In GOAL there is an analog to the show command. Another important one Is the CANCEL
command, used to erase a proof or an arbitrary end segment of It; that Is, all the VLs with line
numbers greater than or equal to the number passed as argument. There is also a GOAL
analog to this command.

2.2. The style of proof construction in FOL.

FOL has no facilities other than GOAL for goal oriented proof construction. Formal proofs in
FOL are much longer than the informal proofs of mathematics; this Is true even for the more _
formal domains like axiomatic Set Theory. The user has to type at least as many commands as
there are VLs in the proof.

When constructing a proof, it is often difficult to keep track of its overall structure
because one's attention tends to get caught in the detail. This is because the commands are
so atomic: facts that appear obvious to the mathematician often require a dozen or more
commands and a considerable amount of detail work.

This problem does not rest with FOL, but with the first order predicate calculus. Logicians
seldom use this calculus to prove any theorems; rather, they study it in order to make sure
that their theorems can be proved In the calculus. When they expound formal theories In

...

The FOL system. 15

books, the majority of the proofs given do not fill in all the details. These proofs aim at
convincing that one knows how to fill In the missing details. Complete formal proofs of some
simple theorems are only given as pedagogic examples. However, no formalisms that are
convincingly more powerful and equally general as this calculus are known at present.

One way of aleviating this problem is to add to FOL facilities for automatic generation of
proofs of "obvious" facts. Another is to look for commands that produce shorter proofs. Of the •
later kind, the simplification commands are very useful; so are also the decision procedures
TAUT, TAUTEQ, MONADIC and UNIFY and the related RESOLVE command. Of the first kind are
the strategies for automatic proof generation described in this thesis.

Yet the principal way in which GOAL attempts to aleviate the problem is by providing a
facility for goal oriented, top down proof construction. In any case, the final proof looks the
same; but the tree-like goal structure can be used as a recordkeeping facility that remembers ..--

the structure of the proof and can be referenced at any time when the user wishes to remind
himself of what remains to be done.

. ;,

16 .

3. THE STRUCTURE OF GOAL.

3.1. Overview.

This chapter describes GOAL. First it describes the data structure upon which GOAL
commands operate, called the goal structure. Then it describes the GOAL commands.

The data structure Is a list of goal trees. Each goal tree is a recursive data structure In
which all nodes have the same structure. The root of the tree is a top level goal, any nodes . ..
below are subgoals. The term goal refers to either. Top level goals are created by the user
using the GOAL command. Any other goals are created by the tactics described below.

There are several types of GOAL commands. The GOAL command that creates top level
goals. The ABANDON command that prunes a branch of a goal tree. There Is also an
administrative showgoal command. But the most important GOAL command is TRY. It is used to 3.9 ...

Invoke the operative elements that operate on the goal structure. There are three types of " ... -...

operative elements: tactics, matchers, and strategies.

The tactics create new subgoals by decomposing a goal. The matchers attempt to prove a
bottom level goal, or leaf of a goal tree, directly. The strategies are programmed sequences of
applications of tactics and matchers.

Goals have statuses; the three mutually exclusive statuses are: untried, tried, and proved. .
At any time, the leaves of a goal tree are either untried or proved, and the other nodes are
tried. Trying a goal means Invoking an operative element on it. Only untried goals can be
tried. However, trying a goal changes its status only if the operative element succeeds; then
it becomes either proved or tried. Tried (but not proved) goals can be abandoned, in which .
case they become again untried.

The difference between the three types of operative elements can be defined precisely
with regard to the GOAL code. However, from the point of view of the functional
characteristics of the operative elements, this classification is not as clear cut: some tactics
may succeed in proving a goal directly, in which case they act like a matcher; and some S
strategies may do little more than a tactic, while others may be powerful theorem provers.

Each goal has a number of parts, some of which may be empty. These parts carry data
that is used and changed in various ways by the GOAL commands that operate on and change
the goal structure. Among the parts of a goal we find facts and simpsets. The operation of
trying a goal has a side effect called preparation of the goal, that often introduces changes
to these parts. The special command prepare can be invoked by the user to provoke this side
effect without actually trying the goal; this may add new facts or simpsets to the goal and
new lines to the proof.

Goals can be referred to by a numbering system. In most GOAL commands, the user can

..". -.......... "....."........'........... ,.o-.. -.......- ,- ,.., ,. -,. ,. .

The structure of GOAL. 17

either give an explicit reference to a goal or use the default for that command. There are
three basic defaults: the current, the next, and the last goal. These are pointed to by global
variables that change dynamically as the man-machine conversation unfolds.

3.2. Goals.

The Goal Structure is roughly speaking the converse of the proof structure in FOL. In the
proof structure, new lines of the proof are produced by Invoking FOL inference commands or
decision procedures. In the goal structure, the user specifies at the top level the WFF to be
proved, giving also some information as to the facts that need be used and how they will be
used. Tactics decompose this WFF into sets of subgoals. The subgoals are sufficient, and
with a few exceptions also necessary, conditions for the original goal to be true.

This process of tearing apart goals can be applied recursively so that a tree structure is
generated. At any moment, the leaves of the tree represent sufficient conditions for the root
of the tree to be true, and the system knows how to produce a proof of the original goal when
all the leaves have been proved.

Top level goals are those created by the user directly. Invocation of tactics create sub-
goals of a goal, which we call its sons. Thus, top level goals are those that do not have a
parent. The sons of a goal behave In every respect like a goal, therefore the term goal will
refer indistinctly to goals at any level In the tree.

At any time, a goal has one of the following statuses:

UNTRIED: It has no sons and it has not been proved;

TRIED: It has sons (these have been necessarily created by a tactic);

PROVED: the WFF of the goal has become a line of the proof
(and the structure remembers the number of that line).

When the last son of a tried goal Is proved, the system Immediately proves that goal; that
Is to say, It applies some deduction rule of FOL to the lines that correspond to the proved
sons, thereby generating a new line of the proof that matches the WFF of the goal whose t
status then becomes proved. We call this process unwinding; its result is a FOL proof that
looks the same as one generated by a user of FOL. .-" ."..

When a goal Is proved, Its sons are removed and cannot be accessed any more (i.e., they *"

will be eventually disposed of by the LISP garbage collector).

. .. -.- -

.

. -'.

.]...,:..- ..,.. .. .]-...] ,-. .,..-.. ,.....-.. . . .--.-.... ,,-.-,-.:. .
..',[.•,.-.--.-... .'. ..'.".","."" ."'"" " ," ' "." - '- - ".". . -.''-.",'.-"'> ''."

- .. j~flr~ rrr r -

The structure of GOAL. 18

3.3. Treatment of assertions (or facts).

This section offers an overview of the treatment of facts or assertions In GOAL. it refers
to several concepts that will be explained in detail in the following sections. Facts are
treated mainly by the prepare mechanism. A complete description of this subject will be given
in the section on goal preparation.

It has been said in the introduction, that "lne should view goals as sets of WFFs to be
proved and sets of facts or assertions. In the implementation of GOAL, the facts are attached
to the goal as an a-list. The facts are axioms or VLs. The user can also specify WFFs to be
attached to this list; In this case, the preparation mechanism (that will be explained later)
assumes these WFFs using the FOL command assume; thus they become VLs.

The facts of a goal are passed down to its sons. Often new facts are added to sons.
Thus, with a few exceptions, the facts of a goal are a subset of the facts of Its sons.

The user can specify facts in two ways: using assume or sassume. The second option
causes the fact to be included into the list of simplification rules (simpsets) attached to the -

goal. .

Besides those facts given by the user, we find facts created by the mechanisms of GOAL.
Some tactics create new facts: for Instance, when an Implicational WFF of the form AB is
tried by the '"l" tactic, a goal B Is obtained and A is assumed (or sassumed, depending on the
structure of A). Also, when a goal is proved but some of Its brothers are still unproved, that
goal is added to the facts of those unproved brothers and of their descendants as well. There .
are still other ways in which new facts are generated; these will be discussed when we
explain the prepare mechanism.

GOAL does not offer the user as much control over the facts as it does with respect to the
treatment of the WFF of the goal. This can be seen as a drawback because it limits the kinds
of strategies that can be easily programmed. ,

It should be mentioned that there are two parts of a goal that hold facts: they are called
FACTS and ADDEDFACTS. Facts added to a goal, either upon its creation or later, usually go to
ADDEDFACTS, except for those created by the prepare mechanism Itself. This mechanism
empties ADDEDFACTS and passes Its conterts over to FACTS. There are several reasons of
implementation why we chose to do things that way; one of the effects obtained Is that WFFs B
given by the user using ASSUME and SASSUME are not added to the proof or put into the
slmpsets until the goal Is actually tried; the same delayed effect applies for other
transformations the prepare mechanism does to the facts.

* . -.

. . , ...

-- • .. . • - -. . .- , -: - . -.-.. .. -...-

The structure of GOAL. 19

3.4. The parts of a goal. 0

The following parts are Imbedded in the structure of unproved goals. When the Coal is
untried, many of these parts are NIL. Proved goals have a different structure: they just have
a goal number, a VL (as opposed to a WFF), and sometimes a reason1 that indicates how they
were obtained. 6

GOAL NUMBERS. They number brother goals starting with 1. Brother goals are those that
have a common parent; also the top level goals are considered to be brothers. Thus goals can
be referred by means of a list of natural numbers, each one preceeded by the token "#". For
Instance: #3#1#1#2 means the second son of the first son of the first son of the third 0
element of the list of top level goals

GOALWFF. The WFF of the goal.

DESCENDANTS. The list of sons; these are goals.

REASON. Indicates how its sons were obtained; It contains all the necessary Information
so the unwinding mechanism can prove the WFF of the goal by referring to the VLs that prove
its sons.

FACTS. A collection of pointers to [/Ls that are stored with the goal; these I/Ls are used
by the matchers In various ways when trying to prove the goal; they are also used sometimes
by "CASES". They are stored In a list of association lists, because they may be used In a
number of different ways. Some of them may be assumptions indicated by the user, or created
by the GOAL system, or proved sub-goals that are brothers of the goal or of some of ancestor -

of It.

SIMPSETLIST. A list of simpsets associated with a goal. It would be more logical to
condense all these simpsets into just one. That simpset would have to be expanded and
shrunk dynamically when the goal tree is created and traversed, and this poses problems of
Implementation that make It more convenient to store lists of slmpsets Instead.

SIMPSETREASONLIST. A list of the VLs and names of simpsets In the SIMPSETL(Sr, so that . -

the system can produce reasons for the steps of the proof It generates, In the same way FOL
does. (Reasons for proof steps indicate how the VLs are obtained in FOL).

SIMPSETADDFLAG, A flag indicating whether additions have occurred to the SIMPSETLIST;
...... I.I.

This Ia not to of confused wlth the reason of a V4 nor with the REASON of a tried goal. - -

_I

r . r, .. , _ - , .r r -_. - ; .

The structure of GOAL. 20

this flag is used by some automatic theorem proving strategies in order to know whether it
makes sense to attempt rewriting anew.

S-.ADDEDFACTS. Any information contained here is eventually passed over to FACTS; here
there may be VLs or WFFs, indicated by the user or produced by the system; it was thought
convenient to have a separate list of this kind, because it permits to treat FACTS more
uniformly and also because it Indicates whether any new facts have been added to the goal 0
since the last time it was tried (this Information is used by some automatic theorem proving
strategies).

QUANTELIMLIST. A list of the quantifier eliminations made down the goal tree; this has -
many uses; it keeps track of bindings made in brother branches of the tree, to assumed g
existential eliminations in the proof, so as to know whether a match may be such that the
proof would not unwind. It is also used by UNIFY so as to reconstruct some matches that could
not otherwise be unified. In these ways GOAL makes a limited amount of skolemization.

3.5. Skolemization and the Quantelimlist.

To Skolemize an existentially quantified variable in a goal is to eliminate the quantifier and
to replace the quantified variable by a variable name that matches any term of the same sort.
An analogous operation can be done on an universally quantified variable in an assertion of the

- goal [Brown 1977a, 1978].

For example: If a goal is V x.3 y.V z.P(x,y,z), and we do an universal, an existential, and an
universal subgoaling operation, we obtain as a goal: P(x,y,z). But x, y, and z ought to have a
different status In that subgoal: x and z have to be free variables, while y could be matched
against (almost) any term. More precisely, y can be matched against any term that does not
depend on z; for Instance, against a term t(x) which contains some free occurrences of x.
Skolemizing In this case means subgoaling to: P(x,f(x),z), where f(x) Is a Skolem function of
the variable x. The use of Skolem functions In theorem proving Is discussed In a number of

, textbooks, for instance in [Nilsson 1971).

In GOAL, Skolemization Is performed by recording quantifier eliminations in the
... QUANTELIMLIST. When a variable that has been Skolemized In this way is matched at some
* node In the goal tree, then the same variable cannot be matched again to a different term at

some other node, i.e. It is not free any more. The QUANTELIMLIST keeps track of such bindings
and records the node where the binding was made. The abandon command sometimes frees
again a variable that has been bound In this way- namely, it does so when the node at which
the binding was performed lies below the goal being abandoned.

.. For example, If the original gcal were Vx.3y.Yz.(P(x,y,z)AQ(x,y,z)), after several subgoaling
operations we may have the two subgoals P(x,y,z) and Q(x,yz). In this case GOAL would
remember, for either one of this two subgoals, the series of universal and existential
subgoalng operations that were performed down the goal tree. It would be able to match the

b . . .

The structure of GOAL. 21

variable y, in either subgoal, against an arbitrary term provided It does not contain any free
occurrences of z. Now suppose that one of the subgoals is matched. Say Q(x,y,z) is matched
against Q(x,t(x),z), for some term t(x). After that, GOAL will refuse to match y In P(xy,z)
against anything else but t(x). We say y has become bound to t(x).

Now, what if the choice of t(x) was wrong in the first place, so that the user wants to
take It back? Both subgoals have a common parent, which Is P(x,y,z)AQ(x,y,z). Upon this
parent (or some ancestor of It) being abandoned 2, GOAL will free y so that It can again be
matched with some other appropriate term.

Further illustration of the use of this feature of GOAL can be found later In this manuscript:
In the PAIR example shown in the section on automatic theorem proving, and in the description
of the matcher EQUNIFY.

3.6. Unwinding.

When a sub-goal (i.e. any goal that has a parent) is proved either by a matcher or by the P-
unwinding mechanism, its parent is looked at. If all the sons of that parent are proved, the
proof of the parent is produced; otherwise, the just proved sub-goal is added to the
ADDEDFACTS of its unproved brothers (the unproved sons of its parent), and of the
descendants of these, so they will be used by the matchers and sometimes added to the
simpsets (depending on the structure of the WFF of tle proved goal).

When a goal Is matched, the unwinding mechanism also looks at the QUANTELIMLIST and
checks whether a Skolemized variable in the GOALWFF has been matched in a way that
makes It depend on some existential elimination in the proof. Ie., it checks whether any
variables that came from existential eliminations performed in the goal tree appear as
assumed names for existential eliminations in any of the VLs on which the newly proved goal
depends. If this Is the case, the said variables are bound in the QUANTELIMLISr, and these P
bindings carry over to all the nodes that Jescend from the node where that existential
elimination was performed. For a proper understanding of this, the reader is referred to the
documentation of the FOL existential elimination rule in (Weyhrauch 1977].

3.7. Defaults: current, next and last goal.

There are three defaults. They are kept track by global variables. Initially they are all NIL.
If the user defaults by not specifying an optional argument in a call to a command and the
default variable for that command Is NIL at that time, the ensuing error message Indicates that
the command does not know what goal to try. The defaults obey to the following rules.

2 With the ABANDON or with the RETRY command.

. ** -.. . .•., . . • . .

* . o .-.,- -

S

The structure of GOAL. 22

NEXTGOAL. It is an untried goal. This is the default for the TRY command. Thus it can be
thought of as the next goal to be tried. It is the last goal created, prepared, or abandoned,
either by the user or by some GOAL command.

LASTGOAL. The last goal decomposed by an invocation of the TRY command. That Is,
successfully tried by a user invoked tactic, or tried by a strategy that succeeds in
decomposing it.

CURRENTGOAL. The last goal tried by any tactic or matcher.

The unwinding mechanism causes the following Irregularities In the rules above: it resets
CURRENTGOAL to the father of the last goal proved by either a matcher or the unwinding
mechanism, and NEXTGOAL to some unproved son of CURRENTGOAL, that is to a brother of the
last proved goal. If LASTGOAL becomes proved, then it is reset to the same as CURRENTGOAL.
When a top level goal Is proved, all three defaults become NIL.

3.8. The GOAL commands.

3.8.1. Goal creation.

GOAL. This command Is used to create a top level goal. The user must specify the WFF
and can also indicate assumptions, sassumptions and simpsets. A sassumpt/on Is an assumption
that gets also added to the simpset. The assumptions can be WFFs, VLs, or axioms. Those --
that are WFFs are written onto the proof by the ASSUME command of FOL when the goal Is .-.

tried. By default, the special simpsets LOGICTREE, and COMPTREE (automatic Instantiation of
the axiom scheme of comprehension for sets), are included, but the user can prevent this by
saying "NOTREES".

Syntax:

GOAL <WFF> [OPT ASSUME REPT(ALT(<WFF> j <VL>))]
(OPT SASSUME REPT(ALTC <WFF> I <VL> 3)]
(OPT SIMPSET <simpsetexpr> .
[OPT NOTREES) ;

. Along with the syntax of GOAL commands, we shall show examples of their use. In this
first example we start with some FOL definitions in order to set up the context of our ,.

-" examples.

