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THE DYNAMICS OF SLACK MARINE CABLES

1. INTRODUCTION

Cables are employed in a wide variety of marine and offshore

operations. Common examples include moorings, power supply,

salvage operations and umbilicals. Most of the computer models

developed to date assume that the tension in the cable elements

is above a threshold level such that the vibrational behavior of

the cable is essentially that of a taut string. For many appli-

cations in which catenary effects are Important, and umbilical .0

applications where the cable tension may be required to he small,

a significant amount of cable slack may be realized. Examples of

slack cable applications include deep water moorings, horizontal

cable segments between vertical legs of a cable array, the down-

stream vertical leg of a multiple-leg cable array, and guy lines

of deep water guyed towers and semi-submersible platforms.S

Design analysis of cable structures such as these using conven-

tional taut cable techniques could lead to incorrect conclusions

and to inappropriate selection of the required cables.

Manuscript approved February 14, 1985.
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The purpose of this report is to discuss the present state-

of-the-art for the analysis and modelling of slack marine cables.

A summary is given of the linear theory for the vibration of

horizontal and inclined slack cables and the important differ-

ences between the two cases are pointed out. Examples are given

of the numerical results which can be obtained with available

codes for computing the dynamics of slack cables with and without

attached arrays of discrete masses.

Finally, recommendations are made for the further develop-

ment of suitable slack cable computer codes for use in engineer-

ing practice. The approach to the problem is expected to be

analogous to that taken in developing and verifying experimen-

tally a computer code for predicting the vibration response of

taut marine cables with attached discrete masses (Sergev and

Iwan, 1980; Griffin and Vandiver, 1983; Iwan and Jones, 1984).

2. RELATED INVESTIGATIONS

The study of taut cable or wire dynamics dates from the

mid-eighteenth century. However, in most engineering applica-

tions cables are not completely taut but instead they exhibit

finite sag to some degree. This led first Rohrs (1851) and then

Routh (1868) to develop solutions for the dynamics of an inexten-

sible chain suspended between two points at the same elevation.

Later, Saxon and Cahn (1953) developed an asymptotic solution for

the inextensible chain which was in good agreement with the

2:•
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derivation of Pugsley (1949) and experimental data. An excellent

historical discussion of the overall problem is given by

Irvine (1981).

The earliest solutions of the inelastic chain problem were

not able to reproduce the results for a taut cable. Several --

investigators showed that the inclusion of elasticity effects can

join the taut wire and inelastic chain regimes and provide solu-

tions for intermediate conditions; for example, Soler (1970) and

Simpson (1966). It was Irvine and Caughey (1974) who provided an

extensive study of the linear cable dynamics and offered a clear

physical understanding of the phenomenon. Their solution repro-

duced both the inelastic chain and the taut wire results for a

cable suspended between two points at the same elevation. An

intermediate range was found, for sag-to-span ratios below 1:8,

over which the natural frequencies of the symmetric cable modes,

i.e. symmetric relative to a vertical line passing through the

cable midpoint, were between those of a taut cable and an inex-

tensible cable. A fundamental parameter was identified which

governed the extensible cable dynamics and accounted for both

elasticity and the equilibrium geometry of the cable.

Soon after the work reported by Irvine and Caughey, several

additional numerical and analytical studies were made of the

slack cable dynamics. Numerical computations of the cable

natural frequencies and mode shapes using a discretized cable

model were reported by West, Geschwindner and Suhoski (1975).

Somewhat later Henghold, Russell and Morgan (1977) followed with

..-.. .........



a finite-element numerical model for a cable in three dimensions.

The computations by West et al were limited to a cable with ends

at the same elevation, while the results reported by Henghold et --

al applied to the more general case of both horizontal and

inclined cable spans. Both of these numerical studies were

limited to the lower cable modes because of the relatively small

number of cable segments that were employed. West, Suhoski and

Geschwindner (1984) recently have applied their method to the

dynamics of the suspension bridge. Many features of the slack

cable dynamics, including the frequency crossover described below

for the horizontal cable, were observed for the case of the

suspension bridge under certain conditions.

A finite-element model for the dynamics of sagged cables was

developed by Gambhir and Batchelor (1978). Both two-dimensional

and three-dimensional computer codes were developed using curved

and straight finite elements for the general case of a cable with

end points at different elevations. A comparison was made with

the numerical results of West el al (1975) and the previous work

of Saxon and Cahn (1953) and of Pugsley (1949). Good agreement

was found overall and the finite element method showed excellent

covergence characteristics relative to other numerical

approaches.

A more recent numerical study of the dynamics of slack

cables with and without attached masses was conducted by

Rosenthal (1981). This approach is based upon StodoIa's method

4



for the dynamics, which is a successive approximation approach to

computing the natural frequencies and mode shapes of the cable

One example based upon a relatively small number of ten cable

integration intervals caused inaccuracies to appear in the

higher-mode natural frequencies. The computations were made for

the purpose of comparing with the results of Henghold et al who

used fourteen elements. However, it also was shown that large

numbers of integration intervals (up to 60) could be used

conveniently. This was necessary when numerous masses were

attached to the cable and/or the higher mode frequencies were

required.

Ramberg and Griffin (1977) measured the natural frequencies

of taut and slack marine cables in air and in water and obtained

good agreement with predictions based upon the linear theory of

Irvine and Caughey. Soon after, Irvine (1978) extended his

linear theory to the more general case of an inclined slack

cable. Ramberg and Bartholomew (1982) again obtained good agrec -

ment between their measured natural frequencies of inclined

cables and those predicted using Irvine's linear theory.

However, as discussed below, Irvine's theory for the horizontal

cable cannot be extended to inclined cables except under special

circumstances.

All of these recent studies suggested the existence of a

frequency crossover phenomenon which appears in the transitional

regime where neither the inextensible cable results nor the taut

5



cable results are appropriate by themselves. At the apparent

frequency crossover three modes of the cable have the same

natural frequency. These modes include a symmetric in-plane

mode, an antisymmetric in-plane mode and an out-of-p] ane or swav

mode. The symmetric modes contain an even number of nodal points

along the cable while the anti-symmetric modes contain an odd

number of nodes.

