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Abstract *

"N%

'The test-taking behavior of some examinees may be so idiosyncratic that

their test scores are not comparable to the scores of more typical

examinees. Appropriateness indices provide quantitative measures of

response-pattern atypicality. An appropriateness index can be viewed as a

test statistic for testing a null hypothesis of normal test-taking behavior

against an alternative hypothesis of atypical test-taking behavior. In this

paper performance curves and the performance envelope are introduced as

devices for obtaining a least upper bound for the power of the most powerful

statistical tests for aberrance. The performance envelope of a set of tests

is the function on [0,1] whose value at t is the least upper bound of

the hit rates of the tests when their false positive rate is t The

performance curve of an appropriateness index is the performance envelope of

the tests for aberrance based on the index. For some types of testing

anomalies it is possible to determine the performance envelope for the set X

of all statistical tests for aberrance and to identify a test whose

performance curve is identical to this performance envelope. An algorithm

for computing some of these optimal tests is described, and an example of

,I,its use is presented . I
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PERFORMANCE ENVELOPES

1. Introduction

An examinee's test-taking behavior may be so idiosyncratic that his/her

test score is not comparable to the scores of more typical examinees.

Copying and other forms of cheating could result in a spuriously high score.

Language problems, atypical education and deliberate failure could result in

a spuriously low score.

Some atypical examinees produce recognizably unusual answer patterns.

* For example, in a recent experimental study of deliberate failure,

deliberately failing examinees often chose obviously incorrect options,

whereas truly failing examinees rarely chose these options. Furthermore,

deliberately failing examinees produced the option response sequence ADADAD

relatively often; however, truly failing examinees very rarely produced this

sequence.

Appropriateness measurement attempts to detect faulty test scores by

recognizing unusual answer patterns. The standard procedure is to formulate

a model for normal data and a model for aberrant data. With these models

the identification of faulty test patterns is reduced to a hypothesis

- testing problem.

To date, appropriateness measurement studies have been highly

empirical. For example, to determine if a form of aberrance can be

detected, several plausible detection procedures are tried out on actual and

simulation data containing normal and aberrant response patterns.

There are a number of questions that cannot be answered satisfactorily
i

by these empirical methods. To return to the example, if none of the
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evaluated detection procedures classifies well, then it cannot be concluded

that the form of inappropriateness could not be detected because some other

procedure may have worked well.

This paper introduces a general method for obtaining a less ambiguous

answer to the question of whether a specific form of aberrance is

detectable. Section Two presents some motivating examples of applications

of our results. Section Three introduces terminology and some basic

concepts. Section Four develops the basic theory and relates it to several

important measurement questions. Section Five reviews two specific

applications. Section Six contains some mathematical results that

demonstrate that the theory can be implemented on currently available

computers for these two applications. An algorithm for computing some

performance envelopes is described in Section Seven. Section Eight provides

an illustrative example.

iL
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4I
2. Examples

In this section some examples are used to motivate and to describe our

results.

Example One: Absolute detectibility of a specific form of aberrance in

simulation data.

Simulation data sets are commonly used to compare tests for

appropriateness and decide whether a specific form of appropriateness can be

detected. These studies use a pair of computer programs, one to simulate

normal response data and another to simulate patterns of right and wrong

answers from aberrant examinees. Since an arbitrarily large number of

examinees can be simulated, the performance of any statistical test for

appropriateness can be accurately determined. This is done by computing the

hit rate (proportion of aberrant examinees correctly classified) and false

positive rate (proportion of normal examinees incorrectly classified) with

large samples. If one finds a test with a high hit rate and low false

* - positive rate, then one concludes the specified type of aberrance can be

detected, at least in simulation data. (Of course, follow-up studies with
actual data are needed to verify the simulation results. However, some of

our results are more easily understood with simulation studies.)

Without loss of generality it can be assumed that the collection of

statistical tests being considered contains at least one test with false

alarm rate equal to a for every a between zero and one. It makes sense

to determine the hit rate B of the most powerful test among those with a

given false alarm rate. In fact it is possible to consider the set of all

statistical tests and find a bound at each a . For some important special

S..', . .. . . . . .. ~0



cases we have developed a useable way to compute a least upper bound for 0

at each a . In fact is is possible to describe (and compute) a statistical

test that actually achieves the maximum.

These results are important because, at least for simulation data, they

yield an absolute measure of the detectibility of the specified form of
4.

appropriateness. Thus, after applying our methods to a particular

appropriateness measurement problem one may be led to one of the following

conclusions:

1. The specified form of aberrance cannot be detected very well by any

appropriateness measurement technique, whatsoever; or

2. There is no point in attempting to improve upon a developed,

convenient appropriateness measurement test because it is only

slightly less powerful than all superior tests; or

3. There are tests that are substantially more powerful than the tests

currently being used, and significant gains in power may be

obtained by revising appropriateness measurement techniques.

Example Two: Choosing between dichotomous and polychotomous models.

Polychotomous analyses are considerably more difficult than analyses of

multiple choice data scored right or wrong. For a specified form of

aberrance, a specified population, and a specified multiple choice test, can

one substantially improve appropriateness measurement procedures by

attending to which wrong answer was chosen? The results in this paper are

useful for answering at least some forms of this question.