- . . o..

~~~~. .... .. .. ... .. .....m~l
-

liii~d i~l m
i

......



The structure of GOAL. 23

* Let us recall that the five asterisks: 1***0 Is the prompting response of FOL. Most user's
* commands end with one semicolon, except the AXIOM command that end with a double

semicolon. What comes after the semicolon, up to the next "sass.', Is the response of GOAL or
FOL.

Example:

*****DECLARE INOVAR x y z zl u v w;

*****DECLARE PREOCONST (2 (INF];

*****AXIOM EXTENT: Yx y.(x-yv~u.(uxnuy)),

EXTENT: Yx y.(x-ymVu.(u(xmuy))

*****AXIOM PAIR: Yx y.3w.Vu.(u(wa(u-xvu-y));;

PAIR: Yx y.3w.Vu.(uw*(u-xvu-y))

* as****GOAL Yx y.3z.(Vw.(w(Zu(WmXVW-Y))AVZ 1.(YW.(W(Z 1u(W-XVW-y))~z 1 m))
ASSUME PAIR SASSUME EXTENT;

Goal *I: Yx y.3z.(Yw.(wzu(w-xvw-y))A~z I.(Yw.(w(z 1a(w-xvw-y))DzlI-z))

5555ISO.

3.8.2. Referencing goals.
It

Many commands take a goal as argument. Goals are referenced by a numbering system, A
goal ref erence Is a list of natural numbers, each preceded by the token #. The first one Is
the number of a top level goal; the next Is the number of one of Its sons; the following, the
number of a son of that son; and so forth. An error message ensues when a nonexistent goal
i.s referenced.

Syntax:

<goairef> :a REPT(# 'natnum>)



The structure of GOAL. 24

Examples:

#3#1#1#2

# 1

3.8.3. Addition of Facts to a Goal.

ADDFACTS. This command is used to add facts to an already existing, untried goal. It
uses almost the same syntax as the GOAL command, except that a goal reference must •
appear Instead of the WFF. This command does not have any default; the goal reference must
be explicit.

Syntax:

ADDFACTS <goalref> [OPT ASSUME REPT(ALTC <WFF> I <VL> ])"
(OPT SASSUME REPT(ALT( <WFF> 'VL 3)
[OPT SIMPSET <simpsetexpr>)
[OPT NOTREES]

The following two commands achieve the same effect as the previous example of goal
creation.

Example:

****GOAL Yx y.3z.(Yw.(w(z,(w-xvw-y))AYz 1 .(Yw.(w(z 1 a(w-xvw-y))Dz 1 -z)h

Goal a 1: Vx y.3z.(Vw.(w(z-(W-xvw-y))AYz 1 .(Yw.(w(z 1 ,(w-xvw-y))lz 1 =z))

****ADDFACTS #1 ASSUME PAIR SASSUME EXTENT;

3.8.4. Trying Goals.

The operative elements of GOAL are the tactics, matchers, and strategies. All of these
are called by the TRY command, using the same initial syntax; however, many of these require
additional information, that is parsed by the parser associated with that operative element.
This additional Information Is given at the end of the TRY command; its syntax depends on the
particular operative element and will be described In the sections on tactics, strategies, and
matchers.

.~~~~~ ~ ~ ~ .- . . .o . . . . . . . . .-

• ..% -

".-p ' ..- ", 2 .2 .i ..' -: ""' -". ; ".,, .: ;; "_ , ', ,; 't-" "" ' & -'""" "" "' "" ' ' * "- "* "- " "" " " """ ' " "" t ; " ' -" ' '" ' :



. - . . - . o - • ° . . .. . . . . . . .. . . .. .

The structure of GOAL. 26

TRY. This command is used to apply a tactic, strategy, or matcher, to a goal. The user may
specify the goal in two different ways: by a goal reference; or by an natural number, meaning
the number of a son of CURRENTGOAL. Otherwise the default NEXTGOAL is tried (if this is NIL,
an error message is given). The user has to specify the tactic, strategy, or matcher, and give
any additional Information that may be required by that particular operative element. Only an
untried goal may be tried by this command. In the syntax below, opname is the name of a
tactic, matcher, or strategy; and op_Info is the additional Information required by that
operative element (possibly none); these two Items will be described, for each element, in the
section on the operative elements.

syntax:

TRY [OPT ALT[ <goalref> I natnum ] 3 USING <opname> <op_info>;

where

"<opname>" Is the name of a tactic, matcher, or strategy, and a.

'(opInfo)" is any additional, specific information required by that element.

Only untried goals may be tried; a goal whose status is tried can be abandoned and then
tried again. The following command combines these two functions.

RETRY. Combines ABANDON and TRY. This command does not admit a default: it requires an
explicit goal reference. If the goal Is untried, it will be accepted and tried.

Syntax:

RETRY <goalref> USING <op.name> <op-info>;

For an Illustration of the use of this command, see the examples In the section o,, iie
matcher UNIFY.

3.8.8. OED.

The QED command is to be used only when the GOALWFF is exactly equal (except for the
names of bound variables) to that of a VL. It does not cause any new line to be added to the
proof, Instead It records that the goal Is proved by that i/L and It Invokes the unwinding
mechanism.

The two arguments are optional. The defaults are: NEXTGOAL for the goal reference, and
the last VL In the proof, for the VL

............................................ ......

.. .*.. . . . . ... •, • . . *.* . . . ,,,-



- - ro.rr- . . .- ,

The structure of GOAL. 26

Syntax:

QED [OPT <Zoalref> 3 [OPT VL> ;.

3.8.6. Abandoning Goals.

ABANDON. Applied to a tried goal, it makes It untried by garbage collecting its sons. The
user may specify the goal number, or by default the last goal that was tried Is abandoned.

Syntax:

ABANDON [OPT <goalref> J

For an illustration of the use of this command, see the examples in the section on the
matcher UNIFY.

3.8.7. User Invoked preparation.

PREPARE. This command Invokes the preparation mechanism without actually trying a goal;
its main use Is for causing the assumed WFFs of a goal to be written onto the proof. It has a
"PLUS" switch that can be used to add facts to the goal. It uses the same initial syntax as
TRY for referring the goal, and It has the same default, NEXTGOAL. It does not reset any of the .
defaults.

syntax:

PREPARE [OPT ALT[ <goalref> <natnum> 0

3.8.8. Displaying goals.

8HOWGOAL. It displays the goals together with their attached properties. It Is a very
verbose command, but It has a TERSE option. If no arguments are given, all top level goals and
all of their descendants are displayed. Optional arguments are: 1) a goal reference, or one of

........-.. . .-

. . ~ ~~~~~ .. . . . . ..-.. . . .



T. w 77T 7 ---. -.- .--

- . . . . 0

The structure of GOAL. 27

the words: nextgoal, lastgoal, or currentgoal; In this case only that goal and its descendants
are displayed; 2) "DEPTH <natural number>", in which case descendants only down to a
certain level are displayed (the number can be 0); 3) "TERSE" for the terse option. The terse
option is recommended for seeing the goal tree in perspective. The verbose option is useful
for examining the parts of a goal; in this case it Is recommended to use a small depth, 1 or 0,
in order to limit the size of the typed response.

Syntax:

SHOWGOAL [OPT ALT[ <goalref> I NEXTGOAL I LASTGOAL I CURRENTGOAL J J -

[OPT DEPTH integer>]
[OPT TERSE] ; I

I .

Examples:

****SHOWGOAL;

Goal .1: Vx y.3z.(Vw.(w(z,(w-xvw-y))AYz 1.(Yw.(w(z 15(w-xvwmy)):z 1 -z))
VLSASSU: EXTENT Yx y.(x-ymYu.(u(xsu(y))
VLASSU: PAIR Vx y.3w.Vu.(u(w,(u-xvu-y))

Simpsets: ( BY LOGICTREE COMPTREE)

***s*SHOWGOAL TERSE;

Goal *I: Yx y.3z.(Vw.(wlz=(w-xvw-y))AYz.(Yw.(wz(1 (w-xvw-y))z 1 -z)) ,

• * ** *" ::iil

3.9. The operative elements of GOAL.

The building blocks of GOAL are its operative elements: the tactics, the strategies, and the -

matchers. GOAL has been designed to allow for easy addition of new operative elements; In
the section on expanding GOAL, we shall look at the structure of the operative elements in -

more detail. For this section, It is enough to know that each operative element has a name
and a parsing routine associated with it.

All the operative elements are called by the TRY command. As we described that command,
we introduced two syntactic Items: op _name and opinfo. In this section, we shall look at the
operative elements that are now present in GOAL. For each one, Its function will be described, -

and the two syntactic items above will be defined.

. . .
. . . . . . . .. . . . . . . . . . . . . . . . . . . . .

": : --.' -- - "i ' .. "- -- -.'. : . : . .i .-' -; -' .' . -.' '' -: ----. '.: .-. ' .-- .- .. - .. :: --°.- - .. ' ...- ' ' - .: - .: '.': ' -' - .. :



The structure of GOAL. 28

3.9.1. Tactics. "0

The tactics attempt to decompose the goal into (expectedly simpler) subgoals. Most .-.'.
tactics transform the GOALWFF, the main exception being the tactic CASES. Any successful
application of a tactic produces one or more sons of the goal. Tactics do not try to decompose
those sons any further. The status of the goal becomes tried; the status of the newly
created sons is untried.

Most tactics create subgoals that are necessary and sufficient conditions for the goal to
be true; but some create subgoals that are only sufficient; when the later is the case, we
shall state it explicitly as we describe the tactic.

At present we have the following tactics.

3.9.1.1. Universal rule: VI.

The main symbol of the GOALWFF must be 'V". The matrix of the WFF Is produced as a
subgoal, i.e., the leading universals are eliminated. By default, the quantified variables are
instantiated to the same variable names, but a different instantiation can be specified by the
user. The optional op info is a list of variable names wJthout repetitions; the parser also
checks whether these variables are free in some axiom aft whether they are of sort at least
as general as the quantified variable, and gives error messages if it finds conditions that .t

would make it impossible to unwind the proof. The standard name VI refers to the FOL rule by
which the proof of the goal will be produced in the unwinding process.

<op-name> :V Vi I UG I ug

<op.Jnfo> :- OPT[ REPT[ <variable name>)] p

The following examples start with the goal created in the previous example of the GOAL
command. They form a sequence of commands, except where noted otherwise. Thus the
default nextgoal, which is the last goal created, applies to most of them.

Example:

*****TRY USING VI; 7.

Goal .1 # 1: 3z.(Yw.(w(z(w-xvw-y))AYz !.(Yw.(w(z l ,(wxvw-y))=z 1 -z))

*** ''. '

" .. ~~~~~~~~~. ... °o . .o-. . . -. .... °. . ....... . . °.-° o- - - - ... ,. •...., ..



The structure of GOAL. 29

3.9.1.2. Existential rule: 31.

The main symbol of the GOAL WFF must be 131. The matrix of the WFF is produced as a -

subgoal, i.e., the leading existentials are eliminated. By default, the quantified variables are
Instantiated to the same variable names, but a different instantiation can be specified by the
user. The optional op__Info Is a list of terms. If these terms already appear In the WFF, a list
of occurrences Is kept so the proof will unwind properly.

<op..name>: 31 IEG Ieg

'op.Jnfo> :-OPT[ REPT[ <term>)

Example:

s***TRY USING 31;

Goal *1is 11: YW.(W(Zu(W-XVW-y))AYZ 1.(YW.(W-Z 1 (W-XVW-Y))DZ 1 Z)

3.9.1.3. Conjunction rule: Al. S

The main symbol of the GOALWFF must be "A"l. The two conjuncts are produced as
subgoal.. Op__info is nil.

<op...name> :-Al IAl Iai

Example:

*****TRY USING Al;

Goal olsislel: Yw.(wez(w-xvw-y))
Goal #1#1*1#2: Yz 1.(Vw.wz1 .(w-xvwmy))az 1-z)



The structure of GOAL. 30

3.19.1.4. Equivalence rule: al.

The main symbol of the GOALWFF must be "a.Two subgoals are produced: If the

GOALWFF Is 'A 8 Bthe subgoals are "A 2 B "and 8B z A ".Op__Into Is nil.

<op..name> a- l I EQU1V I equiv

Example:

*****TRY 1 USING VI;

Goal slalalelal:. wzs(w-xvw-y)

*****TRY USING mi;

Goal s1*1*1*1sluI: wz:(w-xvw-y)

Goal #1*1#1*1*1*2: (w-xvw-y)2w(z

3.9.1.6. Deduction rule:. 21.

The main symbol of the GOALIWFF must be "~.One subgoal Is produced: If the GOAL WFF
Is "A n B"1, the wff of the subgoal Is "B ",and "A "is added to It as an assumption or
sassumption. Whether It will be a sassumption or not, i.e. whether It will be added to the
simpset, depends on a test performed by the preparation mechanism; It will If It Is an
equivalence or equality, Possibly preceded by some universal quantifications. Op__Info Is nil.

<op...nam.> :- l IDED Ided

Example:

*****TRY USING mi;

Goal #1*1*1*1#1#2s1: w~z



The structure of GOAL. 31

In the last example, the antecedent w-xvw-y has been attached to the goal as a WFF to
be assumed. When the goal Is tried, or prepared, that WFF will be written unto the FOL proof.
The next example will show this.

3.9.1.6. Rule of CASES. 0

The basic idea behind this tactic can be expressed in the following tautology:

(Av B)D C) (AD C)A(BD C).

But the tactic can be used in several ways, depending on the arguments given by the user
In the optional op_Info.

If the argument Is an axiom or VL, this must be a disjunction, possibly preceded by some
existential quantifications; then, If the GOALWFF is, say," C ", and the axiom or VL Is, say," A
v B ", the following two subgoals are produced: "A C " and " B z C "; if that axiom or VL is
already among the facts of the goal being tried, it is removed from the facts of the sons. ...

If no argument Is given, the tactic searches for a disjunction, possibly preceded by .. .
existential quantifications, among the facts of the goal, and proceeds as above.

The argument can also be a WFF, say, "A"; this produces cases on the tautology "A v -A".

<op-name> :- CASES I cases

<op-info> :- OPT( VL WFF -

Example:

****TRY USING CASES;

1 w-xvw-y (1) S

Goal *1*1*1#1#1*2#1*1: w-xw(z

Goal .1*1*1*1a1#2*1#2: w-yzw~z

- .- %. X . .





The structure of GOAL. 33

If the GOALWFF simplifies to TRUE, this tactic acts like a matcher; If It simplifies to a WFF
other than the original one, one subgoal is produced.

An example of the use of this tactic Is the following: if the GOALWFF contains some sub-
expression SET(x), where x is a variable of sort SET, or of some less general sort, that sub-
expression will simplify to TRUE and the original WFF will simplify too.

At present, (opInfo> Is nil. S

<opname> := SIMPLIFY j simplify

3.9.1.9. Special tactics.

We have at present three other tactics. The first two, IMPLICATION and vI (or-
Introduction), constitute an exception to the rule that the subgoals are not only sufficient, but
also necessary conditions for the goal. The third one, INDUCTION, Is special purpose: it was _
designed for the work on Ramsey's theorem and it assumes and that the name of the empty
set Is the Individual constant %.

3.9.1.9.1. Disjunction rule: vl.

This tactic Is used to subgoal to one of the disjuncts of a GOALWFF whose main quantifier
Is 1v". It produces only one subgoal to the goal. The user has to specify "1" or "21, meaning
the first or second conjunct is to become the GOALWFF of the subgoal.

<op-name> :- vi I ORI I ori

<op-info> :- 1 I 2

Example:

•****TRY #1#1#1#1#1.1 USING D1;

Goal #1#1#1#1*=1#1: w-xvw-y

*****TRY USING vI 1;

2 w(z (2) _0

Goal *** .. e.w-x

. . . . ... . . . .



p.

The structure of GOAL. 34

3.9.1 .9.2. Implication rule. A

Often times there is an Implicational WFF, or perhaps a universally quantified implication
K; among the facts of the goal, such that it Is possible to prove its antecedent and that the
*'. consequent would make it easy to prove the goal. Or there may be a VL in the proof that has

those properties.

The op info for this tactic is optional. The user may specify a VL whose WFF is a
(possibly universally quantified) implication. If It is universally quantified, a list of
Instantiatlons for the universally quantified variables may be given.

If no op info Is given, the tactic attempts to find a VL with the required characteristics
among the facts of the goal. If it finds, it will still try to find some Instantiation for the leading
universal quantifiers that would cause the GOALWFF to match against the consequent; the
tactic will fail If this does not succeed. The reason for making this tactic so "careful" Is
because of its intended use in automatic theorem proving strategies: in those, we are
concerned with avoiding an explosion of the search space.

If the tactic succeeds, the antecedent of the implication becomes the GOALWFF of the
subgoal. When the goal has been proved, the unwinding mechanism will first prove the
consequent by calling the FOL command RESOLVE on the following two VLs: the just proved
antecedent and the fact from which this antecedent was extracted. After this, the unwinder will
attempt to match the goal against the VL that proves the consequent.

<op.name> :- IMPLICATION I implication

<op-info> := OPT[ <VL> OPT[REP[ <variable name>]]]

3.9.1.9.3. Induction rule.

This tactic was designed for our work on Ramsey's theorem. It Is assumed that the empty
set Is the individual constant > 4. It checks that the GOALWFF Is universally quantified and
that the variable bound by the first quantifier is of sort NATNUM.

It creates two subgoals: if the GOALWFF is Vi.PRED(I), then the subgoals are PRED(N) and
Yi.(PRED(i)=PRED(SUC(I))), where SUC is assumed to be the name of the successor function.

<opname> :- INDUCTION I induction

4 The reasons for this choice are only historical. The user wishing to use 0 Instead can change this tactic by redefining its

* components, as will be explained In the next section.

|4

.... . ". .....-...... .. . .... •.- --.. ...... .. .... ,-..-..'.,,".....-..-



The structure of GOAL. 36

3.9.2. Matchers. A

The matchers attempt to prove the GOALWFF directly, that is without decomposing the
goal, by using some decision procedures of FOL and the facts of the goal. We have four
matchers at present, the main one being UNIFY. Their functions correspond to the FOL
commands by the same names. We have an additional special purpose matcher that does not
exist as a FOL command, EQUNIFY, in order to deal with a special case that UNIFY cannot 0
handle.

UNIFY and EQUNIFY Inspect the QUANTELIMLIST of the goal and use It to reconstruct some
possible quantifier Introductions, from those eliminations recorded in that list. Skolemization is
achieved to a limited extent in this way.

3.9.2.1. UNIFY.

This is the main matcher. It uses the undocumented FOL procedure UNIFY written by
Weyhrauch and Chandra. This procedure attempts to match a WFF against an already
proved one, if both WFFs have the same structure of logical connectives after removal of the
leading quantifiers. The FOL command Is furthcer documunted in [Weyhrauch 19773, and the
algorithm will be documented in a forthcoming paper by Weyhrauch.

if the user specifies a VL, the matcher attempts unification only against this one; .9
otherwise it does so against each one of the VLs in the facts of the goal.

<op...name> :-UNIFY Iunify

<op_info> :- OPT[ <VL> -

The matcher does more than the FOL command: for each one of the VLs against which it
attempts unification, it loops trying to reconstruct the existential quantifier eliminations that -.-

were made previously In the goal tree.

For Instance, assume that we are unifying against a VL that says Vx.3y.P(x,y). The FOL
command will unify 3y.P(z,y) but not P(x,y) against it, and this is indeed correct. However, if
we have a subgoal P(z,w) and w is recorded in the QUANTELIMLIST as coming from some 0
application of the tactic 31 and being still free, then this matcher will produce unification
against the VL above.

Example,

*****ABANDON e I I # 1;

Goal .1*1*1*1: Yw.(w(ze(w-xvw-y)) abandoned.

p. ,.



e- -I

The structure of GOAL. 36

*****TRY USING UNIFY PAIR;

3 3z.Vw.(w(z,(w-xvw-y))

4 Vw.(w(zm(w-xvw-y)) (4)

S8*8* 0.

In the last example, It is unnecessary to specify "PAIR" In the call to UNIFY, because this
axiom Is already In the list of assumed facts of the goal. Also using RETRY would make It
unnecessary to abandon the goal. The following equivalent example shows a shorter way of
obtaining the same effect. S

Example:

*****RETRY #1*1.1.1 USING UNIFY;%

Goal eI#1#Im: Yw.(w(zi(w-xvw-y)) abandoned. .

3 3z.Vw.(w(z(w-xvw-y))

4 Vw.(w(z,(w-xvw-y)) (4)

3.9.2.1.1. EQUNIFY.

This Is a special purpose matcher designed to deal with the following special case that
UNIFY does not handle. Suppose the goal is "x=y" and y Is free In the QUANTELIMLIST; that Is,
this subgoal was part of a goal "3y.(x=yAP(x,y))". Then the matcher UNIFY will fall on this
equality; the user can match It by calling EQUNIFY.

<op-name> :- EQUNIFY I equnify .-

Now we shall start up a new example In order to show the use of this matcher. The
following dialog shows also the effects of two matching attempts that failed because of
user's error. See also the explanation after the example.

•S . "



The structure of GOAL. 37

Example:

****DECLARE PREDCONST P 2;

*****DECLARE INOCONST X~;

*****AXIOM REFL: Yx.P(x,xh,

REFL: Yx.P(x,x)

****GOAL 3x.(x-NAP(X,%));

Goal *2: 3x.(X-)AP(XX~))

*****TRY USING 31,

Goal *2.1: X->.AP(X,>)

*****TRY USINC Al;

Goal *2s1e1: x-N
Goal #2#1#2: P(x,))

***TRY USING EQUNIFY;

The wff of this goal is not an equality.

****TRY I USING EQUNIFY;

3 3x.x->)

4 x-% (4)

*****TRY USING UNIFY REFL;

No unification.
The tactic UNIFY can't be applied to goal
Goal s2#1e2: P(x,.)

*****TRY USING REWRITE;

Goal .2.1*2.1: P(,\

*****TRY USING UNIFY REFL;

5 P(>,,\)

6 P(x,%MuP(>,,) (4)

7 P(x,%.) (4)



•.- :-:......-;... ... . .. : .... ...... % . •. . .. ...- . - . --.- - r-

S

The structure of GOAL. 38

8 x-)AP(x,),) (4) " .

9 3x.(x XAP(x, .))

In the first call to EQUNIFY, the default nextgoal was goal #2#1#2, whereas the user
wanted to apply the matcher to goal #2#1#1; the next time he does this correctly. EQUNIFY
recognizes the fact that the variable x in the goal x-)\ can be matched against any term, so it
matches it with x itself.

As the next call to UNIFY fails, the user recognizes that he must first rewrite the goal. He
could have said: "TRY USING REWRITE 4;", that is stating explicitly that the fact that x-%.
must be used to rewrite the goal. But this was unnecessary because the goal structure will
automatically use a fact proved In one branch of the goal tree in order to fertilize the sibling
branch.

After the last call to UNIFY, we can see the FOL proof being produced by the unwinding
mechanism.

3.9.2.2. TAUT and TAUTEQ.

These two matchers use the FOL commands by the same names. They take any number of
VLs as optional arguments. They attempt to prove that the GOALWFF follows tautologically
from the collection of facts attached to the goal plus the VL-list specified by the user.

The FOL command TAUT decides ground tautologies, while TAUTEQ adds the rules of
equality. One should bear In mind that TAUTEQ is much slower that TAUT.

Using the op name TAUTO the user can call both matchers at the same time. In this case,
TAUT is Invoked first and the TAUTEQ is Invoked If TAUT failed.

<op-name> :- TAUT I taut I TAUTEQ I tauteq I TAUTO I tauto

<opjnfo> :- OPT[ <VL-list> -

We shall rehearse the last example once more In order to show the use of TAUTEQ.

Example,

***TRY USING Al;

Goal .2-1.1: x--

i%
-- - . .. -. ~ -. . . . . . -. -



* .,..-.- ° "

The structure of GOAL. 39

Goal *2#1#2: P(x,>)

*****TRY I USING EQUNIFY;

3 3x.x-.,

4 x-h (4)

****VE REFL ); 0

5 PMIX)

*****TRY USING TAUTEQ 1;

6 P(x,>) (4)

7 x-AP(X,X) (4)

8 3x.(x-=AP(x,,))

..-..- . .

The command I'VE REFL )>", after using EQUNIFY, Is - FOL command. The call to the matcher
TAUTEO Indicates that the last line of the proof must be used; of course it is also necessary
to use line 4, but GOAL will do that in any case.

3.9.2.3. MONADIC.

This matchers uses the FOL command by the same name. Its syntax looks the same as .-.. -

that of TAUT and TAUTEQ, but, unlike these, it does not attempt to match against the whole
collection of facts attached to the goal. There are two sets of reasons for this difference; we
shall discuss them below in this section.

If the user does not specify a VL-list, the matcher attempts to prove that the WFF is TRUE
by Itself. Otherwise It tries to prove that it follows, by the MONADIC decision procedure, from
the conjunction of those IVLs.

<op_name> := MONADIC I monadic

<op_info> :- OPT[ <VL-Iist> "

The FOL decision procedure MONADIC was programmed by Bill Glassmire. Its name refers
to the monadic predicate calculus. The pure monadic predicate calculus Is known to be a
decidable theory [Mendelson 1964]. However, since FOL deals with theories other than the
monadic predicate calculus, the actual implementation of this command makes It into a decision

S.-.-,-

. . . . . . . . . . . .. . . . . . . . .*.* * . . . . .. * *.*. .*,** . . .



The structure of GOAL. 40

Procedure for WFFs in universal-existential prenex normal form6.

Thus, if the WFF being decided does not reduce to that form, MONADIC recognizes it falls .-

out of its scope and informs the user accordingly. This Is the first reason why we do not wish
to attach the whole list of facts of tile goal to the VL-list given by the user. For it is likely -.

there will be WFFs, among the facts, that do not reduce to universal-existential prenex form.

Fortunately, if A and B reduce to that form, so does AAB. Thus it would be theoretically.-
possible to keep track of which facts do reduce to it, and always add those facts to the I/Ls
given by the user when calling the MONADIC matcher. Doing so would greatly enhance the
power of this matcher, as well as the power of automatic theorem proving strategies like
LOGIC. This could be done easily if we were not running up against the physical limitations of
our machine. MONADIC uses an enormous amount of computing resources, and it often causes
LISP to run out of free storage. Thus we found that, if the list of those facts that do reduce to -
the desired form is passed to MONADIC by default, the automatic theorem proving strategies
tend to abort most of the time for that reason.

Now let us rehearse the last example one more time.

Example:

*****GOAL 3x.(x->.AP(x,>,));

Goal u2: 3x.(x-AP(x,X))

*****TRY USING MONADIC;

The MONADIC command decided that this formula is not valid.

*****TRY USING MONADIC REFL;

3 3x.(x->,AP(x,%)) -

6 Bill Glassmire's implementation of MONADIC has not been documented and I am not familiar with it. Richard Weyhrauch offered --

the following commentary: "MONADIC was Implemented by Bill using Qulne's method of reducing monadic sentences to sentences
of the form YVYY3333 called variously "universal-existential', "AE", or "Y3,. The decision procedure for these was well
known In the thirties. MONADIC actually uses the more general decision procedure to decide Y3 formula that It has found.
Function symbois are handled In some reasonably but ad hoc way. I am not sure how., (Personal communication).

.. ..........

.-:..-.. . .
. .. .o . ,.-.....-:

.. _. ... _.... =.=.,...,.,.w...... "., .



The structure of GOAL. 41

3.9.3. Strategies. .

The strategies are called using the same syntax as the tactics and matchers, by the TRY
command. They effect calls to tactics and/or matchers. They may be very complex, or quite
simple. From the point of view of the GOAL code, any routine that after decomposing a goal "
may attempt to either decompose, or match, any of the subgoals it created, is to be classified 0
as an strategy. The reason for this is that calls to tactics and matchers are mediated by one
master routine which can be applied only to untried goals, thus being impossible to mediate
calls to entities that call tactics through the same master routine.

At present we have three strategies, only one of which Is a theorem prover. It is very
easy to add others. We have not done so because one of our alms was to develop one
powerful theorem proving strategy within the context of FOL and GOAL.

3.9.3.1. LOGIC.

This is our automatic theorem prover. As It will be described In detail In a special section,
here we shall only present Its syntax. The optional op info field begins with the word PLUS
and serves to add new elements to the FACTS of the goal; when using this switch, the user
does not have control over the assume/sassume option; instead, the prepare mechanism will
decide which VLs go Into the simpset In the same manner It decides for VLs that are
generated by the goal structure.

<op-name> :- LOGIC I logic

<op-info> :- OPT[ PLUS <VL-list> ]

When called on a subgoal (i.e., on a goal that is not a top level one), If LOGIC succeeds In
proving it, it will backup further in the goal tree, attempting to prove all of its relatives: ie.,
any unproved descendants of any one of its ancestors.

3.9.3.2. ELIMINATION. 0

This strategy does not attempt to prove anything, I.e. it does not call any matchers. It tries
to recursively decompose the WFF using the following tactics: Vi, 31, Al, ,1, 01, and CASES.

There can be no conflict of priorities between the first five tactics above, for each one of
the can be applied only to WFFs whose main quantifier is the one indicated by the name of
the tactic. However, there may be a conflict with cases, for both CASES and one of those
tactics can be applied to the same goal. This conflict Is always resolved to the disadvantage
of CASES.

... . .............. . .......... .- .......... .. .....

... .-.'.... ...... :..:. ..- ................ ..-.......- , ..... :.-.... .... - . .. . .. .. ,.: .. .. .

-7.• o ° • o , .o . o . • . -" . . . " o .. o o ." . . • . o . o ° - . . . . .- -. . . . -, . .. .. . . - . o ." " - • .° .. .. ° o - . . - .-7



The structure of GOAL. 42

ELIMINATION does not call the tactics until It has checked that they can be applied, that
is by looking up the leading quantifier of the WFF, or by calling a routine that checks for the
existence of a disjunctive assertion in the factlist.

The optional op info serves to limit the depth of the recursion. If used, elimination -- -

proceeds at most to the maximum depth indicated, down the tree, starting from the goal.
Otherwise it decomposes it as far down as possible. ID

<op_name> :- ELIMINATION I elimination

<opinfo> :- OPT[ <DEPTH> <natnum> ]

The following examples are self-explanatory; again we are rehearsing some of the

previous examples. S

Examples:

*.***ABANDON * 1;

Goal #1: Yx y.3z.(Yw.(w~zu(w-XVW-y))AVz 1.(Yw.(w(z 1.(W-XVW-Y))DZI1-Z))%
abandoned.

*****TRY USING ELIMINATION;

Goal #1#1: 3z.(Yw.(w(z(w-xvw-y))Vz 1 .(Yw.(w(z 1(w-xvw-y))az 1 -z))
Goal #1u 1 #1: Yw.(w(z(w-xvw-y))AYZ 1.(W.(w(z I.(w-xvw-y))Dz 1-z)
Goal el#1llc: Yw.(w(zz(w-xvw-y))
Goal #el1.#12: Yz 1.(Yw.(w(z 1(w-xvw-y)) z 1 -z) '--

Goal *1*1*1*1#1: w(z-(w-xvw-y)
Goal #I*1s1i#.Ie: w(zD(w-xvw-y)
Goal #1#1#11#12: (w-xvw=y)3w(z
Goal *1#1*1*1#1#1#1: w-xvw-y .
Goal #1#11#11e2#1: w(z
3 w-xvw-y (3)

Goal *#11#1i.i#2#i#i: w-xow(z
Goal #1#11*1#1#2*1#2: w-y:w(z
Goal #11#1#112#1*1#1: w(z
Goal *1#1#1*1#1*2#1#2*1: w(z
Goal #1.1 1#2#1: Yw.(w(z1n(w-xvw-y))nz1z
Goal *11#1#21#1: zl-z

*****RETRY USING ELIMINATION DEPTH 4;

RETRY USING ELIMINATION DEPTH 4;
t A

A goal number reference is required here.

*****RETRY #1 USING ELIMINATION DEPTH 4;

Goal *i: Yx y.3z.(Yw.(w(zu(w-xvw-y))AYZ1.(Yw.(w(z 1(w-xvw-y))Dz1-z))'

S

, ,i...................................... ,. -n . .l...l..... . .. . I



The structure of GOAL. 43

abandoned.

Goal .1.1: 3z.(Yw.(wzu(w-xvw-y))AYzl1.(Yw.(wz 1a(w-xvw-y))mz 1 uz))
Goal *1*1*1: Yw.(w~zu(w-xvw-y))AYz 1.(Yw.(w(z 1u~wuxvwu-y))Dzl1 z)
Goal #1*1*1*1: Yw.(w(z(w-xvw-y))
Goal #1.1.1*2: Yz 1.(Yw.(wz1 .(w-xvw-y))Dz I-z).. -

Goal *1.1.1.1*1: wzx(w-xvw-y)
Goal .1*1.1.2#1: Yw.(w(z 1n(w-xvwmy))3z1-z

3.9.3.3. IFCASES.

This is a special purpose strategy for conditional expressions. Conditional expressions
[McCarthy 1963] are legal In FOL: there are both IF-WNFFs and IF-terms. There are two -

special simpsets for conditional expressions: WFFIFTREE and ARGIFTREE. The first deals IF-
WNFFs, the second deals with IF-WNFFs and IF-terms.6

In the present Implementation, the user must specify a WNFF as argument to IFCASES. First
the strategy calls CASES on this WNFF and zI on both subgoals; then It calls the tactic -

REWRITE on both grandsons of the goal, making sure to Include In the simpset: WFF1FTREE,
ARGIFTREE, and the antecedent of the just effected DI, In each case (that is, the WFF given-
by the user and its negation, respectively).

<op.name> :-IFCASES Iifcases

<op-info> :- <WFF >

A variation of this strategy has been used In the example of the Takeuchi function, that-
Is presented In a separate chapter.

0



44

4. EXTENDING GOAL.

While the previous chapter described GOAL from the user's point of view, the purpose of
this chapter Is to Introduce the reader to the programming of new operative elements. At
present this cannot be done without considering the FOL code. However, the documentation
in the following sections should be very helpful to any one wishing to extend GOAL. We shall
look at some Internal aspects of the GOAL implementation; in particular, at the system that
controls the activity of the operative elements.

It is always difficult to present a total system in a linear manner, and even more difficult
for the reader to find his way through the maze. Necessarily, this is only a partial description;
a user will still have to look at the code when trying to program extensions to GOAL. We shall
follow an unconventional approach, trying to present the material In a sequence intended to
make it easy to read. Thus we shrill circle several times over some aspects, gaining depth
each time. We shall begin with some general information about the GOAL implementation.

The strategies are easier to program than the other two types of operative elements, and
they are also, expectedly, the most frequent and useful type of extension that users will
want to make. Strategies are easier than matchers and tactics because the latter interact
more with the FOL routines; hence more knowledge of the FOL code is required to program
these. Strategies are almost entirely contained in GOAL; they are not concerned with
unwinding nor with updating the goal structure. But they perform nevertheless some operations
that require some knowledge of the FOL implementation: for example, a knowledge of the
internal representation of wffs in FOL is needed In order to determine which is the leading
quantifier of a wff.

Parts of goals can be accessed using MLISP macros that bear the same name as those
parts. Parts of WFFs, and VLs, are accessed using MLISP macros defined In the FOL rode.
Readers desiring to do their own strategies should look at the MLISP code of thp, existing
operative elements in order to get acquainted with these macros.

4.1. The three components of the operative elements.

With each tactic there are three associated routines: the parser, the executer, and the