The problem of the inclined cable has been investigated most

recently by Triantafyllou and Bliek (1983) and by Triantafyllou

(1984b). The analysis is based on a WKB-type asymptotic solution

for the cable dynamics. For the special case of a horizontal

cable the method reduces to all of the previous known solutions 0

described above. However, there are some important differences

in the case of an inclined cable. Two distinct physical

mechanisms of vibration were identified. These correspond to the

transverse and longitudinal or elastic waves In the case of the

taut cable. As the curvature (sag) of the cable increases, modes

develop which are hybrid in character (neither symmetric nor S

antisymmetric). This phenomenon is characterized by a shift of

the natural frequency of a symmetric mode toward the natural

frequency of an antisymmetric mode, but no crossover occurs. S

Instead the two modes become distinct again and the eigenvalues

of the symmetric mode lie on the continuation of the eigenvalues

of the antisymmetric mode (from before the hybrid modes occurred) 5

and vice versa. However, only the mode shape variation is

--..-
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changed. The natural frequencies for the inclined cable computed

by Triantafyllou and Bliek were virtually identical to those

given by Irvine (1981).

3 . THE LINEAR THEORY FOR A HORIZONTAL SLACK CABLE

The vibrations of taut cables are described appropriately by

the classical taut string equations. This approach neglects the

cable's bending stiffness and finite-amplitude vibration effects,

but it is accurate to within 2-4 percent for many cables over a

wide range of conditions. As the tension is relaxed, a cable

eventually assumes the configuration shown in Fig. 1. H is the

horizontal component of tension at the supports and each vertical S

component V is equal to half ot the total cable weight. The

limiting sag-to-span ratio s/. + 0 is accompanied by H T since

the cable weight becomes a negligible fraction of the tension. S

At the other extreme, when s/I becomes large, V is comparable to

or larger than H and the cable assumes a classical catenary -. -

shape. The natural vibrations of catenaries are known for s/Z > ,

1: 10, but until recently they could not be reconciled with the

taut string theory as the ratio of sag-to-span vanished. This

difficulty was overcome by Irvine and Caughey (1974) and some

others preceding them by including the extensional behavior of

the cable in the theory for horizontal cables. The comparable I "

theoretical development for an inclined cable has been studied bv

7
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Vt1 __ _ _ _ t ,
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Figure I The geometry and nomenclature for a slack cable of
length L, span X., and mass per unit length m.



where H1 = H/cose , 2.= Z/cosO and Lel = e /cos6. There is a

direct relationship between the parameters X 2 and 0. This is

readily shown for a shallow-sag horizontal cable as was done by

Triantafyllou. When the natural frequencies of an inclined cable

(properties given by Triantafyllou, 1984b) are plotted against

S2 , the results are as shown in Fig. 4. There is no crossover

1
but instead the two natural frequency curves pass close together.

The transitions of the first two modes for e = 600 and mgL/H =

0. 15 are shown in Fig. 5. Well below the transition the mode

shapes are those of a taut cable. Then the symmetric and anti-

symmetric modes become hybrid modes. Above the transition

region, the lower hybrid mode which originated from the symmetric

mode becomes antisymmetric, and the other hybrid mode is trans-

formed into the first symmetric mode of an inextensible cable.

The extent of the transition region is dependent on the elastic

strain HI/EA. As noted by Bliek, previous investigators, e. g.

Irvine (1978), Henghold et al (1977), as a practical matter were

unable to observe the hybrid mode behavior because of the small

transition region which was produced by the cable parameters in

those studies.

The critical total tension H 1 can be defined for an inclined

slack cable in much the same way as was done for a cable with

supports at the same elevation. For the inclined cable,

Mgt 2

X,2 ( 1 c 2e Z ( E A 23
= cos H L(2

H1 -el

22



TABLE I

Natural Frequencies of Taut and Slack Inclined Cables

(from Triantafyllou, 1984b)

1 2 c 3 Ci4 CD5

Triantafyllou, 1984b 2.15 2.21 3.38 4.37 5.48

Irvine, 1978 2.17 2.20 3.39 4.39 5.51

Cable Properties:

Length (unstretched ), L = 330m

Cross section, A = 7.07 (10 - 4 ) m 2

Young's modulus, E = 15 (1010) N/rm2

Mass per unit length, m = 5.56 kg/m

Weight per unit length (in water), w = 47.6 N/m

Added mass coefficient = 0.128

Water Depth, D 130m

Horizontal force on top = 76,300 N

Tension on top, T = 86,660 N

Inclination angle, a = 23.460
a* -4

Curvature at the midpoint, a 5 5.24 10

Nondimensional Quantities:

WL
= 0.18 = 1.8 -

a

La = 0.173 = 1.73 c1

T
a -41

- 8. 17 (10 ) .817 C3

Cd
2 L
2n 2

n2  162 = 1.62 n2 /E2g i

C = 0.1

21
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mg£/H , is small. The solution obtained by Triantafvllou

consists of slow and fast varying terms with respect to the

distance along the cable. When O(S) becomes zero at some point

along the cable, the slowly varying solution is of exponential

form up to the Q = 0 point and sinusoidal beyond it. This

transition corresponds to a change from inextensible cable

dynamics (exponential; curvature important) to taut cable

dynamics (sinusoidal; elasticity important). Over some length of

the cable there will be in general a combination of the two types

of behavior.

A frequency crossover never occurs in the case of the

inclined cable. Instead the modes are hybrid in form over the

transition range from the inextensible to the taut cable. They

are a mixture of symmetric and antisymmetric modes as shown by --.

Triantafyllou (1984b). There is virtually no difference In the

natural frequencies computed by the methods developed by

Triantafyllou and by Irvine (1978), as shown in Table I, but the

hybrid mode shapes are unique in form as shown here in an example

given below.

The governing parameter X2 for the inclined cable is given

by (see Irvine, 1978)

2 = E co / e ell) (22)
1 H I EA"

20
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Thus the modified linear analysis for inclinded slack cables is

subject to

£ = - << 

or

= 8 s tan /X « I (20)

This condition places rather stringent limits on the sag-to-span

ratio as the chord inclination angle steepens. S

Triantafyllou (1984b), Triantafyllou and Bliek (1983), and

Bliek (1984) have developed asymptotic analytical solutions based

upon perturbation theory for the linear dynamics of taut and S

sagged inclined cables. It was found from the analysis that the

most important parameter governing the cable dynamics was

2

Q(S) 2- I 2 .) (21)
M 0(- EEA a2 (S)""-""- - - .