Using the results in this paper, for any false alarm rate, the hit rate

of the most powerful statistical test can be computed, at least for some

polychotomous tests. The maximum is taken over all tests, including those

0-.1. . . .,.-.----- ..-.- r . -. L f "". '''' ""': '''""" - ''''"' ' "-('-,' - '/ -, '' '



6

that are sensitive to which wrong answer was chosen. The maximum can also

be computed for all tests that treat examinees with the same pattern of

correct answers equally, i.e. for dichotomous statistical tests. By

comparing maxima one can better decide if polychotomous analyses deliver

enough additional power to be worth developing and implementing. If the

maxima are close, then the increased sampling error in the polychotomous

model's parameter estimates may off-set gains in statistical power.

Example Three: Descriptive models of actual data.

Since a multiple choice test has only finitely many items a Markovian

model of high enough order will exactly describe the statistical structure

of sampled examinees. Unless there are complex interdependencies between

nonadjacent items, lower order Markovian models will adequately approximate

the higher order, perfectly descriptive model. There are other families of

models that also provide increasingly accurate and, finally, a perfectly

descriptive model (e.g., Bahadur, 1968). The descriptive models generally

require very large samples for parameter estimation; however, in some

appropriateness measurement tasks, very large samples of normal and aberrant

examinee data are available for parameter estimation.

In a recent study of deliberate test failure, Markovian models of order

nT and n were fitted to large samples of truly failing examinees and C
E (

experimental examinees deliberately failing an exam. For each pair of

models, the reasoning used in this paper was applied to compute an optimal

test for inappropriateness in Markovian data. For nT=1 and nE-2 a test

was obtained which, for actual data, was clearly more powerful than all

available alternative appropriateness tests.

IL A. A
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To summarize, the results in this paper can be applied to a sequence of

models of increasing generality and used to approximate a bound on the

performance of an optimal test for aberrance. In the process of

approximating a bound, a powerful test for aberrance will be constructed.

-, 2.I
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3. Ability Distributions, Sampling and Optimal Tests

The typical problem for appropriateness measurement is to find a

statistical test 6 such that 6(u) is much more likely to indicate

aberrance when the response vector u has been generated by a sampled

aberrant examinee than when u has been generated by a sampled normal

*examinee. The key word in this description of appropriateness measurement

is "sampled." From a practical point of view, it makes sense to consider

examinees as sampled since they report for testing in a haphazard order and

since, except when they are cheating, they work independently of one

another. From a theoretical point of view it is desirable to regard

examinees as sampled because doing so leads to multinomial item response

models, simple (as opposed to composite) statistical hypotheses, and optimal

appropriateness measurement tests. A brief discussion of item response

theory will clarify these points.

The equations of item response theory are consistent with many

conflicting psychological interpretations. The most useful one for

appropriateness measurement, in our opinion, is to regard each examinee as

having an ability 8 and item scores u 2 , u2 . un The item

scores, according to this view, are random variables because the set of all

examinees is a probability space and not because any examinee's behavior is

uncertain. Similarly, 8 is a random variable only in the sense that

probabilities are assigned to sets of examinees with specified 8 values.

S. "Measurement error" is irrelevant to O's status as a random variable.

Thus for any examinee, say examinee w , u1 () and 8() are numbers

*., indicating w's response and ability, respectively. The probability that

u1  is zero or that 8 is negative, on the other hand, are the

..
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probabilities assigned to the set of examinees answering the first item

incorrectly or having an ability less than zero. Thus if examinees are

regarded as sampled, Prob{u1-O and Prob{e<O1 are the probabilities of

sampling an examinee with an incorrect first answer and negative ability.

For reference, the defining equations of item response theory are

reproduced below. Our results follow from these equations and do not depend

upon viewing subjects as deterministic and sampled.

The basic assumption of item response theory, the local independence

assumption, is generally formulated with reference to the item response

functions, PI(.), P2(.), • . . , Pn(.) , which give the conditional1 2 n

probabilities of correct (u -1) responses at each ability level. Local

independence asserts that

(3.1) Prob{u lu* & u 2 u* . . . UU~le-ti

n U* 1-u*

.= P iCt) i[1-P i(t)] .j=1 -j

where u* , the observed item score, is either zero or one.

When the ability density is known or accurately estimated, equation

(3.1) can be used to compute unconditional probabilities. If the ability

random variable has density f , then the probability that the response

vector u equals some vector of zeros and ones u* is obtained by

integrating the likelihood function

(3.2) Prob~u-u*} = fProb{u-u*IO-tlf(t)dt

In many item response theory applications the ability density is

* ignored. When an ability density is not specified, then the likelihood

function (3.1) specifies a continuum of models for normal item response

*Z3-P
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data, one for each ability. The hypothesis, " u* has been generated by a

normal examinee," is composite in the sense that there is a different

probability that u=u* for each ability level t . Such a formulation

leads to maximum likelihood ratio tests such as Levine and Rubin's (1979) LR

test.

