A Ul R Y W Y e e TR - T T W W - T - - _ - - = s = s e - _ - -
| ‘R A R M s T T AT Tl AT A WAy e Ta T a™ e’ s " al e tat .. St I RN WA

. j7le fe2X
ffice of el g

: ' 78
cademic
lomputing

TECHNICAL REPORT TR20 - pie
DECEMBER 15, 1979

AD-A155 057

"AN IBM 360/370 IMPLEMENTATION OF
THE INTERNET AND TCP PROTOCOLS --

DESIGN SPECIFICATIONS"

DTIC

ROBERT T. BRADEN ELECTE

JUN 1 71985
FINAL TECHNICAL REPORT

ARPA CONTRACT NUMBER MDA903 74C 0083, ORDER 2543/8,

SPONSORED BY THE DEFENSE ADVANCED RESEARCH PROJECTS AGENCY
OCTOBER 1977 - MARMH 1979
""DEVELOPMENT OF AN ARPANET TCP FOR AN IBM 360"

.....

° °
APPROVED FOR PUBLIC RELEASE: e
n]_ V erS]_ y O DISTRIBUTION 15 UNLIMITED () e

falifornia,

b
. -“ .
-t e T e l..-.:
e \..
---)
................. B R e o € O R RS Ao et S e T SO L
...... g T i T R N)

............
....................
«® e P ORI ol Il Tl Tl T o TR T O P L A T N P e Lo)

Lo g oty

M e i T e e N sl e G) R T P T P S T e T T T S U, P Ry Sy

IP/TCP Implementation ,\J
December 15, 1979 -- OAC/TR20

UNIVERSITY OF CALIFORNIA AT LOS ANGELES
Office of Academic Computing

Technical Report TR20 7

December 15, 1979

X
- "An IBM 360/370 Implementation of
f the Internet and TCP Protocols --
Design Specifications”
. r : Accession For
NTIS GRARI
’_..: Robert T. Braden DTIC TAB g
Unannounced O
Justification .
. By
Distribution/
Availability Codes
Avail and/or
Dist Special
. A
s FINAL TECHNICAL REPORT [
5 ARPA CONTRACT NUMBER MDA903 74C 0083, ORDER 2543/8,
b4 sponsored by the Defense Advanced Research Projects Agency
. October 1977 - March 1979
- "Development of an ARPANET TCP for an IBM 360"
- Principal Investigator: William B. Kehl o
U Director, UCLA Office of Academic Computing '}

| S0Vt oRe B, P B NG Pl BRal -0 T enl B0 SRR STV TR T8 Foiw Viiie, PRlo W, PR PPRG, SERE. IS NTRE PR PETRE SRTE SRR e Pt oy

IP)TCP lmélementation
™ o~ December 15, 1979 -- OAC/TR20

; ' (A

REPORT SUMMARY

A family of 55:;ernet$};:st-to-host protocols has

) recently been defined to allow computer o

communications across interconnected packet networks T
= with diverse properties. This internet protocol }Qﬁ
e family is defined in two distinct levels. The lower o
il level, Internetwork Protocol or IP, provides simple Sgi

datagram_ service. Trapsmission Control Protocol or
v TCP is ag'higher-level internet protocol that uses
- IP for data transport. TCP provides connections,
strong end-to-end error control, flow control, and a
form of out-of-band signalling. The IP/TCP
combination is intended to be the successor to the
original ARPANET Host-to-Host Protocol (AHHP).

s,
.

v
i, a"

Under ARPA contract, UCLA has implemented Version 4

of the IP and TCP protocols for an IBM 360/370 host
computer on the ARPANET. This implementation is)
integrated into the existing Network Control Program \
C for AHHP, and was designed to be compatible at the
system-call interface so that existing user-level
protocol prugrams can be used interchangeably with

AHHP and IP/TCP. The implementation is layered to

match the protocols.

This document gives a techical over-iew of the UCLA
IP/TCP implementation. It describes the NCP
sof tware environment, the resolution of
compatibility issues, and the design of both the 1IP

and TCP layers. C;N\\‘_‘*~__/

i

0
s

The views and conclusions contained in this document are &;
those of the authors and should not be interpreted as -
necessarily representing the official policiesg, either ot
express or implied, of the Defense Advanced Research Projecte ¥
Agency or of the United States Government. . A
\!\
o
Y
oY
&
L
N

| L SPEEY: 3.3 Py FAFIES VDY p PO T olla Fiteal M BT SO P W 70 VI IR - S VO T T G SR - S e T PR T e s
UNCLASS L1 1D o
o SECURITY CLASSIFICATION OF THIS PAGE (When Deta Entered) _ “:
READ INSTRUCTIONS T
1. REPORT NUMBER 2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
= 0ACfTR20 2D -Hs 5057
:'.3 4. TITLE (end Subtitle) S. TYPE OF REPORT & PERIOD COVERED
"An IBM 360/370 Implementation of the Final Technical Report SO ¢
Internet and TCP Protocols--Design Specificationg" ﬁ
s 6. PERFORMING ORG. REPORT NUMBER 5
. 7. AUTROR(s) 8. CONTRACT OR GRANT NUMBER(S) - :_.-__
e oty
Robert T. Braden MDA 903-74-C-0083 wTs
i
- 10. P ENT, PROJECT, TASK)
.’T-‘ 9. PERFORMING ORGANIZATION NAME AND ADDRESS A:g(A;RQAwOERLKEmNINT NPUMOBJERST A !:‘-
Office of Academic Computing £
5628 Math Sciences Addition C0012 - UCLA Order 2543/8 A
pie Los Angeles, CA 90024
B 11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE F o)
Defense Advanced Research Projects Agency December 15, 1979 — ;""'
bl - 1400 Wilson Boulevard - "RUMBERIOF IRARES g\'
B Arlington, VA 22209 120 e
o 14. MONITORING AGENCY NAME & ADDRESS(i! different from Controlling Office) 1S, SECURITY CLASS. (of thie raport) L
:\s.'..
Unclassified ARy
i [-a T5a. DECL ASSIFICATION/ DOWNGRADING s
SCHEDULE .
: - 16. DISTRIBUTION STATEMENT (of this Report) ::-:::
S Distribution Unlimited L
p. - Ve

17. DISTRIBUTION STATEMENT (of the abestract entered in Block 20, If different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverae aide if necessary and identily by tlock numbar)

ARPANET. Computer Communication Protocols. Network Control Program. "—
Internet Protocol. TCP. Software Systems :

20. ABSTRACT (Conftnuas on raverss aida if neceseary and identify by block number) M
UCLA has implemented Version 4 of the IP and TCP protocols for an IBM 360/370 [
host computer on the ARPANET. This implementation is integrated into the A
existing Network Control Program for AHHP, and was designed to be compatible - =3
at the system-call interface so that existing user-level protocol programs e
can be used interchangeably with AHHP and IP/TCP. The implementation is &"’ i
layered to match the protocols. e

[I

(continued) T

DD "%, 1473 EoiTion oF 1 NOV 6515 OBSOLETE .
S/N 0102 LF-014.6601 ot

SECURITY CLASSIFICATION OF THIS PAGE (Whan Dats Bntered) ..

- - C
D R e A . P -

oo tate s i Sete T et e Ryt ety T
T R R - e pe v e Pe e T e)

o e
Do nlivnl

E
4

[s P, Wi PO TP P "B P PRBur Al oW ., TP S SO S B 5 T A A0 T (R B VSRR, IR, SRR JIPEE BRA SRS S . B L N s e — e ————

IP/TCP Implementation

- December 15, 1979 -- OAC/TR20

TABLE OF CONTENTS
1. INTRODUCTION 5 o o 0 49 a o o o990 o o, o 1
Tl INTERNET PROTOCOLS T Jo A D . 0 . 2
1 121e IP/TCP IMPLEMENTATION STRATEGY 5 . . . B . 7
248 NCP SOFTWARE ENVIRONMENT B O o b 5 . . < - 9
25l o ICT SUBSYSTEM CONTROLLER 5 4 B T o o B & G 10
25.2.; NCP PROCESS STRUCTURE 9 Omsey 10 O O w0 o o E 14
2ler3's _AHHP AND INTERNET ENVIRONMENTS . 3 o © . o1 I 19
24, NCP LOAD MODULE STRUCTURE 4 1P g fa ¥ o 49 20
2.5. ARPANET GATEWAY : 5l o o [e . . d o i ol b 22
2.6. STANDARD ULPP ENVIRONMENT . o IS 52 B 25
2.6.1. SESSIONS d o & . 5 . . o e b G ol Ik 27
2.6.2. CONNECTIONS e o & & o & o o e e & o 31
2.6.3. TELNET CONNECTIONS . . . 5 O 57 o0 0 . 0 38
3. INTERNET LAYER DESIGN o g . . . 5, 10 o © . 41
el o OVERVIEW S = e e e e e e 42
3.2. IPP INTERFACES 5 bl ol @ o Bl o o o o o 43
3.3. IPP PROCESS STRUCTURE e s e & e & e & & o 47
3.4. IPP FUNCTIONS o o & e . . E Y 1% S . 49
3151, IPP DATA STRUCTURES 5 5 =& 5 B &M 5 T &5 4 59
3.6. OUTGOING LOGGER FUNCTION 5 0 O 2 0 0 o o 37 63
i} AREAS FOR FUTURE WORK e » e & & o o o o o 64
4, TCP LAYER DESIGN o nl e e e e e e e . 70
4.1. TCPMOD FUNCTIONS 4 #0 & o §ol d d ol o o 70
4,2, TCPMOD INTERFACES o . o e o e e e e e e 72
4.3, TCPMOD FUNCTIONS LS . . . e e e e e . 74
4.4. AREAS FOR FUTURE WORK A d a7 2 94
5. INTERNET TEST ENVIRONMENT . . 3 g o o © G . 95
6. CONCLUSIONS 5 o ©o O 2 49 0 o O 0 © o O © 99
7. REFERENCES 5 a1l o o . . o e o e e . « 101
8. APPENDIX A -- OUTGOING LOGGER PARAMETER SYNTAX . o« 104
9. APPENDI!? B —-- NCP A-SERVICES T e 0
10. APPENDIX C -- CONNECTIONS 5 o il BH 4 d o kb LS

- e

L e o J AP

e w

S U 1

SRS

| O EIN- TSNS AL S P EEL B REREAL XA S RS LR A S ST TR e SV RS TR, FLall S _Tert, TR JRRE, LS TR, T T T R e

' IP/TCP Implementation
R _ December 15, 1979 -- OAC/TR20
E ILLUSTRATIONS

o Figure

Figure

Figure
4 Figure

Figure
= Figure
Ly Figure
Figure
Figure
Figure

Protocol Levels and Embedding S R, B 5
Fixed Ptask Tree in NCP T 18
Principle Control Blocks in ULPP Environment . 30
Local Socket and Remote Socket Numbers e 32
IPP/HLPM Interfaces . . « « o o o« o o 46
Queues Manipulated by TCPACKT T S DL T I 1% 77
Major TCPMOD Modules P B R, B & S RS 78
TCP Connection States . .« « +« =« o ¢ + 89
Universal (AHHP and TCP) Connection States . . 90
. Effective TCP States for ULPP . .« =+ « =« 91

stat
WO~ U& W
O e o o o o o o o o

F-’)'

................
7 .

do B it e B 0 BN LLRALT R TR AL i T i T T 2 ATR e B i R g M X R U —

IP/TCP Implementation
o December 15, 1979 -- OAC/TR20
. - PAGE' 1

Rl
2l

-

1. INTRODUCTION

! In 1971, the UCLA Office of Academic Computing (OAC) began to

8 implement ARPANET interface software for its IBM 360/91 CPU
under the 0S/MVT operating system. As described in the paper

- "A Server Host System on the ARPANET" (Snowbird Data

3 Communications Symposium, September 1977 [Bra77}), this
software included:

-

hes * a Network Control Program, or NCP;

~ * support for various user-level protocols; and

25 * the Exchange, an OS/MVT operating system extension for

interprocess communication [BraFe72].
;f The user-level protocol support recuired interfacing to

server subsystems, principally the TSO timesharing subsystem
e and the RJS remote batch entry subsystem. Within the NCP
iﬁ itself, server processes implement the ARPANET File Transfer
Protocol (FTP) [RivWo77] as well as MSG, the interprocess
communication facility for the National Software Works
[RivLB77].

The original NCP implemented the standard ARPANET host-host

o protocol [McKen72]. Under ARPA contract, UCLA has now
I completed an initial impiementation of the new internetwork
host-to-host protocol IP/TCP, allowing effective

communication with hosts on other packet-switching networks
interconnected with the ARPANET. This IP/TCP implementation
is currently operating to make UCLA's IBM 3033 mainframe an
"internet host".

"
- This document is the Final Technical Report under the IP/TCP
contract and describes the design of that implementation in
- general terms. More complete documentation will be found in
e ~ the Program Logic and interface manuals
i [BraTCP,BralP,Bra79B]. This document assumes familiarity
= with ARPANET protocols, including AHHP and IP/TCP; however,
R the next section will summarize aspects of these protocols
“e that are relevant to this report.

........
..............
..........................

.............................

T

Le aF_:

e
E
=%

'.
it

P A A T P TN, AL P

1.1.

e D VRl Mt DOMLTTINARR " By 3 M IS M it T M OO R e s Bt

IP/TCP Implementation
December 15, 1979 -- OAC/TR20
PAGE 2

INTERNET PROTOCOLS

The protocols used by hosts on the ARPANET packet-switching
network are said to be "layered" [FeinPos]. That is, the
protocols are defined in distinct layers or levels, with
protocols on a given level being defineu in terms of an
abstract communication model «created by the next lower
level. For example, the user-level protocols such as
Telnet [McKen73] were defined in terms of the model created
by the ARPANET host-to-host protocol (AHHP), one level
lower.

The AHHP model [McKen72] is hased on simplex data streams
or connections whose ends are labeled with 32-bit numbers
called sockets. Sockets have an intrinsic parity:
odd-numbered sockets send data, while even-numbered ones
receive data. Hence a connection always 1links an odd
socket and an even socket. AHHP also provides flow control
and out-of-band . signalling. AHHP allows messages to be a
multiple of any byte size (in practice, bLyte sizes are
usually 8, 32, or 36 bits).

Packet-switching networks have rapidly proliferated in the
last few years, and many of them are being interconnected.
Networks are generally interconnected by hosts called
"gateways" which are common to two (or more) networks
[CerKa74]. Since AHHP 1is 1inadeguate for communicating
across interconnected packet networks, ARPA and its
contractors have designed a new family of "“internetwork"
host-host protocols {PosIP,PosTCP]. This internetwork
protocol family itself consists of two layers:

(1) a lower level called Internetwork Protocol or IP;

(2) a "higher-level" host-to-host protocol.

1P provides datagram service in an internetwork
environment, sending "internet packets" between hosts which
may be on different networks. An internet packet consists
of a segment of data prefixed with an IP header.

IP provides the functions: (1) internetwork host addresses
and (2) the reassembly of internet packets which have been
fragmented by intermediate gateways. IP does not provide
error control; depending upon the properties of the
networks and gateways, a transmitted packet may be lost,
delivered out of order, or delivered in duplicate.

Transmission Control Protocol or TCP [PosTCP] 1is a
particular "higher-level" host-to-host protocol built upon
IP; thus, TCP uses 1IP as a "data transport" service to
transmit and receive segments. A TCP segment generally
consists of a TCP header possibly followed by data.

....................................

........

IP/TCP Implementation
-, December 15, 1979 -- OAC/TR20
PAGE 3

ik b

Il
52050

TCP provides all the functions of AHHP with the addition of
strong end-to-end error control. In particular, TCP
provides full-duplex connections whose ends are labeled
with 16-bit numbers called ports. Unlike AHHP, TCP allows
the same 16-bit port number on a given host to participate
in any number of connections whose remote ends have
differing (host,port#) pairs. TCP also provides flow
control and a facility called urgent that may be considered
a form of out-of-band signalling. TCP messages consist of
8-bit bytes or octets.

54
)

i Aety
- %

P
« 9
Y AR l

The user—~level protocols defined for AHHP must be changed
-3 slightly for use with TCP, due to the significant
% differences between the two host-host protocols which will
now be summarized. The effects of these differences on the
UCLA implementation of TCP will be described in later

sections.
o n P (Y, 198 Datagram vs. Virtual Circuit Services
2 .
& AHHP provides only "virtual circuit" service, i.e., data
i is sent over logical paths or 'connections". Two hosts
o\ must exchange control messages to establish a connection
bty before they can send data to each other.

TCP also provides connections, and may be used 1in
virtual-circuit mode as a replacement for AHHP. On the
other hand, in TCP a single message can open a
connection, send data, and close it again, effecting a
datagram service mode.

-n.
L) Y

151 wie Full-duplex vs. Half-duplex connections:

]

- Under AHHP, the user-level protocols recuire a paeir of
simplex connections to obtain full-duplex operation.

e Under TCP, these protocols can use a single full-duplex

) ‘ TCP connection.

v A further complication is the fact that a TCP connection

P is allowed to be half-open indefinitely. Thus, a close
= request (<KFIN>) only signals the end of data transmission
in one direction; the local process can continue to send
data in the other direction on that connection. The
o connection will be fully closed and deleted only by

request of the 1local process, or by the receipt of a
5 <RST> (Reset) message. In contrast, AHHP protocols that
o use a pair of connections generally expect both to close
‘ simultaneously. '

[i 1.1.3. Ports vs. Sockets

1.1.4.

IP/TCP Implementation
December 15, 1979 -- 0OAC/TR20
PAGE 4

TCP ports differ from AHHP sockets in their size (16
instead of 32 bits) and in having no odd/even parity.
More importantly, a TCP port can participate in multiple
simultaneous connections.

Under AHBP, starting a new session requires an initial
handshake, the Initial Connection Protocol or ICP
[Pos71]. At the server host, ICP begins with a
connection to a well-known socket, followed by
reconnection to a unigue socket (peir); the reconnection
leaves the well-kncwn socket free for the next ICP
sequence.

Under TCP, a particular server's well-known pert can
participate in any number of connections, as long as the
user's (host,port) pair 1is wunique for each session.
Therefore, TCP does not reguire an ICP seduence.

Urgent vs., Interrupts:

A TCP segment may include a field called the "Urgent
pointer" which indicates there 1is "urgent" data a
specified number of bytes ahead in the data stream. This
fact 1is to be communicated to the user-level protocol,

which must read ahead to find and interpret the urgent
data.

Although the Urgent pointer is "out-of-band" in the sense
it 1is communicated outside the data stream, it is not
exactly like the "interrupt" control messages of AHHP;

the Urgent pointer is state information rather than a
discrete event.

However, TCP's Urgent pointer can be used to achieve the
same function as the AHHP interrupt in many contexts.
For example, the Telnet protocol needs an out-of-band
signal to force control bytes through to the server
operating system when the data pipeline 1is clogged
[McKen73]. Under AHHP, the contrcl bytes are followed in
the data stream by an identifiable byte called a Data
Mark. A matching interrupt is also sent, informing the
receiver that by reading ahead to the Data Mark it will
pass (ard should interpret) some important control bytes.
The receiver's Telnet program 1is required to count
interrupts and Data Marks to maintain synchronism. Under
TCP, the wurgent mechanism obviates the need for a Data
Mark; the Urgent pointer identifies the location 1in the
data stream of the urgent control bytes. ’

The layering of the ARPANET protocols 1is reflected 1in
message formats; the data defined by a given layer is
"wrapped" or embedded within framing control bits defined
by the next lower layer. Figure 1 illustrates successive
embedding when data is sent using TCP: the data is prefixed

7 T W P £ W W S W A

P .

e e R e i P s, B

3

e s
sl

e 2

IP/TCP Implementation
December 15, 1979 -- 0AC/TR20
PAGE 5

with a TCP header, an IP header, and finally a local packet
header for transmission over the local packet network.
Similarly, AHHP prefixes the data with an AHHP header
before the local packet header is prefixed.

In the ARPANET case, the local packet header is a 96-bit

leader. The format of a leader is described by the

IMP-host protocol, the 1lowest level protocol seen by an

ARPANET host [BBN1822].

Figure 1. Protocol Levels and Embedding

T T T E o VNI E TR RS LT T AT T e T e

(1) Data from User-level Protocol Process |

| {(====-data-----
I e e ¢
(2) TCP prefixes its header | TCP | => |
| header | | ¢<=---data------
l | ces
(3) IPP prefixes | 1P | => | TCP 4
its header | header | | header .{----data-=----
\ I . ot
(4) ARPANET Outgoing Gateway
prefixes leader
| ARPANET | => | ip . TCP .
| leader | | header . header .<{----data-----

...

F e

R O o

gl i e e i

-y

e M W T e

T ey

[n Tk nl
o e
PR

IP/TCP Implementation
December 15, 1979 -- OAC/TR20

PAGE 6

The term "gateway" was originally chosen for a host which
is connected to two or more packet networks in order to
forward data from one network to another. The gateway
software must strip off the local network framing when an
internet packet is received and then re-embed the packet in
the framing required by the target network.

Every host implementing IP must similarly strip and embed
the internet packets for transmisson over the local packet

network; in this sense, every internet host includes a kind .

of gateway into the local net. Therefore, the modules of
the UCLA NCP which handle the IMP-host protocol for the
ARPANET will be referred to in this document as the (local)
ARPANET gateway.

Through the ARPANET gateway, a local host-to-host protocol
program has access to two types of ARPANET message service:
standard and uncontrolled [BBN1822]:

* Subtype 0 ("Standard")

The AHHP always uses Subtype 0 messages, which the
ARPANET delivers "reliably". That is, the
packet-switching subnet will either (1) deliver one
correct copy of the original message to the destination
host and return an acknowledgment to the source host, or
(2) return a negative acknowledgment. The acknowledgment
(either positive or negative) will be returned as an
IMP-to-host or irregqular message, carrying the 12-bit
message-id field from the leader of the original message.

In particular, an irregular message of type "Reacuest for
Next Message" (RFNM) will be returned when the original
message has been successfully reassembled at the
destination IMP and placed on its gueue for transmission
to the destination host. AHHP ensures reliable and
ordered delivery of ARPANET messages by requiring the
source host to wait for a RFNM before sending another
message with the same message-id.

* Subtype 3 ("Uncontrolled")

A host that sends an uncontrolled message will receive no
acknowledgment from the IMP. An uncontrolled message may
be 1lost, duplicated, or reordered by the subnet.
However, uncontrolled message may be delivered faster
than standard messages and are therefore useful when
speed is more important than relibility.

The two messaugc¢ subtypes differ in maximum size. Standard
messages (which may be sent on the ARPANET in multiple
packets) may contain up to 1007 octets, exclusive of
leader; uncontrolled messages may contain at most 113
octets [BBN1822].

A A A o o WE AR e 4

P 7 A A

ETT TG A T, W

Ay W e T e R

PP -

PRt s T i 2 o2 M T A AT TR T T T L T A T T T T T T M R B M1 T it e s e ~ T P e

IP/TCP Implementation
T December 15, 1979 -- OAC/TR20
E‘ = PAGE 7

X

v The AHHP and IP actually use only the 8 high-order bits of
"the message-id, called the 1link number, leaving the
. low-order 4 bits of the message-id field =zero. In
v, particular, AHHP uses link numbers 0-71 for multiplexing
the 1logical message streams to a particular remote host.

“ Internet packets, however, use a single 1link number

}: (currently 155); 1logical streams must be demultiplexed by

) the internet host based on the IP and higher-level protocol
headers.

In the Internet Protocol model, the choice of message
subtype (and any other network parameters [PosIP]) is based
= cn a field in the IP header called Type of Service (TOS).
L Generally, each network which is traversed by an internet
datagram should interpret the TOS field to select
8 appropriate network paraneters. The 8 bits in the TOS
.. field are divided into 5 subfields [PosIP]. For example,
for Telnet secvice in TCP the TOS field could be the
catenation of the bits:

r 00B => Priority= none.
1B => Stream/Datagram Service = Stream.

10B => Reliability= "higher" (or "normal").

5 !
”]

1B => Speed over reliability= true.

10B => Speed= "higher" (or "fast").

I.I‘l
‘r 'Yy

This is the hex byte X'36'. Similarly, for file transfers
TCP might want to wuse X'31', favoring reliability over

n speed.
‘ 1,12 IP/TCP IMPLEMENTATION STRATEGY

UCLA has implemented the two-layer internet protocol

consisting of IP and TCP for an IBM 360/370 system under
- the 0S/MVT operating system. The implementation is written
e in IBM Assembly Language.

The IP/TCP implementation was integrated into the existing

o ARPANET NCP, which can now support both the old

W host-to-host protocol AHHP and the new internet protocols
simultaneously. Furthermore, the IP/TCP implementation is
(as nearly as possible) compatible with AHHP at the
system-call level, so that the AHHP routines which
implement user-level protocols such as Telnet and FTP can
be converted to TCP with minimal modification.

L The IP/TCP implementation 1is 1itself divided 1into two
distinct layers to match the protocols:

CYAT R T e T AL TN e

o T W

8 e TR M e G

Ty

PGSR o s e gm i oo

PG N e s e

et LA SIS S ARy S P St S PR Y A BRI Y

IP/TCP Implementation
December 15, 1979 -- OAC/TR20
PAGE 8

(1) internet protocol program (IPP), and
(2) higher-level protocol module (HLPM).

The IPP implements the IP protocol 1laver while the HLPM
implements the Ligher-level protocol layer. For TCP in
particular, the HLPM 1is called TCPMOD. The IPP/HLPM
interface 1is defined so that other higher-level host-host
protocols can be added in parallel to TCP without changing
the IPP [Bra7Se].

The IP/TCP implementation was designed for ease of
debugging while the AHHP code is operating for users. This
required the new code to be in transient load module(s)
rather than 1linkage edited with the resident AHHP module.
Also, the IP/TCP processing must be performed on distinct
NCP processes which can block indefinitely or terminate
without interfering with AHHP operation,

Fitting the IP/TCP implementation into an existing NCP and
providing compatibility with existing protocol modules
imposed severe constraints on the design of the new code.
The existing NCP did not <clearly separate IMP-host and
host-host protocol processing, so many of the internal
interfaces required by IP/TCP were fuzzy, undocumented, or
non-existent. Furthermore, for economy and future
compatibility it was desirable to use common code as much
as possible.

We adopted the general strategy of adding documented
interfaces to the existing NCP modules while disturbing
those modules as little as pecssible. In the future, it
will be possible to rewrite the AHHP and other NCP code to
use the new interfaces and clearly recognize the protocol
boundaries. However, this was not required in order to
implement IP/TCP.

