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ABSTRACT

Empirical Orthogonal Function (ECF) analysis is used to

represent the environmental wind forcing of selected western

North Pacific tropical cyclone tracks from 1979-1983. The . -

EOF analysis is applied separately to the zonal and meri-

dional wind components at 700, 4n0 and 250 mb an a 527-point

grid with 288.7 km zonal and mecidional spacing that is

relocated with the stcrm center. The 527 EOF coefficients

(for each level and component) are computed for a sample of

682 cases. The coefficient vectors are truncated to the

first 35 coefficients based on a "Monte Carlo selection

criterion. These coefficients account for at least 82

percent of the variance in each field. The EOF coeffi-

cients, along with storm movement during the past 24 hours,

position, date and intensity, are then used as potential

predictors in a regression analysis forecast scheme for

tropical cyclone motion. The ECF-based regression ejuations

are tested on the dependent data cases. The mean 72-hour

track forecast error is between 450 and 500 km. Therefore,

it appears that this regressicn scheme has potential for

operational applications. -
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I. INTRODUCTION

A. BACKGROUND

This study is related to one of the most difficult prob-

lems in tropical meteorology--to forecast the movement of

tropical cyclones. In discussing the impact of weather on

naval forces, materials and operations, Wells (1982) empha-

sized the role of tropical cyclones. Avoidance of tropical

cyclones is important to both military and civilian popula-

tions. Fleet operating orders contain lengthy, explicit

guidance on tropical cyclone evasion. Yet, serious losses

due to tropical cyclones continue to occur. Because of the

potential devastation of life and property, continued P

improvement in the ability to forecast tropical cyclone

movement is imperative. The guidance to avoid storm damage

is available, but precautions must be taken early. This

requires accurate tropical cyclone forecast methodology.

After George and Gray (1976), tropical cyzlone movement

prediction models can be classified into four categories:

(1) steering flow; (2) statistical; (3) numerical; and

(4) climatology-persistence. 7he steering concept treats

tropical cyclones as vortices embedded in the basic environ-

mental flow. The statistical forecast approach commonly

uses a screening procedure to select meteorological vari-

ables that are correlated with tropical cyclone movement.

These variables are then used to develop regression equa- .

tions for prediction. An analog-statistical model is Lased

upon the assumption that historical families of repetitive

storm tracks are associated with repetitive synoptic

patterns. By scanning historical data records, a computer

algorithm is used to associate an existing storm with a

7
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"parent" storm track or with a family of similar storms.

The numerical method involves predictions of the synoptic

flow surrounding a cyclone, and possibly a simulation of

cyclone structure, to predict storm movement. Prediction of

tropical cyclone movement based on climatology and/or

persistence is based upon empirical relationships derived

from historical records of the tracks of previous cyclones.

Objective methods for forecasting tropical cyclone movement

have been developed using one or more of these prediction

models. As yet, no one of these objective techniques has

been found to be superior to the others under all conditions

(e. g., Neumann and Pelissier, 1981).

The simplest numerical method of predicting tropical

cyclone movement is to use a barotropic model on a rela-

tively coarse grid (Sanders and Burpee, 1968) with a point

vortex advection scheme (Renard, 1968). Results obtained

from these methods demonstrated that there is considerable

information in the analyzed and predicted synoptic fields

represented on grids which lack the fine resolution neces-

sary to resolve the intense wind field near the center of a

tropical cyclone. However, Ley and Elsberry (1976) cited

these models as inadequate due to the lack of a unique

steering level (or layer) and the absence of vortex-

environmental interaction. Still, the relative success of

coarse-mesh models supports the idea that it might be

possible to relate large-scale forcing (by advective

processes) of a tropical cyclone to its subsequent movement.

Current statistical models for the prediction of trop-

ical cyclone movement use predictors derived from clima-

tology, persistence and either observed or numerically

forecast geopotential height data (such as gradients, thick-

nesses and time changes) . For example, Neumann and

Randrianarison (1976) developed a purely statistical model

based on a system of regression equations for the prediction

3



of tropical cyclone movement over the Southwest Indian

Ocean. Basically, the model is CLImatology plus PEsistence

(CLIPER), applied to the Indian Ocean. Stepwise regression

was used to develop second-order polynomials (35 variables) .

to predict the zonal and meridional cyclone displacements.

The resultant model's performance compared favorably with

operational models (Joint Typhoon Warning Center, 1983). A

significant number of North Atlantic tropical cyclones

exhibit anomalous motion characteristics (Neumann, 1981)

The forecast tracks of these storms revealed limitations of

purely statistical forecast systems (Neumann and Lawrence,

1975). While some researchers sougat to develop purely

dynamical models (e. g., Miller et al., 1972), others devel-

oped statistical-dynamical mcdels. The current NHC

statistical-dynamical model, NHC73, was described by Neumann

and Lawrence (1975). The results demonstrated that informa-

tion obtained from numerical prognoses can improve the

performance of statistical tropical cyclone prediction

models.

Statistical models for the prediction of tropical

cyclone movement have traditionally used a coordinate system ..

oriented with respect to the zonal and meridional axes.

Tropical cyclones tend to move with the synoptic flow.

Short-term displacements have a very strong persistence

component. For these reasons, a grid system oriented with

respect to the cyclone's heading would be a natural choice.

Shapiro and Neumann (1984) investigated the error-reducing

potential of a grid system oriented with respect to the

cyclone heading. This grid-reorientation technique resulted

in a 40 percent reduction of the total variance of tropical

cyclone movement. it was shown, using the dependent data
L

sample, that a potential reduction of 24-hour forecast

errors by approximately 13 percent could be realized for

synoptic predictors extracted on a rotated grid. This

9



redaction in error was comparable to the reduction in

24-hour forecast errors during the past 25 years (Shapiro

and Neumann, 1984). It was observed that the entire reduc-

tion of forecast error is not realizable due to random and

real errors in the developmental and operational height

data, respectively. Satisfactcry results were not obtained

using rotated grids for prediction of 48- and 72-hour trop-

ical cyclone movements. An analysis of forecast results

revealed that grid rotation cptimized forecasts in the .,

direction along which the variance of tropical cyclone move-

ment is maximized and tended to orient the displacement

vectors with the along-track direction. The results of

Shapiro and Neumann (1984) indicated the potential forecast

improvement that can be made in short-term forecasts with

current synoptic data if the cyclone's heading is known.

However, these concepts must still be tested in an opera-

tional environment. For this reason, the data grid used in

this study was geographically oriented. This grid system

will he described in the next chapter.

Both statistical and dynamical methods have weaknesses

(Haltiner and Williams, 1980; Shaffer, 1982). Statistical

methods usually do not forecast well those cyclones that

have anomalous motions. This problem relates to the "scope"

of a model, as discussed in Chapter V. Similarly, these

methods are typically not robust against small changes in

the synoptic (dynamic) forcing of a cycione. There is a

general tendency of statistical methods toward homogenized,

or smoothed, forecasts. In comparison, dynamical models

suffer from both theoretical and financial limitations. Due

to the smallness of the Coriolis parameter in tropical

regions, geostrophy cannot be assumed and initialization of

data fields is difficult. Erroneous data used to initialize

a model can rapidly deteriorate a numerical forecast.

Convective heating is one of the primary driving mechanisms

10



for the maintenance of a tropical cyclone. The difficulty

of modeling convective heating, together with initialization

problems, makes dynamical model predictions suspect in the

tropics. More importantly, maintenance of the energy

balance for a tropical cyclone rej7uires an interaction among

different scales of motion (Coyama, 1982). To avoid

spurious solutions, a small grid mesh is necessary for a

dynamical model to numerically simulate these interactions.

Furthermore, the expense of numerical integration on a fine

mesh can be -uite large due to the Courant-Fredrichs-Levy

(CFL) condition, which requires integration to be made with

smaller time steps as the mesh is decreased (Haltiner and

Williams, 1980). An additional difficulty encountered with

a fine-mesh model is that observed data in tropical regions

are inadequate for model initialization.

Neumann and Pelissier (1981) studied the performance

characteristics of various tropical cyclone movement

prediction models in oeraticnal use at the National

Hurricane Center (NHC) in Miami, Florida. These models are

representative of the current methodology for prediction of

tropical cyclone movement. The seven models range in

complexity from the lasic analog to the sophisticated numer-

ical and are identified in Table I as statistical,

statistical-synoptic, statistical-dynamical or dynamical.

Four of the statistical schemes are regression-equation

models. Predictors for these ejuations are generally

derived from climatology, persistence and geopotential

height data (except CLIPER). A fifth statistical model

( I'IN) uses an analog approach. Operational analysis of

CLI?Ln. d HURRAN (Hope and Neumann, 1970) showed that each

of thesk odels gives almost identical forecast tracks.

For recasting western North Pacific tropical cyclones,

five ma n categories of objective techniiues are used by the

Joint T ;hoon Warning Center (JIWC) , 3uam, Marianas Islands:

1"1



wlere a (i,j) is the corresponding element of matrix A, and

b(i) and s(i) are respectively the mean and standard devia-

tion of the elements in row i of matrix A (that is, the mean

and standard deviation at a particular point of the

el/uidistant grid computed over all cases.) The elements of

Z are dimensionless variates of zero mean and standard devi-

ation one. The main advantage of using standardized data is

that it effectively treats the systematic variation in

magnitude of the elements of the data matrix A. This is

beneficial for the reasons given in Chapter !I. The same

systematic error can occur with the use of the covariance

matrix, which also introduces the need for dimensional

scaling to return to the form of the input lata prior to

interpretation of the eigenvectors. A disadvantage of using

the correlation matrix is potential, but slight, smootHing

of the results (Kutzbach, 1967).

The correlation matrix (R) then is the symmetric matrix:

= ZZ'/n , (3.2)

where n is the number of cases, and a prime is used to

denote the transpose of a matrix or vector. Next, it is

necessary to determine the follcwing constrained maximum:

lax (y: e'e = 1 where y = e'Be (3.3)

for the z dimensional column vector e. The scalar y is the

correlation between vector e and the data matrix A. The

constraint requires that the vector e be normalized to

length one. Morriscn (1967) applies the method of Lagrange

multipliers to (3.3) to obtain:

(R -vI )e = 0 , (3.4)
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Pacific wind vectors. The complex ZOF results linked the

spatial and temporal patterns of the data fields. This

fusion of space-time variations is particularly useful for

long-term records over large spatial areas. The temporal

variance of the data was partitioned into orthogonal spatial

patterns (the eigenvectors). The complex coefficients .

computed were shown to be a time series modulating the

eigenvectors which were associated with physical patterns

(signals) that accounted f'oL a large percentage of the total

variance. Legler further demonstrated that it is possible

to obtain statistical informaticn that could not be obtained

using a scalar analysis of the wind components.

