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CHAPTER I ,'..-

INTRODUCTION v,4

Since the early 1970's~, tremendous growth has been seen in the development of
computer software for weapon systems. Part of this development is a result of the
development of microprocessors and distributed processing and networking. With
miniaturization of components in computer systems came the ever-increasing role
complex tasks than ever before, e.g., weapon's coordination, scheduling, and

control. This increased role has also meant a dramatic increase in software
L. costs. In 1975, it was estimated that softwar-. costs exceeded hardware costs by a

factor of three or four for U.S. Air Force weapons systems. 1  In 1977, the costs
of software alone to the entire U.S. economy ranged from $10 to $19 billion.2

With such an increasing reliance on computer systems, there is a major prob-
lem in developing "error-free" programs. For large scale real-time embedded com-
puter systems such as the TRIDENT-I Fire Control System (TFCS) and its follow-on,
TRIDENT-II, it is an impossible task to check every conceivable logic path in the
computer code for every combinatica of possible inputs, to discover "programming
errors." Researchers and practitioners of software code development have looked
to various tools to cut down on the number of errors in the design and develop-
ment stage. Included among these tools or approaches are: structured code, a
"top-down" approach to the software design, and the development of a nbe
automated verification and validation (V&V) tools for program checkout; however, .n

they have not proven to be a complete answer. A quote from the July 1973 Air
Force Magazine states:

"The world's most carefully planned and generously funded
software program was that developed for the Apollo series of
lunar flights. The effort attracted some of the nation's
best computer programmers and involved two competing teams.
Checking the software as thorough as the experts knew how
to make it. In the aggregate, about $600 million was spent
on software for the Apollo program. Yet almost every major
fault of the Apollo program, from false alarms to actual
"mishaps, was the direct result of errors in computer soft-
ware ."1

3

Another problem that the U.S. Government and the Department of Defense (DOD),
in particular, are facing with software procurement is the inability to establish
and enforce software reliability goals from contractors. "How does one develop

S•.guidelines or standards that can be used to ensure a certain quality in the soft-
ware as is currently imposed in military standards for hardware development?"
"A more basic question that needs to be answered first is: "What is meant by soft-
ware reliability?" First, specific goals or objectives need to be established.

1-1 21"2"1
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This report defines software reliability as "the probability that a given
software program will operate without failure for a specified time in a specified t
environment." The specified environment is particularly emphasized as it consti-
tutes one of the major assumptions for many of the reliability models discussed in
this report. If the testing environment is quite a bit different from the actual
operating environment, the program' s reliability cannot be accounted for in that
environmaent. Software error or failure is defined as "any occurrence attributable
to software in which the system did not meet its pbrformance requirements." These
definitions are consistent, with the majority of such definitions found in the
literature. ~

Knowing the current status of the program reli-ibility can determine when
testing should be completed and the program released for operational use. It can

also aid the software manager in determining how best to allocate his limited

The current program reliability can be used in making decisions regarding design
tradeoffs between reliability, costs, performance, and schedule. Another use is
in evaluating various software engineering approache~s or tools to find the one
that leads to the "most reliable" program with (hopefully) the minimum cost. The
literature is sadly lacking on controlled studies which indicate the performance
of software tools in eliminating errors in software code.

Tepurpose o hcreport isto poiea suvyof tevarious appoahe
týhat have appeared in the literature concerning the estimation or mudeling of a

~ program's reliability. This report describes the underlying assumptions for each
of the models and provides a data requirements list for implementation. The
various models are contrasted with each other and the relative merits or drawbacks
are also highlighted. This report provides a practical guide for the iinpleanenta-
tio'u of these procedures on a software program. Finally, the report gives any

N'" results of studies undertaken to analyze the performance of these procedures.g Unfortunately, this is one of the areas in which little has been done. Host of
these studies are eithcr based upon simulated data or data sets for which the data
were collected for purpose~s other than reliability modeling. As a result, some of
the k'!y assumptions upor'. which these models or approaches rest are violated. An
additional purpose of this report is to provide the assumptions and data require-
ments for the various models. Steps will be taken in the software development for
TRIDENT-II to ens3ure the compatibility of the data with the model assumptions.

Over the last 15 years, these models and estimation procedures have evolved.
There are basically three different approaches that have. been identified in the
literature: Error Seediug/Tagging Models, the Data Domain Approach, and the Time .

:2 Domain Approach. Chapter 2 of this report describes the Error Seeding/Tagging
Models, Chapter 3 describes the Data Domain Approach, and Chapter 4 describes
the Time Domain Modeling efforts. Chapter 5 describes any studies and their con-
clusions in comparing the performance of these various approaches on actual data
sets. Finally, Chapter 6 presents a number of "quick" estimates of reliability.

* Before beginning the description of these various approaches, it must be kept
in mind throughout this report that software reliability modeling is just one of
many tools. It cannot provide all of the answers that the software managers must

4 ~~1-2 I~
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face. It must be taken as a bit of information, which along with others, is help-

ful in making a realistic judgement concerning a program's status. Because of the

current controversy about which of the models is best and because of the uncer- ,
tainty about the performance of the software reliability modeling approaches, 4t 1.70

is emphasized that the model that is best suited to the data be applied. The

resulting estimate of reliability may be used as another source of information in

determining program status.
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CHAPTER 2

ERROR SEEDING/TAGGING MODELS

This approach, first proposed by Mills, 4 involves "seeding" a given program

with a number of known errors. The assumption is made that the distribution of

the "seeded" errors is the same as the distribution for the inherent errors in

the program. The program is then given over to a testing team for V&V. Some of ".!

"the errors discovered by the testing team are seeded errors while others are in-

herent in the program. Using these counts, the total number of errors inherent in

"the program can be estimated. In particular, if there are N errors inherent in

the program and n are randomly inserted with r errors being subsequently detected

by the quality assurance (QA) team [k (k<r) being seeded errors], it can be shown ..

that the maximum likelihood estimate (MLE- of N is: j(,%

N n(r -k) (2.1)

with f ] being the greatest integer function. (Y.

The biggest drawback to this Seeding Approach is the assumption that is made

about the distribution of seeded errors being the same as the distribution of

inherent errors. This is an impossible assumption to check, especially in the

latter stages of program development. At that point, many of the easy errors

"' (e.g., misspelled output) have been eliminated and the only remaining errors are

"the very subtle errors which are extremely difficult to uncover.

Another approach, proposed by Rudner, 5 avoids this problem by employing a

"two-stage" or "two-team" testing procedure. The program is first given to one

team for testing which finds n errors. The program is then turned over to a

['' second testing team which discovers a total of r errors, (k of which were also

found by the first team.) Using the hypergeometric distribution, the MLE for the

"total number of errors in the program, N, can be shown as:

k[!n (2.2)

where again [ denotes the greatest integer function.

In an article by Schick and WolvertonAs reference is made to a pair of papers

by Basin7 ' 8 in which the following approach is taken. Suppose a program consists

of M statements from which n are randomly selected and errors are introduced. If

,i ~ ~~2-1..•,,

,,, ¼•:

0 
I•.-,"
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r statements are then randomly chosen and tested with k , having inherent errors

and k2 having seeded errors, then the MLE of N, the total number of errors, is:

N (M - n + 1

N [kk , 2.3)r - k2 ''
L , 1

with [ ] being the greatest integer function.

All of these procedures stem from "capture/recapture" estimation techniques ,
which estimate the total number of animals of a given species. A "tagged" set of
animals is released into the environment and after allowing the animals sufficient r.,
time to disperse, a second capture is made. Based upon the number of tagged
animals released and recaptured, estimates of the total population size can be
made.

In applying these estimation procedures, Schick and Wolverton6 warn that, r
based upon preliminary calculations, the tag ratio (the average number of tagged
errors in the sample) should be greater than 20 to ensure the estimates are close
to being unbiased. These estimation procedures can be applied at any point in the
life cycle development of a program to estimate the current error content. The w., VA

biggest drawbacks are in seeding the errors and in the employment of limited
resources in a two-team approach. Few organizations can afford the luxury of
duplicate testing teams for a given program or even program modules. Generally,
in the life cycle development of a program, if schedules start to slip, the time
is made up at the expense of the V&V effort. As a result, when the program
reaches the testing team, all available resources are spent to quickly perform
the testing tasks and release the program to the operational user. These pro-
cedures Eiso do uot provide time-dependent reliability measures of the software,
which may or may not be a drawback. This is discussed in Chapter 4, the Time
Domain Approach.

L.

2-2
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i" ~ ~CH{APTER 3 •-,

SVDATA DOMAIN APPROACH i ,,

The Data Domain Approach includes those procedures that estimate a program's ! ,
current reliability based strictly on the number of successful runs observed i.-

liii compared to the total number of runs made. Included within this category areI
procedures that try to employ test inputs for the program that are chosen accord-

ing to probability distributions of anticipated operational usage. The variousi

'•assigned to those categories which represent anticipated uses. . .4-'.

S~~~For example, range might be an input. It can be broken up into the cate- .'-
I'•; gories [0, 1500 nautical miles (nmi)], [1501 nmi, 2500 nmi], [2501 nmi, 3500 nmi] :>''
S~~and [3501 nmi or more]. Probabilities are then assigned to each category, based""

upon the anticipated operational usage. If it is anticipated that about one- r;.
fourth of all the ranges are 3500 nmi or more, that category is assigned the "'
pro'bability ¼. The inputs are randomly selected according to their probability r -.

distributions and the resulting test cases are run. The estimated reliability[.,•,

runs.

The Data Domain procedures try to divest themselves of time between error -°.•
f•:' occurrence that the models of the Time Domain Approach may employ. If time is a .,,14

" ~~factor in some of these models, it represents the tota], elapsed time (either wall i,.!•

clock time or CPU time) for a testing session and not the times of error occur- ,'
Sf~ence.

usIf a random selection of inputs, which reflect the anticipated operational i:'

. use, is made arnd N runs are made, with S being successful, then the estimate of ,.,
• ~ ~the current program reliability is: ""

; .,R = S/N. (3.11)L-
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where L is the number of machine instructions submitted and W is the average •
ntumber of bits-per-instruction. The modified estimators allow for differences • --!
in exposure to failure (by normalizing the estimator by the program length) and [
for differences in programs operating on different machines with different word ' •
sizes. Suppose the reliability estimates between two programs are compared. If •:•v'
one program is on a large main-frame computer that takes a large amount of time ••
to process and the other program is on a small microprocessor which executes
quickly, the results may be misleading if the reliability is calculated using k;I

Sequation (3.1I). ': i!

Brown and Lipow' 0 have suggested a modification of the basic estimator to I,• ;.•.
allow for the fact that many times in testing, the input is chosen to "stress" the C-:i•'{'"
software program. The rcsulting estimate of reliability then tends to be on the•,-
"pess:~mistic side." Their procedure is to take the input space and divide it into • !
"homogeneous" regions, Pi' il,. .. ,K. They are homogeneous in the sense of fault :,
generation. Suppose N. runs are made from the partition region P., and F. are ..

F.
failures. The estimate of the "unreliability" of that region is .NJ If the .-•

• • 3
probability in an operational environment of drawing points from P.• is P{P.}, the

unreliability for the entire input space can be estimated as the sum over all !•["
regions of the corresponding unreliability of that region times the probability of..'
drawing an input point from that region, i.e., "

Estimate of the unreliability for the program = FiPi. (3.4) : "

The estimate of the reliability of the program J s then given as 1 minus the un-
-i ~reliability. The main drawbacks of this approach are the construction of parti-

tion sets which are homogeneous with respect to error generation and assigning• "
a probability that an input point be drawn from a given partition region. The,,~•
former is impossible to determine while the latter introduces a lot of errors in ,.•;'
the estimate based upon subjective judgement. •

Corcoran, Weingarten, and Zehna 1 1 proposed a model which is more suited to '
hardware reliability applications, but because of its easy extension t~o software P
reliability modeling and the fact that it is a generalization of the previous ',

binomial, it is mentioned here, Suppose there are M sources or types of software •i
errors that can occur. And suppose a. is the probability that if the ith type of !'';r
error is observed, it is corrected, i.e., the conditional probability - r-

P {error corrected ith type observed} = a. •'.[,L

where

',;' . •

3-2 '-
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If N runs are made and F. errors of the ith type are observed, then the estimate

of the reliability of the program is:

R +~ yi (Fi/1)(35

where S is the total number of successful runs and

a if F. > 0! Yi = ;I. (3.6)'"

0 ifFi0 F,

This estimator can be shown to be asymptotically unbiased and its variance goes
to zero for large N. One drawback for this model is that the M types of error
sources have to be known beforehand, and the most serious drawback is knowing the
a. 's.

"These next models discussed try to combine not only, the results of a given
set of runs, as in the previous models, but they also try to take into account the
input space.

The first model is one by Nelson. 12 The basic assumptions are:

. 5ss5ptions

(a) A program may be defined as a specification of a computable function F

on a set E
E=(Ei:i=l,. .. ,N) %

which is the set of all data input values needed to execute the program.

(b) Execution of the program for each input Ei produces output F(Ei).

(c) Because of imperfections in the program, the program actually specifies

a function F' which differs from the intended function F.

(d) For some of the E., the actual output F'(Ei) is within an acceptable
tolerance of the intended output F(Ei); i.e.,

F (E.,) - F(Ei) < A'. (3.7)

But for some E., the actual output F'(E.) is not within acceptable limits;
,! • i.e.,

"F'(E) F(E (3.8)

and an error is said to occur. N may be very large, but it is finite,' owing to
the fact that only a finite number of different values can fit into the word size

3-3 -
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of the computer. Now suppose that Ee is the set of all inputs producing errors on
a given run; i.e.,

Ee = {E.: jF(E.)- F(E.)I > A.) (3.9)

Suppose there are n elements in this set. Then the probability of the program
e

executing correctly if an input is randomly selected from E is:

n e
R --. (3.10)

However, the usual situation is that the points E. are not chosen randomly. They

are chosen according to some operational requirement which can be represented as
a probability distribution over E. For this distribution,

pi=P{E. is selected).

Hence the reliability of the program can be expressed in terms of these probabili-
ties as:

N S,-• pi(i yid (3.•11)•q',,• .
i=11

where

0 if E •E (3.12)Yi =(3.12) [. •,".;

I if Ei&E
1i e

If n runs are made and the inputs are chosen according to the probability distri-
bution over E, then the probability of all runs being successful is:

Rjn = R pi(1 " Y4)! (3.13)

Nelson 12 expands his model by allowing for the fact that usually runs are not
made independently of each other, i.e., one of the input variables may be chosen
in ascending order from run-to-run. To allow for this, Nelson redefines the prob-
ability distribution over the input space as:

pij = P (E. is selected on the jth run of the sequence). (3.14)

Hence, for the jth run, the probability of a failure is:

N
Pj p ijyi, with yi as previously defined. (3.15)

3-4 i'
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The probability that there are no failures in n runs becomes:

R = (1 - PI) (0 - P2) ... ( - Pd. (3.16) IS

As in the previous binomial type models, the estimated reliability based on
Nelson's first model is simply: I,

f 4"R = 1 -(3.17)

where f is the total number of failures and the input points are chosen according
to the probability distribution over E. To construct this probability dtstribu- .
tion, Nelson suggests that the ranges of the various input variables be broken up
into subranges. Probabilities are then assigned to these subranges based upon
anticipated operational usage.

In the TRW report by Thayer, 1 3 the model by Nelson is again modified by tak- .
ing the input space E and partitioning it into disjoint regions, Ri i=1,.. .,k, -plii.e.,1

k
E = V R. and R./nR. = 4., i= 1 1 3 ':•

The probability that a point is randomly selected from R. can be calculated as: .

j E. R.
i.e., all the operational probabilities of the input points falling into region

4R. are summed over. If the region R. is further divided into two sets R. aid R.1'
.3 3 J

S~where

R {E & e (3.19)
4..e

1 k and

R'! iEeRf (3.20)
j EeL

setthe set Rx is derived consisting of all input points in Ri, which result in suc-
• cessful execution of the program. R'" consists of all input points of R. yielding

failures.

The probability of a point falling in R! is therefore:3 -

""~ PR,-( Yd)Pi '(3.21)
J E.cR.

13-5
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with yi = 0 -.2 Ei&RW, and 1 otherwise. The probability of a point falling in R,

is similarly computed as: "

PR= YiPi (3.22) t..j

The overall reliability of. the program can then be expressed in terms of these
probabilities as:

N
R = 1 - YiPi , (3.23) , Lti=1 1

K

-- - cR, (3.24)

j=l E Rj~~1 K

1 P(3.25) ~
j=1 j

and

- (3.26)

j=1 i

The input space has been stratified into regions in exactly the same manner as

described by Brown and Lipow. 1 0  Brown and Lipow created their strata based upon

creating regions which were homogeneous with respect to error generation, while . ,

Nelson1 2 suggested a partitioning based upon logic paths.

Using results from basic sampling theory for a stratified population, if n

runs are made in region R., and f. are failures, then the estimate of R is again

simply:

K f.--alPR. (3.27) •+•,,t•

R=1- ~a. R.'
j=1 3

provided the input points in R. are chosen according to the probability distribu-

tion over the input space E. The variance of this estimator can be shown to be

V: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ." + -' ++'-a .,.. .
'0 1 -" -L ,''"."-", ; . : L '• • '; ' ." : ' +. " . ' '% , .- ,-, - , .' .','' .. '" ,,.... + ..- . ,'' - + ' ..-. • ,,,',• -. -. . ; • • . ,

, ,.,,'.' ','. , '.-." ..., .+ '+, ",'t.'-t .t". ','', '+'. ". '"-. °. .".. -%',' % ,"% '.x ,, •" .+ ." .' -,"-" ... " .•.' ,". -'-. ',, . .' +\ .. •" . "+,"4, ,
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Var {R} = J= -hn. j (3.28)

"This variance can be minimized by taking

n. ~ i ~j'l P~j!' (3.29)
i= 1, 

'.

As in the previous Nelson models, the biggest drawback is the establishment of the
distribution over the input space to determine P and PR':

A paper by Sugiura, Yamamoto, and Shiino14 also considers the binomial model,
but views the input space as being composed of two parts. The input space is
broken up into a user space, the space where the input is actually drawn from, and

*• its complement (Figure 3-1).

E NEIPE

'-'

.!.
FIGURE 3-1. THE INPUT SPACE E =E~ (USER SPACEKýJE

The area is never tested in the V&V stage. For the entire input space E, sup-

pose there are a total of NE input points, of which a proportion PE of them re-

sult in errors. The real reliability of the program is therefore: F4"
RE = 1 - P (3.30)
{E.

However test inputs are obtained and sampled from the user space Eu, where there

are a total of N points, of which a proportion P result in errors.
u u

#! ~3-7 "

';:-
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Now suppose a set of n runs are made and f result in failures. P can be
estimated, as seen before, as u , -

P _ for n large. (3.31)u n

Now suppose that m bugs are eliminated by debugging. Then the following expres-
sion is derived

j -m ,
nP P (3.32)

u u N

wher pJ s th faiurej-rnwhere PJ a is the failure eprobability before debugging and Pu is the failure

probability after debugging. The points PJ and P-m are estimated using equation
u u

(3.31) on two separate teisting occasions. Equation (3.32) can be plotted as a

function of m by holding ;uJ fixed. Calculating the slope of this line, N can be''.u "

estimated as

-Slope

Least squares can also 'be used to fit equation (3.32) to data. The software be-
comes perfect when

Pm PJ T _ (3.34)

i.e., when

m O~N (33)

which simply is when the number of errors removed is the same as the total number
of input points leading to failures. This assumes no new errors are introduced in
the debugging process. If there are bugs which have complex causes, additional
software errors might be introduced when correcting those errors. Suppose that
such bugs exist in equal probabilities in the input space. Then the probability
of such bugs residing in the user space is N /N If such bugs in their correc-

u E
tion produce B new errors, the failure probability, after the elimination of m
errors, is:

N1 -m pj m (1 uB.(.6

U ii E N

3-8
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The program is error free when

U 1.N1

PuNU (3.38)

where

D (339
NE

If the program is at a particular point in the testing stage where the failure

probability is P

then

u u (3.40)
1 - D

mated, using the results of several testing sessions and equation (3.31).

This is a very simplistic model that has not been emnployed on any data sets.
Their formulation also rests heavily on obtaining good estimates of the PJ s

us.ing equation (3.31) in order to fit the straight line as a function of m. This
means that the number of runs for a given testing session should be quite large.

The next reference in the Data Domain section is to a paper by Elliot, et.
al. 1$ The techniques in their paper again employ the simplistic assumption of a
binomial experiment. For this reason, they assume that the runs are independent
and the true reliability is the percentage of points in the input space which
result in the program running correctly, i.e.,

:iR (3.41)

'A" .

PIý EL
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where S is the total number of points in the input space E, which result in suc-
cessful execution of the program. N is the total number of points in that space.

They propose two testing procedures to determine whether a program has reach-
ed a given reliability. One is based on a fixed sample size, the other is a se-
quential testiag procedure. The fixed sample size is the usual hypothesis testing L
procedure for a binomial probability. The user specifies a size for the Type I
error (the probability of rejecting the program when it has a desired reliability H
level) and a Type II error (the probability of accepting a program when the reli- V'
ability is no more than a specified level). Using these values, tables are given
which provide the number of tests, n, to run and the maximum number of failures,
f, that are allowed if the program is to be accepted. The program tester randomly
selects a subset of n input points from the input space E and runs the program.
If more than f program failures are observed, the hypothesis that the program has
reached the desired reliability level is rejected; otherwise, it is accepted. IN

For the sequential procedure, the tester specifies: a minimum acceptable ,
reliability Rmin, a probability a that the program with this reliability will

pass testing, a probability Rmax for which one wants to be "almost sure" that the

so-ftware will pass, and a probability 0 that the software with this probability , .V
will fail the test. The sequential procedure is to:

(a) Accept the software if

F <_-h2 + BNT

(b) Reject the software if

F > hl + BNT

(c) Otherwise, continue testing

where F is the total number of failures experienced up through NT tests (NTl=,
2,...),

h= [kn(1-a) - knp]/D (3.42)

h2 [kn(l-p) - kna]/D (3.43) .

B =[.nR -m nRm (3.44)
max min~ .

and D 9nRmax 2nRmin £n(l -Rmx + In(l -Rmn (3.45) !: :::

As an example, suppose a program is tested in which if the true reliability is ,
something less than R .7 it is desirable to limit the risk of releasing it .- ,somehin les tan min

by setting a = .05. On the other hand, if the program has a reliability of .95W%[' -
or larger, the chance of rejecting it should be • = .1.

3-10
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Then

hi= [n.95 - £n.1]/D , (3.46)

"~ h 2  [2n.9 - £n.05]/D (3.47)

B = [(n.95 - £n.71/D , (3.48) I

and D =n.95 - kn.7 - kn(1-.95) + £n(1-.7). (3.49) V'.

Performing the calculations, it is found that:

D = 2.097 ,(3.50)

hI h=i.074 (3.51)

.h 1.378 , (3.52)

and

B = .146 . (3.53)

So the sequential procedure is:

(a) Accept the software if:

F < -1.378 + .1 4 6 NT;

(b) Reject the software if: -,

F > 1.074 + .1 4 6NT; ""1

(c) Otherwise, continue testing.

The advantage of the sequential procedure over the fixed sapple size is that on
the average, a sequential procedure requires less testing than a fixed sample size
to achieve the same levels for the Type I and Type II errors.

The last model considered in this section is LaPadula's Reliability Growth
Model 1 6 (see also References 17 and 18). The approach is to fit, using least

.. squares, a reliability curve through the success/failure counts observed at 1 71-7'
various stages of the software testing. More specifically, the assumptions are:

"Model Assumptions

(a) Testing is conducted in a series of N stages. A stage is marked by any

change or modification to the program.

(b) At each stage, ai i=l,...,N tests are performed of which Si are saccess 'L.

ful. The number ot tests performed at a given stage is not fixed in advance.

3-11
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(c) After the completion of the N-th stage (which itself is not set in ad-
vance), a growth curve of the form

R(k) = R(u) - A/k (3.54) ¾

is fitted to the data. R(k) is the reliability of the program during the kth
stage of testing. R(u) is the value of the R(k) as k-ýw and A is a growth pa- L
rameter. If A > 0, the reliability of the program increases while A < 0, the
reliability decreases.

To estimate the two unknowns R(u) and A, least squares estimates can be

used. The desire is to minimize

S= (k)- (3.55) V

= R(u) - A/k-- i . (3.56)k=1 nk

The estimates which minimize this expression are found to be: 1
Estimates - Least Squares

N N S N

A k=1 k 'k
A =N (3.57)

NN 12

and
R~)N k Ski

and) A + k] (3.58)k=1 k=1 k

The only data then required to estimate the reliability curve are:

Data Requirement -'

The number of tests, ni, performed at each stage and the number of successes
observed at that stag2, s. .