unwinder. The other two types of operative elements do not need an unwinder, but do have a
parser and an executer.

The executer performs the required actions; In the case of tactics, It creates subgoals; for
matchers, it calls the FOL decision procedures; and in the case of strategies, It calls other
operative elements. The parser parses user's calls (by the TRY command) to the operative
element. And the unwinder, that Is automatically called when all sons of a goal have been
proved, produces the FOL forward proof of that goal, from the VLs that prove Its sons.

In order to program a new operative element, the user has to supply the executer, the
e

. . . .-. .o. .

i - .G °i - i .. I .' '-' -.-- -.. .-- --.--.. .-.. . . . . .".-.. ." . : , -. - L.I i . - - . . i



7% v ~ .. w r r-'- -rr l ..

Extending GOAL. 45

parser, and the unwinder if the element is a tactic. It is also necessary to provide a name for .-
the atom that will represent the new element, and to call a routine that Introduces this
element to the system; there Is one such routine for each type of operative element.

4.2. The internal representation of the operative elements. "

The components of an operative element, that is the routines mentioned in the previous
section, are stored in the property list of a LISP atom that represents the operative element.

The name of this atom will be referred to as the standard name1 of the operative element.

The names of operative elements are stored in the global variable OPELEMLIST. The global
variable STRATEGYLIST Is a subset of OPELEMLIST. The routines that Introduce new operative
elements will refuse to Introduce an element whose standard name Is already in this first list.
However, they will not check whether the names of the associated routines provided by the
user conflict with other Identifier names used in the system. It is the user's responsibility to
make sure that no names are duplicated. .

4.3. The control system.

In this section we shall cover the structure of the subsystem of GOAL that controls the
activity of the operative elements. Tlis system Is the core of GOAL, as well as Its only
extensible part. It is entered by the TRY command.

The three routines associated with each operative element do not communicate with each
other directly. They are managed by master routines that control the operations of: parsing, APO
execution, and unwinding. These master routines are: TRY which controls parsing; TRYING
which controls execution of both tactics and matchers, TRYCMPL which controls execution of
strategies, and UNWIND, that is called either from TRYING or recursively by Itself, and which
controls unwinding.

The only one of these master routines which must be called direct!y by the user Is TRYING:
this Is the case In user programmed strategies. The others are mentioned because, in order to
program new operative elements, It Is helpful to have a general understanding of the control
structure. TRYING will be dealt with in a special section. The basic conventions to be
observed will be described In the sections that explain how to progr&m the different types of
operative elements.

The only operative elements that can call other operative elements, or themselves
recursively, are strategies. However, when they call a tactic or a matcher, the call must -

it Ii a standard name from the point of view of the system, but it does not need to be the same name with which the tactic Is

Invoked by the user via the TRY comnand.

..........

'.*.* *.•.. . . .



Extending GOAL. 46

always be routed as a call to TRYING. We shall later see In more detail how to do this. Calling
any tactic or matcher directly, without mediating the call through TRYING, will always result in
a fatal error. On the other side, a strategy calling another strategy can, and should, make the
call directly to the executer; thus the executer of a strategy can recursively, directly call
Itself. Strategies can also call PREPARE.

The hierarchical structure of this system is shown in figure 1. The arrows Indicate
possible calls from one routine to another; they do not Indicate calls that will always occur.
Possible recursions are Indicated accordingly.

4.3.1. FIGURE 1: Structure of TRY.

,-.j TRY

I OPELEMREF I I TRYCMPL

PARSERS Executers of 1 I
"I I I STRATEGIES

~~ TRYING I

Executers of I I PREPARE I
I TACTICS and I I MATCHWORK I

MATCHERS I

41, ,I I .. - -.

IUNLJI NO -

UNWINDERS I

. . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .

• . - . . . . , , . . . . . . -



Extending GOAL. 47

4.4. Types of variables.

The reader must now become aware of the important distinction between the two following
types of variables that are used by the operative routines of GOAL: goals and threads.

A variable of type goal Is a pointer to a goal; threads are described in the next section.

The goal structure is generally updated using the LISP functions RPLACA and RPLACD. Thus
any local variables of type thread or goal will undergo the same updates.

4.4.1. Threads. 0

Most of the time, the GOAL routines are operating on some goal. However, they often
need to be able to find Its parent, or to detect whether it is a top level goal. Sometimes it Is
also necessary to determine whether a goal Is an ancestor of another.

For these reasons we have chosen threads as the most common way of pointing to goals.
Many routines pass threads to each other as arguments, but some take just a goal as
argument.

The thread associated with a goal is a list whose car is the goal, and whose cdr is the
thread of Its parent. Thus the goal of a thread is the car of the thread. The last element of a
thread is always the global variable GOALLIST, which Is the list of top level goals.

4.4.2. The three defaults.

The global variables that identify the three defaults discussed in chapter 3 are called:
SASTGOALTHREAD, NEXTGOALTHREAD, and CURRENTGOALTHREAD.

The user should never assign values to these three variables. They are automatically
reset by the system. However, users may want to use local variables to keep track of S
threads in a strategy 2.

A thread is empty If it is a list of only one element, namely GOALLIST. The macro3

EMPTYTHREAD(THREAD) checks whether a thread is empty. The cdr of the thread of a top
level goal is empty.

The routine SUBTHREAD(THR1,THR2) checks whether the goal of THRI is an ancestor of the
goal of THR2. This is equivalent to THR1 being equal to an end segment of the list THR2.

2 For Instance, the strategy LOGIC uses a queue of threads in order to implement a breadth first search.

3 Here the word macro refers to & MLISP macro. A number of macros have been used to name the different parts of goals, and
for some other pu-poses, They are expanded when the MLISP code is translated Into UCI-LISP. •

t7...



* Extending GOAL. 48

4.4.3. Status checking.

A proved goal has a structure totally different from that of an unproved one. Trying to
access parts of a proved goal as if it were unproved will result In fatal errors. Also, a tried
goal cannot be tried again by any operative element unless it has previously been abandoned.

Thus, when programming strategies it may be necessary to check the status of a goal.
There are the following status checking predicates: the MLISP macros PROVED and UNTRIED,
and the function TRIED. All of these take only one argument, of type goal.

4.4.3.1. Abandoning.

Abandoning goals can be done from within strategies using the function ABNDN(THR,PSWT).
The first argument Is a thread. The second a printswitch: if this switch is NIL, then no
message will be printed when the goal is abandoned.

4.5. Rules for programming new operative elements.

Now we shall outline the conventions for programming the different components of

*" operative elements. This description cannot be exhaustive,

We shall begin with the r -siest, namely the parsers.

In each case, we shall end the section with an example.

4.5.1. Parsers.

Parsers take only one argument of type goal. The rules for the returned expression will be

described below.

Let us recall that the syntax of the TRY command is:

TRY [OPT ALT( <goalref> I natnum ] ] USING <op-name> <op-info>

The parsers parse (op nat,e> and (opInfoX. The rest of the above syntax Including
the semicolon is not parsed by the parser. Thus it is most important that the higher level
parsing routines expect a semicolon, after the parser returns control.

The syntax for the (opname> and the (opinfo> is defined by the user in the act of

' . i~a



.Extending GOAL. 49

programming the parser. The (op_name) is usually an alternative of twc words (i.e., upper or-
lower case). The <op__Info) may be more Involved; for Instance, in the chse of the REWRITE0
tactic, the (op__Info> may recognize a FOL expression for a slmpset and call the FOL routine
SIMPSETEXPR that constructs the Internal representation of a slmpset.

4.5.1.1. The expression returned by parsers.

1) If the parser does not recognize the (op__name>, then it must return NIL.

2) If the parser recognizes the (op_name), it proceeds to parse the <op__info).

3) If the scanned expression does not conform to the syntax for the (op__info), the
system must pop up to the top level of FOL, while normally Issuing some error message. There
are various ways of doing this, which will be illustrated In the examples; the FOL routine
ENDM Is very useful for poping up.

4) If It is detected at parse time that the operative element cannot be applied to the goal,
then return a LISP atom. This atom will be considered to describe the name of the element
and will be printed in a message by the TRY command.

5) Successful parsing: a list must be returned; the first element must be the standard
name of the operative element (i.e. the atom that represents this element Internally). The
following elements of the list are going to be the additional arguments taken by the executer,
If any; this point requires some further explanation. -

* . ..

We shall see that the first two arguments of any executer are: the thread of the goal, and
a prints witch. Some executers take additional arguments; these additional arguments are to
be passed In the list returned by the parser, and must be in the same order.

Thus, If the executer takes only the two standard arguments, the parser must return the
standard name consed with NIL. If the executer takes, say, four arguments, the parser must
return a list of three elements; the second and third elements of this list will be the third and

.- *. -..

formthargmes taser, bythe eoxneto sulr

4.5.1.2. Expesio eudb parsers..

We )sfheall e no oes ot te coie ofserlparers ahnd tmmt hetunmI..--.



. .7

Extending GOAL. 60

4.5.1.2.1. Conjunction rule: Al.

EXPR PARSAND(G);
IF CHECKI('AI,'ai,'?A) THEN IF MAINSYM(goalwff(G))-'?A THEN <'?Ai> ELSE IAI

The FOL routine CHECKI checks for the occurrence of the token: "Al" or "al" or "Al". The
FOL MLISP macro MAINSYM returns the leading connective of a WFF. The GOAL MLISP macro
goalwff returns the goalwff of a goal. The standard name of this tactic is the quoted atom

Thus this parser returns: NIL if the <op name) Is not recognized, the quoted atom "Al" if
the tactic cannot be applied to the goal, and the standard name "Al" consed with NIL If It can.

The <op Info> for this tactic Is nil.

In the second case, the TRY command will issue the following message:

"The tactic Al can't be applied to goal

and then it will display the goal.

Notice that there is no check for a semicolon in this parser; the command Is expected to
end here, and the check for the ending semicolon is performed at a higher level.

4.6.1.2.2. Disjunction rule: vI.

EXPR PARSOR(G:SP);
IF CHECKI('ORI,'ori,'?v) A (SP*-NATNUM#O) THEN

IF MAINSYM(goalwff(G))='?v THEN
IF (SP-1) v SP-2 THEN <'?vl,SP>
ELSE PARSORMSGO.

ELSE '?vl . .

SP Is here a local variable to hold the <op info>, which must be 1 or 2, depending on
which one of the two disjuncts will become the new subgoal. NATNUM# Is a FOL routine that
expects a natural number and pops up to the top level, while issuing an error message, If
anything else is encountered.

Thus this parser first checks that the <op info> is a natural number. If It Is not, It will
pop up to the top level and the error message will be the standard FOL message that
Indicates the type of token expected, with an arrow pointing to It. However, If a natural
number Is encountered, this parser will perform a second check to determine that It Is 1 or 2; ---.

,S".% "

:....



V 7

Extending GOAL. 51

this check comes after examining the leading quantifier of the goalwff; admittedly, the order
of this checks could be somewhat different.

In case of successful parsing, the returned expression is a list of two elements. The
-second element, SP, will be passed as the third argument to the executor of this tactic, which
takes exactly three arguments.

PARSORMSG Is a routine that prints an error message, specifically for this parser. The user
can add such routines to enhance the quality of error messages In the parsers. We can learn
something from the code of PARSORMSG.

EXPR PARSORMVSGO;
BEGIN TERPRIO;.-
PRINC("The argument to PARSOR must be I or 2.");
ENDM(h,
END;

We see that PARSORMSG does a carriage return, prints a message, and then it calls the
FOL routine ENOM.

ENDM Is a FOL routine that ends scanning of a command line and pops up to the top level
of FOL.

4.5.1.2.3. The rule of CASES.

This Is a more complicated parser.

EXPR PARSECASES(G);
BEGIN NEW X;
IF TKUC(CASES,'cases) THEN

IF TK-'?; THEN IF X#-EXISTORASSU(G,'?v )THEN RETURN(CCASES PX)
ELSE CASEPARSEMSG3(" disjunct ion",CASES)

ELSE IF Xo--WFF(NIL) THEN RETURN(<'CASES ,X>)
ELSE IF X4-.VL**(NIL) THEN IF MAINCONN(WFFOF(X),'?v ,NIL,T)

THEN RETURN(<CASES PX)
ELSE CASEPARSEMSG2(CAR X,'?v)

ELSE CASEPARSEMSG I('CASES);
RETURN(NILh,
END; .

The FOL routine TK20 Is used to parse an alternative of two tokens. .

The global variable TK also belongs to FOL; at any time during command scanning, it



Extending GOAL. 62

contains the next token in the input stream; thus the condition "1 IF TK='?; " checks whether
the next token is a semicolon but it does not perform scanning of this token; this is important,
because scanning would advance the scanner, and we know that the parser must stop short -. -

of the command closing semicolon.

This check for the semicolon is done because the (op_info> for this tactic is optional. If
no <opInfo> is given, the parser calls EXISTORASSI to determine whether among the facts
of this goal there Is some disjunction. EXISTORASSU Is rather Involved and will not be
presented here.

WFF* and VL~e are FOL parsing routines that recognize WFFs and VLs, respectively.

4.5.1.2.4. The tautology matcher. 0

We also show the code of the parser that combines the TAUT and TAUTEQ rules of FOL,
because the code of the corresponding executer will be shown in a later section.

EXPR PARSETAUT(G);
IF TK2'TAUT, 'taut ) THEN RETURN( <'TAUT, 3, VLLISTo(N°L) NIL>
ELSE IF TK2e('TAUTEQ , 'tauteq ) THEN RETURN( < 'TAUT , 4, VLLISTe(NIL) ,NIL>)
ELSE IF TK2e('TAUTO , 'tauto ) THEN RETURN( < 'TAUT, 5, VLLISTo(NIL) ,NIL>);

4.5.1.2.5. The elimination strategy.

The following is another example of an interface between a parser and an executer. The
executer of this strategy will be shown later. P

EXPR PARSELIM(G:DEPTH); IF TK2D('ELIMINATl0N,'Ilimination) THEN
<'ELIM, IF TK2e('DEPTH,'depth) THEN

IF DEPTH+-NATNUM@O THEN DEPTH ELSE ENDMO ELSE 1000 ;

4.5.2. Executers In general.

The first argument of any executer is the thread of the goal, and the second argument Is a -

printswitch. Additional arguments are optional. If the printsw/tch Is NIL, printing of the
generated subgoals would be inhibited.

jai .



Extending GOAL. 63

The executers for the three types of elements perform different functions and will be -0
described separately. However, the executers of tactics and matchers have more in common
than those of strategies. The later are safer, and in a sense easier, to program, because they
do not interact with FOL.

4.5.2.1. The master routines. -

Calls to the executers of tactics and matchers are mediated by TRYING, and they cannot
be called directly by any other routine. The MLISP code of TRYING follows. When the tactic Is
called from the TRY command, the whole expression returned by the parser will be passed as
the argument X to TRYING. The conventions for this expression were outlined In the previous 9
sections.

EXPR TRYING(X,PSWT,THREAD,PREP); .
BEGIN NEW OLDVL,REAS,G;
G - goal(THREAD);
IF PREP THEN PREPARE(G,PSWT);
IF REAS +- APPLY(GET(CAR X,'EXECUTER),THREAD CONS (PSWT CONS CDR X))

THEN IF REAS = T THEN MATCHWORK(THREAD,PSWT,CAR PROOF)
ELSE CURRENTGOALTHREAD ,- THREAD " -
ALSO udreason(G,REAS); .

RETURN REAS;
END;

The executers of strategies can be called directly by another strategy, or recursively by
Itself. Thus the user does not need to call TRYCMPL. The TRY, command, however, uses
TRYCMPL in order to mediate calls to the executers of strategies. The code of TRYCMPL
follows.

EXPR TRYCMPL(X,PSWT,THREAD:G,REAS);
IF REAS+-APPLY(GET(CAR X,'EXECUTER),THREAD CONS (PSWT CONS CDR X))

THEN IF PROVED(G-goaI(THREAD))
THEN RPLACD(CDR G,'PROVED? ? BY? CONS REAS)

ELSE REAS;

The code of these two routines was given here only for ease of referenae. The user need -'-

not be concerned with this code, but looking at it may make It easier to understand the
conventions outlined in this chapter.

AD

. . ... . ..

. . . . . . , . .,

. . . . . . . . . ... . .



Extending GOAL. 64

4.5.2.2. The expression returned by executers.

The expression returned by executers of tactics and matchers Is of paramount importance.
It must obey the following rules. Failure to follow these rules will cause fatal errors.

1) NIL must be returned if the tactic could not be applied to the goal, or if the matcher - "
failed. In this case, nothing happens to the goal structure. It Is a "no-operation".

2) The LISP atom T must be returned If a match occurred; this condition applies to the
matchers and to some tactics that sometimes match a goal (i.e., REWRITE, SIMPLIFY).

3) In the case of successful subgoal creation by a tactic, the expression returned must be
the REASON: this expression is going to be stored as the goal REASON, by the master routine S
TRYING, and the unwinder of the tactic will use this information at a later time. (The user that
programs a new tactic has complete freedom to choose this expression, as long as it is
neither NIL nor T. The unwinder must be designed accordingly.)

In the case of strategies, the returned expression Is not of the same Importance. Only
minor errors will result from returning a different expression. However, In order for error S
messages to work properly, it is convenient to return NIL if the strategy did not achieve
anything at all (i.e., no tactic or matcher could be successfully applied), and otherwise a
quoted expression like the name of the strategy. This quoted expression will be used as
follows by TRYCMPL: if the goal was proved, It will append the information: "PROVED BY "
followed by the quoted expression, and the only effect will be its appearance when the user
displays the goal with the SHOWGOAL command.

4.5.2.3. Executers of tactics.

The executer of a tactic must update the goal structure by adding the newly created
subgoals, as sons to the goal being tried.

The addition of subgoals is accomplished by invoking the routine ADDSUBGOALS; the first
argument passed to this routine must be the thread of the goal being tried, and the second
must be the number of sons to be created.

Most of the parts attached to goals are passed down, hereditarily, to their sons which are
created by ADDSUBGOALS. But the goalwff must be updated, In every case, using the macro .- . ,
udgoalwff. Some tactics update other parts, for instance: the quantifier rules update the
quantelimlist, and the tactic D1 updates the factlist.

We shall see here Just two simple examples: the executers for Al and vI. ..

,

• .. .-.. ....................-...-......-.....-.. .... '.. '............'........-.-.'..+-.. .. '. - .+ -.... '. .- ...
' "+ ' -'' -~~. ... .. . . . . . . . . . . . . ...-. ..---".--m n " "I " ' " - " - " s..., "n ' " '



Extending GOAL. 5

EXPR TRYAND(THREAD,PSWT:G,W);
IF MAINSYM(W-goalwff(G4-gsoal(THREAD)))-?Ae
THEN ADDSUBGOALS(THREAD,2)
ALSO udgoalwff(son( I,G),LFANO(W))
ALSO udgoalwft(son( 2,G),RTAND(W))
ALSO (IF PSWT THEN PRINTDESC(THREAD)) -
ALSO RETURN(<'?AI )

EXPR TRYOR(THREAD,PSWT,SP:G,W);
IF MAINSYM(W'.-goalwt t(goal(T& 'EAD)))-'?v
THEN G.-AODSUBGOALS(THREAD,l)
ALSO udgoalwff(G,IF SP-l THEN LFOR(W ELSE RTOR(W)
ALSO (IF PSWT THEN PRINTDESC(THREAD))
ALSO RETURN(<'?vl ,SP>);

We shall see the unwinders of these two tactics in the section on unwlnders. The
unwinder UNWOR will use the information stored in the goal REASON by TRYOR.

4.5.2.4. Executers: of matchers.

The executer of a matcher must call some FOL decision procedure; If the procedure
decides that tile WFF of thle goal is TRUE, then we have a match. In this case the matcher
must add the WFF as a new VL to the FOL PROOF, and then return the atom T. At this point,
the last line of the PROOF must be the l/L that matched thle goal being tried.

These operations are done by calling the FOL routines that create Ins. This requires some
understanding of the FOL code that goes beyond the scope of this chapter4.

For the sake of completeness we show here the code of a matcher, that combines both
TAUT and TAUTEQ. It attempts to match thle goal WFF against the list of facts of the goal plus
any list of VLs given by the user when calling this matcher using the TRY command. The user
given l/Ls are passed in thle parameter VLLIST. TAUTMNG is a FOL routine that decides
tautologyhood, and NEWSTEP is the FOL routine that creates a new VL; care must be
exercised when using NEWSTEP, because there are several ways of Invoking It depending on 0
the expressions returned by the different FOL decision procedures.

EXPR TRYTAUT(THREAD,PSWT,A,VLLUST,TEST); VEST to see if apply EQUTEST2 %
% A is 3 or 4 depending on whether TAUT or TAUTEQ is to be used. However,

if A is 5 then both TAUT and TAUTEQ are tried. %
BEGIN NEW W,X,G,AL;

M-goalwff(G-goal(THREAD));
IF AL-facts(G) THEN ALD.-COR AL;

4 Admittedly this Is not an Ideal situation. But we shall elaborate on the remedies in the final chapter of this thesis.

e. . .--..

. . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



Extending GOAL. 66

IF TEST A (A-4) A (-EQUTEST2(W CONS AL)) THEN A4-3;
IF X*i-TAUTMNG(A, W,?*APPEND(AL,VLLIST)) THEN NEWSTEFkX)

ALSO RETURN(T);
IF PSWT THEN TRYTAUTMSG(A) ALSO RETURN NIL;

END,

4.5.2.6. Executers of strategies.

The executer of a strategy sequences tho calls to the executers of other operative
elements.

It calls the executers of tactics and matchers indirectly, but those of strategies directly.
In each case, the user must make sure that the appropriate arguments are being passed to
each executer.

4.5.2.5.1. Example: elimination.

EXPR TRYELIM(THREAD,PRINTSWITCH,DEPTH);
IF ?*GREAT(OEPTHO) THEN

BEGIN NEW S,DESC,G;
IF ((S'-MAINSYM(goalwff(G-goal(THREAD)))) (<'?Y ,'?3 ,'?A ,?D 15?u>)

TH-EN S'-GET(S,'TACTICALL)
ELSE IF S.-EXISTORASSU(G,'?v )THEN S+-<'CASES PS
ELSE RETURN NIL;

IF TRYING(S,PRINTSWITCH,THREADT)
THEN DESC .- REVERSE(desce nd ant s(G))
ALSO BEGIN

L; TRYELIM(CAR(DESC) CONS THREAD,PRINTSWITCH,DEPTH- 1);
IF DESC-CDR DESC THEN GO L;

END
ALSO RETURN('ELIM)

ELSE RETURN NIL;
END, 0

Notice that the strategy does not reset any of the defaults. For this particular strategy,
the calls to the executers of the five tactics: VI, 31, Al, DI, and @I, have been attached to LISP
atoms In order to make the code compact. The GOAL routine EXISrORASSL/ determines
whether a goal has a disjunction among Its facts.

First it Is determined whether elimination can be applied any further, and the appropriate .

calling expression Is assigned to the variable S. The appropriate tactic Is then called, and
TRYELIM calls itself recursively on the sons, thus expanding the tree depth first.

7I



Extending GOAL. 57

4.5.2.5.2. Example: LOGIC.

We also show here the code of LOGIC, without comments. This strategy will be discussed
extensively and a higher level description of its heuristics will be presented In the chapter on
automatic theorem proving.

EXPR TRYLOGIC(THR,PSWT,FCL);
BEGIN NEW THRQUEUE,G.THREAD,FAILQ,PASSPREP,S,RTEMP,N,I,SUC,TH1,OLFQ,LFQ;
G*.-goal(THREAD'-THR); PASS'- 1 ;OLFQ*'-O;
IF FCL THEN addonefact(G,'PROVED CONS FCL);
SRCH; IF MATCHSEARCH(THREAD,T) THEN GO MTCH;
IF T-(PREP4--TRYING(<'SIMPLIFYNIL>,PSWT,THREAO,NIL)) THEN GO MTCH

ELSE IF PREP THEN PREP+-NIL ALSO GO DS;
IF simpsetaddflag(G) THEN

IF T-(PREP-TRYING(<REWRITE,T,NIL,<"NIL,NIL>>,PSWT,THREAD,NIL)) THEN GO MTCH
ELSE IF PREP THEN PREP-NIL ALSO GO DS;

GRIND;m PREP-NIL;
IF -(X'-TRYING(<'SIMPLIFY,NIL>,PSWT,THREAD,NIL)) THEN
IF QUANT(S*-MAINSYM(goalwff(G)))

THEN TRYING(GET(S,'TACTICALL),PSWT,THREAD,NIL)
ELSE IF simpsetaddflag(G)

A (X TRYING(<"REWRITE,T,NIL,<NIL,NIL>,PSWT,THREADNIL))
THEN ( IF X-T THEN GO MTCH)

ELSE
(IF S - '?:) THEN PREP4-T ALSO St-<'?:)I> ~

ELSE IF S (<? ?E> THEN S'-GET(S,'TACTICALL)
ELSE IF S.-EXISTORASSU(G,'?v ) THEN S'-'CASES ,S>
ELSE FAILQ#-THREAD CONS FAILQ ALSO GO L2

ALSO TRYING(S,PSWT,THREAD,NIL)
ELSE IF X-T THEN GO MTCH;

DS; N.-LENGTH(D-descendants(G)); l+-1 SUC*-NIL; TEMP*-NIL;
LUP; S.-son(I,G);

IF MATCHSEARCH(THI+-S CONS THREADPREP) THEN SUC'-T
ELSE TEMP'-TH1 CONS TEMP;

IF ?*GREAT(N,i) THEN 1k-I+l ALSO GO LUP;
IF SUJC THEN IF ?*GREAT(N,2)

THEN THRQUEUE4-?*APPEND(TEMP,THRQUEUE)
ELSE GO MTCH

ELSE THRQUEUE-?*APPEND(THRQUEUE,TEMP);
L-2; IF THRQUEUE THEN THREAD+-CAR THRQUEUE ALSO THRQUEUE4-CDR THRQUEUE

ALSO IF UNTRIEO(G'-goal(THREAO)) THEN IF ATOM(addedfacts(G)) THEN GO GRIND
ELSE GO SRCH

ELSE GO L.2;
TERPRIO;
IF NULL(FAILQ) THEN PRINC("Strange behavior of LOGIC: failqueue is empty!")

ALSO RETURN NIL;
PRINC("We have a failqueue of length: ");,PRINC(LENGTH(FAILQ));
TEMP.-NIL; PASS'-PASS+I;
L3; IF FAILQ THEN THREAD+-CAR FAILQ ALSO FAILQi-CDR FAILQ

ALSO (IF UNTRIED(G+-goaI(THREAD))
THEN IF addedfacts(G) THEN THRQUEUE#-THREAD CONS THRQUEUE

ELSE TEMP+-THREAO CONS TEMP)





Extending GOAL. 6

As examples, we show the code of the unwinders of the tactics: Al, and vi. In these
examples, the macro vlofpg accesses the VL of a proved goal. The second example
Illustrates the use of the goal REASON, which Is accessed with the macro reason(G), In order
for the unwinder to obtain the unwinding Information.

The rather Incomprehensible code of both unwinders Is due to the FOL system. We shall
elaborate more on this problem in the conclusion of this thesis.

EXPR UNWAND(G);
BEGIN NEW X,V;
DEPLIST.-DEPOF(X'.-vlofpg(son( 1,G))) UNION2 bEPOF(Y4-vlofpg(son(2,G)));
RETURN (<goawff(G),THISLINE,'AI? <'LIST&,CAR(X),CAR(Y)>>>h6
END,

EXPR UNWOR(G);
BEGIN NEW X,W;
DEPLIST'-DEPOF(X4.-vlofpg(son(lI,G)));
W.-goalwf fG);
RETURN (<goalwff(G),<THISLINE,'v? ,

IF CADR(reason(G))-l THEN <'01&, NUMOF(X),'WFF& CONS RTOR(W)>
ELSE <'Ol&,'WFF& CONS LFOR(W),NUMOF(X)>>>);

END;

JPr..

4.6. Introducing a new element to GOAL.

After programming a new operative element, the user must Introduce it to the system and
then load the new routines.

The Introduction Is accomplished by calling a GOAL routine that makes the components of
the element known to GOAL.

The following three examples are self-explanatory.

NEWTACTIC ('?A , 'PARSAND ,'TRYAND ,'UNWAND)

NEWMATCHER( 'TAUT ,'PARSETAUT , TRYTAUT)

NEWSTRATEGY( 'LOGIC -PARSELOGIC ,'TRYLOGIC;





Extending GOAL. 61

<'REWRITE,T,NIL,<<NIL,NIL>

<'CASES, NIL>

<'UNIFY ,NIL>

<'MONADIC,NIL,T,N1L>

<'EQUNIFY>

<'TAUT , 3, NIL,NIL>

Some other calls are valid. In particular, in the call to TAUT, 3 can be replaced by 4 to
Invoke TAUTEQI or by 6 to invoke both TAUT and TAUTEQ. In the call to CASES, NIL can be
replaced by a pointer to a L/L, and in the call to REWRITE the expression «<NIL,NIL ) can be
replaced by a slmpset.

Also, in the calls to TAUT and to MONADIC the first NIL can be replaced by a list of V/Ls,
and In that to UNIFY it can be replaced by a pointer to a VL.

Though some other variations are also possible, the above list should take care of most
needs.



0

62

5. AUTOMATIC THEOREM PROVING IN GOAL.

Our research fringes on the area of automatic theorem proving, but differs In its spirit from
most of the current research in that discipline.

Whereas research In automatic theorem proving typically is machine oriented, and is .
concerned with obtaining proofs efficiently by careful management of the available resources,
ours is strictly based on heuristic sequencing of natural deduction rules for the First Order
Predicate Calculus.

One consequence of this approach is that, when a theorem is proved by a strategy, a
complete FOL proof of that theorem is produced, which the user can inspect and understand. S
This differs from the situation, common to many theorem provers, in which it is often very
difficult to understand how a particular theorem was concluded to be valid by the machine.

Although we are only secondarily concerned with theorem proving, some effort was
invested in devising a heuristic that would be a powerful theorem prover of Its own. This is the
strategy LOGIC, presented in the next section. 6

The effort to augment the power of LOGIC has forced us to deal with some unsolved
issues of current interest to researchers in automatic theorem proving. One of the purposes
of this chapter Is to contribute our experience to these discussions.

5.1. Automatic theorem proving by LOGIC.

The routine LOGIC combines all the simple (or atomic) tactics and matchers available to
date In GOAL. This section comments LOGIC in plain English, and the next section gives a an O
algorithmic summary description of it. The reader may be well advised to read both
descriptions in parallel.

LOGIC expands the tree of sub-goals in breadth first manner, using a queue of unproved
sub-goals. The reason for the breadth first scheme is that in many cases the system is unable
to match sub-goals that have been decomposed too far down. Since a proved sub-goal is
frequently used in the proof of a descendant of one of its brothers, a depth first heuristic
fails in those cases where the "wrong" branch of the tree was decomposed first. This.
happens in the pair example shown next; there, a depth first version of LOGIC (with which I
experimented first) succeeded only when the two conjuncts were given In the "correct"
order; whereas the presently implemented version succeeds either way.

At every node, LOGIC first attempts to match it using all the different matchers available:
UNIFY, TAUT or TAUTEQ and MONADIC; unification is attempted against every fact in the
attached FACTLIST; TAUT or TAUTEQ Is called against the whole collection of facts; MONADIC
is, at present, called only against the GOALWFF alone, because calling it against a whole set
of VLs dramatically slows down the system and it often causes the available storage capacity
to be exceeded.

. o .



* . . . . . . . . .. . ~-.-.;-.-.-.-~--.-.--~---..-.- - &-..-. - . °-.

Automatic theorem proving In GOAL. 63

If the GOALWFF is matched and the goal is not a top level one, the system looks up the
other descendants of the parent of the matched goal, i.e. it attempts unwinding the proof as
far up as possible, until it either proves a top level goal or it finds one or more unproved sons
of a parent of a just proved goal. In this event, it adds the just proved goal to the FACTLIST of
the unproved descendants of its parent, at all levels in these branches. It also places any
unproved leaves of these branches in front of the queue (so they will be tried next) because
they stand a better chance now that a new fact has been added to their FACTLISTs. "

If no match Is obtained, LOGIC checks whether anything has been added to the
SIMPSETLIST of that nodel since the last attempt at rewriting that goal or any one of its . ,
ancestors. If this is the case, It attempts to rewrite the goal. If the GOALWFF rewrites to
TRUE, this Is treated as a match, as described above. If the WFF rewrites to a different WFF,
a son to that goal Is created and is treated as described below. If the WFF does not rewrite,
then other tactics will be tried in the following order.

Now LOGIC first looks up whether the main symbol of the goalwff Is V, 3, A, 5 or n. In these
cases It calls the corresponding tactic, thus generating one or more sons to that goal. If this
is not possible, It looks up whether there is any fact in the FACTLIST that Is a disjunction; If so, . .
CASES is applied against that fact. . -

If none of the attempts to either match or decompose the goal succeeded, the goal i.-
placed on a list of failed goals.

If a successful decomposition is obtained, LOGIC immediately tries to match each one of
the just created sons. If a match (or perhaps more than one) Is obtained, any unproved
siblings of the matched goal will be placed in front of the queue for the same reason
mentioned earlier. If none matches, they are all placed at the end of the queue.

After this, LOGIC picks the first goal in the queue and repeats the whole process just
described, with one variation: since an attempt to match is made before placing a goal in the
queue, no new attempt is now made unless some fact has been added to the goal (as a
consequence of having proved a brother of some ancestor since It was placed In the queue). .
It may also be the case that the goal was in the meantime tried or perhaps even proved (and
perhaps also "garbage collected" from the tree), because after a match unproved brothers
are put in front of the queue. The system is able to recognize all these situations and treat
them properly.

Now, what happens if the queue becomes empty? There must be some goals In the fall list, _
or otherwise LOGIC would have already proved a top level goal by now. All the goals in the fail
list are examined; if any of them have experienced any change since they were placed there
(i.e. additions of facts to them), these are placed in the queue of goals to be tried, and the
whole process continues. This does not cause an infinite loop, because every time that the
queue of goals to be tried becomes empty, LOGIC checks whether any changes to the list of
failed goals have occurred. If there is no change, it exits, leaving the tree in the state it has .