Whether to perform a scalar or a vector EOF analysis is

a fundamental consideration. Kjelass (1971) has edited

several articles on the theory and methodology of scalar and

vector EOF analysis. These articles include illustrative

examples of the application of the methodology in

geophysics. For vector data, a more realistic representa-

tion would be expected from a vector EOF analysis, as demon-

strated hy Legler (1983). However, it would be rash to

assume that a vector analysis is necessarily best for vector

data. As discussed in Chapter IV, the meridional and zonal

wind components comprising the data for this study were

subjected to a scalar EOF analysis. 7he mathematical proce-

dure for this analysis is described in the next section.

B. THE EOF METHOD

Let A be an m x n matrix containing n cases of m-variate

data. The following development will be for the scalar EOF

analysis of the standardized data matrix Z with elements

z(i,j) defined by:

z(i,j) C a a(i,j) b (i) s s(i) , (3.1)

24 ..!.
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mnteorological forcing patterns. Because of their inherent

empirical nature, it is not required, and hence not always

found to be the case, that the eigenvectors have a physical

interpretation that accounts for any variation of the field

being analyzed.

Application of the EOF methcdology to wind data has been

done in various manners. For example, Barnett (1977)

applied an ECF analysis to Pacific trade wind data separated

into zonal and meridional compcnents. The result was an

analysis of two separate scalar fields. Alternately, the

treatment of the wind as complex numbers for the EOF tech-

nique was presented by Hardy (1977). Hardy and Walton

(1978) analyzed mesoscale wind vector measurements at ten

stations in the San Francisco Bay Area. This report

included a useful mathematical appendix describing the anal-

ysis of complex (that is, vector) data, since BOF analysis

of two-dimensional vector data is achieved by use of complex

rather than real numbers. This extension of the methodology

is straightforward. The time series analysis of the

temporal component patterns was also illustrated. Results

of this study confirm that ECF analysis can be advanta-

geously applied to large sets of regional wind velocity

data. The method objectively derived the essential spatial

and temporal properties represented by the data, and enabled

a quantitative development of "prototype,, cases and a quan-

titative comparison of regional velocity patterns on a

month-to-month basis. This is similar to the application of

EOF analysis for map typing. Fcr example, Brown (1981) used

EOF methods to divide height fields surrounding tropical

cyclones into smaller classes tased an the derived coeffi-

cients. These classes were used for an analog scheme to L
forecast tropical storm movement.

Legler (1983) applied the method of Hardy and Walton

(1978) to 18 years of monthly-average records of tropical

23



expansion coefficients are a time series representation of

these temporal patterns (Hardy and Walton, 1978; Legler,

1983).

Examples of the use of eigenvectors (eigenmodes) in
meteorological applications include those of Lorenz (1956)

in statistical weather prediction, Grimmer (1963) in an

analysis of temperature patterns in Europe, and Mateer

(1965) in an analysis of observations of ozone distribution

from sky-light intensities. Many other studies can be found

in the meteoroloical literature. Hardy and Walton (1978)

gave a broad survey cf possible applications of the analysis

of scalar data. The mathematical details of the scalar EOF

method are described in the next section.

There are particular advantages afforded by an EOF data
analysis. It is not necessary for the data to be stationary

(in a statistical sense), nor do they have to be uniformly

sampled in space or time. The EOF method is a convenient,

cost-effective and objective means to represent large

auounts of synoptic data by comparatively few coefficients.

While numerical storage is nct normally a problem with

modern computers, it is important that the researcher be

able to represent synoptic fields in a "compact" manner.

Also, these coefficients can be readily incorporated into a

regression analysis. Kutzbach (1967) gives a particularly

clear description of an EOF analysis that was used to reduce

23 temperature observations at 25 grid points to five eigen-
vectors which accounted for 88 percent of the total varia-

tion. Similarly, Stidd (1967) performed an EOF study of the
average monthly rainfall in Nevada and was able to account

for 93 percent of the total variance using only three eigen-

vectors and coefficients. The eigenvectors were success-

fully associated with factors related to rainfall. These 7

examples demonstrate the effective use of EOF analysis for

data reduction and for possible identif ication of

22



III. EMPIRICAL ORTHCGONAL FUNCTIONS

A. BACKGROUND

The general application of eigenvectors in an EOF anal-

ysis is similar to the representation of a field in terms of

orthogonal functions. While orthogonal functions are gener-

ally simple functions such as sines and cosines, eigenvec-

tors are derived from the data fields. After suitable

ranking, a few eigenvectors may represent a significantly

higher proportion of data variance than would the same

number of orthogonal functions. The statistical methods

known as principal ccmponent analysis and empirical orthog-

onal function analysis (also referred to as empirical eigen-

vector analysis) are in essence the same. The principal

components are the same coefficients that would be derived

from an BOF analysis.

The EOF analysis is an objective, mathematical procedure

which starts with either the correlation or covariance

matrix of the original data matrix. From the =ross-product

matrix, the eigenvalues and eigenvectors are derived. The

normalized eigenvectors form a complete orthonormal basis of

vectors which can be used to represent the original observa-

tions. It will be shown that the relative magnitudes of the

eigenvalues can be used to rank-order the eigenvectors

(modes) in terms of their significance in representing the

data. Furthermore, the most significant eigenvectors (that

is, those which represent the greatest percentage of vari-

ability in the data) can often be identified with physically

important patterns in the original data. While not impor-

tant for this study, it is noted that data containing recur-

rent temporal variations have spatial eigenvectors whose

21
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tropical cyclone maintenance (Gray, 1979). The vertical

shear of the mean zonal wind near the cyclone center is not

large and changes sign across the center. The shear is

positive to the poleward side and negative to the equator-

ward side of the cyclone. Also, the line of zero zonal

vertical shear crosses near the cyclone center.

These mean wind fields thus show that the GBA are

capable of representing the flcw around tropical cyclones.

In the next chapter, the method of using EOFs to represent

this flow for all the cases in the sample will be described.

20
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are shown in Figs. 1-6. The means and standard deviations

were based on all 682 cases. As shown in Figs. 1-6, the

variability of the winds is largest in the northeast guad-

rant cf the eguidistant grid at all three levels. Because

the variability of wind speed is not uniform throughout the

grid, standardization of the winds by the mean and standar-

deviation at each grid point is essential to ensure that

regions of the grid where variability is generally higher do

not "dominate" in an EOF analysis. The standardization of

data will be presented Chapter III.

The mean zonal and meridional flow patterns at 700 mb

appear to be physically reasonable. The mean zonal flow in

Fig. 1 shows easterlies (westerlies) to the north (south) of

the storm center. Although the grid resolution does not

reveal the fine structure of the storm, the cyclonic envi-

ronment of the storm is evident. The mean neridional wind

component in Fig. 2 is dominated by southerly (northerly)

flow to the east (west) of the storm. Again, the cyclonic

shear envelope of the storm can be clearly identified. The

mean zonal wind fields (Figs. 1, 3 and 5) show significant

strengthening of the westerlies north of the storm from

700 mb to 250 mb. The strong, positive meridional flow

northeast of the storm at 400 mb and 250 mb (Figs. 4 and 6)

could be an indication of a possible outflow channel, which

has been shown to be favorable for tropical cyclone

intensification (Chen and Gray, 1934).

The low-level cyclonic and upper-level anticyclonic

circulations in the mean wind fields are generally represen-

tative of mostly mature cyclones. it is recognized that

computation of the mean fields was not restrizted to cases

for which the developing cyclone had matured to tropical

storm intensity or to cases of intensifying cyclones.

Nevertheless, Figs. 1, 3 and 5 indicate patterns of the

vertical shear of zonal wind that have been associated with

19



intensity (maximum sustained winds of 18 m/s (35 kts) or

greater) must have been present west of the dateline. The

JT.WC warning position at the times the GBA were produced

must have been at a latitude less than 34.6 N to ensure that

data were available for a sufficient latitudinal extent

north of the cyclone center. Finally, the GBA must be

available for the zonal and meridional wind components at

700 mb, 400 mb and 250 mb.

A total of 1357 cases were found to meet the above

criteria. Because of computation-time limitations subse-

quently encountered, the initial data set was later reduced

to 682 cases by random selection. These 682 cases comprised

the data set from which the EOF functions were computed.

However, all 682 cases were not suitable for the regression

analysis due to an inadequate history or future storm

record. The selection of cases for the regression analysis

will be described in Chapter V.

A relocatable 527-point grid was defined with a fixed

zonal and meridional separation of 277.8 km (150 n mi). The

grid in Fig. 1 is typical. There are 31 grid points west to

east and 17 south to north. The horizontal resolution is

twice that of Shaffer (1982), with about 4 1/3 times the

number of grid points (527 vice 120). The equidistant grid

extends 8334 km (4500 n mi) zorally and 4445 km (2400 n mi)

eridionally. The grid is moved for each case so that the

tropical cyclone center is always located at the

(0,0) grid point. For each case, the zonal and meridional

wind speeds at 700 mb, 400 mb and 250 mb were were extracted

from the GBA onto the equidistant grid using a bilinear

interpolation method (on a spherical Earth). The warning

position from the JTWC was used to locate the cyclone

cent er.

Contours of the mean and standard deviation fields of

the zonal and meridicnal winds at 700 mb, 400 mb and 250 mb

18
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II. DATA ACQUISITION AND FIELD DEFINITION

Wind data used in the present study are from the Global

Band Analyses (GBA), which are operationally generated by

the United States Navy Fleet Numerical Oceanography Center

(FNOC). The GBA are produced cn a 49 x 144 Mercator grid.

At 22.5 N or S, the grid mesh distance is 257 km. The GBA

provide complete longitudinal coverage over latitudes

40.956 S to 59.745 N. Grid points are always separated by

2.5 degrees of longitude. Hcwever, convergence of the

meridians causes the actual zonal distance separating grid

points to decrease toward higher latitudes. Along the

northern boundary of the GBA grid from 38.462 N to 59.745 N,

the longitudinal separation of the grid points undergoes a

3.7 percent decrease. This should not be an important

source of error given the inherent uncertainties of the raw

data. 1he GBA were available for the period 0000 1G"MT 5

January 1975 to 1200 GMT 31 December 1983. Data were avail-

able at 0000 GMT and 1200 GMT for the zonal and meridional

wind components at the following levels: surface,

700 mb, 400 mb, 250 mb and 200 mb. It is noted that the GBA

are missing for some dates and times at one or more levels.