The relationship of the reliability of the software to the stage number of

the testing sequence is hard to justify. Moreover, a stage can have an arbitrary
number of tests composing it. The only thing that marks the end of one stage and'
the beginning of another is some change to the program.

3-12
3-12 I .
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CHAPTER 4: i

TIME DOMAIN APPROACH

The Time Domain Approach to software reliability modeling has received the
greatest emphasis in the applicable literature as it does in this report. This
approach attempts to utilize either the times of error occurrences and the result-
ing times between error occurrences or the number of error occurrences per time
period to model the error generation processes. In general, the models can beIused to predict the expected time until the next error occurrence or the expected --

Fnumber of errors in the next interval of testing. These models were originally
motivated by hardware reliability concepts and many of the terms used in hardware
reliability modeling are carried over into the software.

Over the last 10 years, many models were proposed and-extensions to them were
given. There is still quite a lot of controversy about which is the "best"' model
to use on a software data set. Some studies were done comparing the various A*

~ ~ models on simulated and real data sets (see Chapter 5) and some studies are
currently under way, but more research is needed. The best advise for avylyiiag .'-

these models to a software error data set is to apply a number of them tu see
which appears to best model the data; that is one purpose of this report. BY
providing a general overview of the various models, their assumptions, and data ~ ..

requirements; a number of models , which seem to be close to the actual way the
daawas generated, can be chosen. By applying some of these candidate models,

the best model for a set of data can be established.

thtwere adapted to software modeling. The difference in hardware versus soft-

ware modeling is pointed out. Section 4.2 begins the discussion of software
modeling with some of the classical adaptations of hardware concepts to software

~ Hmodels. They are classical in the sense. that many of these models are based on
an exponential distribution for the time between error occurrence and the rate of "4

error occurrence. The latter is determined by the number of errors in the pro-
gram at the time of the test. Section 4.3 discusses the "Bayesian" philosophy

Happlied to software modeling. This is followed by Section 4.4, which deals with
N attempting to model the behavior of the program as a Markov process.

' 'The models chosen in this report were selected to provide the reader with anT
idea of the numerous approaches that have been proposed for software modeling.
An extensive reference/bibliography is provided at the end of this report which

'~ kmay be of benefit to researchers in this area. An excellent report, giving an
*. ~ overview of software modeling in general and containing an extensive reference

list, is a report written by Gephart, et. al.18 This report is highly recommended
for a researcher in this-field.

~~ L 4-1 K
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4.1 HARDWARE VERSUS SOFTWARE RELIABILITY MODELING

In hardware reliability modeling,1 9 a number of key concepts have been
adapted for software modeling. The hazard rate Z(t) for a component (softwareprogram) is defined ,;s the conditional probability that a failure (error) happens ••,•.•

in an interval (t,t+At) given that the component (program) has not failed up to
time t. If T is the time when a failure (error) occurs, then:

Z(t)At = Pft<T<t + At j T>t} . (4.1)

The unconditional probability provides the failure (error) probability density -*? "

function, f(t), for the component (software program); i.e.,

f(t)At P{t < T < t + At} . (4.2) I,, -"

The hazard function can be related to the pdf of the time of failure (error), ..
f(t), as:

Z(t) = 1 (4.3)
S1 - lF't) &.

where F(t) is the cumulative distribution of the time to failure; i.e., i:!

t
F(t) =f f(x)dx. (4.4)

0

The function

R(t) = 1 - F(t) (4.5)

is called the reliability function of the component (program).

From equation (4.4), it can be seen that:

Z(x)dx = dF(x) (4.6)

or
t t

I- \ - F(x) 1"

f Z(x)dx = -log [1 F(x)]
o o

(4.7)

t 1- F(t)
f Z(x)dx log

or

I - F(t) =R(t) =exp - Z(x)dx . (4.8)
0

4-2
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Thus once a hazard rate function for a component (program) is specified, the reli-
ability, function R(t) is then determined. Once the reliability function has been
established, the expected time between failures (errors) or Mean Time Before Fail-
ure (MTBF) is calculated as:

,•MTBF f R(x)dx f tf(t)dt. (4.9) :.

Many of the models in the next paragraph present forms for the hazard rate which,

using the previous relationships, determine the reliability function for the pro-
•, !, gram and the MTBF. Some of the models in Section 4.2 contain terms that do not

have counterparts in hardware, e.g., the number of errors remaining and the time
required to discover the remaining errors.

The concepts of hardware reliability modeling were adapted to software model- LV ing. This is not to imply that the behavior of software is similar to hardware;
quite the opposite is true. Software does not wear out over its life cycle as

! .Ihardware does. In the reproduction of software, there is no generation of new
random software errors introduced in subsequent copies. Duplicate software
programs yield identical results. Moreover, software does not change during
repeated operational use as hardware does. It is, in fact, that inconstant
property of hardware upon which the probabilistic modeling of hardware failure
occurrence is based. For software, it is the unchangeability over time that makes
software error generation independent of time. The elapsing of a time variable
does not cause software errors. For this reason, a number of researchers have
strongly questioned the modeling of error occurrence in which time plays a fac-
tor. (See References 20 and 21.) It is not. a direct relationship between a time
variable and error generation that is modeled, however, but an indirect relation- 1"

V ~'ship as a result of the randomization of the input space for a program in opera-
tional use.

Within a program are latent errors which are discovered when a certain com-
.4 bination of input variables cause execution of the program to go down the path in

which the error lies. Because of the xrery large number of combinations of input
variables that are possible, the operational usage of a program gives the appear-
ance of randomization over the input space. This, in turn, causes the error
occurrences to take on the appearance of following a probabilistic model over
time. It is characterization of this probabilistic nature on which the modeling
is based.

4.2 CLASSICAL SOFTWARE MODELS

4.2.1 Weibuil Model

Since a number of the concepts of hardware reliability theory were initially
adapted to software, one of the earliest models to be applied was the Weibull -,'.

Model. Because of the nature of the Weibull distribution, it can bi used to

4-3":;"
*% 9%.



St'.

NSWC TR 82-171 
V

model increasing, decreasing, or constant failure rates for software. The form of
the hazard rate is taken as:(t) a - 1 

k'• '

Z(t) = a where a,b are constants > 0 and t > 0 (4.10)

so that if a > 1, the error rate increases with time; if a < 1, it decreases with
time; and if a = 1, there is a constant failure rate over time. The corresponding

*: pdf for the time to failure is the Weibull distribution; i.e., ,.'

f ~ ) 5e x p -t > 0 
( 4 .1 1 ) • , • ' r

with the cumulative distribution function

F(t) = f(x)dx =I -exp -(4.12)

(Notice that if a 1, i.e., a constant failure rate, f(t) becomes the exponential
distribution.) •j

"The reliability function is therefore:

R(t) = 1 - F(t) = e txa- (4.13)

and hence, the MTBF is:

MTF f R(t)dt =f tf (t)dit r 4.4

where r (')is the gamma function. : K.
Coutinho2 2 (also see Reference 18) proposes estimating the unknowns using as

input the following data requirements. ,

Data Requirements

(a) The total number of errors in each time interval of testing Vi
ni , i = 1I,... ,IK ,

(b) The length of the testing interval

d i 1

(c) The total number of time intervals, K, and

I I



NSWC TR 82-171 '.

d) The cumulative number of errors found to date

The estimators are obtained using graphical procedures, method of moments, least
squares, or MLEs. For instance, in the case of least squares, let

~L.b 0  -akn(b), (4.16)

and.

IFrom the expression of the cumulative distribution function

F(t) =1 - exp (4.19)1".

~k w hvey expt+()g (4.20)

[ (k~a
1n 1 F(t) b) (4.21)

and thus,

In In Ft) a.kn(t) akn~b);(.2

that is,

y M m + b (4.23)

0.~
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with

y Pln and x k Qn(t). (4.24)
Th sanar n[ [1 1F-]

The tanardequation for a straight line, is thus obtained. If

Y. =e (4.25)

there are n pairs of data points (XjYj), ... *(Xn Y ) which (applying standard
n n.least squares) provide estimates of the slope and intercept; i.e.,

;Kd T7,~) 2J (4.26)

A A

bs ~Y mX ,(4.27) ,,

with

K

-K

K

The estimates of a and b are then derived as:

Estimates
iA 

A-

a m (4.29)
ýZ'

and

b exp 0(-0

4-6
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The estimates of the reliability function and MTBF are *iven as:

. . t

AA

4 and 
A

MTBF = r . (4.32)

Wagoner 2 3 (also see Reference 18) also applies the previous procedure to a set of
software data, but suggests that the dits should be measured in CPU time rather

than wall clock time. This a good suggestion and should be considered for all of
the models. CPU time reflects the variation in testing effort from period to
period. It also takes into account when no testing is going on. This is dis-
cussed again in relationship to Musa's Model. 2...

4.2.2 Shooman Model

One of the earliest proposed software models was derived by Martin Shooman
(References 24 through 29). The basic assumptions are:

J Model Assumptions

(a) The number of errors in the code is a fixed number.

"(b) No new errors are introduced into the code through the correction pro-
cess.

(c) The number of machine instructions is essentially constant (i.e., the
program is relatively mature).

(d) The detections of errors are independent.(e) The software is operated in a similar manner as the anticipated opera-

tional usage.

(f) The error detection rate is proport."';nal to the number of errors remain-
ing in the code.

Suppose T is the quantity of debugging time (in months) spent on the system since
the start of the testing phase and suppose t is the operating time (measured in
CPU) of the system. Using assumption (f) at any time t, the hazard rate is

. ' Z(t) K3 (C ) , (4.33)

-4-7*....,Jn.-- q;~
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where K is the proportionality constant and r (T) is the error rate. This is

taken as the number of errors remaining in the program) after T months of debug-
ging, normalized with respect to the total number of instructions in the code.
This error rate, & (t), is mathematically expressed as:

Nr
E

r(T-) T c(CO (4.34)

where ET is the total number of errors initially in the program; IT is the number ,L

of machine instructions; and (tc) is the cumulative number of errors fixed in the

interval from 0 to t, normalized by the number of machine instructions. Since ET

and I are constant [assumptions (a) and (c)] and since no new errors are intro-

duced in the correction process [assumption (b)J as:

Et+0 e() T (4.35)
ET

so
& rT) + 0. (4.36)
r

Combining equations (4.33) and (4.34),

Z(t) =K j " (T (4.37)

Thus, the reliability function is:

R(t) = -C(t , (4.38)

and the MTBF is:

MTBF= 1 (4.39)

K !- (

T f: 3
The only unknowns in this model are E and K. These quantities can be estimatedT
in one of two ways. ?i'Vi

The simplistic procedure is to use the moment technique. The required data
inputs for this estimation procedure are given in the following. .4

4-8,
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Data Requirements - Moment Technique

Run a functional test of the program after two different debugging times,
C1 < T 2 , which are chosen so that & (Ti) < 8 (12), and record the following infor-

mation: c c

(a) For each testing period, record the number of test runs that were made,
i.e., r, and r 2 (usually r, = r 2 ).

(b) For each testing period and for each rur:., record the amount of CPU time
that the program successfully executed. If out of he r i runs made, mi were suc--.

Li cessful with execution times Til,..,Ti , and r. - m were unsuccessful, but hadian 1 i
successful execution times of til,...,t r before the errors were discovered,

•! then

r.-m.
M. 1 I.

H. = T.j + tij (4.40)
j j=1

"is the total amount of successful execution time in the ith functional testingperiod.

I ~ The constant failure rate for the ith functional testing period is then estimated
as:

,: bZ. = number of failures per hour (4.41)

r. - m.
1 • H(4.42)

H.

Since the HTBF for a constant failure rate is the reciprocal of the failure rate,
the MTBF for the ith functional testing period can be estimated as:

A H.
MTBF. (4.43)ITB rE mi-...

If this expression is equated with the expression for MTBF, based on the model, it
can be seen that: ,A..'._ _

H1
-MTBF = (4.44) *"

rj- m,

E! T
4-9r
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and

HTBF2 = [1 ](4.45)
K a •c (T2 l:

There are two equations in two unknowns, so solving for K and ET, the estimates
are obtained.

Estimates (Moment Estimators)

A [(Z 2 /Z 1 ) ,.i(%1) - ((62)

T T (Z2 /Zl) - 1 I

and

A ZK (4.47)

ET

where

"rZ = (4.48)

The problem with this estimation procedure is the variation in the estimates
as a function of the two debugging times, Ti and T2 , chosen. Gephart et. al.18

found that the estimates of ET and K varied quite a bit depending on the two
chosen points. They suggested that a number of pairs be chosen and the averages
of the resulting estimates, using the previous equations, be used. Using the
median of these derived estimators as a possible estimate could also be con- •
sidered.

A second estimation procedure is based on the maximum likelihood proce-
dure. 2 '°3 0 The data requirements are the same as required for the moments estima-tion procedure. WA4

Data Requirements - Maximum Likelihood Estimation

(Same as moments techniques.) .

Vr

4-10 .
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The MLEs are:

Estimates (Maximum Likelihood Estimators)

A [Z2/Zl) e (t1 ) & c(_C2
ET IT (Z 2/Zl1) - 9

S., ~and •'.
and1 r, r 2  1

F + (4.50)

LA YT

Notice that ET is the same as the moments estimators. Here again, it is suggested
that a number of pairs of points be chosen and the average or median of the re-
suiting estimates of ET and K be used.

4.2.3 Jelinski and Moranda "De-Eutrophication" Model

Another early model was one proposed by Jelinski and Moranda 31 while working All

for the McDonnell Douglas Astronautics Company. They developed this model for
use on the Navy NTDS software and for a number of modules of the Apollo program.
"As can be seen in this paragraph, their work spawned quite a few variations of

their basic model.

Model Assumptions

(a) The rate of error detection is proportional to the current error content
of a program. ,,

(b) All errors are equally likely to occur and are independent of each
other.

(c) Each error is of the same order of severity as any other error.',?. .,

(d) The error rate remains constant over the interval between error occur-
rences.

(e) The software is operated in a similar manner as the anticipated opera-
tional usage.

(f) The errors are corrected instantaneously without introduction of new
errors into the program.

4-11
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These assumptions are basically the same ones stated for Shooman's Model. rn.1
(In fact, this report shows that the two models are equivalent when the correct
correspondences are made.) The biggest questions are with regards to assumptions c.

(c) and (f). It is difficult to envision a situation in which a perfect error
correction process is achieved. The instantaneously corrected error part of the
assumption can be avoided by not counting erroirs which were previously detected, L

but were not corrected. Assumption (c) can be avoided by dividing the errors
into classes based upon severity. For instance, one might have a category for
critical errors, a category for lesa serious errors, and one for minor errors
(e.g., a niisspelled word on an output). Software reliability models are then
developed for each type. This approach is suggested. Q

Using assumptions (a), (b), (d), and (f), the hazard rate is defined as:

Z(t) [N- (i- 1)] (4.51)

where t is any time point between the discovery of the (i - 1)th error and the ith
error. The quantity 4 is the proportionality coustant given in assumption (a).
N is the tctal number of errors initially in the system. Hence, if i - 1 errors
have been discovered by time t, there are N - (i - 1) remaining errors so the
hazard rate is proportional to this remaining number. Figure 4-1 is a plot of the
hazard rate versus time. As can be seen, the rate is reduced by the same amount
* at the time of each error detection.

If X. t ti.l, i.e., the time between the discovery of the ith and the

(i - 1)st error for i = 1,...,n where to = 0, using assumption (d), the Xi's are

assumed to have an exponential distribution with rate Z(t.). That is:

Z'•t f(Xi) = $ [N (i- 1)] exp {-$[N- (i - 1)lXi} (4.52)
zOt)

NO i%

S9 'sTEPsIze

S~~ERRoP- .

TIME

FIGURE 4-1. DE-EUTROPHICATION PROCESS
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so the joint density for all the X.'s, using assumption (b), is:

n n
L(X1 ,...,Xn) = n f(X.) n 11 0 [N - (i - 1)] exp {-O[N - (i - 1)]Xi} . (4.53)n i= 1 i=1

Taking the partial derivatives of AnL with respect to N and 0 and setting the re-
suiting equations equal to zero, the solutions for the following set of equations
are obtained as MLEs for N and 4.

Estimates - Maximum Likelihood

An and (4.54)

A n Xi) n

',N "i " ( i
nn

r' NW C-) N11X (4.55)
"ML i iLl

i (i=

and is then substituted into equation (4-54) to obtain an estimate of *. The

estimate of the MTBF is therefore derived after the jth error occurrence as:

A

MTBF [for the (j+1)st error) wa-1(4.56)

3 ML(NML j

i f.: A report by Tal32 derives the least squares estimators for N and * as the
estimators which minimize the sum of the squared differences between the observed
time between failures and their mean values, i.e., the MTBFs. The quantity to be

"(Xi - MTBF) = --- i - (4.57)KI'I
*• •,',: Again taking the partial derivatives of this expression with respect to € and N

and setting the resulting equations equal to zero, the least squares estimates
are found to be the solutions to the following pair of equations:

4-13
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Estimates - Least Squares Z!o

n1

i=1 [N - i + 1]2

LS ~(4.58)
ýLS

n Xi. •

i= N i+1

and

(N i + 1)) ni + 1)2)

(4.59)"L-. n(NLS-+1)

:1 (NLS"i+1) (NLs i +L1)

with the resulting estimate of the MTBF again being:

MTBF {of the (j + 1) error occurrence) = 1 - (4.60)zi) OLS[ LS- i]

Tal's 3  report also provides estimates for 0, N, and MTBF based upon a Least
Squares Approach using the times of error occurrences, t 's, rather than the time
between error occurrences, Xi'a. It states that the t's are integrals of the X's, "- ';:Coo."', 1

ti X., and hence the estimates tend to behave better as the t.is fluctuate
2. J=1 J

less due to the cumulative summary effect.

The estimates for € and N are derived by minimizing the sum of squared devi- 3

ations of:

n i 2

(t. " expected) 2 = (4.61)
i=1 i=1 j= I

Taking partials and setting the resulting equations equal to zero, the estimates,

based upon the times of error occurrences, are found to be the solutions of the
following equations:

n; A.2
i Ai (4.62)

•t n i t A.

StiAi

4-14
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with

A. +. 1 (4.63)
j=1 Nt -j + I

andin t Bi A 2) (2tiA) (n A B) (4.64)

with

i
+ 1 2=. 1N(4.65)i i1.• j=1 (Nt "j +1•)2

I 1 Again the estimated MTBF, after observing j failures, is:
A1

MTBF {(j + I) error occurrence) = .1(4.66)

Si..• 0•(Nt - j )

Using the various estimates of MTBF, the estimated time to remove the next m
errors, after observing n failures, can be derived. Using any of the previous
estimates for 0 and N, the estimate is obtained as:

Estimated Time to Remove the Next m Errors

n+m A

= .Z+ - iMTBF error occurrence) (4.67)

)n+m>j t,,,=•+ ^.^ I(4.68)

The only data required for the calculation of the estimates are:

SH'.• Data Requirements

, ,(a) Either the time between error occurrence (xis) or

7.4
(b) The time of error occurrence (ti's).

"Once one is recorded, the other (x. = t. ti- is obtained.

4-15
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A number of authors have derived the large sample approximations to the var-
iances of these estimates (see References 32 and 33, also 17*) using the asympto- U
tic properties of the MLEs. It can be shown for large n and N that:

n •

(N "i (4.69)
var )M D

var n (4.70)
v2D

n( - n (4.71)

cov NML = i=
MI. D

where

i (N-i+ 2 (4.72)
ii=+ 1)2"

and

var [MTBFML after the nth error occurrence) =.r '

1 1 n ___ __SC1 + (4.73)

i=1 (N - i + 1)2 (N- n) 2  (N n)2

where .J

{n= (N-i 12 (- n) 2  ( 2E• -n• 2 (N -n) 2 + ,,

i=1 (N i + 1)2 (N - n)2 (N - n(42. 74)

nn
and

E (n- i + 1)x. (4.75)i=l 1- 
I - "

• There is an-error for the variance of N in this paper.

4-16 * .'
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Using these various estimates and variances, approximate (1 - U) X 100 per-
cent confidence intervals can be constructed for the corresponding population
parameters as:

_ •Confidence Intervals

iZaZML 1 Z var{;ML}' *ML + Za ML) (4.76)

~ML z1_C( va ML) N ML + Z lac ~var {N ML}) (4.77)

B L - z ;var[MTBFMLj) MTBAF + Z ývar{MTBFMLj l(4.78)

-+ ~ ~ML " I-a ML 1-a Z- 4.7
":. •.'2 22:::.

Any unknowns in the expressions for the variances are replaced by their MLEs and

SZl.•_ is the point taken from a standard normal table such that P{Z>ZI

Large sample confidence intervals can be constructed using the least squares esti-
mates. Schafer, et.al. (see -Reference 33) use the result that if X1 ,...,
X aXare independent random variables with finite moments: (4.79)

:'I•E{Xi} gi (01)62)' var{Xi} a •2(01'62); (4.79) <•[

SE{ (X i-gi (,02))•= Pi, (0162) (4.80)

which satisfies Liapunov's condition, that is,

". .lim 1/2 =0 (4.81) "'1

for each finite value of the unknown parameters 01 and 62, gi is three times con- -

: tinuously differentiable in a neighborhood of the true values for 01 and 02, then
the least squares estimators of 01 and 02, obtained by minimizing:

"n
s0e1,02) = [X. - gi (0.1,6~2)J (4.82)

4 4-17
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are (subject to certain restrictions on the partial derivatives of g1) asymptoti-

cally bivariate normal with mean vector (61,02) and covariance matrix:

18 g. 2 n ag. agi.

1 i=01)02' ji~ (61,02) o a2

1 (4.83)H K
n 8g. 8g. n8:2

~i o (6102) b2 ~ s'2)
i0 10 3E)

whereV

2 n3g 2 (4.84) K
4 and

8g. g. i1 :: :02(4.85)

(See Reference 33 for details.)

If the X.'s are the times between error occurrences, t

- i 11 g(NJ (4.86)

and

1 7
Var[X. = aý(N,O) (4.87

1 1 *[N - i -1)]2

with 01 =N and 02 0 in the previous statement of the theorem.

Thus,

%.8g. 8g. -
!- *-~-(4.88)

3N -36 8 0  4 i -1)12

:4
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and

-- = g- 
(4.89)

-) -= ¢[N - (i -i1)]

If the previous expressions are substituted into the asymptotic covariance matrix,
(1 - a) X 100 percent confidence intervals can be formulated for * and N, replac-
ing any unknowns by their least squares estimates. A similar approach can betaken to derive confidence intervals for 0 and N based upon the actual observed
times of failure, ti's, but it is not developed here.

1

In seeking the estimates and their resulting confidence intervals, the big-
p gest problem faced is the difficulty in convergence of the numerical techniques
. employed to find the MLEs or least squares estimates. Difficulties encountered
, KI, include (see Reference 33) lack of convergence, sensitivity of the iteration

scheme to the starting value, convergence to a saddlepoint or invalid estimate,
and nonuniqueness of the estimates. The choice of a starting point was esp.ecially
critical to the maximum likelihood procedures. Littlewood and Verrall 3 4 have
shown that a unique maximum at finite N and nonzero * is attained if and only if

n n

ni Ox > - (4.90)

S(i-) 1)
in 1

otherwise, the MLE for N is co. Essentially this condition means that the model
can only be applied to software that exhibits software growth, i.e., X. X.
In any computer implementation of this model, the previous condition sho ld f~r.
be verified to ensure a unique finite maximum exist . Another problem with the
MLE of N was pointed out by Forman and Singpurwallafe concerning the instability
of the estimate. If

(i- 1)X

_-1 1 (4.91),,,-

SI 
, .""'

is small, there is the problem pointed out by Littlewood and Verrall,2 4 but if it
is large (so that the times between failures during the latter stages of testing

re ~ 4-19 .'2*
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are greater than the ones during the earlier stages), a new problem with the esti-

Smate arises. The MLE, NML) tends to be close to n, the number of errors found to

date. This tends to give a more optimistic view of current reliability of the

program. It gives the impression that the program is very close to being error- K
less when in fact the real error count N may be much larger than n.

To overcome this drawback, Forman and Singpurwalla suggest that the behavior
of the likelihood function be examined in greater detail. In particular, they

suggest the following procedure be employed as a stopping rule: :1
(a) Calculate the MLE of N.