When the ability density can be specified or accurately estimated, then

the hypothesis that u* has been generated by a normal examinee is simple

in the sense that formula (3.2) gives a unique model consistent with the

hypothesis. When the alternative hypothesis is also simple, then the

likelihood ratio can be used to obtain an optimal test for appropriateness.

*According to the Neyman-Pearson Lemma (Lehmann, 1959) a statistical test of

the form

"aberrant," if P (u*) > constant-P (u*)
6(u) =Aberrant -Normal

,'normal," otherwise

has as much or more power for detecting aberrance than all tests with the

same false positive rate.

Note that when the ability density is specified, item response data are
multnomial with 2n  categories. Multinomial conceptualizations of the

usual models for aberrant data will be formulated as they are needed. The

key point of this section is that classical statistical results for testing

simple hypotheses can be used without making implausible psychometric

assumptions.

.o.
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4. Performance Envelopes

Elch of the examples in Section Two was concerned with a set of

statistical tests. For example, the second example compared a set of tests

using polychotomous data with a set of tests that can be applied to

dichotomous data. In this section a device for studying properties of sets

of tests, the performance envelope, is introduced. But first some notation

and terminology are needed.

The basic data for appropriateness measurement are the vectors of item

responses, here denoted by u A deterministic or nonrandomized

statistical test for aberrance is a binary function of item responses taking

on the values 1 (to indicate aberrance) and 0 (to indicate the absence

of aberrance). Following Lehmann (1959, p. 60), a pair of tests can be

combined to form a randomized test. If 6 1(u) and 62(M)are tests and

*O<p<l then d(u;6 1,62,p) is used to denote the randomized test which is

• .. 6 (u) with probability p and 62(u) with probability 1-p . .
12

This paper is exclusively concerned with properties of sets of

statistical test of aberrance, such as the set of all tests that can be

obtained from a given goodness-of-fit statistic or the set of all statistics

that can be obtained using a given model for test data. The mathematics of

comparing sets of tests is simplest when these sets are closed with respect

to routine operations and methods for combining tests.

If D is a set of statistical tests, then a set D , possibly equal to

, D , is defined as the set of tests obtainable from tests in D by

"probability mixtures" (i.e., forming randomized tests from pairs, triples

or larger finite sets of tests), complementation (i.e., forming the test

1-6 from 6 ), and considering the trivial test (i.e. the test 6o(u)=1,

I0

:[ ... .-.
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which labels all patterns as aberrant). If no new tests can be constructed

by these routine operations on the tests of D , i.e., if D=D , then D

will be called closed. In most cases of interest (see below), explicitly

expressing all the tests of D with formulas containing only the tests of

D is straightforward.

To evaluate the performance of a (randomized or nonrandomized) test for

aberrance, two conditional probabilities are needed. Using the suggestive

terminology of signal detection theory, these are the false positive rate

"* - ca(6) or probability of misclassifying a randomly sampled normal examinee

and the hit rate 8(6) or probability of correctly classifying a sampled

aberrant examinee. In hypothesis testing terminology, these are the

probability of a type I error and the power of 6 respectively.

Of course a pair of distributions P Aberrant(u) and PNormal(U) over

response vectors must be specified to make the phrases "randomly sampled

normal examinee" and "sampled aberrant examinee" unambiguous. For each

individual application this will be done.

To evaluate the performance of the most powerful tests that can be

obtained from a set of tests D , a monotonic real function is introduced,

the performance envelope. If D is a set of statistical tests, then the

performance envelope of D is the function R-R D defined for O<t<1 by

R(t) - least upper bound [8(6): 6cD and a(6)-t}

*0 It is easy to prove R is a non-decreasing function with values between

zero and one.

Two special cases, the performance curve of a statistic and the

performance envelope for the set of all statistical tests, will now be used

to illustrate the definition.

Vh.o
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4.1 The Performance Curve for a Statistic

Let X be a test statistic, i.e., a number-valued function of item

responses such as any of the many goodness-of-fit indicators proposed as an

index of appropriateness. For each "critical score" c , two statistical

tests for aberrance can be formulated. One of them

. 6=1, if X(u)<c

c , if X(U)>c

treats low values of X as indicative of aberrance, and the other, 1-6
C

treats high values as indicative of aberrance. The performance curve for

the statistic X is the performance envelope of the set of statistics of

form 6 or 1-6.c c

The performance curve of X is important because it shows how well X

performs in classifying examinees at each false alarm rate, in the following

sense. Let DX  denote the set of all tests of form 6 . For each t

there will be a statistical test 6 obtainable from DX  with false alarm

rate equal to t and hit rate equal to RD t) . This test can be regarded
X

as most powerful or optimal among the tests obtainable from DX with c-t

because every other test (with false alarm rate equal to t ) will have

lower or equal hit rate. The word "obtainable" seems especially apt here

because it is easy to show that the optimal test can always be chosen to be

one of the nonrandomized tests or a randomized test obtained from just two

nonrandomized tests.

The performance curve for X differs from the ROC curve for X

usually used in appropriateness measurement in that it is continuous and

concave. (Recall that the ROC curve for X is the set of points <x,y>

. . . . . . .

S".li i . . . .. . . . . .*
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with x-c(6 ) and y-8(6 ) for some nonrandomized test obtainable from X

Some authors use "ROC curve" to denote a curve obtained by fitting a linear

or other smooth curve between points and thus obtaining a continuous, but

not necessarily concave function.)