Data for western North Pacific tropical cyclones are

available from the annual tropical cyclone reports of the

JTWC. At six-hour intervals, warninj position, best track

position, estimated intensity (maximum sustained wind speed

and minimum surface jressure) are given, as well as fore-

casts for 24, 48 and 72 hours. The JTWC annual reports for

the years 1979 to 1983 were used to select the cases used in

this study. To apply the technique proposed in Chapter I,

the following conditions for case selection were imposed. A

tropical cyclone which matured to at iast tropical storm

17



are determined by regression e'(uations for the orthogonal

components of motion. Chapter VI addresses the ix;.ortant

question of applicability of the model for indep~endent data.
IThe concluding Chapter VII contains suggestions for further

research.
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an ECF-based regression apprcach can provide a simple,

low-cost technique fcr prediction of tropical cyclone

motion. p

The extent to which the surrounding flow can be used to

predict tropical cyclone movement has been explored by

studies such as Shaffer and Elsberry (1982) and is a key

motive for this study. The motion of a tropical cyclone is

not determined solely by forces acting on one pressure level

but rather by the mean wind flcw integrated through a deep

layer and over a substantial area surrounding the cyclone

(Miller and Moore, 1960). Because a single steering level

has not been established, these rejression studies involve a

single-level model that is tested with predictors extracted

on three different levels. The primary purpose of the

current study is to use analyzed wind fields to represent

synoptic forcing in a tropical =yclone movement forecast

technique. 3oth Shapiro and Neumann (1984) and Shaffer and

Elsberry (1992) worked with geopotential height data.

Because the wind fields are generally more representative of

the flow in the tropics, it is hypothesized that a study

similar to Shaffer's using wind data could result in further

improvement of forecast ability.

The techniques that have been applied are not new. The

uniqueness of the new forecast scheme is the use of an EOF

representation of the wind forcing in the prediction of

tropical cyclone movement. This forecast method can be

described as a statistical-climatological tropical cyclone

forecast method which uses an EOF representation of the . -

synoptic-scale wind forcing.

Chaster II discusses the acquisition of data and the

grid system used. The EOF methodology and analysis are L

described in Chapters III and IV. In Chapter V, the

resultant equations from a regression analysis are used to

develoi a prototype forecast scheme. Future storm positions

15
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the synoptic-scale features adjacent to the tropical

cyclone. One approach is to consider the cyclone to be a

point vortex whose direction and speed are approximated by

* the direction and speed of the surrounding winds (or, equiv-

alently, the pressure or height gradients across the

cyclone). The steering level is that pressure level at

which the wind speed and direction best correlate with those

of the cyclone. The steering level theory has been applied

in several tropical cyclone movement forecast schemes; for

example, Riehl and Shafer (1944), Miller and %Ioore (1960),

Tse (1966) and Renard et al. (1973). Different steering

levels are used by the various forecast schemes. However,

the general concensus is that the mid-tropospheric levels

(700 mb and 500 mb) are the best for predicting tropical

cyclone movement (Chan and Gray, 1982). The upper tropos-

pheric level winds have not been found to be useful for

tropical cyclone movement prediction (Jordan, 1952; Niller,

1958).

Statistical regression ejuations were developed by

Shaffer (1982) to predict the zcnal and meridional displace-

ments of tropical cyclones at 12-hour intervals to 84 hours.

Eof coefficients of the dependent sample were used to repre-

sent the synoptic forcing in the e,uations. Forecast errors

were competetive with other statistical methods. The

average vector displacement errcr for an independent sample

was approximately 17 percent smaller than the long-term

average official JTWC forecasts. The best overall forecasts

were obtained using equations derived with 500 mb height

data. For these equations, the vector displacement forecast

errors obtained for the independent sample were

164 km (88 n mi), 333 km (176 n mi) and 513 km (277 n mi)

for 24-, 48- and 72-hour forecasts, respectively. It is

noted that a shortcoming of Shaffer (1982) was the smallness

of the indepjendent sample, but th, study demonstrated that

14



number of grid-point redictors would be prohibitive. The

difficulties inherent in both statistical and dynamical

methods motivated Shaffer (1982) and Shaffer and Elsberry

(1982) to develcp a statistical-climatological tropical

cyclone track prediction technique using an EOF representa-

tion of the synoptic forcing. The EOFs provided an alterna-

tive to grid-point predictors. The technihue enabled the

representation of fields of 120 grid points by 10 eigenvec-

tors and their associated EOF coefficients. Eighty-five

percent of the total variance of the data was accounted for

by these 10 modes. Shapiro and Neumann (1984) also used 10

modes to account for 98 percent of the total variance in

geopotential height data in either a rotated or

geographically-oriented grid system. These advantages of

data reduction and simple numerical representation of

synoptic fields make the EOF techni-ue ideal to use with

regression analysis. The eigenvectors represented different

patterns relating to tropical cyclone movement; that is,

patterns which appeared to be physically important in the

determination of tropical cyclone movement. This approach --

was novel for forecasting of storm movement in the sense

that previous regression analysis methods (e. g., Neumann

and Lawrence, 1973) had not incorporated the entire synoptic

forcing field.

That the synoptic flow surrcunding a tropical cyclone is

a major determinant of cyclone movement has been long

observed (Chan and Gray, 1982). In particular, it has been

well established that tropical cyclone movement is signifi-

cantly related to mid-tropospheric surrounding wind patterns

(Chan et al., 1980). Neumann and Lawrence (1975) associated

most of the variance reduction by statistical models for

prediction of tropical cyclone movement with input from

three sources: (1) climatology and/or persistence; (2) some

type of "steering"; and (3) the position and intensity of

13
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(1) climatological and analog techniques; (2) extrapolation;

(3) steering techni,4ues; (4) dynamic models; and (5) empir-

ical and analytical techniques. A brief description of the

objective technigues used is given in the annual report

(Joint Typhoon Warning Center, 1983). In contrast to the

NHC, the JTWC has not placed emphasis on the development of

statistical methods. The variety and range of sophistica-

tion of techniques in operaticnal use at tne NHC and the

JTWC for objective forecasting of tropical cyclone movement

is noteworthy. That simple methods such as mere extrapola-

tion are competetive with complicated numerical models might

he taken as a surprising indication that little progress has

been made in the improvement of forecast skill.

Alternately, the indication could be that tropical cyclones

are not predictable solely by use of a single class of

methods. For the years 1972-1983, tne magnitude of the

track forecast error by the JTNC for western North Pacific

tropical cyclones was approximately 213 km (113 n mi),
407 km (220 n mi) and 667 km (360 n mi) for the

24-, 48- and 72-hour, respectively (Joint Typhoon Warning

Center, 1983). Improvement over these forecast errors is

seen to be a realistic goal.

B. OBJECTIVES

The main objective of this study is to develop a

"statistical-clima toicgical" method to forecast tropical

* cyclone movement. However, ccmputational requirements for

the development of a regression model from a large synoptic

grid system limits the number of possible grid-point

predictors. An Empirical Orthogonal Function (EOF) approach

similar to that used by Shaffer and Elsberry (1982) is

therefore adopted. If an attempt were made to develop a

regression model using a large synoptic grid system, the

12
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where v is the Lagrange multiplier, I the identity matrix

and o the null vector. Nontrivial solution of (3.4)

*requires v to satisfy:

- IR - vII = 0 . (3.5)

'The values of v are thus the eigenvalues of the correlation

matrix R, and e is the associatEd (normalized) eigenvector.

Premultiplication of (3.4) by e' ani application of the

constraint e'e = 1 from (3.3) gives:

v = e'Re . (3.6)

Since v was chosen to maximize this correlation, v must be

the largest eigenvalue of R. Morrison (1967) extends this

* constrained maximum method to show that the m ei~envalues of

R account for the variance in each of the m dimensions. In

the following discussion, the eigenvalues are ordered such

that:

vI  > v > ... > v . (3.7)

Also, the importance of the ith eigenvalue is measured by

L = v. / v. = 2" v. / trR (3.8)

where Lk is the fraction of the total variation in R

• accounted for by the eigenvectors associated with the k

largest eigenvalues. The trace of the correlation matrix

(tr R) is equal to its order (m).

Any of the input data cases (stored in a particular

* column of A) is "re~roduceable" by application of the EOF

coefficients defined by:
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C E'A , (3.9)

where C is an m x n orthogonal matrix and E is the m x n

orthonormal matrix of the eigenvectors. Matrix E is formed

such that column j hclds the ncrmalized eigenvector associ-

ated with eigenvalue j. Since E is orthonormal, (3.9) gives

directly that the data matrix A can be recreated as:

A =  EC . (3. 10)

Thus, The EOF analysis results in a factorization (3.10) of
the data matrix A. twatrix E of eigenvectors represents the

spatial decomposition of the data variance into orthogoual

modes. The coefficient matrix C accounts for the tempqral

variance.

The replication of the data matrix A is exact. The

potential for application of the analysis with independent

data is discussed in Chapter IV. It is noted that exact

reproduction is not -ossible fcr cases not in the develop-

mental set of cases. Such a recreation would not be

possible using a finite sum of functions of an orthogonal

family. Case j (stored in column j of matrix A) is repre-

sented by a linear combination of the orthogonal coeffi-

cients and eigenvectors:

a(j) = c(ij)-e( W for j = 1, ... ,n , (3. 11)

where a(j) is the column vector j of matrix A, the c(i,j)

are elements of the coefficient matrix C and e (i) is the

eigenvector in column i of matrix E.

A word of caution should be given here. The factoriza-

tion (3.10) is unique up to the coefficient signs since the

coefficients are computed such that the variance is parti-

tioned orthogonally into successively smaller portions.

27
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This uniqueness results since the partitions formed are

distinct. The researcher might be tempted to use orthogonal

(matrix) transformations on the coefficient matrix in an

attempt to simplify the interpretation ol the subject

matter. The transformed matrix will generate the original

data just as exactly as before; however, the eigenvectors no

longer represent the same maximum percentages of variance.

It is generally found that an adequately large

percentage of the total variaticn in R (and hence in A) can

be attributed to the first p eigenvectors such that p is

much smaller than the total rumber of eigenvectors (m),

particularly when m is large (Morrison, 1967). Case j is

then approximated by:

a(j) = 1c(i,j)-e() for j = 1, ... ,71 . (3.12)

It is possible to recreate the input lata elements of matrix

A from the standardized matrix Z. If the first p eigenvec-

tors are retained, then (3.11)is approximated by:

a(i,j) c (k, j) oe(i, k) s (i) + b(i) , (3.13)

where the e(i,k) are elements of the eigenvector matrix E.

Shaffer (1982) discussed the rotation of eigenvectors

computed in an EOF analysis. He gave a very simple

example cf rotation and contrasted orthogonal rotation with

oblique. The possibility that unrotatei eigenveztors nay not

represent the true synoptic patterns was also explored and

evidence given that this should not occur for true

geophysical synoptic fields. Eotation was not performed on

the eigenvectors in this study for several reasons. First,

the eigenvectors were needed to generate the coefficients to

be used for the regression analysis. As such, the ability

to interpret physically the eigenvectors is not as important
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as in studies in which this is a major objeztive. For

example, Lepler's (1983) study of the tropical Pacilic

trades showed that rotation of the resultant eigenvectors

can be essential to interpreting the patterns as well as to

simplifying the statistical analysis oi the data. Second, a

goal of this study was to reduce the data recluired for fore-

casting. This was done by analyzing the amount of variance

accounted for by the various eigenvectors. Were the eigen-

vectors to have been rotated, they would no longer account

for the same percentage of the total variance. For further

discussion on the rotation of eigenvectors, the reader is

referred to Richman (1981).