U (b) If NL Zn, go to step (c); if NL »> a, observe another failure inter-

val Xn+i and go back to step (a). H
(c) Compute

R(N) L N N)(4.92)•:i
(N ."

where L is the likelihood function (4 92)

n
L(Nt) = H *[N - i + 1] exp (-[N - i +.i]xi) (4.93)

and A_"

+(N) n (4.94)¢(N = n n

i~~l i g. ':J ••

(d) Compute A A

ORNOAL (N) = exp [-(NML - N) 2/var (NM)] (4.95) .-

using the formula for var(NL) given earlier. K;
(e) Compare R(N) and (N) for various values of N. If they agree

well, then NML a is a good estimator of N. If they do not agree, then NML is • r;

a misleading estimator of N; observe another failure time interval and go to a

step (a).

4-20
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0, 1
These suggestions should also be employed in any analysis utilizing this

model.

In Forman and Singpurwalla's paper, a procedure is described for testing the L'T
hypothesis that no errors remain in the program and an optimal time interval for

" - testing is developed based upon cost. The test of the null hypothesis

H : N n, i.e., no errors remain in the program

versus

is performed by exercising the software under operational condita s for an add!-

•.•i ~ tional tlength of time. If a failure is observed, the null hypothesis is re-
jected; otherwise, it is accepted. The additional length of time is estimated as:

~~ -2n1- (4.96)

length =

where • is the desired power of the test, i.e., the probability of rejecting the

null hypothesis when it is false. The actually achieved power is at least -

if OML is close to *.

The optimal aaditional time, tlength, of testing based upon cost and mission

time, tm, is constructed as follows, If the software fails during the additional

testing time, the cost incurred is

C1(t) where 0 < t < tlength (4.97)

and Cl(t) is a convex nondecreasing function of time representing the cost in-
curred in testing for time t. If the software passes the additional testing time,
but fails in operational use, the cost is

C1(tlength) + C2 for t < t < t + tm where (4.98)

C2 is a fixed cost due to an operational failure of the software.

If no software error is encountered during either testing or mission time, the
total cost is

.. CI (tlenr tth) < t. (4.99) l!
length for tlength + tm

[-t ,...( ...

': ~: 4-21
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The total expected cost is therefore: .-

t t+t
length length m

SE{C] I C1 (t)ýe dt + (Cl(tlength) + C2) dt
0 t.S0 tlength

00

lg + 5C(t anoai)ree cdt .t (4.100)

length *

It can be shown that when:

dO1 Ct)
,.dt > C2 exp {tm} (4.101) , .

Stlength = 0 minimizes the expected cost. This means that if the additional cost

of' testing is moreAthanh the cost of an operational failure, no additional testing
s hould be don. I, oweer

dC1 (t)

dt < C2 exp (4tm} (4.102)

"* t=o

then -1

"/'dC,(t)
tlength dt t C2 exp (tm) (4.103)

minimizes E{C].

A final point concerning the Jelinski-Moranda Model 3 l is that it is equiva-
lent to Shooman's Model. In Paragraph 4.2.2, Shooman's Model was given as:

ET .

Z(t) =K -& C (4.104)

where a is a proportionality constant, IT is the total number of instructions, ET

is the total number of errors initially in the program, and sc(T) is the cumula- >
tive number of errors corrected in the interval 0 to 1, normalized by the number
of machine instructions. Noting that E = N in the Jelinski-Moranda Model and

T

C ) for all t. < < t. (4.105) b
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the hazard rate function for the Shooman Model is derived. It is

Z(t) = K for t. 1 < t < t. (4.106)

Nj -~; K {N(i -1)) (4.107)

K = { {- (i- 1)J , (4.108)

letting € 0 This is precisely the hazard rate for the Jelinski-Moranda Model

"T just considered.
"The next few paragraphs of this report present, in various amounts of detail,

extensions that have been made to the basic model.

4.2.3.1 Jelinski and Moranda's Model 1 and Model 2. Jelinski and Moranda's
basic model cannot be applied to software programs which are not complete. The
program must be relatively stable with a total of N errors present initially in
the code. Their first extension of the basic model 3 6 is for programs that are

undergoing development. If at any point in time an error is discovered, an esti-
mate of the reliability based upon the percentage completed for the module or
program can be given. Specifically, they let S(t) be the nondecreasing fraction
of the total number of statements which a complete program has, measured at time
t, where t is either elapsed wall clock or CPU time. Thus S(O) = 0 and S(TEND)

= 1, where TEND is the end time of the program development. The'bnly requirement

about the nature of the function S(t) is that it be nondecreasing, its values be

Sknown at the times of error occurrence (t1, 1t .,...tn), and that it be constant

during the times between error occurrence. The hazard rate is then formulated as

Z (t) = OS [N - i + 1] for t < t < i = 1,...,n . (4.109)
1 i-1i-- - t

"Here N is interpreted as the error content at the end of program development,
i.e., when S(TEN) = 1. Si.1 is the fraction of the program which was completed

9 prior to the start of the ith interval, i.e., S = S(t The likelihood
function is then:

'1XI XL ..t n Os S 1 [N - i +' 1] exp {-OS (.iN- i +1)X) (4.110)

where again

X t i-. (4.111)

The MLEs are obtained as the solutions to the following system of equations.

4-23
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Model I

Estimates - Maximum Likelihood-

n

, - NM.,1-i÷ (4.112)OMLI n

i-l

and n

n A 
si x1

S' (N I i +)X (4.113)M~1j1
i=1 NML,1 i + I

Notice that if S 1 for all i, then the MLEs ar the same as in the previous

paragraph. The MLEs are very similar to the ones obtained for the basic model in

Paragraph 4.2.3. In these equ&tions there is S.Xi, while in the previous

section there were Xi's. The Si. 1 has the effect of reducing the time between

the ith and (i - 1)st error occorrence by the same fraction 4s the percentage of

the program completed. !

The MLE of the MTBF, after n errors have been observed, is easily established

as:

"1 (4.114)
MTBF, = -S(tn) (NMLI"n#L i

Model 2a6 also allows Zor a developing program, but the requirement of know-

ing the fraction completed at each stage is eliminated. For a developing program,

it is hard to envision a case where the manager knows with certainty the size of

the end program. Moreover the assumption,
S (t) = S i.1 t i.1 <_ t < ti ,(4.115)

i.e., a constant function between times of error occurrence, is unrealistic. The

very nature of a developing program dictates a continuously changing function of

time.

4-24
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For Model 2, the assumption is made that the error-making rate for the pro-S~gramming team (E) is constant over the time *of program development. The hazard "

rate at time t is then taken to be:

Z(t) = [G Ep - (i - 1)), for ti. < t < t. (4.116)

'where * is the constant of proportionality, and Gi.1 is the number of lines of

code developed by the time of the (i - 1)st error occurrence. Again the basic
assumption is that the rate of error occurrence is proportional to the number of"."errors remaining in the code. G E is the total error count present in the

**' i '
G Gi. lines of code; of which i - 1 have been found. The likelihood function is
again expressed as (using the model assumptions of the previous section):

.,J i.l

n(I .. I- CI[i1 i - 1)] exp,(OiilE (i-f .(.117)j

The ML~s of * and E are obtained as the solution to the resulting systems of
equations.

"i Model 2
oEstimates - Haximim Likelihood

f',n Gi.
"(4.118)

p.-.AGi= 1 G . - (i - 1)

HL2 n G 1 X~
Sd

and

n A n I Gil Xi

i I Ep - (i - ) Xi[G E= (4.119)

An estimate of the MTBF is then obtained as:

MTBF 2  1 (4.120)
4 [G E -j:

-ML,2 np '

.11,0
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In the early stages of development of the program, the assumption that Ep is

constant is questionable. As the programmers experience a learning curve phenom-
ena the error rate is expected to go down. Moreover, if the programmers' team
experiences a turnover in personnel, with inexperienced people being hired at K
various points in the program development, it seems hard to justify a constant E . K ,,

The model seems suitable if the development time frame can be broken up into
smaller time regions over which E can be taken to be constant.

p

4.2.3.2 Lipow's Extension Model. Lipow3 7 proposed an extension to the
Jelinski-Moranda Model by allowing more than one error occurrence during an inter-
val of testing and also allowing that all errors found in a given testing interval
need not be corrected by the start of the next testing period. Specifically, the
model assumptions are:

"Model Assumptions

(a) The rate of error detection is proportional to the current error content
of a program.

(b) All errors are equally likely to occur and are independent of each I.
other.

m Cc) Each error is of the same order of sev.!rity as any other error.

(d) The error rate remains constant over the testing interval.

(e) The software operates in a similar manner as the anticipated operational
usage.

(f) During a testing interval i, f. errors are discovered but only n. are
corrected in the time frame. .

The previous assumptions are identical to the assumptions of the Jelinski- '• '

Moranda Mudel except for (f). Suppose there are M periods of testing in which
testing interval i is of length x.. During this time frame, f errors are dis-
covered, of which n. are corrected. Assuming the error rate remains constant ....

during each of the M testing periods [assumption (d)], the hazard rate during the
ith testing period is:

Z(t) = [N -Fil tiI<t<i ; (4.121)"; '[£

where

* is the proportionality constant,

N is again the total number of errors initially present in the program.
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F = n. is the total number of errors corrected up through the (i-1)st
j=1 j

testing intervals, and t. is the time measured in either CPU or wall clock time

of the end of the ith testing interval (xi = t - ti 1 ). The t.'s are fixed

and thus, are not random as in the Jelinski-Moranda Model. Taking the number of
failures, fi, in the ith interval to be a Poisson random variable with mean •2. ,

Z(ti)xi, the likelihood is:

j M [0 [N- Fi]xi ] I exp {-O[N- Fi]xi }
L(f-,...,f M = . (4.122)

i1 1

Taking the partial derivatives with respect to * and N of .2n L and setting the re-
sulting equations equal to zero, the MLEs can be obtained as solutions to the fol-
lowing system of equations:

Estimates - Maximum Likelihood

0L FM/A(4.123)

NL + 1- B/A

and 'FM M f.
3."•? •: • • • (4 .124) I:%¢N L + I -B/A i=1. N- L - F Li

I _where
M

FM fi the total number of errors found in the M periods of testing,

MH

SB = (Fi + )xi (4.125)

!.'•','and

A Xd. (4.126)

K" the total length of the testing periods. From these HLEs, the maximum likelihood .

"of the mean time until the next failure is:

MTBFL , (4. 127)
"L(NL "FM)

". 4-27
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Lipow gives the asymptotic variance ofteetiae s

var ( D ,4.128)

=1 (N~ ~F~)

var {NJ = w-- (4.129)

and

A A H 410

coy (NL, L,, x. /D(410

where/
_ 21D FMf -( (4.131)

=1 (NL F i 1 )"

Notice that if f. 1 i = 1, ... IM i.e,., only one error is discovered per time

period, and F. i - 1 so that all errors are corrected upon discovery, then all

of the estimates and their variances are precisely the formulas derived for the A
Jelinski-Moranda Model.

Using the previous formulas, large sample confidence intervals can be given
for and Nas:

100 X (1 - af) percent:IConfidence Intervals
Z a{L 0 + Z var{L (4.132)

zN Z va , + Z (4.133)~L 1-0 r(L N -

with Zl, chosen from a standard normal table so that:
2-

P{Z > z 1  2 (4.134)

S4-28

jWL7 7' A



NSWC TR 82-171

Note that if

=f. n. j1,...,M ; (4.135)

i.e., the number of errors corrected in the ith interval is the same as the number
discovered, then the previous model reduces to a model considered by Sukert 17,
Gephart et.al.18 and Lipow,38

4.2.3.3 Rushforth, Staffanson, and Crawford's Model. The last model con-
,, " sidered as an extension of the Jelinski-Moranda Model is a model by Rushforth,

Staffanson, and Crawford. 3 9  This model was originally given as an extension to
an error generation model proposed by Shoomaa. 28  A model proposed by Tal and
Barber 4 0 is also very similar to the one discussed. The basic idea for this .
class of models is to relax the assumption that the error correction process is
perfect. This class allows for the introduction of new errors into the program
in the correcti-on of inherent ones. The specific assumptions for these models I. ,.,
are given in the following.

Model Assumptions

(a) The rate of error detection is proportional to the current error content •.. ,A

of the program. .0

(b) All errors are equally likely to occur and are independent of each

other.

(c) Each error is of the, same order of severity as any other error.

.1• (d) The error rate remains constant over the testing interval of the parti-
cular program version undergoing testing.

(e) The software is operated in a similar manner as the anticipated opera-
tional usage.

"(f) No attempt is made to correct detected errors at the time of error ,,A
occurrence. Instead, at specified points in time tj, t 2 ,...,tj,.., a new cor-
rected version of the program is provided.

(g) Of the detected errors reported, some are corrected, some are not, and
I ~.some in the correction process cause the introduction of new errors.

((h) The error correction rate, r (t), is proportional to both the error L
C

detection rate, rd(t), and the error backlog nb(t), defined as the difference
:• between the number of errors detected by time t minus the number of errors cor-

rected at that time. Specifically, r (t) is taken as:

rc (t) = a rd(t) + onb(t). (4.136)
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$1cr(i) The rate of error generation is assumed proportional to the error-

correction rate.

r (t) = y r (t). (4.137) ""
.... !V .

i) IThe error detection process, nd(t), is completely known. S-
"d

From these assumptions, Rushforth, Staffanson, and Crawford's Model is formu- K
lated as shown in the following.

For any model version j, L.

"N. -N -(t + n(tL.h) , (4.138)

where

N. is the total number of errors present in version j,

N is the 'initial number of errors present,

SC(t. is the total number of errors corrected up through program version U''

0;cj-1 
tŽU

j-i, and

a8 (t j.) is the total number of errors introduced into the program in the

"correction of the previous (j - 1) versions. From assumption (a),

rd(t) = N. for all t'st. <t< tt , (4.139)

where * is the proportionality constant. From assumption (h)t if nc (t) is the

I•, number of errors detected up through time t, then,

nb(t) =n (4.140)

Ct)) = Lt•.• so that:

r (t) a r(t + (n ) - n(t)). (4.141)
C d d"c

Finally, using the fact that:

n &(t) r (x)dx (4.142)

and

n (t) r rc(x)dx , (4.143) I
c o N.^

0r

"4-30 
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it can be drawn from assumption (i) that:

t
t) = (x)dx r(x)dx = nc (t). (4.144)

0 0

Hence,

rd(t) = ON (4.145)

and

-a N.[N n nC(tj.I ) + n c (t t)] (4.146)

.[N - n+(t + n (t A (4.147)c - c j---1

,t = [N - ([ - -) n (tj.)] < t < t. (4,148)

and
r• c r(t) a r rd (t j'1 + P[n d(t j"1 n nc(t j"1)1 (4.149) '•,"

N:t = a a Na (4.150) 1
inolin=fv un N a'(1-y) na (ta, 1) + tni (t -nk (t

rttjd 1 < t < t (4.151)

•:0 0a M1 • (4.152) :""

and ••

N 4-314.53

-...:.,:' *%

,.,.i• Pthe two equations become: ..,.".,,

r:' 'd(t) =O(a [N a " n c (tj-) ](414) .

and '':'

rct) •Oa[Na n (tj.) [nd -( ) nc ( 1]t:'d,,:
, - - (4 .155 ) :,:.

•i• ~ ~~~~~t j'l <- t <_ t :::.';" ..

•: involving f ive unknowns N P aa , rc~) From assumption (j), nd(t) is known

•':: iexactly so that,.

:: d drt (4. 156) ..,"

.• i:!: is known exactly.,•....

::•i ' ~~4-31,..',
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Rushforth, Staffanson, and Crawford show through a linear system's approach N-

that the two equations can be expressed as:

n,(tj a n(tj.)-• At + N 0a At (4.157)t•I::•••

i~NW dR 82-171 aa

and•; 
l"

nd.) '0j.a1( + nc(tj) n n(tj1 t [ + Ota]

nc~tj = '•tJ J(4.158)

+aa Ca t.

with

A t. tj - t j1 (4.15

Here ther, are two equations in four unknowns Nthro and l. If the addi-

tional assumption is made that At. is a constant T (i.e., the new program versions ,

V-, ~ are introduced as equally spaced points in time), then the two equations can be N

ta reexpressed as:

n(tt) LJ'B (4.160)

and", (ti) = At nd(tj1) +nc (tjli)/ 2- nct..i t aa

"i• ~wher e

L 
(4.161)

W3

PT• 1 - [P + 0a~

:• and

Their paper deveiops the estimates of the four unknowns using a least squares

approach. The quantity for which the minimum is sought is:

((ti ) observed increments) (4.163)

Swhere K is the number of program versions,
S(t Na i-l B, (4.164)

",' k vI 1'.. ,..,

aana

.'. ~4-32,,,
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and the observed increments. =

'- d(tj) " nd(tj-)

(4.165)

11(t.)n (t)
ifference in number detected from one version

to the next

difference in number corrected from one version
Acmtrpoa wato the next

SA computer program was developed to perform this nonlinear minimization process
and is provided in their paper.

S4.2.4 Schick-Wolverton Model

The next class of model considered was originally proposed by George Schick
and Ray Wolverton. 6  Their model assumes that the hazard rate function is not
only proportional to the number of errors in the program, but proportional to the
amount of testing time as well. Their logic is that as testing progresses on a
program, the chance of detecting errors increases because of "zeroing-in" on
those sections of code in which errors lie. Specifically, their model is based
on the following assumptions:

.~ LModel Assumptions
(a) The rate of error detection is proportional to the current error content

of a program and to the amount of time spent in testing.

(b) All errors are 'equally likely to occur and are independent of eachother.

(c) Each error is of the same order of severity as any other error.

(d) The software is operated in a similar manner as the anticipated opera-
tional usage.

(e) The errors are corrected instantaneously without introduction of new
errors into the program.

Model The one major difference between these assumptions and the Jelinski-Moranda

Model is assumption (a) with the error rate also being proportional to the amount
of testing time.

The form of the hazard rate function is:
S•' " "Z(X. = [N -(i -1)]X. (4.166) !

"p1 . .4-33
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where Xi is the amount of testing time spent between the discovery of the(i - 1)st error at time t and the ith ,trror at time t.. The quantity is the

proportionality constant of assumption (a) and N is the total number of errors t.'"

initially in the program. Figure 4-2 is a plot of this function over time,
Using the relationship established earlier between the hazard rate function, the
reliability function, and the MTBF, it can be seen that:

XiVv
R(X exp [N (i -1))(the Rayleigh distribution) (4.167) I,

and

MTBF J R(Xi)dxi= 2i[N-(i- . (4.168) II

STo develop the MLEs of 0 and N, suppose errors are discovered at times tl,
=and suppose X t t Then, from equation 4.167. ,

2 ~~X. •
R(Xi) exp {-O[N- (i - 1)] (4.169)

Now f(X.) = -R'(Xi) so the distribution of the time between the (i - I)st and ith

error is: "
2

f(Xi) =[N- (i- 1)iYX exp {-IN - (i- 1)1 2 (4.170)
Z(t)

%'
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From assumption (b), the likelihood function based upon the X.'s is:

L(XI...,Xn) = n f(Xi) 1 O[N - (i - 1)]Xi exp {- 4[N - (i - 1)] -31.

(4.171)

Taking the partial derivatives with respect to * and N of the log of the likeli-
hood function,

0:. ,':L n [N - (i - 1)]Xi
i•+;I• •nL _ cn iI• 2(4.172)

and

a~L-n n X. [Di= 1• (4.173)

Setting the previous equations equal to zero, the MLEs are obtained as solutions
to the following system of equations:

Estimates - Maximum Likelihood

2nA

W2n (4.174)

n [Nsw- (i - lXý

and

i=L [*s " (i 1)] i=1 2

The MLE of the MTBF is then given -as:

MTBF = n(4.176) ,

2¢sw[Nsw - n]
The only data requirement to implement this model is:

Data Requirement

The time of error occurrences, tn) or conversely, tha time between

error occurrences, i.e., MX. t. t.

4-35
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Using the asymptotic properties of the MLEs, it can be shown (References 17
"and 33) that for large n, the large sample variances are:

(4.177)
A i (N i 1)2

var {OW

"v {Nsw n(4.178);.• '~2D, •:

nI 2

A A -1X

coy (Nsw, *SW) = i1l (4.179),.• ~ ~2D1,,,,,

and 2

=D _+_1_2_sw "2 (4.180)
=1 (N 11

100 X (1 - a) percent confidence intervals can then be constructed ai before as:

Confidence Intervals

ON Zl-U vrsW ON + Z vat [OSW) (4.181)

and

N., - var NW , NSW + r { (4.182)

where

z l. is chosen from a standard normal table so that:,,,a

% [> (4. 183)
1-0 2U

The expected time to remove the remaining N- n errors after n errors are:[•.:discovered is.::•

,':.,, Expected Time to Remove the Remaining N -n Errors . .,;

N. 7n(.i1)] 
(4. 184)

j.n+

' 4-36
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N-n 'p (4.185)

The large sample MLEs of this parameter are therefore:

*Estimated Time 'to Remove the Remaining N -n ErrorsN 'n>

NSWn , (4.186)

"As in the Jelinski-Moranda Model, the least squares estimates of # and N are
obtained, by minimizing:

Sn((X.- MTBFx .) . (4.187)

I). ~Taking the partial derivatives with respect to 0 and N, the least squares esti- •'i...

mates are obtained as the solutions to the following pair of equations:

SEstimates -Least Squares

In 1
1i 2

AI -i1Ni +I1

LSýSW=2 L ,SW (4.188)
#Lr, +W=X

=1 (NLS,SW i + 1)

and

-. + 13. (4.189)

i1 (N -i + 1)3/2LS i=l (NLs - i +)2,•.LS,SW SW .SW

The asymptotic variances for these estimates can be developed using the approach
taken in the Jelinski-Moranda section of this paper.

For this report, only one basic extension of the Schick-Wolverton Model pro-
posed by Lipow3 8 is considered. 1N I

4.2.4•.I Lipow's Extension to the Schick-Wolverton Model. Lipow's Modeluses the same assumptions as the Schick-Wolverton Model except assumption (a) of

the previous paragraph is replaced by

4-37
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tent(a) The rate of error detection is proportional to the current error con- 2
tent of the program and the total time previously spent in testing including an
"averaged" error search time during the current time interval of testing. E @

Another way in which this model differs from the previous one (hence, it is .,
not a true extension) is that it is an error count model rather than one using the
"time between error occurrences." Suppose f. errors are discovered during the

ith testing interval and suppose F. _ fj is the cumulative number of errors J
-=1

discovered up through i testing intervals.

Based upon the model assumptions for the hazard rate function, it can be seen
that: .'

Z(x) [N F. 1 ] [x. 1 + xi] , (4.190)2
where

x. is the amount of testing time spent between the end of testing period

i - 1 and the end of the ith testing period,

and

i-1 .

.= ' , (4.191)
'"1Cj=l

i.e., the cumulative amount of testing time spent through i- I intervals.

Since the reliability function is related to the hazard rate as:
x

R(x) exp 1- f Z(v)dv} , (4.192)
0

then '
X.R(xi) exp f *[N - F. l] [Xi... + Y]dv} ; (4.193)

i.e., '}

"R(xi) = exp {-ý[N - Fi. [IiIX xi + x2] } .- 94) ,
1_

Al ,

4-38
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Also, as noted earlier,

MTBF = R(xi)dxi (4.195)

0

(soX x+ dx

= [Np-F ' "4 [ '(xi + - -.1  4X]}dxi (4.198) "•;,

= - exp {0 IN -F.I] XI ep4X )l+
, i- f { N(4 .19 9 )

= [N Fi. _ [ - 2
,(xxi- +-2xiX.4[1(4.198

exp dx. (4.200)

= exp {4[N - 'k-X ) f} *f • I1/2 (4.201) + 1

= exp {€[ -F]x 2 1 (420o2) F

[N[N

S4-39
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Sukert 1 7 gives the MLEs for * and N as the solutions to the following system of
equations:

Estimates - Maximum Likelihood

A FM
LSW F) A 

(4.203)#~~~~~ ~~LSW = Ns i-1~i(iI -i

i~l 29

and

H f. A M x.

iLSW k i -1 + -2) (4-204)
i~ LSW i-1F.

(Note: Sukert left out OLSW in his equation corresponding to 4-204.)
M

M is the number of testing intervals and FM = f is the total number of errors

found in all the testing intervals. The MLE of the MTBF and the expected time to
remove the remaining N FM errors are:

MA fA A2

MTBF exp *LSW [NLsw . FM (4.205)

COLSW[LSWFM]

"and

Estimated Time to Remove Remaining N - FM Errors

-1 3~r - JS-w •S .(4.206) W
j=FM A A

Lsw[NLSW - F.]