0

do (S)
where = dS , the local curvature, and M is the virtual S

(physical + added) mass of the cable. The parameter 0 represents

the interaction between and relative importance of elasticity and

curvature effects for the inclined cable. The linear theory

developed by Irvine and Caughey (1974, 1978) for horizontal and

inclined cables represents the special case 0 = constant. This

is the parabolic cable approximation, or a = constant together -0

with the condition that the ratio of cable weight to tension,

19
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I

to horizontal cables or, more precisely, to cables with supports

at the same elevation. One simple way to extend this linear

theory to cables with inclined chords is to view the cable in a

coordinate system inclined with the cable (Irvine, 1978). In

order to retain symmetry about the cable midpoint, an essential

feature of the linear analysis, one must ignore the effect of the 0

chordwise component of gravity. Essentially it is assumed that

the static configuration of the cable is parabolic. The problem

then reduces to the previous analysis except that the weight per

unit length is given by w = mg cos 8 where 8 is the chord

inclination angle from the horizontal. The analysis of Irvine

and Caughey (1974, 1978) for the parabolic cable (horizontal and p

inclined) was continued more recently by Veletsos and Darbre . -

(1983).

According to the linear theory, the horizontal (or p

chordwise) component of tension H is constant along the cable,

H mg cos 6,2/8s • (18)

It should be noted that £ now is the horizontal component of the

distance (chord) between the cable supports. However, the

chordwise component of gravity produces a change in H from one

end to the other of an inclined cable by an increment AH given by

AH= mg I sin 6 (19)

18

I

tu--. .



where W = mgL is the total weight of the cable to the accuracy of

the linear theory. The corresponding critical sag is

1/3
s = 0.134 16)c r it E-A' .

It should be emphasized that this criterion applies to the

initiation of catenary effects in only the symmetric modes, since

the antisymmetric modes are unaffected for s/P1 < 1:8 and H > W.

Furthermore, at H = Hcrit the only affected mode will be the n = S

1 mode. If one is interested in the onset of slack effects in

the higher symmetric modes, then the expression becomes

W 2 E A 1 / 3 
-"7a )

crit A.

aan a= 0. 5 2 5 n , n 1 ,3 ,5, etc. (17b)

Experimental results are discussed later in this report and in a

previous related paper and report which deal with marine cable

applications; see Ramberg and Griffin (1977), Griffin et al

(1981).

i

5. THE INCLINED SLACK CABLE

The linear theory just described has proven to be a valuable ..

tool in the analysis of marine cable vibrations. A shortcoming 9

of the original analysis of Irvine and Caughey was a restriction - . -

17 . ..



more general asymptotic perturbation solution for the linear

dynamics of taut and slack cables derived by Triantafyllou

(1984b), and discussed further by Bliek (1984).

4. THE ONSET OF CATENARY EFFECTS

An expression for the "critical" tension corresponding to

the onset of catenary behavior in a horizontal cable can be

obtained from Eq. (4). The result is

2/3 1/3
Hcrit = - - -- ) 2 • (12)

crit e

By requiring the cable frequency to be within 5 percent of the

taut string value, an approximation consistent with the accuracy

of the string equation, one obtains

= 1.26. (13)
cr it

Since d s for typical cables when X 2 is small, Eq. (5) becomes

L I + 8 s 9 18 . (14)
e

The onset of slack effects occurs near the limit of s/t 0, so

that a slightly conservative estimate is established by L - i to
e

obt amn

H = 0.93(W2 EA) , (15)
c ri t

16
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X2-.0 21.60-

Il (a) 5

a 1.40 -

Z2.0- (-1.30-
W w

0I
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_• i-i.

E E 1. 0
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D Dl

z- - I. IN;IG RE b;

S0.9

00 100 200 300 400 500 30 50 70 90 110 130
SAG TO SPAN RATIO, s/A ~ SAG TO SPAN RATIO, s/jL

Figure 3 - Two figures adaptedi from West et al (1975) showing
(a) the natural frequencies versus the variation in sag including
modal crossovers for a cable with its ends at the same elevation,
and (b) an indication of the mode shape transitions during a
crossover of the lowest modes of Figure 3(a).
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Returning to the first symmetric mode frequency of the example,

there is little difference between A 2 = 36?72 and A 2 = so that

the first mode is nearly inextensible. For X 2 + F ,, (6)

reduces to

tan £ £
tan -- 4) = (11)

which is also plotted in Fig. 2. With this frequency equation

the symmetric natural frequencies are again well ordered and

alternate with antisymmetric frequencies, but there is a shift of

between 0.93 n and t in these symmetric mode frequencies with

respect to the taut string symmetric mode frequencies.

The mode shapes of a horizontal slack cable are affected by

the apparent frequency crossover in a complex manner. A sym-

metric mode must possess an even number of nodes. Thus the mode

shape acquires two additional nodes in crossing over, and alters

its overall form while preserving symmetry. The transition is

smooth as shown in Fig. 3 which is adapted from a related numer-

ical simulation by West, Geschwindner and Suhoski (1975). A

dashed line which corresponds to the example X2 = 367r2 is

included in Fig. 3(a). The related but more complex case of an

inclined slack cable is considered later in the report.

This section has summarized the linear solution derived by

Irvine and Caughey (1974) for the dynamics of slack cables with

sag-to-span ratios of 1:8 or less. This is a special case of the

I
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3-1-

2 3
/00'I

y2

-3-I

-5-X

Figure 2 - Graphical solutions to Eq. (6) for the lowest
symmetric-mode natural frequencies of a flat-sag cable, from
Ramberg and Griffin (1977). The ef fects of cable sag and exten-
sion are included in the parameter X2 (see Eq. (4)). For

X+ the cable is inextensible, and f or X2  0 the cable Is
t aut.-
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If n nd d 10)n 2Z- d I )'

A graphical solution to Eq. (6) is presented in Fig. 2 for

several values of the parameter A2 . The arrows indicate the

values of -- which correspond to the natural frequencies of a
2

taut string. For small X2 the symmetric mode frequencies

approach those of a taut string. As X2 increases, the first

symmetric mode frequency increases toward the first anttsvmmetrlc

frequency. They coincide for A2 = 472 and thereafter the first

symmetric mode frequency is greater than the higher antisymmetric

frequencies. At still larger values of X2 these frequency

crossovers occur at the higher symmetric modes.