C. SELECTING THE NUBEE OF EIGENVECTORS

One important advantage of the EOF technique is that of

summarizing most of the variation in a multivariate system

in terms of fewer variables. Unless the system is defective

(less than full rank), some variance will always be unex- %

plained if fewer than m, the row dimension of the data

matrix A, are taken to describe the system. The problem

faced by the model builder is to determine the number of

eigenvectors to provide a parsimonious, yet fairly adequate,

description of a data system. Various methods have been

applied to determine how many ei~envectors are significant;

that is, possess maximum information with minimum noise.

The classical methodology outlined by Morrison (1967) is

based upon the asymptotic behavior of the eigenvalues. This

approach operates on the assumption of a large sample ofr

normal data. If standardized data are atilized, the

sampling statistics are considerably more complex (Anderson,

1963). Preisendorfer and Barnett (1977) observed that this

method is generally not suited to geophysical studies in

which sample sizes are too suali to have the recuisite
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asymptotic behavior. Shaffer (1982) found the asymptotic

assumption to be invalid for his study of 504 cases (with

120 data points each) of geopotential heights. Another

alternative is to use the LEV (Logarithmic EigerValue)

diagram method (Rinne and Karhila, 1979) which identifies

those structural differences of the eigenvectors that

describe noise instead of signal. Although this method is

simple, it is unsatisfactory because of the subjectivity

required on the part of the researcher and the lack of a

strong theoretical basis. Other methods such as those of

Richman (1980) or Brown (1981) are also rejected because
they are too subjective in their applications. Methods such

as presented by Cattell (195a) ani Guttman (1954) are

considered unsuitable because of the danger of probable

overfactoring and their lack of a scientific basis.

The method used in this study is a Monte Carlo approach

(Preisendorfer and Barnett, 1977). This approach was chosen

over Morrison's (1967) because: (1) it does not recuire

asymptotic behavior of the eigenvalues; (2) it is objective;

and (3) it is based on statistical methodology. The first

step in this method is to generate at random a large number

(at least 100) of data fields consistin4 of standard normal

deviates, which are then assembled into a matrix Z. Matrix

Z is therefore assumed to represent a data matrix obtainable

if all processes are purely random. Next, the eigenvalues

are computed for each matrix Z. heans and standard devia-

tions are determined for the simulated eigjenvalues. The

eigenvalues obtained from the pnysical data are compared

with those from the simulated deviates. If the true eigen-

value deviates from the mean cf the corresponding random

data eigenvalues by more than two (three) standard devia-

tions, then the true eigenvalue is significant at the 95

percent (98 percent) confidence level (Preisendorfer an I

Barnett, 1977). That is, deviation of the true eigenvalue

30)
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from the mean simulated eigenvalue bI at least two standard

deviations is indicative that the associated eigenvector

represents signal rather than ncise. As successive coeffi-

cients are computed, a running sum (using (3.12) or (3.13)

as appropriate) can be formed and compared with data matrix

A to determine how well the data matrix is being generated

by a smaller number of modes.

3
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IV. RESULTANT EMPIRICAL ORTHOGONAL FUNCTIONS

A. STATISTICAL ANALYSIS

The mathematical and theoretical framework developed in

Chapter III was used for a scalar EOF analysis of the depen-

dent data set (682 cases as described in Chapter II). The

major purpose of this phase of the data analysis was to

compute the EOF coefficients needed for the tropical cyclone

motion forecast scheme proposed in Chapter I. Since these

EOF coefficients were needed for use as possible predictors

in separate regression equations for zonal and meridional

storm movement, a scalar rather than vector representation

was considered to be adequate. For each of the zonal and

meridional wind fields at 700 mb, 400 mb and 250 mb, a

527 x 682 data matrix A was formed usin4 the interpolated

fields as columns. A matrix Z of standardized data was

computed for each matrix A, and the resultant eigenvalues

and ccrresponding eigenvectors were determined. For each

wind-component field, 527 modes (eigenvectors) were gener-

ated. The BOF coefficients for each of the 682 cases were

also computed for each of the six wind-component fields.

The eigenvalues and cumulative percentage of total vari-

ance for the zonal and meridicnal fields are presented by

pressure level in Tahles II through IV. The eigenvalues,

and hence the significance cf their associated modes,

decrease rapidly with increasing mode number. Zonal-field

eigenvalues decrease at approximately twice the rate of

decrease of the meridional eigenvalues.

Although many modes resulted because of the number of

grid points per case, most of the higher order modes repre-

sent noise rather than signal. To determine the number of

32



modes to be retained, a Monte Carlo siiulation was run as

described in Chapter IiI. A random number generator for

standard normal deviates was used to simulate 100 standard-

ized 527 x 682 data matrices Z. The statistical "structure"

of these random fields parallels that of the standardized

fields of the real data. For each of the 100 simulated

matrices of 682 cases of randcm standard scores, the EOF

analysis was performed to yield 100 sets of 527 eigenvalues

(one per field grid point). The means and standard devia-

tions of the Monte Carlo eigenvalues were computed. If the

eigenvalue for a mode computed from the real data was

greater than the corresponding mean eigenvalue plus twice

its standard deviation as computed from the random data,

then the eigenvalue and eigenvector from the real data were

selected as representing atmospheric signal. The corre-

sponding mode was retained at the 95 percent confidence

level. Table V contains the mean eigenvalues of the Monte

Carlo simulation as well as these mean eigenvalues plus

twice their standard deviation.

Comparisons of the six sets of real-field eigenvalues to

those of the random fields are performed separately since

the number of significant eigenvectors may be different for

each level. The only relationship between the modes of the

six fields for the three levels comes from any vertical
coupling that may exist. Fig. 7 illustrates the eigenvalues

for the 700 mb zonal wind field and the Monte Carlo simula-

tion for the first 40 modes. Twenty-four modes are indi-

cated to represent signal. Table VI is a summary of the

number of modes to be retained and the percentages of total

variance described according tc the Monte Carlo selection

criterion. Some general observations can be made. For

either the zonal or the meridional flow, the number of modes

that represent signal at 700 mb is less than that at 400 mb,

which in turn is less than that at 250 mb. For any of the

33
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levels analyzed, a smaller nuaher of zonal modes than meri-

dional are retained with a higher percentage of total vari-

ance represented.

B. INTERPRETATION OF RESULTS

The percentages of variance unexplained (noise) is real-

istic for a tropical wind analysis. Errors are largely due

to data distributions or measurement errors. The analysis

problem is difficult because of the weak governing mass-wind

balance relationship in the trcpics (Haltiner and Williams,

1980). Therefore, it is plausible that the level of random

error in the wind-ccmponent fields is as high as 18.3

percent. This maximum percentage of "noise" (for the meri-

dional wind fields at 700 mb) corresponds to the largest

number of modes (35) selected tc represent "signal".

In the subsequent regression analysis, only the first 35

modes of the zonal and meridioral wind fields will be used

in the development of the corresponding zonal and meridional

storm movement equations for each of the three pressure

levels analyzed. The retention of 35 modes for each wini

component field provided the maximum possible selection of

modes without including unnecessary noise. Using only 35

coefficients out of 527 is a remarkable data reduction of 93

percent. For each field it is necessary to store only the

eigenvector matrix E and the first 35 coefficients for each

case, which will account for no less than 81.7 percent of

the total variance. Table VII lists the percentages of

variance accounted for when 35 modes are retained for all

wind component fields. At least 90 percent of the total

variance of any zonal wind field is accounted for. While

the number of EOF coefficients needed is much larger than

the 10 per case in Shaffer (1982), 35 modes per field is

still a tractable number of potential 2redictors for regres-

sion analysis.
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It is beneficial to investigate the physical signifi-

cance of the modes determined tc represent signal. Shaffer

(1932) found that the broad-scale features of eigenvectors

derived from geopotential height fields had meteorological

meaning. Contours of modes one and two (multiplied by 100)

for the 700 mb zonal and meridional fields are presented in

Figs. 8 and 9. The eigenvectors are non-dimensional, since

standardized data were used for the EOF analysis. Two

points must be stressed. First, there is no mathematical

connection between any zonal-field mode and the same mode of

the meridional field. That is, it is not possible to regain

the vector nature of the wind ty a combination of zonal and

meridional eigenvectors. Secord, each eigenvector repre-

sents the pattern shown as well as the exact inverse of the

pattern. For a given field, the forcing pattern of a parti-

cular eigenvector is dependent upon the sign of the associ-

ated EOF coifficient. If the coefficient is negative, then

the forcing pattern of the eigenvector is "inverted".

Positive (negative) components of the lield are reversed to

negative (positive). The following discussion will use

eigenvector patterns as shown without considering the

inverse patterns.

The patterns of the 700 mb iodes 1 and 2 in Figs. 8 and

9 can be interpreted separately as possible atmospheric flow

patterns. Mode 1 of the 700 mb zonal flow (Fig. 8) shows a

cyclonic shear across the cylone, with easterlies to the

north of the cyclone and westerlies to the south. Mode 2 of

the 700 mb zonal flow (Fig.8) is dominated by broad easterly

flow. The zonal modes 1 and 2 at 400 mb and 250 mb

(not shown) are characterized by diminished equatorial

westerlies to the south of the cyclone. Modes 1 and 2 of

the 700 mb meridional flow (Fig. 9) both show alternating

hands of positive and negative Zlow. These patterns are

typical for trough-ridge-trough arrangements. Speed maxima
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in the hands are located north cf the cyclone. The cyclone

is again located in a region of cyclonic shear. Mleridional

modes 1 and 2 at 400 mb and 250 mD (not shown) depict the

eastward slope of the 700 mb patterns with elevation. These

modes, which individually acccunt for the largest percent-

ages of total variance in their corresponding fields, are

indeed patterns or signals that appear to relate to tropical

cyclone movement.

