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SUMMARY OF RESEARCH COMPLETED

Research on gyrotrons under this contract was carried out over a four-
year period with support by the Office of Naval Research. The central
emphasis of the research was to expand the theoretical base underlying
gyrotron-type amplifying mechanisms and oscillators, and to test the theory
and explore new mechanisms by direct experimentation.

The most notable advances include the following:

1. Complete formulation of the linearized theory of gyrotron

slow-wave amplification for TEOn and TMon—modes including
effects of finite beam geometry and finite thermal velocity
spread.

2. Experimental demonstration of slow-amplifi:ation for TE01
® modes, with observed gain of 53 db, power output of 20 kW,
| and electronic efficiency of 10% at 6 GHz.

\ 3. Experimental operation of quasi-optical gyrotron oscilla-
"i tor, with power measurements on harmonics up to the ninth,
giving sub-millimeter wave oscillations using magnetic fields
below 15 kG and beam energies below 20 kV.
- Copies of all major publications and reports which resulted from this
research program are appended to this report. The list of these follows:

1. "Linear Theory of Gyro-Slow-Wave Amplifier for TE,,-Modes in a

Dielectric-Loaded Cylindrical Waveguide,'" Soo Yong Park, J. Mark Baird,
P and J. L. Hirshfield, unpublished.

2. "Linear Theory of Gyro-Slow-Wave Amplifier for TMy,-Modes in a
Dielectric-Loaded Cylindrical Waveguide,'" Soo Yong Park, J. Mark Baird,
and J. L. Hirshfield, unpublished.

‘® 3. Invited paper. 'Theory of a slow wave cyclotron amplifier,” K. R.

Chu, A. K. Ganguly, V. L. Granatstein, J. L. Hirshfield, S. Y. Park,
and J. M. Baird, Int. J. Electronics, 51, 493 (1981).
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Beam,'" H. Guo, L. Chen, H. Keren, and J.L. Hirshfield, Phys. Rev. L
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Lett. 49, 730 (1982). —
5. "Cyclotron Harmonic Maser," J. L. Hirshfield, International Journal of l
Infrared and Millimeter Waves 2, 695 (1981).
6. "Space Charge Effects in a Gyrotron Employing a Solid Electron Beam," _
H. Keren and J. L. Hirshfield, International Jourmnal of Infrared and “4
Millimeter Waves, 2, 1097 (1981). N
-
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Liang, and J. L. Hirshfield, Phys. Rev. Lett. 49, 1556 (1982). R
8. "Bernstein Mode Quasi-Optical Gyroklystron,'" Z. Liang, N. A. Ebrahim, 4
and J. L. Hirshfield, International Journal of Infrared and Milli- -
meter Waves 4, 423 (1983). 1
9. "Electron Prebunching and High Harmonic Interaction in a Bernstein ;
Mode Quasi-Optical Gyrotron," N. A. Ebrahim, Z. Liang, and J. L. L
Hirshfield, unpublished. {
10. "Theory of Gyrotron Traveling Wave Amplifiers at Harmonics of the 'T
Gyration Frequency,'" Qiangfa Li, Ph.D. Thesis July 1984 e
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LINEAR THEORY OF GYRO-SLOW-WAVE-AMPLIFIER FOR TEon-MODES
IN A DIELECTRIC-LOADED CYLINDRICAL WAVEGUIDE

I.  INTRODUCTION

Recently much interest has been shown in gyrotron-type microwave generating
(or amplifying) devices[l] utilizing transverse electron beam energy in a
strong guiding magnetic field. An electron gyrating in a magnetic field
shows negative mass response in its rotational motion when it interacts
with an electromagnetic wave. This negative mass behavior leads to an

azimuthal bunching and thus induces a negative mass instability.

There are two types of instability driving forces; a direct electric force

E and a magnetic pondromotive force V x §'; the former one leads to the
famous cyclotron maser instahility (CMI)[2] and the latter one leads to

the Weibel instability[33. Chu and Hirshfield[4] analyzed both mechanisms

in a unified treatment for a plane wave in a uniform (unbounded) plasma

and showed that they are competing with each other -- the cyclotron maser
instability dominating in a fast wave region and Weibel instability
dominating in a slow wave region. For a plane wave in an unbounded system,
the electrons in the plasma itself play the role of active medium to make the

phase velocity fast or slow. This requires a very dense electron beam.

In practice, it is desirable to provide this separation in a more efficient
way. A fast wave can be easily achieved by a waveguide with a hare conduc-
ting wall because the phase velocity in a wavequide is always greater than
the speed of 1ight in a free space. Conventional gyrotrons operate near the
cutoff region where the cyclotron maser instability is dominating. In order

to provide a slow wave where Weibel instability is dominating, one must
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introduce a slow wave structure inside the waveguide -- either a periodic

structure or dielectric layers.

A dispersion curve for a waveguide with slow wave structure shows a nearly-
straight section with a gentle slope within the range of moderate electron
beam energy over a wide range of frequencies. Then the electron beam line
can be chosen to be parallel and close to this section of the dispersion
curve inducing strong instability over a wide range of frequencies. This
broad band instability may provide us with a wide-band amplifier or slow-wave

gyrotron-type device.

The dispersion curve with dielectric layers shows an almost unlimited nearly
straight section, while the one with periodic structure bends over becoming

periodic which 1imits the intrinsic bandwidth. Of course, even with dielectric

layers the coupling between eiectron beam and electromagnetic wave is
substantially reduced at higher frequencies limiting its bandwidth. However, W
this limitation seems to be less severe than that for waveguides with periodic
structure. Another advantage of dielectric layers over periodic structure A
may be its simplicity in fabrication and theoretical analysis. In this

paper we restrict the analysis to an amplifier with dielectric layers.

We consider a hollow electron beam, initially with each electron gyrating in {
an equilibrium orbit in a uniform guiding magnetic field, introduced into

an interaction region of a cylindrical waveguide loaded with an arbitrary

number of concentric dielectric layers. The electrons now interact with the
electromagnetic wave, get modulated and exchange energies. The development
of the electron state and the electromagnetic wave along the interaction tube

is completely determined by coupled Maxwell-Vliasov equations.

-2-
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With our primary interest in the theory for an amplifier, we assume that the

[ ] system is stationary in time (no absolute instability) and then one can reduce -

the problem into a one-dimensional boundary value problem which can be analyzed

by Laplace transformation. The coupling between the input signal and the

dielectric slow wave structure for TEgyp-modes. Whenever assumptions are made

b beam modes is completely determined by the boundary condition at the input i
end of the amplifier which means that one can calculate the insertion loss. .

» In this paper we wish to carefully develop a gain theory of an amplifier with '
{

we point out their motivation and Timitation. Throughout this paper we

assume that electrons and electromagnetic waves are described by linearized
Vlasov-Maxwell equations and that the space charge effect can be neglected.
Furthermore, we make two more technical assumptions: the coupling through the

electron beam between TE and TM modes, and between different radial modes, is

e

negligible; otherwise the analysis is completely general.

In Section 2, an expression for the perturbed electron distribution function

in terms of the integral over unperturbed characteristics is obtained for

an arbitrary electromagnetic wave,

In Section 3, the linearized Maxwell equations with a source term from the
perturbed electron beam are discussed. The TEyp-mode is separated out

and the dispersion relation including the source term is derived. Here we
| extensively use the results of a general ana1ysis[5] for an empty waveguide

loaded with multilayers of dielectrics obtained previously.

In Section 4, the source term for a hollow electron beam is calculated.

The calculation is straightforward but tedious, and two appendices at the end
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are given for this section. Two major complexities are due to the finite
geometry of the electron beam and the non-harmonicity of electromagnetic
waves seen by electrons. The former one was often neglected in earlier work
and the latter one requires a harmonic expansion using the Graf's Addition

Theorem for Bessel functions.

In Section 5, the dispersion relation is solved to calculate gains. Some
specific examples are calculated for various sets of parameters. In the last

section, the physics learned from this work is discussed.
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II. LINEARIZED VLASOV EQUATION

Consider that a hollow anular electron beam (such as from a magnetron injec-
tion gun) is introduced along a guiding magnetic field into one end of a
cylindrical waveguide which is loaded with an arbitrary number of concentric
dielectric layers. The electron beam is assumed to be sufficiently tenuous
so that its space charge effect can be neglected initially in its
equilibrium state in a uniform magnetic field, and thus each electron is

gyrating about its guiding center at r = R with its Larmor radius rL.

The electrons now interact with an electromagnetic wave and azimuthal bunching

occurs, leading to a negative mass instability if the conditions are right.

Neglecting the collision effect between electrons, the dynamical development

of the electron state in an electromagnetic field is qoverned by the Viasov
equation. With the electron distribution function f(?,ﬁ;t) in the phase

space, where
U=79/m=17Vand thus v= (1-v2/c2)=1/2 = (1 + w2/c2)1/2,
the relativistic Vlasov equation reads

3f/3t + U/v * V,f - e/m (E + U/cy x H) * 9,f =0 (2.1)

which is coupled to the Maxwell equations through E and H.

Generally, it is not possible to solve such a problem analytically. However,

in a strong magnetic field, one can linearize the equations by considering a

-5.
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and
- _ 3 u ~
Jg (k) = -Ne ‘/h u 1$;cos£ £ (k) (4.6)

The source term Fn(k) in (4.4) represents the amount of radiation in the
n-th radial waveguide mode due to the induced current Jé(k). The normali-
zation factor Cy in (4.5) defined by (3.16) is related to the total power
flow throughout the waveguide. The first step in solving (4.4) is to calcu-

late the Laplace transformation of the perturbed electron distribution function

f1(k).

—~

fi(k): Perturbed Distribution Function

Let us first consider the perturbed electron distribution function (2.12)

with the fields for TE,,-mode (3.10):

(4.7)
t af uy, af of
- & -juwt’ ' _ﬂ_ o Eﬁ_ Y ' )
fi(2) = mf dt'e {[E (z*) + Hu(z )(cv auL  CY 3y >]Zl(l°‘n|r Jeose
t'Z/Wl

f
- [(Ee(z') +HL(2') :—'y'—) (la,[r')cos x* + H,(z') -‘-Z (JogIr )mn‘lilQ ER—}

where the integration is to be carried out over the characteristic ("particle"

trajectory) given by:

z' zz+v (t'-t)
w' = U+ wc(t'-t)
2 1172
r' z (R® +r{ - 2Rr cosy') (4.8)
U - 9 s W
Vg 2y 9 FR T B Q¢
-19-
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IV. LAPLACE TRANSFORMATION

An unstable system can be correctly analyzed by Laplace transformation

(not Fourier analysis) defined by

I-'(k) s/c;oéze'ikzF(z) (4.1)

where k is a complex variable with a sufficiently large negative imaginary
part to guarantee that the integral (4.1) can be well defined. (Recall that
in unstable system F(z) can be an exponentially growing function of z.)

The Laplace transformation of derivatives of function requires information on

boundary values at the input end (z = 0) as

%-z- (k) = ikF(k) - F(o)
(4.2)

2 ,-
-k“F(k) - ikF(o) - -—- 5 (0)

(k)
dz

Applying the Laplace transformation on the Maxwell equations (3.12) and (3.15)

with the boundary condition (3.17), i.e., EG(O) = 0, one obtains

%Hr(k) = -kEe(k)

- - (4.3)
e H (k) = o, lE (k)
and d
E
2 2\- o 8
(0 - k)Eg(K) = P (k) = 72 (o) o
where . 1wt
Pn(k) z i -c-e Ellq /21rrdr z (Ia |r)J (k)
(4.5)

-18-
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Substituting (3.14) into (3.12) one obtains the equation for the n-th radial

modes:
- d%E (z)7dz? - k2 Eg(z) = Py(2) (3.15)
where
Pa(z) = l/CN./éwrdr Z; (laglr) i w/c e'Wt 4r/c Jg
c X 2 (3.16
N2 erdr [A;z4 (Ianlr) + K7 (lanlr)] -16)

(A} = 1, A; = 0).

-17-
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and
2:1 [- d%Eg(z)/d2? - k% Eg(2)] 2 (laylr) = i w/c Wt am/c Jg
n:
(3.12)
(0,2, = w?/c? - krz,)
where
Je = -ﬁ3u 6' U/'Y fl
(3.13)
Jr = Jz = 0.

The condition, Jp = J; = 0, is an artifact of the assumption iv) which
allowed us to concentrate on TE-mode field (E; = Er = Hg = 0). Actually,

if one calculates J, and J. using the same f} in Jg, they are not small,
however, what is small is their coupling with fields. From (3.8), J, and

Jr are the sources of T type fields (Ez, Epr, Hg) and lead to a possible

coupling to TM-mode. But, due to the assumption iv), the TM-modes are completely

mistuned and their coupling to the TE-field is small. Therefore as far as one

can neglect TE-TM coupling, one can neglect the condition J; = Jp = 0,

Furthermore, with the assumption v), one can expand the source term in (3.12)

in temms of radial modes as
i e oWt an/c Jg = P (2)Z) (laglr) + 2 P (2)Zy (Jan'[r)  (3.14)
n'#n
and keep only the first term since that is the only term which couples to the
n-th radial mode resonantly. The expansion of the source term in radial

eigenmodes (3.14) can be easily done by applying the projection operator

l/CN‘/bwrdr Z1 (lan|r) on the source term (Cy is a normalized constant).

«16-
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and no assumption was made on the 2z and r dependency of the fields.
However, for convenience, we have expanded the radial function in terms of a
complete set of radial eigenmodes in empty waveguide. In practice radial
eigenmodes with different n are well-separated and one can tune tre electron
beam so that it can interact resonantly with only one radial mode. Then one
can neglect the coupling between different radial eigenmodes. So far, we
have assumed:
i) linearity - small perturbation
ii) tenuous electron beam - neglect the space charge effect
iii) stationary in time - amplifier theory
iv) cylindrically symmetric TE-mode

v) only n-th radial mode is excited

The first two assumptions, i) and ii), are ess#.tial within the scope of the
present work and the last two assumptions, iv) and v), are technical simpli-
fying assumptions which could be easily removed as will be discussed in a
separate work. The third assumption, iii), is for a true amplifier without
absolute instability which will also be discussed in a separate paper.

These are all the assumptions we make in this paper.

We emphasize that we haVe not made any assumption on the z-dependency of

the fields. This will be completely determined by the dynamics and the boundary

conditions at the input end.
Substituting (3.9) into (3.7), one obtains

3 / H = - dE /d
i w/c Hp(2) g(2)/dz (3.11)

w/c Hy(z) = fan| Eglz)

-15-
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;;Q Since we are interested mainly in an amplifier theory, we assume that the

i;' system is stationary in time, and then one can write the most general fields

for TE- mode (E; = Ep = Hg = 0) as

" Eg = e-]wtz E Z)Zl |Ozn|r‘

iH, = e-wt Z Hy(2)Z, (lag!r)
y (3.9)
Hr = e 1wtz Hr(z)zl (Ianlr)
: n=1
ﬁzg = wz/c2 - kﬁ)
£ : :
: in the innermost region, and
» hg m 3 . . (]
{ el)) - e““’tZ e{) (2)2) (lojir) + EY) (2)7; (lefir)]
o {1 = et D i) @)z, (lofir) « AL ()7, (ledin]
N n=1 (3.10)
x Hy = "th i) (2)zy (lediry +« AL )7y (ledin)
! 2 2.2 2
(@) = €p; w°/c° - kp)
[
g where kp is a wave number determined by the boundary conditions of the empty
waveguide and Z,, 71 denote Bessel functions according to
. if ol
Jy(x) Yo(x) ifac > 0
~ Ig(x) Kg(x) ifag <0 .
The fields in (3.10) are connected to those in (3.9) via a “transfer matrix"
" as shown in Paper I. Note that, in (3.9) and (3.10), the assumption of

stationary in time allowed us to consider a single frequency (~e'iwt) behavior
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substantially alter the dynamic character (beside a possible small shift in

the resonance frequency).

Now, let us study the perturbed part of electromagnetic field (RF part) given
by (3.5) and (3.6). In the case of azimuthally symmetric states (3/06 = 0),
the Maxwell equations (3.5) can be grouped into two parts: TE-mode part,

which involves (Eg, Hz, Hpidg)s

- 3E¢/32 = - 1/c M /ot
1/r 3/3r (rEg) = - 1/c 3Hy/3t (3.7)
3Hp/3z - BHp/3r = 1/c 3Eg/3t + 4n/c Jg

and TM-mode part, which involves (Hg, E;, Ep; Jp, Jg),

3Er/3z - BE,/3r = 1/c 3Hy/dt
- QHg/9z = 1/c oEr/dt + 4m/cdp (3.8)
1/r 3/3r (rHg) = 1/c dE; /0t + 4m/c J,.

In general, these two sets of equations are coupled to each other through the
source terms. In Paper I, we have shown that, for the azimuthal symmetric
case, the boundary conditions between dielectric layers and on the conducting
wall do not mix TE and TM modes. Therefore, in the azimuthally symmetric

case the only place where TE and ™ mode coupling can occur is through the
source term. However, if the electron beam is sufficiently tenuous and the TE
and ™ modes are well-separated so that the electron beam can couple resonantly
with only one of the modes, one may neglect the mixing. In this paper, we

will concentrate on the TE-mode given by (3.7), neglecting the coupling to the

T™ mode.
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First, by substituting the perturbation expansion (2.2) into (3.1) and (3.2)
and separating the zeroth and the first order parts, one obtains, in the zeroth

order,

3
p -efd uf, = 0
° f ° (3.4)

Jo= -efddu U/y £, =0

and, in the first order.

vxt o= - 1/¢c /0t ve E, = 4P

1 1 1 1

> > -+ > (3'5)
v x Hy = 1/c 3Ey/3t + 4m/c J4 VeR =0

where
3

Py = -ﬁ uf .
! : (3.6)

-> 3 =
3) = -efad iy 1y

Obviously, the condition (3.4) on the equilibrium part of electron distribution
function cannot be fulfilled for a pure electron beam. This is because we

have neglected the space charge effect which prohibits a simple perturbation
expansion such as (2.2). With the space charge effect of the electron beam,
the zeroth order fields in the perturbation expansion (2.2) should include

the part of the static electric field and static diagmagnetic magnetic field

in addition to the guiding magnetic field B,. This again requires redefini-
tion of the unperturbed beam function fy and leads to a whole new problem which
is beyond the scope of this work. Therefore, throughout this paper, we assume
that the electron beam is sufficiently tenuous so that one can neglect the
space charge effect compared with the strong guiding magnetic field. Since

we are mainly interested in instability properties which are due to a resonant

interaction, one expects that such a static space charge effect may not
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Figure 3.1 Cross-sectional view of the cylindrical wavequide loaded with an

Acaim k.

arbitrary number of dielectric layers. A hollow annular electron beam is

confined only in the central vacuum region.

In case of no source term present (empty wavequide), the problem has been

solved completely in the previous paper(6] which will be referenced to as ]
Paper 1 from now on. Without source terms, the cylindrical symmetry allows ﬁ
us to use a Fourier transformation along 2z and the axial wave number k :

is an orthogonal eigenmode number., Furthermore, for azimuthally symmetric

fields, TE and ™ modes are decoupled. However, with the source terms which

d Al bal i

can in general couple all possible modes, one must be careful to make such a

)

reduction, Since the source terms are present only in the innermost vacuum

g

region, in this paper, we will concentrate on the Maxwell equations (3.1)
with source (3.2) while referring to the Paper 1 for the part which can be

handled in the same way as in the empty waveguide.
-11-
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[I1. MAXWELL EQUATIONS

Consider a circular cylindrical wavequide loaded with an arbitrary number of
concentric dielectric layers which serve as a slow wave structure. We assume
that the innermost region is a vacuum (€ = p = 1) where the hollow annular elec-

tron beam is present as shown in Figure 3.1.

Maxwell equations in the innermost region,

-+ - ->
Vx E = -1/c 3H/3t Ve©Lb = 4np
-> -> -+ -+ (3-1)
Vx H=1/c 3E/3t + 4r/c J v-H=20
are coupled to the Vlasov equation through source terms,
p= -/;13uf
-> -
J = -fd3u /Y f. (3.2)

Electromagnetic fields in a dielectric layer satisfy sourceless Maxwell

equations,

]
o

vx E0) = - ugye afili) /ot e; ve EH) .

vx Bl = e /e ot (i) /0 v )

0 (3.3)
(i=2,3 ..., N).

These equations are supplemented by boundary conditions: The fields in one
region are connected to the fields in the adjacent region through the boundary
conditions that Ez, Eg, H; and Hg be continuous (Er and Hr are related to these
through Maxwell equations). Also fields in the innermost region must be
regular on the axis and the fields in the outermost region satisfy the boundary
condition that E; and Eg vanish on the conducting wall (again, the condition

on He is not independent).
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notational convenience, we will suppress the subscript 1 in E and H ):
fy = eﬂﬂ/;_z/v”dt' {Eé af,/ou, + E, 6; af y/0u, +
Hi © 8 (u /oy 3f /du, - u, /ey 8f /du ) + (-E, * 6 (2.11)

+ Fi’l - R u,/cy + H) e; ° R u /cy) 1/9 afo/aR},

The first term in (2.11) is the driving term for a conventional TWTA insta-
bility, the second temm is for the famous cyclotron maser instability and
the third term for the Weibel instability. Notice the characteristic
asymmetric derivative in the third termm which picks out only the anisotropic
part of velocity distribution in fo- Finally, the last term represents all
the effects of a bounded and spatially non-uniform plasma. In terms of
variables given in Figure 2.1, one can write (2.11) as
t
f1 = E/mJC-z/v dt '{E; 8fo/3u, + (Ep sink' + Ej cost') 3fy/3u,
I

+ (-Hp cos§' + Hg sing') (u /cy afg/3u, - u,/cy 3fy/du)) ( )
2.12

+ [(-Ep sin X' + Ej cos X') + (Hp cos X' + Hy sin X') u,/cy
- Hy sin ¢' u /cv] 1/ 3fy/0R},

In order to carry out the integrél over the characteristics, one needs to
study the possible electromagnetic waves in the waveguide which are governed

by Maxwell equations and boundary.conditions.




Figure 2.1. Cross-sectional view of the "unperturbed" characteristics (an
electron "trajectory" in a uniform guiding magnetic field). 0 is the common
center of the hollow annular electron beam and the waveguide, G is a guiding

center of an electron and E' is the position of the electron at t'.

A set of the invariants of the unperturbed characteristics can be easily found:

the longitudinal velocity component Vi the magnitude of transverse velocity v,
(and thus ¥) and the radius of guiding center R. These are three independent
invariants convenient to use to represent a realistic equilibrium electron

distribution function, fo = fo (u,, u,, R).

Noting the relation R = (r'2 + rE - 2r'rLcosE')1/2, the velocity gradient can

be written as.

V,'fo = 2 3fy/du, + &) afg/du, + (Vy'R) 3fy/3R

Vy'R = & ?R/du, + & 1/u; 3R/a¢g: (2.10)

= 1M (8] cosy' - & siny') = - 1/0.6

where the capped quantities represent unit vectors for the corresponding

variables. Substituting (2.10) into (2.8), one obtains (for the sake of

-8-
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Equation (2.6) tells us that f, is an arbitrary function of invariants of the

characteristics and equation (2.7) can be written as an integral form:

f1 (X, ©, t) = e/mft dt' (Ei + U'/cy x 2’1) *Y%'fo (2.8)
t-z/v,
from which it is clear that the electron beam is introduced from one end of
the gquide in its equilibrium state and the perturbation grows in the direction
of the velocity gradient of the equilibrium distribution function as the
beam moves along the waveguide. The "unperturbed" characteristic, (2.5),

which is nothing more than a "particle" trajectory in a uniform magnetic

field, can be easily solved to be

nd’} A Ay

u'=zu, + € u,

X' X(t) + 2 Uy (- t) + (8- éd'b)r,_ (2.9)
where

8l = X cos¢' + ¥ sin¢’

3& = -X sing' + y cose’

o = o(t) +w (t' - t), wes=Qch

and PL =u,/Q = v,/ (v, = u,/7) 1is the Larmor radius.

The geometrical representation of the characteristics is shown in Figure 2.1.

The relation between angles is given by &'= 7/2 -« (¢' - 6'), ¥'

and X' = - ¢"'.
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small perturbation about an equilibrium state in a strong uniform magnetic

field;
f="fy+ f }
H = Eo + H) (2.2
£ =F.

Substituting (2.2) into (2.1) and separating it into the equilibrium part

(zeroth order) and the linear perturbed part (first order), one obtains

/3t + U/y * Vfy +Q 2 xi/y - Vf, =0 (2.3)
:
b and
!’". A
L o /At + U/ * Vf + Q.2 x T/ V=
: - - - (204)
E_ e/m (Ey + u/cy x Hy) Vufo
i where Q. = eBy/mc is the cyclotron frequency of an electron in its rest frame. ~
Y

Following a well-known technique[sj, one can cast the left-hand side of both

e

A PTp——
g K
‘ . O

1
.

(2.3) and (2.4) into total derivatives along an "unperturbed" characteristic,

X=X (X(t), T(t); t'-t) and T = T (X(t), U(t); t'-t) defined by E

. - 5
g dx'/dt' = T /7' (2.5)
! du'/dt' = . 2 x U /v
€ -
|

such that X' = X (t) and @' = U (t) at t' = t.
- Therefore one can write (2.3) and (2.4) as )
s dfy/dt' = 0 (2.6)
2 and
¢ dfi/dt' = e/m (E] + @/cy' x H}) * V,'f, (2.7) -
- where the primed quantities are the values at a point on the characteristics
’; defined by (2.5) and the total derivative is taken along them,

-6-
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It will be convenient to introduce scale variables as

a s |a|R = |°n|
= laglRs o = la,lr = A ulL (
. (4.9)
X' = I |r| - lun,
= un ] a” = a uF
C
and then the geometric interpretation of the characteristics (4.8) in terms {

of these scale variables can be repreSented by a triangle as shown in Figure 4.1,

(
(
(
Figure 4.1 Triangle formed by the center of the waveguide 0 (also the {
center of the hollow annular electron beam), the guiding center of an
electron G and the electron position E' at "time” t'. {
It will also be convenient to introduce a sign factor 3‘ as
2 {
~ 2 2_ 1 ‘fﬂn>0
G:GH/IQn’ = 1 1f 2( 0
- a
n (4.10)
2 !
2 _w 2
(Gn=—2--kn)
c
-20-
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Recalling that the Bessel function Zg(|a,|r') represents either J,(|op|r')

or Ip(ja,|r') depending on whethercxﬁ is positive (fast wave) or negative

(slow wave), one can write Bessel function relations as

% 1., ~ 22 _
Z(x) + 2 2,(x) + (o - z )Z,(x) =0
1 - .
7 (2, (x) - aEm(x)) = Z)(x) (4.11)
Lz, .(x) +az, . (x) =22 (x)
2 g-1 241 X "L

Z,(x) = (=31 Zy(x).

One can write (4.7) in terms of the scale variables, (4.9), and convert the

t'-integration into z'-integration using the characteristics, (4.8), as

lw 2=2' la | of a, af
e -fut Zdzt 'Y o 1% 0 . < n g
R A P B e e
cla_| a
:%.zfo )] Zl(x')cosa' - [(Ee(z') —5—9— + Hr(z') —%r)zl(x?)cosx' +
(4.12)

vy A of
Hz(z ) 7" Zl(x')isin¢' ] aa_o}_

Using the Graf's addition theorem of Bessel functions applied to the triangle

shown in Figure 4.1 renders us

Zl(x')cose' = z a® Zs+1(aL)Zs(a)cos sy!

$==w

. . (4.13)
- ;Z_:S"le‘s“ 2:(a )2 (a)
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Zl(x')cosx' = S ZS+1(a)ZS(aL)cos sy!

(7
[
)

8

- > ;5+1e15""zs(aL)z;(a)

S
— s Vs
2: a Zs(ai)ZS(a)cos s¥' isiny

Zo(x‘)isinw'

(7]

- 5’: ;s+1eisw'(zg(aL) .:_zs(a) + :—L ZS(aL)Z;(a)>

SSew

Substituting (4.13) into (4.12) and using (4.8) for ¥', one can cast (4.12)

into the fom

f,(2) e g-lut Z oSt "S"pfdz G(z-2')F(2")

mc =
(4.14)
G(z-z') = 7 ei(w's“c)%ii'
where
Cla,| af a, of  a af
F(z') = [Ee(z') l;" =2+ Hr(z')(v"-aa—% TLET,_)]ZQ(aL)Zs(a)
+ [ 5 ' 1) L)z a2 00) (4.15)

a af
- H,(z') 7L<Z;(a ) $2,(a) + -:—I:zs(a,_)z;(a))] ol

The Laplace transformation of (4.15) can be readily obtained by the convolution

t heorem

Fk) = - & etot S oStV g F (k) (4.16)

SEBwm

-22-

- -—_v.—-w.ﬂ

(4.13) (Cont'd)




T TR T R TR TN N T e T W TN T W TN T T W T W W AR S oy 20 2l et e - iy - - e St g & h ey <
Bl S FN TS © ) T v L3
A A e Pttt M lan Je T e iy B B v
Bl ERE R i ol it e e it (e iy - -'5'1

;
o
H
{
-I

:

.

where

G(k) =1 =Tk ;Qs(k) = wy - sQ. ~ kuy

1
-

- a" af L af 7! ( )Z ( )
Eq (k) - 5a—°+Hr(k)( 5 Y )] Aot

F(k)

(4.17)

- c ~ a
.,.([ E, (k) [ + H_(k) %) Z.(a )2, (a)

afo

- a
- H_ (k) 7" (Z;(aL) :—Zs(a) + = a Z (aL)Z (a>] 57 .

Using the Maxwell equations (4.3) in (4.16) with (4.17), one obtains the

final expression

dhudunl i &

- Ia I/Q =
e fwt '"n!"%c Z as+lei5¢

p ~ e
fylk) = -1Ey (K)o w/c

St

af afo

1 0
’nﬂt) [“”aaL - klu, aaL

%o )]z( )2, (a)
- U a a
a2, L (4.18)

el ot AV TR

sQ. a,
[—(T 3 Zs(aL)Z (a) - Zs(aL)Z (a)]aa l

el Al

The first term in the first bracket is from E_L(CMI). the second term is from

V_Lx ﬁl (Weibel), and the second bracket represents the effect of non-uniform

plasma.
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[ jb(k): Induced Current

jrj The integration in the induced current Jb(k) given by (4.5) and (4.18) requires

A

) a specific form of beam function f, (u”, u,, R) while we still want to maintain
:' its generality. One can do this by considering the following identity, for

iii an arbitrary function fo(u , u,, R);

fou, »u .R) = du®, 2vuidu12nR°dR°fo(u°".uj_,Ro)f(u 22U oR) (4.19)

;]. where ' {

~

fo(u, »u,R) = Flu, u )F,(R)

T ) . (4.20)
r . . - o -
- Filuy sup) = 8luy, o) gy s (upuy)
3
C :
P
L 1 0
@) . A . i
r- Observe that the “S-distribution" function f, represents a "cold" beam with
E _ infinitely "thin" guiding center distribution and is normalized to be one
{ electron per unit length. Equation (4.19) merely shows that an arbitrary
|

‘j.-

beam function fo(u”, u,, R) can be constructed out of "S-distribution”
function ?; with the “weight" function fo(uﬂ, u3, R%) which contains all the
information on the beam spread. The main advantage of using such a represen-
tation is that it allows us to carry out the required integration in (4.5)

without introducing any specific assumption on the beam function f,.

f' With (4.19), one can write (4.5) with (4.18) as Y|
- ° LY
L Jg(R) = ﬁu°" 2mufdu’ 2nROdR° £ (u°, wufLR%) Jg(K) (4.21)
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lo

where

i

- 2 . m
iEe(k) gg- eiut 1 S+{/& u == coscelS?

Je(k) w/c &2

(4.22)

SQ a an
[_T_Ya Z. J(az (@) - 2.(a))Z, (a):IF1

represents the induced current for the "6-distribution" function.
Recalling the relation, R = (r2 + rf - 2rrLcos§)1/2, and thus

aR/ag = 1/R rrstw, one can write

1 6(g=g,) + sle+g))
2nr rL51n£°

F,(R) = alrir,)

(4.23)

where “"step" functionA (r; r+) is defined by

A(r;r+) =

{1 ifr <rer,
0 otherwise
(4.24)

In terms of the scale variables, (4.9), one can write (4.22) with (4.20) and

(4.23) as
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4 > - eiut ne? lonl 4 @ o5+ af s¥
i . Je(k) = 1Ee(k) 7 me Zar 2""‘|_ & ’/;:lau da dg —-—cosge
0 A o
F oF oF 1 -
: 1 ! b 1
- ’95(") [wy 3a k<u " da - uJ.aa,, )]zs(aL)Zs(a)FZ
*b L (4.25)
sQC 3;-2
[—(—)—a—z RS ALY -
_[- where
4
9 N
f F, = sla, ~a9 )ola -a)
b.
i’ . sle-g )vs(ere,)
: Fa = a, sing a{xix,) (4.26)
L L 0 -_
. (x+ =a t aL)
Defining velocity angle integrals,
A isy s
®, =/.'“dgcosge Zs(a)F2
. . F
_ is¥ 2
¥y = f decosge ~ 77, (a) —— (4.27)
he . he
: + _
; wgzk(sliw +1)
:‘.
: One can write (4.25) as,
. 2
: R - -fut .2 |a_| 2. . a
e Ne n' 1 s+l L

: Jo(k) = 1Eg(K) w/C mc 2nr Zna sza_: _/::Ia 9Ly
.
L -~
: : o (4.28)
{. Qs(k) [W‘Y &L - k(u" a - U‘La } (‘ ).
:
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(4.28)
- 0
® ZS(aO)CS
The integrals in (4.27) are calculated in Appendix to give,
v _ -1 2, ( )c £ 7 ) ® 4o 1 o0
s+l a s+l a s+1 *a s+l ra s+1
- a L L L
(4.29)
where
2cos¢
0 0
C. = —=——cos s¥ A& (x;x+)
s a sing
(4.30)
s? = g—-sin s¥ A (x;x+)
s a -

A
The remaining integrations in (4.28) are trivial with F; given by (4.26):

- -fot .2 |a | ®
oz e Ne n' 1 AS+]
Jo (k) = -1E, (k) w/C mc 2nr 2na :E: @

L §5-=
a02
) k 0 3 0 3 L ! 0
—_— e —lu, = -u - z (a )@
[ aaL ’6 " aaL L 3a°, ] Qg(k) s L' Ts
(4.31)
- — a,lZf(a)¥y, - a,) v
'Yo ng(k) L7s*L" " s s i S
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where the superscript o ensures that the quantities are evaluated at u = uﬁ
and u = uO. One can still trace back to the origins of the terms in (4.31);
the first temm is from E;-force (CMI). The second term is from ;:x g*(weibe1),

and the last term is due to the non-uniformity of (electron) plasma.

Lastly, one can observe that the induced current Sé(k) can be put into the fom

(4.32)

Je(k) = o(k)Ee(k)
where dynamical conductivity of the electron beam g(k) can be immediately
read off from (4.21) and (4.31).

Sﬁ(k): Source Term

Substituting (4.21) into (4.4) one can write

P (k) =ﬁu?, 2nudu 29R° dR” £ (uS wul, R%)P(K) (4.33)
where

- - 3 W ot 51 1 3

P (k) =i elutd quur dr 2, (Ja, )3, (k) (4.34)

and J,(k) is given by (4.31) with (4.29) and (4.30).
Define <A> for an A(x) as

*s
<A> 2

+1
ﬁxll(x)A(x) (4.35)
2n

and one can write (4.34) as

n N “LSE-w
(4.36)
2
k ) L !
oo & (e Pl o <o)
]

2
a Q
L c ! o+ 0=
- T[m aLZS(aL) <y > zs(aL) <¥ >]
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where

2

Ne
v —'2- (4.37)
mc

is the Budker parameter.

In the Appendix, we have calculated

<¢§> = -Z;(aL)ZE(ao) i
+_ 2 !