The following section of this document describes the
software environment of the NCP, after the interface
changes for 1IP/TCP have been added. Thus, it describes
both the environment within which IP/TCP code must operate
and the common compatible interface to the user-level
protocol program that IP/TCP code nmust match. Later
sections describe the actual designs of the IPP and of
TCPMOD.

.....................
...................
RO PO O L PO A T T o, T o S 1P Mt S D, o/ S A TS B B, e S)

i
e

¥

Fa ol B e s I T3

. Wy W R

-————

ol S S it R Rl S e PO L T SO A SRR S oM I A AT PIEEL MO i i i e T T Tl Rt SRS R TLS NE E Eos TR R e Rl M2 W R AONE SR NE T ENE WL DR IEES L N SL
IP/TCP Implementation

" ' December 15, 1979 -- OAC/TR20
Eﬁ PAGE 9

4
ta

Fr
Pt
N
L]

NCP SOFTWARE ENVIRONMENT

This section describes the structure of the IBM 360/370 NCP
developed at UCLA. Its purpose is to define the execution
environment for new additions to the NCP (e.g., support for
new user-level protocols), using either the original AHHP cor
an internet protocol.

o

AR

The UCLA NCP design has the following general features
,- [Bra77]: ' :

* The NCP executes as a system job rather than as part of the

e OS/MVT Supervisor, providing an isolated environment for

L developing and maintaining ARPANET protocol moduies. While

a buggy module can damage the programs or control blocks of

-n other active ARPANET users, it cannot damage any other part

T of the host system. 0OS/MVT allows the NCP to be

permanently resident in main memoirvy 'ad to have

Iy high-priority access to the CPU. This design is a
compromise between efficiency and modifiability.

r

* The NCP job's region provides a dynamically-sharable memory
i pool for protccol-dependent transformation modules and
i ARPANET 1/0 buffers.

* The NCP executes programs which transform between ARPANET
I protocols and canonical protocols used internally within
— the IBM host. The canonical internal protocols are also
= used for non-ARPANET virtual terminal access to the same
s user and server subsystems,

* The Exchange is used for all communication between the NCP

B and the user/server processes within the IBM system. The

e Exchange provides virtual I/O paths called windows between

any two tasks under OS/MVT. As a result, the interaction

- of these tasks can be defined entirely in terms of the

N : internal protocols used to communicate through the Exchange

b windows. The Exchange primitives to open and <close a

= window and to transmit data are actually Supervisor Call
e (SVC) routines.

* The ARPANET-protocol dependence is concentrated in the NCP,
= thus localizing network protocol changes (e.g., "old" to
) "new" Telnet). Furthermore, the wvirtual terminal

interfaces to the server subsystems, which often exist 1in
. difficult and risky environments, are largely independent
o of the ARPANET protocol details.

We now describe the internal NCP environment in more detail.

2.1.

2.1.1.

.....

o

AP LT AR S5 | e B P o A ol . i i im0 T T o A g 90 0 i il i i

IP/TCP Implementation
December 15, 1979 -- OAC/TR20
PAGE 10

ICT SUBSYSTEM CONTROLLER

The ARPANET NCP executes as an independent subsystem, i.e.,
as an unprivileged system job in its own region of main
storage. The NCP looks to the operating system 0S/MVT like
a single task (process), but it multiprograms internally
using a general-purpose subsystem controller called ICT
[Wolfe74). The most important functions of ICT are:

* multiprogramming to create internal processes, called
psuedo-tasks or ptasks;

* gynchronization among these ptasks and between ptasks
and real tasks outside the NCP;

* sub-allocation of core memory within the NCP region;
* timing services for the ptasks;

* recovery from failures of individual ptasks;

* maintenance of a dynamic pool of program modules,

The ptasks created by ICT are coroutines, i.e., they always
relinquish control to other ptasks voluntarily. This
simplifies the design of the NCP, as ptasks can manipulate
common data structures without requiring mutual exclusion,
ICT is a commutator, that is, it dispatches ready ptasks
with a simple round-robin discipline. The state vector for
each ptask 1is saved in a 256 byte control block called a
Pseudo-task Area or PTA.

P-Services

ICT provides the ptasks with a set of system calls known
as "P-services". The P-services are actually subroutine
calls through a transfer vector whose address appears in
every PTA, and are invoked via assembly-language macros
[Wolfe74]). The most important P-services are:

* PATTACH
Fork (create) a (sub-)ptask.

Following the classical process model, the ptask
which called PATTACH becomes the "parent" or
"superior" of the new ptask. ICT maintains the
ptask family tree, and when a ptask terminates ICT
forces inferior ptasks to terminate also.

The PATTACH caller specifies the name of the load
module to be loaded and executed by the sub-ptask.

...

o . - .
.............

........

- - -
......

W T G TR W T T . e Y

T S —p—

S S e il ¥ R L Ty T il Pl 0 e I i i 0 o Sl el 0 S S A S At At 0 O A S i R T S LRI B g R
IP/TCP Implementation
Fa December 15, 1979 -- OAC/TR20
fﬁ , . PAGE 11
Ei
* PEXIT
n Voluntarily terminate the caller's ptask.
* PDETACH
(54
E: Force an inferior ptask to terminate (PEXIT).
x*
- PWAIT
ey Block the «calling ptask (coroutine) wuntil some
combination of events occurs. Thus, PWAIT provides
E process synchronization among ptasks and between
] ptasks and real 0OS/MVT tasks, as well as timing
services.
o * PPOST
E Y Send a "wakeup" signal to a ptask, by signalling a
I ﬁ particular binary semaphore (see below).
) * PCORE GET, PCORE FREE
- Obtain or free memory sub-allocated within the NCP
region, in 256 byte pages.
. * PLOAD, PDELETE

3 Load a transient load module from a system library,
g3 or delete it. If the module is marked "Reentrant"
Ve and "Reusable”, it will be shared; ICT maintains a
responsibility count to determine when to
physically delete a shared module from the region.
Modules may also have aliases.

PATTACH invokes PLOAD to obtain the sub-ptask load
nodule.

PEXOPEN, PEXCLOSE
Open, close arn Exchange window.
PSPIE, PSTAE

Recover from a failure in the calling ptask.

T wte® e e tarte et g AT et Lt g e »

- R vy [S 1. AL S Wit 2 S UL s ——

b VIR A B 5 DR DTl Vi S S W d U At a flapt o Bl e Bl St B R ta SRS DR Sl Rl ittt

IP/TCP Implementation
December 15, 1979 -- OAC/TR20
PAGE 12

2: 1425 Ptask Synchronization

Using PWAIT, a ptask can wait on any combination of the
following kinds of event signals: '

(1) a list of real Q0S/MVT Event Control Blocks (ECB's):
(2) a list of pseudo- (or "internal") ECB's;

(3) any subset of the seven binary semaphores (called
"flags") that are associated with each PTA.

(4) a specified time of day or time interval.

Real ECB's are signalled with the normal O0S/MVT
Supervisor Call (POST SVC), while internal ECB's are
posted by another ptask simply setting their "complete”
bit. Six of the binary semaphores are assigned
particular meanings by the NCP and are named accordingly
(see Table 1). However, a ptask may use them for other
purposes.

Table 1. Standard ICT Binary Semaphore Names

PWAIT operand Bit Name Standard Meaning

OPEN PTAFCOPN Remote host has
requested open

CLOSE PTAFCCLS Remote host has
requested close

INPUT PTAFCINP Input has arrived
from ARPANET

OUTPUT PTAFCOUT Output to ARPANET
is completed

ATTN PTAFCATN Out-of-band signal
from ARPANET

CORE PTAFCCOR PCORE reauest is
now satisfied

IP/TCP Implementation
December 15, 1979 -- OAC/TR20
PAGE 13

i’

]

R om
[AR

- 2.4 33\ Resources

An ICT ptask is also the owner of resources. There are

SO three kinds of resources:
N * load modules, dynamically loaded by PLOAD or PATTACH;
L
* main storage, obtained with PCORE;

-] .
iry * Exchange windows, opened with PEXOPEN.
) ICT will free all resources owned by a ptask when it
R PEXIT's or 1is PDETACHed. 1In particular, ICT will close
L all open Exchange windows by calling PEXCLOSE implicitly,

and it will delete all PLOADed modules by calling PDELETE
o implicitly.
’ There are P-service calls that allow a ptask to pass
. ownership of a resource to another ptask.
r 2.1.4. A-Services

NCP routines obtain ARPANET-dependent services by issuing
local system calls known as "A-services". Macros are
g provided for coding A-service calls [WolBr79]. The
'. A-services are simply subroutines since the entire NCP

operates within the same protection domain, the NCP job.

A Because many NCP routines are loaded dynamically, the
L x A-service subroutines must be located via a resident
- transfer vector whose address is contained within a PTA
field (PTAATRV). In general, an NCP routine will have

Ei its PTA address in a register (R1ll by convention) in
2 order to issue A-service and P-service calls.

s Certain A-services operate as extensions of corresponding
£ P-services. For example, an NCP ptask always terminates,

whether voluntarily or not, by entering PEXIT. PEXIT in
- turn calls the A-service routine AEXIT to free
3 ARPANET-specific resources; then PEXIT frees ICT
resources as discussed earlier. The exact sequence of
events when a ptask terminates is discussed in Appendix
D.

For full details on ICT and the P-services, see OAC
Systems document "“ICT Monitor Services and Macros"
[Wolfe74]).

i i N I # ¢ T T e g - - oo T e T
R N S e S I S T L U N A B N S TSR TR T ST R Dl TR R M TR Tk T T e

—~

R IP/TCP Implementation
- December 15, 1979 -- OAC/TRZ0

B
b _ . PAGE 14

2.2. NCP PROCESS STRUCTURE

‘ﬂ The basic unit of activity within the NCP is a session. A
' session which is created as the result of a service request
received through the ARPANET is called a server session.

VTV

-TE AT TR T W W N R S WER WA T Y O RN B Y W w

; Q: Alternatively, a session may be created as the result of a
E - request from a local process, generally to act as a user of
i = a remote server program; this is called a user session,
b o Sessions are designated by a 16-bit integer called the

session number,

‘g

o A session will normally require one or more ARPANET
L connections (logical data streams) for communicatinn with
the remote host. The semantics of sessions and connections
and the corresponding control blocks are discussed below.

TR T T
T [
l‘ l'

2 o Dellle Dynamic ptasks

Communication is pverformed by programs executing under
ptasks which are dynamically created and destroyed as
sessions start and terminate [Bra77]. These communication
ptasks are either User Level Protocol Processes (ULPP's)
or Host Control pTasks (HCT's).

* ULPP -- User-Level Protocol Process

For each active ARPANET session, a set of one or more
ULPP ptasks will execute programs particular to the
user-level protocol(s) used by that session, Some of
these programs implement ARPANET service functions
(e.g., FTP) entirely within the NCP subsystem.
However, most ULPP's relay data between the ARPANET and
Exchange connections [BraFe72] to local user and server
processes outside the NCP.

In general, ULPP's are protocol transformers, 1i.e.,
they convert between their particular ARPANET
user-level protocols and corresponding internal
protocols used through the Exchange windows.

The ULPP modules are loaded dynamicallv from the NCP
load module library by PATTACH. To start a session, an
NCF module calls PATTACH to fork a primary ULPF ptask
executing the appropriate user-level protocol module.
This ULPP may in turn fork inferior ULPP's, forming a
ptask sub-tree for the session with the primary ULPP at
its root. :

* HCT -- Host Control Task (AHHP only)
There will be an active HCT ptask for every ARPANET

host which 1is currently communicating through the NCP
using AHHP. 1Internet sessions do not have HCT's.

¥ 4
)

S

5
*r

]

e

)

2.2.2.

IP/TCP Implementation
December 15, 1979 -- OAC/TR20

PAGE 15

An HCT performs host-specific processing for AHHP.
Most importantly, an HCT performs the outgoing logger

and incoming logger functions to create user and server
sessions (respectively) using AHHP. Specifically, the
HCT -executes an ICP sequence and then forks the primary
ULPP ptask.

Fixed Ptasks

Within the NCP, there are six fixed ptasks which will
always be present even when the NCP is completely idle.
Figure 2 shows the ptask tree structure of the NCP.

* NCP Ptask

The NCP ptask decodes the leaders and AHHP headers of
messages which are received from the ARPANET, and
handles much of the IMP-host protocol. 1In addition,
it handles the receive-side of AHHP.

NCP includes an intercept mechanism for filtering
"raw" packets received from the IMP, as described
under "ARPANET GATEWAY" below. 1In particular, this
filter mechanism diverts all internet packets to the
IPP.

* ITMPIO Ptask

IMPIO is the 1/0 driver process for the hardware
connection to the IMP. IMPIO builds channel
programs, issues the Supervisor Calls (EXCP) to
initiate Read and Write operations to the IMP, and
analyzes the results upon completion of these
operations.

* LOGGER Ptask

LOGGER handles startup and shutdown of the NCP and/or
the IMP. LOGGER also initiates the "outgoing logger”
function, <creating a new user session in the NCP and
causing it to connect to a remote server. For this
purpose, LOGGER always has a pending Exchange OPEN
with a "well-known" symbolic tag for each user-level
protocol. A local process starts a user session by
issuing a matching Exchange OPEN request and passing
the remote host name and contact socket number
through the window to LOGGER. '

For AHHP, LOGGER passes the outgoing logger request
to the HCT for the renote host, which then performs
the required ICP seguence and forks the primary ULPP.
If there is no HCT ptask for that host, LOGGER forks
one. For 1IP, LOGGER starts up a transient INPOLOG
ptask (see below) to initiate the outgoing 1logging

AR -l PR

-— -
P

R N s T S R & 2 al onll S S Snat S - ol -l g

v Ry W W

— N @ W

P——

. IP/TCP Implementation
December 15, 1979 -- OAC/TR20
PAGE 16

function.

Finally, LOGGER is part of the "incoming logger"
function for AHHP. The NCP ptask will reqguest LOGGER
to fork a new HCT when an ICP reguest arrives for a
local server process and there is no corresponding
HCT.

* INPTASK-- IPP ptask

INPTASK is the primary IPP driver ptask. It handles
input, timeouts, and outgoing logging requests for
all internetwork protocols, including IP and TCP. A
module executed under this ptask issues the PATTACH
to fork the primary ULPP for a user or server session
using an internet protocol, making the primary ULPP
ptask its direct descendant.

The INPTASK module itself is resident. However, it
issues PLOAD to dynamically load the main IPP moduie,
INTMOD. INTMOD will PLOAD the proper higher-level
protocol module (e.g., .TCPMOD) when needed and
PDELETE the module when the protocol becomes idle.

* INTERNET -- IPP control ptask

This ptask, created by LOGGER when the WNCP job
starts, starts the internet protocol program IPP by
forking INPTASK. If INPTASK ever exits (due to
operator action or program failure), INTERNET cleans
up and restarts INPTASK.

* MSGMAIN -- MSG ptask

This ptask, really a very complex ULPP, 1is the
primary controller for the MSG interprocess
transaction protocol used by the National Software
Works [RivBL77). The MSGMAIN ptask 1is created by
LOGGER when the NCP starts.

........

IP/TCP Implementation
December 15, 1979 -- OAC/TR20
PAGE 17

2.2.3. Transient Ptasks

In addition to the session-related HCT and ULPP ptasks
and the fixed ptasks, there are transient ptasks which
perform particular functions and immediately vanish,
Examples of transient ptasks include:

* ARPASRST

This send-Reset ptask is forked by NCP initialization
to send an AHHP host-to-host RST (Reset) command to
every ARPANET host.

* INPOLOG

This transient routine initiates outgoing-loaging for
internet sessions, by parsing a character string
defining the desired session (see Appendix a).
Assuming the parse 1is successful, INPOLOG creates an
"Outlog Queue Element" (OLQE) for the request and
enqgueues it for IPP, then calls PEXIT and vanishes.

The following figure shows the basic ptask structure of
the NCP.

i
S

e T TR’ & TEmtionam et I ant s . ol Y0 G B S€ ST Saui™t 4 = e Jul iy DR iy W

e e T S

P

WY T R e m—_ L

TR B S R N S AN NI et . M. Ml B S B W A e e W o VTN 2 gl "Phalt ‘il TN TY TW ORI
e . N e N M T e T R R L TR R R N O T O oy R N R T R I TR N R R I O T M T RS T R e T o 2 oy

g IP/TCP Implementation
i December 15, 1979 -- OAC/TR20
E PAGE 18
)

B
%

Figure 2. Ptask Tree Structure in NCP

N | | |

| | * |+
- | | | |
& | | | | |

| wNcp | | IMPIO | LOGGER |
I I

SRR en el e~ o & wead Dued o v nd St ol T ol Iy e R an T B S I Rl S

- I 1

L -

I e o o !

o I | =231

ol [| * | '
I I

I

|

|

| I |
| INTERNET | | HCT's

C

q:. i

- EETE ¥ W e

MSGMAIN | | | HCT |
1 | | for an |
X | * |active host| :
o | | | ;

I I I
| INPTASK | |

g | eee)

i | | |

. ! | | o | (Primary ULPP's for
g - \ \Y \' AHHP sessions)
s (Primary ULPP's for

Internet Sessions)

o e —— R, 17 S T Sy 8 -+ - @

*: pDenotes fixed ptask.

................................

ST e i ol T fara g R " =
E:'L' b s N D elein R o ot s o s e R ST T R o O o ST i R P A s R E R R I A S S g i e a8

£ ‘ IP/TCP Implementation
B December 15, 1979 -- OAC/TR20
PAGE 19

b p_*:

=
é

2.3. AHHP AND INTERNET ENVIRONMENTS

A single ULPP may use different "higher-level" internet
protocols simultaneously, but it may not wuse both an

T IR
b ot o o}
1
L%

= internet protocol and AHHP. A ULPP for a session using
internet protocol operates in an environment which is

seen by a ULPP using AHHP. It is convenient to use the
terms "internet ULPP" and "AHHP ULPP" to describe ULPP's
operating in the specified environments. However, note
i that the two environments are designed to be essentially
T compatible from the viewpoint of the ULPP, so that the same
ULPP code can be used in either environment.

- different from, but nearly compatible with, the environment
8

R s S

T

i

The A-service system call routines for AHHP and internet
(TCP) protocols must therefore implement compatible
{ semantic models for a connection. We say that the internet
A-service routines provide a compatibility interface to the
ULPP's, 1i.e., they emulate as nearly as possible the
corresponding A-service routines used for AHHP.

The compatibility interface allows only connection-oriented
usage of TCP. A new set of A-Services will be required to
use TCP as a transaction-oriented or datagram-like service.

Note that:

the primary ULPP ptask for an AHHP session will be
directly inferior to an HCT, while a primary internet
ULPP ptask will be directly inferior to INPTASK.

AHHP and internet protocol use different A-service transfer
vectors.

A ULPP is in the AHHP (internet) environment when the
PTAATRV field of 1ts PTA points to the AHHP (internet,
respectively) transfer vector.

Appendix B contains a list of A-services for both the AHHP
and internet environments.

When a ptask is created, the PTAATRV address in the new PTA
is set equal to the creator's PTAATRV. The result 1is to
propagate the A-service transfer vectc- down the ptask
tree. Since the INPTASK PTA points t the internet
transfer vector, all internet ULFP's wil also have ‘the
internet A-service vector, for example,

In addition to its a-service transfer vector, thc internet
environment includes a resident control area <called the
"p3CB" (explained under "STANDARD ULPP FENVIRONMENT",
below) .

..................................

STV B " T e e T R R TP By T e e T e

o R G Wy e T Y WS T P & 3

e erw

R P
Y BB

.7

2.4,

IP/TCP Implementation
December 15, 1979 -- OAC/TR20

PAGE 20

The IPP design allows the possibility of more than one
active IPP instance concurrently, each with its own
internet environment. For example, a second environment
might be wuseé for testing new IPP versions. A new
environment would be created by the INTERNET ptask forking
a new INPTASK ptask, and would have its own BA-service
transfer vector and P3CB.

When a primary ULPP ptask is forked by either a HCT (AHHP)
or by INPTASK (internet), the ULPP's PTA contains an ICV
(Initial Connection Values) parameter list. The 1ICV 1list
defines the 1initial "logging"™ connection(s), 1i.e., the
initial connection(s) opened as a result of the 1logger
function. The ICV includes the session number and a
specification of the remote host.

NCP LOAD MODULE STRUCTURE

The previous section discussed the NCP structure in terms
of 1its component processes. Now we consider the load
modules which are used. It is convenient to divide the NCP
program modules into three categories:

. * ULPP routines, which are dynamically loaded (usually by
the PATTACH P-service) to handle the wuser-level
protocols for active sessions.

* the Telnet access method, a set of resident reentrant
subroutines which ULPP's can invoke to handle the
Telnet protocol. These subroutines provide a standard
Telnet I/0 interface, including nearly all Telnet
protocol translation and control functions required by
any ULPP [Tol77].

The Telnet access method is invoked with the macros:

ATOPEN-- open a Telnet connection

ATCLOSE -- close a Telnet connection
ATPUT -- send data on Telnet connection
ATGET -- receive data from Telnet connection

The routines themselves are located on the A-service
trancfer vector(s).

* a set of routines ccllectively called the ARPANET
Control Program or ACP, concerned with the host-host
and IMP-host protocols.

—— w L
ettt e T

v,

-, -
e,
S

- -
Fels

aSala,

3

IP/TCP Implementation
December 15, 1979 -- OAC/TR20

PAGE 21

The ACP includes both resident and dynamically-loaded
modules for AHHP and internet protocols. All resident ACP
modules are linkage edited 1into the resident NCP load
module ARPAMOD. The TCP code and the bulk of the IPP code
are contained in dynamically-loaded modules:

INTMOD for IPP

TCPMOD for TCP

ARPAMOD includes all resident modules, which generally
perform the following functions (see Appendix B):

* Commutator Support Routines

These routines perform NCP-specific functions related
to creating and destroying ptasks.

* ULPP Environment Creation and Control
These mcdules control the creaticn of dynamic modules,
clean up when a ULPP exits, and create the standard
control-block environment for a ULPP (described under
"STANDARD ULPP ENVIRONMENT", below).

* ARPANET Gateway Routines
These routines handle the IMP-host protocol and provide
a logical "gateway" to the ARPANET. They include the
IMPIO and NCP routines which are executed by the ptasks
of the same names, as discussed earlier. See
subsection "ARPANET GATEWAY", below.

* AHHP Conneccion A-Services

These are the A-service subroutines that AHHP ULPP's
cail to create and manipulate connections.

* AHHP Protocol Modules
These are internal ACP subroutines that i1mplement AHHP.
* Resident IPP Code

The functions 1listed so far belong to the ACP. In
addition, ARPAMOD includes:

* Telnet Access Method routines

* Resident Tailzcs

b : IP/TCP Implementation
t; December 15, 1979 -- CAC/TR20
- PAGE 22

Appendix B includes a list of actual module names within
s_ these functional categories; notice that in some cases a
v single module fits within more than one category.

Most of the modules in ARPAMOD are either executed by fixed
ptasks or are called as A-services. The AHHP A-service
routines all have names of the form: ARPAxxxx, while the
corresponding internet A-service routines in the
compatibility interface have names of the form: ARPIxXxxxx.
The ARPAxxxXx routines are linkage edited into ARPAMOD.
However, the ARPIXxXX routines are part of the
dynamically-loaded IPP module INTMOD, as we will describe
under "INTERNET LAYER DESIGN", below.

5 :
.
P

._;‘,?]-

-

)
rr 5 e
aa_

Not all A-service modules differ between the AHHP and
internet environments. The = A-service routines concerned
with environment creation and control as well as the Telnet
o access method routines can be almost identical in the two
8 : cases, differing by only a few instructions. Therefore
there is only a single version of these modules. The
important ULPP control blocks have a common flag bit which
is off in the AHHP environment and on in an internet
environment; the common A-services test these bits when
necessary to select appropriate environment-dependent
I instructions.

S

Within the ACP, there are some standard interfaces which
the host-host protocol routines use to invoke gateway
Y functions and to manipulate the control block environment
[BRA79A] , ensuring compatibility. Most of these internal
interfaces appear on an auxiliary transfer vector, called
ARPXTRV, which in turn appears on every A-service transfer
= vector, These interfaces routines are invoked by the ACPX
macro, and are listed in Appendix B.

2.5. ARPANET GATEWAY

Those modules of the ACP which handle the 1lowest protocol
layer, the 1IMP-host protocol, are referred to as the
"ARPANET gateway". For explanatory purposes, it is
convenient to model the gateway routines by two functions,
the Incoming Gateway AGAWI and the Qutgoing Gateway AGAWO.

2.5.1. AGAWO -- Outgoing Gateway Function

Given a parameter list defining a message to be sent, a
destination host and link number, and the type of service
. desired, the Outgoing Gateway will prefix an appropriate
L ARPANET leader and send the resulting packet to the IMP
i hardware interface. The parameter list is called a Write
Request Element or WRE, and the call is coded with the
ACPX QUEOUT macro.

I1P/TCP Implementation
December 15, 1979 -- OAC/TR20

PAGE 23

e

&

204

An ACPX QUEOUT call adds the WRE to the IMP output gqueue
and signals the OUTPUT semaphore of the IMPIO ptask.
When the path to the IMP is free, IMPIO builds an ARPANET
leader for the message as well as a channel program

x

' containing a Write operation and pointing to the data,

A and issues an 0S/MVT Supervisor Call to start the Write
operation,

™ . . '

Et When the Write operation completes, IMPIO deletes the WRE

from the output queue and signals completion of the
request. The exact manner of signalling differs for AHHP
and IP [Bra79a]. For AHHP, AGAWO simply endueues the WRE
on the DONE Queue. The subsequent receipt of a RFNM (or
a negative acknowledgment) for the same 1link number
causes NCP to remove the WRE from the DONE Queue and
complete processing of the send request.

T
e

PO

- The DONE Queue is not used for the IPP, however, because
E; all messages use the same link number and because IPP may
B use Subtype 3 (Uncontrolled) messages which return no
RFNM or other acknowledgment from the subnet. Therefore,

e if the WRE is marked "Uncontrolled" or "Not AHHP", then

A AGAWO simply omits the WRE's sojourn on the DONE Queue
and marks it "completed" immediately.

- Thus, there 1is no direct signal to IPP that a send

request has completed and the WRE is free. The IPP must

. depend upon being awakened either by the receipt of a

tf host-host acknowledgment message (<ACK>, in the case of

TCP) or else by a timeout. It must treat WRE's as a
relatively plentiful resource.

r AGAWO has an interface entered from AGAWI to send

irregular (host-to-IMP) messages using a private pool of

e WRE's. AGAWO also includes an IMP queue purge function,

b) which is invoked by the ACPX HALTIO macro call. This

call searches the AGAWO output and NOW gueues for any

WRE's pointing to a given CCB (or its internet
equivalent), and dequeues them.

