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REPORT SUMMARY 

A family of -"internet'' host-to-host protocols has 
recently been defined to allow computer 
communications' across interconnected packet networks 
with diverse properties. This internet protocol 
family is defined in two distinct levels. The lower 
level, Internetwork Protocol or IP, provides simple 
datagram service. Transmission Control Protocol or 
TCP is a^higher-level^internet protocol that uses 
IP for data transport. TCP provides connections, 
strong end-to-end error control, flow control, and a 
form of out-of-band signalling. The IP/TCP 
combination is intended to be the successor to the 
original ARPANET Host-to-Host Protocol (AHHP) . 

Under ARPA contract, UCLA has implemented Version 4 
of the IP and TCP protocols for an IBM 360/370 host 
computer on the ARPANET. This implementation is 
integrated into the existing Network Control Program 

C for AHHP, and was designed to be compatible at the 
system-call interface so that existing user-level 

,-■. protocol programs can be used interchangeably with 
:!•; AHHP and IP/TCP.  The implementation is layered to 

match the protocols. 

j| This document gives a techical overview of the UCLA 
IP/TCP implementation. It describes the NCP 
software environment, the resolution of 
compatibility issues, and the design of both the IP ES 

Lv and TCP layers. 
C- 

t. 

The views and conclusions contained in this document are 
those of the authors and should not be interpreted as 
necessarily representing the official policies, either 
express or implied, of the Defense Advanced Research Projects 
Agency or of the United States Government. 
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1. INTRODUCTION 

i: 

!. 

In 1971, the UCLA Office of Academic Computing (OAC) began to 
implement ARPANET interface software for its IBM 360/91 CPU 
under the OS/MVT operating system. As described in the paper 
"A Server Host System on the ARPANET" (Snowbird Data 
Communications Symposium, September 1977 [Bra77]), this 
software included: 

* a Network Control Program, or NCP; 

* support for various user-level protocols; and 

* the Exchange, an OS/MVT operating system extension for 
interprocess communication [BraFe72]. 

lw 

The user-level protocol support reouired interfacing to 
server subsystems, principally the TSO timesharing subsystem 
and the RJS remote batch entry subsystem. Within the NCP 
itself, server processes implement the ARPANET File Transfer 
Protocol (FTP) [RivWo77] as well as MSG, the interprocess 
communication facility for the National Software Works 
[RivLB77] . 

The original NCP implemented the standard ARPANET host-host 
protocol [McKen72]. Under ARPA contract, UCLA has now 
completed an initial implementation of the new internetwork 
host-to-host protocol IP/TCP, allowing effective 
communication with hosts on other packet-switching networks 
interconnected with the ARPANET. This IP/TCP implementation 
is currently operating to make UCLA's IBM 3033 mainframe an 
"internet host". 

.% 

This document is the Final Technical Report under the IP/TCP 
contract and describes the design of that implementation in 
general terms. More complete documentation will be found in 
the Program Logic and interface manuals 
[BraTCP,3raIP,Bra79B]. This document assumes familiarity 
with ARPANET protocols, including AHHP and IP/TCP; however, 
the next section will summarize aspects of these protocols 
that are relevant to this report. 
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Hi 
K     1.1.   INTERNET PROTOCOLS 

Ig The protocols used by hosts on the ARPANET packet-switching 
,■■• network are said to be "layered" [FeinPos] . That is, the 

protocols are defined in distinct layers or levels, with 
protocols on a given level being defineo in terms of an 
abstract communication model created by the next lower 
level. For example, the user-level protocols such as 
Telnet [McKen73] were defined in terms of the model created 
by the ARPANET host-to-host protocol (AHHP), one level 

'-* lower. 

'■"/, The AHHP model [McKen72] is based on simplex data streams 
£ or connections whose ends are labeled with 32-bit numbers 

called sockets. Sockets have an intrinsic parity: 
odd-numbered sockets send data, while even-numbered ones 
receive data. Hence a connection always links an odd 
socket and an even socket. AHHP also provides flow control 
and out-of-band signalling. AHHP allows messages to be a 
multiple of any byte size (in practice, byte sizes are 
usually 8, 32, or 36 bits). 

Packet-switching networks have rapidly proliferated in the 
last few years, and many of them are being interconnected. 
Networks are generally interconnected by hosts called 
"gateways" which are common to two (or more) networks 
[CerKa74]. Since AHHP is inadequate for communicating 
across interconnected packet networks, ARPA and its 
contractors have designed a new family of "internetwork" 
host-host protocols [PosIP,PosTCP]. This internetwork 
protocol family itself consists of two layers: 

(1) a lower level called Internetwork Protocol or IP_; 

(2) a "higher-level" host-to-host protocol. 

IP provides datagram service in an internetwork 
environment, sending "internet packets" between hosts which 
may be on different networks. An internet packet consists 
of a segment of data prefixed with an IP header. 

IP provides the functions: (1) internetwork host addresses 
and (2) the reassembly of internet packets which have been 
fragmented by intermediate gateways. IP does not provide 
error control; depending upon the properties of the 
networks and gateways, a transmitted packet may be lost, 
delivered out of order, or delivered in duplicate. 

Transmission Control Protocol or TCP [PosTCP] is a 
particular "higher-level" host-to-host protocol built upon 
IP; thus, TCP uses IP as a "data transport" service to 
transmit and receive segments. A TCP segment generally 
consists of a TCP header possibly followed by data. 
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I 
IS 

TCP provides all the functions of AHHP with the addition of 
strong end-to-end error control. In particular, TCP 
provides full-duplex connections whose ends are labeled 
with 16-bit numbers called ports, unlike AHHP, TCP allows 
the same 16-bit port number on a given host to participate 
in any number of connections whose remote ends have 
differing (host,port#) pairs. TCP also provides flow 
control and a facility called urgent that may be considered 
a form of out-of-band signalling. TCP messages consist of 
8-bit bytes or octets. 

The user-level protocols defined for AHHP must be changed 
slightly for use with TCP, due to the significant 
differences between the two host-host protocols which will 
now be summarized. The effects of these differences on the 
UCLA implementation of TCP will be described in later 
sections. 

t 
1.1.1. Datagram vs. Virtual Circuit Services 

AHHP provides only "virtual circuit" service, i.e., data 
is sent over logical paths or 'connections". Two hosts 
must exchange control messages to establish a connection 
before they can send data to each other. 

TCP also provides connections, and may be used in 
virtual-circuit mode as a replacement for AHHP. On the 
other hand, in TCP a single message can open a 
connection, send data, and close it again, effecting a 
datagram service mode. 

1.1.2. Full-duplex vs. Half-duplex connections: 

Under AHHP, the user-level protocols require a pair of 
simplex connections to obtain full-duplex operation. 
Under TCP, these protocols can use a single full-duplex 
TCP connection. 

ca 

C 1.1.3. 

A further complication is the fact that a TCP connection 
is allowed to be half-open indefinitely. Thus, a close 
request (<FIN>) only signals the end of data transmission 
in one direction; the local process can continue to send 
data in the other direction on that connection. The 
connection will be fully closed and deleted only by 
request of the local process, or by the receipt of a 
<RST> (Reset) message. In contrast, AHHP protocols that 
use a pair of connections generally expect both to close 
simultaneously. 

Ports vs. Sockets 

H^fcrg*HP^g%i^*M"gt» -fWqfc» «■hpMMi ,1    ,1,   Mi.nl.Ll, minumt^mmttmt 
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TCP ports differ from AHHP sockets in their size (16 
instead of 32 bits) and in having no odd/even parity. 
More importantly, a TCP port can participate in multiple 
simultaneous connections. 

Kj . Under AHHP, starting a new session requires an  initial 
M handshake,  the  Initial Connection Protocol or ICP 

[Pos71]. At the server host, ICP begins " with " a 
_ connection  to  a  well-known  socket,  followed by 

reconnection to a unique socket (pair); the reconnection 
leaves the well-known socket free for the next ICP 
sequence. 

Under TCP, a particular server's well-known port can 
participate in any number of connections, as long as the 
user's (host,port) pair is unique for each session. 
Therefore, TCP does not require an ICP sequence. 

1.1.4.  Urgent vs. Interrupts; 

A TCP segment may include a field called the "urgent 
pointer" which indicates there is "urgent" data a 
specified number of bytes ahead in the data stream. This 
fact is to be communicated to the user-level protocol, 
which must read ahead to find and interpret the urgent 
data. 

Although the Urgent pointer is "out-of-band" in the sense 
it is communicated outside the data stream, it is not 
exactly like the "interrupt" control messages of AHHP; 
the Urgent pointer is state information rather than a 
discrete event. 

However, TCP's Urgent pointer can be used to achieve the 
same function as the AHHP interrupt in many contexts. 
For example, the Telnet protocol needs an out-of-band 
signal to force control bytes through to the server 
operating system when the data pipeline is clogged 
[McKen73] . Under AHHP, the control bytes are followed in 
the data stream by an identifiable byte called a Data 
Mark. A matching interrupt is also sent, informing the 
receiver that by reading ahead to the Data Mark it will 
pass (and should interpret) some important control bytes. 
The receiver's Telnet program is required to count 
interrupts and Data Marks to maintain synchronism. Under 
TCP, the urgent mechanism obviates the need for a Data 

v Mark; the Urgent pointer identifies the location  in the 
data stream of the urgent control bytes. 

t 
The layering of the ARPANET protocols is reflected in 
message formats; the data defined by a given layer is 
"wrapped" or embedded within framing control bits defined 
by the next lower layer. Figure 1 illustrates successive 
embedding when data is sent using TCP: the data is prefixed 

L 
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H with a TCP header, an IP header, and finally a local packet 
J§* header for transmission over the local packet network. 

Similarly, AHHP prefixes the data with an AHHP header 
ti before the local packet header is prefixed. 

In the ARPANET case, the local packet header is a 96-bit 
leader. The format of a leader is described by the 
IMP-host protocol, the lowest level protocol seen by an 
ARPANET host [BBN1822]. 

"-■ 

L 

L 

Figure 1. Protocol Levels and Embedding 

• • • 
F* (1) Data from User-level Protocol Process    I I 

|< data >| 
• • 

(2) TCP prefixes its header   I  TCP   I -> I I 
I  header  I   |<—data >l 

■> (3) IPP prefixes   I   IP    I -> I  TCP   . I 
>; its header   I  header  I   I header  .< data >l 

I II I 

(4) ARPANET Outgoing Gateway 
prefixes leader 

ARPANET I -> I   IP     .   TCP    . ! 
leader  I    I  header  .  header  .< data >| 

I    I   .  .  ... I 

ti (i i•j»(*jT*».i_ ,- {   >  | >i ■ _i ■ .iiii.ii ,_»^IIII.»Ii.< 
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The term "gateway" was originally chosen for a host which 
is connected to two or more packet networks in order to 
forward data from one network to another. The gateway 
software must strip off the local network framing when an 
internet packet is received and then re-embed the packet in 
the framing required by the target network. 

Every host implementing IP must similarly strip and embed 
the internet packets for transmisson over the local packet 
network; in this sense, every internet host includes a kind 
of gateway into the local net. Therefore, the modules of 
the UCLA NCP which handle the IMP-host protocol for the 
ARPANET will be referred to in this document as the (local) 
ARPANET gateway. 

Through the ARPANET gateway, a local host-to-host protocol 
program has access to two types of ARPANET message service: 
standard and uncontrolled [BBN1822]: 

ß! * Subtype 0 ("Standard") 

The AHHP always uses Subtype 0 messages, which the 
ARPANET delivers "reliably". That is, the 
packet-switching subnet will either (1) deliver one 
correct copy of the original message to the destination 
host and return an acknowledgment to the source host, or 
(2) return a negative acknowledgment. The acknowledgment 
(either positive or negative) will be returned as an 
IMP-to-host or irregular message, carrying the 12-bit 
message-id field from the leader of the original message. 

In particular, an irregular message of type "Request for 
Next Message" (RFNM) will be returned when the original 
message has been successfully reassembled at the 
destination IMP and placed on its queue for transmission 
to the destination host. AHHP ensures reliable and 
ordered delivery of ARPANET messages by requiring the 
source host to wait for a RFNM before sending another 
message with the same message-id. 

* Subtype 3 ("uncontrolled") 

A host that sends an uncontrolled message will receive no 
acknowledgment from the IMP. An uncontrolled message may 
be lost, duplicated, or reordered by the subnet. 
However, uncontrolled message may be delivered faster 
than standard messages and are therefore useful when 
speed is more important than relibility. 

The two messaqt subtypes differ in maximum size. Standard 
messages (which may be sent on the ARPANET in multiple 
packets) may contain up to 1007 octets, exclusive of 
leader; uncontrolled messages may contain at most 113 
octets [BBN1822]. 

m^mimit^lllimimilfm^^ 
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Ri 

1.2 

I. 

The AHHP and IP actually use only the 8 high-order bits of 
the message-id, called the link number, leaving the 
low-order 4 bits of the message-id field zero. In 
particular, AHHP uses link numbers 0-71 for multiplexing 
the logical message streams to a particular remote host. 
Internet packets, however, use a single link number 
(currently 155); logical streams must be demultiplexed by 
the internet host based on the IP and higher-level protocol 
headers. 

In the Internet Protocol model, the choice of message 
subtype (and any other network parameters [PoslP]) is based 
on a field in the IP header called Type of Service (TOS). 
Generally, each network which is traversed by an internet 
datagram should interpret the TOS field to select 
appropriate network parameters. The 8 bits in the TOS 
field are divided into 5 subfields [PoslP]. For example, 
for Telnet service in TCP the TOS field could be the 
catenation of the bits: 

00B => Priority= none. 

IB -> Stream/Datagram Service = Stream. 

10B => Reliability= "higher" (or "normal"). 

IB => Speed over reliability3 true. 

10B => Speed= "higher" (or "fast"). 

This is the hex byte X'36'. Similarly, for file transfers 
TCP might want to use X'31', favoring reliability over 
speed. 

IP/TCP IMPLEMENTATION STRATEGY 

UCLA has implemented the two-layer internet protocol 
consisting of IP and TCP for an IBM 360/370 system under 
the OS/MVT operating system. The implementation is written 
in IBM Assembly Language. 

The IP/TCP implementation was integrated into the existing 
ARPANET NCP, which can now support both the old 
host-to-host protocol AHHP and the new internet protocols 
simultaneously. Furthermore, the IP/TCP implementation is 
(as nearly as possible) compatible with AHHP at the 
system-call level, so that the AHHP routines which 
implement user-level protocols such as Telnet and FTP can 
be converted to TCP with minimal modification. 

The IP/TCP implementation is itself divided into two 
distinct layers to match the protocols: 

: 

-'- -*•"-'• -*• -*»"-•■-*--•»'-'''- 'a,".»-. ■»-»-. ~a-.-»^a-». 
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Ö 
(1) internet protocol program (IPP), and 

(2) higher-level protocol module (HLPM) . 

-. The IPP implements the IP protocol layer while the HLPM 
implements the higher-level protocol layer. For TCP in 
particular, the HLPM is called TCPMOD. The IPP/HLPM 
interface is defined so that other higher-level host-host 
protocols can be added in parallel to TCP without changing 
the IPP [Bra79E]. 

The IP/TCP implementation was designed for ease of 
debugging while the AHHP code is operating for users. This 
required the new code to be in transient load module(s) 
rather than linkage edited with the resident AHHP module. 
Also, the IP/TCP processing must be performed on distinct 
NCP processes which can block indefinitely or terminate 
without interfering with AHHP operation. 

Fitting the IP/TCP implementation into an existing NCP and 
providing compatibility with existing protocol modules 
imposed severe constraints on the design of the new code. 
The existing NCP did not clearly separate IMP-host and 
host-host protocol processing, so many of the internal 
interfaces required by IP/TCP were fuzzy, undocumented, or 
non-existent. Furthermore, for economy and future 
compatibility it was desirable to use common code as much 
as possible. 

We adopted the general strategy of adding documented 
interfaces to the existing NCP modules while disturbing 
those modules as little as possible. In the future, it 
will be possible to rewrite the AHHP and other NCP code to 
use the new interfaces and clearly recognize the protocol 
boundaries. However, this was not required in order to 
implement IP/TCP. 

i- 

The following section of this document 
software environment of the NCP, after 

IP/TCP 

describes  the 
the interface 

changes for IP/TCP have been added. Thus, it describes 
both the environment within which IP/TCP code must operate 
and the common compatible interface to the user-level 
protocol program that IP/TCP code must match. Later 
sections describe the actual designs of the IPP and of 
TCPMOD. 
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2.   NCP SOFTWARE ENVIRONMENT 

This section describes the structure of the IBM 360/370 NCP 
developed at UCLA. Its purpose is to define the execution 
environment for new additions to the NCP (e.g., support for 
new user-level protocols), using either the original AHHP or 
an internet protocol. 

The UCLA NCP design 
[Bra77] : 

has the following general features 

I. 

i: 

* The NCP executes as a system job rather than as part of the 
OS/MVT Supervisor, providing an isolated environment for 
developing and maintaining ARPANET protocol modules, while 
a buggy module can damage the programs or control blocks of 
other active ARPANET users, it cannot damage any other part 
of the host system. OS/MVT allows the NCP to be 
permanently resident in main memory ~nd to have 
high-priority access to the CPU. This design is a 
compromise between efficiency and modifiability. 

* The NCP job's region provides a dynamically-sharable memory 
pool for protocol-dependent transformation modules and 
ARPANET I/O buffers. 

* The NCP executes programs which transform between ARPANET 
protocols and canonical protocols used internally within 
the IBM host. The canonical internal protocols are also 
used for non-ARPANET virtual terminal access to the same 
user and server subsystems. 

* The Exchange is used for all communication between the NCP 
and the user/server processes within the IBM system. The 
Exchange provides virtual I/O paths called windows between 
any two tasks under OS/MVT. As a result, the interaction 
of these tasks c=jn be defined entirely in terms of the 
internal protocols used to communicate through the Exchange 
windows. The Exchange primitives to open and close a 
window and to transmit data are actually Supervisor Call 
(SVC) routines. 

* The ARPANET-protocol dependence is concentrated in the NCP, 
thus localizing network protocol changes (e.g., "old" to 
"new" Telnet). Furthermore, the virtual terminal 
interfaces to the server subsystems, which often exist in 
difficult and risky environments, are largely independent 
of the ARPANET protocol details. 

We now describe the internal NCP environment in more detail. 

L 

:t-j.-j-'j^ 
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2.1.   ICT SUBSYSTEM CONTROLLER 

The ARPANET NCP executes as an independent subsystem, i.e., 
as an unprivileged system job in its own region of main 
storage. The NCP looks to the operating system OS/MVT like 
a single task (process), but it multiprograms internally 
using a general-purpose subsystem controller called ICT 
[Wolfe74]. The most important functions of ICT are: 

* multiprogramming to create internal processes, called 
- psuedo-tasks or ptasks; 

* synchronization among these ptasks and between ptasks 
and real tasks outside the NCP; 

* sub-allocation of core memory within the NCP region; 

* timing services for the ptasks; 

* recovery from failures of individual ptasks; 

* maintenance of a dynamic pool of program modules. 

The ptasks created by ICT are coroutines, i.e., they always 
relinquish control to other ptasks voluntarily. This 
simplifies the design of the NCP, as ptasks can manipulate 
common data structures without requiring mutual exclusion. 
ICT is a commutator, that is, it dispatches ready ptasks 
with a simple round-robin discipline. The state vector for 
each ptask is saved in a 256 byte control block called a 
Pseudo-task Area or PTA. 

2.1.1.  P-Services 

ICT provides the ptasks with a set of system calls known 
as "P-services". The P-services are actually subroutine 
calls through a transfer vector whose address appears in 
every PTA, and are invoked via assembly-language macros 
[Wolfe74]. The most important P-services are: 

* PATTACH 

E 

Fork (create) a (sub-)ptask. 

Following the classical process model, the ptask 
which called PATTACH becomes the "parent" or 
"superior" of the new ptask. ICT maintains the 
ptask family tree, and when a ptask terminates ICT 
forces inferior ptasks to terminate also. 

The PATTACH caller specifies the name of the load 
module to be loaded and executed by the sub-ptask. 
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Gft * PEXIT 

g Voluntarily terminate the caller's ptask. 

* PDETACH 

Force an inferior ptask to terminate (PEXIT). 

* PWAIT 

\ i 

r 

i. 

[ 

Block the calling ptask (coroutine) until some 
combination of events occurs. Thus, PWAIT provides 
process synchronization among ptasks and between 
ptasks and real OS/MVT tasks, as well as timing 
services. 

* PPOST 

Send a "wakeup" signal to a ptask, by signalling a 
particular binary semaphore (see below). 

* PCORE GET, PCORE FREE 

Obtain or free memory sub-allocated within the NCP 
region, in 256 byte pages. 

* PLOAD, PDELETE 

Load a transient load module from a system library, 
or delete it. If the module is marked "Reentrant" 
and "Reusable", it will be shared; ICT maintains a 
responsibility count to determine when to 
physically delete a shared module from the region. 
Modules may also have aliases. 

PATTACH invokes PLOAD to obtain the sub-ptask load 
module. 

* PEXOPEN, PEXCLOSE 

Open, close an Exchange window. 

* PSPIE, PSTAE 

Recover from a failure in the calling ptask. 

—^_^ „- ■• V V '.' ■• ■• V '.» .-V v V '.-'v.-.- .V_-.-*-.<L'-.- vV\>A^'V\^\-vA-'vv;-'.vl. 
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2.1.2.  Ptask Synchronization 

Using PWAIT, a ptask can wait on any combination of the 
following kinds of event signals: 

(1) 

(2) 

(3) 

(4) 

Real 

a list of real OS/MVT Event Control Blocks (ECB's); 

a list of pseudo- (or "internal") ECB's; 

any subset of the seven binary semaphores 
"flags") that are associated with each PTA, 

a specified time of day or time interval. 

(called 

ECB's are signalled with the normal OS/MVT 
Supervisor Call (POST SVC), while internal ECB's are 
posted by another ptask simply setting their "complete" 
bit. Six of the binary semaphores are assigned 
particular meanings by the NCP and are named accordingly 
(see Table 1). However, a ptask may use them for other 
purposes. 

Table 1.  Standard ICT Binary Semaphore Names 

PWAIT operand 

OPEN 

CLOSE 

INPUT 

OUTPUT 

ATTN 

CORE 

Bit Name  Standard Meaning 

PTAFCOPN  Remote host has 
requested open 

PTAFCCLS  Remote host has 
requested close 

PTAFCINP  Input has arrived 
from ARPANET 

PTAFCOUT   Output to ARPANET 
is completed 

PTAFCATN  Out-of-band signal 
from ARPANET 

PTAFCCOR  PCORE reauest is 
now satisfied 

! 

-•-•--■"•".'■'.-.•" -üte.- • "/•".'■■v. •'_ •". »*. •*_ •'. •".•". »'■ .*. A  '". '"m <\ "'• »", •". •".""« **• •"■  ""« ""• •". •""* **«  '". ""-. "■• *\"'- ' -. _i -v-^ ^ 
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2.1.3.  Resources 

An ICT ptask is also the owner of resources, 
three kinds of resources: 

There are 

>.. * load modules, dynamically loaded by PLOAD or PATTACH; 

* main storage, obtained with PCORE; 

* Exchange windows, opened with PEXOPEN. 

ICT will free all resources owned by a ptask when it 
PEXIT's or is PDETACHed. In particular, ICT will close 
all open Exchange windows by calling PEXCLOSE implicitly, 
and it will delete all PLOADed modules by calling PDELETE 
implicitly. 

There are P-service calls that allow a ptask to pass 
ownership of a resource to another ptask. 