AREACHE (8(a,)) (4.38)
y
0_> _ ZI( 202 -~ SZ 2 !
\<¥§ = 2@ [27(a,) - (o- ;ﬁ')zs(ao)] X
. 0 3
]
and therefore ’
5 - 4y 1 <
Pk) = E (k) Tvoa—uzm, 1
aL2 2 2 "
2. 03 _ 03 ' 1
[“’ %, k(“u a, u'Laa°.. >]<Q s(k)Zs (aL))Zs(ao) g
(4.39) 1
27 5% 3 4 2 ' 2, \\/.'2 w

e loa s a) (Z5ag)) - u(zga)) (1 ()
S

L

e

A 4

- G—f;ého))lf .
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It is now straightforward to carry out the differentiation recalling that

Qf = wy, - ku - s and 2(x) + 1/x Z(x) +(a - s2/x?) Z (x) = 0 and

one can finally obtain

2
W
0 = £y LS ARERC TR
P (k) = E (k) =— — a° )2 (a
n 0 Ly ¥ e, ng(k) |“n|2 L's “'L'"s o
sQ " 2 !
+ € +1)[ac- 2 2> (Zi(ai)) Z‘z(ao)
Qs(k) a1
(4.40)
sq . & !
c L('Z oy a2
- —|Z_“(a%) Z_(a )>
Qg(k) o\S LY "s'o
+ »(zz(a" ))'(z'z(a ) - - )2 ))‘
2\"s'UL s ‘% @ 2 '“s\%
a
0
With (4.33) and (4.40), one can now solve (4.3) as
dE
) -agg-(o)
Eg(k) = 5= (4.41)
k -kn-Sn(k)
where
5. (k) = fau® 2mu%du® 2nR%R° £_(uS Lu,R0)S (K)
n = Jdu, Lo ql.ZnR olUy U n : )
4.42
d
an , g; - k2
» Q Q
e C ¢ (o
S (k) = Q, + Q, +Q
n SZ":“" ch)z(k) Ianlz 2 Qg(k) 1 0
(4.43)

—~
Le]
[N )
—
™
~—
m

w'Yo - SQC - kuou)
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where ,_j
_ 4mp 3L '2 2 1
Q, = Cx % 225 (@) (a,) ]
° X
v L s[ - 25 () 226, L 220 )(2a,) |
Ql'ch‘“'_?.' s\ fs% T A % LU s
0 a 0 :
-
(4.44) -4
0 -ﬂi(zz(a )>‘[(a_i)22(a ) '
0 CN Yo \'S L aL2 s' o :
:i
2
‘ - 2
* ’(Zsz(ao) (a B S_'2_>Zs(ao))]
a
0
]
-1
Lastly, the normalization constant Cy defined by (3.16) can be easily calculated {
)
to b
o be N 0
Cy = b3 Cy 1
-1
! (4.452) q
where ‘
(@, i 1)) 2
i) - AZ (o) 4.45p
Cy @ = _/r' 27r dr (Aizl(|an|r) + Aizl(lanlr)) ( ) i
i-1 ,
|42 i TR FTRAY- !
(%(la},lr) [(A,.zl(lanlr) + A,.zl(lanlr)) :
"
4 - (Aizo(la;|r) + Aizo(lunlr))(AiZZ(lanlr) + AiZZ(lan|r))] ril
2
ifal >0
n
2 i - i 2
Lwa,‘\m [(A23Claglr) + BT (Uagln)
"y

- (AZlla i) - BT, (agl ) (AZpllaglr) - Iizzq“:ulr))]ri 1
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Beam Spread Effect

Now let us consider the effect of beam spreads (velocity spread and guiding
center spreads) in (4.42). 1In practice, the velocity spreads are non-thermal;
mainly determined by the imperfact cathode surface, space charge effects, and {
electron optics from the acceleration stage to the beginning of the interaction
region. The spreads in guiding centers are mainly determined by the finite
size of electron emitting strips in addition to the same causes of velocity *

spread. The resulting distribution is close to the "water-bed" shape rather

than Maxwellian. The water-bed shape distribution function may be best

represented by a generalized Lorentzian distribution function: i
( i i (4.46)
F {x;8) = .
P (x-¥)2p + §2P J

where Cp is a normalization factor. When p =1, (4.46) reduces to the stan-

dard Lorentzian distribution and the higher value of p gives the flatter

shape. In the limit p~ «, (4.46) represents "box" distribution. Choosing d
X as uﬁ, u®@ or RO with an appropriate p and 6 , one can construct
realistic distribution functions. The beam spread effect of the type (4.42)

can be done analytically by contour integrals. d

From the structure of (4.42) and (4.43), one can immediately see that the

most sensitive one is the parallel velocity spread in uﬁ through the resonance

q
denominator, Qg =Wyq - kuﬁ -sQc. It is worth noting at this point that the
Laplace transformation variable k which was introduced by (4.1) is a complex
variable with sufficiently large negative in k to guarantee that the Laplace y

transformation (4.1) well-defined, and, therefore, the integral of (4.42) is

well-defined.
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In this paper, we will demonstrate the technique for the parallel velocity

spread function, 2
C_ au P N
fF (W) =F (W 5 au ) = P T -4
o' = T i = 0o — p 2p )
P (un -u, ) M Au” ‘
© (4.47) i
) o . ]
1 =f du, Foluy 5 auy ) o
where the normalization constanth is defined by i
j
Then, the integral (4.42) can be written as ]
: r ) 0 " 0
Sn(k) =./.du”_ Fp(u“ 5 AU )Sn(k;u,,) (4.48)
By writing (4.40) as 1
c BT ]
f ==L = - (4.49) ]
0 CZP +1 au, :!
One can identify that f, has poles at L
o
K = ein Zﬁil.: in the upper-half g-plane ,;
c: = e'i" E%il : in the lower-half z-plane (4.50) j
" 4
(k=0’1’o.o’ p-l) ?
]
Closing the contour in (4.47) by an upper-half circle or a lower-half circle, ]
¢
one can determine nomalization constant Cp by :
LYV 20{ = 1
o 75 M Tl (4.51a) ]
2z,
or, k=0
¢ 2 gy e 1 (4.51b)
n = .
P 2p p-1
z Ck* -33-
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From (A.5), one can immediately obtain

= o _ 2 '
<b> =7 (a )<C> = -Z (a;)Z.(a ) (A.15)
and from (A.9), (A.16)
.2 0 S R T
%.1” 7 aZi(a )<Co> + Zs-l(ao) P4 1 - a; <Cs-1” a Ss.1”

Using the Bessel equation, Z&(x) + 1/x Zé(x) + (a- R2/x2) Zo(x) = 0, and
the recursion formula, Zé(x) - /x Zp(x) = -2 Zg+1(x), it is straightforward

to simplify (A.16) as
_ 2 2 ' ~
o~ (2 + 2 tag)) 2(a) (.17)
Similarily,
<y > =(22(a ) - ;22 (a ))Zi(a )
s+l s 0 s+1 0’/ “sML (A. 18)

Then, from (A.17) and (A.18), one obtains

<¥> %(<\IJS 1> - a ¥4 )

[22tag) + 521 0) + T2y (o, ))]z (a,)

(A.19)
'2 - s2 2 '
- [226) - - kg
a
0
and -
<\ll:> = 15(<\,ps_1> + a<\ps+1>)
(2
|21 () - s+1 (a ))Z (a) (A.20)

2
- (Ze) e a

-

|
)
:
:

s O
Y W RPRIRIPRI

1
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Using the recursion formulas Zg(x) - €/x Zgo(x) = - aZgs1(x) and (A.7), it

is straightforward to obtain from (A.8),

¥,

= 0 3 0 s-1 0 _ 1 co0
s-1 aZ (a )Cg + Zs-l(ao)< Co-1 - o1 - 2 Ss-l) (.9)

aaL s-1 a,

Similarly,

- 0 30 s+l .0 1 .o (A.10)
Y41 T 'Zs(ao)cs + Zs+1(ao)<aaL Coe ¥ a, Cs+1 * a ss+1)

Radial Integration

Define a radial integration for a function A(x), that

“s+l

<A> = 95;- del(x)A(x) (A.11)

Then, noting that from x = (ag + aE - 2aoaL coswo)l/z. dx = 1/x aaL
sin ¥, d¢b = 3 sinSO dwb, one can write the radial integration of Cg

given by (A.4)

~s+l X4
o, _a (A.12)
<C.> & dy, 2cos£021(x)cos sV,
Applying Graf's addition theorem and (A.5), one obtains
s+l = et "
o, _a S y 1
<cs> = =5 ;,_: 25.4_1(31_)25.(ao)‘[dtlzo 2cos S wo cos swo
. (A.13)
= -Zs(ao)Z s(aL)
Similarly,
o ;s+1 Xy
<Ss> = 5 .[dwo Zsink;0 Zl(x)sin s¥,
- (A.14)

- 7(a,) - 2,(a)




where

| SPURPETE

2c0s¢E
s aLsingo

(@]
o
1]

T

A A s md

cos swo . A

(A.4)

]

o_ 2 _.
SS = a, sin swo

Using the above relations and Graf's addition theorem, one can easily show

that
~ isvy = ’
P = -"da COSE e Zs(a)F2
® -
> s -’
) s'=.°° Zgr 4'5(a )ZS,(x)CS, (A.5) :
-
= Zs(ao)cS ?ﬂ
Consider

n oF
- isy 2
Ye_q = J[;dg cosg e °7Z . (a) 37

(A.6)
m 3F,
=J[ de cosg ei(s'l)wzs_l(a) eV
-

From a = (x2 + aE - 2xa  as 2)1/2, da/aa| = siny and 1/a; 3a/d = sinv,

one obtains

N OO SO

wh % T w7
a  da " a 3

Using (A.7) and the Graf's addition theorem, one can write (A.6) as

- ~g! aC_, ' 1
Y51 ;. 2 g (a, )Zgr (x) (_i'+ %E s' T qss') (A.8)
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APPENDIX

Velocity Angle Integrations

For the velocity-angle distribution function

_ole-gy) + s(ere)

Fo = a sing A(x;x:?
where
x2+aﬁ-a§ )
= — v <
cosg, = Zxa, (o SE LT
define

C.,= h de cos eis't F
s! .l; § 2

2€0SE
aLsmg0

g
_ 1 .. is'ex
SS. = ./:“dg 3 Singe FZ

L

2 v
-a—S'inSEo A

(A.1)

(A.2)

Using Graf's addition theorem of Bessel function, one obtains the following

jdentities:

ASI
a

S 'zTam

= 0
21 ,5(a )2 (x)C., = Z (a))C

"2, )2 (s, ® 2 (a,)s

A-1
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The effect of velocity spreads and the spreads in the guiding center of

the beam are analyzed for generalized Lorentzian distribution which we
believe represents more accurately the realistic situations. We have

shown that the case of two waveguide modes and two beam modes applies to

a "cold" beam or a standard Lorentzian distribution. A more realistic

beam would require a generalized Lorentzian distribution which gives multiple
beam modes and, in the limiting case of a box-shaped distribution, the

number of beam modes will be infinitely many, all clustered on a branch

cut.

The loss due to a dielectric layer and an imperfectly conducting wall is

easy to take into account and is briefly mentioned in the text.
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VI. DISCUSSION

In this paper, we have presented a careful analysis of the gyrotron-type
amplifier. The theory is based upon linearized Vlasov-Maxwell equations
in a strong guiding magnetic field. The space charge effect is neglected
and possible absolute instabilities are assumed to be absent. Then the
theory can be cast into a two-dimensional (axial and radial direction)
boundary value problem in the case of azimuthal symmetry. The dynamical
growth of the electron states and the electromagnetic fields along the
interaction tube is analyzed by Laplace transformation rather than Fourier
transformation as often found in earlier works. Fourier analysis, in the
case of instabilities such as the amplifiers (also oscillators), is not
only ill-defined, but also makes no connection to the boundary conditions.
In contrast, Laplace transformation is well-defined, even in the case.of
strong instabilities, and also allows us to make a connection to the bound-

ary values. This way we can make definite determination of all the modes

(waveguide modes and beam modes) in terms of boundary values (input coupling

to the signal).

We have tried to carefully separate out TE,,-modes, noting exactly how TE
and TM modes could couple and how the different radial modes mix each
other. Analysis on the TM-modes will be presented elsewhere and the mixing
of the radial modes would be more interesting in the case of an azimuthally

non-symmetric situation such as the case of whistler modes. One important

technical feature of the analysis of a microwave device is that the electron

beam has a finite geometry which prevents the use of plasma theory for an

unbounded uniform plasma. The finite geometry of the electron beam introduces

an extra term which we have carefully identified. This term is important in

the determination of bandwidth, etc.

-41-
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The loss due to the dielectrics and the finite conductivity of the wall can
be easily taken into account by considering a complex dielectric constant
€= € + je", (Note that a conducting wall can also be considered as a

dielectric layer with a large imaginary dielectic constant.)
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can concentrate the z-dependency alone. With the radial function A(r) which

is a common factor, one obtains the power flow

. . dE_(2)
S, = - z%r- Re(m‘—/—C Ey(2) -%—)A(r) (5.10)

where Eg(z) is given by (5.6). Separating the power flow inward (Re k<0) and

outward (Re k>0), one obtains (5.11)

dE 2 % N*(Kk.) iksz N(k,)
A(r) ] -ik.z i i i
P (z) = - & -— (o) Re[ e i = k. e :

+ 8n w/c |dz E%%i>o D'*(kii Reki>0 i D ki

* * .
-ik;z N (ki) ik;2 N(ki)

dE 2
c_Alr
P - it @ RE[Z e m(%k_<o"ie DK, ]
1

Reki<0

In case 1) where the input signal is introduced at the gun end (z=0), the

gain for the tube length L is given by

(5.12)
G(dB) = 10 Tog g P+(L)/P+(o)
and in case 2) where the input signal is introduced from the output

pot, the gain is given by

G (dB) = 10 'Iog10 P+(L)/P_(L) (5.13)

In general, these two methods of input signal coupling give nearly the same
result when the loss is small, since the coupling of backward traveling waves
to the electron beam is small in most amplifier applications. However,

when a certain loss is introduced into the tube (either for stable operation
or due to the dielectric and wall loss), method 2) suffers a substantial

loss and method 1) would be preferred.
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It is also interesting to notice that, since (5.6) with (5.4) must satisfy

the boundary conditions at z=0, Eg|,=0 = 0 and dEg/dz|;<9 = dEp/dz (0), one

obtains sum rules.

[ g

)

b

b,

E 12=1 D (k;) "0

4 N(ki)
(5.8)

4 N(ki)

T 0Ty T
%- Power Flow and Gain
:
‘. Having detemmined the fields as a function of z by (5.6) and (5.7), it is ‘
{ easy to calculate the gain of the amplifier. The gain is defined by the
:}j ratio of the output power to the input power and tnus requires calculation of
EI' the power flow into the system (backward wave) and out of the system (forward P
g wave).

Depending on the method of introduction of input signal, we consider
two different cases: 1) the input signal is introduced at the gun end ﬂ

(z=0) and, 2) the signal is introduced from the output port (z=L) through a

circulator. i

The first step to calculate the gain is to calculate the power flow inward

and the one outward. Consider the time averaged Poynting vector

= E_ -.*

S g Re(E* x H) (5.9) ﬂ
for the fields given by (5.6) and (5.7). For calculating the gain, we are

interested in the ratio of power flows as a function of z and therefore one ‘

-38-

...............................
T T IR P o R R i L A . . .
CHA AT TN TP G U W IPG VU, VO PR PR R ST T YT, WA D R O Y WAL v DU SN




e

e e

SN R R E R T T e T s T T T T T T R e A TN TR TN ETYY

and QJ = Wy - ku} - s with u}) is replaced by u + iAu, according to
(4.54). Then, Eb(k), given by (5.3), possesses poles given by roots of the

dispersion relation

]
o

D(k,i) (5.5)

which is a quartic function giving four roots and Eb(k) is given by (5.2)
as

dE 4 iN(K;)
B i .
“@ e PR 1 (¥ (5-6)

ik,
2

Ee(Z)

Clearly, Eo(z) is a superposition of four modes: two empty waveguide modes
moving to the forward and backward, and two beam modes. If there is no
velocity spread ("cold" beam), D(k) is a quartic function with real coeffi-
cients giving two complex conjugate roots, representing one growing mode

(kj with Im k; < 0) and one decaying mode (k:). With beam spread, the
coefficients of D(k) are no longer real and therefore the complex solutions need
not be complex conjugates of each other. Physically one expects that the com-
plexity of the coefficients of D(k) through the shift in uﬁ = Uﬁ + Ay,

tends to reduce the growing part (Im kj < 0) more. Once again, we emphasize

that the two-foldness of beam modes (in addition to the two waveguide modes) in

(5.6) is true only for the "cold" beam or standard Lorentzian distribution.

Having determined Ey(z) as (5.6), the other non-vanishing fields are given
by (3.12) as

dEe(z)

1oH(2) = - — (5.7)

%-Hz(z) = |an|Ee(z)
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Fields
Applying the Bromwitz formula (5.1), 1
Ee (2) =ZRes(e1 kz iEe (k))

i

and therefore, the problem is essentially reduced to find poles of Ee(k). {

(5.2)

k=ki:p01es

From (4.41), (4.53) and (4.43), it is clear that there are, in general, an

LI 2 b 2han 2

infinite number of poles in Ee(k) when all the harmonics in (4.43) are

‘II included. In practice, however, for a reasonably strong magnetic field, {
[

. different harmonics are fairly well-separated and the parameter can be

]

chosen to tune to only one of the harmonic modes. For a given harmonic

o
{' mode, there are 2 + 2p poles in Ea(k) with generalized Lorentzian distribu- 1
E B tion of order p in uﬂ. Two poles represent two empty waveguide modes 5
E A while 2p-poles represent beam modes. In the limit p —> o, that is for the ;
3.. “box" distribution, the infinite number of these poles is compactly distributed ‘

between uﬁ + Auy forming a branch cut. Only when p=1 (the standard Lorentzian

distribution) are there four modes, as in the "cold" beam case.

For simplicity, from now on, we will consider the case p=1 for a specific

harmonic mode s. In this case Ea(k), given by (4.41), can be written as a

—~——r—r—r e

e quotient of two polynomial functions, 4
E (k) = dEe( Nik (5.3)
E Eg(k) = - 73— (o) 5%;}
o where . 4
, 2
f - N(K) = o2 (k%ﬁ
2 22 (k) n°2(k)
. D(k) = Qg (k)(;z-k;) - (%2 + Q1 ;c + Q0 -552—- (5.4) w
: c
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V.  INVERSE LAPLACE TRANSFORMATION

Let us now consider the inversion of the Laplace transformation of Eb(k)
given by (4.4) to obtain the field as a function of 2z, Ee(z). The inverse

Laplace transformation (4.1) is given by the Bromwitz inversion formula:

=iC+e . -
F(z) = -127 dk e K2 F(k)
-iCee
o1 ikz .=
= 5 fcdk e' "% iF(k) (5.1)

=:E:Res eIkz iE(k)
i k=ki:po1es

}
b

° Where the contour integral is done along C as shown in Figure 5.1. \
L.
' p
;; g
; Imk ]
© v%
c' k. :
3 :
; ) :
Y poles ‘
] * * Rek
/ .
‘F F

c -ic

'. Figure 5.1 The contour integral for the inverse Laplace transformmation. i

: c must be chosen to be large enough to include all the poles in Eb(k). 1
.
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In termms of /-variable, (4.48) can be written as

- -]

C
- _ 0 ~ L=
Splk) = au [md; f_p%sn(k’ u, *zeu, ) (4.52)

Recalling that Im k<o, one can show that the function S, given by (4.43) has
a pole in the upper t-plane if w>swe and in the lower f-plane if wlswc.. The
contour in (4.52) can be closed to exclude this pole so that only the poles

in the distribution function contribute to (4.52). Then, using the nomali-

zation constant Cp given by (4.51a) or (4.51b) accordingly, one obtains

- p-1 4 . - * p-1
s (k) =23 Sylks uy +¢g 8u )T g

4
n k ™n
= =0
k=0 k (4.53a)
ifw >Swe, and
- p-1 . _ p-1
S,(k) = Eio gy Splks u, +gau ) Eio Ly (4.53b)

if wlsw,, where ¢ and tf are given by (4.50). In the case of the standard
Lorentzian distribution for p = 1, £, = i and therefore, one obtains very

simple results:

- Sn(k; l—f“ - 'iAuII ) ifow> Sw,

s (k) =1. - (4.54)
n S (ks U, +1iau, ) fw< s
In other words, for standard Lorentzian distribution, the effect of spread in
parallel velocity is merely shifting the center velocity to the complex one
as (4.54). For generalized Lorentzian distribution p > 1, the effect is the

average of the shifts by ¢ Au, or C:Au”,

K
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I.  INTRODUCTION

A gyrotron is a microwave generating or amplifying device utilizing transverse
energy of an electron beam gyrating in a strong dc-magnetic field. The

basic mechanism responsible for this is the negative mass instability of
rotating electrons resonantly interacting with the RF field. Due to the

fact that the relativistic cyclotron frequency, we =Qc/Y Q¢ = eBy/mc),

is inversely proportional to the total energy of an electron, the rotational
motion (angular velocity) decelerates when it gains energy and accelerates
when it loses energy, resulting in azimuthal bunching in phase space. This
azimuthal bunching induces a strongly enhanced coherent radiation (typically

1011-12 times over the incoherent radiation level).

A general analysis shows that there are three types of instability driving
forces. The first one is a transverse electric force directly modulating the
rotational motion of an electron and responsible for the familiar cyclotron
maser instability (CMI). This is proportional to the transverse velocity
gradient of the electron beam distribution function and is dominant in the

fast wave region. The second force is a magnetic ponderomotive force due to

-> hd o d
a transverse magnetic field (linear combination of v, x H; and 7; x H;) and

is responsible for the Weibel instability. This force is effective only when
the electron distribution function has an anisotropy in the velocity space.

In a gyrotron, this effect usually competes with the CMI and becomes dominant
in the slow wave region. The third kind 1s an axial electric force (therefore,
not present for TE-modes) and is proportional to the axial velocity gradient
of the electron distribution function. Unlike the CMI and Weibel which are
proportional to vf. this is the only instability driving force which survives
fn the 1imit v, -0, leading to a type of conventional traveling wave tube

with dielectric slow wave structure (or Cerenkov radiation device).




In addition to all these major instability driving forces, a careful analysis

shows additional terms due to the inhomogeneity of the electron plasma for an
electron beam with finite geometry. This geometric term gives a weak contri- 1
bution to a case tuned to the top of resonance but it affects the detuning

factor and bandwidth.

Previously, we have analyzed a gyrotron amplifier for the TE,,-mode. Here we
report a similar analysis for the TMj,-mode. In many respects, the TMgy,-mode
analysis (with Ez, Ep, Hg) is complementary to the one for the TEyp-mode
(with Hz, Hp, EO)' However, one major difference in the analysis for the
TMgh-mode is that one must solve a coupled equation for E; and E. since there
are two sources (Jz and Jp), both strongly coupled to E; and Epr. This
requires more care in projecting out the n-th radial mode radiation from a
‘radially finite source which, in principle, could radiate in all radial
modes. For this purpose we have derived an orthonormality relation in ' 1
Appendix A which is used in projecting out the desired radial mode. The key

factor which allows us to concentrate on a single radial mode at a time is

that the radial mode dispersion relation is usually well-separated and only {
one of these modes is resonantly interacting with the electron beam in a

controlled device. Bearing this difference in mind, we can proceed with the

analysis much in parallel to the one for the TEgp-mode. In Section II, {
we have derived, from Maxwell equations, a coupled wave equation for E, and

Er with source terms J; and Jp. Using the properties of radial eigen-

mode functions derived in Appendix A, we project out the n-th radial mode. {
As we have emphasized in the TEgy,-mode analysis we use Laplace transformation

which is suitable for an analysis dealing with instabilities. The Laplace
transformation correctly accounts for the boundary values at the input end (

so that this analysis includes the insertion loss in a natural way.

-
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In Section III, we calculate the source terms from a linearized Vlasov
equation. The algebra is quite involved, mostly due to the cylindrical
geometry we are interested in, but is rather straightforward, and freely uses
Graf's addition theorem for Bessel functions. Appendix B is devoted to some
of the integrals used in this section. Axial velocity spread is included

in the source terms. A detailed discussion of this is included in the

Previous analysis for the TE,p-mode interaction.

In Section IV, we combine the results from Sections II and III to derive a
complex dispersion relation and determine the fields as a function of z in
terms of the input boundary values. This is done easily by an inverse Laplace
transformation which, essentially, picks up pole contributions in the Laplace
transformed fields. The complex dispersion relation leads to four poles (two
beam and two waveguide modes), and the residue at each pole determines the
relative strength of each mode. As a result, the present analysis allows us
to determine completely the fields in terms of input boundary values. Thus,
one can immediately calculate the gain vs. frequency for an amplifier

application.

Some numerical examples are shown in Section V. These sample results (not
yet optimized) show that the TMgn-mode interaction is comparable to the one

for the TEy,-mode, at Teast in a slow wave region.
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II. MAXWELL'S EQUATIONS

Consider an annular electron beam introduced along a strong uniform guiding
magnetic field into the innermost (vacuum) region of a waveguide loaded with

' multilayer, concentric dielectric slow wave structure as shown in Fig. 1.

o

Rt B
Tos

As we are interested in an amplifier theory for TMgn modes, we assume that

the system is in a stationary state (with time dependence ~e-iwt) and is

e

'I.

azimuthally symmetric (3/86 = 0). However, since the EM fields can grow or
decay along the direction of propagation due to the interaction with the
electron beam, one must leave the z-dependency to be determined consistently
by the coupled Maxwell-Vlasov equations. Also, due to the presence of a
radially localized source (the electron beam) which, in principle, can radiate
‘ into all radial modes, one cannot assume that the fields are given by a

single radial eigenmode in the waveguide. Since the radial eigenmodes form

a complete orthonormal set, one can certainly expand any radial function

o (satisfying the waveguide boundary conditions) in terms of these. Therefore
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one can write a general ansatz as, in the i-th dielectric region,

Eiizr,z,t)

1]

e'i“’t;fz’n(z) eijz (r)

Eﬁilr,z,t) = i e'i‘*’tgn;fr’n(z) eﬁ’,), (r) (2.1)
Héilr,z,t) = i e'ithWG,n(z) hgiz (r)
n

(1)
r,n

i j
where the radial eigenmodes ezfn)(r), e (r), hé’g (r) and their properties

are given in Appendix A. Substituting this ansatz into Maxwell's equations,

-

VxE =ipw/ H and V x H = -ie w/c £+ 4r/c 3, one obtains

Cs (1) o (1) = (1)
;(-1 Er,n e,-’n + Ez,n ez’n - M4 w/c Hg’n ho’n) =0 (2.23)
X (1) = (i) -

2 (=g hg - es w/e Eo | ep ) = dn/c ety (2.2b)

n

= (i = i) . -

:E:(Hg’n 1/r (rhe’z)' + €5 w/c Ez,n ei,n) = -1 4n/c e‘wtdz (2.2¢)

n

where . = d/dz and ' = d/dr. Note that the source terms Jp and J, are localized

only in the innermost vacuum region (i = 1). This is why one needs all the

radial modes on the left-hand side of (2.2b) and (2.2c).

In practice the radial eigenmodes are fairly well separated, therefore,
one can tune the system so that the electron beam interacts resonantly with
only one specific radial eigenmode (p'). One would like to project out the
n'-th radial eigenmode from (2.2). This can be done easily by using the
orthogonality relation (A.19) derived in Appendix A. First, one writes the

radial fields in (2.2) in terms of hg n using the relations given by (A.3);
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) sl

‘i w/c e = k"’n g,n J
<y 1 N 2 .

€; w/c e§:3 = kfzg hg:g (2.3)
. . 2 N

(e (rnboyy = 2D R0

to cast (2.2) into

— — (i)2 (i) = — (1)
2 (Ez,n - Fron) kin hgyn =Zn:(’ Er,n * Honk,,n) k,,n hg,n  (2.42) ﬁ
n
> H, +E. _k ) pli) L ar/c e'wty (2.4b)
= ! é,n rsn “u,n a,n r °
T o (1) ; jwt )I
:E:(-l Er,n + Ho,n k"’n) W hg’n = - i 4n/c e ™, (2.4c¢)
n
¥
. (i) . ri
Now we multiply (2.4) by hg n' /ej, integrate J. rdr and sum over all
ri-1
dielectric regions. Using the orthonormality (A.19) and (A.20), one obtains
»
2 .
ky,n' Ezgnt =1 Ep g k, o *+Hgp w/c (2.5a)
L) r 3 J
i H E. ok =-4 fwt /¢ Lar n$1) 2.5b
i Hgn *+Eppk, o =-4dr/ce 1/Chr ) o rdr hg v Jp (2.5D)
, = _— . jwt V) rl (i) *
1E. v +Hgpk, p = -idn/c el 1/C0 Jordrhg oo 0y /k, v (2.5¢) ,
N ri ()2
Cp = X J' rdr h €i),
(Ch A L g,n /€i)
-
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where we have used the fact that the source terms Jp and J, are nonvanishing
only in the innermost region (vacuum, €] = uj =1). By integration by parts on
the right-hand side of (2.5¢c) and using (A.3b) and (A.3c), one can write

(2.5) in a more transparent form as (dropping the subscript n' from now on),

2 :
kK, E, =1 E, k, + Hyw?/c? | (2.6a)
i By(z) + k Ep(z) = - Pr(2) (2.6b)
i B (z) + k, Fg(z) = - P,(2) (2.6¢)

(2.7)
P,(z) =i 4r/c elwt w(c/kn J—Z/Cn
and
- ri
Jr (Z)Ef rdr epdp
0
— r1
Jz(z)zf rdr ezJ; (2.8)
o [}
Noeri i)y (i
(Ch= 2 rdr e,(.'n) hg n)).
j=1 7 ri-1 '

The physical meaning of the source terms Pp(z) and P,(z) is clearly that they
are proportional to the work done by the induced current interacting with EM

fields which are normalized to the total power flow through the waveguide.

The set of differential equations (2.6) can be converted into a set of

algebraic equations by a Laplace transformation defined by

-7 -
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?(k)sjw dz e-1kZ F(z)
0

F(k) = ik F(k) - F(o)

(2.9)

with Im k sufficiently large and negative to make the transformation integral
(2.9) well-defined even in the case of F(z) exponentially increasing. Note
that for a system involving an instability, the usual Fourier transformation
is not well defined. A bonus of using the Laplace transformation rather
than the Fourier transformation in the present case is that it completely
determines the growth of the field from the boundary values at the input

end.

Applying (2.9) to (2.6), one obtains
- < (1) 5 = (1) (1)
kB0 == Erpn Kk o/ Tk al? + g 0?/c?/Ik 1% = Ep(0) K, 0/ 1Ky ol

-k Er,n + k",n ﬁo’n = Z/C/Cn gz + i Fr’n(O) (2.10)

k"’n Er’n -k ﬁe,n = Z/C/Cn Wr + 1 Fe,n(O)o




II1. VLASOV EQUATION (LINEARIZED)

The perturbed electron distribution function f; (from its equilibrium state f;)

under the influence of EM fields is given by

t —> - —
f, (X,U,t) = e/m I dt' (E' +u'/cY x H') - vy ify » (3.1)
t-z/v,

The integration path is over the unperturbed characteristics -- a particle

>
trajectory in a uniform magnetic field as shown in Fig. 3.1. *

Figure 3.1. 0 is the center of waveguide; G is the guiding
center of an electron; E' is the position
of the electron at t'; r = u;/Q¢ is Larmor
radius; and we = Nc/ Y (Rc = eBo/mg) is
relativistic cyclotron frequency.

The primed quantities represent the values at t' and the position given by

z' =z+v (t'-t)ando' =9 +w(t' - t). Note the relation between

angles in Fig. 3.1: &' =.7/2 - (¢' - 9'), ¥' = 7/2 + (' -O@) and X' =@-0' .

A realistic equilibrium beam function f, can be constructed from three
invariants, u , u; (0 = p/m = VY is a momentum variable) and the guiding §
center radius R = (r'2 + rE -2r'r cos&')l/z. In terms of the angles i

)

shown in Fig. 3.1, f] with ™M - field components (Ez, Ep, Hg) can be written

as




Ty, ' T TN T eET e T e T e LT T T Ty Ty T T

t
f1 = e/m Jp dt' tEi 8fg/ou, + [Ep 8fp/8u + Hy (ul/cv 9fg/0u
t-z/v,

- u jcy 8fp/ou;)] sink' + (Eh - Hy u /cv) lfa 8f/oR sinx'],(3.2)

Note that the last term in (3.2) is essentially due to an inhomogeneous plasma
such as annular electron beam. Substituting the ansatz (2.1) and noting
that we have assumed that the electron beam is only in the innermost vacuum

region of the waveguide, one obtains

. z . ' - i
fl = e-wt e/mf dZ'/V'; eM(Z-Z)/VuZ th,n(Z') 3f0/auu ZO (lkf1r)‘|r')
(1] n ’

- [Er,n(2") ku’n/|kf:zi 9fg/ouy + Hg n(z') w/c/lkszl (uy/cy afy/au,
QN
- u,/evafo/ou )] 21|k  nlr') i siné

- [Epn(2') k“,n/lkflgl - Fg.n(z') w/c/lkl(:,),l u./c¥] 1/2¢ 3Fo/aR 7

(i) l

(Jky,nlr*) i sin X' (3.3)

An immediate difficulty in carrying out the integral is due to the complexity
of 2'-dependency introduced by the arguments of the Bessel functions. This
can be easily overcome by exploiting Graf's addition theorem for Bessel

functions which allows us to expand in harmonic functions.

Consider a triangle shown in Fig. 3.2, with scale variables defined by

i i i
x' = |k£,,),|r', aL = IkE’r),IrL, a= IkE,,),IR
(1)2 (i) 2

and ﬁ =k, ,n/lk;,n|l . Graf's addition theorem reads

- 10 -
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z!(xl) ei!§~. = /':l' eil'w' 22,+i(aL) th(a)
27=-
(3.4)
- ]
ZI(X.) ei!x‘ = Z ?(‘Q. e'il'll)' Zz'+ !(a) Z!-(aL),
£'='w

Figure 3.2. Triangles for Graf's addition theorem of
Bessel function at various stages of
integration,

Using (3.4) with Z_,(x) = (-Q)IZI(x), one obtains the desired harmonic

expansion as

Zo(x') = 2K &1V 2(a ) 24(a)

$=-00

a0
Zy(x') 1 sink "' = Z Ts+leisy’ s/aL Zs(aL) Z,(a)

w

[ -]
Z;(x') i sinx' = ZQS‘”eisw' Zs(aL) s/a Z(a)
$=-0

(¥' =9 + we (2'-2)/v,)

and therefore, suppressing the obvious index n for notational simplicity,

=11 -
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first harmonic (s=1). Instead, the zeroth harmonic s=0, which, of course,
requires a steeper beam line to cross the dispersion line, gives a gain with
narrow bandwidth. This is Cerenkov radiation from the axial energy of an
electron beam rather than transverse energy as in the gyrotron. Certainly a
more careful comparison study is necessary to compare the performance of a
TMon-mode amplifier to a TEyy-mode amplifier. However, the indication

so far is that the TM,, mode amplifier seems to be at least comparable to

the TEyp-mode amplifier.
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V. RESULTS AND DISCUSSION

Based upon the analysis discussed so far, we have developed a computer code

to calculate and graph gain vs. frequency for a variety of parameters.

Some sample cases (not yet optimized) are shown in Figures 5.1 through 5.5.
For all these figures, we have considered a cylindrical waveguide with two
dielectric layers surrounding the central vacuum region with designated
parameters: r] = 1,55 ¢m, rp = 1.75 cm, r3 = 2.033 ¢cm and €1 = 1.0, €2

= 4,6, €3 = 19. (This particular choice of a waveguide is for comparison

to the Yale TEy, mode experiment.) The annular electron beam is assumed

to carry a current I = 5.2 Amp with a guiding center radius R = 0.72 cm in a
magnetic field corresponding to the cyclotron frequency wc/c = 0.75. All these
examples show the first harmonic interaction (s=1) with the TMy,-mode for
different velocities and the axial velocity spreads. For example, Figure 5.1
shows the gain vs. frequency for various axial velocities v /c = 0,17 +

(n-1) x 0.005 (n=1, ..., 4) witha =v,;/v =2and v = 0. Compared to

the similar results for the TE,,-mode, the gain is comparable. Figure 5.2 shows
the same case except the velocity spread (Av ) is now 2%. It is obvious

that the slow wave amplifier is sensitive to the axial velocity spread,
particularly at higher frequencies (thus large k,). The next graph (Fig. 5.3)
shows the same case as Figure 5.2 except with slightly higher axial velocities
given by v, = 0.185 + (n-1) x 0.005 (n=1, ..., 4). The gains are slightly
improved with smaller bandwidths. Apparently there seems to be a trade-off
between gain and bandwidth. Figure 5.4 shows the same case as Figure 5.3
except with a higher velocity spread Av, = 4%. The last figure (Figure 5.5)

is similar to Figure 5.1 except that a is 1 now. The gain is a very sensitive
function of the transverse velocity. This is a general characteristic of any

gyrotron device. In the limit a -0, we do not get any positive gain for the
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Applying (4.9) to (4.6) and noting that there are four poles corresponding

to the four roots in the complex dispersion relation
d(kj) = o,

one obtains

(4.10)

(4.11)

E, 4 , Ne (ki
T LS kg (f( 1)>/d'(k,-)
Ho(2) i=1 Ng (ki)
where
N k ku - S 1 S - S k" - S
(k) = - §§(k) t-H-e(O)< 12>+ E.(o0) (( + S10) 20( 12)
Ne(k) kK + 812 (1 + 510) + SZO(k + 511) .

(4.12)

Note that the relative field amplitude of each of the four possible modes is

completely determined by the residues at the poles as a function of boundary

values (Hy(0) and Ep(0)).

Having determined the fields as functions of z, one can immediately calculate

the gain as a function of interaction length rL from the power flow compared

to the input,
6(dB) = 10 log)g (Sz(L)/Sz(0))
where
52(L)/52(0) = Re (Er(2)F3(2))/Re (Er(0)Fg(0))[zuL
= Re (:_‘eikiL H.(kq)/d" (ky)) (*12 e TKIL N (k)7 (k1))/

Re (%‘ Ne(ki)/d' (ki) (} N3(ki)/d' (ki))*

(4.13)

taking the summation over only Re (ki) > o for the forward gain, and Re (ki) < o

for the backward gain.
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and

A —
$11522 - S12521 = (2/¢,)2 kag ck,/1k, 12 [8§/as% wP/c?/ 1k, |2 sack,/(k,|?
- 55 kevy/ |k 12 w/c/ac] .

It is important to note that one can rationalize (4.6) by multiplying by

ﬁg(k) in the denominator and numerator. Then the denominator
d(k) = (k) det(D(k) (4.8)
is a quartic polynomial in k.

The fields as functions of z can be immediately obtained from (4.6) by ]
inverting the Laplace transformation. The Brownwitz inversion formula for !

the Laplace transformation (2.9) reads

LRI

-jC+o® -
F(z) = 1/21rj dk elkz F(k) ?
~jc-
= 1/21n'fdk elkz § F(k) (4.9)

=:E: Res (eikZ j F(k))
i k=kj : poles
where sufficiently large positive ¢ guarantees that all the pole contribu-

tions in the contour integral shown‘in Fig. 4.1 are included.
4 Imk

} Rek
- —_—k \ >

L o x

.te
Figure 4.1, Contour integral for (4.9).
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N
n

Ao = - 52 k 71k 12 (w/c T, - keYy)
By = &/ Kk, keYp/lk |2, B, = £/ w/c/lky|? (wyy - s2c)
By = £/ k,c¥,/lk,|? (4.4)

s =wYy - SQ¢ - kU“) .

Substituting (4.2) into (4.1) one obtains

k+3S11 -k, + 512\ [Er — 0 _ 1+ 510
~ | = iHg(o) +iEr(0)
-k - S21 k + S22 Ho 1 S20

(4.5)

which can be immediately soluable by matrix inversion as

Fr) 1/det (B(k))- |iFig(o) (k" ) Slz)
~ = e 1 0
Ho(k) ?

_ (1 + S10) + Sgo
+ iEp(0)
(1 +510) + S20

(ky = S12)
(4.6)
(k + 511)

where

~ k +3511 -k, + 312
det (D(k))= (4.7)
-k, * 521 -k + 522

= (k2 - k2) + k(Syy + Spp) *+ k,(S12 + S21) + Sy15p7 - $12521
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IV. DISPERSION RELATION AND GAIN

Let us go back to Maxwell equations (2.10) and write them in a matrix form as

~

K - Ep

k AR . 0 - <1
= (2 i + i 4,
S &,k F (/c)/c" Wr * 1 Helo) 1 tEelo) o/ , -1

with the source terms calculated in the previous section, (3.27) with

vy v r v ow v

T e ey

L (3.29). In the source terms, all the possible radial and temporal harmonics
| of TMgp-mode are included so far. However, each radial and temporal 1
| harmonic is weighted with resonance factor l/ﬁg and 1/%g with
. Qg = wY- K, ,n 'J" - sQ¢ and, in practice, one can tune to only one of them l
. . .‘
f since the radial modes and temporal harmonics are fairly well separated. f
% Therefore, considering only this resonant mode term in the source term and ]
E. using the relation (2. ), one can write (3.27) as i
! Wz si1 sz [Er) - S10
1 -2/cfen | )= ~ | +1Ep(o) (4.2)
© Wp S21 S22/ \H 520
|
: where
: A AL
' o S11= 2/Cqy k (u® Ay + By) S12 =- 2/Cqp k (ud Az + Bp)
r
: _ 2
: Sp1= 2/Cq Sk, /1K 12 Ay Sy == 2/, sack, Ik, |2 Ay (4.3)
: A
. S10= 2/Cy k (uS Ay +B,) Sy =~ 2/C, sqck,/|ky |2 Ay
and
. A = 502 (Rre? - KB) kv /1K, 12 - &Mk, wicfk |2

-, K cvo/me
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which is the desired result for a "cold" beam with 6 - function guiding center
distribution. Beam spread effects should be included at this stage, according
to (3.11). This has been discussed in detail in Ref. 1, and here we quote

the result for the most important velocity spread effect in u, for a Lorenzian

distribution
fo(u®) = 1/ aus/((uo-u,)% + @aus)?) . | (3.28)

We have shown in Ref. 1 that the result of this velocity spread effect is to

merely replace u? in (3.27) by

u® - U, - iAu, sin w-2./7). (3.29)
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|
The remaining integration in (3.24) with 31 given by (3.17) can be done
g trivially by integration by parts,
W, (k) A~
P - = - Ne/m 2. [22(a,) [- k E, 0/0us
Nr(k) n,s
+ s/aE (Er k,/lk,| 3/au} + ﬁg aﬂc/ﬂkl| (uf/evg 3/3uy = ul/cyg 3/3uf))]
p
+ s/ay (23(a,)) (E, k,/Ik | - Hg w/c/lk | (us/evy) |k |/ac]
~ku?
f 72(a°) /2 (k) . (3.25)
P Defining
- 2/m-2 2 2
£, = Ne“/mc % Zs(at) Zs(ao) (3.26)
b ¢, = Ne?/mcy, [Zg(af) s/a, (22(a )" + s/ai‘_’ (Zi(al‘_’)' Zg(ao)].
one can further reduce (3.25) to
4 ~ A
/e | - 53 o) L= t1ag? (- K E, (wre ug - key)
\ W.(k) ] n,s U\ sock /[k,]
| + (E} k, - ﬁb k) sQ¢ w/c/lkﬂ2
+ /Mg 1/ (Er k,cyo - Hgw/c u2)]
A
-k A ~ - ,
{ + £1/a3(k) (-k E ¥y + Fg sacw/c/[ki]?) .
()
(3.27)
|
-17 -
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Defining the radial integrals as

Iy As X1 Il(x))
= T z
) =¥ J[O dx o(x)( L)

(3.21)
T X I3(x)
3 EQS/ZTI'f ! dx Zl(x)( )
Ty 0 I4(x)
one can write (3.20) with (3.19) as
Wz (k)
2 o
= NeZ/m fdu,,du u, fusfac(k) Z.(a )
w,.(k) 65_.; 171 J./S SV
(3.22)
A ~ o o~
( ku, (F4 11 - F1 I2) )
° A - ~ _
(-k k /]k Ju;) (Fy T3 + F1 Tg).