2.5.2. AGAWI-- Incoming Gateway

The 1incoming gateway function is performed by parts of
IMPIO and the NCP ptask. IMPIO keceps a hardware Read
g operation pending to the IMP. This Read completes
I whenever the IMP sends the last bit of a message to the
host interface, and the NCP ptask 1is awakened as a
o result. The AGAWI portion of the NCP ptask interprets
the ARPANET leader to determine the message type and link
number. Irregular messages are in gencral handled by
AGAWI, but some are passed to the AHHP part of the ACP.

PSS S N R SR R S R I TR SR I e T I e R PRI CRSERN
..“. ““““ A Te te) » -"-.' -3.-\‘ - -ﬁ'h n"\"-‘ -“L.' i <\'~."":' S -\-'.\ o '.\ SN e e e N e e T
ER AP A o N D P € oA o o | P R n U PR P L T P B O O T P T T T gt et et el gt PR T R SaltE RS R T

‘-

nan

.

LRSS IPON ST B BRIV P JRApi_ i JOute. PR, JNg o A RPN P S SR SR S B O e N i e i T it

IP/TCP Implementation
December 15, 1979 -~ OAC/TR20

PAGE 24

AGAWI includes an intercept to filter "raw" packets from
the ARPANET; this mechanism 1is called the "Network
Measurement Center intercept" for historical reasons.
The leader of each received message is compared with a
set of filters. If the leader matches an active filter,
AGAWI copies the message into an associated buffer and
signals the INPUT semaphore of the corresponding ptask.
An intercept buffer is capable of holding more than one
message, so each message is preceded by an 8~byte header
which contains the message length.

The same message may be intercepted by one or more
filters as well as the normal AHHP mechanism.
Furthermore, there is a similar mechanism in AGAWO for
outgoing packets, so a2 aiven filter may select incoming
and/or outgoing packets. To establish a filter using the
NMC intercept, a ptask calls the NMC-Intercept Open/Close
A-service ANMOC. See Reference [Bra79A] for details.

In particular, the IPP ptask INPTASK establishes an
incoming filter for the internet link number (currently
155), so that an arriving internet packet will be copied
into the buffer and INPTASK awakened. Although the
buffer 1is governed by pointers 1like a normal input
circular buffer, it is not used in a «circular manner;
therefore, the IPP can assume that a single packet is in
contiguous memory. The IPP is expected to process the
packet ‘"promptly", moving it from the intercept buffer
into a segment reassembly buffer (see "INTERNET LAYER
DESIGN") .

T T TS

-t
.

Y

. IP/TCP Implementation
' ' , December 15, 1979 -- OAC/TR20
PAGE 25

e
[

2.6. STANDARD ULPP ENVIRONMENT

| A ULPP 1is concerned with the basic communication objects:
sessions, connections, and Telnet connections. For e=ach of

LT
e

.

i these objects, there is a corresponding control block:
* Session => Account Control Element or ACE;

P:\

Lo * Connection => Connection Control Block or CCB;

<1 * Telnet Connection => Telnet Connection Control Block or

S, TCCB.
| e These control blocks are chained together in a manner to
B reflect their inter-relationships (see Figure 3). These

chains and the control block formats are important aspects
= of the "environment" seen by any ULPP.

ACE's and TCCB's are used in both the AHHP and the internet
. environments, with no significant differences. However,
2 the format of a CCB 1is (partly) dependent upon the
e particular host-host protocol in use. The CCB-analogs in
the internet environment are called "hlpB's", where "hlp"
: denotes a three-letter mnemonic for the particular
. higher-level protocol. For example, a TCP connection 1is
controlled by a TCPB.

THER TV T Ty T
- c

As discussed previously, the ACP is designed to provide a
compatible environment for both AHHP and internet ULPP's.
This requirement for compatibility implies the following
general conditions:

e
e s

s |

* The A-service routines for AHHP and internet protocols
must implement a "universal" semantic model for a
connection (described in Appendix C).

e
Cal
o

* Those fields of the ACE, TCPB, and CCB (or equivalent
hlpB) that are used by a ULPP must be the same in both
environments. This 1implies 1in particular that certain

. fields cf a TCPB must exactly correspond to fields of o

1 CCB; those fields are 1listed in Appendix C. The other

! CCB/TCPB fields, which depend upon the host-host

protocol, will be used 1internally by the ACP but

generally may not be used by a (compatible) ULPP.

K] .*'

* It must be possible for a ULPP (or an A-service called by
= a ULPP) to determine which environment it 1is operating
[; in. Thus, any control block which differs in the two

environments must have a common flag bit. This bit,
called the "Not Host-Host”" bit, is off in the AHHP
2l environment and on in the internet environment.

IP/TCP Implementation
December 15, 1979 -- OAC/TR20

PAGE 26

o ;".mr;’.x_m*xzﬂg
| PR e} ™ :

* The host and socket parameters passed to the primary ULLP
in the ICvV 1lict should cause the ULPP to issue a
corresponding ,equence of AOPEN's for AHHP and TCP, to
have the proper connection be completed in either case.

Perfect AHHP/internet compatibility is impossible because
-0of the real ‘protocol differences outlined in the
introductory section. For example, there are small but
significant differences 1n the connection states which must
be observed if a ULPP 1is to operate correctly in both
- environments (see Appendix (). We have attempted to
7 minimize the impact of these differences on the ULPP's.

(.»V_ HORSPACAr el sl

Many user-level protocols open a pair of (simplex) AHHP
b connections corresponding to a single (duplex) TCP
te connection. Fortunately, in most cases such a connection
pair wuses the Telnet protocol and is manipulated only by
the common Telnet access method. This centralizes many of
the compatibility problems in the Telnet access method
subroutines. These subroutines contain code which tests
the environment and executes a few instructions differently

gy
Ul

3

T
]
ACY
-

= T
.

% for AHHP or internet. The incompatibilities are in two
& = areas: (1) a pair of simplex connections vs. a single
- full-duplex connection, and (2) “urgent" vs. "interrupt"
h ‘ signalling. '

We can now describe the semantics of sessions, connections,
and Telnet connections. We will assume the compatibility
interface, and will discuss only those fields of a CCB/hlpB
that are common to both environments. Therefore, we can
speak of a “CCB" and imply either a CCB or any analogous
hlpB (in particular, TCPB).

...............
..
2% e e G Tt s e % ™Y 0% Fn s e et e, TS .

o

(6)

IP/TCP Implementation
December 15, 1979 -- OAC/TR20
PAGE 28

Whenever the HCT exits, the corresponding
control CCB is deleted (closed), and as a
result the ACE's chained from it are also
deleted. This will normally occur as the
result of receiving a "Host Down" irreqular
message for that host.

(5B) In the internet environment there are no
HCT's, so all ACE's are <chained from the
IPP control area. To simplify
compatibility in various ACP routines, some
fields of this area are formatted to
correspond to a control CCB. For this
reason, the 1IPP control area is called a
pseudo control CCB, abbreviated P3CB.

An ACE (and session) is deleted by the A-service
ACESELL. ACESELL may be called explicitly by a
ULPP (presumably the one that called ACEBUY), or
implicitly when: ,

* the primary ULPP ptask owning the ACE exits;
or

* the HCT for the host with which the ACE is
associated exits (AHHP only).

(Note: 1in the (common) case that the session was
created by the incoming/outgoing 1logger, the
primary ptask will be directly inferior to the
HCT, and these two conditions wilil be 1logically
equivalent. In the case that the connection 1is
opened by a ptask not 1in the subtree of the
primary session PTA, ACESELL has a more complex
effect; see the ACESELL writeup).

Before writing an accounting record and deleting
the ACE, ACESELL will close all connections open
within the session, thereby freeing all CCB's and
TCCB's chained from the ACE.

T, TS PP e W

B A A e T IR L)

v - IP/TCP Implementation
t‘ December 15, 1979 —-- OAC/TR20
= PAGE 29
& -

2.6.1.2. ACE Contents
F An ACE includes the following fields:
c3 o * Unique session number (ACESESS)
=
R * 10-byte user identification string (ACEUSER)
- - * User—-level protécol name (ACESYS)

* Remote host id (ACEHOST)
o * Flags (ACEFLG)

The flag bit ACEFINHH will be off for all ACE's 1in
the AHHP environment, and on for all internet
ACE's.

Figure 3 illustrates the control block chains involving
ACE's, the control CCB, and CCB's. It shows n ACE's
chained from the Control CCB. ACE 1 belongs to "PTA
1,0", and has two CCB's chained from it. "CCB 1,1"
belongs to "PTA 1,1" and has pointers back to the ACE
and to the Control CCB. 1In the internet environment,
the "Control CCB" will be the P3CB, and the "HCT PTA"
will be the INPTASK PTA.

- - = —— . B W W G Y L ey P T SN S

g IP/TCP Implementation
Fﬁ December 15, 1979 -- OAC/TR20
o ~ PAGE 30

Figure 3. Principle Control Blocks in ULPP Environment

> CCCB
- - ACE 1 ACE n
- | | ACE chain
g | Control | ---=----- el ACEO---=----- coe—=> | ACEo--*
o | CCB I I I | I
| | (emmmmmee oCTRL I CCCB<---0CTRL I
i I I I I I I
& | o-->HCT | o 0-->PTA | o 0--->P
I | PTA i1 4 | I n
| |
| |
- ccB | cce |
. chain | chain |
"‘.‘ Vv \'2
I |
N | CCB o0-->ACE 1
; CCCB{====—=- o 1,1 I
| o-=->PTA 1,1
b I o I
K |
' I
’ I
AV
I I
| CCB 0o-=->ACE 1
0 CCCR{~===== o 1,2 |
i | 0=-=>PTA 1,2
pe I o |
I
- *
ne

9] £

L ."

(S

2.6.2.

2.6.2.1.

IP/TCP Implementation
December 15, 1979 -- OAC/TR20
PAGE 31

CONNECTIONS

For each network connection there 1is a CCB (or TCPR)
which contains all the relevant pointers, queues, and
state variables. The address of this block 1is the
"handle" used within the NCP for naming the connection.

Socket and Port Numbers

A connection is terminated at each end by a "socket".
In AHHP, for example, the full name of a socket is the
pair:

(<32-bit number>, <host address>)

where <host address> is the address of the remote host
on which the connection terminates. At times, the
<32-bit number> is itself called "the socket".
Similarly, a TCP socket is named by the pair:

(<port number>, <host-address>)
where <port number> is 16 oits.

Within the UCLA NCP, there are 32-bit numbers
associated with both the 1local and remote ends of a
connection; these numbers will be called the Local
Socket Number and Remote Socket Number, respectively.
They obey the rules:

* The Local Socket Number must have the session
number in the high-order 16 bits.

* For AHHP, each 32-bit Local Socket Number must be
unique and different from any TCP Local Socket
Number (the session number guarantees the last).

The following table summarizes the assignment of Local
Socket and Remote Socket Numbers. For AHHP, the ICP
sequence assigns a Local Socket Number subspace of
2**16 socket numbers; the values shown in the table
under AHHP are the origins of this subspace. The
actual socket used for connections generally have small
offsets from these origins.

IP/TCP Implementation
December 15, 1979 -- 0AC/TR20

PAGE 32

Figure 4. Local Socket and Remote Socket Numbers

Local Socket Remote Socket
Number Number

AHHP (Socket subspace from ICP)

User Session <{sess#, 0> S-sock

Server Session <{sess#, 0> U-sock
TCP

User Session {sess$, L-port> <0,WK-port>

Server Session <sess#, WK-port> <0,U-port>

Here:

The notation <a,b> represents a 32-bit number,
composed of two 16-bit guantities a and b; the
high-order part is a.

"sess#" is a 16-bit session number.

"S-sock" 1is the 32-bit socket number supplied by
the remote (Server) host.

"U-sock" is the 32-bit socket number supplied by
the remote (User) host.

"L-port" is a uniaque l6-bit local port number. It
will not be in the range of a WK-port.

"WK-port" is a 16-bit well-known (i.e., contact)
port, in the range 0-255.

"U-port" 1is the 16-bit port number supplied by the
remote (User) host,

iy SRR Y G et g

T R T kT AT T T 2

e g
ATETRTETS

R id
e

el L KNS e

R IR TR

]
[
!

!

-
"Y1
m!.

Loy 4
[AN

R |

|

2.6.2.2.

2.6.2.3.

IP/TCP Implementation
December 15, 1979 -- OAC/TR20
PAGE 33

Initial Connection Values

The primary (root) ULPP ptask is created by the HCT
(for AHHP) or by INPTASK (for an internet protocol).
In either case, it is started with a parameter 1list
called the ICV (Initial Connection Values) in the
"user" field of its PTA. The ICV format is:

PTAUSER+4: 4 bytes: Address of the ACE for session.

PTAUSER+10: 1l byte: Default byte size (AHHP), or
Protocol id (internet)

+11: 1 byte: Remote Host Id
+12: 4 bytes: Local Socket Number
+16: 4 bytes: Remote Socket Number

+20: 4 bytes: ICP contact socket
(AHHP server session),
or contact port
(internet server session),
or Exchange Window Id
(user session)

The Local Socket Number and Remote Socket Number values
are those shown in Fiqure 4 above,

Host Id's

NCP routines seldom deal directly with actual 24-bit
ARPANET host addresses or 32-bit internet host
addresses. Instead, they use a one-byte "handle"
called a host id to refer to a host address.

A host id is mapped intc the corresponding host address
when a message 1s sent to the ARPANET and when error
messages are composed. The details of creation of a
host id differ in the AHHP and internet cases, but
generally the host id for the session is passed in the
ICV to the primary ULPP by the incoming/outgoing logger
function.

IP/TCP Implementation
December 15, 1979 -- OAC/TR20
PAGE 34

2.6.2.4. Connection Semantics

The semantics of a connection are as follows:

(1)

(3)

(2)

A CCR 1is <created with the ALSTN ("Listen")

- A-Service. The parameter list contains:

* Local Socket Number (32 bits);
* Remote Socket Number (32 bits);:
. * Remote Host id (8 bits);

* Byte Size (AHHP only), or Higher-level
protocol id (internet only); (8 bits).

ALSTN uses the session number from the high-order
16 bits of the Local Socket Number together with
the remote host id to locate the session ACE to
which the connection is to belong. ALSTN chains
the CCB from this ACE (see Figure 3), and stores
pointers to the ACE and the corresponding control
CCB in the new CCB.

The ULPP PTA which issued the ALSTN will "own"
the CCB.

Under AHHP, ALSTN can be called only once for a
given connection; under TCP, there 1is no such
restriction. In any case, a successful ALSTN
call returns the address of the CCB/TCPB as a
"handle" for the connection.

To open a connection, the connection handle is
passed to the AOPEN A-service. Under AHHP, AOPEN
may need to be called twice for an active cpen
(i.e., an open recuest that is initiated
locally). See Appendix C for details.

The connection will be closed and the CCB deleted
when:

* a ptask calls the ACLOSE A-service (in some
cases, two separate calls are necessary}; or

* the owner ptask exits, causing the aCP to
call ACLOSE implicitly.

In the AHHP environment, the owning ptask will be
forced to exit if the HCT (pointed to by the
control CCR) exits, e.g., if the host goes down.
Normally, the ptask owning the connection will be
subordinate to the HCT ptask, so this would
happen necessarily; however, it is possible for a

i i e s e o s

(3)

(4)

(5)

(6)

IP/TCP Implementation
December 15, 1579 -— OAC/TR20
PAGE 35

ULPP to open a connection for a HCT which is not
its superior. Thus, in Figure 3 "PTA 1,0" is
normally, but not necessarily, subordinate to
"HCT PTA"; in any case, if the HCT ptask exits,
the contrcl CCB will be deleted and the ptasks of
all CCB's that point to the Control CCB will be
forced to PEXIT. This in turn will ACLOSE all
CCB's that point to the control CCB.

In the AHYHP environment, a connection will
receive (send) data if Local Socket is even (odd,
respectively). An internet connection is
inherently full-duplex, allowing both send and
receive operations.

A ULPP sends data to the ARPANET by building a
parameter list called a Write Reguest Element
(WRE) which points to the CCB and to the data to
be sent, and passing the WRE address to the ASEND
A-service.

When the data has been sent and acknowledged by
the remote host, the "Completed" flag will be
turned on in the WRE and the ULPP ptask's OUTPUT
semaphore will be signalled.

Data 1s received 1in a circular buffer owned by
the CLPP. Whenever data arrives, the ULPP
ptask's INPUT semaphore will be signalled.

The ULPP may use the ARECV A-service to remove
data from this buffer (preferable), or may itself
manipulate the buffer pointers in the CCB. In
either case, the ULPP invokes the ARLSE
("Release") A-Service to inform the ACP that data
has been consumed from the buffer.

When an out-of-band signal arrives, a field 1in
the CCB/TCPB is updated and the ATTN (Attention)
semaphore is signalied. The specific mechanism
differs for AHHP and for TCP:

* For AHHP, receipt of an interrupt (INS or T1INR)
command increments a count (CCBINC) in the CCB
by 1 and signals ATTN.

* For TCP, there 1is an Urgent Data Count field
(TCPRURGN) 1in the TCPB. This is the number = of
bytes which the ULPP needs t¢ remove from the
buffer to read all urgent data (and may exceed
the bytes currently in the buffer). Wherever
this value advances, the ATTN semaphore is
signalled.

e B W

WE W W mm_ e mLL Ty Mg B g e W T e

2.6.2.5.

2.6.2.6.

IP/TCP Implementation
December 15, 1979 -- OAC/TR20

PAGE 36

(7) Occurrence of a connection-related event causes
the appropriate semaphore (OPEN, CLOSE, INPUT,
OUTPUT, ATTN) of the owning ptask to be
signalled. There 1is a single set of semaphores
for each ptask, shared by all connections it
cwns; therefore, 1t 1is generally necessary to
test state flags in each CCB to determine which
connection had a state change. The state flags
are discussed below, and the rules for coding
system calls for both AHHP and TCP connections
are contained in Appendix C.

CCB Contents

Appenuix C contains a list of the CCB/hlpB fields which
must ‘correspond. Included 1in these CCB/hlpR fields
are:

* The Open/Closed state bits (CCBLOG).

* The address of the PTA under which ALSTN was
called, and which therefore owns the connection
CCBPTA) .

* For AHHP, the address of the appropriate "control
CCB"; for TCP, the address of the P3CB (CCBCTRL).

* The 32-bit Local Socket Number used to label the
CCB/hlpB; the high-order 16 bits must be the
session number (CCBLSCK).

* pointers wused to control the circular receive
buffer.

* ACE Address (CCBACE)

This 1is the address of the ACE for the session
under which this connection wes opened.

* ACE Chain Word (CCBCHA)

This word is used for the ACE chain of all CCR's
for this session,

As noted earlier, the out-of-band signalling mechanism
differs in AHHP and TCP, resulting in incompatible
fields in the CCB and TCPB.

Connection States

The A-services assume a standard state diagram for
connections. State changes are signalled to the ULPP
by signalling the OPEN or CLOSE semaphore and by the
value of the "LOG" (CCBLOG) state bits. These bits have

el

o F. s .
o RN R AR N

£t
]
e fe 5

e
.
LN

A L

o2
P

I AL
BAFan

*- ’ "' l,_

Ty e,
B 3 RSN

R~ JEA R

PRI [S

IP/TCP Implementation
December 15, 1979 -- OAC/TR20
PAGE 37

the values:

* 00B: Not yet open.

* 01B: Open connection.

* 1]0B: Pseudo-CCB (see below).
* 11B: Closing or closéd.

The "Closing" flag bits LOG= 11B are turned cn when a
close request (i.e., a CLS command for AHHP, or a <FIN>
bit for TCP) is received from the remote site. At the
same time, the CLOSE semaphore for the ULPP that opened
the connection 1is signalled. The semantics of this
value are as follows:

* For an AHHP send connection, LOG=1lB irdicates that
no more ASEND's may be issued; however, ACLOSE will
wait for cowmpletion of any ASEND‘s which are
pending.

* For a TCP connection, the ULPP may continue to call
ASEND for this connection indefinitely after
LOG=11B is set and the CLOSE semaphore is
signalled; the connection is half-open.

* For an AHHP receive connection or a TCP connection,
LOG=11B 1indicates that no more data will be
received; however, there may still be new data for
the ULPP in the circular buffer, so the ULPP should
issue ARECV and/or ARLSE calls until the circular
buffer is empty.

* If a <RST> ("Reset") message is received for a TCP
connection, the CLOSE semaphore will be signalled
(perhaps for the second time), LOG=11B will be set,
and an additional "Reset Received" (TCPFLRST) will
be turned on; no data may be sent or received after
this.

The ACLOSE call has both blocking and non-blocking
forms. Under TCP, the blocking form ("TYPE=WAIT")
returns to its caller only after the complete 3-way
<FIN> handshake has occurred (or a timeout). If a
blocking ACLOSE is used for a simplex receive
connection, and if the user-level protocol allows the
TCP connection to be half open, the remote process may
ignore the <FIN>, causin¢ a deadlock.

Except for this deadlock problem, the handling of
LOG=11B for a simplex receive connection 1is normally
compatible bLetween AHHP and TCP. However, the logic
may differ for a simplex send connection, due to the
possibility of a half-open TCP connection. See

LI A 0"~ "R S 2

g AR, YW,

€ e oW T_w_ e,

2.6.3.

2.6.3.1.

1P/710r 1lipleielltal lon
December 15, 1979 ~-- OAC/TR20

PAGE 38

Appendix C for details.

A pseudo-CCB is a control block which has the shape of
a CCB and is chained in the environment like a CCB, but
is not associated with a real ARPANET connection. When
a ptask owning a pseudo-CCB exits, ACLOSE is called to
free the pseudo-CCB and any associated circular buffer.
Pseudo-CCB's are used, for example, to control NMC
intercept filters and for trace buffers (discussed
later). See Appendix C for more information.

TELNET CONNECTIONS

The reentrant Telnet access method routines [Tol77) use a
"Telnet Connection Control Rlock” or TCCB to store all
state information relevant to a particular Telnet
connection. The TCCB address is used as a handle to name
the Telnet connection.

Telnet Connection Semantics

The semantics of a Telnet connection in the NCP are as
follows: '

(1) A Telnet connection is a full-duplex path which
uses the user-level protocol Telnet.

(2) Telnet uses two (simplex) AHHP connections or one
(full-duplex) TCP connection.

(3) A Telnet connection is created by an "ATOPEN"
call of the form: ATOPEN(L, R).

Here the parameters I, and R are Local Socket
Number and Remote Socket Number, respectively;
see Figure 4, L and R are usually obtained from
the corresponding elements of the ICV by adding
small integer offsets.

* AHHP: L and R are both even; ATOPEN opens two
connections:

SendCCB :

ALSTN(L+1, R ‘' -

RecvCCB :

ALSTN(L, k..

* TCP: ATOPEN opens a single TCP connection:

SendCCB := RecVvCCB := ALSTN(L, R) ;

’

ATOPEN obtains and 1initializes the TCCB, and
saves in it the addresses "SendCCB" and "RecvCCB"
(in the TCP case, these addresses are the same).

- IP/TCP Implementation
i— December 15, 1979 -- OAC/TR20

PAGE 39

(3) To send data over an open Telnet connection, the

ULPP uses the ATPUT macro; to receive data, it

s uses the ATGET mscro. In either case, the call

may be blocking or non-blocking. A non-blocking

call causes the I[WPUT (OUTPUT) semaphore to be

signalled when irput is received (output is sent,

respectively); a b.ocking call issues an internal
PWAIT on the approoriate semaphore.

"~ (4) Under AHHP, ATPUT and ATGET will fail with return

code 12 if the remote site has closed the data
3 stream(s); ATGET will return 12 in the first call
- after the «circular buffer is emptied. The
ATPUT/ATGET calls can also specify an
"end-of-file exit" routine which will be called
. in the same circumstances.

Under TCP, ATGET signals a closed data stream

W exactly as it is signalled under AHHP. However,

‘ - the ULPP may call ATPUT even after the receive

data stream has been closed; ATPUT will signal a

> closed data stream -only 1if a <RST {Reset)

'Q segment 1is received. Thus, the user-level

protocol can choose whether or not to allow the
Telnet connection to remain half open.

(5) The two ARPANET connection(s) composing a Telnet
connection will be <closed and the TCCB freed
when:

* A ULPP issues the Telnet close macro ATCLOSE;
* or the ptask that issued ATOPEN exits.

Note: in the UCLA implementation, a ULPP cannot
half-close a Telnet connection under TCP; ATCLOSE
always closes both send and receive paths, and is
a blocking call. 1If the remote host has not sent
a <FIN> and does not send one within a reasonable
period, ATCLOSE will timeout and delete the
connection; any subsequent messages from the
remote host will invoke a <RST>.

266:03 2.5 TCCB Contents
A TCCB includes the following types of information:

* Addresses of the send and receive CCB's (for TCP,
both point to the same TCPB).

* parameter area for ATGET and ATPUT calls.

et IP/TCP Implementation
iz . December 15, 1979 -- OAC/TR20
' PAGE 40

* Parameters that control the details of translation
I to be performed on the data. There are complex
A options for handling Ascii and Telnet control
characters. There 1is an escape sequence which
allows the ULPP to specify a number of these

r ol

R

o options symbolically with an ATPUT call.

- * State information on the connections and
K translation,

- * A save area for calling the A-services to
5 manipulate the ARPANET connection(s).

r

.
Vrfefs

r T
E
Bl

4

s - -

T 2

e =

IP/TCP Implementation
December 15, 1979 -- OAC/TR20

PAGE 41

INTERNET LAYER DESIGN

The internet protocol program or IPP implements the Internet
Protocol (IP) to send and receive 1lnternet datagrams [PosIP].
This section will describe some of the design features of the
IPP implementation in the UCLA NCP.

IPP must support a number of different higher-level

protocols, each of which is implemented by a corresponding
higher-level protocol module (HLPM). IPP accepts from the
HLPM's segments of data to be sent to internet hosts, and

passes to the HLPM's complete segments which have been
received.

The datagram service of IP is "unreliable": a datagram may
be delivered out of order, 1lost, or duplicated. A
"higher-level" internet protocol (e.g., TCP) will provide
error detection and correction 1if desired. The data
transport functions which IP does support, and which IPP must
implement, are [PosIP]:

* internet addressing;

* routing transmitted datagrams;

* demultiplexing received datagrams;

* fragmenting and reassembling internet datagrams.

In addition to these IP functions, IPP includes the following
control functions:

* pDynamically loading and deleting HLPM load modules and
their resource pools.

* providing a timing service for HLPM's.