As an example consider X2 _ 367r2 . The antisymmetric mode

values of are given by - n = 2,4,6, etc. as before while p

the first four symmetric mode solutions are indicated by the

encircled intersections in Fig. 2. The lowest two symmetric mode

frequencies have crossed over and lie above the lowest two

antisymmetric frequencies. The frequencies of the third sym-

metric and antisymmetric modes are equal (crossover is occuring)

while the fourth symmetric mode frequency is quite close to the n

= 7 frequency of a string. For the modes higher than n = 7 the

natural frequencies are essentially those of the taut string.

The catenary effects progress into the higher modes as X 2

iacreases, but for finite X 2 some unaffected modes remain.

12



out-of-plane motions are decoupled to first order and the remain-

ing in-plane modes fall into two classes. In the first class

there were thought to be no first-order tension fluctuations S

induced at the supports; only the second class was thought to

induce such fluctuations. The two cases were characterized

respectively by mode shape symmetry and antisymmetry about the 0

cable midpoint. The antisymmetric motions of the sagging cable

have the same frequency equation as the taut string, but the

symmetric modes obey a different eigenvalue equation. This means S

that the classical equation for a taut cable is valid for 0 <

s/X < 1:8 if n is even, whereas the symmetric mode frequencies

are given by 0

tan = (-) , (6)22 X2 '; . ..

where

(m 2 
(7)1/2

The result simplifies to the taut cable equation in the limit

s/ = 0 when mgX << H in Eq. (4). In that case X 2 approaches

S
zero and equation (4) reduces to

lim [tan -- ] = - - (8)
s/1 + 0 2

and

(8tk=(2k -1) ik 1,2,3...(9

kS

11O

0
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where H* AH/H Compatibility of the cable displacement

requires, in addition, that

2I

(1 - H*) 3  = --- (2H* - H*) (3)

where

X2= (mg1) 2  X 64 (2 H (4)
H HL Z HL

EA()

and
d dy) 2 3/2 1+8d2

Le f (i + (-x)) dx (i +8 ())(5)
0

The quantity EA is the product of the elastic modulus and the

• "cross-sectional area of the cable, while Le, the "virtual" cable

length, essentially is the stretched cable length correct to the

order of the linear theory approximation. As noted by Irvine and

- Caughey, the dimensionless variable X2 is the fundamental para-

meter of the extensible cable because it accounts for both the

elasticity and equilibrium geometry of the cable. In the sub-

* sequent notation H will be taken to mean the horizontal component

of tension in the extensible cable profile, that is the measured

tension.

In the study of natural vibrations, the equations of motion

* can be linearized about the equilibrium configuration. Then the

10
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0

Irvine (1978, 1981) and by Triantafvllou and Bliek (1983),

Triantafyllou (1934b), and Bliek (1984).

A summary is given here of Irvine and Caughev ' s devel Opment

for a cable with end points at the same elevation, I nd the

- results applicable to marine cables ar discussed. The ecuilib-

rium shape of an inextensible cable is given by

mg £Z2  ( x x 2y = g2H2 q- -~ 2 (1)

-H-X)

for d/Z < 1:8 and where d = mgZ 2 /8H is the midspan sag. As we

shall see later in the report, this is a special case of the

general extensible cable dynamics problem. The length of this

cable is

L I (+ 2
3-*J t

so that if three of the quantities mg, H, d, X and L are known

then the other two can be found. However, owing to stretch, the

sag and length of a real cable are greater than the inextensible

values while the horizontal component of tension of the stretched

cable is less. If this new sag is s while the new horizontal

component of tension is (H - AH), then equilibrium dictates that

s - d H* 2)
d 1 - H*

-~ .&."*

:!*.:..
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1.70 I I
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, 
X12

Io Figure 4 - The first two natural frequencies of an inclined slack
cable in air versus the parameter X, for mgL/H = 0.15 and for
inclination angles of 0 = 10 , 300 and 600 ; from Triantafyllou

( 1984b)

23

. - • .. a.. 
.-- 

- - - -



MODEl1 MODE 2

=1 7.4

SYMMETRIC ANTISYMMETRIC

25.2

34.0

40.0

54.8

69.6

81.4

ANTISYMMETRIC SYMMETRIC

Figure 5 -The transition with increasing X2 of the first two
natural modes of an inclined slack cable in air, forO =-600
and mgL/H =0.15 as in Figure 4; from Triantafyllou (1984b).
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= 5 U-U U * * am •U •- -

and if the assumption once again is made that L e z I then

mgl 2

I H " H1 1

This equation can be rearranged into the form

HI 3 mg,2 EA cos 2 e (23a)
1 21

IS

which becomes

H1= 0.93 cos2/ 3e (W2EA ) 1/3 (24)

since W mgi1 , is the total cable weight to the accuracy of the

IIlinear theory and again A = 1.26 for the lowest symmetric (n=1)

cable mode. The antisymmetric modes are unaffected as before for

s/X < 1:8 and H1 > W 1  The onset of slack effects in the higher

cables can be estimated by using Eq. (17b) to compute X2
,n

A major finding of the studies by Triantafyllou and Bliek

(1983, 1984, 1984b) is that the dynamic tension in the cable is

increased greatly over the hybrid mode transition r an ge.