The radial integrals (3.21) are carried out in Appendix C giving very simple

results,
T, = 2.(a )22(a.) T,=ks/a T
1 s 9 /s %/ 3 L 1 (3.23)
- - A —
Tp = - I5(a)) s/ag (24(a,))'s Ty =k s/a Ty
and one obtains
Wy () k
2 2 =Ky, 2
= - Ne“/m fdu"du u, Jus/ (k) ( )Z (a,)
. (k) ;%; L Y /uj/iig s k“/lkllz s\
(Fy 22(a,) + Fy s/a, (28(ay)") (3.24)

where Fy and Fy are given by (3.16).
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91 (u,, u)=6(u, - u?) (u, - uj)

92 (&) = (8(6-¢0) + 6(&+éo))/al_sin§ o 8(r) . (3.17)
Defining the following phase angle integrals as yﬁ
A
I1(x) . Z5(a) 92 -
Efdg els¥ . A B
I2(x) s/a Zs{a) agz/ea B
(3.18) %
13(x) [1s(a) 82 ]
Efdg 1/i sing eis® A ;
I4(x) s/a Zg(a) 39p/9a ,

- 4
one can write (3.15) as ;!
Jz(k) ot o2 2, fs+l 5
. = " WL Nel/m Z |k1|/(2’f) rk ﬁu,,dul ul/ui’/Qs(k) Z.(a ) ]
J (k) n,s L y
-iu, (Fy I1(x) - 1 Ia(x) ]
(3.19) s
uy (Fy I3(x) - F1 I4(x)) /. 3
{

The integrals in (3.18) are calculated in Appendix B and the remaining
integral in (3.19) is trivial, resulting in a rather complicated expression f
for the induced currents. However, what is interesting to us is the work ;4
.
done by fields on the induced current, given the source terms in the Maxwell ]
Y
equations (2.10). =
X
Nz(k) f'l i ez(l)(r‘) e1Wt z(k) _~
- J' 2rrdr ) ot (3.20) R
W.(k) ) e.\/(r) e Jp(k) . *j

v

P .
.
LY Uy G B Uy W
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With R = (r2 + rf - 2rrL cos ¢ )1/2, one can consider g,(R) as a function

determining the angle distribution and given by

g2(R) = 1/2nr (8(£-£,) + 6(§+§o))/rL sin £, A(r) (3.13)

where cos oss(rz + rﬁ - R%)/erL (see Fig. 3.2) and

1 ifr_.{r<r,
Ar) =
o otherwise (3.14)

rL =Ry zxr .
(t [o] L)

Putting all of this into (3.10) and understanding that the beam spread
effects (both in velocities and guiding center) will be taken into account

later (as dictated by (3.11)), one obtains

—~

Jz(n) .
% = -1 emiwt NeZ/m D [k, |/(2m)2r kS* jdu" du, d& u /ugfeg (k)
J.(k) n,s

ull
e'iSlP( )'Zs(a )
uj anE L
(Fu(k) Zg(a) 97 - F1(k) s/a Zs(a) 8G2/0a) (3.15)
where
~ . A~ ~ A e
Fu(k) = kE; 291/0u, - s/a [Ep k, /1K, | a81/0u; + Fg wic/IKk |
(u, /ey 31/80“ -u, /fcY aﬁl/aul)]

Frik)= Qu(Ep k /I, | - Fg w/es[k | u,/ev) |k |/ (3.16)

-which represents the part for a homogeneous plasma and an inhomogeneity,

respectively, and

- 14 -
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The induced currents (Laplace transformed) are given by
~z(k) u,/Y ~
(~ )E- Ne /:13u AR (3.10)
Jp(k) u /7Y sing

where N is number of electrons per unit length.

In order to carry out the integral over momentum space, we need to know a
more specific form of the beam function fg. This can be done without making
any further assumption, other than f, being an arbitrary function of u , u;

and R, by invoking the following identity:
fo(u", u;, R)= fdu® 27 uf du} 27 R°dR® f, (u®, uj, R®) £ (u,s u;, R)

with

?o (u,» u, R)=g1 (u,, u;) 92(R)
g1 (u,, u)=26(u, - u®) 1/2mu} 6(u; - ug) . (3.12)

g7 (R)=1/2mR° &(R - R°).

Note that ?6 represents a "cold" beam function with &- function guiding
center distribution and is normalized to be one electron per unit length.
Equation (3.11) allows us to include the beam spread effects both in the
velocity and the gquiding center at the end of the calculation and to
concentrate for the moment on the &- function type of beam function ?6

without losing any generality.

- 13 -

. KA N . . . I - VI
o L] P AL P, W U, VUL AP SPGr SO QPO PR AP SIS SR VU T, DU, D

NPAPAR |

I W WEI

il b

a4

e 3 e s IS (.‘. y

ndnal oM s

P

b indatebunliihs




T T ——w W v—y — —— w—r — —~ g
(el iy X ad Callcafiar'sd Pl el S St are et A o > v
el o~ T L T —— P et S it i |

. . z
f) = e~lwt e/m Z L5+l evswf dz' /v, el w-sw.)(2'-2)/v,
n,s o
- A
{Ez(z')afo/aun k Zs(aL) Zs(a)}

- [Ep(2') k /1k | 8fg/au; + Ho(z') w/c/|k1| (u;/cy afp/Bu, - u Jey 8fg/du )]

s/aL Zs(aL) Zs(a)

- [E,-(Z') k,,/|kll - .Hg(zl) “-’/C/“‘ll U,,/C'Y] 'kll/Qc 3fo/8a Zs(aL) s/a Zs(a)}

. A . z . ' '
(. se-iot e/m 3 kst e1swjo dz' 6(z-2') F(z') (3.5) ‘

n,s
g which shows characteristic hysteresis integral with Green's function
G (z-2') = 1/v, eilw-swe) (z-2')/v, . (3.6)

The Laplace transformation of (3.5) can be done immediately by invoking

:. the convolution theorem, (
7L (k) = ot em D> kSt e1SY F(k) Flk) (3.7)
n,s

(3] r dz e-1kz 1yy et l-swe) 2/v,

0
= ivfag(k) : 9s(k)= w¥-ku - sQ ) (3.8)

,'. and

. F(k) = 25(a) [tk E5(k) afo/au, |

- sla (Er(k) k 7|k | afo/ou, + Hg w/c/lk | (u /ey Bfofou,

E- - u /ey 8fp/duy))] Zs(a) )

- (Bp(k) Kk, /1K | - Fg(k) w/eflk | u,/e) [k Qe Bfp/da
o s/a 25(a)| « L (3.9)
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APPENDIX A
ORTHONORMAL TMy, RADIAL EIGENMODES

We will derive here a complete set of orthonormal TM,, radial eigenmodes in
a waveguide loaded with an arbitrary number of concentric dielectric layers

as in Fig. 1. (For more general and detailed treatment, see Ref. 1.)

For azimuthally symmetric modes (3/88 = 0), the sourceless Maxwell's equations

in a linear dielectric medium (3 =€k, B = pﬁ; VxE=-py/coH/at and

VxH= €/C dE/3t), form a closed set of equations for E,, Ep, Hg;

0Ep/oz - 9E,/3r = - p/c dHg/ot
- dHg/dz = €/c IEr/dt (A.1)
1/r 9/3r(rHg) = €/c 9E, /3t .

Due to the cylindrical symmetry of the system, one can write the fields

(stationary in time) as

- o~iwt ik 2
E (r,z,t) = e7'F e'"ué e,(r)
E (r,z,t) = i e-lwt ik, 2 e (r) (A.2)
He(f‘,z,t) = i e'i“’t eikuz ho(f‘).

Substituting (A.2) into (A.1l), one obtains a set of radial equations
(' =d/dr),

k“e‘~ + ez' = pw/C he (A.3a)
k hg =€ w/c ep (A.3b)
1/r (rhg)' + ew/c ez = 0. (A.3c)




K,

K,

L

[

L,

Using (A.3b) one can eliminate e. in (A.3a), to obtain

k2 hg=ecw/c e,

(A.4)
(k2=ep3/c? - k).
From (A.3c) and (A.4), one obtains, by eliminating hy,
1/r (re,')' +kée, =0 (A.5)
or, by eliminating e,,
(1/r (rhg)')" + kf hg = 0. (A.6)

Radial Eigenmodes

The solution of (A.5) is given in terms of the Bessel functions of order 0

= A 2o (Ikyle) + Ko (I, IF) (A.7)

and the solution of (A.6) is given in terms of the Bessel function of order 1,

L
. J'. ......... .‘. P LT e e e ) . .. . . o e = e s e
A e e ST S S P RN R ISR TR P AR 0 N P TP P i P TP WP S S, WPLIDP™, . Sy e, §

hg =B Z1 (k. |r) +B 21 (|k,|r) (A.8)
where
J Y if k>
ZQ(x)E{ SRS :{ (TR
Ig(x) Kg(x) if kZ<o.

Of course, due to (A.4), the arbitrary constants (field coefficients)
(A,A) and (B,B) are related to each other by
B=-k ewc/lk | A T=- cofcflk| & (A.9)
since
< Z5(x) = - Q Z9(x) A
° (k = k2/[K]2).
To(x) = - Ty(x) e
Therefore, fields in a dielectric medfum are completely specified by two
arbitrary constants (A,A) - the field coefficients. The field coefficients in
one dfelectric layer and in another dielectric layer are related to each other
by the boundary condition that ez and hy be continuous. This can be shown as

follows.
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By defining
A
(i) L)
hg(r) A

Zo (lkllr) _Z_o (lkllr) )
M(r)={ A )
-kew/c/lk | Zi(lk Ir) - ew/e/lk | Tallk i)/,

one can write (A.7) and (A.8) with (A.9) as in compact vector form as
F (r) = M(r)V. (A.10)
Consider this relation in the i-th region and the i+1-st region,

F(i) (1) (i)

(r) =M "(r)V

F(‘i+1) (i+1)

(1) = w0 ey v,

At the boundary r=r;, F(i)(ri) = F(i+1)(ri) and therefore one obtains the

connection formula

vii+l) = s(i+1,1) (p ) v(i) (A.11)

with transfer matrix
S(i+1,i)(ri) = (M(i"'l)(ri))'l M(i)(ri).

By applying (A.11) successively, one can express field coefficients in any
dielectric layer in terms of the field coefficients in a particular dielectric

region (for example, in the innermost region).

Actually, one can prove that the transfer matrices S form a transformation

group in a discrete vector space V.

In the innermost region, fields must be finite at the origin (regularity

conditfon) and therefore
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1
v(l) = c( ) . (A.12)
0

By applying (A.11) successively, one can find the field coefficients vIN) in
the outermost region by
vN) = s(N,1)y(1) (A.13)
where
sN,1) = s(NN-1) (e 1 ).L.s(21)(rp)
In the outermost region, the fields must satisfy the boundary condition that

ez(N) must vanish on the conducting wall at r = ry;

e, (ry) = ANz (1Wey) + BNZ (1)) = 0

which can also be written in vector form as

pv)T. viN) = 0 (A.14)
where

-~ 2,0 (M)

N
2, Min )
Combining (A.12) - (A.14), one obtains a dispersion relation

P s(N1) L (1) 2o, (A.15)

which gives an eigenvalue condition on k for a givenw. The solutions of
(A.15) for k, form a discrete set of radial eigenmodes characterized by k  ,
or simply n. Having found the radial eigenvalue, the fields in all the
dielectric layers are completely determined up to an overall normalization

constant C.
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Orthonormality

Let us now prove the orthogonality between two different radial eigenmodes
and obtain the appropriate normalization constant for a given mode. This is
an essential step in projecting out the correct T™My,-component field radiated
from a radially localized source when we introduce an electron beam as in the
text. Denoting the radial eigenmode by subscripts n and n', (A.6) reads, in

the i-th dielectric region,

)
(1/r(rhg n)') + kf,n hg,n =0 kf,n = €4y W2 /c? - kf.n (.16)

(1r(rhg 0 )) + k2 ihy o= 05 k2 s eqpy 2702 - k2L

(For notational simplicity, we have dropped the superscript i indicating the
dielectric region on hg and k;.) Multiplying (A.16) by hg n* and hy p,
respectively, subtracting one from the other and integrating over the
dielectric region,J.:1 rdr, one obtains

i-1

r. ‘
0 =J' U odr {[rhg,n'(l/r(rhg,n)') - rhg,n(1/r(rhg n')) 1]
ri-1

2 2
+ (k{,n = ki ,nt)rhg e "9»"1
] ri 2
= [he.N' (rho,n)' - h9,n(rh0,n') ] + (ku ,n'" = ku,n) X
Fi-1
ry
I rdr he’n' hg’n
ri-1
and, upon using (A.3c),
(kn n' u n)j rdr ho n' he n/€.' ’(L)/C [r(h n.ez n-
Mi-1
8
hg,nez,n')] . (A.17)
ri-1
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Now one can add expressions similar to (A.17) from all the dielectric regions.

Note that the terms in the right-hand sides cancel cut at the boundaries

PO

between dielectrics (because both hgand e; are continuous) and vanish at

24

the origin and on the conducting wall.

Thus one obtains

Ancmshadi mei s

N riy
(kg,n. - kg’n) S rdr h ,
i=1 ri_l

/e = 0 (A.18) )

which is the desired relation.

If k%,n' # kﬁ ne 1.e., 0 #n, (A.18) gives the orthogonality relation
N ary iy (i ]
P> rdr hé,g' hg,g/ei =0 (A.19)
i=1 ri-1

A s

and, for r' = n, the field hg,n has a normalization factor

N rj i)2
Ch I f rdr hg,Z Jeis (A.20)
, - i=1J rj

The physical meaning of this normalization constant C, becomes more clear if

one writes it as, using (A.3b),

Cp =w/c/k, 2 fri rdr hf(,',), em (A.21)
i=1 ri-1
which 1s nothing more than a quantity proportional to the total power flux
of the entire waveguide, Sz-_=f21rrdr Re (c/BrEp H;) = c/4 igl :‘ rdr eijr), }
hgjz, that is, - ;
Cn = 4/cw/c/k Sp,n- (A.22) g
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APPENDIX B
ANGLE INTEGRALS d

The angle integral defined by (3.12) can be calculated straightforwardly
by using Graf's addition theorem (3.4) for expanding and recombining q

Bessel functions.

() = fag e15% 25(a) §(6) [8p(8) = (6(6-8o) + 8(6+5o))/a sintg 4 ()]

2 ks z, s(a ) Zg: (x) fd&e"s'g p(8)
sl

A )
28/a singoz kS' Z¢i s(aL) Zgi(x) cos s'g,
Sl

= Is(ap) 0g(x) [04(x) = ZA/aLsinéocos s¢g] (B.1)
Similarly,
q
I3(x) Efdg 1/i sing e'S¥  Z.(a) Gp(¢) (8.2)
= Zs(ao) SS(X) M Ss(X) = 2°/aL sin Swo .
q
For I2(x) and I4(x), note that
A
s/a Ig(a) = 1/2 (Zg-1(a) + k Zg+1(a))
and *
= (x2 2 _ 1/2
a = (xc + aL 2xaL COSE)
eti¥ aazlaa = aﬁz/aaL :_1/aL aGZ/ag . ﬁ

B-1
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I5(x) Efdg eis¥ s/a Z(a) a'g\z/aa
) fdé i72 (1510 7 ) (a)e™? 95p/0a +k el(s¥1)¥

Zg,q(a) e ¥ 89,/32)

= 1/2 (13(x) + k 15(x)) (8.3)
where
I3(x) = fd&ei(s'l)w Zs_l(a) ef¥ aaz/aa
A ie! A . A
= Z kS zs.+s_1(aL) ZS-(x)fd§ els’s (agg/aaL +1/a 89p/8¢)

Z S‘ s +5+1(aL) an(x) (3/3aL + Sl/aL) ZA/(aL Singo) C05$'§o

S
A
K

28/ (a s1n§°) Z(agy) coss¥, + (a/aa - (s- 1)/a ) 2 /(aLsmgo)

Z..1(ay) cos(s-1)¥g
= & 2g(ag) 0g(x) + Zs_1(ag) (afoa - (s-1)/a ) 01 (x)

(B.4)
and similarly
—_ j 1 -1 A
13(x) =fd§ el(s+1)¥ Z.,1(a) e ‘wagz/aa 5.5)
= - Is(ag) O0g(x) + Zs+1(ao) (Ei/aaL + (s+1)/aL) Os+1(x) .
Substituting (B.4) and (B.5) into (B.3), one obtains
Io(x) = 1/2 [Z4_1(aq) (a/aaL - (s-l)/aL) 0g-1(x) + % Zs+1(ag)
(B/BaL + (s+1)/aL) 0g+1(x)] . (B.6)
Likewise,
14(x)=fdg 1/1 siné els¥ s/al (a) agzl’aa
= 1/2 (I3(x) + k 14(x)) ' (B.7)
B-2
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where

I(x) = fd§ 1/i sint e (S=1)¥ 7 (a) ei¥5,/a
Ao

K 2o (@) 20 () fag 174 sing eTE (0820 + /2 35,050

s

AL . ,
2; kS Zs'+s-1(aL) Zgi(x") [(3/aaL +s /aL) ZAJaL sin s'§,
- 1/aL 2Acos§o/(aLsin§o) cos s'fq]

= & ZA/aL Zg(ay) sin syy + (alaaL-(s-l)/aL) ZAJaL Zg.1 (ap) sin (s-1)y,

l/aL ZAcosgo/(aL singo) Zs-1(ag) cos (s-1)¥g

"
x>

Zs(ap) Ss(x) + Zg-1(ap) [(a/aaL - (s-l)/aL) Ss-1(x) - l/aL Cs-1(x)]

(B.8)

with Cg(x) EZAcosgo/(aL singg) cos s¥, and
150x) = fag 171 sing ei(s*1)¥. 7. (a) e ¥ag,/0a
= - Zg(ag) Ss(x) + Zg+1(ap) [(a/aaL + (s+1)/aL) Ss+1(x) + 1/aL Cs+1(x)] ©

(8.9)
with (B.8) and (B.9), (B.7) gives .
I4(x) = 1/2 [Zg41(2p) ((a/aaL - (S-l)/aL) Ss-1(x) - 1/aL Cs-1(x))

+k Zg+1(ag) ((3/aaL + (S+1)/aL) Ss+1(x) + l/aL Ce+1(x))] &
(8.10)
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APPENDIX C
RADIAL INTEGRALS

For radial integration, note that

X = (ag + a - 2a,a cos'~l/o)1/2 :
L L
dx = 1/x aoaL sind, d¥y = 2 singy d¥p -

Define

=)
wn
n

1727 [ dx Zo(x) 05(x) [05 (x)=24(x)/ (a 510 € 0)]

X+
- 1/217f ax/ (2 sin £4)2o(x) 2 cos s¥o

X=-

At n
=§ kS ZS.(aL) Zoi(a,) 1/2n . ¥y 2 cos s'Y, cos sy,

= ks Zo(a ) Zg(ao) (c.1)

where the relation Z_I(x) = (-?)lzl(x) was used.

Also,
S = 127 f dx 23(x)Ss(x) [Ss(x) = 28(x)/a_sin st]
X+
= 1/25/‘ dx/(a sin £4)Z1(x) sing 2 sin sy
X L
ZA 241 (a)) Zge(ag) 1/2nf 7 a2 sins'Yy sin s¥,
0
- k¥l s/a_Zg(a ) Z(a,) (c.2)
and

Cs = IIZnﬁx 21(x)Cs(x) [Ce(x) = 2Acosfo/(aLs1n§o) cos s¥p]

X+
= 1/2nf dx/(aLsingo)Zl(x) cosfo 2 cos s¥y
X=

C-1
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“ A

= . kS Zs.+1(aL) Z,:(a,) 1/2;t/': d¥y, 2 cos s'Y, cos sy,

." A ‘
(s - kst 20(a)) 240a,) (c.3)
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With these, one can easily carry out the radial integrals. From (B.1l) and

(B.2), ﬁ

I, = /l:S/andx Z,(x) Iy(x)
= kS Zs(a,) O

= Zi(ao) ZS(aL) (C.4) ’
and
T3 = QS/andx Zy(x)I3(x) q
_— Z5(a) S
-k 28(a) s/a 25(a)) = k s/a Ty. (c.5)
4
For T and T4, using the recursion relations
(B/aaL - (5'1)/3L) Zs-l(aL) = -k zs(aL)
4
(3/33L - (5*1)/8L) ZS+1(aL) = Zs(aL) ,
one can easily show that d
T, = k8/2r [ dx 25(x) 1,(x)
= kS/2 { Z5.1(ap) (3/3a - (s-l)/aL) [ o Zo41(2p) {
(a/aaL + (s+1)/aL) Us+1}
= - 172 (21(a,) - Z,1(20)) Z(a) {
= - s/ (15(ag)" Z(2) (c.6)
{




and

-— A
f’ T E=ks/2njrdx Z(x) 14(x)
=S

/2 { Zg.1(2o) [(a/0a - (s-1)/a ) Sgy - 1/a Tg 4l

o R Zev1(a0) [(o/0a + (s+1)/2) Sse1 + 18 a1l |
= - Wiz (21(a,) - Z,1(ap)) s/a Zg(a)

® =% s/aL Ty (c.7)

o e B R S N - T VAT T T ST
. - . . . Y. o - - R T T R T tos - -t e f e e e T e P I . - -
PRI L AT WOE L. WD A AL WP USRI L WU, UL G PLIPE, ISP PR WS WL W SICT SAF GIFIS I S 6. S SV S S S SRR 2




6

K

’

- N - --
BRI
\.A-"J

INT. J. ELECTRONICS, 1981, voL. 31, ~o. 4, 403-302

Invited paper
Theory of a slow wave cyclotron amplifier

K. R. CHUf, A. K. GANGULYt, V. L. GRANATSTEINT,
J. L. HIRSHFIELDZ, S. Y. PARKS and J. M. BAIRD}§
A new type of travelling wave amplifier is proposed which features a slow wave

structure and wide bandwidth operation. [t 18 based on the cyvelotron interaction
between a slow electromagnetic wave and helically moving clectrons.  Gain and

bandwidths are calculated including the cffect of beam velocity spread. It is shown
that a bandwidth as high as 50", could be achieved with beam velueity spread
< 1%.

1. Introduction

We report the concept of a slow wave cyclotron amplifier (SWCA) based
on the cyclotron interaction of a slow electromagnetic wave and a stream of
helically moving electrons. The SWCA has the potential of wideband and
high power operation at millimetre wavelength. As in typical microwave
devices, the basic mechanism for radiation is electron bunching under the
influence of the RF field. In the case of SWCA electron bunching is caused
by the v, x B, Lorentz force, where v, is the electron velocity and B is the
magnetic component of the wave field, both transverse to the applied magnetic
field. This mechanism is qualitatively different from the cyclotron maser
mechanism involved in the gyrotron travelling wave amplifier (Gyro-TWA).
A detailed comparison of the present mechanism and the cyclotron maser
mechanism can be found in Chu and Hirshfield (1978). The potential use
of the v, x B, bunching mechanism for high frequency wave radiation has
been suggested and analysed by Hirshfield et al. (1978).

Before proceeding with the analysis, it is instructive to compare the SWCA
with two other microwave devices—the Gyro-TWA and the travelling wave
tube (TWT). The TWT (Pierce 1950) employs a longitudinal bunching
mechanism driven by the axial electric field (£.) of a slow wave structure
such as the helix. The radiation energy in this device is derived from the
electron streaming velocity v, and no cyclotron resonance is involved. In
contrast. both the Gyro-TWA (Granatstein et al. 1980, Barnett et al. 1980,
Symons et al. 1981) and the SWCA depend on the free energy which resides
in the transverse electron velocity. v,. These two devices are similar because
they both extract energy from the beam through electron interactions with the
transverse component of electric field, £, : and they both radiate at the
Doppler shifted electron cyclotron frequency or a harmonic. As described
above (also in § 3) the difference between the two devices is in the mechanism
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swea Gyro-TWA TWT 1

Wave type Slow wave Fast wave Slow wave
Condition of operation w—kp,—3Q.<0 w—k,—sQ .20 w—kp,<0
Cyclotron resonance Present Present Absent
Field responsible for B, E, E,

electron bunching |
Field responsible for E, E, E,

energy extraction ,
Nature of bunching Non.relativistic Relativistic Non-relativistic

mechanism
Free energy v, v, v, 1

Table 1. Comparison of SWCA with Gyro-TWA and TWT.

which produces the phase bunching. The principal advantage of the cyclotron
resonance devices over the TWT is that the dimensions of the interaction .

structures permit much higher power outputs to be obtained at shorter wave- L
lengths. The above comparison is summarized in Table 1.

Preliminary results of our studies have been reported in several conference
proceedings (Chu et al. 1978, Sprangle et al. 1979, Baird et al. 1980, Keren
et al. 1980). In this paper, we present a more complete theory of the SWCA.
In §2, a particular slow wave circuit—the dielectric loaded waveguide—is q
examined. In §§3 and 4, the dispersion relation of the SWCA is derived
and analysed. On the basis of which a proof-of-principle experiment has
been designed. Finally, § 5 contains a summary of the present work and a
brief review of related work.

2. Properties of the dielectric loaded waveguide 1
The beam-wave cyclotron resonance condition is given by

w—ky,—s0,~0 1

where w is the wave frequency, k, is the wave number, v, is the beam axial
velocity, s is the cyclotron harmonic number, and Q. is the electron cyclotron %
frequency. Wide bandwidth operation requires that (1) holds over a broad

4 range of frequencies. Differentiating (1) with respect to k, gives

.

- dw

- - ——

' dk' vl (2)
L

= Hence a wide band circuit is one whose group velocity (dw/dk,) coincides

with the beam velocity over a wide frequency band. One way to realize

such a circuit is to load the waveguide with dielectric material. In this

section, we examine the properties of a dielectric loaded waveguide as shown

in Fig. 1 (in the absence of electrons). It is weil known that TE and TM <
| J modes are separable only for modes without angular variation. For simplicity, 4
s we shall restrict our consideration to the TE,, modes, where the subscript n

rvvwwr Ty vy
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Slow wave cyclotron amplifier 495

Figure 1. Cross-sectional view of a SWCA employing dielectric loaded waveguide.
All the electrons have the same guiding centre position and are uniformly
distributed on the circle of radius r,, The applied magnetic field (Bge,)
points toward the reader.

refers to the radial eigen-number. The TE,, mode dispersion relation (in
the absence of electrons) is given by

k, .
E—f Jl(knlrd)['ll(knzrw) Yo(knz"d) ‘Jo(knz’d) Yl(knzrw)]
+i“]0(knlrd)[‘]1(knzrd) Yl(knzrw) —Jl(knzrw) yl(knzrd)] =0 (3)
where

2

w
2 _ 2
k=2 -k,

(4)

w
knzz = e c_z —kzz

e and u are, respectively the dielectric constant and permeability of the
dielectric liner, r, is the inner radius of the dielectric liner, r, is the wall
radius (Fig. 1), J, and Y, are, respectively, Bessel functions of the first and
second kind. For a given k,, there are an infinite number of solutions for w,
which are denoted by the mode index n. The electromagnetic fields associated
with the TE,, mode are

{Jo(k,ur), re<ry

ad y(kpg?) +0Y o(kpa), T>T4

3

(5)

: Jl(knlr)» r<ry
H,= (6)

—1k
o (o) +5T )] 776
n
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5 fhiad Ji(k?) r<ry {
ko
Eo=1 . (7)
lw .
IC—_C [n'll(/"n;.’r) +b1 l(kn‘zr)]v r>ry
nl
: where ‘
~y T ks ., N
.' a=kury I:k =Sy (knyra) Yolknara) — pd o(knyry) X l(kn'.!rd)]
- nl
m knz
b =3 Knara | pdolkny?a)d 1(Knary) "k—l Solknar W 1(kpyry)
and all field components vary as exp (—iwt+ik.z). A noticeable property
. of these electromagnetic fields is that (£, H,) forms an orthogonal pair, i.e. $
e =0 if E,and H, have the same mode number n
§ rE,H *dr (8)
0 #0 if E,and H, have different mode numbers
but (E,, E,), (H,, H,). (B., B.) are not orthogonal pairs.
’ -1
10 v
o ’/‘\LIGHT LiNE
. q
) |
v .
(b) v
3 ! | {
ext I
Ey = I
€22 i
® I ' q
«x10 E?
| L 1 L ll/l
] tq [
Figure 2. (@) w versus k, plots of the TE,, mode of the dielectric loaded waveguide. J
*® ri/tw=07 and u=1. Light line is defined by w=kec. (b) E, versus r of
the same waveguide. Shaded area indicates dielectric region.
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Figure 2 (a) plots the TE;, mode dispersion characteristics for r /r, =0-7,
w=1, and three values of the dielectric constant ¢. The case e=1 corres-
ponds to an unloaded waveguide. In all three cases, the wave group velocity
(dw/dk,) approaches a constant value (condition for wideband operation),
while larger ¢ gives smaller group velocity. The unloaded waveguide (e=1)
is impractical because its asymptotic group velocity approaches the speed of
light. This is the reason that dielectric loading has been added to lower
the asymptotic group velocity so that the wave could interact with a moderately
energetic electron beam.

Figure 2 (b) shows typical E, profiles of the TE,, mode (eqn. (7)). As e
increases, E, tends to concentrate toward the dielectric region. When ¢ is
so large that w/k,<c (i.e. k,, becomes imaginary, see eqn. (4)), the electro-
magnetic wave can be regarded as a surface wave on the dielectric. A more
sophisticated model of the dielectric loaded waveguide has been analysed by
Park et al. (1980).

3. Dispersion relation of the SWCA

Figure 1 shows the present model of the SWCA. The electrons move
along helical trajectories under the guidance of a uniform magnetic field
(Bye,). We assume that the beam is sufficiently tenuous that its space charge
field can be neglected. Hence, the radial dependence of the RF field is that
of an empty dielectric loaded waveguide (eqns. (5)-(7)). We let all quantities
depend on ¢ and z through exp (—wt+1tkz). The presence of the electron
beam, treated here as a perturbation, modifies slightly either w or k, such
that w or k, has a small imaginary component to give rise to wave growth.
The purpose of the following analysis is to derive a dispersion relation which
determines k, as a function of w or vice versa. Using (5)-(7) and the Maxwell
equations, we obtain

w? —4miw
(;—kzz—knxz) B, = py oV (9)
where the superscript (1) denotes first order quantities and J,’ is to be
evaluated from the equation

JoW=—e | fO)x, p, t)v,d?p (10)

and the perturbed distribution function f’ can be solved from the linearized
relativistic Vlasov equation

Et+v ox

where f, is the equilibrium distribution function, p is the electron momentum,
E® and B® are given by (5)-(7).

In the above, (9) is the field equation, (11) is the electron dynamics equa-
tion, and (10) serves to connect (9) and (11). To solve (9)-(11), one must
first specify the form of the initial electron distribution function in terms of
the constants of motion of the system, namely, the perpendicular and parallel
momenta p, and p., and the canonical angular momentum P, To be
consistent with the usual experimental configuration that all the electron

0 9 d 0
<_ .__evxBoez.$>f(n=e(5m+vx3u>).a_P/o | (11)

J.E. 2c¢c
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guiding centres are approximately located on the same cylindrical surface
defined by r=r,, we choose f, to be of the form (Chu 1978)

f0=08(r1,2_2P0/eB0_r02)g(p_j_1 p:) (12)

where &(r) is the Dirac delta function, r =p, /eB, is the electron Larmor
radius, g(p,, p,) is an arbitrary function of p, and p, satisfying { gd3p =1,
and C is a normalization constant chosen to satisfy | fy2mrdrd3p =N, where
Y is the number of electrons per unit axial length. Methods for constructing
fo as well as the steps leading to the dispersion relation are similar to those
described elsewhere (Chu 1978, Chu et al. 1980). Here we present the result
directly,
w? -8y % ®

E?“k=2"k"‘2=r_w'2—1€ g p.9p, _Iw dng(p.pp:)

x (w2 _kzz Cz)p.Lz Hs(knlr()’ knlrL) _ (‘” ‘k:v:)Qs(knlrox knlrL) (13)
yImicHw — kv, — sQ,)? ylw—kv,—sQ,)

where v=Nr,, r,=2:8x 10~12 cm is the classical electron radius
H(z, y) = (J4(x) () ]2
Qu(x, y) =2H (z, y) + yJ " (y)J " (¥ 2(x)(} + 83/x?) + [T’ o(2)]?}

+ 232‘13(:”)‘]'3(3:)‘],3(:’/)[y‘],s(y) - Ja(y) ]/xy
and

-2k, 2c

K= § E4H>rdr
0

wk,r,?
Note that K is a quantity proportional to the Poynting flux of the electro-
magnetic wave in the waveguide. Equation (13) has been written in a form
to lend direct comparison with the dispersion ‘relation of the Gyro-TWA
(Chu et al. 1980). In the limit e=1, eqn. (13) reduces to the dispersion
relation of a TE,, mode Gyro-TWA. This is expected because the SWCA
differs in physical structure from the Gyro-TWA only in the addition of the
dielectric liner.

Further comparison of the two devices is illustrated qualitatively in Fig. 3.
Because of the presence of the dielectric liner, the phase velocity of the guide
mode (eqn. (3)) falls below the speed of light at large k,. This consequently
renders the bunching process in SWCA qualitatively different from that in
a Gyro-TWA. The bunching force is magnetic and the bunching mechanism
is non-relativistic in the SWCA, while the bunching force is electric and the
bunching mechanism is relativistic in a Gyro-TWA. The two mechanisms
are in fact simultaneously present in either device and competing with one
another. For fast waves (w/k,>c), the relativistic bunching mechanism
dominates. For slow waves (w/k,<c), the non-relativistic bunching mech-
anism dominates (Chu and Hirshfield 1978). Thus, the fact that the SWCA
operates in the slow wave regime and the Gyro-TWA operates in the fast
wave regime (Fig. 3) represents a fundamental difference in the physical
mechanism. As a consequence of this difference, the magnetic field is tuned
such that the guide mode lies above the beam mode for the Gyro-TWA and
below the beam mode for the SWCA (Fig. 3).
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GYRO-Twa SWCA
G /,
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Figure 3. A qualitative comparison of dispersion curves between the Gyro-TWA
and the SWCA. The physical structures differ only in the absence (Gyro-
TWA) and presence (SWCA) of the dielectric liner. The guide mode is
plotted from eqn. (3). The beam mode is plotted from eqn. (1). The growth
rate is calculated from eqn. (13). The main feature is that the Gyro-TWA
operates in the fast wave regime with a smaller bandwidth, while the SWCA
operates in the slow wave regime with a wider bandwidth. Note that in the
region where there is gain, the guide mode line is above the beam mode line
for the Gyro-TWA and below the beam mode line for the SWCA.

4. Calculation of the small signal gain and design of a proof-of-principal experiment

The electromagnetic field in the waveguide varies as exp (ik,z), hence in
the small signal regime the output power (P) depends on the input power
(P,) through

P = Pyexp (—2k,L)

where /c.i is the imaginary pa.rt of k, and L is the interaction length. The
total gain (G) is then

G=10log P/Py~ -8k L dB (14)

Note that (14) gives the interaction gain of a single mode. The real gain
of an actual device is given by (14) minus the input coupling loss. The gain
per unit length (g) is given by

g=G/L = —87k,, dB/unit length (15)

where k., is to be evaluated from (13).
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Figure 4. Gainjunit length versus frequency for different beam velocity spread.
The point marked * design data ' has been used in the design example (Table 2).
Parameters used are V,=60keV, I ,=5A, r;/r,=08, ryr,=051, e=16
and x=1. The optimized magnetic fields for each curve (for top to bottom)
are B,=1-89 kG, 1-90 kG, 1-93 kG and 1-95 kG, respectively.

Figure 4 provides a specific example of the gain calculations for a mono-
energetic electron beam with the following distribution in momentum space

— — 2
9(pL, p)= A3y — y,) exp <—(§_:Ap§i) (15)
where 8(x) is the Dirac delta function, 4 is a normalization constant,
y=[1+(p 2+p.2)m¥2}2, 4, is the electron relativistic factor, p., is the
mean axial momentum, and Ap, is approximately the standard deviation of
the electron axial momentum.

In Fig. 4, g is plotted as a function of the wave frequency for several values
of momentum (or velocity) spread. The corresponding bandwidth (Aw/w) is
also indicated, assuming a total small signal gain of 20dB. Parameters
used to generate Fig. 4 are indicated in the figure caption. For each velocity
spread, there is a different optimal magnetic field, also indicated in the figure
caption. One observes from eqn. (1) that a spread in v, tends to spoil the
resonance condition and thereby degrades the operation. Further, the
sensitivity of the resonance condition is proportional to k. as shown in (1).
Since the SWCA operates at a relatively large wave number compared with
the Gyro-TWA (Fig. 3), it is much more sensitive to electron velocity spread.
The sensitivity is clearly exhibited in Fig. 4. For a perfectly cold beam, a
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maximum bandwidth of 55°, is predicted but the bandwidth degrades rapidly
to 17%, with a 3-6°, velocity spread. In comparison, the Gyro-TWA can
tolerate a much higher velocity spread (Lau et al. 1981)., On the other hand,
the Gyro-TWA, operating near the cut-off frequency of the waveguide, is
known to be susceptible to band-edge oscillations caused by an absolute
instability (Lau et al. 1981). The SWCA operates further awayv from the
cut-off frequency and consequently is expected to be less susceptible to such
oscillations.