* Creating new ULPP's (user-level protocol processes) in
response to incoming and outgoing logger requests.

* Controlling the startup and shutdown of all internet
protocol operation.

4 IP/TCP Implementation
ﬁ December 15, 1979 -- OAC/TR20

PAGE 42

Oy
3
o
. 3, lke OVERVIEW
DS We will now give a brief overview of the IPP functions,

expanding upon the discussion in later subsections. We
i will sometimes use the term "packet" for "internet
o datagram"”.
- el .. Higher-Level Protocol Control and IPB's
B Generally, the IPP supports and controls the operation of

the HLPM's. For each higher-level protocol that 1is
il supported, IPP has a fixed data structure called an IPB
(X (Internet Protocol Block). An IPB contains all the
parameters that IPP needs to control the corresponding
protocol. For example, IPP uses information in the IPBR
to generate a HLPM module name when it is necessary to
load the module, and then keeps the 1loaded module's
. address in the 1IPB. IPB's are often referenced by a
ig one-byte handle called a protocol id or PID.

The IPP must maintain a pool of buffers for reassembling

incoming segments and passing these segments to the

B & HLPM's. IPP provides a separate buffer pool for each
HLPM, and each pool grows and shrinks with activity in a

e manner to be described 1later. Each 1IPRB contains

' parameters controlling the dynamic size of 1its buffer
pool as well as the size of each buffer.

3.1.2. Associations and ICB's

. Each IPP has its own internet host address, composed of 3
! parts:

(<network number>, <host number>, <logical host number>)

ﬁj : The <logical host number> may be wused to distinguish
’ different internet protocol programs operating on the
- same physical host.

IP provides only datagram service; thus, it does not

define "connections" of any type. However, when it sends
N or receives datagrams, IPP must be aware of the path to
i the remote IP program. Thus, there is an implicit and
perhaps transient association [CerKa74] between the local
IPP and the remote internet host. It is convenient for
IPP implementation to introduce an explicit control block
for an active association: an Internet Control Block or
ICB.

I T SR B s s
DR LA T I Y P T e T T O N T
R L O WL AL D PO e e, 0 50 -

UM

3.2.

3.2.4.

IP/TCP Implementation
December 15, 1979 -- OAC/TR20

PAGE 43

A particular ICB is involved in sending or receiving any
segment. For example, to demultiplex a packet received
from the ARPANET, IPP locates or creates an ICB for its
association. To request that the IPP send a segment as
an internet datagram, a HLPM specifies the segment
address(es) and the address of an ICB.

When the IPP receives a packet, it must demultiplex on:
(1) the internet host address of the source (in order to
reassemble fragmented segments), and (2) the higher-level
protocol number (to select the HLPM to receive the
segment). If strict protocol layering were obeyed, any
further demultiplexing of 1logical streams would be
delegated to the HLPM.

However, the UCLA IP/TCP implementation was designed to
provide an efficient interface to stream-oriented
higher-level protocols such as TCP. This is achieved by
a mechanisnm, described below, that extends the
association definition to specify a particular logical
stream to a remote internet host. The choice of 1logical
stream is specific to a higher-level protocol. We expect
that higher-level protocol implementations using this IPP
will define 1logical streams in such a way that IP
associations are in one-to-one correspondence to
higher-level connections, as TCP does. This will create
a one-to-one correspondence between ICB's and the hlpR's
used for the connections. '

All ICB's associated with a given IPB (hence higher-level
protocol) are chained together and in turn point to the
IPB. An ICB is initialized from the corresponding IPR,
In general, a HLPM is permitted to read values from the
ICB's for its associations, but it is not permitted to
store into them,

IPP INTERFACES

The IPP has interfaces both to the ARPANET gateway and to
the HLPM's. 1In addition, the IPP includes (part of) the
A-service compatibility subroutines used by ULPP's
operating in the internet environment. We will now
describe these interfaces briefly.

IPP - Gateway Interface [Bra79A]

The IPP accesses the ARPANET gateway by issuing the
appropriate calls:

* ACPX QUEOUT to send messages to the IMP.

3.2.2.

IP/TCP Implementation
December 15, 1979 -- OAC/TR20

PAGE 44

* ACPX HALTIO to purge the AGAWO send queues.

* ANMOC to establish an NMC Intercept filter that will
select all messages with the internet 1link number.

IPP -~ HLPM Interfaces [Bra79B]

The IPP provides a set of INTERNET services to the
HLPM's. Since the HLPM's are 1loaded dynamically,
INTERNET services must be called via a transfer vector,
INTNETRV. The HLPM's obtain the address of INTNETRV from
*he A-service tra-sfer vector used 1in the internet
environment. The transfer vector INTNETRV and the

internet routines are link-edited into a single module
named INTMOD.

The INTERNET macro is used to code calls of the internet
services provided by IPP. The major INTERNET services
are:
* INTERNET OPEN
Locate or create an ICB for a specified association.
* INTERNET CLOSE
Delete an association, freeing the ICB.
* INTERNET OUTPUT
Send a segment on a given association.
* INTERNET START
Create a new session by forking a primary ULPP.
* INTERNET TIMER
Request interval timing service.
On the other hand, the IPP calls certain HLPM routines:
* HLPM INPUT
Process a reassembled input segment.

* HLPM TIMEOUT

The time interval requested by the last INTERNET
TIMER call has expired.

Cw-r v
P
¢ 4

2

% O

oL

3.2.3.

IP/TCP Implementation
December 15, 1979 -- OAC/TR20

PAGE 45

* HLPM OUTLOG

An outgoing logger recuest has been received and
parsed.

* HLPM DEMUX
Generate logical stream number (see below).

These routines are located at canonical offsets in a HLPM
transfer vector whose address is found in the IPB. The
HLPM macros are documented in "Interface Specifications
for Programming a Higher-Level Host-Host Protocol using
Internet Prectocol” [Bra79B].

Figure 5, below, shows the major IPP/HLPM interfaces.
ULPP - IPP A-service compatibility interface

The A-service compatibility interface implementation must
be particular to a higher-level protocol (e.g., TCP).
However, it was desiagned in two layers, an IPP layer and
a HLPM layer. Thus, the following secuence occurs when a
ULPP issues a connection-oriented A-service call:

(1) An IPP subroutine with a name of the form
"ARPIxxxx" 1s called. This subroutine is linkage
edited into INTMOD.

(2) The ARPIXXXX subroutine in turn calls the
corresponding subroutine in the appropriate HLPM,
via the HLPM transfer vector. In the case of
TCPMOD, the subroutine that is called will have the
name "TCxxxx".

The ULPP's call of the ARPIxxxx subroutine traverses two
transfer vectors -- from the resident A-service vector to
the dynamically-loaded INTNETRV - to reach the
subroutine entry point. This technigue added three
instructions to the path-length of every call, but
significantly eased development and maintenance of IPP.
Before this double-linkage was developed, the ARPIxxxx
subroutines were linkage edited with ARPAMOD; this meant
that the production NCP had to be restarted every time
the ARPIxxxx code was changed.

Further discussion of the compatibility interface - is
deferred to the section "TCP LAYER DESIGN", below.

3T AEET L T

o) R g W W W W, W W T o W S

e $ e e ms g s A WL e B g W e

i

z 2

.
a 0.

v

/.f.('
2% e

IP/TCP Implementation
December 15, 1979 -- OAC/TR20

PAGE 46
Figure 5. IPP/HLPM Interfaces
}
' I |
| INPTASK |
I I
call v Vv call
W T T T T s e T o e [T e [T * | G e e e R e *
I v I
] < Internet > Kk |
| < Protocol > | |
I < Program > I I
\Y/ (1PP) v |
I I I I | |
| INTERNET | | INTERNET | | INTERNET|
| INPUT | | TIMEXPIRI | ouTLOG |
I I I I | |
I 1 |
.......I..I............000.000.0...I.............I...........
| Vv | |
| e * <Higher-Levlel> |
| | <Protocol> | I
| | <Module > | |
| | (HLPM) I |
I I I I
V calls \Y/ \Y calls \Y
I | | I I | | |
| HLPM I | HLPM | | HLPM | | HLPM |
| DEMUX | | INPUT | | TIMEOUT | | OUTLOG |
I | I I I I | |
| I I I
| | : I
.l.....l.............I.............I..........Q..I...........0
| | | I
\Y/ \) \Y/ \Y/
Call IPP Service Routines...
INTERNET OPEN
INTEFRNET CLOSE
< Internet > INTERNET START
< Protocol > INTERNET TIMER
< Program > INTERNET OUTPUT

INTERNET GETWRE
INTERNET FREEWRE

Lo me e, L e s il s

| > 1P/1TCPY 1mplemencation L
E December 15, 1979 -- OAC/TR20 K
PAGE 47

TR S
w8 ke

3.3. IPP PROCESS STRUCTURE

et 31

- INPTASK is the controlling ptask for the internet layer; in
- addition, some of the HLPM functions execute under INPTASK.
p:' The INPTASK ptask executes a driver module, also named
INPTASK, to perform the following functions (see Figure 5):

e

li_.) 'F..
0 IR e

L San LR AL PR H alltS

x*
L4
o Aur

* Load INTMOD

el

INPTASK issues a PLOAD to load the main IPP module
INTMOD dynamically the first time that an internet
packet arrives or an outgoing logger request 1is made
for an internet protocol. The entry point address,
which is the address of INTNETRV, is stored 1into the
A-service transfer vector.

-

e

INPTASK could delete INTMOD whenever the internet
o protocols are completely idle, but it does not in the
() present implementation.

Y Y.Y Y,V b

o * Obtain Input

When it is forked by the INTERNET ptask, INPTASK calls
- the ANMOC A-Service to establish a filter for the
' internet link (155). Whenever a packet arrives on this
; link, the 1incoming ARPANET gateway moves the packet

into a buffer associated with the filter and signals
fo.i the 1INPUT semaphore of INPTASK. For each message in
e the buffer, INPTASK calls INTERNET INPUT. If it 1is

able to reassemble an entire segment, INTERNET INPUT in
n turn calls HLPM INPUT to process the segment.

s e oy~

* Detect timeouts

= , When it issues a PWAIT, INPTASK includes an interval
timer for the top request on the its timer gueue. When
this interval expires, INPTASK calls INTERNET TIMEXPIR.
TIMEXPIR will generally call HLPM TIMEOUT to inform the
3 higher-level protocol of the event. However, it may

also mark the expiration of the 30-second "watch-dog" :
- timer for the IPP itself. The timing function is :
) discussed further below 1in the suksection entitled ¥
"Timing". [

PR ¥ e . She £ e A 0 | PR ROERRSGraE

* Handle outgoing logging ?

An outgoing logger request is described by an OQutgoing ;
- Logger Queue Element (OLQE). The OLQE's are queued and :
I the ATTN ("Attention") semaphore of INPTASK is ‘
signalled. Finding an OLQE on its outgoing logger
.. request gueue, INPTASK dequeues it and passes its
5 address to the HLPM OUTLOG routine.

...........
:g'..l'_.f.‘g‘:-',.{,‘!'\. 2 -'.‘!" !'-_f - o™ -'I w g el . -h_‘--' P el T AT Sl Sy LA R g

il

ey
LS00
i ot

b ':

&

,_
* r
»

[

IP/TCP Implementation
December 15, 1979 -- OAC/TR20

PAGE 48

The INPTASK module 1is resident, linkage edited into
ARPAMOD. This allows it to respond to an input packet or
to an outgoing logger request and dynamically load the main
IPP routine INTMOD. Note that the INTERNET INPUT and
TIMEXPIR calls are interfaces internal to IPP, although
they have the same format as IPP services for the HLPM.
The INPUT and TIMEXPIR <calls (as well as ERLOG) are
interfaces from the resident code of INPTASK to INTMOD, via
the internet transfer vector INTNETRV.

Figure 5 shows that the INTERNET INPUT, TIMEXPIR, and
OUTLOG routines in turn call HLPM routines; these routines
all execute under the INPTASK ptask. 1In general, the other
major IPP routines are services which are used by both the
HLPM and the IPP itself (e.g., the INTERNET INPUT routine
calls INTERNET OPEN). These IPP service routines are
executed under the ptask of the caller, which may be
INPTASK or may be a ULPP.

The ptask structure determines the ownership of resources
under ICT. For this reason, control blocks obtained by the
IPP service routines (e.g., ICB's) cannot be obtained with
PCORE, because they might belong to the wrong ptask;
instead, the 0OS/MVT GETMAIN service must be used directly.
This in turn presents the problem of freeing all storage
GETMAINed in the NCP region by a (buggy) HLPM when it
terminates. This problem is solved by using a separate
storage subpool (zone) for the GETMAIN's from each HLPM;
the subpool number 1is contained 1in the 1IPB. The IPP
(INPTASK) frees the entire subpool collectively when the
HLPM becomes idle, and INTERNET £frees the subpools of all
HLPM's if INPTASK ever terminates,

T

LT T Ak u Tt LI R § i s ok 8 '’

o PN o §

. T EmMETE Y ¥

“e T AT YR WO FTece s NN, 4t

Yy

il

B IP/TCP Implementation
[December 15, 1979 —- OAC/TR20
PAGE 49

3y

IR B

53
N
o

o

Tt etd
SO

2

row. AN

3.4. IPP FUNCTIONS

F : We will now describe in more detail the manner in which the
IPP performs its key functions.

Ty

-

-

Jig,
15 -.’

3.4.1. Sending Segments

- The parameter list to INTERMNET OUTPUT is a Write Reguest
2 Element or WRE, which includes a pointer to the ICB for
the association on which this segment is to be sent. The
ICB points to an entry in the Internet Host Table (IHT)
which includes a specification of the remote gateway on
the ARPANET to. which packets must be routed.

MNENCE . 8 S

v
FERES

)

it A WRE also specifies the data to be sent, by means of a
i list of (address, length) pairs; each pair is called an
‘ extent. The WRE may have any number of extents, but the
] first extent must be unused. The IPP OUTPUT routine
' ﬁ; builds an IP header and points the first extent at it,
S I and then passes the WRE to the outgoing ARPANET gateway.

T TR A T
- -
..
0

In addition to the WRE, two data areas are needed: a
4-byte leader parameter area for AGAWO, and an area for
building the IP header. Furthermore, most higher-level
protocols will require an area for building their
headers. All three areas are provided at once, 1in a
control block called an IWRE. An IWRE begins with space
for a WRE, followed by the leader parameter area, the 1IP
header area, and a HLPM header area.

As a service to the HLPM's, the IPP maintains a pool of
available IWRE's and will supply one for a particular ICB
when the INTERNET GETWRE service 1is called. INTERNET
FREEWRE will return a WRE to the pool. The HLPM is
required to return all IWRE's for an ICB before calling
INTERNET CLOSE to delete that ICB.

DR PR it S el ity pe - S st le o SRS rhriarict s M 5

3542k Fragmentation

o gwwwr 4

In principle, the 1IPP 1is responsible for fragmenting
segments as necessary to fit into the constraints imposed
by the 1local packet network, the ARPANET. However, the
preeminent higher-level protocol, TCP, must packetize the |
data stream and can itself produce segments of any I
desired maximum size. As a simplification, the initial j
1PP implementation therefore leaves fragmentation

entirely to the HLPM, which 1learns the maximum send .
segment size from the ICB. The IPP simply sets this |
maximum to an appropriate value (depending upon which ‘
Subtype will be used; see below), making allowance for |
the IP header and for the ARPANET leader.

'
'
i

i

rf’f.‘

-

=

3.4.3.

3.4.4.

Ll AR -— -- - —

December 15, 197§r::-6AC/fﬁi5
PAGE 50

Note that the maximum segment size is obtained from the
ICB, not the 1IPB, so that each ICB (association) could
have a different value. This is to accomodate future
definition of an IP mechanism for negotiating the maximum
segment size up or down. The initial value 1is obtained
from the corresponding IPB when the ICB is created (by
INTERNET OPEN). In the absence of a negotiation
mechanism, all ICB's currently have the same value.

Further discussion of the fragmeritation mechanism will be
found below under "AREAS FOR FUTURE WORK".

Segment Id's

Each IP header must contain a 16-bit segment id fieid to
identify the fragments of the segment at the ultimate
destination. A segment id must be unigue for a given
stination host and higher-level protocol, within the
maximum lifetime of a segment in the 1internet
transmission system. However, since 2**16 1is a very
,e 1d space, we have chosen to use a single global
segment id counter for all associations. This choice is
discussed below under "AREAS FOR FUTURE WORK".

Demultiplexing Received Packets

For efficient support of connection-oriented protocols
such as TCP, the IPP is designed to do the complete
demultiplexing of a received packet with a single
hash-table lookup. This is accomplished in the following
manner :

(1) We have introduced into the denmultiplexirg decision
~n additional parameter, the logical stream number;
this is a 32-bit number whose computation is
dependent upon the appropriate HLPM. Thus, the IPP
demultiplexes an incoming packet using the triplet:

(<internet host address (source host)>,
<higher-level protocol>,
<logical stream number>).

(2) When an incuming packet arrives, the 1IPP input
routine uses the higher-level protocol number from
the IP header to locate the corresponding HLPM.
The IPP then passes the address of the segment to a
"DEMUX" subroutine in that HLPM. The DEMUX routine
generates an appropriate 32-bit logical stream
number (by looking at the header for its protocol)
and returns the value to IPP. 1IPP finally performs
the full demultiplexing for the message, using a
single hashed lookup.

2 IP/TCP Implementation
Ef December 15, 1979 -- OAC/TR20

PAGE 51

]

. The demultplexing triplet is called an association and
| = corresponds to an active ICB. An ICB is created with a
l call to INTERNET OPEN, using the parameters:

1

(<host id>, <PID>, <logical stream number>).

- Here <host id> is a one-byte handle for the internet
host, and <PID> is the protocol id, i.e., the one-byte
handle for the IPB. INTERNET CLOSE will delete the 1ICB.

The hash table uses the familiar chained-overflow scheme.
That is, the hash table itself consists of a set of
fullwords, each of which is the head of a chain of ICB's
that hash into the same bucket. This scheme 1is simple
and efficient, and allows ICB's to be easily deleted from
tthe hash table in INTERNET CLOSE.

S
!
Bt 1]

It is expected that HIPM's will choose logical stream
i numbers so that associations will be in one-to-one
e correspondence with connections.

Abe For example, TCP's 1logical stream number is
T composed of the two 16-bit numbers defining the
) source and destination ports. As a result, each
TCP connection (TCPB) has its corresponding ICB.

I For each connection, there will be a "higher-level
rretocol block", or hlpR; for example, TCP uses a TCPB.

) ‘ Therefore, we expect to always have a hlpB dualed with

N each ICB.

2 To simplify the HLPM implementation, INTERNET OPEN is

prepared to obtain main storage for the dual hlpB at the

same time it obtains an ICB, making the two blocks

contiguous. However, note that neither the IPP nor the

HLPM's assume contiguity; instead, they use the fact that

each control block pecints to the other. The space to

reserve for the hlpB is a parameter in the IPB, Calling
= INTERNET CLOSE will free both the ICB and the hlpB.

3.4.5. Recursion and ICB Deletion.

- As explained earlier, the INTERWET INPUT and TIMEXPIR
) routines are called from INPTASK, and in turn call HLPM
P routines. Suppose one of the latter decides to close the

= connection being processed, i.e., it calls INTERNET CLOSE
for the corresponding ICB. There is the danger of a
logic error arising when the INTERNET routine, upon
regaining control, attempts to access an ICB that has
been deleted by INTERNET CLOSE.

e
o]

S e e e Then o e Ml WAL B S T TR s ST s et e R
...........................
PO I N e T R T T R I A O T I

.....

) A

o &
PO
r vy =-e,

v v
A
< fa.

rr

I

3.4.6.

December 15, 1979 -- OAC/TR20
PAGE 52

The solution to this synchronizing problem uses a "Lock"
bit and a "Delete Deferred" bit in every ICB.

(1) Before calling the HLPM INPUT or TIMEOUT routine,
‘ the IPP will turn on the Lock bit in the ICB.

(2) Finding the Lock bit on, INTERNET CLOSE will not
delete the the ICB, only turn on the "Delete
Deferred" flag bit.

(3) Upon regaining control, the IPP turns off the Lock
bit and, finding the "Delete Deferred" bit on,
calls INTERNET CLOSE again to actually delete the
ICB.

Reassembly

When a packet is received, the demultiplexing process
just described chooses an IPB and an ICB. VWext, the IPP
must move this packet into its place in a segment
reassembly buffer, called an RAB. The first 16 bytes of

an RAB are a puffer header, used for controlling and
chaining the buffer.

Each ICB contains the head of a chain of active segment
reassembly buffers for that association. The IPP
searches this chain for a matching segment 1id, and
obtains a new RAB if no match is found. Then the new
packet is moved into its place in the proper buffer, as
determined from the fragment offset field in the IP
header.

RAB's on the active chain may be in one of three states,
as determined by a flag byte in the buffer header.

* Filling -- contains at least one fragment, but not
completely reassembled.

* Full -- fully reassembled, and passed to HLPM.
* Emptied -- marked processed by HLPM, may be freed.

Fragments of a given segment may arrive in any order, may
be duplicated, and may overlap in an arbitrary manner.
Although there is no error check on the data, there is no
reason to prefer the earliest over the latest version of
a given byte. Therefore, the reassembly routine can
simply move each fragment into its place in the buffer,
possibly overlaying some earlier fragments.

However, in order to determine whether the segment has
been fully received, the 1IPP must create an auxiliary
data structure for "bookkeepirg" on the bytes 1in the
buffer. The IPP uses a linked list of 8-byte Reassembly

3.4.7.

- 3.4.8.

AL/ A%E JilplACiiTiILUG LoVl

December 15, 1979 -- OAC/TR20
PAGE 53

Control Elements or RCE's for this bookkeeping. Each RCE
contains the first and last address of a contiquous block
of data. 1Inserting a new fragment may add an RCE, modify
an existing RCE, or coalesce two existing RCE's and
delete one. It is believed that this algorithm works
well for the most probable case, a few large fragments;
however, a detailed efficiency comparison with the bit
map algorithm has not been made.

The current IP protocol has a fixed maximum segment size
for all internet connections, 576 bytes including the
internet header. Therefore all RAB's have the same fixed
size, 576-20+16= 572 bytes. Possible extensions to allow
varying segment sizes are discussed below under "AREAS
FOR FUTURE WORK".

Reassembly Timeout

Normally, the INTERNET INPUT routine (INTNETI) will
reassemble the fragments of a segment and pass the
reassembly buffer to the higher-level protocol input
routine. However, because = of bit-errors in the
transmission or lost packets in the networks, reassembly
of a particular segment may never be completed. The IPP
must time out such never-to-be-completed buffers.

It is undesirable to pay the overhead cost of keeping a
logical timer on every RAB, since the timeout is to
protect against a situation which is expected to appear
only rarely, and which need not be corrected instantly.
Therefore, a "watch dog" timing scheme was implemented.
The present scheme scans all the RAB's on all ICB's
roughly every 30 seconds. A one-bit timeout counter in
the RAB flag field is used. The bit is set in each scan
and unset when reassembly is completed. If a scan finds
the bit set, the buffer has remained for 30 seconds
without completion of reassembly, and IPP returns it to
the available chain on the IPB.

Reassembly Deadlock

Reassembly deadlock is a possibility in any IPP, due to a
finite supply of reassembly buffers. A% the 1IPP level,
the timeout of partially~-reassembled buffers prevents an
absolute deadlock. However, once a segment has been
fully reassembled, the HLPM 1is permitted to keep it
(i.e., to not mark it emptied) until the order required
by the higher-level protocol 1is satisfied. This can
easily lead to deadlock, even 1in the absence of any
fragmentation, if segments arrive sufficiently out of
order.

...

..............................
............................

.

3.4.9.

A F RN Y) AA‘MJ‘A

.~ - - . \ .
‘ L lllll ¥ = I . . & e
.\ '''''' e OO st I e the Ny
_.‘_n‘._!‘_.n“ .{k“‘y :!.A_AKA\L\.A‘D‘A'_A.!-"-‘-!’-“' T T T U ST ST W I W | linde s B g e By o Fog San D iy " st

December 15, 1979 -- OAC/TR20
PAGE 54

The solution is to include among the RAB header flags a
"Potential Deadlock" bit. The IPP turns on this bit when
the RAB it is handing to the BHLPM INPUT routine 1is the
last one allowed by the active buffer limit. The HLPM is
required to examine this bit, and finding it on, to empty
at least one RAB before returning to the IPP. This may

require discarding a segment that has been received
earlier.

Buffer Pool Management

In general, the segment reassembly buffers will represent
one of the critical resources for internet operation, so
the algorithm used to manage them is very important.
This algorithm should have the following properties:

* There should be a pool of RAB's shared by all
associations wunder the same IPB (higher-level
protocol).

* The size of a buffer pool needs to grow dynamically
with the requirement for reassembly buffers.

* No single association should be able to monopolize
the RAB's in a pool or cause it tc grow unreasonably
large.

* A pool should shrink as associations are deleted,
(roughly) in proportion to the amcunt of the pesi
used by that association.

These desiderata are met by the following scheme, which
is used in the UCLA IPP implementation:

(1) Each IPB contains the head of a chain of available
RAB's., The pool consists of the available RAB's,
plus all the active RAB's which are chained on the
ICB's.

(2) The pool size is limited indirectly by a limit on
the number of RAB's that an individual ICB can have
on its active chain. If this limit is reached, the
INTERNET INPUT routine will fail to get a new RAB
for a packet and may have to discard it. (This
leads to a reassembly deadlock problem, whose
solution was described earlier).

This per-ICB RAB 1limit 1is <carried in each ICB,
although it is 1initialized from the 1IPB. This
would allow the IPP or a HLPM to adaptively modify
the limit. For example, if there 1is a satellite
link in a particular conversation, a greater depth
of reassembly buffering 1is required for high
bandwidth. However, no such adaptive mechanism has

e
“efe

]
+

g

L
i

N |

i

AL o
A R R

3.4.10.

3.4.11.

IP/TCP Implementation
December 15, 1979 -~ OAC/TR20
PAGE 55

been built yet, so all ICB's for a given IPB have
the same active RAB limit.

(3) When an RAB is requested for an association which
has not reached 1its limit, but there are none on

the IPB available chain, a GETMAIN is executed to

add an RAB to the pool. 1In this way, the pool
expands upon demand.

However, the expansion 1is "charged" to ICB whose
request forced it. That is, an “expansion count”,
or count of the number of times its request forced
a GETMAIN, is kept in each ICB. This expansion
count will be a rough averaae of the amount of the
pool that exists because of the particular
association.

(4) After an association 1is deleted (by INTERNET
CLOSE), the pool will be reduced or "trimmed" by a

number of RAB's equal to the expansion count of the
deleted ICB.