Sukert. also provides the large sample asymptotic variances of the estimates
for * and N as:

A /M f.
var WD (4.207)i= (N~s F

A 
Fvar {NLSW} = (4.208)

4-40
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and

, M

( WA N WXi (%1-1 + xi) (4.209)S•? coy (NsLW i= 1 2

where

FD (2 xi (XiF1 + (4.210) .k '
SOLSW iI(NM ,sw F Fi.1 Xi=

As in the previous paragraphs, large sample confidence intervals can be con-
structed for 0 and N. From the previous formulas, it can be noticed that if:

X is set = 0 and for all i,

"f I i =so that

then the formulas for the estimates and their variances become those associated
with the Schick-Wolverton Model.

_ _ _ _

4.2.5 Generalized Poisson Model

The Generalized Poisson Model (GPM) was given in a report by Schafer, Alter,
Angus, and Emoto 3 3 for the Hughes Aircraft Company under contract to the Rome Air
Development Center. Their model can be considered to be analogous in form to
both the Jelinski-Moranda and Schick-Wolverton Models but taken within the error
count framework. With a slight modification, it can be shown to be an extension
of Lipow's Model as well. The model assumptions are given in the following.

Model Assumptions.

(a) The expected number of errors occurring in any time interval is propor-
tional to the error content at the time of testing and to some function of the
amount of time spent in error testing.

(b) All errors are equally likely to occur and are independent of each
other.

(c) Each error is of the same order of severity as any other error.

%I (d) The software is operated in a similar manner as the anticipated opera-
tional usage.

(e) The errors are corrected at the ends of the testing intervals without
introduction of new errors into the program. (Note: Errors discovered in one
testing interval can be corrected in others; the only restriction is that the
error corrections come at the end of the testing intervals.)

4-41
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Usiag the assumptions, their model is constructed as follows. Suppose the
testing intervals are of length xl,...,xn and suppose fi errors are discovered in
the ith interval. At the end of the ith interval, a total of M. errors are cor-

rected. In the previous extensions of the Jelinski-Moranda and Schick-Wolverton1
H.es•M was setie. eroton r

Models, set to i.e., all errors found in an interval are correctedj=1

at the end of the interval. This model relaxes this assumption. ,

From assumption (a),

E{ffi : 'N - i) (4.211)

where is the proportionality constant, N is the initial number of errors, and gi

is some function of the amount of testing time spent previously and currently.
Usually, gi is nondecreasing with the logic that as more time is spent in tcsting,

more errors are discovered. In the paper by Schafer, et.al., the function gi is
taken to be: 1

gi(x,,x , ... Ix ) X . .(4.212)

This restriction is relaxed to show a broader class of adaptability.

For example, if

(x ,...,x : xi '(4.213)

then the resulting formulas for the estimates are the same as the Jelinski-
Moranda Model; if

gi(x,...,xi): xý/2, (4.214)

then the formulas are the same as the Schick-Wolverton Model; and if

gi(xi,...,x.) = x i x + (4.215)
'i j=12

Lipow's formulas are obtained.

From assumptions (a) and (b), the joint density of the f 's is:

n
f(f 1 ,...,fn) = 1 f(f) (4.216)

i=1

n [O(N - H. 1 )gi(xl,...,xi)] i (4.217)
-H exp {-4(N - H. )g.(x 1 ,...,x.)}; T.i=l fi I

4-42
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i.e., f. is Poisson with mean = (N H M~)gi. (4.218)

. i-.
Hence, the likelihood function L is:

] S.,V'
lSi,"*1

n
i=1-

L(ON) = 11 (4.219)

so that
n

InL(ON) nf(f (4.220)

f -o E. f I(N engiii (4.221)

n n

and
obtained: =.= (N- = i " n. (4.222)

Thus , tak-ing the partial derivatives with respect to *and N, the following is

and

(N m= . 1 (4.222)

Thus the MLEs of 0 and N are solutions to the following pairs of equations:

Estimates Maximum Likelihood

"- I N n
A ~ 1 fi

GPM =(4.224)

NOPH Ž.... -. i.i

•',++I L ~~I.,' ."+•"
O M n, _.n

11 '• 44,. *

GPJ gi,.

'11 ++ I•' '1• S''' , 1•'• ... •' •''+ ' + "1 '1 + ;, • • 1 +" " '' + ' .. " . % . + ' + .. + . e '• "<t " + 

1 
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and

n fi^n
- -PM Egi (4.225)

GP GP

I f 1 i= 1,...,n, M. i- then gi = xi gives the equations for the

2x

i•!; Jeinsi-Mrana Mdel gi-2- gives the Schick-Wolverton Model equations; and

and if = x + + the .MLEs equations for Lipow's Model are obtained.j=j

Following the development of the asymptotic variances of the MLEs given in
the Hughes report,

A 

(4.226)

N /GPM(426

has for large n, a covariance matrix that is approximately

l E (8 2 •nL} -1/

-E _ anL

! N ow,

o -N

S= "~i=1 .•2 428"

aZ~nL
"- =- " g 

(4.229)

89 21n I~ AnL

1''.. , 1, 

t %

i: Ž, . __-__- E

-+,;8N 4-4 
, 

N-

% + + i

N o w , i / • m '1w • ii • . + - .m , I . m ,i • ,+ + * + % . ,+, ,. .- 4 + • + , - . + . ,. . i., {l• k + - .l• ,% + -

S,,.-a.+,.•, 
, .•,b :+",,'3 w. '." ,, +•p * +•,, ,..pw.• ,1-L,8 2 n, .•.',, , . ,_ 'j+.,:,•,%.." , h% .'% *"•' . . ""'". • - -"""% •,'+W + +m"w ',•

mi.aa• +T•Oh•~ ,• :..,. "!L''..•,W,'••m +,', +...•+ +.'J. +,~+!++•,,'a,,•m '.'.'.: .. %•~ _•,.u.•,.i. • +,• P ..
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n f
eMl .nL_ )(4.230)

! (N2-i~l)(N - Mg• 422

-E enL (23

and

"E(N -n iM)gi (4.231)

1.. 8N2  =i ( j 2l1 (N-M )

= • (N -Mi ~J (4.232)

nn g

-E I (4.233)

and E!,

"(n -lij. n ,(N - Mil)gi

8N2 - (N - .M ) (N - il

n gi (4.235) 7

nl A n.
"2GPM (4. )

%, • n A, . gi [!

'"' I" E'gi OGPM . iI.

"i"1 i=1 (NGPH - i.G M
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n -

i=1 n

NGPM (4.237)

g GPM
i=1 ~i=1 (NGP M~)

Now let 1GM11

o2 (~ (NA

GPM GM i-i(4,238)

then

A n g.n

V Ni

K gi= (4.239)

GPM

var GGM M*~ (~P (4-240)

var NGM (4.241)

CVGP'NGpM) 8 i= (4.242)
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i i-ii

Note if gi is the appropriate function xi, or xi x. +

ifg.is aproritej=1 2

and if

A n gi n f.
_ _ _ E . 1 _ 423

ýGP11 (N2
i=1 (N M - 1_ i=1 (NGpM - iI

"then not only are the MLEs for the GPM the same as the previous paragraphs, but

the asymptotic variances are the same as well.p\
From the GPM formulation, the expected number of errors in the (n + 1)st in-

terval of testing is

E~f *(N - M)g.+i X, *i~ni (4.244) ''

where x is the anticipated testing time for the (n + 1)st session. The MLE is

therefore
Ejf+(N -( 1 .. 4.245)

f n11- GPM (GPM Mn)ga+l x).. x+

Its asymptotic variance is therefore

""f A ff{ ~ 8EE nfn+
var E A [ + nao 8N a ON

L] (4.246)

K , L(NGPM - Mn)gn+l GPM gn+ 1 ^NGPM M n)gn+l OGPM gn+ (4.247)

Z (N -N)gnM P g (p 91 ggi 1

1gPN nn+1 OGPM 9n+1  OG ___=____ ___ GP J
-= (NP )i1 OGPHgnfl+

%; 
" i= =

D*#2GPM (4.248)
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("GPM - +1 iPM(2
( .... D* = (GPM i- GilZ "a

n a :,•, •,T

2GpM(GPM n n+ r +n+ = (4.249)

From the previous results, large sample 100 X (1-a) percent confidence.
intervals for the various parameters can be constructed as:(

Confidence Intervals [•:

Z~~~ isasadadnralrandopm vrae

GPM " I- a r GP ¢OPM + Zl-a v GPM

(4.250)

GPM "1Z-01 v pNGPM + l. aONp

and

" E fn+ - I._ E f ~ +tI• a E n (4.251)

P z >_ z.,1 (4.24)8

and Z is a standard normal random variable.
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In the Hughes report, the least squares estimates are also derived. Those
estimates are chosen to minimize:

I! S=[fi " (N - 1)gi] 2 . (4.253)

By taking the partial derivatives of S with respoct to * and N,

S••=-2 ( fi" O(N -Mi_,)i)gi (N -Mil)gi" (4.254)I

Ii ",.•a n d

nas
•- 2 ( fi" O(N - Mil)gij~g. f4.255)

5 '~ 0-,,, .

The least squares estimates are then obtained as the solutions to the following
system of equations:

Estimates - Least Squares V

nfg

O=LS,GPM A (4.256)
S(N- M )g 2

S'izl i-1 i

and

nA A n A

i (NLSGPM - 1) -LSGPM 2 (NLsGPM 4- 257)

Using the large sample results for leadt squares estimators given in Para-

graph 4.2.3 of this report and using the Hughes report, it can be shown that:

AA

6 =,NLGP) (4.258)
;r-LS,GPM =(LS,GPM LS,GPM).
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is asymptoticktlly normally distributed with mean vector (0,N) and covariance va-
trix:

k. •Z• OLS,GPM (NLs,GPMt Mi-l)g4 (Ls, Gpm " Mi llg

A =SGPMg -"

iL , _ +3 uGpi)4 *P(NLS2Gp) (4,2•.#LSGPMGPHGPI '.

wLere

n a A A

• ,, Requ GPM i r e nGPMt

ZKi(a) The Lengths of the various testing intervals, i.e., x1,...,x11,"

* (b) The number of errors corrected at the end of each testing period, and

,-64-50
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(c) The number of errors discovered in each interval of testing, i.e., f 's.
In the Hughes report 33 , an extensive analysis was done on the properties of

S•.. x• with W'a
the least squares and MLEs for the specific model of gi(xI,.,xi) = i

positive iiiteger. Thus the GPM could be taken as a three parameter estimation
problem of N, 0, and a or a two parameter problem if a is specified. The report
noted problems with lack of convergence, convergence to nonoptimal solutions, and
lack of uniqueness for the estimates. The report noted that the MLEs had a
greater teudency to these problems than the least squares. Both procedures were
dependent upon a "good" initial starting value *for the estimates in order to
achieve convergence. Other problems with the estimation procedures included ob-
taining solutions which violated model assumptions and oscillation of the esti-
mates in the convergence process.

4.2.6 Geometric Model. This model was proposed by Moranda (References 41 and 42)
and is a variation of the Jelinski-Moranda "De-Eutrophication" Model. It is an
interesting model because, unlike all of the previous models discussed, it does
not assume a fixed finite number of errors in the program, nor does it assume the
errors are equally likely to occur. It assumes that as debugging progresses, the
errors become harder to detect. By operating on the premise that a program is
never completely error free (because of error introduction in the process of cor-
recting a detected error), this model can be utilized for error analysis. The
specific model assumptions are:

Model Assumptions

(a) There is an infinite number of total errors (i.e., the program is never
error free),

(b) All errors do not have the same chance of detection,

Wc) The detections of errors are independent,

-; (d) The software is operated in a similar manner as the anticipated opera-
tional usage, and

(e) The error detection rate forms a geometric progression and is constant
between error occurrences.

1; . From these assumptions, the hazard rate for this model is of the form

z(t) D • 1• (4.262)

for any time t between the occurrence of the (i - 1)st error and the ith. The
hazard rate function is initially a constant D which decreases in a geometric
progression (0 < 4 <1) as error detection occurs. Figure 4-3 is a graphic repre-
sentation of this hazard rate function.
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,• ~FIGURE 4-3. GEOMETRIC "DE-EUTROPHICATION" 'PROCESS ":

Notice from the graph the ratio of "the change in.the error detection rate, .1

Change in Z(t) on the discovery of the ith error =D -D

Change-in z(t) on the discovery of the (i+1)st error D~i-D~' ' 0

= •> I(4.263)

Thus the size of the step gets smaller as errors are discovered. This means that

latter errors are more difficult to find and do not have as dramatic effect on .,
lowering the error rate as earlier detected ones. ' "4,.•

Again, if X. = t.-• ti. is the time of discovery between the ith and Ci -... •"

1)st error, then using assumptions (c) and (e), the Xi's are assumed independent

exponentials with rate Z(ti), i.e., .. :

f(X.) D= D~'exp {-D~i'Ilxi} . (4.264) [•-':'

The likelihood function for the Xi's is then:

.101

L(X 1 ""Xn =i=In (X Dn = 4i=in {-D "n= 1 * (4.265) ,•
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* Thus the log of the likelihood function is:(.26

InLn.~nD + (i-I)Iný-D i= (426

SThe MLEs of D and are obtained as the solutions to the following pair of equa-
tions:_

XD D0= (4.267)

and

(i (4.269)

and
G A ,

;,xi

n A.

i~xi
n+1 (4.270

From the estimates, the MLE of the MTBF after n errors have been observed can
be estimated as:

A A1

MTBF = ,.±,.. (4.271)

The model cannot be used to estimate the total number of errors in the program
*but, it can be used to estimate the "purity" level after n errors are observed.
The estimated degree of "purification" for a program is usually given by the l,
ratio:

Z(t)-Z(t a
o D D- (4.172)

Z(t 0
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the change in the hazard rate function from the beginning of 'testing to the end
versus what it was at the beginning. The estimate of this purification level is
therefore: Ii,

A A

PL 1 (4.-273)

The large sample estimates for variances of these estimators are derived
again using the large sample properties 6f the MLEs (see Paragraph 4.2.5.).

Now
3 2nL n (4.274)

D2  D2

2,,•':..3 UnL _ •. )(i-2)X,
- - i.,_1)0 ( i2)-, (4.275)

,..:,,..,8•• _ n~n i 1).D=1ii+ ) i'x÷ . (42)
and a~L___ii[~
"2 n-2

n(n- 1-D i(i +1) 0'-X~.. (4.276)
02 202 i1

Hence, 2

'8 InL]
8D 2.n~ (4.277)
S D2  D2

n

_( 1)i (4.279)
I1 \D, ,i -1

n
_'O 1 , (i-1)= ( '-n (4.280)

and _n_ 1) +D (421
2 q-2

8 U ~L a~n 1). i

n-2-

n(n- 1) + D i(i + 1)0 (4.282)
202 i=2 D."
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n(n - 1 (n 2)(n - 1)(2n - 3) + (n - 2)(n (4.283)I

2*2 
2 6 2

- n(2n - 1)(n- 1) (4.284)

1Hence for large n,

D

A6 (4.285)

is asymptotically bivariate normal with mean vector (D,ý)* and covariance matrix

n(n 21) n(2n'- 1)(n 1 (4.286)

2D 6

= • n--•2D2 (2n 1) -6D6

~~2 , )2(4.287)

2D G(2a, 1)

k A

var[DGl N + (4.289)
):G)

and
J% A

'1 ~2 A A
6DG@c "v(4GDC+--G (4.290)

The estimated variances of the HTBF and PL are then obtained from:

var {HTBF) Z , OD (4.291)
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where SreI
1 (4.292)Don

and
var Pf /f f (4.293)

where

f 1 n (4.294)

These can be shown to be:

var{MTBF} = 2(2n 1) (4.295)
D2 (n + 1)-

and

*2a

.varsPL}= (nl)+I) 2 t l(4.296)

•:IAs in previous paragraphs, using these large sample results, confidence 'in-

tervals can be constructed for the various parameters.

In Tal's paper (Reference 32), least squares estimates of D and 0 are derived
from the times between error occurrences (X.'s) and the times of error occurrences

1
(ti's). Specifically, for the Xi's,2minimize the following: 'ri

S (D,) XiSi=1(DD '. (4.297)

Taking the partial derivatives of S1 with respect to D and *, these are obtained:

,2( D20il = D02(i-1) (4.298)

and Y 1

aS1  n X.(i:- 1) n 1)
2 ) 2"(4.299)

i=1 D202i-I
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The l.east squares estimates are therefore the solutions of the pair of equations:

Estimates - Least Squaresii
~ ~2(i-1)

DLSG = LS G (4.300)