The point in Fig. 4+ marked ‘ design data ' has been chosen for a proof-
of-principle experiment design. Parameters of this design are shown in
Table 2. Details of experimental considerations (Baird et al. 1978, Keren
et al. 1980) have been described elsewhere.

e bl

Y- ST )

il Mt b i

. Central frequency 6-9 GHz
Bandwidth 179,
Total gain 20dB ,
Gain/unit length 0-36 dBjcm
. Beam voltage 60 keV 4
Beam current 54A !
v, /v, 2 X
Applied magnetic field 1-95 kG 1
ra 1-427 cm 1
To 1-784 cm i
Ty 0-915 em .
T 0-405 cm -
¢ 16 L |
p 1 ]
Table 2. Design parameters of a C-band SWCA. 3
5. Summary
We have presented the concept and small signal theory of the SWCA.
. It employs a physical mechanism not yet exploited for coherent microwave

generation. The prospect of high-power, wideband operation at millimetre
wavelength constititutes the main attraction of this device. However, the
degrading effects of electron velocity spread may present a difficult problem
in its implementation,

A dielectric loaded slow wave structure has been chosen to illustrate the :
principle of operation. Other slow wave structures, such as the periodically
loaded waveguide and the helix, can also be employed and may even offer
significant advantages over the dielectric structure in terms of high power
and, most of all, the avoidance of loss and space charge build-up on the ﬂ

dielectric.

In this paper the basic principle is emphasized. Operation at a higher
order (n) waveguide mode or at higher cyclotron harmonies (s) is included
in the model but not analysed. Recently, Park et al. (1981) have developed
a more refined theory of the SWCA and demonstrated some interesting features
of harmonic operation. Ganguly and Chu (1980) have considered a SWCA
model in slab geometry. Uhm et al. (1981) have studied a variation of SWCA
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in which the ddielectric material is inserted in the centre of the waveguide,
A related deviee similar to the SWCN in structure and to the TWT in physical
mechanism has been reported by Feleh et al. (1951).
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n\2

8 2
JS = 4,72 x 10 <Q> amp/cm

If Q = 104, we find Jg = 4.72 nzamp/cmz: a 10 ampere,
0.04 cm“ area beam would, according to this criterion,
support oscillations at harmonic value up to and including
the seventh. According to Table II, this would correspond
to frequencies as high as 1035 GHz.

This analysis, based upon an admittedly idealized
model, suggests that the potent high cyclotron harmonic
interactions, studied more than a decade ago in non-Max-
wellian plasmas, may be exploited to generate coherent sub-
millimeter wave power. The model presented here does not
take into account the actual fields of a practical confocal
Fabry-Perot resonator, the practical means of coupling
power out, the actual spatial distribution of available
electron beams, or the non-linear saturation levels for
steady-state oscillations. All of these questions, and
more, will have to be addressed before the cyclotron har-
monic maser can be considered understood. Perhaps experi-
mental demonstration can serve to stimulate interest in
this promising mechanism.
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Cyclotron Harmonic Maser 701

For the anti-symmetric modes, it is a simple matter to
show that the dispersion relation is given by a relation
similar to Eq. (10), except that the left-hand side is re-
placed by -tanknl/knﬂ. Since for the parameter range of
interest [2/(L-2)]cotk 2/kn% << 1, Eq. (10) may be approx-

imated as
mnc g
“hm = L-2 [1 + dn(L-l)] (11)

where &, = cotkp/kpt for symmetric modes, and §, =
-tanky2/kpf for anti-symmetric modes. The discrete spec-
trum given by Eq. (11) contains two indices; n is the cy-
clotron harmonic number, and m is the resonator mode
number.

We shall illustrate the nature of solutions to Eq. (10)
by reference to a specific example. Suppose the electron
beam thickness is such that /W = l/rg = 10, where ry is
the electron gyration radius. Then kpf = zpQ&/W = 10z,.
Furthermore, we take (L-2)/%2£ = 20 and £ = 0.1 cm. Table II
shows then, for each harmonic, the spectrum of frequencies
predicted by Eq. (10), together with the associated mag-
metic field value. Only that portion of the spectrum avail-
able for magnetic field values below about 53 kG are given.

Of course, the existence of modes which satisfy the
equation of real parts given by Eq. (10) does not insure
that oscillations will in fact start. A rough criterion is
that the rate of growth for the instability be balanced by
the rate of energy dissipation into finite cavity losses.
This is expressed as

Imw 1 12)

Rew > 56
where Q is the resonator quality factor. If we take
Imw/Rew = 0.3me/ncﬂ, from Eq. (4), then Eq. (ll) can be
used to find a start-oscillation current density Jg. This
can be expressed as

2 2
6({nB 1 1l +a
JS = 1,65 x 10 ) ) vl/z a3 >

where J; is in amperes/cmz, B is in kG, V is the beam
energy in kilovolts, and a = W/U is the momentum ratio.
For B = 50 kG, V = 30 kV, and o« = 2, we have
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13/2\ z_ 7
=+ i " (2 )J . (7)
y p n n

This expression shows our approximation of nearly longitud-
inal polarization to remain valid throughout the range of
parameters of interest.

m'm
b
|0

We must now consider the matching of the fields with-
in the electron beam (0 < 'x| < ?)

Ei(x.t) a (éxE + éyET)COSanCOSwt (8)

L
to the fields outside the beam (i < |x| < L)

E (x,t) = éysosin[i‘c’-(r. - |x])]cosut . (9)

Eq. (8) gives the symmetric modes [E,(-x) = E.(x)]; the
anti-symmetric modes may be developeé in parallel. Eq. (9)
gives the vacuum field which matches the requirement of
vanishing taagential electric field on the conducting bound-
ary at |x| = +. At |[x| = 2, tangential electric field and
its normal derivative must be continuous. Thus

w
ETcosknz Eosin[c(L - )]

and k E.sink 2 = 2E cos[2(L - 2)] ,
n n CcC 0 C

T

so that the dispersion relation which must be satisfied for
the beam in the resonator is

w
cotkni ) L -2 tan[c(L - Qﬂ
k 2 L
n

(10)
w
[fe - ]

For the k_which have already been specified as leading to
the maximum growth rate for the instability, Eq. (10) gives
the corresponding discrete values of w. We shall find ap-
proximate roots of Eq. (10) by assuming Imw << Rew, and
Imk, << Reky. Then Eq. (10) holds for the real parts, to
lowest order; Imk, may then be found from Imw using a
Taylor's expansion of Eq. (10) about its roots for real
values. These complex corrections to the k, are not of
great consequence in what follows.
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Ex eP12
= ——— (3)
E -2 + ¢gP
y y 11
and for y2 = gPy] 1is thus nearly longitudinal. Let us
first analyze the relation y< = ¢Pj3;, which is the disper-

sion relation for purely longitudinal waves propagating
across B ("Bernstein' modes). These modes are unstable
with approximate maximum growth rate for the lowest wave-
number such that J3(z) = 0. We designate this value as
2n. In this case y2 = eP11 gives

w=y oW "o 2y (4)
Yy ° 3/2 ¢ z ¢
Y n

The value of an(z )/zn is slowly varying with n; it has
the approximate value Of 0.3 for n up to 20. The growth
rate given by Eq. (4) can thus be relatively large for par-
ameter values of practical interest, even for quite high
harmonic number n.

Anticipating instability for the wavenumber correspond-
ing to z, at each harmonic, we can examine the full disper-
sion relatiom at this particular wavenumber. Here X;; =
X390 = Y39 = Yy, = ¥25 = 0, and X132 = - X7 = inJp(zq)In(zq) -
Thus Py = - [y/(y - n/y)]zYll, P22 = 0, and Py =
i(y/(y = n/y)1Xy5. The full dispersion relation is then

"' c:zz2 2

2 y n_ 2 2{_ vy 2 _

[y + ¢ "o Yll_l[wz y]+e n> le 0. (5)
J Y Y

For nearly longitudinal slow waves cz,/W >> y, and Eq. (5)
becomes

ng | mp W an(zn) 2.2 1/2
w = Tk i Y3/2 CL. z 1 -¢€n Jn (zn) . (6)

Clearly for nle << 1, Eq. (4) is accurate. In this aprox-
imation Eq. (3) becomes
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n TABLE I
Elements of the dyadics §n and Zn for the distribution
function fo(u,w) = (N/27W)S8(u-U)S(w-W). Here Jrl = Jn(z)
. ' =
i and Jn dJn(z)/dz.
, 2
. 1] i3 LURFP
2 2
a’ 2y, 201 2
. 11 z (Jn) 33,
¢’z
in W2 1
o) =~ 1] 1 —— 1]
12 2 (anJn) in > Jn n
o nl, 2., Uwl 2
13 W (Jn) n ccz Jn
in wz 1
21 - =—(zJ . J"! -in —=3J3J'
. z nn c2 z nn
1, 2.2 w2 2
= ' —_— '
22 z(z J"_‘ ) 2 Jn
c
S PR L HU
g 23 1723 30) 12233 q
- U g2y U¥1 2
31 n W(Jn) noC; Jn
o q
Ues gy UW ;o
32 i w(anJﬂ) i c o Jan
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® w2 n c2 n
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momentum to be cold, i.e. fy(u,w) = (N/27W) & (u-U)8(w-W);
and we assume that linearized interaction of this beam with
electromagnetic radiation is governed by the dispersion re-
lation for plane waves in uniform hot plasma (11). The
model should be viewed as an idealization, probably un-
achievable in the laboratory, since we assume the electron
beam to be a uniform slab with sharp boundaries and we im-
pose no boundaries along z. This model allows one to form-
ulate a tractable theory which still retains the critical
physics describing significant harmonic operation. For
excitations which are independent of z, i.e. for k, = 0,
the dispersion relation for these excitations (Eq. 1-99

of Ref. 11) reduces to det R = 0, where

2.2
55 R=- gl & + S ; -y llee +ee
a X X W yy ‘zz ]
. . (L
+e{ee+§:[_y_ —r—)zy] ,
' "z 2z _hf5n _nj=n
- n=s—o v Y 7 Y

with @ = eBy/m, v = w/Q, z = k,W/Q, and ¢ = wg/YQZ. The
elements of the dyadics ¥, and I, are given in Table I.
For electron beams of practical interest € << 1, so that
the solutions to Eq. (1) may be found harmonic-by-harmonic.
That is, the summation may be suppressed and the harmonic
number n considered as a parameter. We present a solution
here in the beam frame, where U = 0. Then Xl3 = Xo3 =
X3) = X32 = X33 = Y13 = Y3 = Y31 = Y33 = ¥33 = 0.
Eq. (1) then becomes

(2)

2.2 22
ez 2 2 c'z 2 2.2
- + - + - =
[Wz ’ 5] { ¢ Epll][wz a €P22]+ : P12 "0

where Py = [y/(y = a/) Xy = Iy/(y = a/m)?y,.

The fifs square bracket in Eq. (2) set to zero gives

w® = K°c® + mz for waves polarized along z (ordinary waves);
since our interest is with waves polarized in the x-y plane
we shall henceforth disregard this. The curley bracket in
Eq. (2) set to zero gives the dispersion relation for waves
of mixed x-y polarization (extraordinary waves). The
polarization is
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cyclotron maser at the fundamental and second-harmonic,
with a view towards high-power millimeter wave operation.

Operation of cyclotron masers at higher frequency
would seem to demand stronger wave-particle coupling at the
higher harmonics than has heretofore been demonstrated. In
other contexts, however, high harmonic cyclotron resonance
effects have been long observed in laboratory and ionospher-
ic plasmas with non-Maxwellian velocity distributions. Thus
Landauer (7) has reported observations of upwards of 40
harmonics in noise emission from low pressure discharges.
Crawford, et al. (8) have observed about 10 resonances in
transmission across a plasma column. These observations,
together with multiple harmonic observations in ionospheric
top~side soundings have been reviewed by Crawford (9).
These multiple harmonic interactions have been explained in
terms of coupling, at the plasma boundary, between long
wavelength electromagnetic modes, and short wavelength elec-
trostatic modes (10). The model presented in the present
paper is for a suggested means to exploit these multiple
harmonic couplings to produce useful cyclotron maser oscil-
lations at the higher harmonics. In this way it may be
possible to extend the useful frequency regime for cyclotron
masers to above 1000 GHz, using available laboratory mag-
netic fields.

Fig. 1. Geometry for ideal-
ized cyclotron harmonic
maser. Plane mirrors are at
x = *L; the uniform slab
electron beam fills -2 < x <
2; the static magnetic field
is aligned along z; modes of
interest are polarized in
the x-y plane.

Our basic model is shown in Fig. 1. The electron beam
is guided by a uniform static magnetic field B = ézB ; we
take its distribution of parallel (u) and perpendicuiar (w)
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A cyclotron resonance maser configuration is proposed which
may allow operation at the higher cyclotron harmonics. In-
stability growth rates at the higher harmonics are shown to
be significant when coupling between transversely- and lon-
gitudinally-polarized waves occurs at the electron beam
boundary, for radiation propagating across the static mag-
netic field. With experimental parameters well within
practical ranges, oscillation in a single device, tunable
from about 100 to 1000 GHz, is shown to be possible.

Some of the earliest discussions of the cyclotron
resonance maser gain mechanism stressed the existence of
gain at the cyclotron harmonics, as well as at the funda-
mental (1). However, most device development in the past
few years has been limited to fundamental or second-har- N
monic interactions. This, of course, would limit the ap- "
plicability of cyclotron resonance masers to frequencies _!
below about 300 GHz, corresponding to second-harmonic oper- -
ation in a 53.6 kG magnetic field. At the shorter milli- -

meter~ and sub-millimeter wavelengths, quasi-optical struc-

tures must be employed to provide good mode selectivity <Y
without undue mode competition. Both theory (2,3) and de~- -
vice development (4,5) have appeared in which quasi-opti- ) a
cal structures are employed. A recent work (6) reformu- *

lates linear and non-linear analysis for a quasi-optical
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bandwidth values (~20%) were not observed in
the slow-wave region. The conditions for wide
bandwidth require grazing incidence between
beam and guide lines (cf. Fig. 2). For this to be
possible for the dispersion curve shown would
have required a lower magnetic field (1.9 kG)
and a higher slope, corresponding to a =2, V
=60 kKV. But with a=2, our thecretical calcula-
tions indicate that beam velocity -spread values
higher than 5% will severely degrade the gain;
for the gun available the momentum spread, al-
though not measured, was probably higher than
5.1 Thus to observe gain in the presence of
large velocity spread evidently required higher
a values, making the grazing condition inaccessi-
ble in these experiments. For intersecting con-
ditions, such as those shown in Fig. 2(a), higher
values of o result;, gain can then occur even for
large velocity spread. Beyond these qualitative
points, a more detailed comparison between theo-
ry and experiment is probably not justified since
the actual distribution function f(y, «) was not
known.,

In a subsequent experiment, the apparatus was
arranged as a feedback amplifier, with a portion
of the output signal returned to the input. With
suitable phase adjustment, this arrangement al-
lowed effective gain values as high as 53 dB to be
observed at 6.2 GHz, Self-sustained oscillations
did not occur since the gun voltage pulse did not
remain at the gain condition for more than about
50 nsec. Under this high-gain condition, the
amplifier power output was 20 kW, corresponding
to an electronic efficiency of 10%.

Important discussions with B. Arfin, J. M.
Baird, L. R. Barnett, P. Ferguson, A, Ginzburg,
and V. L. Granatstein are gratefully acknowl-
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Oftice of Naval Research.
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st and then inserting whatever series attenua-
tion was required to return the fast-rise-time
nutput crystal-detector voltage to its value with
tae electron beam off. This method of measure-
ment is independent of the detector linearity and
is limited in accuracy only by the calibration ac-
curacy of the attenuators used. Calibrated attenu-

* rs were placed in both the input and output
..dldes to insure both linearity and absence of
gpurious oscillations,

A detailed small-signal theory has been devel-
oped for spatial amplification on axisymmetric
wave guides penetrated by tenuous electron beams
in a uniform magnetic field.® This theory applies
to dielectric-loaded waveguides supporting TE,,,
TM,,, and EH_, modes and to empty waveguides
with finite wall conductivity supporting TE_, and
TM,,, modes. The theory allows arbitrary input
and output boundary conditions to be specified,
so that the so-called input coupling loss arising
from division of the input signal amongst several
copropagating modes in an amplifier is auto-
matically taken into account. Actual beam geom-
etry (i.e., thick annulus, solid beam, radial den-
gity profile, etc.) may be included. Finite axial
velocity spread is also included, modeled accord-
ing to the equilibrium distribution function

Soly, ) = A, 8y = yo)(Au)*[(u = up)** +(aw)*]™,

where y is the total electron energy in units of
mc?, u is the axial velocity variable, 24u is the
full width at half maximum for the distribution,

ve and u, are constants, A, is a normalizing con-
stant, and s is a parameter which governs the
smear in f,: For s=1 the distribution is Lorentz-
ian with its extended wings; as s — = the distribu-
tion approaches a box function, zero outside the
interval u,+ Au. Examples of the predictions of
this theory for the geometry of the apparatus
described here are shown in Fig. 2(b), in which
gain in decibels versus frequency is shown for
two different sets of operating conditions (fami-
lies of curves A and B) and for five values of
parallel velocity spread 24au,/%,. (The five cases
meld together for family A,) The distribution
with s =2 was chosen for these examples as one
which could reasonably approximate that pro-
duced by the electron gun used in the experiments.
From the dispersion curve [Fig. 2(a)} one can
determine that 5.80 GHz is the frequency at which
+ k,=c; the gain curves of family A are thus

for fast waves (w. ¢ <1,215 ¢cm~!) and those of
family B for slow waves (w,c >1.215 cm~!). As
remarked earlier, gain is not predicted at w/c

732

=1,215 em~!, Notable in Fig, 2(b) is the sensi-
tivity of gain to velocity spread in the slow-wave
region. The examples shown are for conditions
of intersection between the dispersion curve and
the beam line & =Q/y +k, u, where Q=¢B, m,
Two such intersections are shown in Fig. 2(a) for
fast- and slow-wave couplings. Examples are

not shown here for cases of grazing incidence be-
tween dispersion and beam lines, a circumstance
known to give rise to slow-wave gain characteris-
tics with wide bandwidth, even for moderate
parallel velocity spread.® This is because no
substantial gain could in fact be observed for the
grazing-incidence condition, a point we shall
attempt to explain below.

The experimental results obtained are shown in
Fig. 3. Six sets of data (A~F) are given, cor-
responding to six combinations of gun voltage and
magnetic field (values listed in the caption to Fig.
3). Both fast-wave ( f<5.8 GHz) and slow-wave
(f>5.8 GHz) interactions were observed, but
gain at 5.8 GHz (where w =k,c) was not observed,
as predicted by theory. Experiments above ~6.6
GHz could not be performed, because of limits
on the magnet power supplies; the tuning width
in the slow-wave region is thus greater than the
700 MHz shown in Fig. 3, i.e., greater than 11%.
The instantaneous -3 dB bandwidth for curve D
is 220 MHz, or 3.7%, at a peak gain of 32 dB. In
the fast-wave region (curve A) a bandwidth of 150
MHz, or 2.7%, was observed at a peak gain of
about 30 dB., These values compare favorably
with gain and bandwidth values reported® for fast-
wave gyro traveling-wave amplifiers, i.e., 24 dB
and 1.4%.

It remains to explain why the anticipated wide-

GAIN {db)

54 5.6 58 4.0 6.2 6.4 6.6
FREQUENCY (GM1)

FIG. 3. Measured electronic gain vs frequency for
six values of cathode voltage |-V (kV)] and axial mag-
netic field |8, (kG)]. A: V=34, 8,=1.90; B: V =39.7,
B8,=1.95; C: V=39.7, B,=2.00; D: V=42.0, 3, =2.06;
E: V=420, B, =2.12;, F: V=454, 8, =2.17. For all
cases ! =5 A. Solid curves connect measured points.
Typical error bar is shown.
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to a cylindrical copper waveguide of radius 3.7
¢m. A mica vacuum window sealed with a « ~ld
O ring provided reflection-free output coupling,
and a Mari€ coupler provided output conversion
from TE,, circular mode to TE,, rectangular
mode. The Pyrex tube was coated on its interior
with a thin carbon film (deposited from a dilute
Alkadag solution) to drain off intercepted electron
charge. The dc resistance of the film along the
entire tube length was about 2 M2, The film was
scraped off in thin axial stripes to minimize
attenuation for the TE,, circular mode (TE,, and
TM modes were heavily attenuated). Microwave
input signals (5~8 GHz) could be injected in the
output guide or by means of a two-port coupler
(shown in Fig. 1), with ports driven 180° out of
phase to allow selective coupling to the TE,,
mode, Dielectric pyramids were used to aid in
coupling into the dielectric layer. Even so, the
cold input coupling loss was about 10 dB, and the
cold tube insertion loss was also about 10 dB.

The measured dispersion characteristic for this
dielectric-loaded waveguide i8 shown by the heavy
curve in Fig, 2(a); it is indistinguishable from the
calculated curve. Mode filters were used to in-
sure that TE,, was the only propagating mode,
both in cold and hot operation. The dispersion
curve was obtained by inserting a thin metal foil
cylinder between the Pyrex and the dielectric
annuli; this foil acted as a movable short circuit
allowing measurement of the guide wavelength
at each frequency.

The annular electron beam was injected along
the dielectric-loaded waveguide from a magnetron
injection gun. This gun, procured from an in-
dustrial manufacturer,’ was built to operate at
60 kv, 5 A, 107? duty cycle under which condi-
tions it was designed to produce a beam of mean
radius 0.95 cm, annular thickness 0.75 cm, «
=t .. v.=2.0, and relative (rms) parallel velocity
spread of 5%. As shall be seen, the gun operat-
ing conditions under which the data shown in this
paper were obtained were different from the
specified values, The gun was driven with ~5-
wSec pulses at 100 sec~' derived from a MIT
model 9 modulator® feeding a 4:1 step-up pulse
transformer. The gun’'s intermediate anode volt-
age was derived from the cathode voltage with a
resistive voltage divider, and operated typically
between 40% and 609 of cathode voltage. The
beam collector was insulated, so that cathode
current and transmitted current could be con-
tinuously monitored; for the data to be presented
here the two were indistinguishable, Cathode cur-

LAY SR R W - L 2 ad

(@ 7 T

1

a=387
By =212 kG
V=42 kv

o -
=
X
e
5 2=3.2 -
F B;=1.95 kG
V=355 kV
4 L ] 1
0 0.10 0.20 0.30 0.40
ky/27 (em)

(b)

GAIN (db)

w/c {em™)

FIG. 2. (a) Measured dispersion curve (heavy line)
and typical beam lines «w=Q/y - #,« for fast- and slow-
wave couplings. (b) Calculated gain characteristics in
the fast-wave (4) and slow-wave (&) regimes, for five
values of parallel velocity spread 234/uy, for the ap-
paratus described. For curves A, «=0.0920c, a=4.2,
[=8.04A, Q/yc=1.10cm™' (i.e., V=458 kV, 8=2,043
kG); for curves B, ©«=0.0920c, @®=5.0, [=8.0 A, Q/yc
=117 em™! (i.e., V=67.6 kV, 8=2.259 kG). |Note:

f (GHz) =4.775(w/c) em™Y.]

rent was measured with an integrating current
transformer, and cathode voltage was measured
with a compensated capacitive voltage divider.

Before and after cathode activation the entire
apparatus was baked at 250 C for 48 h, System
pressure, under continuous turbomolecular pump-
ing, was ~107° Torr with the gun off, and <5
x10°" Torr with the gun under full power, The
electron beam was formed and guided along a
magnetic field provided by five independently
energized solenoid coil systems, Along the 60-
cm interaction region a ~2-kKG field was adjusted
to £2-G uniformity. Three coils around the gun
provided the requisite broad field minimum of
about 400 G at the cathode surface. Four-place
digital measurement of all coil currents was
essential for reproducibility.

Electronic gain was measured for this apparatus
by injecting cw power at each frequency of inter-
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Measurements of Gain for Slow Cyclotron Waves on an Annular Electron Beam

H. Guo, L. Chen, H. Keren,'* and J. L. Hirshfield
Applied Phvsics Section, Yale University, Ne'w Haven, Connecticut .3520

and

S. Y. Park'® and K. R. Chu
Naval Research Laboratory, Washington, D, C, 20375
(Received 1 June 1932

Galn was measured for fast and slow waves propagating in a dielectric-loaded TEs axi-
symme'ric waveguide penetrated by an annular electron beam. This measurement 1s the
first reported ir the slow-wave regime, where axial velocity modulation dominates the
7. chal bunching. 3mall-signal gain at 6.0 GHz of over 30 dB, instantaneous bandwidih

S LT and tungng bandwadth o4 over 11 ¢ are reporieu

. .« feedback-au nlitter contigu: -

aton gain o 53 uB. power output of 20 kW, and 10/ electronic efficiency are also re-

ported.

PACS numbers:

Considerable effort over the past decade has
been directed towards understanding the convec-
tive instability for fast cyclotron waves interact-
ing with electrons on orderly helical orbits in a
uniform magnetic field.! This interaction is
fundamental to the design of novel millimeter-

wave gyrotron amplifiers.? The physical mechan--

ism responsible for electromagnetic gain for
this system originates with relativistic mass
variations with energy which give rise to azi-
muthal phase bunching for orbiting electrons.?

A competing physical mechanism, originating
with axial velocity modulations, tends to oppose
the azimuthal phase bunching, but the former
mechanism dominates the latter so long as the
wave's phase velocity exceeds the light velocity.
These mechanisms have been carefully examined
and contrasted by Chu and Hirshfield.*

For waves with phase velocity below the light
velocity, the two mechanisms interchange their
roles and the mechanism due to axial velocity
modulation dominates the electromagnetic growth,
This paper reports results of the first experiment
deliberately designed to demonstrate this gain
mechanism for slow electromagnetic waves, In
fact, both slow and fast waves could be studied
on the apparatus and their properties compared,
The slow-wave mechanism has the potential for
allowing wide-bandwidth operation,® a property
not shared by the fast-wave interaction. How-
ever, a tapered-structure tapered-field variant
based on the fast-wave mechanism has shown a
bandwidth of 13% at 35 GHz®, gain is limited to
about 20 dB for these fast-wave devices because
of the need to use signal injection at the output
in order to access the amplifying region in the

730
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device.

The apparatus buiit to study the slow-wave
interaction is shown schematically in Fig, 1. The
electromagnetic wave was guided by an axisym-
metric structure consisting of a precision-bore
Pyrex tube (interior diameter 3.10 cm; wall
thickness, 0.20 ¢cm), surrounded by a high-per-
mittivity dielectric annulus (thickness, 0.29 c¢m),
in turn surrounded by a helix waveguide formed
by a closely spaced winding of No. 34 AWG cop-
per wire. The helix waveguide was used to sup-
press lower modes, such as TE,,. At one end
this composite waveguide tapered out gradually

INPUT
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FIG. 1. Schematic outline ot experimental contigura-
tion wot to scale). Magnetron injectton gun at left
generated annular electron beam (wiggly lines which
penetrated dielectric-loaded TEa; circalar wavegude

with 69-cm uniform length. The Pures 'ube v = 4.7 18
survodnded by a dielectric layver (¢ =19, wiuch i turn
1s surrounded hy a line=piten helical winding of No. 54

AWG copper wire.
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SPACE CHARGE EFFECTS IN A GYROTRON
EMPLOYING A SOLID ELECTRON BEAM*

H. Keren and J. L. Hirshfield

Section of Applied Physics, Yale University
P.O. Box 2159, Yale Station, New Haven, Connecticut 06520

Received September 1, 1981

The influence of space charge forces on the performance of
a single cavity gyrotron oscillator which uses a solid
electron beam was investigated. It was found that space
charge effects cause a large efficlency degradation as the
beam current is increased, if the other experimental para-~
meters are unchanged. A small increase in the magnetic
field, however, can restore the efficiency to higher values.

Key words: microwave generators, space charge effects,
gyrotrons.

I. Introduction

The present work deals with the influence of space
charge forces on the operating characteristics of a single
cavity gyrotron oscillator. This problem was studied in
the linear regime by several authors (1-5). Here we pre-
sent results of simulations which cover both the linear and
the non-linear regimes. We calculate the response of a
solid electron beam with transverse gyrational motion, as
it passes through a cavity structure. Gyrotron experiments
along these lines are now under way (6,7). The parameters
used in our calculations are those of a 35 GHz gyrotron
oscillator which uses so0lid electron beams. The electron
beam enters the cavity with substantial transverse gyra-
tional motion for the beam electrons. The charge density
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1098 Keren and Hirshfield

across the solid beam is approximately constant, and thus
gives a situation in which space charge effects can be
studied conveniently. Treating the space charge problem
for a gyrotron using an annular electron beam, which is
commonly used in experiments (8), is more complicated since

in that case the charge density across the beam is not
constant.

I1. Model

T——p—

Figure 1 shows the configuration of the system under
study. It consists of a solid electron beam propagating

o
8o, —
- 1

Go0g0Tg000TT0000TY
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-

A

(D)

Figure 1, Side view (a) and end !
view (b) of the 35 GHz gyrotron
oscillator cavity model. The solid
electron beam is axisymmetric about
the z-axis.
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inside a circular cross section cavity (radius R, and length
L). The electrons, guided by an applied uniform magnetic
field B,é;, move along helical trajectories. The electrons
have a substantial part of their kinetic energy in the form
of transverse gyromotion and the balance in the form of

axial motion. Inside the cavity, the electron beam gives

up a portion of its energy through interaction with the
electromagnetic fields. For fast wave cyclotron maser inter-
actions it is well known (9) that the beam couples much more
strongly with the TE mode than the TM mode. We thus restrict
our consideration to the TE,,, cavity mode, where n and ¢

are the radial and axial eigenmode numbers respectively.

The field components of the TEg,p cavity mode are:

Ee = EoJl(knr)sinkzzcoswt (1)
Br = (kz/m)EoJl(knr)coskzzsinwt (2
and B, = _(kn/m)EoJo(knr)sinkzzsinmt s (3)

where k, = 72/L, kg = xn/Ry, Xp is the nth nonvanishing
root of Jy(x) =0, and w = (kﬁ + k%)l/zc is the cavity
resonant frequency.

The electron motion is governed by

dp/dt = ~ eE - (e/my)p x B (4)
and dr/dt = p/my , (5)

where p = ymv is the momentum, v is the velocity,

Yy = (1 - v%/c2)=~1/2, and I = 8yx + 8,y + 8;z. In case of
an axisymmetric solid electron beam, with negligible
longitudinal gradients in the beam radius and electron
density, we can study fairly simply the influence of space
charge forces on the electron orbits. We shall assume that
the charge density across the beam is uniform and that the
space charge forces are purely radial. Under this approxi-
mation one obtains from Gauss's law, for the static elec-
tric field of the beam:

N'er
Es - - a (6)
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where R is the radius of the beam envelope and N' is the
beam density per unit length which is I/ev,, where I is
the beam current and v, is the axial velocity of the beam
electrons. Thus Eq. (6) becomes

»:' = = .Il'
. E, 4 - )
e Rv
! o 'z
t‘ . It should be pointed out that according to this model
} the electrons move in an average space charge field and not
: in the exact self-consistent field.
b
L

I1I. Particle Dynamics

The results presented in the present paper deal with
solid electron beams interacting with the fields of a TEg1]
cylindrical cavity. The axis of symmetry for the solid
electron beam at the cavity entrance is the z-axis (see
Fig. 1). The cavity axis of symmetry, where the azimuthal
electric field is zero, is parallel to the z-axis but dis- ‘
. placed from it such that the azimuthal electric field has
its maximum values on the z-axis.

A three dimensional trajectory code, in cartesian co-
ordinates, was written to solve Eqs. (4) and (5). Explic-

itly, this code solves the following seven coupled equa-
tions as an initial value problem: |

dp /dt = - eE_ - (e/ym) (psz - szy) (8)

dpy/dt - - eEy - (e/ym)(szx - prz) (9)

dp,/dt = - (e/ym)(p,B ~ pB,) (10) T
' dx/de = p_/ym (11)
: aylac = p /v (12) {
dz/dt = pz/Ym (13

LT e P A e MR VISR SIS W ‘1J
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and YZ =1 + (p2 + p2 + pz)/mc2 . (14)
e X y 2z
In these equations :
B = (k"/w)EoJl(k‘r)cosk"zsin(mt + $)cosd (15)
¢ :
By = (k"/m)EoJl(k*r)cosk"zsin(wt + ¢)sing (16) -
4
Bz = Bo - (kL/m)EoJo(k*r)sink"zsin(wt + ¢) (17N .
2 )
< ) E, = - EJ; (k. r)sinkizcos(ut + ¢)sin® - Ig/e R"v_(18) :
2 -
Ey EoJl(k*r)sink“zcos(mt + ¢)cosf - Ic/eoR v, 19 4

In Eqs. (15) - (19) ¢ is the temporal phase of the
: cavity fields at t = 0 when the electron enters the cavity
® f structure at z = 0; 0 = tan~!(g/f) is the spatial angle at
: the instantaneous electron position r =x2 + y2)1/2;
: X=X, *E, ¥ ™Yo ¥83 (X0, Yo = 0) are the coordinates
! of the solid beam axis, and (£,{) are the coordinates rela-

tive to this axis; k? = (w/c)é - k% and ks = 7/L. We have

a priori chosen x, = 1.84/k, so that the beam axis is
located at the peak value of the cavity electric field.

N The initial values are py, = -Yomv,4sindy, pyo =

: -y mv*ocoseo, Pzo = ~YolVngs Xo = ToC0885, Yo = vgsind,,

! and z, = Oé he}e Vig = vo(l + a2)~172 ang Vo = /

: 2oV (L + uo)'l 2, with Qg * V,o/Vugs Vo = c(l - Yoz)l 2,

: and y. = 1 + eV/me? (V is the beam voltage). The axial

(. velocity of the electron is but weakly influenced by the

) cavity fields. Moreover, the beam diameter remains approx-

imately congtant, since on the average we shall find that

: abaout 30% of the rotational energy is extracted from the

. beam. Therefore both v, and R appearing in Eqs. (18) and
(19) were assumed to be constants.

hd The amount by which an electron gains or loses energy ]
i to the field i{s determined by monitoring the relativistic )
; energy factor y. The efficiency n of the energy conversion ‘ﬂ
v for an electron with an initial value vy, is given by .
i n = (ysg =Y /(vo0 ~1). In order to determine the oscilla- ;
, : b
'® \ 4
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1102 Keren and Hirshfield

tor efficiency, it is necessary to average the results over
the initial phases ¢ and 8,. The effect of axial velocity
spread on the calculated efficiency can be studied by addi-
tional averaging over the initial velocity ratio a,; in the
present work we have not done this.

IV. Electron Trajectories

We demonstrate our calculations for a set of experi-
mental parameters which characterize a 35 GHz gyrotron
oscillator. These parameters are summarized in Table I.

Table I. Design Parameters of the
35 GHz Gyromonotron

Cavity Mode TEOll
Cavity Length 4 cm
Cavity radius 0.525 cm
Cavity Q 300

Beam voltage 10 kv
Beam current 1 Amp
Velocity ratio 2.0
Magnetic field 12.5 kG
Larmor radius 0.024 cm
Beam radius 0.048 cm
Efficiency 30%

(a) Small beam current.

Fig. 2a shows the trajectory

of an electron which propagates from left to right along
the cavity, in the limit of zero current and for By =
12.5 kG. Fig. 2b shows the projection of this trajectory

on the x-y plane in the cavity.

It can be seen that this

electron continues to gyrate close to the beam axis of
symmetry. Initially this electron gains a small amount of
energy from the field; later on, when it becomes matched
in phase with the oscillating field, the electron loses
most of its rotational energy, mainly in the region where
Eg is large. The orbit depicted in Fig. 2 is for a value
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ELEC. TRAJEC. OF SPLID ELECTRZN BEAM
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Figure 2a. The trajectory of an electron which
.propagates from the left to the right along the
cavity, in case where I = O Amp and By, = 12.5
kG. Entrance phase was ¢ = 47/3.  Also shown
is a normalized amplitude profile of the cavity
azimuthal electric field, proportional to

sin(nz/L).

of entrance phase ¢ = 4n/3; for this phase the energy
given up is larger than for other phases.

(b) Space charge case. Fig. 3 shows the projected
trajectory of an electron which grazes the beam boundary
at the cavity entrance, and enters the cavity in the same
phase as the electron shown in Fig. 2, but now for a beam
current I = 1.0 Amp and B, = 12.5 kG. It can be seen that
in addition to the gyrational motion, this electron drifts
around the z-axis due to the E x B drift. Initially this
electron loses a significant part of its rotational energy
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Figure 2b. The projection of the trajectory
of Fig. 2a on the x-y plane along the cavity.

as in the case of no space charge, but later on it regains
most of it due to mismatch in phase with the fields. A q
small increase in the guide magnetic field, by omly 1%,
changes the last situation dramatically (see Fig. 4); the
electron continuously transfers its energy to the cavity
field, similar to the case shown in Fig. 2. It should be
mentioned here that calculated trajectories of other elec-~
trons, including the space charge forces, showed that the
axis of symmetry for the travelling solid electron beam
along the cavity remains the z-axis. Thus we can justify
the earlier assumption that inclusion of space charge
forces still leaves the beam axisymmetric with respect to
the z-axis.
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ELEC. TRAJEC. BF SBLID ELECTRON BERM
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Figure 3. The projected trajectory of an elec-
tron which grazes the beam boundary at the
cavity entrance, and enters the cavity in the
same phase of the electron showp in Fig. 2,

in cases where I = 1 Amp and By = 12.5 kG.
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ELEC. TRAJEC. @F S@LID ELECTRON BERM
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: Figure 4. Same as Fig. 3 except an increase
5 of about 17 in the cavity static magnetic
field, i.e. B, = 12.65 kG.
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V. Discussion

We recall that the kinetic energy of an electron is
given by (y - 1)mc?, so the energy transfer rate from the
electron to the cavity field is determined by monitoring vy.
This transfer rate is twice the wave growth rate. Our
calculations cover both the linear regime and the non-
linear regime close to saturation. We shall define the
energy growth rate as the time derivative of y, where a
negative sign for the derivative indicates transfer of
energy from the electrons to the field, and vice versa.

Figure 5 shows y as a function of time for the case

ELEC. TRAJEC. BF SBLID ELECTRON BEAM

1,024 e et e g - o e =
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Figure 5. vy as a function of time for the case shown
in Figs. 2a and 2b, i.e. I = 0 and Bp = 12.5 kG.

This electron enters the cavity at a time t = 0 and
leaves the cavity at t = 1.4 nsec with 227 of its
initial kinetic energy.
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shown in Figs. 2a and 2b, i.e. I = 0 and By = 12.5 kG.
This electron enters the cavity at a time t = 0 and leaves
the cavity at t = 1.4 nsec with 22% of its initial

kinetic energy. Fig. 6 shows in curve (a) y as a function

ELEC. TRAJEC. OF SOLID ELECTREN BEAM

1.021L Ll e D IS et Sl TR T v T

e Aﬁlfd$¥::?vvvxx\11A
1.020 b, .
[ M

1 2 1 2
S

1.018 ['

P |

1.018 -

L s 8 & 1.4} o & 4% o4t o4 3
.

i L L 1 L 1 i 1

.2 .4 .8 .8 1.0 Lz 14
TIME (NSEC)

X

Figure 6. Trace (a) shows y as a function of time
for the case shown in Fig. 3, i.e. I = 1 Amp and
By = 12.5 kG. Trace (b) is related to Fig. 4,
i.e. I = 1 Amp and Bo = 12.65 kG.

of time for the case shown in Fig. 3, i.e. I = 1 Amp and
B, = 12.5 kG, and curve (b) y versus time for the case
corresponding to Fig. 4, as in I = 1 Amp and B, = 12.65 kG.
It can be seen that at a guide magnetic field of 12.5 kG,
the electron is trapped earlier by the cavity field and, (
as a result, the electron leaves the cavity without losing

any of its kinetic energy. A small increase in the axial
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field, by only 1%, restores the energy loss of the electron
to 76%.