2.1.4.  A-Services 

NCP routines obtain ARPANET-dependent services by issuing 
local system calls known as "A-services". Macros are 
provided for coding A-service calls [WolBr79]. The 
A-services are simply subroutines since the entire NCP 
operates within the same protection domain, the NCP job. 

Because many NCP routines are loaded dynamically, the 
A-service subroutines must be located via a resident 
transfer vector whose address is contained within a PTA 
field (PTAATRV). In general, an NCP routine will have 
its PTA address in a register (Rll by convention) in 
order to issue A-service and P-service calls. 

Certain A-services operate as extensions of corresponding 
P-services. For example, an NCP ptask always terminates, 
whether voluntarily or not, by entering PEXIT. PEXIT in 
turn calls the A-service routine AEXIT to free 
ARPANET-specific resources; then PEXIT frees ICT 
resources as discussed earlier. The exact sequence of 
events when a ptask terminates is discussed in Appendix 
D. 

For full details on ICT and 
Systems document "ICT Monitor 
[Wolfe74]. 

the P-services, see OAC 
Services and  Macros" 

c 
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1 
2.2.   NCP PROCESS STRUCTURE 

•*, 

The basic unit of activity within the NCP is a session.  A 
session which is created as the result of a service request 
received through the ARPANET is called a server session. 

S3 Alternatively, a session may be created as the result of a 
request from a local process, generally to act as a user of 
a remote server program; this is called a user session. 
Sessions are designated by a 16-bit integer called the 
session number. 

A session will normally require one or more ARPANET 
connections (logical data streams) for communication with 
the remote host. The semantics of sessions and connections 
and the corresponding control blocks are discussed below. 

2.2.1.  Dynamic ptasks 

Communication is performed by programs executing under 
ptasks which are dynamically created and destroyed as 
sessions start and terminate [Bra77]. These communication 
ptasks are either User Level Protocol processes (ULPP's) 
or Host Control pTasks (HCT's). 

* ULPP — User-Level Protocol Process 

For each active ARPANET session, a set of one or more 
ULPP ptasks will execute programs particular to the 
user-level protocol(s) used by that session. Some of 
these programs implement ARPANET service functions 
(e.g., FTP) entirely within the NCP subsystem. 
However, most ULPP's relay data between the ARPANET and 
Exchange connections [BraFe72] to local user and server 
processes outside the NCP. 

In general, ULPP's are protocol transformers, i.e., 
they convert between their particular ARPANET 
user-level protocols and corresponding internal 
protocols used through the Exchange windows. 

The ULPP modales are loaded dynamically from the NCP 
load module library by PATTACH. To start a session, an 
NCP module calls PATTACH to fork a primary ULPP ptask 
executing the appropriate user-level protocol module. 
This ULPP may in turn fork inferior ULPP's, forming a 
ptask sub-tree for the session with the primary ULPP at 
its root. 

* HCT — Host Control Task (AHHP only) 

There will be an active HCT ptask for every ARPANET 
host which is currently communicating through the NCP 
using AHHP.  internet sessions do not have HCT's. 



■►>: 

,-,* 

(VI 
r." 

'Mi 

IP/TCP Implementation 
December 15, 1979 ~ OAC/TR20 

PAGE  15 

An HCT performs host-specific processing for AHHP. 
K Most importantly, an HCT performs the outgoing logger 

and incoming logger functions to create user and server 
sessions (respectively) using AHHP.  Specifically,  the 

«ö . HCT executes an ICP sequence and then forks the primary 
[V ULPP ptask. 

2.2.2.  Fixed Ptasks 

Within the NCP, there are six fixed ptasks which will 
always be present even when the NCP is completely idle. 
Figure 2 shows the ptask tree structure of the NCP. 

* NCP Ptask 

The NCP ptask decodes the leaders and AHHP headers of 
messages which are received from the ARPANET, and 
handles much of the IMP-host protocol. In addition, 
it handles the receive-side of AHHP. 

NCP includes an intercept mechanism for filtering 
;••. "raw" packets received  from the IMP, as described 
";"; under "ARPANET GATEWAY" below.  In particular,  this 

filter mechanism diverts all internet packets to the 
^ IPP. 

" * IMPIO Ptask 

fr IMPIO is the I/O driver process for  the hardware 
K connection  to  the  IMP.  IMPIO builds channel 

programs, issues the Supervisor Calls (EXCP) to 
| initiate Read and Write operations to the IMP, and 
£- analyzes the results upon completion  of  these 

operations. 

;-;. * LOGGER Ptask 

LOGGER handles startup and shutdown of the NCP and/or 
7r the IMP.  LOGGER also initiates the "outgoing logger" 
■ '. function,  creating a new user session in the NCP and 

causing it to connect to a remote server. For this 
purpose, LOGGER always has a pending Exchange OPEN 
with a "well-known" symbolic tag for each user-level 
protocol. A local process starts a user session by 
issuing a matching Exchange OPEN request and passing 

i\ the remote host name and contact socket number 
through the window to LOGGER. 

For AHHP,  LOGGER passes the outgoing logger request 
>  to the HCT for the remote host, which then performs 

the required ICP sequence and forks the primary ULPP. 
If there is no HCT ptask for that host, LOGGER forks 
one. For IP, LOGGER starts up a transient INPOLOG 
ptask (see below) to initiate the outgoing  logging 

c 
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function. 

Finally, LOGGER is part of the "incoming logger" 
function for AHHP. The NCP ptask will request LOGGER 
to fork a new HCT when an ICP request arrives for a 
local server process and there is no corresponding 
HCT. 

* INPTASK— IPP ptask 

INPTASK is the primary IPP driver ptask.  It handles 
input, timeouts, and outgoing logging requests for 

$> all internetwork protocols, including IP and TCP.  A 
& module executed under this ptask issues the PATTACH 

to fork the primary ULPP for a user or server session 
-..; using an internet protocol, making the primary ULPP 

ptask its direct descendant. 

The INPTASK module itself is resident. However, it 
jHj issues PLOAD to dynamically load the main IPP module, 

INTMOD.  INTMOD will PLOAD the proper higher-level 
protocol module  (e.g., TCPMOD)  when needed  and 

'.-; PDELETE the module when the protocol becomes idle. 

* INTERNET — IPP control ptask 

This ptask, created by LOGGER when the NCP job 
starts, starts the internet protocol program IPP by 
forking INPTASK. If INPTASK ever exits (due to 
operator action or program failure), INTERNET cleans 
up and restarts INPTASK. 

* MSGMAIN — MSG ptask 

This ptask, really a very complex ULPP, is the 
primary controller for the MSG interprocess 
transaction protocol used by the National Software 
Works [RivBL77]. The MSGMAIN ptask is created bv 
LOGGER when the NCP starts. 

»-^„■mli...^ 1 ■ 'j.^' I '■^->..|l r-—.jt-T- '^—r- ]—-■  -■ -■  I,'  •-^i\,,-\---_['-:'-:'---|'^ \ '•_ ^| ^ -] 
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2.2.3.  Transient Ptasks 

:-:■ 

(.' 

■ 

t 

L 

In addition to the session-related HCT and ULPP ptasks 
and the fixed ptasks, there are transient ptasks which 
perform particular functions and immediately vanish. 
Examples of transient ptasks include: 

* ARPASRST 

This send-Reset ptask is forked by NCP initialization 
G£ to send an AHHP host-to-host RST (Reset) command to 

every ARPANET host. 

* INPOLOG 

This transient routine initiates outgoing-logqinq for 
internet sessions, by parsing a character string 
defining the desired session (see Appendix A). 
Assuming the parse is successful, INPOLOG creates an 
"Outlog Queue Element" (OLQE) for the request and 
enqueues it for IPP, then calls PEXIT and vanishes. 

The following figure shows the basic ptask structure of 
the NCP. 

■fcM%MJhM>MM^|ij^^hpMlhBMjp^|pbfcM^3^ 
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1 
Figure 2. Ptask Tree Structure in NCP 
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2.3.   AHHP AND INTERNET ENVIRONMENTS 

A single ULPP may use different "higher-level"  internet 
protocols simultaneously,  but it may not use both an 
internet protocol and AHHP.  A ULPP for a session using 
internet protocol operates  in an environment which is 

mt different from, but nearly compatible with, the environment 
seen by a ULPP using AHHP.  It is convenient to use the 
terms "internet ULPP" and "AHHP ULPP" to describe ULPP's 
operating  in the specified environments.  However, note 

jv, that the two environments are designed to be essentially 
*£2 compatible from the viewpoint of the ULPP, so that the same 

ULPP code can be used in either environment. 

The A-service system call routines for AHHP and internet 
(TCP)  protocols must  therefore  implement  compatible 
semantic models for a connection. We say that the internet 

m A-service routines provide a compatibility interface to the 
ULPP's,  i.e., they emulate as nearly as possible the 
corresponding A-service routines used for AHHP. 

The compatibility interface allows only connection-oriented 
usage of TCP. A new set of A-Services will be required to 
use TCP as a transaction-oriented or datagram-like service. 

Note that: 

the primary ULPP ptask for an AHHP session will be 
directly inferior to an HCT, while a primary internet 
ULPP ptask will be directly inferior to INPTASK. 

AHHP and internet protocol use different A-service transfer 
vectors. 

A ULPP is in the AHHP (internet) environment when the 
PTAATRV field of its PTA points to the AHHP (internet, 
respectively) transfer vector. 

Appendix B contains a list of A-services for both the AHHP 
and internet environments. 

When a ptask is created, the PTAATRV address in the new PTA 
is set equal to the creator's PTAATRV.  The result  is to 
propagate the A-service transfer vectc down the ptask 
tree.  Since the INPTASK PTA points t the internet 
transfer vector, all internet ULPP's wil also have the 
internet A-service vector, for example. 

In addition to its A-service transfer vector, the internet 
environment includes a resident control area called the 
"P3CB" (explained under "STANDARD ULPP ENVIRONMENT", 
below). 



IP/TCP Implementation 
December 15, 1979— OAC/TR20 

PAGE 20 

The IPP design allows the possibility of more than one 
active IPP instance concurrently, each with its own 
internet environment. For example, a second environment 
might be used for testing new IPP versions. A new 
environment would be created by the INTERNET ptask forking 
a new INPTASK ptask, and would have its own A-service 
transfer vector and P3CB. 

When a primary ULPP ptask is forked by either a HCT (AHHP) 
or by INPTASK (internet), the ULPP's PTA contains an ICV 
(Initial Connection Values) parameter list. The ICV list 
defines the initial "logging" connection(s), i.e., the 
initial connection(s) opened as a result of the logger 
function. The ICV includes the session number and a 
specification of the remote host. 

2.4.   NCP LOAD MODULE STRUCTURE 
:: 

- ■ 

r The previous section discussed the NCP structure in terms 
of its component processes. Now we consider the load 
modules which are used. It is convenient to divide the NCP 
program modules into three categories: 

* ULPP routines, which are dynamically loaded (usually by 
the PATTACH P-service) to handle the user-level 
protocols for active sessions. 

* the Telnet access method, a set of resident reentrant 
subroutines which ULPP's can invoke to handle the 
Telnet protocol. These subroutines provide a standard 
Telnet I/O interface, including nearly all Telnet 
protocol translation and control functions required by 
any ULPP [Tol77]. 

The Telnet access method is invoked with the macros: 

ATOPEN— open a Telnet connection 

ATCLOSE — close a Telnet connection 

ATPUT — send data on Telnet connection 

ATGET — receive data from Telnet connection 

The routines themselves are located on the A-service 
transfer vector(s). 

* a set of routines collectively called the ARPANET 
Control Program or ACP, concerned with the host-host 
and IMP-host protocols. 
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The ACP includes both resident and dynamically-loaded 
modules for AHHP and internet protocols. All resident ACP 
modules are linkage edited into the resident NCP load 
module ARPAMOD. The TCP code and the bulk of the IPP code 
are contained in dynamically-loaded modules: 

INTMOD for IPP 

TCPMOD for TCP 

ARPAMOD includes all resident modules, which generally 
perform the following functions (see Appendix B): 

* Commutator Support Routines 

These routines perform NCP-specific functions related 
to creating and destroying ptasks. 

* ULPP Environment Creation and Control 

These mcdules control the creation of dynamic modules, 
clean up when a ULPP exits, and create the standard 
control-block environment for a ULPP (described under 
"STANDARD ULPP ENVIRONMENT", below). 

* ARPANET Gateway Routines 

These routines handle the IMP-host protocol and provide 
a logical "gateway" to the ARPANET. They include the 
IMPIO and NCP routines which are executed by the ptasks 
of the same names, as discussed earlier. See 

~ subsection "ARPANET GATEWAY", below. 

* AHHP Connection A-Services 

These are the A-service subroutines that AHHP ULPP's 
call to create and manipulate connections. 

* AHHP Protocol Modules 

These are internal ACP subroutines that implement AHHP. 

82 * Resident IPP Code 

The  functions  listed  so  far  belong  to  the ACP.   In 
•A addition, ARPAMOD includes: 

* Telnet Access Method routines 

* Resident TaL1ct> 

. >. • ."■; - -•• r- „"• ."•;"»."•.-.'• .•• .'■."«»"*-"•»'- .*» -"«<"*. -. •. •.;-. • .'•."»."• - > ,> ."•<."• ."-.'• .        -"'.- v V 
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Appendix B includes a list of actual module names within 
these functional categories; notice that in some cases a 
single module fits within more than one category. 

Wi Most of the modules in ARPAMOD are either executed by fixed 
[&j           ptasks or are called as A-services.  The AHHP A-service 

routines all have names of the form:  ARPAxxxx, while the 
■»           corresponding  internet  A-service  routines in   the 
^           compatibility interface have names of the form: ARPIxxxx. 

The ARPAxxxx routines are linkage edited  into APPAMOD. 
However,  the  ARPIxxxx  routines  are  part of the 

Sj dynamically-loaded IPP module INTMOD, as we will describe 
4»           under "INTERNET LAYER DESIGN", below. 

[-■ Not all A-service modules differ  between the AHHP and 
["; internet environments.  The A-servicc routines concerned 

with environment creation and control ab well as the Telnet 
;„-. access method routines can be almost identical in the two 
F

4 cases, differing by only a few instructions.  Therefore 
there is only a single version of these modules.  The 
important ULPP control blocks have a common flag bit which 

>:> is off in the AHHP environment and on in an internet 
£J environment; the common A-services test these bits when 

necessary to select appropriate environment-dependent 
H instructions. 

Within the ACP, there are some standard interfaces which 
..-, the host-host protocol  routines use to  invoke gateway 
u functions and  to manipulate the control block environment 

[BRA79A], ensuring compatibility.  Most of these internal 
interfaces appear on an auxiliary transfer vector, called 

p ARPXTRV, which in turn appears on every A-service transfer 
£-' vector.  These interfaces routines are invoked by the ACPX 

macro, and are listed in Appendix B. 

';.'.      2.5.   ARPANET GATEWAY 

5- Those modules of the ACP which handle the lowest protocol 
['.*• layer,  the IMP-host protocol,  are referred to as the 

"ARPANET gateway".  For explanatory purposes,   it  is 
convenient to model the gateway routines by two functions, 
the Incoming Gateway AGAWI and the Outgoing Gateway AGAWO. 

Üai 

2.5.1.  AGAWO — Outgoing Gateway Function 

y Given a parameter list defining a message to be sent,  a 
destination host and link number, and the type of service 
desired, the Outgoing Gateway will prefix an appropriate 
ARPANET leader and send the resulting packet to the IMP 
hardware interface. The parameter list is called a Write 
Request Element or WRE, and the call is coded with the 
ACPX QUEOUT macro. 

».-*-, 
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An ACPX QUEOUT call adds the WRE to the IMP output queue 
B and signals the OUTPUT semaphore of the IMPIO ptask. 

When the path to the IMP is free, IMPIO builds an ARPANET 
leader for the message as well as a channel program 

*.• . containing a Write operation and pointing to the data, 
and issues an OS/MVT Supervisor Call to start the Write 
operation. 

When the Write operation completes, IMPIO deletes the WRE 
from the output queue and signals completion of the 
request. The exact manner of signalling differs for AHHP 
and IP [Bra79A]. For AHHP, AGAWO simply enqueues the WRE 

uh on the DONE Queue.  The subsequent receipt of a RFNM  (or 
a negative acknowledgment)  for the same link number 

;.;■; causes NCP to remove the WRE from the DONE Queue and 
\\" complete processing of the send request. 

The DONE Queue is not used for the IPP, however, because 
all messages use the same link number and because IPP may 
use Subtype 3 (Uncontrolled) messages which return no 
RFNM or other acknowledgment from the subnet. Therefore, 

>! if the WRE is marked "Uncontrolled" or "Not AHHP",  then 
£*• AGAWO simply omits the WRE's sojourn on the DONE Queue 

and marks it "completed" immediately. 

Thus, there is no direct signal to IPP that a send 
request has completed and the WRE is free. The IPP must 
depend upon being awakened either by the receipt of a 
host-host acknowledgment message (<ACK>, in the case of 
TCP) or else by a timeout. It must treat WRE's as a 
relatively plentiful resource. 

AGAWO has an interface entered from AGAWI to send 
irregular (host-to-lMP) messages using a private pool of 
WRE's. AGAWO also includes an IMP queue purge function, 
which is invoked by the ACPX HALTIO macro call. This 
call searches the AGAWO output and NOW queues for any 
WRE's pointing to a given CCB (or its internet 
equivalent), and dequeues them. 

2.5.2.  AGAWI— Incoming Gateway 

The incoming gateway function is performed by parts of 
IMPIO and the NCP ptask. IMPIO keeps a hardware Read 
operation pending to the IMP. This Read comDletes 
whenever the IMP sends the last bit of a message to the 
host interface, and the NCP ptask is awakened as a 
result. The AGAWI portion of the NCP ptask interprets 
the ARPANET leader to determine the message type and link 
number. Irregular messages are in general handled by 
AGAWI, but some are passed to the AHHP part of the ACP. 
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AGAWI includes an intercept to filter "raw" packets from 
the ARPANET; this mechanism is called the "Network 
Measurement Center intercept" for historical reasons. 
The leader of each received message is compared with a 

£j set of filters.  If the leader matches an active filter, 
KJ AGAWI copies the message into an associated buffer and 

signals the INPUT semaphore of the corresponding ptask. 
m An intercept buffer is capable of holding more than one 
£« message, so each message is preceded by an 8-byte header 

which contains the message length. 

jS The same message may be intercepted by one or more 
*k filters  as  well  as  the  normal AHHP mechanism. 

Furthermore, there is a similar mechanism in AGAWO for 
l,v outgoing packets,  so a given filter may select incoming 
r-"'. and/or outgoing packets.  To establish a filter using the 

NMC intercept, a ptask calls the NMC-Intercept Open/Close 
[-.. A-service ANMOC.  See Reference [Bra79A] for details. 
r 

In particular, the IPP ptask INPTASK establishes an 
incoming filter for the internet link number (currently 
155), so that an arriving internet packet will be copied 
into the buffer and INPTASK awakened. Although the 
buffer is governed by pointers like a normal input 
circular buffer, it is not used in a circular manner; 
therefore, the IPP can assume that a single packet is in 
contiguous memory. The IPP is expected to process the 
packet "promptly", moving it from the intercept buffer 
into a segment reassembly buffer (see "INTERNET LAYER 
DESIGN") . 
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)|     2.6.   STANDARD ULPP ENVIRONMENT 

A ULPP is concerned with the basic communication objects: 
sessions, connections, and Telnet connections. For each of 
these objects, there is a corresponding control block: 

* Session => Account Control Element or ACE; 

* Connection => Connection Control Block or CCB; 

iv * Telnet Connection => Telnet Connection Control Block or 
M TCCB. 

These control blocks are chained together in a manner to 
reflect their inter-relationships (see Figure 3). These 
chains and the control block formats are important aspects 
of the "environment" seen by any ULPP. 

ACE's and TCCB's are used in both the AHHP and the internet 
environments, with no significant differences. However, 
the format of a CCB is (partly) dependent upon the 
particular host-host protocol in use. The CCB-analogs in 
the internet environment are called "hlpB's", where "hip" 
denotes a three-letter mnemonic for the particular 
higher-level protocol. For example, a TCP connection is 
controlled by a TCPB. 

As discussed previously, the ACP is designed to provide a 
compatible environment for both AHHP and internet ULPP's. 
This requirement for compatibility implies the following 
general conditions: 

* The A-service routines for AHHP and internet protocols 
r«.            must  implement a  "universal"  semantic model  for  a 

connection (described in Appendix C). 

■» * Those fields of the ACE, TCPB, and CCB (or equivalent 
h'-i hlpB) that are used by a ULPP must be the same in both 
*"-*' environments.  This implies in particular that certain 

fields cf ä TCPB must exactly correspond to fields of a 
[••; CCB;  those  fields  are  listed in Appendix C. The other 
M CCB/TCPB  fields,  which depend  upon  the  host-host 

protocol,  will be used internally by the ACP but 
generally may not be used by a (compatible) ULPP. 

* It must be possible for a ULPP (or an A-service called by 
,.• a ULPP) to determine which environment it is operating 
F- in. Thus, any control block which differs in the two 
■"" environments must have a common flag bit.  This bit, 

called the "Not Host-Host" bit,  is off  in the AHHP 
& environment and on in the internet environment. 

L 
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* The host and socket parameters passed to the primary ULLP 
in the ICV li<~t should cause the ULPP to issue a 
corresponding .equence of AOPEN's for AHHP and TCP, to 
have the proper connection be completed in either case. 

Perfect AHHP/internet compatibility is impossible because 
of the real protocol differences outlined in the 
introductory section. For example, there are small but 
significant differences in the connection states which must 
be observed if a ULPP is to operate correctly in both 
environments (see Appendix C). We have attempted to 
minimize the impact of these differences on the ULPP's. 

Many user-level protocols open a pair of  (simplex)  AHHP 
[>1 connections  corresponding  to  a single  (duplex)  TCP 
tl connection.  Fortunately, in most cases such a connection 

pair uses the Telnet protocol and is manipulated only by 
K the common Telnet access method.  This centralizes many of 
g the compatibility problems in the Telnet access method 

subroutines. These subroutines contain code which tests 
the environment and executes a few instructions differently 
for AHHP or internet. The incompatibilities are in two 
areas: (1) a pair of simplex connections vs. a single 
full-duplex connection, and (2) "urgent" vs. "interrupt" 
signalling. 

We can now describe the semantics of sessions, connections, 
and Telnet connections. We will assume the compatibility 
interface, and will discuss only those fields of a CCB/hlpB 
that are common to both environments. Therefore, we can 
speak of a "CCB" and imply either a CCB or any analogous 
hlpB (in particular, TCPB). 

V 
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Whenever the HCT exits, the corresponding 
control CCB is deleted (closed) , and as a 

r» result the ACE's chained from it are also 
$* deleted.  This will normally occur as the 
™ result of receiving a "Host Down" irregular 

message for that host. 
m 
Hi (5B)  In the internet environment there are no 

HCT's, so all ACE's are chained from the 
Sj IPP    control   area.    To   simplify 
I;.; compatibility in various ACP routines, some 

fields  of this area are formatted to 
,. correspond to a control CCB.  For  this 

reason, the IPP control area is called a 
pseudo control CCB, abbreviated P3CB. ro 

!•-' (6)   An ACE (and session) is deleted by the A-service 
ft ACESELL.  ACESELL may be called explicitly by a 

ULPP  (presumably the one that called ACEBUY), or 
implicitly when: 

* the primary ULPP ptask owning the ACE exits; 
r, or I 
" * the HCT for  the host with which the ACE is 

associated exits (AHHP only). 
fV 

(Note: in the (common) case that the session was 
created by the incoming/outgoing logger, the 
primary ptask will be directly inferior to the 
HCT, and these two conditions will be logically 
equivalent. In the case that the connection is 
opened by a ptask not in the subtree of the 
primary session PTA, ACESELL has a more complex 
effect; see the ACESELL writeup). 

