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ABSTRACT

Fmpirical Orthogonal Function (ECF) analysis is used to
represent the environmental wind forcing of selected western
North Pacific tropical cyclone tracks from 1973-1983. The
EOF analysis 1is applied separately to the zonal and meri-
dional wind components at 700, 4n0 and 250 mb on a 527-point
grid with 288.7 km 2zonal and meridional spacing that is
relocated with the sterm center. The 527 EOF coefficients
(for each level and component) are computed for a saaple of
632 cases. The coefficient vectors are truncated to the
first 35 coefficients based c¢n a fonte Carlo selection
criterion. These coefficients account for at least 82
percent of the variance 1in each field. The EOF coeffi-
cients, alongy with storm movement during the past 24 hours,
position, date and intensity, are then used as poterntial
predictors in a regression apalysis forecast scheme for
tropical cyclone motion. The ECF-based regression eguations
are tested on the dependent data cases. The mean 72-hour
track forecast error is between 450 and 500 km. Therefore,
it appears that this regressicn scheme has potential for
operational applications.
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A. BACKGROUND

This study is related to one of the most difficult prob-
lems in tropical meteorology--to forecast the nmovement of
tropical cyclones. In discussing the impact of weather on
raval forces, materials and operations, Wells (1982) empha-
sized the role of trorical cyclcnes. Avoidance of tropical
cyclones is important to both military anmd civiliar popula-
tions. Fleet operating orders contain lengthy, explicit

guidance on tropical cyclone evasion. Yet, serious losses
due to tropical cyclones continue to occur. Because of the
potential devastation of 1life and property, continued

improvement in the ability tc forecast tropical cycione
movement is imperative. The guidance to avoid storm damage
is available, but Fprecautions must be taken early. This
rejuires accurate tropical cyclone forecast methodology.
After George and Gray (1976), tropical cyclone moveaent
prediction models can be classified into four categories:
(1) steering flow; (2) statistical; (3) numerical; and
{4) climatology-persistence. The steering concept treats
tropical cyclones as vortices embedded in the basic environ-
mental Zlow. The statistical forecast approach commonly
uses a screening procedure to select meteorological vari-
ables that are correlated with tropical <c¢yclone rovenent.
These variables are then used to develop regression egua-
tions for prediction. An analcg-statistical model is Lased
upon the assumption that historical families of repetitive
storm tracks are associated with repetitive synoptic
patterns. By scanning historical data records, a computer
algorithm 1is used to associate an existing storm with a
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Y"parent" storm track or with a family of similar storas.
The numerical method involves predictions of the synoptic
flow surrounding a cyclone, and possitly a simulation of
cyclone structure, to predict stora movement. Predictiorn of
tropical «cyclone novement Lased on climatology and/or
persistence is Dbased upon empirical relationships derived
from historical records of the tracks of previous cyclones.
Objective methods for forecasting tropical cyclone movement
have been developed using one or more of these prediction
models. As yet, no one of these objective techniques has
been found to be superior to the others under all conditions
(e« g., Neumann and Pelissier, 1981).

The simplest numerical method of predicting tropical
cyclone movement is to wuse a karotropic wmodel on a rela-
tively coarse grid (Sanders and Burpee, 1968) with a fpoint
vortex advection scheme (Renard, 1968) . Results obtained
from these methods demonstrated that there 1is consideratlle
information in the analyzed and predicted synoptic fields
represented on grids which lack the fine resolution neces- .
sary to resolve the intense wind field near the center of a
tropicai cyclone. However, 1Ley and Elsberry (1976) «cited
these models as inadequate due to the lack of a unique
steering level (or 1layer) and the absence of vortex-

environmental interactiorn. Still, the relative success of

coarse-mesh models supports the idea that it might be
possible to relate large-scale forcing (by advective

processes) of a tropical cyclone to its subsequent novement. S

Current statistical models for the prediction £ trop- R
ical «cyclone movement use predictors derived from clima- - E
tology, persistence and either observed or naumerically \ j
forecast geopotential height data (such as gradients, thick- ":'i
nesses and time changes). For exaample, Neumann and ;15;

Randrianarison (1976) developed a purely statistical model

based on a system of regression equations for the prediction
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of tropical <cyclone movement over the Soutkwest Indian
Ocean. Basically, the model is CLImatology plus PZEsistence
(CLIPEK), applied to the Indian Ocean. Stepwise regyression N
was used to develop second-order polynomials (35 varialbles)
to predict the zonal and meridional cyclorne displacements.
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The resultant model's performance compared Zavorably with A
operational models (Jcint Typhoon Warning Center, 1983). A L
significant number of ©North Atlarntic tropical «c¢yclones
exhibit anomalous motion characteristics (Neumann, 1981).
The forecast tracks of these storas revealed limitations of
purely statistical forecast systems (Neumann and Lawrence, S
1975) . While some researchers sougat to develop purely
dynamical models (e. g., Miller et al., 1972), others devel-
oped statistical~dynamical nmcdels. The current NHC
statistical-dynamical model, NHC73, was descrited by Neumann
and Lawrence (1975). The results deaonstrated that informa-
tion obtained from numerical prognoses can improve the
performance of statistical tropical <cyclone prediction
models. L

Statistical wmodels for the prediction of tropical
cyclone movement have traditionally used a cooriinate systenm o
oriented with respect to the zonal and meridional axes. ' :f
Tropical cyclones tend to move with the synoptic flow.
Short-term displacements have a very strong persisternce
component. For these reasons, a grid system oriented with
respect to the cyclone's heading would be a ratural choice.

Shapiro and Neumann (1984) investigated the error-reducing
potential of a grid system orientel with respect to the : 1
cyclone heading. This yrid-reorientation technigue resulted

in a 40 percent reduction of the total variaccz of trorpical f}ff

cyclone movement. it was shown, using the dependent data 4
L

sample, that a potential reduction of 24-hour forecast . ;1

errors oy approximately 13 percent could be realized for lsiﬁ

synoptic predictors extracted on a rotated grid. This
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reduction in error was comparable to the reductiorn 1in
24-hour forecast errors during the past 25 years (Shapiro
and Neumann, 1984). It was observed that thke entire reduc-
tion of forecast error is not realizable due to random and
real errors in the developmental and operatiornal height
data, respectively. Satisfactcry resdalts were not obtained
using rotated grids for prediction of 48- and 72-hour trop-
ical cyclone movements. An analysis of forecast results
revealed that grid rotation c¢ptimized forecasts in the
direction along which the variance of tropical cyclone move-
ment is maximized and tended to orient the displacement
vectors with the alcng-track direction. The results of
Shapiro and Neumanrn (1984) 1indicated the potential forecast
improvement that can be made in short-term forecasts with
current synoptic data if the cyclone's headirg is known.

However, these concepts must still be tested in an opera-

tional environment. For this reason, the data grid used in
this study was geographically oriented. This grid systenm
will re descrited in the next chapter. .

Both statistical and dynamical metaods have weaknesses
(Haltiner and ¥illiams, 1980; Shaifer, 1982). Statistical
methods usually do not forecast well those cyclores that
have acomalous motions. This problem relates to the "scope"
of a model, as discussed in Chapter V. Similarly, thes=
methods are typically not robust against small changes in
the synorptic (dynamic) forcing of a cycione. There is a

general tendency of statistical methods toward Lomogenized,

or smoothed, forecasts. In coaparison, dynamical models -
suffer from both theoretical and financial limitations. Due iﬂ}ﬂ
to the smallness of the Coriolis parameter in tropical 1>:}
regions, geostrophy cannot be assumed and initialization of :-}
data fields is difficult. Erroneous Jata used to initialize
a model can rapidly deteriorate a numerical forecast.

Convective heating is orne of the primary driving mechanisms S
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for the maintenance of a tropical cyclore. Trhe difficuity
of modeling convective heating, tojether with icitialization
problems, nakes dynamical model predictions suspect in the
tropics. More importantly, maintenance of the energy

balance for a tropical cyclone requires an interaction among

different scales of motion (Coyanma, 1982) . To avoid
spurious solutions, a small grid mesh is necessary for a

dynamical model to numerically simulate these interactions.
Furthermore, the expense of numerical integration on a fine
mesh can be guite large due tc¢ the Courant-Fredrichs-Levy
(CFL) condition, which requires integration to be made with
smaller time steps as the mesh is decreased (daltiner and
¥illiams, 1980). An additional difficulty encountered with
a fine-mesh model is that observed data in tropical regions
are inadequate for model initialization.

Neumann and Pelissier (1981) studied the performance
characteristics of wvarious tropical «cyclone movement
prediction models in operaticnal use at the ©National
Hurricane Center (NHC) in Miami, Florida. These models are
representative of the current amethodology for prediction of
tropical <cyclone nmovement. The seven models range in
complexity from the lasic analog to the sophisticated numer-
ical and are identified 1in Table I as statistical,
statistical-synoptic, statistical-dynamical or dynamical.

Four of the statistical schemes are regression-eguation

podels. Predictors <for these weguations are generally
derived from <climatoloyy, persistence and geopotential
height dJdata (except CLIPER). A fifth statistical  nmodel
({ "RRAMN) uses an analog approach. Operational analysis of
CLIZnrn. d HURRAN (Hope and Neusmana, 1970) showed that each

of thes. odels gives almost identical forecast tracks.

For - recasting western North Pacific tropical cyclones,

five ma n categories of objective technigues are used by the

Joint Ty choon Warninyg Center (JI¥C), 3uam, Marianas Islands:

11




where a(i,j) 1is the corresponding element of matrix A, and
b(i) and s(i) are respectively the mean and stardard devia-
tion of the elements in row i of matrix 4 (that is, the nean
anl standard deviation at a particular point of the
egyuidistant grid computed over all cases.) The elements of
Z are dimensionless variates of zero mean and standard devi-
ation ore. The main advantage of using standardized data is
that it eifectively treats the systematic variation in
magnitude of the elements of the dJdata matrix A. This is
reneficial for the reasons given in Chapter II. The same
systematic error «can occur with the use of the covariarnce
matrix, which also introduces the need for dimensional
sciling to return to the form of the inmput data prior to
interpretation of the eigenvectors. A disadvantaje of using
the correlatior matrix is potential, but slight, smoothirng
of the results (Kutzkach, 1967) .