Efficiency calculations for the above described gyro-
tron were done by averaging n over eight electrons
entering the cavity at eight different phases in space and
at three different phases with respect to the oscillating
field (see Fig. 7). These calculations predict 30%

[ I i I 1
s0}- |
g 30 —
& 20} -
10 -
| | { |
12.3 12.4 12.5 12.6 12.7 12.8

B, (kG)

Figure 7. The gyromonotron efficiency as a
function of the cavity static magnetic field
without inclusion of space charge forces
(curve a) and with space charge forces due to
beam current of 1 Amp (curve b).

efficiency for the case of I = 0 and By, = 12.5 kG, and

only 47 efficiency in the case of I = 1 Amp and B, = 12.5 kG.

However, about 17 increase in the magnetic field, i.e.

Bo = 12.56 kG, predicts efficiency of 31% in the case of
I = 1 Amp. Fig. 8 correlates our calculations with the
prediction of th. linear theory. This example shows y in
in a short time interval (0.4 nsec) for an electron which
enters the cavity with phase corresponding to energy
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Figure 8. vy as a function of time in a short
time interval (0.4 nsec) for an electron which
enters the cavity with phase corresponding to
energy transfer to the oscillating wave. Curve
(a) corresponds to the case I = 0 and curve (b)
for T = 1 Amp, both for same B,.

transfer to the oscillating wave. Curve (a) correspon-.

to the case of I = 0 and (b) for I = 1 Amp, both for same
B,. The oscillatory behavior of these traces, clearly seen
on this time scale, shows that the gyrating electron is
strongly coupled to the azimuthal electric field only part
time in each period of oscillation. It can be seen that
the average growth rate in that short time interval, i.e.
the total decrease in vy, is higher for the space charge
case, as predicted also from the analytical expressions of
the linear theory (1-4). At a later time, in the case of
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2 2 2
Q = = [V Tt
— _ = %Piof02fr MGy [rozm (ni2 = 7o) J
AW = /7 o 8 exp -

z 0

x sin{¢ + EL-(nQ -y w)L] fdy f(v) (31)
0 »p, 0 g 8

m T
X cos(k_,_yg -n 2)Jl[qcos(k_,_yg -n zl]

The power transfer from the electron beam to the wave is

AP = A—WIb/e
Finally, we have
Ip .t ,E nJ (8.)
ap = J/p 22002 02 D00 ginfe. + ™ (a2 - v.w)L]
P 8 o p 0
z 0 z
r rgzmz(nﬂ - YOM)Z
X expy - 2 dy f(y) (32)
4p g g
z

x cos(kyg - n géjlkpos(kyg -n %)} .

III. Cyclotron Harmonic Gyroklystron Based On
Electromagnetic Interactions °

The physical configuration in this analysis is identi-
cal to that described at the beginning of Section II except
that now we consider a TEMgy mode in a quasioptical Fabry-
Perot cavity. We have for the electric and magnetic field
components

E = Eoexp(—zz/rg)sinklycoswt (33)
2,2 .
B = E exp(~-z /r_)cosk,ysinet , (34)
z 0 0
where
L (35)
w

Using the same procedure as we used in Section II, we
obtain the following equations.

a PP ST P U P G S W
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where 0 (8.)
n 0 5
—2—p r L 2 22
01 BO 20701 (n? - Yyw) m 1
> exp[— :] (25)

4

4

4= 2 2 : ‘
z z p

V1 ewE

p.c 4p

In Eq. (24) the variable z has been redefined so that z=0
is now at the center of the second cavity.

The energy that the electron transfers to the wave

fields as it moves through the second cavity is Al
P , )
oW =efvEdt =ef L Edz (26) ‘
yy Pz y
where 2 9
Ey = Eozexp(-z /rOZ)SJ.nk_._vcos(wt - ®O) . 27) ‘
Eg2 and rgp are the electric field amplitude and the mini- ’
mum spot size in the second cavity, respectively. ¢ is

the temporal phase shift between the two cavities. Assum-
ing w = nQ/y, we obtain

P.g nJ_(B,)

AWz-e — EOZ —%— cos(k,y -n %) : )
Pz 0 g (28) -
> 2,2 -4
X‘/ dzsin[neo + ¢0 + AnBJexp(-z /roz) . -:
Substituting for Anf6, we obtain :
ep, T E nJ_(8,) J
AW = - /7 20 0202 a0 cos(k,y - n 1) 4
pz BO g 2 _ ?

. o - . '

x 31n[n60 + ¢0 + b (nf Yow) L + q51nn60 (29)

rz mz(nQ -y m)z 4
x cos(kyy - ﬂﬂexp[-( 0z 9 >:, )
g 2 2 ‘
4p #
z "

The average energy loss for a uniform distribution
in 89 and arbitrary distribution f(yg) in Vg becomes

— 1
AW = ZW'/‘dneO[AWE(yg)dyg . (30)

Substituting AW into Eq. (30) we obtain
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If we assume w = nQl/y and note that to lowest order
dy/dt = Q/y, Eq. (18) can be reduced to
nJ (B)

dp. _ emy 2,02y —n . _ _on
Iz b Eoexp( z /ro) 3 sin(wt nw)cos(klyg n 2) (19)

Introducing the slowly varying phase angle n6 = ny - wt,
Eq. (19) is reduced to

nJ (B)
g%t = - %fl Eoexp(-zzlré) g sinnecos(k;yg-n %) . (20)

We can linearize Eq. (20) by setting p, = p,g + P.], and
since p,o >> p,1, we obtain

dpsg nJ_(8,)
= _ emy —z2/p2 y 0" . n I
1z 5 EOlexp( z /rOl) B smnecos(k_,_yg n 2) (21)

where Bg = k,p,0/m?, E01 and rp; are the electric field
amplitude and the minimium spot size in the first cavity
respectively.

From Eq. (14) we obtain nf = nfg + m(nQ - vyw)z/pzg
where nég is the slow phase angle at the center of the
first cavity. Using nd in Eq. (21) and assuming a weak
electric field amplitude in the first cavity, we can calcu-
late Pip> the change in the transverse momentum p, that a
particle undergoes as it moves through the first cavity.

an(Bo) emy, r

- 01 .=
P,1 T EOl 80 P, cos(k_,_yg n 2) 22)
(nQ - Yw)zrglm2
x sin(neo)exp [- 3 ]
4pz

In the drift region we have

P,oP,1w

dne - 10 Ll _ul_

iz -(ns‘l = Yo 55 )p . (23)
mc Z

Substituting for p,; in Eq. (23) and integrating this
equation in a drift region of length L and a uniform magne-
tic field, we obtain the change in the slow phase angle

An6é as

. ™
Ang = pz(nQ -z + L) + q51nn60cos(kLyg -n 2) (24)
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where @ is the electron cyclotron frequency.

Equations (9-11) then reduce to

g L= - S § ooy - SBY | siny (13)
z P X
z z
dy _ emy - E si _e_ +
iz pup, (Excosw Eyslnw) + =y (Bz BO) (14)
dy p B
& _ _Xe Yy z
&z - " op Ex T pB : (1)
pz pz 0

Since E >> E , we have
y X

%gi = - %El Eoexp(- zz/rg)sinkuysinwcosmt . (18)
- z

Substituting Eq. (11) into Eq. (16) we get

dp, . _ emy - ,2/p2 { i -
Y Ou b, Eoexp( z /ro)coswt51nw51n(kJ_yg Bcosy) (17)

where B = k,p,/mQ.

In order to make simplifying approximations in Eq.
(17), we note that the wave particle interaction is strong
only for w = nQ/y where n is an integer. The right hand
side of Eq. (17) will then be the sum of rapidly and slowly
oscillating terms in z (9). To first order in E/(cBg) we
can neglect the rapidly oscillating terms and only retain
the slowly oscillating terms in Eq. (17). Using the
identity

. _p o e - 1\
s:.rrk_,_(yg —Zcosy) s:.nk_,yg[Jo(6)+2 2';1( 1)7J,, (8)cos22y]

it 2
- 2coskuy, 2 (173, (B)cos (2441,
we obtain =0
g;* = - %fl Eoexp(-zz/rs)coswtsinw{sink_,_yg

x [JO(B) + 2 E: (-l)Q’J21(B)c0521w]-2cosk4yg
) l’l

x [ T (D 1 (B)cos(2b+1)y]} . (18)
2=0
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are slow waves, the wavenumber k, and frequency w must
satisfy k,c/w > 1. Also from Maxwell's equations, we can

write

k
B, = faC Ejexp (- zz/rg)coskiysinwt . (3)

The vector equation of motion for an electron is

d > v >
ap _ . ¥
at elE + p x B) (&)

which in Cartesian coordinates reduces to the following
set of equations

dpx XZ
—dT = - eEx - e c (BO + Bz) (5)
dp Ve
EEX = - eEy + e E—-(BO + Bz) (6)
dp

z -
T (7

where Ex, Ey, and B, are given by Eqs. (1-3). From Eq.
(7) we can immediately write

pz = sz = const
dz _ Pz Pag

and dt my m'YO (8)

where P20 is the initial value of the parallel mpmentum
upon entering the first cavity, v = (1 - v2/c2)~% and Yo
is the input vy,

Following the analysis of Ref. 9, we use p,, ¢, Xg»
and yg as dependent variables in the equation of motion,
where these variables are related to py, Py, X and y
respectively by

Py = pjcosy 9

py = p,sinyg (10)
p

yg:y+;ﬂ’£ (11)
%

xg-x-fﬁ (12)
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It has recently been suggested (6) that for high order
cyclotron harmonic operation, coupling to the Bernstein
modes on the electron beam should be possible, since these
modes exhibit strong wave-particle interaction even up to
the 20th cyclotron harmonic for device parameters easily
achievable in the laboratory. The first Bernstein mode
maser experiment (7), in which operation of a quasi-optical
gyromonotron was demonstrated up to the fourth cyclotron
harmonic, generally tends to support these theoretical
predictions. On the other hand, the operation of a gyro-
klystron with two open cavities has recently been analyzed
by Ganguly and Chu (8). Their analysis demonstrates that
the prebunching of the beam not only enhances the inter-
action efficiency but also improves mode stability. Thus
it is of some interest to investigate the performance of
a gyroklystron based on the Bernstein modes, particularly
for high order cyclotron harmonic operation. Such a
device is analyzed in this paper.

The paper is organized as follows. In Section II we
analyze the gyroklystron based on the Bernstein modes,
give the basic equations and derive the linear power out~
put. In Section III we analyze the quasi-optical gyro-
klystron based on electromagnetic interactions alone. In
Section IV comparisons on performance are made between the
two gyroklystrons, followed by a discussion.

IT. Cyclotron Harmonic Gyroklystron Based On
Electron Bernstein Modes

The quasi-optical gyroklystron configuration is depic-
ted in Fig. 1. The gyrating beam electrons rotate in the
x-y plane and stream along the external magnetic field Bj
which is directed along the z axis. In this analysis, we
assume that all electrons have the same transverse momen-
tum p, and parallel momentum p, as they traverse the cavi-
ties from cavity 1 to cavity 2. For nearly longitudinal
standing waves across By (Bernstein modes) the electric
field components are (6)

Ey = Eoexp(— zz/rg)sink+ycosmt (L

. _ 2,2
Ex = eEoexp( 2 /ro)sink*ycoswt (2)

where w is the radiation frequency, Eg is the field ampli-
tude at the origin, rg is the minimum spot size of the

radiation envelope and |e| << 1. Since Bernstein modes

PRI Vo) VDU SO,
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The performance of a quasi-optical cyclotron harmonic

- gyroklystron operating on electron Bernstein modes is
investigated. An expression for the linear power output
has been derived. It is found that, for high order cyclo-
. tron harmonic operation, a gyroklystron involving the

I. Bernstein modes has higher linear efficiency than a corre- |
- sponding gyroklystron based on electromagnetic inter-
b actions alone.

Key words: quasi-optical gyroklystron, electron Bern-
stein waves.

I. Introduction

In the past few years, there has been a great deal
of interest in a high order cyclotron harmonic maser,
because of potential applications in the millimeter and
| @ submillimeter regimes (1l-4). However, most device develop-

. ment has been limited to fundamental or second harmonic
interactions. Recently, McDermott, et al. (5) have demon-
strated high harmonic gyrotron operation using a 200 kV
rf-accelerated axis-encircling electron beam. However

] it would seem that operation of a high order cyclotron

® harmonic maser at lower voltages (< 50 kV) demands stronger *
[ wave-particle coupling than has hitherto been demonstrated.
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dius.

The start oscillation conditions for the two in-
stabilities for the first four harmonics at 62.4
GHz are shown in Fig. 2, for several different
values of the momentum ratio a. The operating
values of the beam current observed experimen-
tally when oscillations were sustained in the cav-
ity are also shown for comparison. For reason-
able experimentally achievable values of the
momentum ratio the low values of starting cur-
rent favor the Bernstein-mode instability as the
gain mechanism in these experiments. The ex-
perimentally observed values of the beam cur-
rent are larger than those predicted for the Bern-
stein-mode coupling because the experimental
values are operating values rather than the mini-
mum values required to start oscillations. In
the present setup the beam current cannot be
easily varied independently of other beam param-
eters. Although higher values of a(~10) lower
the starting conditions quite significantly, it is
extremely unlikely that a momentum ratio of 10
was obtained in these experiments., Orbit calcu-
lations for the experimental conditions gave a
value of a of 1.6. Furthermore, measurements
of the collector current as a function of the kicker

a1
w0’}
- a=2
10%}
10'}
- (
510 }
2
10'}
0’} oo leeeoa 2,
b/——&--— - —a _C:?p_‘
3 's —
o w9 1 2 3 4
. N
FIG. 2. Start oscillation current vs the harmonic
number. Solid curves calculated from Eq. (1). Tri-
angles, calculated {rom Eq. tJ). Squares, experiment-
. tal measurements of the operating current,
@
h .
‘L'v . -
N e e s et

AP NP DL WP T W N W L D VR I L TN B PO

magnetic field showed no abrupt cutoff in collec-
tor current, suggesting that these experiments
were not conducted in a parameter regime close
to the mirroring point of the beam electrons,
where large values of @ might be expected.

With use of the lirear theory of the cyclotron
maser instability, to calculate the small-signal
efficiency, it can be shown that the output power
at the nth harmonic normalized to the output pow-
er at the fundamental is given by

Pon/Poy=2(n/2)2" (0 1) 3 201, (4)

where n is the harmonic number and #« - 2. The
normalized power according to Eq. (4) for the
first four harmonics shows a very rapid decrease
with harmonic number. For instance, for a=2,
(B, =0.243), the power output at the second har-
monic is 2.8% of the fundamental power, at the
third harmonic it is 0.2'%, and at the fourth har-
m~nic it is approximately 0.02% of the power at
the fundamental. On the other hand, the experi-
mentally observed detector output normalized to
the fundamental showed a much slower decrease
than that predicted by the cyclotron-maser in-
stability theory. Experimentally observed signal
at the second harmonic is 40% of the fundamental
signal, at the third harmonic it is 6%, and at the
fourth harmonic it is 14. These comparisons
are consistent with the observations that the pres-
ent experiments have been in a regime where
collective effects and mode conversion at the
beam boundary determine the electromagnetic
gain,

The results reported in this Letter confirm that
strong interaction at the higher cyclotron har-
monics is possible for very modest values of elec-
tron-beam currents. Our present interpretation
is that this is due to the much larger instability
growth rates at the higher harmonics for the elec-
trostatic modes (Bernstein modes) compared to
the case of electromagnetic interaction alone.
This previously unexplored mechanism may have
practical applications in the development of high-
harmonic cyclotron masers operating at modest
magnetic fields.

We are grateful for the excellent technical sup-
port of R. Downing, J. H, Kearney, P. Trosuk,

D. Crowley, and G. Vogel. This research was
sponsored by the U. S, Office of Naval Research.

J. L. Hirshfield, in Infrared and Millimeter Waves,
edited by K. R. Button tAcademic, New York, 1979,
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TABLE 1. Conditions under which coherent output signals were ob-
served and the frequency of the observed output, Intermirror spacing
L =3.125 cm, intermode frequency A/ = 4.8 GHz. y=1.0371, r,=NQ,’
27y, Qu=iclBy/my f..» are the resonant modes of the Fabry-Perot.
B, is in kilogauss and all frequencies are in gigahertz. N\ is the harmoaic

M R an U e g il e
9

monic at 7.7 kG (f,=62.4 GHz), and fourth har-
monic at 5.7 kG (f,=61.6 GHz). The small dif-
ferences between the estimated cyclotron~har-
monic frequencies and frequéncy of the resonant
mode of the Fabry-Perot could be due to the ac-
curacy of the axial magnetic field measurements
(on the order of 2%) or to slight pulling of the
resonator frequency by the electron beam. Be-
tween 67 and 86 GHz observations were made of
up to the third cyclotron harmonic for every reso-
nant mode of the Fabry-Perot cavity, and be-
tween 91 and 105 GHz we have observed up to the
second harmonic. At the high values of the axial
magnetic field, the lower electron-beam currents
could only sustain up to the second harmonic. It
should be noted that the estimated quality factor |

Q@ of the empty Fabry-Perot is slightly greater
than 10* over this frequency range but that @
drops at higher frequencies because of increased
Ohmic and coupling losses. It is estimated that
microwave output power levels of 1-2 W have
been observed at the fundamental frequency at 86
GHz although the system was operated at condi-
tions which were far from optimum.

The linear and nonlinear theory® for the cyclo-
tron maser instability has recently been formu-
lated for a quasioptical system of very similar
geometry to that employed in the present experi-
ment. With use of the linear small-signal effi-
ciency at the mth harmonic it can be shown that
the start oscillation conditions for the beam cur-
are given by

number.
HARMONIC |fs-p | 62.4 | 672 720 768| 816 | 864 | 912| 96 0| 1008|1056
NUMBER Mode
(N) No.m| 13 14 15 16 17 18 19 20 21 22
1
[ ] B, 232 249|267| 286( 304 322| 340| 362| 381 400 i
to 626 | 672 721 772 821 869 918| 97 7| 1029|108 0
2 8, 1-5) 12-4! 133 14-3| 152 161 171|180/ 188| 198
to 621 ( 670 71-8( 77-2{ 821 | 869 92.3( 97°2|101-5{106 9
3 Be 77| 83! 89| 96} 101 107
L 6§24 672 721 | 778/ 818 867
8 5.7
Qo
4
s 616

1" =20 17, BolwL(1 = 1/v,)expl &2 aw/w)?/ 2} { &(kp . /mo@)* "™V 5?8, H(Aw/w) /2 = n](21QN)} 1,
(1)
(Aw/w) min =[n +(n? + 23 ,,9V2] /6282, (2)
B where £, =(r,w/c)/B,0 Q= le|By/myc, ¥=(1+p —
p/my?c?)¥?, p is the electron momentum vector, stein modes and their coupling to Fabry-Perot
L w is the angular frequency, r, is the radiation modes presented in Ref. 6, one can determine :
- spot size, B, is the axial magnetic field, 3 is the starting current from the requirement for ‘
3 the normalized transverse component of the elec- steady state, Imw/Rew=1,2/Q, where fis a ;
tron velocity, J3,, is the normalized parallel com- geometric filling factor. This reduces to
L 1 . .
e ponent of tl'le electron velocity, V 1.s the electron‘ 1, =6.6 xlO‘(nDBo,’Q)’V”/’(I ca)V2a"? A,
g energy, Q is the Fabry-Perot quality factor ~10%,
t: and Aw =w =n8,/y, is the frequency mismatch, (3 !
L We have assumed a value of Aw/w _which gives a where D is the radiation waist radius in centi-
‘ minimum value for the starting current /. meters, B, is in kilogauss, V is in kilovolts, and
} . » By contrast, from the analysis of unstable Bern- fis taken as r, ‘D with r, the electron beam ra-
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perimental observation of coherent higher-cyclo-
tron-harmonic oscillations for a system in which
the aforementioned mode conversion can occur.
The parameters of the experiment quantitatively
support the previously published simplified model
for the mode-coupling interaction.” The results
suggest that a previously unexplored mechanism
may now permit the development of higher-har-
monic cyclotron masers for submillimeter and
far-infrared application requiring modest mag-
netic fields.

The schematic of the experimental configuration
is shown in Fig. 1. The solid laminar-flow elec-
tron beam from a space-charge-limited Pierce
gun was injected along the axis of a cylindrical
stainless steel vacuum vessel located in the bore
of a superconducting solenoid. The gun,’ designed
to operate at a maximum of 20 kV, 5.6 A, 107
duty cycle, with a nominal beam radius of 0.3 cm,
was driven with 5-usec, 10-sec”! pulses from a
MIT model 9 modulator, The cathode and trans-
mitted currents were measured with Pearson inte-
grating transformers,

Immediately downstream of the gun exit, the
beam electrons underwent nonadiabatic passage
through a spatially localized transverse magnetic
field {“kicker”) provided by a pair of tailored
Helmbholtz coils which imparted controlled trans-
verse momentum to the beam electrons. The sub-
sequent passage of the beam through the increas-
ing axial magnetic field resulted in an increased
value of the transverse-to-axial momentum ratio
a, if one assumes the motion to be adiabatic.
Computer caliculations of single-particle trajec-
tories in combined axial and kicker fields showed
that momentum ratios a of the order of 2 could
easily be achieved in this apparatus for kicker
fields of the order of 100 G in axial guide fields
of up to 10 kG.

The millimeter resonator was a confocal Fabry-
Perot resonator with a fixed intermirror spacing
L =3.125 ¢cm, mirror radii of curvature 11 cm,
and intermode frequency spacing Af=¢ 2L =4.8
GHz. The mirrors were made of polished oxygen-
free high-conductivity copper with a coupling hole
and WR-10 waveguide machined into the output
mirror to couple the millimeter-wave output from
the system. In cold tests of the Fabry-Perot
with a sweep oscillator, the complete longitudinal
mode spectrum between 62 and 105 GHz was
measured, with typical power coupling into the
resonator of approximately -3 dB at 91 GHz. The
resonator was designed for operation in the low-
est transverse mode with the polarization of the
electric field vector transverse to the axial guide
magnetic field.

Table I summarizes the conditions under which
coherent millimeter-wave output signals were
observed in the frequency range 62-105 GHz. The
low-frequency limit was determined by the low-
frequency cutoff of the WR-10 waveguide used in
these experiments which was about 59 GHz. The
upper frequency was limited by the maximum
value of the axial magnetic field used in these
experiments which was about 40 kG, Since co-
herent microwave output at several cyclotron
harmonics was expected for a given value of the
axial magnetic field at which the cycliotron fre-
quency coincided with a resonant mode of the
Fabry-Perot, the axial magnetic field was varied
slowly until oscillations were established in the
cavity. The output frequency was then estimated
by use of a series of waveguide cutoff filters.
Thus, for the Fab‘ry—Perot mode at 62.4 GHz,
four cyclotron harmonics were observed corre-
sponding to the fundamental mode at an axial
magnetic field of 23.2 kG (f,=62.6 GHz), second
harmonic at 11.5 kG (f,=62.1 GHz), third har-

MAGNETIC ELECTRON
SHIELD DEWAR BEAM COLLECTO:.
{ ' FABRY PEROT
,POLYAMIDE RESONATOR POLYAMIDE
ELECTRON  (INSULATOR INSULATOR
GUN ‘
@ N - .
/ ° == } OBSERVATION
ORI ..~ | I WINDOW
ANODE !—”M '
PUMPING PORT
HOLE-COUPLED ouTPUT
CATHODE MIRROR ‘ WINDOW
“R-BAND
{-20kv) WAVEGUIDE
KICKER SUPERCONDUCTING
POLEPIECE SOLENOID SYSTEM
FIG. 1. Schematic diagram of the experimental arrangement.
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Bernstein-Mode Quasioptical Maser Experiment
N. A, Ebrahim, Z. Liang, and J. L. Hirshfield
Applied Physics Section, Yale University, New Haven, Connecticut 06520
(Received 15 July 1982)

Experimental observations of coherent, millimeter-wavelength, higher—cyclotron-har-
monic oscillations are reported for a system of an electron beam in a magnetic field
traversing a Fabry-Perot resonator. The parameters of the experiment tend to support
the interpretation that the strong multiple-harmonic interaction results from mode con-
version of short-wavelength electrostatic waves (Bernstein modes) to long-wavelength
electromagnetic resonator modes at the beam boundary.

PACS numbers: 42.52.+x, 41.70.+t, 52.35.Fp, 85.10.Hy

Recently there has been a great deal of interest
in electromagnetic gain mechanisms at millime-
ter wavelengths, because of potential applications
to plasma heating in tokamaks, plasma diagnos-
tics, radar, and far-infrared astronomy. One
such mechanism is the electron cyclotron maser
instability, in which the relativistic mass de-
pendence of the electron cyclotron {requency re-
sults in azimuthal bunching of electrons gyrating
in an external magnetic field.' A companion
mechanism arises from the axial electron veloc-
ity modulation in the wave propagation direction.?
Although electromagnetic gain has been predicted
at the fundamental as well as the cyclotron har-
monics, practical devices have been restricted
to operations at the fundamental or second har-

monic.?

On the other hand, it is well known that short-
wavelength electrostatic waves (Bernstein modes)
can propagate perpendicular to a magnetic field
wit* loss in a colligionless plasma.® It is
thought that the convession of these modes to
long-wavelength electromagnetic modes at a
plasma boundary is responsible for multiple-
harmonic interactions which have been observed
in low-pressure discharges and ionospheric top-
side soundings.® A recent analysis of this prob-
lem suggests that when mode conversion occurs
at an electron beam boundary, the instability
growth rates at the higher harmonics can be
much larger than for electromagnetic interac-
tions alone.! This Letter reports the first ex-
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Space Charge Effects in 2 Gyrotron 1

I = 1 Amp, the electron is trapped earlier by the cavity
field and the overall result is energy gain by the electron,
while in the case of I = 0 the electron still loses some

of its energy to the wave.

VI. Conclusions

We have studied the influence of space charge forces
on the performance of a single cavity gyrotron oscillator
which uses a solid electron beam. It was found that space
charge effects cause a large efficiency degradation when
the beam current is increased while holding other experi-
mental parameters unchanged. A small increase in the mag-
netic field, however, causes the efficiency to be restored
to its higher value. Our calculations for the linear
regime are consistent with analytical results of others
from linear theory which predict higher wave growth rate
for the finite space charge case.

Although our results were derived for a gyrotron using
solid electron beams, we believe that it is also applicable
for the annular beam configuration which is widely used in
gyrotrons. Our quantitative results were not derived from
a self consistent treatment of the space charge problem.
Rather, they serve as a useful guide for the experiment and
also for full scale simulations.

The authors would like to acknowledge helpful dis-

cussions with Dr. K. R. Chu, who offered important inspira-
tion and critical advice in the solutions presented here.
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oo - S cosyE (36)
z P X

z

Z ) nq . eBz . emysinyE (37)
z P, cp, PsP,

dy p B

& . _& p __¥Y_2Z (38)

dz sz X P, Bo

And as before Eq. (36) reduces to

d 2,2
agi = - %flEoexp(—z /rO)J;(B)cos(mt—nw)cos(k*yg-n %), (39)
where

=‘_‘Lm_gi . (40)

Finally, the average energy loss from the electron to the
wave fields for a uniform distribution in 8g and arbitrary
distribution f(yg) in Yg» we obtain

2 2 2
_ep, 1,,E r..m (nQ - y.w)
T e /o b T02702 02 0

J[;(Bo)exP [— 2

z 4Pz

x sin[¢O + %~ (na - Yom)L]fdygf(yg)cos(k_Lyg - %l)(él)
z

1
< Jjlacos(ky = n D],
where kp
By = (42)

Q = 2 2

\ o222
/r ewEOljn(BO)p*orOIL (nQ - yw) m 1
exp | - y o (43)
PZC

2
4p, i

and J;l(so)= dJn(B)/dBl

g = BO
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Setting n=1 and noting that Ji(So) = 1/2, we find

2 2 2
O - o
— _ /i ®P.o%02f02 To1™ (2 - vgw)
AW =2 — —————— exp| - 2
2 pz 4
pZ
m
x gin[$, +— (Q - L] fdy f(y ) (44)
51n[®0 b ( Yow) ].f Yg (Yg

x 31nklngl(q51nkLyg)

Hence for n=1, Eq. (44) is identical to Eq. (III-7a) of
Ref. 9, as expected. Finally, we can find the power trans-
fer from the electron beam to the wave fields, as

I E 2 2( Qo= m)z
~ bP0Tgo%02 Too™ (e = ¥
AP = vm 2252 53 Jexp | - _
p n "0 4 2
A Pz
« sinlo, + B (no - yom)L]fdygf(y ) (45)
P, g

% cos(kyg -n %) Jl[qcos(k_lyg -n %)] . .

IV. Comparison Between Gyroklystrons With and
Without Coupling to Bernstein Modes

To make the comparison easy, we assume that
£ = ¢ -y ’
(vg) = S0y = v,0)

bl
cos(kygo -n 2) =1 ,

|
—
0

sin[¢o + s— (n - yow)L] =
z

The first assumption corresponds to specification of a thin
sheet beam of thickness one gyration diameter, the second
places this beam at the standing wave maximum. The third
corresponds to the best feedback phase between two cavities.

From Eqs. (32) and (45) we can write the expressions
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for the power transfer from the electron beam to the wave
fields for the two types of interaction as follows:

an(BO)
APB = AE02 T Jl(qB) , (46)

aJ _(B,)

n 0
q, = DE,.L ———— . (47)

B 0l BO
= ’

AP, AEOZJn(BO)Jl(qT) s (48)
qr = DEOlLJr'l(BO) s (49)

where

2 2 2
Vr Ibp_,_or02 [ L (nQ - Yow) ]
=—-——-—-exp -

A
p 2
z 4pz
— 222
v ewp;4Tgq n - yw)m o1
D=——F—F5—"exp| - ,
22 2
pc 4p

z z

and subscript B refers to Bernstein modes and T refers to
the TEMOO electromagnetic mode.

For small signal operation
=1
@ =5a . (50)

Substituting Eqs. (50) and (47) into Eq. (46), we obtain

nJ_(8,) ]2
1 n"0
APB 2 ADEOlEOZL [——Eg———] . (51)

Similarly for the electromagnetic interaction we obtain.

1 . 2
APT 5 ADEOIEOZL[JR(BO)] . (52)
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We should point out that in Eq. (51) Epj and Eyy are polar-
ized along the y-axis,which is also the direction of wave
propagation (longitudinal waves) whereas, in Eq. (52) Epp
and Ego are polarized along the x-axis with wave propaga-
tion along the y-axis (transverse waves). Thus Eq. (51)
and Eq. (52) can be rewritten as

nJ (B.)]2
-1 _n 0"
APp =3 ADEOlyEOZyL[ 8 ] ’ (53)
ap =L apE B L 0r(s 12 (54)
T 2 01x '02x n 0 ‘
For the Bernstein modes we find that (6)
Eoix _ Fozx _ wve Y | PIn(Bp)
cag =g = 2|5 , (55)
Oly 02y Qvg* 0

where w, is the plasma frequency. Substituting Eq. (55)
into (Sg), we have .

nJ_(8.) |2
__2__9_] (56)

- 1
APg = — ADEleEosz[ B
2e 0

[nJ,(Bp)/Bg]l has the approximate value of 0.3 for n up to
20. For an electron beam of modest power 1/e? is of the
order of 105 for fundamental operation. As n increases up
to 10, 1/e? decreases gradually to about one tenth of the
fundamental value. On the other hand [J'n(BO)] decreases
very rapidly as n increases.

Figure 2 shows the linear high harmonic power outputs
normalized to the output at the fundamental for several
cyclotron harmonics for gyroklystrons with (APBn/AP l) and
without (APTn/Aprl) coupling to Bernstein modes. The calcu-
lations in Fig. 2 have been performed for radiation fre-
quency f = 65 GHz, beam voltage Vi = 19 kV, beam current
density J = 5A/cm? and a transverse to parallel momentum
ratio a = 2. These calculations show that for a gyrokly-
stron based on electromagnetic interaction only, the nor-
malized power output decreases very rapidly at the higher
harmonics. On the other hand, for a gyroklystron based
on the Bermstein modes, the normalized power output shows
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a very weak dependence on the harmonic number up to very
high harmonic numbers.

In Fig. 3 we show the linear power output for the
Bernstein modes over the linear power output for electro-
magnetic interaction only (APBn/APTn), as a function of
the harmonic number, for the same parameter regime as in
Fig. 2. We observe a significant increase in linear
power output at the higher harmonics for a gyroklystron
based on the Bernstein modes compared to one based on
electromagnetic interaction alone.

From our analysis, we can draw three major conclusions.
Firstly, since 1/e2 is of the order of 105 ~ 106, a gyro-
klystron based on the electron Bernstein modes has a
higher linear efficiency than a corresponding gyroklystron
involving only the electromagnetic interactions. Secondly,
since both [nJy(Bg) /By] and 1/e? decrease slowly as the
harmonic number n increases, the linear efficiency of the
gyroklystron involving the Bernstein modes will decrease
slowly for high order harmonic operations. Finally, since
[JA(BO)] decreases very rapidly as the harmonic number n
increases, the linear efficiency of a gyroklystron based
only on electromagnetic interactions will decrease very
rapidly for high order harmonic operations.

In the present analysis we have developed a simple
theoretical model which takes into account the basic
physics of a quasi-optical gyro-klystron based on the elec-
tron Bernstein modes. The model is 1idealized, in that
several real effects have not been treated in this analy-
sis. For instance, the model does not include the veloc-
ity spread in the electron beam. This velocity spread
could either result from a spread in energy (i.e. spread
in y) or a spread in pitch angle (i.e. spread in a), and
for most practical devices, the spread in o is expected
to be more important. However in the geometry of the
present model, the resonance condition is w = nQ/y,

(L.e. k; = 0) and the relevant wavenumber k = k,. Thus
the velocity spread is not expected to be serious. A
second limitation of this analysis is that the theory
presentéd here is linear and although it can predict near
threshold behavior well, it does not account for the non-
linear saturation levels for steady-state oscillations.
Finally, the present model assumes the electron beam to
have sharp boundaries. A more realistic beam profile
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would be one with a more gentle boundary, and this could
give larger values of £ and hence lower linear efficien-
cies than those predicted above.

Nevertheless the present analysis has been motivated
to some extent, by the need to stimulate interest in
electromagnetic gain on the Bernstein modes and perhaps a
formulation of a more elaborate and realistic theory. It
may even stimulate experimental demonstration of some of
the predictions of the present theory.
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Fig. 2. Normalized linear
power outputs vs cyclotron
harmonic numbers for gyro-
klystrons with and without
coupling to Bernstein modes.
Squares correspond to the
values with Bernstein modes
(aPg,/4Pg,) triangles to
those with electromagnetic
interactions alone (APT,/
APT1). Frequency f = 65 GHz,
beam voltage Vi, = 19 kV,
beam current density J =
SA/cm?, and momentum ratio

a = 2.

Fig. 3. Values of Bernstein
modes linear power output
over linear power output

for electromagnetic inter-
actions alone (APg,/APTq)

vs cyclotron harmonic num-
bers. All parameters have
the same values as those

in Fig. 2.
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Electron Prebunching and High Harmonic Interaction in a

Bernstein Mode Quasi-Optical Gyrotron

N. A. Ebrahim, Z. Liang, and J. L. Hirshfield

Applied Physics Section, Yale University, New Haven, Conn. 06520

Abstract

Experimental evidence shows that prebunching the beam elec-
trons in a two-cavity quasi-optical gyrotron gives stronger wave-
particle interaction at high cyclotron harmonic Bernstein modes
than was observed previously without prebunching in a one-cavity
experiment. Coherent oscillations up to the ninth harmonic,
increased output power, and significant decrease in start-oscilla-
tion currents have all been observed. Output at 0.96 mm wavelength

at a magnetic field of 14.4 kG was obtained using 20 keV electroms.

PACS Numbers: 41.70.+t, 52.35.Fp, 85.10.Hy
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Interest grows in investigations of electromagnetic gain mechanisms in
the millimeter and submillimeter wave regimes, not only because of the fun-
damental importance of such mechanisms as new scientific phenomena, but also
as a result of applications in several areas of physics. Some of these appli-
cations are in the electron-cyclotron resonance heating (ECRH) of fusion
research plasmas, in high resolution imaging radars or simply as sources of
rf radiation in fundamental research in astronomy and condensed matter
physics. In the conventional electron cyclotron maser mechanisml the
azimuthally phase-bunched electrons in an axial magnetic field radiate

coherently at the frequency w = NQO/Y, where 0
2,1/2
) /

0= ]elBO/mO, y =

>
» P is the electron momentum vector, BO is the axial

(1 + 3 . E/méc
magnetic field, w is the angular frequency and N is an integer denoting the
harmonic number. In order to generate submillimeter waves (f > 300 GHz).at
the fundamental cyclotron frequency (N = 1) an external magnetic field in
excess of 107 kG is required. Although such fields are provided by special-
ized superconducting coils, present practical cw uses are limited to magnetic
fields less than about 60 kG. On the other hand, with pulsed systems,milli-
meter wave output at 0.8 mm has been reported recently using a pulsed
magnetic field of 150 kG.2 Unfortunately, certain applications such as

ECRH demand long pulse or cw operation which would rule out these
latter systems. Thus, if large magnetic fields are to be avoided, inter-
action at the high cyclotron harmonics becomes especially important.3
However, for the electron cyclotron maser mechanism, the higher the cyclo-
tron harmonic, the higher the threshold beam power; hence excessively large
beam currents would be required. As a result, threshold conditions can

become difficult to achieve for higher cyclotron harmonics.

Since the higher harmonic interaction is essentially a finite Larmor




.

radius effect, one solution to this problem is to employ a beam of large
orbit electrons which interact with a high order cavity resonator mode.
Although this approach lowers the value of the axial magnetic field by a
factor equal to the harmonic number, the threshold condition is highly sen-
sitive to beam transverse electron energy; high harmonic emission has been
observed based on this idea for electron energies greater than 250 keV.4 An
alternative approach demonstrated in a recent experiment with 20 keV electrons
showed that high order harmonic interaction is possible by coupling to the
Bernstein modes on the electron beam, since these modes are unstable and
exhibit strong wave-particle interaction up to very high harmonics even for
modest beam currents.5 The first Bernstein mode maser experiment demon-
strated harmonic interaction up to the fourth cyclotron harmonic with beam
currents less than two amperes.

In this Letter, we report the first experimental observations which
show that even stronger wave-particle interaction at the higher harmonics
is possible with the electron Bernstein modes by electron prebunching in a high
quality factor quasi-optical Fabry-Perot resonator which preceeds the inter-
action and power extraction cavity. Not only do we observe interaction at
higher harmonics (up to the ninth harmonic) but we also observe a signif-
icant increase in output power and significant lowering of the threshold
condition, as compared with previous experiments without prebunching.5
Furthermore, submillimeter wave output at 0.96 mm has been observed with a
magnetic field of only 14.4 kG at the eighth harmonic, with beam energies
of less than 20 keV. The present experiments suggest that no feedback
circuit is necessary in order to optimize the relative phase angle between
the two cavities for efficient interaction. The second cavity automati-

cally assumes the optimum phase, such that maximum energy transfer from
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the beam to the wave field occurs. To this extent, and but for the fact
that the coupling in the present experiments is on the electron Bernstein
modes, the present experiment may suggest a quasi-optical analogue to the

complex cavity gvrotron experiment recently reported.6

The schematic of the experimental configuration is shown in Fig. 1; it
is similar to that used in our earlier work.5 The gyrating electrons are
produced by a combination of a solid laminar-flow electron beam from a space-
charge-limited Pierce gun and a spatially localized transverse magnetic field
("kicker") from a pair of Helmholtz coils. This system yields a beam of
electrons gyrating in an axial magnetic field with a transverse-to-axial
momentum ratio a of the order of 2.