n

OLSG

LJ and

In \~n X.(i-_1) ~n ___.

~~~( 1 __A__ =0.i.'? (i-) . 2(i-I - 0.

i=1 2~T i1 - (4.301)
OLSG OL4t

The least squares estimates based upon the times of occurrences are obtained by

minimizing..

S2 (Dt,) ti D&1/) (4.302)
=,j1D..

. Again taking the partial derivatives of 82 with respect to D and J, the least
"" squares estimates are obtained as the solutions to the following equations:

D•sG -ti --- - -o =S
andG l i j 1 ,) (4.303)

l\J=1SIG OL,~SG ~ 1 j LSG)\J

1 j -S G 
(4.305 )
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and

0 1) (4.306)

the inast squares estimates are the solutions of:

Estimates -Least Squares '•

A n nDUSi G : t. BC.: C. 2B 0 (4.307) )

L..,G
and "

"rsut of• the vracs(4.308) "•

Using the results of Paragraph 4.2.3, the asymptotic variances of these vari-
.. ous estimates can be established. For'large n, the estimates have a covariancematrix of the form:

en g. 2 ng2

,.i 2 n 8 . 2r.

a (.8g.) a, 8gi 8g.[,

io62= 2. (4.311) 8822

.-, '• agi •gi la i\i/ "

9.).
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For the estimates based upon the XIs,

ag. 8)g. 1 ;

- ,8 •D(4.312)
D20ili

and

agi 8gi (i - 1)41B . = .-- =D1 ,.,.

ii

&.0 since '"<

[::,.•gi (01,A) gi (M,) -Di1(4.314)

k) .Also it is seen that,

(f (01,•2) var{X} -1 (4315)• .- • ", ~ DS202(i.1) .(4 15

For the estimates based upon the ti's'
agi agi . _. 1•O- " = D- - = D IN J- -1 4 3 6

::hgi 8gi (4.317)

:(.,•,with

egi (4.318)
"" Data Requrej=m De

• and

S0i ((81,02) =var~ti =vr X = var{X}

i j~jj=lI 1
'• =02 0 :1T (4 .3 19 )

j=1 D•2(ii
";'•.,,. •The only ihedatathrequired tisoft implement this model are:thtiebwen•"

Data Requirement .-

Either the times of error occurrences, t la, or the time between error occur- .
rences, X 's. 1' "_.,4 - 5 9

=-"" ,. • .,. -7 'I ,. . "-" , - .'. ." " "" " " '",," " " ' "". . . . . .. . . " " " . . .. . . . . . . .7 7 ,"
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4.2.6.1 Modified Geometric "De-Eutrophication" Model. The only extension

of the Geometric Model that is considered is due to Lipow 8 and discussed in'
Sukert. The extension is made to relax the assumption of an infinite number of
errors leing prese't in the code. The model assumptions are:

"Model Assumptions

(a) All errors do not have the same chance of detection,

(b) The detections of errors are independent,

(c) The software ic operated in a similar manner as the anticipated opera-
tional usage, and

(d) The error detection rate during the ith time interval of testing is:

n.1, Z(t) = D~ni for t, < t < ti (4.320)

where D and 0 < < 1 ar2 as in the previous paragraph and,.ni is the cumulative

numbbe of er- ors found up to the ith interval of testing. Th, form that this
haitrd rate fLction takes is -iven in Figure 4-4.

Zjt)

D~n .0"

,4.

DO~ )D(b 0"l)

TIME

FIGLC1. 4-4. MODIFIED GEOMETRIC "DE-EUTROPHICATION" PROCESS r
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The development of the MLEs for * and D proceeds in essentially the same
manner as for the Geometric Model. The resulting estimates are obtained as the
solutions of the following pair of equations:

Estimates- Maximum Likelihood

n

An G:= m ^ni- (4.321)

.OMG X

and

n -

_ D MG ni-I OMG X (4.322)
;MG

where m is the number of testing intervals of each length Xi, i~l,...,m andm •,

n . is the total number of errors discovered. Notice that the hazard rate

function and the estimates become tLose of the previous section when a i-i.

The MLEs of the MT3F and the reliability of the program after m intervals of

testing are:

Ap

Reliability R='t) =xp{D (4.323)

and

MTBY - (4.324)

D)MGOMG L
The estimated degree of "purificati.on" for a projpram is obtained as in the pre-
vious paragraph as:

A A An An

A Z(to) - Z(t ) DMG - GMG 1 - MG (4.325)
PL - -(F7

. 4 0 D
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The large sample covariance matrix of the MLEs of D and * can be shown, following
the same ,procedure as employed in the previous paragraph., to be:

m n 
2

MG ýMG DMG (4.326)

40 
1

•AA

-MM i=1 ni- i=1 i-i

Si-I () 
(4.327)2

and 
,,

OMG =(MG' DMG)' 
(4.328)

The estimated variahces of the other estimates can be found by pre- and post-mul- M
tiplying the covariance matrix h by:

/ 2

A' _• 8• , where f is any of the following functions

f(D,•) = eqI- • fm , (4.329)

f (D, 4) = 1 (4. 330 ) -'I":

m

or i (4.331)

and

*Data Requirements,' 
Q;

(a) The length of the testing intervals, Xc ib,... ,m, and

(b) The number of errors detected in each interval. fui

f (D.) 4 -6 2 
I *0

4. ~ (4.331)
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4.2.7 Geometric Poisson Model

This model was also proposed by Moranda 41 as an alternative to the Geometric
Model if the reporting of the software error detections is on a periodic basis.
etia.toAs in the previous Modified Geometric Model, only the numbers of error occurr-

i'••ences per testing interval are needed. Unlike the previous model, however,

the :testing intervals are all assumed to be the same length; e.g., a testing
period is composed of a day, week, etc. Additionally, since the model assumes a
constant rate of error occurrence during a time period, the model is best applied
to situations in which the length of the reporting period is small in relation- I?••-..
ship to the overall length of the testing time. The model assumptions are:

Model Assumptions

S(a) There is a nonfinite number of errors.

(b) The detections of errors are independent.

(c) The errors do not have the same chance of detection.

(d) The software is operated in a similar manner as the anticipated opera-
-.tional usage.

(e) During the ith time period, the number of errors detected, fi, during

that ýperiod follows a Poisson distribution with parameter Do where D is the
initial detection rate and 0 is the constant of proportionality where 0 < 0 < 1.

(f) Each error discovered is either corrected or not counted again. 4'A

From assumption (e), the detection rate follows a geometric progressioa from
.one testing period to the next. Initially, the detection rate is - constant D.

,, After the first reporting period, the detection rate is assumed proportional to
"the initial rate, i.e., it is then OD, and so on. The hazard rate for this
model is:

• Z(t) = (4.332)

for t. 1 < t < t. during the ith ti.me period. Notice how this compares to the

hazard rate functions for the Geometric and Modified Geometric Models. Here the: l•t I's are fixed, while for the Geometric they were random.

Since the number of error detections in a reporting period follows a Poisson
distribution, the likelihood function for the m reporting periods is:

':f,.., ) p [" .....L'S~m 
i

m H fn (4.333)
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Thus

""nL fiD - - (4.334)
i=1 1 ~. " ~ 4

Hence,

8£nL fim i-i_-

and •"

m
i~l (4.335)

andi

OenL i=1 -1 i-2
D = . (i 1)0$i (4.336) Pr

The MLEs are then obtained as the solutions to the following pair of equations:

Estimates - Maximum Likelihood

m 1? N

D (4.337)

:'.:! ~~G M Aii-I G G P "~G

Sm °i .1 m

GP

and

•" m- m-mm- ,"

.. __ _ =__ i~i-1= (1+ (m - 1)d~ "'-GP (4.338)

~f (i- 1) i GP +(mn1)G+ iGP

using the fact that 4forms a geometric progession, so thiat

m rn-1 i

~ *1 = ~*1 ~(4.339)
i=1 i0O

and"I

i=1 i=O (1 )2 i
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Large satpple variances of these estimates can be calculated in the usual way
and are found to be:

A '

AUGP[) Ai+1 .
varJ• i +GP + (i - 2)(i - (4.341)

^GIJ GP + )ýG
._ DG ~ ~A03p I i=O il•.•"'

var{*G lGP (4.342)

AD

Tteand l-es bb i

nt -I ,. 2 ~~

Soy4•G,Dp) ,, "= G .'
-I.1

A A

COV ~i=OGPS -£~PL).1- 1

"-GP L G) A (4.343)

)..:• •-,:[where

i-=' M- 1 ^i+l - i)

aGP GP + 1)(i 2)0i
A GP- A i=0

... ,.

"L' " (4. 344)

" ~~~The least squares estimates are obtained by minimizing: •':

Sn Dn i-1 i)2
S(ý,D) = (fi D (4.34-5) •<•

m • •• ;";Taking partial derivatives and setting them equal to zero, the least squares esti-':""

.. _,..• mates are obtained as the solutions of: ,..'

"i- i~36)i
"" "•: D~pLS2 (i- 1 ) -GP ,LS/"'

= i~~~l(= 1 G..m- PP

GPL 2 MP,

'*. * .,...

"':i! ~and V'

SN A. m )A ( ) *..*.("; m) f - (i = DI (4.347)
2,••,(i lli GP,LS GP DpLS OGPL

•" ~4-65 •
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Large sample variances can be developed for these estimates as done in pre-
vious paragraphs. The estimate of the expected number of error detections in the(m + 1.)st time interval is established as either:

A A

Expected Number of Errors in Interval m+1 D DGAOP (4.348)

~~ *. = DGPS~L (4.349) L
- 4.2.8 Schneidewind's Model

Y, Norman Schneidewind 43 proposed a generalized model which includes the Geo-
metric Poisson as a special case. The basic philosophy of this model is that as
the testing progresses over time, the error detection process changes and hence,
recent error counts are usually of more use than earlier counts in predicting
future error count5. Three approaches are employed in utilizing the error count
data. Suppose there are m intervals of testing and f. errors were detected in

the ith interval, one of the following can be done.*1(a) Utilize all of the error counts for the m intervals.

S~(b) Ignore the error counts completely from the first s I time intervals...

(2 < s < m), and only use the data from intervals s through m.itra

(c) Use the cumulative error count from intervals 1 throui-h s- 1, .i.e., .. :
s-i

F = f and the individual errors counts from interval s thirovgh m.

Schneidewind argues that approach number I is applicable when one feels that the
error counts from all of the intervals are useful in predicting future counts.
Approach number 2 is to be used when it is felt that a significant change in the
error detection process has occurred and thus only the last m - s + I intervals
are useful in future error prediction. The last approach is an. intermediate one

%! between the two others. Here it is felt that the combined error count from the
tive of the error detection behavior for future testing intervals. The model

•. ~ ~Model As sumptions ,,

(a) The number of errors detected in one interval is independent of the
error count in another.

(b) The error correction rate is proportional to the number of errors to be
corrected.
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(c) The software is operated in a similar manner as the anticipated opera-
tional usage.

(d) The mean number of detected errors decreases from one interval to the

next.

(e) The intervals are all of the same length.to henmrof ros

Mf The rate of error detectionispootna to he um rof ros
within the program at the time of test. The error detection process is assumed to
be a nonhomogeneous Poisson process with an exponentially decreasing error detec-

~ tion rate. The rate of change is taken to be of the formn

d. aexp Pi(4.350) 4,

for the ith interval where a > o and > o are the constants of the model. ~ .;

From assumption (f), the cumulative mean number of errors is therefore

D.[1 - expf-pilI (4.351)

Nso that for the ith interval, the mean number of errors is

M. D. -D = exp(-P(i - 1)) - exp(-Pi)1. (4.352)

The likelihood function, assuming a Poisson process, is then developed as

MF S epMm f.e

L(fi) .. fm) - - S-1 m miep "~}(33

where M is the mean number of errors in the interval 1 through s-1 with s
s-i

Achosen as an integer value in the r-ange 2 < s < in.

Usiug the fact th~at-.

., . [exp(-P(i -1)) -exp(-Pi))

- exp(-f3(i -1)[1 exp(-P)] (4.354)

an = -(O exi,(-(s-

- [1 -exp(-(s -1)] ,(4.355)
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Gephart et.al. 1 8 established that the MLEs for a and • are then obtained as:

Estimates - Maximum Likelihood (Approach c)

and= £n(y) (4.356) U-; %

;•where y is the solution of the polynomial equationt, ••,-•
[A.

e."; ~~(4. 357) .,.

S- yS- 1 m %

which can be simplified to:

Ay -(A + F )y -(A +sFsI Fs-I+

+(A +F s$m + sFs-1 " Fs-1)m - (A - mF)y +,..,.*,

sS-m

(A + F - s-i) + (A +sF -mF -F )ySim Hm) s-i m s-i

- (A + sFs 1 + F - mFm -F'5 1) 0 fpr y > 1 (4.359) ",

with

"A= 0 (s i - 1)fi (4.360)
i=O

m
Fs'm = fi . (4,361) p ,,,~m l::

i=s

If s is set to I and Fsm =F = f, then the polynomial in equation

(4.358) gives:

"F_ - A. (4.362) 12m -

A 1
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This simplifies to:

Ay'1 ( y m ~ A F M =01 (4.363)

for y > 1.

SLThe MILES derived under these conditions are for approach (a) where all error count
data are used.

In equation (4.363), if m - s + 1 is substituted for m and the subscript of

the f.'s is modified in the expression for the summations to make f5 the first

error count, the MLEs for approach (b) are obtained where the first s -1error

counts are ignored. For this case, the MIES are:

PS n(y) (4.364)

and

.1 ~where y is th:sol:t::n of the equation(435

Aym-s+2 -( I s~)yms+l + ((m s +1)FsIm A)yF

+ (A +F -(m s +1)Fs m) (4.366)

for y >1I where

m- s
A= if5  . (4.367)

i=0 K
From the MIES, various other parameters can be estimated as seen in the fol1'jwing.

Expected Number of Errors in the (m + i.)st interval of te~ting

m. [ exp{-Pi} expt-P(i +'1)1] (4.368)
1+1

Time to detect a total number of M errors

log jUA/(U PH)1I/P ;(4.369)

t ~ ~4-69 f.
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and

the correction rate for the ith interval

= a exp {-,(i - Ai)) (4.370)

where Ai is the lag time between the detection of errors and their correction,
i.e, the time to correct Di -C. errors where C. is the cumulative number of

errors corrected up through the ith interval.

All of these parameters are estimated by substituting the appropriate HLEs
for a and •. If the lag Ai is unknown, it can be estimated by finding a value
for Ai such that

C. = D i > Ai , (4.371)

using the empirical data.

If approach (b) or (c) is used, a determination for s needs to be made.

s. For each pair of estimates, the computed sum of weighted squared deviations

between th,- error estimates m. and the observed counts f. for all i is computed
and the one yielding the smallest sum is the chosen s. The weighted sum is given

as:

SDW = exp(pi) exp(-Pi) exp(p) I "fi (4.372)
L , IW

Schneidewind also suggests that to decide among which of the three approaches to
use [(a), (b), or (c)], the unweighted sum of squares

M 2 '• •i

SDU = exp(-Pi) {exp(p) - 11 -f (4.373) " ,-,i~m+1

is computed for each approach (i.e., a and P are replaced by their estimates for
the respective model). M is some specified future time. The unweighted sum of j
squares is calculated between the observed counts and the expected counts over the
next M - m intervals. The approach yielding the smallest sum and hence, yielding
the smallest differences between predicted and actual values is the one chosen.

Gephart et.al. 18 show that the models under approaches (a) and (c) (with
s = 2) are equivalent to the Geometric Poisson of Paragraph 4.2.7. If

a= D (-.•n•) (4.374)
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"" Poisson Model where D and * are the parameters of that model. In an equivalent

manner, if

D 0 [1- (4.376)

and

= e- (4.377)

~-:and they are substituted into the Geometric Poisson, it becomes Schneidewind's
Model. ¾

The data required to implement any one of three models are: ' 4

Data' Requirement 4'

The error counts for each of the m intervals of testing.TooeMpy

4.2.9 Nonhomogeneous Poisson Process

zl'; ~The Nonhomogeneous Poisson Process (NRPP) Model was proposed by Amrit Goel ;'

and Kazu Okumoto (References 44, 45, and 46). Following other models that have
been considered (see Paragraphs 4.2.3.2, 4.2.5, 4.2.7, and 4.2.8), this model as-
sumes that the error counts over nonoverlapping time intervals follow a Poisson
distribution. The expected number of errors for the Poisson process in an
interval of time is assumed proportional to the remaining number of errors in the
program at that time. Specifically, the model assumptions are as seen in the
following.

Model Assumptions

(a) The software is operated in a similar manner as the anticipated opera-
tional usage.

.[': K (b) The numbers of errors, (f1Jf2....,fm), detected in each of the respec-

tive time intervals [(O,t 1 ),(t 1 ,t 2 ),(t 2 ,t 3 ),...)(ti, , (tmi ttm) are inde-

pendent for any fini'te collection of times tl < t2 <, ,<t

(c) Every error has the same chance of being detected and is of tue same
severity as any other error.
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(d) The cumulative number of errors detected at any time t, (N(t)), fol-
lows a Poisson distribution with mean m(t). The mean m(t) is such that the ex-
pected number of error occurrences for any time (t,t + At) is proportional to the
expected number of undetected errors at time t.

(e) The expected cumulative number of errors function, m(t), is assumed to

be a bounded, nondecreasing function of t with ..A.A

M(t) 0 t = 0

m(t) a

where a is the expected total number of errors to be eventually detected in the
testing process.

Note that f. = N(ti) " N(ti-)' The NHPP differs from some of the other

Poisson Models considered in that this model treats the initial error content of
a program as a random variable while some of the others assume it is a fixed
constant. Also the time between the (i - 1)st failure and the ith failure de-' .
pends upon the time to failure of the (i- 1)st rather than being independent
of it.

From assumptions (d) and (e), for any time period (t,t + At) I

Tn(t + At) - m(t) = b{a - m(t)}At + 0(At) (4.37.")

where b is the constant of proportionality and At 4 0 as At 0. By lettingAt ',..,

At -> 0, the mean function satisfies the differential equation V. ...

m'(t)= ab - bm(t). (4.379) I

Under the initial condition m(0) 0, the mean function is

e(t)a(1- e ) . (4.380)

Thus, =-

Pr[N (t ) = n( [ (-. t ). ](e4.3t) r

funcwith . '-'Si

%, bt r'., ,•'.
Lm(f)W = a(l e- )(4.381)

.~.7

-•i'; For f• N(ti) N(t,) and the error counts being independent, the likelihood !,•
•,., i-1 Ný t :.

[,.:. function is therefore:' :.,,

• ~~~~M Wmt)- m(t.) lexp{m(t,)- m(t.}i ;'

- (4.382)'

f I
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"-bt a-1 "bt. f. -bt. -bti.1L

[a=e -e ] expae •- e (4.383)
'i1 ',~~ i=. I

Hence,

""i m -bt. -bt
enL(f 1 ,.. • • ,f fikna + f e -e,'• ~i=1 i=1 !,

m -bt. -bt. m
+ a (e -e - (4.384)

Thus,

3.-bt
8nL i= (1- e m) (4.385)

a° a

"and tee . e(4
-t -bti,..•'m f . t .e i t i . e -

-. . .enL =-E -at e m (4.386) "•
8b i=l -bti_ -bt i m

e -e .

"Thus, the MLEs are the solutions to the following system of equations:

Estimates - Maximum Likelihood

Sf.

"-a p (4.387)
-e NHpptM)

and A A

-b NPPtmin N. (I t ebNHppti

6k t mebHPm f i M fi e~l
(t - it.e -i/(4.388)

b t i=l _b _ _ b_._,

, (1-e NPPtM) e-bNHPPti-1Ie - NHppti
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The expected number of error detections in the next (m + I)st interval of
testing is then estimated to be:

m(t m(t a a eNPt) - e • (4.389)
m~m+i) m aHPP

"As has been done in previous paragraphs, the least squares estimates of a

and b are derived by minimizing:

m2A
SS =f ,f " [m(t') " m(t J1) (4-390)

m -bti.I -bt.
~d[= f. - [a (e - e )]}2 (4.391) ¾.i

Thus,
m -bt. -bt -bti_ 'b

- [a{ -[ e ti)]e (4.392)

and
-bt

= 2 m -bt.i -bt -bt. -ti l btil}
- 2f" [a(e - e )][a (tie i ]N.= (4.393)

The leasit squares estimates are therefore the solutions of this pair of equations:

Estimates - Least Squares

/ -b t -b"" Ke-bNHPP,LSti1 NPPLS 1)Sfi (e e

a = (4.394)NHpP,LS m .b)2t
NHPLS(eNHPP,LS i-i -bHP t.\2

4 e
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and

t bNHPP,LSti eb PLSti-)i=l ie-i•"•ifi -t- ti-le

-b"'Ltm bHPsi.)(NIPL ti LiebNP ~ t 4 )(4.395)
I '-NHPL i- "b NHpP, LS t" "bN N1PPpPt Lt

SlaaNIIPPrLS e-e -(

In the report by Schafer the large sample variances and covariances are
dezived for the MLEs and the least squares estimates.* Provided a is large, the
"variances and the covariances of the MLEs are:

"A (t.- t exp(b(t + t )) -t
var{a)Hr ~ - t e (4.396)NP =1 "bti'l -e

-bt
A

Svar{b}NHP ~_l (1 -e m)~al e (4.397)

- and

A -bt m)

cov(aNHpp,bNHpp) 1(-tre (4.398)

with

A• AA\i-e ) £i - ~eb " te 4.99

-bt -bm (t ) t-b

Sebti e-bti ) (4-39

( e
For the least squares estimates, the large sample variances and covariances are
given in the covariance matrix: *

~ -- L (4.400)

3• The author would like to express his thanks to Hr. Vijaya K. Srivastava who

pointed out the errors in the original formulas and provided the correct ones.
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where

6NPPL ANHOPP, LS , (4.401) •,

bbNHPP, LS

= - a e e, (4.402) ..

i~l ( bt' "btil 2t "bti "bti-1 •B (ea2 et - e i e ) e (4.403)
i=1lr

B=t bt (2 bti eb

C ak3(e - e / tfe - e (4.404)

c =i~ [a 3(te-bti t bt21) ( -i iebtil) -bti) 2 (4

m[a(t iebt

S"b"t 1 bl-"b i ebt ] 2 ( bt 2 t.

~'.3.

"" ate - ti[l)- (e ti) e

~ a(ieb1--bt, 1 ~ --j~~-tibti~)e t1 2b4A)

d m (bti - bt) ( bti /l -" bti 2
E a~tie i- ti e ] e- e / i= e -e(4 ' •h'

Ji=1
(4.406)

This large sample result is derived utilizing the results of Paragraph 4.2.3

"with: I ..- 7- -bt -bt,!-i-1.
g.a (eti ~e (4.407)

and =a-bt -~bt)
0. a e e (4. 408) r' :"-
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Equations (4.396 through 4.406) can then be used to construct large sample
confidence intervals for the parameters by replacing any unknown in the variances
with their respective estimates. V

Goel and Okumoto 4 4 derive HLEs for a and b based upon the individual times of
,error occurrences. if SS represents the failure time of the ith error, they show
in their report that the MLEs are the solutions to the following system of equa-
tions:

n
aO (4.409)"' ,- ~ ~~1 -exp(-bon. .

"s

m ~and 

,

nA AP"n = k + a GOsex ( -b GOs (4.410) :.%

"b GO k=1l

where n is the total number of errors detected.

Using this formulation, Goel and Okumoto establish that if Sn= s is the time

of the last failure, then the conditional reliability function of X n+ (the time
between the nth and (n + 1)st failures) is given by:

Sxn+1 (X JSn =s) = {xn+1 _ X ISn = s' (4.411)

P [software is operational for at least x amount
of time given s amount of testing) (4.412)

exp [-a{ebs - eb (s+x) (4.413)

Okumoto and Goel 4 s utilize this reliability to determine an optimal release
time for a software program. Testing can continue until the desired reliability
R (x ISn = s) is achieved for a specified operational time of x or the

n+1
required testing time s can be determined for a desired reliability for a speci-

* fied operational time. If
"., {e-~bS -b(s+x) 

":;I

V R= exp[-aeb - e}] (4.414)

.5 -bs.= exp[-m(x)ehs , (4.415)

F"with 1 .

m (x)= a(1 - e-bx) (4.416)

I • then the desired testing time to achieve the specified R and x is:

"s M(X - (n kn (4.417)
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Estimates based upon previous testing data are used for a and b.

In their paper, Okumoto and Goel also determine an optimum release time based

upon cost considerations. Suppose:

C, = cost of fixing an error during testing,

C2 = cost of fixing an err.,r during operational use (C2 > C0),

CS = cost of testing per unit time,

t = software life cycle length, and

T = aoftware release time for testing.

Since re(t) is the cumulative expected number of errors in the interval (O,t), then

the total expected cost is:

C(T) Cjm(T) + C2 [m(t) - m(T)j + CST. (4.418)

Differentiating the expression with respect to T, then (;4i

C'(T) = Cjm'(T) - Com'(T) + C3  (4.419)

where

m'(T) = abe-bT. (4.420)

Setting the right-hand side of this equation equal to zero, the following is
obtained:

abe-bT = 3 (4.421)
C2 - C1

Okumoto and Goel establish in their paper (Reference 45) that:

(a) If ab > C- C' then there exists a unique feasible solution to equa-

tion (4.421) and the optimum release time is:

T*= min{To,t) (4.422)

where

Tor= £n (ab(C 2 -Ci)) (4.423)

while
C4

(b) If ab < (4.424)

"C2 C1
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then " " "
0 0. (4.425)

The last comment concerning this model is that if the testing intervals are

-• all of the same length, say T, then this model is equivalent to the Geometric-
Poisson Model and hence, Schneidewind's Model with s =1 of Paragraphs 4.2.7 and q ,
4.2.8 respectively. If all of the testing intervals are of the same length, then
the time of the ending of the ith testing interval is t. = iT. The joint density
"of the f.'s then becomes: 1

f~~f m [m(t) m(tj.) exp~~.1 m(t~ 446•' "f(fl,...,fm) n f1 . (4.426)

S [a(e bti. e -bti ].-bt -bt
m[e - e 1)] x Ja e -e• -- ,.""

in f. (4.427)

"[m -b(i-1)T expT -eibT -b(i-1)T
[a~e e_- expae

. i=1 f e i - (4.428)

-~[al-bT -b i1)'-iiiexp

nm [a)e-b )e •e., [-.a(1-- e'bT)e~b T1 ;.

i-I fi! (4.429) L[

Notice that if: I',-;',:,'

D
a-,, : -(4.430)

(4.431)

"where D and are defined in Paragraph 4.2.7, then the joint density functionbecomes: •:"

t:• ~ ~[Do' 1 fiexp { ":

e• 1 (4.432)

S"" the Geometric Poisson. Likewise, since the Geometric Poisson and Schneidewind's •:

Model with s = 1 are equivalent, utilizing the relationships established between
the two models in the last paragraph,

' • • ~(4.433) .,

and b- L
T

7(4.434)
,., .•4-79
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are found to be the relationship between Schneidewind's and the NHPP Models.

The data required to implement this are: ::
Data Requirements "

(a) The error counts in each of the testing intervals, (i.e., the f 's).

(b) The times the testing intervals end, (i.e., the t.'s).

(c) The time of error occurrences (i.e., the s.'s) if an optimal release ,
time is desired.

4.2.10 Duane's Model

The next model considered also employs a nonhomogeneous Poisson process for
the error counts. This model was originally proposed by J. T. Duane~ as a hard-
ware reliability growth model. Duane observed that the cumulative failure rate
versus cumulative testing time when plotted on kn-Qn paper tended to follow a
straight line for a number of systems developed at General Electric. This model
has been applied with some succebs to software reliability modeling by Evaluation
Associates, Inc., (References 48 through 50). The specific assumptions for this •
model are given in the following.

Model Assumptions

(a) The software is operated in a similar manner as the anticipated opera-
tional usage,

(b) Every error has the same chance of being detected and is of the same
severity as any other error,

(c) The error occurrences are independent, and

(d) The cumulative number of errors detected at any time t, [N(t)I, follows
a Poisson distribution with mean m(t). The mean function is taken to be of the

form mWt = XtO.

From the assumptions, it can be seen that if .

-(t) =t= Expected number of errors by time t S(4.435)
t t total testing time

is plotted on £n - kn paper versus time, or conversely, if

Y =n n At = £ (- 1)Pn t (4.436)
t 4-8
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is plotted on regular paper versus £n(t), a linear relationship relating the two _-_

is obtained. That is, -;.

SY = a + bX (4.437)

with a = £IX, b 1- , and X = In(t) for the latter case.

The rate at which errors are occurring is:
dr~t) = t•- 1 (4.438)
dt •,

Hence, the MTBF is 1 Also

if • > 1, there is no improvement in the software as time progresses. Crow5 1

shows the HLEs for X and • are:

Estimates - Maximum Likelihood

4 n -- (4.439)

"tD

and
A

_ _(4.440)

OD n- t/t (. V.

where the t.'s are the observed failure times and n is the number of software

errors detected.

The MLE of the MTBF for the (m + 1)st error occurrence is then:

A

A-1 tnMTBF J -s- . (4.441)

.* Crow5 1 also provides a table of

whic {MTBF/MT^BF < C, a (4 442) ~~--
which can be used to construct a lOOX(l - a) percent confidence interval for the
MTBF.
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Least squares estimates for a = £nX and b = - 1 for the equation
(Expected number of errors b time t) (4.443)testing. tiu = a + b~n(t) (4.443)

total testing time

can be achieved in the stanidard manner as: %

"Estimates -Least Squares

aDLS - bD X (4.444) ,-..

and

n X= xYi X iii• .:.•"
bi 1  "=** (4.445)

SbD,LS X,

where
X n(t (4.446)'..

and ,
anda (4.447)

Various confidence intervals for the parameters of the linear model can be *.

* -constructed in the usual way.

The only data required to implement this model are: P

Data Requirement

The times of error occurrences.

4.2.11 Execution Time Model

The next model considred is o,,e that has been applied to the greatest number - V',
of software developmentarograms. This is a model developed by John Musa ofBell~~~ Laortoie 5'5amesThe- interesting aspect of this model is that it

is based upon the amount of CPU time involved in testing rather than on calendar

(wall clock) time; but, the model attempts to relate the two. By doing this,
Musa is able to model the amount of limiting resources (failure identification
personnel, failure correction personnel, and computer time) that may come into