The correlation matrix (R) then is the symmetric amatrix:

R =2z2%n , (3.2)
where n 1s the numler of cases, and a prime is used to
denote the transpose of a matrix or vector. Next, 1t is

necessary to determine the follcwing constraired maxinum:

dax {y: e'e = 1} where y = e'Ffe (3.3)
for the r dimensional column vector e, The scalar y is the
correlation between vector e and the data matrix A. The

constraint requires that the vector e be normalized to
length one. Morriscn (1967) applies the method of lagrange

multipzliers to (3.3) to obtain:

(R-vI)e = o , (3.4)

25
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Pacific wind vectors. The corplex ZOF results 1linked the
spatial and temporal patterrs of the Jdata fields. This
fusion of space-time variations is particularly wuseful for
long—-term records over large sratial areas. The temporal
variance of tae data was partitioned into orthogonal spatial
patterns (the eigenvectors). The complex coefficients
computed were shown to be a time series modulating the
eigenvectors which were associated with physical patterns
(signals) that accounted for a large percentage of the total
variance. Legler further demonstrated that it is possible
to obtain statistical informaticn that could not be obtained
using a scalar analysis of the wind components.

Whether to perform a scalar or a vector EOF analysis is
a fundamental consideration. Kjelass (1971) has edited
several articles on the theory and methodology of scalar and
vector EOF analysis. These articles include illustrative
exaznples of the application of the methodology in
geophysics. For vector data, a more realistic representa-
tion would be expected from a vector EOF analysis, as demon-
strated ky Legler (1983). However, it would be rash to
assume that a vector analysis is necessarily best for vector
data. As discussed in Chapter 1V, the meridiomal and zonal
wind conponents comprising the data for this study were
subjected to a scalar EOF analysis. The mathematical proce-
dure for this analysis is described in the next section.

B. THE EOF METHOD

let A be an m x n matrix containingy n cases of m-variate
data. The following development will be for the scalar EOF
analysis of the standardized data matrix Z with elements
z2{(i,j) defined by:

z(i,3) = [ a(i,J) - b(i) ]/ s(i) ’ (3.1)

24
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m2teorological forcing patterns. Because of their inherent
empirical nature, it is not reguired, and hence not always
found to be the case, that the eigenvectors have a physical
interrretation that accounts for any variation of the field
being analyzed.

Application of the EOF methcdology to wind data has been
done 1in various manners. Fer exaaple, Barnett (1977)
appiied an ECF analysis to Pacific trade wind data separated
irto zonal and meridional compcnents. The result was an
analysis of two separate scalar fields. Alternately, the
treatment of the wind as complex numbers for the EOF tech-
nigjue was presented by Hardy (1977). Hardy and Walton
(1978) analyzed mesoscale wind vector measurements at ten
stations in the San Francisco Bay Area. This report
included a useful mathematical appendix describing the anal-
ysis cf complex (that is, vector) data, since EOF analysis
of two-dimensional vector data is achieved by use of complex
ratcer than real numbers. This exteasion of the methodology
is straightforward. The tigme series analysis of the
temporal component patterns was also illustrated. Results

of this study confirm that ECF analysis can be advanta-

geously applied to large sets of reygional wind velocity
data. The method objectively derived the essential spatial
and temporal properties represerted by the data, and enabled
a guantitative development of "fprototype" cases and a gquan-
titative comparison of regional velocity patterns on a
month-to-month basis. This is similar to the application of
EOF analysis for map typing. Fcr exaaple, Brown (1981) used
EOF methods to divide height fields surrounding tropical
cyclones into smaller classes tased on the derived coeffi-
cients. These <classes were used for an analog scheme to
forecast tropical storm movement.

Legler (1983) applied the method of Hardy and ¥alton
(1978) to 18 vyears of monthly-average records of tropical

23




expansion coefficients are a time series representation of

these temporal patterns (Hardy and Wwalton, 1978; Legler,
1983).
Exanrles of the use of eigenvectors (eigenmodes) in

meteorological applications include those of Lorenz (1956)
in statistical weather prediction, Grimmer (1963) in an
analysis of temperature patterns in GZurope, and Mateer
(1965) ir an analysis of observations of ozone distributiorn
from sky-light intensities. Many other studies can bte found
in the meteoroloyical literature. dardy and Walton (1578)
gave a broad survey cf possible applications of the analysis
of scalar data. The mathematical details of the scalar EOF
method are described in the next section.

There are particular advantages afforded by an EOF data
analysis. It is not necessary for the data to be statiomnary
(in a statistical sense), nor do they have to be uniformly
sampled in space or time. The EOF method is a convenient,
cost-effective and objective means to represent large
a.ounts of synoptic data by comparatively few coefficients.
While numerical storage is nct normally a problem with
modern computers, it is important that the researcher be
able to represent synoptic fields in a "compact" manner.
Also, these coefficients can ke readily incorporated irnto a
regression analysis. Kutzbach (1967) gives a particularly
clear description of an EOF analysis that was used to reduce
23 temperature observations at 25 grid points to five eigen-
vectors which accounted for 88 percent of the total varia-
tion. similarly, Stidd (1967) rerforamed an EZOF study of the
average monthly rainfall in Nevada and was able to account
for 93 percent of the total variance using only three eigen-
vectors and coefficients. The eigenvectors were success-
fully associated with factors related to rainfall. These
examples demonstrate the effective use of EOF analysis for

data reduction and for pcssible identification of

22




III. EMPIBRICAL ORTHCGONAL FUNCTIONS

A. BACEKGROUND

The general application of eigenvectors in an EOF anal-
ysis is similar to the representation of a field in terms of
orthogonal functions. While orthogjgonal functions are gener-
ally simple functions such as =sines and cosines, eiygenvec-
tors are derived from the data fields. After suitarlle
ranxing, a few eigenvectors may represent a significantly
nigher proportion of data variance +than would the sanme
nunber of orthogonal functions. The statistical methods
known as principal ccmponent aralysis and empirical orthog-
onal function analysis (also referred to as empirical eigen-
vector analysis) are in essence the sane. The principal
components are the same coefficients that wouli be derived
from an EOF analysis.

The EOF analysis is an objective, mathematical procedure
which starts with either the correlation or covariance
matrix of the original data matrix. Froa the cross-product
matrix, the eigenvalues and eigenvectors are derived. The
normalized eigenvectors form a complete orthonormal basis of
vectors which can be used to represent the original observa-
tions. It will be shown that the relative magnitudes of the
eigenvalues can be used to rank-order the eigenvectors
(nodes) in terms of their significance in representing the
data. Furthermore, the most significant eigenvectors (that
is, those which represent the greatest percentage of vari-
ability in the data) can often Le identified with physically
important patterns in the origipal data. While not impor-
tant for this study, it is noted that data containing recur-

rent temporal variations have spatial eigenvectors whose

21
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tropical cyclone maintenance (Gray, 1979). The vertical
shear of the mean zonal wind near the cyclone Center is not
large arnd changes sign across the center. The shear is
positive to the poleward side and negative to the eguator-
ward side of the cyclone. Also, the line of zero zomnal
vertical shear crosses near the cyclone center.

These mnean wind fields thus show that the GBA are
capable of representing the flcw around tropical cyclones.
Ir the next chapter, +the method of using EOFs to represent
this flow for all the cases in the sample will be described.
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are shown in Figs. 1-6. The means and standard deviations
were tased on all 682 cases, As shown in Figs. 1-6, the
variability of the winds is largest in the northeast guad-
rant c¢f the equidistant gyrid at all taree levels. Because
the variability of wind speed 1is not uniform throughout the
grid, standardization of the winds by the mean and standari
deviation at each grid point is essential to ensure that
regions of the grid where variakility is gemerally higher do
not "dominate" in an EOF analysis. The standardization of
data will be presented Chapter III.

The mear zonal and meridiopal flow patterns at 700 mb
appear to te physically reasonatle. The mean zonal flow in
Fig. 1 shows easterlies (westerlies) to the north (south) of
the storm center. Although the grid resolution does not
reveal the fine structure of the storm, the cyclonic envi-
ronment of the storm is evident. The mean rceridiconal wind
component in Fig. 2 is dominated by southerly (northerly)
flow to the east (west) of the storm. Again, the cyclonic
shear envelope of the storm can be clearly identified. The
mean zonal wind fields (Figs. 1, 3 and 5) show siygnificant
strengthening of the westerlies north of the storr fron
700 mlk to 250 mb. The strong, positive meridioral zflow
northeast of the storm at 400 mt and 250 mb (Figs. 4 and 6)
could be an indication of a possible outfliow channel, which
has been shown to be favorakbie for tropical «cyclone
intensification (Chen and Gray, 1984).

The low-level <cyclonic and upper-level anticyclornic
circulations in the mean wind fiells are generally represen-
tative of mostly mature cyclones. It is recognized that

computation of the nmean fields was not restricted to cases
for which the developingyg <cyclone had wmatured to tropical
storm intensity or to cases of intensifying cyclones. -]
Nevertheless, Figs. 1, 3 and 5 irdicate patterns of the .
vertical shear of zomnal wind that nave been associated with L
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intensity (maximum sustained winds of 18 m/s (35 kts) or
greater) must have been present west of the dateline. The
JTHC warming prposition at the times the GBA were groduced
must have been at a latitude less than 34.6 N to ensure that
data were available for a sufficient latitudinal extent
north o the cyclone center. Finally, the GBA @aust be
available for the zonal and aeridioanal wind components at
700 mb, 400 mb and 250 mb.