gotten to, and announcing to the user the number of unproved leaves In the tree.

A successful exit occurs only when a top level goal is reached. If the original call to LOGIC "

---------- q

I The SMPSETADOFLAG is used for this purpose .

. - .. -



Automatic theorem proving In GOAL. 64

by the user was on a goal that is not top level, LOGIC will work below that node only as long
as the node does not become proved. But, if it succeeds in proving it, instead of exiting it will
continue working to Its parent and down to its unproved brothers.

5.1.1. Summary of the LOGIC heuristics. .

1.- Attempt MATCHING. If it succeeds then go MATCH.

TRYING: 2.- if SIMPSETADDFLAG, attempt REWRITING.
If it rewrites to TRUE, then go MATCH. S

If It rewrites to a different WFF, then go SPLIT.

3.- Attempt one of the tactics: YI, 31, Al, r1, or 1l.
If one of these succeeds, then go SPLIT.

4.- Attempt CASES. If it succeeds then go SPLIT. .

FAIL: 5.- Place goal in FAIL list. Go 7.

SPLIT: 6.- For each one of the sons, try MATCHING it.
If none matched, then place them at the

end of the QUEUE of goals to be tried. p
If there is a match, then,

(If there are more than one still unmatched sons,
then place them in front of the QUEUE and

go NEXT, else go MATCH

7.- If QUEUE is empty then go 9. .

NEXT: 8.- Pick first element of QUEUE. Attempt MATCHING.
If match succeeds then go MATCH else go TRYING.

9.- Have facts been added to any goals in the FAIL list?
If yes, place them in the QUEUE and go NEXT.
If no, EXIT ( failure ).

10.- If NULL(NEXTGOALTHREAD) then EXIT (success ),

else place NEXTGOALTHREAD in front of the QUEUE and go NEXT.

Notice that after any match in the goal structure the global variable NEXTGOALTHREAD will
be pointing to some unproved descendant of the parent of some just proved goal, unless a top . -"

level goal was proved, in which case the variable will be NIL.

. -. ,...

• .- ."-".,-.,..-. -



Automatic theorem proving in GOAL. 65

6.1.2. The PAIR example. 0

The following example is interesting on several accounts. It Illustrates the following " -.'-
features of GOAL.

1. A proved subgoal Is required in order to prove Its brother; GOAL attaches it to this
brother, and to any one of Its descendants; thus one proved subgoal fertilizes another branch
of the goal tree.

2. This proved subgoal Is included in the simpset of the other branch, because It is a
universally quantified equivalence.

3. Conditional simplification. LOGIC would not succeed without this feature, although a
different heuristic would. However, that different heuristic would not succeed in the examples
from [Kelley 1966], whereas LOGIC does.

4. The use of the quantelimlist. Its effect Is similar to Skolemization.

5.1.2.1. Statement of the problem.

Given the axiom of EXTENSION, which states that two sets are equal If and only if they
have the same elements, and the PAIR axiom, which states the existence of the unordered -

pair of x and y (i.e., a set whose only elements are x and y), the goal is to prove that the
unordered pair Is unique.

LOGIC generates an eight step proof in FOL automatically. This proof Is more compact than
what most sophisticated FOL users would normally achieve. .1

5.1.2.2. The GOAL generated proof.

The complete dialogue between the user and the system follows. Five asterisks is the 0
FOL prompt. User given commands begin Immediately after the prompt and end with the first
semicolon or double semicolon. Anything else is typed by either FOL or GOAL. As an exception . -

to the above rule, the FOL command SHOW PROOF generates a type out of the complete FOL
proof, In which many lines beginning with five asterisks are typed by FOL (not by the user);
these lines Indicate the reason for the next line of the proof, I.e. how that line was obtained in
FOL. Reasons generated by the GOAL unwinding mechanism are indistinguishable from those-
that would result from direct use of FOL for Interactive construction of the same proof. ..-..

Ilk". . o



Automatic theorem proving in GOAL. 66

*****DECLARE INOVAR x y z z1 u Uv w;6

*****DECLARE PREOCONST ( 2 [INF];

.*****AXIOM EXTENT- Yx y.(x-y1EYu.(ucxsu(y));

EXTENT: Yx y.(x -yz~u.(u(xmu(y))

*****AXiOM PAIR: Yx y.3w.Vu.(u(w&(u-xvu-y));;0

PAIR: Yx y.3w.Vu.(ucwr-(u-xvu-y))

*****GOAL Yx y.3z.(Yw.(wQ.a(w-xvw-y ))AVz 1.(VW.(W(Z I (W-XVW-y))Dz1I-Z))
ASSUME PAIR SASSUME EXTENT;

Goal #1: Yx y.3z.(Yw.(WeZa(W-XVW-y))AYz I.(Yw.(w(Z la(W-XVW-Y))-2zl-Z))0

.****SHOWGOAL;

Goal #1i: Yx y.3z.(Yw.(wtzi(W=XVW=Y))AVz 1.(Yw.(w~z 1a(w-xvw-y))Dz 1-z))
VLSASSU: EXTENT Vx y.(x-y;Vu.(u(x-uy))
VLASSU: PAIR Yx y.3w.Vu.(u(wri(u=xvu=y))

Simpsets. BY LOGICTREE COMPTREE)

COMMENT: the showgoal command shows that the axiom of EXTENT has been added as an
assumption and the axiom of PAIR as a sassumption. It also shows that (by default) the-
simpsets LOGIC TREE and COMPTREE have been attached. Next we show the result of Invoking
the LOGIC tactic, and the proof It generates. A commentary follows.

*****TRY USING LOGIC;

Goal #1i#1: Yx y.3z.(Yw.(wz1(w=xvwy))AVZ 1.(Vw.(w(Z 1 (W-XVW-y)):YU.(U(Z1 U(Z)))
Goal #*1#~1: 3Z.(YW.(W(Za(W-XVW-Y))AVZ 1.(Yw.(W(Z 1s(W-XVW-y))DYU.(u(Z I U(Z)))
Goal #1#1#*1#1: VW.(W(Z&(w-XVW-y))AVZ I.(YW.(W(2 lz(W-XVW-Y))'YU.(U(Z lU(Z))
Goal #1 #1#1#1#1: Yw.(wezi(w-xvw-y))
Goal #1#1#1#1 #2: Vz 1.(Yw.(wzlE(w-xvw-y)):)Yu.(uz1&uz))

1 3z.Vw.(Wzs(w-xvw-y))

2 Vw.(w(zs(w-xvwwy)) (2)

3 Yz 1.(Yw.(wzlI (w-xvw-y)):)Yu.(u(zl1 u(z)) (2)

4 YW.(w(Z'(W-xVW-y))AYZ I.(Yw.(w(Z Ii(w-XVW-y))ZVU.(u(Z 1 U(Z)) (2)

5 3z.(Yw.(wsZu(W-XVW-y))AVZ I.(Vw.(WQ (EW-XVW-y))DYU.(U(ZIlUu(Z)))

6 Yxc y.3z.(Vw.(w(Zu(W-XVW-y))AYZ 1.(YW.(W(ZI1 (W-XVW-y))DYu.(U(ZJN U(Z)))

7 Vx y.3z.(Yw.(w(Zu(W-XVW-y))AVZ 1.(YW.(W(Zl1 (W-XVW-y))Dz 1-z)) 3

Yx y.3z.(Vw.(wZa(W-XVW-y))AYz 1.(YW.(W(Z1 (W-XVW-Y))DYu.(U(Zl u(z)))



Automatic theorem proving In GOAL. 87

8 Yx y.3z.(Yw.(w(Zu(W-XVW-Y))Az 1 .(YW.(w(Zl1 (w-XVW-Y))DZI1-Z))

LOGIC SUCCEEDED!

COMMENT: everything following the command "TRY USING LOGIC" has been typed by the
system. The first subgoal that matches is #1#7#1#7#1 (line 2), and #1#1#1#1#2 matches
immediately thereafter (line 3). Line 3 depends on (2) because the system added (2) to the
slmpset attached to goal #1I1#I1#I7#1 #2 and it actually used line (2) to prove this goal. Finally
we use the FOL vSHOW PROOF" command to display the proof produced by the logic tactic. .

*****SH-OW PROOF;

*****UNIFY PAIR;

1 3z.Yw.(wzu(w-xvw-y))

***ET z

2 Vw.(w(za(w-xvw-y)) (2)

****REWRITE YzlI.(Yw.(wzls (w-xvw-y))aYu.(uzl1 u(z))
BY t EXTENT LOGICTREE COMPTREE;

3 VzlI.(Yw.(wzl1 (w-xvw-y))DYu.(u(zl1 u(z)) (2)

*****AI (2 3h

4 YW.(W(zu(W-XVW-y))AVZI1.(YW.(Wz (Z(W-XVWOY))DYU.(U(Z I.U(Z)) (2)

s*ss*3 t z

5 3z.(Yw.(wzu(w-XVW-y))AYz 1.(YW.(W'Z 1 (W-XVW-Y))'YU.(U(Z 1 U(Z)))

*****VI t x Y;

6 Yx y.z.(Yw.(w(zm(w-xvwny))AYzl1.(Yw.(wzl1 (w-xvw-y)):)Yu.(u(z 1 u(z)))

*****REWRITE Yx y.Jz.(Yw.(w(zu(w-XVW-y))AYZ 1.(Vw.(W(zl1 (W-Xvw-y))~Z 1 -Z))

BY EXTENT LOGICTREE;

7 VX y.3Z.(YW.(W(Zu(W-XVWmy))AYZ 1.(YW.(w':Z 1 (W-XVW-y))DZ1-Z)) N
Vc y.3z.(Yw.(w(z.(W-XVWmy))AYz 1.(Yw.(wz 1 (w-xvw-y)) Yu.(uz 1 u~z)))

*****TAUT YVr y.3Z.(YW.(W(Zs(W-XVW-y))AYz 1.(Yw.(w(z E( Wh.XVWumY))2Z 1-z)) 6,7;

8 Yx y.3.(Yw.(wz(w-xvw-y))AVz 1.(Yw.(wz 1 (w-xvw-y))z I-z))

.*. 
. . . . .



Automatic theorem proving in GOAL. 68

6.1.3. Commentary to the PAIR example.

The steps followed by the LOGIC tactic are explained in detail in this section.

When LOGIC is invoked on tile goal #1, it first attempts to match the goal; it fails. Then it ->-.
attempts to rewrite the ,)al by syntactic simplification using the attached simpsets plus the
sassumed axiom of extent. This produces a different WFF, which becomes goal #1 #1. This
WFF was obtained by rewriting "zl=z" by the axiom of extent. Why was "1w-xvw=y" not
rewritten? The reason is that the rewrite tactic has noticed that this Is part of the wff
"w(znw-xvw-y" which has the same structure as a wff in the assume list: namely, it has the
same structure, except for the leading quantifiers, as the assumed axiom PAIR. Recognizing
that that part of the goal is potentially matchable against that fact, it does not rewrite it.
This shows conditional simplification.

#1#1#1 is obtained from #11#1 by elimination of the leading universals.

The # 1 #1#1#1 is obtained by elimination of the leading existential.

This goal Is then decomposed into two sub-goals because its main logical connective is

Next, #1#1#1#1#1 is unified by tle UNIFY tactic against the axiom PAIR. This tactic
recognizes that the wff "Yw.(w(za(w=xvw-y))" cannot be directly unified against PAIR, but that,
by reintroducing the existential on z, which -as it remembers- was eliminated further up in the
tree, the WFF "3z.Yw.(w(z'(w-xvw-y))" can be unified against PAIR. Thus it produces this WFF
as a first line of the proof, and then it eliminates the existential, producing line 2 of the proof,
which matches the subgoal. This matched subgoal is added as a fact to Its brother
#1#1#1#1#22.

When trying #1#1#1#1#2, LOGIC recognizes that a fact has been added to this sub-goal,
namely line 2 which proves Its brother. It first tries the matchers, which fail. When the goal Is
prepared by the first TRY, the system recognizes that the wff of the added fact, .. :
"¥w.(w(zaw-xvw-y)" should be added to the simpset since it is a universally quantified
equivalence. After the matchers fail, LOGIC recognizes that a new element has been added to
the simpset. Therefore it attempts a new rewrite on this sub-goal. In this event, the wff
rewrites to TRUE 3, thus this subgoal has been proved. Since it was the last unproved leaf of
the tree, the proof now unwinds automatically.

If the two conJuncts of #1#1#1#1 had been switched as the goal was created (i.e. BAA
instead of AAB), LOGIC would have produced exactly the same proof. This Is noteworthy
because proof of one of the two conjuncts is required in order to be able to prove the other.
Thus a strictly top-down scheme would succeed only if the conjuncts were given in the
"right" order. But LOGIC carries the search in a breadth first fashion. *

2 As the variable z Is matched against the existentially eliminated variable In line 2, GOAL records this as a binding, meaning

that now z, In the other branch of the goal tree, is not free any more for matching against arbitrary terms, as It was before. Also
it records where in the goal tree that binding took place, and In case of an abandoning of an ancestor of that goal, .would be
made free again. .

3 It does so because the slmpset LOGICTREE Is attached to the goal by default.

7



Automatic theorem proving in GOAL. 69

6.1.4. The initial theorems from Kelly.

LOGIC has generated automatic proofs of the first 32 theorems in the Appendix on Set
Theory in [Kelley 1955]. It has also generated automatic proofs of several further theorems.
In addition, for some theorems it has proved all but one of the subgoals it generated; in some
of these cases the unproved subgoal could be proved by one additional FOL command, and
then GOAL would unwind the proof.

[Kelley 1955] uses the following form of the comprehension axiom scheme:

COMPREHENSION: Yx.( x({ylP(y)} s SET(x) A P(x))• .

Comprehension terms are automatically rewritten by LOGIC according to that axiom -
'

scheme. This Is accomplished by the simpset COMPTREE, which is attached to goals by -.-

default.

The pattern of the proofs of those first 32 theorems is the same as in the following
example (Theorem 4, part 2). In each case, the user has to attach the appropriate set of
facts, using SASSUME, in order for LOGIC to succeed.

That pattern consists of a subgoaling by REWRITE, followed by a match by MONADIC.

6.1.4.1. An example from Kelly.

*****DECLARE INOVAR x y z; .

*****DECLARE PREDCONST ( 2 (INF;"

****DECLARE OPCONST u 2 (INF); -

*****AXIOM SET: Yx.(SET(x)n3y.x(y);;

SET: Vx.(SET(x)m3y.x(y)

*****AXIOM UNION: Vx y.xuy-(zz(xvz(y);;

UNION: Vx y.(xuy)-{zlz(xvz(y)

*****GOAL Vx y z.(z(xuyzz(xvz(y) SASSUME SET UNION;

Goal *1: Yx y z.(z((xuy)(z(xvz(y))



Automatic theorem proving In GOAL. 70

*****TRY USING LOGIC;

Goal elvi: Yx yI z.((3y.zyA(z(xvv~yl))'(z(xvz(yI))

I Yx y I z.((3y.z(yA(Z(XVZ(ylI))(z(XVZ(yl)) -

2 Yx y z.(z((xuy)m(z~xvzy))n~x y I z.((3y.z(yA(Z'(XVZy1))i(z(XVZ(y 1))

3 Yx y z.(z.(xuy)u(z(xvz(y))

LOGIC SUCCEEDED!

*****SHOW PROOF;

*****MONAOIC;

1 Yx y I z.((3y.ztyA(Z(XVZcylI))-(Z(XVZ(y 1))

*****REWRITE Yx y z.(z((xuy)u.(z(xvz(y)) BY UNION SET LOGICTREE COMPTREE;

2 Vx y z.(z((xuy)a(z(xvzy))sYx yl z.((3y.z(yA(Z(XVZ(yl))E-(Z(XVZ~y1))

****TAUT Yx y z.(z((xuy)r.(z(xvz(y)) 1,2;

3 Yx y z.(z((xuy)s(z(xvz(y))

5.2. Issues In goal oriented theorem proving.

This chapter ends with a discussion of some problems for which we have not found any
satisfactory solution. These have to do with some trade offs between the amount of
manipulation of the assertions by theorem proving strategies and the complexity of these
strategies.

Not having found one generally good way of dealing with these trade off s, perhaps the
best approach would be to maximize the degree of user's control over the manipulations of
the assertions In such a way that the strategies can control these manipulations with the
same flexibility as they control the decomposition of goals.

This approach would be In keeping with the general conclusions suggested in this thesis. It
is better to strive for a flexible environment in which strategies can be programmed, and to
live with specialized ones, rather than with maximally powerful, heavy theorem provers. But a
good deal of thought Is still needed before the flexibility of GOAL can be extended to the
manipulation of the assertions.



Automatic theorem proving in GOAL. 71

6.2.1. Subgoallng and assertions.

From our point of view as a user of GOAL, a goal is a WFF to be proved; attached to this
WFF, there are facts or assertions, sImpsets, and some other information. This approach is
sensible because the reduction rules incorporated in the tactics are natural, in the sense that
they correspond to the natural deduction (Prawitz 1965] rules of FOL. This makes it easy for
the user to understand the description and to conduct interactive proof construction in GOAL. .

From the point of view of the design of automatic theorem proving heuristics, the more
elegant approach taken by [Brown 1977a, 1977b, 1978] is better. This researcher defines
transformations between sequents, a sequent being a collection of assertions and goals. The
meaning of a sequent Is that the disjunction of the goals (i.e., at least one of them) follows
from the conjunction of the assertions. That approach establishes a duality between goals
and assertions, so that the rules that manipulate the latter do not have a different status from
those that manipulate goals.

Our tactics can be described in that way, and most of the rules In Brown's papers are
indeed In GOAL. However, in our system goals and assertions (or facts) have a quite different
status because the latter are VLs of the FOL proof, while the goals are WFFs without any .
FOL status. In line with our efforts to keep GOAL consistent with FOL, any WFFs in the
FACTLIST4 of a goal are written as assumptions onto the FOL proof5 before the goal is tried.

This stringent requirement that the facts must always be VLs makes unwinding simple.

6.2.2. Working on the assertions.

Some theorems can be proved from the axioms mainly by manipulation of the goals. In
those cases, GOAL is generally successful. But some other theorems require many _
manipulations of the axioms, before these can be used to prove the goals. For instance: the
axioms may be rewritten; conjunctive axioms may be decomposed into VLs that assert the
disjuncts separately; or several axioms may be combined in order to obtain a different
assertion.

0

6.2.2.1. RESOLVE.

In GOAL, some transformations of the facts, or assertions, have been built Into the prepare
mechanism. In particular, PREPARE attempts to RESOLVE an assumption generated by the
Implication rule, .l, against the other VLs In the FACTLIST. RESOLVE is a FOL Inference rule
based on a variation of UNIFY that will perform some Inferences of the following type: from

4 For Instance, the antecedent of an implication after subgoaling by the Implication rule.
6 UsIng the FOL ASSUME command.

. . .1

..................-.-- - -. . . -..... "......-.° "'..'.''".'......,..".."......'°" '.-' -
', .. ,, -. . . . . ... . ".9 ... . . . . . ° . .

'
. •. . .. ... , - . =.. , :, ,... j





-. -

0

73

6. SOME FUTURE ORIENTED CONCLUSIONS.

The three main accomplishments of our research are: the creation of a command language
for top down construction of proofs in FOL and the demonstration of its usefulness; that this
language Is extensible; and the demonstration of the practibility of our approach to automatic
theorem proving. 0

Enough has been said about these three aspects in this thesis. But not much has been
said about what we have learned of how a first order logic proof checker could fit with a goal
command language. Therefore we want to conclude with some remarks about this.

6.1. Ideal FOL and GOAL.

In an Ideal FOL proof checker, the parsing of user's commands is completely separated
from the "semantic" routines that effect the actions of these commands. The parsing routines S
and the semantic (or action) routines communicate through a carefully designed system of
Interfaces. Furthermore, the system of reasons1 maps this system of Interfaces so well that
they could themselves be passed as input to FOL.

The first consequence of this is that the programming of new tactics and of new matchers
In GOAL becomes as easy and reliable as the programming of strategies. At present, no faulty S
deduction by strategies is possible If the tactics and matchers are sound. Thus we can
guarantee the user that extensions to GOAL will be foolproof If they are limited to the
addition of strategies. With Ideal FOL we can make the programming of new tactics and
matchers foolproof as well.

For tactics, the programming of unwinders becomes unnecessary. They can be S
automatically generated. The user has to specify what FOL rule the tactic Is inverse to, and
to make sure that the executer returns an item that conforms to the rules for the FOL reasons
for the proof steps. At unwinding time, FOL will then know how to take the appropriate action
so as to generate the new step of the proof.

For matchers, the executer looks quite simple. It simply calls the appropriate FOL decision
procedure, through the corresponding interface.

All of this Is fairly obvious. FOL Is not far from having this structure, but Its actual code is
not quite there yet.

1 That Ie. th FOL reasons for the proof steps.

,.







Appendix 1: the Takeuchi F!,,n. ,on. 76

EXPR PARSEIFCASESHORT(G:X);
IF TK2@('IFCASESHORT,'ifcase short)

THEN IF X4-WFF#(NIL) THEN RETURN(<'IFCASESHORT ,X>)
ELSE IFCASEPARSEMSGHJ() ALSO ENDLO;

EXPR IFCASEPARSEMSGHIO;BEGIN TERPRI();

PRINC("IF-CASES-SHORT requires that you specify a WFF.");
END;

Now let us look at the executer and comment the code. The parameter WF is the WFF
specified by the user. The executer first calls the CASES tactic on WF and 'WF. Thus, if the
original WFF of the goals is GWF, the two subgoals generated by this tactic are: WF:GWF and
-WFnGWF. For each of these two subgoals, our strategy will call the tactic :) and then the
REWRITE tactic. The calls to :) occur at the label REP in the code, which is executed twice. A
call to =4 causes the antecedent to be attached to the subgoal as an assumption. Since it will
not necessarily be placed into the SIMPSET, the next three lines of code force this
assumption to be written onto the FOL proof and to be put into the SIMPSET before calling
REWRITE. The prepare mechanism causes a negation -WF to be also written as WFEFALSE
because this form happens to work better with the rewrite code. p

EXPR TRYIFCASESHORT(THREAD,PSWT,WF);
BEGIN NEW S, S1, MT, G, THR;
TRYING(<'CASES,WF>,PSWT,THREAD,T);
S-son(1,goa(THREAD));
S 1 -son(2,gooaI(THREAD));
REP; TRYING(<'?Dl>,PSWTS CONS THREAD,NIL);
PREPAR'(G*-goal(THR-NEXTGOALTHREAD),NIL);
MT-<<NIL,NIL>>;
VLADD(CAR PROOF,MT,'SUBSTLEAF&);
TRYING(<'REWRITE,NIL,<CAAR PROOF>,MT>,PSWT,THR,NIL);
IF S1 THEN So-Si ALSO Sl-NIL ALSO GO REP;
RETURN('IFCASE SHORT);
END;

These routines must now be added to the system, together with the following statement.

NEWSTRATEGY('IFC.-SESHORT,'PARSEIFCASESHORT,'TRYIFCASESHORT);

And now the extension is complete. The most difficult part of this code is that which has
to do with forcing the assumption into the SIMPSET. That part requires an understanding of the

REWRITE code, which users of FOL cannot be required to possess. The example thus
illustrates the Importance of devising a high level language for programming strategies. That

high level language should not be too restrictive in the amount of ce'ntrol allowed over
assumptions, simpsets, L/Ls, and other items.

9

_.-9

* . . * . *



_7 _7

Appendix 1: the Takeuchi Function. 77

7.3. McCarthy's FOL proof.

The declarations, the axioms, and the whole proof devised by [McCarthy 1978b] follows.
Axiom LESS comprises nine lemmas, not all of which are actually used In the proof. I found that
LESS 1, LESS3, and LESS6, are unnecessary. These lemmas are similar to the verification
conditions used by program verification systems.

7.3.1. Declarations.

41

declare INDVAR x y z (REAL;
declare OPCONST pred(REAL) - REAL[PRE];
declare OPCONST takO(REAL,REAL,REAL) = REAL;
declare OPCONST takl(REAL,REAL,REAL) - REAL;
declare PREDCONST <(REAL,REAL)[LL-55,R*-455];
declare PREDCONST :5(REAL,REAL)[L'-455,R4-455j;

7.3.2. Axioms.

LESS: LESS I: Vx.pred x<x
LESS2: Yx.pred x:5x
LESS3: Yx y.((X<yA(.(X -y)A-.(Y<X)))V((-(X<y)A(X..yA-(y<X)))v(-(X<y)A(.(Xu-y)Ay<X))))
LESS4: Yx y Z.(XyyZ-'(ZA(XS~<)XZA(XYYZD<)(XS~S))S))
LESS5: Vx y.(x:5yr(x<yvx-y))
LESS6: Yx.-(x<x)
LESS7: Yx.x:5x
LESS8: Vx y.(-(x:y)gy<x)
LESS9: Yx y.(y<xa-(x:;y))

TAKO: Vx y z.takO(x,y,z)lIF x:5y THEN y ELSE IF y~sz THEN z ELSE x

TAKI: Yx y z.takl(x,y,z)=IF xsy THEN y ELSE takO(takO(pred x,y,z),tak%
O(pred y,z,x),takO(pred z,x,y))



Appendix 1:s the Takeuchi Function. 78

7.3.3. The proof.

"The proof is actually a cleaned up version of a 68 step proof that was in some ways more
informative. Namely, I used the REWRITE rule with what inequalities I had and looked at the right
hand side to see which ones I still should look for. In particular, the splitting of the main case into0
subcases was determined empirically by seemn? what propositional terms appeared in the
conditional expressions. From this point of view, FOL helped in generating the proof and didn't
merely check a pro-existing proof."

[McCarthy 19781b])

*****ASSUME x:5y; . .-

Ix~sy()

*****REWRITE takl1(x,yz)-takO(x,yz) BY LOGICTREEu{ TAKOTAK 1,11;

2 takl(x,y,z)-takO(x,y,z) (1)

**s**:)I~T

3 x:5ytak1(x,yz)-takO(x,yz)

*****ASSUME -(x~sy)

4 -(x~y) (4)

*****REWRITE y~x BY LOGICTREEu[ LESS9,4};

5 y<x (4) 0

*****ASSUME ysz;

6 y:5z (6)

****ASSUME pred x:5y;

7 pred xsy (7)

****E LESS2 y;



Appendix 1: the Takeuchi Function. 79

8 pred y~sy

*****VE LESS4 pred y,yz;

9 ((pred y<YAY<Zzpred y<Z)A(((pred y:SyAy<Zzpred y<z)
A(((pred y'yAy:5Z)npred y<Z)A((pred y:SyAy5Z):)pred y:Sz)))

*****TAUT pred ysz 6,8:9;0

10 pred y~sz (6)

s*****REWRITE tak I(x,yz)-tak0(x,yz) BY LOGICTREEu[ TAKOTAKI,4:7,10);

11I takl(x,yz)-tak0(x,yzr) (4 6 7)

*****Dl 7D4;

12 pred x:5y:takl(x,yz)-tak0(x,y,z) (4 6)

*****ASSUME -(pred x~sy);

13 -(pred x~sy) (13)

*****REWRITE taki (x,yz)-tak0(x,yz) BY LOGICTREEu{ TAKOTA< I,LESS7,4:6,10,13);

14 takl(x,y,z)-tak0(x,y,z) (4 6 13)

****z TT:T;

15 -(pred x:5y):)takl(x,y,z)-taK0(x,y,z) (4 6)

*****TAUT takl(x,yz)-tak0(x,yz) 12,15;

16 takl(x,y,z)-tak0(x,yz) (4 6)

s*****:I 6nT;

17 y:5zmtak1(x,y,z)-ak0(x,yz) (4)

*****ASSUME '(y~sz);

18 -(ysz) (18)

*****REWRITE z<y BY LOGICTREEuf LESS9,18.1;

19 z<y (18)

*****YE LESS4 z,y,x;

20 ((~~<))<)((Z5 9)ZXA((~~:XD<)A(~AS)ZX)

*****YE LESS5 z,x;



Appendix 1 a the Takeuchi Function. 80

21 zsxa(zxvz-x)

*****TAUT z~sx 5,19:21;

22 z:Sx (4 18)

*****VE LESS4 pred ,x;

23 ((pred Z<ZAZ<X)Dpred Z<X)A(((pred Z:SZAZ<X)opred mc)
A(((pred Z<v'AflX)'pred Z<X)A((pred Z:SZAZ:X)zpred z~sx)))

****VE LESS2 z;

24 pred zsz

***E LESS4 prod zz,x;

25 ((pred Z<ZAZ<X):)pred Z<X)A(((pred ZSZAZ<X)npred z<X)
A(((pred Z<ZAflx)Dpred Z<X)A((pred z zAz:SX)npred z~sx)))

*****TAUT pred zsx 22,24:25;

26 pred zux (4 18)

*****ASSUME prod x~sy;

27 prod x~sy (27)

*****ASSUME pred ysz;p

28 pred ysz (28)

*****ASSUME '(pred x~sy);

29 -(prod x~sy) (29)

*****ASSUME '(pred ysz); A

30 -(prod y~sz) (30)

*****REWRITE takl(x,y,z)-taMO(x,y,z) BY FOOU{ 27:28);

31 takl(x,y,z)-tak0(x,y,z) (4 18 27 28)

*****REWRITE takl(x,y,z!)-takO(x,y,z) BY FOOul{ 27,30);

32 takl(x,y,z)-tak0(x,yz) (4 18 27 30)

*****YE LESS4 prod xz,y;

33 ((pred XccZA<y)pred X<y)A(((pred X:SZAZ<y)Dpred xcy)

A(((pred ,ccZAZSY):pred Xy)A((pred xszAzsy)Dpred x~sy)))

. . .. . . .



'J

Appendix It the Takeuchi Function. 81

*****YE LESS5 z,y;

34 zrsya(zcyvz-y)

*****TAUT '(pred x~sz) 19,29,33:34;

35 -'(pred x~z) (18 29)

*****REWRITE takI(x,y,z)-tak0(x,y,z) BY FO0u{ 28:29,35);

36 takl(x,y,z)-tkO(x,yz) (4 18 28 29)

*****REWRITE taI% ,y,z)-tak0(x,y,z) BY FO0u( 29:30);

37 takI(x,y,z)-tak0(X~y,z) (4 18 29 30)

****ml 28331;

38 pred ysz:)takI(x,yz)-tIk0(x,yz) (4 18 27)

*****:)130:)32;

39 -'(pred y:5z):)takI(x,yz)-tak0(x,y,z) (4 18 27) 9

***TAUT takl1(x,yz)-tak0(x,y,z) 38:39;

40 taI~x,yz)-tak0(x,y,z) (4 IS 27)

*****:)I 28D36; -

41 prod y:5z~taKI(x,yz)-tkOc,y,z) (4 18 29) ~
*****zi 30:)3; -

42 -'(pred y~z)DtakI(x,y,z)-tak0(x,y,z) (4 IS829)

*****TAUT takl(x,y,z)-takO(x,yz) 41:42;

43 takI(x,yz)-tak0(x,yz) (4 18 29)

*****mi 27m40;,

44 prod xsyntakl(x,yz)-tak0(x,yz) (4 18)

*****Dl 29ITt;

45 -'(pred xs5y)Dtak1(x,y,z)-tak0(x,y,z) (4 18)

*****TAUT takI(x,yz)-takO(x,y,z) 44:45;

46 takI(x,yz)-tak0(x,y,z) (4 18)

*asoo~ I 8kt



Appendix 1: the Takeuchi Function. 82

47 -(y:z) takl(x,y,z),tak0(x,yz) (4)

*****TAUT takl(x,y,z)-tak0(x,y,z) 17,47;

48 takJ(x,yz)-tak0(x,yz) (4)
****:) 4zt; ':.:'

49 -(x ;y))t ak l(X~y)-t akO(x,y,z)

*****TAUT tak1(x,y,z)-tak0(x,yjz) 3,49;

50 takl(x,yz)-tak0(x,yz)

7.4. The proof using GOAL.

For the GOAL proof of the Takeuchi function we used exactly the same axioms shown
before. The number of user's command required by this proof is one third of the number of 0
commands required in the previous one. On the other side, the number of line in the FOL proof
generated by the GOAL unwinding mechanism is roughly the same as In the other proof.

The formulae that appear in the GOAL proof are much bigger that in McCarthy's FOL proof.
But this does not seriously affect the usefulness of GOAL. In the case of this proof, I did not
really have to scan much of those formulae. The commands were guessed by inspecting the
main conditional of the WFF.

Our proof combined some forward proving with the GOAL commands. In total, It used nine
calls to TRY and five (forward) uses of the FOL command MONADIC.

7.4.1. Comparison of the user input.

For ease of comparison, we show first the commands typed by the user in each case. The
structure of the case analysis is apparent in the commands for the GOAL proof. S

7.4.1.1. Commands for the forward proof.

. -. *-.-.. . . .,. . . . . .. . . ..

.j .j . .,.. L _ :., . *-' -- - : "Z- .. Ct . . -. ' "' " " -"". " ' ' ' '"" ' '' " 
' *

" """ ' " " " """""""



Appendix 1: the Takeuchi Function. 83

ASSUME rsy;
REWRITE takl1(x,y,z)-t ak0(x,yz) BY LOGICTREEu.4 TAKOTAK1, 11;
ni IT~T;
ASSUME -(x~sy);
REWRITE y<x BY LOGICTREEut, LESS9,4)1;
ASSUME y:5z;
ASSUME pred x:5y;
YE LESS2 y;
YE LESS4 pred y,y,z;
TAUT pred y:Sz 6,8:9;
REWRITE takl(x,y,z)-tak0(x,y,z) BY LOGICTREEul TAKO,TAK1 .4:7,10);

1I 7:)T;
ASSUME -(pred xsy);
REWRITE tak 1(x,y,z)-tak0(x,y,z) BY LOGICTREEu{ TAKO,TAK1 ,LESS7,4:6,1 0,13);
DI lT
TAUT t ak 1(x,y,z)-tak0(x,y,z) 12,15;
:)I 6nT;
ASSUME -(y:5z);
REWRITE zy BY LOGICTREEul, LESS9,18}1;
YE LESS4 z,y,x;
YE LESS5 z,x;
TAUT z:5x 5,19:21;
YE LESS4 pred z,z,x;
YE LESS2 z;
YE LESS4 pred z,z,x;
TAUT pred z:5x 22,24:25;
ASSUME pred x~sy;
ASSUME pred y:5z;
ASSUME -(pred xs5y), 19
ASSUME -(pred y:5z);
REWRITE takl(x,y,z)-tak0(x,y,z) BY FOOu{ 27:281,;
REWRITE takl(x,y,z)-tak0(x,y,z) BY FOOuf 27,30);
YE LESS4 pred x,z,y;
YE LESS5 z,y;
TAUT -(pred x:5z) 19,29,33:34;
REWRITE t ak 1(x,y,z)-t ak0(x,y,z) BY FOOu{ 28:29,351;S
REWRITE takl(x,y,z)-tak0(x,y,z) BY FO~uf{ 29:30)1;
zI 28:)31;
:)130:)32;
TAUT takl(x,y,z)=tak0(x,y,z) 38:39;
DI 28:)36;
ni 30:)37;
TAUT takl~x,y,z)-tak0(x,y,z) 41:42;
DI 27:00;
:)I 29D1"T;
TAUT takl(x,y,z)-tak0(x,y,z) 44:45;
DI 18:)T;
TAUT takl(x,y,z)-tak0(x,y,z) 17,47;
nI 4nt;
TAUT takl(x,yz)-tak(x,y,z) 3,49;S

9k-





Appendix 1 a the Takeuchi Function. 86

pred y~sz THEN z ELSE IF z:5x THEN x ELSE prod y:51F pred z:5x THEN x EL% 0
SE IF x~gy THEN y ELSE pred z THEN IF pred z:5x THEN x ELSE IF xsy THEN14
y ELSE pred z ELSE IF pred xsy THEN y ELSE IF y:5z THEN z ELSE prod x% -

-IF x~gy THEN y ELSE IF y:5z THEN z ELSE x
Goal *1#1*1*2: '(x:5y)nlF x~sy THEN y ELSE IF IF pred x~sy THEN y ELSE %
IF ys5z THEN z ELSE prod x:51F pred y:5z THEN z ELSE IF z~sx THEN x ELSE %~
prod y THEN IF pred y~sz THEN z ELSE IF z~sx THEN x ELSE pred y ELSE IF%
IF prod y:5z THEN z ELSE IF z~gx THEN x ELSE prod ysIF pred zsx THEN x%
ELSE IF x:5y THEN y ELSE pred z THEN IF prod z:5x THEN x ELSE IF x~sy T%

4EN y ELSE prod z ELSE IF pred xs5y THEN y ELSE IF y~sz THEN z ELSE pro%
d x-IF x~sy THEN y ELSE IF y:5z THEN z ELSE x
Goal # I *I #I #I #I: IF x~sy THEN y ELSE IF IF pred x:5y THEN y ELSE IF y:5
z THEN z ELSE pred x:5IF pred y~z THEN z ELSE IF z:5x THEN x ELSE pred %
y THEN IF prod y~z THEN z ELSE IF z 5x THEN x ELSE pred y ELSE IF IF p%(
red ySz THEN z ELSE IF z:5x THEN x ELSE pred y:51F pred z:Sx THEN x ELSE%
IF x~sy THEN y ELSE pred z THEN IF prod z:5x THEN x ELSE IF xsy THEN y%4
ELSE pred z ELSE IF pred x~sy THEN y ELSE IF y~sz THEN z ELSE prod x-%

F x~sy THEN y ELSE IF y:5z THEN z ELSE x
1 Xsy (I)

2 IF x:5y THEN y ELSE IF IF pred x:5y THEN y ELSE IF y:5z THEN z ELSE pr%
ed xSI1F prod ysz THEN z ELSE IF z 5x THEN x ELSE prod y THEN IF pred y%
:5z THEN z ELSE IF z:5x THEN x ELSE pred y ELSE IF IF pred y:5z THEN z E%
LSE IF zsx THEN x ELSE pred y~sIF pred zvx THEN x ELSE IF x~y THEN y E%
LSE prod z THEN IF prod z~sx THEN x ELSE IF x~sy THEN y ELSE prod z ELS%
E IF prod xs5y THEN y ELSE IF ysz THEN z ELSE prod x=IF xsy THEN y ELS%
E IF ysz THEN z ELSE x (1)

3 x~gy:IF x:5y THEN y ELSE IF IF pred x~y THEN y ELSE IF y-.z THEN z ELS%
E prod x:5IF prod y~z THEN z ELSE IF z~x THEN x ELSE pred y THEN IF pr%
ed y~sz THEN z ELSE IF z:5x THEN x ELSE prod y ELSE IF IF prod y~sz THEN%
z ELSE IF z~x THEN x ELSE prod y:51F prod z:5x THEN x ELSE IF xsy THENM
y ELSE prod z THEN IF prod z:S THEN x ELSE IF x:5y THEN y ELSE prod z%
ELSE IF prod x~y THEN y ELSE IF y~gz THEN z ELSE prod x-IF x:5y THEN y%
ELSE IF ysz THEN z ELSE x

Goal # I# 1 #1 #2#I1: IF xs5y THEN y ELSE IF IF prod x~sy THEN y ELSE IF y:5%
z THEN z ELSE prod x:51F prod y:5z THEN z ELSE IF z~x THEN x ELSE prod %
y THEN IF prod ys5z THEN z ELSE IF z:5 THEN x ELSE prod y ELSE IF IF p%~
rod y:sz THEN z ELSE IF z:5x THEN x ELSE pred y:5IF pred z:5x THEN x ELSE%

,x~sy THEN y ELSE prod z THEN IF prod z:5x THEN x ELSE IF x:5y THEN y%
ELSE prod z ELSE IF prod x:5y THEN y ELSE IF y:;z THEN z ELSE prod x-7(

F xsy THEN y ELSE IF ys5z THEN z ELSE x
4 -.(x~y) (4)

5 x:5yfFALSE (4)

Goal #1#11#Is2*1#1: IF IF pred x~y THEN y ELSE IF ys5z THEN z ELSE proe%
d x:51F prod y~z THEN z ELSE IF z:5x THEN x ELSE prod y THEN IF prod ys
z THEN z ELSE IF z~sx THEN x ELSE prod y ELSE IF IF prod y:5z THEN z EL%
SE IF z~sx THEN x ELSE prod y:51F prod z~gx THEN x ELSE prod z THEN IF p%~
red z:5x THEN x ELSE prod z ELSE IF prod x:5y THEN y ELSE IF y:5z THEN zh
ELSE prod x-IF y:5z THEN z ELSE x

.***TRY USING IFCASESHORT y:sz;

%S





7. 77

Appendix 1: the Takeuchi Function. 87

sy THEN y ELSE z-z (6)

12 IF IF pred x:sy THEN y ELSE IF y:5z THEN z ELSE pred x:5IF pred y:Sz T%
HEN z ELSE IF z:5x THEN x ELSE prod y THEN IF pred y:5z THEN z ELSE IF %~-.
z~sx THEN x ELSE pred y ELSE IF IF pred ysz THEN z ELSE IF z~x THEN x % -
ELSE pred y:5IF pred z~x THEN x ELSE pred z THEN IF pred z:5x THEN x EL%
SE prod z ELSE IF pred x:5y THEN y ELSE IF y~sz THEN z ELSE pred x=IF y%
:5z THEN z ELSE xaIF IF pred x:5y THEN y ELSE z:5IF pred ys5z THEN z ELSE%0
IF z~x THEN x ELSE pred y THEN IF pred y:5z THEN z ELSE IF z!5x THEN x%
ELSE pred y ELSE IF IF pred y:5z THEN z ELSE IF z:5x THEN x ELSE prod %

y:SIF prod z:5x THEN x L-LSE pred z THEN IF pred z:5x THEN x ELSE pred z %
ELSE IF pred x:5y THEN y ELSE z-z (6)

13 IF IF pred x:5y THEN y ELSE IF y:5z THEN z ELSE pred x:SIF pred y~z T%
HEN z ELSE IF z:5x THEN x ELSE pred y THEN IF pred y:5z THEN z ELSE IF %
zix THEN x ELSE pred y ELSE IF IF pred y:5z THEN z ELSE IF z:5x THEN x %
ELSE prod ySI1F prod z:5x THEN x ELSE pred z THEN IF pred z:5x THEN x EL%~
SE pred z ELSE IF prod x~sy THEN y ELSE IF y:5z THEN z ELSE pred x-IF y%
:5z THEN z ELSE x (6)

14 y:5zDIF IF pred x~y THEN y ELSE IF y:5z THEN z ELSE pred x:SIF pred y%
5sz THEN z ELSE IF z:Sx THEN x ELSE pred y THEN IF pred y~z THEN z ELSE%
IF z:sx THEN x ELSZ prod y ELSE IF IF pred y:5z THEN z ELSE IF z~x THE%~

N x ELSE pred y:5IF pred z:5x THEN x ELSE pred z THEN IF pred z~gx THEN %
x ELSE prod z ELSE IF pred x:5y THEN y ELSE IF y:5z THEN z ELSE pred x-%
IF y:5z THEN z ELSE x

*****MONADIC z~sx 4 7 LESS8 LESS5 LESSA;

15 z~sx (4 7)

*****MONADIO pred z :5 x LESS2 LESS4 T;

16 prod z!5x (4 7)

s**MONADIC IF pred y :5 z THEN z ELSE x :5 x LESS7 TT;

17 IF pred ysz THEN z ELSE x~sx (4 7)

*****TRY USING REWRITE BY [TTT,TT,T,LESS7,1;

Goal u1#1#1#2#1#1#2#lnl#l: IF IF prod x~y THEN y ELSE prod x:51F pred%
y:5z THEN z ELSE x THEN IF prod ySz THEN z ELSE x ELSE x-x

*****TRY USING IFCASESHORT prod y 5 z;

Goal *1 #1 #1#2#1 u1 #2#1 #1#1#1: pred y:z:DIFIF pred xy THEN yELSE pre%
d x:5F prod y:5z THEN z ELSE x THEN IF pred ysz THEN z ELSE x ELSE x-x
Goal #1#1#1#12#1*1#2*1#1#1#2: -(prod y:5z)mIF IF pred xsy THEN y ELSE %
prod x:5IF prod y:Sz THEN z ELSE x THEN IF pred y:5z THEN z ELSE x ELSE %
X -X
Goal #1#1#1#2#1#1#v2#1#1#1#u1: IF IF prod x:5y THEN y ELSE prod x:51F %
pred y:5z THEN z ELSE x THEN IF pred y:Sz THEN z ELSE x ELSE x-x