Complexity of the eigenvectors made it difficult to

associate observable atmospheric patterns with higher order

modes for any of the fields. Legler (1983) has observed

that examination of the eigenvectors to give appropriate

physical interpretations may be impractical for data

collected over large grids. Over large areas, signals from

two or more physical processes may be overlaid in a single

eigenvector. This can occur since there are no restrictions

as to how the patterns for a particular process may be

"decomposed" among the eigenvectors. loreover, particularly

strong atmospheric signals may appear in more than one

eigenvector. Under such circumstances any realistic inter-

pretation of the modes may be precluded.

it is also important to verify that the significant

modes selected for retention do satisfactorily represent the

data fields. A case (0000 GMT 30 July 79) was selected at

random to demonstrate the reccnstruction capability of an

EOF analysis. At this time, Typhoon Hope was at approxi-

mately 16.9 N, 133.4 E with maximum sustained winds of

38.6 m/s (75 kts) The actual zcnal wind field at 700 mb and

the reproduction by summing all 527 modes are shown in

Fig. 10. The reproduction of the original field is seen to

be exact. If the eigenvector matrix were to be used to

generate coefficients for a case not included in the depen-

dent sample, the reproduction Eroduced by summing over all

modes woLld not be exact. The fields obtained by summing
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the first 5, 15, 25 and 35 are shown in Figs. 11 and 12.

When only five modes are summed, only the gross patterns

(positive flow versus negative) are reproduced. Yet, it is

interesting to observe how only five coefficients and modes

can begin to recreate a particular field using eigenvectors

derived from all 682 cases. As the number of moles is

increased, an increasing amount of the complexity of the

original field is replicated (Figs. 11 and 12). In the next

chapter, the EOF coefficients derived for the zonal and

meridional wind fields will be used as potential predictors

representing the synoptic-scale forcing in a stepwise

regression procedure.
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V. REGRESSION ANALYSIS

A. MO'IIVATION

Regression analysis is one of the most widely used

statistical tools. Its essence is the study of relation-

ships among variables to serve three major purposes:

description, control and prediction. Tae researcher's goal

is to find a sil_21e mathematical model that, on the basis of

observed data, will fit a complEx phenomenon. An excellent

presentation of theory and methcd that is conducive to zrac-

tical application is given by Neter and Wasserman (1974). A

more advanced presentation of statistical theory of the

complete general linear model is given by Graybill (1976).

Briefly, regression analysis involves using a linear combi-

nation of known quantities (predictors) to estimate the

value of an unknown yuantity (predictand)

EOF coefficients have been demonstrated to give a

convenient, quantitative representation of physical forcing

mechanisms acting on tropical cyclones (Chapter IV)

Previous studies (described in Chapter I) have shown that

statistical forecast schemes based on regression equations

are viable methods. In particular, it is possible to use

EOF coefficients based on geopotential heights as predictors

to forecast tropical cyclone movement (Shaffer and Elsberry,

1982; Shapiro and Neumann, 1984). The hypothesis here ;s

that the ZOF coefficients derived to represent wind forcing

of a tropical cyclone would be useful predictors of future

storm zovement.

Western North Pac;fic troi'ical cyclone position forecast

eirors for 10 years (1966-1975) have been statistically

analyzed (Jarrell et al., 1978). The examination of errors
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revealed that a small number of realil, avyi~iI - teJ

can classify, with reasonable e f f . a rojdca

cyclone forecast as representing d ro t D StOLMS W th

either markedly above or below averag ezors. -t-se vazi-

ables include storm location, maxiaum ustaitl wi and t

components of motion. Thus, it is hypot-esized that these

parameters might also be appropriate predictors of tropical

cyclone movement. Regression analyses were -- rformed to

investigate these hypotheses.

B. VARIABLE AND CASE SELECTION

A primary goal of any regression analysis is to choose a

set of independent variables that is "best". Here the

criterion "best" is defined as minimizing the sum of sjuares

of residuals without overfitting. Practicality re'4uires

that there be a scope of the model; that is, the coverage of

a model is restricted to some region or interval of values

of the independent variables. Model coverage is determined

by the dependent cases included in the analysis. Possible

difficulties are considered later in this chapter.

Predictands for this study are the average 24-, 48- and

72-hour zonal and meridional translation speeds of the trop-

ical cyclone. These average speeds were determined from the

base-time JTFC warning positicn and the subsequent JTWC

warning osition at 24, 48 or 72 hours. Positive motion was

defined to the north and to the west, since the majority of

tropical cyclones tracked to the north and west. As there

are six predictands, six regression equations are required

for each of the pressure levels included in the study

(700 mb, 400 mb and 250 mb). A total of 18 equations was

derived.

It is emphasized that the predictands were computed

using JTWC warninq jositions at both base time and the
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VII. CONCLUSIONS AND SUGGESTED RESEARCH

The results described in this thesis must be reg._ -ed as

preliminary. However, it appears sufficiently promising

that a viable, efficient regression scheme involving E0

coefficients to represent wind forcing can be develo ed.

Two improvements are suggested before any operational

testing might be performed. First, the predictands shoull

be computed using the JTWC warning position at base time and

the JTWC best-track positions at the predictand times. The

best-track positions are based on a post-season analysis

using all information available. The use of warning posi-

tions for the locations of the cyclone at prelictand times

unnecessarily contaminates the predictands. It is appro-

priate to use the warning position to locate the tropical

cyclone at base time because this is the only position

available at the time of the fcrecast. Second, forecast

error shculd correspondingly be defined as the deviation of

the forecast position from the test-track position.

Adoption of an operational forecast model requires

testing using both dependent and independent data. The

EOF-regression forecast errors should be compared with fore-

casts obtained by another operational model (such as CLIPER)

and of the JTWC. The ultimate utility of the model depends

upon demonstrated forecast skill for operational data,

regardless of prior performance on dependent data or indica-

tions of a statistical significance test. Results obtained

in the present study indicate very good potential for an

operational model.
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movement forecast could be gEnerated upon injut of the

appropriate zonal and meridicnal compionents at the 527

points. Cperational implementation of such a statistical-

climatological methcd appears tc be feasible.
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Assuming that the eigenvector matrix E Was deteroined

from an adequate (large) dependent data set, the same set of

eigenvectors can be used i rdefinitely for independent

cases(new tropical cyclones), within the limitations of the

scope of the model. Shaffer (1982) recommended that the

regression equations be updated at the conclusion of each

typhoon season. The feasibility and necessity of updating

can be questioned for the current model. Shaffer's cases

required 120 data points per case as opposed to two fields

of 527 data points each for this study. If each case

meeting selection requirements were added to the depenlent

data set, computing difficulties would be likely to beccme

prohibitive after several tropical cyclone seasons. ;hile

it "might" be advantageous at least to include the anomalous

cases, specific inclusion of ancmalous cases could seriously

reduce the ability of the regression analysis to obtain a

good fit. Shaffer (1982) also suggested that increasing the

number of dependent data cases should result in fewer large

forecast errors. However, a larger dependent data set does

not imply a better fit (as measured by R2 ), nor does it

imply that the model will better forecast anomalous cases.

One alternative would be to have more than one set of

regression equations. A map-typing or analog technique

could be used to determine which set of equatioLs would be
appropriate on a case-by-case basis. Such an alternate

method would lack simplicity, which is one of the most

attractive features of the current EOF-based regression

forecast scheme.

The forecast scheme using £CF-based regression models is
very simple compared with other more elaborate models. The

model requires only a set of coefficients repLesenting the

synoptic-scale wind forcing and preJictors representing

present position and past storm movement. The entire fore-

cast scheme could be executel using a minic.omputer. The
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for the new case. If n is large, the term (1/n+I) in (6.1)

is negligible relative to the first tera so that the

following approximaticn is valid:

R (new) (old) . (6.2)

The eigenvalues and eigenvectors computed for the depen-

dent data using R(old) should be almost identical to those

obtained from computation using R(new). Provided that a

sufficiently large dependent sample is available, it is

reasonable to use R (cld) to comute tne EOF coefficients for

a new data case and then to use these coefficients as

predictors in the forecast equations derived with the depen-

dent data. Shaffer (1982) determined that use of the coef-

ficients for cases calculated using R(old) introduced very

little error into the movement forecast. Testing is

required to determine a sample size sufficient for (6.2) to

he valid. The reader is referred to Snaffer for a detailed

example of methodology apEropriate to test these

observations.

Operational implementation of an EOF forecast scheme

would be straightforward. Two major operations are

required. First, the 35 required EOF coefficients for the

independent data cases must be computed and stored. This

involves multiplication of the 35 x 527 transpose matrix of

truncated eigenvectors and the 527 x I vector of standard-

ized observations. It is assumed that no significant error

would be associated with using the means and standard devia-

tions from the dependent sample at the equidistant jrid

points. Second, these coefficients and other preiictors

would be substituted into the regression equations to

predict the average zonal and meridional speeds for the

forecast interval. The predicted future location of the

tropical cyclone could then be determined.
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VI. POTENTIAL FOR USE WITH INDEPENDENT DATA

Based on results obtained using dependent data and

predictands derived using warning positions, EOF-based

regression forecasting appears to have potential for

improved prediction cf tropical cyclone movement. The value

of the final model depends upcn its potential for opera-

tional use with independent data. The regression equations

were derived using EOF coefficients compated using a Farti-

cular set of eigenvectors; namely, the eigenvector matrix E

of the dependent data set. These regression eguations are

applicable only for tropical cyclone cases within the scope

of the model. The scope of the model is determined prima-

rily by the values of the predictors and predictands used to

derive the forecast equations. EOF coefficients are the

most sensitive predictors in that they are derived from the

particular flow fields surrounding the tropical cyclones.

For a new case, the eigenvectors no longer exactly represent

the maximum variation in all of the observations--dependent

set plus the new case. The stability of the eigenvectors

must te examined by determining whether the eigenvectors and

coefficients of the dependent data cases remain nearly the

same if a new case is added.

Inclusion of an additional case changes the correlation

matrix R. The new correlation matrix can be computed by:

R(new) = [n/(n+1) ]e (old) L 1/(n+1) ]-zz' , (6.1)

where R (new) is the new correlation matrix after addition of

the new case, R (old) the original correlation matrix of the

dependent data, n the number of cases prior to inclusion of

the new case, and z the m x 1 vector of standardized data
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Multicolilinearity exists unless the vdriables (includin;

the EOF coefficients) are completely pairwise uncorrelated.

This rarely occurs naturally. When the independent vari-

ables are highly correlated, the predictive ability of the

model is suspect for new cases whose independent variables

deviate from the pattern of multicollinearity in the depen-. ..-

dent cases.
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errors. These results do not appear to agree with Jordan

(1952) and Miller (1958) who were unsuccessful at using

winds and heights at upper tropospheric levels to describe

tropical cyclone motion.

It was also important to examine the results for consis-

tency in the forecasts. Consistency would be indicated by

small standard deviations of forecast error. The standard

deviations were generally comparable to Shaffer (1982).

There were no significant differences among the standard

deviations for a given forecast interval, except the

standard deviation for the 72-hcur forecast using the 250 mb

equation was particularly smaller than that for either

700 mb or 400 mb equations.

D. CAUTIONS FOR USE OF THE REGEESSION MODEL

Various restrictions should be considered when applying

the results of a regression analysis. The validity of the

predictions depends upon whether basic causal conditions at

later times will be similar to those in effect for the data

used for the regression analysis. The scope of the data

must be respected to avoid inferences based on an indepen-

dent variable which falls outside the range of input data.