A total of 1357 cases were found to meet the above
criteria. Because of computation-time limitations subse-
quently encountered, the initial data set was later reduced
to 682 cases by random selection. These 682 cases comprised
the data set from which the EOF functions were computed.
However, all 682 cases were not suitable for the regression
analysis due to an inadequate history or future storn
record, The selection of cases for the regression analysis
will ke described in Chapter V.

A relocatable 527-point grid was defined with a fixed
zonal and meridional separation of 277.8 km (150 n mi). The
grid in Fig. 1 is typical. There are 31-:grid points west to
east and 17 south to north. The horizontal resolution is
twice that of Shaffer (1982), with about 4 1/3 times the
number of grid points (527 vice 120). The equidistant grid
extends 8334 km (4500 n mi) =zorally and 4445 km (2400 n ni)
meridionally. The grid is moved for each case so that the
tropical cyclone center is always located at the
(0,0) grid point. Fcr each case, the zonal and meridional
vind speeds at 700 mb, 400 mb and 250 mb were were extracted
from the GBA onto the eguidistant grid wusing a bilinear
interpolation method (on a spherical Earth). The warning
position from the JIWC was used to locate the <cyclone
center.

Contours of the mean and standard deviation fields of
the zonal and meridicnal winds at 700 ab, 400 mb and 250 nb
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Wind data used in the present study are from the Global
Band Analyses (GBA), which are operationally generated by
the United States Navy Fleet Numerical Oceanography Center
(FNOC) . The GBA are produced ¢n a 49 x 144 Mercator grid.
At 22.5 N or S, the grid mesh distance is 257 kn. The GBA
provide complete longitudinal coverage over latitudes
40.956 5 to 59.745 N. Grid pciats are always separated by
2.5 degrees of 1longitude. Hewever, convergence of the
meridians causes the actual zopal distance separating grid
points +to decrease toward higher latitudes. Along the
northern koundary of the GBA grid from 58.462 N to 59.745 N,
the longitudinal separation of the grid points undergoes a
3.7 percent decrease. This should not be an important
source of error given the inherent uncertainties of the raw
data. The GBA were available for the period 0000 GET 5
January 1975 to 1200 GMT 31 December 1983. Data were avail-
able at 0000 GMT and 1200 GMT for the zonal and meridional
wind components at the following Jlevels: surface,
700 mk, 400 mb, 250 mb and 200 szb. It is noted that the GBA
are missing for some dates and times at one or more levels.

Data for western North Pacific tropical cyclones are
available from the annual tropical «cyclone reports of the
JTWC. At six~hour intervals, warnirgy position, ©best track
position, estimated intensity (maximum sustained wind speed
and minimum surface fressure) are given, as well as fore-
casts for 24, 48 and 72 hours. The JTWC annual reports for
the years 1979 to 1983 were used to select the cases used in
this study. To apply the technique proposed in Chapter I,
the following conditions for case selection were imposed. A

tropical cyclone which matured to at least tropical storn
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are determired by regression eguations for the orthogonal
components of motion. Chapter VI addresses the izportant
guestion of applicability of the model for independent data.
I The concluding Chapter VII contains suggestions for further

research.
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an ECF-based reygression apprcach caan provide a sirmple,
low-cost technique icr prediction of tropical «cyclone
motion.

The extent to which the surrounding flow can be used to
predict tropical cyclone movement has been explored by
studies such as Shaffer and Elsberry (1982) and is a key
motive for this study. The motion of a tropical cyclone is
not determined solely by forces acting on one pressure level
but rather ky the mean wind flcw integrated through a deep
layer and over a substantial area surrounding the cyclone
(iller and Moore, 1960). Because a single steering level
has not been established, these rejression studies involve a
sinjle-level nodel that is tested with predictors extracted
on three different levels. lThe primary purpose of the
current study 1is to use analyzed wind fields to represent
synoptic forcing in a tropical <cyclone movement forecast
technigyue. 3oth Shapiro and Neumann (1984) and Shaifer and
Elsberry (1982) worked with geopotential heigkt data.
Because the wind fields are generall; aore representative of
the flow ir the tropics, it 1is hypothesized that a study
similar to Shaffer's using wind data could result in further
improvemert of forecast ability.

The techriques that have been applied are not new. The
unijueness of the new forecast scheme is the use of an EOF
representation of the wind forcing in the prediction of
tropical <cyclone movement. This forecast method can be
described as a statistical-climatological tropical cycione
forecast method which wuses an EOF representation of the
synoptic-scale wind forcirng.

Chapter II discusses the acquisition of data and the
grid system used. The EOF methodology and analysis are
described in Chapters III and IV. In Chapter V, the
resultant eyuations from a regression analysis are used to

develo} a prototype forecast scheme. Future storm positions

15

BRI A B e L R U
[ TONE TP S W Wil TR Wl S YU S e W Iy W P Y W Y




the synoptic-scale features adjacent to the ‘trorical
cyclone. Cne approach 1is to consider the cvclone to be a
poirt vortex whose direction and speed are approximated by
the direction and speed of the surroundirg winds (or, egquiv-
alently, the pressure or height Jradients across the
cyclone). The steering level is that pressure level at
whick the wind speed and directiorn best correlate with those
of the cyclone. The steering level theory has been applied
in several tropical cyclone movement forecast schemes; for
exanple, Riehl and Shafer (1944), Miller and Moore (1960),
Tse (1966) and kenard et al. (1973) . Different steerinyg
levels are used by the various forecast schemnes. However,
the general concensus is that the umid-tropospheric levels
(700 mb and 500 mb) are the best <for predicting tropical
cycione movement (Chan and Gray, 1982). The upper tropos-
pheric level winds have not been found to be useful for
tropical cyclone movement prediction (Jordan, 1952; Miller,
1958) .

Statistical regression eguatioans were dJeveloped by
Shaffer (1982) to predict the zcnal and meridional displace-
ments of tropical cyclones at 1Zz-hour intervals to 84 hours.
Eof coefficients of the dependent sample were used to repre-
sent the synoptic forcing in the eyuations. Forecast errors
were competetive with other statistical methods. The
average vector displacement errcr for an independent samfple
was approximately 17 percent smaller than the long-tern
average official JTWC forecasts. The best overall forecasts
were obtained using eguations derived with 500 wb height
data. For these equations, the vector displaceament forecast

errors obtained for the independent sample were
164 km (88 n mi), 333 km (176 n mi) and 513 km (277 n ai)
for 24-, 48~ and 72~-hour forecasts, respectively. It is

roted that a Shortcoming of Shaffer (1982) was the smallness
of the indeprendent sample, but th. study demonstrated that
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number of grid-point gredictors would be prohibitive. The

e 4

difficulties inherent in both statistical and dynarical S
methods motivated Shaffer (1982) and Shaffer and Elsterrcy -
L (1982) to develcp a statistical-climatological tropical
3

ey

cyclone track prediction technique wusing an EOF representa- -
tion of the synoptic forcing. The EOFs provided an alterna-

b ." ." g '. ! ‘-..

tive to grid-point predictors. The techniyue enabled the

representation of fields of 120 grid points by 10 eigenvec- g
tors and their associated EOF coefficients. Eighty-five
percent of the total variance of the data was accounted ior
ty these 10 modes. Shapiro and Neumann (1984) also used 10 »
nodes to account for 98 percent of the total variance in
geopotential height data in either a rotated or
geographically-oriented grid systen. These advantages of
data reduction and simple numerical representatior of

synoptic fields make the EOF technigue 1ideal to use with

regression analysis. The eigenvectors represerted different

patterns relating to tropical cyclone movement; that 1is, Lf
. ratterns which appeared to be physically important in the ;ﬁ
determination of tropical cyclone movenment. This approach -

was novel for forecasting of storm movement in the semnse Q€
that previous regression analysis metheds (e. g., dNeumann e
and Lawrence, 1973) had not inccrporated the entire synoptic
forcing field. :

That the synoptic flow surrcunding a tropical cyclone is ﬁf
a major determinant of cycione movement Las Dbeen long

ocbserved (Chan and Gray, 1982). 1In particular, it has been

" "' .l 'l‘ l'
R c‘

well established that tropical «cyclone movement is signifi-
cantly related to mid-tropospheric surrounding wind patterns
(Chan et al., 1980). Neumann and Lawrence (1975) associated g;
most of the variance reduction by statistical models for i'
predictior. of tropical <cyclone movement with input £from S
three sources: (1) climatology and/or persistence; {2) some Zi
type of "'steering"; and (3) the position and intensity of E;
Ly
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(1) climatological and analog tecknigues; (2) extrapolation;
(3) steerirng technigues; (4) dynamic aodels; and (5) enrpir-
ical and analytical technigues. A brief description of the
objective technrniques used 1s given in the annual report
(Joint Tyrhoon Warning Center, 1983). In contrast to the
NHC, the JIWC has not placed emphasis on the development of
statistical methods. The variety and range of sophistica-
tion of techniques in operaticnal use at tne NHC and the
JTHC for objective forecasting of tropical cyclone movement
is noteworthy. That simple methods such as mere extrapola-
tion are competetive with complicated nurerical models aight
ke taken as a surprising indication that little grogress has
been cade in the improvement of forecast skill.
Alternately, the indication could be that tropical cyclornes
are not predictable solely by use of a single class of
methods. For the years 1972-1983, tne magnitude of the
track forecast error by the JIWC for western North Pacific
tropical <cyclones was approximately 213 km (115 n wmi),
437 km (220 n mi) and 667 km (360 n mi) for the
24-, 48- and 72-hour, respectively (Joint Typhoon Warning
Center, 1983). Imrrovement over these forecast errors is

seen to be a realistic goal.