18 prod y~z (18)







re

Appendix I s the Takeuchi Function. 90

red xsIF prod ysz THEN z ELSE IF zsx THEN x ELSE prod y THEN IF prod %"
ysz THEN z ELSE IF zSx THEN x ELSE prod y ELSE IF IF pred y:Sz THEN z %A
ELSE IF z;x THEN x ELSE prod y;IF pred zsx THEN x ELSE IF xsy THEN y %'
ELSE prod z THEN IF prod zsx THEN x ELSE IF xsy THEN y ELSE prod z EL. .
SE IF prod xsy THEN y ELSE IF y:sz THEN z ELSE pred x-IF xsy THEN y EL'% "-
SE IF ySz THEN z ELSE xvIF IF pred xsy THEN y ELSE IF ysz THEN z ELSE% .
prod x:;IF prod y:sz THEN z ELSE IF z5x THEN x ELSE prod y THEN IF pro%.

d ysz THEN z ELSE IF zsx THEN x ELSE prod y ELSE IF IF prod y.Sz THEN %-
z ELSE IF z~x THEN x ELSE prod ySIF prod z~x THEN x ELSE prod z THEN ' .
IF prod zsx THEN x ELSE pred z ELSE IF pred x:sy THEN y ELSE IF ysz TH. -
EN z ELSE prod x-IF ysz THEN z ELSE x (4)

44 IF x_<y THEN y ELSE IF IF pred xsy THEN y ELSE IF y:5z THEN z ELSE p%-
red xsIF prod y.<z THEN z ELSE IF z<x THEN x ELSE prod y THEN IF prod %.
ysz THEN z ELSE IF zSx THEN x ELSE prod y ELSE IF IF prod y:sz THEN z % °

ELSE IF zsx THEN x ELSE pred ySIF pred z<sx THEN x ELSE IF xsy THEN y %A
ELSE pred z THEN IF pred zsx THEN x ELSE IF xsy THEN y ELSE pred z EL%.
SE IF prod xSy THEN y ELSE IF y<z THEN z ELSE pred x-IF xsy THEN y EL%-
SE IF ysz THEN z ELSE x (4)

45 -(xsy)zlF xsy THEN y ELSE IF IF pred xiy THEN y ELSE IF y_<z THEN z%.
ELSE pred xSIF prod ysz THEN z ELSE IF zsx THEN x ELSE pred y THEN I'

F pred y<z THEN z ELSE IF z<x THEN x ELSE pred y ELSE IF IF pred y ;z %,
THEN z ELSE IF z<x THEN x ELSE pred y:SIF pred z_<x THEN x ELSE IF x=sy %.
THEN y ELSE prod z THEN IF pred z5x THEN x ELSE IF xsy THEN y ELSE prA " ..
ed z ELSE IF pred xsy THEN y ELSE IF ysz THEN z ELSE prod x-IF xsy TH ..
EN y ELSE IF ysz THEN z ELSE x

46 IF xly THEN y ELSE IF IF pred xsy THEN y ELSE IF y:sz THEN z ELSE p'%
red xsIF prod ySz THEN z ELSE IF z.x THEN x ELSE prod y THEN IF prod % L --
ySz THEN z ELSE IF zsx THEN x ELSE pred y ELSE IF IF prod y:z THEN z %-
ELSE IF zsx THEN x ELSE prod ysIF pred zsx THEN x ELSE IF x;y THEN y '% .
ELSE prod z THEN IF pred z~x THEN x ELSE IF xsy THEN y ELSE pred z EL'% -r'
SE IF prod xsy THEN y ELSE IF y=sz THEN z ELSE prod xIF xsy THEN y EL%
SE IF y z THEN z ELSE x

47 takl(x,yz)-tkO(x,yz)mIF xsy THEN y ELSE IF IF prod x~y THEN y E%
LSE IF ySz THEN z ELSE pred x;IF pred ysz THEN z ELSE IF zs;x THEN x E.
LSE prod y THEN IF prod y5z THEN z ELSE IF zx THEN x ELSE prod y ELSI Q. .
E IF IF prod ySz THEN z ELSE IF z sx THEN x ELSE prod ysIF pred z;x TH%
EN x ELSE IF xsy THEN y ELSE prod z THEN IF prod zsx THEN x ELSE IF x%-
Sy THEN y ELSE pred z ELSE IF prod x=y THEN y ELSE IF ySz THEN z ELSE% "
prod x-IF xsy THEN y ELSE IF ysz THEN z ELSE x

48 takl(x,yz)-takO(x,yz) , ..
49 Vx y z.takl(x,y,z)-tkO(x,yz) .'

-h.

- .:::--..'~.',,..-..'.... ........
. . . . . . . . . . . . . . . . . . . . . . . . . . .. . .....--..



Appendix 1: the Takeuchi Function. 91

7.4.3. The FOL proof generated by GOAL.

We have stressed the fact that GOAL always generates a FOL proof that Is
Indistinguishable from a user generated proof. For the sake of completeness, we also show
here the FOL proof that results from the previous dialog. -

*****SHOW PROOF;

*****ASSUME xy;

I Xsy (1)

****REWRITE IF x~sy THEN y ELSE IF IF prod xsy THEN y ELSE IF ysz THE%
N z ELSE prod x!SIF prod y:Sz THEN z ELSE IF z:Sx THEN x ELSE prod y THE%
N IF pred y:5z THEN z ELSE IF z~gx THEN x ELSE pred y ELSE IF IF prod y%
Zz THEN z ELSE IF z~sx THEN x ELSE prod y:SIF pred z~sx THEN x ELSE IF x%
sy THEN y ELSE pred z THEN IF prod zsx THEN x ELSE IF x~sy THEN y ELSE%~
pred z ELSE IF prod xsy THEN y ELSE IF ysz THEN z ELSE prod x-IF x~gy%
THEN y ELSE IF ysz THEN z ELSE x BY LOGICTREE COMPTREE T;

2 IF xsy THEN y ELSE IF IF prod x~y THEN y ELSE IF y:5z THEN z ELSE pr%
od xSlF prod ysz THEN z ELSE IF z~gx THEN x ELSE prod y THEN IF prod y%
:5z THEN z ELSE IF znx THEN x ELSE prod y ELSE IF IF prod y:Sz THEN z E%
LSE IF z~sx THEN x ELSE prod ySIF prod z~sx THEN x ELSE IF xsy THEN y E%
LSE prod z THEN IF prod zsx THEN x ELSE IF x~sy THEN y ELSE prod z ELS%
E IF prod xsy THEN y ELSE IF ys5z THEN z ELSE prod x-IF xgy THEN y ELS%
E IF ysz THEN z ELSE x (1)

***** I tt~f;

3 x:SyDIF x~sy THEN y ELSE IF IF prod x~y THEN y ELSE IF y~z THEN z ELS%
E prod x~IF prod y!5z THEN z ELSE IF z~sx THEN x ELSE prod y THEN IF pr% 0
ed y:5z THEN z ELSE IF z~sx THEN x ELSE prod y ELSE IF IF prod y~sz THEN%
z ELSE IF zlx THEN x ELSE prod ysIF prod z~sx THEN x ELSE IF xsy THEN%
y ELSE prod z THEN IF prod z~sx THEN x ELSE IF x:Sy THEN y ELSE prod z% .

ELSE IF pred xSy THEN y ELSE IF ysz THEN z ELSE prod x-IF x~y THEN y%~
ELSE IF y~sz TH4EN z ELSE x

****ASSUME Nsxyk

4 (x~sy) (4) -...

*****REWRITE 7 BY LOGICTREE; 9..'

5 x~ynFALSE (4)

*****ASSUME y~sz;

6 y~sz (6)



Appendix Ii the Takeuchi Function. 92

**oASSUME '(ysz)

7 -(ysz) (7)

*****REWRITE t BY LOGICTREE;.

8 yszsFALSE (7) ,...

9 pred ySz (6)
* *..*.."

10 IF pred x sy THEN y ELSE z-<z (6)

*****REWRITE IF IF pred xsy THEN y ELSE zsIF pred y sz THEN z ELSE IF I
zsx THEN x ELSE pred y THEN IF pred ySz THEN z ELSE IF z sx THEN x ELS-
E pred y ELSE IF IF pred y:Sz THEN z ELSE IF zsx THEN x ELSE prod ySiF%
pred zsx THEN x ELSE pred z THEN IF prod zsx THEN x ELSE prod z ELSEI
IF pred xsy THEN y ELSE z=z BY 5 LOGICTREE COMPTREE BY { 9:10);

JI I IF IF pred xsy THEN y ELSE zstF pred ysz THEN z ELSE IF zsx THEN x%
ELSE pred y THEN IF pred ysz THEN z ELSE IF z_<x THEN x ELSE prod y E%

LSE IF IF pred y:sz THEN z ELSE IF zfx THEN x ELSE pred ySIF pred zSx %
THEN x ELSE prod z THEN IF pred zsx THEN x ELSE prod z ELSE IF prod x%
sy THEN y ELSE z-z (6)

*****REWRITE IF IF prod xSy THEN y ELSE IF ySz THEN z ELSE prod x:IF %
prod ysz THEN z ELSE IF zsx THEN x ELSE prod y THEN IF prod y:;z THEN %
z ELSE IF zsx THEN x ELSE prod y ELSE IF IF prod ysz THEN z ELSE IF z%
sx THEN x ELSE prod ySIF prod z~x THEN x ELSE prod z THEN IF prod z;x-
THEN x ELSE prod z ELSE IF prod xSy THEN y ELSE IF y~z THEN z ELSE p1
red x-IF ySz THEN z ELSE x BY 5 LOGICTREE COMPTREE6;

12 IF IF prod xsy THEN y ELSE IF ysz THEN z ELSE prod x:;IF prod ysz TI -.
HEN z ELSE IF zsx THEN x ELSE pred y THEN IF pred ySz THEN z ELSE IF %
zsx THEN x ELSE prod y ELSE IF IF pred ysz THEN z ELSE IF z:;x THEN x .
ELSE prod y5IF prod z2x THEN x ELSE prod z THEN IF prod z=;x THEN x EL,
SE prod z ELSE IF prod xsy THEN y ELSE IF y:;z THEN z ELSE prod x-IF y%
:sz THEN z ELSE xIF IF prod x:;y THEN y ELSE z=;IF prod y:;z THEN z ELSE%
IF z ;x THEN x ELSE prod y THEN IF prod y5gz THEN z ELSE IF zsx THEN x%
ELSE prod y ELSE IF IF prod y:;z THEN z ELSE IF z sx THEN x ELSE prod %..

ySIF pred zsx THEN x ELSE prod z THEN IF prod zx THEN x ELSE prod z %
ELSE IF prod x:y THEN y ELSE z-z (6)

*****TAUT IF IF prod xSy THEN y ELSE IF ysz THEN z ELSE prod xSIF pro% ..
d ysz THEN z ELSE IF zSx THEN x ELSE prod y THEN IF prod ysz THEN z El
LSE IF zsx THEN x ELSE prod y ELSE IF IF pred ysz THEN z ELSE IF z;x %
THEN x ELSE prod ysIF prod z:;x THEN x ELSE prod z THEN IF prod zsx TH-
EN x ELSE prod z ELSE IF prod xsy THEN y ELSE IF ysz THEN z ELSE prod%
x-IF ysz THEN z ELSE x 11,12;,

13 IF IF prod xsy THEN y ELSE IF ySz THEN z ELSE prod xSIF prod ySz TI
.0,.. a..

.. -.. . . -4. . .. .. .- .-.. . .. ... - .. . ... - ,-,- .. ._,..,.,,.'....,% ..,....,...,, ",'.',: . .., .-", .( -.



Appendix 1:t the Takeuchi Function. 93

HEN z ELSE IF z~gx THEN x ELSE prod y THEN IF prod y~sz THEN z ELSE IF %
z~sx THEN x ELSE prod y ELSE IF IF pred y~sz THEN z ELSE IF z~sx THEN x %
ELSE prod y:SIF prod z~sx THEN x ELSE pred z THEN IF prod zSx THEN x EL%
SE prod z ELSE IF prod x:Sy THEN y ELSE IF ysz THEN z ELSE prod x-IF y%
:sz THEN z ELSE x (6)

*****21 6=t;

14 ysznIF IF prod xSy THEN y ELSE IF ysz THEN z ELSE pred xsIF prod y%
: THEN z ELSE IF zsx THEN x ELSE prod y THEN IF prod y~z THEN z ELSE%
IF zsx THEN x ELSE prod y ELSE IF IF pred ysz THEN z ELSE IF z~tx THE%

N x ELSE prod ysIF prod z~sx THEN x ELSE prod z THEN IF prod zsx THEN %
x ELSE prod z ELSE IF prod xsy THEN y ELSE IF ysz THEN:z ELSE prod x-%
IF ysz THEN z ELSE x

0*0*7.

15 zsx (4 7)

16 prod z~gx (4 7)

17 IF prod ySz THEN z ELSE xsx (4 7)

*****ASSUME prod ysz;

18 prod y5z (18)

*****ASSUME -(prod y~z)

19 -(prod ysz) (19)

o***REWRITE t BY LOGICTREE;

20 prod yszsFALSE (19)

*****REWRITE IF IF prod xsy THEN y ELSE prod x:SIF prod ysz THEN z ELS%
E x THEN IF prod ysz THEN z ELSE x ELSE x-x BY T 8 5 LOGICTREE COMP%
TREE t;

21 IF IF prod xsy THEN y ELSE prod xSlF prod ysz THEN z ELSE x THEN 1%
F prod ysz THEN z ELSE x ELSE x-x (19)

22 -(prod y~z)2IF IF prod x~y THEN y ELSE prod xsIF prod ysz THEN z E%
LSE x THEN IF prod ysz THEN z ELSE x ELSE x-x

*****ASSUJME prod x5y;

23 prod xSy (23)



p,..,:

' o -..

Appendix 1: the Takeuchi Function. 94

,o*.*REWRTE IF IF prod xsy THEN y ELSE prod xSz THEN z ELSE x- BY % J
8 5 LOGICTREE COMPTREE T;

24 IF IF prod xsy THEN y ELSE prod xsz THEN z ELSE x-x (7 23)

25 prod xsyDIF IF prod xsy THEN y ELSE prod x sz THEN z ELSE xmx (7) •

****ASSUME -(prod x=y. .

26 -(prod xsy) (26)

****REWRITE T BY LOGICTREE;

27 prod xsymFALSE (26)

****MONADIC LESS4LESS8 T? 7;

28 IF prod x.z THEN z ELSE xKx (726)

****REWRITE IF IF prod xsy THEN y ELSE prod x.z THEN z ELSE x-x BY %
it 8 5 LOGICTREE COMPTREE 1t;

29 IF IF prod xsy THEN y ELSE prod xsz THEN z ELSE x-xslF prod xSz TH" "
EN z ELSE xmx (26)

****TAUT IF IF prod xsy THEN y ELSE prod xsz THEN z ELSE x-x 28,29;

30 IF IF prod x=gy THEN y ELSE prod xsz THEN z ELSE xmx (7 26)

****1 26.t;

31 -(prod xsy)zlF IF prod xsy THEN y ELSE prod xsz THEN z ELSE xx (N
7)

***,TAUTEQ IF IF prod xsy THEN y ELSE prod xsz THEN z ELSE x-x 25,31%

32 IF IF prod xsy THEN y ELSE prod xsz THEN z ELSE -K (7)

*****REWRITE IF IF prod xsy THEN y ELSE prod xSIF prod ySz THEN z ELS% "
E x THEN IF prod ysz THEN z ELSE x ELSE KmK BY 8 5 LOGICTREE COMPTR%
EE18;

33 IF IF prod x<y THEN y ELSE prod x0lF prod ysz THEN z ELSE x THEN I %'-'..
F prod ysz THEN z ELSE x ELSE x-xoIF IF prod xsy THEN y ELSE prod xsz% -....
THEN z ELSE x-x (18)

s****TAUT IF IF prod xy THEN y ELSE prod x.IF prod ysz THEN z ELSE x%
THEN IF prod ySz THEN z ELSE x ELSE xmx 32,33;

34 IF IF prod xsy THEN y ELSE prod xSIF prod y~sz THEN z ELSE x THEN I.

a ***.-**..- .... .* .,

* %a • - : * i- a - I - II I - I.. .. • a



,re

Appendix Ii the Takeuchi Function. 96

F pred ysz THEN z ELSE x ELSE x-x (7 18)

35 prod yszmlF IF pred x.Sy THEN y ELSE pred xsIF prod ysz THEN z ELSE%
x THEN IF prod y:sz THEN z ELSE x ELSE x-x (7)

*o**TAUTEQ IF IF prod x;y THEN y ELSE pred x:IF prod y:sz THEN z ELSE%
x THEN IF prod y:z THEN z ELSE x ELSE x-x 22,35;

36 IF IF prod xsy THEN y ELSE prod xsIF prod y:;z THEN z ELSE x THEN 1%
F prod ysz THEN z ELSE x ELSE x-x (7)

*****REWRITE IF IF prod xsy THEN y ELSE prod xIF prod y:;z THEN z ELSY
E IF zsx THEN x ELSE pred y THEN IF pred y_<z THEN z ELSE IF zsx THEN %
x ELSE pred y ELSE IF IF prod y-sz THEN z ELSE IF zSx THEN x ELSE prod%
ysIF prod z=sx THEN x ELSE prod z THEN IF prod zsx THEN x ELSE prod z%
ELSE IF prod xsy THEN y ELSE prod x-x BY 8 5 LOGICTREE COMPTREE BY%
{ LESS7,15:17);

37 IF IF prod xsy THEN y ELSE prod x.IF prod ysz THEN z ELSE IF zsx T.
HEN x ELSE prod y THEN IF prod y;z THEN z ELSE IF zsx THEN x ELSE pro%
d y ELSE IF IF prod ySz THEN z ELSE IF zSx THEN x ELSE prod y:;IF prod% .,.
zsx THEN x ELSE pred z THEN IF prod zsx THEN x ELSE prod z ELSE IF p%
red x=sy THEN y ELSE pred x-xsIF IF prod xsy THEN y ELSE prod xsIF pro%
d y:Sz THEN z ELSE x THEN IF prod y;z THEN z ELSE x ELSE x-x (4 7)

*****TAUT IF IF pred xsy THEN y ELSE prod x_<IF prod y:;z THEN z ELSE I%
F z:sx THEN x ELSE prod y THEN IF pred ysz THEN z ELSE IF zSx THEN x E%
LSE prod y ELSE IF IF prod y:sz THEN z ELSE IF z sx THEN x ELSE prod ys.
IF prod zsx THEN x ELSE prod z THEN IF prod z:;x THEN x ELSE prod z EL"
SE IF prod xsy THEN y ELSE pred x-x 36,37;

38 IF IF prod xsy THEN y ELSE pred xsIF prod y:;z THEN z ELSE IF z;x T.
HEN x ELSE prod y THEN IF prod y<z THEN z ELSE IF z:;x THEN x ELSE pro%
d y ELSE IF IF prod ysz THEN z ELSE IF z:;x THEN x ELSE prod ysIF prodf
z;x THEN x ELSE prod z THEN IF prod zsx THEN x ELSE prod z ELSE IF p%
red xsy THEN y ELSE pred x-x (4 7)

*****REWRITE IF IF prod x:5y THEN y ELSE IF ysz THEN z ELSE prod xslF % "..
prod ysz THEN z ELSE IF zsx THEN x ELSE prod y THEN IF prod ySz THEN %
z ELSE IF zSx THEN x ELSE prod y ELSE IF IF prod y:;z THEN z ELSE IF z%
sx THEN x ELSE prod ysIF prod z5x THEN x ELSE prod z THEN IF prod z.sx%
THEN x ELSE prod z ELSE IF prod xsy THEN y ELSE IF ysz THEN z ELSE p%

red x-IF ysz THEN z ELSE x BY 8 5 LOGICTREE COMPTREE8;

39 IF IF prod xsy THEN y ELSE IF y:sz THEN z ELSE prod xsIF prod ysgz TX
HEN z ELSE IF z:sx THEN x ELSE prod y THEN IF prod ysz THEN z ELSE IF %
zsx THEN x ELSE prod y ELSE IF IF prod ysz THEN z ELSE IF zx THEN x %
ELSE prod y:sIF prod zSx THEN x ELSE prod z THEN IF prod z:;x THEN x EL%
SE prod z ELSE IF prod xsy THEN y ELSE IF ysz THEN z ELSE prod x-IF y% .%.
sz THEN z ELSE xmIF IF pred xsy THEN y ELSE prod xsIF prod y:;z THEN z%,
ELSE IF zsx THEN x ELSE prod y THEN IF prod ysz THEN z ELSE IF z sx TX

HEN x ELSE prod y ELSE IF IF prod ysz THEN z ELSE IF z:gx THEN x ELSE X
prod ysIF prod zsx THEN x ELSE prod z THEN IF prod zsx THEN x ELSE pr.

.......... .. .......- - hS .'....... . -. -.. ,........ ., ..... ... . ......... .... ,..,;
.*. 4...4. ' '. ." " ."..% , ."." *..,*,"-. . .'. . ." ,". . .. """ " . """4."""". : " * _. . . , 4 " € "

. .. . . . . . .. . . . . . 4 4 1



--. ,'-.-

Appendix 1: the Takeuchi Function. 96

ed z ELSE IF prod xsy THEN y ELSE prod x-x (7)

*****TAUT IF IF prod xSy THEN y ELSE IF y sz THEN z ELSE prod x;IF pro% ,--
d y-z THEN z ELSE IF z:;x THEN x ELSE prod y THEN IF prod y;z THEN z E%
LSE IF z-sx THEN x ELSE pred y ELSE IF IF pred ysz THEN z ELSE IF zsx %
THEN x ELSE prod yslF prod z-<x THEN x ELSE pred z THEN IF prod zsx TH.
EN x ELSE prod z ELSE IF pred x-<y THEN y ELSE IF y=sz THEN z ELSE prod%
x-IF y-<z THEN z ELSE x 38,39;

40 IF IF prod x:5y THEN y ELSE IF y_<z THEN z ELSE prod xSIF pred y-z T%
HEN z ELSE IF z-<x THEN x ELSE prod y THEN IF prod ysz THEN z ELSE IF %
z-x THEN x ELSE pred y ELSE IF IF pred ysz THEN z ELSE IF zsx THEN x I
ELSE prod y-<IF prod zsx THEN x ELSE pred z THEN IF prod z:;x THEN x EL%
SE pred z ELSE IF prod xgy THEN y ELSE IF y=sz THEN z ELSE prod x-IF y%
sz THEN z ELSE x (4 7) .

****I 7Dt;

41 -(y:z)DIF IF pred xsy THEN y ELSE IF ysz THEN z ELSE pred xsIF pre
d ysz THEN z ELSE IF zsx THEN x ELSE pred y THEN IF pred y-sz THEN z El
LSE IF z:;x THEN x ELSE prod y ELSE IF IF pred y:sz THEN z ELSE IF z-x %
THEN x ELSE prod ysIF prod z:Sx THEN x ELSE prod z THEN IF prod z-sx THI
EN x ELSE prod z ELSE IF prod xgy THEN y ELSE IF y=gz THEN z ELSE prod%
x-IF y-sz THEN z ELSE x (4)

*****TAUTEQ IF IF prod xsy THEN y ELSE IF y ;z THEN z ELSE prod xKIF p%
red y-<z THEN z ELSE IF zgx THEN x ELSE pred y THEN IF pred ysz THEN z%
ELSE IF z-x THEN x ELSE pred y ELSE IF IF pred ysz THEN z ELSE IF zs
x THEN x ELSE pred y:sIF pred zsx THEN x ELSE pred z THEN IF prod z5x %
THEN x ELSE prod z ELSE IF prod xsy THEN y ELSE IF y-<z THEN z ELSE pr%
ed x-IF ysz THEN z ELSE x 14,41;

42 IF IF prod xsy THEN y ELSE IF y<sz THEN z ELSE prod xslF pred y-<z TI
HEN z ELSE IF zsx THEN x ELSE prod y THEN IF prod y=sz THEN z ELSE IF %
z-sx THEN x ELSE pred y ELSE IF IF pred ysz THEN z ELSE IF z2x THEN x I
ELSE prod ySIF pred z.x THEN x ELSE prod z THEN IF prod zsx THEN x ELI
SE pred z ELSE IF prod xsy THEN y ELSE IF ysz THEN z ELSE prod xIF y%
:Sz THEN z ELSE x (4)

*****REWRITE IF x ;y THEN y ELSE IF IF prod xSy THEN y ELSE IF ysz THE%
N z ELSE prod xsIF prod ySz THEN z ELSE IF zsx THEN x ELSE pred y THEI
N IF pred ySz THEN z ELSE IF zsx THEN x ELSE pred y ELSE IF IF prod y%
<z THEN z ELSE IF zSx THEN x ELSE pred ysIF prod zsx THEN x ELSE IF x%
Sy THEN y ELSE prod z THEN IF prod zx THEN x ELSE IF xsy THEN y ELSE%
prod z ELSE IF prod x-sy THEN y ELSE IF ysz THEN z ELSE prod x-IF xsy"
THEN y ELSE IF y-sz THEN z ELSE x BY 5 LOGICTREE COMPTREE5;

43 IF xKsy THEN y ELSE IF IF pred xSy THEN y ELSE IF y~z THEN z ELSE p1
red x:9iF prod y!;z THEN z ELSE IF z-sx THEN x ELSE prod y THEN IF prod %
ysz THEN z ELSE IF z_<x THEN x ELSE prod y ELSE IF IF prod ysz THEN z %
ELSE IF z5x THEN x ELSE prod y:SIF prod zsx THEN x ELSE IF xSy THEN y %
ELSE prod z THEN IF prod zx THEN x ELSE IF xsy THEN y ELSE prod z ELI
SE IF prod x-sy THEN y ELSE IF ysz THEN z ELSE prod x-IF xsy THEN y ELI
SE IF y-sz THEN z ELSE xsIF IF prod xKsy THEN y ELSE IF y~z THEN z ELSE%
prod x-SIF prod ysz THEN z ELSE IF zsx THEN x ELSE prod y THEN IF pro%

......................................................

,.-.'.-.'.., .. ..-.-. ......-... ............ :....,',-.. ....:..;. .... ...........-. ': ..... :.: -,'.'.:',..-,\: ..



Appendix 1: the Takeuchi Function. 97

d y~sz THEN z ELSE IF z~x THEN x ELSE prod y ELSE IF IF pred y:Sz THEN %
z ELSE IF z~sx THEN x ELSE pred y:5IF pred z~sx THEN x ELSE prod z THEN %
IF prod z~sx THEN x ELSE prod z ELSE IF pred xcsy THEN y ELSE IF y~z THI%
EN z ELSE prod x-IF ysz THEN z ELSE x (4)

****TAUT IF xs THEN y ELSE IF IF pred xcsy THEN y ELSE IF ysz THEN z%
ELSE pred x:SIF prod y~sz THEN z ELSE IF z -x THEN x ELSE prod y THEN 1%

F pred y~sz THEN z ELSE IF z~sx THEN x ELSE pred y ELSE IF IF pred y~sz %
THEN z ELSE IF z:5x THEN x ELSE pred y:51F prod z:5x THEN x ELSE IF xsy %
THEN y ELSE prod z THEN IF pred z:5x THEN x ELSE IF x~sy THEN y ELSE pr%
ed z ELSE IF prod xsy THEN y ELSE IF ysz THEN z ELSE prod x=IF x~sy THK
EN y ELSE IF y:5 THEN z ELSE x 42,43;

44 IF xsy THEN y ELSE IF IF prod xsy THEN y ELSE IF ysz THEN z ELSE p%
rod x:SIF prod ysz THEN z ELSE IF z~x THEN x ELSE pred y THEN IF prod %
ys5z THEN z ELSE IF z:5x THEN x ELSE pred y ELSE IF IF prod ysz THEN z %
ELSE IF z~sx THEN x ELSE prod y:SIF prod zsx THEN x ELSE IF x:Sy THEN y %
ELSE prod z THEN F prod z~sx THEN x ELSE IF xsy THEN y ELSE prod z EL%
SE IF prod xs<y THEN y ELSE IF y~z THEN z ELSE pred x=IF xsy THEN y EL%
SE IF ysz THEN z ELSE x (4)

*****zl 4DT;

45 '(x~sy):IF x~y THEN y ELSE IF IF prod x:Sy THEN y ELSE IF y:5z THEN z%
ELSE pred x:SIF prod y:Sz THEN z ELSE IF z~sx THEN x ELSE prod y THEN 1%

F prod ysz THEN z ELSE IF z~sx THEN x ELSE prod y ELSE IF IF prod y:5z %
THEN z ELSE IF z~sx THEN x ELSE prod y:SIF prod z: x THEN x ELSE IF x:y %
THEN y ELSE prod z THEN IF pred z:5x THEN x ELSE IF x~sy THEN y ELSE pr%
od z ELSE IF prod x~sy THEN y ELSE IF ysz THEN z ELSE pred x-IF x~y TH14
EN y ELSE IF ysz THEN z ELSE x

*****TAUTEQ IF xsy THEN y ELSE IF IF pred xcsy THEN y ELSE IF y~gz THEN%
z ELSE prod x:SIF prod y:5z THEN z ELSE IF z~x THEN x ELSE prod y THEN%
IF prod y:5z THEN z ELSE IF z~sx THEN x ELSE prod y ELSE IF IF prod y~s

z 'THEN z ELSE IF z:Sx THEN x ELSE pred y~lF pred z~sx THEN x ELSE IF xsK
y THEN y ELSE prod z THEN IF prod zs THEN x ELSE IF x~sy THEN y ELSE %
prod z ELSE (F prod x~sy THEN y ELSE IF y:5z THEN z ELSE prod x-IF xsy %
THEN y ELSE IF y~z THEN z ELSE x 3,45;

46 IF xsy THEN y ELSE IF IF prod x:Sy THEN y ELSE IF y~z THEN z ELSE p%
rod xsIF prod ysz THEN z ELSE IF z~x THEN x ELSE pred y THEN IF prod %
ysz THEN z ELSE IF zsx THEN x ELSE prod y ELSE IF IF prod ysz THEN z %
ELSE IF zsx THEN x ELSE prod y:SIF pred zox THEN x ELSE IF xsy THEN y %
ELSE prod z THEN IF pred zsx THEN x ELSE IF xsy THEN y ELSE prod z EL%
SE IF prod xy THEN y ELSE IF ysz THEN z ELSE prod x-IF xsgy THEN y EL%
SE IF ysz THEN z ELSE x

*****REWRITE takl(x,yz)-taKO(x,yz) BY LOGICTREE COMPTREE BY I TAKK
1 ,TAKO);

47 takl(x,y,)-tkO(x,yz)sIF xsy THEN y ELSE IF IF prod x~sy THEN y E%
LSE IF ysz THEN z ELSE prod x:SIF prod ySz THEN z ELSE IF zsx THEN x E%
LSE prod y THEN IF prod ysz THEN z ELSE IF z~s THEN x ELSE prod y ELS%
ElIF IF prod ysz THEN z ELSE IF z~sx THEN x ELSE prod y:SIF prod M~ THK
EN x ELSE IF x~y THEN y ELSE prod z THEN IF prod z~sx THEN x ELSE IF x%



Appendix Is the Takeuchi Function. 98

sy THEN y ELSE prod z ELSE IF prod x~y THEN y ELSE IF y~gz THEN z ELSE%
PC-ad x-IF xsy THEN y ELSE IF ysz THEN z ELSE x

****TAUT takl(xyz)tkO(xyz) 46,47;

48 takl (x,yz)-takO(x,yz)

*****Yl t x y Z

49 Yx y z.tskl(xyz)ntkO(xyz)



8. APPENDIX 2. RAMSEY'S THEOREM.

8.1. Introduction.

The following Is Ramsey's theorem for denumerably infinite graphs.

RAMSEY'S THEOREM: If G Is a complete, denumerable graph each of whose edges has
been labeled RED or BLACK, then there is a complete, denumerabie sub-graph of G whose -
edges are all of the same color. 0

PROOF: Let G(I)=G. For 1z1,2 .,... repeat the following process: pick a point
x(I)IG(l)l; If x(i) Is connected to infinitely many points of G(i) by red edges let G(i+7) be
the set of points of G(/) that are connected to x(l) by red edges and label x(i) with RED,
otherwise let G(I+1) be the set of points of G(i) that are connected to x() by black edges -

and label x(i) with BLACK. We see that, if G(i) Is an Infinite subset of G, so is G(i+ 1), and
all points of G(1+1) are connected to x(i) by edges of the color Indicated by the label of
x(l); since G(1) is an infinite subset of G, so is G(l) for all i. Now consider the sequence
x(O),x( 1 ),x(2) ......... ; either infinitely many x(i) got labeled RED or Infinitely many got
BLACK. Those Infinitely many x(i) that got the same label form an infinite one-colored sub-
graph of G. QED.

Carrying out this proof in FOL or in GOAL Is a non-trivial exercise. The first difficulty is at
the logical level: choosing the correct way to express the Iterative construction process
using the axiom of choice, choosing some form of an axiom about the existence of Inductively
defined functions, and then bringing all these ends to match, requires painstaking attention to
detail. In 1976 I constructed a FOL proof in 689 steps. The details and a commentary of the
proof have been written up elsewhere [Weyhrauch et al. 1979]. This proof will be referred L
to as the old proof through this Appendix.

8.2. Axioms.

For the GOAL proof we are using the same axioms that were used In the earlier proof
[Weyhrauch et al. 1979]. The rationale for this decision is that in this way the effectiveness
of GOAL can be better appreciated.

.. -- o ° ~

- ....... "...'o

• . ~~~~... . . -.. -. -. .... . . . ... °.....



Appendix 2a Ramsey's Theorem. 100

8.2.1. General Axioms.

The following general axioms for Set Theory were written by Weyhrauch. They follow the
spirit of Kellys axiomatization In the Appendix to [Kelley 1 0553. The Individual constant X
stands for the empty set.

DECLARE PREDCONST (2[INF];
DECLARE PREDCONST c 2[INF]-
DE-CLARE PREDCONST CONN 2(INFJORD CARD NATNUM 1,WO(REL,*)[INFJCONG 2;
DECLARE PREDCONST REL FNC 1;-
DECLARE PREDCONST SET 1;

DECLARE PREDPAR A 1;

DECLARE OPCONST u 2[Ro-455 Lo-450];
DECLARE OPCONST DOM,RNG(FNC)-*,MAPS 2,1 2[INF] -

DECLARE OPCONST MIN,SUP 1 CON V(REL)-RELcard(*)-ORD;
DECLARE OPCONST EXP2 EXP3 I,CROSS 2,. 2[INFI
DECLARE OPCONST P 1;
DECLARE OPCONST INTER 1(R4-IOOO);
DECLARE OPCONST \2[Ri-355,Li-3501
DECLARE OPCONST - [PRE);
DECLARE OPCONST n 2(R4-55D L.-5503;
DECLARE OPCONST UNION 1(R4-10001
DECLARE OPCONST IMAGE(FNC,s);

DECLARE INDCONST EONALEPHOomega;
DECLARE INDCONST V; ,
DECLARE INDCONST )X(SET;

DECLARE iNOVAR a b c d e al bI cl;
DECLARE INDVAR u v w x y z(SET;
DECLARE INDVAR r s t(REL f g h(FNC;

DEFINE SET: Va.(SET(a)nJb.atbh;
AXIOM KEXT: Va b.(a-b.Yc.(c(aucb)); _

AXIOM KCOMP: Ya.(a( (blA(b)jsSET(a)AA(a));

DEFINE SUBSET: Va b.(acbnVc.(canc(b)%;
AXIOM KPOWER: Yx.3y.Va.(a(ymacx),,

DEFINE union: Va b.aub-lclcavc(b})h,
AXIOM kunion: Yx y.SET(xuy;

DEFINE V: V-18a-8);
DECLARE OPCONST singI 1;
DEFINE UNIT: V&.(sin&1(s)-(cla(VAc-a))-
DECLARE OPCONST pair 2;

. . . . . . . . . . . . . . . .



Appendix 2: Ramsey's Theorem. 101

DEFINE PAIR: Va b.(pair(a,b)-sngl(a)usingl(b));;
DECLARE OPCONST opair 2;
DEFINE OPAIR: Va b.(opair(a~b)-pair(singl(a),pair(a,b)));;
DEFINE TUPLE2: Va b.(opair(a,b)-pair(singl(a),pair(a,b)));;
DECLARE OPCONST otriple 3;
DEFINE TUPLE3: Va b c.(otriple(a,b,c)=opair(a,opair(b,c)));;
DEFINE REL: Va.(REL(a)aYd.(d( aD3b c.(d-opair(b~c))));;
DEFINE FNC: Ya.(FNC(a)E=REL(a)AYb c d.(opair(b~c) aAOpair(b,d)(a~c-d));;
DEFINE IMAGE: Yf a.(IMAGE(f,a)={cI~y.(y(aAopair(y,c)(f)));
AXIOM KSUBST: Yf y.SET(IMAGE(f,y));;

DEFINE UNION: Ya.(UNION(a-cl~b.(b(aAC(b)});;
AXIOM KUNION: Vx.SET(UNION(x));;

DEFINE EMPTY: %-{aI'a-a);;
DEFINE inter: Va b.(anb={clc(aAC(b });;
AXIOM REG: Va.(,a-%n3y(y(aAyna-%));;
AXIOM INF: 3x.(M(XA~Y.(Yxmyusingl(y)(x));;

DEFINE COMPL: Va.( -a-{c I-c' a));;
DEFINE DIFF: Ya b.(a\b-an-b);;
DEFINE INTER: Ya.(INTER(a)-{c I~b.(b(anc(b)1);;
DEFINE POWER: Ya.(P(a)-(1cca1});;
DEFINE EXP2: Va.(EXP2(a)-fc 13y.xaacoprxy)};
DEFINE EXP3: Ya.(EXP3(a)= {cj3x y z.(XaAy'aAzaAC-otriple(x,y,z)));;
DEFINE CROSS: Va b.(CROSS(a,b)'{c13d e.(c-opair(de)Ad(aAe(b)}h;
DEFINE COMPO: Va b.aob-

1cl3a 1 b 1 cl.(c-opair(a 1,b 1)Aopair(alcl)(aAopair(c 3,bI)(b))DI;
DEFINE DOM: Vf.(DOM(f)-{cI3a.opair(c,a)(f));;
DEFINE RNG: Yf.(RNG(f)-c~a.opair(a,c)(f));;
DEFINE MAPS: Va b.MAPS(a,b)-{f jFNC(f)ADOM(f)-bARNG(f)-a));;
DEFINE RESTR: Vf a.(f Ia-f ACROSS(aV));; ..-

DEFINE E: E-(cI3a b.(c -opalr(a,b)Aa(b);;
DEFINE CONN: Yr a.(r CONN aa~b c.(b(aACa:opair(b,c)(rvopair(c,b)(rvbnc));;
DEFINE ORD: Ya.(ORD(a)m(E CONN a A Yb.(ba~bca)))h-
DEFINE ON: ON-(cIORD(c));;
DEFINE MIN: Ya.(MIN(a)-INTER(ONua)lUNION(ONfla));;
DEFINE SUP: Va.(SUP(a)=M1N(ffcIONnacc)));;
DEFINE COWV: Yr.(CONV(r)-{c 13a b.(c-opair(a,b)Aopair(b~s)(r)});;
DEFINE CONG: Va b.(CONG(a~b)m3f.(FNC(f)AFNC(CONV(f))ADOM(f).aARNG(f)-b)U
DEFINE CARD: Ya.(CARD(a)u(a(ONA-3b.(b(aACONG(a,b))));;
DEFINE ard: Va.(card(a)-INTER(clCARD(c)ACONG(c,a)D));;
DEFINE Yr &.(r WO a.((r CONN a)AVb.(bcaAbu),

3x.(xbA.3c.(c(bAC-xAopair(c,x)Er)AVd.(d(s~opair(d,d)(r)))));;
DEFINE NATNG- 4.(NATNUM(a)nORD(a)A(COWV(E) WO a));
DEFINE ALEPHO: "'HO-(c[NATNUM(c));;
DEFINE omega: Oat.. -{cINATNUM(c)},;;



- - - - - - - - - - - - - - -- - - 7..1-7 7--,7

[Appendix 2a Ramsey's Theorem. 102

8.2.2. Special axioms.

The following more advanced principles of Set Theory were also postulated for our work on
this theorem. Of these, APPLY, CHOICE, and INDUCTDEF were taken from [Mendelson 1984].
And the axiom EDGESET Is simply a definition so that Ramsey's theorem can be stated in
suggestive terms.

DECLARE PREDCONST LT NATNUM 2 [JNF); COMMENT: 'LESS THAN':
DECLARE PREDCONST DENUM 1;
DECLARE OPCONST SUC (NATNUM)-NATNUM; COMMENT: SUICCESSOR:
DECLARE OPCONST " 2INF]; COMMENT: APPLY:
DECLARE OPCQNST EDGESET 1;

DECLARE INDVAR G R B aa bb cc did ee;
DECLARE INDVAR i j k(NATNUM;
DECLARE INDVAR p'FNC;

AXIOM INDUCTION: A()~.Al:ASU~))~.~)

AXIOM APPLY: Yb a.((3d.Yc.(dcopair(a,c)b):)opair(a,b"a)(b)A -~pi~~)bD~-);

AXIOM INDUCTDEF: x a23c.Yb.(c-b FNC(b)ADOM(b)-omegaAb"X-x A-.bS)~)-"bi);

AXIOM CHOCE:x.3f.a.(aCXA-a%:f"a(a);;

AXIOM EDGESET: Yb.(EDGESET(b)-(a(3c d.(cbAd(bAc-dAa-pair(cd))Thr

AXIOM DENUM:Va.(DENUM(a).CONG(omega,a));;

AXIOM SUIC: Yi.->%-SUJC(i),Yi j.(SUJC0)-SUC(j)Di-j);;,

8.2.3. Auxiliary lemmas.

The following auxiliary lemmas are a subset of those that were postulated for the earlier
proof [Wayhrauch at al. 1979]. The first three concern the relation less than VL).



Appendix 21 Ramseys Theorem. 103

AXIOM LESS2:. Vi jk-i-jai LT j v j LT 0);
AXIOM LESS4: Yi.-i LT X;;
AXIOM LESS7: Vi j.(i LT SU)C(j)ni-jvi LT j);;

MG SETh(NATNUM);
MG REL2:(FNC);
AXIOM AUX 1: Ya.(DENUM~s)nSET(a)h,
AXIOM AUIX2: Ya.(aca)i;
AXIOM AUJX3: Va.(DENUM(a)na-X);;
AXIOM AUX4: Va b.(a(b')SET(a));;
AXIOM AUX5: Va b.(SET(opair(a,b))SET()ASET(b));;
AXIOM AUX6: Va b c.(a((bucza~bvac);;
AXIOM AUJX9: Va b.(DENUM~a)nDENUMa\singi(b)));
AXIOM AUX 10: Va b.(DENUM(aub)DDENUM(a)vDENUM(b) h
AXIOM AUX 11: Vx b c.(c((b\sing(x))zc(bA---X);;
AXIOM AUX12: Va b c.(pair(a,b)(EDGESET(c)5a(CAb(CAainbh
AXIOM AUX 13: Va b c d.(opair(a,b)-opair(cd).a-CAb-d);;
AXIOM AUX18: Va b.(acbzanb-a);;
AXIOM AUX2O:Va b.(anbcaAanbcb);;
AXIOM ALUX22: Va b.(anb-bna);;p

IL AXIOM AUX23: Va b c.(acbAbccnacc);;
* AXIOM AUJX24: Va b.(pair(a,b)=pair(b,a));;

AXIOM AUX25: Va b c.(a(bncva(bAa(C);;
AXIOM AUX27:Va b c d.(opair(a,b)-opair(cd)sa-CAb-d);
AXIOM AUX28: Va b c.(abAbccza(c;
AXIOM AUJX29: Va b.(a\bca);;
AXIOM ALUX30: DENUM(omega);
AXIOM AUJX34:Va b.(DENUM(a)ACONG(a,b):)DENUM(b))g
AXIOM AUX35: Va b.acaubAbcaub);;

8.3. Proofs of some auxiliary theorems.

The first 184 lines of the earlier proof [Weyarauch at al. 1979] proved several set
theoretic facts. For the GOAL proof we have used a subset of these. In this section we shall
show an Independent proof of those. Later they will be postulated for the main proof.

The total number of commands used In the following proofs Is 39: this figure Includes both
the forward proof steps using FOL commands and the calls to TRY. If we add the commands
that create the goals, that Is five Instances of the GOAL command, then we come to a total of
44. In the old proof, this same set of facts required 184 lines. Thus we achieve a fourfold
reduction In the number of commands, for this particular set of lemmas.

A-

**.*.....................



7.p

Appendix 2: Ramseys Theorem. 104

8.3. 1. Restriction of a function.

The first lemma says that the restriction of a function is again a function. The oki proof .

required 27 lines. The following GOAL proof uses only eight Instances of the TRY command,
and generates a FOL proof of 27 lines.

s*****GOAL Vf a.FNC(f Ia);

Goal *I: Yf a.FNC(f Ia)

*****TRY USING REWRITE BY {RESTR);

Goal #1*1: Vf a.FNC(fflCROSS(aV))

*****TRY USING VI al a;

Goal .1.1 *1: FNC(al )zFNC(a1 nCROSS(a,V))

*****TRY USING REWRITE BY [FNC REL AUX25);

Goal #1#1#1#1: (Yd.(daln 3b c.d-opair(b,))AYb c d.((opair(b,c)(a 1 Ao
psi r(bd)a 1n )~-d))z{Yd.((da 1 Ad(CROSS(a,V))D3b c.d-opair(bc))AYb c %
d.(((opair(b,c)(a IAOpaib,c)(CROSS(a,V))A(opaib,d)(al Aopair(b,d)(C%
ROSS(aV)))Dc-d))

****TRY USING ELIMINATION DEPTH 4;

Goal * I1 I1 I *I1#1: Yd.((da 1 Ad(CROSS(a,V))23b c.d-opair(bc))Avb c d(
((opair(bc)a 1Aopair(bc)CROSS(a,V))A(opair(b,d)(alAopair(b,d)(CROS%
S(aV)))mc-d)

1 Yd.(da 1 .Jb c.d-opair(b,c))AYb c d.((opair(bc)(alAopair(b,d)(al1) c%
-d) (1)

* 2 Yb c d.((opair(bc)a1lAopair(bd)(al)c-d) (1)

3 Vd.(da1--3b c.d-opair(bc)) (1)

Gal) #1.1*1.1#1 1: Vd.((dcaIAd.CROSS(a,V))D3b c.d-opair(b,c))
Goal *.1aI.I6 *1.12: Yb c d.(((opair(b,c)(a I Aopair(bc)(CROSS(a,V))A(o%

* pair(b,d)( a 1 vpar(bd)CROSS(a,V))))c-d)
Goal .1 **1.1 *111: (d(a 1Ad(CROSS(a,V))z3b c.d-opair(bc)
Goal *1* * 1 1*1 *131: 3b c.d-opair(b,c)
Goal .1 *1.1*1.162.1: ((opair(bc)a Aopair(b,c)XCROSS(AV))A(opalr(b%

* ,d)( a 1AOpair(bd)CROSS(a,V)))Dc-d
Goal *lal*1*1e1*2*1*1: c-d

*****TRY USING IMPLICATION;

* ~4 (opair(bc)a 1 opair(bc)(CROSS(,V))A(opair(bd)(a 1Aopair(bd)(CRO%

imam",



Appendix 2t Ramseyg Theorem. 106

SS(aV)) (4) i

5 oPir(b)CROSS(a,V) (4) *5~'

6 opair(bd)Eal (4) -.

7 oP&1r(bc)(CROSS(aV) (4) -

8 opsir(bc)Eal (4)

Goal l.e lul2e ll:opsir(bc)Calmopir(bd)(al

****TRY USING TAUT,

9 opair(bc)aslAopair(bd)Eal (1 4)

RESOLVE (opair(bc)a lAopair(bd)(a1)zc-d , opair(bc)(a lAopair(bd)%

10 c-d (1 4)

11 ((opair(bc)a 1 AOpair(bC)CROSS(a,V))A(opair(bd)(alAopair(bd)(CK

12 Yb c d.(((opair(bc)Q lAopair(bc)(CROSS(aV))A(opair(b,d)(e lAopai%
r(bAd)cCROSS(a,V)))Dc-d) (1)

*****TRY USING IMPLICATION;-

13 d(&lAd(CROSS(aV) (13)

14 d(CROSS(a,V) (13)

15 d(al (13)

Goal 6ua.eeeee:d(al

*****TRY USING TAUTi

16 d(a 1 (1 13)

RESOLVE da1 I 3b cdmopair(bc) , da1 -4 3b cd'opair(bc)0

17 3bc.d-opsir(bc) (1 13)

IS (daIAdCROSS(aV))'3b ctd-opair(bc) (1)

19 Vd.((d(&IAd(CROSS(aV))-n3b ctd-opsir(bc)) (1)

20 Vd.( 1Ad(CROSS4a,V))3b c.d-opair(bc))A~b c d.(((opsir(b,c)EaI%
Aopsir(bc)(CROSS(a,V))A(Opeir(bd)(a 1Aopair(bd)(CROSS(a,V)))Dcu'd) %

(, 12 ..



Appendix 2: Ramsey's Theorem. 106

21 (Yd.(d~a b3b c.d-opair(bc))AYb c d.((opair(bc)(al1Aopair(bd)( 1 )%
=oc-d))=(Yd.((d~a 1Ad(CROSS(a,V))D3b c.d-opair(bc))AYb c d.(((opair(b,%
c)(a I Aopair(bc)(CROSS(a,V))A(opair(bd)(a 1Aopair(bd)(CROSS(a,V))) c%

22 (FNC(al )DFNC(alnCRSS(a,V)))a((Yd.(dab13b c.d-opair(bc))AYb c d.% a

((opair(b,c)a 1 Aopair(b,d)a 1 )zc-d)),(Yd.((da Ad(CROSS(a,V))23b c.d-%
opair(b,c))AYb c d.(((opair(bc)a IAopair(bc)(CROSS(aV))A(opair(bdX
)(a I Aopair(bd)CROSS(aV)))Dc-d)))

23 FNC(a 1 )DFN&1 nCROSS(a,V))

24 Vf a.(FNC(f)nFNCnCROSS(aV)))

25 Vt a.FNC(nCROSS(s,V))

26 Vt a.FNC(f I a).VI a.FNCfnCROSS(a,V))

27 Yf a.FNC~f I a)

8.3.2. Domain of the restriction.

The next lemma says that If we restrict a function to a subset of Its domain, the domain
of the restriction Is equal to that subset. The GOAL proof takes nine Instances of TRY, *of -

cell to the QED command, plus four forward proving commands: two universal specielizations,
one call to RESOLVE and one to REWRITE. The old proof was In 64 lines.

****GOAL Yf a.(ac:OOM()DOMKf 14a-)

Goal #2: Yf a.(acDOM~f)DDOMf 10a-4)

*****STRY USING REWRITE BY (SUBSET KEXT)1;

Goal *2#1: Vf &.(Yc.(c(a~c(DOM2Vc.(cD0M(f I asucs))

*****VE DOM I a;

28 FNCYt I a)aDOM~f I )-(cpsaI.opawr(c,a 1)(0 a))

*****RESOLVE t L411

RESOLVE FNC~f I a)DDOM~f I a)-(cI3al.opair(c,al>(f I a)) ,Vt a.FNC(
f I a) -**DOW~ I a)-cj3a.opir(c,a1)c(f I a))



Appendix 2t Ramsey's Theorem. 107

29 D~t4f I a)-(cj3al.opair(c,a1)((f I a))

****TRY USING REWRITE BY ( T AUX5 AUJX13 AUX25 V CROSS SET DOM RESTR)

Goal .2. 1.1: Vf a2.(Yc.(c(a2=(3b.c(bA3a.opair(c,a)(f)).-Vc.((3bc(bA3K
.1 .(opair(c,al1)(f A((3b.c'bA3b.a 1(b)A3d o.((cu'dAa 1-e)A(cI~a2Ab.e~b)))YK
)uc(s2))

*****TRY USING ELIMINATION DEPTH 8;

Goal .2. 111: Yc.(ca&2z(3b.c( bA3a.opair(c,a)(f))zYc.((3b.c(bA3a 1.(o%
pair(c~a 1 XfA((3b.cbA~b.al1(b)A3d e.((c-dAalI e)A(d(a2A3b.e(b)))))mc~s%
2)
Goal *2e1*1*1#1: Vc.((3b.ccbA3a 1.(opair(c,a 1)1fA((3b.c(bA3b.s 1(b)A3d%
e.((cu-dAa 1 we)A(d(s2A3b.e~b)))))vc(a2)

30 Yc.(ca2:(3b.cbA3.opair(c,a)(f)) (30)

Goal #2#1#1#1#1#1: (3b.c( bA~al1.(opair(c,al1)(fA((3b.c(bA~b.a 1(b)A3d a
.((c-dAa 1-e)A(d(a2A~b.ecb)))))fc(a2
Goal .2.1*1.1#1#1.1: (3b.c'EbA~al.(opair(c,al1)fA((b.cbA~b.a1(b)A3d%
e.((c-dAal1-e)A(da2A~b.e~b)))))zc'a2

Goal *2.1.1*1*1.1.2: ca2(3b.c(bA~a 1.(opair(c,al)XfA((3b.c~b'A3b.al(%
b)A3d e.((c-dAa 1 .e)A(d(a2A3b.e(b)))))
Goal #2*11#1#1#1*1.ls: c(a2
Goal .2.1 .1.1*1#1#2#1: 3b.c(bA3a 1.(Opair(c,al )(fA((3b.c(bA~b.al(b)A3X
d e.((c-dAa I m)A(da2A'3b.e~b))))
31 c(a2 (31)

RESOLVE ca2(3b.c(bA3a.opair(c,a)(f) , cas2 3 b.c(bA3a.opsir(c,a)%
f

32 3b.c(bA3&.opair(c,a)(f (30 31) %..

33 31a.opeir(c,s)(f (30 31)

34 3b.cb (30 31)

Goal .2.1.1.1.1.1.2.1.1: 3b.cb
Goal *2. 1.1*1sIa1 #2* 1 2: 3a 1.(opairkc,a I )1A((3b.ca~bA3b.a1 I b)A3d *.(%