It may not be possible to delete all of them
immediately, since an RAB cannot be deleted from
the pool unless it 1is on the available chain.
Therefore, a "trim-needed” count is maintained in
the IPB; as RAB's are subsequently made available
they are deleted until the "trim-needed" count is
reduced to zero.

This algorithm has several nice properties. First, it
adds little overhead, requiring only two counters in each
ICB and a "trim~needed" count in each IPB, and trivial
CPU processing. Also, at any moment the sum over all
ICB's of the expansion counts will be equal to the number
of RAB's in the pool less the "trim-needed" count. This

means that as the 1last 1ICB is deleted, the pool will
exactly vanish.

IWRE Pool

We noted earlier that the IPP maintains a pool of IWRE's
for the use of the HLPM's in sending data. Although the
IWRE problems are not as severe, management of the IWRE
pool has the same characteristics as management of the
RAB pool, and therefore the RAB pocl algorithms are used
for the IWRE's as well.

Starting a ULPP

The HLPM may request the creation of a user or server
session by calling the INTERNET START subroutine, passing
a parameter list which contains:

e W e W W W TR e o

2%

14

December 15, 1979 -- OAC/TR20
PAGE 56

* The contact port (complemented for user session);

*

PID and host id;

*

Local Socket Number and Remote Socket Number.
* Exchange Window Id (for user session).

Note that, except for the first item, this 1list defines
the contents of the ICV parameters to be passed to the
primary ULPP.

The contact port and PID are used as keys to obtain the
primary ULPP module name from an "Internet Logger Table",
or ILOGTAB. ILOGTAB must be generated with entries for
all user-level protocols which are support 1IP. This
table also specifies a small signed integer called the
"socket offset", which is designed to simplify
compatibility between AHHP sockets and TCP ports.
INTERNET START adds the socket offset from the table to
the Local Socket (Remote Socket) Number in the ICV, for a
user session (server session, respectively). This is
intended to compensate for the small integer offsets that
AHHP uses in its socket subspaces.

The INTERNET START routine performs the following
operations:

* Assign a new session number;

* Locate an ILOGTAB entry for the (contact port, PID)
pair:

* Create an ACE for the session;
* Issue PATTACH for the primary ULPP;

* Apply the socket offset from ILCGTAB to the
appropriate ICV socket.

* pass the ICV parameters to the primary ULPP.

If INTERNET START returns a code that indicates success,
then the ULPP ptask has been created and will eventually
go through AEXIT, freeing 1its NCP resources. This is
true even if the ULPP module cannot be loaded. IPP has a
timeout to ensure that the primary ULPP does start
properly. If the ULPP does not issue an ALSTN call
within the timeout period, the IPP will call PDETACH to
force it through PEXIT (hence, AEXIT).

3.4.12.

. IP/TCP Implementation
December 15, 1979 -- OAC/TR20

PAGE 57

Timing

At an early stage of the design of the UCLA
implementation, we planned to have a separate timing

‘ptask for each higher-level protocol that needed

timeouts. Since INPTASK must provide a watch-dog timer
for the IPP, a simpler design resulted from having
INPTASK provide all timing services. It was also natural
to attach a time interval to the ICB, since that 1is the
control block known directly to the 1IPP, and would
require no additional control blocks.

The timer service that resulted operates in the following
manner :

(1) There 1is an IPP service, INTERNET TIMER, that the
HLPM can call to define, change, or cancel a time
interval for a given ICH.

(2) When the time interval expires, the IPP calls the
HLPM TIMECUT subroutine.

(3) INPTASK also keeps track of 1its own watch-dog
timeout interval, and when it expires calls its
internal watch-dog timeout routine INPIMEO.

The preeminent higher-level protocol, TCP, is
timer-driven. It is wvery important to keep timing
overhead from becoming overwhelming as the number of
connections increases. To aid this problem, the 1IPP
timing algorithms include a minimum timing resolution
called fuzz; its value, in units of 0.01 seconds, may be
found in the P3CB (P3FUZZ). The rules for timing are as
follows:

(1) The HLPM cannot set a timeout interval less than
the fuzz; if it attempts to do so, the actual
interval will be equal to the fuzz.

(2) INPTASK will consider any request for a timecut
earlier than <current_time>+<fuzz> to be expired.
Thus, if there are several timeout requests for
different 1I1CB's on the dqueue, all expiring within
the fuzz, all will be timed out (HLPM TIMEOUT
ca'led) before INPTASK calls PWAIT again. Once it
gets control, the HLPM TIMEOUT routine must
consider the <fuzz> if it tests to ensure that an
interval actually expired. The P3CB contains both

a pointer to <current time> and the value of
<fuzz>.

(3) Settirg a new timeout interval (e.g., with INTERNET
TIMER call) is guaranteed to force a PWAIT before
the HLPM TIMEOUT routine is dispatched again. This
is to prevent inadvertant infinite loops when the

P ik RAPE R st e N W SN o

e wuTRY SV SO ETE

Tl

3.4.13.

3.4.14.

lbE/°1Lr lLmplrcuciitacaivii

December 15, 1979 -- OAC/TR20
PAGE 58

HLPM resets the timer for a very small 1nterval.

IPP also maintains a 30 second watchdog timer for the
internet layer. When this timer expires, IPP scans all
RAB's and times out any "stale" ones, as discussed
earlier under "Reassembly Timeout". If the corresponding
ICB has never had any segments successfully reassembled,
the ICB is deleted.. '

Finally, if there is an idle protocol (no ICB's chained
from an IPB), INPTASK issues PDELETE for the
corresponding HLPM and FREEMAIN for its control block
subpool. :

Error Logging and Tracing

The internet layer includes an error logging routine,
invoked by the ERLOG macro [Bra79B}. This routine calls
the ATRACE service to record the error in an appropriate
log file.

ATRACE is an A-Service for creating and wusing a trace
buffer with wvariable-length entries. An internet trace
can be enabled in IPP, to maintain a history of all
internet segments sent and/or received. 1In addition, a
HLPM can associate a trace buffer with every connection;
however, there are some special provisions 1in the
internet environment for this wuse of ATRACE; see the
section below entitled “Tracing TCP Transactions".

Statistics

The IPP has provisions for gathering three classes of
statistics.

(1) In the P3CB, it keeps statistics on the number of
packets received and the number discarded with bad
checksum, expired lifetime, or other serious defect
which prevents demultiplexing the packet.

(2) In each ICB, the 1IPP keeps statistics on the
performance of the 1IP layer. Specifically, it
keeps the total count of segments sent, packets
received, and segments reassembled, as well as the
total bytes sent and reassembled. INTERNET CLOSFE
accumulates these five values in the 1IPB before
deleting the ICB.

(3) Each IPB has space for accumulating statistics
which depend upon the higher-level protocol. The
HLPM should call the INTERNET STATSUM macro to
perform this accumulation before the hlpB 1is
deleted.

e ol atd
3 .

PR < e

R

e ¥

LA T~ S RVt el i R L

T P T T

e N T T T,

LAaTaT

RaRTS. " L%,

SRS " TR SN R

- w48

IP/TCP Implementation
December 15, 1979 -- 0AC/TR20

PAGE 59
i 3¥e15r IPP DATA STRUCTURES
3 L] 5 L] 1 L] P3CB
[1‘
N
) The "P3CB", or "pseudo-control CCB", is the primary work

and control area for INPTASK, hence for a particular IPP
instance.. As indicated by its name, the P3CB has a role
in the environmental control block chains which is
generally equivalent to the role of a control CCB under
) AHHP. For compatibility with AHHP, therefore, certain of
- the P3CB fields are fixed to match those of a (control)
i CCB. For example, P3ACE is the anchor of a chain of all

internet ACE's, and P3CPTA (matching CCBPTA) 1is the
e INPTASK PTA address.

- There 1is an important difference between the P3CB and
3 control CCB's: the P3CB is not obtained dynamically but
F is resident and linkage edited into ARPAMOD.

The P3CB contains global IPP information, such as:

* <internet host address> for this IPP;
E * global segment id counter;

* anchor of a chain of all IPB‘cs (IPBLIST);

* timer chain anchor;

* value of the timing "“fuzz";

* startup delay time for IPP (to allow o0ld packets to
disappear) ;

* ANMOC parameters to ~~* up the internet packet filter.

The P3CB also contain. the outgoing logger interface,
needed by the transient ptask INPOLOG toO enqueue a
request for INPTASK. In particular, the P3CB contains
the address of an engueue routine, the anchor of the OLQE
gueue, and the INPTASK PTA address.

If there are multiple IPP's within the NCP, there must be
a distinct P3CB (as well as A-Service transfer vector and
IPBLIST) for each IPP instance.

For each higher-level protocol, there is an assembled-in
IPB which contains (1) the information common to all
active ICB's for that protocol, (2) the default values
neceded to initialize a new 1ICB, and (3) control
information for the protocol. 1IPB's are used by IPP but

......................................
.........

.................................

......

T P T Y

3.5.3.

December 15, 1979 -- OAC/TR20
PAGE 60
not by the HLPM's.
For example, an IPB includes:
* Higher-level protocol number for IP header.

* Character string (e.g., 'TCP') needed to construct the
HLPM module name.

* Head of a chain of all 1ICB's for associations using
this higher-level protocol.

* Address of the transfer vector for the HLPM, once
loaded.

* Heads of chains of available RAB's and IWRE's.

* Summary statistics for both the IPP 1level and the
higher-level protocol level.

* pParameters used to initialize the following ICB fields:
Type of Service
Internet.options
Maximum send segment size
Maximum number of RAB's per ICB
Maximum number of IWRE's per ICB

The IPB's are resident, assembled and linkage edited into

ARPAMOD. They are chained together in a module called

IPBLIST, and the head of this chain appears in the P3CB.

ICB

An ICB includes:

* Address of a companion higher-level protocol block
("hlpB") for the asgociation (and, generally, the
corresponding connection). For TCP, 1in particular,
this will be a TCPB.

* Address of the corresponding IPB.

* {a pointer to) the <internet host address> of the
remote host in the IHT, and the corresponding internet

host id.

* Logical stream number.

...........
''''''
........

Y T T 8 e S R G T W e e - mm W e

e’

3.5.4.

(2

o

w

pvecenper 12, 13773 == UAL/TRK.LU
PAGE 61

* Chain of active RAB's for this .association.

* Hash table chain pointer.

* Type-of-Service and option flags for sending segments
on this association,

Maximum segment lengths for sending and receiving.

Pool control parameters: maximum numbers of RAB's and
IWRE's for this ICB.

* Timing control and queue fields.

* Statistics kept by the IPP on this association.

IHT

The "host 1d" 1is a one-byte handle used to designate a
particular internet host address and associated routing
information. A host id is an index to a
dynamically-created table of ' internet hosts currently
communicating with the local host; this table is called
the "Internet Host Table", or IHT.

An IHT entry contains the internet host address plus
routing information to 1locate the ARPANET gateway to
reach that internet host. The routing information
currently includes only the ARPANET host address, 1link

number, and gateway-supports-Subtype 3 flag for a single
gateway.

INAMTBL

Since the table of internet host names and addresses has
the potential of growing very large, it is contained in a
separate load module which can be PLOAD'ed when needed.

Fortunately, the names of internet hosts are required
only for two purposes:

* The outgoing logger maps a host name into its internet
address and gateway address;

* The name may be required for display, e.g., in a error
message.

In either case, the delay and cost of loading the table
are tolerable.

The INAMTBL is designed to supplement but not replace the
existing ARPANET host tables within the NCP. Therefore,
INAMTBL references ARPANET hosts by name rather than by
number. INAMTBL contains entries for all named objects:
internet hosts, networks, gateways, and higher-level

E LR V. Pan il ces SR Ny s 20 Wt i un A Y e

T o e 5 LN

QF; December-ié:'197§r::méxé7fﬁiﬁ
e PAGE 62

protocols. Specifically, its entries make the following
transformations:

oam

Internet Host Name =>

(Network Name, 24-bit address, Default
higher-level protocol name)

a7
AL]

Network Name =>

E ' . (Network Number, Gateway Name)

0 Higher-level protocol name => PID

= Gateway Name =>

e (Link number, Accepts-Subtype 3 Flag)

T Ty

Y.

e

[W

3.6.

IP/TCP Implementation
December 1», 1979 -- OAC/TR20
PAGE 63

OUTGOING LOGGER FUNCTION

The outgoing logger function is driven by a process outside
the NCP and must accomodate a user at a terminal. It
therefore accepts and parses a character string which
defines the 1initial connection to be established and the
host-host as well as the user-level protocol to be used.

In the internet environment, this information may be
specified in a variety of ways. For example:

(a) User specifies: <internet host name>, and
<internet host name> implies network,
which implies gateway.

(b) User specifies: <internet host address> and network,
and network implies gateway.

(c) User specifies: <internet host address>, network, and
gateway.

The syntax of the outgoing logger parameter string is
therefore guite rich; see Appendix A. For ease of
maintainance and future development,. the code to parse this
string was packaged 1in a transient module, INPOLOG. The
syntax of the logger parameter string was designed to be
compatible with the AHHP outgoing logger, so that INPOLOG
can eventually replace the existing AHHP parsing code in
LOGGER. The interface to AHHP has not been completed,
however,

INPOLOG builds a <control block called an Outlog Queue
Element (OLQE) describing the request; the OLOE contains no
text, only numbers. INPOLOG enaueues the OLQE for INPTASK,
calls PPOST to signal INPTASK's ATTN semaphore, and
vanishes.

Finding an OLQE in its outgoing 1logger queue, INPTASK
passes the OLQE to the INTERNET OUTLOG routine, which in
turn passes it to the outgoing 1logger routine of the
appropriate HLPM.

Notice that the INPOLOG transient ptask is directly
inferior to LOGGEFR and operates in the AHHP environment,
not the internet environment. INPOLOG must be able to find
the P3CB in order to engueue an OLQE; for this reason, the
address of the P3CBR appears in the AHHP A-service transfer
vector.

LAl Gl i e e . W

‘BT o

LT r TR N VT op

e v Y. s

WYY

i e aT e

¢

7 Y x
LR R

.................
......

3.7.

3.7.1.

7.2.

December 15, 1979 -- OAC/TR20
PAGE 64

AREAS FOR FUTURE WORK

Segment Id Assignment

The current implementation assigns segment id's using a
global 16-bit counter. This will be adequate for an
internet host on the ARPANET with a modest number of
active connections, The minimum packet size (IP header
plus ARPANET leader) is 256= 2**8 bits, so one can send
at least 2**24 = 16 million bits before the segment id
recycles, With average bit rates of less than 10**5 bits
per second, maximum packet lifetimes must be less than
160 seconds. ARFANET packets have a lifetime under this
limit. :

One could conceive of circumstances which use up segment
id's too fast. For example, two internet hosts might be
connected via a link capable of 10**7 bits per second.
However, such bigh bandwidths do not appear to be
feasible within the present hardware/software context of
the IBM implementation of an ARPANET IP/TCP. 1If the
implementation were adapted to such a high-bandwidth
application, attention would need to be paid to the
segment id assignment.

It would be trivial to have a separate segment id counter
for each higher-level protocol, in <tche 1IPB's. At the
present time, it appears that there are not likely to be
more than a few higher-level protocols, and even fewer
that consume manv segment id's, so a separate counter per
higher-level protocol would not conserve segment id's
significantly.

A much more useful alternative would be to associate a
segment id counter with each active internet host,
storing it in the IHT. This would be an easy extension
of the current code.

Finally, one might hope the worst case would not arise.
If one were to send a very large amount of data so
rapidly as to make the packet lifetimes comparable to the
cycle time for the segment id space, one would hope that
the user-level protocol and the IBM system would send
maximal-sized segments (576 bytes). This would increase
the average packet size towards 4800 bits, an
order-of-magnitude change from 256.

Gateway Link Numbers
The present implementation makes the presumption that IP
will use a fixed ARPANET link number, accepted by all

ARPANET gateways and IPP's. However, the internet name
table (INAMTBL) does specify a 1link number for every

......................................

..

..

sl o e s s SR

-
2

e at K

bt g

ALY o PP

s S

vl

bt

3.7.3.

IP/TCP Implementation
December 15, 1979 -- OAC/TR20

PAGE 65

gateway, and the outgoing logger inserts this value in
IHT for use by the session. This will allow the UCLA IPP
to contact an experimental IPP which uses a different
link. However, the incoming logger has no corresponding
mechanism to map the gateway host number into a link
number. Such a mechanism could easily be added, but
there is no requirement for it at present.

Type of Service

The IP Header contains a type of service (T0S) field,
which is intended to be interpreted 1in an appropriate
manner by each packet network which the segment
traverses. On the ARPANET, the TOS field must select
either Subtype 0 or Subtype 3 packets.

The current specification for TCP [PoSTCP] is incomplete
in describing the wuse of TOS, and this is an area in
which further protocol developments are likely.
Furthermore, a number of the current IPP implementations
on the ARPANET do not support Subtype 3 packets, but all
support Subtype 0. Therefore, the UCLA IPP implements
TOS in the following simple manner:

* The information kept in IHT for an ARPANET gateway
includes, in addition to the internet link number and
24-bit host address, a flag bit which indicates whether
this host can accept Subtype 3 packets. In the case of
a connection initiated by the outgoing logger, this
information is obtained from the permanent Internet
Name Table (NAMTBL). For a session initiated remotely,
if the first packet arrives with Subtype 3, then the
Gateway from which it came is assumed to accept Subtype
3 packets.

 The TOS byte in the 1ICB 1is defaulted to X'36',
speed-over-reliability.

* INTERNET OUTPUT sends a segment with Subtype 3 if the
IHT flag indicates that the gateway can accept Type 3
packets and if the TOS bit indicating
speed-over-reliability is on in the ICB; otherwise, the
segment is sent with Subtype 0.

It would be useful in the future to define a new IPP
service to allow a ULPP to change the default TOS. Note
that it is not sufficient to simply chanage the TOS field
in the ICB; the maximum send segment length must also be
computed, since Subtype 0 and Subtype 3 packets have
different 1limits. Furchermore, notice that the receive
segment length is not affected by using Subtype 3; a
remote IP may send segments of up to 576 bytes,
fragmented to fit into the 113 byte limit of Subtype 3.
A reassembly buffer must accomodate the maximum segment,
regardless of the subtype.

LR el B T Ll e e Ol

T Py T gy e T

e e e aaewegy g N

y WwigT - -

F]

o T

IP/TCP Implementation
December 15, 1979 -- OAC/TR20

PAGE 66

Ideally, a ULPP should have a parameter to specify the
TOS when it opens a new connection. The current ALSTN
parameter list, constrained by a requirement for
compatibility with AHHP, has no provision for such
information. A reasonable csolution would be to use the
PID (protocol ID) to specify the TOS variables as well as
the higher-level protocol. Each higher-level protocol
will probably use only a few different values of the TOS
byte; the TOS space 1is much richer than is currently
useful. Hence one byte stould in principle be sufficient
to specify both.

G We considered using a separate IPB for each (TOS,
F = higher-level protocol) pair, so that different TOS

classes could have different reassembly butfer pool
parameters. On the other hand, the different TOS classes
could not share buffer pools if they used separate IPB's,
and a given connection could not change its TOS after it
was opened. This approach was therefore rejected.

Fragmentation by the HLPM

The present IPP implementation has no mechanism for
fragmenting packets, leaving this task to the HLPM. As a
result, the higher-level protocol header muegt be
duplicated in each "fragment" (segment). This leads to a
bandwidth penalty which becomes significant when TCP
segments are sent using Subtype 3 packets.

A Subtype 3 packet may contain 113 octets exclusive of
the ARPANET leader, and the internet header normally
consumes 20 octets out of the 113. If the 1IPP were
fragmenting 576-octet TCP segments into Subtype 3
packets, the efficiency would be approximately 93/113 =
82%, since the TCP header 1length of 20 is negligible
compared to 576. If we consider the fact that
fragmentation takes place on 8-octet boundaries, a more
accurate efficiency figure is 88/113= 77%. On the other
hand, the present implementation will have an efficiency
of only 73/113 = 64%.

We conclude that Subtype 0 (standard) messages should be
used for applications like file transfer in which high
efficiency is important. Alternatively, the IPP could be
extended to fragment segments. Using an internal pool of
IWRE's, INTERNET OUTPUT would generate and send to AGAWO
all fragments of a segment, and return to its caller.
Either the IPP would need to set a timer to poll for
completion, or the HLPM would have to call a new INTERNET
CHECK service to test for completion of its output
request.

. ey

3.7.5.

3.7.6.

3.7.7.

IP/TCP Implementation
December 15, 197% -- OAC/TR20
PAGE 67

Reassemoly Buffer Sizes

Every IPP is required by the protocol definition to be
able to reassemble segments of 576 bytes (including the
IP header). There is currently no protocol mechanism
defined in either IP or TCP to negotiate any larger, or
smaller, segment size. We believe this to be a
significant omission. For applications like Telnet, 576
byte buffers will often be mostly empty, while
higher-bandwidth operations 1like file transfer will
benefit from larger segments.

Furthermore, much of the internet traffic will not
require reassembly, in which case the segment could be
moved into a buffer which is just large enough for the
actual segment. Therefore, a mechanism which handled
variable segment sizes would save buffer space even in
the absence of a negotiation protocol.

In the present UCLA implementation of 1IP/TCP, all
reassembly buffers in the pool for a given higher-level
protocol (IPB) must have the same size. There are three
possible ways to provide for varying segment sizes:

(1) Multiple fixed-size buffers per segment;
(2) Varying buffer sizes within a pool;
(3) Multiple pools per IPB.

Either would require modifications and extensions to the
IPP. Further design work is necessary choose the best
approach and to develop efficient algorithms.

Time to Live

The present reassembly timeout scheme uses a marker bit
to time out a buffer in 30 to 60 seconds. The timeout
period should not be fixed, but should be tied to the
Time-to-live field of the IP Header. At present, the
Time-to-live field is not treated very seriosly by most
IP implementations; however, it is potentially useful for
controlling packet lifetimes. Packet 1lifetimes are in
turn related to the segment id space, as discussed
earlier.

The marker bit could be thought of as a 1-bit counter.
There is room in the flag byte to make this a 4-bit
counter. This would allow us to use the Time-to-live
value for buffer timeout, in units of 16 seconds.

Internet Routing

giagl WL

e sz v t=J4 9

L ¥

SE L B E & F oA U

P December 15, 1979 -- OAC/TR20
L—; PAGE 68

The problem of routing packets through multiple networks
is still an area for research. As general solutions are
found, the UCLA implementation of IP will need to
incorporate them. '

el The present implementation keeps the simplest routing
(2 information for an active internet host: a single ARPANET

gateway address. When a session is initiated by a remote
- host, the source ARPANET host address of the first packet
4 is taken as the gateway. The outgoing 1logger depends
upon INAMTBL or explicit definition of the gateway.

e In many cases, there will be two or more gateways which

: can reach a given host. If a gateway host which is being
i ~ used goes down, the IPP will receive a DEAD HOST message
rod from the ARPANET. This could be used as a signal to
choose an alternate gateway.

Any extension of the routing facility would begin with a
= significant extension to the IHT data structure. In
addition, a new fixed table' would be defined to map
network numbers into lists of ‘possible gateways.

3.7.8. Internet Name User

I As pointed out earlier, the Internet Name Table (INAMTBL)

o is included in a transient module because it is expected

to grow large. In the future, it will probably be useful

to employ the Internet Name Server protocol [PosINS], to

consult a centralized directory of internet hosts. It

would be natural to extend the INAMTBL lookup routines to

n contact an Internet Name Server when a 1local search

' fails. Alternatively, an Internet Name Server could be
implemented locally.

3.7.9. Miscellaneous Unimplemented Features

There are several planned features of IPP which have not
D yet been implemented.

* IP Error Options

IPP currently discards an erroneous internet packet

without reporting the error to the remote host. The
] error option [PosIP] has not been implemented.
o * partially~Specified Associations
o It should be possible for a HLPM to request a
[' partially~specified association. For example, a TCP

user may want to "listen" for a connection with any
remcte port number on a given internet host. At
- present, the primary hash table mechanism used for
o demultiplexing in IPP requires that the association be

S R LN SO IR O TR W U SR INUL TOUL SV SN SN R S RSN IS I O Il P ot e
LR RILI t! - 3
JAE

December 15, 1979 -- OAC/TR20
PAGE 69

. fully specified.

Multiple IPP's

As we pointed out earlier, the IPP design allows
multiple concurrent IPP's with different 1logical host
numbers. However, the necessary code to start multiple
IPP's has not been added to the INTERNET ptask.

R T e al b ra——

F ;
gkl

,,‘.___
rorT ¥
PSS!

Lo» =

=
¥

3 "‘
WPt

»

s T3

DAV

4.1.

IP/TCP Implementation
December 15, 1979 -- OAC/TR20

PAGE 70

TCP LAYER DESIGN

TCP is an internet host-host protocol that provides reliable
connection-oriented communication paths between processes
[POSTCP]. TCP assumes the existence of the Internet Protocol
IP for data transport [PosIP].

The UCLA implementation of TCP 1is contained in the load
module TCPMOD, which 1is a particular instance of a HLPM
(higher-level protocol module). This section describes the
design of TCPMOD. We assume a general knowledge of the
design of the internet protocol program (IPP).

TCPMOD FUNCTIONS

To implement TCP, TCPMOD must provide the following
functions:

* pData Transfer--

packetize data to be sent. to a remote internet host,
i.e., split the data stream into blocks called segments.
TCPMOD must buil® a suitable TCP header in each segment
and request the IPP to send the segment as a datagram.

The segments which TCPMOD receives must be ordered and
duplicate data must be deleted before the data can be
made available to the appropriate User Level Protocol
Process (ULPP) for the connection.

* Reliable Communication--

provide reliable communication by means of sequence
numbers and acknowledgments (ACK's), protected by a
checksum over the entire segment. TCP provides
full-duplex communication paths, and TCPMOD attempts to
"piggy-back" the acknowledgments on data segments going
in the reverse direction. TCPMOD 1is timer-driven to
retransmit data which has not been acknowledged within a
suitable time interval.

* Flow Control--

provide flow control by means of windows in the sequence
number space. TCPMOD must set 1its receive window

suitably, and it must obey the send window set by the
remote TCP.

* Connections--

create logical data streams called connections. For

reliable operation, TCP uses a "three-way handshake"

(i.e., 3 messages) during both establishment and
termination of a connection.

December 15, 1979 -- OAC/TR20
PAGE 71

create logical data streams called connections. For
reliable operation, TCP uses a "three-way handshake"
(i.e., 3 messages) during both establishment and
termination of a connection.