B. OBJECTIVES

The main objective of this study is to develop a
"statistical-climatolcgical" method to forecast tropical
cycione movement. However, «ccmpuatational requirements for
the development of a regression model from a large synoptic
grid system limits the numter of possible grid-rpoint
predictors. An Empirical Orthogonal Fuanction (EOF) approach
similar to that wused by Shkaffer and Elsberry (1982) is
therefore adopted. If an attempt were made to develor a

regression model using a large synoptic grid system, the
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where v is tae lLagrange multiplier, I the ijentity matrix
ard o the null vector. Nontrivial solution of (3.4)

regquires v to satisfy:

The values of v are thus the eigenvalues of the correlation
matrix k, and e is the associated (normalized) eigenvector.
Premultiplication of (3.4) by e' anl application of the

constraint e'e = 1 from (3.3) gives:
v = e'Re . (3.6)

Since v was chosen to maximize this correlation, v must be
the largest eigenvalue of R. Morrison (1967) extends this
constrained maximum method to show that the m eigjenvalues of
R account for the variance in eack of the m dimensions. In
the following discussion, the eijenvalues are ordered such
that:

v, > Va 2 cee 2V . (3.7)

m

Also, the importance of the ith eigenvalue is measured Ly

R m
Lp = g,"i/z"'

N

R
;’vd / trR . (3.8)

where Lk is the fraction of the total wvariation in R
accounted <Ifor by the eigenvectors associated with the Kk
largest eigenvalues. The trace of the <correlation aatrix
(tr R) is equal to its order (m).

Any of the input data cases (stored in a particular
colunn of A) is "refroduceakle" by application of the EOF
coefficients defined bLy:
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C = E'A , (3.9)

where C is an m x n orthogonal matrix and £ is the 2 x n -
orthonormal matrix of the eigenvectors. Matrix E is formed
such that column j hclds the ncrmalized eigenvector associ-
ated with eigenvalue j. Since E is orthonormal, (3.9) gives :
directly that the data matrix A can be recreated as: A

A = EC . (3.10)

Thus, The EOF analysis results in a factorization (3.10) of

the data matrix A. Matrix E of eigenvectors represents the

spatial decomposition of the data variance into orthogonal

modes. The coefficient matrix C accounts for the temporal

variance. -
The repliication of the data matrix A is exact. The

potential for application of the analysis with independent

data is discussed in Chapter IV. It is noted that exact

. reproduction is not [fossible fc¢r cases not in the develop- -
mental set of cases. Such a recreation would not be .
possible using a finite sum of functions of an orthogonal E
family. Case j (stored in column j of matrix A) is repre- 5
sented by a linear «combination of the orthogomal coeffi- N

cients and eigjenvectors:

m
a(j) = %c(i.j)-em for 3= 1, vee 40, (3.11)
<

where a(j) 1is the column vector j of matrix A, the c¢(i,])
are elements of the coefficient matrix € and e (4d) is the
eigenvector in column i of matrix =.

A word of caution should be given here. The factoriza-
tion (3.10) 1is unique up to the coefficient signs since the
coefficients are computed such that the variance is parti-

tiored orthogonally into successively smaller jportions.
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This unigueness results since the partitions formed are
distinct. The researcher might be tempted to use orthogonal
(natrix) transformations on the coefficient matrix in an
attempt to simplify the interpretation ol the subject
matter. The transformed matrix will gjenerate the original
data just as exactly as before; however, the eigenvectors no
longer represent the same maximum percentages of variance.

It 1is generalliy found that an adequately large
percentage of the total variaticn in R (ard hence in A) <can
be attributed to the first p eigenvectors such that p is
much sSmaller than the total rumber of eigenvectors (m),
particularly when m is large (Morrison, 1967). Case Jj is
then approximated by:

|12d
a(j) = & cli,foee(d for 3 =1, «uv ,M . (3. 12)

=l

It is possible to recreate the input data elements of matrix
A from the standardized matrix 2. If the first p eigenvec-
tors are retained, then (3.11)is approxzimated by:

m

a(i, ) = 2 [ clk,deeli, k) Js(i) + bE) (3.13)

where the e(i,k) are elements of the eigenvector matrix E.
Shaffer (1982) discussed the rotation of eigenvectors
computed in an EOF analysis. He gave a very siarle
example cf rotation and contrasted orthogonal rotation with
oblique. The possibility that unrotated eigenvectors may unot
represent the true synoptic patterns was also explored and

evidence given that this should not occur for true
geophysical synoptic fields. Fotation was not performed on
the eigenvectors in this study for severai reasons. First,

the eigenvectors were needed to generate the coefficients to
be used for the regression analysis. As such, the ability
to intergret physically the eigenvectors is not as important
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as in studies in which this 1is a aajor objective. For
exanple, Lejler's (1983) study of the tropical Pacific
trades showed that rotation of the resultant eigenvectors
can be essertial to interpreting the patteras as well as to
simplifying the statistical analysis of the data. Second, a
goal of this study was to reduce the data reqguireé for fore-
casting. This was done by analyzing the amount of variance
accounted for by the various eigenvectors. Were the eigen-
vectors to have been rotated, they would no longer account
for the same percentage of the total variance. For further
discussion cn the rotation of eigenvectors, the reader is

referred to Richman (1981).

C. SELECTING THE NUMEER OF EIGENVECTORS

One important advantage of the EOF technique is that of
sumrarizing most of the variatior in a @multivariate systenm
in terms of fewer variables. Unless the system is defective
(less than Zull rank), some variance will always ke unex-
plained if fewer than m, the row dimension of the data
matrix A, are taken to descrite the systen. The problem
faced by the model builder is to determine the number of
eigenvectors to provide a parsimonious, yet fairly adegquate,
description of a data systenm. Various methods have Leen
applied to determine how many eijenvectors are sigrnificant;
that 1is, possess maximum infcrmation with ainimum noise.
The classical methodology outlined by Morrison (1967) 1is
tased upon the asymptotic behavior of the eigenvalues. This
approach operates on the assumptiorn of a large sample of
normal data. If standardized data are atilized, the
sampling statistics are considerably more complex (Anderson,
1963) . Preisendorfer arnd Barnett (1977) observed that this
method is generally not suited to geophysical studies 1in

which samgle sizes are too sgall to have the requisite
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asymptotic tehavior. Shaffer (1S82) found the asyaptotic
assumption to be invalid for his study of 504 cases (wita
120 data points each) of geopotential heights. Another
alternative 1is to wuse the LEV (Llogarithmic EigerValue)
diagram method (Rinne and Karhila, 1979) which identifies
those structural differences of the eigenvectors that
describe noise instead of signal. Although this method is
simple, it is unsatisfactory because of the subjectivity
reguired on the part of the researcher and the lack of a
strong theoretical basis. Cther methods such as those of
Richman (1980) or Browrn (1981) are also rejected because
they are too subjective in their applications. Methods suctk
as presented by Cattell (1958) and Guttman (1954) are
considered unsuitable because of the danger of protatle
overfactorirg and their lack of a scientific basis.

The method used in this study is a Monte Carlo approach
(Preisendorfer and Barnett, 1977). This approach #as chosen
over Morrison's (1967) because: (1) it does not reguire
asymptotic tehavior of tke eigenvalues; (2) it is objective;
and (3) it is based on statistical methodology. The first
step in this method is to generate at random a large numkber
{at least 100) of data fields consistiny of standard nornal
deviates, which are then assembled into a matrix Z. Matrix
Z is therefore assumed to represent a data matrix obtairnarkle
if all processes are purely randoa. Next, the eigenvalues
are coamputed for each matrix 2. Yeans and standard devia-
tions are determined for the simulated eigjenvalues. The
eigenvaiues obtained from the paysical data are <comrared
with those from the simulated Jeviates. If the true eigen-
value deviates from the mean cf the corresponding randon
data eigenvalues by mwmore than two (three) standard devia-
tions, then the true eigenvalue is significant at tke 95
percent (98 percent) confidence level (Preisendorfer ani

Barnett, 1977). That is, deviation of the true eigenvalue
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from the mean simulated eigenvalue by at least two standarid
deviations 1is indicative that the associated eigenvector
represents signal rather than ncise. As successive coefii-
cients are cormputed, a running sum (using (3.12) or (3.13)
as appropriate) can be formed and compared with data matrix
A to determine how well the data matrix is being generated

by a smaller number of modes.

PR

31

.
[

S
PRI T Y

AR, TR W. PN, . - WP P M LT il e A W




IV. RESULTANT EMPIRICAL ORTHOGONAL FUNCTIONS

A. STATISTICAL ANALYSIS

The mathematical and theoretical framework developed in
Chapter III was used for a scalar EOF analysis of the depen-
dent data set (682 cases as described in Chapter II). The
major purpose of this phase of the data analysis was to
conpute the EZOF coefficients needed for the tropical cyclone
motion forecast scheme proposed in Chapter I. Since these
EOF coefficients were needed for use as possible predictors
in separate regression equations for zonal and meridional
storm movement, a scalar rather than vector representation
was considered to be adeguate. Ffor each of the zonal and
meridional wind fields at 700 mb, 400 mb and 250 mb, a
527 x 6382 data matrix A was fcocrmed using the interpolated
fields as colunmns. A npatrix 2 of standardized data was
computed for each matrix A, and the resultant eigenvalues
and ccrresponding eigenvectors were determined. For each
wind-component field, 527 modes (eigenvectors) were gener-
ated. The ZOF coefficients for each of the 682 cases were
also comzuted for each of the six wind-component fields.