play during various time segments of testing. In addition, this model eliminates
the need for developing an ei correction model since the error correction rate
is directly related to the ins,.. taneous failure rate during testing. The ape-
cific assumptions for this model are given in the following.
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Model Assumptions

Ca) The software is operated in a similar manner as the anticipated opera-
tional usage.

* .(b) The detections of errors are independent.

(c) All software failures are observed.

Cd The execution times between failures are piece-wise expouent~ially

distributed (i.e., the hazard rate is a constant that changes only at each error
correction).

A ~ the) p Thr e hazard rate is proportional to the number of errors remaining in

Cf The fault correction rate is proportional to the failure occurrence

rate.

(g) The quantities of the resources (failure-identification personnel, fail-
ure correction personnel, and computer times) that are available are constant over

~ K a testing segment.

chageinMTBF from T1 to T2 can be approximated by:

eik~~tP~ (4. 448)

wher Atis the increment of execution time, Am is the increment of failures ex-
perince, 6k is an execution time coefficient of resource expenditure, and P

is a failure coefficient of resource expenditure.

44 i) Failure-identification personnel can be fully utilized and computer
utilization is constant.

(J) Fa ilure- correction personnel utilization is established by limitation
of error queue length for any debugger. Error queue length is determined by

C assuming that error correction is a Poisson process and that servers are randomly
assigned in time.

Assumptions Cg) through (j) are needed if there is interest in modeling -

resource allocation for the testing segments. Only Ca) through (f) are needed
for reliability modeling. In fact, Ca) through (e) are assumptions which are
incorporated into many of the models presented in this report. Later in Para- K
graph 4.2.11, an equivalence relationship between this model and the Jelinski-
Moranda Model of Pardgraph 4.2.3 is established.

Suppose there is an initial number of N errors present in the program.
Suppose n errors have been corrected after T amount of testing (based upon CPU
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time) has elapsed. Then from assumption (e), the hazard rate function at time X t

is of the form: 1

ZWc = (N - n) ,(4.449)

where f is taken as the linear execution frequency (average instruction rate
divided by the number of instructions in the program) and K is an error exposure
ratio which relates error exposure frequency to linear execution frequency. The _

error exposure ratio attempts to account for the fact that code is not executed
in a sequential manner, due to numerous loops and branches, and for the variation
of the machine state. The variation of the machine state may cause an error
associated with a particular instruction to be undetected n~n a given execution of
the instruction.

From assumption (f),
K dn

d BZWt (4.450)

where B is the proportionality constant. B is called the error reduction factor.
It is the average ratio of the rate of reduction of errors to the rate of failure
occurreence. Usually B is positive and less than 1 although there is the situation *.

* in which the finding of the error that led to the failure of the program leads to
the discovery of additional errors as well. This creates a B larger than 1.

Musa generalizes this relationship by considering,

dn=BCZWt (4.451)

where B is as before and C is a constant called the testing compression factor.
lt is the average ratio of rate of detection of errors during testing to that
during use. It attempts to account for the greater stress that is placed on a
program to uncover program errors during the testing phase in contrast to the
operational phase. Usually C is larger than 1 because of this fact.

Now suppose m represents the number of failures experienced in the process
of correcting n errors and suppose M is the required number of failures that one
needs to experience to uncover all N errors within the! program. Then

-~.'n =Bm (4.452) i

N BM .(4.453)

The previous equations can be combined to obtain: 44

dn BCZCE) (4.454) - N

= BC[fK(N -n)] (4.455)L
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= BCfKN - BCfKn , (4.456)

>1 i .e.,

dn + BCfIu = BCfKN (4.457)

or in terms of the m's,

B - + B2 CfKm = B2CfKM (4.458)

or

"dm + BCfKm = BCfKH (4.459)
dt

"Since n m = 0 at t = 0, equation (4.457) has the solution

n = N [1 - exp(-BCfK%)] . (4.460)

and equation (4.459) has the solution

m = M [1 - exp(-BCfKi)] (4.461)

"Since the MTBF is given by:

MTBF - , (4.462)

it can be reexpressed as: *•'?.

1 -.

TB (4.463)

"fK(N - n) (4.464)

SfK(N -N + N exp (-BCfKx)) ' using equation (4.460), (4.465)

"* ~.. fKN exp (-BCfKT) " (4.466)

If To is the initial MTBF when testing just begins, i.e., t = 0, then

To Initial MTBF = (4.467)

, 1 •
: N •(4.468)
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Thus,

MTBF To exp (BCT/NTo) (4.469)

for any testing time T. As T 4 00, the MTBF ÷ • indicating the improvement in the
software as testing proceeds.

The reliability of the program at any future time T, given testing of length

Sis found from: Z,

R(TI) exp [- Z(T)dxl exp [-XlZ(T)1
0 '

=exp (4.470

Again 4.t can be seen as T + co causing both 'Cl and MTBF + • R('Cl) 1 is obtained.

From this basic model, Musa establishes some other useful results (Refer-
ence 52). The number of failures Am that must be detected and corrected to
achieve an increase in MTBF from T, to T2 can be shown to be:

AM M. ... (4.471)
I T2

The additional execution time required to achieve the increase is:

At = MTo n (4.472)

For the implementation of this model for a reliability analysis, an idea
of what the values of these various parameters are is needed. Musa suggests that
initial estimates can be obtained from other projects of a similar nature. For
some of the parameters reestimation can then be made as the testing progresses.
The error reduction factor, B, can be determined by taking data on the number of
errors generated while fixing other errors. This information could be obtained
from the development of similar programs. Musa reports that B is relatively
stable for the programs he considers; it is in the range .94 to 1.00.

The testing compression factor C must also be obtained in a similar manner.
"If there is no basis for estimation of C, a conservative approach of taking C = 1
is advised. An initial value of M can be obtained from the relationship M = N/B
with N being estimated from an idea of the average error rate for programs of a
similar nature. Musa notes, 5 2 from a number of other studies being observed, er-
ror rates in the range of 3.36 to 7.98 errors per thousand lines of instruction
with a weighted mean of 5.43 errors per thousand lines of instruction. In a later
report (Reference 55), Musa employs an estimate of 6.25 errors per thousand lines
of instruction. The accuracy of the initial estiamtes for N and hence M do not
have to be T:;ry high since as the testing progresses, they are reestimated. The
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parameter K, the error exposure ratio, must also be estimated initially from pro-
grams of a similar nature; however, like H and N, it can be reestimated as the
testing progresses. Therefore, the initial accuracy for this estimate can be low 0

ý71 -6
as well. Musa observes an average value of 1.31 x 10 for K for the various vali-
dating projects he considered. ,..

For the reestimation of K and M, suppose X1,... ,Xm are the times betwe a

error occurrences. Using assumption (d), Musa 5 2 establishes the MLEs for H and
To, the initial MTBF, as the solutions to the following system of equations:

"Estimates
Ar 2
To C X (4.473)

and

H I 1 
A

m! - (4.474) •:"

• j~~=l-m+l '

where

A

m" (i - 1)X (4.,",-". 2 .475)•.,•
';m

and

Xi (4.476)

m

The estimate of K is then obtainid from the relationship:

1 1To RU f = B (4.477)

K =.(4.478)
, ' fBToM

If T amount of testing has been completed (measured in CPU), then from the results
that have been established earlier:

A A AA

M MTBF To exp (CT/MTo) (4.479)
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and the estimated reliability for time t1l is:

R CTj) Z exp (-T1/MTBF) .(4.480)

.52

Approximate variances for the est~imates are also given by Musa
5  as:

var{To) (4.481)

*and A.

1~~E j$1-

var[0} + (4.482)

2 2
and

j=M -m+1

ITO 2  i=1 ;o T !UPE arvar{0 (4.486)

andr M is chosen to satisfy: ;

m LOW R1

j=M ~ J-mm+

UUPPER

with)Xk~arO (4.487)

1 +
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and Z U is taken from a normal table such that:

P Z > Z(4.488)
10

Musa's Model can be related to Jelinski-Moranda's Model (therefore, to all
models which have been shown equivalent to it) by letting,

n m (4.489)."8 •:•and
N M" (4.490)

Slj" which together gives B =1, (4.491) n,

and fK = .(4.492)

If a point T is chosen between the occurrence of the (i - 1)st error and the
ith error, the hazard rate function for Musa's Model is

Z(T) = fK(N - (i - 1)) (4.493)

(N- (i -1)). (4494)
This is precisely the hazard rate for the Jelinski-Moranda Model.

Also note that:

. To = Initial MTBF (4.495)

becomes:

1To (4.496)

"VON

the correct expression under the Jelinski-Moranda Model. The MTBF, after the U-
discovery of (i - 1) errors for Musa's Model, was shown to be:

MTBF 1(T ±-~zTB t) = "fK(N - i + 1) ,,;

for

ti. <x<t (4.497)

With the previous relation-hips, then:

MTBF = fK(N - i + 1) (4.498)

4-89
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C .)

= . 1(4.499)+ 1)

again the correct expression for the MTBF under the Jelinski-Moranda Model. ..

The importance of Musa's Model is in its development of resource allocation
and the relationship between CPU time and wall clock time. The resources (fail-
ure identification personnel, failure correction personnel, and computer time)
influence the failure detection rate during the testing process. At any point
in the testing cycle,, one of these resources limits the other two and thus, the
error detection rate. For example, if the number of failure correction personnel 5'•
is insufficient to handle the -!rrors detected by the failure identification per-
sonnel, a backlog of errors develops, slowing down the testing process. Usually
the testing process involves from one to three periods, each one characterized by
a different limiting resource. At the start of testing, when numerous errors are
discovered, the limiting factor is the failure correction personnel. As the test- t/
ing progresses and longer intervals between failures are observed, the failure
correction personnel utilization drops, while the failure identification personnel
becomes the limiting factor. Finally, at longer failure intervals, the use of the
computer becomes the prime limiting factor. Musa's Model attempts to utilize the
knowledge of these limiting resources to relate execution time with the passage of

dtl dtF dtC
calendar time. Suppose T- ' , and L- are the instantaneous calendar time to

execution time ratios that result from the effects of each of the resource con-
straints taken alone. The index I denotes failure identification personnel, F
denotes failure correction personnel, and C denotes computer use. An incremenL
in calendar time, At, is taken to be proportional to the avE.:,,ge amount by which
the limiting resource constraints testing over a given execution time segment;
that is,

At max d)1 'tF d tC (4.500)

From assumption (h), the resource requirements associated with a change in
MTBF from T1 to T2 can be approximated by:

(4.501)
whee •AXk ok A! + Pk Am

where At is the increment of execution time, Am is the increment of failures ex-
", perienced, ek is an execution time coefficient of resource expenditure, and Pk is

a failure coefficient of resource expenditure for k = I, F, and C.

Suppose Pk represents the number of available personnel, k = I, F, or the "'

"available number of computer shifts, k = C. Suppose Pk denotes the utilization
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factor for the kth resource, [from assumption (i), p, = 1]. Then the effective

available amount of the kth resource is p From this basic formulation, Musa

derives the following correspondence between the resources and the calendar time:
S] ~ ~~~~T2 1 [ kT +- C~k I.••'•.,.,,,

Ax T•2= 0 -max dT (4.502)

~c f PKpKT

'" = MTo Pkg n\ __I) + PkT2 ,(4.503) [.•:.•,

where the index k can have the values C, F, or I, and the quantities T and T

represent the HTBF at the boundary of these periods. These boundaries are the
values T1, T2 , and the transition points I*:..!

TU C(PkPk-Pk - PkPk-)
Tkk' Pk" -k ek k Pk P k e454

for k, k" = I, F, C. The transition points are those values of T at which the
derivative of calendar time, with respect to execution time for one resource,
becomes greater than another. The resource k that is limiting for any given
MTBF, T, is the one that maximizes:-

AkT + C" .

e + Ck (4.505)
PkPkT

From assumption (j), it can be established that the utilization factor for
failure correction personnel is of the form:

I/PF)
0= (1 - P l/Q (4.506)PF

where Q is the established limitation of error queue length (at a specified
probability P) for any debugger.

As can be seen from the formulation of the model, the data required for
implementation of the complete model can be quite extensive.

'•: ~:Data Requirements e.

[Execution Part] " *"

(a) The linear execution frequency, f.
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(b) An initial estimate of the error exposure ratio, K. (The accuracy of

the initial estimate can be low).

k
(c) The error rediiction factor, B. ,; ' 4

(d) The testing compression factor, C. L- l.'-.

(e) An initial estimate of the total number of errors, N. (The accuracy of

the estimate can also be low since it is reestimated during testing.)

(f) The times (measured in CPUs) between error occurrences, i's. '.I

Execution/Calendar Time Part

(g) The available resources for both testing and correction personnel and

the number of computer shifts; i.e., PIt P., and P

W The utilization factor for each of these resources, i.e., p( )

and pC.

MA The execution time coefficent of resource expenditure for each resource; -

i.e., Oi, 0 F ( 0 usually) and e8.

(0) The failure coefficient of resource expenditure for each resource; i.e.,

pIt pF' and pC' . A-'S-

(k) The maximum error queue length, Q, for a debugger.

(1) The probability, P, that the eiror queue length is no larger than Q. ,:'.,',.

Two extensions to Musa's Model are briefly discussed here. The first appears
in a paper by Chenoweth (Reference 57). In that paper, the error reduction fac-
n a e,,a

tor, B, is generalized to the form B0 e where B0 is the initial error reduction

factor and a is the exponential slope of execution time. Chenoweth argues that

for a certain class of software programs, B, appears to be ekponentially increas- I(-

ing. The basis of the increase is probably due to a programmer learning curve

phenomena. The parameter a can be estimated from the relationship:

n(IT) B0  ie (4.507)
i=1 i---

where n(%.) is the number of errors corrected by time t . for a specified j (j=l,

... ,m the number of errors observed) and B0 is obtained from a project of a sim-

ilar nature or using this relationship. , '

The second modification is contained in a paper by Musa and Iannino (Refer-

ence 58). The modification can actually be applied to many of the previously
considered models, but it is illustrated in the report on the execution time
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Stheory model. The paper describes a imethod of adjusting the l~ngths of the inter- ""[
vals between software failures to compensate for programs that are undergoing "."--

Svariations in length due to integration or design changes. The models considered
" ~~~so far have been applied to essentially complete programs. In the testing pro- ,[.?

S•-, cess, all of the code is being executed at one time or another. Frequently, how- ".'•.•
. ~ ~ever, only part of a program is tested and other parts are added as testing i""-

S~~proceeds. By ignoring these variations, estimated MTBFs in the early stages of a ',I project tend to be optimistic. The method presented in this paper attempts to
•, ~account for the variations by adjusting the observed failure intervals to values !'.

Sthat would have been for a program in its final configuration with complete in- .-..
•,' ~spection. The adjusted values are used in the various models in the exact manner ""..

•!•."•as if they had been the actual data. The reader is referred to Musa and Iannino's
"i iA ~paper for details."-.."

"!: ', ~4.2.12 Brooks,,and Motley's Models i.'
"' ~~~The last models discussed :in this section are the Binomial Model and the ,.,.
[•! ~Poissorn Model formulated by Brooks and MIotley of the IBM Corporation (Reference •""

d • ~59). Their models try to account for the fact that in a given testing period not <.
•.• ~all of the program is tested equally, and in the development of aprogram, only 2
'•., • some portion or modules may be available for testing. In addition, in thLe cor- '"
•.• • rection of discovered errors, additional errors may beintroduced. Each o h '
i• ~~models make the following assumptions:,..,

N Model Assumptions , u °
(a) The number of software errors detected on each test occasion is ,-

•'i'° [•proportional to the number of errors at risk for detection which is, in turn, ,...
i••,. ~proportional to the remaining number of errors. '•..(b hepoortionait fcor or pobaiiy (eote a qfor teI binomial model, and * for the Poisson) of detecting any error during a speci-

fied unit interval of testing is constant over all occasions and independent*,• ,f of error detections. ','

, C, (c) The errors reintroduced in the correction process are proportional ..
• ~ ~to the number of errors detected. I*

.. •" For their formulation, Brooks and Motley, develop the models both for a module •.••.-'
application, in case only module testing is done, and for the entire program sys- •-.-

* ', tem testing. ","

I "" ~~4.2.12.1 Binomial Model (module). Suppose a module, the jth, from the pro- k''•""

•i ~gram is given for testing for the first time. Then the expected number of error ',.,".•
(" ~occurrences in that module in the first unit interval of the test occasion is: ,:,.

i4**4!
.lj 493 :.

4,.

'.",'' "." ",." ." ". •." 2 -. " "2 -. "... -. " ." " " -. " -," -. " - -. ' -,..." 4"... .. "., - .- -.. - " ,-." . -.- " .-. '. -. ,- . , .- 4, .. . , . . . . . . . " '."
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This is obtained from assumptions (a) and (b), where w. is the weight assigned

to module j, N is the total number of errors in the system at the beginning of
ýo testing, and q is the error detection probability given in assumption (b). Brooks

and Motley define a test occasion as:

"an event of error data collection; each occasion should have 4

a time interval associated with it; otherwise, the implica-
tion to the model is that all test occasions are of equal
length of time .... One additional important assumption made

here is that one occasion be comparable to every other occa-siou in terms of the time spent (testing effort) in detecting

errors."1t

The weight factor can be taken as the ratio of the size of the module (as measured
by number of lines of source code or object program size) to the total program
size.

For the second unit interval of testing on the jth module, the expected num-
ber of errors to be detected is:

[w.N - wjNq]q = [w.N(1 - q)]q. (4.509)

There were w.Nq expected errors in the first unit interval of time leaving wN -N

wiNq errors subject to detection in the second. Thus the expected number of

errors in the second time interval is: [number of errors subject to detection)
•q = [w.N(1 - q)]q. In general, for the ith unit interval of time in the first

testing session, the expected number of errors is:

w.N(1 - q)-q. (4.510)

The total number of errors expected for the entire first testing occasion is then:

n = w.N(1 -q) q (4.511)nIj £=1[ ,lJ •r'•' .'•

= wjN - (1 - q) (4.512)

= wi Nqij (4.513)

where K is the number of unit test intervals making up the first test occasion,

or the total test effort expended on module j during the first test occasion, and

---- q)-- - 4
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When module j is tested for the second test occasion, the number of errors at risk
in module j is:

w.N - n + rn (4.514) ...

Ij lj

where a is the number of errors detected in the first testing period and rnl. is

the numLir introduced into the program as a result of correcting those n1 4 errors,

(assumption (c)). The total expected number of errors in the second test period
can be shown as was done for the first to be;

n w N=n q2

where a= 1 - r, (the probability of correcting code without introducing new *

errors) and

q 2j (1 - (I - q) K2 j). (4.515)

In general for the ith testing period, the expected number of errors detected is:
. ni= (wiN - atNi ~)qij (4.516) ,

; = N..ij (4.517)

where aA
Nil,j n (4.518) *1/

(the total number of errors found up to the ith testing period),

q = (1 - (1 - q) 1 ,) (4.519)

V. and

""N.=(wN -aN. , (4.520)
: w t ninin,.

the number of errors remaining in the jth module. One notices that K.., the

amount of testing effort expended in the ith period, can be different from one
testing period to the next. The only restriction is that the probability, q, of
detection for any error is the same from period to period. This means that the

Stimes can vary for each testing period, but the testing approach should be the

V same.

"Brooks and Motley establish the MLEs of the three unknowns, (N, q, a) of
;, their model as the solutionE of the following equations.

N• 4-95
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Estimates - Maximum Likelihood

82nL• 0 = k jn Nj + w.l..An(l q) (4.521) ; -. ,

BNi=1 j=1 Nij. nij jz . •

K JN. \1

aq •JIKd i i

KnL= jr - ,K j ij (4.522)

i =I j=l q ijand

8~nL K /i.\
OkL 0 n + K .kn(1-q) (4.523)

i=1 =n.

where the likelihood function

K J N. n..N. n..
S.... L=q.. 1  (1 - q) 1J , (4.524) • L

i=l j=l (n.#'!•':

K = the number of test occasions, J = number of modules in the system,

and n is the actual number of errors observed on the ith testing occasion of the
•6j

jth module. These equations do not have a solution if Nij - n.i becomes negative.

It could happen that the effective number of errors at risk, Rip becomes smaller

than the actual number of errors observed for the jth module on the ith testing -
occasion. In that situation, it is recommended that the system model be applied.

4.2.12.2 Poisson (module). As in the Binomial Model, suppose Nij = (w.N. -

cNi.) is the effective number of errors at risk in module j at the beginning,.**.

of the ith testing period. Using assumption (b), the expected error detection

rate for the first unit interval of length t is N.j.. Thus the expected number

of errors that are detected is the error detection rate, Nij., times the length of

the testing interval; t, i.e.,

aij = Rij (4.525)

At the end of the first unit time interval testing period of module j, the number

of errors remaining is: L.

. number of errors in the module at the beginning of the
13 13 first period minus the number of errors detected during

the first testing period. (4.526)
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The error detection rate for the second testing period is:

-" Ni~t# = N 1 *t)]0 (4.527)

so the expected number of errors is therefore:

11b

i[R (1 - 00t)t

for the second unit interval of testing. In general, for the t.. unit interval of
testing of the jth module in the ith testing period" 13

"(a) The number of errors remaining at the beginning of the interval a.

t. .-1

1=N. .(1 - t) •J (4.528)

d (b) The expected error detection rate is:

=N..(1 -t) 1 3  * (4.529)
13

N and thus,

(c) The expected number of errors detected is:

..(ij -. ¢t) 'j t. (4.530)

"The length of the unit testing interval, t, is then normalized to I (example: 1
day, 1 week, etc). Thus the total number of expected errors, for the jth module
on the ith testing occasion is:

I.... 13 . .=

F' nj £ ij (l - ) - (4.531)

% £=I

- N..,.. (4.532)
13 13

where

,= 1- (1- ) 13 (4.533)The likelihood function is then:

!1313•.•n N' niij ..
K J (N.j.ij ) e N..Q..

L= 11 n1 (4.534)
ia..A

i=1 j=1 13

The MLEs are then obtained as the solution to the equations:

il! ~ ~4-97 •,+
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Estimates - Maximum Likeli hood

K J
= 0 w "ij (4.535)

=1j=1
K. .

= K - t N - i (4.536)

i=1 = L - (1- )tij.

K and

8ZnL K J n1FL = 0 - N. 1 , 3  [ *ij (4.537) .: "
i=l j=l 13 j',

4.2.12.3 Binomial (system). For this model, the overall program is con-
sidered as a whole. Keeping the same notation as was used in the Binomial (mod-
ule) paragraph, if J. is the index set of those modules tested on occasion i-

then the total number of errors remaining in the program and 3ubject to detection
4is i-.

(wN- aN . (4.538)
1 i-1,jj

Since the system is being considered as a whole, the test effort involved for the
system can be considered as a whole rather than on a modular basis. The

K i
qi [1 (1 - q) •1 (4.539)'

of the modular section is then replaced by:

K.
qi = [1 -(1 q) $] (4.540)

where K. is the system test ef fort (e.g., computer CPU time) expended ou the ith t• .,
test occasion. Combining the previous information, the total number of expected

errors in the system for the ith testing occasion is: k .

n. ="Niq. (4.541) .- -

The likelihood equation for the system is therefore: '.4

L = qi (I- qi) (4.542)
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where

a n. = total number of errors found in the program (4.543)
jlj ' on the ith testing occasion.

The MLEs are then obtained as the solutions to the following set of equations:

Estimates- Maximum Likelihood 'I..

1,N" 0 L (n + K.Qn(l - q) W. (4.544)
i=K ( i 1 n. )ji J

K- nX j .i

-q 0 =K.N .- (4.545)aq =[ (lqK 1

• .4

8PenL. K1
0=1 + K kn(l -q)N(456
0 =1: N n.) - Je. (.56

"Again if N. - ni, the difference between the expected number of remaining errors

and the actual number of errors found on the ith testing occasion is negative, no
solution exists to these equations.

4.2.12.4 Poisson (system). Using the expression for the number of errors ,.at risk at the start of the ith testing occasion for the system, i.e.,

(w N-aNN) (4.547)

the totdl expected number of errors is:

n. N (4.548)
where

0 1 -) (4.549)

and t. is the total time spent for the ith testing occasion.
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The likelihood function is therefore:

n. -Ni4i

K 1n e (4.550)
n.1

where n. is the total number of errors detected during the ith testing occasion.

The MLEs are again obtained as the solutions to the following system of equations:

Estimates - Maximum Likelihood

K /n.0 L K h -i - (4.551)

i=l \\N.

iKt. 1 t
n 0= t t(1- )1 t- (4.553)

8q [ I- (-4i

and

""K(nL i Nl " (4.554)

i=l

The various sets of equations given in the previous paragraphs can all be

solved using the Newton-Raphso. method with the warning ab. I the (N. " ni)'s be-
coming negative applying as in the binominal formulations.

All of the models by Brooks and Motley were appliC; to real life and simu-

lated data. One criticism that might be made against their models is the assump-

tion of a constant detection probability, q. In a testing environment, the usual I F

situation is that q varies over time. This is due to limiting resources, the . ,

easier errors are found at the beginning, while the hidden errors are discovered

much later and at greater effort, and there is a learning curve effect on the

testers. Brooks and Motley do however try to account for this by considering an

extension to their basic models. They allow for the probability of detection to

increase at a constant amount until it reaches a point where it levels off. The

resulting equations for this extension are very complex and would be difficult l

to implement on a computer. The reader is referred to their paper for additional
details.

4.3 BAYESIAN MODELS ": "

The class of models considered in this paragraph formulated software

reliability modeling in a Bayesian framework. The models employ a "subjective"

4-100 T
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approach to the meaning of software reliability in constrast to the traditional
"frequentist" approach. Previous models only allowed for change in the reli-
ability of a program whenever an error was discovered and subequently corrected.