The interaction region consists of two confocal Fabry-Perot resonators
with fixed intermirror spacings L = 3.4 cm, mirror radii of curvature 11 cm
and intermode frequency spacing Af = ¢/2L = 4.4 GHz. In cold tests of the
Fabry-Perot resonators with a sweep oscillator, a complete longitudinal
mode spectrum between 60 and 72 GHz was carefully measured. The resonator
spacings were then adjusted so that the mode frequency mismatch in the two
cavities Aw/w < l/Q2, where Q2 is the lower of the two quality factors of
the cavities. The first cavity was designed to have a very high quality
factor Ql Vo2 ox 104. This was achieved by not having a coupling hole in
this cavity, since it is the output coupling hole which determines the
overall Q of this cavity. On the other hand the second cavity (cavity #2)
has a low quality factor Q2 " 800 in order to obtain high output coupling.

Table I summarizes several representative conditions under which
coherent millimeter and submillimeter wave output signals were observed in
the frequency range 60-320 GHz. The lower frequency limit in this experi-

ment was set by the low-frequency cutoff of the WR-10 waveguide section used
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which was about 59 GHz. The upper frequency was limited by the highest
frequency cutoff filter available to us, which was about 300 CHz. Thus
observations with axial magnetic field values above about 25 kG were
unnecessary. Observations of coherent microwave output were made by tuning
the axial magnetic field until the cyclotron harmonic frequency coincided
with a resonant mode of the Fabry-Perot, at which point oscillations
appeared in the second cavity. The output frequency was then estimated by
use of a series of waveguide cutoff filters. At 66.3 GHz, for instance,
we have observed a total of eight cyclotron harmonics at the following
magnetic fields; 24.9 kG (N = 1), 12.5 kG (N = 2), 8.3 kG (N = 3),

6.2 kG (N =4), 5.0 kG (N =5), 4.2 kG (N =6), 3.6 kG (N = 7), 3.1 kG

(N =8). The small difference between the estimated cyclotron harmonic
frequencies and the frequency of the resonant Fabry-Perot mode is probably
due to the accuracy of the axial magnetic field measurement (on the order
of 27%) and to slight pushing of the resonator frequency by the electron
beam. At 158.4 and 198.0 GHz we have observed up to the ninth harmonic,
whilst at the Fabry-Perot mode number of 71, we have observed up to the
eighth harmonic at a frequency of 312.4 GHz, in the submillimeter region.
We have also observed what appear to be the tenth and eleventh harmonics
in excess of 140 GHz, although frequency estimates show these modes to be
associated with higher order transverse modes. It is estimated that maxi-
mum microwave output power levels of approximately 30 watts in the funda-
mental have been observed at 62 GHz, an increase of nearly 15 dB from the
levels observed in the single cavity experiment. No attempt has been made
to optimize the system in terms of beam quality or magnetic field contour-
ing. Between the fourth and ninth harmonic, we did not observe a substan-

tial change in the output signal to within a factor of 2, so that the out-
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put power at the higher harmonics is estimated to be in the range 0.1-1%
of the power at the fundamental.

In a previous study, it was shown that the start oscillation condition
for the beam current at the Nth harmonic for a single cavity could be obtained

257 Similarlv, the

from a linear theory o¢f the cyclotron maser instability.
start oscillation conditions for the unstable electron Bernstein modes could
also be obtained.8 In Fig. 2, the start oscillation conditions for the two
instabilities for a single cavity (O » 800) for the first eight harmonics
at 66.3 GHz are shown for several different values of the momentum ratio a.
The curves were obtained using Eqs. 1-3 of Ref. 5. The start oscillation
current experimentally observed for stable oscillations are also shown for
comparison. From Fig. 2, it is clear that for o = 2, the predicted sturt
oscillation currents from the electron cyclotron maser instability theory
are orders of magnitude higher than the experimentally observed currents.
Although higher a (v 10) would tend to bring closer agreement between
experiment and that theory, the near equality of measured cathode and col-
lector currents would rule out a momentum ratio of 10 for a sizable frac-
tion of the beam electrons. A further important observation from Fig. 2
is that experimentally observed values of the beam current are now substan-
tially lower than those predicted for the Bernstein mode coupling in a
single cavity. This is in contrast to the results of the single cavity
experiment, where the operating beam currents for various harmonics, although
consistent with those predicted bv a Bernstein mode theory, were generally
higher than the predictions.

Thus the observations of Table I and Fig. 2 strongly suggest the exist-
ence of a mechanism which substantially lowers the threshold currents,
increases the output power and results in the observations of harmonic inter-

action up to the ninth harmonic. Theoretical analysis of quasi-optical
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have been performed and the results have surpassed those of the conventional TWA
devices.3l

The gyrotron pioneers Schneider and Hirshfield used the quantum theory to
rredict the conditions required for stimulated emission to exceed absorption.!'4:5]
However, this approach is mainly of academic interest since, for the frequencies ,
at which the cyclotron maser interaction is most interesting, one electron may fall
through up to 10® quantum states to give up its energy to the electromagnetic field.

Therefore, the classical discription is sufficient. |

Hirshfield et al. first employed plasma kinetic theory to analyze the gyrotron
interaction. This method treats the electron beam in the magnetic field as an
electron plasma. The Maxwell-Vlasov equations form the basis for this approach. q
The electron distribution function (in space and momentum) has to be specified.
The perturbed distribution function is found by integrating the linearized Vlasov
equation along the unperturbed trajectories of the gyrating electrons. This has {
become a standard approach, though it is a linear theory in genersi Like any
other small signal theory, there are a few deficiencies in this approach. At first,
nonlinear phenomena, such as saturation, can not be dealt with. As a consequence,
the efficiency calculation is beyond its scope. The advantage for employing this W
linear theory is that it is easier to solve the problem analytically. Furthermore, it
usually gives a good understanding of the basic physical effects. It seems interesting
to mention that P. Sprangle et al.l'! and later K. R. Chu et al.l'*] derived a formula {
to estimate the efficiency for TE.» modes in the circular waveguide within the
scope of the linear theory by deriving the relation between the wave frequency
and the gyration frequency at saturation due to phase trapping, but the energy {
depletion mechanism is neglected in that estimate. That formula is given in the
beam frame and can be easily transformed to laboratory frame by performing a
Lorentzian transformation. The estimate from that formula is found to be in a good
agreement with the numerical simulation results!'®l except at lower beam energy,
where the depletion of the electron energy is said to be the dominant saturation

mechanism of the device.
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the relativistic change in the electron mass plays a crucial role in the cyclotron

resonance maser mechanism.

Experimentally, perhaps R. H. Pantelll®! is the first who reported an experiment
involving the electron cyclotron maser mechanism in 1959. But he attributed
the observed beam-wave instability to a longitudinal bunching caused by v x B
forces. He claimed that the radiation was caused by the coupling of the TE,,
waveguide mode with the backward traveling cyclotron wave on the magnetized
electron beam. Thus some questions were still left open as to whether the cyclotron
maser mechanism had in fact been observed in the experiment, since even if the axial
synchronism condition had been satisfied, the results could still have been explained

without involving the cyclotron maser interaction.

J. L. Hirshfield and J. M. Wachtel performed the first experiment that definitely
demonstrated the existence of the electron cyclotron maser mechanism in 1964 1451,
They reported an experiment with 5-kV electrons traveling along an axial magnetic
field. The electron beam was injected into a high @ cylindrical cavity with most of

the kinetic energy transverse to the applied magnetic field.

The early experiments were with low power and low efficiency, but since 1974
the advances in gyrotron research have come at a rapid pace. The advent of the
intense pulsed relativistic electron beam renewed the interest in the cyclotron maser

mechanism as a source of high power microwave radiation. . 800 MW at 4 cm!¢l, 350

MW at 2 cml”], 8 MW at 8 mm!® have been generated with gyrotrons. Gyrotrons
built by a group of Soviet scientists at Gorkii State University have produced 1.25

yog

MW of 45 GHz radiation with a pulse duration of 1 to 5 msec, 1.1 MW of 100 GHz

radiation with pulse duration of 100 microsec. The efficiency of these gyrotron

" J. g

oscillators operating at the fundamental harmonic of the gyration frequency is about
34%°l. They accomplished another impressive gyrotron experiment of 120 kW at
375 GHz with pulse duration of 0.1 msec.!'®! Jory and his group did an experiment
which generated 200 kW CW at 28 GHz.!''!). The experiments to heat plasmas in

.‘___M,JAJ’.

controlled fusion devices have been done effectively.!'?l Some new configurations

for gyrotrons have been examined in the experiments. The gyro-TWA experiments
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Fig.1 a{ The basic configuration of a gyroTWA.
b) A magnetron-type gun.
)




Chapter 1 Introduction

Because of the ability to produce or to amplify millimeter and submillime-

ter waves at unprecedented power level with high efficiency, gyrotron devices have

been intensively investigated both theoretically and experimentally in the past two
decades. Their promising applications include plasma heating, new millimeter and

submillimeter wave radar systems, spectroscopy, and advanced accelerators.

This new class of microwave devices is based on the electromagnetic radiation "‘
mechanism known as the electron cyclotron maser instability, which originates from ﬁ
the electron azimuthal bunching due to the dependence of the electron relativistic
gyration frequency on energy. 4

The basic configuration of a gyrotron device includes an electron beam travel-

ing along a waveguide (or one or more cavities) which is immersed in the applied

magnetic field. Since the beam-field interaction takes place in the plane transverse
to the direction of wave propagation, the electrons must have a substantial part of
their kinetic energy in the form of gyration motion as they move on helical orbits
along magnetic field lines.

Fig.1a illustrates the basic configuration of a gyrotron traveling wave amplifier
(gyro-TWA). The magnetron injection electron gun, which is commonly used in
gyrotrons, is depicted in Fig.1b.

The electron cyclotron maser mechanism was recognized first by an astrophysi-
cist R. Q. Twissl!l in 1958. He derived the general formula for the absorption
coefficient o, of the monochromatic radiation of angular frequency « in an ionized

medium with electrons undergoing radiative free-free transitions. Shortly after

Twiss's work, A. V. Gaponovl?l published a paper to describe the classical theory
of the cyclotron maser. He investigated the phase relation among those electrons

gyrating in a uniform static magnetic field. It was Gaponov who realized first that

«
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ABSTRACT

THEORY OF GYROTRON TRAVELING WAVE AMPLIFIERS
AT HARMONICS OF THE GYRATION FREQUENCY

Qiangfa Li
Yale University, 1984

In developing gyrotrons at millimeter and submillimeter wavelengths, a means of opcra-
tion at lower applied magnetic fields is desirable because of the size and weight of convetional
magnets, and the expense and complexity of cryogenic magnets. This requirement can be
met by operating the devices at higher harmonics of the electron gyration frequency. In
the present work, a unified theory is developed for the gyrotron traveling wave amplifiers
(gyro-TWA) at harmonics of the gyration frequency, both in the nonlinear regime and in
the linear regime. This theory can be applied to a wide class of waveguide cross sections,
o arbitrary harmonic number, any waveguide mode, and generalized electron beam model.
The fields in the beam-field interaction region in the waveguide are expressed in the form

of an infinite series of multipoles expanded around the guiding center of the electrons. A

T v YT

set of equations governing the nonlinear behavior of the gyro-TWA is derived. A general
dispersion equation is derived both from that set of nonlinear equations by an iteration
method and from plasma kinetic theory. The latter is employed to analyze gyro-TWA

devices in a systematic and generalized manner. The Laplace transformation is introduced

to allow inclusion of the initial values at the input end of the waveguide. From the linear

L

theory it is found that for a gyrotron working at s—th gyration barmonic the electrons can
interact only with the 2s—th order multipole field component. It is also found that a higher
order waveguide mode is not always better than a lower order mode for the gyro-TWA

- e e~y —————Y

i ° working at higher harmonics. A novel out-ridged waveguide is proposed and analyzed for
4 the use in gyrotrons. The prominent features of this new waveguide include simplicity of
: manufacture, freedom from local modes, good separation of lower order modes, high power
i handling ability, and high gain per unit length at higher gyration harmonics. A compari-
. sion of the gyro-TWAs with several different waveguide structures, such as the out-ridged,

L magnetron-type, rectangular and circular waveguides, is made through numerical examples

FEDCTUD 7 W RN

of the gain-frequency curves computed from the linear kinetic theory. E
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CAPTIONS

Schematic diagram of the experimental arrangement.

Start Oscillation current versus the harmonic number.

® Calculated from Eq. (1), Ref. 5 (excluding Bernstein modes);
B Calculated from Eq. (3), Ref. 5 (including Bernstein modes);

O Experimental measurements of the start oscillation current.

Conditions under which coherent output signals were observed and
the frequency of the observed output. Inter-mirror spacing
L = 3.4 cm, intermode frequency Af = 4.4 GHz. vy = 1.0371,

£, = NQO/2ny, 2 = ]eIBO/mO. fp_p are the resonant modes of the

Fabry-Perot. BO is in kG and all frequencies are in GHz.

N is the harmonic number. Note: although harmonics 1-2 at
158.4 GHz, 1-3 at 198.0 GHz and 1-6 at 312.4 GHz are not shown,

they were clearly obtained in this experiment.

- -
EE N

. . . « - .
A R . . Lt e . - .
PRI SR Y, ) T G i) AL et o el o PO Y S0V




A AR SRR I e ¥ T Y Ty ———_———"0 WY T T T T WY W T e g

T
ST . EAENAA
. ‘ o

REFERENCES

R

\j

1. R. Q. Twiss, Australian J. Phys. 11, 564 (1958).

2. V. A. Flyagin, A. G. Luchinin, and G. S. Nusinovich, Int. J. Infrared
and Millimeter Waves 3, 765 (1982).

3. K. R. Chu, Phys. Fluids 21, 2354 (1978).

4. D. B. McDermott, N. C, Luhmann, Jr., A. Kupiszewski, and H.R. Jory,

APS 27, 1061 (1982). ‘

. Tv f’”" ﬁ' . ' B )
) '. 1 i l, ' ‘

ox]

[

=

H

5. N. A. Ebrahim, Z. Liang, and J. L. Hirshfield, Phys. Rev. Lett. 323

1556 (1982).

6. Y. Carmel, K. R. Chu, M. Read, A. K. Ganguly, D. Dialetis, R. Seeley, {
J. S. Levine, and V. L. Granatstein, Phys. Rev. Lett. 50, 112 (1983).

7. J. L. Vomvoridis, P. Sprangle, and W. M. Manheimer, In Infrared and

Millimeter Waves Vol. 7: Coherent Sources and Applications Part II i

(K. J. Button, ed.), pp. 487-535 (1983) Academic Press, New York.

8. J. L. Hirshfield, Int. J. Infrared and Millimeter Waves 2, 695 (1981).
The starting current formula in this reference is erroneous. The correct {
experssion is given in Ref. 5, Eq. (3).

9. Z. Liang, N. A. Ebrahim, and J. L. Hirshfield, Int. J. Infrared and Milli-
meter Waves, May (1983).

10. A. Bondeson, W. M. Manheimer, and E. Ott, Phys. Fluids, 26, 285 (1983).

Nl

s

S

L . . ) . ) . aT e .

D HENRTIE. U NP AP S P SR Y LWL V. W SECARI . WP SR SV . AL Y. W I DAL AP, W U S WP VL AE. WA SO U R SRR RPN WRIT Y. o SO SR W S




T r————— T a——— MR - e S S A Al A i ol i B g CHl e 2

gyro-klystrons based on either the electron Bernstein modes9 or electro-
magnetic interactionslo both demonstrate that prebunching of the beam
significantlyv enhances the interaction efficiency, but threshold currents
with electromagnetic interactions alone are orders-of-magnitude higher
than the values observed experimentally. The results reported in this
Letter are therefore consistent with the conclusion that stronger wave-
particle interaction at the higher harmonics is possible on the electron
Bernstein modes by electrcn prebunching.

Finally, since a gyrotron based on the electron Bernstein modes is
characterized oy coherent output in a large number of spectral lines span-
ning a broad spectral range, it may have very important applications in
areas where tunability is essential.
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Another method in analyzing the interaction process is the Lagrangian formula-
tion where one directly solves the equation of motion of the electrons in the applied
and RF fields. For small field amplitudes, we can integrate the linearized equa-
tions for the properties of interest, then average over all the electrons is taken to
obtain the properties of the electron-field interaction. This approach can be either
in the linear frame or in the nonlinear fraine. If rigorous relativistic kinetics is
required, such as in the high power or the higher gyration harmonic gyrotron cases,
the caculation has to be accomplished numerically. For the numerical solution, the
computing model can include many factors and gives accurate results, but some

phbysical insight may be lost. This approach will be dealt with in Chapter 2.

A new approach has been introduced to the Gyro-T WA nonlinear analysis. This
approach is based on the concept of the soliton. The soliton is a solitary wave in
a nonlinear, dispersive medium. This powerful theory can treat nonlinear, time

dependent problems analytically.l'?}

Ic developing gyrotrons at millimeter and submillimeter wavelength for plasma
heating, radar system and some other purposes, there is an increasing necessity to
reduce the weight and size of the devices, and consequently, to reduce the magnetic
field substantially. For the amplification or generation of submillimeter waves, an
impractically high applied magnetic field would be required if the device is operated
at the fundamental cyclotron harmonic. For a gyrotron operating at the same
frequency range but at the s—th harmonic of the gyration frequency the applied
magnetic field is reduced approximately by a factor of s. This is of great importance
especially for uses in compact radar systems and for some other applications, where

the device size and weight are critical to the system.

However, most gyrotron oscillators and amplifers reported are at the funda-
mental cyclotron frequency except a few at second harmonics. Only recently, some
papers theoretically investigated the properties of the magnetron-type waveguide
structure to serve gyro-devices as the RF structure.l'*°] Papers on the utilization

of the whispering gallery modes in the circular waveguides and some modes of the

rectangular waveguides for the gyro-devices working at higher cyclotron harmonics
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were also published.

Experimently, Destler et al. used a magnetron-type waveguide with 12 vanes
and a 2 MV, 2 kA electron beam, and generated an output power of 250 MW most
concentrated in the 12-th cyclotron harmonic.I’® The preliminary experiments
on the microwave generation at higher gyration harmonics with low beam energy
have been proposed and performed at Yalel?!??] and at University of Maryland!?®!
recently.

However, a theory on the beam-field interaction at higher harmonics is still
to be developed in a generalized and systematic manner. Some basic features at
the higher cyclotron harmonics still need to be explored. Since the waveguide
transverse fields can be repressented by solutions of Laplace’s equation, the fields
in the waveguide, and consequently the forces on the electrons, can be expressed by
an infinite series of multipole components expanded around the axis of the electron
helical trajectories. This makes the analysis, both linear and nonlinear, capable of
handling several different shapes of waveguide cross section for the RF structures
in the gyro-TWA devices.

The waveguide structure is very important for the operation of gyrotrons at
higher harmonics. A good waveguide structure may creat a suitable field pattern
in the cross section of the waveguide for the beam-field interaction. Therfore, some
novel waveguide structures still have to be studied.

It has been realized in general that the RF field transverse inhomogeneity in the
waveguide is responsible for the interaction between the electron beam and the field
in gyrotron devices at the harmonics of the electron gyration frequency.l*?l In the
present work, the analytical results both from the nonlinear theory and linear kinetic
theory prove that the electron beam interaction with the field at s-th harmonics is
associated only with the multipole field of order 2s in the waveguide, il the field is
expanded around the guiding center of the electrons. In order to achieve a good
coupling between the waveguide field and the beam, the operation of gyrotrons
at higher gyration harmonics in general requires the waveguide to work at higher

waveguide modes because the higher order multipole field components are bigger in

e
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the higher modes. Also, a bigger beam energy is requied for gyrotrons working at
the hiher harmonics. However, in this work we find that it does not always mean
that a higher waveguide mode is better for a gyrotron device to work at higher
harmonics than the lower waveguide mode, even though the higher waveguide mode
has a higher transverse inhomogeneity in the transverse RF field. The distribution
of the modes of the waveguide structure is very important for the stable and efficient

operation of the devices at higher harmonics of the gyration frequency.

In this work an out-ridged waveguide structure is proposed as the new candi-
date for gyro-TWA (and gyrotron oscillator as well) working at higher cyclotron
bharmonics. This novel waveguide structure and the gyro-TWA with it are ana-
Iyzed in Chapter 4. One of the features of this out-ridged waveguide is its bigger
power bandling ability compared to the waveguide used in the ‘peniotron’, since
the introduction of two paires of the intruding ridges for the latter reduces the
power handeling ability of the waveguide. Furthermore, these two paires of the
ridges bring about locally trapped modes. The other prominent features of the
out-ridged waveguide include the simplicity in manufacture, the free of the local
modes, the good separation of the lower modes, and high gain per unit length at

higher gyration harmonics.

In Chapter 2, by imploying the weakly irregular waveguide theory and expand-
ing the waveguide field into an infinite series of the multipoles around the gyration
centers of the electrons, a set of the equations to describe the nonlinear evolution of
the electron motion in a self-consistent manner is derived. A dispersion equation
is derived by iterating the solution of that set of equations. Chapter 3 is devoted
to kinetic theory. The introduction of the Laplace transformation alllows one to
treat the initial value problem. The small signal gain-frequency relation is obtained
through the inverse Laplace transformation. The eigenvalues and the associated
eigenfunctions of the proposed out-ridged waveguide and the beam-field analysis of
the gyro-TWA with the out-ridged waveguide are found in Chapter 4 by applying
the analytical results from Chapter 3. In Chapter 5, the small signal gain-frequency

curves for gyro-TWAs with several other waveguide structrures, such as rectangu-
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lar, magnetron-type and circular waveguides are computed. The advantages of the ‘i
out-ridged waveguide over other waveguide structures in gyro-TWAs are demon-
strated in the computed examples. Chapter 6 is devoted to a comparision of the
gyro-TWAs with different waveguide structures through some examples computed
from the small signal theory and some conclusions are made from the present work e
for the gyro-TWAs at higher harmonics of the gyration frequency.
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Chapter 2 Local Field Expansion
. and Nonlinear Theory {
This chapter is devoted to the formulation of the basic equations for the gy-
® rotron analysis and to the gyrotron nonlinear theory. With the equations of motion j
of an electron in the elec'&omagnetic field and the local field expansion technique, the
gyrotron equations are rederived in section 2.2. In section 2.3, aiso starting from ]
i the equations of motion of an electron in the electromagnetic field, a set of nonlin-
[
ear equations, which can be applied to the gyrotrons with different waveguides, is
derived in a self-consistent manner. The general gyrotron dispersion equation is
derived from that set of nonlinear equations with iteration method.

2.1 Basic Equations

®

Maxwell's equations with sources are the basis of all the approaches of gyrotron

8
¢ analysis. In Gaussian units these equations are written as !
:1
v-B=0 (2.1)
vxB=1%E 47, (2.2)
- ¢ ot ¢
V-E=41p (2.3)
1B
VxE= —EE' (24)
L J

In this analysis, all the RF fields are assumed to be time harmonic. = From
Eqgs.(2.1), (2.2) and (2.4), an inhomogeneous Helmholtz equation for the magnetic
field can be derived as

2
g+ ="
V'B+5B=~—VxJ (2.5)

For TE waveguide modes, i. e. , for E, = 0, where : is along the axial direction of

the waveguide, with the assumption | £inB, |« 1, we may write the axial component
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of the magnetic field in the following form:

B, = F(z)B(r )" (2.6)

where r, is the transverse coordinates, and F(z) is in general a complex function of -. L
In the gyrotron analysis, | £inB, |« 1 is a good approximation since the beam-wave
interaction is strong only in a frequency range that is close to the cutoff frequency
of the interacting wave mode, where the waveguide wavelength is long compared to
the scale length of the beam-wave interaction. +

If the operator V is written in the form V =V, +e. 2, then V? = Vi + 25, and

from Eq.(2.5), an equation for B, may be written into the form

L _— 0o, (0% W, o 47 -
(V? +kc)F(Z)Bl+(-a—zs+§—k;)F(Z)Bz=—?(VXJ)~QI (2.7)

A parameter k. has been introduced in the above and it will be determined later.
Since B, is written in the form of Eq.(2.6) and with the assumption of the neglect of
space charge effects, for TE modes, the eigenvalues and the associated eigenfunctions

of the waveguide can be obtained by solving the equation
(VZ+k2)BY=0 (2.8)
subject to the perfect conducting boundary condition on the wall of the waveguide
o n-ViBl=0 \2.9)

where n is a unit vector normal to the waveguide wall surface.

’ Thus, for the function F(z) we have the following equation

LN

(17 +F - K)F(:) = -:—;,/A(v x 3)-e,(B7)*dA (2.10)

where

- 0¢ po0\s
N_/AB,(B,) dA (2.11)

(B?)* is the complex conjugate of B?, and the integration is over the cross section

of the waveguide.
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! ° The transverse field components for TE waveguide modes can be derived from
! the Maxwell equations in the form
: - 1 aF(Z) 0 swt n
» Bi= 3, VB¢ (2.12)
i e E:= —F(z)e, x VBl (2.13)
Thus, we can write the components of the field in Cartesian coordinates from
g Eqgs.(2.12) and (2.13) as the following
P
o E,=-j kzl'(z) B"e""' (2.14)
{ E,=j— e F(z) Boe”"' (2.15)
s 1 3F(2) 8 0 juwt
J " B; = k’-’ 32 6zB ¢ (2.16)
18F(2) @ o jut
¢ By = ¥ 3 ayB ¢ (2.17)
In this way, the problem for determining the fields in the waveguide with moving
° electrons reduces to Eq.(2.8) which is the same equation as that for the empty
waveguide; and to Eq.(2.10) which involves the electron beam and the fields in the
waveguide.
L For Eq.(2.10), we can have several different ways to obtain its right hand side.
© In this chapter and Chapter 3, three different approaches to obtain the right hand
side of Eq.(2.10) will be analyzed.
It should be pointed out that if the right hand side of Eq.(2.10) is set to zero
. but k. is assumed a function of z, then under the single mode assumption, Eq.(2.10)

can be the basic equation for slow-varying waveguides used in gyrotrons!2¢-3},

2.2 Local Field Expansion

For TE waveguide modes, in the cross section of the waveguide, in a region small

TR | VO (PSP UP LA LI | L,

compared to the wavelength in the waveguide, we can expand the axial component

of the magnetic field in the polar coordinates i

B! = EA.r"e"’"
= EA.(R')' (2.18)

WP ST I S SIS SV YO Sy, W




where R =z + jy=re?®. Then Eq.(2.10) can be written as

2 2
(fj + (‘:2_ - K)F(z) = %]AMJ-(EJ‘ (2.19)

In the polar coordinate system, in the transverse cross section of the waveguide, the

synchronous field has a quasi-static structure
E. = -jALV(R*)" (2.20)
The equation of motion of an electron in the electromagnetic field is
:—tP +0.P xe;, = —cE, (2.21)

where 0. = £ | B is the total magnetic field and P is the momentum of the electron.

mey!?

In Cartisian coodinates, the three components of this equation are

%Pg + ncpv = ‘eE: (2.22)
%P, -Q.P; = —¢E, (2.23)
%Pz =0 (2.24)

And the electron energy variation in time is governed by
d
mc’aq = —CEQ‘V (2.25)

Eq.(2.22) + jEq.(2.23) gives

%P - JQCP = -C(Eg +jEy)

e 48
=F P57 +i5,)B:(z) (2.26)

where P = P, + jP,. Let the electron beam have infinitesimal cross-section, then the

wave excitation in the right hand side of Eq.(2.19) becomes

/ dA). E¢ = (AV- Egc-ju‘)m
A

P
m
= = A0 Ay (—j—o ) (2.27)

= A= V(R

mil,
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® where ) is the charge density per unit length, P, = P.e, + Pye,, and (p")ut = (p*)ur,
means taking the average of p* over one period, and ¢, is the time when the

electron enters the interaction region.

Setting P = pe™", E; = E, + JE,, then Eq.(2.10) may be written as

@
- (7 + % - KIF() = ot e (228)
dz? 2 c =X\p wt -
where
; nAQCA'
o X= N(Jmﬂ)" (229)
while
eEy = eF(z)E?e’v
e = {F(2)(p* ) (2.30)
and
An
= ‘(Te;';—)'m (2.31)
® If the electron gyration frequency is approximated as
_ eB %
"~ Yome v
(1+ ;1';:)7
= o
¢ Q1+ -'!—!r)
> Qo1 + “’ 5, (232)
then the left hand side of Eq.(2.26) becomes
- dP dp
N - QP = 'd—"'J(—“nc)P
_dp (rg = 7*)
> +J{ - Qeofl + ToiZ ]}p (2.33)
Furthermore, we introduce four dimensionless quantities
®
=P
"= Tool
_ 2 w-nlly
A= ch; -
2 w-nQy
d ﬂgo nQeo
;= 2 kv,
5 0o
¢= B_O,oz
2 v
|

K-L\.‘-'L Somen, PRSP STy W O Y S, PP PN < PP P S L W AP
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n Where 4, = %2, 810 = %, and A is the initial cyclotron resonance mismatch. 1
Setting

: s = ~jE2m*Ppy T F(z) (2.38)
" v then we may manipulate Eq.(2.26) into the form
<
dg . , -

d—: +j0A+|qP-1)= L") (2.39)
- : In the same way, Eq.(2.19) can be rewritten in the following form:
| *
dj
_ d—g +72 0 = g ot (2.40)
where

o _ delov, 2 42 .2(n=1)
e I= Nagag ™ 47

and f, describes the longitudinal variation of the field in the waveguide. Eq.(2.39)

and (2.40) form a set of gyrotron equations widely used in the Soviet literature, i.

- e., the Yulpatov gyrotron equations.[*2*3! From the approximations made in the ¢
derivation of the equations, it is easy to see that the famous Yulpatov gyrotron
| equations are the first order approximation in the electron gyration frequency and
in the field expansion and are good only for weak relativistic electron beam cases.

?] We will require some more exact formalism to analyze the gyrotron interaction at !

harmonics of the gyratior frequency.
2.3 Nonlinear Theory

Starting from the relativistic equation of motion of electrons in the electro-

magnetic field, in this section we derive a set of equations governing the nonlinear

. ‘ behavior of the gyro-TWA devices. Essentially, this set of equations is a set of the [
particle orbit equations coupled, via the source term, to the inhomogeneous wave

equation in a self-consistent manner.

With the two-plate transmission line and sheet beam model, Zhurakhovskiy
and Rapoport,!**:33) later Spranglel'®] derived a set of the equations to analyze the
nonlinear evolution in the gyrotron devices. Fliflit et al.[*®! used the method in [34, 35)

to carry out the formulation of the numerical nonlinear analysis with a more realistic
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circular waveguide and annular beam model. The approaches used by Destler et
al.’7) Grewal et al.3¢!, Lindsay!*?l and Laul*®! with their own special and simplified
waveguide-beam models can also be classified into this ballistic method commonly
used in the analysis of the conventional microwave devices. Actually, not only can
the equations derived with this approach describe the nonlinear behavior, such as
the saturation mechanism and the efficiency of the device, but it can also be used
to get some linearized results. For the nonlinear analysis, usually we integrate that
set of the derived equations numerically. Even though the nonlinear theory can
offer more information on the beam-field interaction behavior, which is especially
necessary for the high power gyrotron devices, the linear theory offers the basic
understanding of the physics.

The assumptions made in this nonlinear analysis include the single wave model,
the neglect of the space charge effect, and the initially monoenergetic electron beam.
In the tenuous beam case, the single vacuum waveguide mode is a very good de-
scription which has been confirmed by the experiments!®!!

The velocity spread of the electron beam can also be included in the nonlinear
analysis, as in [15, 34].

For this nonlinear analysis, the beam and waveguide model is still that depicted
in Fig.2. In this model, the beam can be either annular or concentric. Moreover,
the shape of the waveguide cross-section is restricted neither to circular nor to
rectangular, it can be applicable to several different shapés. In this analysis, no
assumption about beam energy is made, therefore, this analysis is valid even for
the fully relativistic electron beam. Of course, it can be simplified to treat field-
beam interaction in the weak relativistic cases. In the following analysis, the
field components in the waveguide are expanded into a series of Bessel function.
The form of the coefficient in the expansion is given by the proposed out-ridged
waveguide in general (see Chapter 4). When the analytical results are applied
to some other waveguides, the only change that needs to make is the expansion

coefficients of the fields.

Since the momentum P = ymv, for the electrons in the electromagnetic field, the




“.

Fig.2 The beam-waveguide model.
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relativistic equations of motion

aP 1
E = -C(E"" EV x B) (241)
dy

mc’z = -ev-E (2.42)

can be written into the following equations for three components of the electron

velocity in Cartesian coordinate system

% = -v,%ln'y - "%[E, + %(v,B, - v, B;)] (2.43) :
ddl; = -v,% lny - m—e‘y[E, + %(v,B, -v.B,)] - v, (2.44) ’
% = -v,:—t Iny - miq[E” + %(v,B, - v,B,)] -v;0, (2.45)
In the above, v = [1 = (v + v + v?)]"% and 0. = '% is the electron relativistic ‘

gyration frequency.

For TE modes, the fields in the waveguide can be expressed as

B = (Bo + Bz)eg + B:eg + Bye’ (2-46)

E=FE;e;: +Eye, (2.47)

b AR L

where Bge, is the applied magnetic field.
From the equation for v in Eq.(2.42), it is seen that the energy change of the !
electrons for the TE waveguide modes is entirely from the interaction of the trans-
verse velocity of the electron with the waveguide transverse electric field.
In general, we can express the waveguide field into an infinite series in the .
following equation. The coefficints B,, and A.m in the series are dependeut upon

the shape of the waveguide cross section.
[~
B2=) B.
a=0

[s 2] .
sin nx
= -z__.:oB. cos(kzlaz) cos[-E:(y = h)]

TN I R

=3 ¥ Anm I (ker)e™ (2.48) ;
> X

a=0m=-00

where the coefficient A, for the out-ridged waveguide is given by (see Chapter 4)

Aam = %B,,.[e"’"““ Ao 4 (—1)memikehcosAal cos(m),) (2.49)

...............
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For other waveguides, A, is given through the waveguide analysis.
Setting v = v, + jv,, then we have v; = (v +v°), v, = ZL(v - v*), where +* is the

complex conjugate of v. Furtheremore, if the solution of v is assumed in the form
v = vt e

Where 7 = t — to, t, is the time when the particle enters the interaction space,

v = (vv*)}, and the phase angle

Qer = :an*‘(ﬁ)

-1 J(v"" )
v+ vt

With reference to Fig.3 and from Eqs.(2.7), (2.8), on use of Graf's Bessel function

= ~tan

addition theorem, we have

v-E=v,E; + v E,
w 8 .0
= 'zckzr(‘)[’“(a "é}

w 1.'¢

[} a a 0 _jyuwt
)"" (6_ +Ja—‘)]3:€"

m_,(k R)J'(k ﬂ)eJ[(u—t’T Ir4wio] (250)

nm
A=0 m==-00 #g=-00

v,B, — v, By = -12-(v +v*)B, + '%(v -v*)B;

= l[v(a - jB,) - v'(B, +JB,)]
J OF
21:2 a3z

v OF = ' weQe)r 4w
=,."L__}: E Y AnmImoc(keR) ) (ker)elem aamsutel (289

2k 32 *R=0 m=—00 #==0C

Making use of Eqs.(2.50), (2.51), then Eqs.(2 42) and (2.43) can be written into

232 EM P Y Y Awndacs(keR)ithen)elemrarotl  (257)

[ — i) - vl gz + )| R

dt 2mcSk, A=0m=-00 #=~00
d ey Wi, 3
= T om k( = i Fl)
a0 oc x .
Z S Y Aamdmoalke R (kor) el rbutel (2.53)

as=0m=-00 ¢=—-3C

And Eq.(2.44) and (2.45) can be combined into one equation as

dv d e . v .
d—: = —vg 1+ —(E +JE,) + lc—'(a, +3B,)]
N 0
DL N (2.54)
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Fig.3 The projection of an electron trajectory on the cross section of the waveguide.
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In Cartisan coordinates, by equating the real and the imaginary part on both

sides of Eq.(2.54) correspondingly, we obtain the following two equations:

. d € v .
9= - Iny+ m [(E, - ?'B,)cos(ﬂcr) +(E, + -‘:—:-B,)sm(ﬂcr)]

el (jw-ul 9 9 1 goeiet
=-u lny m——" (Jw vy az)F(Z) cos(ﬂcf)ay snn(ﬂr)E;]B,e’ (2.55)
eBz
Qe =00 = - —B,)sm(ﬂcr) +(Ey + — B,)cos(ﬂcr)]
- - —_ - - 0 _juwt
= m'yckz ——(jw - v, az)I"'(z)[sm(ﬂ,,.r)ay cos(ﬂcr)az]B,e’
+ —‘e""‘ (2.56)
mey

With reference to Fig.3 and on use of the Graf’s addition theorem again, we have
9 _. 9 1o ut
[cos(ﬂcf)é— - sln(ﬂcr)a——]B,e’

}: Z Z AnmImes(keR) I (kery)el(wmoBe)rute] (2.57)

R=0M=—00 s==00C

[ssin(fl‘:r)i - cos(ﬂcr)ﬁ-]Bgei”‘

---E 3 Y Aumdnoa(keR),(ker =0t (2.58)

R=0m==00 #I==00

Then Eq.(2.56) can be written as

b = wof _ 9
v= 2mc'7k ( ju - 6z)F(z)
[ ]
-Z Z Y" AamIm—s(keR)J}(kery )W 2RI +to] (2.59)
] R=0 m==00 sI==-00

If a slow time scale variable is introduced as
= —[(U - 8n¢)f + Uto]

then Eq.(2.56) takes the following form:

A. = m(]w v;—)F(Z)[sm(ﬂ,r) - Cm(ncf) ]B, CB;:’ + g -
= T 2mey 3 BmeiEv, WY = ”358; = keve) F(2)
z E z: A-m Jm-a(keR)J,(kcrg)ei'A + %’ - nco (260)

A=OM==00 #=-00
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o Where A and v, denote the time derivatives of A and v, respectively. However, there ‘j

is still a problem. That is the function F(z) involved in the equations obtained
above. In order to get F(z), we have to observe Eq.(2.10). On the right hand side

l..‘A. “a

.G of Eq.(2.10), the current density in the waveguide can be written as :’i
J=-)v |

{

= =A(vse; + v e, + v e;) (2.61) J

° .

For the integral of the right hand side of Eq.(2.10), on use of Eq.(2.12) and Eq.(2.13),

it can be cast as

/ dAV X J'e;B: =/ dAIV' (J X B:ex) + v x (B:e;)"]
A A

2
=k / dAAv-E (2.62)
W Ja
It is seen from Eq.(2.62) that the axial component of the current does not contribute
°® to the above integration and this integral is just proportional to the electron beam
energy change rate averaged over the waveguide cross section. If the electron beam
is idealized as having a single guiding center R, we can approximate the linear charge
density as
¢ v b
Ve
In most cases, the beam energy is not too high, and &, is very small, therefore, we
can approximate v, = v, therefore, A = -,—’".- is approximated as the linear charge
. o . . . .
density in the waveguide. Furtheremore, for a single gyration harmonic .,
A= (? =)+ Ao
° where Ao = ¥to,7 =t —t,. Then we may continue writing Eq.(2.62) as
2
1=k / dAMW-E
ke o= .
=-F(a)3 S Y Aumdmos(keR) / dANU ! (kery)er*A
. "R=0 m==00 A #
= F(z) ko i i Aam /2' d(“"o)ﬂ"m—t(kcn)-,'(k ry)el A
2 =0 m= 0 vl ole ~
f=0mE-=-00 “
= F(s) Lo i i A /2' dAo = Jm—s(keR)J} (keri)*
2 P am A v m-o\he o\ Re
. /=0 m==00
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From Eq.(2.16), (2.63) we can have the following equation

32 2
(a_ﬁ* “’;2- -k -§)F(z)=0 (2.64)
where
sk 1o vl — 2 Yt ' (oA —k
S= 3T Y Awm | dhotJmes(keR)J(Kor)eltOA 0T (2.65)
2xV a=0 m=-~o0 o Vs .