The eigenvalues and cumulative percentage of total vari-

arce for the zonal and meridicnal fields are presented by
pressure level in Takles II through IV. The eigenvalues,
and hence the significance <c¢f their associated nmodes, .
decrease rapidly with increasing mode number. Zonal-field )
eigenvaiues Jecrease at approximately twice the rate of
decrease of the meridional eigenvalues. :

Although many modes resulted because of the rumber of - o
grid points per case, most of the higher order modes repre- u;f
sent noise rather than signal. To determine the number of e
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modes to be retained, a Monte Carlo siaulation was run as
described in ClLapter III. A randoa nuakter generator ior
standard normal deviates was used to simulate 100 standard-
ized 527 x 682 data matrices Z. The statistical "structure"
£ these random fields paralliels that of the standardized
fields of the real data. For each of the 100 siaoulated
matrices of 682 cases of randcm standard scores, the EOF
analysis was performed to yield 100 sets of 527 eigenvalues
(one per field grid point). The means and standard devia-
tions of the Monte Carlo eigenvalues were couaputed. If the
eigenvalue for a mode computed from the real data was
greater than the correspondirg @mean eigenvalue [plus twice
its standard deviation as conaputed from tae randor data,
then tke eigenvalue and eigenvector from the real data were
selected as representing atmosgheric signal. The corre-
sponding mode was retained at the 95 percent confidence
level. Table V contains the @mean eigenvalues of the Monte
Carlo simulation as well as these mean eigenvalues plus
twice their standard deviation.

Comparisons of the six sets of real-field eigenvalues to
those of the random fields are performed separately since
the number of significant eigenvectors may be different for
each level. The only relationship between the modes of the
six fields for the three levels comes from any vertical
coupling that may exist. Fig. 7 illustrates th2 eigenvalues
for the 700 mb zonal wind field and the Monte Carlo simula-
tion for the first 40 modes. Twenty-four modes are indi-
cated to represent signal. Table VI is a summary of the
nusber of modes to be retained and the percentages of total
variance described according tc the Monte Carlo selection
criterion. Some dJeneral observations can be nmade. For
either the zonal or the meridiopnal flow, the number of modes
that represent signal at 700 mb is less than that at 400 mb,
which in turn is less than that at 250 mb. For any of the
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levels aralyzed, a smaller numter of zonal unodes than meri-
dional are retained witihh a higher percentage of total vari-
ance represented.

B. INTERPRETATION OF RESULTS

The percentages of variance unexplained (noise) is real-
istic for a tropical wind analysis. Errors are largely due
to data distributions or measurement errors. The analysis
problem is difficult because of tLe weak governing mass-wind
talance relationship in the trcpics (Haltimner and %Willianms,
1980) . Therefore, it is plausible that the level of randon
error in the wind-ccmponent fields is as high as 18.3
percent. This maximum percentage of "noise" (for the meri-
dional wind £fields at 700 mbk) corresponds to the largest
number of modes (35) selected tc represent "signal™",

In the subsegquent regression aralysis, only the first 35
modes of the zonal and meridioral wind rfields will be used
in the development of the corresponding zonal and meridiornal
storm movement equations for each o©f the three pressure
levels analyzed. The retenticn of 35 modes for each wind
component field provided the maximum possible selection of
modes without 1including unnecessary noise. Using only 35
coefficients out of 527 is a remarkable data reduction of 93
percent. For each field it is necessary to store only the
eigenvector matrix E and the first 35 coefficients for each
case, which will account for no less than 81.7 percent of
the total variance. Table VII lists the percentages of
variance accounted for when 35 npodes are retained for all
wind component fields. At least 90 percent of the total
variance of any zonal wind field is accounted for. while
the number of EOF coefficients needed is much larger than
the 10 per case in Shaffer (1982), 35 modes per field is
still a tractable numkter of potential predictors for regres-

sion analysis.
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It is Dberneficial to 1investigate thne physical signifi-
cance of the modes determined tc represent signal. Shaffer
(1982) <found that the broad-scale features of eigenvectors
derived from geopotential height fields had meteorological
meaning. Contours of modes one and two (multiplied by 100)
for the 700 mb zonal and meridional fields are presented in

Figs. 8 and 9. The eigenvectors are non-dimensional, since
standardized data were used for the EOF analysis. Iwo
points must be stressed. First, there is no mathematical

connection between any zonal-field mode and thke same mode of
the meridional field. That is, it is not possible to regain
the vector nature of the wind ty a combination of zonal and
meridional eigenvectors. Secord, each eigenvector repre-
sents the pattern shown as weli as the exact inverse of the
pattern. TFor a given field, the forcing pattern of a parti-
cular eigenvector is dependent upon the sign of the associ-
ated EOF cocificient. If the coefiicient is nejative, ttken
the forcing pattern of the eigenvector 1is "inverted®,
Positive (negative) components of the field are reversed to
negative (positive). The following discussion will use
eigenvector patterns as shown without considering the
inverse patteras.

The patterns of the 700 mb modes 1 and 2 in Figs. 8 and
9 can be interpreted separately as possible atmospheric £low
patterns. Mode 1 of the 700 mb zonal flow (Fig. 8) shows a
cyclonic shear across the cylore, with easterlies to the
north of the cyclone and westerlies to the south. Mode 2 of

the 700 mb zonal flow (Fig.8) is dominated by broad easterly

flow. The zonal modes 1 apd 2 at 403 ab and 250 mb

(rot shown) are characterized by diminished egquatoriail

westerlies to the south of the cjyclone. Modes 1 and 2 of

the 700 mb meridional flow (Fig. 9) both show alternating

tands of positive and negative ilow. These patterns are

typical for trough-ridge-trough arrangements. Speed maxima
35




ir the tands are located north ¢f the cyclone. The cyclone
is again located in a reygion of cyclonic shear. Meridional
modes 1 and 2 at 400 mab and 250 mb {not shows) depict the
eastward slope of the 700 mb patterns with elevation. These
modes, which individualiy acccunt for the largest percent-
ages of total variance in their corresponding fields, are
inrdeed patterns or signals that appear to relate to trofpical
cyclone movement.

Complexity of the eigenvectors made 1t difficult to
associate orservable atmospneric patterns with higher order
modes for any of the fields. Legler (1983) has observed
that examination of the eigenvectors to give afppropriate
physical interpretatiouns may bLe impractical for data
collected over large grids. Over large areas, signals from
two or more physical processes may be overlaid 1in a single
eigenvector. This can occur since there are no restrictions
as to how the patterns for a particular process may be
"Jecomposed" among the eigenvectors. Moreover, particularly
strong atmospheric signals may appear in more than one
eigenvector. Under such circumstances any realistic inter-
pretation of the modes may be rrecluded.

It 1is also important to verify that tkhe significarnt
modes selected for retention do satisfactorily represent the
data fields. A case (0000 GMT 30 July 79) was selected at
randon to demonstrate the reccnstruction capability of arn
EOF analysis. At this tinme, Tvyphoon Hope was at approxi-
nately 16.9 N, 133.4 £ with maximum sustained winds of
38.6 m/s (75 kts) The actual zcral wind field at 700 mbt and
the reproduction by summing all 527 modes are shown in

Fig. 10. The reproduction of the original field is seen to
be exact. If the eigenvector matrix were to be used to
generate coefficients for a case not included in the depen-
dent sample, the reproduction froduced by summing over all
modes would not be exact. The fields obtained by summing
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the first 5, 15, 25 and 35 are shown in Figs. 11 and 12.
When only five modes are sumned, onrly the gJgross patterns
{positive flow versus negative) are reproduced. Yet, it is
interesting to observe how only five coefficients anrd modes
can begin to recreate a particular field using eigenvectors
derived from all 682 cases. As the number of modes is
increased, an 1increasing amount of the complexity of the
original field is replicated (Figs. 11 and 12). 1In the next
chapter, the EOF coefficients derived for the zomal and
meridional wind fields will be wused as potential predictors
representing the synoptic-scale forcing in a stepwise
regression procedure.
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V. REGRESSION ANALYSIS
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A. MCIIVATION

Regression analysis is one of the most widely usead
statistical tools. Its essence 1s the study of relaticn-
ships amonyg variables to serve three major purposes:
descrigtion, control ard prediction. Tae researcher's joal
is to find a simple mathematical amodel that, on the basis of
observed data, will it a complex phenomenon. An excellent
presentation of theory and methed that is conducive to rrac-
tical application is given by Neter and Wasserman (1974). A
more advanced presentation of statistical theory of the
complete gerneral linear model is given by Graybill (1976).
priefly, regression analysis involves using a linear combi-
nation of known quantities (predictors) to estimate the
value of an unknown gqguantity (predictand).

EOF coefificients have been demonstrated to give a
convenient, gquantitative representation of physical forcing
meckanisms acting on tropical <cyclones (Chapter 1IV).
Previous studies (described in Chapter I) have shown that
statistical forecast schemes based on regression equations
are viable methods. In particular, it is possible tc use
EOF coefficients based on geopotential heights as predictors
to forecast tropical cyclone novement (Shaffer and Elsberry,
1982; Shapiro and Neumann, 1984). The hypothesis here is

that the ZOF coefficients derived to represent wind fcrcing

of a tropical <cyclone would pe useful predictors of future

storm @movement.

Western North Pac’fic tropical cyclone position forecast

eirors for 10 years (1966-137F%) have been statistically
analyzed (Jarrell et al., 1978). The examination of errors
38
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revealed that a small numbter of readily availiacle rfarazetcsrs
can classify, with reasonable efiectiverness, a
cycione forecast as representing a jroua; 2I Storus Wi
either markedly above or bpelow average <eirors. These
ables include storm location, maximul 3us<aiin=2d wirnd a

copponents of motion. Thus, it is hypothesized that tre
parameters might also be approgriate predictors of +tr

cyclone rovement. Regression analyses were perforaed

investigate these hypotheses.

B. VARIABLE AND CASE SELECTION

A primary goal of any regression analysis is to choose a
set of independent variables that 1s T"best". Here the
criterion "best" is defined as minimizing the sua of sjuares
of residuals without overfitting. Practicality requires
that there be a scope of the model; that is, the coverage of
a model is restricted to some region or interval of values
of the independent variables. Model coverage is deterrined
by the deperdent cases included in the analysis. Possible
difficulties are considered later in this chapter.

Predictands for this study are the average 24-, 48- and
72-hour zonal and meridional translation speeds of the trop-
ical cyclone. These average speeds were determined from the
case-time JTWC warning positicn and the subsegquent JTIWC
warning position at 24, 48 or 72 hours. Positive motior was
Gefined to the north and to the west, since the majority of
tropical cyclones tracked to the north and west. As there
are six predictands, six regression equations are required
for each of the pressure 1levels included in the study
{700 mb, 400 mb and 250 mb). A total of 18 eguations was
derived.