Previously, dynamic tension effects were thought to be minimal

for the antisymmetric modes, so that from a practical standpoint

fatigue and failure effects were only important for the symmetric
9

modes.
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Figures 6, 7 and 8 depict the behavior of the frequencies

corresponding to the lowest eighteen modes for a suspended cable

possessing the physical properties defined in Table 1. Figures 6

0
to 8 refer respectively to suspension inclinations of e = 0

(horizontal), 300 and 600. The results shown there independently

confirm the findings of Bliek (1984) and Triantafyllou (1984b)

that in a strict sense, frequency crossover of the in-plane modes

occurs only for the special case of horizontally suspended cables

(Fig. 6), whereas nonzero inclinations lead to a glancing

(hybrid) behavior of the frequency plots (Figs. 7 and 8). These

computations employed the method developed by Rosenthal (1981)

which was described earlier in the report. I

In each of the figures the horizontal axis depicts the sag-

to-length ratio which ranges from near zero for taut cables to

slightly over one-half for a completely slack or doubled-up cable

whose end positions are made to coincide ("slightly over one-

half" because of the stretch induced by the cable's weight). All

inplane mode curves (which coincide with out-of-plane mode curves

over certain ranges) are shown as solid lines. Dashed lines

depict ranges over which only out-of-plane modes exist. The

chord-to-length ratios corresponding to these sag-to-length

ratios are also indicated and range from slightly greater than

one for a tautly stretched cable to zero for the doubled-up case.

I
The vertical scale denotes the frequency w of all the

depicted modes in radians per second. Both the horizontal

I
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CHORD/LENGTH RATIO, lcosO/L

20 1.003 1,002 1.001 1.0 .999 .9975.995 .99 .98 .95 .9 .8 .5 0

10 0 0°
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8
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6 
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U

0.9 C
0.8
0.7- MODE SHAPES:
0.6 - IN-PLANE MODES:
0.5 - s = symmetric

a = antisymmetric
0.4 - h = hybrid

0.3 -OUT-OF-PLANE MODES:
0 out-of-plane

.005 .01 .05 .1 .5

SAG/LENGTH RATIO, S/L

Figure 6 - Natural frequencies for a horizontal (8=0) extensible
cable in air as a function of the ratio of cable sag to length,
s/L. Cable properties as in Table 1.
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(sag/length) and vertical scales are logarithmic to show the full

ranges of values. Except for very large sag and for the cross-

over effects (or the comparable hybrid mode transition for the

inclined cases), these logarithmic frequency plots all exhibit a

distinct downward slope equal to -1/2. This is because the

frequency is approximately proportional to the square root of the

horizontal tension component H 1 , while the tension itself is

approximately proportional to the sag.

Since the horizontally-suspended cable is a limiting special

case of suspension at an arbitrary angle of inclination, the

following discussion will be limited to the behavior of frequency

with sag as shown in Fig. 8, the case of 8 = 600 inclination.

In this figure we focus our attention respectively on the lowest

out-of-plane and the lowest in-plane modes, since higher pairs of

such modes possess characteristics which are similar to those of

the lowest pair.

We note that the lowest out-of-plane mode has a frequency

which is remarkably linear with sag, even out to the maximum sag

of slightly over one-half. This mode is the only one which

exhibits this high degree of linearity. The corresponding irn--

plane frequency at the low-sag end begins to rise above the out-

of-plane value and initially continues to exhibit an essentially

symmetric mode shape. This is the well-known lowest resonance of

a taut string. As its frequency rises towards the frequency of

28
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the second out-of-plane mode, however, it loses its symmetry,

becoming "hybrid" as Bliek and Triantafyllou termed it.

As its frequency glances from the second in-plane mode 0

frequency (touching it in the horizontal case), it then remains

only sightly below the second out-of-plane mode, becoming

decidely anti-symmetric with increasing sag. For higher values 0

of sag, the first in-plane mode then lowers its frequency away

from the second out-of-plane value, and finally returns to where

the lowest pair again has two identical frequencies, which cor- S

respond to the pair of orthogonal pendulum modes at maximum sag,

i.e. a cable folded back along its length. The figure shows the

corresponding behavior for all of the nine pairs of out-of-plane S

and in-plane modes which were computed as part of this study.

Bliek (1984) has compared results from the perturbation

theory (Triantafyllou, 1984) with a finite-difference solution

for the linear cable dynamics. An explicit centered-difference -

scheme was selected to solve the problem by means of a transfer

matrix formulation. From the numerical simulation, which can be

considered as "exact", predictions of the dynamic tension, angle -.

of inclination, and tangential and normal displacements can be

obtained. The natural frequencies are dependent upon three S

parameters:

o the inclination angle, -
a

o the non-dimensional weight, mgL/H I :

o and, the elastic strain, H /EA.
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Figure 7 - Natural frequencies for an inclined (0 = 300)
extensible cable in air as a function of the ratio of cable sag
to length, s/L. Cable properties as in Table 1.

3

30"i

-I .



CHORD/LENGTH RATIO, fcosO/L S

1.003 1.002 1.001 1.0 .999 .9975 .995 .99 .98 .95 .9 .8 0
20

9
100

8
7
6 '0

5 -o

4

LU

3 -- '
<I:%

00
2

0.9

CC %

0.8
0.7 - MODE SHAPES: % % %"

0.6 IN-PLANE MODES: So-.

0.5 - s = symmetric

0.4 - a = antisymmetric
h = hybrid

0.3 OUT-OF-PLANE MODES:
o = out-of-plane

0.2 I I
.005 .01 .05 .1 .5

SAG/LENGTH RATIO, S/L
S

Figure 8 - Natural frequencies for an inclined (6 600)
extensible cable in air as a function of the ratio of cable sag ..

to length, s/L. Cable properties as in Table I, legend as in
Figures 6 and 7.
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Here H1 is the tension component H/cos a The latter two can .i_

a

be combined as shown earlier into the single fundamental para-

meter X2 that characterizes the cable dynamics. Then X 2 Is

proportional to the ratio of the elastic stiffness to the

catenary stiffness.

Some typical examples of the results obtained for an exten-

sible cable in air by Bliek are shown in Figs. 9 to II. A value

of (HI/EA)-I = 400 was employed in the calculations. This is

representative of a steel cable where the ratio of the elastic,

or longitudinal, and transverse wave speeds is cel/Ctr = 20. The

numerical results were obtained with a centered difference scheme

using 100 integration intervals over the length of the cable.