The connection states of TCP are reflected to the
internet ULPP's 1in a manner which is essentially
compatible with AHHP connection logic.

* Logger--

perform the final steps in the 1incoming 1logger and
‘outgoing logger functions, creating new sessions 1in
response to remote and local requests.

* Urgent--

provide an out-of-band signalling mechanism called
"urgent". TCPMOD must be able to send and receive
"urgent" data. '

For each active TCP connection, there 1is a corresponding
internet association; as a result, there is an ICB dualed
with each TCPB. 1In practice, the (ICB, TCPB) pair will be
contiguous, but no routine depends upon contiguity. The
structure of a TCPB is constrained to be compatible with a
CCB, as described in Appendix C. The IPP has no knowledge
of the internal structure of the TCPB (other than its total
length); on the other hand, the TCPMOD routines may read
but generally not change the contents of the ICB.

A TCPMOD routine 1is always 1invoked to operate on a
particular connection, denoted by the address of its TCPB
or equivalent ICB. TCPMOD may be considered to be a
reentrant finite-state machine, driven by the state of the
given connection using a (conceptual) transition matrix.

TCPMOD provides a Network I/O interface to the ULPP's 1like
that provided by AHHP:

* Qutput is transmitted by reference. That 1is, the ULPP
specifies the addresses and lengths of data chunks in its
buffers. These data pointers are passed through
successive protocol program layers -- TCP, IP, and AGAWO
-- and finally inserted into hardware channel programs
which send data to the IMP.

* Input is provided in a circular buffer associated with
the connection. The ULPP moves data from this buffer,
and then <calls ARLSE (the "Release" A-service) to
indicate consumption of the data.

s T eT g ¥ VEEE YOV F 4 W g NTEEEE BT,

IR R Nes M A

¥

. v e e Wy g

4L/ LwE A AWMl W AR

December 15, 1979 -- OAC/TR20
PAGE 72

g]

Lt

4.2. TCPMOD INTERFACES

i It is helpful to review the interfaces between TCPMOD and
the rest of the NCP.

s sEET S " iT 2T 2T 2" ,."

,i 4.2.1. INTERNET Services
l»"J
! TCPMOD may invoke any of the IPP ("INTERNET") services
F_ﬂ {Bra79B] discussed in the section "INTERNET LAYER
{ait DESIGN". Note that these IPP service routines are
l strictly synchronous; that is, they never issue a PWAIT
E'? call and therefore do not give up control to another NCP
.:5 coroutine,
* 4.2.2, HLPM calls from IPP
As discussed previously, the IPP uses the HLPM macro with
. the options: INPUT, TIMEOUT, OUTLOG, DEMUX, and PURGE to
AL call the corresponding TCPMOD subroutines; see Figure 5.
& These calls assume that the corresponding TCPMOD
subroutines appear at canonical offsets on a transfer
vector, TCPTRV; TCPTRV is linkage edited into TCPMOD and
is the entry point of the module.
4.2.3. ULPP Interface

The ULPP's interface to TCPMOD through the A-services,
which form the compatibility interface. As described in
the section "INTERNET LAYER DESIGN", the compatibility
interface includes two layers, the ARPIxxxx routines
which are considered part of the IPP and are included in

] INTMOD, and the corresponding HLPM routines, The
- compatibility interface includes the following chains of
: calls for TCP (here "->" means "calls"):
= * ALSTN macro -> ARPILSTN -~> TCLSTN

"Listen", i.e., create TCPB and initiate passive open.
. * AOPEN macro -> ARPIOPEN -> TCOPEN
- Initiate active open, or complete passive open of TCP
o connection.

* ACLOSE macro -> ARPICLSE -> TCCLSE
Close or abort specified TCP connection.

* ASEND macro -> ARPISEND -> TCSEND

Send data on specified TCP connection.

PR L e L -

-k ek il el M

d

Al

4
.
o

v,
at

1,‘.‘

o -

December 15, 1979 -- OAC/TR20
PAGE 73

* ARLSE macro -> ARPIRLSE -> TCRLSE

Release data from circular buffer for specified
connection.

* AINT macro -> ARPIINT -> TCAINT

Mark last data sent as (end of) wurgent; approximately
simulates sending the out-of-band interrupt signal of
AHHP.

The interfaces between these ARPIxxxx routines and the
corresponding TCxxxx routines do not have the same degree
of intellectual credibility or stability as the rest of
the IPP/HLFM interface [Bra79B]. Thus, the division of
function between the IPP level and the TCP level of the
compatibility interface has changed a number of times
during the development of TCPMOD; it may change further
when and if some other connection-oriented higher-level
protocol is implemented, or when a different
(non-compatible) user interface to TCP is designed.

The minimal function of an ARPIxxxx routine is to locate
the corresponding HLPM routine by following the control
block chain from the TCPB (whose address is a parameter
to most connection-oriented A-services) to the ICB to the
IPB, to obtain the address of the HLPM transfer vector.
The exception is ARPILSTN, which maps a given protocol id
into an IPB and then issues INTERNET LOAD to PLOAD the
corresponding HLPM if necessary.

Since the ARPIxxxx layer will be the same for all
higher-level protocols, it is tempting to assign further
function to the ARPIxxxx routines. This approach would
attempt to model the semantics of the problem -- the
ARPIxxxx routines would perform those functions which
related to the control block environment, leaving to the
HLPM 1layer all functions related to the higher-level
protocol. This approach came asunder a number of times,
when the particular manipulations of the environment were
found to depend upon information specific to TCP. This
required either moving those manipulations to the HLPM
layer of the compatibility interface, or providing more
complex interactions between the two layers.

Another, and sometimes conflicting, design approach is to
use the IPP layer only to economize on code -- factor out
of the TCPMOD routines those functions which (we imagine)
every connection-oriented HLPM would need. This would
include standard validation of parameters.

..

- " HE F Y VR TR TV RN T

-~ R %, T

IP/TCP Implementation
E: December 15, 1979 -- OAC/TR20

PAGE 74

The current ARPIXxXXX routines generally wvalidate

parameters, locate the HLPM, and call the corresponding
i HLPM (TCxxxx) routines, However, some of them (e.g.,
ot ARPICLSE) do perform significant manipulations of the
environment. A single <clear model for designing these
;3 ' interfaces is still lacking. Therefore, in the following
S we will discuss the compatibility A-services without

making a distinction between the IPP and HLPM parts of
= each.

4.2.4. P-Services and A-Services

. TCPMOD routines are permitted to issue PWAIT calls and
-~ bypassed SVC operations, giving up the commutator.

TCPMOD also uses some A-services, 1including ABUF
- (get/free a circular buffer), ACLOSE, and APURGE. Notice
that the 1last two actually call other TCPMOD routines
through the compatibility interface; TCPMOD must avoid
S recursion from these calls.

&
= 4.3. TCPMOD FUNCTIONS
‘We will now describe in more detail the algorithms that
"' TCPMOD uses to perform its functions.
) 4.3.1. Sending Data
&' To send data on a particular TCP connection, a ULPP
h issues the ASEND macro, calling ARPISEND which calls
TCSEND. The parameter list to this call 1is a Write
! Request Element (WRE) that specifies:
* The address of the TCPB for the connection.
. * A list of one or more buffer extents, 1i.e.,
(address,length) pairs whose catenation defines the

o data area(s) to be sent; and
* An "Urgent” bit and a "Not-EOL" bit.

o This WRE must be compatible with AHHP; the only fields
- that differ are the two TCP-specific control bits Urgent
and Not-EOL (Not-End-of-Letter). The corresponding bits
will always be zero in the AHHP environment, so the
default for compatibility is not-Urgent and EOL (i.e.,
each ASEND call sends a letter). To break a letter into
. several system calls, a ULPP must have TCP-dependent code
(‘ to turn on the Not-EOL bit.

.................

.....................

IS W

Lot - S

P LT LTER R VT T3TTY Ty v T 7

e "3 CMEER'E T _" . T s T e I

v " mmEmEm e e, >

o 4
o

4.3.2.

IP/TCP Implementation
December 15, 1979 -- OAC/TR20

PAGE 75

The send routines (ARPISEND, TCSEND) basically engueue
the WRE on the tail of the Send Queue, whose queue
pointers (TCPSENDQ) are in the TCPB, and then return to
the caller via TCPACKT, the packetizer subroutine.

Packetizing Output

Output is "packetized", i.e., divided into segments for
transmission (and possible retransmission) by the TCPACKT
routine in TCPMOD. As illustrated in Figure 6, TCPACKT
is primarily concerned with two queues of WRE's: the Send
Queue and the Segment Queue. The Send Queue contains the
WRE's defining the data to be sent. The Segment Queue
contains (I)WRE's for segments that have been sent at
least once on the ARPANET but have not yet been fully
acknowledged by the receiver; thus, the Segment Queue
functions as the "reiransmission gueue".

TCPACKT divides the data in the Send Queue into
maximal-size segments which will fit into the current
send window. Each new segment is described by an IWRE,
which is a WRE extended to include space for a TCP header

- and an Internet Protocol header. The IWRE is used as the

parameter 1list and gqueueing element for sending the

segment originally and, 1if necessary, for subsequent
retransmissions.

TCPACKT appends each IWRE representing a new segment on
the Segment Queue and then cails a subroutine (TCSEGCUT)
to send it to the remote TCP. See Figure 7 for the major
call paths for sending data. TCSEGOUT forms a TCP header
containing the latest ACK and urgent information and a

checksum, and then calls INTERNET OUTPUT to send the
segment as a datagram.

TCPACKT continues this process until it exhausts the data
in the Send Queue or reaches the right edge of the send
window or is unable to obtain another IWRE. As discussed
under "INTERNET LAYER DESIGN", the IPP does not fragment
segments to satisfy the ARPANET constraints. 1Instead, it
sets the limit in the ICB, and TCPACKT uses this value as
the maximum segment size.

TCPACKT has a number of auxiliary functions, including:
* Send <SYN> on first segment.

* Send <FIN> bit on last segment.

* Send <RST> segment.

£ IP/TCP Implementation
& December 15, 1979 -- OAC/TR20

PAGE 76

* Send empty <ACK> segment.

Special processing if the send window 1is zero (see

below) .
i - * Mark a packetized segment with "end-of-letter" when
' appropriate.
.. TCPACKT is entered:
N * By TCSEND when a new WRE has been appended to the Send
3 Queue;

* By various TCPMOD routines to send a control message
¥ specifying <SYN>, <RST>, or <FIN>, or to send an empty
1 <ACK> segment;

- * By the HLPM INPUT routine TCPIN whenever a segment is
Fi received (and the connection is in a state that allows
. data to be sent). The <ACK> and window fields of the

segment will have been used to update the corresponding
o TCPB fields before TCPACKT is called.

Segments which contain no data (e.g., empty <ACK>
= segments, and <RST> segments) must be handled specially,
l since they are never acknowledged by the remote host and
are not retransmitted. Such segments are not placed in
the Segment Queue; instead they are placed on the WNo-ACK
list. When the Gateway has completed sending a segment
to the IMP, it marks the WRE "Completed" but does not
signal TCP. Therefore, TCP must use a timeout mechanism
n to inspect IWRE's on the No-ACK list and free all which
3 are marked "Completed". TCPACKT looks first on the

No-ACK list for an IWRE. This optimization is likely to
£ succeed when a sequence of empty <ACK> segments are being
g ' sent.,

LI S
r
1

TR e s |

|t 1F/°tCr lLuplivielitativn Y
'r‘ December 15, 1979 -- OAC/TR20 ;
- PAGE 77 <
L 5
3 L
?‘. j_*‘,'
[,:“
Figure 6 -- Queues Manipulated by TCPACKT R
0 [
(i, I:‘:
s o
SEND QUEUE SEGMENT QUEUE :
- I-,
i I o | I I o | I

| I f

J WRE's I Packetiz|ed

5 from | Segments|

ULPP | I 1
’ \Y _V_ j:.
X WRE IWRE g

)
I

I

I

I

I

I

I

|

’ |
I

I

I

I

I

I

I

-0

o TCPNXTWR--> _ V__ <
! |~ WRE | T i
(Next WRE |.......]| I Zj

- to pkt'ize) |80 | '/ <-- b
K | : IWRE | i
: F001a00| £
. | |ssesc..| Extents .
7 ' vV < Pty ‘
| " WRE | | | ;
e eooessl | | TCP hdr, -

= leeeennsl IP hdr, q
ey | | etc. ;

180 | .

= !
- i

% ' IP/TCP Implementation
tf December 15, 1979 -- OAC/TR20
PAGE 78
T
v_‘.'
i Figure 7 -- Major TCPMOD Modules
=
HLPM INPUT HLPM SEND HLPM TIMEOUT
m
£ \/ v \Y
i * * *
* * *
o~ INTMOD * * *
: TCPMOD * % *
. * calls * *
_"‘ : * *
! ' v *
e | ! | f *
2 | TCPIN | | TCSEND | *
I |_o o | I o____| *
* * * *
v v v *
{LLLC X35> % Xk *
* calls * * calls *
.. * * * *
E v VvV v
- | | | [| |
) | TCGOTACK ! | TCPACKT | | TCTIMEO |
et i 0 | |__o o_| | o |
hl * * *
* v * calls v
n * *{LLLLLLLL* * *({CCLLLLLLeCH
o * * % *
* * * *
* * V V
= W I~ T T
& & | TCSEGOUT |
_ * * I lo} I
- * * *
D X * *
* * * TCPMOD
S e e e o e o e e o e e — ————
;; * * * INTMOD
* * *
v \Y/ '

INTERNET TIMER INTERNET OUTPUT

i

i‘ 4.3.3.
A
"
e 4.3.4.
e

—

IP/TCP Implementation
December 15, 1979 -- CAC/TR20

PAGE 79

Receiving Acknowledgments

TCP segments are received by the 1IPP, reassembled, and
passed to the HLPM INPUT routine TCPIN. A segment
generally includes an <ACK> field to acknowledge data
sent by the 1local host. To effect the acknowledgment,
TCPIN calls the TCGOTACK subroutine; see Figure 7.

TCGOTACK compares the latest <ACK> information with the
sequence number fields of the WRE's on the Send Queue and
the IWRE's on the Segment Queue, and dequeues all that
are fully acknowledged. Each dequeued IWRE is freed by a
call to INTERNET FREEWRE. When a complete WRE on the
Send Queue has been acknowledged, TCGOTACK marks the WRE
"Complete" and then calls PPOST to signal the OUTPUT
seinaphore of the ULPP that called ASEND.

Retransmission

Retransmission timeout is under control of the.IPP timer
service. When one or more IWRE's are enaqueued on the
Segment Queue of any active TCPB, TCPMOD will have
scheduled a retransmission timeout interval. The IPP
calls the HLPM TIMEOUT routine (TCTIMEO) when this
interval expires.

TCTIMEO checks the Segment Queue and calls TCSEGOUT to
retransmit each segment that has expired. TCSEGOUT
builds a new TCP header for each segment, to0 send the
latest <ACK> and window information. Finally, TCTIMEO
frees all completed IWRE's from the No-ACK 1list, and
arranges to reschedule the timer for the next timeout.

Notice that we do not generally re-packetize the data for
retransmission (except 1in one special case, described
later), although the queue organization would allow us to
do so. The original WRE's from which segments were
formed by TCPACKT are still in the Send Queue; TCTIMEO
could empty the Segment Queue and call TCPACKT to
repacketize the Send Queue.

The retransmission scheme operates in the following
manner.

(1) Generally, the retrasnmission timeout interval is
computed as f(R,N), where:

* R is a measure of the "rcund-trip delay",
including both network delay and host processing
time.

v S 1T .. i

| G

IP/TCP Implementation
December 15, 1979 -- OAC/TR20

L
®|.
R
|:.
O

PAGE 80 9
* N is a count of the number of times the segment ifi
has been retransmitted while po <ACK> has e

arrived. Generally, f increases with N, the Q.
"backoff count".

The function which is currently implemented is: : oy
if window = 0 then SLOWTIME else i;

max(min(R, FASTTIME) * 2%* (N+a), -

SLOWTIME)

Here SLOWTIME provides a 1lower 1limit on the ;;:
measured round-trip time, while FASTTIME 1is an pig
upper 1limit on the retransmission time. The e
constant "a" is a small positive integer. -
Thus, this formula provides "exponential backoff" ﬁi
for retransmission. The first retransmission will ﬁr
be larger than the measured R by a factor of 2**a3, N

(2) The round-trip time R is measured by maintaining an
exponential average of the round-trip times of
individual segments. We chose +tr define the
round-trip time as the time interval from
packetizing the segment until it is fully
acknowledged; however, if more than 1
retransmission 1is required, the time interval is
omitted from the average.

The expcnential weighting factor has the form: Y
2**~b, where b is a positive integer generated in i
the P3CB. It would be wuseful to try different i
values for b experimentally. e

(3) Whenever a new segment is packetized (presumably 5
reflecting new window information), TCPACKT will ®
retransmit any segments already on the Segment i
Queue that have already been retransmitted at least R
once. The fact that the remote TCP has enlarged %
the window without acknowledging all previous data
is taken as evidence that an earlier segment was oy
lost in transmission or discarded by the remote ’_
TCP. This provision removes a possible long delay i
in recovering when the remote TCP comes alive after
being very slow, given the exponential backoff.

(4) We do not maintain 2a separate timer for each 5
segment in the Segment Queue; instead, the first j?
segment in the gueue controls the retransmission
timeout interval for all in the queue.

B A N R R L N D N B S T I T T T R N T A T N P R T S
5 ; PR AN

E' '.‘ _..

4.3.5.

4.3.6.

1/ Wy lupicucciitdaelioull

December 15, 1979 -- OAC/TR20
PAGE 81

Suppose that the first segment does time out after
an interval Q and is retransmitted; all segments
below it in the Segment Queue which have been
waiting at least Q since their last transmission
are also retransmitted.

These rules deserve further comment. The decision to
include the time for (one) retransmission in measuring R
means that retransmissions tend to lengthen the tiaeout
period. The assumption here is that retransmissions due
to network 1losses will be at a low, relatively constant
rate. However, as the timeout interval decreases,
congestion in host processing will become dominant and
retransmissions -will rise rapidly. The scheme described
here attempts to back off from such host congestion.

The formula shown above depends upon the assumption that
the distribution of delay times is fairly narrow, and is
roughly proportional to the delay time. In fact, current
use of the UCLA TCP has been confined tc networks with
low delay, so that the host processing time 1is probably

dominant; in this case, FASTTIME should dominate the
formula.

Suppose that segment "A" has been packetized and
transmitted once, and the next segment "B" is packetized
before "A" 1is acknowledged or times out. Then "B" will
not be timed out and retransmitted until the second
retransmission of "A". After that, "A" and "B" will be
retransmitted together, until A" is finally
acknowledged. At that time, "B" will revert to fast
retransmission, since the <ACK> will clear N.

Zero Send Window

The TCP protocol requires special action when the send
window 1is zero =-- retransmit one byte of data "slowly"
[PosTCP]. Finding data in the Send Queue, no IWRE's in
the Segment Queue, and a zero window, TCPACKT packetizes
1l byte; however, this segment is not sent, but is left on
the Segment Queue for transmittal after a long timeout
period by the normal retransmission mechanisn.

If the window opens before the l-byte segment times out,
TCPACKT never sends it; instead, it effectively backs up
the window and repacketizes the byte. This is the only
case in which data is repacketized. 1If the window opens
after the l1-byte segment has been sent, it is
retransmitted again immediately before the new segment.

Purging Network Sends

B i i e B e e e

b
%

e
e

-
k: 4.3.7.
¢
]
- 4.3.8.

IP/TCP Implementation
December 15, 1979 -- OAC/TR20

PAGE 82

The APURGE service in the compatibility interface is used
to "purge" TCP send operations for a given TCPB.
ARPIPRGE purges the outgoing Gateway aqueues by calling
ACPX HALTIO, then calls TCPRGE. TCPRGE purges the TCPB
output queues: the Send Queue, Segment Queue, and No-ACK
list. (Note that in this case the semantic layering of
the compatibility interface is clean).

Unlike its AHHP cousin, APURGE under TCP does not affect
the receive side of the connection.

Receiving Input

The HLPM INPUT routine TCPIN is called by IPP when a TCP
segment is received. The parameters in this call are:

* the address of the reassembly buffer (RAB) containing
the segment;

* the address of the association's ICB (which points to
the TCPR for the connection); and

* a pointer to the IP header (required for the TCP
checksum) .

TCPIN checksums the segment and discards the ¢ gment if
the checksum fails. Further processing depe..ds upon the
state of the connection. If the connection i1s in other
than the Established state, special processing may be
required for opening or closing the connection.

In the Established state, TCPIN checks the Packet
Sequence number and length against the current receive
window, to determine whether the segment is acceptable.
To be acceptable, a segment must overlap the receive
window 1in some manner (this is a more general definition
than is required by the protocol [PosTCP]) . An
unacceptable segment is discarded. An acceptable segment
is first truncated on the left to the current left window
edge, and then TCPIN attempts to move it into the ULPP's
circular receive buffer.

Reassembling Input

A segment may arrive out of order. TCPIN could move the
data 1into the circular buffer and then use a bcokkeeping
mechanism (e.g., linked lists of RCE's or a bit map) to
keep track of "holes". 1In the interest of simplicity,
however, TCPIN simply dgueues any out-of-order RAB's
internally, wuntil they can be moved in order into the
user's circular buffer. This approach has the
disadvantage of possibly holding unnecessary buffer space
in the case of fregquent out-of-order transmission with
small segments. If experience shows this to be a serious

BN

.......
e s

R R - < Bl S S

. e B N~ N § Ve - W S SmE G AT T WL

e = - .

lrawi I"'r
[P m A

5

4.3.9.

RN

.

IP/TCP Implementation
December 15, 1979 -- OAC/TR20

PAGE 83

resource problem, a more elaborate reassembly mechanism
can be added to TCPIN.

Thus, given an acceptable segment containing data, TCPIN
tests whether the data 1is contiguous with the last
information placed in the user's circular buffer. If so,
the data is moved into the buffer, and the RAB is marked
"emptied". If the data is out of order, however, the RAB
is placed on an out-of-order list, in order of initial
sequence number. This gueueing uses an available field
in the RAB header.

Whenever data is moved into the circular buffer, the top
RAB in the out-of-order list, if any, is truncated on the
left, and if it is now contiguous it is removed from the
out-of-order list and its data is moved into the circular
buffer.

This algorithm handles overlapping as well as misordered
segments,

Reassembly deadlock must be avoided. When the count of
buffers queued internally by TCP reaches the 1limit on
reassembly buffers per connection, IPP marks the last RAB
with a "Deaclock Possible” bit. When this bit 1is on,
TCPIN must return at least one RAB, even if one must be
discarded. Tt takes care to return the one with largest
sequence number. The sending TCP will eventually
retransmit the segment in the discarded bufferx.

Note that this mechanism will quite happily queue a
segment which is partly beyond the space in the circular
buffer. In fact, if the segment passes the
"acceptability" test, the out-of-order queueing algorithm
would happily queue data which 1is totally beyond the
right window edge (although the remote TCP 1is not
supposed to send such data).

The Receive Window

TCPMOD exercises flow control over the input data stream
by specifying a receive window size to the remote TCP.
The present TCPMOD implementation uses the conservative
windowing strateqgy, i.e., it "advertises" a window which
is exactly eaual to the availeble space in the circular
buffer.

In order to get high bandwidth, it may be useful in some
cases to advertise a larger window than 1is currently

available. The out-ot-order oueueing mechanism,
described earlier, could be extended to provide the
additional buffering necessary to avoid occasional

retransmissions with a "liberal” buffering strategy.

.....................................

PR Tl R

. A T TR T R % &

W VMR W L

ey

=

v

£ 7
ot

S,
ot
T

4.3.10.

IP/TCP Implementation
December 15, 1979 -- OAC/TR20

PAGE 84

To simplify the implementation of a different windowing
strategy, TCPMOD centralizes all manipulation of the
receive window in a single subroutine, the Receive Window
Strategy Module (TCRWSM). Wheriever TCPIN moves data into
the ULPP's <circular buffer, it calls TCPRWSM to update
the window and then turns on the "ACK Needed" flag. The
result will be to send at least an empty <ACK> segment
containing the revised (reduced, for the conservative
strategy) receive window.

As the ULPP processes data from the circular buffer, it
calls ARLSE (directly, or implicitly from ARECV MOVE) to
"release" the space. ARLSE calls {(ARPIRLSE which calls)

‘TCRLSE. TCPRLSE again calls TCPRWSM to update (increase)

the window size,

The remote TCP will need to be informed of an increase in
window size. When data is flowing prodominantly in only
one direction, this will reguire spontaneous generation
of empty <ACK> segments. However, the ULPP may consume
the input data in very small chuinks, which would create a
large number of empty <ACK> segments containing new small
window updates. Therefore, TCPRWSM implements an
algorithm to optimize the window updating and conseguent
spontaneous generation of empty <ACK> segments.

Specifically, TCPRWSM increases the window and sends an
empty <ACK> segment 1if:

(1) the circular buffer is more than half empty, and

(2) the new window size exceeds the last size reported
to the remote host by at least 1/8 of the buffer.

The receipt of a segment always triggers the creation of
at least an empty <ACK> segment containing the f£full
current window, so the remote TCP's send window will be
updated as he continues to send. This algorithm
significantly reduces the network traffic when there is a
constant stream of sma 1 messages.

Buffer Size Option

Since TCPMOD always passes received data to the user
(ULPP) in a <circular buffer, its buffering grain is 1
byte. Therefore, TCPMOD needés no mechanism for
specifying the Buffer Size option. '

On the other hand, the remote 7CP may specify a buffer
size, and TCPACKT must make appropriate adiustments in
the send seguence number when the end ~f a letter is
reached.

e e s

- IP/TCP Implementation
r December 15, 1979 -- OAC/TR20

POy IR

PAGE 85

25 4.3.11. Urgent
i For TCP, the ASEND call used to send data includes an
Urgent bit. Turning this bit on indicates that the data

PPk T PR R

being sent 1is "urgent". The sending TCP marks it as

urgent by including an Urgent pointer in the TCP header;

this pointer contains a seguence number one greater than

the last byte of urgent data. The ASEND call may specify

Urgent but no data; in that case, the urgent pointer will
i point to the next sequence number to be packetized.

rw_.
Y

' W

The principal use of the AHHP interrupt mechanism has
been in the Telnet protocol [McKen73], where the
coincidence of an out-of-band interrupt and a Data Mark
in the stream mark the end of urgent data characters.
ATPUT was modified to send those characters (including,
redundantly, the Data Mark) in TCP as "Urgent" data.