It 1is emphasized that the predictands were computed

using JIWC warning frositions at both base time and the
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VII. CONCLUSIONS AND SUGGESTED RESEARCH

The results described in this thesis must be reg.. ied as
preliminary. However, it aprears sufficiently promising
that a viable, efficient regression scheme involving EO7
coefficients to represent wind forcing can be developed.
Two improvements are suggested before any operational
testing migkt be performed. First, the predictands shouldl
ke computed using the JTWC warning position at base time and
the JIWC best-track positions at the predictand times. The
best-track positions are based on a post-season analysis
using all information available. The use of warning posi-
tions for the 1locaticns of the cyclone at predictand tinmes
unnecessarily contaminates the predictands. It 1is appro-
priate to wuse the warning position to locate the tropical
cyclone at base time Dbecause this 1s the ornly position
available at the tiazme of the fcrecast. Second, forecast
error shculd correspecndingly be dGefined as the deviation of
the forecast position from the test-track position.

Adopticn of an operational forecast model requires
testing wusing both dependent and 1indeperdent data. The
EOF-regression forecast errors should be compared with £fore-
casts obtained by another operational model (such as CLIPER)
and of the JTWC. The ultimate utility of the model degpends
upon demonstrated forecast skill <for operational data,
regardless of prior perrormance on dependent data or indica-
tions of a statistical significance test. Results obtaired
in the rresent study indicate very jood potential for an

operational model.
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movement Iforecast cculd be gJgenerated upon input of the
appropriate =zomnal and meridicnal couwponents at the 527
points., Operational implementation of such a statistical-

climatological methcd appears tc be feasible.
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Assuming that the eigenvector matrix E was deterained
from an adegjuate (large) dependent data set, the sare set of
eigenvectors can be used irdefinitel;y zfor indeperndient
cases (rew tropical cyclones), uitain the limitations of the
scope or the model. Shaffer (1982) recommendied that the
regression eguations te updated at the coaclusion of each
typhoon season. The feasibility and necessity of updating
can be questioned for the current model. Shaffer's cases
required 120 data pcints per case as opposed to two fields
of 527 data points each for this study. IL each case
meeting selection requirements were added to the derenient
data set, computing difficulties would be likely to beccae
prohikbitive after several tropical cyclone seasons. ¥hile
it "might" be advantageous at least to include the anomalous
cases, speciiic inclusion of ancmalous cases could seriously
reduce the ability cf the regression analysis to obtain a
good fit. Shaffer (1982) also suggested that increasing the
number of dependent data cases should result in fewer large
forecast errors. However, a larger dependent cdata set dces
not imply a better fit (as measured by R2), wnor does it
imply that the nodel will better forecast anomalous cases.
One alternative would be to bave mnmore than one set of
rejression eguations. A map-typing or analog technigue
could be used to determire which set of eguatiowns would be
appropriate on a case~-by-case basis. Sucih an alternate
method would lack simplicity, which 1is one of the  nost
attractive features of the current cLZOF-based regression
forecast schene.

The forecast scheme using ECF~-based regression models is
very simple compared with other more elaborate models. The
model reguires orly a set of cceificients representing the
synoptic-scale wind forcing and predictors representinyg
present position and past storm movement. The entire rore-

cast scheme could be executel wusing a ainicomputer. The
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for the new case. If n is iarge, the tera (1/n+1) in (5.1)
is negligible relative to the rfirst term so that the ‘
following approximaticn is valid: -

R(new) ~ R (old) . (6.2)

The eigenvalues and eigenvectors computed for the depen-
dent data using R(old) should ©be almost identical to those
obtained from computation using & (new). Provided that a
sufficiertly large dependent =ample is available, it is
reasonatle to use R (cld) to compute the EOF coeificients for
a new data case and then to use these coefficients as
predictors in the forecast equations derived with the depen-
dent data. Shaffer (1982) determined that use of the coef-
ficients for cases calculated using R(old) introduced very
little error into the movement forecast. Testing 1is
required to determine a sample size sufrficient for (6.2) to
be valid. The reader is referred to Snaffer for a detailed
exanple of methodclogy apfropriate to  test  these S e
observations.

Cperational implementation of an EOF forecast scheme

would be straightforward. Two major operations are _
required. First, the 35 reguired EOF coefficients for the B
independent data cases mnmust be computed and stored. This

involves muliltiplication of the 35 x 527 transpose matrix of
trurncated eigenvectors and the 527 x 1 vector of standard- tf@
ized observations. It is assumed that no significant error ‘

would be associated with using the weans and standard devia- R
tions from the dependent sample at the equidistant Jrid
points. Second, these coefficients and other predictors
would be substituted into the regression equations to
predict the average zonal and meridional speeds for the
forecast irnterval. The predicted future location of the

tropical cyclone could then be determined.
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VI. BOTENTIAL FOR USE WITH INDERENDENT DATA

BPased on results obtained usiny dependent Jata and
predictands derived wusing warning positions, EOF-rtased
regression forecasting appears to hnave poteatial zfor
improved prediction c¢f tropical cyclone novement. The value
of the final model depends upcn its potential Z£or opera-
tional use with independent data. The regression equatioas
were derived using EOF coefficients compated using a fparti-
cular set of eigenvectors; namely, the eigenvector matrix Z
of the dependent data set. These regression eguations are
applicable only for tropical cyclone cases within the scope
of the model. The scope of the model is determined prima-
rily by the values of the predictors and predictands used to
derive the <forecast equations. EOF coefficients are the
most sensitive predictors in that they are derived from the
particular flow fields surrounding the tropical «cyclornes.
For a new case, the eigenvectors no longer exactly represent
the maximum variation in 1l of the observations--dependent
set plus the new case. The stabcility of the eigenvectors
must Le examined by deteraining whether the eigernvectors and
coefficients of the dependent data cases remain nearly tae
same 1if a new case is added.

Inclusion of an additional «case changes the correlation
matrix R. The new correliation ratrix can be computed by:

R(new) = {n/(n+1) ]Jek(old) + [ 1/ (n+1) Jezz! ‘ {6.1)

where R (new) is the new correlation matrix after addition of
the new case, R (old) the original correlation matrix of the

dependent data, n the number of cases prior to inclusion of

the new case, and 2z the m x 1 vector of staniardized data
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Multicollinearity exists unless the variables (including
the ECF coefficients) are completely pairwise uncorrelated.
This rarely occurs naturally. When the 1independent vari-
ables are highly correlated, the predictive ability of the
model is suspect for new cases whose inaependent variables
deviate from the pattern of multicollinearity in the depen-

dent cases.
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errors. These results 3o not appear to agres with Jordan
(1952) and Miller (1958) who were unsuccessful at usinyg
winds and heights at upper trorospheric levels to describe
tropical cyclone moticn.

It was also important to examine the results for consis-
tency in the forecasts. Consistency would te indicated by
small standard deviations of fcrecast error. The standard
deviations were generally comparable to Shaffer (1982).
There were no significant differences among the standard
deviations for a given forecast 1interval, except the
standard deviation for the 72-hcur forecast using the 250 mb
equation was particularly smaller than that for either
700 mb or 400 mb egquations.

D. CAUTIONS FOR USE COF THE REGEESSION MODEL

Varicus restrictions should be considered when applyiny
the results of a regression analysis. The validity of the
predictions depends upon whether basic causal conditions at
later times will be similar to those in effect for the data
used for the regression analysis. The scope of the data
must ke respected to avoid inferences based on an indepen-
dent variable which falls outside the range of input data.
Finally, it must be remembered that the predictands used to
derive the ejuations were computed using the JTWC waraing
positions at both the base time and at subsequent forecast
times.

The performance c¢f the model as indicated by the depen-
dent sanple wmay be superior to the ability for new cases.

Tals 1s known as prediction bias, which results when the

final model chosen is too uniquely related to the input data
cases. It is emphasized that the models developed in this -4

study have not been tested with independent data cases.
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forecast interval. TFinally, the forecast error was computed
Ly determining the magnitude of the vector between the fore-
cast position ard the JTWC warning position at the corre-
sponding time.

The forecast errors are summarized in Table XVII by
pressure level and forecast interval. It is stressed that
these results were derived using only the dependent cases.
As expected, the forecast errcr increases with increasing
length of forecast interval. Hcwever, the magnitudes of the
increases are reasonable. The increase in the 72-hour fore-
cast error over the U48-hour forecast error was much smaller
than that for Shaffer's (1982) dependent sample. The
smallest chanje for the current study was about 82 km less
than for Shaffer's results. It was previously noted that
there was a rapid decrease in R2 with iccreasing forecast
interval for Shaffer's eguations. Shaffer's equatiomns
predicted short-term movement vwell, but the errors grew
rapidly with increasing time. The 28-hour forecast error
for this study was about 25 kx larger than for Shaffer's
dépendent sample. However, the best 48- and 72-hour fore-
cast errors for the current study were 28 km and 90 km less
than those of Shaffer. Stability of predictand variance Ior
the current study resulted in models that give ©proaise of
improvement of long-term forecasts.