Since there are only finitely many response patterns, there are only

finitely many points <a(6 ),8(6 )> . If the piecewise linear curvec c

obtained by connecting points corresponding to consecutive values of c is

the graph of a concave function, then this function is the performance

curve for X

Computation of the performance curve for X becomes slightly more

complicated if the ROC has points below the diagonal or if the curve

obtained by connecting consecutive points is not concave. One considers the

finite set of points <a,8> obtained from all the non-randomized tests.

One obtains a curve as a piecewise linear function beginning with the origin

(or the point with highest 8 from among all those with a-0 in case there

are nontrivial tests with a-0) as the first node. If <a,B> is the nth

node of the piecewise linear function, then the next node is <W',8'> where

- '- a',X' maximize (8'-8)/('-) over the subset of the finite set with

a' >a

The performance curve is preferable to the ROC for comparing a pair

of statistics X and Y for two reasons. First, for each t either

R (t)>R (t) or R (t)<R (t) so the choice between X and Y is clearx Y X Y

when a false alarm rate t is desired, even when there is no nonrandomized

test with false alarm rate t . Second, the performance curve for a

statistic X is concave, but the ROC curve need not be. Thus for some

'.range of possible false alarm rates a say between t-c and t+e for

.0 , a randomized test can have higher hit rate than all the nonrandomized

i'+,~~~~~~~~~~~~~.."-- - - °-.,.- - .. ,, ...........-.-........ ..--..-- ............ ................
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tests 6 with t-c<a(6)<t+c . Consequently comparing ROC curves can lead

to the wrong choice between X and Y to use for constructing a

statistical test with false alarm rate near t

In concluding this subsection we wish to point out that sets of tests

like D are much more general than seems to be realized. A set of .x
..nonrandomized statistical tests for aberrance has nested critical regions if

• for any 61 and 62 in D either 61<62 or 62(61 . In other words,

6 81(u*)<2t(ua) for every response pattern u* or 6 2(u)<6 1(u) for every

response pattern u* . Using the fact that there are only finitely many

possible response patterns it can be shown that if D has nested critical

regions there is a statistic X such that D-D and the performance

. envelope for D is the performance curve for X

This fact is important because it shows the generality of the approach

to appropriateness measurement we use: classifying examinees by using an

"appropriateness index" or real valued function of item scores and a range

of cutting scores. Any set of tests with nested critical regions can be

obtained with this approach.

" q4.2 The Performance Envelope for the Set of All Statistical Tests

At least in some situations it is practical to consider the performance

envelope for the set of all statistical tests for aberrance, and this leads

*" to a second illustration of performance envelopes.

As noted in Section Three when the ability distribution is specified

formula (3.2) defines a simple multinomial model for item response patterns.

Plausible, simple multinomial models (e.g. the spurious high and spurious

,. low models of Sections Five and Six) are appropriate for some important

4
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forms of aberrant data. Thus in principal the likelihood ratio statistic

X(U) - PAberrant (u)/PNormal (u)

- can be defined. In Section Seven an algorithm for calculating A is

described.

A basic result for this research is that the performance envelope for

A-" the set of all statistical tests for aberrance is the performance curve for

the likelihood ratio statistic. In other words, for any statistical test

6 , there is a test obtainable from the likelihood ratio statistic with

false alarm rate equal to a(6) and hit rate at least as large as B(6)

This fundamental result is an immediate consequence of the Neyman-Pearson

Lemma (Lehmann, 1959, p. 63).

1

!..-.
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5. Spurious Scores and the Computation of Envelopes

In the remainder of this paper an algorithm for computing performance

envelopes for some important models is described and illustrated. The

spurious score models and tampering manipulations have provided reference

experiments for comparing appropriateness measurement results in several

laboratories (Drasgow, Levine, & Williams, 1985; Levine & Rubin, 1979;

Parsons, 1983; Rudner, 1983). Spurious score model and tampering

experiments are also important because they can be used to predict the

performance of appropriateness measurement procedures in various actual

situations without collecting additional data.

The 10% spurious high tampering manipulation is an operation on an

actual or simulation examinee's answer sheet that changes up to 10% of the

examinee's item scores. In this manipulation 10% of the items are sampled

without replacement. Incorrect answers are changed to correct answers, and

correct answers are left unchanged.

Data conform to a 10% spurious high model if the likelihood function

for each item response pattern is the likelihood function for a response

pattern generated by a normal examinee and then modified by 10% spurious

high tampering. An explicit formula is given later in this section.

The spurious high model and tampering procedures were formulated after

considering a low ability examinee copying from a much brighter neighbor

when the proctor happened to be distracted. Of course, some copiers will

risk copying on 10% of the items and others on 20% or 5% of the items.

However, after a distribution on the percentages is specified, results from -

studies in which the percent tampering has been constant can be combined to

approximate performance in the more realistic situation. The studies in

.. .. ,... ..... .. ,- .. -. . ........... . .... .. ..... ,, , ,,... .. , . * ,..,),.* ; .. - . , ...-
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which percent tampering is constant are basic because they permit the

psychometrician to predict for an arbitrary percent copying distribution.