Finally, it must be remembered that the predictands used to

derive the eiuations were computed using the JTC warning

positions at both the base time and at subsequent forecast

times.

The performance of the model as indicated by the depen-

dent saomle may be superior to the ability for new cases.

This is known as prediction bias, which results when the

final model chosen is too uniquely related to the input data

cases. It is emphasized that the models developed in this

study have not been tested with independent data cases.
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forecast interval. Finally, the forecast error was computed

by determining the magnitude of the vector between the fore-

cast position and the JTWC warning position at the corre-

sponding time.

The forecast errors are summarized in Table XVII by

pressure level and forecast interval. It is stressed that

these results were derived using only the dependent cases.

As expected, the forecast error increases with increasing

length of forecast interval. However, the magnitudes of the

increases are reasonable. The increase in the 72-hour fore-

cast error over the 48-hour forecast error was much smaller

than that for Shaffer's (1982) dependent sample. The

smallest change for the current study was about 82 km less

than for Shaffer's results. It was previously noted that

there was a rapid decrease in R2 with increasing forecast

interval for Shaffer's equations. Shaffer's equations

predicted short-term movement well, but the errors grew

rapidly with increasing time. The 24-hour forecast error

for this study was about 25 ka larger than for Shaffer's

dependent sample. However, the best 48- and 72-hour fore-

cast errors for the current study were 28 km and 90 km less

than those of Shaffer. Stability of predictand variance for

the current study resulted in models that give promise of

improvement of long-term forecasts.

There were no overwhelming differences in performance of

the equations derived for the three levels at any forecast

interval. Shaffer's (1982) forecast equations based on an

EOF analysis of geopotential height at 500 mb, 700 mb and

850 mb also did not have significant differences in errors

among the three levels. However, Shaffer's 500 mb equations

outperformed the other two equation sets by a wide margin

for a small set of independent cases. Although the 72-hour

forecast errors in Table XVII are largest for the 250 mb

equation, they still compare favorabiy with the JTWC mean
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procedure for 15 of the 18 edations, ir.clu:1ing all nine of:

the 24-hour forecast equations. For the zonal 48-, zonal

72- and meridional 72-hour forecast eplations, the second or

third variable selected was for past movement. The

predictors UOLD2, UOL3, VOLD2 and VOLD3 (see Table VIII for

description) were most frequently chosen. These results

were in agreement with Neumann's (1978) observation that

statistical screening techniques invariably select present

and past storm movement over steering predictors derived

from the surrounding flow for short-term tropical cyclone

movement. However, the predictions are not simply persis-

tence forecasts. Mode variatles CUI, CU2, CV1 and CV2 were

often the second, third or fourth predictors selected. This

was not surprising since the first 2 modes account for the

largest percentages of variance in the wind-component

fields. From 2 to 10 zonal ECF Goefficient predictors and

from 2 to 7 meridional EOF coefficient predictors were

chosen for the forecast equatioEs, so that wind forcing was

also found to be an important determinant of tropical "

cyclone movement.

Several potential predictors were not included in any of

the equations: DATE, CINT, VOLD1 and DISPI. The potential

predictor UCLD1 was retained in only one forecast equation.

These past movement variables represent the interval frcm 24

to 12 hours prior to base time. Very little information

would be lost by exclusion of these potential predictors.

The potential performance cf this regression forecast

scheme was evaluated by testing on the dependent data cases.

The following procedure was applied for the forecast inter-

vals 24, 48 and 72 hours at each pressure level (700 nib, 400

mb and 250 mb). First, the appropriate equations were ased

to predict the average zonal and meridional speeds of the

tropical cyclone. These speeds were converted to zonal and

meridional displacements of the tropical cyclone during the
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3adMe mi,:nitulle indicates mean movem.nt to th, no:t14West.

..,e values of p2 for the zonal e datigns wer s ignificantl:

OLeater Jue to the ladyer vdziahilit i in zonal movement.

Values of R 2 do not vary jreatly with forecast inte '¢al

for either the zonal or xeridicnal euations at any of the

Fressure levels. The largest deviations are for tiie 700 mb

zonal equations and the 250 mt meridional euations. In

contrast, Shaffer's (1982) regression equations consistextly

displayed a significant decrease in the value of R 2 Witi;

increasing forecast interval (about 0. 1 per 12 hour

interval). These differences in the variation of R 2 Wit,,

forecast interval may account for differences in forecast

error characteristics discussed later in this section.

Finally, the accuracy of the zonal or meridional e4ua-

tions is not a strong function cf pressure. For either the

zonal or meridional movement, the equation derived using the

EOF coefficients for a given level does not perform signifi-

cantly better (as measured by R2) than the equations for tihe

other two levels. This was similar to results obtained by

Shaffer (1982) for the dependent sample. Slightly larger

values of R 2 are found for the 700 mb zonal equations at all

three forecast intervals.

Tables XI through XVr summarize the regression equa-

tions. The first value in each table is the intercept. :he

average speed component (km/hr) is obtained ty summing the

product of all non-zero regression coefficients and the

values of the associated variables. Parsimony in selection

of variables was met; the main purposes of retention of as

few variables as possible were to obtain simple equations

and to avoid overfitting.

Several observations were made regarding the variables

retained for the regression equations and the order of

selection. A past movement variable (predictors 5-10 in

Table VIII) was the first variable selected in the stepwise
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independent variables in ti.e re jressor .nl. oIr

statistic is lefined:

R 2 = SSR/SSTO = 1- ( SSE/SST ) ,)

where SSTO is the total sum of sSuares, SSR is the re res-

sion sum of sguares and SSE is the residual sum of suares.

The R2 stdtistic measures the proportion of the total varla-

tion in the predictand associated with tle use of the ii.Je-

pendent variables. The regression equations retained ori.l'

those predictors which resulted ia an increase iL n2 Ca _t

least 0. 0 1.

The value of R2 for each regression ehuation is (jivEr in

Table IX. Matching forecast times and press ire levels, thc

value of R2 for a zonal equation is always at least J.12

greater than the R2 fcr the meridional e.;uatior for the same

forecast interval and pressure level. Shaffer (1982) foar

differences as large as 24 percent. The zoaal regressior.

equations account for a ;reater portion of the total zozal

movement variation than the aeridional e-uations. This

observation agrees with Shaffer (1982). At least 59 percent

of the total variation in zonal movement was accounted for

by the euations at each of the three pressure levels for

any forecast interval. Values of R2  for the merilional

e uations range from 0.325 for the 250 mb 72-r.our forecast

to 0.475 for the 700 mb 24-hour forecast.

The greater predictive ability of the zonal eluations
was expected. First, it was shown in Chapter IV that fewer

modes were required to descrite the zonal wind than the

meridional wind. Second, there is greater variation in the

zonal movement than in the meridional movement. The means

and standard deviations of the average zonal and meridional

speeds of the various forecast intervals are given in Table

X. Positive mean zona. and meridional components with the
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cases for regression analysis. Sample sizes were 409, 335

and 232 cases for the 24-, 48- and 72-hour equations,

respectively.

C. THE EQUATIONS AND ERROR ANALYSIS

A linear stepwise regression analysis was chosen to

derive equations to Fredict future average zonal and meri-

dional speeds of the tropical cyclones. Although an a

priori assumption of linearity could not be made, the number

of polyncmial predictors generated from a base set of 83
potential predictors would have been intractable. The UCLA

biomedical computer program BMDE2a (Dixon and Brown, 1979)
was used for the regressions. Multicollinearity, which

occurs when some or all of the independent variables are

highly ccrrelated (Neter and Wasserman, 1974), was avoided

by the use of stepwise regression. M ulticollinearity
fosters a large potential for overfitting since many

different models would provide the same good fit. As a

result, it becomes impossible to interpret any one set of

regression coefficients as being representative of the

effects of the different independent variables. Also, the

estimated regression coefficients usually have a very large

sampling variability so that they are imprecise and lose

their meaning (or significance). The BMDP routine includes

a preset tolerance to automatically screen the variables at

each steF. A potential predictor was not allowed to enter

the model if it was highly ccrrelated with any predictor

chosen in earlier steps. To ensure that a predictor was

significantly (in a statistical sense) correlated with the

predictand, a minimum F-to-enter value of 4.0 was imposed

(Dixon and Brown, 1979).

The coefficient of mult:. determination (R2 ) is a

measure of the association between the dependent and
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The recent motion of the storm is an integral part of

the prediction model of nearly all tropical cyclone forecast

methods. Most cyclcnes move with uniform direction and

speed (Gray, 1978). Satisfactory forecasts of tropical

cyclone movement can be based mainly on extrapolatio and

climatclogy. Because there are relatively few storms with

anomalous tracks, predictors based on present and past move-

ment tend to dominate a statistical analysis of storm

motion. These "difficult" storms, which are associated with

above-average forecast errors, tend to recurve or to move

erratically with nonclimatological tracks. A persistence-

climatology forecast leads to large errors for the 20-25

percent of the cases of anomalous motion (Gray, 1978). :Then

there are not many storms during a season, a single anoma-

lous storm can result in a significant bias of the yearly

mean forecast error (Neumann, 1G81).

The remaining potential predictors are related to obser-

vaticns of the tropical cyclone at base time. Tropical

cyclone intensity (potential predictor 4, Table VIII) was

the JIWC warning maximum sustained wind speed at base time.

The Julian date and the JTWC warning position latitude and

longitude (potential predictors 1, 2 and 3, Table VIII)

completed the set of potential independent variables.

The 682 cases frcm the EOF analysis were used to select
the cases for the regression analysis. For a case to be

included, a complete set of pctential predictors had to be

available. in addition to availability of the GBA, the JTWC

reports had to be available at 12 and 24 hours prior to base

time and at least 24 hours subsequent to base time.

Similarly, selection of that case for development of regres-

sion equations for 48- or 72-hour forecasts required that

JTWC warning positions be available at 48 or 72 hours,

respectively. These requirements decreased the number of
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forecast times. In the subseuei.t liscussion, conjarisons

of the results obtained in this stadly for tne dependent iata

are made with those obtained for the dependent data in

Shaffer's (1982) study based on an ECi analysis of *eopoten-

tial height. Shaffer's predictands were computed using the

JTWC warning and best-track pcsitions at base and forecast

times respectively.

Predictors were sought to assess 'uantitatively the

effect of five factors on tropical cyclone movement:

(1) external (to the cyclone) physical forcing; (2) previous

cyclone movement; (3) cyclone intensity; (4) date; and (5)

initial (warning) osition. Table VIII describes the 83

potential predictors used for the regression analysis and

identifies these predictors by rame and number. The poten-
tial predictors were identical for all 18 regression egua-

* tions, except that the regression eluation for a specific

level included only the EOF coefficients at that level.