Before writing an accounting record and deleting 
the ACE, ACESELL will close all connections open 
within the session, thereby freeing all CCB's and 
TCCB's chained from the ACE. 

I 
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2 6.1.2.  ACE Contents 

I An ACE includes the following fields: 

* Unique session number (ACESESS) 

* 10-byte user identification string (ACEUSER) 

* User-level protocol name (ACESYS) 

* Remote host id (ACEHOST) 

* Flags (ACEFLG) 

The flag bit ACEF1NHH will be off for all ACE's in 
the AHHP environment, and on for all internet 
ACE's. 

Figure 3 illustrates the control block chains involving 
13 ACE's, the control CCB, and CCB's.  It shows n ACE's 

chained from the Control CCB. ACE 1 belongs to "PTA 
f- 1,0", and has two CCB's chained from it.   "CCB 1,1" 
0»; belongs to "PTA 1,1" and has pointers back to the ACE 

and to the Control CCB.  In the internet environment, 
the "Control CCB" will be the P3CB, and the "HCT PTA" 

|E will be the INPTASK PTA. 
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Figure 3.  Principle Control Blocks in ULPP Environment 
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2.6.2.   CONNECTIONS 

S 

r 

For each network connection there is a CCB (or TCPE) 
which contains all the relevant pointers, queues, and 
state variables. The address of this block is the 
"handle" used within the NCP for naming the connection. 

2.6.2.1.  Socket and Port Numbers 

A connection is terminated at each end by a "socket". 
In AHHP, for example, the full name of a socket is the 
pair: 

(<32-bit number>, <host address>) 

where <host address> is the address of the remote host 
on which the connection terminates. At times, the 
<32-bit number> is itself called "the socket". 
Similarly, a TCP socket is named by the pair: 

(<port number>, <host-address>) 

where <port number> is 16 bits. 

Within the UCLA NCP, there are 32-bit numbers 
associated with both the local and remote ends of a 
connection; these numbers will be called the Local 
Socket Number and Remote Socket Number, respectively. 
They obey the rules: 

* The Local Socket Number must have the session 
number in the high-order 16 bits. 

* For AHHP, each 32-bit Local Socket Number must be 
unique and different from any TCP Local Socket 
Number  (the session number guarantees the last). 

The following table summarizes the assignment of Local 
Socket and Pemote Socket Numbers. For AHHP, the ICP 
sequence assigns a Local Socket Number subspace of 
2**16 socket numbers; the values shown in the table 
under AHHP are the origins of this subspace. The 
actual socket used for connections generally have small 
offsets from these origins. 

I 

L 

'».•» '■■,;■! «II'I i'» '> ».'>,"■ i i *h.j i■■.'.«'..'■«■' r." , j^^jtfc^^MAMifc^^A^fc^^^Mt^^^^J^^^^^^^A^^^^^^^^ 



v* IP/TCP Implementation 
F December 15, 1979 — OAC/TR20 

PAGE  32 

Figure 4. Local Socket and Remote Socket Numbers 

£. Local Socket  Remote Socket 
Number       Number 

AHHP (Socket subspace from ICP) 

User Session     <sess#, 0>      S-sock 

Server Session   <sess#, 0>     u-sock 

TCP 

r 

f 

User Session   <sess#, L-port>  <0,WK-port> 

Server Session <sess#, WK-port> <0,U-port> 

Here: 

The notation <a,b> represents a 32-bit number, 
composed of two 16-bit quantities a and b; the 
high-order part is a. 

"sesst" is a 16-bit session number. 

"S-sock" is the 32-bit socket number supplied by 
the remote (Server) host. 

"U-sock" is the 32-bit socket number supplied by 
the remote (User) host. 

"L-port" is a uniaue 16-bit local port number. It 
will not be in the range of a WK-port. 

"WK-port" is a 16-bit well-known (i.e., contact) 
port, in the range 0-255. 

"U-port" is the 16-bit port number supplied by the 
remote (User) host. 
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Initial Connection Values 

The primary (root) ULPP ptask is created by the HCT 
(for AHHP) or by INPTASK (for an internet protocol). 
In either case, it is started with a parameter list 
called the ICV (Initial Connection Values) in the 
"user" field of its PTA. The ICV format is: 

PTAUSER+4: 

PTAUSER+10: 

+11 

+12 

+16 

+20 

4 bytes: Address of the ACE for session. 

1 byte:  Default byte size (AHHP), or 
Protocol id (internet) 

1 byte:  Remote Host Id 

4 bytes: Local Socket Number 

4 bytes: Remote Socket Number 

4 bytes: ICP contact socket 
(AHHP server session), 

or contact port 
(internet server session), 

or Exchange Window Id 
(user session) 

The Local Socket Number and Remote Socket Number values 
are those shown in Figure 4 above. 

Host Id's 

NCP routines seldom deal directly with actual 24-bit 
ARPANET host addresses or 32-bit internet host 
addresses. Instead, they use a one-byte "handle" 
called a host id to refer to a host address. 

A host id is mapped into the corresponding host address 
when a message is sent to the ARPANET and when error 
messages are composed. The details of creation of a 
host id differ in the AHHP and internet cases, but 
generally the host id for the session is passed in the 
ICV to the primary ULPP by the incoming/outgoing logger 
function. 

l 
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I 2.6.2.4.  Connection Semantics 

The semantics of a connection are as follows: 

h   • (1)  A CCB is created with the ALSTN  ("Listen") 
A-Service. The parameter list contains: 

* Local Socket Number (32 bits); 

* Remote Socket Number (32 bits); 

* Remote Host id (8 bits); ,•'■ 

I 
* Byte Size  (AHHP only),  or  Higher-level 
protocol id (internet only); (8 bits). 

ALSTN uses the session number from the high-order 
16 bits of the Local Socket Number together with 

, the remote host id to locate the session ACE to 
which the connection is to belong.  ALSTN chains 
the CCB from this ACE (see Figure 3), and stores 

C> pointers to the ACE and the corresponding control 
CCB in the new CCB. 

i The ULPP PTA which issued the ALSTN will "own" 
the CCB. 

;;- Under AHHP, ALSTN can be called only once for a 
;.;! given connection; under TCP,  there is no such 

restriction.  In any case, a successful ALSTN 
— call returns the address of the CCB/TCPB as a 
P "handle" for the connection. 

(3)   To open a connection, the connection handle  is 
£* passed to the AOPEN A-service.  Under AHHP, AOPEN 
>'• may need to be called twice for an active open 

(i.e.,  an  open  reauest that  is initiated 
T* locally).  See Appendix C for details. 
*-»3 

(2)   The connection will be closed and the CCB deleted 
when: 

•* * a ptask calls the ACLOSE A-service (in some 
cases, two separate calls are necessary); or 

* the owner ptask exits,  causing the ACP to 
call ACLOSE implicitly. 

: In the AHHP environment, the owning ptask will be 
forced to exit if the HCT (pointed to by the 
control CCB) exits, e.g., if the host goes down. 

•V Normally, the ptask owning the connection will be 
subordinate to the HCT ptask, so this would 
happen necessarily; however, it is possible for a 

l 
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ULPP to open a connection for a HCT which is not 
its superior.  Thus, in Figure 3  "PTA 1,0"  is 

B normally,  but not necessarily,  subordinate to 
"HCT PTA"; in any case, if the HCT ptask exits, 
the control CCB will be deleted and the ptasks of 

\; all CCB's that point to the Control CCB will be 
|J£ forced to PEXIT.  This in turn will ACLOSE all 

CCB's that point to the control CCB. 
m 
r„; (3)   In  the AHHP environment,  a connection will 

receive (send) data if Local Socket is even (odd, 
respectively).   An  internet  connection  is 

'.-■: inherently full-duplex, allowing both send and 
">! receive operations. 

(4)   A ULPP sends data to the ARPANET by building a 
Cj parameter list called a Write Reauest Element 

(WRE) which points to the CCB and to the data to 
be sent, and passing the WRE address to the ASEND 
A-service. 

I 

C 

When the data has been sent and acknowledged by 
the remote host, the "Completed" flag will be 
turned on in the WRE and the ULPP ptask's OUTPUT 
semaphore will be signalled. 

(5) Data is received in a circular buffer owned by 
the ULPP. Whenever data arrives, the ULPP 
ptask's INPUT semaphore will be signalled. 

The ULPP may use the ARECV A-service to remove 
data from this buffer (preferable), or may itself 
manipulate the buffer pointers in the CCB. In 
either case, the ULPP invokes the ARLSE 
("Release") A-Service to inform the ACP that data 
has been consumed from the buffer. 

(6) When an out-of-band signal arrives, a field in 
the CCB/TCPB is updated and the ATTN (Attention) 
semaphore is signalled. The specific mechanism 
differs for AHHP and for TCP: 

* For AHHP, receipt of an interrupt (INS or INR) 
command increments a count (CCBINC) in the CCB 
by 1 and signals ATTN. 

* For TCP, there is an Urgent Data Count field 
(TCPRURGN) in the TCPB. This is the number of 
bytes which the ULPP needs to remove from the 
buffer to read all urgent data (and may exceed 
the bytes currently in the buffer). Whenever 
this value advances, the ATTN semaphore is 
signalled. 

L 
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(7) Occurrence of a connection-related event causes 
the appropriate semaphore (OPEN, CLOSE, INPUT, 
OUTPUT, ATTN) of the owning ptask to be 
signalled. There is a single set of semaphores 
for each ptask, shared by all connections it 
owns; therefore, it is generally necessary to 
test state flags in each CCB to determine which 
connection had a state change. The state flags 
are discussed below, and the rules for coding 
system calls for both AHHP and TCP connections 
are contained in Appendix C. 

2.6.2.5.  CCE Contents 

Appendix C contains a list of the CCB/hlpB fields which 
must correspond. Included in these CCB/hlpB fields 
are: 

* The Open/Closed state bits (CCBLOG). 

* The address of the PTA under which ALSTN was 
called, and which therefore owns the connection 
CCBPTA). 

* For AHHP, the address of the appropriate "control 
CCB"; for TCP, the address of the P3CB (CCBCTRL). 

* The 32-bit Local Socket Number used to label the 
CCB/hlpB; the high-order 16 bits must be the 
session number (CCBLSCK). 

* Pointers used to control the circular receive 
buffer. 

* ACE Address (CCBACE) 

This  is the address of  the ACE for the session 
under which this connection was opened. 

* ACE Chain Word (CCBCHA) 

This word is used for the ACE chain of  all  CCB's 
for this session. 

As noted earlier, the out-of-band signalling mechanism 
differs in AHHP and TCP, resulting in incompatible 
fields in the CCB and TCPB. 

2.6.2.6.  Connection States 

The A-services assume a standard state diagram for 
connections. State changes are signalled to the ULPP 
by signalling the OPEN or CLOSE semaphore and by the 
value of the "LOG" (CCBLOG) state bits. These bits have 
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FJ 
KV the values: 

I !i 

* 00B: Not yet open. 

* 01B: Open connection. 

* 10B: Pseudo-CCB (see below). 

* 11B: Closing or closed. 

IS; The "Closing"  flag bits LOG= 11B are turned en when a 
close request (i.e., a CLS command for AHHP, or a <FIN> 
bit for TCP) is received from the remote site.  At the 

?■• same time, the CLOSE semaphore for the ULPP that opened 
the connection is signalled. The semantics of this 
value are as follows: 

* For an AHHP send connection, LOG=llB indicates that 
no more ASEND's may be issued; however, ACLOSE will 
wait for completion of any ASEND's which are 

E? pending. 

* For a TCP connection, the ULPP may continue to call 
ASEND for this connection indefinitely after 
L0G=11B is set and the CLOSE semaphore is 
signalled; the connection is half-open. 

* For an AHHP receive connection or a TCP connection, 
L0G=11B indicates that no more data will  be 

£■£ received;  however, there may still be new data for 
[S the ULPP in the circular buffer, so the ULPP should 

issue ARECV and/or ARLSE calls until the circular 
m buffer is empty. 

* If a <RST> ("Reset") message is received for a TCP 
connection, the CLOSE semaphore will be signalled 

'.[■ (perhaps for the second time) , L0G=11B will be set, 
and an additional "Reset Received" (TCPFLRST) will 
be turned on; no data may be sent or received after 

"" this. 

The ACLOSE call has both blocking and non-blocking 
forms.  Under TCP,  the blocking form  ("TYPE=WAIT") 

•.*! returns to its caller only after the complete 3-way 
* <FIN> handshake has occurred  (or a timeout).  If a 

blocking ACLOSE is used for a simplex receive 
connection, and if the user-level protocol allows the 
TCP connection to be half open, the remote process may 
ignore the <FIN>, causinc a deadlock. 

Except for this deadlock problem, the handling of 
L0G=11B for a simplex receive connection is normally 
compatible between AHHP and TCP. However, the logic 
may differ for a simplex send connection, due to the 

*" possibility  of  a half-open TCP connection.  See 

L 
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Appendix C for details. 

A pseudo-CCB is a control block which has the shape of 
a CCB and is chained in the environment like a CCBf but 
is not associated with a real ARPANET connection. When 
a ptask owning a pseudo-CCB exits, ACLOSE is called to 
free the pseudo-CCB and any associated circular buffer. 
Pseudo-CCB1s are used, for example, to control NMC 
intercept filters and for trace buffers (discussed 
later).  See Appendix C for more information. 

2.6.3.   TELNET CONNECTIONS 

The reentrant Telnet access method routines [Tol77] use a 
"Telnet Connection Control Block" or TCCB to store all 
state information relevant to a particular Telnet 
connection. The TCCB address is used as a handle to name 
the Telnet connection. 

2.6.3.1.  Telnet Connection Semantics 

The semantics of a Telnet connection in the NCP are as 
follows: 

i 

[ 

(1) A Telnet connection is a full-duplex path which 
uses the user-level protocol Telnet. 

(2) Telnet uses two (simplex) AHHP connections or one 
(full-duplex) TCP connection. 

(3) A Telnet connection is created by an "ATOPEN" 
call of the form: ATOPEN( L, R ). 

Here the parameters L and P are Local Socket 
Number and Remote Socket Number, respectively; 
see Figure 4. L and R are usually obtained from 
the corresponding elements of the ICV by adding 
small integer offsets. 

* AHHP:  L and R are both even; ATOPEN opens two 
connections: 

SendCCB := ALSTN( L+l, R x • 

RecvCCB := ALSTN( L, fc. 

* TCP:  ATOPEN opens a single TCP connection: 

SendCCB := RecvCCB := ALSTN( L, R) ; 

ATOPEN obtains and initializes the TCCB, and 
saves in it the addresses "SendCCB" and "RecvCCB" 
(in the TCP case, these addresses are the same). 

L 

l * * •-■:■*-•_«• 



s 

IP/TCP Implementation 
December 15, 1979 — OAC/TR20 

PAGE  39 

(3) To send data over an open Telnet connection, the 
ULPP uses the ATPUT macro; to receive data, it 
uses the ATGET macro. In either case, the call 
may be blocking or non-blocking. A non-blocking 
call causes the INPUT (OUTPUT)  semaphore to be 

;.; signalled when input is received (output is sent, 
respectively); a blocking call issues an internal 
PWAIT on the appropriate semaphore. 

■ 
/" (4)  Under AHHP, ATPUT and ATGET will fail with return 

code 12 if the remote site has closed the data 
stream(s); ATGET will return 12 in the first call 

'•"-! after  the circular buffer  is emptied.  The 
ATPUT/ATGET calls can also specify an 
"end-of-file exit"  routine which will be called 

*\ in the same circumstances. 

Under TCP, ATGET signals a closed data stream 
I-- exactly as it is signalled under AHHP.  However, 
f~ the ULPP may call ATPUT even after the receive 

data stream has been closed; ATPUT will signal a 
closed data stream only if a <RST> (Reset) 
segment is received. Thus, the user-level 
protocol can choose whether or not to allow the 
Telnet connection to remain half open. 

i 
■ (5)  The two ARPANET connection(s) composing a Telnet 

connection will be closed and the TCCB freed 
when: 

* A ULPP issues the Telnet close macro ATCLOSE; 
■ 

* or the ptask that issued ATOPEN exits. 

Note: in the UCLA implementation, a ULPP cannot 
'.'-'_ half-close a Telnet connection under TCP; ATCLOSE 

always closes both send and receive paths, and is 
a blocking call.  If the remote host has not sent 
a <FIN> and does not send one within a reasonable 

•[•'. period,  ATCLOSE will  timeout and  delete  the 
connection; any subsequent messages from the 
remote host will invoke a <RST>. 

*"     2.6.3.2.  TCCB Contents 

\. A TCCB  includes  the  following types of information: 

1 
* Addresses of the send and receive CCB's  (for TCP, 

both point to the same TCPB). 

* Parameter area for ATGET and ATPUT calls. 

v.- 
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* Parameters that control the details of translation 
to be performed on the data. There are complex 
options for handling Ascii and Telnet control 
characters. There is an escape sequence which 
allows the ULPP to specify a number of these 
options symbolically with an ATPUT call. 

* State   information 
translation. 

on the  connections  and 

r 

* A  save  area  for calling the A-services to 
manipulate the ARPANET connection(s). 

e 
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3.   INTERNET LAYER DESIGN 

Tne internet protocol program or IPP implements the Internet 
Protocol (IP) to send and receive internet datagrams [PosIP]. 
This section will describe some of the design features of the 
IPP implementation in the UCLA NCP. 

IPP must support a number of different higher-level 
protocols, each of which is implemented by a corresponding 
higher-level protocol module (HLPM). IPP accepts from the 
HLPM's segments of data to be sent to internet hosts, and 
passes to the HLPM's complete segments which have been 
received. 

The datagram service of IP is "unreliable": a datagram may 
be delivered out of order, lost, or duplicated. A 
"higher-level" internet protocol (e.g., TCP) will provide 
error detection and correction if desired. The data 
transport functions which IP does support, and which IPP must 
implement, are [PosIP]: 

* internet addressing; 

* routing transmitted datagrams; 

* demultiplexing received datagrams; 

* fragmenting and reassembling internet datagrams. 

In addition to these IP functions, IPP includes the following 
control functions: 

* Dynamically loading and deleting HLPM load modules and 
their resource pools. 

* Providing a timing service for HLPM's. 

* Creating new ULPP's  (user-level protocol processes) in 
response to incoming and outgoing logger requests. 

* Controlling the startup and shutdown of all internet 
protocol operation. 

. -* -- •-. 
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3.1.   OVERVIEW 

We will now give a brief overview of the IPP functions, 
expanding upon the discussion in later subsections.  We 
will sometimes use the term "packet"  for  "internet 
datagram". 

3.1.1. Higher-Level Protocol Control and IPB's 

Generally, the IPP supports and controls the operation of 
the HLPM's. For each higher-level protocol that is 
supported, IPP has a fixed data structure called an IPB 
(Internet Protocol Block). An IPB contains all the 
parameters that IPP needs to control the corresponding 
protocol. For example, IPP uses information in the IPB 
to generate a HLPM module name when it is necessary to 
load the module, and then keeps the loaded module's 
address in the IPB. IPB's are often referenced by a 
one-byte handle called a protocol id or PIP. 

The IPP must maintain a pool of buffers for reassembling 
incoming segments and passing these segments to the 
HLPM's. IPP provides a separate buffer pool for each 
HLPM, and each pool grows and shrinks with activity in a 
manner to be described later. Each IPB contains 
parameters controlling the dynamic size of its buffer 
pool as well as the size of each buffer. 

3.1.2. Associations and iCB's 

Each IPP has its own internet host address, composed of 3 
parts: 

( <network number>, <host number>, <logical host number>) 

The <logical host number> may be used to distinguish 
different internet protocol programs operating on the 
same physical host. 

IP provides only datagram service; thus, it does not 
define "connections" of any type. However, when it sends 
or receives datagrams, IPP must be aware of the path to 
the remote IP program. Thus, there is an implicit and 
perhaps transient association [CerKa74] between the local 
IPP and the remote internet host. It is convenient for 
IPP implementation to introduce an explicit control block 
for an active association: an Internet Control Block or 
ICB. 

L 
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A particular ICB is involved in sending or receiving any 
segment. For example, to demultiplex a packet received 
from the ARPANET, IPP locates or creates an ICB for its 
association. To request that the IPP send a segment as 
an internet datagram, a HLPM specifies the segment 
address(es) and the address of an ICB. 

When the IPP receives a packet, it must demultiplex on: 
(1) the internet host address of the source (in order to 
reassemble fragmented segments), and (2) the higher-level 
protocol number (to select the HLPM to receive the 
segment). If strict protocol layering were obeyed, any 
further demultiplexing of logical streams would be 
delegated to the HLPM. 

However, the UCLA IP/TCP implementation was designed to 
provide an efficient interface to stream-oriented 
higher-level protocols such as TCP. This is achieved by 
a mechanism, described below, that extends the 
association definition to specify a particular logical 
stream to a remote internet host. The choice of logical 
stream is specific to a higher-level protocol. We expect 
that higher-level protocol implementations using this IPP 
will define logical streams in such a way that IP 
associations are in one-to-one correspondence to 
higher-level connections, as TCP does. This will create 
a one-to-one correspondence between ICB's and the hlpB's 
used for the connections. 

All ICB's associated with a given IPB (hence higher-level 
protocol) are chained together and in turn point to the 
IPB. An ICB is initialized from the corresponding IPB. 
In general, a HLPM is permitted to read values from the 
ICB's for its associations, but it is not permitted to 
store into them. 

3.2.   IPP INTERFACES 

The IPP has interfaces both to the ARPANET gateway and to 
the HLPM's. In addition, the IPP includes (part of) the 
A-service compatibility subroutines used by ULPP's 
operating in the internet environment. We will now 
describe these interfaces briefly. 

3.2.1.  IPP - Gateway Interface [Bra79A] 

The IPP accesses the ARPANET gateway by issuing the 
appropriate calls: 

* ACPX QUEOUT to send messages to the IMP. 

•* -". **. 
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* ACPX HALTIO to purge the AGAWO send queues. 

* ANMOC to establish an NMC Intercept filter that will 
select all messages with the internet link number. 

3.2.2.  IPP - HLPM Interfaces [Bra79B] 

The IPP provides a set of INTERNET services to the 
HLPM's. Since the HLPM's are loaded dynamically, 
INTERNET services must be called via a transfer vector, 
INTNETRV. The HLPM's obtain the address of INTNETRV from 
*-he A-service transfer vector used in the internet 
environment. The transfer vector INTNETRV and the 
internet routines are link-edited into a single module 
named INTMOD. 

The INTERNET macro is used to code calls of the internet 
services provided by IPP. The major INTERNET services 
are: 

* INTERNET OPEN 

Locate or create an ICB for a specified association. 

* INTERNET CLOSE 

Delete an association, freeing the ICB. 

* INTERNET OUTPUT 

Send a segment on a given association. 

* INTERNET START 

Create a new session by forking a primary ULPP. 

* INTERNET TIMER 

Request interval timing service. 

On the other hand, the IPP calls certain HLPM routines: 

* HLPM INPUT 

Process a reassembled input seqment. 

* HLPM TIMEOUT 

The time interval  requested by the last INTERNET 
TIMER call has expired. 

'• ->-*<-N-^i -*• -*» .*>.•'> .»*.,w'-m'-Y-'«l'-'.*.V ■w*.'.' iT-v" ■-* V i" ■.'. 5^.v' '■^.v'. •-'•■'•■*,.-•"i-*^ :^;.--'^\-'.'\r..-\-*r':. -1. ■'.•'. ■>'. '-•:. r.V .'•:.',*.' »yy.y. 
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*  HLPM OÜTLOG 

An outgoing logger  request has been received and 
parsed. 