According to the 10% spurious high model, the likelihood of an item

response pattern u* - (u*, u , u*) is a sum over (n/10 terms

1-u*
i i

S iES iiS

where S ranges over subsets of the first n positive integers having

exactly n/10 elements. Direct computation of likelihoods is impractical

11
because for n-90 , n/10-9 there are more than 10 terms.

The 10% spurious Low tampering manipulation is a procedure that also

revises normal item response patterns. Exactly 10% of the examinee's item

responses are sampled. For each sampled item response a random response is

generated. If the generated response agrees with the examinee's response,

no change is made. Otherwise, the examinee's item response is changed to

the generated response. Spurious low score models are defined analogously

to spurious high score models by referring to a two stage procedure; the

first stage conforms to a model for normal responding, and the second

stage modifies the patterns generated in the first stage by a spurious low

tampering manipulation. The likelihood function for this model is

U-u.:u* 1uu*I nI- Aii
--n/1O)  £ Ai ~(1-A i) R Pi(t) Q(t)

S icS ilS

*where the summation is over subsets of the first n positive integers

having exactly n/10 elements and where the A are taken to be one over

the number of options for item i

The spuriously high model models copiers and examinees with knowledge

of a test's answer key for some proportion of the test items. The

'0

' .
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spuriously low model models random responding to some proportion of test

items.

Spurious low aberrance can also be interpreted in meaningful ways.

Consider, for example, the assessment of children for possible assignment to

special education programs. There are serious concerns about the meanings

of test scores when tests standardized on mainstream samples are

administered to cultural minorities. This is particularly important when a

child is tested in a second language in which he or she may not be fluent.

His or her responses to some linguistically demanding items may be nearly

random. The seriousness of this problem is underscored by the fact that

"intelligence" tests cannot be used in California when assessing minority

children for special education (see Hulin, et al., 1983, Chapter 9). As

before, results with fixed percentages of tampering can be combined to

predict for situations in which the number of spurious items has an

arbitrary specified distribution.

A -'

,2
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6. An Algorithm for Calculating Likelihoods

The major obstacle to computing performance envelopes for the spurious

models is the calculation of likelihoods. An algorithm for computing these .

likelihoods can be obtained from classical results on symmetric functions.

In this section a highly intuitive derivation not requiring symmetric

functions is given. The intuitive derivation has the advantage of showing

that the algorithm can be used to study a large variety of appropriateness

problems. It appears useful for modeling tests in which items differ in the

degree to which they elicit an aberrant response and in which there are

complex interactions between ability and tendency to cheat or otherwise

perform aberrantly.

Consider an experiment in which on each trial an examinee is presented

an item. Suppose on trial i the examinee performs normally with

probability 1-p but responds aberrantly with probability p so that the

probability of a correct response can be written

[1-Pi(t,s)]Pi(t) + Pi(t,s)Ai(t)

For example an examinee with an imperfect "crib sheet," ability t and

inclination to cheat s risks using the crib sheet to answer item i with

probability pi(t,s) and then answers correctly with probability Ai(t) or

chooses to ignore the crib sheet witn probability 1-p (t,s) and then

answers correctly with probability Pi(t) In this interpretation of the

* equations, A (t) - 1 if the crib sheet has the correct answer, zero if the

crib sheet has the wrong answer and P (t) if the crib sheet has no
i

information on the item. In our analyses of spurious high and low models,

I.

0 .
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A (t) will be 1 or the reciprocal of the number of options, and p will
I

also be independent of i , t and s.

- "If the appropriate independence assumptions are made, the likelihood

function for a response pattern u* will be

n u.
-. "-. L(u*;t~s) IT 11 { 1-P (t~s)]P Wt + P (t,s)A (0)}

i-i A

11 {1-P i(ts)]Q i(t) + P i(t,s)[1-A i(t)]} -'

If' Pi(t,O)-O , then t(u*;t,O) is the likelihood function for normal

examinees.

In many analyses it is necessary to keep track of the number of items

on which cheating or aberrant responding took place. To this end an

indeterminate r is introduced and a "probability generating function" G

is defined by

n U*

G(u*;r,t,s) n i {[1-pi(t,s)]P (t) + rp (t,s)AW(t)i
mi-i

1 -u*
i { (t,s)]Qi(t) + rpi(ts)E1-Ai(t)]}

If G is written as a polynomial in r , then the constant term,

G(u*;O,t,s) , is the probability of observing u* from an examinee making

no aberrant responses. The linear term, L , is the probability of

observing u* from examinees making exactly one aberrant response. More
J.O k

' '.generally, the coefficient of rk (i.e. (1/kl) - G evaluated r-O) will
.rk

9...- be the probability of pattern u* with exactly k aberrant responses. If

p (t,s) - .5 for all i then the coefficient of rk  is .5n  times the

sum of the products having exactly k factors selected from the set

"I. .
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u 1 -u

[A:(t) [1-A (t)] i=1, . . , n) and n-k factors from

1 10u. I -u

[ .(t) Q : i=1, . . n} In other words, the coefficient of r

is ) (i.e., the number of ways to select k items from n ) times .5

times the probability of observing u* when exactly k responses are

aberrant and all the subsets of k responses are equally likely.