Bayesian models take the subjective viewpoint that as the software is tested, if
no errors are discovered, there is more confidence in the program and this is
reflected in inc.-easing reliability. The reliability of a program should be a
reflection of the number of errors discovered and the length of error-free testing
time periods.

Another important argument given in support of i Bayesian approach deals with
counting errors. All of the models considered so fa, assume that the hazard rate
function is directly proportional to the number of errors in the program at the
time. From this assumption, it is directly determined that the reliability is a
function of this count. This is the reason the models considered in the previous
paragraph are concerned with estimating this total. The Bayesian approach argues
that a program with two or more errors in little exercised portions of code is
considered more reliable than one with only one error in a frequently executed

* ,. section of code. The estimation of the total number of errors present can be of
use to the software manager in making determinations of resource allocation, but
it should not be the driving factor in reliability considerations. One should be
concerned with measuring operational reliability.

A number of models which attempt to do this are now considered. K

4.3.1 Littlewood's Bayesian Debugging Model

The first model considered within this class was proposed by Bev Littlewood
of the City University of London. 6 0 's6 1 ' 6 2 ' 6 3' 6 4  The model reformulates the
Jelinski-Moranda Model (Paragraph 4.2.3) into a Bayesian framework. The Jelinski-
Moranda Model postulates that, at any point in time, the error rate is propor-
tional to the number of errors remaining in the program. This is expressed as for
any time t, for t i_1 t < ti,

Z(t) = (N -i + 1) (4.555)

where the t. 's are the times of error occurrences. By making the assumption that
I

the times between error occurrences, i.e., Xi = t. - t. follow an exponential
- distribution, the probability ('ensity function for X. is seen to be:

"f(X.) = ý(N - i + 1)exp[-ý(N - i + 1)Xi] (4.556)

The model inherently makes the assumption that all errors contribute equally;
namely 0, to the overall error rate. The Bayesian viewpoint objects to this
assumption. 65  Each error does not contribute equally since the correction of -.

errors in the beginning of the testing phase, has more of an effect on the program
than ones corrected later. Again the argument that a program with two errors in
rarely exercised code is more reliable than a program with only one error inf a
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frequently exercised section surfaces. All errors, therefore, do not contribute
equally. Littlewood postulates that the error rate

= Z(t) = *(N - i + i), t. 1 < t < t. (4.557)

should be treated as a random variable, not as a constant. By assuming that the {.,'4Y

remaining errors have different occurence rates *1, *2, *N-i+l' the overall fail-
ure rate is then:

i= + 02 +. . (4.558)
1 12 N-ifl

By treating the ,.'s as random variables (since it is not known what they are),

the overall rate as a random variable is obtained. (Notice that if all of the

ý.sare assumed to have a degenerate distribution at the point *, i.e., *~

4. -= with probability 1, then X. = (N -i + 1)). The specific as-

Y ~~sumptions for this model are: C

Model Assumptions

(a) The individual failure rates of the errors in the program are assumed to "i
be independent random variables each with a prior distribution that is assumed
gamma with parameters a and P, i.e.,

g(i)= = ( 0 > 0 (4.559) ! r
for all i and j.

(b) For a given error rate, Xi, the time between error occurrence X. t.
- t 1 is assumed to be exponential with mean i/Xi; i.e.,

-M f(XilXi) Xie X. > 0 . (4.560) K
(c) X. = *t+ *2 + ... + ýN-i+1 (4.561)

"after i - I errors have been detected and corrected.

Md) When a software error is detected, it is immediately corrected without
the introduction of additional errors.

(e) The software is operated in a similar manner as the anticipated opera- .
tional usage.

2 The model is developed as follows. Suppose Xl,..., Xn are the times between K
errors occurrences, i.e.,

X. t. t (4.562)
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(Preferably X. is measured in CPU time rather than wall clock time.) At the time

the ith error is discovered and corrected from assumption (c), ..,

xAi+l = 01 + 02 + *.. + .N-i (4.563)
Now suppose the occurrence rate *k for any one of the remaining N -i errors is

considered. The density function for *k is pdf(4k Igiven that error was not found

in (O,t)), where t is the current testing time

P{no failure by that error in (O,t)pI k 0 pdf(0k)

= fPmno failure by that error in (O,t)1 @k = *k1 Pdf()d~k

•:':' :: •(• U-1 e I€
e

e-kt :e1 e k-:½ k d~k (4.565)

!! • ~~ ~-(•+t)C aka- 1-(~i)¢

,P.,) a O ' (4.566)

"Thus *k has a density function that is also gamma with parameters a and Oft.
Since A. is a sum of independent, identically distributed random variables, XAi1is also gamma with parameters (N - i)a and P + t. Thus, the unconditional distri-
bution of the time to the next failure Xi+i is:

f(Xi++) = f 1(4.567)
00

i+ f(i+iI i+i) si+Qd i+i

cc -Ai.iXi (NI-.i)a Liia-
iti i+10 + t)(N-1)af-1 -(p+t)A 9

-i e (i+1 i +i (4.568)[:•- or[(N - i•]l

:',.•7:" f • X [(N-1)a+]-1 e- (P+t+xi+l)Ai+i ()X +t) (N-i)a .6

f i+1 dA (5.569)fd i+1

0 r[(N - i)a] i+,

4.10
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+ t) ' r X(N - i)r + 1 . (4.570)= M(N -'i) ,U]T ( + t + .

(N - i)V I - 1 (N - i)a + 1

i+1 e d XXi) e -

[ •+ + t + X )(- (• x+ (4. x)71)~

r ((N - i)a + 1) 1x+1

: .((N- i) ](0 + t)(Ni)Y X. >SXil)(.,)+IXi > 0 •(4.571) :i
+ +t + i+

This is a Pareto distribution. From this basic result, Littlewood derives a num-
ber of quantities. The reliability function after i errors are discovered is {;
found as: %

R(x) =X > X) (4.572)

= P{Xi+1 < x) (4.573)

= - f f(X i)dXi (4.574)

+ t) (N- O+a (4,575)
[(+ t + x)Ia.

The failure rate function is then obtained as: \!h

R'(x).. N-ia (4.576)

Thus, the failure rate, immediately after i errors have been discovered and t
amount of testing has been employed, is: p.

Z(O)-(Ni)a (4.577)
++t

Notice how this unconditional failure rate changes after testing progresses. As
t gets larger, the hazard rate decreases reflecting the increased confidence in
the program. The hazard rate also decreases whenever an error is discovered and
corrected.

The MTBF is found from the Pareto distribution as:

MTBF E{X f(Xi)dX (4.578)
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'F ) ( 4 .5 7 9 ) " ,..

which exists as long as (N - i)a > 1.

diction of future reliability in one of two ways. The reliability of the program
can be estimated after some'specified execution time has elapsed or after some
specified number of errors has been removed. The development of these two ap-
proaches is provided in Reference 61 and is not repeated here; however, the uses'2: ~of those results are. •

For the first approach, suppose ti amount of testing is performed and i
errors are discovered and corrected. Now suppose At additional amount of testing v
is done. Then the reliability of the program at the time t. + At is shown to be:

R(x) At + t + t + x (4.180

F From this relationship, the amount of additional testing needed in order toL ,V achieve a target reliability can be determined. If the desired reliability is r
for a specified error-free run time of x0, then the additional testing time re-
quired is the value At that solves the equation:

|+ t i '+ + ti At] + x

1r - (4.581)
"r I + t- + At + t. At +.

Littlewood also shows for this approach that the required additional testing timeF At to achieve a specified target failure rate, N0, is:

(N - i)o(p + ti)]I 1)
At= O " + ti) (4.582)

For the second approach, suppose i errors are observed and corrected. In-
terest lies in the times between error occurrence of the next k errors, i.e.,
xi+j, j=1,...,k. Littlewood first derives the distribution of:

A(P + tz L Z .c., i (4.583)

where A is the failure rate at the occurrence of the i + k error. From the pre- .. :

1A vious results, the following is obtained:

A (N- i -k)a (4.584)t' + i+k

j=i+1
4-105X
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The distribution of Z is beta with parameters N-i-k+1 and k, so that the expected
value of A can then be obtained as:

E{} = (N i- k) (N- i- k+ +1)a (N- i)
+ t. (N- i- k + 1)a + 1 (N - i)ot + 1

(4.585) ,i

From this result, the number of additional error corrections, ko, that are re-
Squired to make the E(A) 'less than, a desired level No can be established. This

is the smallest integer k0 satisfying: ,*
(N i-kpoao (N- i- k+ 1)0 *"*(N-i

(N-i-k(N1-cx+S+ ti (N -i -kO + 1)a + 1. . N-- i)C( + 1

(4.586)

It might also be asked how many additional error corrections are necessary in .>
order to be at least y percent certain that A < ho. This is the smallest integer
ko such that: a

f~~~ 7P ti) Xo 01r9
SNz <L -- ko) J (4.587)

where Z is from a beta distribution with parameters N-i+k0 +l and ko.

For this model, there are three unknowns: N, a, and P. They can be estimat-
ed using the maximum likelihood procedure or least squares. If Xi, i = 1,...,n is
the time between error occurrences, then from the assumptions, the likelihood !."

function is:

n
L(N,a,p) = T1 f(X X ,...,x) (4.588)

i=1 

>

n (N i + I)a K"-=I(N -i + 1)at(P + .ti

S (N + i1 + 1)( -t 1)U + 1 (4.589)

where
i-i1R

t. = x (4.590)

is the time of occurrence of the (i - 1)st error.

A A Ah

The ILEs N and are the estimates which maximize:

• ' ,. i*.,
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Estimates- Maximum Likelihood 7.-
A A A

L(NLaLPL) = max L(N,a,p) (4.591)

Littlewood points out that this maximization search can be restricted to the two-
dimensional space of N and • as:

The lesn~~~~:J :A n!i~mnmz (4.592)1%
'L +ti t.-

S+, n N0. (n4.n595)•

•=I PL + tn P•L m.

The least squares estimates are those N, t , and s which minimize

[1 s(N, Of _ _P) = =-S (4.593)

using equation (4.579). The least squares estimates N L,LS, + L,LS and 1 L,LS axe: 1!:!;?,chosen so that: ,.!,

S(N L,LS ' + LtW i S)-im£a S(Ni a$ P) (4.594)-

="F siae La t ) Squares

,,:,, i1 (NLS- i + I~LL - 11 i=I [(NL,LS -i + 1)aL,LS - 112

(N of ., P

S4-1 07 , .4. P

RN~ ac ap

*. . i.. -. -. _ -9 =, ", F - ,, - ,.- .- (
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and

i LLS -L+ 1)(LLS + ti-l) (NLLS - i + I)(^LS + ti 1 ) 2

[(NL,S - + 1) VL,LS - 112 i=l [(NL,LS - + I)aL,LS - I

L~l [( 1 .~,~(4.598)K

To implement this model, the data required are: '.

Data Requirement H
The times between error occurrences, i.e., the X 's, or the times of error

occurrences, i.e., the t.'s where

= . - t . (4 .599)3..

Once the parameters N, a, and are estimated, all of the previous quantities

developed in this paragraph can be estimated by replacing the parameters with

their corresponding estimates.

An alternate Bayesian modification of the Jelinski-Moranda Model is given in
a paper .by Littlewood and Sofer.A In that paper, the times between error occur-

rences, i.e., Xj's, are assumed exponential, but with parameters

X. = X - (i - 1)€ i 1,..,n. (4.600)
3.

Constrast this with the model considered in this paragraph of

.2iX- =2 01 + 02 + "+ -il(4.601)

For both formulations, the \.'s are taken as random variables. For the alternate
model, the X and 0 are taken as independent random variables with prior distri-
butions Gamma(b,c) and Gamma(f,g), respectively. All of the quantities devel-
oped in this section for the first Bayesian Model are developed for the analogous
ones in Littlewood and Sofer's report. They are not repeated here.

4.3.2 Littlewood and Verrall's Bayesian Reliability Growth Model

, The next model considered is the Bayesian Reliability Growth Model proposed

by Littlewood and Verrall. 6 7 ' 6 8 't 9  The model tries to account for error genera-

tion in the corrective process by allowing for the probability that the program

could be worsened by correcting the error. The intention is to make a program .. b.

more "reliable" when an error is discovered and corrected, but there is no .' '

assurance that this goal is achieved. With each error correction, a sequence of-'

programs is actually generated. Each is obtained from its predecessor by f..

attempting to correct an error. Because of the uncertainty involved in this • .,j

correction process, the relationship that one program has with its predecessor
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c3nnot be determined with certainty. This is a second source of uncertainty in
the modeling of software reliability (the first dealing with the variation of the!•" ~~input to the program). The specific assumptions for the model are: ,•i

I'2•i ~Model Assumptions I.,•

(a) Successive execution times between failures, i.e., X., i=l,...,n, are
independent random variables with probability density functions

.4 4' f(XIiXA) = Xie Xi > 0. (4.602)

That is Xi is assumed exponential with parameter X"

(b) The X.'s form a sequence of independent random variables each with a
gamma distribution of parameters a and i(i), i.e.,

g(Xi) = X. > 0 . (4.603)

The function *(i) is taken to be an increasing function of i that describes the
"quality" of the programmer and the "difficulty" of the programming task. A good
programmer should have a more rapidly increasing function * than a poorer pro-
grammer. The 0 .function reflects past and future changes in reliability as a

"" V, growth process.

"(c) The software is operated in a similar manner as the anticipated opera-
tional usage.

By requiring the function * to be increasing, the condition

.\..' P{IX(j) < }> P{X(j - 1) < k] (4.604)

for all j is satisifed. This reflects that it is the intention to make the pro-
gram better after an error occurs and is corrected, but it cannot be assured that•:. ~our goal is achieved. •.;

.* .:,; When the two sources of randomness are put together, then

fxilat I(i)] =f(x )()d, (4..605)
"~~i"d [i )"()d.

3. 3.a a1-1
- / e i)] X. e dX(.:, .• • 1(4.606) '
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of[+ (i)]+1x > 0. (4.607)

Notice that the x.'s are no longer exponential. They now have the Pareto distri-

bution. The joint density for the x.'s is then v
I

f i, .. , oft = = x. > 0, i -1,...,n
n i a+l
n1 [x. + (i)l (4.608)

Littlewood and Verrall suggest the following forms for the s function:

0(i) =0 + P1i (linear) (4.609)

and I.**

•P(i) = , * 1 i2 
. (quadratic) (4.610)

(Littlewood finds, for one set of data on which the model was applied, that the
linear function is superior to the quadratic function. 8 8 ) In either case, the
likelihood function is now a function of three unknowns (a, Po, and PI). MLEs

could be found by Zinding the aLV ,LV' and which:
^ ̂ ^ ,LV) P1,L.1

A A A

L (aLV, m0,LVx, 1 = ma L(a, Po, 0i) (4.611) .(0, Pot Pi)" ""•

where

L(a, Po, 01) = f(x,...,X a, Po, PI) . (4.612)

These MLEs are the solutions to the following system of equations: it, ,

Estimates - Maximum Likelihood
'a• ..:.,

n AnA
* ~~L n- .nk:- +W) n [(i) -. + 0 (4.613)Ba 1 =1 i=l r

44 n8L_ =S £ 1 a( + 1) • -0 (4.614) •" .. "

o i- i(i) i=I x. + s(i)

".4-1
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whr

and
-') n i*niA i"i • = ,---- ( + 1) ---- . .= 0 (4.615)

!i I• "= ,(i) iix. + ()

S~where

,j *i) PJO + P1i or Po + pli2 (4.616)

. and

C i ior i 2  (4.617)

Littlewood and Verrall eliminate the parameter a through a Bayesian analysis. By
assuming a uniform prior for a, it can be shown (Reference 67) that the distribu-
tion of x. is:

12 -

f(xipo,pi) - 'Y' + en I (4.618)
X+ . (i) +, , J

* The MLEs for Po and P1 are those parameters which then:

A A "L(Popl) max L(Po,Pi) max II f(xilo,ti) • (4.619)
= (Po,Pi) (Po,Pi) i1l

Littlewood and Verrall present an alternative way of estimating 0o and P1 based

2; i• upon goodness-of-fit. The reader is referred to their paper 6 7 for details.

Another procedure for estimation is based upon least squares. Since

fri. -. )"' + , (4.620)

-, * Ju [xi + ,(i)]

the MTBF is

'"~~O x~ W i*i) I•

- EX I dx. (4.621).-: cr i.+¢(i)la1•... ,.,•[xi +
M01 = ( (4.622)

~ ..-

L: ~provided a > 1.

' ,The least squares estimates are those parameters which minimize:

S(o Po, PI) (4.623)

-'2 4-111
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In particular, if

00 = + P1i (4.624)

the least squares estimates ALS' 0LS' and •1LS satisfy the following system of • >
equations: ' • '->

Estimates - Least Squares

"DS A i=

-1- 1 =- 0 (4.625)

i=l

AA

OS n ~OLS 0 (4.626)= i, .X " - - • ---1 0

LS 1 2 (aLS 1)

and l:: '
A ,n

A ~A i
as n(n + 1)POLS Al LSi=1

x 0 (4.627)
i=1 - 2(oLS- I) (LS" 1)

The data required to implement this model are:

Data Requirement

"The times between error occurrences, i.e., the x IS.

4.3.3 Thompson and Chelson's Bayesian Reliability Model

The last model considered in the Bayesian framework for software reliability
is one proposed by W. E. Thompson and P. 0. Chelson. 7 0  The model they developed
is one step in the direction of obtaining total system reliability. Their ulti-

* mate goal of system reliability included system malfunctions not only due to
_* software but to hardware and unknown or ambiguious source-related malfunctions as L.n.

well. In a paper by R. Haynes and W. E. Thompson, 7 1 this total system reliability
model is formulated. The one aspect of this model that this paper presents is
the reliability model developed for the software related errors. This model at-
tempts to account for the fact that a given software program might be error-free
(hence, an infinite MTBF) 7 2 and it provides for software redesign and repair

after malfunctions are observed in a given test phase. The specific assumptions L

for their model are. -7
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Model Assumptions

(a) The program is not corrected during a testing cycle-only at the comple-
tion of a cycle and before the start of a new one.

(b) The software is operated in a similar manner as the anticipated opera-
S..tional usage.

(c) The software errors are assumed to occur at some unknown constant rate,
A. The total number of errors observed in a testing cycle of length T follows a
Poisson distribution with parameter AT; i.e.,

-AT f
"f(fiA') = .e (AT) f. = 0,1,... (4.628)f.., 1• ,,,,

(d) If p denotes the probability that the software contains one or more
errors, it can be assumed that p has a prior distribution that is beta with

~. . parameters a + 1 and b + 1, i.e.,

g(p) r(a + b + 2) pa(, _ p)b 0 < p < 1 a, b > -1. (4.629)

"r(a + 1)r(b + 1)

The parameter a is thought of as the number of previously delivered software pack-
ages with errors among a total of a + b delivered.

(e) The uncertainty about the parameter A is expressed as a prior distribu-
tion for A. It is assumed gamma with parameters To and f0+1; i.e.,

To(ATo)fo

h(A) - F(fo + ) exp (-ATe) A > 0 . (4.630)

The fo can be thought of as the number of software-related system malfunctions in
"previous testing of total duration To.

Thompson and Chelson consider two situations. One is the situation when
it is known before testing begins that the software contains errors, i.e., p = I.
The other situation is when there is uncertainty about whether the software does K'
or does not contain errors. This is expressed by the use of the prior in assump-
tion Wd). If iii this latter situation, an error is discovered in the testing
cycle, p iG set equal to 1 and the prior g(p) is made a Dirac delta function at

. p = 0 .

For the first situation, Thompson and Chelson show that if f. errors are

:observed in testing time Ti, then the posterior distributions for A and R (the
-., software reliability), are:

4a-,
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f.+f 0+1 f +f0
(T. + To)1 1

h(xjfi)= rf +f ) exp [-X(T~ + TO)] X > 0 (4.631)

and I . T

T + ToN f0+f.-1 R

f(Rifi) =\ k n(\ r (fo + f d(.62

0< R <1.

(The t is th: postulated miission time for the program.) The distribution for R

reflects the posterior view of the program reliability after f. errors are ob-

served in the current testing cycle. ',"

-vt

The second situation is the one in which no errors are observed iLnthe test-

ing cycle i; i.e. , f.i = 0. This generates the uncertainty about whether the

program does or does not have any errors still residing in the code. For this .

.,situatiun, the posterior cumulative distribution functions for X and 'R are shown
to be:

a+1 ~f 0+1 f0  _

H(l ) ( O x exp-x(T.+ Tod

(4.633)

and

T T+T 0-1
ST. + TO) fO' ~xl

F(Rjfi = ,p) =p'r~ dy. O<R<1(.64

=1R=1. (4.635)

If a squared error loss function is assumed in estimating Xand R, the Bayes
t

estimates for X and R are then the means of the respective posterior distribu-

tions. They are shown7 to be:

Estimates - Bayes

(a +1) *(f + 1) (.3)L

(a +b +2) (T + TO)%
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'F.. .; ,

and

R a + 1 TT f0+1 b + 1R +i b r"" To "+• (4.637) , ,
b a + b + 2 (63

m for f. 0 and

f.+f0 T(4.638)

and + f0 +f

R (i" (4.639)
Y , • + To + t, ..

for f. > 0.

Thompson and Chelson show, in their paper, how the various distributions can H
be used in determining when testing is to be terminated. The decision rule to do
this is formulated in a sequential manner. The reader is referred to their paper

i for additional details.

Notice that if i - 1 test periods have elapsed, then

To = Ti (4.640)I~~l ~i=l1:•,'

and

fo f. (4.641)",
'3.

The data required to implement their model are:

"Data Requirements
:,%,

(a) The number of software errors discovered in each period of testing,
i.e., f.'s.

(b) The length of testing time for each period, i.e., the T.'s.

(c) For the total number of software packages that have been released, the ,.
number found to contain errors. These numbers are used in determining the prior t., -,

distribution for p at any stage.

• ;; I4.'15
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4.4 MARKOV MODEIS

This next class of models views the software correction process as a dis-
crete space system in which a transition from one state to another occurs when-
ever an error detection or correction is made. These models attempt to achieve a
more precise and realistic error behavior prediction but at the cost of a great
deal of added complexity. In fact, the models in many cases cannot be used to -04
derive a closed form solution. Only large sample approximations can be given or
approximate numerical solutions can be stated. Much research is still needed in
this area of modeling. This section is included for completeness in the presenta-
tion of the various approaches to software reliability modeling. Because of the
complexity of the models, this section is not developed in great detail. The
reader is referred to the respective research articles for additional details. KC¾

4.4.1 Trivedi and Shooman's Many State Markov Models

The basic model and its generalizations are presented in a paper by AshokTrivedi and Martin Shooman 7 3 under contract to the Office of Naval Research and

the Rome Air Development Center. The model is used in providing estimates of the
reliability and availability of a software program based upon an error detection
and correction process. Availability is defined as the probability that the pro- .'

gram is operational at a specified time. The software can be viewed in either
one of two states "up" or "down." The system is in an up state if no errors have
occurred or an error has just been corrected. The software is in a down state
when an error has been discovered and is being corrected. The sequence of up
state is denoted by (n, n - 1, n - 2,...,n - k,...) while the sequence of down
states is denoted as (m, m - 1,...,m - k,...). The system is in the up state,
n - k, if the (k - 1)st error has been detected but the kth has not. It is in
the down state, m - k, if the kth error has been detected but not yet corrected. i

The specific assumptions for the model are:

Model Assumptions

(a) The transition probability from state i to state j (pij) is dependent '

only on those states and is independent of all past states except the last one.
(The Markov property.)

(b) The error detection rate for the state n - k is known; denote it as
nk. The error correction rate for 0-tate ni - k is known; denote it as pm-k

(c) Finite nonzero times are spent by the system only in the system states.
The transition times are infinitesimally small so the probability of two or more
error detections or corrections within this time frame is zero.

(d) The software is operated in a similar manner as the anticipated opera- •,- .
tional usage.
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(e) When a software error is corrected, it is done without the introduction
of additional errors.

(f) The program is assumed to be fairly large (the order of lO words orI;•Jmore of code).

Some of the generalizations of this basic model. include allowing error intro-

duction in the correction process and the system can be in more than two states.
A generalization of the basic model allows a third state, a "noncritical down"
state. The reader is referred to Trivedi and Shooman's paper for details.

; The two specific cssof the basic model that this pareviews are called

" Model I and Model II. For Model I, the error detection rate, Xnk, and the error

correction rate, pm-k, are taken as functions of the number of errors that have

occurred, i.e., k. In Model II, the rates are taken as functions of time. The
choice between the two models is determined by the way the error data are col-
lected. For Model I, the individual errors are recorded along with the time of
occurrence of each error. For Model II, the number of errors is recorded over the
operating time of the program.

For eith3r model, the derivation of the reliability and availability is as
follows. Suppose P (t) denotes the probability that at time t the state is

n-k
in the n - k up state. Similarly, P mk(t) is the corresponding probability, the

system is in the m - k down state. Then the availability of the program is:

A(t) P {system is up at time t} (4.642)

=P(t)+ P t) + '" (4.643)

• • Pnkt) . (4.644)
k=O

~.J fThus, only the probabilities for the various up states for the system are needed
to derive the availability. The reliability on the other hand, depends upon the
stage of debugging since the smaller the number of residual errors, the less
likely it is for the program to "discover" them. Suppose the system has just
entered the state n - k at time t. Suppose this time is renamed as T = 0, then
in the interval (0, TK), where Tk is the time of discovery of the kth error, the

"error occurrence rate, X(k), is a constant. The reliability function is then

Hene, R(M) = e•'(k)T 0 < t < Tk, k = 1,2 .... (4,645)

Hence, after the (k - 1)st error has been corrected, only X(k) is needed to esta-
blish the reliability for the program for all times between the occurrence of the

;j C(k- 1)st and the kth error.

4-117

J"4'



NSWC TR 82-171
IN

Now consider how the state probabilities are derived. First, Model I is
considered with the special case of constant error detection and correction rates, H -
i.e., ~

xn-k n-k(k) = X k = 0,1,. (4.646) v I

and

Pm-k Pm-k(k) = p k =0,1 .... (4.647)

For any At (At small), the following system of equations represents the transi-
tion behavior of the Markov system: !

P (t + At) = ( - "At)Pn(t), (4.648)~n!

P l(t + At) (1 - XAt)P (t) + 'At Pm ~(t) k 1,2, ... (4.649)

and

Pmk(t + At) = (I - pAt)P k(t) + AAtPnk(t) k 0,1,..... (4.650)

By dividing both sides of the previous equations by At and letting At4O, the fol- •
lowing set of differential equations is obtained:

P(t) = -APn(t). (4.'651)
nn

W n.kt)+ APk(t) W Pmk+i(t) k = 1,2,...

and

Pm-k(t) + P Pm-k(t) = X Pn-k(t) k = 0,1,2... (4.652)

Using the initial conditions: p

P () =0 k =1,2)3,...

and

Pm-k(0) 0 k = 0,1,2,..... -

Trivedi and Shooman 7 3 show that the solutions to this system of equations are:.

kX -At k 
ck

':n- E T ( =XA I (k- j')I(-l)k+Ic e('kt"'

+ (-1)• dkj} k = 0,1,2,... (4.653) i
P- -* k7,.
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"where the constants [c and d are given by:

ckO =O Ckl = 1, dko = 1 ; k = 0,1,2,..., (4.654)

c. =( - ') k = 2,3,... ; j = 2,3,..., k (4.655) •4v.
'" d~~~~kj +"Ii:?:

j-1

:;: + ; k 0,I, ,... 4.657

and

Sk = 1,2,... j 12..., k (4.656)

dk (+J 1l
1= k=1 k,j+ 1 . .. 5

Ue J=O (pj - X)i (k-i)!

g (..)aj+ (-1)k+1 -( k =011,21... (4.657)

where the constants (Yk,j+1) are given by:

Ykt 1 ;k = 0)1$2,... (4.658)

Yk, k l 12,3, ... j =2)3,...,k+1 .(4.659)

\j-11

In the general case of Model I, where the rates are assumed functions of the
number of errors discovered, the previous set of differential equations becomes: I

'Pn(t) = -X(0) Pn(t) (4.660)