Em U Lt

Unfortunately, the pipeline can be so clogged that ATPUT
cannot even issue ASEND. This problem was solved by
including the "send interrupt" (AINT) routine in the
A-service compatibility interface. The TCP version of
the AINT service simply sends a zero-length data segment
marked "urgent". This should cause the receiving i
user-level protocol to unclog *he pipeline looking for \!
the urgent information; as the pipeline empties out, the
real urgent data and the Data Mark can be s&nt, marked i
"urgent". This will advancc the Urgent pointer past the
real urgent data. The Urgent pointer is sent until the
serd left window edn passes it,

PS5 D I

It is ©possible that the send window is zero, so no data
can be sent. Therefore, calling ASEND with the Urgent
bit on turns on the "ACK needcc." flag in the TCPR. This
flag will cause TCPACKT to send at least an empty <ACK>
seament, which will contain the current Urgent pointer.

. EEmmTY_* T _ °, "

On the receive side, the ULPP is rotified of urgent data 5
in two ways: I

* When the Urgent pointer advances in the data streanm,
the ULPP's ATTN (Attention) semaphore is signalled.

* There is a field in the TCPB which records the number _
of bytes which the ULPP must remove from the circular (
buffer to reach the end of the urgent information. The
ULPP should consume data from the buffer until this
Urgent Data Count field is reduced to zero.

In general, TCPIN increases the Urgent Data Count field

and signals ATTN when the urgent pointer advances, and |
TCRLSE decreases the Urgent Data Count field as bytes are

released from the circular buffer.

o DI O O IS SOEE R0 o ot SO S OO S O O B O e D e s U S O) O O S0 o OIS O S e i 0 o o N O S sty D S RSty St A8 SRS

" s T TAT A AT N R N

vy 12710 1nplementatlon &
EE) _ December 15, 1979 -- OAC/TR20 e
b PAGE 86 -
A
’ %
X . 5
L 4.3.12. Connection States -
The required states for a TCP connection are basically i
defined in the TCP protocol specification [PosTCP]. R
However, some minor variations were forced by particular =
features of the implementation. The actual states and
their numerical representations are as follows:
* Null = 0
The TCPB has been created but not initialized.
* Listen =1
* SYN Sent = 2

* SYN Received = 3

Clia Al B 2 & el

* Established = 4

* Clos2 Wait = 5

* FIN Wait = 6

O T Ea L

Note: there is a bit "Fin ACK'd" which may be turned on
while in this state; this effectively creates a second
FIN Wait state, in agreement with the current TCP !
document [POsSTCP].

* Closing = 7

<FIN>'s have been sent and received, so connection is
awaiting acknowledgment of a <FIN> (or timeout).

B ———

* Remote Abort Wait = 8

A <RST> has been received to abort the connection. The
local ULPP needs to call ACLOSE to delete the TCPB.

* RST/ACK Delay = 9

When a connection is being closed, the last segment to
be sent will generally be a <RST> or an empty <ACK>,
The TCPB must not be deleted until the segment has been
sent to the IMP; unfortunately, such a segment is not |
subject to acknowledgment, so it must be removed from '
the No-ACK List by a timeout mechanism.

We chose to hide this mechanism from the ULPP, 1in the
following manner. ACLOSE will indicate successful
close (return code = 0) as soon as the sement is sent.
The TCPB will be removed from the controcl block
environment (so AEXIT won't find it), and 1its state
will be "RST/ACK Delay". The normal TCTIMEO mechanism
will delete a TCPB in this state when its No-ACK List

2
T i e S S S i

i IP/TCP Implementation

f; December 15, 1979 -- OAC/TR20
a PAGE 87
P

o . is emptied.

l Figure 8 shows a state diagram for the implementation.

It is also necessary to form a correspondence between the
o TCP states and the effective states seen by a ULPP under
e the wuniversal connection state model (see Figure 9).
= Although Figures 8 and 9 are superficially similar, there
were a number of serious issues to be resolved.

(a) Good <SYN>'s and. bad <SYN>'s

Under AHHP (for which the universal state model was
originally designed), a process which has issued a
passive listen for a connection has the option of
", "refusing" an open command ("RFC") that it doesn't
F like, by calling ACLOSE instead of AOPEN when the
OPEN semaphore is signalled. An obvious mapping of
TCP states into universal states would provide the

-3 "refusal" capability in TCP: basically, receiving

r the initial <SYN> would merely signal OPEN; the
process would then call AOPEN to send <SYN,ACK>, or

oS ACLOSE to send <RST>.

. Unfortunately, this approach would force the ULPP

~ to recover from an "old duplicate <SYN>" segment

B [PoSTCP]. We feel that TCP should hide from the

= ULPP all artifacts of unreliable communication,
including 0ld duplicate <SYN> segments. Therefore,
in the case of a passive open, the OPEN semaphore
must not be signalled until the handshake is

completed.
m
o (b) One Call of AOPEN
- Under AHHP, two calls of AOPEN are required for an
-4 active opern. This allowed the allocation of a
i circular buffer to be deferred until the open
- handshake was complete, and satisfied the system
o requirement that the circular buffer be obtained by
i a routine executing under the ULPP ptask (so the
storage obtained by PCORE would belong to the
o> proper ptask).
=~ Under TCP, it is desirable to obtain the circular
buffer as early as possible, so that the first
k <SYN> segment can specify an initial receive
g window. As a result, we chose to chviate the
second AOPEN call, although it 1is allowed for
;; compatibility.

As a result of these considerations, a ULPP sees an
effective TCP state diagram like that sketched 1in
Figure 10. Calling AOPEN to buy a circular buffer
effectively <creates twoc new states from the

PELE TIPS
R —

BT ST TR W, VN T, W UM e e ey B W e

-~

T -t T e B S Ay L =

bt o 2 2

e

“-"'.'..
L Ak Bat)

%

.....

(c)

(d)

I I O T T T P P

IP/TCP Implementation
December 15, 1979 -- OAC/TR20

PAGE 88

SYN-Received and Established states. Comparing
this diagram with the universal states of Figure 9,
we see that:

* "Established-1" state of TCP corresponds to the
universal "Remote Open" state.

* "SYN-Received-1l" state of TCP is hidden from the
ULPP.

* "SYN-Received-2" and "“SYN-Sent" states of TCP
together correspond to the universal "Local Open"
state.

Implicit ALSTN

For reasons explained later, the incoming 1logger
function issues an ALSTN call for the logging
connection, in behalf of the ULPP that 1is being
started. The ULPP will later issue ALSTN for the
same connecticn (using the ICV list as parameter),
and proceed with the open sequence. This makes
several siight modifications in the universal state
diagram for TCP:

* ALSTN can be called more than once for the same
connection (AHHP will not allow this).

* When ALSTN is called, the connection may already
be open, and in fact it might have closed again.
To preserve the universal state diagram, ALTSN
will give a return code of 0 in either case.

Half-Open Connection

Under AHHP, the universal "Remote Close" state is a
(hopefully brief) intermediate state during the
closing handskake. Under TCP, this state may last
indefinitely, with the 1local ULPP continuing to
send data even after it has removed all received
data from the circular buffer.

....................
........................

-

e e Y o T e e - e Tl M L g SR B . e it s Y Y

TR T T R P TR IR L TR iy par gy T e

L SR

IP/TCP Implementatcion

i December 15, 1979 -- OAC/TR20
Figure 8 -- TCP Connection States PAGE 89

N
=

e L. T v R,

.
¢ Y2

YT Y Yy gy 1 ¥, K

'
;
:
V: ALsSTN=0O \ =
* RAT RST RAT WAIT !
WAILT DELAY :
ESTABLISHED i
A
7 - N ;
P/ J € N o :
#’ % ALSTN =0 |
RST DELAY N AoPEN=D i
ARBCN =0 RAT WAIT N A 0 :
\ﬁ\ i
CLOSE WAIT ?
7
gt €
! |
S RST DELAY :
RAT WAIT '
CLOSING
{
ALSTN =5 o{: ACLOSE TYPE=RETURN
AOPEN 3(2 snd FIN

&: ACLOSE TYPE=EXIT
snd RST

¥: Rov FIN
= -..53_:1-5_ snd ACK; signal CLOSE

e: Rcv RST
signal CLOSE;

vasw/ dAnndav

Figure 9 -- Universal (AHHP and TCP) Connection States PAGE 90

(%Y

ALSTN> G

b A o v’
\y \‘0 oQ@, L
ﬁ oV, 7~ W
° e Y
§ AN
REMOTE OPEN \QO
00B
S
\
< \ $
Q
CLOSED REMOTE o
CLOSE
v
[
Y &
a_(
LOCAL CLOSE
0xB -
. 0
b o
N é"'e
o,
d=4 = \zk

A

ACLOSE TNPE=FeTuRN
Snd “elose”

vev "close”
$i1hal cdLoSE

P'. vev FIN
Sigual closg

Jam LT

F AT R P

P St SRS) B

¥TEE

CeTHERT BT LT

vy,

Figure 10 --

Effective TCP States for ULPP

D

IP/TCP Implementation
December 15, 1979 -- OAC/TR20
PAGE 91

%

| A

P n"ﬂ'
a

v
b, Ay
Mg ™

or
#
':l

r ¥
O O

> o1 =
Lt Mg

‘.,:(P‘l‘;‘;"'_,_ b

-
S

IR o PP
" ” . %
I fefr e

LTI e

\\\\\\

B i e e e L s

......

| e

4.3.13.

: 1P/TCP Implementation
December 15, 1979 -- 0AC/TR20

PAGE 92

Incoming Logger Function

A remote host can create a new server session using TCP
by simply opening a connection to the appropriate
"well-known - port" (WKP). This invokes a mechanism
commonly known as the incoming logger. TCPMOD behaves as
if there were always an idle server ULPP listening for a
connection on each WKP. 1In fact, a server ULPP 1is not
created until the 1initial connection reaquest actually
arrives.

The incoming 1logger function for TCP is initiated by a
<SYN> message from the remote user host. This message
will specify the ports (U, WKP), where U is the remote
(user) port and WKP 1is the 1local server port. This
message 1is received by the IPP, which builds a new
association (hence, ICB) for it, and passes the <SYN>
message and the ICB address to» TCPIN. The ICB points to

.a TCPB which is cleared to zero. In particular, the TCPB

specifies the "Null"” state (zero value), indicating to
TCPIN that this is an incoming logger request. This will
cause TCPIN to take the following actions:

(1) Build a parameter list and call INTERNET START to
create a new session in the internet environment.

(2) If the START fails (e.g., because of a bad contact
socket), send a "believable" <RST> segment and
discard the <SYN>.

(3) Else, call the ALSTN A-Service to initialize the
TCPB in the "Listen" state.

(4) Process the <SYN> segment in "Listen" state,
advancing the state to "Syn Received" and sending a
matching <SYN>.

Since TCPIN executes under INPTASK, INTERNET START does
also; hence the ULPP which is forked will be inferior to
INPTASK. INTERNET START sets up an ACE, which is chained
from the P3CB pointed to by the IPB. It also assigns a
session number and stores the proper ICV parameters in
the primary PTAUSER fields.

Calling ALSTN at this time simplifies the code because it
maintains the consistency of the appearance that the
process was passively waiting all the time. It also
allows the segment tracing mechanism, 1if enabled, to
trace the <SYN> segment and the session creation.

h 4.3.14,

[36
I

-
»

2 O

ﬁ._".,.

IP/TCP Implementation
December 15, 1979 -- OAC/TR20

PAGE 93

Tracing TCP Trensactions

- The A-Service ATRACE [WolBr79] will build a trace buffer

containing variable-length entries. The trace buffer is
controlled by a pseudo-CCB called a "TRB" (Trace Block),
using standard NCP circular buffer pointers. A TRB
address is called a "trace handle".

To aid present and future TCPMOD debugging, provisions
have been built into TCPMOD to asscociate a trace buffer
with each connection. The TCPB includes a field for a
trace handle for this buffer. If tracing 1is enabled,
trace entries will be built by TCSEND, TCSEGOUT, TCLSTN,
and TCPIN.

TCP tracing 1is enabled by a TCPB flag bit (TCPF1TRC).
This bit is copied from a corresponding ICB flag, which
is initialized from the IPB. Thus, the IPB controls the
default for tracing. However, a systems programmer can
turn on the trace bit in a particular TCPB at any time,

" Freeing a TCP trace buffer has presented some difficult

system design problems. There are two issues:

(1) There is an inherent race condition between closing
and deleting a TCPB, and deleting its corresponding
TRB. The problem arises in AEXIT, that will call
ACLOSE for both the TCPB and the TRB, in the order
in which they appear on the all-CCB chain. If the
TRB 1s closed first, the trace handle in the TCPB
may point to free storage. Note that AEXIT does
not know about trace buffers as a resource; even if
it did, the offset of the trace handle in the TCPB
is assumed to be specific to the higher-level
protocol, so AEXIT couldn't find it.

(2) Normally, we want a trace buffer to disappear when
its connection is closed; otherwise, memory would
aguickly fill with "dead" trace buffers. However,
during debugging we will sometimes want a trace
buffer to be saved after the TCPB is deleted.

The ability to save a trace buffer is provided by an ICB
bit that specifies "Test Mode". 1In Test Mode, a TRB will
be owned by the permanent internet ptask INPTASK rather
than by the ULPP ptask; as a result, the TRB wiil not be
deleted when the ULPP exits. At present, there is no way
to limit the number of old trace buffers built up in Test
Mode; to delete them, it 1is necessary to 1issue the
operator command that closes the IPP.

..........

4.4.

IP/TCP Implementation
December 15, 1979 -- OAC/TR20
PAGE 94

The first problem was solved by reguiring that the trace
buffer contain a TCPB pointer, whose offset in the TRB is
assumed to be standard in the internet environment. Then
the compatibility A-service routine ARPICLSE was designed
to handle closirg of a TRB specially; if there 1is a
pointer to a TCPB, it closes the TCPB first.

AREAS FOR FUTURE WORK
There are three TCPMOD design issues to be addressed:
* Compatibility Interface Design

As discussed earlier, we need a better conceptual model
to assign functions to the ARPIxxxx and the TCxxxx
routines of the compatibility interface.

* Transaction-oriented Interface

The compatibility interface suppresses the datagram-like
features of TCP, in favor of connections. A new
transaction-oriented ULPP interface should be designed
and implemented for TCP.

* positive Notification of Send Complete

We have mentioned some complexities in the current TCPMOD
implementation that are required because the outgoing
gateway returns no positive signal when it has sent a
packet to the 1IMP. Impending changes in the IMP 1/0
driver code of the NC? will allow a positive signal to be
returned, and this in turn could be used to simplify
TCPMOD.

Beyond these issues, further TCP development will be
concerned with testing and tuning the flow control and
buffering strategies.

For example, the current formulas used to calculate
retransmission timeout should be verified experimentally,
by doing throughput tests with a variety of (known)
distributions of round-trip delay and packet loss.

Handling internet traffic with large delays will reauire
more reassembly buffers than are now provided, and may
demand larger segments. It may be necessary for a
particular TCP connection to choose 1its segment size
dynamically. Similarly, liberal receive-window strateqgies
should be tried in high-delay, high-bandwidth situations.

5.1.

IP/TCP Implementation
December 15, 1979 -- OAC/TR20

PAGE 95

INTERNET TEST ENVIRONMENT

Development of the IP/TCP implementation reguired
modifications and extensions to the existing NCP code.
Errors 1in these changes, or in the INTMOD and TCPMOD modules
themselves, could severely impact the running NCP.
Furthermore, the debugging facilities within the NCP are
largely static, while the general-purpose time-sharing TSO
has a powerful interactive debugger. We therefore decided to
create an internet test environment within TSO.

This TSO test environment included several new pieces of
software:

* "Raw Packet" Interface to the NCP.
* NCP environment simulator.
* Gateway simulator.
* TS0 test driver.
We will briefly describe each of these in turn.
Raw Packet Interface

As we discussed previously, a process within the IBM system
obtains access to the ARPANET by opening an Exchange window
to the NCP using the appropriate "well known tag", and then
sending and receiving data through this window. The
process normally employs a canonical internal user-level
protocol, which 1is translated into the actual ARPANET
user-level protocol by a ULPP within the NCP [Bra77].

For developing and testing new protocol modules, it is
useful to allow a process to send and receive ARPANET
messages at the "raw packet" level. Such a raw nacket
interface was implemented [Bra79A] to allow the internet
test environment under TSO to use the ARPANET. However,
the interface has already found other uses.

The raw packet interface is basically a new ULPP, named
ARAWPKT. The process opens a window with the tag "ARAWPKT"
and sends ARAWPKT an ANMOC parameter list that defines an
NMC input intercept filter. The result is to create a
full-duplex internal packet communication path to the
process. .

The process sends a packet through the Exchange window in
the form of a WRE followed by the data that the WRE
references. ARAWPKT makes minimal modifications to this
WRE and calls ACPX OQUEOUT to send it to the outgoing
gateway.

e M B ¥ a VT P e N Nie P e ke A e T 2 B Tl Ml TR, TR AR FA T TR T A T T e T T T e e e e

- ' - IP/TCP Implementation
éﬁ December 15, 1979 -- OAC/TR20

PAGE 96

A packet of data received through the Exchange window is
. prefixed by the 8-byte buffer header that the NMC intercept
! attaches to a message. This header specifies the lengths
g of the packet and the 1leader.

:5‘ "ARAWPKT also has an internal "loop-back" mode, in which
we each output packet is reflected into the receive circular

buffer without traversing the hardware path to the IMP and
) back.

5.2. NCP Environment Simulator

To test the IP/TCP modules under TSO, is was necessary to
construct a sufficiently-complete software environment for
their execution. The first requirement was a subset of ICT
that could be executed as a user program under TSO. An

existing ICT simulator was adapted and extended for this
purpose.

The next requirement was a LOGGER ptask; this was created

as a subset of the real LOGGER. The test LOGGER performs
the functions:

* Fork two fixed ptasks: NCP and INTERNET.

* Act as an outgoing logger by 1issuing pending Exchange
opens for two tags: INPOLOG and ARAWPKT.

Thus, LOGGER forks INTERNET, which forks INPTASK. INPTASK

will call ANMOC in the ARPANET gateway to create its input
buffer.

Finally, a sufficient subset of the resident NCP module
ARPAMOD was assembled and linkage edited together. This
included the A-service transfer vecter and all the AHHP
modules which are shared by the internet environment, as
well as the Telnet access method modules. Note that these
modules are being assembled from exactly the same source
programs that is used (or will be used, after testing) in
the production NCP.

Sha3% Gateway Simlator

The gateway simulator 1is contained in a module named
INTEST. It uses the raw packet interface to extend the

real gateway into the TSO test environment. INTEST
includes the entry points: ’

* ARPANMOC

This code simulates the NMC intercept routine, by
opening an Exchange window to ARAWPKT in the NCP and
passing across the parameter list; ARAWPKT then passes
it to the real ANMOC within the NCP. 1It returns to its

.......................
.....................................

IP/TCP Implementation

- December 15, 1979 -- OAC/TR20
‘ : PAGE 97

& caller the address of an assembled-in pseudo-CCB.

- * QUEOUT

This code simulates the QUEOUT routine of the NCP. It
is invoked by the ACPX QUEOUT macro to engueue a WRE on
the NOW queue and awaken the NCP ptask to send it to
ARAWPKT.

]

f} * NCP
'k‘.

This code executes as a ptask under TSO to simulate the
action of the fixed ptasks NCP and IMPIO of the real
NCP. That is, it performs the actual data transfers
across the Exchange window to ARAWPKT.

It is awakened by QUEOUT when there. is output to send,
- or by Exchange when input arrives. For output, NCP
ascembles the WRE and data into a single packet,
modifies the WRE slightly, and sends it through the

¥ oq
L

3%

Exchange window; then it degueues the WRE from NOW and
marks it "Complete".

1%

o When data is received over the Exchange window, NCP
moves it into a circular buffer under control of the

v pseudo-CCB. Then NCP signals the INPUT semaphore of

o the ptask that called ARPANMOC (INPTASK).

. * ARPAHIO

2y

= This routine, which is invoked by ACPX HALTIO, purges
WRE's enqueued on the local NOW gqueue.

[]

i This set of routines effectively extends the gateway into
the TSO job, so the internet routines can access the
ARPANET gateway as if they were in the NCP.

- 5.4. PL/I DRIVER

For testing IP/TCP, we wanted to be able to invoke its
services 1in a contreclled manner, and to create
nicely-formatted diagnostic listings. Ve wrote an
interactive TCP driver using PL/I plus a set of small
assembly-language subroutines that interface to the rest of
the test environment.

The PL/I driver accepts the commands listed below. The
driver prompts interactively for the parameters which are
listed in parentheses after each command.

* QUTLOG (<outlog parm string>)

X & o E——— e

. i
EL.‘;

-
x

by g

¢

o a
A

IP/TCP Implementation
December 15, 1979 -- OAC/TR20

PAGE 98

This command invokes the outgoing 1logger function.,
Specifically, it opens an Exchange window to invoke
INPOLOG, and passes <outlog parm string> to it. INPOLOG,
INTMOD, and TCPMOD operate as they would in the real NCP,
creating a new user session as a ULPP ptask.
Sucéessful completion prints out the session number.

* OPEN (<session number>)

This command causes the ULPP ptask with the specified
session number to issue an ATOPN.

* SEND (<session number>, <length>, <data string>)

This command causes the ULPP ptask with the specified
session number to issue an ATPUT for the specified data.

* RECV (<session number>)

This command causes the ULPP ptask with the specified
session number to issue an ATGET call, and prints the
resulting character string on the terminal.

* CLOSE (<session number>)
This command issues an ATCLOSE call.

* DUMP

This command prints out the contents of the trace buffers
associated with all TCP connections.

* ARB(<CICB address>, <TCP header and data>)

This command sends an arbitrary TCP segment on a
specified association,

The IPP in the TSO test environment is configured with

logical host number 1, so it can open connections to the
production IPP (logical host 0) within the NCP.

IP/TCP Implementation
December 15, 1979 -- OAC/TR20

PAGE 99

CONCLUSIONS

This report has described an implementation of the internet
protocols IP and TCP for an IBM 360/370 computer. This
implementation 1is currently able to communicate with the
other internet hosts supporting these protocols and Telnet.
The test of "communication" is basically the ability to log
into the remote system using the Telnet protocol. The OAC
TCP is available on the ARPANET 24 hours a day, and we
believe that it could be used for production access to TSO,
for example.

Our initial goal, a system-call interface for ULPP's which is
compatible between TCP and AHHP, was largely realized. The
major differences that remain are due to real differences in
the two protocols. As noted earlier, the majority of ULPP's
are insulated entirely from these differences because they
use the Telnet access methods.

We believe that the current NCP, including IP/TCP, could be
installed on any IBM system running OS/MVT. During the next
year, the NCP will be <converted to the virtual memory
operating system, MVS. The IP/TCP implementation contributes
no operating system dependency to this conversion. On the
other hand, the existence of the new internet protocol
implementation gives additional weight to the reguirement
that the existing NCP be converted with minimal changes.

There are a number of tasks for the future development and
support of the OAC implementation of the internet protocols.
We will list some of them here.

(1) Maintenance

Little stress~testing has been performed, and we
anticipate that the IBM implementation still ccntains
obscure bugs at this time. Reliability tests using a
traffic generator and Plummer's "Flakey Gateway"
[Plum78] would be useful in finding these bugs.

(2) Status and Test

The current test and monitoring facilities are still
inadequate for 1long-term maintenance of the NCP using
IP/TCP. For example, NCP code is needed for dumping
trace buffers, manipulating the IP/TCP parameters, and
displaying the status of TCP connections. In addition,
better means for operator monitoring and control are
needed (for AHHP as well as TCp).

(3) Performance

........

IP/TCP Implementation
December 15, 1979 -~ OAC/TR20

PAGE 100

Although the 1IP/TCP code gathers some rudimentary
F statistics, there 1is no provision for recording or
S observing them. 1In addition, we need to create simple
measurement tools, including a traffic generator, an
I, echo server, and a discard server.

(4) Additional Features

E Earlier sections described a number of areas that may
require extensions or improvements. In addition, we
expect that the protocols themselves will continue to

" evolve, vparticularly in the areas of routing, type of

& service, and optimizing the algorithms for flow control

and retransmission. This evolution will inevitably

. require changes in the code described here.

(5) Convert FTP and MSG

a There are a number of design decisions in the current

implementation whose correctness can only Dbe
- established (or contradicted) when other higher-level
- protocols than TCP are implemented, and when user-level
3 protocols other than Telnet are converted to TCP.

Serious cardidates include MSG, the
oo transaction-oriented interprocess communication
i protocol for the National Software Works, and File

Transfer Protocol. It is unclear whether MSG should be
interfaced at the IP level or the TCP level.

Finally, we are anxious to acknowledge the major contribution
to this effort made by Denis de la Roca, who helped code a
B number of the IPP and TCPMOD routines. He was patient in the
< face of unforgivable bugs as well as numerous shifts in

design as the protocols evolved. Lou Rivas was also an
S immense help in getting the code to actually function within
b " the NCP environment.

B
2 4

.
’

RS

'ﬁ"ﬂ"‘.

» .

IP/TCP Implementation
December 15, 1979 -- OAC/TR20

PAGE 101

REFERENCES

BBN1822

BBN. "Specification for the Interconnection of a Host and
an IMP", Report 1822, Bolt Beranek and Newman, Cambridge,
Massachusetts, revised January 1976.

Bra76

R. Braden. "The National Software Works", Technical
Report TR9, Office of Academic Computing, UCLA, December
1976.

Bra77

Braden, R. "A Server Host System on the ARPANET", Fifth
Data Communications Symposium, Snowbird, Utah, September
1977.

Bra79A

Braden, R. “Gateway Interfaces within the ARPANET NCP",
Technical Report TR17, Office of Academic Computing,
UCLA, Nctober 1979,

Bra79B

Braden, R. "Interface Specifications for Programming a
Higher-Level Host-Host Protocol using Internet Protocol"”,
Technical Report TR19, Office of Academic Computing,
UCLA, December 1979.

BraFe72

Braden, R. and Feigin, S. "Programmer's Guide to the
Exchange", Technical Report TR5, Office of Acadenmic
Computing, UCLA, March 1972.

BraTCP

Braden, R. "Program Logic Manual for TCP", Office of
Academic Computing, UCLA, in preparation.

BralP

Braden, R. "Program Logic Manual for Internet Protocol",
Office of Academic Computing, UCLA, in preparation.

CerKa74

..................................

I N

.. ‘e
...............
o > = P S o o

PLIR R B ol i i Sl R R o ULl mel g SR aull il sadh alih 4 i d YRR

CTWRZRL T

L T e T T R, Y ™ T,V W e

[—

-

.....