To simplify the evaluation of these coefficients G is divided by

the constant term to obtain

G(u*,r,s,t) nIIN [1+rBi]
G(u*,O,s,t) iI i

Pi(ts) A i(t)
_____ _ - t )( t_)_ , if u* = ,

1

where B. ~Pi (t 's )  1-A (t) "
1 if u* 0.

[1-P i(ts)] Qi(t) i u =,

Note that if p.(t,s) equals .5 for each item i , the terms in p drop

out, and the coefficient of rk  in )[1+rB ]  is (n)t(u*;t,O)-  times the|. k

* -- probability of a k/n x 100% percent spurious (high/low) examinee producing

pattern u*, provided the A.(t) terms are appropriately chosen.

This formula permits enormous computational savings because the

coefficients of the powers of r can be computed recursively with

relatively few operations. Since

m m-1
S(1+rB ) = [1+rB I R (1+rB.)i=1 i mi1

m-1 m-1

I (1+rB i ) + rB fl (1+rB i)11m i l

it is clear that the coefficients in the partial products

.. . . . ..... ... ... .
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I (1+rB.) =C + rC + rC +i=1 0m 1,m 2,m

satisfy the recursion

coC = C +B

r,m+l r,m Bm+1 Cr-l,m

where C = 1 and Cr= 0 for r>m* 0m r,m

To illustrate the use of this formula consider 10.6% spurious low

tampering on an 85 item test. The P. are specified as three parameter

logistic functions and A.(t)-.2 was used to model a random choice from the

five multiple choice options. The aberrant items were obtained by sampling

9 items from all 85 without replacement. The likelihood of a particular

pattern u* being sampled from among all examinees having parameters t,s

and producing exactly 9 aberrant responses is the sum of (15 ) - 7.1X 10"~9

products, each of which has many factors. There is one product for each way

to select 9 responses from 85. Thus a direct computation requires 85x101 1

multiplications at each ability level.

By using the recursion the number of multiplications can be greatly

reduced. The desired probability is equal to

( 85)- 1 (u*,t,o) C9 9,85 i

where C is the coefficient r in the polynomial
9 ,85

85
Sia [1+rB ]

and where the Bi's are computed by setting p.(t,s) = 1/2 and A.(t) - .2 .
. 1

* To calculate C9,85 a 10 entry array is revised 85 times. Initially

C is set equal to 1, and the remaining C's CI C , C9 ,are
0 ---. 2 9
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th
set equal to zero. The in revision replaces Cr by the current value of

C plus B times the current value of C for r-1, 2, . .,9 . C
r m r- 1 0

is left equal to 1 .Thus the eighty five revisions require less than 850

multiplications.
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7. An Algorithm for Computing Some Performance Envelopes

In this section an algorithm is described for computing performance

-* ' envelopes for the set of all statistical tests in the important situations -

- in which

1. item response functions are specified

2. ability distributions are specified for both the normal and

aberrant populations, and

3. data from aberrant examinees conform to a spurious high model or a

spurious low model.

Each of these conditions is commented upon separately below.

1. Specified item response functions certainly pose no problem for the

reference simulation studies that are commonly performed. A variety of item

response function estimation procedures are available for actual data (Bock

& Aitkin, 1981; Lord, 1968; Samejima, 1981). Levine and Drasgow (1982)

reported experiments for measuring the effects of using estimated item

response functions in appropriateness measurement studies with actual and

* simulated data and in which the item parameter estimation sample contains a

* specified proportion of unidentified aberrant examinees. They found that

with sufficiently large item parameter estimation samples and parameters

estimated with LOGIST (Wood, Wingersky, & Lord, 1976) from samples with and

.. without aberrants the index L0  performed about as well with estimated item -S.

parameters as with correct item parameters. Portions of their studies are ".5

currently being repeated to gauge the effects of using estimated parameters

on performance envelopes.

2. Ability distribution estimation programs are available (e.g.

Levine, 1984, 1985; Mislevy, 1984) for dealing with normal populations.

4 '-' ' ' ' ' ,' ' " -"- ' "- ' " . " ." " "."- " . . ." - .- - ;" , 2" . b 2" - ," " '-" " ' -'' / . ". ." ' : .
. °• ........................................"."..-..."....-."...."..""-.". - ""%"" " ..- . -.%. . " -' ".%" ." "6" '"=" ' 6= 5 .1 =-
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- Levine has shown that his method is strongly consistent and asymptotically

-, efficient (1985). Much less is known about estimating ability distribution

for aberrant examinees. Furthermore, the aberrant sample will generally be

quite small. However, sometimes it is acceptable to assume that ability has

* the same distribution in both populations; other times the ability

distribution can be specified by apriori considerations. For example, one

of the hardest and most important tasks for appropriateness measurement is

to identify spuriously high cheaters with ability slightly below the minimum

required to qualify for military technical training. To measure performance

* in this worst case, the aberrant distribution is assumed to uniform over a

short interval below the critical ability.