And N is the norm of the axial RF magnetic field given by Eq.(2.11).

In the above equations, the Larmor radious is r, = St.

Therefore, we obtained a set of the nonlinear differential equations consisting
from Eqs.(2.53), (2.59), (2.60) and (2.64), that describes the nonlinear evolution of
the electrons in the gyro-TWA devices. Eq.(2.64) is a secondary differential equa-
tion for one electron. If we solve this set of the differential equations numerically
and consider M electrons projected on the gyration circle in a unit length of the
waveguide, we have to solve a system of order 3(M +2). But, if we assume there is
no reflection at the output end of the waveguide, the order of this system will be
reduced to 3M +3. For an unbunched ‘cold’ electron beam, the initial values are the
transverse velocity, axial velocity, initial phase angle, and the initial values of F(0),
F'(0). If the initial phases are assumed to be uniformly distributed, we can specify
Ao, = 37 for the i-th electron (i = 1,2,..,M). By computing the parameter v as the
function of time, therefore as a function of z, and taking the average over phases
and ensemble, the energy transfer efficiency from the electrons to the waveguide
fields can be obtained, and the saturation process can be determined.

Leaving this ambitious task here and what follows, we derive the linear disper-
sion equation for gyrotrons by iteration method.

If all the waveguide RF field components are neglected, then we obtain the
lowest order solution which corresponds to the motion of the electron in a uniform
static magnetic field Bo. v = veo, v, = v.0, A = (¥ —~ Qc)7, 7 = 70, and from Eq.(2.60)
we can have

F(z) = e~7kst (2.66)

where 0. = 281 is the electron gyration frequency. In writing Eq.(2.66), only the

forward propagating wave is considered since we assume that there is no reflecting
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wave at the output end of the waveguide, and k, = [(¥)? - ¥2]}. The electron

trajectory can be gotten by integrating the equation once more.
z=X + rsin(f.1) (2.67)
yv=Y+n COS(ch) (268)

Substituting the zero-th order solution into the nonlinear equations and integrating
over t, for single harmonic number s, we obtain the solutions of the first order
approximation as

elw -k, v,o)

Z E Aum 2 b = Jm—s(keR),(keri) sin (o = k. 2) (2.69)

nE T ”mc'yk Q' A=0 m=-o0
[o o]
evy k it -
= 0t Im-slk ' (. i -k;z 2.
b=t e, 2 3o AvmImoslkeR)(ker)sin(oh - ks2) (2.71)
evik = =
z=v,07 — m Y. Y AsmIm-s(kcR)Ji(kcrt) cos(aA — k.2) (2.72)

! g=0m=—-c0

Az(%—nco)f'fx\o

ewSleo Vo
T 2mye k02 _Z_:omg_:m AnmIm—s(kcR)J!(kcri) cos(2A = k. z)
e(w = kvz0 — ketro) o=
- 2mc;o;;v'0r;. to Z E Aume-l(ch)Ja(kcn)COS(GA - kzz) (273)

R0 M=~—00

Making use of sQ.o = w at cyclotron resonance and the above first order approxima-
tions, considering that the second order quantities are much smaller than the first
order quantities, we use the approximation sinn = 5, cosn =~ 1 for small angle n, then
we may write

(247)]

sin{eA - k. z) ~ sin(Q2, 7+A°)-(02 )2mc'1 k.2

-cos’(ﬂ.r+Ao)Z E AumIm—s(keR)J; (kers)

A=0 m=—00
_elw = keve = kevio)
2meyokeviofd,

-cos’(ﬂ,r+Ao)f: E AamIm=olkcR)Jo(kcri) (2.74)

A=0 m=-00

In the above equations,

Qe = w —80co — kzoVz0 (2.75)
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Substituting the above first order approximation of v, v, and Eq. (2.73) into [
Eq.(2.52) and keeping the second order approximation terms only, we obtain

1dy ewy — ’

T 2mc3v:k Z_% _Z E AumIm—s(ke R} (keri)oin(Q,7 + Ao)

m=—00 #=-00
_ ew {( 2)v,o ‘
4m?vzoctk2qg

-cosz(Q.r+Ao)z Z [Anm*[Jm—o (ke R) T (keri)}?

N Chad L7, —;zvm) sin’(Q,7 + Ao) f: i {Aam P [Im=olke R) I, (kere))?

’ R=0 m=-—0c0

(w = kzv.0 — kovio)

L + cos? (2,7 + Ao)

Q,
i" 53D |A,,m]2.l,';’,_,(ch)J:(k¢r,)J,(kcr‘)} (2.76) )
R=0 m=-—00
5 The first term in the big braces in Eq.(2.76) is proportional to v?,. There are two
_ parts in this term. If ¥, =0, then this term is entirely due to the transverse force by
h the transverse field components, this is from the electron cyclotron maser instability; q

Another part which is proportional to &2 is due to the force in 2- direction, that

is, due to the Weibel instability. This Weibel part causes a change of the phase
velocity of the electron motion. This can be made clear by observing Eq.(2.71).

If k, = 0 or v = 0, then v, = v, and Weibel instability will disappear. Thus, a

el A

conclusion we can make is that the existence of the Weibel instability is always
associated with the electron transverse motion and with the propagating RF wave
& in the waveguide. The electron cyclotron maser part and the Weibel part always
oppose each other, since their signs are different from each other. When w? >
k2, the cyclotron resonance instability dominates; otherwise, the Weibel instability
® dominates. When &, # 0, there is a frequency shift due to which the amplification (
or oscillation frequency is shifted away from s0,,. We have seen that the energy
change of the electrons is completely due to the interaction between the transverse
?"' " field and velocity for TE mode interaction. The second term in the big braces is q
- due to the change of the transverse velocity and proportional to the inverse of 0,;

while the third term, which also inversely proportional to Q,, is associated with the

change of the gyration phase velocity. These two terms set a threshold for the
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° instability. The right hand side of Eq.(2.62) may be written into the form
/ dAV x J-e,B, = / dA(V x e,B,-3)
A A
2
w A v;
@ me* k21, 1 dvy
Substituting Eq.(2.76) into Eq.(2.77), and taking an average over a period of the
° slow time scale, that is, integrating Q,7 from O to 2» and the phase A, from O to 2r,
from Eq.(2.65) we obtain the dispersion equation as
W k= v {ﬂ‘(“’ — K2 §° 3 Z [Anm[*[Ime (kR 2 kero)?
2 z ¢ ANmeTovz0 02 e L am m—s t
(o U - zvzo z: z: [Aum]2[~’m—o(k R)J'(kcr[)l
A=0 m=~00
s o=k == @ = keve — kevo Z E [Anml? I3, (keR)(ker)Ju(kern) } (2.78)
=0 m=-=00
o where g, = %.
We can write the dispersion equation into the form
W, o enly (B -k'-’c’) _ (w = kavgo)
G -E -k = st (2.79)
®
where
H=Y" Y [AumP[ImoslkeR) I keri)P (2.80)
‘. Aa=0m=-—00 k
v 4
Q=H-(1- k'°v: )..z-%...f‘?.‘muml”m"(k R (keri) o (kers) (2.81)
In the circular waveguide case, for TE,., mode, k. = 2= where 4 is the radius of the
0 waveguide and p.. is the m—th root of the Bessel function J.(z); and in the above
dispersion equation the coefficient A, equals unity and there is no summation
involved. Comparing this dispersion equation with that derived by Chu et al.l'¢!
. For the circular waveguide TE,,, mode, we find that the function H is the same as

H,» in [16]. From Bessel equation, the first term in the function Q in Eq.(2.81)
can be made the same as that in [16]. However, there is some difference in the rest

of Q in Eq.(2.80) from the rest in the function Q,m in [16]. The difference is due
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to the different approximations made in the two different approaches to derive the
:’, dispersion equation. As pointed out in |16}, in the dispersion equation the term
with Q,. involved imposes a threshold beam energy for the instability. At higher
harmonics, that term is very small compared to the term proportional to H and it

| can be neglected.
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Chapter 3 Gyrotron Kinetic Theory

With the field components written in the forms of Eqgs.(2.7) and (2.8), in
Chapter 2 for nonlinear theory we derived an equation for function F(z) in Eq.(2.10)
which has to be solved simutaneously with other equations. In this chapter we em-
ploy plasma kinetic theory to solve this equation to get F(z), furthermore, to obtain
the small signal gain-frequency relation for the gyro-TWA.

Because of its relative simplicity and its easy understanding of the physical re-
sults obtained, kinetic theory has been widely used in gyrotron analysis. As a
standard approach in plasma physics, the linearized Vlasov equation can be solved
by the method of characteristics, and the initial value may be included by intro-
ducing a Laplace transformation. Through an inverse Laplace transformation the
function F(z) which describes the profile of the RF field along the waveguide with
the presence of moving electrons is obtained, then the gain of the power flow of the
device can be caculated. Park at al.[*!] have used this approach to analyze the slow
wave gyrotron amplifiers for the circular electrical waveguide modes. However, the
analysis in this chapter is with a generalized waveguide-beam model shown in Fig.2
and for any TE waveguide modes. '

As usual, we just find the first order perturbation of the electron distribution
function. Therefore, this is a linear theory. In doing this analysis, several assump-
tions are made. First, it is assumed that the space charge effect can be neglected;
Second, the electron beam and the RF wave in the waveguide are described by
the linearized Maxwell-Vlasov equations; Third, this is a single mode analysis, the
coupling with the neighboring wave modes is assumed to be negligible.

The nature of the electron helical motion in the waveguide makes the cylindrical
coordinate system most suitable for this analysis. But, it is desirable that this
analysis be a generalized one and can be applicable to the gyro-TWA dJevices with

different shapes of the waveguide cross section. Therefore, this analysis is carried
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out in the Cartesian coordinate system first, then a transformation to the cylindrical
coordinates is made naturally by using some Bessel function identities.

Section 3.1 to 3.4 are with the derivation of the small signal gain of the device.
Still in the frame of kinetic theory, the efficiency of the devices is estimated in
Section 3.5. Section 3.6 is devoted to a brief discussion on the beam velocity

spread problem.
3.1 Perturbed Electron Distribution Function

In addition to the Maxwell equations Eq.(2.1) to (2.4), the Vlasov equation

of (W or_fEs+ L V. f=
gt—-";vj m(E+C'7uXB)V'f-0 (31)

and two coupling equations
J=—c [ 2 3.2
e/ u7j' (3.2)
p= —e/d’uf (3.3)

together form the basic equations for plasma kinetic theory. Here f(u,r,t) is the
electron distribution function in momentum, space and time, u = 7f, v = (1 + v%)3
and rstands for time derivative of r. With the assumptions | f, |<| fo |, | B, |<| Bo |,

setting f/ = fo+ /i, E = E,, B =B, + B, and substituting these into Eq.(3.1), we

have
8
T Th = (S xB) Vas =0 (G4)
a
Bty A (G XB) Vah= LB+ X B T (35)

The perturbed electron distribution function can be obtained by the method of
characteristics, viz, by integrating the equation along the unperturbed electron
trajectory,

e [* ' u
= — dt'e”“" (E, + — x B;)-V, 3.6
h m/;__;.'_ e (E, pos xB;) Ve/o (3.6)

With reference to Fig.3, we write

u = ue + uge,

k-
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eg=e;cosd +e,sind
= (uf +u})?
For R, the guiding center of the electrons, we have

1
v = -
.R che

=e;3in 0 — e, cos O (3.7)

Furthermore, we may write

8/ 5! 8o

V.fo=e,a +e +ﬁV.R
_ 6] <I[) 20
=eg - ‘+e,(c 0 +Q Ga—R)
8fo _ l 8/o
+ e,(smba o eﬁ) (3.8)

mey

where Q. = 282 is the electron relativistic gyration frequency. In the Cartesian

coordinate system, from Eq.(2.7), (2.8) we can write

(i + 2 xB,) Vafo = (B, cos® + B, sin #) 0
Y Y Ou,
1 . dfo 3
+ [Es + ;(ugB,slmb - u.B)|( cos‘ba-; + 0— sin 961;)

3fo

% sz) 39

+ [E - -l—(ugB cos® - u,B,)] (sin ® 3u Qlc
The waveguide field components in the beam-field interaction region can be written
in the following series form in general regardless of the shape of the waveguide cross
section. However, the coefficients in the series are dependent upon the geometry
of the cross section of the waveguide. Here we can use the series for the out-ridged
waveguide (analyzed in Chapter 4) as the general expression. For the axial RF
magnetic field in the beam field interaction region in the waveguide, we write
B, = i Biia
a=0

=Z&.ummq(um (3.10)

where the notations 4,, A are in Fig.5. in the following analysis, we take the lower
cosine sign in Eq.(3.10) only. For the upper sine sign, it only needs to make a

simple change in the coefficient A.» as we will see in Chapter 4.
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From Eqs.(2.12) and (2.13) we can further write Eq.(3.9) into
u e L((1OFE) Oh | 0f fo
[l-_‘.1 + E X B,],V“fo = ck:;'{ 9z (u.auz u,au' ](s d>— —cosQ’—)B
. Uy 3] 1 a/O
+ (Jw o )F( )Q aR(cose Ga)B“
ng? R 1 6]0 0
+ 2 F(z)sin ¥ - aRB,,} (3.11)
Setting k;ia = ke sin Aa, ky 0 = k. cos ), and using two Bessel identities
[ o}
elkersin(8422) Z Jm(kcr)e}’m(0+«\.) (3.12)
mas=—00
o0
—skersin (642a) _ Z: (=1)™ I (kr)e?™(E+2A0) (3.13)
m=-=0o0

then from Eq.(3.10) and with reference to Fig.3 we have
ot (ker)e €™ (3.14)

3 ke & y
(sin 05 - cosd> )B,,,. =3 Z Anm|Im41(ker)e? € -
m=-00
k o o]
(cosea—— + sm9 )31,,. === Y AsmUmir(ker)e™ + Imoy (ker)e™X]E™ (3.15)
d Mm=-00
m . .
sin ¥ B, = —% E AnmJm(ker) (7Y = e=7¥)eIm® (3.16)

where the coefficient A, and ), for the out-ridged waveguide are given by (see

Chapter 1)
Anm = %B“,.[e"‘ heotde 4 (—1)memTheh ot AT cos(mA,) (3.17)
A = cos™ (k,.) (3.18)
From Fig.3 and the electron orbit at equilibrium, we have a relation
¥ =W- ———n‘(zv: Z) (3.19)

Substituting Egs.(3.11), (3.14), (3.15), (3.16) and ¢ -¢ = “=2) into Eq.(3.6), we

obtain the integral of the perturbed distribution function

h

-—/ dt'em et (E: + ; xB)-Ve/fo

'e""'z Z Z Aume’™ /de(z—z)Q( ')

mck,
A0 M= —-00 ==

(3.20)
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For the high power gyro-TWA devices, the efficiency is one of the most im-
portant considerations for the performances. Since the caculation of ihe efficiency
involves saturation, which is a nonlinear process, the efficiency optimazation usually
is resorted to the numerical simulation in the multiple parameter space. But, as
mentioned in Introduction. an analytical efficiency scaling relation has been derived
in the frame of linear theory by analyzing the phase relation at saturation.l'é! Since
in general the beam line

w=—kv; -8, =0
and the waveguide dispersion equation
w? - k3P -kt =0
intersect near at grazing angle, in the beam frame, +/ = 0, this grazing condition
implies that
W'~ (Y, =~ ck, (3.82)
From the linear theory, the following condition is expected at the onset of the
instability,
Au' = u' -8l (3.83)

As the saturation occurs, we expect the following relation to be held

2{1,
< Ve >

(3.84)

Where < ~, > means taking the average of 1 over the beam ensemble at saturation.

From the efficiency relation and with the assumption that 4! « 4{, we have

]

To— < Yo >
P
_ 2pdw;

~ (v0 — Dy

f’ =
(3.85)

For fast wave devices, the second term in the right hand side of Eq.(3.79) is neg-
ligible. Setting &' = «} + Au', k, = ko, Where v and k,, are obtained from solving
the beamn line and the waveguide dispersion equation and substituting these into
Eq.(3.78). we obtain

x J2

, x 2 o tekPul IR (ke RYIV (ker) 14
Au," = Z Z A.m[ 271\7“"6 ] (386)

ART-0O M =00
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with any shape of the cross section can be obtained. Since the solution to Eq.(2.18)
mav be assumed to be of the form &*:* and &, is understood as real, we change K
into k, but the frequency w is assumed to be complex, as a common approach in
plasma physics, we obtain a gereral dispersion equation for the gyrotron traveling

wave amplifiers as the following

32 fkr 2
(— -k -k = z Z Z ’VA!M{(_" AL v, ((’;; 1)Jm~s(kR)]

a=0m=—oC §=—00

kerd[206(1 = g52) T3, (K R)Mu(kert) = B0 8] Ji (ko)

where

- o), (3.78)

From Bessel equation we have
1- —82).] ( =-J ) - —l J!
( 2 L I) [ (z z l(z)

and note that &0 ~ w - %%, then the generalized dispersion equation takes the form

ﬁuA?,,,, [ﬂ, (w? - k2c2) _(w- k:vzo)Q,]

2
W g2 2y =
(CQ kt kc) n,

(3.79)

where

H = i Y [Anm [ Jm=s(keR) (kom)]? (3.80)

A=0m=-0cC

Q =2H - i f: |A,.m]2{2kcr,J,":,_,(ch)J;(kcr;)J,"(kc kgj } (3.81)

R=0m=-oC
Putting the coefficients A,,, to unity and removing the summations in Eq.(3.80) and
(3.81). then we have a dispersion equation suitable for the TE,,, mode of the circular
waveguide, i k. is set to 2=, Comparing to the dispersion equation derived for the
TE.m mode of the circular waveguide in [16), we find that H is the same as H,n in
[16]. As to the function Q' in Eq.(3.81) and Q,.. in [16], the difference is between ¥,
in @ and the last two terms in Q,m. In Q’, the Bessel function J,+; (k.r), Jox2(ker)
and Jo_(e21)(kcR), Jm—(sx2)(k-R) are also involved. In [51,52], Dohler explained that
these may be important for ‘peniotron’ interaction. But it is still to be discussed

the role of the Bessel function of order « £ 2 contained in Q' in Eq.(3.81).
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Where P(L) is the power flow at the output end of the waveguide and P(0) is the
power flow at the input plane of the waveguide.

Obviously, the gain is the function of all the beam and waveguide parameters,
also a function of the frequency. Thus, we can compute the gain as a function of the
frequency with all the specified electron beam and waveguide parameters involved.

The commonly used 3¢B bandwidth of the gain for an amplifier is defined as the
frequency interval between the two frequencies where the gain drops down 3¢B from
the gain at the center frequency. Due to the fact that the cyclotron maser radiation
is strong only when the frequency is close to the cutoff frequency of the operating
waveguide mode, the gyro-TWA devices with uniform waveguide, a relatively small
bandwidth is expected, usually just 1-3%. But, since this is a distributed interaction
in the waveguide, some methods can be taken to alleviate this and a much bigger
bandwidth can be achieved. Y.Y. Lau proposed a.A tapered instead of a uniform
waveguide as the beam-field interaction space. Simutaneously, the applied magnetic
field also is tapered to mantain the synchronization between beam and the field
along the waveguide. Both from the theoretical and experimental investigations,
the gvro-TWA device with tapered waveguide can achieve about 15% bandwith
centered at 35 GHz frequency.[*%

Another method to increase the bandwidth is to decrease the applied magnetic
field slightly below the grazing line, as many people have pointed out and confirmed
in the experiments.['¢.2%]

Through the derivation of a dispersion equation to analyze the instability is a
generally used approach in plasma physics. Here we can easily obtain a general
dispersion equation from Eq.(3.50) for the gyro-TWA. The third term on the right
hand side of Eq.(3.59) is proportional to the square of Q,(k) and is much smaller
compared to the other two terms near cyclotron resonance, this makes the neglect
of that term on the right hand side of Eq.(3.59) permissible. Therefore, if D(k)
in £q.(3.57) is set to zero and the electron beam inhomogeneity is neglected, i. e,
only the first two terms in the expression of D,o(K) in Eq.(3.79) are taken, then for

gyrotron devices a generalized dispersion equation whick .. ap, 'cable to waveguide
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Once F(:) has been found, all the components of the field in any cross section in

the waveguide can be obtained through Eq.(2.7) - (2.8).
3.5 Gain-Frequency Relation and Efficiency

One of the most important performances for an amplifier is to achieve certain
gain in a frequency interval of interest. For high power devices, the efficiency is a
chief consideration. This section is used to deal with these two aspects.

Since the field components in the waveguide are assumed to be in the form
in Eq.(2.7). (2.8), (2.9), and F(z) is given by Eq.(3.68), so the power flow in the
waveguide can be found by integrating the axial component of the Poynting vector

over the cross-sectional area of the waveguide.

P(z) = %Re/AdAe,-(Eg x By)
dF(:2)

=% {JF(z) (= /dAv,Bg-(v,Bg)‘]} (3.72)

For a uniform waveguide, that part in the brackets in the above equation is

independent of 2. If we denote

Dy = dAVB° (VB?)* (3.73)

2k‘

then we can write the power flow at z and at : =0,

P(z) = DgRe[_]F(z)dF( )l
=D, {‘- [gk.zl’;’,((’;))] Z[ g'((::))] } (3.74)

P(0) = DireliF(0) )

_ N(Ki) N(Kp)y* -
‘D'[ D'(K)”E ’D'(K,)] (3.75)
If the beam-field interaction length is L, the gain in dB is defined as

P(L)
P(0}

Yo ekt N K'. T, Kperkol N(Kp) ’
s )| Zr LILEY }
[ S [ o aia ]

G = 10log

= lOlog{ (3.76)
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m
=3 Res|le’**F(K.)] (3.66)
=1

where K, is the i-th pole in the integrand. From Eq.(3.56) for F(K), the poles of
function F(K) are the roots of its denominator D(K) in Eq.(3.57).

For a generalized Lorentzian distribution in u,

(A“t)z’
(ur — ©;)%° + (Du,)?»

and a single gvration harmonic number &, there are 2 + 2p poles in F(h') with the

Jo(u:) =D (3.67)

Lorentzian distribution of order p in u,. In the case p =1 and also in the ‘cold’
electron beam case, D(K) in Eq.(3.57) is a quartic function, and it is readily seen
that all the singularities in F(K) are order of one. Since F(K) is in the form of

Eq.(3.56), so we can write F(z) in the following form by using the residue theorem.

F(z)=3j Ze’K i g(('; )) (3.68)

=1
where D'(K) is the derivative of D(K) with respect to K in Eq.(3.57). At the input
plane z = 0, if we set F(0) to unity, then we have a relation

N(K)
D'U‘ )
Therefore, the problem of getting the functlon F(z) is reduced to finding the poles in

=1 (3.69)

the function F(K), or the roots in D(K). Moreover, if the output of the gyro-TWA
device is well matched to the load, the wave propagating in the negative z:-direction
can be neglected, therefore the corresponding coefficients in Eq.(3.68) and (3.69)
must be zero. N(K) is given by Eq.(3.58) and D'(K) can be found by taking the
partial derivative of function D(K) in Eq.(3.57) with respect to K.

D'(K) = -2[K02(K) + En,(i{)(f3 - K2-k2)

-Z Z Z“’A"' D!(K) (3.70)

=0 m==-00 —00

From Eq.(3.59) we have

2K 87
D' (K) = 5‘ J"(kcr,)J,f,_,(ch)
% o011 = g (ko) s (keR) = 26 ke
- ﬁﬂ,(l()[%fken(l - W)J:(kcr,)J,Z,_,(ch)
(]
= keug w+]J (kert) (3.71)
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where ¢ is the pitch angle of the electron, vy is the Brillouin angle of the wave mode,
which is defined as tan='y = 1.

It is clear that if vsin vsin ¢ is very small compared to ¢, the speed of light in
free space, i. e, if the electron beam is non-relativistic or moves with a small pitch

angle or both, then the Bessel function has an argument much smaller than its order {

¢ Since the higher the order of the Bessel function s is, the bigger the argument

[ - ' it needs to reach the first peak of the function value, and the peak value of the

:" . Bessel function also becomes smaller when its order increases. Therefore, when the (
harmonic number & increases, the coupling between the field and the electron beam

{ becomes weaker. It is crucial to have bigger Larmor radius for higher harmonic
operation. This explains why in general the gyrotrons operating at higher gvration
harmonics demand high electron beam energy and big o = $* to have a larger portion

of the electron kinetic energy in the transverse direction.

% The waveguide structure is also critical for gvrotrons working efficiently at

_ higher gvration harmonics, since a good waveguide structure can achieve a much {
» bigger component of the desired multipole field at the order of the harmonic number,
; therefore, a much bigger beam-field coupling.
F] {
i 3.4 Inverse Laplace Transformation, Fields
;
f. The Laplace inverse transformation of F(K) gives the function F(z), with the {
E" frequency, the electron beam parameters and the waveguide parameters involved.
E, The Laplace inverse transformation is defined as
t -jC400
° F(z) = /_ o dKe'K:F(K) (3.65) P
where the contour C must be large enough to include all the poles of the function
F(K). The contour of the integration is depicted in Fig.4.
. The inverse transformation integral may be carried out by using residue theorem {

in complex variable theory.

| B F(z) = / T KoK E(K)

-yC =00
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In the simple circular waveguide case, Eq.(3.61) reduces to the common form
®
H = |J;(ker))Jm—s(kR)}? (3.62)
used in many papersl!®:24:42},
e In the expression of Dy, in Eq.(3.59), the first term, which is proportional to
. H., is the source term; the second and the third terms impose a threshold to the
instability. From this analytical result, if H. vanishes, clearly both the cyclotron
® maser instability and the Weibel instability will vanish.
Since | Jo(z} 1€ 1, | Im(2) |< 7‘5, we conclude that for the same beam energy,
the same waveguide structure, the same wave mode, and the same frequency of
_ operation of the devices, the concentric beam has a bigger coupling with the fields
¢ than the annual beam. This offers a simple explanation for the utilization of the
rotating electron layers instead of the annular beams in the most reported microwave
gen.eration experiments at higher harmonics of the gyration frequency. In the case
® of concentric electron beam, R = 0, H. # 0 only if m = a. Therefore, for a single
harmonic number s, the beam-field coupling coefficient becomes
%
He= Y (Aum)?[Jilker))? (3.63)
L) n=-oco
For the concentric beam, this means that if a gyrotron device operates at s-th
gyration harmonic, the electron beam can have efficient interaction only with that
. order of the field multipoles which equals the harmonic number. For the other
beam model, this statement is also valid if the field is expanded into multipoles
around the guiding centers of the gyrating electrons.
Since near the cyclotron resonance Q. > #=%:%, k. = Ysiny, n = 3¢, and
* v, = vsin ¢, we can write the argument of the Bessel function as!?*!
kery = % (3.64)
* and the small argument approximation of the Bessel function can be used
Jo(z) = 2—:%!
L

...........
.....................................

- . L .t et et . C . - -
" a%e a'mlaatalatmiaatata ot e s iaatmasideldsintal atadel

» ‘.
e e e a e

TP T FIOR RIS Y WA Y DEFUCTTLINNeS o LATAr

NP I

AT TAr SR W W )

. .




L @

s _ 2K . '
V- = {-Jm_,(ch)J.(km)
+[(m = 8)J} g (kere) + = J-+x("c’l”-’m-(-+l)("=m
l
+ [(m - B)J _1{kert) + k—r‘ c—l(kc'l)]Jm-('-l)(ch)
(3
1
- -k 714 2( ke r)J ..(.+2)(ch)
l
_ ékc,‘J._z(kc,,)J;_(,_,,(ch)}. (3.54)
- k° s + 1
v, = {[(m = 8)J 1 (kert) + J-+1(k )} m—(o+1) (ke R)

= [(m = &) Jo_y (ker) +

8
(k " )Jc-l(kcrl)]Jm—('—l)(ch)
(4
1
- §"c'l-"+z("e"l)"3.-(.+z)(ch)

1
+ ék,r,.l:_:,(kcr,).l,";_(,_z)(kCR)}. (3.55)

Finally we get F(K) in the quotient form

F(K) = %((‘IRQ (3.56)
where
D(K) = (% - K - KIEK) -3 Y 3 e k) (357
=
NEK) =iFOK-3 3 3 i Do K] | (3.58)

=0 M==00 #=~00

where v = 28 is the Budker parameter and

Dyo(K) = (K? - “—)—(J'(k 7)o (ke R)?

cul

- ke (K) [200.(1 - —2)J.(kcrl)J,":,_,(ch) w+]J (kert)

cu!

- Q3(K)[2vken(1 - 5 2)1'(/: rJE_y(keR) = <2 | Llker)  (359)

F(F) {Ku' i (kert)Jm-o (e R)

2k.r
+ eTiUsz
8

Doo(K) =

0y (K)o lkert) Jo(kers) 7o (ke R)

- kc Uy
201,

2(K)Ju(ker) - } (3.60)

Similar to the commonly used beam-field coupling coefficient, for a single gyra-

tion harmonic number s, we define a beam-field coupling coefficient

0

He= Y Y (Aam)P[Jilker)Im-u(kcR)) (3.61)

AT =00 MI==00




where

and

3.3

In cylindrical coordinates, the integral is over r and 4.

1
xrr} sin €

V.. =¢e ™Y {—kcn.l,,.-,(ktR)cos[(m -8V - €

- %kcr‘J,,.-,...z(ch)cos[(m — s+ 2 - ¢

- %kcrlJm-o—2(ch) cos[(m -8 - 2)* + d
+{m=—28~=1)Jm_y-1(k:R)cos|(m — s — 1)¥ - £

4 (m =8 =1)Jmoss1(kcR) cos|(m — 8 + 1)¥ - e]}.

1
xrrisin §

1
- ékcr,J,,.-.-g(ch)cos[(m -8 -2)¥ - ¢]

W¢+ = C-Jm'

{ keridm—o42(kcR) cos{(m = & + 2)¥ - ¢|

+(m=—08<1)Jm_p-1(kR)cos{(m — 8 — 1)¥ - £

—(m=2—=1)Jm—es1(kcR)cos|{m — s+ 1)¥ - E]}

Derivation of F(K)

V. After evaluating the integral over ¥ and ¢, we get

(4 - & = K*)F(K) - JKF(0) - S F(0)

-£ £ £ Sk rwmm-onni

Ku. 8 Ku,
W -

Ti(K) = EET ( o JVilhen)
ud k.
+3 ncJ.(km) - * 75, Q (K)J ALEALN
- 1'T] a3 Usg
TO(K) 75—761‘ !(C') Q(K)
- 2""" Jo(ker)¥_

¢, = kcf,z,._,(ch)J:(kcn)

R
=T

“~ -

R . . . N
L . . O R U R T WO ST Sy, Uy Sy oy, P VRS e

(3.48)

(3.49)

With J.(K) and J'(K) obtained in the previous section, in this section we work
out the integral over the cross section of the waveguide on the right hand side of

Eq.(3.36).

the relation dr = r sin €d¥, we may convert the integral over r into an integral over

Making use of

(3.50)

(3.51)

(3.52)

(3.53)

2 s emE——s B A A% _E_ B
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. re = Rotn

and r; = 2 is the electron Larmor radius in the applied magnetic field, /, is an arbi-
trary function of u,, u,, and R. The Dirac delta distribution function /. represents
the ‘cold’ beam with infinitely thin guiding center distribution and is normalized
to be one electron per unit length. For ‘cold’ electron beam distribution function

Jo = /., after perfoming the integral, J.(K) is obtained as

: Tk =t 2 Y Y a0 - (k) (2.42
. A=0 mM==00 g=~—
where
Ku, 8/, Ku, 3!.
QuE) = FE){[S 5 + = =550 104 (,‘))
, 2 ncJ,(kc 1)\1' +2u‘¢)kc(';{)11(kcr‘)\]!+} (3.43)
QoK) = FO (% o - 2 ) M si(ken)e,
u?u,
210:1.(1:.;,)\1:_] (3.44)

7'(K) is obtained by replacing ¥_,¥,,&, with ¥._,¥.,,&_ in the expression of J.(K)

P correspondingly.
In the above, (see Appendex II)
\
h - 1
; $y =em¥ e €.I,,,.,(k,;I'Z) cosf(m — 8)¥ £ £] (3.45)
- - p—=JmV¥ 1 - -
}-. V_=¢e p—— £{ keriJm—o(keR) cos[(m — &)¥ + £]
r | - %kcr;Jm_.+2(k¢R) cos{(m — & + 2)¥ + £]
- ;'kcr,.l,,._._z(ch) cos|(m — & = 2)¥ + ¢
k ® +(m=—8+1)Jmps1(kcR)cos|(m — s+ 1)¥ + £
- +(m-28+1)Jnog-1(k.R)cos|(m —2s-1)¥ + 5]} {3.46)
- ' !
E- v, =¢m" g €{ —kertIm—es2(kcR) cos|(m — 8 + 2)¥ + €]
; ™ - ékcnl,,._,..z(ch)cos[(m -8-2)¥ + ¢
1 —(m=28+41)Jmessr(kcR)cos{(m - s+ 1)¥ + £]
E “ +(m=—2a+1)Jm-p-1(kcR)cos|(m -8 - l)\ll+£]}. (3.47)
p
L




L 9]

(s

&

WU A s - Oime Rt ecies s A ari g ML Al “Rag ] B W R R  a, TNWYTRUNE Ta T O W W™

33

the Laplace transformation of Eq.(2.17) may be manipulated further as

(f - k2 - K*)F(K) - jKF(0) - dizF(O)

—-—/VxJ(A)e,B°

i Z 41rA..,,, /2'd0/ rdr{ [rJ,(K)] J,(K)}J (ker)

=0 m=-

Z z 47A..m/ dg/ drker[Te(K)Jm=1(ker) = TL(K)Imss (ker)]  (3:36)

In the last step in writing Eq.(3.36), integration by parts has been used. Then
from Eq.(3.34), we have

T(K) = -e [ dPuet 27, (K)

el Yl Sk - xgh Ak Bk o

—-ew'z E Z Nr‘;:‘:"‘ -J'G/du,du,dfe’"e"“‘G(A)Q(x) (3.37a)

n=0m==00 #==00

T(K) = —e/d’ue"‘—if,(K)

= —elvt Z Z E N 62"”"' Pl / dugdu dEe*Ve -se8d E(K)G(K) (3.37b)

R=0 M==00 ¢==00

where Q(K) is given by Eq.(3.27).
For evaluating 7.(K) and J'(K), the electron distribution function has to be

specified. In order that the distribution function is general, we write it in the

following form

fO(ut' uhR) =ft(ugvu?» Ro)fl(uu ut'R) (338)
Je(u?, 4, R®) = [ (u3, 49) fr(R°) (3.39)
Furthermore, we write
fo= 2%6(::: = u9)6(us - u2) (3.40)
Ir= 2,35(3 R,)
= 2xm sin €l (€= &) =6+ &)l A(r) (3.41)

where

1 r.<r<r,
Alr) =

0 otherwise.
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Making use of the convo! ‘ion theorem, the Laplace transformation of the perturbed

electron distribution function is obtained as

Ly =y Y Y %?"E(K)G(K). (3.30)

R=0M==00 #==00

Where G(K) and Q(K) ar given by Eq.(3.26) and (3.27) respectively.
3.2 Perturbed Current Denegity

This section is for the derivation of the perturbed current density in the waveg-
uide. Under this formalism of analysis, the axial component of the pertubed current
does not contribute to the gyrotron interaction for TE wave modes, so it will be
ignored.

The Laplace transformation of the perturbed current density is defined as
J(K) = To(K)es + T.(K)e, (3.31)

From Eq.(3.2) and the notations in Fig.3, we have the two components of the

perturbed current density as
Je(K) = —e/d%%icos £1,(K) (3.32a)
7,(K) = —e/dsu% sin £7, (K) (3.325)

If we introduce two quantities

J.(K) = Jo(K)+ jJT.(K) (3.33a)
THK) = To(K) - 17,(K) (3.335)
then we have
7.(K) = —e / L], (K) (3.34a)
T(K) = —e / e, (K) (3.34b)

Since in general the axial RF magnetic field in the waveguide in the interaction

region can be expressed in the form

B;a = i Alme(kcf)e’m‘ (3.35)

m=-00
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where N, is the electron number per unit axial length, and
Gl:-2)= vl (3.21)
Q) = [wF - 25020 gggg%]Jm-.(kcnu:w.)
NI S WAL

+ 22 s (KeR) + It (R e ,),i ‘;; (32

The Laplace transformation F(K) of function F(z) is defined as
F(K) = /0  Flz)e-iK 4z (3.23)

where the imaginary part of K is chosen to be positive and large enough in magni-
tude so that the convergence of the integral be guaranteed.

The following two formulas for transformation are necessary to be used here.

Ld’;(z” = jKF(K) - F(0) (3.24)
Ld2df; §=’ = —K?F(K) - jKF(0) - %€ (O) (3.25)
Thus we have the transformation for G(z) in Eq.(3.21)
Gy = [ dee=rtu=Eaa -
(k)= [ dze
o1
= I QK (3.26)
where
u,
0,(K) = ~
The Laplace transfomation of Q(z) in Eq.(3.22) is given by
Q(K) = Q,(K) + Qo(K) (3.27)
where
,(K) = jF(){[(w - '%)%‘1 + ﬂ"—fﬁlJ.,...(kcisz)J:(kcn)
+ (K)o (keR) Jalke r;)r: ?afz,
k2 )
3 (s (6R) 4 I (RN Slken) - G0 ) (328)
Ql(K) = F(O){(ﬁi‘;—f‘: =82 p (kR k)
+ 2 (kR (ker) 5= G (3.29)
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Inserting A.! into Eq.(3.79) we get the efficiency of the gyrotron traveling amplifiers
as -
n = 2—::1’3"’7‘3{1 (3.87)

In Eq.(3.87) a correcting factor of 1.25 has been multiplied in order to get a good
agreement with the numerical simulation results.I'®) " This scaling relation is valid
only under the tenuous beam assumption and when the beam energy is much higher
than the threshold condition for the instability. The efficiency in the laboratory

® frame can be obtained by a Lorentzian transformation. However, for lower beam

N .

energy, especially at fundamental cyclotron harmonics, due to neglecting the eneigy
depletion mechanism in the saturation, this scaling relation has a bigger discrepancy

® with the result of the numerical simulation. -
3.6 Electron Beam and Velocity Spread

For high power, efficient gyrotrons, the electron optical system must provide
large current I, big a = 2 but small beam velocity spread. The beam velocity spread.
deteriorates the beam bunching, therefore decreases the possible output power and
the efficiency of the device. The electron beam velocity spread in gyrotrons is -
characterized by the relative parallel and orbital velocity spread &+ and 44, where

7,. 7y are the mean values of v, v, respectively. Since the electrons basically excercise

° belical motion in passing through the waveguide in a conservative field, the only
spread in the electron total energy is due to the space charge potential depression in
the drift region, therefore a very small total energy spread can be expected, and the
spread in v, and in v, are correlated. As a consequence, the spread in the gyration
frequency of the electrons is very small. However, the spread in the Doppler-shifted
cyvclotror frequency through the spread in v, can be significant.