* HLPM DEMUX 

Generate logical stream number (see below). 

These routines are located at canonical offsets in a HLPM 
transfer vector whose address is found in the IPB. The 
HLPM macros are documented in "Interface Specifications 
for Programming a Higher-Level Host-Host Protocol using 
Internet Protocol" [Bra79B]. 

Figure 5, below, shows the major IPP/HLPM interfaces. 

3.2.3.  ULPP - IPP A-service compatibility interface 

B The A-service compatibility interface implementation must 
be particular to a higher-level protocol  (e.g., TCP). 

.-.; However,  it was designed in two layers, an IPP layer and 
a HLPM layer. Thus, the following seauence occurs when a 
ULPP issues a connection-oriented A-service call: 

j1 (1)  An IPP subroutine with a name of  the  form 
- "ARPIxxxx"  is called.  This subroutine is linkage 

edited into INTMOD. 

> (2)  The  ARPIxxxx  subroutine  in  turn calls the 
corresponding subroutine in the appropriate HLPM, 

■ via the HLPM transfer vector.  In the case of 
" TCPMOD, the subroutine that is called will have the 

name "TCxxxx". 

$ The ULPP's call of the ARPIxxxx subroutine traverses two 
-w transfer vectors — from the resident A-service vector to 

the dynamically-loaded INTNETRV — to reach the 
!v subroutine entry point.  This technique added  three 
'.-■ instructions to the path-length of every call,  but 

significantly eased development and maintenance of IPP. 
,.;■ Before this double-linkage was developed,  the ARPIxxxx 

•'. subroutines were linkage edited with ARPAMOD; this meant 
that the production NCP had to be restarted every time 
the ARPIxxxx code was changed. 

Further discussion of  the compatibility  interface  is 
deferred to the section "TCP LAYER DESIGN", below. 
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Figure 5.  IPP/HLPM Interfaces 
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n     3.3.   IPP PROCESS STRUCTURE 

INPTASK is the controlling ptask for the internet layer; in 
addition, some of the HLPM functions execute under INPTASK. 
The INPTASK ptask executes a driver module, also named 
INPTASK, to perform the following functions (see Figure 5): 

* Load INTMOD 

INPTASK issues a PLOAD to load the main IPP module 
INTMOD dynamically the first time that an internet 
packet arrives or an outgoing logger request is made 
for an internet protocol. The entry point address, 
which is the address of INTNETRV, is stored into the 
A-service transfer vector. 

1 

INPTASK could delete INTMOD whenever the internet 
ft protocols are completely idle, but it does not in the 
f^ present implementation. 

r-. * Obtain Input 

When it is forked by the INTERNET ptask, INPTASK calls 
the ANMOC A-Service to establish a filter for the 

V internet link (155).  Whenever a packet arrives on this 
™ link,  the incoming ARPANET gateway moves the packet 

into a buffer associated with the filter and signals 
"./ the INPUT semaphore of INPTASK. For each message in 

',-■'. the buffer, INPTASK calls INTERNET INPUT.  If it is 
able to reassemble an entire segment, INTERNET INPUT in 

■j turn calls HLPM INPUT to process the segment. 

* Detect timeouts 

•> When it issues a PWAIT, INPTASK includes an interval 
timer for the top request on the its timer Queue.  When 
this interval expires, INPTASK calls INTERNET TIMEXPIR. 

T* TIMEXPIR will generally call HLPM TIMEOUT to inform the 
;-\ higher-level protocol of the event.  However,  it may 

also mark the expiration of the 30-second "watch-dog" 
timer for the IPP itself. The timing function is 
discussed further below in the subsection entitled 
Timing". ■I 

'y * Handle outgoing logging 

An outgoing logger request is described by an Outgoing 
\r Logger Queue Element (OLQE).  The OLQE's are queued and 
C the ATTN  ("Attention")  semaphore  of  INPTASK  is 

signalled.  Finding  an OLQE on its outgoing logger 
request queue,  INPTASK dequeues it and passes  its 
address to the HLPM OUTLOG routine. 

t> - " -N * " • *.* •«• V V V V V V V v »•}•■w •-?*--* 
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1 
The INPTASK module is res 
ARPAMOD. This allows it to 
to an outgoing logger request 
IPP routine INTMOD. Note 
TIMEXPIR calls are interfaces 
they have the same format 
The INPUT and TIMEXPIR cal 
interfaces from the resident 
the internet transfer vector 

ident, linkage edited into 
respond to an input packet or 
and dynamically load the main 
that the INTERNET INPUT and 
internal to IPP, although 

as IPP services for the HLPM. 
Is  (as well as ERLOG)  are 
code of INPTASK to INTMOD, via 
INTNETRV. 

r 

Figure 5 shows that the INTERNET INPUT, TIMEXPIR, and 
OUTLOG routines in turn call HLPM routines; these routines 
all execute under the INPTASK ptask. In general, the other 
major IPP routines are services which are used by both the 
HLPM and the IPP itself (e.g., the INTERNET INPUT routine 
calls INTERNET OPEN). These IPP service routines are 
executed under the ptask of the caller, which may be 
INPTASK or may be a ULPP. 

The ptask structure determines the ownership of resources 
under ICT. For this reason, control blocks obtained by the 
IPP service routines (e.g., ICB's) cannot be obtained with 
PCORE, because they might belong to the wrong ptask; 
instead, the OS/MVT GETMAIN service must be used directly. 
This in turn presents the problem of freeing all storage 
GETMAINed in the NCP region by a (buggy) HLPM when it 
terminates. This problem is solved by using a separate 
storage subpool (zone) for the GETMAIN's from each HLPM; 
the subpool number is contained in the IPB. The IPP 
(INPTASK) frees the entire subpool collectively when the 
HLPM becomes idle, and INTERNET frees the subpools of all 
HLPM's if INPTASK ever terminates. 

! 
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3.4.   IPP FUNCTIONS 

We will now describe in more detail the manner in which the 
IPP performs its key functions. 

3.4.1.  Sending Segments 

The parameter list to INTERNET OUTPUT is a Write Request 
Element or WRE, which includes a pointer to the ICB for 
the association on which this segment is to be sent. The 
ICB points to an entry in the Internet Host Table (IHT) 
which includes a specification of the remote gateway on 
the ARPANET to which packets must be routed. 

A WRE also specifies the data to be sent, by means of a 
list of (address, length) pairs; each pair is called an 
extent. The WRE may have any number of extents, but the 
first extent must be unused. The IPP OUTPUT routine 
builds an IP header and points the first extent at it, 
and then passes the WRE to the outgoing ARPANET gateway. 

In addition to the WRE, two data areas are needed: a 
4-byte leader parameter area for AGAWO, and an area for 
building the IP header. Furthermore, most higher-level 
protocols will require an area for building their 
headers. All three areas are provided at once, in a 
control block called an IWPE. An IWRE begins with space 
for a WRE, followed by the leader parameter area, the IP 
header area, and a HLPM header area. 

As a service to the HLPM's, the IPP maintains a pool of 
available iWPE's and will supply one for a particular ICB 
when the INTERNET GETWRF. service is called. INTERNET 
FREEWRE will return a WRE to the pool. The HLPM is 
required to return all iWRE's for an ICB before calling 
INTERNET CLOSE to delete that ICB. 

3.4.2.  Fragmentation 

In principle, the IPP is responsible for fragmenting 
segments as necessary to fit into the constraints imposed 
by the local packet network, the ARPANET. However, the 
preeminent higher-level protocol, TCP, must packetize the 
data stream and can itself produce segments of any 
desired maximum size. As a simplification, the initial 
IPP implementation therefore leaves fragmentation 
entirely to the HLPM, which learns the maximum send 
segment size from the ICB. The IPP simply sets this 
maximum to an appropriate value (depending upon which 
Subtype will be used; see below), making allowance for 
the IP header and for the ARPANET leader. 

• •„• -.• -_: - ,- ,••" ,' ' •_■ * .* -.' " ■,- -,■ -.■ -.• -.• v" -." ■." -.' .' -.•■•." ," •„" v* ■ 
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Note that the maximum segment size is obtained from the 
m ICB, not the IPB, so that each ICB (association) could 
P have a different value. This is to accomodate    future 

definition of an IP mechanism for negotiating the maximum 
,._ segment size up or down. The initial value  is obtained 
h£ from the corresponding IPB when the ICB is created (by 

INTERNET OPEN).  In the absence of  a  negotiation 
mechanism, all ICB's currently have the same value. 

■ 
'"'■:'. Further discussion of the fragmentation mechanism will be 

found below under "AREAS FOR FUTURE WORK". 

3.4.3. Segment Id's 

Each IP header must contain a 16-bit segment id field to 
>■! identify the fragments of the segment at the ultimate 

destination.  A segment id must be unique for a given 
stination host and higher-level protocol, within the 

;*- maximum  lifetime  of  a  segment  in the internet 
ta transmission system.  However,  since 2**16  is a very 

_,e     id space, we have chosen to use a single global 
*.. segment id counter for all associations.  This choice is 
;•; discussed below under "AREAS FOR FUTURE WORK". 

3.4.4. Demultiplexing Received Packets 
a 

• For efficient support of connection-oriented protocols 
such as TCP, the IPP  is designed to do the complete 

'.'. demultiplexing  of a received packet with a single 
X- hash-table lookup.  This is accomplished in the following 

manner: 

v (1)  We have introduced into the demultiplexing decision 
~n additional parameter, the logical stream number; 
this is a 32-bit number whose computation is 

•>' dependent upon the appropriate HLPM.  Thus, the IPP 
demultiplexes an incoming packet using the triplet: 

^ ( <internet host address (source host)>, 

<higher-level protocol>, 

<logical stream number>). 

(2)   When an incoming packet arrives,  the IPP  input 
routine uses the higher-level protocol number from 
the IP header to locate the corresponding HLPM. 
The IPP then passes the address of the segment to a 

.-j' "DEMUX" subroutine in that HLPM.  The DEMUX routine 
C generates an appropriate 32-bit logical  stream 

number (by looking at the header for its protocol) 
and returns the value to IPP. IPP finally performs 
the full demultiplexing for the message, using a 
single hashed lookup. 
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The demultplexing triplet is called an association and 
R corresponds to an active ICB. An ICB is created with a 

call to INTERNET OPEN, using the parameters: 

(<host id>, <PID>, <logical stream number>). 

f*-- Here <host id> is a one-byte handle for  the internet 
host,  and <PID>  is the protocol id, i.e., the one-byte 

■ handle for the IPB.  INTERNET CLOSE will delete the ICB. s 
The hash table uses the familiar chained-overflow scheme. 
That is, the hash table itself consists of a set of 
fullwords, each of which is the head of a chain of ICB's 
that hash into the same bucket. This scheme is simple 
and efficient, and allows ICB's to be easily deleted from 
the hash table in INTERNET CLOSE. 

It is expected that HI.PM's will choose logical stream 
numbers so that associations will be in one-to-one 
correspondence with connections. 

For example, TCP's logical stream number is 
composed of the two 16-bit numbers defining the 
source and destination ports. As a result, each 
TCP connection  (TCPB)  has its corresponding ICB. 

1 

5 

L 

For each connection, there will be a "higher-level 
protocol block", or hlpB; for example, TCP uses a TCPB. 
Therefore, we expect to always have a hlpB dualed with 
each ICB. 

To simplify the HLPM implementation, INTERNET OPEN is 
prepared to obtain main storage for the dual hlpB at the 
same time it obtains an ICB, making the two blocks 
contiguous. However, note that neither the IPP nor the 
HLPM's assume contiguity; instead, they use the fact that 
each control block points to the other. The space to 
reserve for the hlpB is a parameter in the IPB. Calling 
INTERNET CLOSE will free both the ICB and the hlpB. 

3.4.5.  Recursion and ICB Deletion. 

As explained earlier, the INTERNET INPUT and TIMEXPIR 
routines are called from INPTASK, and in turn call HLPM 
routines. Suppose one of the latter decides to close the 
connection being processed, i.e., it calls INTERNET CLOSE 
for the corresponding ICB. There is the danger of a 
logic error arising when the INTERNET routine, upon 
regaining control, attempts to access an ICB that has 
been deleted by INTERNET CLOSE. 

C 
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£ 
The solution to this synchronizing problem uses a "Lock" 

B? bit and a "Delete Deferred" bit in every ICB. 

(1)  Before calling the HLPM INPUT or TIMEOUT routine, 
... . the IPP will turn on the Lock bit in the ICB. 

tK (2)   Finding the Lock bit on, INTERNET CLOSE will not 
_ delete the the ICB,  only turn on the "Delete 
^j Deferred" flag bit. 

(3)   Upon regaining control, the IPP turns off the Lock 
:-•; bit and, finding the "Delete Deferred" bit on, 
|v calls INTERNET CLOSE again to actually delete the 

ICB. 

v     3.4.6.  Reassembly 

When a packet is received, the demultiplexing process 
just described chooses an IPB and an ICB. Next, the IPP 

tA must move this packet into  its place in a segment 
reassembly buffer, called an RAB.  The first 16 bytes of 

N an RAB are a Duffer header,  used  for controlling and 
•v chaining the buffer. 

E 

[" 

C 

Each ICB contains the head of a chain of active segment 
reassembly buffers for that association. The IPP 
searches this chain for a matching segment id, and 
obtains a new RAB if no match is found. Then the new 
packet is moved into its place in the proper buffer, as 
determined from the fragment offset field in the IP 
header. 

RAB's on the active chain may be in one of three states, 
as determined by a flag byte in the buffer header. 

* Filling — contains at least one fragment, but not 
completely reassembled. 

* PUH — fully reassembled, and passed to HLPM. 

* Emptied — marked processed by HLPM, may be freed. 

Fragments of a given segment may arrive in any order, may 
be duplicated, and may overlap in an arbitrary manner. 
Although there is no error check on the data, there is no 
reason to prefer the earliest over the latest version of 
a given byte. Therefore, the reassembly routine can 
simply move each fragment into its place in the buffer, 
possibly overlaying some earlier fragments. 

However, in order to determine whether the segment has 
been fully received, the IPP must create an auxiliary 
data structure for "bookkeeping" on the bytes in the 
buffer.  The IPP uses a linked list of 8-byte Reassembly 

<fc, it , ».. m ,   »— fc, - *— a— j— *., «_^ m.-M.m. »..-■ *..--■„. m- _ ■.— ^ . a. . i , jt ■ 
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K 
«3 Control Elements or RCE's for this bookkeeping.  Each RCE 

contains the first and last address of a contiguous block 
K of data.  Inserting a new fragment may add an RCE, modify 
H an existing RCE,  or coalesce two existing RCE's and 

delete one. It is believed that this algorithm works 
k"; well for  the most probable case, a few large fragments; 
>\ however, a detailed efficiency comparison with the bit 

map algorithm has not been made. 

The current IP protocol has a fixed maximum segment size 
:--'' for all  internet connections,  576 bytes including the 

internet header. Therefore all RAB's have the same fixed 
|-> size, 576-20+16= 572 bytes.  Possible extensions to allow 
t-'. varying segment sizes are discussed below under  "AREAS 

FOR FUTURE WORK". 

3.4.7. Reassembly Timeout 

Normally,  the INTERNET INPUT routine  (INTNETI)  will 
reassemble the fragments of a segment and pass the 

^ reassembly buffer to the higher-level protocol input 
routine. However, because of bit-errors in the 

rC transmission or lost packets in the networks, reassembly 
C! of a particular segment may never be completed. The IPP 

must time out such never-to-be-completed buffers. 

(I It is undesirable to pay the overhead cost of keeping  a 
logical timer on every RAB, since the timeout is to 
protect against a situation which is expected to appear 
only rarely, and which need not be corrected instantly. 
Therefore, a "watch dog" timing scheme was implemented. 
The present scheme scans all the r<AB's on all ICB's 

P roughly every 30 seconds.  A one-bit timeout counter  in 
■-•: the RAB flag field is used.  The bit is set in each scan 

and unset when reassembly is completed. If a scan finds 
the bit set, the buffer has remained for 30 seconds 
without completion of reassembly, and IPP returns it to 
the available chain on the IPB. 

3.4.8. Reassembly Deadlock 

Reassembly deadlock is a possibility in any IPP, due to a 
'y> finite supply of reassembly buffers.  At the  IPP  level, 
;% the  timeout of partially-reassembled buffers prevents an 

absolute deadlock.  However,  once a segment has been 
fully  reassembled,  the HLPM  is permitted  to keep it 

«\ (i.e., to not mark it emptied) until the order  required 
by  the higher-level protocol  is  satisfied.  This can 
easily lead to deadlock,  even  in the absence of any 

.-;" fragmentation,  if  segments  arrive  sufficiently out of 
L order. 

r 
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The solution is to include among the RAB header flags a 
"Potential Deadlock" bit. The IPP turns on this bit when 
the RAB it is handing to the HLPM INPUT routine is the 
last one allowed by the active buffer limit. The HLPM is 
required to examine this bit, and finding it on, to empty 
at least one RAB before returning to the IPP. This may 
require discarding a segment that has been received 
earlier. 

■ 
ti 3.4.9.  Buffer Pool Management 

:;-. In general, the segment reassembly buffers will represent 
'„■'-] one of the critical resources for internet operation,  so 

the algorithm used to manage them is very important. 
This algorithm should have the following properties: 

-^ * There should be a pool of RAB's shared by all 
associations under the  same  IPB  (higher-level 

\\ protocol) . 

* The size of a buffer pool needs to grow dynamically 
with the requirement for reassembly buffers. 

* No single association should be able to monopolize 
the RAB's in a pool or cause it tc grow unreasonably 

K large. 

* A pool should shrink as associations are deleted, 
;% (roughly) in proportion to the amount of the pool 
-\               used by that association. 

m These desiderata are met by the following scheme, which 
™ is used in the UCLA IPP implementation: 

(1)   Each IPB contains the head of a chain of available 
<i RAB's.  The pool consists of the available RAB's, 

plus all the active RAB's which are chained on the 
ICB's. 

KB 

:!;• (2)  The pool size is limited indirectly by a limit on 
the number of RAB's that an individual ICB can have 
on its active chain.  If this limit is reached, the 

•; INTERNET INPUT routine will fail to get a new RAB 
™ for a packet and may have to discard  it.   (This 

leads to a reassembly deadlock problem,  whose 
*.-'; solution was described earlier) . 

This per-ICB RAB limit is carried in each ICB, 
.• although it is  initialized from the IPB.  This 

[ would allow the IPP or a HLPM to adaptively modify 
the limit.  For example, if there  is a satellite 
link in a particular conversation, a greater depth 

■y'. of reassembly buffering  is required for  high 
bandwidth.  However, no such adaptive mechanism has 

C 
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been built yet, so all ICB's for a given IPB have 
the same active RAB limit. 

(3) When an RAB is requested for an association which 
has not reached its limit, but there are none on 
the IPB available chain, a GETHAIN is executed to 
add an RAB to the pool. In this way, the pool 
expands upon demand. 

S? However,  the expansion is "charged" to ICB whose 
L-" request forced it.  That is, an "expansion count", 

or count of the number of times its request forced 
a GETMAIN, is kept in each ICB.  This expansion 

':_■ count will be a rough average of the amount of the 
L~ pool that exists because  of  the  particular 

association. 

(4) After an association is deleted (by INTERNET 
CLOSE),  the pool will be reduced or "trimmed" by a 

v< number of RAB's equal to the expansion count of the 
fe deleted ICB. 

p It may not be possible to delete all of them 
•;-. immediately,  since an RAB cannot be deleted from 

the pool unless it is on the available chain. 
Therefore, a "trim-needed" count is maintained in 
the IPB; as RAB's are subsequently made available 
they are deleted until the "trim-needed" count is 
reduced to zero. 

This algorithm has several nice properties. First, it 
adds little overhead, requiring only two counters in each 
ICB and a "trim-needed" count in each IPB, and trivial 
CPU processing. Also, at any moment the sum over all 
ICB's of the expansion counts will be equal to the number 
of RAB's in the pool less the "trim-needed" count. This 
means that as the last ICB is deleted, the pool will 
exactly vanish. 

3.4.10. IWRE Pool 

We noted earlier that the IPP maintains a pool of IWRE's 
for the use of the HLPM's in sending data. Although the 
IWRE problems are not as severe, management of the IWRE 
pool has the same characteristics as management of the 
RAB pool, and therefore the RAB pool algorithms are used 
for the IWRE's as well. 

3.4.11. Starting a ULPP 

The HLPM may request the creation of a user or server 
session by calling the INTERNET START subroutine, passing 
a parameter list which contains: 

L 
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I 
* The contact port (complemented for user session); 

* PID and host id; 

* Local Socket Number and Remote Socket Number. 

Si * Exchange Window Id (for user session). 

■• Note that, except for the first item, this list defines 
j*!j the contents of the ICV parameters to be passed to the 

primary ULPP. 

"".•■ The contact port and PID are used as keys to obtain the 
primary ULPP module name from an "Internet Logger Table", 
or ILOGTAB.  ILOGTAB must be generated with entries for 

'!% all user-level protocols which are support IP.  This 
-**' table also specifies a small signed integer called the 

"socket offset",  which  is  designed  to  simplify 
rl; compatibility  between  AHHP sockets and TCP ports. 
IB INTERNET START adds the socket offset from the tabie to 

the Local Socket (Remote Socket) Number in the ICV, for a 
user session (server session,  respectively).  This  is 

K intended to compensate for the small integer offsets that 
AHHP uses in its socket subspaces. 

m The  INTERNET  START routine performs the following 
W operations: 

\>: * Assign a new session number; 
w 

f 

* Locate an ILOGTAB entry for the (contact port, PID) 

■ pair? 

* Create an ACE for the session; 

;\ * Issue PATTACH for the primary ULPP; 

* Apply the socket offset from  ILOGTAB  to  the 
7? appropriate ICV socket. 

* Pass the ICV parameters to the primary ULPP. 

"v If INTERNET START returns a code that indicates success, 
"* then the ULPP ptask has been created and will eventually 

go through AEXIT,  freeing  its NCP resources.  This is 
.'.; true even if the ULPP module cannot be loaded.  IPP has a 

timeout to ensure that the primary ULPP does start 
properly. If the ULPP does not issue an ALSTN call 
within the timeout period, the IPP will call PDETACH to 
force it through PEXIT (hence, AEXIT). 

L 
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f.     3.4.12. Timing 

I At an early stage of  the  design  of  the  UCLA 
implementation, we planned to have a separate timing 
ptask for each higher-level  protocol  that  needed 
timeouts.  Since INPTASK must provide a watch-dog timer 

;>• for the IPP,  a simpler design resulted from having 
INPTASK provide all timing services. It was also natural 
to attach a time interval to the ICB, since that is the 

W control block known directly to the IPP,  and would 
*b require no additional control blocks. 

:• The timer service that resulted operates in the following 
manner: 

(1) There is an IPP service, INTERNET TIMER, that the 
HLPM can call to define, change, or cancel a time 
interval for a given IC3. 

(2) When the time interval expires, the IPP calls the 
■ HLPM TIMEOUT subroutine. 

£ (3)   INPTASK also keeps track of its own watch-dog 
:•.; timeout interval,  and when it expires calls its 

internal watch-dog timeout routine INPIMEO. 

■ The   preeminent   higher-level  protocol,  TCP,  is 
^ timer-driven.  It is very important to keep timing 

overhead from becoming overwhelming as the number of 
y. connections increases.  To aid this problem,  the IPP 
"\ timing algorithms  include a minimum timing resolution 

called fuzz; its value, in units of 0.01 seconds, may be 
m found in the P3CB (P3FUZZ). The rules for timing are as 

follows: 

. t (1)  The HLPM cannot set a timeout interval less than 
£■ the fuzz; if it attempts to do so,  the actual 

interval will be equal to the fuzz. 