There were no overwhelming differences in performance of
the egquations derived for the three levels at any forecast
interval. Shaffer's (1982) fcrecast equations based on an

EOF anaiysis of georotential bheight at 500 mb, 700 mbt and
850 mb also did not have significant differences in errors
among the three levels. However, Shaffer's 500 mb eguations
outperformed the other two equation sets by a wide margin B
for a small set of independent cases. Although the 72-hour 1
forecast errors in Table XVII are largest <£for the 250 mb

ejuation, they still coapare favorably with the JTWC mean jﬁﬁ
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procedure for 15 of the 138 eguations, irncluding all pine of
the 2U-hour forecast eguations. For the zoral 48-, 2zonal
72- and weridional 72-hour forecast ejuations, the second or
third variable selected was for past ©Dnovement. The
predictors (UOLD2, UOLL3, VOLD2 and VOLD3 (see Tabple VIII for
description) were @most frequently chosen. These results
were in agreement with Neumann's (1978) observation that
statistical screening technigues invariably select present
and past storm movement over steering predictors derived
from the surrourding flow for short-term tropical cyclone
povenent. However, the predictions are not simply persis-
tence forecasts. Mode variables CU1, CUZ, CV1 and CV2 were
often the second, third or fourth predictors selected. This
was not surprising since the first 2 modes account for the
iargjest percentages of variance in the wind-compornent
fields. From 2 to 10 zonal ECF coefficient predictors and
from 2 to 7 meridional EOF coefficient predictors were
chosen for the forecast eguatiors, so that wind forcing was
also found to be an important determinant of tropical
cyclone movement.

Several potential predictors were not included in any of
the equations: DATE, CINT, VOLLC1 and DISP1. The potential
predictor UCLD1 was retained in only one forecast equation.
These past movement variables represent the interval frcm 24

to 12 hours prior to bLase tinme. Very 1little information

would be lost by exclusion of these potential predictors.
The potential performance cf this regression forecast
scheme was evaluated ty testing on the dependent data cases.
The following procedure was applied for the forecast inter-
vals 24, 48 and 72 hours at each pressure levell(700 mb, 400

St i
adad

ek and 250 mb). First, the aprropriate equations were ased
to predict the average zonal and meridional speeds of the
tropical cyclone. These speeds were converted to zonal and

meridional displacements of the tropical cyclone during the

45

\
N
-
PEEEI . N - . . Ca . E— T . e e . ‘.
e PSRN Lt e Tt T e e e e T e e et e S e et Lo L
MAPYIP AP TP I RN PO P P _‘_:L'L".Lm L T PR RS U Pl T I DAL Y DY SRR DR L SIS . 'J




3ade Mmagnitule indicates medn @moveaeat to the npoltnwest.
The vaiues oI R? for the zonal e uations werZe significantly
greater Jue to the larger variatkilit; 1n zZondal Tovement.

values of K2 do not vary jJreatiy witi forecast intercval
for either the zonal or reridicnal ejuations at any of the
Eressure levels. The largest deviations are for tae 700 ab
zonal ejuations and the 250 aft meridional eyuations. In
contrast, Shaffer's (1982) regression equations consistently
displayed a significant decrease 1in the value of R2 witnh
ircreasing forecast interval (about 0.1 per 1< hoar
interval). These differences 1in the variatiorn of R2 wit.,
forecast interval may account for differences in forecast
error characteristics discussed later in this section.

Finally, the accuracy of the 2zonal or aeridional ejua-
tions is not a strong function ¢f pressure. For either tae
zoral or meridional movement, the equation derived using the
EOF coefficients for a given level does not perform signifi-
cantly tetter (as measured by R2) than the equations for the
other two levels. This was similar to results obtained by
Shaffer (1982) for the dependent sanmple. Siightly larger
values of R2 are found for the 700 mb zonal ejuations at all
three forecast intervals.

Tables XI through XVI summarize the regression equa-
tions. The first value in each table is the intercept. The
average speed component (km/hr) is obtained ty summing the
product of all non-zero regression coefficients and the
values of the associated variables. Parsimony in selection
of variables was met; the main purposes of retention of as
few variables as possible were to obtain sipple equations
and to avoid overfitting.

Several observations were made regarding the variables
retainred for the regression equations and the order of
selection. A past movement variable (predictors 5-10 in

Table VIII) was the first variable selected in the stepwise
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statistic is lefined:

R2 = SSR/SSTO

1 - ( SSE/SSTQ ) , (5.1;

wvhere SST0 is the total sum ©of squares, SS3 1s the regres-

sion sum of sguares and SSE 1s the residuaal sum of syuares.

The R2 statistic measures the proportion of the total var.a-
tion in the predictand associated with the use of the inlde-
1 pendent variables. The regression eguations retained ornly
: those predictors which resulted in an increase in &2 ci it
least 0.801.

The value of R2 for each regression eyuation is given in
Table IX. Matching forecast times and pressure levels, the
value of R2 for a zcnal egquatiorn is always at least J.12
greater than the R2 fcr the meridional ecuatiorn for the same
forecast interval and pressure level. Shafier (1982) fouri

differences as large as 24 percent. The zonil rejressiorn

ejuations account for a gjreater portion oi the total zozal 7*33
povement variation than the w®meridional egjuations. This :
observation agrees with Shaffer (1982). At least 53 percernt ?:ﬁ
of the total variation ir zoral movement was accounted for )
by the equations at each of the three pressure levels for -
ary forecast interval. Values of R2 for the @meriiioral
equations range from 0.325 for the 250 ab 72-nour forecast
to 0.475 for the 700 mb 24%-hour forecast.

The greater predictive ability of the zonal egjuations
was expected. First, it was shown in Chapter IV that fewer
modes were required to descrilke the zonal wind than the
meridional wind. Second, there is greater variation irn the

zonal rovemernt than in the @meridional movement. The means

and standard deviations of the average zonal and meridioral

speeds of the various forecast intervals are given in Tatle

z. Positive mean zonal and @meridional components with the

&

o
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cases for regression analysis. Sample sizes were 409, 308
anl 232 cases for the 24-, 48- and 72-Lour eguations,

respectively.

C. THE EQUATIONS AND ERROR ANAIYSIS

4 linear stepwise regression analysis was chosen to
derive equations to gpredict future average zonal and meri-
dional =speeds of thke tropical cyclores. Altaoough an a
priori assumption of linearity could not be made, the nunber
of polyncmial predictors generated from a base set oI 83
potential predictors would have been intractatle. The UCLA
biomedical computer program BMDE2XR (Dixon and Brown, 1979)
was used for the regressions. Multicollinearity, which
occurs when some or all of the independent variatlies are

highly ccrrelated (Neter and Wasserman, 1974), was avoided

by the use of stefpwise regression. Multicollirearity
fosters a large potential for overfitting since many
different models would provide the same good fit. As a

resuit, it becomes impossitle to interpret any one set of
regressior coefficients as being representative of the
effects of the different independent variables. Also, the
estimated regression coefficients usually have a very large
sampling variability so that they are imprecise and lose
their meaning (or significance) . The BMDP routine inciudes
a preset tolerance to automatically screen the variables at
each ster. A potential predictor was not allowed to enter
the model if it was highly ccrrelated with any predictor
chosen in earlier steps. To ensure that a predictor was
significantly (in a statistical sense) correlated with the
predictand, a minimum F-to-enter value of 4.0 was iamgosed
(Dixon and Brown, 1979).

The coefficient of mult:_, . determination (R2) is a

measure of the association between the dependent and
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The recent moticn of the stora 13 an intejral part of
the prediction model of rearly all tropical cyclorne fcorecast
methods. Most cyclcnes move with uniform direction ard
speed (Gray, 1978) . Satisfactory <forecasts of tropical
cyclone movement can be based wmainly on extrapolatiorn anad
climatclogy. Because there are relatively few storms with
anomalous tracks, predictors based on present and past move-
ment tend to dominate a statistical analysis of storm
motion. These "difficult" storms, which are associated with
above-average forecast errors, tend to recurve or to aove
erratically with nonclimatologyical tracxks. A persisteace-
climatology forecast 1leads to large errors for the 20-25
percent of the cases of anomalous motion (Gray, 1978). dhen
there are not many storms during a season, a single anoma-
lous storm «can result in a significarnt bias of the yearlvy
mean forecast error (Neumann, 1S81).

The remaining potential predictors are related to oktser-
vaticns of the tropical cyclone at bhase tinme. Trcpical
cycione intemnsity (potential predictor 4, Table VIII) was
the JTWC warring maximum sustained wind speed at bkase tine.
The Julian date and the JTWC warning position latitude and
lonyitude (potential predictors 1, 2 and 3, Table VIII)
completed the set of potertial independent variables.

The 682 cases frcm the EOF analysis were used to select
the cases for the regression analysis. For a case to be
included, a complete set of pctential predictors had to be
available. 1In addition to availability of the GBA, the JTHKC
reports had to be available at 12 and 24 hours prior to base
time and at least 24 hours subseguent to base tiae.
Similarly, selection of that case for Jdevelopment of regres-
sion equations for 48- or 72~hour forecasts required that
JTAC warnirg positions be available at 48 or 72 hours,

respectively. These reyuirements Jdecreased the number of
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forecast tirmes. Irn the subseguent liscussion, copparisons
of the results obtained in this study Lor tne dependent lata
are made with those oltained for the deperdernt data in
Shaffer's (1582) study tased on an EOf analysis of geopoten-
tial height. Shaffer's predictards wWere computed using the
JTWC warning and best-track pecsitions at base arnd forecast
times respectively.

Predictors were sought to assess gquantitatively the
effect of £five factors on tropical <c¢yclone @movement:
(1) external (to the cyclone) physical forcing; (2) previous
cyclone movement; (3) cyclone intensity; (3) date; and (5)
initial (warning) position. Table VIII descriftes the 83
potential predictors used for the regression analysis and
identifies these predictors by rame acd nuaber. The poten-
tial predictors were identical for all 18 regression equa-
tions, except that the regression ejuation for a specific
level included only the EOF coefficients at that level.

Synogtic external forcing on a tropical cyclone has been
conjectured to be an important determinart of cyclone move-
ment (Brown, 1981; and others). To incorporate guantita-
tively the wind forcing, the EOF coefficients associated
with the first 35 zonal and meridionai modes were selected
as potential predictors. These coefficients are potential
predictors 14 througn 83 (CU1 through CU35 and CV1 througa
C735) 1ir Table VIII. An important objective of this study
was to evaluate how well these EOF coefrficients represented
atmospheric features that affected cyclone movement.