n-k n-(k) Pn-k(t) p(k-1) Pm.k+1(t) k = 1,2,3,... (4.661)

and

Pk(t) + p(k) P (t) = h(k) P (t) k 0,1,2,... (4.662)-k . - nrkn-
' :' under the same initial conditions given before. Trivedi and Shooman recommend

that this system of differential equations be solved numerically using the Runge-
Kutta Approach.

For Model II, if the rates are constant, exactly the same solution as ob-
tained for Model I with constant rates is obtained. For the general case, i.e.,
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the rates considered as functions of time, t1',!re is an analogous set of differen-
tial equations as obtained in Model I; namely,

P(t) =-A(t) Fn(t) ,(4.663) . [:=n~ a

(t) + X(t) Pn k(t) = P(t) Pm kl(t) k = 1,2, ... , (4.664) K

and

Pmk(t) + p(t) Pmk(t) = X(t) Pnk(t); k = 0,1,2 (4.665)

The initial conditions are the same as those as given in Model I.

The solutions to this system of equations may not even exist in closed form.
"' As for Model I, numerical solutions must therefore be relied upon. Trivedi and +..

,Shooman's paper is referred to for additional details.

The data required to implement this model a~e:

Data Requirements

(a) The error detection rate between the times of error occurrence which is

either expressed as a function of the number of errors detected or as a function
of time.

(b) The error correction rate between the times of error occurrence which is
expressed either as a function of the numbers of errors detected or time.

The interesting aspect of this model, aside from the Markovian aspect, is
that no parameters are estimated. The error detection and correction rates are
needed as input into the model formulation. If these are unknown, which is the
usual situation, they need to be estimated. In the example application considered
by Trivedi and Shooman, empirical estimates of the rates are obtained as P func-
tion of time by using the number of software error reports per month for the de-
tection rate and the number of closed software error reports per month for the
correction rate. Sukert 1 7 uses the number of errors found and corrected per day
as reported in software error forms to estimate the rates in this application. It
employs standard regression analysis as well as fitting some nonlinear functions
to the data to estimate the curves V(t) and m(t).

4.4.2 Littlewood's Semi-Markov Model

The last model considered in this paragraph was proposed by Bev Little-
wood. 7 4 , 76 The model incorporates the structure of the program in developing its
availability. One of the major weaknesses of the previous time-dependent models
is that the structure of the program is not considered in determining its reli-
ability. Littlewood adopts a modular approach to the software and att"opts to
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describe this structure via the program's dynamic behavior using a Markov assump-
tion. The program comprises a finite number of modules with exchanges of control
between them that follow a semi-Markov law. The time spent in a given module can
be taken as a random variable with any distribution (hence, semi-Markov) which is
characteristic of the module and the module that it transitions to. The specific
assumptions of this model are:

Model Assumptions

suh(a) The program is composed of M modules. Transitions between modules are
such that the probability that the program terminates one module to enter another
is independent of the time the first module is entered (semi-Markov property).

(b) When the program is in module i, the failures are assumed to follow a .:

,• Poisson process with parameter v..

- (c) When module i calls module j with probability p.,ij the probability of a

failure in the interface between the two modules is a...

(d) The distribution of the time spent in module i before entering module j

depends upon only i and j and is known only via the first two moments Pl and

P2 ~Ka ~(e) The program is operated in a similar manner as the anticipated opera-
tional usage.

V ,[ (f) Each failure results in a random variable cost. The random variables
are assumed independent with distributions dependent on the module or intertace in
which the failure occurs. The distributions are only known through their first
two moments.

The last assumption is optional; it is only needed if an overall failure cost

Suppose N(t) is the total number of failures (both within modules and be- .
tween) observed in the program in the time interval (O,t). Deriving the distri-

. bution of N(t) for a specified t is an extremely difficult if not impossible task.
A complete description of the behavior of N(t) requires knowledge of the distribu-
tions of times within modules, a requirement that is usually unattainable in prac- .;
"tice. Littlewood derives an asymptotic result pertaining to the behavior of N(t).
If the very plausible assumption for a modular program is made that the individual
failure rates are much smaller than the switching rates between modules, then the
failure point process of the integrated program is asymptotically a Poisson pro-
cess with rate parameter

4.12
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the pre--

iji.,=1 j=1 iPij (p +

__(4.666)

M M

i.-',ii=t1 . .i.•

bs v , ij ,.0 where n 4i.6 satisfies ) P n with 7i 1 and P is the

•i 1jl1'"

•',-,A MxM transition matrix of the system. •• •,

The interesting aspect of this result is demonstrated by rewriting the pre- ' •,.-

vious expressiou; i.e.x if cnbrepesd

H il b.icx.i "'466'i••i

j~~l , ~(4.667) i '."

Saiv= + .3 • ':'*:

a M
i=l j=l i1 j

and ',"':

bi• =,, (4.668)
M M .

i=1 J=l I

then the previous expression can be reexpressed as: ...

i i l ' ,-'

The ai represents the limiting proportion of time spent in module i while b.. is

the limiting frequency of i to j module transfers. It is often possible to esti-
mate them directly. An extremely complex description of the behavior of N(t) is
therefore represented asymptotically in a very simplistic manner.

Suppose interest is also in a failure cost analysis. If Yi(t) represents the

random variable for the cost of a failure in module i, and Y. (t) represents the

random variable cost of a failure in transfer from module i to j, the total pro-
gram cost is: '

Y(t) = Yi(t) + Y (t) (4.670)
"i=1 i=1 j=1 ij

i~j
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Again the exact description of Y(t) is extremely complex if not impossible to de-
velop. Littlewood develops an asymptotic result which depends only upon the means
and variances of the defining distributions. He shows that:

N(O,1) (4.671)

where p is the (asymptotic) mean cost incurred per unit time for the integrated
program and is:

M M M

1J~

!•I P = - M M (4.672) ':,!

i=l j=1 iij

where 1 and •iJare the means o4 Yi' Yij respectively.

The reader is referred to Littlewood's papers for additional details pertain-
ing to this result and a definition of C.

The major problem with this model, as with the previous case is that all of
the parameters that make up the model are input; therefore, they must be known or
estimated. The data required for this model are:

Data Requirements

(a) The transiti-on probabilities from modules i to j, i.e., the pi. s.

(b) The error rates within the modules i, i.e., the v.'s.

b c) The first two moments of the distribution for the time spent in module
I•:i before transferring to module j, i.e, the pl 3s and P2 JS.

(d) The probabilities of failures occurring at the interfaces between
modules, i.e., the aij Is.

(e) If a cost analysis is desired, the first two moments of the cost distri-
butions of failure within and between modules.

N As can be seen, the data required can easily prohibit the use of this model.
An additional factor to consider before applying this model (and the previous one)
is assuring that the Markov property is satisfied. This could prove the most
formidable problem of all in applying Markov Models.

/5
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CHAPTER 5

COMPARISON OF RELIABILITY MODELS

For this part of the report, some studies and the results pertaining to
comparing the performance of the various reliability approaches and models on
software error data sets are described. Any common conclusions that have been
reached among the studies are pointed out. The studies described all involve the
comparison of at least three or more software reliability models. Excluded are
various individual studies that have been done on a given software model only.
This includes the results of applying Musa's Model to error data sets 4 aud
"Littlewood's Bayesian Model. Musa's Model has been applied to actual software
error data, with some success. Littlewood also has applied his Bayesian Model toji some data sets with a good match obtained between the predicted and actual error
observations. However, this comparison is strictly concerned with results that
can be given in the performance of one reliability model in contrast to another.
From these studies, some guidelines can be established for employing a model in, a
given sitdation. In this paragraph, the analysis is limited to the Time Domain 7.
Approach rather than Error Seeding/Tagging and the Data Domain Approaches since
no major studies have been done to compare the performance of the different ap-
proaches. The first major effort was made by Alan Sukert of the Rome Air Develop-ment Center.1767 The study involves five major models: The Jelinski-Moranda4 i Model (Paragraph 4.2.3), the Schick-Wolverton Model (Paragraph 4.2.4), a modified

Schick-Wolverton Model (Paragraph 4.2.4.1), and Geometric (Paragraph 4.2.6) and
Modified Geometric Models (Paragraph 4.2.6.1). Other models were considered but,
due to data requirements for these models (e.g., CPU time), could not be used.
The chcsen models were applied to four large scale DOD software projects. Using
the software error reports filed for each of the projects, the error counts per
day and per week were used as input into the software models. (All models were

1' modified to allow more than one error per time frame.) The study considered
estimates for the respective models obtained from maximum likelihood and least
square procedures.

The basic conclusions drawn from this comparative study are:

(a) The grouping by weeks does better in predictive ability than by the day.

(b) The Jelinski-Moranda and Schick-Wolverton Models give reasonable predic-
tions for small projects while the modified Schick-Wolverton Model does better for
larger ones.

(c) The Geometric Models are better to use when the MTBF or reliability
estimates are of concern.

A major problem experienced in the application of these models in this study (as
in the others) is the problem of convergence. The estimation procedures failed

5-1 .
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in many instances to come up with model parameter estimates. This is discussed
in some detail after the next study is described.

The second major comparative effort was undertaken by Hughes Aircraft Com-
pany.33 The study involves the Generalized Poisson Model of Paragraph 4.2.5 with

g(,,. X"; (a unknown), a binomial model and the Nonhomogeneous Poisson

Process Model of Paragraph 4.2.9. The various models employ both maximum likeli-
hood and least squares in the estimation of model parameters. These models are
applied to 16 sets of electronic's system computer program software data. The
major conclusions reached are: li 7

(a) Generally, the model fits to the data are poor, but the best fitting of
the three and the one applicable to the most data sets is the Generalized Poisson i ,
Model.

(b) Grouping the error data by a time period has better convergence proper-
ties than ungrouped.

(c) Maximum likelihood and least squares estimates for a given model are
similar.

The major problem of lack of convergence to parameter estimates was experi-
enced in this study as well. The authors suspect, as does Sukert in the previous .
study, that a maj'or problem causing this lack of convergence is violation of the
assumptions on which the models are based, especially the violation of a nonin- ,
creasing error rate. The Hughes report finds that by plotting the estimated error
rate whenever it is increasing in a region is precisely the region in which con-
vergence problems are experienced. The types of convergence problems encountered
include lack of convergence, oscillation, convergence to a nonoptimal solution,
and nonuniqueness of the solution. These problems are especially experienced by
the MLEs. The report employs a second derivative criterion to weed out nonoptimalsolutions, but the report points out that this cannot bi; relied on completely ,.;
because of computer precision problems in finding th• optimal solutions. (N

The third study was undertaken by Dayton University under contract to the Air •

Development Center. 18 The study applied the Jelinski-Moranda Model, the Geometric
Model, the extended Jelinski-Moranda Model (Paragraph 4.2.3.2), and Schneidewind's
Model with approach (c) (Paragraph 4.2.8) to software error data. The first two ,
are applied to two data sets in which the times between error occurrences are
recorded while the latter two are applied to two data sets in which the error
counts are recorded. The conclusions are:

(a) If the times between error occurrences are available, the Geometric
Model does a better predictive job, but if the error counts per time interval are ,
available, the Schneidewind Model is preferred. " "

(b) The extended Jelinski-Moranda Model and Schneidewind's Model give simi-
lar results, but the extended Jelinski-Moranda Model is very sensitive to changes
in the data.
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(c) The Jelinski-Moranda Model tends to estimate a smaller number of errors
.1• remaining than the Geometric Model, illustrating the "optimistic" tendency of the

exponential class of distributions.

V: I~The fourth study was performed by the University of Utah. 3 2  In contrast to
the previous three studies, this study compares a number of models using deter-
ministically generated error data rather than actual data. The times of error
occurrences are generated on a computer, following the underlying model with known
model parameters. The models considered include: the Jelinski-Moranda Model, the ,Geometric Model,' and Musa's Model. A Monte-Carlo study of the behavior of the 'V"'"*least squares and MLEs was undertaken. The results of this study are:

(a) A strong positive correlation is indicated among the various estimates
for total number of errors,

(b) The estimate of the MTBF is best for the Geometric Model,

(c) The accuracy of the estimates increases as either the total number of
errors increase or the number of errors remaining decreases, and

(d) The least squares estimation, using the times between error occurrences
{ rather than the actual times of the occurrences, does not perform as well as the

other estimators.

taenThe last few paragraphs summarize the results of the various studies under- --
taken to compare the various models. As can be seen from the studies, additional
comparative research is needed. Many of these, studies employed error data that
were gathered without the data requirements or assumptions of the various modelsin mind. What is needed is a large scale effort in which the data are gathered

under a controlled environment. Currently such a study involving the Nonhomo-
genous Poisson, the IBM Poisson Model, the Generalized Poisson Model, the
Jelinski-Moranada Model, and the Geometric Poisson Model is being undertaken
by Hughes Aircraft for the Rome Air Development Center. The data are being col-
lected specifically for software reliability applications. Although the final
report is not written yet, an interim report (Reference 78) finds some results

.:" similar to the previous studies. Specifically, the major problem of convergence
and the violation of the model assumptions are found. Again the major violation

I is an error rate that is nonconstant during a testing interval and nondecreasing '
I. over all intervals.

It is difficult, based upon the results of the studies, to provide clear K
cut guidelines in applying the software models. We can only conjecture. Out
of the various models considered, it appears that the Generalized Poisson or
Schneidewind's Model approach (c) might be best suited for count data. The
Geometric Models should be considered when estimating MTBF. The convergence
problem appears to diminish as the length of the testing period increases. How-
ever there is no method to determine what the optimal length of a testing in-
terval should be. This depends upon the underlying error generation process which
is not known.

, . . 5 -
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Many of the models discussed in this report have yet to be compared on the "

basis of performance with others. None of the Bayesian Models, Markov Models,
the Error Seeding/Tagging Models, or the Data Domain Approach to software reli- zt

ability modeling have been included in any comprehensive study. (Note: Hughes'

current research will incorporate Lit.tlewood's Bayesian Model). This report can

only present what has been done and what those limited results indicate. Much is

yet to be done-if it even can be done. A large scale controlled-data collection,

in which the CPU time and wall clock time are simultaneously gathered for the

purpose of comparing as many different models as possible, may be economically
and administratively infeasible. Moreover, for the modeling of software error
generation, no one model is in all instances. The software analyst

needs e collection of software models which have demonstrated themselves in

various environments and comparative studies. From this collection, the analyst

judiciously selects the one most applicable to his/her situation. Flexibility and

adaptability are the keys to successful modeling.

.'i

U. - .- '-
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CHAPTER 6L

"QUICK" ESTIMATES OF SOFTWARE RELIABILITY MEASURES

This last paragraph briefly presents some proposed "quick" estimates for
various software reliability measures. These procedures do not requite the exten-
sive error data ba'se of the previous sections. The view taken toward software
reliability is very simplistic and pragmatic in nature. The two procedures dis-
cussed are not advocated in this report, but are included for completeness. The
purpose of this report is to review all of the various procedures that are advo-

( cated in determining the reliability status of a set of software.

6.1 MTBF ESTIMATION

This very simple measure of MTBF was proposed by Gregory Hansen of SystemsSI•Engineerin% Laboratories.9 When a software program is 'first released, there are
only a few users and hence the failure geueration is a minimum. This means that

the MTBF is fictitiously high, giving the software manager a false sense of secur-
ity. As the software begins to be used, the MTBF can be expected to rise slightly
as the initial gross errors are discovered and eliminated. However, in later
years as more and more users test the software, the MTBF drops significantly.
Finally, the software reaches a "mature" state and the MTBF i:,,1creases' sharply.

[4 This behavior is reflected in the following formula:

(N + N + ... + Ni.l)*C
MTBF = Mi (6.1)

(i) H. 6t

where M. ntmber of software errors discovered in year i,

SCffBF(i) - BE for year i,

N, Number of copies of the program in use for year i,

; .4 I Number of years the program has been used,

and C = Entimates of the average number of hours that the product is used
in a year.p

. An example calculation is as follows. Suppose the MTBF is desired for year i = 3
with the software being distribnxted to users for 2 years. During the third year,
there has been a total of 10 users and during the second, a total of 5 users. The
estimated average number of hours that the program is used during the third year
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is 500 hours. During the third year, a total of 100 errors have been observed.
The formula

(Na +N2)*C (10 + 5)*500 75hs(.)EMTBF(3 = S10- 75 hrs (6.2) •,,,
(3) M3100

reflects the total estimated number of hours of use by all users during the given
year, divided by the number of errors found during the year. The function can be
plotted against time to see the error behavior of the software package. Once the
program re'aches maturity, future values of MTBF can be predicted by extending the 'J .

6.2 PRAGMATIC SOFTWARE RELIABIL.ITY ESTIMATION •

The last method considered is proposed by John Wall and Paul Ferguson. 8 °
Using the basic premise that the failure rate of software decreases as more soft-
ware is used and tested, they formulate a relationship between the number of fail-
ures and the Itmaturity"i of the software. Specifically, the relationship proposed
is : S.,

Coc (6.3)

where C is the cumulative number of errors experienced for, a software program of
maturity M. Co and a are constants determined empirically by plotting the cumu-
lative number of errors versus the maturity level of the software. Ho is a scal-
ing constant. Typically, the units of M and Mo arc expressed as: amount ofbecalendaro tettimeexctdexpended' processor or ýPU time, man-months of testing, or the num- ,,,-•:"'!L

ber of tests executed.

The failure rate, R, is then determined as 4.'.

dC d(M/Mo) __•-1,i

R Ld = aCo dt - (6.4)
'dt dt IJ0

For convenience this is expressed as: 4,

R IM (6.5)

where Ro is simply a constant. Again the terms Ro and a can be determined empiri- "4

cally from the data. For example, failures per CPU second can be plotted versus
number of CPU seconds of operation to determine 'Ro and a. Care must be taken to • .•
ensure consistency of the units in the functional relationships.

The application of this method is applied to a number of data sets in their V.
paper. The reader is referred to that paper for additional details. r .
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CHAPTER 7

SUMMARY AND CONCLUSIONS

With the ever increasing role that software is playing in the weapon systems
and the increased complexity of the programs because of that role, a dramatic in-

'•'Icrease in the cost of the software ove:•" the life cycle of the weapon system is [.:,

b seen. Greater emphasis has thus been -placed in determining more cost effective
ways of software development and testing. One such method that has developed over

Y ~:the last 10 years is the calculation of a software's reliability. By having a
, quantative measure of a program's or a program module's reliability, a software

manager can best determine the allocation of testing personnel and just how much
testing to employ before release to the user.

This report provides a review of the various approaches' to estimating that
reliability. The three major approaches are categorized as: Error Seeding/Tagg-
ing, Data Domain, and Time Domain. The Error Seeding/Tagging Approach u.:es the
concept of error introduction into the software. Based upon the number of in-
serted errors and inherent errors found in the testing phase, the total number
of errors still residing in the program can be estimated. The major problem
with this approach is the implementation. How are errors of the same nature and
distribution as the inherent errors inserted into a program? The Data Domain
Approach bases the reliability estimation on the number of successful execution

, runs out of the total number of runs attempted., In addition, the approach tries
to incorporate the input domain structure into the estimation process. The input
space is broken down into regions which are assigned probabilities based upon
anticipated operational profiles. Random samples from the input space are, then
drawn according to these probabilities and the count of successful runs made
from them are used in the reliability calculation. The major weakness with this
approach is the stratification of the input space and the resulting probability
assignments.

4" The last approach, which this paper deals with the most, is the Time Domain.
.' This approach attempts to model the error generation process as observed over time

(either CPU or wall clock). This is done using the time of error occurrence (or
equivalently, the time between) or the number of errors observed over a testing
interval. Many of the models are based upon an underlying Poisson process for the

K t:error generation over a specified time frame or an exponentially distributed ran-
dom variable for the time .between error occurrences. The Time Domain Approach can
itself be categorized into three types of models: "Classical," "Bayesian," and
"Markov." The "Classical" Models can be traced back to their origin within hard-
ware reliability theory. Many of the concepts of hardware reliability theory
(MTBF, hazard rate, reliability function) are adapted to the field of software.
Moreover, models of this class tend to view the errors inherent in a program to be
of the same order of magnitude and the correction of any one of them has the same

"order of impact upon the program. The "Bayesian" viewpoint takes this impact and

treats it as a random variable. It is not known what effect the correction of an
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error might have upon the behavior of the program. When errors are discovered 3fl
early in the testing cycle, it is expected that the most dramatic improvement
in the performance of the program occurs after thair correction. Errors discover-
ed lite in the cycle have the least dramatic improvement. The "Markov" Models
attempt to formulate the error generation process over time as a Markov process
in whicL transition probabilities are either given or derived. These probabili-
ties are the state transition probabilities for moving from one state to another.

As in the previous approaches, the Time Domain also has its share of prob-
lems. The Markov Models are extremely complex and difficult to apply. Most
of the results are either for special cases or are asymptotic in nature. The
Bayesian Models represent a more realistic approach to modeling the actual error
generation/correction process. The difficulty here, as with the Bayesian theory
in general, is the specification of a prior distribution for the error rate. In
addition, little has been done in comparing this class of models to models of a Vk
"classical" nature. The major weakness for the Classical Models is an oversen- IKI,
sitivity to the violations of the assumptions upon which they rest. They are
especially sensitive to an increasing failure rate within the data. This in- .1.

creasing rate may be due to many reasons. introduction of new errors in the
c~rrection process, nonuniform testing, and nonuniform application of testing man-
power throughout the testing cycle. The last two are especially common occur-
rences in typical software testing programs. Another problem that these models
face is a lack of independence among the errors. In many instances, the dis-
covery of one error quickly leads to others generating a "clumping" effect of the
errors over time. These various violations lead to poor fits of the models and
convergence problems in the estimation process.

Various studies have been undertaken to compare the performance behavior .:
among the models, but no clear superior model has arisen. It is felt by this •*.
author that no one model can be advocated for all applications. A collection of
models that have demonstrated themselves over a large class of problems should be
considered. The software analyst should then pick from this class the one that
is most effective in modeling his/her set of data. Modeling has always baen an
interative procedure, it includes choosing a candidate model, estimating the 0.,
parameters of the model, testing the adequacy of the model, and cycling back if
necessary.

Much research is yet to be done in this new field; however, software reli-
ability modeling can provide an effective aid to the software manager. Some of
the applications of these models demonstrate this. What is to be kept in mind,
however, is that it is one of many tools available in developing cost effective
software. By careful consideration of the collection of data for these models, to
ensure the model assumptions are satisfied as much as possible, and by using a
collection of models that appear "robust" to violations of e.soumptions which can-
not be met, the models provide a useful aid. Using th'. commou techniques of "J
modeling, the chosen model can be a useful quantitative meah-re to determine the
length of testing and manpower utilization. Otherwise, if the wiinager is asked,
"What led you to make the decision to release the software?" What can he say? ,..e ,'
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