(2) INPTASK will consider any request for a timeout 
V                 earlier  than <current_time>+<fuzz> to be expired. 

Thus, if there are several  timeout  reauests for 
different ICB's on the aueue, all expiring within 

%• the fuzz, all will be timed out  (HLPM TIMEOUT 
** ca'.led)  before INPTASK calls PWAIT again.  Once it 

gets control,  the HLPM TIMEOUT  routine  must 
;•".-• consider  the <fuzz> if it tests to ensure that an 

interval actually expired. The P3CB contains both 
a pointer to <current time> and the value of 
<fuzz>. 

c 
(3) Setting a new timeout interval (e.g., with INTERNET 

TIMER call) is guaranteed to force a PWAIT before 
the HLPM TIMEOUT routine is dispatched again. This 
is to prevent inadvertant infinite loops when the 

r 
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HLPM resets the timer for a very small  interval. 

IPP also maintains a 30 second watchdog timer for the 
internet layer. When this timer expires, IPP scans all 
RAB's and times out any "stale" ones, as discussed 
earlier under "Reassembly Timeout". If the corresponding 
ICB has never had any segments successfully reassembled, 
the ICB is deleted. 

Finally, if there is an idle protocol (no ICB's chained 
from an IPB), INPTASK issues PDELETE for the 
corresponding HLPM and FREEMAIN for its control block 
subpool. 

3.4.13. Error Logging and Tracing 

The internet layer includes an error logging routine, 
invoked by the ERLOG macro [Bra79B]. This routine calls 
the ATRACE service to record the error in an appropriate 
log file. 

ATRACE is an A-Service for creating and using a trace 
buffer with variable-length entries. An internet trace 
can be enabled in IPP, to maintain a history of all 
internet segments sent and/or received. In addition, a 
HLPM can associate a trace buffer with every connection; 
however, there are some special provisions in the 
internet environment for this use of ATRACE; see the 
section below entitled "Tracing TCP Transactions". 

3.4.14. Statistics 

The IPP has provisions for gathering three classes of 
statistics. 

(1) In the P3CB, it keeps statistics on the number of 
packets received and the number discarded with bad 
checksum, expired lifetime, or other serious defect 
which prevents demultiplexing the packet. 

(2) In each ICB, the IPP keeps statistics on the 
performance of the IP layer. Specifically, it 
keeps the total count of segments sent, packets 
received, and segments reassembled, as well as the 
total bytes sent and reassembled. INTERNET CLOSE 
accumulates these five values in the IPB before 
deleting the ICB. 

(3) Each IPB has space for accumulating statistics 
which depend upon the higher-level protocol. The 
HLPM should call the INTERNET STATSUM macro to 
perform this accumulation before the hlpB is 
deleted. 

L 
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3.5.   IPP DATA STRUCTURES 

i 

w7. 

3.5.1.   P3CB 

The "P3CB", or "pseudo-control CCB", is the primary work 
and control area for INPTASK, hence for a particular IPP 

H instance.  As indicated by its name, the P3CB has a role 
P in the environmental control block chains which  is 

generally equivalent to the role of a control CCB under 
AHHP.  For compatibility with AHHP, therefore, certain of 

p the P3CB fields are fixed to match those of a (control) 
B2 CCB.  For example, P3ACE is the anchor of a chain of all 

internet ACE's,  and P3CPTA  (matching CCBPTA)  is the 
>-. INPTASK PTA address. 

i 

i 

c 

There is an important difference between the P3CB and 
control CCB's: the P3CB is not obtained dynamically but 
is resident and linkage edited into ARPAMOD. 

The P3CB contains global IPP information, such as: 

* <internet host address> for this IPP; 

* global segment id counter; 

* anchor of a chain of all IPB's (IPBLIST); 

* timer chain anchor; 

* value of the timing "fuzz"; 

* startup delay time for IPP (to allow old packets to 
disappear); 

* ANMOC parameters to -T~'1- up the internet packet filter. 

The P3CB also contain the outgoing logger interface, 
needed by the transient ptask INPOLOG to enqueue a 
request for INPTASK. In particular, the P3CB contains 
the address of an enqueue routine, the anchor of the OLQE 
queue, and the INPTASK PTA address. 

If there are multiple IPP's within the NCP, there must be 
a distinct P3CB (as well as A-Service transfer vector and 
IPBLIST) for each IPP instance. 

3.5.2.   IPB (LIST) 

For each higher-level protocol, there is an assembled-in 
IPB which contains (1) the information common to all 
active ICB'S for that protocol, (2) the default values 
needed to initialize a new ICB, and (3) control 
information for the protocol.  IPB's are used by IPP but 
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jg not by the HLPM's. 

« For example, an IPB includes: 

* Higher-level protocol number for IP header. 

* Character string (e.g., 'TCP') needed to construct the 
HLPM module name. 

pi * Head of a chain of all ICB's for associations using 
I;, this higher-level protocol. 

* Address of the transfer vector for the HLPM, once 
'-;" loaded. 

* Heads of chains of available RAB's and IWRE's. 

'""• * Summary statistics for both the IPP level and the 
higher-level protocol level. 

p * Parameters used to initialize the following ICB fields: 

Type of Service 

Internet options 

W Maximum send segment size 

Maximum number of RAB's per ICB 

';'.- Maximum number of IWRE's per ICB 

H The iPB's are resident, assembled and linkage edited into 
|? ARPAMOD. They are chained together  in a module called 

IPBLIST,  and the head of this chain appears in the P3CB. 

s;!     3.5.3.   ICB 

An ICB includes: 
L .' 

* Address of a companion higher-level protocol block 
("hlpB")  for  the association  (and,  generally,  the 

y, corresponding connection).  For TCP,  in particular, 
•.-; this will be a TCPB. 

* Address of the corresponding IPB. 

o * (a pointer to)  the <internet host address> of the 
remote host in the IHT, and the corresponding  internet 
host id. 

* Logical stream number. 
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* Chain of active RAB's for this association. 

* Hash table chain pointer. 

* Type-of-Service and option flags for sending segments 
on this association. 

* Maximum segment lengths for sending and receiving. 

* Pool control parameters: maximum numbers of RAB's and 
IWRE's for this ICB. 

* Timing control and queue fields. 

* Statistics kept by the IPP on this association. 

3.5.4. IHT 

The "host id" is a one-byte handle used to designate a 
particular internet host address and associated routing 
information. A host id is an index to a 
dynamically-created table of internet hosts currently 
communicating with the local host; this table is called 
the "Internet Host Table", or IHT. 

An IHT entry contains the internet host address plus 
routing information to locate the ARPANET gateway to 
reach that internet host. The routing information 
currently includes only the ARPANET host address, link 
number, and gateway-supports-Subtype 3 flag for a single 
gateway. 

3.5.5. INAMTBL 

Since the table of internet host names and addresses has 
the potential of growing very large, it is contained in a 
separate load module which can be PLOAD'ed when needed. 
Fortunately, the names of internet hosts are required 

p only for two purposes: 

* The outgoing logger maps a host name into its internet 
address and gateway address; 

* The name may be required for display, e.g., in a error 
message. 

.\ 
•*! In either case, the delay and cost of loading the table 

are tolerable. 
„*. 
£ The INAMTBL is designed to supplement but not replace the 
^ existing ARPANET host tables within the NCP.  Therefore, 

INAMTBL references ARPANET hosts by name rather than by 
number. INAMTBL contains entries for all named objects: 
internet hosts,  networks, gateways,  and higher-level 

'V' 
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protocols. Specifically, its entries make the following 
transformations: 

Internet Host Name => 

(Network   Name,   24-bit   address,  Default 
higher-level protocol name) 

Network Name => 

(Network Number, Gateway Name) 

Higher-level protocol name => PID 

Gateway Name => 

(Link number, Accepts-Subtype 3 Flag) 

E 
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3.6.   OUTGOING LOGGER FUNCTION 

The outgoing logger function is driven by a process outside 
the NCP and must accomodate a user at a terminal. It 
therefore accepts and parses a character string which 
defines the initial connection to be established and the 
host-host as well as the user-level protocol to be used. 

In the internet environment, this information may be 
specified in a variety of ways.  For example: 

(a) User specifies: <internet host name>, and 

<internet host name> implies network, 

which implies gateway. 

(b) User specifies:  <internet host address> and network, 

and network implies gateway. 

(c) User specifies: <internet host address>, network, and 
gateway. 

The syntax of the outgoing logger parameter string is 
therefore quite rich; see Appendix A. For ease of 
maintainance and future development,, the code to parse this 
string was packaged in a transient module, INPOLOG. The 
syntax of the logger parameter string was designed to be 
compatible with the AHHP outgoing logger, so that INPOLOG 
can eventually replace the existing AHHP parsing code in 
LOGGER. The interface to AHHP has not been completed, 
however. 

INPOLOG builds a control block called an Outlog Queue 
Element (OLQE) describing the request; the OLOE contains no 
text, only numbers. INPOLOG enqueues the OLQE for INPTASK, 
calls PPOST to signal INPTASK's ATTN semaphore, and 
vanishes. 

Finding an OLQE in its outgoing logger queue, INPTASK 
passes the OLQE to the INTERNET OUTLOG routine, which in 
turn passes it to the outgoing logger routine of the 
appropriate HLPM. 

Notice that the INPOLOG transient ptask is directly 
inferior to LOGGER and operates in the AHHP environment, 
not the internet environment. INPOLOG must be able to find 
the P3CB in order to enqueue an OLQE; for this reason, the 
address of the P3CE appears in the AHHP A-service transfer 
vector. 

! 
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3.7.   AREAS FOR FUTURE WORK 

I 
3.7.1. Segment Id Assignment 

«V The current implementation assigns segment id's using a 
& global 16-bit counter. This will be adequate for an 

internet host on the ARPANET with a modest number of 
^ active connections.  The minimum packet size (IP header 
*.$ plus ARPANET leader) is 256= 2**8 bits, so one can send 

at least 2**24 = 16 million bits before the segment id 
- recycles. With average bit rates of less than 10**5 bits 

;"-> per second, maximum packet lifetimes must be less than 
^ 160 seconds. ARPANET packets have a lifetime under this 

limit. 

•- One could conceive of circumstances which use up segment 
id's too fast.  For example, two internet hosts might be 

•-; connected via a link capable of 10**7 bits per second. 
f* However,  such high bandwidths do not appear to be 

feasible within the present hardware/software context of 
the IBM implementation of an ARPANET IP/TCP. If the 
implementation were adapted to such a high-bandwidth 
application, attention would need to be paid to the 
segment id assignment. 

~ It would be trivial to have a separate segment id counter 
for each higher-level protocol, in ehe IPB's.  At the 

£■£ present time, it appears that there are not likely to be 
o) more than a few higher-level protocols, and even fewer 

that consume many segment id's, so a separate counter per 
■ higher-level protocol would not conserve segment id's 
■■ significantly. 

A much more useful alternative would be to associate a 
y.                              segment id counter with each active internet host, 

storing it in the IHT. This would be an easy extension 
of the current code. 

';-• Finally, one might hope the worst case would not arise. 
If one were to send a very large amount of data so 
rapidly as to make the packet lifetimes comparable to the 

S cycle time for the segment id space, one would hope that 
~" the user-level protocol and the IBM system would send 

maximal-sized segments (576 bytes). This would increase 
\- the average packet  size  towards  4800  bits,  an 

order-of-magnitude change from 256. 

3.7.2. Gateway Link Numbers 

The present implementation makes the presumption that IP 
will use a fixed ARPANET link number,  accepted by all 

£■ ARPANET gateways and IPP's.  However, the internet name 
table (INAMTBL) does specify a link number  for every 

L 
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KS gateway,  and the outgoing logger inserts this value in 

IHT for use by the session. This will allow the UCLA IPP 
ra to contact an experimental IPP which uses a different 

link.  However, the incoming logger has no corresponding 
mechanism to map the gateway host number into a link 

,% . number. Such a mechanism could easily be added,  but 
[£s there is no requirement for it at present. 

3.7.3.  Type of Service 

The IP Header contains a type of service (TOS) field, 
which is intended to be interpreted  in an appropriate 

•.; manner  by  each  packet network which the segment 
traverses. On the ARPANET, the TOS field must select 
either Subtype 0 or Subtype 3 packets. 

The current specification for TCP [PosTCP] is incomplete 
in describing the use of TOS, and this is an area in 
which further protocol developments are likely. 
Furthermore, a number of the current IPP implementations 
on the ARPANET do not support Subtype 3 packets, but all 
support Subtype 0. Therefore, the UCLA IPP implements 
TOS in the following simple manner: 

* The information kept in IHT for an ARPANET gateway 
includes, in addition to the internet link number and 
24-bit host address, a flag bit which indicates whether 
this host can accept Subtype 3 packets. In the case of 
a connection initiated by the outgoing logger, this 
information is obtained from the permanent Internet 
Name Table (NAMTBL). For a session initiated remotely, 
if the first packet arrives with Subtype 3, then the 
Gateway from which it came is assumed to accept Subtype 
3 packets. 

* The TOS byte in the ICB is defaulted to X'361, 
speed-over-reliability. 

* INTERNET OUTPUT sends a segment with Subtype 3 if the 
IHT flag indicates that the gateway can accept Type 3 
packets and if the TOS bit indicating 
speed-over-reliability is on in the ICB; otherwise, the 
segment is sent with Subtype 0. 

It would be useful in the future to define a new IPP 
service to allow a ULPP to change the default TOS. Note 
that it is not sufficient to simply change the TOS field 
in the ICB; the maximum send segment length must also be 
computed, since Subtype 0 and Subtype 3 packets have 
different limits. Furthermore, notice that the receive 
segment length is not affected by using Subtype 3; a 
remote IP may send segments of up to 576 bytes, 
fragmented to fit into the 113 byte limit of Subtype 3. 
A reassembly buffer must accomodate the maximum segment, 
regardless of the subtype. 

it 
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Ideally, a ULPP should have a parameter to specify the 
TOS when it opens a new connection. The current ALSTN 
parameter list, constrained by a requirement for 
compatibility with AHHP, has no provision for such 
information. A reasonable solution would be to use the 
PID (protocol ID) to specify the TOS variables as well as 
the higher-level protocol. Each higher-level protocol 
will probably use only a few different values of the TOS 
byte; the TOS space is much richer than is currently 
useful. Hence one byte should in principle be sufficient 
to specify both. 

We considered using a separate IPB for each (TOS, 
higher-level protocol) pair, so that different TOS 
classes could have different reassembly buffer pool 
parameters. On the other hand, the different TOS classes 
could not share buffer pools if they used separate IPB's, 
and a given connection could not change its TOS after it 
was opened. This approach was therefore rejected. 

3.7.4.  Fragmentation by the HLPM 

The present IPP  implementation has no mechanism for 
fragmenting packets, leaving this task to the HLPM. As a 
result,  the higher-level protocol  header  must be 

2 I            duplicated in each "fragment" (segment).  This leads to a 
bandwidth penalty which becomes significant when TCP 
segments are sent using Subtype 3 packets. 

>• 

A Subtype 3 packet may contain 113 octets exclusive of 
the ARPANET leader, and the internet header normally 
consumes 20 octets out of the 113. If the IPP were 
fragmenting 576-octet TCP segments into Subtype 3 
packets, the efficiency would be approximately 93/113 = 
82%, since the TCP header length of 20 is negligible 
compared to 576. If we consider the fact that 
fragmentation takes place on 8-octet boundaries, a more 
accurate efficiency figure is 88/113= 77%. On the other 
hand, the present implementation will have an efficiency 
of only 73/113 = 64%. 

We conclude that Subtype 0 (standard) messages should be 
used for applications like file transfer in which high 
efficiency is important. Alternatively, the IPP could be 
extended to fragment segments. Using an internal pool of 
IWRE's, INTERNET OUTPUT would generate and send to AGAWO 
all fragments of a segment, and return to its caller. 
Either the IPP would need to set a timer to poll for 
completion, or the HLPM would have to call a new INTERNET 
CHECK service to test for completion of its output 
request. 

'■■*-1^-''-*"• *■'-*'->*■'"-■'-**■ *•'-»'-**-*'- —»- -' •*-»'- ■•-*-'-'»•-'»'"-•-"-'-■• *-**-• '-• '-• *.-'--'-• ~-f --•.-*.>*.«**..«*•.■>■.«.'-■,-'■ 
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3.7.5.  Reassembly Buffer Sizes 

Every IPP is required by the protocol definition to be 
able to reassemble segments of 576 bytes (including the 
IP header). There is currently no protocol mechanism 
defined in either IP or TCP to negotiate any larger, or 
smaller, segment size. We believe this to be a 
significant omission. For applications like Telnet, 576 
byte buffers will often be mostly empty, while 
higher-bandwidth operations like file transfer will 
benefit from larger segments. 

Furthermore, much of the internet traffic will not 
require reassembly, in which case the segment could be 
moved into a buffer which is just large enough for the 
actual segment. Therefore, a mechanism which handled 
variable segment sizes would save buffer space even in 
the absence of a negotiation protocol. 

In the present UCLA implementation of IP/TCP, all 
reassembly buffers in the pool for a given higher-level 
protocol (IPB) must have the same size. There are three 
possible ways to provide for varying segment sizes: 

(1) Multiple fixed-size buffers per segment; 

(2) Varying buffer sizes within a pool; 

(3) Multiple pools per IPB. 

Either would require modifications and extensions to the 
IPP. Further design work is necessary choose the best 
approach and to develop efficient algorithms. 

3.7.6.  Time to Live 

The present reassembly timeout scheme uses a marker bit 
to time out a buffer in 30 to 60 seconds. The timeout 
period should not be fixed, but should be tied to the 
Time-to-live field of the IP Header. At present, the 
Time-to-live field is not treated very seriosly by most 
IP implementations; however, it is potentially useful for 
controlling packet lifetimes. Packet lifetimes are in 
turn related to the segment id space, as discussed 
earlier. 

The marker bit could be thought of as a 1-bit counter. 
There is room in the flag byte to make this a 4-bit 
counter. This would allow us to use the Time-to-live 
value for buffer timeout, in units of 16 seconds. 

3.7.7.   Internet Routing 

-■»— * 
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The problem of routing packets through multiple networks 
is still an area for research. As general solutions are 
found, the UCLA implementation of IP will need to 
incorporate them. 

The present implementation keeps the simplest routing 
S information for an active internet host: a single ARPANET 

gateway address. When a session is initiated by a remote 
m host, the source ARPANET host address of the first packet 
£sj is taken as the gateway.  The outgoing logger depends 

upon INAMTBL or explicit definition of the gateway. 

!-;• In many cases, there will be two or more gateways which 
^ can reach a given host.  If a gateway host which is being 

used goes down, the IPP will receive a DEAD HOST message 
&\j from the ARPANET.  This could be used as a signal to 
EL-I choose an alternate gateway. 

■rp. Any extension of the routing facility would begin with a 
f* significant extension to the IHT data structure.  In 

addition,  a new fixed table would be defined to map 
network numbers into lists of possible gateways. 

3.7.8.  Internet Name User 

m As pointed out earlier, the Internet Name Table (INAMTBL) 
.■ is included in a transient module because it is expected 

to grow large. In the future, it will probably be useful 
to employ the Internet Name Server protocol [PosINS], to 
consult a centralized directory of internet hosts. It 
would be natural to extend the INAMTBL lookup routines to 

_ contact an Internet Name Server when a local search 
™ fails.  Alternatively,  an Internet Name Server could be 

implemented locally. 

':'• 3.7.9.  Miscellaneous Unimplemented Features 

There are several planned features of IPP which have not 
~ yet been implemented. 

* IP Error Options 

!;; IPP currently discards an erroneous internet packet 
■* without reporting the error to the remote host.  The 

error option [PosIP] has not been implemented. 

S; * Partially-Specified Associations 

It should be possible for a HLPM to request a 
partially-specified association. For example, a TCP 
user may want to "listen" for a connection with any 
remote port number on a given internet host. At 

JS present,  the primary hash table mechanism used for 
demultiplexing in IPP requires that the association be 

u 



&M December 15,  1979 — OAC/TF20 
PAGE  69 

r> 
s." 

fully specified. 

* Multiple IPP's 

As we pointed out earlier, the IPP design allows 
multiple concurrent IPP's with different logical host 
numbers. However, the necessary code to start multiple 
IPP's has not been added to the INTERNET ptask. 
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4.   TCP LAYER DESIGN 

TCP is an internet host-host protocol that provides reliable 
connection-oriented communication paths between processes 
[PosTCP]. TCP assumes the existence of the Internet Protocol 
IP for data transport [PoslP]. 

The UCLA implementation of TCP is contained in the load 
module TCPMOD, which is a particular instance of a HLPM 
(higher-level protocol module). This section describes the 
design of TCPMOD. We assume a general knowledge of the 
design of the internet protocol program (IPP). 

4.1.   TCPMOD FUNCTIONS 

To implement TCP, TCPMOD must provide the  following 
functions: 

* Data Transfer— 

packetize data to be sent to a remote internet host, 
i.e., split the data stream into blocks called segments. 
TCPMOD must buil^ a suitable TCP header in each segment 
and request the IPP to send the segment as a datagram. 

The segments which TCPMOD receives must be ordered and 
duplicate data must be deleted before the data can be 
made available to the appropriate User Level Protocol 
Process (ULPP) for the connection. 

* Reliable Communication— 

provide reliable communication by means of sequence 
numbers and acknowledgments (ACK's), protected by a 
checksum over the entire segment. TCP provides 
full-duplex communication paths, and TCPMOD attempts to 
"piggy-back" the acknowledgments on data segments going 
in the reverse direction. TCPMOD is timer-driven to 
retransmit data which has not been acknowledged within a 
suitable time interval. 

* Flow Control— 

provide  flow control by means of windows in the sequence 
number  space.  TCPMOD must set its receive  window 
suitably, and it must obey the send window set by the 
remote TCP. 

* Connections— 

create logical data streams called connections. For 
reliable operation, TCP uses a "three-way handshake" 
(i.e., 3 messages) during both establishment and 
termination of a connection. 

! 
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create logical data streams called connections. For 
reliable operation/ TCP uses a "three-way handshake" 
(i.e., 3 messages) during both establishment and 
termination of a connection. 

'■'\ The connection states of TCP are reflected to the 
""•> internet ULPP's  in a manner which  is  essentially 

compatible with AHHP connection logic. 
m 

* Logger— 

perform the final steps in the incoming logger and 
outgoing logger  functions,  creating new sessions  in 

^ response to remote and local requests. 

1-*; * Urgent— 

provide  an  out-of-band signalling mechanism called 
rj? "urgent".  TCPMOD must be able to send and receive 
f*j "urgent" data. 

•j For each active TCP connection, there is a corresponding 
*;■ internet association;  as a result, there is an ICB dualed 

with each TCPB. In practice, the (ICB, TCPB) pair will be 
contiguous, but no routine depends upon contiguity. The 
structure of a TCPB is constrained to be compatible with a 
CCB, as described in Appendix C. The IPP has no knowledge 
of the internal structure of the TCPB (other than its total 
length); on the other hand, the TCPMOD routines may read 
but generally not change the contents of the ICB. 

A TCPMOD routine is always invoked to operate on a 
particular connection, denoted by the address of its TCPB 
or equivalent ICB. TCPMOD may be considered to be a 
reentrant finite-state machine, driven by the state of the 
given connection using a (conceptual) transition matrix. 

TCPMOD provides a Network I/O interface to the ULPP's like 
that provided by AHHP: 

* Output is transmitted by reference. That is, the ULPP 
specifies the addresses and lengths of data chunks in its 
buffers. These data pointers are passed through 
successive protocol program layers — TCP, IP, and AGAWO 
— and finally inserted into hardware channel programs 
which send data to the IMP. 