The natural frequencies of the first two symmetric and

antisymmetric transverse modes are plotted in non-dimensional

form as a function of mgL/H1 for a horizontal cable (9 - 00 ) and

for an inclined cable ( 0 = 300). The modal crossover is clearly

shown for the horizontal cable in Fig. 9 and the perturbation

theory and numerical results are in overall good agreement. When

the cable is inclined at 0 = 300 there no longer Is a frequency

crossover, but rather the hybrid mode transition as shown in

Fig. 10. The symmetric modes are transformed into antisymmetric

modes and vice versa as shown earlier in Fig. 5. Again there is

good agreement between the perturbation solution and the numer-

ical simulation. The natural frequencies for the first pair of
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Figure 9 - Natural frequencies for the first two symmetric and
antisymmetric modes of an extensible cable in air as a function S

of the non-dimensional weight parameter, mgL/H,: from BlIek
(1984). Horizontal cable, e - 00, (HI/EA)Y I  - 400.

Asymptotic theory, ; numerical simulation, +.
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Figure 10 - Natural frequencies for the f irst two symmetric and
antisymmetric modes of an extensible cable in air as a function
of the non-dimensional weight parameter, mgL/h from Bliek
(1984). Conditions as in Figure 9 except that the inclination
angle a 300.
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S

modes are shown on an expanded scale in Fig. 11. This enlarge-

ment demonstrates very clearly that no crossover exists. This

hybrid modal transition now has been demonstrated conclusively by 0

applying the perturbation solution (Triantafyllou, 1984b: Bliek,

(1984) and by means of independent numerical simulations by Bliek

and the present writers. 0

The results in Figs. 9 to 11 show the overall good agreement

between the two solution approaches. However, at large inclina-

tion angles (e - 600 ) and the very high values of the non- S

dimensional weight mgL/Hl the perturbation solution diverges from

the numerical simulation (Bliek, 1984). The agreement between

the two approaches improves at the higher cable modes where the S

change in cable tension becomes smaller over a wavelength of the

vibration.

6. SLACK CABLES WITH ATTACHED MASSES

All of the results discussed thus far have been limited to
S

horizontal and inclined bare cables. However, there are many

marine applications where cables have arrays of instrumentation

modules, weights and buoyancy elements attached to them. The

computer code NATFREQ was developed at the California Institute

of Technology for the Naval Civil Engineering Laboratory to

provide a means for predicting the natural frequencies, mode

shapes and drag coefficients for taut cables with large numbers

of attached discrete masses. A basic description of the code and
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igure 11 - An expanded plot of the hybrid modal transition zone
or the first symmetric and anti-symmetric modes in Figure 10. - .
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mass term affects only the transverse motions of the cable

(in-plane and out-of-plane) and not the longitudinal or elastic

modes. Thus in order to derive a complete dy-iamic analysis of a

slack cable in water the natural frequencies of the transverse

modes must be corrected for the added mass effect of the fluid.

The elastic or tangential modes need not be corrected for the

Zluid inertia or added mass. The mass of attached discrete

elements such as the cylindrical lumps discussed in the previous

section also must be corrected for the fluid inertia effect.

The dimensionless added mass coefficient Cam is defined by

m W i C
=I + am/S (26)

mA

where mw is the virtual (physical + added) mass in water, mA I

the mass in air, and S is the specific gravity of the cable or b

attached member. For a taut cable the natural frequencies in the

two media follow the relation

WA m 1/2 (27)

Then the added mass coefficient is given by

/2

A -1. (28)
a m
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Figure 13 - Normalized displacement patterns for the first two
symmetric modes of the slack cable with five attached masses.
Chord-to- length, Z/L = 0.962; elastic stiffness, AE/mg2. 3500.
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cable response. The increase in static tension caused by the

addition of the attached masses is given in Table 5 for the three

cases. 

The shapes of the fourth and eighth symmetric modes for the

cable with five attached masses are plotted in Fig. 13. The

predictions were made with the SLACK2 code. In each case the S

vertical scale is normalized by the factor

R [ [ (s)] 2dm (25)R s=0

The integrand is discontinuous at the locations of the individual

attached masses, leading to a Stieltjes integral representation

consisting of a regular integral representing the bare cable and

a sum of discrete mass terms (Rosenthal, 1981). It is clear from

the plotted mode shapes that in general the masses are in motion

and do not lie at nodes of the vibration pattern. This is

similar to the findings of Griffin and Vandiver (1983,1984) for

the case of taut marine cables.

7. ADDED MASS AND HYDRODYNAMIC DRAG

Added Mass. The effect of a dense fluid such as water on

the cable dynamics is an important consideration in terms of the

added mass, or fluid inertia, component of the hydrodvnamic force

system. The total, or virtual, mass of the cable in water then .

is the sum of the physical mass and the added mass. The added
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The natural frequencies for the cable with five attached

masses are compared in Table 4. The mode type and ordering of

both the SLACKI and SLACK2-calculated frequencies are correct for 0

all nine modes. However, the frequencies predicted by the SLACKI

code again are consistently higher than the corresponding SLACK2

predictions. The first out-of-plane mode frequency is thirteen 0

percent higher and this difference increases to eighteen percent

for the eighth symmetric mode. Once again the static solutions

obtained by the two methods are virtually indistinguishable. S

There is a general increase in the natural frequency of a given

mode as the number and mass of the attached bodies are

increased. This is opposite to what is found for an extensible

taut cable. There also is an increase in the sag-to-length

ratio s/L as the attachments on the cable are increased in

number.

The first four in-plane mode frequencies for the three cable

configurations discussed here are compared in Table 5. It is

seen from the results that the increase in frequency is

systematic for the antisymmetric modes. For the symmetric modes

the natural frequency first increases relative to the bare cable

when two equally-spaced masses are attached to the cable. Then

the frequency decreases slightly when the number of attached

masses is increased to five. This behavior is caused by the

extreme sensitivity of the symmetric cable modes to small changes e

in tension and sag near the crossover or hybrid regions of the
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!0

region. For this condition the cable exhibits largely inexten-

sible behavior; that is, A2 is large. For the cable deployed

during the field tests, X = 650 for £/L = 0.987 and •

EA/mgX = 3500.