Persistence has long beer known to be a good predictor
of short-term tropical cyclone aotion. Thereifore, nine
potential predictors representing past zonal and meridional
motions were included. These vwere variables 5 through 13 in
Table VIII. Each prior average speed or vector displacement
was based on JTWC warning positions to simulate operational
conditions.
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The following discussion suggjests other Fossible
research to improve the operatichal model:
- 1. The forecast scheme could oe 1ilaproved if other vari-
t‘ ables representing physical features affectiny stcra
movenent could be identified and included in the
. regression egquations. Intensity, represented by
o maximum sustained wind speed, was found to be an
h‘ unimportart predictor in both this study and
Shaffer's (1982). Following Chan and Gray (1982,

variables such as the size of the <c¢yclore should be

}_ tested in the regression analysis. Model veriZfica-
ol

tion of George and Gray's (1976) observatiorn that the
700 mb level Lkest specifies cyclone speed and that
the 500 mb 1level best specifies cyclone direction
might be attenpted.

2. The EOF-based regressicn forecast scheme 1is ot

limited to input of coefficients derived from anal-

yses. Coefficients derived from prognostic data
fields, such as a 24-hcur forecast from a dynamic
numerical prediction model, amight improve the. lonjer
range f 'ecasts.

3. Each ZOF coeifificient refresents the contributicn of
the associated eigenvectcr to the total forcing. The
resultant trogical cycione movement is a summaticn of
the total forcing by all wmodes. Additional insigjht
into the more important modes for tropical cyclone
forcing could possibly be obtained by examination of
the <correlaticn of the modes with the trorpical
cyclone movement.

4. Vertical «coufpling might be represented in the EOT
modes for the three levels. Testing would involve
the development and analysis of regression mcdels
usingy EOF coefficients from aore than one gressure

ievel in various combinations.
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5. The zonal and mneridiornal «components of tropica
cvclone @movement are forecast sepavately by the
currert scheme, even though tropical cyclone movenment
is a vector gquantity. Ccrrelations exist between the
zcnal and meridioral components of motion (Shapiro
and Neumann, 1984). Icprovements might arise fronm
inclusion of potential predictors which account for
the «correlaticn between the zonal and meridional
components of motion. Also, arn operational model
might be improved using a grid rotated along the
direction of cyclone action (Shapiro and Neumann,
1584).

6. A vector EOF analysis may improve the identification
of forcing medes for tropical c¢yclone rmcvement.
Rotation of the eigenvectors could also be investi-
jated for potential improvement of the methcd. As
previously noted, more eigenvectors may have to be
retained to guard against underfactorirng.

The EOF-regressicn model definitely shows promise <for
improvemernt of operational forecasts orf tropical cyclone
movement. This simfple regression model performed very well
on derecdent data. Additional reductions in forecast error
may be possible through inclusion of more sophisticated
physical forcing parameters and prognostic fields. Further

research appears warranted.
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(H)

radienn mate ingme ne B mmie 2ast B a2 tanes 5

FORECAST INTERVAL
48

TABLE 3IV

Intercept and regregsion coefficient for the meridional
equation using 400 ab EOFs.
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TABLE XII
Intercept and regression cgefficients for the meridiopnal

average speed egquation using 700 mb EOFs.

()

FORECAST INTZEIRVAL

72

us

24

~—0 unmMmMANoO» O MO MO0 O (4]
~M oI o] gk=d[o)] ol ep] ~
O O - M3 0O =4
IrONOOT T~ OO TOOOWNIMe NINOONO
[0 N I N I I I L T D D D 2O D DO DL D B 2R BN B B
no OO0 (o] [alelelelele) o

' | | | [ |
AN © 0 FO—= O O —=NOWN
wn " = WHhO FFIO—O ~ VTN
o > O OO MeenNN S~ OOooWn
OO OOQOrr=OMM~OoOMONMANNCO
(R I I I I I I N N D 2 R 2 O 2 I I IO D DN RN DY B B ]
v O O OO0 OMOOOD M OO000

[ ) 1 [ ! [ |
™ o (@B oA) [0 I o X o (o))
w ™M o @ n o =4
[ I SR o O iy
QOMOCOOOOTTONOOOONOTITNOOOOOM
¢ ¢ vV o % g 8 9 0 s 9 g 0 g % T P 9 eV ¢
v O o o (ool (o]
| 1 |

[~
04
[£3]
[V
(G ONMONM
[BlaYalaY. WY OO M0

-3 NN AN TINOS O~ OINNICNIM O OV e = e
ZOOOHHDDDOOODDODDEH> >
HO>E=AQAQALLLLLLLLLDLOLLDODLLOLDODLOD

77




TABLE XTI
Intercept and regégssion ¢oefficients for the zonal

eguation using 700mb EOFs.

average sp

(B)

FORECAST INTERVAL
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TABLE IX

Samgle size and R2 by forecast _time and level
or the zonal and  meridional equations.

FORECAST INTERVAL (H)

24 48 72
NUMBEE_OF
DEPENDENT 409 308 232
CASES
ZCNAL EQUATIONS
790 mb 0.647 2.708 0.637
490 mb 0.612 2.637 0.613
250 mb 0.623 0.6037 J.588
MERIDICONAL ZQUATIONS
700 mb Q.475 Q.439 Q.447
400 mb 0.492 0.408 D« 336
250 mb 0.481 0.449 0.325

TABLE X

Means and standard deviations of the predictands (km/h)
for the dependent sample.

FORECAST INTERVAL (H)
24 43 72

ZONAL AVLRAGE SPEED

MZAN 8.2 8.9 9.€
STANCARD 14.1 11.8 10.3
DEVIATION ;
MERIDICNAL AVERAGZ SPEZD ]
{
MEAN 8.3
STANDARD 3.0 6.7 5.7 _—
DEVIATION ’
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TABLE VIII

Potential predictors for regression analysis.

AL PREDICTOR

VARIABLE

NUMBER

——— . —— - ——— o ——— - -

10

1

12
13

14 to 48
49 to 83

L WY, Wil WLl WY WP Wil W W SR Wl S

UoLD3

VOLD1

VOLD2

VOLD3

DISP1

DISP2
DISP3
CU1 to CU35
CV1l to CV35
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A Bk e

DESCRIPTICN

—— . —— o —— —— i —————

Julian date. .

darning position

latitude. L

¥arning position
longitade. | |

Maximum sustiained

wind speed (kts).

Average zonal cyclone
aovemént from 23 to 12 i
before base time (m/s).
Average zonal cyclone
novemént for 12" h befcre
base time (m/s). _

Average zonal _cyvlone
movemént for 24°h refore
base time (a/s).

Average meridional cyclone
movement from 24 to 12 h
before base time {m/s).
Average meridional cyclone
moveméent for 12 h beiore
base time (m/s).

Average meridional cyclone
movemént for 24 h belore
base time (m/s). _
Vector disgplacement for

24 to 12 h before

base tipe (a). .
Vector displacement for

12 h before base time (m).
Vector displacement for

24 h before pase time (m).
EOF coefficients derived
for zonal modes 1 _to 35.
EQOF coefficients derived
for meridioral modes

1 to 35,
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TABLE VI

Summar oE the,numbeg c¢f modes retained and
percentagé of variance described (1n parentheses).

ZONAL MERIDIONAL
700 mb 24 (84.7 35 (81.7
400 mb 21 (86.0 33 §82.u
250 mb 19 (87.0 29 (82.0
TABLE VII

Percentages of variance_accounted for .
when 35 modes are fetained for all wind component fields.

ZONAL MERIDIONAL
770 mb $0.0 81.7
400 mb 32:19 8316
250 mb 33.2 85.4
B
)
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AN EIGENVALUE
TWICE THE STANDARD DEVIATIOU

— ——— v ——— . ——— - —— . . —— . —— e
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MM

PLUS

TABLE V
Mean eigenvalues and 95 percent confidence levels

-
Fv}

MEAN

IGENVALU

o

as computed by the Monte Carlo technigue.

MCDZ
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H4ODEL

EUBRAN

CLIPER

NEC67

NHC7 2

NHC73

SANBARK

MFH

* (from Neumann and Pelissier,

A s VI PN S P

p=2- 28—

TABLES

TABLE I

Operational models fcr the prediction .
of tropical cyclone motion cver the North Atlantic.*

TY?E MODEL

STATISTICAL

STATISTICAL

DYNAXICAL

DYNAMICAL

JESCRIPTION

'o%_model based on_tracks ci all
ntic tropical cyclones since
. (Operational” 1968)

ession equation model utilizing
ictors dérived from ¢11matolc?'
persistence. (Operational 197 {

Regression eguation model utilizing
prédictors 3érived froa climatology
ersistence and observed gyeopoten-
ial height Jata.
(Operational 1%07)

Regression equation model utilizing
prédictors dérived from output of
LIPER model and observed ge€opoten-
tial height data.

(Operationral 1972)

Regression equation model utilizing
rédictors derived from output o:x
LIPER model, observed and_ rumeri-

cally forecast geopotential heigat

data. (Operational 1973)

Barotrcpic mqdel based on pressure-
weighted wind field averaged
throuqh troposghere and répresentel
on_a 154 km™ (at 22.5 N% spaced
grid. {(Operational 1970)

Movable Fine Mesh (MFM) baroclinic

model hav1n3 10 ilevels in the ver-

tical and 60 ko grld.spac1n§ in the
horizortal. (Opérational 1976)

1981)
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TABLE XVII
B Mean and standard deviation (km) forecast vector errors
H for the dependent sample.

FORECAST INTERVAL (H)

z4 43 72
NUMBEER_OF
DEPENDENT 409 308 232
CATA CASES
MEaN VECTOR ERROR
700 nb 200.7 351.1 Les5.8
490 mb 189.3 349.90 453.7
250 mb 204.0 365.4 491.¢
STANDARD DEVIATION
700 mb 134.9 217.2 256.1
400 mb 131.5 225.2 297.8
250 mb 138.0 231.7 158.2
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