* Input is provided in a circular buffer associated with 
the connection. The ULPP moves data from this buffer, 
and then calls ARLSE (the "Release" A-service) to 
indicate consumption of the data. 
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4.2.   TCPMOD INTERFACES 

It is helpful to review the interfaces between TCPMOD and 
the rest of the NCP. 

4.2.1. INTERNET Services 

TCPMOD may invoke any of the IPP ("INTERNET") services 
[Bra79B] discussed in the section "INTERNET LAYER 
DESIGN". Note that these IPP service routines are 
strictly synchronous; that is, they never issue a PWAIT 
call and therefore do not give up control to another NCP 
coroutine. 

4.2.2. HLPM calls from IPP 

As discussed previously, the IPP uses the HLPM macro with 
the options: INPUT, TIMEOUT, OUTLOG, DEMUX, and PURGE to 
call the corresponding TCPMOD subroutines; see Figure 5. 
These calls assume that the corresponding TCPMOD 
subroutines appear at canonical offsets on a transfer 
vector, TCPTRV; TCPTRV is linkage edited into TCPMOD and 
is the entry point of the module. 

4.2.3. ULPP Interface 

The ULPP's interface to TCPMOD through the A-services, 
which form the compatibility interface. As described in 
the section "INTERNET LAYER DESIGN", the compatibility 
interface includes two layers, the ARPIxxxx routines 
which are considered part of the IPP and are included in 
INTMOD, and the corresponding HLPM routines. The 
compatibility interface includes the following chains of 
calls for TCP (here "->" means "calls"): 

* ALSTN macro -> ARPILSTN -> TCLSTN 

"Listen", i.e., create TCPB and initiate passive open. 

* AOPEN macro -> ARPIOPEN -> TCOPEN 

Initiate active open, or complete passive open of TCP 
connection. 

* ACLOSE macro -> ARPICLSE -> TCCLSE 

Close or abort specified TCP connection. 

* ASEND macro -> ARPISEND -> TCSEND 

Send data on specified TCP connection. 

c 
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* ARLSE macro -> ARPIRLSE -> TCRLSE 

Release data from circular buffer for specified 
connection. 

* AINT macro -> ARPIINT -> TCAINT 

Mark last data sent as (end of) urgent; approximately 
simulates sending the out-of-band interrupt signal of 
AHHP. 

The interfaces between these ARPIxxxx routines and the 
corresponding TCxxxx routines do not have the same degree 
of intellectual credibility or stability as the rest of 
the IPP/HLFM interface [Bra79B]. Thus, the division of 
function between the IPP level and the TCP level of the 
compatibility interface has changed a number of times 
during the development of TCPMOD; it may change further 
when and if some other connection-oriented higher-level 
protocol is implemented, or when a different 
(non-compatible) user interface to TCP is designed. 

The minimal function of an ARPIxxxx routine is to locate 
the corresponding HLPM routine by following the control 
block chain from the TCPB (whose address is a parameter 
to most connection-oriented A-services) to the ICB to the 
IPB, to obtain the address of the HLPM transfer vector. 
The exception is ARPILSTN, which maps a given protocol id 
into an IPB and then issues INTERNET LOAD to PLOAD the 
corresponding HLPM if necessary. 

Since the ARPIxxxx layer will be the same for all 
higher-level protocols, it is tempting to assign further 
function to the ARPIxxxx routines. This approach would 
attempt to model the semantics of the problem — the 
ARPIxxxx routines would perform those functions which 
related to the control block environment, leaving to the 
HLPM layer all functions related to the higher-level 
protocol. This approach came asunder a number of times, 
when the particular manipulations of the environment were 
found to depend upon information specific to TCP. This 
required either moving those manipulations to the HLPM 
layer of the compatibility interface, or providing more 
complex interactions between the two layers. 

Another, and sometimes conflicting, design approach is to 
use the IPP layer only to economize on code — factor out 
of the TCPMOD routines those functions which (we imagine) 
every connection-oriented HLPM would need. This would 
include standard validation of parameters. 

- * - * - ~ -' •  - * - ~* ** -*.»•_ -'****-' ^'»* - * »' ~ * » V. 
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The current ARPIxxxx routines generally validate 
parameters, locate the HLPM, and call the corresponding 
HLPM (TCxxxx) routines. However, some of them (e.g., 
ARPICLSE) do perform significant manipulations of the 
environment. A single clear model for designing these 
interfaces is still lacking. Therefore, in the following 

31 we will discuss the compatibility A-services without 
making a distinction between the IPP and HLPM parts of 
each. 

4.2.4.  P-Services and A-Services 

TCPMOD routines are permitted to issue PWAIT calls and 
bypassed SVC operations, giving up the commutator. 
TCPMOD also uses some A-services, including ABUF 
(get/free a circular buffer), ACLOSE, and APURGE. Notice 
that the last two actually call other TCPMOD routines 
through the compatibility interface; TCPMOD must avoid 
recursion from these calls. 

4.3.   TCPMOD FUNCTIONS 

We will now describe  in more detail the algorithms that 
TCPMOD uses to perform its functions. 

4.3.1.  Sending Data 

To send data on a particular TCP connection, a ULPP 
issues the ASEND macro, calling ARPISEND which calls 
TCSEND. The parameter list to this call is a Write 
Request Element (WRE) that specifies: 

* The address of the TCPB for the connection. 

* A list of one or more buffer extents, i.e., 
(address,length) pairs whose catenation defines the 
data area(s) to be sent; and 

* An "Urgent" bit and a "Not-EOL" bit. 

This WRE must be compatible with AHHP; the only fields 
that differ are the two TCP-specific control bits Urgent 
and Not-EOL (Not-End-of-Letter). The corresponding bits 
will always be zero in the AHHP environment, so the 
default for compatibility is not-Urgent and EOL (i.e., 
each ASEND call sends a letter). To break a letter into 
several system calls, a ULPP must have TCP-dependent code 
to turn on the Not-EOL bit. r 

% _•*■ . 
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The send routines (ARPISEND, TCSEND) basically enqueue 
the WRE on the tail of the Send Queue, whose queue 
pointers (TCPSENDQ) are in the TCPB, and then return to 
the caller via TCPACKT, the packetizer subroutine. 

l-I;.    4.3.2.  Packetizing Output 

Output is "packetized", i.e., divided into segments for 
|J! transmission (and possible retransmission) by the TCPACKT 
!•;■ routine in TCPMOD. As illustrated in Figure 6, TCPACKT 

is primarily concerned with two queues of WRE's: the Send 
Queue and the Segment Queue. The Send Queue contains the 

IV WRE's defining the data to be sent. The Segment Queue 
contains (I)WRE's for segments that have been sent at 
least once on the ARPANET but have not yet been fully 

\-'\ acknowledged by the receiver;  thus,  the Segment Queue 
functions as the "retransmission queue". 

TCPACKT divides the data in the Send  Queue  into 
E maximal-size segments which will fit into the current 

send window.  Each new segment is described by an IWRE, 
which is a WRE extended to include space for a TCP header 

>\ and an Internet Protocol header. The IWRE is used as the 
parameter list and queueing element for sending the 
segment originally and,  if necessary,  for subsequent 

■ retransmissions. 

.".- 

I 

TCPACKT appends each IWRE representing a new segment on 
the Segment Queue and then calls a subroutine (TCSEGOUT) 
to send it to the remote TCP. See Figure 7 for the major 
call paths for sending data. TCSEGOUT forms a TCP header 
containing the latest ACK and urgent information and a 
checksum, and then calls INTERNET OUTPUT to send the 
segment as a datagram. 

TCPACKT continues this process until it exhausts the data 
in the Send Queue or reaches the right edge of the send 
window or is unable to obtain another IWRE. As discussed 
under "INTERNET LAYER DESIGN", the IPP does not fragment 
segments to satisfy the ARPANET constraints. Instead, it 
sets the limit in the ICB, and TCPACKT uses this value as 
the maximum segment size. 

TCPACKT has a number of auxiliary functions,  including: 

* Send <SYN> on first segment. 

* Send <FIN> bit on last segment. 

* Send <RST> segment. 

•-- -- 
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* Send empty <ACK> segment. 

* Special processing if the send window is zero (see 
below). 

* Mark a packetized segment with "end-of-letter" when 
appropriate. 

TCPACKT is entered: 

* By TCSEND when a new WRE has been appended to the Send 
Queue; 

* By various TCPMOD routines to send a control message 
specifying <SYN>, <RST>, or <FIN>, or to send an empty 
<ACK> segment; 

* By the HLPM INPUT routine TCPIN whenever a segment is 
received (and the connection is in a state that allows 
data to be sent). The <ACK> and window fields of the 
segment will have been used to update the corresponding 
TCPB fields before TCPACKT is called. 

Segments which contain no data (e.g., empty <ACK> 
segments, and <RST> segments) must be handled specially, 
since they are never acknowledged by the remote host and 
are not retransmitted. Such segments are not placed in 
the Segment Queue; instead they are placed on the No-ACK 
list. When the Gateway has completed sending a segment 
to the IMP, it marks the WRE "Completed" but does not 
signal TCP. Therefore, TCP must use a timeout mechanism 
to inspect IWRE's on the No-ACK list and free all which 
are marked "Completed". TCPACKT looks first on the 
No-ACK list for an IWRE. This optimization is likely to 
succeed when a sequence of empty <ACK> segments are being 
sent. 

'•-*•- 
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Figure 6 — Queues Manipulated by TCPACKT 
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Figure 7 — Major TCPMOD Modules 
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4.3.3. Receiving Acknowledgments 

TCP segments are received by the IPP,  reassembled,  and 
r<i . passed to the HLPM INPUT routine TCPIN.  A segment 
£> generally includes an <ACK>  field to acknowledge data 

sent by the local host. To effect the acknowledgment, 
TCPIN calls the TCGOTACK subroutine; see Figure 7. 

'■'_- TCGOTACK compares the latest <ACK> information with the 
sequence number fields of the WRE's on the Send Queue and 

r-.; the IWRE's on the Segment Queue, and deoueues all that 
'"; are fully acknowledged.  Each dequeued IWRE is freed by a 

call to INTERNET FREEWRE. When a complete WRE on the 
Send Queue has been acknowledged, TCGOTACK marks the WRE 

;; "Complete" and then calls PPOST to signal the OUTPUT 
semaphore of the ULPP that called ASEND. 

4.3.4. Retransmission 

Retransmission timeout is under control of the IPP timer 
service. When one or more IWRE's are enqueued on the 
Segment Queue of any active TCPB, TCPMOD will have 
scheduled a retransmission timeout interval. The IPP 
calls the HLPM TIMEOUT routine (TCTIMEO) when this 

W interval expires. 

TCTIMEO checks the Segment Queue and calls TCSEGOUT to 
retransmit each segment that has expired. TCSEGOUT 
builds a new TCP header for each segment, to send the 
latest <ACK> and window information. Finally, TCTIMEO 

m frees all completed IWRE's from the No-ACK list,  and 
arranges to reschedule the timer for the next timeout. 

Notice that we do not generally re-packetize the data for 
v retransmission  (except in one special case, described 

later), although the queue organization would allow us to 
do so.  The original WRE's from which segments were 
formed by TCPACKT are still in the Send Queue;  TCTIMEO 

V could empty the Segment Queue and call TCPACKT to 
repacketize the Send Queue. 

The retransmission scheme operates  in  the following 
"* manner. 

■'•; (1)  Generally,  the retrasnmission timeout interval is 
computed as f(R,N), where: 

* R is a measure of the "round-trip delay", 
including both network delay and host processing 
time. 
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* N is a count of the number of times the segment 
has been retransmitted while no <ACK> has 
arrived. Generally, f increases with N, the 
"backoff count". 

The function which is currently implemented is: 

if window = 0 then SLOWTIME else 

max( min(R, FASTTIME) * 2**(N+a), 

SLOWTIME) 

Here SLOWTIME provides a lower limit on the 
measured round-trip time, while FASTTIME is an 
upper limit on the retransmission time. The 
constant "a" is a small positive integer. 

Thus, this formula provides "exponential backoff" 
for retransmission. The first retransmission will 
be larger than the measured R by a factor of 2**a. 

(2) The round-trip time R is measured by maintaining an 
exponential average of the round-trip times of 
individual segments. We chose t-* define the 
round-trip time as the time interval from 
packetizing the segment until it is fully 
acknowledged; however, if more than 1 
retransmission is required, the time interval is 
omitted from the average. 

The exponential weighting factor has the form: 
2**-b, where b is a positive integer generated in 
the P3CB. It would be useful to try different 
values for b experimentally. 

(3) Whenever a new segment is packetized (presumably 
reflecting new window information), TCPACKT will 
retransmit any segments already on the Segment 
Queue that have already been retransmitted at least 
once. The fact that the remote TCP has enlarged 
the window without acknowledging all previous data 
is taken as evidence that an earlier segment was 
lost in transmission or discarded by the remote 
TCP. This provision removes a possible long delay 
in recovering when the remote TCP comes alive after 
being very slow, given the exponential backoff. 

(4) We do not maintain a separate timer for each 
segment in the Segment Queue; instead, the first 
segment in the queue controls the retransmission 
timeout interval for all in the queue. 

L 
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Suppose that the first segment does time out after 
an interval Q and is retransmitted; all segments 
below it in the Segment Queue which have been 
waiting at least Q since their last transmission 
are also retransmitted. 

These rules deserve further comment. The decision to 
include the time for (one) retransmission in measuring P 
means that retransmissions tend to lengthen the timeout 
period. The assumption here is that retransmissions due 
to network losses will be at a low, relatively constant 

;.; rate.  However, as the timeout interval  decreases, 
[> congestion in host processing will become dominant and 

retransmissions will rise rapidly. The scheme described 
■v here attempts to back off from such host congestion. 
I* ■ 

The formula shown above depends upon the assumption that 
the distribution of delay times is fairly narrow, and is 

v roughly proportional to the delay time.  In fact, current 
ß use of the UCLA TCP has been confined to networks with 

low delay, so that the host processing time is probably 
vj dominant;  in this case,  FASTTIME  should dominate the 

formula. 

Suppose that segment "A" has been packetized and 
transmitted once, and the next segment "B" is packetized 
before "A" is acknowledged or times out. Then "B" will 
not be timed out and retransmitted until the second 
retransmission of "A". After that, "A" and "B" will be 
retransmitted together, until "A" is finally 
acknowledged. At that time, "B" will revert to fast 
retransmission, since the <ACK> will clear N. 

4.3.5. Zero Send Window 

The TCP protocol requires special action when the send 
window is zero — retransmit one byte of data "slowly" 
[PosTCP]. Finding data in the Send Queue, no IWRE's in 
the Segment Queue, and a zero window, TCPACKT packetizes 
1 byte; however, this segment is not sent, but is left on 
the Segment Queue for transmittal after a long timeout 
period by the normal retransmission mechanism. 

If the window opens before the 1-byte segment times out, 
TCPACKT never sends it; instead, it effectively backs up 
the window and repacketizes the byte. This is the only 
case in which data is repacketized. If the window opens 
after the 1-byte segment has been sent, it is 
retransmitted again immediately before the new segment. 

4.3.6. Purging Network Sends 

I 
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The APURGE service in the compatibility interface is used 
to "purge" TCP send operations for a given TCPB. 
ARPIPRGE purges the outgoing Gateway queues by calling 
ACPX HALTIO, then calls TCPRGE. TCPRGE purges the TCPB 
output queues: the Send Queue, Segment Queue, and No-ACK 
list. (Note that in this case the semantic layering of 
the compatibility interface is clean). 

Unlike its AHHP cousin, APURGE under TCP does not affect 
the receive side of the connection. 

4.3.7.  Receiving Input 

The HLPM INPUT routine TCPIN is called by IPP when a TCP 
segment is received.  The parameters in this call are: 

i 

* the address of the reassembly buffer  (RAB)  containing 
the segment; 

* the address of the association's ICB (which points to 
the TCPB for the connection); and 

* a pointer to the IP header  (required  for the TCP 
checksum). 

TCPIN checksums the segment and discards the i gment if 
the checksum fails. Further processing depends upon the 
state of the connection. If the connection is in other 
than the Established state, special processing may be 
required for opening or closing the connection. 

In the Established state, TCPIN checks the Packet 
Sequence number and length against the current receive 
window, to determine whether the segment is acceptable. 
To be acceptable, a segment must overlap the receive 
window in some manner (this is a more general definition 
than is required by the protocol [PosTCP]). An 
unacceptable segment is discarded. An acceptable segment 
is first truncated on the left to the current left window 
edge, and then TCPIN attempts to move it into the ULPP's 
circular receive buffer. 

4,3.8.   Reassembling Input 

A segment may arrive out of order. TCPIN could move the 
data into the circular buffer and then use a bookkeeping 
mechanism (e.g., linked lists of RCE's or a bit map) to 
keep track of "holes". In the interest of simplicity, 
however, TCPIN simply queues any out-of-order RAB's 
internally, until they can be moved in order into the 
user's circular buffer. This approach has the 
disadvantage of possibly holding unnecessary buffer space 
in the case of frequent out-of-order transmission with 
small segments.  If experience shows this to be a serious 
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Ky the data is moved into the buffer, and the RAB is marked 
•"'• "emptied".  If the data is out of order, however, the BAB 

is placed on an out-of-order list, in order of initial 
M sequence number.  This queueing uses an available field 
ra in the RAB header. 

resource problem, a more elaborate reassembly mechanism 
can be added to TCPIN. 

Thus, given an acceptable segment containing data, TCPIN 
tests whether the data is contiguous with the last 
information placed in the user's circular buffer. If so, 

Whenever data is moved into the circular buffer, the top 
RAB in the out-of-order list, if any, is truncated on the 
left, and if it is now contiguous it is removed from the 
out-of-order list and its data is moved into the circular 
buffer. 

This algorithm handles overlapping as well as misordered 
segments. 

Reassembly deadlock must be avoided. When the count of 
buffers queued internally by TCP reaches the limit on 
reassembly buffers per connection, IPP marks the last RAB 
with a "Deaclock Possible" bit. When this bit is on, 
TCPIN must return at least one RAB, even if one must be 
discarded. It takes care to return the one with largest 
sequence number. The sending TCP will eventually 
retransmit the segment in the discarded buffer. 

Note that this mechanism will quite happily queue a 
segment which is partly beyond the space in the circular 
buffer. In fact, if the segment passes the 
"acceptability" test, the out-of-order queueing algorithm 
would happily queue data which is totally beyond the 
right window edge (although the remote TCP is not 
supposed to send such data) . 

4.3.9.  The Receive Window 

TCPMOD exercises flow control over the input data stream 
by specifying a receive window size to the remote TCP. 
The present TCPMOD implementation uses the conservative 
windowing strategy, i.e., it "advertises" a window which 
is exactly eaual to the available space in the circular 
buffer. 

In order to get high bandwidth, it may be useful in some 
cases to advertise a larger window than is currently 
available. The out-of-order oueueing mechanism, 
described earlier, could be extended to provide the 
additional buffering necessary to avoid occasional 
retransmissions with a "liberal1' buffering strategy. 
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To simplify the implementation of a different windowing 
strategy, TCPMOD centralizes all manipulation of the 
receive window in a single subroutine, the Receive Window 
Strategy Module (TCRWSM). Whenever TCPIN moves data into 
the ULPP's circular buffer, it calls TCPRWSM to update 
the window and then turns on the "ACK Needed" flag. The 
result will be to send at least an empty <ACK> segment 
containing the revised (reduced, for the conservative 
strategy) receive window. 

As the ULPP processes data from the circular buffer, it 
calls ARLSE (directly, or implicitly from ARECV MOVE) to 
"release" the space. ARLSE calls (ARPIRLSE which calls) 
TCRLSE. TCPRLSE again calls TCPRWSM to update (increase) 
the window size. 

The remote TCP will need to be informed of an increase in 
window size. When data is flowing predominantly in only 
one direction, this will require spontaneous generation 
of empty <ACK> segments. However, the ULPP may consume 
the input data in very small chunks, which would create a 
large number of empty <ACK> segments containing new small 
window updates. Therefore, TCPRWSM implements an 
algorithm to optimize the window updating and consequent 
spontaneous generation of empty <ACK> segments. 

Specifically, TCPRWSM increases the window and sends an 
empty <ACK> segment if: 

(1) the circular buffer is more than half empty, and 

(2) the new window size exceeds the last size reported 
to the remote host by at least 1/8 of the buffer. 

The receipt of a segment always triggers the creation of 
at least an empty <ACK> segment containing the full 
current window, so the remote TCP's send window will be 
updated as he continues to send. This algorithm 
significantly reduces the network traffic when there is a 
constant stream of sma'l messages. 

4.3.10.  Buffer Size Option 

Since TCPMOD always passes received data to the user 
(ULPP) in a circular buffer, its buffering grain is 1 
byte. Therefore, TCPMOD needs no mechanism for 
specifying the Buffer Size option* 

On the other hand, the remote TCP may specify a buffer 
size, and TCPACKT must make appropriate adjustments in 
the send seauence number when the end rsf a letter is 
reached. 
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4.3.11.  urgent 

For TCP, the ASEND call used to send data includes an 
Urgent bit. Turning this bit on indicates that the data 
being sent is "urgent". The sending TCP marks it as 
urgent by including an Urgent pointer in the TCP header; 
this pointer contains a sequence number one greater than 
the last byte of urgent data. The ASEND call may specify 
Urgent but no data; in that case, the urgent pointer will 
point to the next sequence number to be packetized. 

The principal use of the AHHP interrupt mechanism has 
been in the Telnet protocol [McKen73], where the 
coincidence of an out-of-band interrupt and a Data Mark 
in the stream mark the end of urgent data characters. 
ATPUT was modified to send those characters (including, 
redundantly, the Data Mark) in TCP as "Urgent" data. 

Unfortunately, the pipeline can be so clogged that ATPUT 
cannot even issue ASEND. This problem was solved bv 
including the "send interrupt" (AINT) routine in the 
A-service compatibility interface. The TCP version of 
the AINT service simply sends a zero-length data segment 
marked "urgent". This should cause the receiving 
user-level protocol to unclog the pipeline looking for 
the urgent information; as the pipeline empties out, the 
real urgent data and the Data Mark can be sent, marked 
"urgent". This will advance the urgent pointer past the 
real urgent data. The Urgent pointer is sent until the 
send left window edc, passes it. 

It is possible that the sond window is zero, so no data 
can be sent. Therefore, calling ASEND with the Urgent 
bit on turns on the "ACK needco" flag in the TCPB. This 
flag will cause TCPACKT to send at least an empty <ACK> 
segment, which will contain the current Urgent pointer. 

On the receive side, the ULPP is notified of urgent data 
in two ways: 

* When the Urgent pointer advances in the data stream, 
the ULPP's ATTN (Attention) semaphore is signalled. 

* There is a field in the TCPB which records the number 
of bytes which the ULPP must remove from the circular 
buffer to reach the end of the urgent information. The 
ULPP should consume data from the buffer until this 
Urgent Data Count field is reduced to zero. 

In general, TCPIN increases the Urgent Data Count field 
and signals ATTN when the urgent pointer advances, and 
TCRLSE decreases the Urgent Data Count field as bytes are 
released from the circular buffer. 

:»_«- 
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ffl     4.3.12. Connection States 

i 
k' 

The required states for a TCP connection are basically 
defined in the TCP protocol specification [PosTCP]. 
However, some minor variations were forced by particular 
features of the implementation. The actual states and 

■> their numerical representations are as follows: 

* Null = 0 

The TCPB has been created but not initialized. 