Synoptic external forcing on a tropical cyclone has been

conjectured to be an important determinant of cyclone move-

ment (Brown, 1981; and others). To incorporate uantita-

tively the wind forcing, the EOF coefficients associated

with the first 35 zonal and meridionai modes were selected

as potential predictors. These coefficients are potential

predictors 14 through 83 (CU1 through CU35 and CV through

C735) in Table VIII. An important objective of this study

was to evaluate how well these EOF coefficients represented

atmospheric features that affected cyclone movement.

* Persistence has long been known to be a good predictor

of short-tern tropical cyclone motion. Therefore, nine

potential predictors representing past zonal and meridional

motions were included. These were variables 5 through 13 in

*~Table VIIi. Each prior average speed or vector displacement

was based on JTWC warning positions to simulate operational

conditions.
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The following discussion suggests other possible

research to improve the operaticnal model:

1. The forecast scheme could Le improved if other vari-

ables representing physical features affecting stcrm

movement could be identified and included in the

regression equations. Intensity, represented by

maximum sustained wind speed, was found to be an

unimportant predictor in both this study and

Shaffer's (1982). Following Chan and Gray (1982),

variables such as the size of the cyclone should be

tested in the regression analysis. model verifica-
tion of George and Gray's (1976) observation that the

700 mb level best specifies cyclone speed and that

the 500 mb level best specifies cyclone direction

might be attempted.

2. The EOF-based regressicn forecast scheme is not

limited to input of coefficients derived from anal-

yses. Coefficients derived from pro9 nostic data

fields, such as a 24-hcur forecast from a dynamic

numerical prediction model, might improve the. longer

range f :ecasts.

3. Each EOF coefficient represents the contribution of

the associated eigenvectcr to the total forcing. The

resultant tropical cyclone movement is a summaticn of

the total forcing by all modes. Additional insijht

into the more important modes for tropical cyclone

forcing could possibly be obtained by examination of

the correlaticn of the modes with the tropical

cyclone movement.
4. Vertical coupling might be represented in the EOF

modes for the three levels. Testing would involve

the development and analysis of regression mcdels

using EOF coefficients from more than one pressure

level in various combinations.
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5. The zonal and meridional components of tropica

cyclone movement are forecast separately by the

current scheme, even though tropical cyclone movement

is a vector quantity. Ccrrelations exist between the

zonal and meridional components of motion (Shapiro

and Neumann, 1984). Improvements might arise from

inclusion of potential Fredictors which account for

the correlation between the zonal and meridional

components of motion. Also, an operational model

might be improved using a grid rotated along the

direction of cyclone mction (Shajiro and Neumann,

1984).

6. A vector EOF analysis may improve the identification

of forcing mcdes for tropical cyclone mcvement.

Rotation of the eigenvectors could also be investi-

jated for potential improvement of the methcd. As

previously noted, more eigenvectors may have to be

retained to guard against underfactoring.

The EOF-regressicn model definitely shows promise for

improvement of operational forecasts of tropical cyclone

movement. This simple regression model performed very well

on dependent data. Additional reductions in forecast error

may be possible through inclusion of more sophisticated

physical forcing parameters and prognostic fields. Further

research appears warranted.
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TABLE XVI

Intercept and regression coefficients for the meridional
average speed equation using 250 mb EOFs.

FORECAST INTERVAL (H)

24 48 72

INTERCEPI 6.8262 6.6448 6.0899
UCLD2 -0 .0776 .0 .0
VOLD2 0.3989 0.2656 .0
VOLD3 .0 .0 0.2255
Cj .0 .0 0.2161
CU5 0.2181 .0 .0
CUIO .0 0.5887 .0
CU25 .C .0 -0.8033
CJ26 •0 0.5864 .0
Cvi -0. 1544 .0 -0. 1733
CV2 -0.2741 -0.2411 .0
CV3 0.2210 .0 .0
CV5 0.2283 .0 0.2425
CV6 .C 0.2313 .0
CV9 -0.2988 .0 .0
CV11 .0 .0 0.3307
CV12 .0 -0.2143 .0
CV16 -0.3347 -0.3239 .0
CV17 .0 -0.3017 -0.3271
CV13 .0 0.2813 0.3346
CV23 .0 .0 0.3263
C7 26 .0 -0.4296 .0
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TABLE XV

Intercept and regression coeffcients for the zonal
average speed equation using 250 mb EOFs.

FORECAST INTERVAL (H)

24 48 72

0.0172 -27.3931 -22.8406
.0 -0.4879 -0.5434

C ON .0 0.2827 0.2535
C 0.3075 0.2259

u D. 30.5534 .0 .0
3.1449 .0 .0

-0.0218 .0 .0
3.4932 0.3131 0.1727

c3 -0.3763 -0.3331 -0.2389
C0.4395 .0 .0
(J4 .0 0. 343b .0
CU1O .0 .0 -0.7225
c 1 _.0 -0.5748 .0
CJ26 .0 .0 -1.0172
CV1 .0 0.5851 0.7922
CV3 -0.3831 -0.3128 .0
CV6 .0 .0 -0. 5246
cV3 .0 .0 -0.3744
CV11 .0 -0. 5210 .0
c'116 .0 0.6694 0.9332
CV27 .0 -0.6646 .0
CV23 .0 .0 0.6376
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TABLE XIV

Intercept and regre~sion coefficient for the meridional
average speea equation using 400 mb EOFs.

FORECAST INIERVAL (H)

24 48 72

INTERCEPI 6.3235 7.8935 7.1388
VOLD2 0.3748 0. 2005 .0
VOLD3 .0 .0 0.1901
CU2 -0.1766 -0.2360 -0.1997
CU5 .0 -0.1852 .0
CU7 .0 -0.2726 .0
Co10 .0 0.3693 9.2350
CU13 -0.5186 -0.6135 -0.4330
CU22 .0 .0 0.5219
CU25 0./326 0.71J9 1.0265
CU29 .0 .0 -0.7744
cU 31 .0 -0.6577 -0.7560
CU35 .0 .0 0.6557
CV2 -0.2634 -0.1785 .0
CV4 .0 .0 -0.2465
CV7 .0 0.2766 0.2098
CV8 .0 0.2584 .0
CV12 .0 .0 0.2765
CV15 .0 .0 0.2765
CV16 .0 -0.3967 -0.4005
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TABLE XIII

Intercept and regression coefficients for the zonal
average speed equation using 400 mb 7OFs.

FORECAST INTERVAL (H)

22 48 72

INTERCEPT 2.0174 -15.7644 -4.3064
CLAT .0 .0 -0.4520
CLON .0 0.1314 0.0974
UOLD2 .0 0.2379 0. 1377
UOLD3 0.3266 .0 .0
DISP2 0.0398 .0 .0
DISP3 -0.0190 .0 .0
CUl 0.5621 0.6868 0.7350
CU2 0.9062 0.8759 0.7496
C06 .0 .0 0. 4717
Cull .0 .0 -0.5958
CU25 -0.9854 -0.9190 -1.2793
CU28 .0 .0 0.8767
CVi -0.4448 .0 .0
CV2 0.2838 0. 4178 0.3366
CV16 .0 .0 0.3673
CV18 .0 .0 0.7152
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TABLE XII

Intercept and regression coefficients for tie meridional
average speed equation using 700 mb EOFs.

FORECAST INTERVAL (H)

24 48 72 -.

INTERCEPT 6.0283 6.0252 5.4471
UOLD1 .0 .0 0.1836
VOLD2 0.3738 0.1458 .0
VOLD3 .0 .0 0.2115
DISP2 .0 .0 0.0193
DISP3 .0 0.0048 -0.0122
Ctl .0 .0 0.1048
CU2 .0 -0.1964 -0.1919
CU4 -0.1490 -0.1379 .0
CU5 .0 0.1661 .0
CU6 -0.2689 .0 .0
C:J7 .0 -0.4349 -0.41o6
CU8 .0 0.4145 .0
CU12 .0 -0.3181 .0
CU22 .0 -0.3317 .0
CU25 0.5253 0.7267 0.6355
CU26 .0 .0 0.5146
CV2 -0.4647 -0.3718 -0.3523
CV3 0.2861 .0 0.1796
CV7 .0 -0.2651 -0.2476
CV8 .0 -0.3642 -0.2000
CV9 .0 -0.2030 .0
CV13 .0 0.2525 .0
CV14 .0 .0 -0.2473
CV16 0.3149 .0 .0
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TABLE XI

Intercept and regrassion "oeffiqients for the zonal
average sp ed equation using 700mb EOFs.

FORECAST INTERVAL (H)

24 48 72

INTERCEPT 2.7082 4.8142 5.9913
UOLD2 .0 0.3399 0.2099
UOLD3 0.2632 .0 .0
VOLD3 -0.4945 -0.3005 -0.2596
DISP2 0.0256 .0 .0
CUt 0.2820 0.2456 0.2643
CU2 0.7176 0.6637 0.6653
CU6 .0 .0 -0.5090
CU7 .0 0.3342 0.5877
CU8 -0.3730 .0 -0.3206
CU14 .0 -0.6074 .0
CU16 .0 0.5874 .0
CU18 .0 .0 -0.6714
CU23 .0 .0 0.6666
CU24 .0 .0 -0.7699
CU26 .0 -0.7092 -1.1047
CU27 .0 .0 1.0278
CVI -0.3872 .0 .0
CV2 .0 3. 3031 .0
CV4 -0.3112 -0.4360 .0
CV7 .0 0.3937 0.3179
CV23 .0 .0 0.6105
CV28 0.7880 .0 .0
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TABLE IX

Sample size and R2 by forecast time and level
for the zonal and meridional eguations.

FORECAST INTERVAL (H)

24 48 72

NUMBER OF
DEPENDENT 409 308 232
CASES

ZCNAL EQUATIONS

700 mb 0.647 3.708 0.637
400 mb 0.612 ).637 0.613
250 mb 0.623 0.607 0.589

MERIDIONAL EQUATIONS

700 mb 0.475 0.439 0.447
400 mb 0.492 0.408 0.336
250 mb 0.481 0.440 0.325

TABLE X

Means and standard deviations of the predictands (km/h)
for the dependent sample.

FORECAST INTERVAL (H)

24 48 72

ZONAL AVERAGE SPEED

MEAN 8.2 8.9 9.6

STANDARD 14.1 11.8 10.3
DEVIA TIC

MERIDICNAL AVERAGE SPEED

MEAN 8.6 8.3 7.8

STANDARD 8.0 6.7 5.7
DEVIATION 2
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TABLE VIII

Potential predictors for regression analysis.