3. In the example presented in the next section 10% spurious low

aberrance is studied. Essentially the same algorithm is used for spurious

high aberrance. We feel that the constant percentage spuriousness condition

is especially important because, as noted in Section Five, these studies are

used as reference experiments and because the constant percentage studies

* can be easily combined to predict performance without collecting new data

after virtually any distribution over percent spuriousness has been chosen

or estimated. However, by appropriately specifying the pi(t,s) and

A (t,s) in Section Six, item effects and complex interactions between

ability and "inclination towards aberrance" can be modelled. For example

two values of p1  could be used to model the fact that only some of the
IA

items were available to a coaching school or a dishonest military recruiter.

The s variable could be used as an index when modelling second language

problems In a population consisting of several distinct linguistic groups,

say hispanics, Mandarin speaking Chinese Americans and examinees speaking

,%. L2...... .............. ............. ...... *.. . - . .,. -.
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English only. In any event the basic algorithm suffices for a variety of

optimal appropriateness measurement problems.

To obtain the performance envelope for the set of all statistics, the

performance curve for the likelihood ratio statistic A

X(u*) - PAberrant (u =u*)/PNormal (-u'* )

is computed. To approximate the A performance curve the sample X ROC

curve is calculated for a large sample normal and aberrant examinees. By

using the fact that A(u) assumes only finitely many values it is easy to

show that with probability one the piecewise linear function connecting

consecutive points on the sample ROC converges to the performance curve for

.

To calculate A(u*) the numerator and denominator are calculated

separately. For normal examinees, the likelihood function is calculated by

substituting the specified item parameters in

1-c

i(t) ci + 1+exp[-ai(t-bi)]

and numerically integrating as in equation (3.2) to obtain

0 I-u*
PNormal (u*) - fn {[P i(t)] '[1-P (t)] i}f(t)dt

PAberrant is also an integrated likelihood function. The computation of

the integrand is discussed later in this section after f and the

integration are described.

In our research to date, we have taken the density f to be normal

(0,1) or normal (0,1) truncated to the interval [-2.05,2.05] when

generating simulation data and evaluating the integrals to compute PNormal

7-1-
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* and P Aberrant Although normality is not required, our current algorithm

does take advantage of some of its properties. In particular, it uses the

* facts that the normal density is continuous and "flat" relative to the

likelihood functions for abilities less than 2.05 in absolute value. The

normal density varies from .054 to .399 on the interval [-2.05,2.05]

10 20but the likelihood function's maximum is usually 10 to 10 times as

large as its minimum on the interval for the 85 to 95 item tests we have

studied. Consequently, portions of the interval [-2.05,2.05] can often be

ignored with little loss of accuracy when computing probabilities.

The integrals in P and PAberrant are being evaluated by
Normal Aern

Simpson's rule. For both probabilities we obtained four to five digit

. accuracy when the distance A between quadrature points was .20 and five

to six digit accuracy for A = .10 . We have generally used A - .10 in

our calculations because it seemed to provide the best trade-off between

numerical accuracy and computing expense.

The number of function evaluations can be reduced by first computing

the maximum likelihood estimate e of ability given u* . Let g denote

the function to be integrated. Then g can be evaluated at points 8-iA,

-1 ... , mi, until g(e-iA) becomes very small. The algorithm

requires g(e-iA) to be less than 10 times as large as g(;)

Similarly, g can be evaluated at points 8+iA, i-I, 2, . . . , m2 . If

the total number of function evaluations is odd, then Simpson's rule can be

6 applied immediately. When the total is even, one more function evaluation

should be obtained before application of Simpson's rule. We have found that

the number of function evaluation can often be reduced by 50% for A-.10 by

this rule.

J%

a%
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The recursive algorithm described in Section Six is used to calculate

*the likelihood function for aberrant examinees. The algorithm is first

summarized with no more generality than is needed for the spurious high and

low studies. The remainder of this section discusses refinements of the

basic algorithm for spurious high and low studies.

Recall that the likelihood function for spurious high aberrance is

PA(u=u*1e=t) = Z Probability (set S is sampled for tampering)
S

n
I Prob~ui -ufl-t and S is sampled)

U* JU*
( n ) E-1 _ H In Pi(t ) iQ i(t ) .

S iUS U

Now if S contains one or more of the incorrectly answered items II u* = 0

iESi

Consequently the summation can be taken over all k element subsets of the

n correctly answered items rather than of the n items, and the second
c

product will be divisible by W(t) - IH Q (t) . Thus
i : u* =0

i

PA(U-0l8 - (k)-IW(t) Z I P t)
S i:iUS'& .,

* u*-1

where the summation is over the (c k-element subsets S' of the set of

correct items in pattern u* . In other words, the summation is the (n -k)th
C

symmetric function on the vector of n not necessarily distinct variablesro

<P1 (t), P1 (t), • . . , P t)> where I < i and uj - 1 . To
1 2 in '

c
evaluate the summation we use the well-known recursion given a probabilistic

interpretation In Section Six

.""-

*t'; ~ ~ ~ ~ ~ ~~~~~~~'- AApe~ ***p - .--. . . . . .. **.
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T(r+1J) T(r,j) r+l T(r,J-1)

th
discussed in Section Six. Here T(i,j) is the i elementary symmetric

function on the first j variables in a vector or sequence of numbers

<x x > , i.e. the sum of the products having i factors

selected from the first j numbers.