(c -dAa 1 -e)A(d(s2A~b.(b))))
Goal ...... 21.1:c~b
Goal .2.1.1.1.1.1.2.1.2.1: opair(c,a 1 XfA((3b.c~bA3b.sl(b)A3d e.((c-%
dlAa 1 -e)A(dE(a2A3b.e5b)))
Goal .2.1.1.1.1.1.2.1.2.1.1: opair(c,al)-f
Goal .2.1.1.1.1.1.2.1.2.1.2: (3b.c(bA~b.a 1(b)A3d e.((c-dAal ue)A(d(a2%
A3b-e(b))

*****QED .2.1.1*1.1.1.2.1*1 34-,

*****TRY .2.1.1.1.1.1.2.1.2.1.1 USING UNIFY 33;

35 3s1.oP~ir(c,&1)(f (30 31)

36 opair(c,al)EI (36) *

. . . . .. . . . . . e:.. . . . . . . .*,.*.. . * S



Appendix 2a Ramseys Theorem. 108

****REWRITE AUX5 BY (SET);-

3 substitutions were made

37 Ve bl.(3b.opair(a,bl )b(3b.a(bA3b.blb)):.

****E t c alI;

38 3b.opair(c,a 1)(bu(3b.c(bA3b.alb) P
.***TRY e2s1*1.1s1*1e.2.1s2*1s2 USING Al;

Goal a2#1*1e1iu1e1*2*1*2#1*2#1: 3b.c(bA3b.a b
Goal *2.1*1*1*1*1.2*1.2.1*2*2: 3d a.(c-dAal -e)A(d(a2A3b.e(b)) -

****TRY 1 USING MONADIC 36 38;

39 3b.c~bA3b.aI(b (36)

*****TRY USING MONADIC 31 T;

40 3b.alb (36)

41 3b.cb (30 31)

42 3d e.((c-dAalmse)A(d(a2A3b.e(b)) (31 36)

43 (3b.c(bA.al(b)A~d e.(c-dAa1-e)A(da2A3b.e(b)) (31 36)

44 opair(c,a )(fA((3b.cbA~b.a 1(b)A3d s.((c-dA 1 -a)A(d~a2A3b.eb))) %
(31 36)

45 3a I.(opair(c,a )(fA((3b.cbA3b.al (b)A3d e.((c-dAal ue)A(das2A3bAb%

46 3b.cbA3a 1.(opair(calI)dfA((3b.c(bA~b.al1b)A3d e.((c-dAal -e)A(d(s2K
Ab.e(b)))) (30 31)

47 cca2 (3b.cbA3a 1.(opair(calI)(IA((3b.c(bA3b.a 1(b)A3d e.((cs-dAa 1 -)%
A(d(a2Ab.e(b))))) (30)

*****TRY USING LOGIC;

48 3b.c bA~al1.(opair(c,al1)(fA((3b.c(bA3b.a 1(b)A3d e.(casdAa 1 -)A(da2%
A3b.@(b)))) (48)

49 3a 1.(opair(c,al1)(fA((3b.cbA3b.a 1(b)A3d a.((c-dAal me)A(d(a2A3bse(b%
()) 48)

50 3b.cb (48)

51 3.1 d e.((c-dAal m)A(da&2A~beb)) (48)



'.-W--T. .7

Appendix 2a Ramsey's Theorem. 109

52 3a.1 b.al1(b (48)

53 3a.1 b.cb (48)

54 3al.opair(c,al)(f (48)

55 3&1 d e b.eb (48)

56 3&1 d e.da2 (48)

57 3.1 d esal-. (48)

58 3.1I d exc-d (48)

We have a failqueue of length: 1
Starting a new 2-th pass on new queue of length: I
We have a failqueue of length: 1
Failure: can't prove anything on failqueue.
The tactic LOGIC can't be applied to goal
Goal eeeee111;ca2

IMPVL: 48 3b.c(bA3alI.(opair(c,alI)(fA((3b.c(bA3b.aI (b)A3d o.((%
c-dAa 1 -e)A(da2A3b.e(b))))

FACTS: 30 Vc.(c(a2:(3b.c(bA3a.opi r(c,a)(f))
55 3alId eb.e(b
56 3.1 d e.d(a2
57 3.1 d e.al-e
58 3al d e.c-d
51 3.1 d e.((c-dAa I-e)A(d(a2A3b.e(b))
52 3.1 b.a I(b
53 3.1 b.c(b
54 3a1.opair(c,aI)(f
49 3alI.(opair(c,a I XIA((3b.c(bA3b.aI (b)A~d e.((c-dAaI .. )A%

(da2A3b.e(b))))
50 3b.c(b
47 ca2(b.c(bA3a I.(opeir(c,alI)<fA((3b.cbA3b.alI(b)A3d @%

.((c-dAa 1 -e)A(dea2A~b.e(b)))))
48 3b.cbA3al1.(opair(c,a 1 XfA((3b.c(bA~b.al1 b)A3d @.((c-d%

AS 1 me)A(d(a2A3b.e(b))))
Simpsets: ( BY LOGICTREE COMPTREE)
Quantelimlist: ((c Y) (a2 Y) (f V))%

s***TRY USING MONADIC 51;

59 c(a2 (48)

60 (3b.cbA3alI.(opair(c,alI)(fA((3b.c(bA3b.a 1(b)A3d @.((C-dAa 1 .)A(da&%
2A3b.a~b)))))Dca2

61 (3b.c(bA~al1.(opair(c,al1)(fA((3b.c(bA~b.al1(b)A3d e.((c-dA 1 -#)A(d(@%
2A3b.eb)))))oc(a2 (30)

62 Yc.((3b.c(bA3a 1.(opair(c,al1)(fA((3b.c(bA~b.al1 b)A3d e.((c-dAalI .)AX %
(da&2A3b-e(b)))))ec(&2) (30)



Appendix 21 Ramsey's Theorem. 110

63 Vc(ca2(3b.c(bA3.pair(c,a)(f))Yc.((3b.c(bA3sl1.(opair(c,al )(fA7%
((3b.cb3b.a 1(b)A3d e.((c-dAa 1 e)A(d~s2A~b.e(b)))))mc(&2)

64 Vf a2.(Yc.(c(a2(3b.c(bA3a.opair(c,a)(f))Yc.((3b.C(bA3a.(opair(c% ....

,&l 1XfA((3b.c(bA~b.a 1 (bA21d e.((c-dA& 1 me)A(da2A3bsa(b)))))nc(&2))

65 Vt a.(Yc.(c(anc( DOMMf))Dc.(c(OMf I a)uc(a))nVf a2.(Yc.(c(a2D(3b%
.c(bA3a.opair(c,a)(f))DYc.((3b.c(bA3al1.(opair(c,alI)(fA((3b.c(bA~b.a 1E%
b)A3d e.((c-dA I -e)A(da2A3b.e(b)))))sc(a2)) q.

66 Vt a.(Yc.(c(azc(OMz)~c((O t Ia)Ec(a))

67 Vf s.(acOM0f)DOMQ( I a)-a~a a.(Vc.(c(a~c(OMf))-)Yc.(c(DOM(f 1%

68 Vf a.(acDOW*f)DOM~f Ia)-a)

8.3.3. Restriction of a one-to-one function.

The next lemma states (in somewhat different terms) that the restriction of an one -to-one
function Is again one-to-one. The old proof took 68 steps. The following one requires six calls
to TRY, one to RETRY, two calls to QED, and the following four forward commands from FOL:
two universal specializations, one REWRITE, and one call to TAUT. A total of 13 commands
Instead 58.

*****GOAL Vf a.(FNCCONV(f))FNC(CONV(f I a)))

Goal #3: V1 a.ffNC(CONVM)'FNC(COV(f 10a)

*****YE COWY f I a;

54 RELYI I s) CONV(f I a)-{cj~aI b.(c-opir~a1,b)Aopair(b,al)(( I &)%

*****REWRITE L41 BY {FNC);

1 substitutions were made

55 Vt *.(REL(f Ia)AVb c d.((opair(b,c)((f Ia)AOpair(bd)(f & ))2c% .*

-d))

s***VE T f s;

56 RELO I a)AVb c d.((opair(bc)(f I a)Aopsir(bdX) I a))2c-d)

. . . . . . . . .

-. P -g



Appendix 2t Ramsey's Theorem.11

****TAUT :*2 T1;

57 CONVYf I a)-{cl3al b.(c-opar(a1,b)Aopair(b,a1)((f I a)))

*****TRY USING REWRITE BY ( T FNC REL COWV RESTR AUX13 AUX25);

Goal #3c1: Vf a2.((Yd.((SET(d)A~a b.(d-opair(a~b)Aopair(bas)EO))3b %
c.d..opair(b,c))A~b 1 c d.(((SET(opair(b1 ,C))A~a b.((b 1-aAc-b)Aopair(b,%
a)(f))A(SET(opair(b1I,d)),'3a b.((b 1-aAd-b)AOpair(b,a)(f)))Dc-d))(Yd.(%
(SET(d)A~a 1 b.(d-opair(al1,b)A(Opair(b,al1)(fAopair(b,al1)'(CROSS(a2,V)))h
)z3b c.d-opair(b,c))A~b 1 c d.(((SET(opair(b1 ,c))A3a 1 b.((b 1-al AC-b)A(%
opair(b,al1)(fAOpair(b,al1).(CROSS(a2,V))))A(SET(opair(bl1,d))A3a 1 b.((b l%
-alIAd-b)A(Opair(b,alI)(fAopair(b~a 1 XCROSS(a2,V)))))Dc-d)))

.*****TRY USING ELIMINATION DEPTH 5;

Goal *3#1I c: (Yd.((SET(d)A3a b.(d-opair(a,b)Aopair(b,a)(f))z3b c.d-o%
pair(b,c))A~b 1 c d.(((SET(opair(b1I,C))A~a b.((b 1-aAC-b)Aopair(b,a)(f)%
)A(SET(opair(b 1,d))A3a b.((b 1 aAd-b)Aopair(b~a)Cf)))nc-d))(Vd.((SET(%
d)A~a 1 b.(d-opair(alI,b)A(Opair(b,al )fAopair(b,a I)(CROSS(a2,V))))n3b %
c-d-oPair(b,C))A~b 1 c d.(((SET(opair(b1 ,c))A3a 1 b.((b 1-al AC-b)A(Opair%
(b,a 1)(fAopair(b,a 1 XCROSS(a2,V))))A(SET(opair(b 1,d))A3a 1 b.((b 1-al Ad%
-b)A(Opair(b,al1)(fAopair(b,aI )(CROSS(a2,V)))))zc-d))
Goal .3. 111: Yd.((SET(d)A~a 1 b.(d-opair(al1,b)A(Opair(b,al1)(fAopair%
(b,al1)(CROSS(a2,V))))D3b c.d-opair(b,c))A~b 1 c d.(((SET(opair(b 1,c))A%
3a 1 b.((b 1-al AC-b)A(opair(b,al1)tl AOpair(b,al1)(CROSS(a2,V))))A(SET(opa%
ir(blI,d))A~a I b.((b 1-a IAd-b)A(opair(b~a 1)(fAopair(b,a 1)-CROSS(a2,V)))%

58 Vd.((SET(d)A~a b.(d-opair(a,b)Aopair(b,a)tf))z3b c.d-opair(bc))AY%
b I c d.(((SET(opair(b 1,C))A~a b.((bl1-aAC-b)Aopair(b,)Ef))A(SET(opair%
(bl1,d))A3a b.((b 1-aAd-b)Aopair(b,a)f)))mc-d) (58)

59 Yb 1 c d.(((SET(opair(b 1,c))A3a b.((bl1-aAC-b)Aopair(ba)(f))A(SET(O%
pair(b 1,d))A3a b.((bl1-aAd-b)Aopair(b,a)df)))zc-d) (58)

60 Yd.((SET(d)A~a b.(d-opair(a,b)Aopair(b,a)(f))D3b ctd-opair(b,c)) %
(58)

Goal .3c1 .1.1 c: Yd.((SET(d)A3a 1 b.(d-opair(a1,b)A(opair(b,al)(Aopa%
ir(b,a1I)(CROSS(a2,V))))D3b c-d-opair(b,c))
Goal .3.1#1.1.2: Yb I c d.(((SET(opair(b1 ,C))A3a I b.((b 1-al Ac-b)A(0p8%
ir(b,a IX fAopair(b,a 1 XCROSS(a2,V))))A(SET(opair(blI,d))A3a 1 b.((b 1-al %
Ad-b)A(Opair(b,a 1)XfAopair(b,a 1)XCROSS(s2,V)))))Dc-d)
Goal .3.1 .1*1#1*1: (SET(d)A~a 1 b.(d-opair(a I,b)A(opair(b,al)XfAopawK%
(bal)XCROSS(*2,V))))33b c.d-opair(bc)
Goal *3*lcl.1.1.1c1: 3b c.d-opair(b~c)
Goal .3.1.1.1#2.1: ((SET(opair(b1 ,c))A3a 1 b.((b 1-a1AC-b)A(opair(ba 1%
)( tAopair(b,a I)(CROSS(a2,V))))A(SET(opair(bI ,d))A3a I b.((b 1-aIAd-b)A(%
opair(b,alI)1 Aopair(b~al1)(CROSS(a2,V)))))'c-d
Goal .3*lclclc2.1.1: c-d

*****RETRY .3c1 .1.1.1 USING MONADIC;

Goal .3.1 els1ci: Yd.((SET(d)A3a 1 b.(d-opair(al1,b)A(opair(b,a 1)(fAopa%



Appendix 2: Ramsey's Theorem. 112

ir(b,a 1 )CROSS(a2,V))))D3b c.d-opair(bc)) abandoned.

61 Vd.((SET(d)A3a 1 b.(d-opair(a 1,b)A(Opair(b,a I)(fAOpair(b,a 1)(CROSS(% .--
a2,V))))D3b c.d-opalr(b,t))

*****TRY USING IMPLICATION

62 (SET(opair(bl1,c))A3a 1 b.((b 1-alAC-b)A(Opair(b,alI)(fAopair(b,a 1)(CR%
OSS(a2,V))))A(SET(opair(b 1,d))A3a 1 b.((blI-alAd-b)A(Opair(b,* 1)-fAOpai%
r(b,a1I)(CROSS(a2,V)))) (62)

63 3a 1 b.((b1-al Ad-b)A(opair(b,al1)(fAopair(b,al1)(CROSS(a2,V))) (62)

64 SET(opair(bld)) (62)

65 3.1 b.((bl -a IAc-b)A(opair(b,a 1)(fAOpair(b,a1)(CROSS(a2,V))) (62)

66 SET(opair(blc)) (62)

67 3&1 b.opair(b,&l)(CROSS(a2,V) (62)

68 3&1 b.opair(b,al)(f (62)

69 3.1 b.c-b (62)

70 3.1 b.bl-al (62)

71 3.1 b.opair(b,a1)XCROSS(a2,V) (62)

72 3.1 b.opair(b,al)(f (62)

73 3.1 b.d-b (62)

74 3. 1 b.bl1-a 1 (62)--

Goal *3.1.1 *1u2.1a 1.1: (SET(opair(b 1,c))A3a b.((b 1 aAc-b)Aopair(b,a)h
(f))A(SET(opair(b 1,d))A3. b.((bl -aAd-b)A~pasr(b,a),(f))

****TRY USING ELIMINATION DEPTH 2;

Goal .3.1.1.1.21u1.1#1: SET(opair(b 1,c))iA3& b.((bl-aAc-b)Aopir(b,&%
)(f) 0
Goal .3.1.1.1.2131.1*2: SET(opair(b 1,d))A3a b.((b 1 uAd-b)Aopair(b,&%

Goal #3*l1112u1.1e1#1#1: SET(opir(b,c))
Goal .3.11 *12.1.13131#. 3a b.((b 1-aAc-b)AoPair(b,a)(f)
Goal .3.1.1.1.2.1#1*1.2.1: SET(opair(bld))
Goal .3.1.1.1.2.1.1.1.2.2: 3a b.((b1-aAda-b)Aopir(b,s)(f)

*****TRY USING MONADIC: 63;

75 3a b.((b1-aAd-b)Aopair(b,a)(f) (62)



Appendix 2: Ramsey's Theorem. 113

****TRY *3*1*1*1#2i.1#1*1#1s2 USING MONADIC 65; 9

76 3s b.((bl-Ac-b)Aopalr(b,a)(f) (62)

*****QED *3.l.1#1*2*1#1#1*1.l 66;

77 SET(opsir(b 1c))A3a b.((bl1-aAc-b)Aopair(b~a)(f) (62)

*****QED 64;

78 SET(oPair(b 1 d))A3a b.((bl1-aAd-b)Aopair(b,a)(f) (62)

79 (SET(opair(bl 1 ,Aa b.((bl1-aAC-b)AOpair(b,a)(f ))A(SET(opair(b I d)%
)A~a b.((bl1-aAd-b)Aopair(b,a)<f)) (62)

RESOLVE ((SET(opair(b 1 c))A3a b.((bl1-aAC-b)Aopair(b,a)(f))A(SET(opair%
(b 1,d))A3a b.((blI-aAd-b)Aopair(b,a)df))):)c-d , (SET(opair(bl1,C))A31a b%
.((b 1-aAc-b)Aopair(b,a)(f ))A(SET(opair(bl1 d))A3a b.((bl1-aAd-b)AOpair(%
b,a)(f)) -4c-d

80 c-d (58 62)

81 ((SET(opair(blI,c))A31a b.((b I-al AC-b)A(Opair(b,al1)(fAopair(b,alI)(C%
ROSS(a2,V))))A(SET(opair(bl1 d))A3a 1 b.((b 1-al Ad-b)A(Opair(b,al1)(fAOpa%
ir(b,a 1)(CROSS(a2,V)))))ac-d (58)

82 Yb I c d.(((SET(opair(blI,C))A~a I b.((b 1-al AC-b)A(Opair(b,al1)(fAOpai%
r(b,al1)(CROSS(a2,V))))A(SET(opair(bl1,d))A3a 1 b.((b 1-al Ad-b)A(Opair(b,%
a I topair(b,EK(CROSS(a2,V)))))zc-d) (58)

83 Yd.((SET(d)A~a 1 b.(d-opair(a I,b)A(Opair(b,a 1)CfAOpair(b,al1)'zCROSS(%
a2,V)))):)3b c.d-opalr(b,c))AYb 1 c d.(((SET(opair(b 1 c))A~a 1 b.((b 1-a 1%
AC-b)A(Opair(b~alI)(fAopair(b,alI)(CROSS(a2,V))))A(SET(opair(bl1,d))AJa 1A
b.((b 1-al Ad-b)A(opair(b,al1)(f AOpair(b,a 1 XCROSS(a2,V)))))Dc-d) (58)

84 (Y.(SETWdA21s b.(d-opair(a,b)AOpair(b,a)(D))23b c.d-opsir(b,c))A%
Yb 1 c d.(((SET(opair(b I c))A~a b.((bl1-aAC-b)Aopair(b,a) f))A(SET(opai%
r(b I,d))A3a b.((b I-aAd-b)AOpair(b,a)(f)))Dc-d))(Yd.((SET(d)A~a I b.(d%
-opair(al1,b)A(Opair(b,alI)(fAopair(b,al1)(CROSS(a2,V))))'J3b c.d-opair(b%
,C))AYb I c d.(((SET(opair(blI,C))A~a 1 b.((bi-a IAc-b)A(Opair(b,alI)(fAop%
air(b,alI)(CROSS(a2,V))))A(SET(opair(bl1,d))A3a 1 b.((b 1-al Ad-b)A(opair(%

85 Yf a2.((Yd.((SET(d)A~a b.(d-opair(a,b)Aopair(b,a):f))n3b c.d-opair%
(b,c))A~b 1 c d.(((SET(opalr(b 1,C))A3a b.((b 1-aAC-b)AOpair(b,a)(f))A(S%
ET(opair(bl1,d))A21a b.((bl1-aAd-b)Aopair(b,a)()))Dc-d))(Yd.((SET(d)A3A
a&I b.(d-opair(al1,b)A(opair(b,a I)(fAOpair(b,a 1 XCROSS(a2,V))))z3b c.d-%
opair(b,c))AYb 1 c d.(((SET(opair(bl1,C))A~a 1 b.((b 1-al AC-b)A(Opair(b,a%
1 )fAopair(b,alI)(CROSS(a2,V))))A(SET(opair(bl1,d))A~a I b.((bl1 al1Ad-b)A%
(opair(b,a 1)(fAopair(b,a 1 XCROSS(a2,V))))):)c-d)))

86 Yf a.(FNC(C0NV(f))DFNC(CONV(f I a)))vYf a2.((Yd.((SET(d)A3a b.(ci-o%
pair(a,b)Aopair(b,a)(f))')3b c.dl-opair(b,c))AYb I c d.(((SET(opair(blI,c%
))A3& b.((bl1-aAc-b)Aopair(b,a)(f ))A(SET(opair(b 1 d))A3a b.((b 1-aAd-b)%



ZkS

ppendix 2: Ramsey's Theorem. 114

Aopair(b,a)(f)))D)c-d)):(Yd.((SET(d)A3a 1 b.(d-opair(a1I,b)A(oPair(b,a 1)%
(fAopair(b,al1)(CROSS(a2,V))))m3b c.d-opair(b,c))A~b 1 c d.(((SET(opair%9.
(bj1,C))A~a 1 b.((b 1-a 1AC-b)A(opair(b,al1)(fAopair(b,alI)<CROSS(a2,V))))A%
(SET(opair(b I,d))A3aI b.((b 1-81Ad-b)A(Opair(b,a I)(fAopair(b,alI)(CROSS%

87 Vf a.(FNC(CONV(t))zFNC(CONV(f Ia)))

.3.4. Domain and range of an one-to-one function.

The next lemma states that the domain and the range of a one-to-one function are
Dngruent. It Is proved by a single call to LOGIC, whereas the old proof was In eight
ommands.

*****GOAL Yf.(FNC(CONV(f)).CONG(DOM(t),RNG(f))) SASSUME CONG;

Goal *4: Vf.(FNC(CONV(f))nCONG(DOM(f),RNG(f)))

*****TRY USING LOGIC;

Goal #4#1: Yfl1.(FNC(CONV(flI)):)3f.(FNC(f)A(FNC(CONV(f))A(DOM(f)-DOM(f%
1 )ARNG(f )-RNG(f 1)))))
Goal #.4#1#1: Vfl1.(FNC(CONV(flI))z3f.(FNC(CONV(f))A(DOM(f)-DOM(flI)ARNG%
(f-RNG(f 1))))
88 Vf I .(FNC(CONV(f I ))n3f.(FNC(CONV(f))A(DOM(f)-DOM(f 1 )ARNG(f)-RNG(f 10%

89 Vt I .(FNC(CONV(f1 ))z3f.(FNC(f)A(FNC(CONV(f))A(DOM(f)-DOM(f I )ARNGM%)
-RNG(f 1 )))))nVf 1 .(FNC(CONV(f I )).3f.(FNC(CONV(f))A(DOM(f)-DOM(f 1 )ARNG(%
f)-RNG(f 1))))

90 Yf 1 .(FNC(CONV(f I )).)3f.(FNC(f)A(FNC(CONV(f))A(DOM(f)-DOM(f 1 )ARNGMf)
-RNG(t 1)))))

91 Vf.(FNC(CONV(f)):)CONG(DOM(f),RNG(f )))uYf 1.(FNC(CONV(f 1))33f.(FNC(f%
)A(FNC(CONV(f))A(DOM~f)-DOM(f 1 )ARNG(f)-RNG(f 1)))))

92 VI.(FNC(CONV(f)).CONG(DOM~f),RNG(f)))

LOGIC SUCCEEDED!

7

Next we show the FOL proof generated by LOGIC for the above lemma.



Appendix 2: Ramsey's Theorem. 115

*****SHOW PROOF 88:;

*****MONADIC;

88 Vt 1 .(FNC(CONVQf 1 ))n3f.(FNC(CONV(f))A(D0M(t )-DOM(f 1 )ARNG(f)-RNG(t 10%

*****SIMPLIFY Vt 1 .(FNC(CONV(f 1 ))D3f.(FNC(f)A(FNC(CONV(f))A(DOM(f)=DOM'4
(f I )ARINGMt-RINGO 1)))));

89 Vt I .(FNC(CONV(t 1 ))D3f.(FNC(t )A(FNC(CONV(f))A(DOM(f)-DOM(f 1 )ARNG(f)%
-RNG(f 1 ))))).Yf I .(FNC(CONV(f I)):o3f.(FNC(CONV(f))A(D0M~f)-D0M(f 1 )ARNG(h

*****TAUT Vf 1 .(FNC(CONV(f 1 ))D3f.(FNC(f)A(FNC(CONV(f))A(DOM(f)-DOM(f 10%
ARNG(f)-RNG(t 1))))) 88,89;

90 Vt 1 .(FNC(CONV~f 1 )):)3.(FNC(f)A(FNC(CONV(f))A(DOM(f)-DOM(f 1 )ARNG(t)%
=RNG(f 1)))))

*****REWRITE Yf.(FNC(CONV(f)):)CONG(DOM(f),RNG(f))) BY CONG LOGICTRE%
E COMPTREE;

91 Yf.(FNC(CONV(t))DCONG(DOMUf),RNG(f)))aVt 1.(FNC(CONV(t 1))D3f.(FNC(f%
)A(FNC(CONV(f))A(DOM(f).DOM(f 1 )ARNG(f)-RNG(f 1 )))))

*****TAUT Vt.(FNC(CONV(f))nC0NG(DOM(f),RNG(f))) 90,91;

92 Vf.(FNC(CONV(f)).CONG(OOM(f),RNG(f))) .

8.3.5. Range of the restriction.

The last of these lemmas states that range of the restriction of a function Is a subset of
the range of that function. The old proof was in 23 steps, while the new one takes three
steps: two FOL commands followed by a call to LOGIC.

a***GOAL Vt &.RNG(f ) cRNG(t);

Goal #5: Vt a.RNG(f a)cRNG(f)

*****VE RNG f a

93 FINC(I I a)DRNG(f I a)-(cI3&1.opair(a1,c)((f I a))

6'



Appendix 2: Ramsey's Theorem. 116

s*****REWRITE T BY IL4 1 uLOGICTREE;

2 substitutions were made

*94 RNG(f a)-(cj3aI.opair(a1,c)(tf a))

* *****TRY USING LOGIC PLUS SUBSET RNG T RESTR SET AUX25;

Goal *1: Vf a2 c.((3b.cbA3a 1.(opair(al1,C)(fAopair(al1,c)(CROSS(a2,%
V))))(3b.cbA3a-opair(a,0(t))

95 Vt a2 c.((3b.c bAjalI.(opair(alI,C)(fAopair(al1,c)(CROSS(a2,V)))n(3b.%
c(bA3a.opair(a,c&f))

96 Yf a.RNG(f I akcRNG(f)aYf a2 c.((3b.c(bA3al.(opair(al,C)fAopair(a%
I ,c)(CROSS(a2,V)))D(3b.c(bA3a.opair(a,c)(f))

97 Yt a.RNG(f I a)cRNG(f)

LOGIC SUCCEEDED!

8.4. The GOAL proof of Ramsey's theorem.

*We started the proof from scratch. To the axioms listed In the previous sections, we
* added the last five lemmas as axioms, as follows. The names L41, L95, etc., refer to the line
* numbers these lemmas had In the old proof.

*****DECLARE INDVAR a2 b2 c2 d2 e2;

* *****AXIOM L4 1:Yf a.FNC(f a);;

L41: Vt a.FNC(f I a)

*****AXIOM L95:Vf a.(acDOM(f )mDOM(f a)ah

L95: Vt a.(acDOM~f)zDOM(f I a)-a)

******AXIOM L153:Yf a.(FNC(CONV(Wn)FNC(CONV(f I a),

* L153: Yf a.(FNC(CONV(f)):)FNC(CONV(f I a)))

*.****AXIOM LI 61 :Yf.(FNC(CONV(f ))zCONG(DOM(f),RNG(f)));;

* L 161: Yt.(FNC(CONV(f)):CONG(DOM(f),RNG(f)))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



Appendix 2: Ramsey's Theorem. 117

*****AXIOM L184:VYf a.RNG(f Ia)cRNG(f);;

L184. Vt a.RNG(f 1a)cRNG(f)

The complete proof using GOAL follows. After the proof, we conclude with some statistics
* about It.

*****GOAL VG R B.( DENUM(G) A EDGESET(G) - RuB A RnB
D 3a.(acGADENUM(a)A(EDGESET(a)cBvEDGESET(a)cR)));

Goal #1: VG R B.((DENUM(G)A(EDGESET(G)-(RuB)A(RB)-\)).Ja.(acGA(DENLi%
M(a)A(EDGESET(a)cBvEDGESET(a)cR))))

*****TRY USING VI;

Goal #1#*1: (DENUM(G)A(EDGESET(G)-(RuB)A(RnB)-).z3a.(acG(DENUM(a)A(%
EDGESET(a)cBvEDGESET(a)cR)))

*****cTRY USING al;

Goal ala 1.1: 3a.(acGA(DENUM(a)(EDGESET(a)cBvEDGESET(a)cR)))

a***PREPARE;

1 DENUM(G)A(EDGESET(G)-(RuB)A(RnB)-X) (1)

2 (RnB)-X (1)

3 EDGESET(G)-(RuB) (1)

4 DENUM(G) (1)

*****sLABEL DENUMG T;

*****LABEL NOTRB;

*****REWRITE 2 BY {KEXT AUX25 EMPTY}uLOGiCTREEuCOMPTREE;

8 substitutions were made

5 Vc.-(c(RAC(B) (1)

s***LABEL EGETRB;

*****REWRITE 3 BY (KEXT AUX6);

2 substitutions were made



Appendix 2: Ramsey's Theorem. 118

6 Vc.(c(EDGESET(G)u(c(Rvc(8)) (1)

*****LABEL EDGERO t;

*****LABEL EDGER;

*****MONADIC Yc.(c(RmT:*I*It) T;

7 Yc.(ctRmcEGESET(G)) (1)

*****LABEL EDGEB;

*****MONADIC Yc.(c(RM?:sol) TT;

8 Vc.(c(Rmc(EDGESET(G)) (1)

*****LABEL SETG;

*****RESOLVE DENUMG AUIXI;

RESOLVE DENUMa) SET(a), DENUM(G) -**SET(G)

9 SET(G) (1)

*****LABEL NONOG;

*****RESOLVE DENUMG AUlX3;

RESOLVE DENUMa)(a-%), OENUM(G) -4=X

10 -(G-)) (1)

*****VE CHOICE G;

I1I SET(G),3f.Ya.((acGA (ainM))(f"8a

*****TAUT T:*2 SETG T;

*****LABEL C$OOSEP;

****ES T p;

****sVE INDUCTOEF G {bl3c d.(b-opai r(c,d)AcGA(-C-%)
* A d-IF OENUM((bb(CApair(pc,b)(R))

* THEN (blb(CApair(p"c,b)(R)
* ELSE Ibjb(CApair(p"c,b)(B))) .

14 SET(G)(UNVERSAL( (bl~c d.(b-mopair(c,d)A(CcGA-C>')AdfIF DENUM({b%
jb(CApar(pc,b)XR)) THEN (bjb(CApair(p~c,b)XR) ELSE (bjb(CApalr(p"c,%



Appendix 2% Ramsey's Theorem. 119

b)XB))))1))3c.b.(c-b(FNC(b)A(DOM(b)-omegA((bX)-GA~i.(b"SUJC(i))-(%
bI3c d.(b-opair(cd)A(CcGA('(c-MAd-IF DENUM(bb(CApair(p"c,b)(R)) T%
HEN (blb(CApair(p"c,b)CR) ELSE (blb(CApair(p"c~b)(B)))))"(b"i))))))) %4
s****EVAL T;

15 SET(G)- 3c.Vb.(c-ba(FNC(b)A(DOM(b)-omegA((b"X)-GA~i.(b"SUC(i))-(b%
13c d.(b-opair(cd)A(CcGA((c-%)Ad-IF DENUM((bjb(CApair(p"c,b)*R}) TH7%
EN {bjb(cApair(p~c,b)(R) ELSE {blb(cApair(p~c,b)(B)))}wI(b~i))))))

*****REWRITE T BY (SETG)uLOGICTREE;

2 substitutions were made

16 3c.Yb.(c-b(FNC(b)A(DOM(b)-omeaA((b")GA~i.(bSUC(i))m({bl3c d.(%4
b-opair(c,d)A(ccGA(-(c-;)Ad-lF DENUM((bb(CApair(p"c,b)CR}) THEN fblb4
(CApair(p"c,b)(R) ELSE {bjb(CApair(p"c~b)(B))))}"(b~i)))))) (1)

*****iES T ee;

17 Yb.(ee-b(FNC(b)A(OM(b)-omeaA((b"uGAYi.(b"SC(i)).((b13c d.(b-4
oPair(cd)A(ccGA(-C))Ad-IF DENUM( blb(CApair(p"c,b)XR)) THEN {blb(c4
Apair(pmc,b)(R) ELSE {blb(CApair(pc~b)B))))}"(b'i)))))) (17)

*****YE I ee;

18 ee-ee(FNC(ee)A(DOM(ee)-omegaA((ee)GA~i.(ee"SUC(i))-({bi~c d.(b4
-opair(cd)A(cGA(-(Cm).)Ad-IF DENUM(bb'CApair(p"c,b) R)) THEN {blbE'4
CApair(p"c,b)(R) ELSE {blb(CApair(p"c,b)(B1)))1)*(eei))))) (17)

*****LABEL IFUNG;

*****REWRITE t BY LOGICTREE;

2 substitutions were made

19 FNC(ee)A(DOM(ee)-omegaA((ee"M,-GA~i.(ee'SUIC(i)).({bl3c d.(b-opair(%
c,d)A(ccGA(-(c->)dmIF DENUM(bb'CApair(p"c,b)(R}) THEN (bjb(CApair(%
P~b)XR} ELSE (blb(CApair(p"c,b)B)))})"(ee"i)))) (17) .

* ****GOAL T:*2*2i.2 ASSUME T;

Goal #2: Yi.(ee"SUC(i))-(1b13c d.(b-opair(cd)A(ccGA(-(C-X,)Ad-IF DEN%
UM({blb(C~pair(p"c,b)XR)) THEN fbjb(CApair(p"c,b)(R) ELSE (bb(CApair4

*****PREPARE;

20 Yi.(ee"SU1C(i))-({bIjc d.(b-opair(c,d)(ccGA((C-M)dmIF DENUM(fblb'4
(CApair(p"c,b)XR)) THEN (bjb(CApair(p"c,b)(R) ELSE (bjb(cApair(p"c,b)4

- (B])))"ee"i) (17)

21 (oee'))-G (17)

22 OOM*e)iomga (17)



*Appendix 2: Ramseys Theorem. 120

I 23 FNC(ee) (17)

* *****QEO Tttt;

* *****LABEL EEDEF titT;

* *****LABEL EEO ttt;

I *****LABEL DOMEE 11;

*****LABEL FUNEE 1;

*****GOAL DENUM(kDENU(bb((eeik)Apair(p"(.e"k)b)(R}))
* v DENUM(k'DENUM(bb((ee"k)pair(p"(ee"k),b)(R}))))

I Goal #3: DENUM({kIDENUM(qblb( (ee~k)Apair(pw(ee~k),b)(R))vDENuMfk.%
-DENUM((bjbe(ee~k)Apair(p(ee"k),b)XR))

***s*VE AUXI 10 kIDENUM(bb((ee"k)Apair(p"(ee"k),b)( R))

1 24 UNIVERSAL({kjDENUMfbb((ee"K)Apair(p(eewk),b)R)))(UNIVERSAL({%
* kI-DENUM(bb((eemk)Apair(p"(ee"k),b)( R)))(DENUM(kIDENUM(bib((e.%

(DENUM(1kIDENuM~(( ~ )pi~*eek,)R))DEU~kEU[

s***EVAL T;

I ~25 DENUM( KIDENUM( (blb((se"k)Apair(p"(ee"k),b)RI))ufk j'DENUM( fblb((o%
e"k)Apair(p)"(ee"k),b)( R)))(DENUM((kIDENUMbb((ee"k)Apair(p"(aeuK)%
*b)(R)))vDENUM((kl-DENUM(bb((ee"K)Apair(p"(ee"k),b)(R))))

*****GOAL omega - {kIDENUM{bb(ee"k)Apair(p"(ee"k),b)(R)))
* u {kl'DENUM( (blb:(ee"k)Apair(pw(ee~k),b).R1));

Goal #4: omegau((kIDENUM(bb((,e"k)Apair(p"(ee~k),b)(Rp))ufkj.DENUM%

* *****SIMPLIFY SET~i)

* 26 SET(i)

p 0* *****LABEL NATSET;

- 27 Ya.(NATNUM(&):)SET(&))

[ *****TRY USING REWRITE BY {KEXT AUX6 omega);

Goal *4*1: Yc.((SET(c)ANATNUM(c))E((NATNUM(c)ADENUM(blb((ee"C)Apair%

(P"(eec),b)(R)))v(NATNUM(c)A-DENUMJbb((eekC)Apair(p(ec)bER)))))

IV



- -- -' -- - . 77 - .* .

Appendix 2& Ramsey's Theorem. 121

****TRY USING MONADIC NATSET;

28 Yc.((SET(c)ANATNUM(c))((NATNUM(c)ADENUM(bb((ee"C)Apair(p"(e~c)%
,b)(R}))v(NATNUM~c)ADENUM( Jblb((ee"C)Apair(p"(ee"c),b)(R)))))

29 omg-(IEU~l(e~)pi~"e~)b()IflDNMfl((
ee"k)Apair(p"(ee"k),b)(R)))Yc.((SET(c)ANATNUM(c))((NATNUM(c)ADENUM
({bjb((ee"C)Apair(p(ee"c),bR)))v(NATNUM(c)ADENUM( tbib((ee~c)Apair%
(p*(eewc),bXRI)))))

30 omega-({kIDENUM(fbb((ee"k)Apair(p"(ee"k),b)R))ufk.DENUM((blb((%
e*k)APair(p*(ee*K),b)R)))

*****TRY *3 USING MONADIC T,fTTI AUX3O; 9

31 DENUM( {kIDENUM( (blb((ee"k)Apair(p(ee"k),b)(R)))vDENUM(kl9DENUM(%
{blb((ee"k)Apair(p"(ee"k),b)(R})))

****TRY .1.1.1 USING EG RNG({bIjk.b-opair(k,p"(ee"k))) I
* IF DENUM({IDENUM(bib(ee~k)Apair(p"(ee~k),b)ER))))
*THEN {kIDENUM(blb(ee'k)Apair(p"(ee'k),b)(-R})})7
* ELSE {kI'DENUM(blb((ee"k)Apair(p"(ee"k),b)(R})));

Goal #1#1*1#1: RNG((b3k.b-opair(k,p'(ee"k))) I IF DENUM({kjDENUM({b%
jb((ee"k)Apair(p"(ee"k),b)( Ri))) THEN {kIDENUM((bb(ee'k)Apair(p"(ee%
-k),b)( R))) ELSE (kI-DENUM( {bbb(eeK)Apair(p"(ee"k),b)(R))CGA(DENU%
M(RNG( b13k.b-opair(k,p"(ee"k))) I IF DENUM({kIDENUM({bibC(ee"Ik)Apair%
(p"(ee"k),b).:R))l) THEN {kIDENUM(blb((ee"k)Apair(p"(ee"k),b)(R})) EL%
SE {kI-DENUM(bb((ee"k)Apair(p"(ee"k),b)( R}))))A(EDGESET(RNG({bI~k.b%
inopair(k,pwleekk))) I IF DENUM({kIDENUM( fbjb((ee~k)Apair(p"(eek),b)(%
R)))) THEN {kIDENUM(bb(ee"k)Apair(p'(ee"k),b)(R})) ELSE (kj'DENUM(%
{blb((es"k)Apair(p"(ee"k),b)( R)))))cBvEDGESET(RNG((bIJkb-opair(k,p"(%
eek))) I IF DENUM{kDENUM(bb(ee"k)Apair(p"(ee"Ik),b)(R)))) THEN {%
kiDENUM((blb((eek)Apair(p"(,e"k)b)(R))) ELSE (kjDENUM(bjb((9e"k)A%
pair(p"(ee"k),b)XR)))))cR))

.***GOAL FNC({b3k.b-opair(k,p"(eek))IA);

Goal #5: FNC({bIjk.b-opair(k,p"(ee"k))I)

****TRY USING REWRITE BY {FNC REL AUX27);

Goal #5#1: Yd.((SET(d)A3k.dwopair(k,p"(ee~k)))m3b c.d-Opair(b,c))Avb%
c d.(((SET(opair(b,c))A3k.(b-kAC-(p"(ee"k))))A(SET(opair(b,d))A~k(b%
-Adin(p"(eek)))))nc-d)

.*****TRY USING ELIMINATION DEPTH 2;

Goal #5*161: Yd4(SET(d)A3k.d-opeir(kp"(ee"k)))n3b c.d..opair(b,c))
Goal 3531#2: Yb c d.(((SET(opair(b,c))A3k.(b-kAC-(p(eek))))A(SET(o%

Goal #5#131#1: (SET(d)A3Kd-opair(k,p"(ee"k)))23b c.dl-opair(bc)



Appendix 2t Ramsey's Theorem. 122

Goal #5.1.2.1: ((E~pi~c)~.bkC(*&*))ASToarb
,d))A3k.(b-kAd-(P"(ee"1))))'2C-d

****TRY .5.1.1.1 USING LOGIC;

32 (SET(d)A3kd-opair(k,p(ee"k)))Db c.d-opair(bc)

33 Yd.((SET(d)A3kd.opair(kp"(ee"k)))23b c.d-opair(bc))

Goal #5.1*2#1.1: cad

34 (SET(opair(bc))A3k.(b-kAm(p"(ee"k))))A(SET(opair(b~d))A-'K(b-kIAd% 2
-(p"(eePk)))) (34)

35 3k.(b-kAd-(p*(eeuk))) (34)

36 SET(opair(bd)) (34)

37 3k.(b-kAC-(p"(ee"k))) (34)

38 SET(opair(b,c)) (34) '

We have a failqueue of length: I
Starting a new 2-th pass on new queue of length: 1
We have a failqueue of length: I
Failure: can't prove anything on failqueue.
The tactic LOGIC can't be applied to goal
Goal *5.1.1*1: Proven. 32 (SET(d)A3kd-opair(k,p"(ee"k)))z3b cd%
-opair(b,c)

*****ES ttli k;

39 b-kAd-(p"(ee"k)) (39)

.***ES ITT~ j

40 b-jAC-(p"(eeuj)) (40)

.****TAUTEQ k-j M1;

41 k-j (39 40)

****REWRITE ITT BY (I);

2 substitutions were made

42 bmjAd.-(p"(ee~;)) (34 40).%

*****TRY USING TAUTEQ ft,T;

43 c-d (34)



Appendix 21 Ramsey's Theorem. 1 23

44 ((SET(opair(bc))A3k.(b-kAC-(pw(ee~k))))A(SET(opair(b,d))A3k.(b-kA%

45 Yb c d.(((SET(opair(bc))A3k.(bsKACu(p"(ee"K))))A(SET(opair(bd))AX %

46 Vd.((SET(d)AJk.d-opair(k,p"(ee"k)))n3b c.d-opair(bc))AOb c d.(((S%
ET(opair(b,c))A3k.(b-kAC-(p"(ee"k))))A(SET(opair(b,d))3k.(bI4Ad-(p"(%

47 FNC((bi3kb-opair(k,p(eek))))(Yd.((SET(d)A3kd-opair(k,p"(ee"k)%
))*3b cd-opair(bc))AOb c d.(((SET(opair(b,c))A3k(b-kAC-(p"(e"k)))%
)A(SET(opair(b,d))A3k.(b-kAd-(p"(ee~k)))))Dc-d))

48 FNC((bjkb-opir(kp"(eeIk))))

****LABEL FUNCC t;

*****YE AUXI 10 blb(CApair(a,b)(R) (bibE(CApair(a,b)B1);

49 UNIVERSAL(Ib(CApair(a,b)XR1))(UNIVERSAL(bbCApair(a,bX58))D(DE%
NUM( blb(CApair(a,b)(R)u~blb(CApair(a,b)B))*(DENUM({blb(CApair(a,b)(%
R))vDENUM( blb(CApair(a,b)8}'))))

*a**EVAL t;

50 DENUM({blbeCApair(a,bXR~ulbjb(CApair(a,b)B})):(DENUM((blb(CApair(%
e,b)( R))vDENUM(blbCApair(a,b)iB})))

*****iGOAL Yc a.(ccGAa(c4:.1 i-c\sing(a));

Goal *6: Vc a.((ccGAa(c),((blbcApair(a,b)R)u(bb(CApair(a,b)B))-(%
c \ singl(a)))

*****TRY USING REWRITE BY (KEXT SUBSET AUX6};

Goal #*1: Vcl 1 .((Yc.(c~c 1 c(G)Aa:C 1)nYc.(((SET(c)A(C(C Apair(ac)%
R))v(SET(c)A(cc I Apair(a,c)(B)))zc:(c I \singl(a))))
*****TRY USING REWRITE BY {DIFF COMPL ALUX25 UNIT V);

Goal e6slel: Vcl 1 .((Yc.(ccla c(G)ACI )aYc.(((SET(c)A(C(Cc Apair(a,c%
) R))v(SET(c)A(cc 1Apair(a,c)( B)))(cc 1A(SET(c)A'(SET(c)A(SET(A)AC-a%

*****TRY USING ELIMINATION DEPTH 3;

Goal *6.1.1*1: (Yc.(cclc I(G)Aa(ClI)zYc.(((SET(c)A(c~clIApair(a~cX(R))%
v(SET(c)A(C.(Cl1Apair(a,c)(B)))u(c(c 1A(SET(c)A'(SET(c)A(SET(a)AC-a)))))
Goal *6#*111: Yc.(((SET(c)A(C(ClIApair(a,c)(-R))v(SET(c)A(ccl1Apair%
(a,c)(B)))%(c~c I A(SET(c)A-(SET(c)A(SET(a)AC-a))))) .- *-

51 Yc.(cc1*c(G)Aac1 (51)



7-7 -7 77- 76

Appendix 2: Ramsey's Theorem. 124

52 a(cl (51)

53 Yc.(cftbc(G) (51)

Goal .6*1.1.1.1 *1: ((SET(c)A(C(Cl1Apair(a,c)(R))v(SET(c)A(C(C 1Apair(a%
,c)XB)),m(cc A(SEr(c)A,(SEr(c)A(SEr(a)AC-a))))

.***YE AUJX12 a c G;

54 psi r(a,c)XEDGESET(G)m(a(GA(C(GA'(a-C)))

*****REWRITE T BY (3 AUX6}1;

2 substitutions were made

55 (pair(a,c)(Rvpair(ac(B)m(a(GA(C(GA'(a-C))) (1)

*****TRY USING MONADIC tttt,ttT,T;

56 ((SET(c)A(C(C 1Apair(a,c)XR))v(SET(c)A(C(Cl1Apair(a,c)(B)))E(c(C 1A(S'h
ET(c)A-(SET(c)A(SET(a)AC-a)))) (1 51)

57 Yc.(((SET(c)A(C(Cl1Apair(a,c)( R))v(SET(c)A(C(ClIApair(a,c):B)))m(c(c%
1A(SET(c)A-(SET(c)A(SET(a)AC-a))))) (1 51)

58 (Vc.(cclI c( G)Aa(C 1 k~c.(((SET(C)A(C'(Cl1Apair(a,c)(R))v(SET(c)A(C(C%
1 Apair(a,c)( B)))(c(clIA(SET(c)A-(SET(c)A(SET(a)Ac-a))))) (1)

59 Vc I *((Vc.(cclI c( G)AaclI)DYc.(((SET(c)A(c(cl1Apair(a~c)(R))v(SET(% -

C)A(C(Cl1Apair(a,c)(B)))a(c(cl1A(SET(c)A-(SET(c)A(SET(a)AC-a)))))) (1)

60 Yc I a.((Yc.(cclI c( G)AaclI)nYc.(((SET(c)A(C(Cl1Apair(a,c)(R))v(SET(%
C)A(C(C 1Apair(s,c)XB)))Ec((c 1 \ singl(a))))mYc 1 a.((YC.(C(C 13CG)Aa(C%
1 )DYc.(((S ET(c)A(C(C 1 Ap ai r(a~c)(R)) v(S ET(c)A(C(C 1 Ap ai r(a,c)(B)))R(c(c%
I A(SET(c)A'(SET(c)A(SET(a)Ac-a))))))

61 Ycl 1 .((Yc.(cc IDc( G)Aa(CI1)nYc.(((SET(c)A(C(C IApair(a,c)(R))v(SET(%
c )A(C(C IApair(a,c)(B)))sc((c 1 \ singl(a)))) (1)

62 "'c a.((ccGAa(C)D({Ib(CApair(a,b)R~ublb(CApair(a,b)(B))-(c \ sin%
gI(a)))nVc I a.((Yc.(c(clI c(G)Aa(ClI)oYc.(((SET(c)A(C(C IApair(a,c)(R))V%*
(SET(c)A(C(C 1Apair(a,c) B)))ac((c1 \ singl(a))))

63 Yc a.((ccGAa(c)D((blb(CApair(a,b)Rufblb(CApair(a,b)(B1)-(c \sin%
gI(a))) (1)

*****GOAL Yc a.(ccGADENUM~c)Aa~cD5O:*2);

Goal a7: Yc a.((ccGA(DENUM~c)Aa(c))n(OENUM({blb(cApair(a,b)R))vDENUI%
Mjbjb.:CApair(s,b)XB))))

****TRY USING ELIMINATION;

2, 2S



- - - - - --6

Appendix 2t Ramsey's Theorem. 126

Goal .7.1- (ccGA(DENUM(c)Aa(c))(DENUM({tbib(CApair(a,b)(R))vDENUM(b%
Ib(CAPair(s,b)(B)))
Goal #7.1*1: DENUM((blb(CApair(a,b)(R))vDENUM(blb(CApair(a,b)(5}))--

*****TRY USING IMPLICATION 50;

64 ccGA(DENUM~c)Aa(C) (64)

65 a(C (64)

66 DENUM(c) (64)

67 ccG (64)

Goal *7.1*1.1: DENUM(bib(cApair(a,b)(R)u~blb(CApair(a,b)(B})

**a**VE 63 c a;

68 (ccGAa(c)(bIb(CApair(a~b)R)U~blb(CApair(a,b)(B))n(c\ singl(a)) (1)

*****TAUT t:#2 64 T,

69 ({blb(cApair(a,b)XR)U~blb(CApair(a,b)(B})-(c \singl(a)) (1 64)

****RESOLVE 66 AUX9;

RESOLVE DENUM(a)2DENUM(a \singl(b)) , DENUM(c) -. *Vb.DENUM(c \singl(b))

70 Yb.DENUM(c \ singl(b)) (64)

****TRY USING REWRITE BY (11,t);

71 DENUM(blb(CApair(a,b)(RIU~blb(CApair(a,b)(B}) (1 64)

RESOLVE DENUM(blb(CApair(a,b)( R~ufblb(CApair(a,b)C8}))(DENUM({blb(CA%
psi r(a,b):RI)vDENUM((b lb(CApair(a,b)(B}))), DENUM(bb(CApair(a,b)(R)%
u~bjb(CApair(&,b)(B)) -. DENUM({blb(cApair(a,b)(R))vDENUM({blb(CAPair%

72 DENUM(blb(CApair(a,b)(R))vDENUM({blb(CApair(a~b)(B)) (1 64)

73 (ccGA(DENUM~c)Aa(c)).,(DENUM(tbb(CApair(a,b)(R))vENUM({bib(CApair%

74 Yc s.((ccGA(DENUM~c)Aa(c))2(DENUM~fbtb(CApair(a,b)(R))vENUM({blb(%
CApair(a,b)(B)))) (1)

a***GOAL Y,.(ee"icGADENUM(ee"i));

Goal *8: Yi.((ee"i)CGADENUM(ee~i))

*****TRY USING INDUCTION;



Appendix 2: Ramsey's Theorem. 126

Goal *8#1: (ee")cGADENUM(ee"X)
Goal #8#2: Yi.(((ee"i)cGADENUM(eei))((ee"SUC(i))cGA0ENUM(ee"SUC(i))))

****TRY 1 USING REWRITE BY (SUBSET EEO DENUMG);

75 (ee")jcGADENUM(ee",) (117)

****TRY USING ELIMINATION;

76 DENUM(ee"X.) (117)

77 (ee"MOcG (117)

Goal #8#2#1: ((ee"i)CGADENUM(eei))((ee"SUC(i))cGADENUM(ee'SU)C(i)))
Goal #8#2#1#1-. (ee"SUJC(O)cGADENUM(ee"SUC(i))
78 (eewiOcGADENUM(ee~i) (78)

79 DENUM(ee"i) (78)

80 (ee"i)cG (78)

Goal #8#2#1#1#1: (ee"SUC0i))cG
Goal #8#2#1*1#2: DENUM(ee"SUC(l))

**s**VE APPLY EEDEF:#1#2#1 ee"i;

81 UNIVERSAL(fbflc d.(b-opair(c,d)A(ccGA(-(c-.X)Ad-IF DENUM({bjb(CApai%
r(p"c,b)XR)) THEN jbjb(CApair(p"c,b)(R) ELSE {blb(CApair(p"c,b)(B))%p
):((3d.Vc.(dincEopair(ee"i,c)( (bI~c d.(buopair(c,d)A(CcGA(-(C->,)Ad-lF%
DENUM( blb(CApair(p"c,b).RI) THEN {bjb(CApair(pc~b)(R1, ELSE fblb(CA%

pair(p"c,b)(B))))))zopair(eei,b3c d.(buopair(c,d)A(cGA(-(C-=MAd-%
F DENUMbbCApair(p'c,b)R)) THEN {blb(CApair(pc,b)(R) ELSE (bjb(c%
Apair(p"c~b)(8))))I"(ee'i))( {bf~c d.(b-opair(c,d)A(CcGA(-(C-=)Ad=IF D%
ENUM({bjb(CApair(p"c,b)(R)) THEN {bjb(CApair(p"cb)tRI1 ELSE {blb(CApa%
ir(p"c,b)BE))))))A(-3d.Yc.(d-ciopair(eei,c)({b13c d.(b-opair(c,d)1(c% S _

cGA(-(C->X)Ad-IF DENUM(blb(CApair(p"c,b). R)) THEN ,bjb(CApair(p"c,b)(%
R) ELSE {bjb(CApair(p"cb)XB)))))(b3c d.(b-opair(c,d)A(ccGA((C-X%
)Ad-IF DENUM(bjbCAPair(p"c,b)(R}) THEN fbjb(CApair(p"c,b)(R) ELSE {%

s*****EVAL T;

82 (3d.Yc.(d-csopair(ee"i,c)C(bjc d.(b-opair(c,d)A(cc:GA(-(C=X)Ad-IF %
DENUM( blb(CApair(p"c,b) R}1) THEN /{blb(CApair(p"c,b)(R) ELSE fbjb(CAp%
air(p~c,b)(B))))Dopair(ee"i,(bl3c d.(b-opair(c,d)A(CCGA(-(C-X)Ad-IF%
DENUM([bbCApair(p"c,b) R}) THEN {bjb'(C~pair(p'c,b)(R) ELSE ,blb(CA%

pair(p~c,b)8J))))}"(ee"i)) {bl~c d.(b-opair(c~d)A(ccGA(I(C-)Ad-IF DE%
NUM(Ibjb'CApair(p"c,b) RI) THEN {blb'CApair(p'c,b)( RI ELSE Jbjb(CApa
r(p'c,b) B)))I)A(-3dYc.(d-cuopair(ee'i,c) fbj3c d.(b-opair(c,d)A(c% A
GA(-(C->)AdmIF DENUM(bbCApair(p"c,b)(R)) THEN {bljb'cApair(p"c,b)XRh
IELSE {blbtCApair(p"c,b).BI)))I)n((b3c d.(b-opair(c,ci)A(ccGA(.(C.M)%

Ad-IF DENUM((bb(CApair(p~c,b)(R)) THEN {bfb(CApair(p'c,b)(R) ELSE fb%
Ib(CApair(p"c,b)(8)))))"(ee"i))-)



7.~~ -7- -717 --

Appendix 2t Ramsey's Theorem. 127

*****AE T 1;

83 3d.Yc.(d-cvopair(ee"icX{bj3c d.(b-opair(c,d)A(CCGA('(C-)\)Ad-IF D%
ENUM({bjbezCApair(p"c,b)(R)) THEN fblb(CApair(p"c,b)XR) ELSE {blb(CApa%
ir(p~c,b)XB))))))Dopair(eei,bl3c d.(b-opair(c,d)A(Cc-GA('(C-X)Ad'.)F %
DENUM((blb'CApair(p mc,b)>RA) THEN (blb(CApair(p"c,b)(R) ELSE fbjb(CAp%
air(pc,b) B)))))"(ee"i)) (bj3c d.(b-opair(c,d)A(ccGA(-(C>.)Ad=IF DEN%
UM({blb(CApair(p"c,b)(R)) THEN {blb(CApair(p"c,b)(R} ELSE (bjb(CApair%
(p"c,b) B)))))

.*****GOAL T:#2 ASSUME T;

Goal *9: oPair(ee~i,{bI3c d.(b-.opair(c,d)A(ccGA(-(C->.)Ad-IF DENUM({b%
Ib(CApair(pc,b)XR)) THEN 1{bjb(CApair(p"c,b)(R) ELSE {bjb(CApair(p"c,%
b)(B)))))"(ee"i)) {bIjc d.(b-opair(c,d)A(ccGA(-(C-X)Ad-IF DENUM({bjb(c%
Apair(p"c,b)XR)) THEN Iblb(CApair(p"c,b)CR.1 ELSE {bjb(CApair(p"c,b)(B))))) :

*****TRY USING IMPLICATION;

Goal *9#1: 3d.Yc.(dwcffopair(ee~ihc)cfbt3c d.(b-opair(c,d)A(ccGA(-(Cu?%
)Ad-IF DENUM(bb(CApair(pc,b)(R)) THEN {bjb(CApair(p~c,bX(R} ELSE %
{bjb(CApair(pc,bXB}))))) 6

.***TRY USING EG IF DENUM(bb(eeiApair(p(eei),b)XR))
* THEN {blb(eei1Apar(p"(ee"i),b)ER)
* ELSE {blb(0qe Apair(p(e"i),b)(B};

Goal .9*1*1: Yc.(IF OENUM({bb(ee"i)Apsir(p"(ee"i),b)ER)) THEN {blb%
((00ei)APair(p"(se"i),b)( R) ELSE {blb((ee"i)Apair(p"(ee"i),b)EB}-csop%
air(9e ,c) fbl3c d.(b-opsir(c,d)A(ccGA(-(CmX)Ad-lF DENUM({bjb(CAPair%
(pc,b)(R)) THEN (blb(CApair(p"c,b)(R) ELSE {blb(CApair(p"c,b)(8))))))

*****TRY USING REWRITE BY {AUX5 AUX27);

Goal .9# 1 *1 *1: Vc.(IF DENUM(bb(eei)Apair(p"(ee"i),b)(R}) THEN fb%
Ib((eei )Apair(p"(ee"),b)XR) ELSE {blb((ee"i)Apair(p"(ee"i),b)(B'mcu%
((SET(ee~i)ASET(c))A3c I d.(((ee"i)-clIAc-d)A(ClIcGA(-(clI-%)AdmIF DENUM(%
[blb(c 1Apair(p~c 1,b)(R)) THEN [bjb(c lApair(p"c 1,b)(R) ELSE [bib~c lApah
ir(p'c 1 ,b)(8))))))

*****TRY USING ELIMINATION DEPTH 3;

Goal e9*1#1*1e1: IF DENUM(blb(ee"i)Apair(p"(ee"i),b)'R}) THEN (bib%
((ee"i)Apair(p*(ee~i),b)R) ELSE {blb(eei)Apair(p"(eei),b)( 6j-cu((%
SET(ee",)ASET(c))A2c1C d.(((ee"i)-cl1AC-d)A(cl1cGA(-(cl1-X)Ad-IF DENUM({b%
Ib~clIApair(pcl1,b)(R)) THEN fblb(c IApair(p"c 1,b)(R} ELSE fbib~c IApair%
(pc 1 ,b) B)))))
Goal *9.1 *1 *1 *11: IF DENUMWfblb((eewO)Apair~p(es"i),b)(R)) THEN fb%
Ib((e9fi)Apair(p'(ee~i),b)(R) ELSE {bib4(ee i)Apair(p"(ee"i),b)B)-cD% -

((SET(eem i)ASET(c))A~c 1 d.(((ee"i)-cl1Ac-d)A(Cl1cGA-CI aA)Ada.IF DENUM(%
{blb~c 1Apair(p~C1 ,b)(R)) THEN {bjb(c 1 Apir(p"C1 ,b)(R) ELSE (bjb~c 1Apf%
ir(pc1 ,b) B)))))



ppendix 2s Ramsey's Theorem. 128

Goal #9#11 *11. 2 ((SET(ee~i)ASET(c))A3c I d.(((ee i)-c1 AC-d)A(C 1cGA%
(-.(clI-X)Ad-IF DENU1M(blb~c1 Apair(pkc 1,b)(R}) THEN {blb(c lApair(p"c i,b%0
)(R) ELSE {blbzc 1Apair(p"c 1,b)(B})))))DIF OENUM(bjb((ee"i)Apair(p"(ee%
"i),b).:R}) THEN (bjb((ee"i)Apair(p"(ee"i),b)(R) ELSE {bjb((eewi)Apair%
(p"(ee"i ,b)( B}-c
Goal *9.1#1#1#18181: (SET(ee"i)ASET(c))A3C 1 d.(((ee"i)-c1 AC-d)A(C lCGA
A('(CI1-X)Ad-IF DENUM(bbc Apair(p"c 1,b)YR}) THEN (bjb(c lApsir(p"c 1,%
b)(R) ELSE (blb(clApair(p"cl,b)(B}))))
Goal *9#131.1818281: IF DENUM(bb(ee"i)Apalr(p"(ee"i),b)(R)) THEN% .
{blb((eei)Apair(p"(ee"i),b)(R} ELSE {b Ib((ee"i)Apair(p"(ee"i),b)(B)-c

s*****PREPARE;

84 (SET(ee")ASET(c))A36 d.(((eeoi)=cl1AC-d)A(CcCGA(.(clI-MAd-IF DENU%
M((blbc1Apair(p"c 1,b)XR}) THEN (blb(cl1Apair(p"c 1,b)(R) ELSE {blb(c 1A%
pair(p"c 1,bX(B)))) (84)

85 3c I d.(((ee"i)-cl1AC .d)A(c GA(-(C 1-MAd-IF DENUM(blbc lpair(p"c1%
,b)(R}) THEN (bjbcApair(p"c,b)XR) ELSE (bjb(clApair(p"c1,b)(B}))) (84)

86 SET(c) (84)

87 SET(ee"i) (84)

****ES tTT cl d;

88 ((ee"i)-c 1AC-d)A(C IcGA(-(Cl1-M\Ad-IF DENUM((bjb(c1IApair(p"CI ,b)(R})%
THEN {blbcl1Apair(pocl1,b)XR} ELSE (bjb(c1IApair(p"c 1,b)(B))) (88)

*.*s.ADDFACTS .9.1.1.1.1.2#1 ASSUME T;

Goal 898181 *1*1.2.1: IF DENUM(bb'(ee"i)Apair(p"(ee"i),b)(R}) THEN %
{b Ib((ee"i)Apair(p*(eeei),b)(R) ELSE {blb((e~i)Apair(p(ee"i),b)(B)-c

****PREPARE;

89 d-IF DENUM((bjb(c1Apair(p"c11b)(R.1) THEN {blb(clApair(p"cl,b)XRI E%
LSE (bjb(clApair(p"cl,b)(8) (88)

90 -(ci->) (88)

91 clcG (88)

92 c-d (88)