* Listen = 1 

* SYN Sent = 2 

* SYN Received = 3 

* Established = 4 

" * Closa Wait = 5 

* FIN Wait = 6 

E 

Note: there is a bit "Fin ACK'd" which may be turned on 
while in this state; this effectively creates a second 
FIN Wait state, in agreement with the current TCP 
document [PosTCP]. 

* Closing = 7 

<FIN>'s have been sent and received, so connection is 
awaiting acknowledgment of a <FIN> (or timeout). 

* Remote Abort Wait = 8 

A <RST> has been received to abort the connection. The 
local ULPP needs to call ACLOSE to delete the TCPB. 

* RST/ACK Delay = 9 

When a connection is being closed, the last segment to 
be sent will generally be a <RST> or an empty <ACK>, 
The TCPB must not be deleted until the segment has been 
sent to the IMP; unfortunately, such a segment is not 
subject to acknowledgment, so it must be removed from 
the No-ACK List by a timeout mechanism. 

We chose to hide this mechanism from the ULPP, in the 
following manner. ACLOSE will indicate successful 
close (return code = 0) as soon as the sement is sent. 
The TCPB will be removed from the control block 
environment (so AEXIT won't find it), and its state 
will be "RST/ACK Delay". The normal TCTIMEO mechanism 
will delete a TCPB in this state when its No-ACK List 

L 
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is emptied. 

Figure 8 shows a state diagram for the implementation. 

It is also necessary to form a correspondence between the 
TCP states and the effective states seen by a ULPP under 
the universal connection state model (see Figure 9). 
Although Figures 8 and 9 are superficially similar, there 
were a number of serious issues to be resolved. 

■ 
V (a)  Good <SYN>'s and bad <SYN>'s 

r: Under AHHP (for which the universal state model was 
■ originally designed), a process which has issued a 

passive listen for a connection has the option of 
"refusing" an open command ("PFC") that it doesn't 

[\. like,  by calling ACLOSE instead of AOPEN when the 
OPEN semaphore is signalled. An obvious mapping of 
TCP states into universal states would provide the 

r"l "refusal" capability in TCP:  basically,  receiving 
B the initial <SYN> would merely signal OPEN; the 

process would then call AOPEN to send <SYN,ACK>, or 
ACLOSE to send <RST>. 

Unfortunately, this approach would force the ULPP 
to recover from an "old duplicate <SYN>" segment 

| [PosTCP]. We feel that TCP should hide from the 
ULPP all artifacts of unreliable communication, 
including old duplicate <SYN> segments.  Therefore, 

£; in the case of a passive open, the OPEN semaphore 
must not be signalled until the handshake is 
completed. 

■ 
(b)   One Call of AOPEN 

Under AHHP, two calls of AOPEN are required for an 
■\ active open.  This allowed the allocation of a 

circular buffer  to be deferred until  the open 
_ handshake was complete, and satisfied the system 

requirement that the circular buffer be obtained by 
a routine executing under the ULPP ptask (so the 
storage obtained by PCORE would belong to the 
proper ptask). 

Under TCP,  it is desirable to obtain the circular 
buffer as early as possible,  so that the first 

":•: <SYN>  segment can specify an  initial  receive 
window, As a result, we chose to obviate the 
second AOPEN call, although it is allowed for 
compatibility. P 
As a result of these considerations, a ULPP sees an 
effective TCP state diagram like that sketched in 
Figure 10. Calling AOPEN to buy a circular buffer 
effectively creates two new states  from  the 

C 
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SYN-Received and Established states. Comparing 
this diagram with the universal states of Figure 9f 
we see that: 

* "Established-1" state of TCP corresponds to the 
universal "Remote Open" state. 

* "SYN-Received-1" state of TCP is hidden from the 
ULPP. 

* "SYN-Received-2" and "SYN-Sent" states of TCP 
together correspond to the universal "Local Open" 
state. 

(c) implicit ALSTN 

For reasons explained later, the incoming logger 
function issues an ALSTN call for the logging 
connection, in behalf of the ULPP that is being 
started. The ULPP will later issue ALSTN for the 
same connection (using the ICV list as parameter), 
and proceed with the open sequence. This makes 
several slight modifications in the universal state 
diagram for TCP: 

* ALSTN can be called more than once for the same 
connection (AHHP will not allow this). 

* When ALSTN is called, the connection may already 
be open, and in fact it might have closed again. 
To preserve the universal state diagram, ALTSN 
will give a return code of 0 in either case. 

(d) Half-Open Connection 

Under AHHP, the universal "Remote Close" state is a 
(hopefully brief) intermediate state during the 
closing handskake. Under TCP, this state may last 
indefinitely, with the local ULPP continuing to 
send data even after it has removed all received 
data from the circular buffer. 

n 
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Figure 9 — Universal   (AHHP and TCP)   Connection States 

ALSTf4>* 

PAGE     90 

LOCAL OPENV^ 

00B        h?*J 

'"111 \   CLOSED 

s;^^ cLoSe 

fy<f^^^lp»*wwiSy^pfiw^^<^F*%P^g^ ^i^^^y^^^g^^^3^^p^^^^g^^^y»j^^iH 



i IP/TCP  Implementation 
December   15,   1979  — OAC/TR20 

PAGE     91 

Figure  10 — Effective TCP States  for  ULPP 
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4.3.13. Incoming Logger Function 

A remote host can create a new server session using TCP 
by simply opening a connection to the  appropriate 

M "well-known  port"  (WKP).  This invokes a mechanism 
y commonly known as the incoming logger. TCPMOD behaves as 
iV if there were always an idle server ULPP listening for a 

connection on each WKP. In fact, a server ULPP is not 
SJ created until the initial connection request actually 
t4 arrives. 

S3 

« The incoming logger function for TCP is initiated by a 
<SYN> message from the remote user host. This message 
will specify the ports (U, WKP), where U is the remote 
(user) port and WKP is the local server port.  This 

;>■ message is received by the IPP, which builds a new 
association (hence, ICB) for it, and passes the <SYN> 
message and the ICB address to TCPIN. The ICB points to 
a TCPB which is cleared to zero. In particular, the TCPB 

C specifies the "Null" state (zero value), indicating to 
TCPIN that this is an incoming logger request. This will 
cause TCPIN to take the following actions: 

(1) Build a parameter list and call INTERNET START to 
create a new session in the internet environment. I 

(2) If the START fails (e.g., because of a bad contact 
socket),  send a "believable" <RST> segment and 

;> discard the <SYN>. 
•\ 

(3) Else, call the ALSTN A-Service to initialize the 
■ TCPB in the "Listen" state. 

(4) Process  the <SYN> segment in "Listen" state, 
advancing the state to "Syn Received" and sending a 

y matching <SYN>. 

Since TCPIN executes under INPTASK, INTERNET START does 
^ also;  hence the ULPP which is forked will be inferior to 
:'.* INPTASK.  INTERNET START sets up an ACE, which is chained 

from the P3CB pointed to by the IPB.  It also assigns a 
session number and stores the proper ICV parameters  in 
the primary PTAUSER fields. 

r Calling ALSTN at this time simplifies the code because it 
(£ maintains the consistency of the appearance that the 

process was passively waiting all the time. It also 
allows the segment tracing mechanism, if enabled, to 

V trace the <SYN> segment and the session creation. 
L 
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4.3.14. Tracing TCP Transactions 

• The A-Service ATRACE [WolBr79] will build a trace buffer 
containing variable-length entries. The trace buffer is 
controlled by a pseudo-CCB called a "TRB" (Trace Block) , 
using standard NCP circular buffer pointers. A TRB 
address is called a "trace handle". 

To aid present and future TCPMOD debugging, provisions 
have been built into TCPMOD to associate a trace buffer 
with each connection. The TCPB includes a field for a 
trace handle for this buffer. If tracing is enabled, 
trace entries will be built by TCSEND, TCSEGOUT, TCLSTN, 
and TCPIN. 

TCP tracing is enabled by a TCPB flag bit (TCPFlTRC). 
This bit is copied from a corresponding ICB flag, which 
is initialized from the IPB. Thus, the IPB controls the 
default for tracing. However, a systems programmer can 
turn on the trace bit in a particular TCPB at any time. 

Freeing a TCP trace buffer has presented some difficult 
system design problems. There are two issues: 

(1) There is an inherent race condition between closing 
and deleting a TCPB, and deleting its corresponding 
TRB. The problem arises in AEXIT, that will call 
ACLOSE for both the TCPB and the TRB, in the order 
in which they appear on the all-CCB chain. If the 
TRB is closed first, the trace handle in the TCPB 
may point to free storage. Note that AEXIT does 
not know about trace buffers as a resource; even if 
it did, the offset of the trace handle in the TCPB 
is assumed to be specific to the higher-level 
protocol, so AEXIT couldn't find it. 

(2) Normally, we want a trace buffer to disappear when 
its connection is closed; otherwise, memory would 
quickly fill with "dead" trace buffers. However, 
during debugging we will sometimes want a trace 
buffer to be saved after the TCPB is deleted. 

The ability to save a trace buffer is provided by an ICB 
bit that specifies "Test Mode". In Test Mode, a TRB will 
be owned by the permanent internet ptask INPTASK rather 
than by the ULPP ptask; as a result, the TRB will not be 
deleted when the ULPP exits. At present, there is no way 
to limit the number of old trace buffers built up in Test 
Mode; to delete them, it is necessary to issue the 
operator command that closes the IPP. 

u 
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The first problem was solved by requiring that the trace 
buffer contain a TCPB pointer, whose offset in the TRB is 
assumed to be standard in the internet environment. Then 
the compatibility A-service routine ARPICLSE was designed 
to handle closing of a TRB specially; if there is a 
pointer to a TCPB, it closes the TCPB first. 

4.4.   AREAS FOR FUTURE WORK 

There are three TCPMOD design issues to be addressed: 

* Compatibility Interface Design 

As discussed earlier, we need a better conceptual model 
to assign functions to the ABPIxxxx and the TCxxxx 
routines of the compatibility interface. 

* Transaction-oriented Interface 

The compatibility interface suppresses the datagram-like 
features of TCP, in favor of connections. A new 
transaction-oriented ULPP interface should be designed 
and implemented for TCP. 

* Positive Notification of Send Complete 

We have mentioned some complexities in the current TCPMOD 
implementation that are required because the outgoing 
gateway returns no positive signal when it has sent a 
packet to the IMP. impending changes in the IMP I/O 
driver code of the NCt> will allow a positive signal to be 
returned, and this in turn could be used to simplify 
TCPMOD. 

Beyond these issues, further TCP development will be 
concerned with testing and tuning the flow control and 
buffering strategies. 

For example, the current formulas used to calculate 
retransmission timeout should be verified experimentally, 
by doing throughput tests with a variety of (known) 
distributions of round-trip delay and packet loss. 

Handling internet traffic witli large delays will reauire 
more reassembly buffers than are now provided, and may 
demand larger segments. It may be necessary for a 
particular TCP connection to choose its segment size 
dynamically. Similarly, liberal receive-window strategies 
should be tried in high-delay, high-bandwidth situations. 
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5.   INTERNET TEST ENVIRONMENT 

m Development   of   the  IP/TCP  implementation  required 
modifications and extensions to the existing NCP code. 
Errors in these changes, or in the INTMOD and TCPMOD modules 

&"£ themselves,  could  severely  impact  the  running  NCP. 
ö Furthermore, the debugging facilities within the NCP are 

largely static, while the general-purpose time-sharing TSO 
H has a powerful interactive debugger. We therefore decided to 
r-i        create an internet test environment within TSO. 

j-        This TSO test environment included several new pieces of 
•.; software: 

>' 

b 

I 

v. 

L 

* "Raw Packet" Interface to the NCP. 

* NCP environment simulator. 

* Gateway simulator. 

* TSO test driver. 

We will briefly describe each of these in turn. 

5.1.  Raw Packet Interface 

As we discussed previously, a process within the IBM svstem 
obtains access to the ARPANET by opening an Exchange window 
to the NCP using the appropriate "well known tag", and then 
sending and receiving data through this window. The 
process normally employs a canonical internal user-level 
protocol, which is translated into the actual ARPANET 
user-level protocol by a ULPP within the NCP [Bra77]. 

For developina and testing new protocol modules, it is 
useful to allow a process to send and receive ARPANET 
messages at tne "raw packet" level. Such a raw packet 
interface was implemented [Bra79A] to allow the internet 
test environment under TSO to use the ARPANET. However, 
the interface has already found other uses. 

The raw packet interface is basically a new ULPP, named 
ARAWPKT. The process opens a window with the tag "ARAWPKT" 
and sends ARAWPKT an ANMOC parameter list that defines an 
NMC input intercept filter. The result is to create a 
full-duplex internal packet communication path to the 
process. 

The process sends a packet through the Exchange window in 
the form of a WPE followed by the data that the WRE 
references. ARAWPKT makes minimal modifications to this 
WRE and calls ACPX QUEOUT to send it to the outgoing 
gateway. 

c 
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A packet of data received through the Exchange window is 
■prefixed by the 8-byte buffer header that the NMC intercept 

attaches to a message. This header specifies the lengths 
of the packet and the leader. 

fSJ ARAWPKT also has an internal "loop-back" mode, in which 
ö each output packet is reflected into the receive circular 

buffer without traversing the hardware path to the IMP and 
back. 

5.2.  NCP Environment Simulator 

To test the IP/TCP modules under TSO, is was necessary to 
construct a sufficiently-complete software environment for 
their execution. The first requirement was a subset of ICT 
that could be executed as a user program under TSO. An 
existing ICT simulator was adapted and extended for this 
purpose. 

The next requirement was a LOGGER ptaskj this was created 
as a subset of the real LOGGER. The test LOGGER performs 
the functions: 

* Fork two fixed ptasks: NCP and INTERNET. 

* Act as an outgoing logger by issuing pending Exchange 
opens for two tags: INPOLOG and ARAWPKT. 

Thus, LOGGER forks INTERNET, which forks INPTASK. INPTASK 
will call ANMOC in the ARPANET gateway to create its input 
buffer. 

Finally, a sufficient subset of the resident NCP module 
ARPAMOD was assembled and linkage edited together. This 
included the A-service transfer vector and all the AHHP 
modules which are shared by the internet environment, as 
well as the Telnet access method modules. Note that these 
modules are being assembled from exactly the same source 
programs that is used (or will be used, after testing) in 
the production NCP. 

5.3.  Gateway Simlator 

The gateway simulator is contained in a module named 
INTEST. It uses the raw packet interface to extend the 
real gateway into the TSO test environment. INTEST 
includes the entry points: 

* ARPANMOC 

This code simulates the NMC intercept routine, by 
opening an Exchange window to ARAWPKT in the NCP and 
passing across the parameter list; ARAWPKT then passes 
it to the real ANMOC within the NCP.  It returns to its 
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caller the address of an assembled-in pseudo-CCB. 

QUEOUT 

This code simulates the QUEOUT routine of the NCP. It 
is invoked by the ACPX QUEOUT macro to enqueue a WRE on 
the NOW queue and awaken the NCP ptask to send it to 
ARAWPKT. 

NCP 

This code executes as a ptask under TSO to simulate the 
action of the fixed ptasks NCP and IMPIO of the real 
NCP. That is, it performs the actual data transfers 
across the Exchange window to ARAWPKT. 

It is awakened by QUEOUT when there is output to send, 
or by Exchange when input arrives. For output, NCP 
assembles the WRE and data into a single packet, 
modifies the WRE slightly, and sends it through the 
Exchange window; then it dequeues the WRE from NOW and 
marks it "Complete1 . H 

When data is received over the Exchange window, NCP 
moves it into a circular buffer under control of the 
pseudo-CCB. Then NCP signals the INPUT semaphore of 
the ptask that called ARPANMOC (INPTASK). 

* ARPAHIO 

This routine, which is invoked by ACPX HALTIO, purges 
WRE's enqueued on the local NOW queue. 

This set of routines effectively extends the gateway into 
the TSO job, so the internet routines can access the 
ARPANET gateway as if they were in the NCP. 

5.4.   PL/I DRIVER 

For testing IP/TCP, we wanted to be able to invoke its 
services in a controlled manner, and to create 
nicely-formatted diagnostic listings. Vie wrote an 
interactive TCP driver using PL/I plus a set of small 
assembly-language subroutines that interface to the rest of 
the test environment. 

The PL/I driver accepts the commands listed below. The 
driver prompts interactively for the parameters which are 
listed in parentheses after each command. 

* OUTLOG (<outlog parm string>) 

■www•■•••••.:•.:-..•■•; sv^y-v--.•>.•>-•••■•• 
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This command invokes the outgoing logger function. 
Specifically, it opens an Exchange window to invoke 
INPOLOG, and passes <outlog parm string> to it. INPOLOG, 
INTMOD, and TCPMOD operate as they would in the real NCP, 
creating a new user session as a ULPP ptask. 

Successful completion prints out the session number. 

* OPEN (<session number>) 

This command causes the ULPP ptask with the specified 
session number to issue an ATOPN. 

* SEND (<session number>, <length>, <data string>) 

This command causes the ULPP ptask with the specified 
session number to issue an ATPUT for the specified data. 

* RECV (<session number>) 

This command causes the ULPP ptask with the specified 
session number to issue an ATGET call, and prints the 
resulting character string on the terminal. 

* CLOSE (<session number>) 

This command issues an ATCLOSE call. 

* DUMP 

This command prints out the contents of the trace buffers 
associated with all TCP connections. 

* ARB(<ICB address>, <TCP header and data>) 

This command sends an arbitrary TCP segment on a 
specified association. 

The IPP in the TSO test environment is configured with 
logical host number 1, so it can open connections to the 
production IPP (logical host 0) within the NCP. 

  ■  .V .■■  ■ -. M . «  ... » = . - - - - -- - :» »^ 
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CONCLUSIONS 

This report has described an implementation of the internet 
protocols IP and TCP for an IBM 360/370 computer. This 
implementation is currently able to communicate with the 
other internet hosts supporting these protocols and Telnet. 
The test of "communication" is basically the ability to log 
into the remote system using the Telnet protocol. The OAC 
TCP is available on the ARPANET 24 hours a day, and we 
believe that it could be used for production access to TSO, 
for example. 

Our initial goal, a system-call interface for ULPP's which is 
compatible between TCP and AHHP, was largely realized. The 
major differences that remain are due to real differences in 
the two protocols. As noted earlier, the majority of ULPP's 
are insulated entirely from these differences because they 
use the Telnet access methods. 

B        We believe that the current NCP, including IP/TCP, could be 
installed on any IBM system running OS/MVT. During the next 

\'\ year, the NCP will be converted to the virtual memory 
bv        operating system, MVS.  The IP/TCP implementation contributes 

no operating system dependency to this conversion.  On the 
Li        other hand,  the existence of the new internet protocol 
f|        implementation gives additional weight to the requirement 

that the existing NCP be converted with minimal changes. 

K; There are a number of tasks for the future development and 
support of the OAC implementation of the internet protocols. 
We will list some of them here. 

* 
;•/        (1)  Maintenance 

(.*. Little stress-testing has been performed,  and  we 
\; anticipate that the IBM implementation still contains 

obscure bugs at this time. Reliability tests using a 
m traffic  generator  and Plummer's "Flakey Gateway" 

[Plum78] would be useful in finding these bugs. 

(2) Status and Test 

i The current test and monitoring  facilities are still 
inadequate for long-term maintenance of the NCP using 
IP/TCP.  For example, NCP code is needed  for dumping 

■]■'. trace buffers, manipulating the IP/TCP parameters, and 
displaying the status of TCP connections. In addition, 
better means for operator monitoring and control are 
needed (for AHHP as well as TCP). 

(3) Performance 

..i^mn».»». 
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Although the IP/TCP code gathers some rudimentary 
statistics, there is no provision for recording or 
observing them. In addition, we need to create simple 
measurement tools, including a traffic generator, an 
echo server, and a discard server. 

(4) Additional Features 

Earlier sections described a number of areas that may 
require extensions or improvements. In addition, we 
expect that the protocols themselves will continue to 
evolve, particularly in the areas of routing, type of 
service, and optimizing the algorithms for flow control 
and retransmission. This evolution will inevitably 
require changes in the code described here. 

(5) Convert FTP and MSG 

There are a number of design decisions in the current 
implementation whose correctness can only be 
established (or contradicted) when other higher-level 
protocols than TCP are implemented, and when user-level 
protocols other than Telnet are converted to TCP. 
Serious candidates include MSG, the 
transaction-oriented interprocess communication 
protocol for the National Software Works, and File 
Transfer Protocol. It is unclear whether MSG should be 
interfaced at the IP level or the TCP level. 

Finally, we are anxious to acknowledge the major contribution 
to this effort made by Denis de la Roca, who helped code a 
number of the IPP and TCPMOD routines. He was patient in the 
face of unforgivable bugs as well as numerous shifts in 
design as the protocols evolved. Lou Rivas was also an 
immense help in getting the code to actually function within 
the NCP environment. 

■ J.?.^MI*. II «.Mi;.,.;!«.!!^!.!;.,!. I...«.IT>I  .I'mifl'llH^ l|lfc'l 



r; 

L 

L 

IP/TCP Implementation 
December 15, 1979 — OAC/TR20 

PAGE 101 

7.   REFERENCES 

BBN1822 

BBN. "Specification for the Interconnection of a Host and 
an IMP", Report 1822, Bolt Beranek and Newman, Cambridge, 
Massachusetts, revised January 1976. 

Bra76 

R. Braden. "The National Software Works", Technical 
Report TR9, Office of Academic Computing, UCLA, December 
1976. 

Bra77 

Braden,  R.  "A Server Host System on the ARPANET", Fifth 
£•« Data Communications Symposium, Snowbird, Utah,  September 
f* 1977. 

Bra79A 

Braden, R.  "Gateway Interfaces within the ARPANET NCP", 
Technical Report TR17, Office of Academic Computing, 

■ UCLA, October 1979. 

Bra79B 
K 
V- Braden, R.  "Interface Specifications for Programming a 

Higher-Level Host-Host Protocol using Internet Protocol", 
■ Technical Report TR19, Office of Academic Computing, 
™ UCLA, December 1979. 

BraFe72 

Braden, R. and Feigin,  S.  "Programmer's Guide to the 
Exchange", Technical Report TR5, Office of Academic 

P. Computing, UCLA, March 1972. 

BraTCP 

Braden, R. "Program Logic Manual for TCP", Office of 
"* Academic Computing, UCLA, in preparation. 

BralP 

Braden,  R. "Program Logic Manual for Internet Protocol", 
Office of Academic Computing, UCLA, in preparation. 

CerKa74 



IP/TCP Implementation 
December 15, 1979 — OAC/TP20 

PAGE 102 

Cerf, V. and Kahn, R.  "A Protocol for Packet Network 
H Intercommunication",  IEEE Transactions on Communication, 

vol. C-20, 5, May 1974. 

FeinPos 
. •' 
2? Feinler, E. and Postel, J. eds,  "ARPANET Protocol 

Handbook",  NIC  7104,  published  for  the Defense 
n Communications Agency by SRI International, Menlo Park, 
: f. California, revised January 1978. 

McKen72 
Ml 

McKenzie, A.  "Host-Host Protocol for the ARPANET", NIC 
8246, January 1972.  Revised and published in  [FeinPos]. 

'-        McKen73 

McKenzie, A.  "Telnet Protocol",  RFC 562, NIC 18638, 
f* August 1973. Revised and published in [FeinPos]. 

Plum78 
*■« 

V. 

Plummer, W.  "Flcikeway in Operation", ARPANET message to 
TCP and Internet Protocol groups, September 1978. 

W Pos71 

;■: Postel, J. "Official initial Connection Protocol", NIC 
[%i 7101, June 1971.  Published in [FeinPos]. 