For spurious low aberrance the likelihood function is

PAberrant(U B-t) Z Probability [set S is sampled for tampering)
S

n
Rl Prob{ui-ufl-t and S is sampled)
i-1

-1u* 1-u* u* 1u*
i i ii-

_ (n)-. i p (1-p) IT Pi(t) lQi(t)
S iES iiS

where the summation is over k element subsets S of the n items and

where p=.2 is the probability of being correct when responding randomly on

a 5 option multiple choice test. To expeditiously calculate the likelihood

for a pattern u* with nc  correct and nwan-nc  wrong we rewrite this as_1 ncw nc [-U

n() p (l-p)w R E i(t)/p] Wt0l(1

k S ..- i i

and evaluate E T [P (t)/p] i[Qi(t)/(-p)] as the (n-k)th  symmetric
S liS

1-u*
function on the vector <[PI t)/p] IQ (t)/(1-p)] , . .

u* 1-u*
.EP n (t)/p] n[Q (t)/(1-p)] n>

A considerable further reduction in computation can be obtained by

using the fact that the (m-k)th  symmetric function in <xl, . . x >
m tm*l m t-1-1>

equals R x times the k symmetric function in <x I  x >
i-

Thus

2:
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-1u
H Ii [Pi(t)/p] IQ i(t)/(I-P)]'m S iiS "

n u* 1 -u

.i EP (t)/p] '[Q t/(1-p)] .

E [PlP (01)] q/ (0)] 1'

S icS

= pcq W(u*,t) x the kth symmetric function in

S1-U un I-U*
<[p/P 1 (t)]'U[q/Q1 (t)] ,1 . ., . , np/pn(t) q/Q ] > L

The same identity gives a reduction in the amount of calculation for

spurious high analyses for patterns u* with k < n -k

CC
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8. An Illustrative Example

To illustrate the algorithm described in Section Seven, item parameter

estimates obtained from Levine and Drasgow's (1983) fitting of the three

parameter logistic model to the 85 item April, 1975 Scholastic Aptitude

Test-Verbal section (SAT-V) were taken as simulation parameters. One

thousand normal response vectors were created by sampling abilities from a

normal (0,1) distribution truncated to the [-2.05,2.05] interval,

i- computing the logistic probabilities of correct responses, and then scoring

each simulated item response as correct or incorrect depending upon whether

a number sampled from a uniform [0,1] distribution was less than or

greater than the logistic probability. A sample of 500 spuriously low

response patterns was created by first generating 500 normal response

patterns. Then nine simulated items were randomly selected without

replacement from each response pattern and each item was rescored to be

correct with probability .2 and rescored to be incorrect with probability

.8 . The likelihood ratio statistic was computed for all 1500 patterns, as

described in Section Seven.

Table One presents the proportions of spuriously low response patterns

li correctly classified as aberrant when various proportions of normal response

patterns are misclassified as aberrant. The table also presents the results

* for the standardized Z. index studied by Drasgow, Levine, and Williams
0

(1985). It is evident that the envelope curve statistic provides a
F" .

. substantial improvement over the standardized I index. This finding is

important because in previous research (Drasgow, 1982; Levine & Drasgow,

*1982; Levine & Rubin, 1979) we have been unable to find an index that

*"" provides detection rates that are clearly superior to i
0

- - -- . ** . . . . . .

i-.---.-.. - . '-. . -. - _ •.... ..... '.-.... ., -.-...... '.t-.. ,...--.. ..... ......-.... . .;,.
i ' " ."o , .. i ' ' :,'"'::- :-""*"" " , ., ." .. ", ;- . . L %-'~ i', , '-,'--" "..,>,'..'-.'..'-.-'-.,,'.. .. '.-'.-. .-. ".... . .-. .-.. .. ".. . ... ,
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Table 1

Proportions of Spuriously Low Responses Patterns

Classified as aberant at Various False Alarm Rates

*Proportion of Normal Response Proportion Detected by Hit Rate Ratio
Patterns Classified Envelope Standardized

As Aberrant Curve
Statistic

.005 .114 .060 .526

.010 .132 .070 .530

.015 .1414 .096 .667

.020 .170 .112 .659

.030 .198 .1)42 .717

.0)40 .228 .182 .798

.050 .276 .210 .761

.060 .29)4 .250 .850

.080 .328 .286 .872

.100 .368 .322 .875

.150 .452 .390 .863

.200 .532 .1452 .850

.250 .590 .486 .82)4

.300 .63)4 .55)4 .874

.1400 .73)4 .666 .907

.500 .804 .7)42 .923
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Footnotes

This work was supported by United States Office of Naval Research

contracts N00014-79C-0752, NR 154-445 and N00014-83K-0397, NR 150-518,

Michael V. Levine, Principal Investigator.

I<t,R D(t)> is on the boundary of a convex polygon because the range

of X is finite. Therefore <t,RD (t)> is a vertex (and a nonrandomized
D

" test is optimal) or <tRD (t)> is on a line segment connecting two

vertices (and a randomized test obtained from the two tests associated with

the segment is optimal).

..-.I "
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