93 (ee*i)-cl (88)

94 c1-iFALSE (88)

****TRY USING REWRITE BY {TT,tTT,TttTT};

95 IF DENUM( blb((e"i )Apair(p"(ee ),b)(R)) THEN (bjb((ee i)Apair(p"%

(eei),b)( R) ELSE {blb((oe'i)Apair(p(ee~i),b)(B)-c (84)

. . . . . . .



Appendix 2: Ramsey's Theorem. 129

96 ((SET(ee",)ASET(c))A3c I d.(((ee"i)-cl1AC-d)A(C lcGA(-(C 1-X,)Ad-IF DEN%
UM((btb(c1Apair(p"c 1,b)(R}1) THEN {blbclApair(p"c 1,b)(R1 ELSE [blb(c1%
APair(p"c 1,b)( B)))):IF DENUM(blb((ee"i)Apaifp'(ee"i 1b)XR}) THEN 1%
blb.:(ee"i)Apair(p"(ee"i),b)(R) ELSE {blb((ee'i)Apair(p"(ee'i),b)(.B}C%

*****TRY USING A);

97 IF DENUM(bib((ee"i)Apair(p"(eei),b)(R}) THEN {bjb<(ee"i)APair(p"%
(ee"i),b)(R} ELSE 1blb'(ee"i)Apair(p"(ee'),b)(B}-c (97)

Goal #9#1#1#1et#1111: SET(eei)ASET(c)
Goal #9#1#1#1 #1#1#1#2: 3c 1 d.(((ee~i)-c1AC-d)A(cGA((C1X%)AdlIF DE%4
NUM(fbjb(c IApair(p"c I,b)(R)) THEN /bfb(c IApair(pc ,b)(R) ELSE {blb~c%
l~pair(p"c 1,b)(B)))

*****TRY USING EG ee"i T:*1;

Goal #9*s1#11111#2#1: ((ee"i)=(ee"i)AC-IF DENUIM({bjb((ee"i)APair(%
p"eei),b)(R}) THEN {bjb':(eei)Apair(p"(ee"i),b)( R} ELSE {, b(b(eei)%
Apair(p"(ee'i),b)(BI)A((ee"i)cGA(-((eei)-rX)AIF DENUM(bb((eei)APai'4
r(p"(eeei),b)(R)) THEN {blb((ee"i)Apair(p"(eei),b)(R) ELSE fbjb((ee"%
i)Apair(p"(ee"i),b)(B)1IF DENUM(blb((ee"i)Apair(p"(ee"i),b)(R}) THEN%
{bjb((ee"i)APair(p"(ee"i),b)(R) ELSE (blb((ee"i)Apair(p'(eei),b)(B1))

*s****YE AUX3 ee"i;

98 DENUIM(eei),),((eel)X)

,*****TAUT T:#2 79 T;

99 -((ee"i)-X) (78)

*****TRY USING REWRITE BY (80 T,TT1T};

100 ((ee"i)-(ee"I)AC-IF DENUM( (blb((ee"i)Apair(p"(eei),b)(R}) THEN (%
bib(ee'i )Apair(p"(ee"i),b)(RI ELSE {blbc(ee"i)Apair(p"(eei),b)(B)A%
((ee"i)cGA(-((ee"i)-X)AIF DENUM(blb((ee"i)Apair(p"(ee"i),b)(R}) THEN%
{blb((ee"i)Apair(p"(ee"i),b)( RI ELSE (,b~b((ee"i)Apar(p"(eei),b)(BI%

-IF DENUM( (blb.((ee"i)Apair(p"(ee i),b)(R)) THEN !,bjb(ee"i)Apair(p"(e%
e"i),b)(R) ELSE (blb((ee"i)APair(p(ee"),b)(BD) (78 97)

101 36 d.(((ee"i)-cl1AC-d)A(Cc GA(-(Cl1-X)Ad-IF DENUM({bjb(c 1Apalr(p'c 1,b)%
(R)) THEN (b~btc1Apair(p'c1,b)(R) ELSE {b~bcl~pair(pcl,b)(B})) (78 97)

*****YE 74 ee"i p"(ee"i);

102 ((ee"i )cGA(DENUM(ee i)A(p"(ee"i))((ee"i)))(DENUM({bib((e"i)Apai'h
r~p"ee~),b)R))DENM~fbb((e~iApai~p"ee~),b)B)) (1

*****YE CHOOSEP ee"i;

103 ((ee"i)cGA-((ee i)-X,))D(p'(ee~i))((ee"') (13)



Appendix 2: Ramsey's Theorem. 130

*****TAUT DENUM(97:*1) 79 80 99 TT:; .
104 DENUM(IF DENUM(bb(ee"i)Apir(p'(ee"i),b)(R}) THEN {blb((se"i)A%
pair(p"(ee"i),b)(R} ELSE {blb(eOe"i)Apair(p"(ee~i),b)B8I) (1 13 78)

*****REWRITE T BY (97);

1 substitutions were made

105 DENUM(c) (1 13 78 97)

*****TRY USING MONADIC 79 T AUX1;

106 SET(eei)ASET(c) (1 13 78 97)

107 (SET(eei)ASET(c))A~c 1 d.(((ee'i)-c 1AC-d)A(C 1cGA(-(C 1 m)Ad-IF DEN%
UM(Ibjbec 1Apair(p"c 1,b)(R)) THEN {bjbft lApair(pc ,b)(R) ELSE {blb(c 1%
Apair(p"cl,b)(B)))) (1 13 78 97)

108 IF DENUM(blb(ee"i)Apar(p"(eei),b)R1) THEN {blb((ee"i)Apalr(p%
"(ee'i),b)(RI ELSE (blb((ee"i)Apair(p"(ei),b):B-c((SET(ee"i)ASET(%
C))A3c 1 d.(((ee"i)-c lAC-d)A(Cc GA(-(Cl1-X,)Ad=IF DENUM((blb~cl1Apair(p"c 1,b)%
(R)) THEN (blb(clApair(p"cl,b)(R) ELSE {blb(clApair(p"c1,b)(B))))) (1 13 78)

109 IF DENUM(bb(eei)Apair(p"(ee'i),b)(R)) THEN fbjb((ee"i)Apair(p%
"(ee"i),b)(R) ELSE {blb((ee"i)Apair(p"(ee"i),b)B)c((SET(ee"i)ASET(%
C))A3c 1 d.(((eei)-clI C-drA(ClIcGA(-(C 1 >X)Ad=IF DENUM((blbclIApair(p"c 1,b)%
(R}) THEN (bjb(c 1Apair(p~c 1,b)(R) ELSE (bjb(cl1Apair(p~cl1,b)(B})))) (1 13 78)

110 Yc.(IF DENUM(Ib(ee"i)Apair(p"(ee'i),b)(RI) THEN {blbt(ee"i)Apa%
ir(p"(ee'i),bp RI ELSE {blb((eei)Apair(p"(ee"i),b)(BI-c((SET(ee~i)A%
SET(c))A3C 1 d.(((ee'i)=c 1AC-d)A(Cc GA(-(Cl1 X)Ad-IF DENUM({blb(cl1Apair%
(p"cl,b)(R)) THEN (bjb(clApair(p"cl~b)(R} ELSE {blb(clApair(p"cl,b)(B%

I)))(1 13 78)

111 Yc.(IF DENUM(bb(ee"i)Apair(p"(eei),b)(R}) THEN [bjb((eei)Apa7%
ir(p"(ee"i),b)(R) ELSE {blb((ee"i)Apair(p"(eei),b) B}=ciopair(eei,c%
)( IbI~c d.(b-opair(c,d)A(CcGA((C-X)Ad-JF DENUM( bjb(cApair(p'c,b)(R)%

THEN (blb(CApair(pc,b)(R) ELSE {blb(CApair(p'c,b)( B})))})EVc.(IF D%
ENUM({blb((ee"e)Apair(p"(ee"i),b)(R),) THEN fbjb((ee"i)Apair(p'-(eei),%
b)( R} ELSE {blb((eei)Apair(p"(ee"i),b)8B'=c((SET(eei)ASET(c))A3c 1 %
d.(((ee"i)-cl1AC-d)A(C IcGA(-(C 1-X)Ad=IF DENUM( {b b(cl1Apair(p"c 1,b)ER))%
THEN {blbcl1Apair(p"cl1,b)(RI ELSE 1bjbclIApair(p"c 1,b)(Bl)))))

112 Yc.(IF DENUM(bb(ee1i)Apair(p'(ee'i),b) RI) THEN {blb((ee"i)Apa%
ir(pK(eei ),b)XR) ELSE {blb((eei)Apair(p"(ee'i),b)(BI-coopair(ee"i,c%
)( {bl~c d.(b-opair(c,d)A(cGA(..(C -X)Ad-IF DENUM( bjb(CApair(p"c~b)(R%

THEN {bjb(CApair(p"c,b)XR} ELSE (bjb(CApair(p"c,b)(B}))))}) (1 13 78)

113 3d.Yc.(d-c'opair(eei~c) (bl~c d.(b-opar(c,d)A(ccGA((Cu)%)Ad-IF %
DENUM(bjbCApair(p"c,b) RI) THEN {bjb(CApair(p"c~b)' R) ELSE {bjb(CAp%
air(pwc,b)8B)))))) (1 13 78)

RESOLVE 3d.Yc.(d-cmopair(ee"i,c) {bIjc d.(b-opair(c,d)A(ccGA((C->)Ad%



. . . .. .. . . ..

Appendix 21 Ramsey's Theorem. 131

-IF DENUM(blb(CApair(p"c,b)(R)) THEN fbjb(CApair(p"c,b)(Rl ELSE {blb%
(CApair(p"c,b)(B)))))):Popair(ee"i,b3c d.(b-opair(c,d)A(ccGA(-(C-X)A%
d-IF DENUMbbCApair(p"c,b)(R}) THEN {bjb(CApair(p"c,b)(R) ELSE IbI%
b(CApair(p"c,b)XB))))}"(ee"i))( (bI3c d.(b-opair(c~d)A(cGA(-(C-M)AdI%
F DENUM(bjb(CApair(p'c,b)( R)) THEN fbjb(CApair(p"c,b)(R) ELSE {bjb(c%
Apair(p"c,b)( 8)))) , 3d.Yc.(d-cuiopair(ee"i,c)( (bl~c d.(b-opair(c,d)A%
(ccGA(-(C..))Ad=IF DENUM(bb(CApair(p"c,b)(R)) THEN [bjb(CApair(p"c,b%
X) ELSE {bjb(CApair(p"c,b)(B}))))) -P- opair(ee"i,fbljc d.(b-opair(c%
,d)A(CcGA(-(C->)Ad-IF DENUM{bjb.(CApair(p"c,b).R)) THEN [blb(CApair(p%
"cb)(R) ELSE {blb(cApair(p"c,b)(B))))}(ee"i))( {bl3c d.b-opair(c,d)%
A(CcGA(-.(C->)Ad-IF DENUM((bjb( cApair(pc,b)(R)) THEN {bjb(CApair(p"c,%
b)(R) ELSE {blb(CApair(p"c,b)(B}))))l

114 opair(ee~i,{bl3c d.(b=opair(c,d)A(CcGA(-(C-X)Ad=IF OENUM~fblb(CAp%
air(p"c,b) R)) THEN {bb(CApair(p"c,b)(R) ELSE fbjb':CApair(p"c,bXB)A
)))"(ee"i)).{bI3c d.(b-opair(c,d)A(CcGA((C-X)AdIF DENUM({bb(CApair%
(p~c,b)(R)) THEN (bjb(CApair(p"c,b)(R) ELSE {bjb(CApair(p"c,b)(B}))))} (113 78)

*****YE 112 T:#1s2;

115 IF DENUM(Ib(ee"i)Apair(p'(eei),b)(R}I) THEN fblb((ee")Apair(p%
"(ee"i),b)' R) ELSE (blb((ee"i)Apair(p"(ee"i),b)(B}({bI3c d.(b-opair(% .
c,d)A(CcGA(,(C \)Ad-IF DENUMbbCApair(p"c,b)(Rl) THEN {blb(CApair(%
pVc,b)(R) ELSE {bjb'CApair(p"c,b)(8})))}(ei)opie,{Icd(
b-opair(c,d)(ccGA((C-X)Ad=IF DENUM(bb(CApair(p"c,b)(R)) THEN (bib%
(CApair(pkc,b)(R) ELSE {blb(CApair(p'c,b)(8)))))"(ee"i))( {bl3c d.(b-o%
pair(c,d)A(CcGA(-(C-X)Ad-IF DENUM({bjb(CApair(p"c,b)(R)) THEN (blb(CA%
pair(p"c,b)(R) ELSE (blb(CApair(p'c,b)(B))))) (113 78)

*****YE EEDEF i;

116 (ee"SUJCfi))-( bj3c d.(b-opair(c,d)A(ccGA(,C->,)AduIF DENUM( blb(c%

Apair(p"c,b)(R)) THEN Ibjb(CApair(pc,b)(Rl ELSE [bjb(CApair(p~c,b)(B%

*****REWRITE t1t BY {TTT)ULOGICTREE;

2 substitutions were made

117 IF DENUM(Ibb((ee")Apair(p 6(eeei),b)(R)) THEN fbjb((ee"i)Apair(p%
"(ee"i),b)'R) ELSE (bib.(ee"i)Apair(p"(ee'i),b)(B({b3c d.(b-opair(%
c,d)A(ccGA(,Cm).)Ad-IF DENUMbbCApair(p"c,b)(Rl) THEN fbjb(CApair(%
p"c,b)(R) ELSE {blbCApair(p"c,b)XB)))))"(eei)) (1 13 78)

*****SUBSTR T IN t;

118S (ee"SUCOi)-IF DENUM(bb(eei)Apair(p"(eei),b)(R)) THEN (bib((%
ee"i)Apair(p"(ee"i),b)XR) ELSE {bjb((ee"i)Apair(p"(ee"i),b)(B) (1 13 17 78)

*****SUBSTR T IN 104;

119 DENUM~ee"SUIC(i)) (113 17 78)



Appendix 2: Ramsey's Theorem. 132

.***QED .8.2* 1 # 1 #2;

*****TRY USING REWRITE BY {TT,SUBSETuARGIFTREE;

Goal .8.2.11 *1 * 1: Yc.(((DENUM(bb((ee"i)Aair(p"(ee~i),b)R))D(SET%

(C)A(C((ee"i)Apair(p"(ee"i),c) R)))A(-DENUM( {blb((eewi)Apair(pw(ee~i)%

*****TRY USING ELIMINATION;

Goal .8.2.1.1 * 1* 1: ((DENUM(bb(ee"i)Apair(p"(ee'i),b)(R))D(SET(c%
)A(Ct(ee"i )Apair(p"(ee"i ),c)' R)))A(-DENUM( {b Ib((ee"i)Apair(p"(ee"i),b%

* ) R))$(SET(c)A(C((ee"i)Apair(p"(ee"i),c)(B))))Dc(G
Goal #8#2#1#1*1.1#11.- c(G

* *****PREPARE;

e"i)Apair(p"(eei),c)>B))) (120)

1 21 -DENUM(bb(ee"i)Apair(p"(ee"i),b)RI)(SET(c)A(C((ee "i)Apair(p"%
(ee"i).c)(B)) (120)

122 DENUM((bb((ee"i)Apair(p"(ee"i),b)(R}))(SET(c)A(C((ee"i)Apair(p (%
ee"i),c)(R)) (120)

*****YE EDGERS pair(p"(ee"i),c);

123 pair(p"(ee"i),c)EDGESET(G)E(pair(p"(ee"i),c)XRvpair(p"(ee"i),c)8B) (1)

.*****REWRITE T BY (EDGESET AUX 12),;

I substitutions were made

124 ((p"(ee"i )). GA(C GA.((p"(eewi))-c)))Ei(pair(p"(eei),c)(Rvpair(p(%
ee"i),c)'B) (1)

****TRY USING TAUT 120 T%:

125 c(G (1 13 17 78 120)

126 ((DENUM({bib((ee )Apair(p"(eei),b)(R)),(SET(C)A(c((ee'i)Apatr(p%"(eei),)(R))A(DENM((bb((e~iApai~p"ee~ib)R))(SETc)AC((
ee"i)Apair(p"(ee"i),c)'B))))zc(G (1 13 17 78)

127 Vc.(((DENUM( {b b((ee )Apair(p"(ee"i ),b)(R))D(SET(c)A(C((ee"i)Apa%

-(c((ee"i)Apair(p"(ee i),c)(B))))nc(G) (1 13 17 78)

* 128 (ee"SU)C(i ))cGsYc.(((DENUM({blb.(ee"i )Apair(p"(ee ),b)(R))a(SET(c%
* )A(C((se"i )Apair(p"(eei),c)R)))A(OENUM( (blb((ee"i)Apair(p"(ee"i),b%

) R)(SET(c)A(C(eSe"i)Apair(p"(ee"i),c) B))))Dc(G) (1 13 17 78)



Appendix 2: Ramseys Theorem. 133

129 (eO'SUC(i))cG (1 13 17 78) .

130 (ee"SUC(i))cGADENUM~ee*SUC(i)) (1 13 17 78)

131 ((eei)cGADENUM~e."i))=((eSC(i))cGADENUM(o"SU)C(i))) (113 17)

132 Yi.(((ee"i)cGADENUM(ee"i)):((ee"SC(i))cGADENUM(ee"SU)C(i)))) (1 13 17)

133 Yi.((ee"i)cGADENUM~be"i)) (113 17)

*****GOAL Y.(ee"SUC(i)c(ee",)\singl(p"(ee~t)));

Goal #10: Yi.(ee*SUC(i))c((ee"i) \srngl(p"(ee'i)))

*****OED 78 118;

134 ((ee"ikcGADENUM(ee"i))D(ee"SU)C(i))-IF DENUM(bb((ee"i)Apair(p"(e%
e~i),b)XR)) THEN (bjb((ee")Apir(p(ee~i),b)(R) ELSE (bjb((e )Apai%
r(p"(ee"i),b)XB) (113 17)

*****REWRITE T BY i1t'uLOGICTREE;

2 substitutions were made

135 (ee"SUIC(i))-IF DENUM(bb((ee"i)Apair(p(ee~i),b)(R}I) THEN {bjb((%
ee"i)Apair(p"(ee"i),b)XR) ELSE {blb((ee"i)Apair(p"(ee"i),b)(B) (1 13 17)

*****LABEL SJ.CO

*****YI t i;

136 Vi.(ee"SU)C(i))-IF DENUM( {blb.(ei )Apair(p"(ee"i),b)( R}) THEN fbI%
b((ee"i)Apair(p*(ee"i),b)(R) ELSE {blb(ee"i)Apair(p"(ee"i),b)(B) (1 13 17)

*s**sVE AUX 11 p"(ee"i) ee'i;

137 SET(p"(ee"i)):)Vc.(c(((ee"i) \singl(p"(ee"i)))u(c((ei)A(cm(P(eSwi)))))

*****MONADIC T:#1 133 AUX3 AUX4 103;

138 SET(P"(ee"i)) (113 17)

*****TAUT M#~2 Mt;

139 Yc.(c(((ee"i) \ singl(p"(es"i)))*(c((ee"i)A'(C-(p"(ee"i))))) (13 17)

*****TRY USING REWRITE BY (SUCI SUBSET T)uARGIFTREE;

Goal .1031: Vi c.(((DENUM(bb((ee"i)Apair(p"(ee'i),b)(R))(SET(c)A(%

c((e~i)pairp"(e~ic)()))(-DNUM(blb(ee~)Apir~"(eei),)(R
...................................................................................................



Appendix 2: Ramsey's Theorem. 134

*****TRY USING VI;

Goal *10.1#*1: ((DENUM({bb(ee"i)Apair(p"(ee"i),b)(R)):(SET(C)A(CE(e%

SET(c)A(C((ee~i)Apair(p(eei),c XB))))n(c((ee~i)A-(C-(p"(ee"i)))) *-

*****TRY USING TAUTEQ 124;

140 ((DENUMAlblb((ee"i)Apair(p"(ee"i),b)(R))(SET(c)A(C((ee"i)Apair(p%

ee*i)Apair(p"(ee"i),c)( B))))D(cc(ee"i)A-(Cm(p"(ee"i)))) (1)

141 Vi c.(((DENUM(bb((ee"i)Apair(p"(ee~i),b)(R)(SET(c)A(C((ee'i)A%

)))A(C((ee")A c-(p"(ee"i8))))) (113'iA(-(*e~i) 17)

143 Vi.(ee*SUJC(i))c((eei) \singI(p"(ee~i)))rV (13 17) bb((e

Goal 611: V (j LT ;-(-((eei))eewS(j3))

Goal 6 11: Vji.(j LT i~ee"i)c(e9SUC(j)))

*****TRY USING INDUCTION;

Goal # 1161I #1: j LT %n(eeX)c(ee"SUC(j))
Goal # 11 1#2: Vi,((j LT iD(ee"i0c(ee"SUCQj)))2(j LT SUC(i)2(ee"SUC(;%
))c-(ss"SUJC(j))))

****TRY 1 USING REWRITE BY {LESS4};

144 j LT kn(e"k)c(ee"SUC(j))

*****TRY USING REWRITE BY (LESS7);

Goal * 112. 1: Vi.((j LT i (ee"i)c(ee"SUC(j))):)(Q-1vj LT i)2(ee"SU%

C(i))c(ee*SU)C(j))))

*****TRY USING ELIMINATION;

Goal .1 1*1#2#1#1: (0 LT in(ee"i)c(se"SUC(j)))h(Iaivj IT i)D(ee"SU)C(%
i))c(ee"SUJC(j)))
Goal a II1 1 s2e1 *I1I: (j-ivj LT 0),(eeVSU)CV))c(ee"SUC(j))
145 j LT iD(e9")c(e"SUC(j)) (145)



Appendix 2t Ramseys Theorem. 135

Goal *11*1 2*u 111#1: (ee"SUC(M)c(ee"SUC(j))
146 jmivj LT i (146)

Goal .11.1.2.1.*11.11: j-in(ee"SUC(M)c(eSUC(j))
Goal #11*1#2#1#1#1#1#2: j LT in(ee"SUC(M)c(ee"SUC(i))
Goal *11#1*2*1e1*1*1*1#1: (ee"SUJCMi)c(ee"SUC(j))
Goal #11 1*2*1111*2#1: (ee"SUC0i))c(ee"SU1C(j))

*s****PREPARE;

147 j LT 1 (147)

RESOLVE j LT ei(ee"i0c(ee"SUC(j)) ,j LT i-o-# (ee"i)c(ee"SUC(j))%

148 (ee"i~cee"SUC(j)) (145 147)

*****YE 143 i;

149 (ee"SUC(M)c((ee"i) singl(p"(ee"i)) (113 17)

*****YE AUX29 ee"i singl(p"(ee"O);

150 ((ee"i) \ singl(p"(ee"i)))c(ee"i)

*****VE ALUX23 149:#1 149:*2 150:#2;

151 ((ee"SUC(,)c((ee"i) \Singi(p"(ee1)))A((ee"i) \singl(p"(ee"M%

*.**YE AUJX23 T.#2e1 T-.2#2 148:#2;

152 ((ee"SUC(i))c(ee"i)A(ee"i)c(ee"SUC( j)))D(eeSUC(i))c(ee"SUC( j)) .

*.****TRY USING TAUT 148:;

153 (ee"SUC(OMc(ee"SUCUj) (1 13 17 145 147)

154 JLT i~(e@"SUC(i))c(ee"SUC(j)) (1 13 17 145)

****TRY USING REWRITE BY (SUBSET);

155 imi (155)

156 (ee"SUC(i)c(ee"SUC(j)) (155)

157 j-in(e9"SUC(i))c(ee"SUC(j))

158 (ee"SUC(i)c(ee"SUC(j)) (113 17 145 146)

159 (j-ivj LT i):)(eeSUC()c(eeSUC(j)) (1 13 17 145)

160 Gj LT iD(ee*0c(ee"SUC(j)))z((j-ivj LT i)~ee"SU1C())c(ee*SUC(j))) (113 17)



7 .. . . ..

Appendix 21 Ramsey's Theorem. 136

161 Yi.((j LT i:)(ee"i)c(ee"SUC(j)))((j-ivj LT i):)(eewSUC(i))c(eeHSUC(j)))) (113 17)

162 Y;.((j LT i~(ee'i)c(ee"SUC(j )))n(j LT SUC(i),(eeSUC(i))c(ee"SUC())))%
*Vi.((j LT i~(ee"i)c(ee"SUC(j )))n((j-ivj LT i):)(ee"SUC(i))C(ee"SUC(j)))). -

163 Vi.((j LT iD(ee"i)c(ee"SUC(j)))D(j LT SUC(i)D(eewSUC(i))c(ee"SUIC(j)))) (113 17)

164~~~~~~ ~~~~ -i( LT i-N-c~ e S Cj) ( 3 1 )4

164 Yji.(j LT i(eei)c(eeSUC(j))) (1 13 17)

*****GOAL FNC(CONV(48:# 1))ADOM(48. 1)-omegaARNG(48:*lI)cG;

Goal # 12: FNC(CONV(bjjk.b-opair(k,p"(ee"k)))))A(DOM({bI~kb-opair(k%
,p"(ee"k)))-omegaARNG( (bj3k.b-opair(k,p(ee"k)),A)cG)

s*****YE DOM 48:#1;

166 FNC({bI3k.b-opair(k,p"(ee"k))))DOM( {bj3kb-opair(k,p"(eek))))-{%
cI~a.opair(c,a) {bl~k.b-opair(k,p"(ee"k))) }

*s****YE RNG 48:# 1;

167 FNC({bl~k.b-opair(k,p"(ee"k)))DRNG({bI3kb-opair(k,p"(ee"k))))(7%
c 13a.opair(a,c) (bj3k.b-opair(k,p"(ee))}} -

**u**YE CONY 48:# 1;

168 REL({bJ3k.b-opair(k,p"(eek))))CONV({bj3k.b-opair(k,p"(ee"k)))-%
(cI3a b.(c-opair(a,b)Aopair(b,aX((bl3k.b-opar(k,p"(eak))))

*****REWRITE 48 BY IFNC);

I substitutions were made

169 REL({bj3k.b-opair(k,p"(ee"k)))AYb c d.((opair(b,c) {bjkb-opair%
(k,p"(ee"K)))Aopai r(b,d) (bI13k~b-opal r(k,p"(ee"k))))Dc -d)

*****TAUT ITTT:#2 TT~T 48;

170 DOM(bjk.b-opair(k,p'(ee"k))))-{c I3a.opair(c,a)( {b 3k.b-opair(k,p(eewk)))

*****TAUT TfTT:#2 ?T? 48; 0

1 71 RNG( (bI3k.b-opairUk,p"(e"0))m)-c j3a.opair(a,c (bj3kb-opair(k,p"(ee"k))})

*****TAUT TTTT- 2 ttttT

172 CONV( (b 13k.bmopair(k~p"(ee"k))))-{c 13a b.(c-opair(a,b)Aopair(b,a)%
((b 13k.b-opair(k,p"(ee"k)))))

*****REWRITE c-omega BY (KEXT);

.2S



Appendix 2s Ramsey's Theorem. 137

1 substitutions were made

173 c -omegavYcl.Mcl1(coc 1(omega)

*** T C;

174 Vc.(c-omegas~c I .(c 1(c~c I (omega))

*****TRY USING REWRITE BY [FNC REL SUBSET AUX5 AUX27 omega TTtt,ltt,ttTT};

Goal a 12*1: (Y.(SETMdA3a b.(d-opair(a,b)A((SET(b)ASET(a))A3k.(b-k%
,a-(p"(ee"k)))))):)3b c.d-opair(b,c))AYb 1 c d.((((SET(b 1)ASET(c))A3a b%
M(b 1 -SAC -b)A((SET(b)ASET(a))A3k.(b -kAa -(p"(eek))))))A((SET(b 1 )ASET( %
d))A3a b.((bl1 aAd-b)A((SET(b)ASET(a))A3k.(b-kAa-(p(ee"k)))))))zc-d))%
A(YC1I.((SET(cl1)A~a.((SET(c 1)ASET(a))A~k.(cl1 kAa-(p"(eek)))))u.(SET(c 1)%
,%NATNUM(c 1 )))AVC.((SET(c)A3a.((SET(a)ASET(c))A3k.(a-kAC-(p"(ee"k)))))nc(G))

***TRY USING ELIMINATION DEPTH 3;

Goal .12*1#*1: Yd.((SET(d)A3a b.(d-opair(a,b)A((SET(b)ASET(a))A3k.(b-%
kAa-(p"(ee"k)))))):)3b c.d-opair(b,c))AYb I c d.(((SET(b1I)ASET(c))A~a %
b.(b 1 -aAc-b)A((SET(b)ASET(a))A3k.(b-kAa=(p"(eek))))))A((SET(b 1 )ASET% *
(d))A3a b.((blI aAd-b)A((SET(b)ASET(a))A3k.(b-kAa-(p"(eek)))))))zc-d)
Goal .12.1 #2: YclI.((SET(cl1)A3a.((SET(cl1)ASET(a))A3k.(cl1-kAa-(p"(ee"k7%
))))MSET(c I )ANATNUMkc 1 )))AYc.((SET(c)A3a.((SET(a)ASET(c))A3k.(a-kAC7%

Goal .12#1#1*1: Yd.(SETMdA~a b.(d=opair(a~b)A((SET(b)ASET(a))A3.(%
b-kAa-(p"(ee"k)))))).)3b c.d-opair(b,c))
Goal #12#1#1#2: Yb 1 c d.((((SET(b 1 ASET(c))A~a b.((b 1-aAC-b)A((SET(b%
)ASET(a))A3k.(b-kAa-(p(eek))))))A((SET(bl1)ASET(d))A3a b.(bl1-aAdl-b%
A((SET(b)ASET(a))A3k.(b-kAa-(P"(ee"k)))))))'c-d)
Goal # 12.1#*1#*1#1: (SET(d)A3a b.(d-opair(a,b)A((SET(b)ASET(a))A~k.(b-%
kAa-(p"(ee"k))))))n3b c.d-opair(b,c)
Goal * 12.1 *1.2.1: (((SET(bj1)ASET(c))A3a b.((b1I-aAC-b)A((SET(b)ASET(a%
))A3k.(b-kAa-(p"(ee"k))))))A((SET(bl1)ASET(d))A3a b.((b1I-aAd-b)A((SET(%

Goal # 12#1#2#1: Yc 1.((SET(c 1)A3a.((SET(cl1)ASET(a))A3k.(c 1 ikAau(p"(ee%
"k)))))@(SET(c 1 )ANATNUM(c 1))
Goal # 12.1#2#2: Yc.((SET(c)A3a.((SET(a)ASET(c))A3k.(a-KAC-(p"(ee"k)))))nc( G)
Goal .12*1*2.*1: (SET(c I)A~a.((SET(clI)ASET(a))A3k.(c1 lKASw(pw(eHk)%
)))uSET(c 1 )ANATNUM(c 1)
Goal .12.1.2.2.1: (SET(c)A3a.((SET(a)ASET(c))A3.(amkAC-(p"(ee"k))))).:c(G

****REWRITE 133 BY (SUBSET);07

I substitutions were made

175 Vi.(Yc.(c(.."i) c G)ADENUM(ee"i)) (113 17)

*****REWRITE 103 BY (SUBSET);

1 substitutions were made

176 (Yc.(c((ee"i).cG)A'((ee"i)-X0))(p"(ee"i))((ee"i) (13)



-7 7

Appendix 21 Ramsey's Theorem. 138

*****YE AUX3 eeli;

177 DENUM(ee"i):)-4(ee"i)-%) V

*****YE TTt i;

178 Vc.(cC(ee"1)Dc(G)ADENUM(ee"i) (1 13 17)

*****MONADIC p"(ee"!)(G Tit:;

179 (p"(ee"i))(G (1 13 17)

180 Vi.(p"(ee"i))(G (1 13 17)

*****TRY USING MONADIC T;

181 (SET(c)A3a.((SET(a)ASET(c))A3k(a-kAC-(p"(ee"k)))))zc(G (1 13 17)

182 Vc.((SET(c)A3a.((SET(a)ASET(c))A3k.(a-kAc-(pw(,eetk)))))Dc(G) (1 13 17)

***VE SET p"(ee"i);

183 SET(p"(ee"i))n3b.(p"(ee*)Xb

****MONADIC t:#1 ttTtt,T;

184 SETWp(ee"W) (1 13 17)

****LABEL SETPEEI;

185 WiSET(p"(ee"W) (1 13 17) 0.

***TRY USING ELIMINATION;

Goal .12.1.2.1#1 *1: (SET(cl1)A~a.((SET(cl1)ASET(a))A3k.(clI-kAa-(p"(ee"%
k))))):$SET(c 1 )ANATNUM(c 1))
Goal * 12.1.2.1#1 a2: (SET(clI)ANATNUM(clI))D(SET(cl1)A3a.((SET(c I)ASET(a%
))A3k.(c 1 -kAa-(p"(ee"k)))))
Goal *12#1*2.1*1#1*1: SET(cl)ANATNUM(c1)
186 SET(cl1)A3a.((SET(cl1)ASET(a))A~k.(clI kAa..(p"(ee"k)))) (186)

187 3a.((SET(cl1)ASET(a))AJk.(cl1-kAa-(p"(ee"k)))) (186)

188 SET(cl) (186)

Goal .12.1.2.1.1.1.1#1: SET(cl)
Goal .12.1.2.1.1.1.1.2: NATNUM(cl)
Goal .12*1.2.1.1.2#1: SET(cl1)A~a.((SET(cl1)ASET(a))A3K.(clI-kAa-(P"(ee"10))))



Appendix 2: Ramseys Theorem. 139

189 SET(cl)ANATNUM(cl) (189)

190 NATNUM(cl) (189)

191 SET(cl) (189)

Goal *12.Ii.2.1*1.2#1#1: SET(cl)-
Goal .12#1#2#1#1#2#1#~2: 3a.((SET(cl1)ASET(a))A3k.(clI kAa-(p(eek))))
Goal #12#11,2#1# 1#2*1#21: (SET(clI)ASET(a))A~k.(c I kMa-(pw(ek)))
Goal #12#le2*11*.l2#1#1: SET(clASET(a)
Goal *12*1#2#1#1*2#1#2#1#2: 3K.(cl-kAa-(p"(ee"k)))
Goal #12#1.2#1#1#2#1#2#1#1v1: SET(cl1)
Goal #12#l.2#1#1#2#1#2*112: SET(a)
Goal .12*1#2#I1#121*2*1.2vI: C1-kAa-(p(ee"k))
Goal #12#1#2#1#1#2#1#2#1#2s&1#1: cl-k
Goal *12#1#2#1*1#2#1#2#1#2.1#2: a-(p"(ee"k))

*****TAUTEQ clI-clI;

192 cl-cl

***GT cl'-k 0CC 2;

193 NATNUM(cl1):)3k.c I1-k

****TAUT T:#2 TTlTT,;

194 3k.cl-k (189)

.*****TRY I USING UNIFY T;

195 3k.cl-K (189) .*s.

196 cl-k (196) -

*****TRY USING EQUNIFY;

197 3a.a-(P"(ee"k))

198 a-(p"(ee"k)) (198)

199 C1I-kAa-(p(ee"k)) (196 198)

200 3k.(c 1-kAa-(p"(ee"k))) (196 198)

****TRY USING MONADIC SETPEEI PTT;

201 SET(a) (1 13 17 198) I.

*****kSIMPLIFY Yi.NATNUM(i);



Appendix 2: Ramsey's Theorem. 140

202 Yi.NATNUM(i)

*****TRY .12*1*2.1*1*11.2 USING MONADIC 187 T;

203 NATNUM(cI) (186)

***TRY #12#1#1#1#1 USING MONADIC;

204 (SET(d)A3a b.(d-opair(a,b)A((SET(b)ASET(a))A3k.(b-kAa(p(e")))%
))))3b c.d-opair(b,c)

205 Vd.((SET(d)A3a b.(d-opair(a,b)A((SET(b)ASET(a))A3k.(b-kAa-(p"(ee"%
k))))-3b c.d-opair(b,c))

*****GOAL Vi j.(j LT i-ee"j-ee"i) ASSUME 165;

Goal *13: Vi j.(j LT i:)-((ee"j)-(ee"i)))

***TRY USING LOGIC;

The wff of this goal does not rewrite. Sorry.
Goal #13#1: iLT in-((ee"d)-(ee")
The wff of this goal does not rewrite. Sorry.
Goal .13.1.1: -(e)(e0
206 j LT i (206)

RESOLVE j LT in(ee~i)c(ee"SUC(j)), j LT i -- (ee"i)c(ee"SUC(j))0

207 (ee"i)c(ee"SUC(j)) (113 17 206)

The wff of this goal does not rewrite. Sorry.
We have a I ailqueue of length: I
Starting a new 2-th pass on new queue of length: 1
The wff of this goal does not rewrite. Sorry.
We have a failqueue of length: 1
Failure: can't prove anything on I ailqueue.
The tactic LOGIC can't be applied to goal
Goal #13: Vi j.(j LT i3-((eej)-(ee")

FACTS: 165 Yj i.(j LT iD(eei)c(ee"SUC(j)))
Simpsets: ( BY LOGICTREE COMPTREE)
Reasons: (YI ((j i) j i) NIL)
Number of sons: 1

*****VE 143 j;

208 (ee'SUC(j))c((ee"j)\ singl(p"(ee)j))) (1 13 17)

*****YE ALUX23 TT:#1 T:#1 T:.2;

209 ((ee"i)c=(ee"SUC(j))(ee"SUC(j))c((ee~j) \singl(p"(ee"j))))=,(.eei%
)c((ee"j) \singl(p"(ee))))



Appendix 2t Ramsey's Theorem. 141

****TAUT 1:#2 IM;

210 (ee"i)c((ee"j) \singJ(p"(ee~j))) N113 17 206)

*****MONADIC p"(eemi) ee"i 103 133 AUIX3;

211 (p"(ee"i))((ee"i) (1 13 17)

*****LABEL PINEE;

212 Vi.(p"(ee"i))((ee"i) (113 17)

*****YE AUX I I p"(ee"j) ee"j;

213 SET(p"(ee"j))nVc.(c(((ee"j) \singl(p'(ee'j)))i(c((ee"j)A-(C-(p'(ee"j)))))

*****RESOLVE SETPEEI T;

RESOLVE SET(p"(ee"j ))Dc(c((eej) \singI(p"(eej)))(cAee"j)A-(C-%

(c((ee"j)A-(C-(p"(ee"j)))))

214 Vc.(c((ee"j) \singi(p"(ee"j)))z(c((ee"j)A-(C-(p"(ee"j))))) (1 13 17)

*****REWRITE 210 BY [SUBSET);

I substitutions were made

215 Yc.(c((ee"i)3c(((ee"j) \sing1(p"(ee"j)))) (1 13 17 206)

*s***sMONADIC - p"(ee"j) (ee"i TT:;

216 -((p"(ee"j))((ee"i)) (1 13 17 206)

*****TRY USING REWRITE BY fKEXT PINEE T);

Goal *13#1 .111: -Yc.(c((ee"j)Bc((ee"0)

*****TRY USING MONADIC PINEE T;

217 -Vc.(c((ee"j)rc((ee*'i)) (113 17 206)

218 -((ee"I)-(ee"i))u-Yc.(c((ee"j)rc((ee"i))

219 -((ee"j)-(ee"i)) (1 13 17 206)

220 j LT iz-((ee"j)-(ee"i)) (113 17)

221 Vi j.(j LT iz-((eej)-(ee"i))) (1 13 17)





Appendix 2:. Ramsey's Theorem. 143

*****ES ITTTT a b;

236 (b 1-aAd-b)A((SET(b)ASET(3))A3k.(b-kAa-(p"(eek)))) (236)

*****ES 1TTT al cl;

237 (b i-al AC-Cl )A((SET(cl1)ASET(alI))A~k.(clI-k~tal1 (p"(eek)))) (237)

*****TAUT TT:#2#2 IT; .

238 3k.(b-kAa-(p"(ee"k))) (236)

*****TAUT TT:*2#2 IT;

239 3k.(cl-kAal-(p"(ee"k))) (237)

*s****ES IT i;

240 b-iAa-(p"(ee"M) (240)

****ES IT j;

241 Cl-jAal-(p"(ee"j)) (241)

*****YE INJPEE i j

242 (p"(ee"i))-(p"(ee"j)):)i-j (1 13 17)

*****TRY USING TAUTEQ T,TT,TTT,TTTTTT,TTTTTTT;

243 c-d (1 13 17 229)

244 (((SET(bl1)ASET(c))A3a b.((b 1-aAC-b)A((SET(b)ASET(a))A3k.(b-k~a-(P%
"(ee"k))))))A((SET(blI)ASET(d))A~a b.((bl1-a~db)A((SET(b)ASET(a))A3k.(%
b-k~A-(p"(ee"k)))))))nc-d (1 13 17)

245 Yb I c d.((((SET(blI)ASET(c))A3a b.((b 1 -aAC-b)A((SET(b)ASET(a))A~k.%
(b-kAa-(p"(ee"k))))))A((SET(b 1 )ASET(d))A3a b.((b 1-aAd-b)A((SET(b)ASET%
(a))A3k.(b-kAa-(p"(ee"k))))))):)c-d) (113 17)

246 Vd.((SET(d)A~a b.(d-opair(a,b)((SET(b)ASET(a))A3k.(b-kAa-(p"(ee"%
k)))))):)3b c.d-opair(bc ))A~b 1 c d.((((SET(b 1)ASET(c))A~a b.((blI-aAC-%
b)A((SET(b)ASET( a))A~k.(b-kAa-(p'(ee"k))))))A(( SET(bl1)ASET(d))A3a b.(%
(bl1-aAd-b)A((SET(b)ASET(a))A3k.(b-kAa-(p"(eek)))))))Dc-d) (1 13 17)

*****TRY USING LOGIC;

247 Yb 1 c d.((((SET(b 1)ASET(c))A3a b.((b 1-aAC-b)A((SET(b)ASET(a))A3k.%
(b -kAa-(pM (ee "k))))))A((SET(b I)ASET(d)h.A3a b.((bl1-aAd-b)A((SE(b)ASET%
(a))A3k.(b-kAa-(p"(ee"k)))))))Dc-d) (1 13 17) .

248 Yd.(4SETWdA~a b.(d-opair(a,b)A((SET(b)ASET(a))A3k.(b-kAa-(p"(ee"%



*Appendix 2: Ramsey's Theorem. 1 44

k)))))):)3b c.d-opair(b,c)) (1 13 17)

249 SET(cl) (189)

* 250 SET(cl)ASET(a) (1 13 17 189 198)

251 (SET(cl)ASET(a))A3k.(clakAa-(p(ee"K))) (1 13 17 189 196 198)%

252 3a.((SET(cl)ASET(a))A3k.(cl-kAa-(p'(ee"K)))) (1 13 17 189)

253 Yb I c d.((((SET(bl1)ASET(c))A~a b.((b 1-aAC-b)A((SET(b)ASET(a))A3k.%(
(b-kAa=(p"(ee"k))))Y",\((SET(blI)ASET(d))AJa b.((bl1-aAd-b)A((SET(b)ASET%
(a))A3k.(b-kAa=(p"(eek))))))):)c-d) (1 13 17)

254 Yd.((SET(d)A3a b.(d-opair(a,b)A((SET(b)ASET(a))A3k.(b-kAa-(p"(ee"%
k)))))):)3b c.d-opair(b,c)) (1 13 17)

255 SET(cl) (189)

256 SET~c 1)AJa.((SET(cl1)ASET(a))A3k.(C 1=k~a-(p"(ee"k)))) (1 13 17 189)

257 (SET(cl1)ANATNUM(cl1)):)(SET(cl1)A3a.((SET(c 1)ASET(a))A~k.(cl1 kAa-(p"%
(eek))))) (1 13 17)
258 Yb I c d.((((SET(bl1)ASET(c))A3a bA((blI-aAC-b)A((SET(b)ASET(a))A3k.%
(b-kAa-(p(ee"k))))))A((SET(bl1)ASET(d))A3a b.((b 1 aAd-b)A((SET(b)ASET%

* (a))A~k.(b-kAa-(p(ee"k)))))))Dc-d) (113 17)

259 Yd.((SET(d)A3a b.(d-opair(a,b)A((SET(b)ASET(a))A3k.(b-kAa-(p"(ee"%
k))))))D3b c.d-opair(b,c)) (1 13 17)

260 SET(cl) (186)

* 261 SET(c1)ANATNUM(cl) (186)

262 (SET(cl1)A~a.((SET(c 1)ASET(a))A3K.(clI-KAa-(p"(e&"K)))))n(SET(cl1)ANATNUM(c 1))

263 (SEr(clI)A3a.((SEr(clI)ASETYa))A~k.(c I-iKA;-(p'(ee K)))))g(SET(clI)AN7%
ATNUM(cl)) (113 17)

* ~264 Vc 1.((SET(cl1)A3a.((SET(cl1)ASET(a))A3k.(cl1 kAa-(p"(eek)))))(SET(%
* Cl)ANATNUM(c 1))) (1 13 17)

265 Vc 1 .(SET(c 1 )A~a.((SET(c 1 )ASET(a))A~k.(c 1 -k~a-(p"(eek)))))iSET(c 10%
* ANATNUM(cl1)))AVC.((SET(c)A3a.((SET(a)fSET(c))A3k.(a-kAC-(p"(ee'k)))))zc(G) (1 13 17)

* 266 (Yd.((SET(d)A~a b.(d-opair(a,b)A((SET(b)ASET(a))A3k.(b-kAa-(p'(ee%
'K))))))D~b c.d-opair(b,c))A~b 1 c d.((((SET(bl1)ASET(c))A3a b.((b 1-aAC%

* .-b)A((SET(b)ASET(a))A~k.(b..kAa-(p"(eek))))))A((SET(bl1)ASET(d))A3a b.%
((blI-a~db)((SET(b)ASET(a))A3k.(b-ka=(p(ee")))))))Dcd))A(VC 1.((S%
ET(c 1 )A~a.((SET(c 1 )ASET(a))A~k.(c 1 -kAa-(p"(eek)))))a(SET(c 1 )ANATNUM(%

*Ci )))AVC.((SET(c )A3a.((SET(a)ASET(c))A3k.(a-kAC-(p(eek)))))Dc(G)) (1 13 17)

* 267 (FNC(CONV( bI3k.b-opair(k~p"(ee"k))))A(DOM({bl~k.b-opair(k,p"(ee%



Appendix 2: Ramsey's Theorem. 146

"k))})-omegaARNG({bl3k.b-opair(kp"(ee"k))))cG))((Yd.((SET(d)A3a b.(% A
d'.opair(a,b)((SET(b)ASET(a))A3k.(b-kAa-(p"(ee"k))))))'3b c.d-opair(b%
,c))A~bl1 c d.((((SET(blI)ASET(c))A3a b.((bl1=aAC-b)A((SET(b)ASET(a))A3k%
.(b-kAa-(p"(ee"k))))))A((SET(blI)ASET(d))A3a b.((blI-aAd-b)A((SET(b)ASE%
T(a))A3k.(b-kAa-(p"(eek)))))))zc -d))A(YCI1.((SET(cl1)A~a.((SET(clI)ASET%
(a))A3k.(cl1-kAa-(p"(ee"k)))))(SET(cl1)ANATNUM(clI)))AYC.((SET(c)A3a.((%
SET(a)ASET(c))A3k.(a-kAC-(p"(ee"k)))))zc( G)))

268 FNC(CONV( (bI3k.b-opair(k,p(ee"k))))(DOM( {bI3kbmopair~..pw(eeH%
k)))-omegaARNG((bj~k.b-opair(k,p"(ee"k)))cG) (1 13 17)

LOGIC SUCCEEDED!

*****TRY #1#1#u1#1 USING Al;

Goal s1 si slitI: RNG({bljk.b-opair(k,p"(ee"k))) I IF DENUM(fkIDENUM(%
{blb((ee"k)Apair(p"(ee"k),b)(R)}) THEN (kIDENUM(bb((ee"k)APair(p"(%
ee"k),b)XR})} ELSE (ki-OENU4( {blb((eek)Apair(p"(ee0,b)(R)))cG
Goal e1nlsla1u2: DENUM(RNG(,Ib3k.b-opairOk,p"(ee"k))) I IF DENUM(fk7%
DENUM(blb'(ee'k)Apair(p"(ee"k),b)(RI ) THEN IkIDENUM((bjb((ee"k)APa%
ir(p"(ee"k),b)'R))) ELSE {kI-DENUM(blb((ee"k)Apair(p"(eek),b)(R)})%
)A(EDGESET(RNG(bI~k.b-opair(k,p"(ee"k))}t I IF DENUM(fkIDENUM(Iblb((e% .0
ewk)Apair(p"(ee~k),b)(R}))) THEN (kIDENUM( {blb((eesk)Apair(pu(ee k),b%
)( R))) ELSE {kI-DENUM(bIb((ee'K)Apair(p"(eek)b)(R)))cBvEDGESET(R%
NG{bjk.b-opair(k~p"(ee"k))}l I IF DENUM({kIDENUM( {bjb((ee"K)Apair(p"%
(ee"K),b)(R))}) THEN {kiDENUI(bb(ee"k)Apair(p"(ee'k),b)(Rl)} ELSE %
{kj-DENUM({bib((ee"k)Apair(p'(eek),b)(R)}))cR)

*****YE L184 {bI3k.b'.opair(k,p"(eek)))
*IF DENUM((kfDENUM((bb(ee"k)Apair(p"(ee"k),b)'R}))))

* THEN IkIDENUM(Ib(ee'k)Apair(p"(ee"k),b)(R)))
* ELSE fkJ-DENUM(bb((ee'k)Apair(p"(ee"k),b)(R)))

269 FNC({bl3k.b-opair(k,p(eek))))RNG((bI3k.b-opair(k~p"(eeK))I I%
IF DENUM({kIDENUM(bb((ee'k)Apair(p"(ee"K),b)(R}))') THEN l{kIDENUM([b%
Ib((ee"K)APair(p"(ee"K),b)(Rm) ELSE {KI-DENUM(bib((ee"K)Apair(p'(ee%S
"k),b)i R))})cRNG({bI3k.bm-opai r(k,p"(eek)))

s*****E AUX23 1:#2#1 T:#2#2 G;

270 (RNG(IbI3k.b-opair(k,p"(ee"k))}I I IF DENUM(fkIDENUM({blbC(ee"k)Ap%
air(p"(ee"k),b)(R}))) THEN {kIDENUM(bb(ee"k)Apair(p"(eek),b)(R))%
ELSE fkl-DENUM( Iblb.(eek)Apar(p"(ee"k),b)(R)})cRNG({bl3kb-opair(%

k,p"(ee"k))1)ARNG(IbI3k.b-opair(k,p(eek)))cG)RNG((blk.b-opair(k,%
p"(ee"k))) I IF DENUM({kIDENUM(bb(ee"k)Apair(p"(ee' tk),b)(R}))) THE%~

* N {kIDENUM(blb'(ee"k)Apair(p"(ee"k),b)(R)) ELSE (kl-OENUM((bb((ee"%
k)Apsir(p"(ee"k),b)(R))1)cG

*****TRY 1 USING TAUT 48 TTT:;

271 RNG({bI3k.b-opair(k,p"(ee"k))}l I IF DENUM(kIDENUM(bb(ee"k)APa%
ir(p"(ee"k),b)(R}))) THEN {kIDENUM(Ib(eek)Apair(p"(ee"k) 1b)(R)) %
ELSE {kl.DENUM((blb.(ee"k)Apair(p(ee"K),b)(R)1))cG (113 17)

.*****TRY USING Al;



- -- - -- -- - - - -

Appendix 2: Ramsey's Theorem. 146

Goal #1*11*112*1: DENUM(RNG(b3k.b-opair(k,p"(ee"K)),I I IF DENUK4((%
kIDENUM( Ibjb((ee"K)Apalr(p"(ee"k),b)( R,') THEN fk.jDENU1M(bjb((ee"k)A%
pair(p"(ee"k),b)(R})) ELSE {kI-OENUM(bb(ee"k)Apair(p"(ee-k),b)( R))%

Goal #1#1#w1#1#2#2:. EDGESET(RNG(bIk.b-opair(k,p"(ee"k))I IF DENUM%
({KIDENUM(bb(ee"k)Apair(p"(ee"k),b):R}8,) THEN fkjDENUM( fbjb((ee"k%
)Apair(p"(ee"k),b) R))) ELSE {kl'DENUM(!bb((ee"k)Apair(p"(ee"k),b)(R%
)))))cBvEDGESET(RNG(bl3kb-opair(kp"(ee"k))jI I IF DENUM(fkJOENUM( %
lb((ee"k)Apair(p"(ee"k),b)( R'))) THEN !,iDENUM!blb((ee"k)Apair(p"(ee%
-k),b)(R))) ELSE {ki-DENUM(bjbt(eek)Apair(p"(ee"k),b)( R,!)))cR

*****VE L95 T:#1#1#1 T:#1s1w2;

272 FNC({bl3k.b-opair(k,p"(ee"k)))D(IF DENUM( fkIDENUM(bb(ee"k)APa%
ir(p"(ee"Ik),b)(R}))) THEN (KIOENUM(bb(ee"k)Apair(p"(ee"K),b)(R)}. %
ELSE {kI-DENUM(bb(ee"k)Apair(p"(ee"k),b)(R)}cDO,({bi3kb-opair(k%
p "(ee"k))))zoDOM({bj3k.b-opair(k,p"(ee"k))) I IF DENUM(lkIDENUM({blb((%
ee"k)Apair(p"(ee"k),b)(R)))) THEN {kIDENUM(bib(ee'k)Apair(p"(ee"k),%
b)( R))) ELSE fki-'DENUM(bb(ee"k)Apair(p"(ee"K),b)(R)))IF DENUM(fk%
IDENUM(blb'(ee"k)Apair(p(ee"k),b)(R)},) THEN {kjDENUN(bjb((ee"k)Ap%
air(p"(ee"k),b)( R})) ELSE {l-IDENUM(bib(ee"K)Apair(p'(ee"k),b)(R})))

*****TAUT DENUM(11:#1#1*2) 31;

273 DENUM(IF DENUM(IkIDENUM(blb((ee"k)Apair(p'(ee'K),b)(R))) THEN {%
kIDENUM( {blb((ee"k)Apair(p"(ee"Qb)(R})} ELSE fkl-DENUM({bjb((ee"k)A%
pair(plee"k),b)(R))})

*****YE AUX35 30:#2#1 30:w2w2;

274 UNIVERSAL( {kIOENUM(Ib((ee"k)Apair(p"(eek),b)R))))(UNIVERSAL(%
{kl-DENUM(bb(eek)Apair(p(eek)b)R))(fkDENUM({blb(ee"k)Apa%
i r(p(ee"k),b)R))c(kOENUM(b lb((ee")Apair(p"(ee"k)b)(R))ufkD%
ENUM({blb((eek)Apair(p"(eek),b)(R))Ak-[DENUM({bjb((ee"k)Apair(p%
(ee"k),b) R)))c( (kIDENUM(bb(ee"K)Apair(p"(eek),b)(R))ukl.DENU(%

*****EVAL T;

275 (kIOENUM(bb((ee"k)Apair(p"(ee"K),b)(R)}c(kIDENUM((blb((ee~k)A%
pair(p"(ee"k)b)R))ukl-ENUM({blb(ee"k)Apair(p(eek),b)(R)))A%
I'DENUM({blb((ee~k)Apair(p"(ee"k),b)R))c(KIDENUM({blb((ee"K)Apair(h
p"(ee"K),b). RI))ufkI-DENUM({blb((ee"k)Apair(p"(ee"k),b)(R))))

* ***.**E L153 48:#1 1tT:#;

276 FNC((b13k.b-opairk,p"(ee"k)),I)(FNC(CONV(fbl3k.b-opair(,p"(ee"k%
))))):)FNC(CONV({bl3k.b-opair(kp"(ee"K))I I IF DENUM(I{kjDENUM(fbjb((e%e"k)Apair(p"(ee"k),b)(R})}1) THEN fkIDENUM(bbe~)p~~"e~)b
)(R))) ELSE {ki-DENUM(bb(ee k)Apair(p*(ee"k),b)(R)))))

* *****YE L161 48:#1 ITTTT:#l;

* 277 FNC((bI3k.b-opair(k,p"(ee"k))) I IF OENUM(kIENUM(bb(ee"k)Apa%
* ir(P"(ee"K)1 b) R}))) THEN {kIDENUM(bb((ee"K)Apair(p"(ee'K) 5b)(R))} %'



*Appendix 2t Ramsey's Theorem. 147

ELSE (kJ-DENUM(bb(ee"k)Apair(p"(ee'k),b)( R))(FNC(CONV( fbj~k.b-o%
pair(k,p"(ee"k))) I IF DENUM((kIDENUM(bb((ee .k)Apair(p"(ee'k),b)(R1%

))THEN {kiOENUM(bb((ee"k)Apair(p"(ee'k),b)(R))I ELSE {kl-DENUM({b%
lb((ee"k)APair(p"(ee"k),b)(R)))))CONG(DOM({bI3k.b-opair(k,p"(e"k))% --

I IF DENUM(kIDENUM(bb((ee"K)Apair(p"(ee'k),b)(R1))) THEN (kjDENUM%
({blbe(ee"k)Apair(p"(ee"k),b)(R)) ELSE {kj-DENUM( (blb((ee"K)Apair(p"%
(eewk),b)(R))),RNG( {bI3k.b-opair(k,p'(ee"K))I I IF DENUM({kIDENUM({b%
lb((ee1k)Apair(p"(ee~k),b)(R})Dt THEN (DENUM(bib(eek)Apair(p"(ee%
"k),b)(R))) ELSE {kJ-DENUM( {bbb(ee"K)Apair(p"(ee"k),b)( R})))))

*****YE AUX34 271:#1#1#2 271:#1;

278 (DENUMOF DENUM(kIDENUM(bb((ee'k)Apair(p"(ee"k),b)(R)}) THEN %
(kJDENUM(bb((ee"K)Apair(p"(ee"k),b)( R})} ELSE fkjDENUM({b b.(ee'k)%
Apair(p(ee"k),b)(R))ACONG(IF DENUM(kIDENUM(bb((eek)Apair(p"(ee% .
"k),b)(R)fl) THEN {kIDENUM(bb'(eek)Apair(p"(eek),b)RD}) ELSE fkl%
-DENUM( Iblb((ee"k)Apair(p"(ee"k),b)(R},RNG({b JKb-opair(k,p"(ee"k)%
)I IF DENUM({kIDENUM(bb((ee"k)Apair(p"(ee'K),b)(R}1)}) THEN (kIDEN%

UM({Ibb(ee"k)Apair(p"(ee),b)(R')) ELSE (kj-DENUM({bjb((ee"k)Apair(%
p"(ee"k),b)( R)))))):DENUM(RNG( (bI3k.b-opair(k,p"(ee"k)))A I IF OENUM({%
kIDENUM({bb((ee"k)Apair(p"(ee"k),b)(R}'),) THEN (KIDENIJM(bb((ee"k)A%

3 pair(p"(ee"k),b)' R))) ELSE (kj'DENUM(bb((eek)Apair(p"(eek),b)(R))})))

*****YE L41 48:#1 273:#*1;

279 FNC((bI13k.b -opal r(k,p"(ee"k))D FNC(f bI3k.b-op air(k,p"(ee"k))) I%
IF DENUM({KDENUM(blb((ee"k)Apair(p"(ee'k),b)(R}))) THEN {kjDENUM({blb(%
(ee"k)Apair(p"(ee"k),b)(R})) ELSE {kl-DENUM(bb((ee~k)Apair(pw(eewk),b)(R))))

*****REWRITE T BY {48)ULOGICTREE;

2 substitutions were made

280 FNC({bI3k.b-opair(k,p"(ee"K))) I IF DENUM((kIOENUM(bjb((eeiQ)Apa%
ir(p"(ee"k),b)XR}))) THEN {KIDENUM(bb((ee"k)Apair(p"(eek),b)CRI)) %
ELSE {kI-.DENUM(blb((ee"k)Apair(p"(ee"K),b)(R})})

****TAUT 268:#*1 268;

281 FNC(CONV( bI3k.b-opair(k,p"(ee'k))))) (1 13 17)

****TAUT 268:#*1 268;

282 DOM({b 3K.b -op air(k,p"(ee"k)) P-o mega (113 17)

.*****REWRITE 276 BY (48 TT)uLOGICTREE;

4 substitutions were made

P 283 FNC(CONV(bI~k.b-opair(k,p"lee"k))} IF DENUM(jKjDENUM(fbjb((ee"% -
K)Apair(p"(ee"K),b)(R}))) THEN (kiDIENUM(bib((ee"k)Apair(p"(ee"k),b)(%
R))) ELSE (kI-0ENUM((blb((ee"k)Apair(p"(ee"k),b)(R)),)) (113 17)

****REWRITE 277 BY (280 T',uLOGICTREE;



Appendix 2: Ramseys Theorem. 148

4 substitutions were made

284 CONG(DOM( IbI~k.b-opair(k~p"(ee"k))) I IF DENUM([kIDENUM(bb((ee"%
k)APair(p"(eewk),b)(R))}) THEN IkIDENUM(bb(ee"k)Apair(p"(ee"k),b)X%
R))) ELSE {k1-DENUM({blbe((ee"k)Apair(p"(ee"k),b)cR')}),RNG({Ibl3k.b-op%
air(K,p"(ee"k))) I IF DENUM({kIDENUM(blb((ee"k)Apair(p"(ee"k),b)R))% 

-)THEN {kIDENUM(bb(ee k)APair(p"(ee~k),b)(R),A ELSE lkI'DENUM((bl(
b((ee"k)Apair(p"(ee~k),b)(R}))) (113 17)0

*****SUBSTR 30 IN 275;

285 (4.IDENUM( 1bib((ee"k)Apair(p"(ee"k),b)R))comeaAk-0ENUM({bib((%
ee"k)Apair(p"(ee"k),b)(R}))comega

*****TAUT T:*1 T;

286 {kIDENUM( blb((ee"k)Apair(p"(ee"k),b)(R))}comega

*****TAUT TT:*2 TT;

287 (kJ-DENUM( blb((ee"k)Apair(p"(ee"k),b)( R))}comega

****REWRITE 272;.2s1 BY (282 ttIuLOGICTREEuARGIFTREE;

9substitutions were made

288 IF DENUM((ki0ENUM(bb(eek)Apair(p"(ee"k),b)R))) THEN (k[DENU%
M((blb((ee"k)Apair(p"(ee"k),b) R})) ELSE {kI-DENUM(bb((eek)APair(p%
"(ee~k),b)(R1))cD0M({bj3k.b-opair(k,p (ee k))}) (1 13 17)

*****REWRITE 272 BY {48 tjuLOGICTREE;

4 substitutions were made

289 OOM((b I3k.b-opair(kp(ee-k))) IF DENL)M((kIDENUM(bb(ee"k)Apa%
ir(p"(ee"k),b)(R}))) THEN 1kIDENUM(bb(ee"k)Apair(p"(ee"k),b)(R})) % kELSE {kl'DENUM(Ib Ib'(eek)Apair(p"(ee"k),b)R})))-IF DENUM((kIDENUM( (%
blb'(ee~k)Apair(p"(ee"k),b)R1))) THEN fkjDENUM(bb(ee"k)Apair(p"(e%
0-k),b)XR})) ELSE {kI-DENUM(bb(ee~k)Apair(p"(eekk),b)(R))) (1 13 17)

****REWRITE 284 BY Mt;

1 substitutions were made

290 CONG(IF DENUM(kjDENUMbb(ee'K)Apair(p"(ee~k),b)(R)))) THEN fk%
IDENUM((blbe(ee"k)Apair(p(ee~k),b). R)) ELSE {kI'DENUM({blb':(ee"K)Ap%
ai r(p"(ee"k),b)i R))),RNG({bl3I.b-opair(k,pk(eewk))) I IF DENUM( {kIDEN%
UM((blb'(ee"k)Apair(p"(ee"k),b)R}))) THEN IkIDENUM(bb(ee"k)Apair(%
p"(ee"k),b)(R})) ELSE {kl-DENLU(bb((ee"k)Apair(p"(ee"k),b)tR))))) (113 17)

***REWRITE 278 BY (273 t~uLOGICTREE;

4 substitutions were made



17 P. W.

Appendix 2a Ramsey's Theorem. 149

291 DENUM(RNG(fbI3k.b-opairOk 1p"(ee"k))) I IF DENUM(jkjDENUM(jbjb((ee%
"k)Apair(p"(ee"k),b)(R}))) THEN {kIDENUM(blb((eek)Apair(p'(ee"k),b)%