PGTENTIAL PEEDICTOR
VARIABLE NUABER NAME DESCRIPTION

1 DATE Julian date.
2 CLAT Warin position

latitude.
3 CLON warning position

longitude.
4 CINT Naximum sustiainedwind speed (kts)
5 UOLD1 Average zonal cyclone

uovement from 21 to 12 h
before base time (m/s).

6 UOLD2 Average zonal cyclone
movement for 12 h before
base time (m/s).

7 UOLD3 Average zonal cyvione
movement for 24'h before
base time (m/s).

8 VOLDI Average meridional cyclone
movement from 24 to 12 h
before base time (m/s).

9 VOLD2 average meridional cyclone
movement for 12 h before
base time (m/s)-

10 VOLD3 Average meridional cyclone
movement for 24 h bezore
base time (m/s)-

11 DIS21 Vector displacement for
24 to 12 h before
base time (m)

12 DISP2 Vector displacement for
12 h before base time (m).

13 DISP3 Vector displacement for
24 h before base time (m.)

14 to 48 CU1 to CU35 EOF coefficients derived
for zonal modes 1 to 35.

49 to 83 CV1 to CV35 EOF coefficients derived
for meridional modes
1 to 35.
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TABLE TI

Summary of the numbe eof modes retained and
percentag o variance scribed (in parentheses)

ZONAL MERIDIONAL

700 mb 24 84.7) 35 81.
400 mb 21 86.0 33 82. 4'
250 mb 19 87.0 29 (82.0)

TABLE III

Percentages of variance accounted for
when 35 modes are retained for all wind component fields.

ZONAL MERIDIONAL

7)0 mb 90.0 81.7
400 mb 92.1 83.6
250 mb 93.2 85.4
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TABLE V

Mean eigenvalues and 95 percent confidence levels
as computed by the Monte Carlo technigue.

MIEAN MEAN LIGE'IVALUE
MODE EIGENVALUE PLUS TWICE THE STANDARD DEVIATION

------------ ---------------------------------4.'.16

1 3.424 4.116
2 3.318 3.989
3 3.299 3.966
4 3.261 3.919
5 3.228 3.880
6 3.211 3.859
7 3.192 3.837
8 3.139 3.773
9 3.110 3.738

10 3.101 3.728
11 3.086 3.710
12 3.048 3.o64
13 3.031 3.643
14 2.986 3.589
15 2.970 3.570
16 2.963 3.561
17 2.930 3.522
18 2.917 3.507
19 2.900 3.486
20 2.872 3.452
21 2.850 3.425
22 2.816 3.385
23 2.808 3.375
24 2.797 3.362
25 2.774 3. 334
26 2.766 3.325
27 2.743 3.297
28 2.723 3.273
29 2.697 3.242
30 2.681 3.222
31 2.663 3.200
32 2.643 3.177
33 2.636 3. 168
34 2.627 3.158
35 2.619 3.149
36 2.591 3.114

100 1.817 2. 184

300 0.569 0. o84

400 0.238 0.286

527 0.016 0.019

72

. . .



TABLE IV

250 mb component wind fields: eigenvalues and
cumulative percentage of variance (in parentheses).

MODE 250 mb ZONAl 250 mb MEFID!ONAL

1 160.599 30 6j 690 10.0
2 8.87 4 4. 4 187 19.4
3 48.568 55. 9 41.620 27.3
4 31.797 61.9 28.325 32.7
5 21.493 66.0 26.942 37.8
6 16.544 69. 2 24.028 42.3
7 13.239 71.7 20.635 46.3
8 11.062 73. 8 18.627 49.8
9 9.858 75. 6 16.555 53.0

10 9.373 77. 4 15.219 55.8
11 8.456 79.0 12.888 58.3
12 7.832 80.5 12.162 60.6
13 6.523 81.8 11.283 62.8
14 5.982 82.9 10.369 64.7
15 5.147 83.9 10.050 o6.6
16 4.687 84. 8 8.838 63.3
17 4.287 85. 6 8..253 69.9
18 4.004 86. 3 7.214 71.3
19 3.625 87.0 6. 815 72.5
20 3.299 87.7 6.808 73.8
21 2.974 88.2 6. 203 75.0
22 2.812 88.8 5.883 76.
23 2.661 89.3 5.232 77.1
24 2.369 89.7 4.881 78.1
25 2.23 4 90. 1 4.361 78.9
26 2.070 90.5 4.416 79.8
27 2.061 90. 0 4.074 80.6
28 1.897 91. 3 3. 870 31.3
29 1.703 91.6 3.533 82.0
30 1.610 91.9 3.410 82.6
31 1.542 92.2 3.212 33.2
32 1.420 92. 5 3. 121 83.8
33 1.354 92.7 2.950 84.4
34 1.339 93. 0 2.858 8"4
35 1.266 93.2 2.566 35.4
36 1.212 93. 5 3. 121 83.3

100 0.146 (98.7) 0.314 (97.2)

300 0.004 (99. 9) 0.009 (99.9)

527 0.000 (100.) 0. 000 (100.)
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TABLE III

400 nib component wind fiElds: e4. envalues and
cumulative percentage of variance (iN parentheses).

M.ODE 400 mb ZONAI 400 mb .MERIDIONAL

1 132.856 25.3 47. 827 9.1)
2 86.314 41.7 44.391 17.5)
3 45.448 50.3 28.707 23.0)
4 30.134 56.0 26.999 28.1
5 24.910 60.8 24.486 32.8
6 17.362 64.1 22.029 37.0
7 14.977 66.9 20.417 40.8
8 13.151 69.4 19.241 44.5
9 10.865 71.5 16.344 47.6

10 9.788 73.3 15.236 50.5
11 8.807 75.0 14. 514 53.3
12 8.504 76.6 13.844 55.9
13 7.924 78.1 12.340 58.2
14 6.862 79.4 11.115 60.3
15 6.406 80.6 10.677 62.4
16 6.091 81.8 9.888 64.3
17 5.738 82.9 8.965 66.0
18 4.839 83.8 7.820 67.4
19 4.181 84.6 7.768 68.9
20 3.727 85.3 6.984 70.2

*21 3.630 86. 0 6.562 7 1.5
22 3.276 86.6 6.366 72.7
23 3.101 87.2 6.065 73.9
24 2.938 87.8 5.548 74.9
25 2. 6 7 0  88.3 5.456 75.9
26 2.653 88.8 5.351 77.0
27 2.522 89.3 4.7S8 77.9

*28 2.385 89.7 4. 452 78.:7
29 2.155 90. 1 4. 201 7 9.5
30 1.984 90. 5 4.071 80.3
31 1.816 90.8 3.885 81.0
32 1.772 91.2 3. 746 81.7
33 1.703 91. 5 3.478 82.4
34 1.534 9 1. 8 3.278 83.0
35 1.509 92. 1 3. 063 8 3.6
36 1.437 92. 4 2. 924 84.2

100 0.152 (98.6) 0.340 (97.0)

300 0.004 (99. 9) 0.009 (99. 9)
527 0.000 (100.) 0.000 (100.)
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TABLE II

700 mb component wind fields: eigenvalues and
cumulative percentage of variance (in parentheses).

MODE 700 mb ZONAL 700 mb MERIDIONAT

1 95.157 18.1 41.438 7.9
2 72.772 31.9 38.417 15.21
3 44.161 40.3 29. 189 20.7
4 34.540 46.9 25. 566 25.6
5 31.632 52.9 24. 171 30.2)
6 20.146 56.7 20.959 34.2)
7 16.750 59. 9 19. 123 37.8
8 15.459 62.8 18.485 41:3
9 13.343 65.4 16.477 44.4

10 12.325 67.7 15.751 47.4
11 10.354 69.7 14.613 50.2
12 9.312 71.5 12.695 52.6
13 8.989 73.2 11.757 54.9
14 8.417 74.8 11.478 57.0
15 7.488 76.2 10.429 59.0
16 6.715 77. 5 10. 171 61.0
17 6.390 78.7 9.090 62.7
18 5.701 79.8 8.595 64.3
19 5.173 80.7 8.424 65.9
20 4.931 81.7 7.539 67.4
21 4.373 82.5 7. 136 68.7
22 4.244 83.3 7.011 70.0
23 3.801 84.0 6.492 71.3
24 3.445 84.7 5.816 72.4
25 3.244 85.3 5.688 73.5
26 3.174 85.9 5.518 74.5
27 2.839 86.5 5. 103 75.5
28 2.790 87.0 4.865 76.4
29 2.663 87.5 4.611 77.3
30 2.482 88.0 4. 405 78.1
31 2.403 88.4 4.254 78.9
32 2.237 88.8 4. 070 79.7
33 2.205 89.3 3.751 80.4
34 1.990 89.6 3. 445 81.1
35 1.913 90.0 3.207 81.7
36 1.809 90.4 3.039 82.3

100 0.206 (98.2) 0.397 (96.4)

300 0.005 (99.9) 0.012 (99.9)

527 0.000 (100.) 0.000 (100.)
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* APPENDIX B

TABLES

TABLE I

Qperational models fcr the prediction
of tropical cyclone motion cver the North Atlantic.*

-YODEL TYPE MODEL DESCRIPTION

HUPRAN STATISTICAL Analog model based on tracks of all
Atlantic tropical cyclones since
1886. (Operational 1968)

CLIPER STATISTICAL Regression equation model utilizing
predictors derived from climatolcq7
and persistence. (Operational 1971f

NHC67 STATISTICAL- Regression eguation model utilizing
SYNOPTIC predictors lerived from climatology

persistence and observed geopoten-
tial height data.
(Operational 19o7)

NHC72 STATISTICAL- Regression ecuation model utilizing
SYNOPTIC "redictors derived from output of

CLIPER model and observed geopoten-
tial height data.
(Operational 1972)

NHC73 STATISTICAL- Regression equation model utilizing
DYNAMICAL predictors derived from output of

CLIPER model, observed and numeri-
cally forecast geopotential height
data. (Operational 1973)

SANBAR DYNAMICAL Barotrcpic model based on pressure-
weighted wind field averaged
throuqh troposphere and represented

* on a 54 km (at 22.5 N) spaced
grid. (Operational 1970)

MFM DYNAMICAL Movable Fine Mesh ( IFM) baroclinic
model havin 10 levels in the ver-tical and 60 km grid spacin in the
horizortal. (Operational 1976)

* (from Neumann and Pelissier, 1981)
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1ABLE XVII

Mean and standard deviation jkm) forecast vector errors
for the dependEnt sample.

FORECAST INTERVAL (H)

2448 72

NUMBER OF
DEPENDENT 4C9 308 232
LATA CASES

MEAN VECTOR ERROR

700 ob 200.7 351.7 465.8
400 mb 189.3 349.0 453.7
250 mb 204.0 365. 4 491.6

STANDARD DEVIATION

700 mb 134.9 217.2 256.1
400 mb 131.5 225.2 297.3

* 250 mb 138.0 231.7 158.2

8
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