IP/TCP Implementation
December 15, 1979 -- OAC/TR20

PAGE 102

Cerf, V. and Kahn, R. "A Protocol for Packet Network
Intercommunication", IEEE Transactions on Communication,
vol. C-20, 5, May 1974.

FeinPos
Feinler, E. and Postel, J. eds. "ARPANET Protocol
Handbook", NIC 7104, published for the Defense
Communications Agency by SRI International, Menlo Park,
California, revised January 1978,

McKen72

McKenzie, A. "Host-Host Protocol for the ARPANET", NIC
8246, January 1972. Revised and published ir [FeinPos].

McKen73

McKenzie, A. "Telnet Protocol", RIFFC 562, NIC 18638,
August 1973. Revised and published in [FeinPos].

Plum78

Plummer, W. "Flakeway in Operation", ARPANET message to
TCP and Internet Protocol groups, September 1978.

Pos71

Postel, J. "Official Initial Connection Protocol", NIC
7101, June 1971. Published in [FeinPos].

PosINS

Postel, J. "Internet Name Server", IEN-116, August 1979.
PoslP

Postel, J. "Internet Protocol", 1IEN-111, August 1979,
PosSTCP

Postel, J. "Transmission Control Protocol", IEN-112,
August 1979,

RivLB77
Rivas, R., Ludlam, H, and Braden, R. "An Implementation
of the MSG Interprocess Communication Protocol", Report
TR12, Office of Academic Computing, UCLA, May 1977.

RivWo77

.........
.................

2
 fa

Y oFe
LR
S

.
s a'a

[
v

b

by

: IE/TCP Implementation
December 15, 1979 -- OAC/TR20

PAGE 103

Rivas, R. and Worth, b. "Server FTP Program Logic",
Systems . Document Q049, Office of Academic Computing,
UCLA, February 1977.

Tol77

Tolomei, V. "Server FTP Program Logic", Systems Document
Q049, oOffice of Academic Computing, UCLA, February 1977.

WolBr79

Wolfe, S. and Braden, R. "Programming User Level
Protocol Processes for the ARPANET NCP", Technical Report
TR18, Office of Academic Computing, UCLA, November 1979.
Revision of OAC document Q039A.

Wolfe74

S. Wolfe, "ICT Monitor Services and Macros", System
document Q037, Office of Academic Computing, UCLA,
revised September 1974.

r‘ i Py
PG TR

'Y

R
;Yo

LS S A Nt

i

g |

Wi

Pl Sy el

2
«
¥

-y
+ Al .l‘

PRIPR Rt ol Tl

et T LT . T " s

P e N, 20Tk i RO AL e R AR R A AN A LTl T, A S SE—

IP/TCP Implementation
December 15, 1979 -- OAC/TR20

17

PAGE 104

o~
X
. 8. APPENDIX A -- OUTGOING LOGGER PARAMETER SYNTAX
5 The internet protocol program (IPP) includes a mechanism to
. initiate the outgoing logger function. When a local process
Qq opens an Exchange window to LOGGER, LOGGER forks & transient
u INPOLOG ptask, and passes the Exchange window to it.

INPOLOG issues an Exchange to get from the 1local process a

character string that defines the internet host, higher-level
protocol, the contact port, and possibly the ARPANET gatewav
.- to be used. This Appendix defines the syntax and semantics of
this Outgoing Logger Parameter string.

We use an extended BNF, with square brackets [] surrounding
optional items.The terminal symbols are:

<hlp name> ::= <name>

ﬁ <AHHP name> ::= <name>

<internet host name> ::= <name>
an arbitrary string of letters (upper and lower
.. case are equivalent), digits, and the break
I‘ characters "-" and "_"; the first character must be
a letter.
<dec number> ::= <string of digits>
a decimal number, i.e., a string of digits (0-9).
._ <octal number> ::= #0<string of of octal digits>

an octal number, i.e., only digits 0-7.

<hex number> ::= $H<string of hex digits>

Lo a hexadecimal number, i,e., a string of digits 0-9,
o A-Fo
. Delimiters are < > {) : ,

- None of these terminal symbols may contain imbedded blanks,
but blanks are allowed freely between terminal symbols.

...

by
. R ¢
...................

T T S T T N EDN TN AT ST T T T W .

IP/TCP Implementation
December 15, 19792 -- 0OAC/TR20

PAGE 105

-
«

»

_ We can now present the syntax.

F <Outlog Parameter String> ::=

i;~ <AHHP string> [, <socket> 1 |

N

[<hlp name>] : <internet string> [,<port>]

. o

' This syntax provides a compatibility interface to
the outgoing logger; either the old AHHP syntax or
the new internet syntax i:¢ acceptable. An internet
address string must have start with a colon
(optionally preceded by the name of the
higher-level protocol).

i <AHHP string> ::=

e <ARPANET host address>

L <ARPANET host address> ::=

= <AHHP name>

This is a standard ARPANET host name, as it
- appears in the AHHP host tables. It may be a
‘ full name, or a "nic-name", and is 1limited to
12 characters.

i | <dec number> / <dec number>

This 1s a 24-bit ARPANET host number, in the
o standard form: <host #>/<IMP #>.

| <hex number> |<octal namber>

= ' A hexadecimal or octal number is
right-justified in 24 bits.
-y
o | <dec number> [/]
This form (with an optional trailing slash)
M defines the old-form 8-bit ARPANET host number,
= <host #>*64+<IMP #>. It will be converted to
24 bits.
<port> ::= <dec number>
. <{socket> ::= <dec number>
¥
L

<port> nmnust be less than 2**16 and <socket>
must be less than 2**32,

i S M. N e i W i S A P P Al i O A0 S U o i i il . 2 el i I

P B . r e e e e

AR FERUNSIL WA IECUR IRl ot DL TR

N IP/TCP Implementation

7 - December 15, 1979 -- OAC/TR20
. PAGE 106

s

%

<internet string> ::=

P
4

<internet host string> [(<gateway spec>)]

In most cases, the <internet host string> will
imply a gateway to reach the specified host.
However, in any case the gateway can be
specified explicitly.

L

=

~
S
L]

{gateway spec> ::=
Vi <ARPANET host address>

A full gateway specification requires not only
- the ARPANET host addresss, but also the 1link
- number and the service level (standard vs.
uncontrolled). There is currer-*l, no syntax
for explicitly setting the last two.

<internet host string> ::=
o <internet host name>

This is an internet host name appearing in
2 INAMTBL. It implies the full internet host
_. address (8-bit network number and 24-bit

<internet host number>) , the default
e higher-level protocol, and the full gateway
i~ specification. The higher-level protocol and
gateway host address can be explicitly
overidden.

| [<Network=ARPA>] <ARPANET host address>

[/ <logical host>]

This entry implies the full internet address
- and the ARPANET gateway address; however, the
- link number and service level for the gateway
are not implied, so the defaults will be used.

.
o e
L

. The logical host number can be specified. Note
- the forms:

o a/b => a * 2**16 + b (24-bit host number).

e//h => convert 8-bit host number 'e' to 24
bits and add h * 2**8 (logical host).

a/b/h =>(a * 2**16 + b)+ h * 2**§,

..............
..........
.............

........................

.....

=

454 O

@
[A ey

“e
‘0
-

SRSl S U S o P e S 1 W i ® i B R B W0 i T Vi e e iy R S il et S S i i Rl R R SRR S D S et

{Network=ARPA> ::
{Network™=ARPA> :

IP/TCP Implementation
December 15, 1979 -- OAC/TR20

PAGE 107

<{Network™=ARPA>] <internet host number>

If the network is specified by number or name
and exists in INAMTBL, it will imply the full
gateway specification (gateway host address,
link number, and service type). '

No default higher-level protocol is implied.

<'<'> <network name> <'>'>

<'<'> <dec number> <'>'>

The network name is enclosed in < > brackets,

and may be specified either by name or
numerically.

<internet host number)> ::=

<dec rnumber> | <hex number> !<octal number>

This defines a full 24-bit internet host
number.

ot IO i e 2 e G e S it S £ Sa i it g b i o it e 3y T ¥ - S —
ML e A g T e B b) i SR 0 H o e R) g Bl e (Y L B P T ol Jhos ot Wl Wit 0 Wt e Rl o AP i g it bl e o0

& ~ IP/TCP Implementation
¢ December 15, 1979 -- OAC/TR20
PAGE 108
ros
P._n
e
I 9. APPENDIX B -- NCP A-SERVICES

This appendix lists all the A-services for both the AHHP and
) the internet environments, giving the function and the name

o of the module which implements each. The ACPX services used
M internally by the host-host routines are also included.

Finally, we list the resident modules included in ARPAMOD
[that are not A-services; these are the fixed ptask modules

o and the tables.

r When different modules are invoked by the ARHP and internet
X transfer vectors, then the AHHP module name 1is followed by
. the internet module name. When a functions is performed by

an entry point within another module, the entry point name is
3 given in square brackets following the name of the ccntaining
- load module. '

o 9.1. Commutator Support Services

% B8

* PATTACH

Function: ptask initialization following PATTACH call:
PLOAD inferior module, and propagate A-service transfer
vector from superior ptask.

-"

Module: ARPAATCH

*

PDETACH

LY
N A

Function: complete PDETACH (null routine).

1R

Module: ARPADTCH
* PEXIT

Function: free ARPANET-dependent resources when ptask
ex1its.

Module: ARPAEXIT (Note 1)
* “"A-SPIE"

< * "A-STAE"

s ‘v

Function: Link to user abend (SPIE/STAE) exit.

a
L

[)

Module: ARPADBUG [ARPASPIE, ARPASTAE]

-,
L
(]

9,2, Environment Creation and Control Services

* ACEBUY

e

R I e ane earea S S 2 oo o e P~ g

b S Vit pilaBot S, Uil g, W & Vam i Rypf S i YO i A B AT RS, R D CL A PO WES A I L B " il i A A RS it B K BB gl BN SR B LS LB S ISl S SRR S S

X IP/TCP Implementation
| L2 - December 15, 1979 -- OAC/TR20
, PAGE 109
!

Function: Create a session by buying and initializing
p an ACE.

Module: ARPALOG [AACEBUY] (Note 1)

P * ACESELL

- Function: Delete a session by unchaining and deleting
i an ACE.

b

Module: ARPAEXIT [AACESELL] (Note 1)
o * ABUF

Function: Create, delete a receive «circular buffer.
Called internally by ARPAOPEN and TCOPEN.

y v o
L
0 A

Module: ARPABUF

3 A
*
e
2
X
3
+3

sSLSdde

X Function: Find or create an AHHP Host Control Task for
pE a given host.
i Module: ARPAGHCT (Note 2)

- * ATRACE

3 té Function: Create a variable-length entry in a circular

trace buffer.
n Module: ARPTRACE

9.3. ARPANET Gateway Services

o " * ACPX QUEOUT

TR T v

= Function: Enqueue a message for the outgoing gateway.
P~ Module: NCP [QUEOUT]
. * ANMOC

Function: Crecate or destroy an NMC intercept filter.
Module: ARPANMOC
* ACPX HALTIO

Function: Purge the outgoing gateway aqucues of all
WRE's for a given CCB/ICB.

IP/TCP Implementation
December 15, 1979 ~- CAC/TR20
PAGE 110

x
E[.JJ

! Module: ARPAPRGE [ARPAHIO]
4 * (no macro)

Function: Used by ARPANET gateway for sending host-IMP
A messages. :

- Module: IMPIO [booP]

* AHLUP
:j Function: Map ARPANET host number to and from host id.
) Module: 'ARPAHLUP

\es 9.4. Connection Services

o * ALSTN
t Function: "Listen", i.e., passive open of new
> connection.
4 Module: ARPALSTN, ARPILSTN
' i * AOPEN

Function: Active open of a connection.

Module: ARPAOPEN, ARPIOPEN

* ASEND

"
L Function: Send data over ARPANET connection.
o Module: ARPASEND, ARPISEND
’ * APURGE
by . .
ht Function: "Purge" all active ARPANET I/0 on a
: connection.
i Module: ARPAPRGE, ARPIPRGE

* ARECV

Function: Receive data from an ARPANET connection.

Module: ARPARECV

'l
L-

* ARLSFE

ey v

I3

o
-
ey

IP/TCP Implementation
December 15, 1979 -- OAC/TR20

PAGE 111

Function: "Release" received data from circular buffer.
Called internally by ARECV MOVE.

Module: ARPARLSE, ARPIRLSE
* AINT

Function: Send a host-host interrupt (or for TCP, make
the data sent so far "urgent").

Module: ARPAINT, ARPIINT

* AALLC
IFunction: For AHHP, send deferred allocation command.
Module: ARPAALLC (Note 2)

9,5 AHHP Protocol Modules

* (no macro)
Function: Send host-host command on control link.
Module: 2RPACMND

* (no macro)
Function: Segment and send AHHP message(s).
Module: ARPALGO

* (no macro)
Function: Map host and link into CCB address.
Module: ARPAFCCB

* (no macro)
Function: Map ARPANET host number to and from host id.
Module: ARPAHLUP

9.6. Telnet Access Method

* ATOPEN
Function: Open a Telnet connection.

Module: ATOPN (Note 1)

FA S Snma s senss e s e ane e geon oan — - - e

ol LAY e

Y R e Y B RN R i S AE X YT 8T e e

P

-

| Y9N IO T PPt e 30 S TP . S Mt Sl S B S I AL A

l-'.

L]
-2

r— <y
1
)

W

P |

-

e

DR ARN
A

b g WY B il e A Sy, e Rt S v W By e A o

IP/TCP Implementation
December 15, 1979 -- OAC/TR20

PAGE 112

* ATCLOSE

Function: Close a Telnet connection. Also used
internally by AACESELL to free TCCB's.

Module: ATCLS (Note 1)

* ATPUT
Function: Send data on a Telnet connection.
Moduie: ATPUT (Note 1)

* ATGET
Function: Receive data from a Telnet connection.
Module: ATGET (Note 1)

9.6:1. v-Ccons

The following address constants appear on either the
A~service or the ACPX transfer vector:

* (no macro)

Function: Address of list of outgoing logger (Exchange
window) control areas.

Address: V(PROTLIST)

* INTERNET P3CB
Function: Address of IPP control area, P3CB.
Address: V(INTP3CB)

* (no macro)

Function: Address of internet transfer vector; entry
point of transient module INTMOD.

Address: V(INTNETRV) (Note 3)

* ACPX LFLAG
Function: Address of logger control flags.
Address: V(LFLAG)

* (ACPX macro)

3l Bl AU - e R il AN 0 0. e i i Y TR TR [y S SR ST S ST TERT S TR R

X 6 | vt 55

e

9.6.2.

IP/TCP Implementation
December 15, 1979 -- OAC/TR20

PAGE 113

Function: Address of transfer vector for internal ACP
interfaces.

Address: V(ACPXTRV)

Internal ACP Interfaces
The following routines are used internally by the ACP,
and are not expected to be directly called by ULPP's;
therefore, they are not true A-services.
(no macro)
Function: Used internally by AHHF to obtain a CCB and
add it to environment chains. This routine does not
appear on any transfer vector.
Module: ARPAMCCB
ACPX SOCKET#

Function: Used internally to allocate a new session
number.

Module: ARPASOCK

ACPX INSRCCB
Function: Insert a CCB (or internet equivalent) into
control block chains to create normal environment for
ULPP.
Module: ARPALSTN [INSRCCB]

ACPX REMVCCB

Function: Remove a CCB (or internet equivalent) from
contrcl block chains.

Module: ARPACLSE {REMVCCB]

ACPX ULSTART [ULSTART]
Function: Create a new session by buying an ACE,
issuing PATTACH to create the primary ULPP, and setting
the ICV.
Module: ARPALOG [ULSTART]

ACPX OLOGERR [OLOGERR]

e i B e e . o L

__
»

" Ll
0

.
£

¥ |

;f
s

IP/TCP Implementation
December 15, 1979 -- OAC/TR20
PAGE 114

Function: Standard interface to ARPACOMS transient
module, to report outgoing logger error to user
process, '

Module: INPTASK [OLOGERR]

Notes:
Note 1l: the same module is used in both internet and AHHP
environments, but acts slightly differently in each
environment.
Note 2: appears only on the ABHP transfer vector.

Note 3: appears only on the internet transfer vector.

Finally, we 1list the resideni modules which are not
A-services or ACPX services. These are:

* ARPAMOD -- the A-service and ACPX transfer vectors, for
all environments.

* ARPALOG -- LOGGER and HCT fixéd ptask code.
* TMPIO -- IMPIO fixed ptask code.
* ARPANCP -- NCP fixed ptask ~ode.
* INPTASK -- Internet protocol program fixed ptask code.
* INPTASK[INTERNET] -- Internet control ptask code.
In addition, ARPAMOD includes the following resident tables:
* HOSTS -- ARPANET Host tables
* ARPAICP -- Incoming and Outgoing Logger tables
* ARPAICP{EROTLIST] -- Outgoing Logger chain
* ARPAMSG -- WTO text table
* JPBLIST -- Internet Protocol Block ("IPB") list

* INTP3CB -- Internet control area ("P3CB")

_ — " - S g g g ——

B T L —

ry J
AL

e

10.

10.1.

10.1.

10.1.

IP/TCP Implementation
December 15, 1979 -- OAC/TR20

PAGE 115

APPENDIX C -- CONNECTIONS

This section contains some details of the semantics of
connections. This information is impoitant to the programmer
of a ULPP or for the implementation of a new higher-level
protocol.

Opening / Closing a Connection

For compatibility, ULPP's in the AHHP and TCP environments
use a "universal model" for the apparent states of a
connection. This section describes that model in terms of
the system call secuence for the ULPP, and also notes any
specific exceptions for AHHP or TCP. Figure 9 shows the
universal state diagranm.

To create a connection, the ULPP must first issue ALSTN.
The possible results of this call are:

1. ALSTN Return Code > 4:
Fatal error, no CCB was created.
2. ALSTN Return Code = 4:

CCB was created and its address is returned in Rl. The
connection is passively awaiting a remote open request.
The local process may:

(1) Call AOPEN to actively open ("initiate") the
connection.

The possible results are:

(a) AOPEN Return Code > 4 and CCBLOG = 1l1B
(closed) .

Fatal error in AOPEN, Call ACLOSE (which
should delete CCB and return 0).

(b) AOPEN Return Code = 4:

Open is pending, awaiting completion of
handshake. After OPEN semaphore is signalled
(and CCBL0OG=01B), repeat this step.

However, if CLOSE semaphore is signalled (and
CCBLOG 1is set to 11B), call ACLOSE to delete
the CCB. Note on TCP: the second AOPEN call
is unnecessary, if the first call specified a
circular buffer size.

Uyt U 0 S Sy S e S T S —

‘ﬂ.
.
o

-

.....

A S
~~~~~~~~

10.1.3.

O-g.o
et e
-----

IP/TCP Implementation
December 15, 1979 -- OAC/TR20

PAGE 116

(c) AOPEN Return Code = 0 and CCBLOG = 11B
(closed)

Connection never opened, or opened and then
closed immediately. Call ACLOSE (which
should delete CCB and return 0).

Note on TCP: the "Reset" bit may be on
(TCPFLRST) to indicate that the connection

was refused by the remote host. 1In any case,
ACLOSE should be called.

(d) AOPEN Return Code = 0, CCBLOG=01B (open).

Connection is open. The OPEN senaphore will
have been signalled, as well.

(2) Call ACLOSE to retract open recguest.
Normally, ACLOSE will delete CCB and return 0.
Note on TCP: for 1logging connection, ACLOSE
TYPE=RETURN may return 4 (pending); in this case,
issue PWAIT CLOSE and then call ACLOSE again.

ALSTN Return Code = (:

An open reguest was received from the remote host
already.

The ULPP should immediately either:

(1) Call AOPEN to complete open.
The possible results are exactly the same as those
shown earlier for AOPEN, except here Return Code =

4 is impossible.

Note on TCP: this call 1is necessary to build a
circular receive buffer.

(2) Call ACLOSE to "refuse" the connection.

Note: Note on TCP: "refusal" 1is not actually
possible, as the connection is alre¢ ~dy open; hence,
ACLOSE will simply close the connection
immediately. ‘

If the connection is now open, the ULPP can call ASEND to
send data.

...........................
.......................
--------------------

‘‘‘‘‘‘‘‘‘‘

.....




At R e N S i N TN I s Tl Fn 0, T, R S SIS 90 I I DA T ot S e 2 B Tl Bt SV it B0 0 SNt VL PR v AR 0 SO BED B 2 8 BT SR Bl S et SRS AR Rl S

IP/TCP Implementation
December 15, 1979 -- OAC/TR20

PAGE 117

=
rd

=
-

When the remote host sends a close request, the CLOSE
! semaphore 1is signalled and CCBLOG is set to 11B. The ULPP
N should continue to take data from the circular buffer (and
call ARLSE) until the buffer is empty.

Y
L e T . LB et W e N

%ﬁ - Note on TCP: ASEND may be called even if the CLOSE
al semaphore has bheen signalled and CCBLOG is 11B, until the
ULPP calls ACLOSE or the "Reset" bit it turned on.

n
LX)
2 To close the connection, call ACLOSE. If the connection
can be closed immadiately, ACLOSE will delete the CCB and ‘
) return 0. However, the non-blocking ACLOSE call
e (TYPE=RETURN) may result in return code 4 (pending); in
this case, the ULPP should wait until the CLOSE semaphore
S is signalled and then repeat ACLOSE. |
= Note on TCP: there is an ACLOSE TYPE=ABORT call, that sends
a <RST> and always returns 0. :
] 10.2. AHHP Connection States

4 It will sometimes be useful to know the mapping of AHHP
P connection states into the universal state diagram seen by

a ULPP. 1In particular, the bits in CCBLOG will have the
e values shown by the following table:

STATE BITS IN CCBLOG CCBLOG IN HEX
Listen (none) 00
Local Open FLLRF 04
Remote Open FLRRF 08
Pend Open FLLRF+FLRRF 0C
Open FLLRF+FLRRF+FLOPN 4C
Local Close FLLCL+ (optionally)

FLLRF+FLRRF+FLOPN) 4D

Remote Close FLRCL+FLCLS Cc2

Pend Close FLLCL+FLRCL+FLCLS C3

The first two bits of CCBLOG form a 3-valued state
indicator used by the ULPPs. 1In particular, FLOPN is the
"open" valve 01B, and FLCLS is the "closing/closed" value
11B for these two bits. The other flags represent single
bits.

------------




e ey
et

o

.,'
.

et
PR

O . |
s »
h ol

10.3.

Aawm oA

IP/TCP Implementation
December 15, 1979 -- OAC/TR20

PAGE 118

CCB Contents

For compatibility, the following fields have the same
offset in a CCB and in a hlpB. A ULPP which depends upon
any other fields cannot be compatible with both the AHHP
and internet environment.

* Flags (CCBFLG/TCPFLAGS)

The flag bit CCBFINHH will be off in all CCB's, and the
corresponding bit will be on in all hlpB's.

* QOpen/Close State Bits (CCBLOG)
These two bits must be tested by the ULPP to determine
the state of the connection (as seen by the ULPP); see
below.

* PTA Address (CCBPTA)

This is the address of the PTA under which ALSTN was
called, and which therefore owns the connection.

* Control CCB Address (CCBCTRL/TCPCTRL)
For AHHP, this 1is the address of the appropriate
"control CCB"; for TCP it is the address of the P3CB
(pseudo control CCB).

* LLocal Socket Number (CCBLSCK)

This is a 32-bit number used to label the CCB/hlpB; the
high-order 16 bits must be the session number.

* CCBBUFB, -E, -R, -U, -L

These five fullwords contain pointers and values
controlling the circular buffer for receiving data.

CCBBUFB= Address of beginning of buffer.
CCBBUFE= Address of first byte beyond end of buffer.

CCBBUFL= Length of buffer in bytes, i.e., CCBBUFE -
CCBBUFB.

CCBBUFR= Bit address of first user byte in buffer, or
zero if there is none. ’

CCBBUFU= Bit address of first bit beyond user data in
buffer.




" IP/TCP Implementation
5 December 15, 1979 -- OAC/TR20

PAGE 119

s s

=y
Feoa e
F

- Note: "beyond" is meant in a circular sense: if
F the user data ends exactly with the last bit in
G the buffer, then BUFU will point to the first bit

in the buffer (i.e., BUFU= 8*BUFB in Luis case).
e - Because the data may wrap around to the beginning
: of the buffer, BUFU may be less than or egual to
BUFR. The ambiguity between a full circular
buffer and an empty one is resolved by making

P
.
Y

? BUFR zero for an empty buffer but equal to BUFU

e f£or a full buffer.

oo * All-Connection Chain Word (CCBCCB)

This word is used to as a link in a chain of all CCB's

. and hlpB's. This chain is used by AEXIT to close any

i open connection for a ptask which is exiting.

" * ACE Address (CCBACE)

e This is the address of the ACE for the session under

which this connection was opened.

3

Yo * ACE Chain Word (CCBCHA)

. This word is used for the ACE chain of all CCB's for

i this session.

i 10.4. Pseudo-CCB

- It 1is sometimes convenient to create pseudo-CCB's, blocks
which are treated in the environment like CCB's but are not

| associated with real ARPANET connections. This allows the

[ environmental control A-services to be wused for these
control blocks. 1In particular:

* ABUF may be used to obtain a circular buffer and set wup
the buffer pointers in the pseudo-CCB.

i * ARECV will obtain data from this buffer.

* A pseudo-CCB is chained into the all-CCR chain.

i_ * ACLOSE will delete a pseudo-CCB, &nd also free a circular

buffer, if any, associated with it.

" * AEXIT will call ACLOSE for a pseudo-CCB 1if the owning

ptask exits without 1tself deleting the pseudo-CCB. '

i: Thus, the pseudo-CCB can be used to ensure that the control
block and circular buffer will be freed 1if the ptask
abends. For this reason, NMC intercept filters and trace

b~ buffers are controlled by pseudo-CCB's, for example.

................................................................................
..............................

E e TP e o

{ ot

A TR i

C YIVUVERYE LSS

s L_ENTTIL 1Y

R A e



o
Ve
W -. s

'

XX

v e -
¢ 0
B |

...........
& . .

I2/TCP Implementation
December 15, 1979 -- COAC/TR20

PAGE 120

In order to be acceptable to the environmental A-services,
a pseudo-CCB must satisfy some special constraints on the
CCB fields listed above.

(1) Flag bits: CCBF1CTL, CCBF2NHH are off.

(2) Flag bit CCBF2BUF may be on to cause PCORE FREE to be
issued for circular buffer.

(3) CCBLOG bits must be X'80°'.

A CCB with this configuration will simply be unchained and
freed by the AHHP ACLOSE module (ARPACLSE).

o™ .
....................

e e =
.......
-