(R))) ELSE {kl'DENUM({bb((ee~k)Apair(p'(ee),b)(R1)),)) (113 17)

*****QED #1#1ulsI*2t.I;

*****YE RNG (bj3k.b'-opair(k,p"(ee"k))}l I
* IF DENUM(kIDENUM(blb((ee"K)Apair(p(ee"K),b)( R)))
* THEN (kIOENUM(bb((ee"k)Apair(p"(eek),b)4R}))
* ELSE {kI-OENUM(~bb(ee"K)Apair(p"(ee"K),b)R})}

292 FNC(fb3k.b-opair(k,p'(ee"K))) I IF DENUM({kJDENUM(bb((ee'k)Apa%
ir(p"(ee"k),bXR})))) THEN {kIDENUM bib(ee"k)Apair(p"(ee'k),b)(R)) %
ELSE Ik-DENUM(Ibb(ee'k)Apair(p(eeM),b)R)))):RNG({bl3k.b-opair(k%
,p"(ee"k))) I IF DENUM(kiD)ENUM(blb(ek)Apair(p'(ee"k),b)(R})))) TH14
EN {kIDENUM({blb((ee"Ik)Apair(p"(ee"k),b)(R}')) ELSE fkl-DENUM(fblb((ee%
"K)Apair(p"(ee"k),b)(R}))..{fcI3a.opair(a,c)(({bI:3Kb-opair(K,p"(ee"K)%
)I IF DENUM(kIDENUM(bb(eek)Apair(p"(ee"K),b)( R)1) THEN {k1DEN%

UM({b Ib((ee~k)Apair(p"(ee~k),b)(R))I ELSE lkI-DENUM( {b b((eek)APair(%
p"(ee"k),b).zR))

*s**YE L41 t:*1eIe1 T:#1#l.2;

293 FNC((13fk.b-opair(k,p"(ee"k))))FNC( lbl3k.b-opair(k~p"(ee"k)))} IF %
DENUM({kjDENUM(bb((ee"k)Apair(p"(ee'K),b)(Rl)}) THEN (kjDENUM(jblb(%
(ee"k)Apair(p(ee"k),b)(RI)} ELSE kI-'DENUM({b Ib((ee'k)Apair(p'(ee"k),b)(RI)))

*s***sYE RESTR tt:#1#1#1 TT:..ltl#2;

294 FNC((bI3k.b-opair(K,p"(ee"k)))({bi3k.b=opair(k,p"(ee"k))) IF %
DENUM({kIDENUM(blb(ee"k)Apair(p"(ee"A),b)(R')}) THEN fkIDENUM(fbjb(%
(ee"k)Apair(p"(ee"k),b)(R})) ELSE {kI-DENUM(bb((ee"k)Apair(p"(ee"k)%
1b)(R))l)-({bl3k.b-opair(k~p'(eek))nCROSS(IF DENUM(fklDENUM(fblb((e%
e "k)Apair(p(ee"k),b)tR))) THEN {kIDENUM(bb((eeK)Apair(p"(ee"K),b%
)(R))) ELSE {kl-OENUM(blb((ee"k)Apair(p"(ee"k),b)(R)),V))

*****REWRITE Tt BY (48)uLOGICTREE;

2 substitutions were made

295 FNC((bIjk.b-opair(k~p"(ee"k))! I IF DENUM(fkIDENUM((bjb((ee"k)Apa%
ir(p"(ee'k),b)(R}))) THEN fkJDENUM( {bjb((ee"k)Apair(p"(ee"k),b)(R})) %
ELSE (kI'DENUM((blb((ee"K)Apair(p"(ee"),b)(R,)}) ;

*****REWRITE tt BY (48)uLOGICTREE;

2 substitutions were made

296 ({bI3kb-opalr(k,p"(ee~k))) IF DENUM(IkIDENUM(bb((ee"K)Apair(%
p "(eek),b)XR))l) THEN {kIDENUM(blb(ee"k)Apair(p"(ee"k),b)(RI)) ELS7%
E (ki-DENUM(blb((ee"k)Apair(p"(eek),b)(R})}')=((bl~k.b-opair(k,p"(e%
"k)))nCROSS(IF DENUM(k[ENUM(bfb(eek)Apair(p"(eeK),b)(RD))) THEN%
{KIDENUM((bb((eek)Apair(p"(ee"k),b)(RI)} ELSE (kI-DENUM((blb((ee"k%

)Apair(p"(eek),b)(R)),V))





Appendix 21 Ramsey's Theorem. 151

ee"k)Apair(p"(ee"k),b)( R))),V))DIc BvEOGESET(fc j3a.opair(a,c)((b 1b3k.b%
-opair(k,p"(ee"K)))nCROSS(IF DENUM!kIENUM(bb((ee'k)Apair(p"(ee"k)%
,b)XR)))) THEN (kfDENUM((blb((ee"k)Apair(p"(ee-k),b)(Rl)1 ELSE {Kh-OE%
NUM( blb((ee"k)Apair(p"(ee"k),b)(R))),V))}I)cR
299 -DENUM( II)DENUM( blb((ee"k)Apair(p"(ee"),b)(R})1I) (299)

300 DENUM( kIDENUM( 1bib((ee"k)Apair(p"(ee"k),b)(R)))iFALSE (299)

Goal *1.1#1#1 .2#2*1#2*1#1: EDGESET(c3a.opair(a,c)((Ibl3k.b-opair(k%
,p"(ee"k)))flCROSS( (k j-DENUK4( {blb((ee"k)Apair(p"(ee")b)(R)),V)))CB%
vEDGESET({cI3a.opair(a,c)((b~k.bopair(k,p"(ee"))ACROSS((kDENU%
({bib((ee"k)Apair(p"(ee"k),b)(R),V))D~cR

****TRY USING ORI 1;

Goal #1#1#1#1#2#2#1#2#1#.1#1: EDGESET(c3a.opair(a,c)(((b3k.b-opair%
(k,pw(eek))ACROSS( Ikj-DENUM( {bjb'(eek)Apair(p"(eek),b)( R))),V))))cB

.*****TRY USING REWRITE BY (EOGESET AUX27 AUX25 CROSS V SUBSET AUX5);

Goal *1#1#1#1#2#2#12#1#1#1#1: Ycl.((SET(cl)A3c dl.((SET(c)A3a.(((SE%
T(a)ASET(c))A~k.(a-kAC =(p"(ee"k))))A((SET(a)ASET(c))A~d e.((a..dAC-e)Ah
((NATNUM~d)ADENUM(bib((ee"d)Apair(p(ee"d),b)(R))ASET(e))))))A((SE%4
T (d 1 )A3a.(((S ET(a)A SE T(d I ))A3 k.(a -kA d I -(p "(e e "k))))A((S ET(a)A SE T(d 1 ))%
A3ci e.((a-dAdl1 e)A((NATNUM(d)A-DENUM,(bb((eed)Apair(p"(ee'd),b)(R)%
)ASET(e))))))A((C-dl1)ACl1-pai r(c,dl1)))))Dc 1(B)

****TRY .1.1.1.1.2.2.1.1#1#1 USING ORI 2;

Goal #1.1#1.1#2#2#1#1.1#1 i*1: EDGESET(c3a.opair(a,c)(((bI3k.b-opair%
(k,p"(ee"k)))CROSS({kIDENUM( {blbe(ee"k)Apair(p"(eek),b)(R)),V))1)CR

.***TRY USING REWRITE BY {EDGESET AUX27 AUX25 CROSS V SUBSET AUX5);

Goal # 1 # 1# 1.2#2# 1 #1 1 1 # 1: Vc 1.((SET(c1I)A~c d 1.((SET(c)A3a.(((SE%
T(a)ASET(c))A3k.(a-KAC(p(ee"k))))A((SET(a)ASET(c))A3d e.((amdAC-e)A%
((NATNUM(d)ADENUM(fbb((ee"d)Apair(p'(ee"d),b)( R)))ASET(e ))))))A((SET%
(dl )A3a.(((SET(a)ASET(d 1 ))A3k.(a-kAd 1 -(p "(ee k))))A((SET(a)ASET(d 1 ))A%
3d e.((a-d~dl1 e)A((NATNUM(cI)ADENUM( {blb((eed)Apair(p(ee"d),b)R)))A%
SET(e))))))A('(C -dl )AC 1 -pair(c,d1I)))))nc 1(R)

****GOAL Vi j.0i LT j:)IF DENUMlbb(ee"iApair(p"(ee"i),b)(R})
* THEN pair(p"(ee"i),p"(ee"j))(R
* ELSE pir(p"(ee"i,p"(ee"j))(8 )

Goal .14: Vi j.(i LT jDIF DENUMV(blb((ee"i)Apair(p'(ee"i),bX(R}) THEN %~
pal r(p"(ee"i ),p"(ee"j)):R ELSE pair(p"(ee"i),p"(ee"j ))(B)

****TRY USING ELIMINATION;

Goal .14.1: i LT jDIF DENUM(bb((ee"i)Apair(p"(eei),b)(R}1) THEN pa%
ir(p"(ee"i),p"(ee"j))(R ELSE pair(p"(ee'i),p"(ee"j))(B
Goal .14.1*1: IF DENUM((bb(ee'i)Apair(p"(ee"i),b)(R)) THEN pair(p"%
(o.'i),p(eeM j))(R ELSE pair(p"(ee"i),plee"j))(B



w -. 5-

Appendix 2: Ramsey's Theorom. 162

*****PREPARE;

301 i LT j (301)

***VE 165 i j;

302 i LT p(ee"j)c(eeSUC0)) (113 17)

*****TAUT T:#2 T%:

303 (ee"j)c:(ee"SUC(i)) (113 17 301)

*****REWRITE T BY {SUBSET SUJCi};

2 substitutions were made

304 Vc.(c((ee"j )Dc( IF DENUM( {bib<(ee"i)Apair(p"(ee"i),b)(R)) THEN fbj%
b((ee"i)APair(p"(ee~i),b)(R) ELSE {blb((eei)Apair(p(ee"i),b)(B}) (1 13 17 301)

*****YE T p-(ee-j);

305 (p"(ee"I)h((ee"j),(p"(ee"j))tIF DENU)M({blb(ee"i)Apair(p"(ee"i),b%
)(R)) THEN (blb((ee"i)Apair(p"(ee"i),b)(R} ELSE 1,bjb((ee"i)APair(p"(e%
e"i),b)KB) (1 13 17 30 1)

*****REWRITE T BY {PINEE)uCOMPTREEuLOGICTREEuARGIFTREEuWFFIFTREE;

6 substitutions were made

306 (DENUM((bb.(ee'i)Apair(p"(ee"i),b):R)(SET(p"(eej))A((p'(ee"j))%

(R)'(E("e~)A("e~)(e~)pi~"e~)p(ej)8) (1 13 17 301)

*****TRY USING TAUT T;

307 IF DENUM(bb(ee"i)Apair(p"(ee"i),b)'R)) THEN pair(p"(ee i),p"(e%
e"j)X(R ELSE pair(p"(ee"i),p"(ee"j))(B (113 17 301)

308 i LT 1.iF DENUMv( lbib((ee"j)Apair(p"(ee"i),b)(R)) THEN pair(p"(eo"%
i),p"(ee"j))'R ELSE pair(p"(ee"i),p"(ee"))(B (113 17)

309 Vi j.(i LT j.)IF DENUM(bb(ee"i)Apair(p"(ee i),b):RI) THEN pair(%
p"(ee"i),p"(ee"j))(R ELSE pair(p*(ee"i),p"(ee"j))6B) (1 13 17)0

*****TRY #1v1e1#1a2a2u1#11Iisl.1 USING ELIMINATION;

Goal s1#1*1*1#2#2#1#1#1#1#1*l#1: (SET(cl)A~c d1.((SET(c)A~a.(((SET(a%
)ASET(c ))A3k.(a -kAC -(p"(ee"k))))A((SET(a)ASET(c))A~d e.((a-dAC-e)A((N%
ATNUM(d)ADENUM( (blb((ee"d)Apair(p"(ee"d),b)' R))ASET(e))))))A((SET(d 1%
)A~a.(((SET(a)ASET(d I ))tA3k.( a-kAd 1 -(p"(ee"K))))A((SET(3)ASET(d I ))rA3d %
e.((a-dAd I -e)A((NATNUM(d)AOENUM(bb(ee"d)Apair(p"(ee"d),b)(R)))ASET%
(e))))))A(-(C-d I )AC I -pair(c,d 1 ))))):)c I (R
Goal *1#1us1*1*2s2e111u1#1.11u1: cl(R



.- ~ r ~ r .- r.- - - - . . - - -

Appendix 2s Ramsey's Theorem. 163

*****PREPARE;

310 SET(c1I)A3c dl .(( SET(c)A3a.(((SET(a)ASET(c))A3k.(a-kAC-(p"(ee'k)))%
)A((SET(a)ASET(c))A~d e.((a-dAC-e )A((NATNUM(d)ADENUM( {blbE(ee'd)Apair%
(p"(ee"d),b)(R))ASET(e))))))A((SET(d I )A~a.(((SET(a)ASET(d I ))A3k.(a-k%
Ad 1 -(p"(ee"k))))A((SET(a)ASET(d I ))A~d e.((a-dAd 1 -e)A((NATNUM(d)ADENUM%
({b Ib((ee"d)Apair(p"(ee "d),b)(RJ))ASET(e))))))A(-(C-d 1)ACI1-pair(c,d 1)))) (310)

311 3c dl .((SET(c )A3a.(((SET(a)ASET(c ))A3k.(a-kAC-(p'(eek))))A((SET(%
a)ASET(c))A3d e.((a-dAC -e )A((NATNUM(d)ADENUM( {blb((ee'd)Apair(p"(ee"d%
),b)( R}))ASET(e))))))A((SET(dl1)A~a.(((SET(a)ASET(d I))AJk.(a-k~dl1 (pt(%
ee"k))))A((SET(a)ASET(d 1))A~d e.((a-dAdl1 e)A((NATNUM(d)ADENUM(Ibb((e%
ewd)Apair(p"(eewd)1b)(R)))ASET(e))))))A(,(C-dlI)Acl1-pair(c,d 1)))) (310)

312 SET(cl) (310)

*****ES TT c d I;

313 (SET(c)A3a.(((SET(a)ASET(c))A3k.(a=kAC-(p(ee"k))))A((SET(a)ASET(%
c ))A3d e.((a-dAC-e)A((NATNUM(d)ADENUM(b ib((ee'd)Apair(p'(ee"d),b)R)%
))ASET(e))))))A((SET(dlI)A3a.(((SET(a)ASET(dlI))A'Gl.(a-kAdlI-(p"(ee"k)))h
)A((SET(a)ASET(dI1))A3d e.((a-dAd 1 e)A((NATNUM(d)ADENUM(blb((ee'd)Apa%
ir(p"(eewd),bXR})))ASET(e))))))A(-(C-dl1)ACI1-pair(c,d 1))) (313)

*****ADDFACTS *1#1#1#1#2*g2#1#I1#1###1#1 ASSUME T;

Goal .uul.1#1e.2#2#1*11*11#Ia1..: clIR

*****PREPARE,,

314 cl-pair(c,dIl) (313)

315 -(c-dl) (313)

316 3a.((( SET(a)ASET(d 1))A~k.(a-kAd 1-(p'(ee"k))))((SET(a)ASET(dl1))A3d e.%
((a-dAdl1-e)A((NATNUM(d)ADENUM(~bb((ee"d)Apar(p"(ee"d),b)(R))ASET(e))))) (313)

317 SET(dI) (313)

318 3a.(((SET(a)ASET(c))A3k.(a=kAC -(p"(ee"k))))A((SET(a)ASET(c))A3d e.%
((a-dAC-e)A((NATNUM(d)ADENUM({b b((ee~d)Apair(p(eed),b)(RD))ASET(e))))) (313)

319 SET(c) (313)S

320 c-dl'FALSE (313)

*****ES 316 a; ..-

321 ((SET(a)ASET(d I))A~k.(a-kAdl1-(p"(ee"k))))A((SET(a)ASEr(d 1))A~d e.%
((a-dAdl1-e)A((NATNUM~d)ADENUM(~bb(ee"d)Apair(p"(ee"d),b)(R)))ASET(e)))) (321)

****ES 318 al;

322 ((SET(& 1 )ASET(c))A3k.(a 1 -kAC-(p"(eek))))A((SET(a 1 )ASET(c))A3d e.%



Ikppendix 2: Ramsey's Theorem. 154

((al1-dAC-e)A((NATNUM(d)ADENUM(!,blb((ee"d)Apair(p"(ee"d),b)( R}))ASET(e)))) (322)

*****ADDFACTS s111I~2111~~111ASSUME TiTT;

Goal #1#1*1#1#2#211111s1e1#1: cl(R

*****PREPARE;

323 3d e.((al1-dAc -,)A((NATNUM(d)ADENUM( {blb((ee~d)Apair(p"(eewd),bX R}))ASET(e))) (322)

324 SET(c) (313)

325 SET(al) (310)

326 3k.(aI -kAC-(p"(ee"k))) (310)S

327 SET(c) (310)

328 SET(al) (310)

329 3d e.((a-dAdlI e)A((NATNUM(d)ADENUM(blb((ee'd)Apair(p"(ee"d),b)(R)))ASET(e))) (321)

330 SETWdl (313)

331 SET(a) (310)

332 3k.(a-kAdI-(p"(ee"k))) (310)

333 SETWdl) (310)

334 SET(a) (310)

*****ES 323 d e;

335 (al1 dAC-e)A((NATNUM(d)ADENUM(bib((ee~d)Apair(pk(ee~d),b)(R}))ASET(e)) (335)

*****ES 326 k;

336 al-kAC-(p"(ee"k)) (336)

*****ES 329 d2 e2;

337 (a-d2A i -o2)A((NATNUM(d2)AOENUM(bb(ee"d2)Apair(p'(ee "d2),b)(R)))ASET(e2)) (337)
*****ES 332 j;

338 a-jAdl-(p"(ee"j)) (338)

*****TAUTEQ c-p"(ee"k) 335:;

339 c-(p"(ee"k)) (310 313 322 336)

*****TAUTEQ d I-p"(ee)j) 335:;



Appendix 2: Ramsey's Theorem. 155

340 d I-(P"(ee"j)) (310 313 321 338)

*****TAUTEQ d2-j 335:;

341 d2-j (310 313 321 337 338)

*****TAUTEQ d-k 335:;

342 d-k (310 313 322 335 336)0

*****TRY USING REWRITE BY [314 TTTT,TTT);

Goal uli1*lele2#2le11e1*111a1: pair(p"(eek),p"(ee"j))(R

*****ASSUME k..j;

343 k-j (343)

*****REWRITE 339 BY IT);

1 substitutions were made

344 c-(p"(ee"j)) (310 313 322 336 343)

*****TAUTEQ FALSE 315 340 T;

345 FALSE (310 313 321 322 336 338 343)

*****-I T 343;

346 -(k-j) (310 313 321 322 336 338)

*****REWRITE 335 BY (3421;

4 substitutions were made

347 (al-MAC -e)A((NATNUM(k)ADENUM(bb(e"k)Apair(p"(eek),b).R)))ASE%0
T(e)) (310 313 322 335 336)

*****REWRITE 337 BY (341);

4 substitutions were made

348 (a-j~d 1 e2)A((NATNUM(j)ADENUM({blb((ee~j)Apair(p(eej),b)(R))AS%
ET(e2)) (310 313 321 337 338)

****REWRITE TTT BY {LESS2};

Isubstitutions were made

349 k LT jvj LT k (310 313 321 322 336 338)

****YE 309 k I;







Appendix 21 Ramsey's Theorem.15

}))ASET(e))))))A((SET(dl1)A~a.(((SET(a)ASET(dlI))A3k.(a-kAd 1=(p"(eek))%
))A((SET(a)^SET(d 1))A3d e.((a=dAdl1 e)A((NATNUM(d)A-DENUM({b b((ee"d)A%
pair(p"(ee"d),b)( R)))ASET(e))))))A(-'(c-d I)ACI=pawr(c,dlI )) (367)

*****ADDFACTS #1111221####### ASSUME T;

Goal #1#1#1#1#2#2#1#2#*1#1#1#1#1: c1(B

* *****PREPARE;

368 c I=pair(c,dl) (367)

* 369 -(c-di) (367)

370 3a.(((SET(a)ASET(dl1))A3k.(a4kAdl1 (p'(ee'k))))A((SET(a)ASET(d 1))A~d e.%

((a-dAdl1 e)A((NATNUM(d)ADENUM(bb(ee"d)Apair(p(eed,b)(R))ASET(e))))) (367)

371 SET(d1) (367)

372 3a.(((SET(a)ASET(c))A3k.(a-kAC-(p"(eek))))A((SET(a)ASET(c))A3d e.%
((a=dAC=e)A((NATNUM(d)A-DENUM(blb((ee"d)Apar(p"(eed),b)(R}))ASET(e))))) (367)

373 SET(c) (367)

374 c-d1'FALSE (367)

*****ES IT~TT a;

375 ((SET(a)ASET(dI ))A~k.(a=kAdI =(p"(ee"R))))A((SET(a)ASET(dl1))tA3d e.%
((a-dAdl1-e)A((NATNUM(d)A-DENUM(blb((ee"d)Apair(p"(ee"d),b)(R))ASET(e)))) (375)

* *****ES 1414 al;

* ~376 ((SET(alI)ASET(c))A3k.(al1 kAC-(p'(eek))))A((SET(al1)ASET(c))A~d e.%
((a 1-dAC-e)A((NATNUM(d)A-'DENUM({b b((ee"d)Apair(p"(ee"d),b)( R))ASET(e)))) (376)

*****SADDFACTS #1#1v1#1#2#2#1#2#11#1#1#1#1 ASSUME iT,!;

Goal #1#1#1#1#2#2#1#21#1#11#s1#1: cl(B

*****PREPARE;

377 3d e.((a-dAdl1 e)A((NATNUM(d)ADENUM(bb((eed)Apair(p"(ee"d),b)(R)))ASET(e))) (375)

378 SET(dI) (367)

379 SET(a) (364)

380 3k.(a-kAd I-(p"(ee")) (364)

381 SETO (364

381 SET(d) (364)

. .~ . .. . .



Appendix 2: Ramsey's Theorem. 159

383 3d e.((a 1-dAC-e)A((NATNUK(d)A'DENUM(blb((eed)Apair(p"(ee"d),b)(R))ASET(e))) (376)

384 SET(c) (367)

385 SET(al) (364)

386 3k.(al-kAC-(p"(ee"k))) (364)

387 SET(c) (364)

388 SET(al) (364)

*****ES 377 d e;

389 (a-dAdl1 e)A((NATNUM(d)A-DENUM(blb((ee"d)Apar(p(eed),b)(R)))ASET(e)) (389)

*****ES 383 d12 e2;

390 (a 1 md2AC-e2)A((NATNUM(d2)ADENUM(fblb((ee'd2)Apair(p"(eed2),b)(R))ASET(e2)%
(390)

~****es 380 k,

391 a-kAdl-(p"(ee"k)) (391)

*****es 386 j;

392 al-jAC-(p"(ee"j)) (392)

*****AE 11 2;

393 dl-(p"(ee"k)) (391)

*****AE TT 2;

394 c-(p"(ee"j)) (392)

*****TRY USING REWRITE BY {tt~t 368);

Goal s11#1#1#2#2#1#2#1#1#11#1 #1#1: pair(p"(ee"A)p"(ee"K))(B

*****TAUTEQ d2-j TTT,TT1TT;

395 d2-j (390 392)

*****TAUTEQ d-k TTTlT,TTTTITT;,

396 dl-k (389 391)

*****TAUT 389:#2#1#2 389;

397 -DENUM({bb((ee"d)Apair(p"(ee"d),b)(RI) (389)



*Appendix 2: Ramsey's Theorem. 160

* *****TAUT 390..#2#1#2 390;

398 -DENU(bb(ee~d2)Apair(pw(ee~d2),b)(R)) (390)

*****REWRITE IT BY (ITT);

2 substitutions were made

399 -DENUM({bjb((ee"k)Apair(p"(ee"k),b)(R}) (375 391)

*****REWRITE IT BY (TTTtT};

2 substitutions were made

400 -DENUM(Iblbe(ee"j)Apair(p(ee"j)b)(R)) (376 392)

*s****ASSUME k-j;

401 k-i (401)

*****REWRITE 391 BY (I);

2 substitutions were made

402 a-jAd1-(P"(ee'j)) (391 401)

* *****TAUTEQ FALSE 369 392 t;

403 FALSE (367 391 392 401) lp

*****-I t 401;

* 404 -(k-j) (367 391 392)

*****REWRITE I BY (LESS2);

I substitutions were made

405 k LT jvi LT k (367 391 392)

*****TAUTEQ 352:*2(B 350:352 399 400 1;

406 pair(p*(ee"j),p"(ee"k))8B (113 17 367 375 376 391 392) 0

*****QED;

*407 c1I(Bxpair(p(ee~j),p"(eek))hB (367 391 392)

408 cl.B (1 13 17364)

409 (SET(cl1)AJc dl .((SET(c )A3a.(((SET(a)ASET(c))A3k.(a-kAC-(p"(ee"k))%
))A((SET(a)ASET(c))A~d e.((a-dAc-e)A((NATNUM(d)A-DENUM({bjb*(ee"d)Apa%

* ~ir(p"(ee"d),b)( R}))ASET(e))))))A((SET(dl1)A3a.(((SET(a)ASET(dl1))A3k.(a%

A



Appendix 2% Ramsey's Theorem. 161

-kAd 1 -(p"(ee"k))))A((SET(a)ASET(d 1 )A3d e.((a-dAd 1 -e)A((NATNUM(d)A-DENUM(fb%
)b((ee"d)Apair(p"(ee"d),b)( R)))ASET(e))))))A(-{C-dl1)ACI1-pair(c,dl1)))))'c 1(8 (113 17)

410 Ycl1.((SET(cl1)A3c dl .((SET(c)A3a.(((SET(a)ASET(c))A~k.(a-kACm(p"(e%
e"K))))A((SET(a)ASET(c))A3d e.((a-dAC-e)A((NATNUM(d)A-DENUM({blb((ee"%
d)Apair(p"(ee"d),b)R))ASET(e))))))A((SET(d 1 )A~a.(((SET(a)ASET(d 1 ))A%

3k.( a-kAd 1 -(p"(ee"k))))A((SET(a)ASET(d 1 ))A~d e.((a-dAd 1 -e)A((NATNUM(d%
)A-DENUM({bb((ee"d)Apair(p"(ee"d),b)(R1))ASET(e))))))A-C-d I)AC I-pa7%
ir(c,d1))))):)c1(B) (113 17)

411 EDGESET(Icl3a.opair(a,c)((blk.bopar(k,p"(ee"k)))CROSS(fk-DE%
NUM((bjb((ee"k)Apair(p"(ee"k),b)( R})),V))))cB;Yc 1.((SET(cl1)A3c dl .((S%
ET(c)A3a.(((SET(a)ASET(c))A3k.(a.kAC.(p(ee"k))))A((SET(a)ASET(c))A3d%
e.((a-~dAC -e)A((NATNUM(d)A-DENUM(fbib((ee'd)Apair(p"(ee"d),b)(R)))ASE%

T(e))))))A(( SET(d 1 )A~a.((SETWaASET(d 1 ))A3k.(a.-kAd 1 -(p(ee"k))))A((S%
ETWA)SETWd I)Ar3d e.((a-dAd I -e)A((NATNUM(d)A-DENUM(blb((ee"d)Apair(p%
*(ee*d),b)(R))ASET(e))))))A(-(C-d I )AC 1 -pair(c~d 1 )))))nc 1(B)

412 EDGESET( (c 3a.opair(a~c)( Ibj3k.b-opair(k,p"(ee"k))ACROSS({kh-DE%
NUM(bb((ee"k)Apair(p(ee"k),b)(R),V)))cB (113 17)

43EDGESET(fcI3a.opair(a,c)(({bi~k.b.-opair(k,p(ee"k))hCROSS(IkDE%

NUM((blbi(ee"K)Apair(p(ee"k),b)(R),V))))cBvEDGESET(c3a.opair(ac%
)(({bI3k.b-opair(k,p"(ee"k))ACROSS(k-DENUM({blb((ee")k)Apair(p"(ee"%
K),b)(R})),V))j)cR (1 13 17)

414 (EDGESET(Icj3a.opair(a,c)((,Ib3k~b=opair(k,p"(eek))hrCROSS(IF DE%
- NUM( (kIDENUM(blb((ee"k)Apair(p"(ee"k),b)(R})),) THEN {kjDENUM( blb((e%
Ue e)Ap air (p"(ee"),b)(R 1)) ELSE (kj-.0ENUM(bb((ee~k)Apair(p"(ee"k),b%

) R))),V))))c~vEDGESET(c3a.opair(a,c)(({bI3k.b-opair(k,p"(eek))}flC%
ROSS(IF DENUM(lkIDENUM(bb((ee"k)Apair(p"(ee"k) 1b)(RI),) THEN [kjDEN%
UM({bjb((eek)Apair(p"(ee"),b)(R))) ELSE 1,Kj-DENUM(bjb((ee"K)Ap air(%
p"4ee~k),b)(R))),V))))cR)(EDGESET( {cl3.opair(a,c)( lbl3k.b-opair(k,'h
p(eek)))CRSS(~kiDENUM((blb((ee")Apair(p"(eek)b)(R),V))DcBv/%
EDGESET({cl3a.opair(a,c)((fb3kbopair(k,p"(ee"k)))CROSS(klDENUM(%

Iblb((ee"k)Apair(p"(ee"k),b)(R))),V)8))cR) (299)

415 EDGESET((cI3a.opair(a,c)(( {bl3k.b-opair(k,p"(ee"k))ACROSS(IF DEN%
UM({kIDENUM(bb((ee"k)Apair(p"(ee-k),b)(RD) ) THEN fIl[DENUM(fblb((ee%
"k)APair(p"(ee"k),b)(R})) ELSE {kJ-DENUM( Ibjb((ee~k)Apair(p"(ee"k),b)%
(R)),V))})cBvEDGESET({cI3a.opair(a,c)((Ibi~k.b-opair(k,p(eek))flCR%
OSSOF OENUM((kIOENUM(blb((ee"k)Apair(p"(ee"k),b)(RI))) THEN {JkJDENUA
M({blb(ee"k)Apair(p"(ee"k),b)( R}), ELSE {kIOENUM(bb((ee"k)APair(p%
"(ee"k),b)XR})),V))))cR (113 17 299)

416 -DENUM( (KIDENUM(bb((ee'Ik)Apair(p'(eeK),b)(R,))(EDGESET({cI3a%
opi* )({lkboar(~"c"))rCOSI DENUw-(!kIDENUM(Jbjb(%

* (ee"k)Apair(p"(ee"k),b)(R}))) THEN {kIDENUM(bb((ee'K)Apair(p(ee~k)%
b)(R))) ELSE (klhDENUM((bb((ee"K)Apair(p"(ee"k),b)( RD),,V))}I)cBvEDG%
ESET((c i~a.opair(a,c)( ( {b3k.b-opair(k,p"(ee"k))tnCROSS(IF DENUM( {KJD%
ENUM((blb'(ee"k)Apair(p"(ee"K),b)(R}))) THEN fkIDENUM(blb((ee"k)Apair%
(p(.e"),b)(R})} ELSE {ki-OENUM((bb((ee"k)Apair(p"(ee"k),b)(R}))),V))J)CR) (1 13 17)

417 EDGESET({cI~a.opair(a,c)({IbI~k.b-opair(k,p"(ee"k)))CROSS(IF DEN04
UM((MIDENU(blb(ee"k)Apair(p"(ee"k),b)(R))}) THEN fkjDENUM( (bjb((eeh

3.4.



Appendix 2t Ramseys Theorem. 162

"IkJAPair(p"(ee"k),b)(R})) ELSE {kI"OENUM(bib((ee"k)Apair(p"(ee"k),b)%
(R))),V))))CBvEDGESET({c I3a.opair(a,c)((I~bi3k.b-opair(k,p"(ee"k))nCR*
OSSOF DENUM({kIOENUM(bbt(ee"K)Apair(p"(ee"k),b)(RI)}) THEN {kfDENLI%
M( (blb (eek)pair(p(eek),b) R))} ELSE fkj'DENUM((bjb((ee"IkjAPair(p%
"(ee"k)b)XR))),V))))cR (1 13 17)

418 (EDGESET(RNG' Ibt3k.b-opair(k,p"(ee~k))} I IF DENUM({kIDENUM(bb%
(ee"k)Apair(p(ee"k),b) R)))) THEN {kIDENUM(bb((ee"k)Apair(p"(eek)%
,b)(R})) ELSE {kl-DENUM~blb((ee"k)Apair(p"(ee"k),b)(R)}))c~vEDGESET%
(RNG( IbI3k-b-opair(k,p"(ee"k))} I IF DENUM(IMlDENUM(blb((ee"Ik)Apair(%
p(ee"k),b)(R}))) THEN fkIDENUM(bb((ee"k)Apair(p"(ee"k),b)(R)} ELS%
E {kj-DENUM((blb4(eewk)Apair(p(eek),b)R)}))cR)(EDGESET({cI3a.opa%
ir(a,c)(( (bI3k.b-opair(k,p(ee"k))ACROSS(IF DENUM({kIDENUM(blb((ee"%
k)Apair(p"(ee"k),b)( Rl,)) THEN {kiOENUM(bb((ee"k)Apair(p"(ee"k),b)(%
Rjfl ELSE {kl-DEN'J({blb(ee")Apair(p(ee"k),b)(R))V)))cBvEGESET%
({c I~a.opair(a~c) ((bi--.Y,opair(kp(ee"k)))nCROSS(IF DENUM( {kIDENUM%
({blb((ee"k)Apair(p(ee-k),b) R}))) THEN jKjDENUM(bjb(ee"k)Apair(p"%
(ee"k),b)(R))) ELSE {k-DENUM{bb((ee"k)Apair(p"(ee~k),bX<R))1,V))1)cR)

419 EOGESET(RNG({bl3k.b-opair(k,p"(ee~k))) I IF DENUM({kIDENUM({blb((%
ee"k)Apair(p(ee~k),b) R)))) THEN lkIDENUM(bb((ee"k)Apair(p"(ee"k),%
b) R})) ELSE (kI-.DENUM({bbe((ee"k)Apair(p"(ee"k),b)(R))))cBvEDGESET(%
RNG( {bl3k.bmoPair(k,p"(ee"k))) I IF DENUM({kDENUM(bIb(ee"k)Apair(p%
"(ee"k),b) R}))) THEN IkIDENUM( Ibib((ee"k)Apair(p(eek),b)(R})) ELSE%
{kl'DENUM({blb((ee"k)Apair(p"(ee~k),b)R}))))cR (113 17)

420 DENUMRNG(fbI~k.b-opair(k,p"(ee"0)}, I F DENUM(fkIDENUM(lb(b(ee%
"k)APair(p(ee~k),b) R)))) THEN {kIDENUM(blb((ee"k)Apair(p"(ee"k),b)%
(R})) ELSE {kI-DENUM( blb.(ee"k)Apair(p"(ee~k),b) R)))))A(EDGESET(RNG%
{bI3kb-oPair(k,p"(ee"Q)} I IF DENUM({KIDENUM(bb(ee"k)Apair(p"(e%

e"k),b)(R)))) THEN {kIDENUM((blb((ee"k)Apair(p"(ee"k),b):R))) ELSE {k%
I-DENUM((blb((ee"K)Apair(p"(ee"k),b)R)))cBvEDGESET(RNG({bl3k.b-op%
ir(k,p"(ee"k))) I IF DENUM( (kIDENUM( {bjb((ee"k)Apair(p"(ee"k),b)(R))%

THEN lkIDENUM(bb(ee"k)Apair(p"(ee"k),b).R)))I ELSE fkl.DENUM(fblb%
((ee"K)Apatr(p"(ee"k),b).R)))))cR) (113 17)

421 RNG({bI3k.b-opair(k~p"(ee~k))) I IF DENUM((klDENUM((bb(ee"K)Apa%
ir(p"(ee"k),b) R)))) THEN {kIDENUM( (blb((ee~k)Apair(p"(eewk),b).R))) %
ELSE {1kl-DENUM(fblb(ee"Ik)Apair(p"(ee"k),b(R1))1)cGA(DENUM(RNG(fb3.
b-opair~kp"(ee"k))) I IF DENUM( {klDENUM(bb(ee"k)Apair(p"(ee"k),b)%
(R)))) THEN IkDNMIl(e~)parp(ek,)R) ELSE I)kl-DENUMh
({blb((ee"k)Apair(p"(ee~k)b)R))))A(EDGESET(RNG({bj3k.b-opair(k,p"(%

ee"k))} I IF OENUM( IkIDENUM( (blb((ee~k)Apair(p(ee~k),b)XR})}) THEN {'%
kIOENUM(bb(ee"K)Apair(p"(ee"k)b)(R))) ELSE {kI.DENUM((bfb((ee"k)A%
pair(p"(ee"k).b) R)))))CBvEDGESET(RNG({bl~kb-opair(k,p"(ee"k)))I I IF%
DENUMWfkIDENUM(Ib(ee"k)Apair(p*(ee"k)b)cRI))) THEN (kIDENUM(fbjb%

((ee"k)Apair(p"(eek),b) R})) ELSE {kI.0ENUM(bb(ee"k)Apair(p"(ee"k%
),bXR))))crR)) (1 13 17)

422 3a.(acGA(DENUM~a)A(EDGESET(a)cBvEDGESET(a)cR))) (1) ,

423 (DENUMG)A(EDGESET(G)-(RuB)A(RnB)eX.)) 3.(cGA(DENUMWe)A(EDGESET(%
a)cBvEDGESET(a)cR)))

424 YG R B.((DENUM(G)A(EDGESET(G)-(Ru6)A(Rn8)-%)) 3a.(acG(DENUMwa)A(%



Appendix 2: Ramsey's Theorem. 163

EDGESET(a)cBvEDGESET(a)cR)))) .

8.6. Statistics of the proof.

For the proof shown in the last section, the user typed 309 commands. Of these, 1 99 were
forward FOL commands. 110 were GOAL commands properly, Including 14 commands for goal
creation, 5 for addition of facts, and 72 calls to TRY.

The complete statistics are shown next.

Goal commands:

GOAL 14
ADDFACTS 6
QED 6
PREPARE 14
TRY 72

TOTAL 110

Detail of TRYs

2
Al 3
REWRITE 21
MONADIC 9
31 3
ELIMINATION 12
LOGIC 3
TAUT 4
TAUTEQ a
IMPLICATION 2 -
INDUCTION 2
UNIFY 1
EOUNIFY 1
JFCASES 1
VI 2

A--



Appendix 2: Ramsey's Theorem. 164

Summary of FOL commands:

LABEL 21 - "':-"c
REWRITE 35
MONADIC 10
RESOLVE 4
VE 46
VI 8 0
3E 23
31 1
TAUT 20
TAUTEG 12
SIMPLIFY 2
EVAL 6
AE 3
SUBSTR 3
DED 2
ASSUME 2
",1 2

TOTAL 199

8.6. Conclusion.

Summing up the statistics just shown with the 44 commands used In the proof of the
auxiliary lemmas, we can conclude that the old proof required roughly twice as many user
commands as this one.

This is not as great a gain as we had hoped for, in terms of just the number of commands.
However, .here are other gains: the proof of Ramsey's theorem Is very complex, and the
ability to work on several goal trees seems to make It much easier to construct the proof. At
least this Is true in my own experience.

Ramsey's does not seem to be the kind of theorem where the reduction In the number of
commands Is largest. In the auxiliary theorems proved earlier, the reduction was by a factor of
four. Those theorems are of medium size: their FOL proofs were between 10 and 50 lines
each. It probably Is for small and medium size theorems where the greatest reduction In the
number of user commands can be achieved by GOAL. At the same time, It Is probably for the
more complex theorems like Ramsey's that the advantage of GOAL as an aid for structured,
top down proof construction Is more likely to be felt.

,.o. " . . °

:.-:.:..: :.::,:..: :: :, -. .. :................ .. .. . . . . . . . . . . . .



165

9. REFERENCES.

Abrahams 1963
Abrahiams, P. W. *Machine Verification of Mathematical Proof. Doctoral
Dissertation, M.I.T., Cambridge, Mass., May 1963.

Allen and Luckham 1970
Allen, John and Luckham, David, An Interactive Theorem-Proving Program, Machine
Intelligence, 5, 1970, 321-336.

Bledsoe 1971
Bledsoe, W. W., Splitting and Reduction Heuristics In Automatic Theorem Proving.
Artificial Intelligence, 2, 1971, 55-77.

Bledsoe and Bruell 1974
Bledsoe, W. W. and Bruell, Peter, A Man-Machine Theorem-Proving System.
Artificial Intelligence, 5, 1974, 51-72.

Bledsoe and Gilbert 1967
Bledsoe, W. W. anid Gilbert, E. J., Automatic Theorem Proof-Checking In Set
Theory. a preliminary report. Sandia Corp. Rept. SC-RR-67-525, July 1967.

Bledsoe, Boyer and Henneman 1972 A
Bledsoe, W. W., Boyer, R.S. and Henneman, W.H., Computer Proofs of Limit
Theorems. Artificial Intelligence, 3, 1972, 2 7-60.

Brown 1977a
Brown, F. M, A Theorem Prover for Elementary Set Theory. Proc. 8th International
Joint Conference on Artificial Intelligence, August 1977, 634-540.

Brown 1977b
Brown, F. Malloy, Doing Arithmetic Without Diagrams. Artificial Intelligence, 8,
1977, 175-200.

Brown 1978
Brown, F. M, Towards the Automation of Set Theory and Its Logic. Submitted to
Artificial Intelligence.

Bundy 1973
Bundy, A., Doing Arithmetic With Diagrams. Proc. Third Int. Joint Conf. on Artificial
Intelligence, Stanford, Ca., August 1973,656-65.

Cartwright 1976
Cartwright, Robert, Practical Formal Semantic Definition and Verification
Systems, Ph.D. Thesis, Stanford University, Computer Science Department, AIM-
296, December 1976.



References. 166

Cartwright and McCarthy 1979
Cartwright, Robert and McCarthy, John, Recursive Programs as Functions In a
First Order Theory. Stanford University, Computer Science Department, AIM-324,
1979.

De Bruijn 1970
De Bruijn, N. G., The Mathematical Language AUTOMATH, Its usage, and some of Its
extensions, In Lecture Notes in Mathematics, Vol. 126, Springer Velag, 1970, p.
29-61.

Do Brulin 1971
De Bruijn, N. 6., AUTOMATH, a Language for Mathemmatics. Notes of a series of
lectures in the S~minalre de Math~matiques Sup~rieures, Universit4 de Montreal,
1971.

De Brulin 1974
De Bruijn, N. G., The AUTOMATH Mathematics Checking Project. Report, Department
of Mathematics, Technological University, Eindhoven, The Netherlands, 1974.

Ernst 1971
Ernst, G., The Utility of Independent Subgoals In Theorem Proving. Information and
Control, 18 (3), 1971.

Gentzen 1936
Gentzen, G., Untersuchungen ueber das logische Schliessen, Mathematlach.
Zeitschritt, 39, 1934-5.

Goldstein 1973
Goldstein, I., Elementary Geometry Theorem Proving. A.l. Memo 280, M.I.T.,
Conbridge, Mass., April 1 973.

Gordon, Milner and Wadsworth 1977
Gordon, M., Milner, R., and Wadsworth, C., Edinburgh LCF, Department of Computer
Science Internal Report CSR-1 1-77, University of Edinburgh, 1977.

Gordon, Milner, Morris, Newey and Wadsworth 1978
Gordon, M., Milner, R., Morris, L., Newey, M. and Wadsworth, C., A Metalanguage for
Interactive Proof In LCF, Fifth ACM Conference on Principles of Programming
Languages, Tucson, Arizona, 1978.

Jutting 1977
Jutting, L. S. van Benthem, Checking Landau's GRUNDLAGEN In the AUTOMATH
system, Thesis, Technische Hogeschool, Eindhoven, 1977.

Kelley 196
Kelley, John L., General Topology, Van Nostrand, Princeton, N.J., 196.

Lee 1967
Lee, Richard Char-Tung, A Completeness Theorem and a Computer Program for



S

References. 167

Finding Theorems Derivable from Given Axioms, doctoral dissertation,
Department of Electrical Engineering and Computer Science, University of
California, Berkeley, 1967.

Luckham 1967
Luckham, D., The Resolution Principle in Theorem-Proving, Machine Intelligence,
1, 1967, 47-61. 0

McCarthy 1962
McCarthy, John, Computer Programs for Checking Mathematical Proofs. Amer. Math.
Soc. Proc. Symposia in Pure Math., Vol. 6, 1962.

McCarthy 1963
McCarthy, John, A Basis for a Mathematical Theory of Computation, In P. Biaffort 0
and D. Hershberg (eds.), Computer Programming and Formal Systems, North-
Holland, Amsterdam, 1963.

McCarthy 1965
McCarthy, John, A Proof-Checker for Predicate Calculus. Stanford University,
Computer Science Department, AIM-27, March 1965.

McCarthy 1966
McCarthy, John, A Formal Description of a Subset of Algol, in T. Steele (ed.),
Formal Language Description Languages for Computer Programming, North-
Holland, Amsterdam, 1966.

McCarthy 1977
McCarthy, John, Representation of Recursive Programs in First Order Logic.
Unpublished draft of a technical report, February 1977.

McCarthy 1978a
McCarthy, John, An Interesting LISP Function, Unpublished manuscript.

McCarthy 1978b
McCarthy, John, An Example of Case Analysis Involving Inequalities in FOL.
Unpublished manuscript.

McCarthy 1979 0
McCarthy, John, First Order Theories of Individual Concepts and Propositions.
Forthcoming.

McCarthy and Painter 1967
McCarthy, John and Painter, James, Correctness of a Compiler for Arithmetic
Expressions, Amer. Math. Soc., Proc. Symposia in Applied Math., Math. Aspects of
Computer Science, New York, 1967.

McCarthy, Sato, Hayashi and Igarashi 1978
McCarthy, J., Sato, M., Hayashi, T. and Igarashl, S., On the Model Theory of
Knowledge. Stanford University, Computer Science Department, AIM-312, April
1978. S

..........l-a'-L-..ii~l.i l~lli l...i.. ..- ... '............ ...... - "" .. . .



References. 168

Mendelson 1964
Mondelson, Elliott, Introduction to Mathematical Logic Van Nostrand Reinhold Co.,
N.Y., 1964.

Milner 1972a
Milner, Robin, Implementation and Application of Scott's Logic for Computable
Functions. Proc. ACM Conf. on Proving Assertions about Programs. New Mexico
State University, Las Cruces, New Mexico, 1972, p. 1-6. .

Milner 1972b
Milner, Robin, Logic for Computable Functions: Description of a Machine
Implementation. Stanford University, Computer Science Department, AIM-169, May
1972.

Milner 1973
Milner, Robin, Models of LCF. Stanford University, Computer Science Department,
AIM-186, January 1973.

Milner and Weyhrauch 1972a
Milner, Robin and Weyhrauch, Richard, Program Semantics and Correctness In a S
Mechanized Logic, Proc. 1st. USA-Japan Computer Con., Tokyo, 1972.

Milner and Weyhrauch 1972b
Milner, Robin and Weyhrauch, Richard, Proving Compiler Correctness in a
Mechanized Logic, Machine Intelligence, 7, Edinburgh University Press, 1972.

Morales 1973
Morales, Jorge, Interactive Theorem Proving. Proc. ACM National Conference,
August 1973.

Nevlns 1974
Nevins, Arthur J., A Human Oriented Logic for Automatic Theorem-Proving. Journal •
of the ACM, 21, Nr. 4, October 1974, 505-621.

Nevins 1975a
Nevins, Arthur J., Plane Geometry Theorem Proving Using Forward Chaining.
Artificial Intelligence, 6, 1975, 1-23,

Nevins 1976b
Nevins, Arthur J., A Relaxation Approach to Splitting in an Automatic Theorem
Prover. Artificial Intelligence, 6, 1975, 25-39.

Nilsson 1971
Nilsson, N. J., Problem-Solving Methods In Artificial Intelligence, McGraw-Hill,
New York, 1971.

Pastre 1978
Pastre, D., Automatic Theorem Proving In Set Theory. Artificial Intelligence, 10,
1978, 1-27.

S . -... '..:.°..... ....... o. - •-........ <.-..... ,............,...:..................,



References. 169

Prawltz 1965
Prawitz, D., Natural Deduction - a Proof-Theoretical Study, Almqvlst & Wiksell, .

Stockholm, 1966.

Robinson 1966
Robinson, J.A., A Machine Oriented Logic Based on the Resolution Principle. Journal
of the ACM 12, January 1965, 23-41.

Scott 1969
Scott, Dana, Models for the X-Calculus. Unpublished Manuscript, 1969.

Scott and Strachey 1972
Scott, D. S. and Strachey, C., Towards a Mathematical Semantics for Computer
Languages, Proc. Symposium on Computers and Automata, Microwave Research S
Institute Symposia Series, Vol. 21, Polytechnic Institute of Brooklyn, 1972.

Shoenfield 1967
Shoenfield, J. R., Mathematical Logic, Addison-Wesley Publ. Co., 1967.

Slagle 1971 .
Slagle, James R., Artificial Intelligence. The Heuristic Programming Approach,
McGraw-Hill, New York, 1971.

Slagle 1976
Slagle, J. R., Theorem Proving. In Ralston, A. (Ed.), Encyclopedia of Computer
Science, Petrocelly/Charter, N.Y. 1976...

Smith and Blaine 1976
Smith, Robert L. and Blaine, Lee H., A Generalized System for University
Mathematics Instruction, in Colman, R. and Lorton, P., (Eds.), Computer Science
and Education, Proc. ACM SIGCSE-SIGCUE Joint Symposium, 1976.

Suppes 1975
Suppes, Patrick, Impact of Computers on Curriculum In the Schools and
Universities, in Lecarme, 0. and Lewis, R., (Eds.), Computers In Education, IFIP,
North-Holland, 1975.

Wagner 1977
Wagner, Todd, Hardware Verification. Ph.D. Thesis, Stanford University, Computer
Science Department, AIM-304, September 1977.

Weyhrauch 1976
Weyhrauch, Richard, Practical Program Verificationi Are We Close? Meeting on 20
Years of Computer Science, University of Pisa, Italy, June 1976.

Weyhrauch 1977
Weyhrauch, Richard W., A Users Manual for FOL. Stanford University, Computer
Science Department, AIM-235.1, July 1977.

oe

-0 . •





1 71

10. INDEX. facts, 1 ,10

FACTS, 18,19, 20
facts, 31
FACTS, 32

IANDON, 25 , 26 facts, 71
'andon, 48 first order logic, 4 , 6
NDN, 48 first order predicate calculus, 4 , 5, 8
IDEDFACTS, 18 , 20, 21
IDFACTS, 24 general, 33
IDSUBGOALS, 54 GOAL, 22
Iministrative commands, 14 goal, 47
icestor, 47 goal numbers, 19
id/or rules, 12 goal of a thread, 47
itecedent, 43 goal oriented, 1
tGIFTREE, 43 goal oriented command language,1
sertions, 71 goal oriented systems, 5
sume, iigoal reference, 23
)SUME, 18 , 22 GOALLIST, 47
sumed name, 11 GOALWFF, 19
sumption, 30 goalvwff, 50
sumptionS, 11
itomath, 4 heuristic, 1 ,3
tomath language, 4
tomnatic theorem proving, 1 ,2, 3, 7 IF-term, 43

IF-WFF, 43
ittom up, 1 , , 7 IFCASES, 43

Implication, 33
kSES, 43 Implication Introduction, 11

50KI soInduction, 33
)MPTREE, 69 Inference oriented, 1
inditional expressions, 43 inference rules, 1
inditional simplification, 9 , 68, 72 interactive proof checkers, 5
rrentgoal, 22 interactive proof construction, 1 6, 7
JRRE NTGOAL THREAD, 47 Interactive proof constructor, 1 ,2, 5

Interactive systems, 6
cidable theory, 39 interactive theorem provers, 5
cislon procedures, 13 Interactive theorem proving, 7
duction rules, 11 Isomorphic, 13
faults, 21 , 47
pendencies, 11 lastgoal, 22
pendency, 11 LASTGOALTHREAD, 47
SCENDANTS, 19 libraries of heuristics, 2

scharge, 11 LOGIC, 40 , 41

IMINATION, 42 MAINSYM, 50
1DM, 49,561 man-machine systems,1
IUNIFY, 35 match tree, 12
,ecuter, 44 matcher, 10 , 16, 25, 27
Istentlal generalization, 12 matrices, 13
Istential rules, 11 MONADIC, 13
,IstentlaI specialization, 11 monadic. 39

%S



Index. 172

MONADIC, 40 sorts, 14
monadic predicate calculus, 39 special simpsets, 43

standard name, 46
NEWSTEP, 58 status, 16
nextgoal, 22 statuses, 17
NEXTGOALTHREAD, 47 strategy, 8, 10, 16, 25, 32, 41, 46

STRATEGYLIST, 46
OPELEMLIST, 45 styles of proof, 1
operative element, 27 subgoaling, 7
operative elements, 16 syntactic simplification, 8 , 12

parser, 44 , 46 tactic, 10 , 6, 25, 27, 44, 46
prenex normal form, 13, 40 TAUT, 13
prepare, 16, 18 TAUTEQ, 13
PREPARE, 26 theorem prover, 16
program verification, 2 , 6 theorem proving, 1 , 7
proof checking, 1 , 2, 3 thread, 47
proved, 16, 17, 48 TK, 51
pure monadic predicate calculus, 39 TK2@, 61

top down, 1 , 7
QUANTELIMLIST, 20 , 21, 36, 36 tried, 16 , 17,48

TRY, 25, 45
reason, 12 TRYCMPL, 45
REASON, 19 , 32, 64 TRYING, 45 , 46, 53, 60
reason, 69
resolve, 14 unification, 36
RESOLVE, 72 UNIFY, 13, 35
RETRY, 25 universal rules, 12
rewrite, 12 untried, 16, 17
REWRITE, 43 UNWIND, 45, 58
RPLACA, 47 unwinder, 44 , 46, 64
RPLACD, 47 unwinding, 17,22, 38

SASSUME, 18 verification conditions, 77
sassumptlon, 22,30 VL, 11 , 62
semantic attachment, 32 vlofpg, 69
semantic attachments, 32
semantic simplification, 13 well formed formula, 11
sequent, 71 well formed formulae, 1
Set Theory, 1 WFF, 11 , 62
SHOWGOAL, 26 WFFIFTREE, 43
SIMPLIFY, 13
simpset, 12 , 22,49
SIMPSETADDFLAG, 19

* simpsetexpr, 13 9
SIMPSETLIST, 1g,32
SIMPSETREASONLIST, 19,32

-- simpsets, 9 , 12, 71
skolemization, 10
Skolemization, 20
sort, 33 , 34

* 9-