It can be seen from Table 3 that the results obtained with

the two computer codes for the cable with attached masses differ S

more than the comparable bare cable results. The out-of-plane

first mode frequency computed using SLACKI is ten percent higher -

than the same frequency computed using SLACK2. The solutions 0

obtained with the two codes diverge still further until for the

ninth mode the SLACKI-predicted frequency is eighteen percent

higher than the SLACK2 prediction. When the number of integra-

tion intervals is reduced by one-half, there is only a three

percent decrease in the SLACK2 prediction of the ninth-mode

frequency. It was found in an earlier study (Rosenthal, 1981) 5

that the SLACKI code predictions tended to overestimate the

higher mode frequencies due to artificial stiffness effects upon

the finite element solution when the number of elements was too

few. Conversely, the SLACK2 prediction tended to underestimate

the true natural frequencies when too few integration Intervals

were used. Thus the predicted frequencies are only true a

estimates for the lowest cable modes. When the number of finite

elements or integration intervals is of the order of the mode

number, the predicted frequencies are only rough approximations.
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permissible number of finite elements is dependent on the

magnitude of the relative elastic stiffness AE/mX , due to the

nature of the governing equations for the natural frecuencies and 0

the matrix manipulation routines that are used in the SLACKI

code.

The static solutions obtained by the two methods for all of 0

the slack cable configurations are virtually indistinguishable,

both for the bare cable and the cable with attached masses. The

maximum sag-to-length ratios, s/L, obtained by the two approaches S

are compared in Tables 2, 3 and 4. These and the comparisons

which follow are for a cable deployed in air where added mass -

effects are not important. A brief discussion of the effects of 0

added mass on the natural frequencies of a slack marine cable is

given in the next section of the report.

The natural frequencies obtained for the two cable-attached

mass configurations are compared in Tables 3 and 4. The results

for the cable with two evenly-spaced attached masses are listed

in Table 3 for the first nine natural cable modes. Eighteen .49

finite elements were employed for the SLACKI computations, while

two cases of fourteen and thirty integration intervals were

employed for SLACK2. In each case the sequence of modes was

properly ordered, i. e. out-of-plane, antisymmetric, etc. The - -

mode order shown is typical of relatively large sag-to-length

ratios to the right of the modal crossover or hybrid mode
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Figyure 12 -Two attached mass/cable configurations employed in 0
the comparison between the SLACKI and SLACK2 computer codes. The
con f iurat ions shown are taken from the field test report of
Griffin and Vandiver (1983).
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10 lbm). In the computations discussed below the cylindrical

masses are treated as point concentrated loads. This aporoxi-

mation also is made in the NATFREQ taut cable code. Complete 9

descriptions of the cable, the attached masses, and the test set-

up and instrumentation are given by McGlothlin (1982) and by

Griffin and Vandiver (1983). The two configurations chosen for

the computations are shown in Fig. 12. The first consists of two

evenly-spaced heavy masses. The second consists of five evenlv-

spaced masses -- two light cylinders and three heavy cylinders.

The cable had a mass per unit length m = 1.14 kg//m (0.77 lbm/ft)

in air and an elastic stiffness EA = 8.9 x 10 5 N (2xl0 5  Ib).

Since the relative capabilities of the two codes were not S

known for the case when masses were attached to the cable, a

baseline comparison was made using just the bare cable. Then the

relative accuracies can be compared with the results obtained by :

Rosenthal (1981). The present results are given in Table 2 for

the first nine cable modes. Twelve elements and twenty-five

nodes were used for the SLACKI finite element computations while O

for the SLACK2 computations by Stodola's method thirty integra-

tion intervals were used. These conditions were thought to be

reasonably comparable. The two methods give estimates of the S

natural frequencies, in the proper order, which differ bv less

than five percent for the first nine cable modes. For higher

modes the estimated frequencies diverge rapidly due to the

relatively limited number of elements used. The maximum
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method of imaginary reactions described by Skop and O'Hara (1970)

and by Skop and Rosenthal (1982) to obtain the static cable

conriguration. Then Stodola's method (see Thomson, 1965) is used

to calculate the cable dynamics. Stodola's method is a

successive approximation approach to computing the natural

frequencies and mode shapes of the cable. The use of Stodola's

method eliminates the need to solve the large matrix equations

which are inherent in the finite element method of computing the

natural frequencies. Up to sixty integration intervals can be

included over the length of the cable at the present time.

Details of the computational scheme are given by Rosenthal

* (1981). Both computer codes are capable of predicting the out-

of-plane and in-plane components of the cable dynamic response.

The present discussion is limited to the transverse component of

the response since the longitudinal, or elastic, component occurs

at higher frequencies and is smaller by an order-of-magnitude.

The cable configurations chosen for the comparison and

demonstration are slack cable analogues to the taut cable field

test set-up which was employed in the NATFREQ code validation.

At the test site a 22.9m (75 ft) long by 3.2 cm (1.25 in)

* diameter taut cable was employed, so that for the present

computations the chord length was set equal to X = 22.9 m

(75 ft). The attached masses were cylindrical lumps of PVC into

* which lead inserts could be put in order to change the physical

mass from "light" (m = 2 kg or 4.4 Ibm) to "heavy" (m = 4.5 kg or
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an operating manual to aid in its use are available: see Sergev

and Iwan (1980), and Iwan and Jones (1984), respectively. An

extensive program of field experiments was conducted to benchmark

the capabilities of the NATFREO code, and a comparison of the

code predictions and the results of the experiments has been

given by Griffin and Vandiver (1983, 1984).

In this section of the report a comparison is presented of

two computer codes which have been developed for predicting the

natural frequencies and mode shapes of slack cables with arrays

of discrete masses attached to them. This is a preliminary

assessment since the capabilities of the codes presently are not

as extensive and well-documented as are those of the taut-cable

code NATFREQ, and the solution algorithms for the slack cable

dynamics are far more complex than are those required for the

analysis of taut cables.

The two slack cable codes discussed here are called SLACKI

and SLACK2, respectively. SLACK] is essentially the three-

dimensional cable dynamics code which was developed by Henghold,

Russell and Morgan (1977) and modified later at NRL. The finite

element formulation employed in SLACKI is described in detail by

Henghold and Russell (1976). Three-node elements are employed in

the code which is capable of accommodating up to sixty nodes

along the length of the cable. SLACK2 is the most recent version

of the three-dimensional cable dynamics code developed at NRL by

Rosenthal (1981 ). This latter code uses a modified form of the
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0

and Cam car. be derived from measurements of the natural

frequencies in air and in water. Ramberg and Griffin (1977) have

reported extensive measurements of the added mass of marine

cables by this method for the case of taut cables. Less

extensive measurements by Ramberg and Griffin of the natural

frequencies of slack marine cables in the two media suggested

that the added mass contribution was the same for slack and taut

cables when the static effect of buoyancy on X 2 was properly

accounted for in the crossover or hybrid response regime. In

most instances it is a reasonable approximation to assume that

Cam = 1; that is, the added mass is equal to the volume of fluid

displaced by the cable or attached mass.