• PoslNS 

Postel, J. "internet Name Server", IEN-116, August 1979. 

'••".;      . Pos IP 

Postel, J.  "Internet Protocol",  IEN-111, August 1979. 
wrt 

-:'. PosTCP 

Postel, J.  "Transmission Control Protocol",  IEN-112, 
V August 1979. 

RivLB77 

Rivas, R., Ludlam, H, and Braden, R.  "An Implementation 
of the MSG Interprocess Communication Protocol", Report 

•:.. TR12, Office of Academic Computinq, UCLA, May 1977. 

RJVWO77 

C 

* * . ■ » 



i 

[ 

!. 

IP/TCP Implementation 
December 15, 1979 — OAC/TR20 

PAGE 103 

Rivas, R. and Worth, D. "Server FTP Program Logic", 
Systems Document Q049, Office of Academic Computing, 
UCLA, February 1977. 

Tol77 

Tolomei, V.  "Server FTP Program Logic", Systems Document 
Q049, Office of Academic Computing, UCLA, February 1977. 

WolBr79 

Wolfe, S. and Braden, R. "Programming User Level 
Protocol Processes for the ARPANET NCP", Technical Report 
TR18, Office of Academic Computing, UCLA, November 1979. 
Revision of OAC document Q039A. 

Wolfe74 

r S. Wolfe, "ICT Monitor Services and Macros", System 
document Q037, Office of Academic Computing, UCLA, 
revised September 1974. 

"■ -"* /* »*■ ."• -"■ •** -"• •*' • * •■*" * ^^~.- •.* *«■ ■-■ *-■ *. •••-.-• 



IP/TCP Implementation 
December 15, 1979 ~ OAC/TR20 

PAGE 104 

APPENDIX A ~ OUTGOING LOGGER PARAMETER SYNTAX 

The internet protocol program (IPP) includes a mechanism to 
initiate the outgoing logger function. When a local process 
opens an Exchange window to LOGGER, LOGGER forks e, transient 
INPOLOG ptask, and passes the Exchange window to it. 

INPOLOG issues an Exchange to get from the local process a 
character string that defines the internet host, higher-level 
protocol, the contact port, and possibly the ARPANET gateway 
to be used. This Appendix defines the syntax and semantics of 
this Outgoing Logger Parameter string. 

We use an extended BNF, with square brackets [ ] surrounding 
optional items.The terminal symbols are: 

<hlp name> ::= <name> 

<AHHP name> ::= <name> 

<internet host name> ::= <name> 

an arbitrary string of letters (upper and lower 
case are equivalent), digits, and the break 
characters "-" and "_"; the first character must be 
a letter. 

<dec number> ::= <string of digits> 

a decimal number, i.e., a string of digits (0-9). 

<octal number> ::= #0<string of of octal digits> 

an octal number, i.e., only digits 0-7. 

<hex number> ::= #H<string of hex digits> 

a hexadecimal number, i.e., a string of digits 0-9, 
A-F. 

Delimiters are < > ( ) : , 

None of these terminal symbols may contain imbedded blanks, 
but blanks are allowed freely between terminal symbols. 

L 
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We can now present the syntax. 

<Outlog Parameter String> ::= 

<AHHP string> [ , <socket> ] I 

[ <hlp name> ] : <internet string> [?<port> ] 

This syntax provides a compatibility interface to 
the outgoing logger; either the old AHHP syntax or 
the new internet syntax is, acceptable. An internet 
address string must have start with a colon 
(optionally preceded by the name of the 
higher-level protocol) . 

<AHHP string> ::= 

<ARPANET host address> 

<ARPANET host address> ::= 

»t <AHHP name> 

This is a standard ARPANET host name, as it 
appears in the AHHP host tables. It may be a 
full name, or a "nic-name", and is limited to 
12 characters. 

I <dec number> / <dec number> 

This is a 24-bit ARPANET host number, in the 
standard form: <host #>/<IMP #>. 

I <hex number> I<octal number> 

A hexadecimal or octal number is 
right-justified in 24 bits. 

I <dec number> [ / ] 

This form (with an optional trailing slash) 
defines the old-form 8-bit ARPANET host number, 
<host #>*64+<IMP #>. It will be converted to 
24 bits. 

<port> ::= <dec number> 

<socket> ::= <dec number> 

<port> must be less than 2**16 and <socket> 
must be less than 2**32. 

- -"• - -"• -• -"-•"'•"• -"• -"• -*• -'• -• - -~-"• -"*-"• • ~■ -■•■■-••>-• .••••• •-.--»>-.-.'-.•->. 
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<internet string> ::= 

<internet host string> [ ( <gateway spec> )] 

-. 

i: 

c 

In most cases, the <internet host string> will 
imply a gateway to reach the specified host. 
However, in any case the gateway can be 
specified explicitly. 

<gateway spec> ::= 

<ABPANET host address> 

A full gateway specification reauires not only 
the ARPANET host addresss, but also the link 
number and the service level (standard vs. 
uncontrolled). There is curr^r*-?-, no syntax 
for explicitly setting the last two. 

<internet host string> ::= 

<internet host name> 

This is an internet host name appearing in 
INAMTBL. It implies the full internet host 
address (8-bit network number and 24-bit 
<internet host number>),the default 
higher-level protocol, and the full gateway 
specification. The higher-level protocol and 
gateway host address can be explicitly 
overidden. 

I [ <Network=ARPA> ] <ARPANET host address> 

[ / <logical host> ] 

This entry implies the full  internet address 
and the ARPANET gateway address; however, the 
link number and service level for the gateway 
are not implied, so the defaults will be used. 

The logical host number can be specified. Note 
the forms: 

a/b => a * 2**16 + b (24-bit host number). 

e//h ■> convert 8-bit host number 'e' to 24 
bits and add h * 2**8 (logical host). 

a/b/h =>(a * 2**16 + b)+ h * 2**8. 

s> .-•."-.-- •• .•• .*• .••."- .s '• J^JLLILLL^. 



m IP/TCP Implementation 
t» December 15, 1979 — OAC/TF20 

PAGE 107 
M k' 

to» 
v 

r. 

f 

E 

[I <Network~=ARPA> ] <internet host number> 

If the network is specified by number or name 
and exists in INAMTBL, it will imply the full 
gateway specification (gateway host address, 
link number, and service type). 

No default higher-level protocol is implied. 

<Network=ARPA> ::= 
<Network~=ARPA> ::= 

<*<■> <network name> <'>'> 

I <•<■> <dec number> <•>'> 

The network name is enclosed in < > brackets, 
and may be specified either by name or 
numerically. 

<internet host number> ::= 

<dec number> I <hex number> !<octal number> 

This defines a full 24-bit internet host 
number. 

[■ 
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9.   APPENDIX B — NCP A-SEPVICES 

This appendix lists all the A-services for both the AHHP and 
the internet environments, giving the function and the name 
of the module which implements each. The ACPX services used 
internally by the host-host routines are also included. 
Finally, we list the resident modules included in ARPAMOD 
that are not A-services; these are the fixed ptask modules 

IS* and the tables. 

When different modules are invoked by the AHHP and internet 
transfer vectors, then the AHHP module name is followed by 
the internet module name. When a functions is performed by 
an entry point within another module, the entry point name is 

.;« given in square brackets following the name of the containing 
&i load module. 

i;-j     9.1.  Commutator Support Services 

* PATTACH 

•** Function:  ptask initialization following PATTACH call: 
'■* PLOAD inferior module, and propagate A-service transfer 

vector from superior ptask. 

■ Module: ARPAATCH 

K * PDETACH 

Function: complete PDETACH (null routine). 

1 Module: APPADTCH 

* PEXIT 

Function:  free APPANET-dependent resources when ptask 
exits. 

•-; Module: ARPAEXIT (Note 1) 

* "A-SPIE" 

* * "A-STAE" 

C-;              Function: Link to user abend (SPIE/STAE) exit. 
L\   

Module: ARPADBUG [ARPASPIE, ARPASTAE] 
c 

9.2.  Environment Creation and Control Services 

* ACEBUY 

■  ■  ■  ■ 
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I 
Function; Create a session by buying and  initializing 

£ an ACE. 

Module: ARPALOG [AACEBUY] (Note 1) 

'f.l * ACESELL 

m Function; Delete a session by unchaining and deleting 
K an ACE. 

Module; ARPAEXIT [AACESELL] (Note 1) 

E * ABUF 

;-„. Function; Create, delete a receive circular buffer. 
ffi Called internally by ARPAOPEN and TCOPEN. 

r* 

."V 

i I 

Module; ARPABUF 

* AGHCT 

Function; Find or create an AHHP Host Control Task for 
a given host. 

Module; ARPAGHCT (Note 2) 

* ATRACE 

Function: Create a variable-length entry in a circular 
trace buffer. 

Module: ARPTRACE 

9.3.  ARPANET Gateway Services 

* ACPX QUEOUT 

Function: Enqueue a message for the outgoing gateway. 

Module: NCP [QUEOUT] 

* ANMOC 

Function: Create or destroy an NMC intercept filter. 

Module: ARPANMOC 

* ACPX HALTIO 

Function:  Purge  the outgoing  gateway aueues of all 
WRE's for a given CCB/ICB. 

. .... M ... .i *  i  i  a 
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Module: ARPAPRGE [ARPAHIO] 

* (no macro) 

Function:  Used by ARPANET gateway for sending host-IMP 
messages. 

Module: IMPIO [DOQP] 

* AHLUP 

Function:  Map ARPANET host number to and from host id. 

Module: ARPAHLUP 

9.4.  Connection Services 

* ALSTN 

Function:   "Listen",   i.e.,  passive  open of new 
connection. 

Module: ARPALSTN, ARPILSTN 

* AOPEN 

Function: Active open of a connection. 

Module: ARPAOPEN, ARPIOPEN 

* ASEND 

Function: Send data over ARPANET connection. 

Module: ARPASEND, ARPISEND 

* APURGE 

Function:   "Purge"  all  active ARPANET I/O on a 
connection. 

Module: ARPAPRGE, ARPIPRGE 

* ARECV 

Function: Receive data from an ARPANET connection. 

Module: ARPARECV 

* ARLSE 

■ »■ ■■'  1 ■   ■ "  ■!■■»■■ HUM■li—iy-"> ■  ■ MI   ,i Tiyiwq—npiT 
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Function; "Release" received data from circular buffer. 
Called internally by ARECV MOVE. 

Module; ARPARLSE, ARPIRLSE 

* AINT 

Function; Send a host-host interrupt (or for TCP, make 
the data sent so far "urgent"). 

Module; ARPAINT, ARPIINT 

Function; For AHHP, send deferred allocation command. 

Module; ARPAALLC (Note 2) 

9.5. AHHP Protocol Modules 

* (no macro) 

Function; Send host-host command on control link. 

Module; ARPACMND 

* (no macro) 

Function; Segment and send AHHP message(s). 

Module; APPALGO 

* (no macro) 

Function; Map host and link into CCB address. 

Module; ARPAFCCB 

* (no macro) 

Function;  Map ARPANET host number to and from host id. 

Module; ARPAHLUP 

9.6. Telnet Access Method 

* ATOPEN 

Function; Open a Telnet connection. 

Module: ATOPN (Note 1) 

v^^^HM^aMNMMaqMMMMPMpiPMMiaMaqMPMHMM^ 
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* ATCLOSE 

Function:  Close a Telnet connection.   Also  used 
internally by AACESELL to free TCCB's. 

1 Module: ATCLS (Note 1) 

I 
* ATPUT 

Function: Send data on a Telnet connection. 

J% Module: ATPUT (Note 1) 

* ATGET 

Function: Peceive data from a Telnet connection. 

m  * 

Module: ATGET (Note 1) 

i 9.6.1. V-Cons 

\- The following address constants appear on either  the 
A-service or the ACPX transfer vector: 

1 
* (no macro) 

Function:  Address of list of outgoing logger (Exchange 
window) control areas. 

£ Address: V(PPOTLIST) 

1 * INTERNET P3CB 
*_* 

Function: Address of IPP control area, P3CB. 

t »■ 
Address: V(INTP3CB) 

fa * (no macro) 

'•" Function: Address of internet  transfer  vector;  entry 
point of transient module INTMOD. 

>- Address: V(INTNETRV) (Note 3) 

* ACPX LFLAG 

.V 
Function: Address of logger control flags. 

1" Address: V(LFLAG) 

\s 

* (ACPX macro) 

q 
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Function; Address of transfer vector for internal ACP 
interfaces. 

Address: V(ACPXTRV) 

9.6.2.  Internal ACP Interfaces 

The following routines are used internally by the ACP, 
and are not expected to be directly called by ULPP's; 
therefore, they are not true A-services. 

* (no macro) 

Function: Used internally by AHHF to obtain a CCB and 
add it to environment chains. This routine does not 
appear on any transfer vector. 

Module: ARPAMCCB 

* ACPX SOCKET* 

£ Function: Used internally to allocate a new session 
number. 

Module: ARPASOCK 

* ACPX INSRCCB 

Function: Insert a CCB (or internet equivalent) into 
control block chains to create normal environment for 
ULPP. 

Module: ARPALSTN [INSRCCB] 

* ACPX REMVCCB 

Function: Remove a CCB (or internet equivalent) from 
control block chains. 

Module: ARPACLSE [REMVCCB] 

* ACPX ULSTART [ULSTART] 

Function: Create a new session by buying an ACE, 
issuing PATTACH to create the primary ULPP, and setting 
the ICV. 

Module: ARPALOG [ULSTART] 

* ACPX OLOGERR [OLOGERR] 

iyiiH«<lyMiiwMipifl 
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Function;  Standard interface to APPACOMS transient 
B module,  to report outgoing logger error to user 

process. 

Module; INPTASK [OLOGERR] 
pn .   
P.. 
\k Notes: 

P Note 1:  the same module is used in both internet and AHHP 
Eg environments, but acts slightly differently  in  each 

environment. 

[^ Note 2: appears only on the AHHP transfer vector. 

Note 3: appears only on the internet transfer vector. 

i 

Finally, we list the resident modules which  are  not 
A-services or ACPX services. These are: 

E# * ARPAMOD — the A-service and ACPX transfer vectors,  for 
all environments. 

* ARPALOG — LOGGER and HCT fixed ptask code. 

* IMPIO — IMPIO fixed ptask code. 

* ARPANCP — NCP fixed ptask ^ode. 

* INPTASK — Internet protocol program fixed ptask code. 

* INPTASK[INTERNET] — Internet control ptask code. 

In addition, ARPAMOD includes the following resident tables: 

N 

* HOSTS — ARPANET Host tables 
y 

* ARPAICP — Incoming and Outgoing Logger tables 

_ * ARPAICP[?ROTLIST] — Outgoing Logger chain 

1 * ARPAMSG — WTO text table 

v. * IPBLIST — Internet Protocol Block ("IPB") list 

j_- 

• INTP3CB — Internet control area ("P3CB") 

i 

i. 
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10.  APPENDIX C — CONNECTIONS 

This section contains some details of the semantics of 
connections. This information is important to the programmer 
of a ULPP or for the implementation of a new higher-level 
protocol. 

10.1. Opening / Closing a Connection 

For compatibility, ULPP's in the AHHP and TCP environments 
use a "universal model" for the apparent states of a 
connection. This section describes that model in terms of 
the system call sequence for the ULPP, and also notes any 
specific exceptions for AHHP or TCP. Figure 9 shows the 
universal state diagram. 

To create a connection, the ULPP must first issue ALSTN. 
The possible results of this call are: 

10.1.1. ALSTN Return Code > 4: 

Fatal error, no CCB was created. 

10.1.2. ALSTN Return Code = 4: 

3 CCB was created and its address is returned in Rl.  The 
connection is passively awaiting a remote open request. 
The local process may: 

<•'': (1)  Call AOPEN to actively open  ("initiate")  the 
connection. 

V- The possible results are: 

(a) AOPEN Return Code > 4 and CCBLOG = 11B 
/. (closed) . 

Fatal error  in AOPEN.  Call ACLOSE (which 
\ should delete CCB and return 0). 

■«• 

(b) AOPEN Return Code = 4: 

>';'. Open  is pending,  awaiting completion  of 
handshake.  After OPEN semaphore is signalled 
(and CCBLOG=01B), repeat this step. 

However, if CLOSE semaphore is signalled (and 
CCBLOG is set to 11B), call ACLOSE to delete 

A the CCB. Note on TCP: the second AOPEN call 
L is unnecessary, if the first call specified a 

circular buffer size. 

I 
^■»"■l—*-»»<rM'f"111 *■■""'»   " ^*w^MpMpMfiwipwynw|—WipW '■ 
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I 
(c) AOPEN Return Code = 0 and CCBLOG = 11B 

(closed) 

Connection never opened, or opened and then 
closed immediately. Call ACLOSE (which 
should delete CCB and return 0). 

Note on TCP: the "Reset" bit may be on 
(TCPFLRST) to indicate that the connection 
was refused by the remote host. In any cnse, 
ACLOSE should be called. 

(d) AOPEN Return Code = 0, CCBLOG=01B (open). 

Connection is open. The OPEN semaphore will 
have been signalled, as well. 

(2)   Call ACLOSE to retract open request. 

f* Normally, ACLOSE will delete CCB and return 0. 

Note on TCP:  for logging  connection,  ACLOSE 
*-C TYPE=RETURN may return 4 (pending); in this case, 

issue PWAIT CLOSE and then call ACLOSE again. 

H     10.1.3.  ALSTN Return Code = 0: 

An open request was received from the remote host 
'•'.• already. 
'. • 

The ULPP should immediately either: 

™ (1)  Call AOPEN to complete open. 

The possible results are exactly the same as those 
shown earlier for AOPEN, except here Return Code = 
4 is impossible. 

mm Note on TCP:  this call  is necessary to build a 
,"-" circular receive buffer. 

-.. (2) Call ACLOSE to "refuse" the connection. 

'** Note:  Note on TCP:  "refusal"  is not actually 
possible, as the connection is alrc ^dy open; hence, 

* .' ACLOSE  will  simply  close   tht   connection 
■_» immediately. 

■ . If the connection is now open, the ULPP can call ASEND to 
V send data. 

£ 
;„:,..■;:..:■>:;,,■■>,, 

.'- 
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When the remote host sends a close request, the CLOSE 
semaphore is signalled and CCBLOG is set to 11B. The ULPP 
should continue to take data from the circular buffer (and 
call ARLSE) until the buffer is empty. 

Note on TCP: ASEND may be called even if the CLOSE 
semaphore has been signalled and CCBLOG is 11B, until the 
ULPP calls ACLOSE or the "Reset" bit it turned on. 

To close the connection, call ACLOSE. If the connection 
can be closed immediately, ACLOSE will delete the CCB and 
return 0. However, the non-blocking ACLOSE call 
(TYPE=RETURN) may result in return code 4 (pending); in 
this case, the ULPP should wait until the CLOSE semaphore 
is signalled and then repeat ACLOSE. 

Note on TCP: there is an ACLOSE TYPE=ABORT call, that sends 
a <RST> and always returns 0. 

10.2. AHHP Connection States 

h- 
It will sometimes be useful to know the mapping of AHHP 
connection states into the universal state diagram seen by 
a ULPP. In particular, the bits in CCBLOG will have the 
values shown by the following table: 

STATE BITS IN CCBLOG CCBLOG IN HEX 

Vi 

v 

h 

i 

Listen (none) 00 

Local Open FLLRF 04 

Remote Open FLRRF 08 

Pend Open FLLRF+FLRRF oc 

Open FLLRF+FLRRF+FLOPN 4C 

Local Close FLLCL+(optionally) 
FLLRF+FLRRF+FLOPN) 4D 

Remote Close FLRCL+FLCLS C2 

Pend Close FLLCL+FLRCL+FLCLS C3 

The first two bits of CCBLOG form a 3-valued state 
indicator used by the ULPPs.  In particular, FLOPN is the 
"open" value 01B, and FLCLS is the  "closing/closed" value 
11B for these two bits. The other flags represent single 
bits. 

•l*-*i 
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10.3. CCB Contents 

For compatibility, the following fields have the same 
offset in a CCB and in a hlpB.  A ULPP which depends upon 
any other fields cannot be compatible with both the AHHP 
and internet environment. 

* Flags (CCBFLG/TCPFLAGS) 

The flag bit CCBFlNHH will be off in all CCB's, and the 
corresponding bit will be on in all hlpB's. 

* Open/Close State Bits (CCBLOG) 

These two bits must be tested by the ULPP to determine 
the state of the connection (as seen by the ULPP); see 
below. 

* PTA Address (CCBPTA) 

This is the address of the PTA under which ALSTN was 
called, and which therefore owns the connection. 

* Control CCB Address (CCBCTRL/TCPCTPL) 

For AHHP, this is the address of the appropriate 
"control CCB"; for TCP it is the address of the P3CB 
(pseudo control CCB). 

* Local Socket Number (CCBLSCK) 

This is a 32-bit number used to label the CCB/hlpB; the 
high-order 16 bits must be the session number. 

* CCBBUFB, -E, -P, -U, -L 

These five fullwords contain pointers and values 
controlling the circular buffer for receiving data. 

CCBBUFB= Address of beginning of buffer. 

CCBBUFE= Address of first byte beyond end of buffer. 

CCBBUFL= Length of buffer in bytes, i.e., CCBBUFE - 
CCBBUFB. 

CCBBUFR= Bit address of first user byte in buffer, or 
zero if there is none. 

CCBBUFU= Bit address of first bit beyond user data in 
buffer. 

E 
* 
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Note: "beyond" is meant in a circular sense: if 
the user data ends exactly with the last bit in 
the buffer, then EUFU will point to the first bit 
in the buffer (i.e., BUFU= 8*BUFB in Lhis ease). 
Because the data may wrap around to the beginning 
of the buffer, BUFU may be less than or equal to 
BUFR. The ambiguity between a full circular 
buffer and an empty one is resolved by making 
BUFR zero for an empty buffer but equal to BUFU 
for a full buffer. 

* All-Connection Chain Word (CCBCCB) 

This word is used to as a link in a chain of all CCB's 
and hlpB's. This chain is used by AEXIT to close any 
open connection for a ptask which is exiting. 

* ACE Address (CCBACE) 

This is the address of the ACE for the session under 
which this connection was opened. 

* ACE Chain Word (CCBCHA) 

This word is used for the ACE chain of all CCB's for 
this session. 

10.4.  Pseudo-CCB 

It is sometimes convenient to create pseudo-CCB's, blocks 
which are treated in the environment like CCB's but are not 
associated with real ARPANET connections. This allows the 
environmental control A-services to be used for these 
control blocks.  In particular: 

* ABUF may be used to obtain a circular buffer and set up 
the buffer pointers in the pseudo-CCB. 

* ARECV will obtain data from this buffer. 

* A pseudo-CCB is chained into the all-CCB chain. 

* ACLOSE will delete a pseudo-CCB, rnd also free a circular 
buffer, if any, associated with it. 

* AEXIT will call ACLOSE for a pseudo-CCB  if  the owning 
ptask exits without itself deleting the pseudo-CCB. 

Thus, the pseudo-CCB can be used to ensure that the control 
block and circular buffer will be freed if the ptask 
abends. For this reason, NMC intercept filters and trace 
buffers are controlled by pseudo-CCB's, for example. 

i 
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In order to be acceptable to the environmental A-services, 
a pseudo-CCB must satisfy some special constraints on the 
CCB fields listed above. 

(1) Flag bits: CCBF1CTL, CCBF2NHH are off. 

(2) Flag bit CCBF2BUF may be on to cause PCORE FREE to be 
issued for circular buffer. 

(3) CCBLOG bits must be X'80'. 

A CCB with this configuration will simply be unchained and 
freed by the AHHP ACLOSE module (ARPACLSE). 

k ■ « ■ • ' 
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