Hydrodynamic Drag An important consequence of the resonant

cross flow oscillations of structures and cables due to vortex

shedding is an amplification of the mean in-line drag force (or

equivalently the drag force coefficient CD). The drag amplifi-

cation measured prior to 1980 under a variety of conditions has

been reported by Griffin et al (1981). More recent and extensive

measurements of the drag on cables and cylinders in water are

discussed by Vandiver (1983), Griffin and Vandiver (1983) and

Griffin (1985). From all of these studies it is clear that

vortex-?xcited vibrations of cables and cylinders in water can

cause amplifications in the hydrodynamic drag of up to 250

percent.
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Two crucial elements in the accurate prediction of the

hydrodynamic drag on a vibrating cable are accurate estimates of

the natural frequencies and the mode shapes associated with the

vibrations. The frequency must be known in order to determine

whether the Strouhal frequency of vortex shedding will lock-on or

resonate with one or several of the natural frequencies of the

cable. The mode shape must be known in order to determine the

vortex-excited strumming pattern along the cable. Then the local

cross flow displacement amplitude distribution spanwise along the

cable can be used to predict the overall hydrodynamic drag from

the local drag amplification.

The NATFREQ computer code described by Sergev and Twan

(1980) by Griffin and Vandiver (1983) has the capability to

predict the strumming drag on a taut cable with or without

attached masses. In order to make a comparable strumming

assessment for a slack cable configuration, the natural

frequencies and mode shapes also must be known with some

accuracy. The methods described by Triantafyllou (1984b), Bliek

(1984), and in this report can be applied to the case of a bare

cable. For a slack cable with attached masses, the SLACK] and/or

SLACK2 computer codes can be used to predict the in-plane natural

frequencies and mode shapes which are influenced by the cable

strumming. The results discussed in the previous section clearly

show that for slack cables, accurate predictions are limited to

the lowest cable modes. Otherwise only a rough approximation is
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possible. This is in contrast to the NATFREQ code, for which

Sergev and Iwan give an example showing the computed 162nd mode

for a 4700 m (15400 ft) long taut cable with 380 attached masses.

8. SUMMARY

Conclusions. The linear theory for the dynamics of

horizontal cables with sag-to-span ratios of 1:8 or less can be

described by the linear solution derived by Irvine and Caughey

(1974). This is a special case of the more general perturbation

solution for the linear dynamics of taut and slack cables derived

by Triantafyllou (1984b) and Bliek (1984). The dynamics of

horizontal slack cables are characterized by a frequency

crossover" behavior. This modal crossover is a complex

phenomenon whereby three modes of the cable have the same natural

frequency. These modes include a symmetric in-plane mode, an

antisymmetric in-plane mode and an out-of-plane or sway mode.

A frequency crossover never occurs in the case of the

inclined cable. Instead the modes are hybrid in form over the

transition range from the taut to the inextensible cable

behavior. These natural modes are a mixture of symmetric and

antisymmetric modes as shown by Triantafyllou (1984b) and in this

report. There are virtually no differences in the natural

frequencies computed by the methods of Triantafvllou and Irvine

(1978), but the mode shapes of the inclined slack cable are

unique in form as the natural frequencies pass close together but .
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never cross over. Several examples of both the crossover and the

hybrid mode behavior are given in this report.

The results obtained in this study have shown that for slack 0

cables with attached masses only the lowest cable modes can be

modelled with reasonable accuracy at the present time. Otherwise

only a rough approximation is possible. This is because of the

relatively small numbers of finite elements and integration

intervals which limit the present capabilities of the two codes.

The addition of attached masses to the bare cable affects both

the antisymmetric and symmetric in-plane modes. There is a

systematic increase in the natural frequencies of a slack cable

as masses are attached to it. For the symmetric modes the .

natural frequency may increase or decrease, depending upon the

proximity to the crossover or hybrid regions of the cable

response. This is caused by the extreme sensitivity of the

symmetric cable modes to small changes in tension and sag near

those regions.

Recommendations. The capabilities of existing computer

codes are limited, as mentioned above, to calculating with

accuracy only the lowest cable natural frequencies and mode

shapes. The computations of the higher modes are rough

approximations because of the relatively small number of finite

elements or integration intervals that can be employed

efficiently on all but the largest computers. In order to make

practical engineering calculations of the dynamics of slack
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cables with attached masses, more efficient solution routines and

means to employ the capabilities of existing medium size and

large-scale computing machines must be sought. The approach of

Rosenthal (1981) based upon Stodola's method of successive . -

approximations appears to be the more promising one for the case

of a cable with attached masses. Then the need to solve the

large matrix equations inherent in the finite element method is

eliminated, and the computational resources are greatly reduced.

For a bare cable either of the approaches described by

Irvine and Caughey (1976t), Triantafyllou (1984b) or Bliek (1984),

or some combination of the three, should yield positive

results. Rosenthal's approach also is applicable to the special

case of the bare cable as shown previously and in this report.

The effects of added mass or fluid inertia are an important

consideration for the transverse (in-plane and out-of-plane)

modes of a cable in water. The longitudinal or elastic modes are

unaffected by the added mass of the fluid. Any improved and more

user friendly" slack cable dynamics computer code should account

for the added mass effect on both the cable and any discrete

masses which are attached to it.

Two crucial elements in the accurate prediction of the

hydrodynamic drag on a vibrating marine cable are accurate

estimates of the natural frequencies and mode shapes of the
S

vibrations. This and other recent studies have demonstrated the

complexity of the slack cable dynamics problem. Thus an
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assessment of the strumming behavior of a slack cable and of the

overall hydrodynamic drag presently is limited to the lowest

cable modes as described earlier. It is recommended that any

improved slack cable dynamics code also include the capability of

predicting the hydrodynamic drag. A similar capability is

available in the taut cable dynamics code NATFREQ described by

Sergev and Twan (1980).
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