The electron initial thermal velocity results in the orbital velocity spread. Ac-

cording to {43]. the thermal velocity spread is estimated as

WA T SR S o UL VU, SUPUL NN LT UL . -l G b ] h - ot " P a M PR - P PO




s

M

T

e

rv-fv—v L s . e o o oy -

L L. S

46

where e is the electron charge in coulomb, T;, is the cathode temperature in K and
Ve is the anode voltage in volt.

The roughness of the emitter surface also results in the velocity spread in the
thermal velocity manner. Assuming the cathode surface grains have the form
of a hemisphere of radius r, and & is the height of the first vertex of the electron
trajectory above the cathode surface, according to [43,44], the orbital velocity spread

is estimated as

8%« 15\/reTh

17
It is seen that even a very small surface roughness of the cathode can cause a
significant velocity spread, especially at millimeter wavelength since 4 is small.
A slightly departure of the axial symmetry of the electron beam also causes
velocity spread. With the assumption of small azimuthal drift in the region of the
gun. this effect is estimated as!*’

6_& = 2acosy/d
vt

where g is the radial shift of the cathode, v is the angle between the cathode and :-
axis and d is the anode-cathode gap (see Fig.1b). The electron beam space charge
field plaves an important role in the distribution of the electron beam velocity spread
in the interaction space and also in the near emitter region since there either the
transverse or parallel velocity of the electrons is small.

From the expression of D(K) in Eq.(3.59) it is readily seen that the most sen-
sitive effect is the spread in v, through the Doppler shift frequency w - ,v,. The
following brief discussion on the beam axial velocity spread is under the assump-
tion of Lorentzian distribution of the beam axial velocity and is chiefly based on
S. Y. Park’'s approach in [41]. I we assume the distribution of u, in f, is the

generalized Lorentzian distribution

- (Au,)""
Jolu:) = D(u, T+ (Bul) (3.88)
Where @, is the mean value of u,. Changing the variable v, into
U, - U,
¢ = 5. (3.89)
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Then we can write the distribution function

1
Jols) = D= T (3.90)
and D is the normalizatior: factor given by
- -]
D-l = dll;fo(unAu;)
-0
1 o 1
= a—;/_wdg——‘," — (3.91)

Here D can be determined by the coutour integral in the upper half of the complex

¢—plane and we have
_r 1

3.9
J’Au: 2 -l "' ( 2)
From Eq.(3.59), we obtain
— 0o
DI(K) = dugf.(uquul)Dlo(K)
)
D

= Au, oo d( + 2, D]O(K uz +(Au;) (3.93)

For Im(K) <0, if w > #0)., Dyo(K) has a pole in the lower half ¢~ plane and if v < 202,
Dio(K) has a pole in the upper ¢~ plane.
Clearly, from Eq.(3.90) we can see that f;(¢) has poles in the upper half ¢~ plane.

Gi=c¢ e (f=12,...,p) (3.94)

Therefore, using the expression for D in Eq.(3.91), we can write

’ ’
Dy(K) = Z(IDIO(KvﬂI + (-Auz)/z $i {3.95)

=1 1=1
If the parallel velocity is the standard Lorentzian distribution with p = 1, then ¢ = ;,
thus we can obtain a very simple result as
K = {D;o(K.ﬁ.-jAu,) (v > e0),)
Dio(K. B, + jAu,)  (w < e0.)
This means that the effect of the spread in v, is equivalent to a shift of the average
real velocity to a complex velocity @, # jAu,. In the general case when p > 1, the

velocity spread effect is the average of the shifts by ¢ Au, or ¢*Au,.
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Chapter 4 Gyro-TWA with Out-ridged Waveguide

This chapter is devoted to the proposed gyro-TWA with out-ridged waveguide.
Section 4.1 is for the derivation of the dispersion equation and the field configura-
tion in the out-ridged waveguide; Secton 4.2 is devoted to the numerical solution
of the eigenvalue spectrum and the associated field components in the out-ridged
waveguide by adopting the Ritz-Galerkin method. With Ritz-Galerkin method,
the field components in the waveguide can be obtained in the form of the series of
the eigenfunctions. Section 4.3 describes the computation of the gain-frequency
curves of the amplifier by applying the analytical results of gyrotron kinetic theory
obtained in Chapter 3 and the results in Sections 4.1 and 4.2.

Once the field structure of a certain mnde in the waveguide has been obtained,
the nonlinear analysis of this gyro-TWA with out-ridged waveguide can be done by
integrating that set of the nonlinear equations derived in section 2.3, but it has to

be resorted to numerical computation.
4.1 Out-ridged Waveguide Dispersion Equation

The cross section of the out-ridged waveguide is illustrated in Fig.5. The cross
section of the waveguide is assumed to be symmetrical about axis y = 0, but no
assumption about axis z symmetry is made. A detailed analysis will be presented
bere for TE modes only. The derivation of the dispersion equation for TM modes
is given in Appendix L.

For TE waveguide modes, if the solution to the axial magnetic field is asssumed
in the form B, = BY(z,y)e’(“'~*:#) where k, is the axial wave number, then the
equation that governing B? is
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Fig.5 The cross section of the out-ridged waveguide.
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subject to the boundary condition on the perfect conducting waveguide wall p
n VB, =0 (4.2)
where
K= “’; - k2 : (4.3) {
And n is the unit vector normal to the waveguide wall.
For this proposed out-ridged waveguide structure, in the convenience for ana-
lIyzing beam-field interaction in the generalized approach developed in Chapter 3, '
f we adopt the standard Ritz-Galekin method to obtain the eigenvalues and the as-
sociated eigenfunctions. According to this method, the solution is expanded into
the series of the eigenfunctions, each eigenfunction satisfies the boundary condition |
on the waveguide wall, and it is also required that the resultant expression be oth-
ogonal to each expansion function. Then the eigenvalue problem is reduced to a
system of algebraic equations. p
With reference to Fig.5, the solution in region I (g, < z < ¢;) may be written
in the form Z
BY,(z.y) = 2 B,.:;')';(k,,.z) cos[%(y - h)] (4.4) "
. where the upper and lower functions correspond, respectively, to the magnetic and |
] .. electric symmetry about y—axis and &, = h + &'
P"“ The solution written in the form in Eq.(4.4) satisfies the boundary condition p
°

=t Eq.(4.2). Furthermore, we define

= , NCRITIE (ke 2 3
. 21n =
o <iOEE -k (ke < 3T)

In region II (3 <z < -a; and 6, > z < §) the solution to Eq.(4.1) can be written as

(4.5)

the following

- b
y BS(r.y) = ..,z-o Bzm cos|ksam(z = 5)] cos| T (v = )] (4.6) ‘
. =
? and similar to Eq.(4.5), k;2m is defined as
V- (ke 2 B¥)
kz?m = (47)
-IVIT ) -k (ke < 77)
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The other field components in region I can be derived from the Maxwell equations.

= Jz,. E B,.( (k,,.z)sin[-;%(y - h)] (4.8)
Ey= JZ'. B2 EBlukn- (kzluZ)Slll[—'(Jl h)] (4'9)
. .
B,; = —ZEn, (4.10)
1
By, = z_,.E" (4.11)

The other fi~ld components in region II are

E2z - th k2 Z BZm(_)cos(kz')mz)sm[—_(y - ')] (4'12)
¢ m—O
Eyy = JZ,.—— Z Bamksom sin{kzomT) cos[ 5 (y - —)] (4.13)
C m=0
1
Bos = —Z—hEg, (4.14)
1
Bay = Z—hEzz (4.15)

In the above, 2, = %  is the wave impedance for TE modes. At z = q, the
continuity for B, requires

al sin nx

.E=:OB“ cos(k“.al)coslh—,(y - h)l

M
= Z Bym coslkzom(a; - ¢%)] cos[ﬂbl(y - g)] (4.16)

m=0

The E, continuity at z = a, gives

N
cos nr
Z Binkain _ sin(k”'al)cos[—h—(y - h)|

a=0

Z Bamkizm sinlkzom(ay - ‘)]C"Sl b (ll ” (4.17)

m=0
It should be noted that in Eqs.(4.16) and (4.17) the infinite series bave been trun-
cated into finite summations, and N, M are integers.
Setting

. a
Dm = Bomkz2m Sm[kﬂm(al - ,‘,)] (4.18)

then frorn Eq.(4.16) we have

Z Bnkn- (k,).d) )COS[——-(!I - h” = Z Dmkzam cos[——(y - ‘H (4.19)

nz=0 m=0
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Multiplying both sides of Eq.(4.19) with cos|3*(y - k)] and integrating from -} to ¢

over y , we obtain

Biuk 30 (kslual)‘-h = Z DmEpa (420)
m=0
where
Epm = /_‘ dycos[%(y - h)] cos[m(y - E)]
_ heb 1 m(b 2h)x a . m{b+2h)x "
= o Granm, * mb—nh. 2h,  + () sin —— ] 4
Ego =0 (4.22)
and

{2 (n=0)
€n =
1 (n #0)

Multiplying both sides of Eq.(4.16) with cos|%"(y - %)) and integrating from -$ to }
over y yield

E B,.. (k,;.a;)E,. = Bygq cos|ksoq(a) - —)]e, (4.23)

n=0

Substituting Eq.(4.18) into Eq.(4.22) gives

N .
n Dgegb a
3 B,,.::)s(k,,,.al)E,. = ki: coslkszg(ar - Z)] (4.24)
n=0 .
From Eq.(4.20) we have
Emzo DnEmn
Bja =

ksn * - sln in (k2100 )fn .

Inserting Eq.(4.25) into Eq.(4.24) and moving the right hand side of Eq.(4.24) to

(4.25)

its left hand side, we obtain a system of the equations which is the system of the

dispersion equation for the out-ridged waveguide.

M N
EmnEsn tan Semegd a _
mz:=o Om {n=0 kzin€ahy = COl(kﬂ"a’) kz2q cotlkszg(er 5)]} =0 4.26)
Eq.(4.26) can be written into a matrix form as the following
=0 (4.27)

Too Tm To. DO
Txo Tn Tn D,

.....................................
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where the element T, of matrix [T} is
EmnE” tan 6quqb a
= k - _@
qu k:ln(a h' "'CO'.( ’l.al) k!?' Cm[k:zq(a) 2)] (4'28)

and [D) is a n-vector.

4.2 Waveguide Computation

The requirement that the system of equations, Eq.(4.26) has non-trivial solu-
tions is that the determinant of matrix T(k.) be zero. If the determinant of matrix
{T(k.)] is viewed as a function of k., then the roots of this function are the eigenval-
ues. This problem is then reduced to finding the roots of the function of ., which
is denoted by DT(k.). This can be accomplished numerically. Due to the behavior
of function DT(k.) which is shown in Fig.6b, and the fact that the algorithm of the
most root finders converge locally, it is necesary to give a good initial quess for the
root finding subroutine. Therefore, it is convenient if we scan the roots at lower
order by simply computing function DT(k.) vs. k. and 'take the intersections of that
curve with the axis of k. as the guesses for higher order computation of the roots.
Here the Muller's method!**! is emploved in making the root finding subroutine.
If an eigenvalue of the waveguide has been found, the elements in the associated

eigenvector may be obtained through the partitioned matrix equation.
[Di] = =[Tix] ™" [Tio] Do (4.29)

D, can be arbitrary but subject to the subsequent normalization of the entire eigen-
vector [D]. In Eq.(4.29), the matrix [T is the partitioned matrix of matrix |T],
[Dy] is the vector that formed from vector [D] with D, removed.

As an example of the out-ridged waveguide, the low order approximation of the
determinant of matrix |T], function DT(k.), is plotted in Fig.6b . The first few
eigenvalues are shown in Fig.15a along with those for an rectangular example and
for an magnetron type waveguide example. For one eigenvalue (TE,, mode), the
convergence when the order gets higher is demonstrated in Table 1 by the computed

results.
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The dimension of the out-ridged waveguide,

The low order approximation of eigenvalue function,

For TE,, mode, the electric field E, at z=4,: N =15 M =15
For TE,, mode, the electric field E,at z=6,: N=30, M = 0.
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Table 1
N M kc(TEog mode)
10 10 91778
15 15 91624
20 20 91591
25 25 91555
30 30 91542
35 35 91528
40 40 91521

The solution of Eq.(4.26) may not be acceptable in case D, is not the dominant
component in th. eigenvector. Therefore, we may have to force any component in
the vector [D(k.)] to be arbitrary (for convenience we may put it to unity) in the
computing program. In order to estimate the accuracy of the solution, we define

an error vector [¢] through the following equation
[T(k)[D] = [¢] (4.30)

The maximum norm of the error vector may be roughly interpreted as the number
of the significant digits in the components in |D].1*¢! Then, the approximations to
all the field components in region 1 and region II can be obtained by substituting
the corresponding eigenvector into Eq.(4.12) to (4.20). The electrical field compo-
nents for the fundamental mode TE,, are plotted in Fig.7a to 7d for the out-ridged
waveguide with its dimensions listed in Fig.11a. The E, field at 2 = ¢, for low order
and for high order approximation are illustrated in Fig.6c and d respectively. The
edge effect can be seen in the vicinity of the corners of the waveguide.

In comparision. one of the eigenvalues for this example of the out-ridged waveg-
uide is also solved numerically by employing a PDE package PLTMG which can be
used to solve boundary value problems in the form

C(aSu)+ f(z,y, 4, Vu, A) =0 in 0
u=g(z,y) on
(a¥u) D = ga(2,5.u, A) on O-0,=0,
where 0 is a connected region in R?, n is a normal unit vector on the boundary,

and ) is a parameter. The coefficient functions a, f,g can be chosen so that the
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above equation is a linear elliptic, a mildly nonlinear elliptic or a linear elliptic
eigenvalue problem. Here our problem is the last case.!”) The package PLTMG uses
finite element discretization based on C° piecewise linear triangle finite elements,
adopted a procedure of a combination of inverse iteration and a multileve] iterative
technique. Iterated to level 4 with the number of triangle vertices 531, the result
of the eigenvalue for TE,, mode gives k. =0.9122. Ib order to check the accuracy of
the result from this PDE solver at the same iteration level, the same equation on a
unit circle domain subject to the same boundary conditon as Eq.(4.2) is also solved
using this PDE solver since this boundary value problem has an exact analytical
solution kc = 3.831706 (which is the second root of the Bessel fuction Jo(z)). For the
unit circle domain, from this PDE solver when it is iterated to level 4 with vertices

number of 542, the result is k. = 3.81.

Comparing to the double ridged waveguide, which has been utilized for mi-
crowave heating, peniotron RF structure and some other purposes, this out-ridged
waveguide structure is free from the trough modes. This is of big importance for
gvrotrons, especially for those working at higher harmonics where the mode com-
petetion becomes a big concern both to the stability and to the efficiency of the
device. The local trough modes exist in ridged and double ridged waveguides.[*6.48]
It can also be seen from the eigenvalue spectrum of the out-ridged waveguide that
the lower eigenvalues separated from each other very well compared to that of the
magnetron-type waveguide. This lends merit to the out-ridged waveguide with a
reduced mode competetion problem in gyro-TWA even when the bandwidth of the

ampifier 1s wide.

4.3 Computation of the Gain-frequency relation

In the previous two sections the eigenvalues and the associated eigenfunctions
for the out-ridged waveguide have been solved. This section deals the computation

of the gain-frequency relation of the gyro-TWA with the out-ridged waveguide.
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Fig.7 The electrical field transverse distribution of the TE,, mode.
in the outrideed waveguide:
a) E;inregonl, b) E, in region II,
¢) E,inregionl d) E, in region Il
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Fig.8 The electrical field transverse distribution for TE,; mode
in the outridged waveguide:
a) E,inregonl, b} E, in regon I,
¢} E,inregionl, d) E, inregion Il
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waveguide (or combined with conical waveguide) as the RF structure. Usually, an
analyvtical dispersion relation is derived or a partical simulation code based on di-
rectlly solving the equation of motion of electrons in the waveguide field and applied
magunetic field is used to get the neccessary theoretical properties for the analysis
or for the experiments in the publications.

It is well known that for TE,,, modes, circular waveguide has the expression for

the axial magnetic field component
B, = B%J,, (k.r)e™ (5.28)

Where k. = Pz p,, is the n-th root of the Bessel function J!,(z) = 0, and « is the
radious of the circular waveguide. The norm of the axial magnetic field is

a® m?
N= ?(l - F—)Jf,,(kca) (5.29)

mna

In applving the analytical results of gyrotron kinetic theory in Chapter 3, the gv-
rotron traveling wave amplifiers with circular wavegide is the simpliest case since
there is no summation in the obtained equations and all the coefficients A,,, are
just simply put to unity in the analytical results obtained in Chapter 3.

The numerical program to compute the gain-frequency functional relation with
any waveguide mode and two beam models (the annular beam and the rotating
electron layer beam) for circular waveguide is mace available. In the example
¢ = 2, the waveguide radious is chosen to have the same cutoff frequency as that
of the out-ridged waveguide in Fig.10s and TE;, the mode is chosen since for the
rotating electron laver beam model the beam-field interaction can take place only
when m = «. For « = 4, the operating waveguide mode is TE,;, and the computed
gain-frequency curve is in Fig.14c along with the beam parameters and the applied

magnetic field value.
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axis, i. e., for the rotating electron layer beam, the electron-field coupling defined
in Eq.(3.61) is nonzero only for m = 2. This means that there is actually no
interaction between electron and the waveguide field for even harmonic numbers;
A similar conclusion can also be made for TE wave modes with even n: there is no
interaction taking place for odd number cyclotron harmonic numbers. The norm

N of the axial magnetic field for rectangular waveguide is

N=/d,432(82)'
A

= %'ab (5.26)
Where
{ 2 (¢=0)
€g = (5.27)
1 (g#0)

In the purpose to facilitate the comparison the gyro-TWA with rectangular waveg-
uide to that with the out-ridged waveguide, in computing the gain-frequency curves
of the gyro-TWA with rectangular waveguide, we choose the waveguide dimensions
such that the cutoff frequency of its TE,; mode is the same as that of the TE,.
mode of the out-ridged waveguide; Moreover, we choose the same beam parameters
as those used for out-ridged waveguide cases. The computed gain curves are plot-
ted in Fig.13b to d with beam parameters and the applied magnetic field listed in
the figures. The waveguide geometric parameters are in the below of Fig.13a.
Due to the simplicity in manufacture, the rectangular waveguide is a good choice
for being utilized as the RF structure in the gyro-TWA or the gyrotron oscillators
at relatively lower harmonics of the gyration frequency. Another advantage to use
the rectangular waveguide in gyrotrons is that the output of the device does not
have to have a mode transformer in some cases. But at higher harmonics, the gain

is low, as illustrated in Fig.13.

5.3 Gyro-TWA with Circular Waveguide

Due to the relative simplicity for theoretical analysis and easiness for manu-

facture in the experiments, most gyrotron oscillators and amplifiers use circular
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shown in Fig.12b) to d) for s =2, s = 4 and s = 6 correspondinly. Fors=2and s = 4,
since the 2r mode is the best mode to choose in the magnetron-type waveguide
to work as the beam-wave interaction space in the gyrotrons, we set Ny =s. Fur-
thermore, we use the same beam parameters for the rotating electron layer beam
as those in the computation of the gain-frequency curves for the gyro-TWAs with
other waveguides for ¢ =2 and s = 4; For s+ = 6, the beam parameters are chosen
the same as those in [18], but the waveguide dimensions have been scaled to those
listed in Fig.12d from those in [18] in order to have the same frequency range of

the amplifiation.
5.2 Gyro-TWA with Rectangular Waveguide

The eigenvalues and the field solution are well known for the rectangular waveg-
uide. For TE,, modes, th.e axial magnetic component can be expanded into a series
of the Bessel function by the same approach used in Chapter 4 for the out-ridged
waveguide. Since the axial magnetic field of TE,, mode in the rectangular waveg-

uide is expressed as
b
B. =B, cos[qa—"(r - %)]cos[zb—(z - 5)]

= Z Aum-’m(kcr)e,mov {5.22)
m=-oc

we can obtain the coefficients A,,. in the above expansion simply by setting h =0

in Eq.(3.17) in Chapter 3 and we have

Apm = %Bolc—)ik,bcos Aa + (_)ne)ik,bco: *"]cos(mA.)
By cos( %} ) cos(m),) (m - even)
= { (5.23)
JBosin(%} ) cos(m,) (m - odd)

where h, = ? and

L& 4

ke= (T (T2 (5:24)

An = cos™! b% (5.25)

It is readily seen that, for odd n and ¢ =0, Aa = . if m is even, then the coefficient

Aam = 0. For the electron beam with all the guiding centers on the waveguide
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In order to be able to compute the gain-frequency curve, we have to evaluate the
norm of the axial RF magnetic field for the magnetron-type waveguide over its
whole cross section. The integral of the norm of the axial magnetic field can be

carried out as below.
N = / dAB%(B?)*
= [ anBEnr+ [ a8 B
A, Az

=L+1 (5.16)

where A4,,A; denotes the area in region I and region II respectively, and

I = /dAB BS,)*

BING . 2,8 JE (k.
Z 7; [;) '(kab)lg 9152(7)[1 +(1- k2°2)|11r((k :)’]2] (517)

I = / dA B, (B,)"
Az

< i e, B -
oy = L1 kea) + J3lkea)] = S1I7 k) + JE k) (5:19)
Faz = SV 2kea) + ¥ (koo = S [¥7ke) + Y (ko) (5:20)

I2e = (%Q[Jo(kcd))'o(kca) + Ji(kca)Y1(kea)] = g[Jo(kcb))b(kcb) + Ji(keb)Yy (kb)) (5.21)

From the waveguide field expansion given in Eq.(5.1) to Eq.(5.10), it is clear that
in the general analytical results obtained in Chapter 3, for the gyro-TWAs with
magnetron-type waveguide, F(R) is given by Eq.(3.45) with ¥ being replaced by
¥ r but no summation with », and with the coefficients A,,, in Eq.(3.45) being re-
placed by 4r. The programs for computing the magnetron-type waveguide eigenval-
ues. the coefficients in the field expansins and the gain-frequency functional relation
bave been accomplished. In order to facilitate the comparision to the properties
of the gyvro-TWAs with the otber waveguides, especially those with the out-ridged
waveguide, the beam parameters, applied magnetic field and the cutofl frequency of
the operating waveguide mode are set the same for the gyro-TWAs working at the

same harmonic of the gvration frequency. The computed gain-frequency curves are
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¥ . =
" B = —Jf PIRIEIC (62)
0
B" = =5 Y ArTUp(ker)e'™ (5.3)
ke F=-oo
EM = — 7 r-z.:wArl‘Jr(k r)e’T' (5.4)
EM = z AT (ker)e™ (5.5)
‘r=—c0
In region 1l (a < r <b), the field components can be expressed as
= J (keb) o
Bi” = Bo {Ja(ker) = = Yo (k. glol0~ta) 5.6
§) [ ( cf) Y'(k r) ( f)] ( )
B{® = —J ZB (V2 (ker) ;’,,(:cb)y (ker)]eio®=—ten) (5.7)
¢ a=o alker)
(2) _ ) Jo(ked) ., (000
By =& GZ_ZOB:- [Jaker) = iy Vatker)]erote=te (5.8)
Jo (kcb) o(0—
E® = B, —|J. (k. = Y! (k.r)]efo(0—0) 9
4 2:;; [ ( ) Yé(kcf) o( r)] (5 )
(2) _ ’ Ja(keb) . ja(8-0q;
B =i .,2:1,8"“ alker) - y.;(kcr)”""“”]‘” fomte) (5.10)
In the above,
_2A-1_ b
b= N7 3 (5.11)

It is required that at r = ¢, B, and E, be continuous. If in only o = 0 term in
the field expansion in region Il is taken, in the same way as that in section 4.1 for
the out-ridged waveguide, we obtain the approximate dispersion equation for the

magnetron-type waveguide as the folloWing:

Jo(kea)YJ(keb) = J5(kcb)Yo(kea) _ Nabo f: Jr (ko) sin(Lg-n)Jz

= 12
Jolkea)Yg(keb) = Jolked) Yy (kea) 27 feo Jr(kea) r_g, (512)

When ¢ = 2nr + 6, the solution must be single valued. This demands
T =n+mN, (5.13)

where T' and n,m N, all are integers. Ny is the number of the slots along the
periphery of the waveguide. Then we can have

2N 4By,
FxJi(keo) Vo (keb)

= NdBOI !
Ao 25 I3 (k.o )Yy (ke b)["

Ar

[Jo(ke8) Yo (keb) — Jo(keb) Yo (kea)] sin r—,,-e" (5.14)

(keo)Yg(keb) = J§(kcB) Yy (kea)) (5.15)
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Chapter 5 Gyro-TWA Devices with Other Waveguides

The gyrotron kinetic theory in Chapter 3 is a generalized one which can be
applied to different waveguide structures. In Chapter 4 the gyro-TWA with the
out-ridged waveguide has been analyzed and some gain-frequency curves have been
computed. This chapter is devoted to the computation of the gain-frequency curves
for gyro-TWAs with several other different shapes of the waveguides, still by apply-
ing the results obtained in Chapter 3.

5.1 Gyro-TWA with Magnetron-type Waveguide

The properties of the gyrotrons that utilize magnetron-type waveguide as the RF
structure have been investigated both theoretically and experimentally.!28.19.37.43} J¢
has been demonstrated by the experiments on microwave generation with
magnetron-type waveguide open resonators that this class of the gyrotrons can

achieve reasonable efficiency at higher gyration harmonics even with a modest elec-

. tron beam energy. The following simple analysis of the magnetron-type waveguide

field reveals that a high beam-field coupling may be achieved if the waveguide di-
mensions and the waveguide mode are chosen correctly.

Fig.12a illustrates the cross section of a magnetron-type waveguide with the
projection of the electron rotating layer inside the waveguide.

The Ritz-Galerkin method is employed here again to obtain the eigenvalue spec-
trum and the associated eigenfunctions for TE wave modes. The axial magnetic
field and other field components in region I (r < a) are expanded into the series as

the following

oc
Bl= Y ArJr(kr)e™ (5.1)
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in a certain frequeacy range and at the same harmonic number, the waveguide di-
mensions must be much bigger for the higher mode than the waveguide dimensions
for the lower mode. But, the same beam energy gives the same Larmor radius, the
beam occupies a much small portion of the waveguide cross section and has a much
weaker coupling with the fields at the higher mode even though the higher mode
contains more higher order multipole field. Mathematically, this can be understood
by observing the behaviors of the higher order Bessel function of small argument.
As a comparision with the lower mode, we take TEq; as an example. The electric
field components of this mode in the cross section of the out-ridged waveguide are
shown in Fig9a to d . It is seen that the field is quite inhomogeneous in the
waveguide. For the out-ridged waveguide having dimension as that in Fig.10a ,
the cutofl wavenumber of TE,, is 32.24; For TE,; mode, the cutoff wavenumber is
10.7. For a gyro-TWA designed to operate at 51.2 GHz, then the waveguide bhas the
dimensions listed below Fig. 10a , if it operates with TE,, mode; the dimensions
have to increase to those listed below Fig. 11a, if the gyro-TWA is still operated at
51.2 GHz but at TEs; mode. With all the same beam parameters as those specified
for the corresponding harmonic for TE;; mode, t}» linear gain-frequency curves for
gvro-TWA with out-ridged waveguide at TE¢; mode for s = 2 and & = 4 are computed
and shown in Fig. 11b and c correspondingly. It is seen clearly that the gain is
lower than the corresponding one at TE,; mode. The first ten coefficients in the

expansion of the field in the waveguide in Eq.(4.4) are listed in Table 3.

Table 3 The Coefficients B,, of TE,, Mode

- B,o ! B, | B, Bis B4
~0.4847 [ -.5127 x 10°T¢ 1.090 -.9778 x 10°1® -3.218

: B ‘ B¢ B,y Bis By

. 0.1283 x 10717 9.623 { 0.1558 x 10=T7 | —0.1431 x 10~ | 0.8756 x 10~7°
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Eq.(4.25), the corresponding coefficient A,,, is equal to zero. For TE,, mode, the
first ten coefficients in Eq.(4.4) are listed below. It can be seen that the odd n

coefficients actually are equal to zero, only even n terms exist.

Table 2 The Coefficients B,. of TE,, Mode

Bo B, B, B,s | B4 ]
-0.7654 -.9707 x 1017 1.000 ~.2937 x 10°7% | ~0.8546 x 10~ |
Bys Bje B,, Bys ! B;o
[ —0.8612 x 107°° | —.1283 x 10~* [ 0.4692 x 107%° | ~0.7586 x 10~V 1 0.4973 x 10~7>

We may conclude that for rotating electron layer beam at this waveguide mode
the beam-field interaction is practically possible only for even cyclotron harmonic
number a.

However, for some other modes, for example TE,; mode, for even n,Bya = 0.
In this case, the cyclotron interaction can take place only for odd cyclotron harmonic
numbers. This is also the consequence of the coefficients. It is worth noting
that from the analysis on peniotron!*®:5°) they conclude that the device can only
operate at even gyration harmonics in their analysis when their electrostatic field
configuration approximation is used.

In order to achieve a good coupling between the waveguide field and the beam,
the operation of gyrotrons at higher gyration barmonics in general requires working
at higher order waveguide modes because the higher order multipole field compo-
nents are bigger in higher order modes. But this does not always mean that a
higher order waveguide mode is better than a lower order mode for operating a
gyrotron at the higher harmonics. Since the higher order mode has a higher cutoff
frequency than the lower order mode for the same waveguide geometry, if one wants
to operate the device at the same harmonic with the same waveguide, one has to
operate the device at higher fequency, and in consequence, apply a higher magnetic
field to the device than one operates the gyrotron at a lower order waveguide mode;
If the electron beam energy is kept the same, the higher magnetic field decreases
the electron Larmor radius very much. As a result, the coupling between the beam

and the fields becomes weaker; On another hand, if one wants to operate the device
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The obset of oscillations may be troublesome in developing a high power gy-
rotron traveling amplifier. The reflection in the waveguide, due to the discontinuity,
tapered section or some other reasons, is significant in the vicinity of the cutoff fre-
guency of a waveguide model®); And also, both from the linear theory and the
nonlinear theory, the cvclotron resonant interaction is strong if the frequency is
close to the cutoff frequency. Except for mode competition, these two factors per-
haps are chiefly responsible for the instability of the gyrotron amplifier operation.
Adopting some techniques developed for the conventional traveling amplifiers, such
as the introduction of the waveguide wall loss to the amplifier, may subdue the
instability of the gyro-TWA devices due to the reflections and absolute instability.
If the waveguide wall has some loss due to the finite conductivity or due to the
coating with lossy material on the wall, the attenuation of the waveguide in general
is a function of frequency and this frequency dependence is different for different
wave modes. But in general, the attenuation is most significant at the vicinity of
the cutoffl frequency of that mode. Therefore, it is possible to chose lossy material
and to distribute it on the waveguide wall in such a way that the frequency depen-
dence of the waveguide attenuation cancels the effect of the reflection and the over
high gain near cutoff. Then we can gain the benefit in two folds: not only does
it overcome the oscillation problem, but also increases the bandwidth significantly.
Of course, the correct choice of the applied magnetic field and the beam parameters
is also very important for the stable operation of a gyrooTWA. A comprehensive
study of the stability of the gyro-TWA has to resort to the multimode analysis. In
doing the numerical computation, the single mode analysis of the open resonators
can offer the Q values and the reflection coefficient at the end of the tapered waveg-
uide for all the possible oscillation modes.I?’-%°] However, there is no intention to
study the stability of the gyro-TWAs in detail here. In the computing program, we
put the waveguide attenuation into consideration by simply adopting the formula

given by the perturbation method for the empty waveguide analysis.

From the numerical results of the waveguide computation, for the operating

TE,, mode, the coefficient in the field expression, for odd n, B,. = 0, and from
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In computing the gain-frquency dependence by applying the analytical results
developed from plasma kinetic theory in Chapter 3, in the caculation of D(K) in
Eq.(3.55). we need to caculate the norm N of the axial component of magnetic field
of the out-ridged waveguide. This can be accomplished by evaluating the following

integration -of the axial magnetic field expression in section 4.1.
N= / dAB%(BY)*
A

= dAIB?z(B?z). + dA”Bgz(Bgz)‘

Ay Al

X . [ h 2 o N7
= Z B}, dz/ dycos*(k;1nz)cos [h—(y - h))
=0 z v ’

=-—a; =—h'

& t H

+2 Z Bgm/ dz/ dycos"’[k,z,,,(z - f‘.)]cosel_"ll(y - 9)]

=0 z=—a, y=-}% 2 b 2
hy — in(2ks1n '

= ZBJQ'.IQM + sin(2k;, a,)]

k
n=0 z2ln

b = 2 a Sihl2k;2m(% -0 )]
+3 2 Bi{(G-a)+ - } (4.31)

m=0
In the above, the coeficient 4, is given by Eq.(3.21) and 4, is the area of region
I, A;; is the area of region II.

With the formalisn: developed in Chapter 3, a numerical program is written and
supplemented with a program solving eigenvalues and field coefficients in the series
in Eq.(4.4). following the description in section 4.2. The dimensions of the example
of the out-ridged waveguide are listed in the below of Fig.10a. The operating mode
is chosen to be TE,,. The distribution of the electric field components in the cross
section of the waveguide for this mode are plotted in Fig.8a to d. The reason for
chosing this mode is simple. This is a relatively lower mode and it bas a very good
separation from the neighboring modes so the mode competition of the amplifier
would not be a serious problem. The spectrum for the eigenmode is shown in Fig.
I5a.

The computed gain-frequency curves are plotted in Fig.10b to d with the beam
parameters for s = 2, # = 4 and « = 6 respectively.

For a higher mode TE,., gain-frequency curves are plotted in Fig. 9b to d witt

the beam parameters for s = 2, s = 4 and & = 6 respectively.
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rectangular waveguide.
' ' ¢
01 10 11 02 20 12 21 0322 13
out-ridged waveguide
1
o 10 " 02 12 2 03 2213
(
magnetron-type waveguide
¢
11 21 31 41 51 61 0 12 2 0213 23
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. !
- Fig.15 The distribution of the first few eigenvalues.
Lo (the numbers below the lines are the TE mode indexes).
r a) The rectangular waveguide,
‘@ b) The out-ridged waveguide, (
: ¢) The magnetron-type waveguide for N=6,
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®
Chapter 6 Comparision and Conclusion
& .
In this chapter, Section 6.1 is devoted to 5comparision of the gyro-TWAs with
several different waveguides analyzed in the previous chapters. In Section 6.2 some
PY conclusi ns are made for the gyro-TWAs from the analysis in the present work.
6.1 Comparision
e
In the previous chapters, the gyro-TWAs with several different waveguide struc-
tures have been analyzed and the gain-frequency curves for some examples of the
gyro-TWAs have been computed. This section is devoted to a comparision of the
® gyro-TWAs with different waveguides through the computed gain-frequency curves.
Even though the numerical programs are able to deal with both the annular
beam and the rotating electron layer beam, all the computed examples of the gain-
¢ frequency curves are with the rotating electron layer beam only. The reason for
doing this is that Eq.(3.61) indicates that the rotating electron layer beam has
a bigger beam-field coupling than the annular beam; Furthermore, most of the
- reported experiments of microwave generation at higher harmonics of the gyration
frequency utilized the rotating electron layer beam. Also, although we can treat the
beam velocity spread for the Lorenzian distribution, in all the examples computed
| ' for this comparision only the ‘cold’ beam model are used, since the gain-frequency
! ° functional relation is not sensitive to a small velocity spread in the electron beam
for fast wave devices.
For the gyrotron traveling wave amplifiers with the out-ridged waveguide and
b that with the rectangular waveguide, in the computation we set the same TE,,
operating waveguide mode, the same cutoff frequency, the same beam parameters,
and the same beam-field interaction length. Along with the waveguide geometric
-
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parameters listed below Fig.10a, the gain-frequency curves are plotted in Fig.108
to d for the examples of the gyro-TWAs with the out-ridged waveguide at s = 2,
s = 4, and » = 6 respectively. The gain-frequency curves in Fig.13b to d are for
the examples of the gyro-TWA with rectangular waveguide at « = 2, s = 4, and
s = 6 correspondingly, while the waveguide geometric parameters are in the below

of Fig.13a.

It is seen from the computed results that, at s = 2, the gain at the center fre-
quency of the band of the gyro-TWA with the out-ridged waveguide is 3 dB higher
than that of the gyro-TWA with the rectangular waveguide at 40 dB gain level. Of
cource, this is not a big difference. However, at s = 4, the difference of the gain
at the center frequency of these two amplifiers is about 6 dB at 25 dB gain level.
For ¢ = 6, at 12 dB gain level, the difference in the gain is 3 dB which is a very
big difference. This is to say that, as the harmonic number & goes higher, these
results demonstrate that the gain of the gyro-TWA with the out-ridged waveg: e
decreases much slower than the gain of the gyro-TWA with the rectangular waveg-
uide. Therefore, the gyro-TWA with the out-ridged waveguide is much better to
operate at higher harmonics than the gyro-TWA with the rectangular waveguide.

For the gyro-TWA with the magnetron-type waveguide, we always use 2r mode
in the computation examples. Therefore, we set s = N, for all the examples. The

gain-frequency curves are plotted in Fig.13b to d.

Comparing these curves in Fig.13b to d with- those in Fig.10b to d, we see that at
e = 2 the gyro-TWA with the out-ridged waveguide at the center frequency has a gain
5 dB higher than that of the gvro-TWA with the magnetron-type waveguide at 40 db
level. At s =4, still with the same beam parameters as those for the gyro-TWA with
the out-ridged waveguide at &« = 2, the gain of the gyro-TWA with the out-ridged
waveguide is 10 dB higher than that of the gyro-TWA with the magnetron-type
waveguide at 20 dB level. But, comparing the gain in Fig.10d with that in Fig.134 at
s =6, it is seen that the gain of the gyro-TWA with the magpetron-type waveguide
having 6 slots along the periphery of the waveguide is higher than the gain of the

gyro-TWA with the out-ridged waveguide even the current in the former is smaller.
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This is because that the magnetron-type waveguide structure has six slots along the

periphery of the waveguide, which is a much more complicated structure than the
out-ridged waveguide, therefore it is better to enhance the beam-field interaction

at « =6 than the later. 8

-

Comparing the gain frequency curves in Fig.10, Fig.12 and Fig.14, we see that i
the gyro-TWA with the out-ridged waveguide and the rectangular waveguide have :
a much better ability to achieve higher gain at higher harmonics than that with
the circular waveguide. The gyro-TWA with the circular waveguide even for high

angular number mode TE,,, the gain at ¢ = 4 is still much lower than the gain of

ISRERTIEY Ny O

the gyro-TWAs with the out-ridged waveguide and with the rectangular waveguide
though the latter two waveguides are working at the lower waveguide mode TE,.. i
It is seen that the shape of the gain curves of the gyro-TWA with the circular
waveguide is different from those in Fig.10 and in Fig.12. This difference is due to
the different frequency dependence of the wall loss in different waveguides, which )
has been taken into account in the gain-frequency computation by adopting the j
formulas given by the pertubation method. In general, from all the computed
gain-frequency curves it is seen that for any specified waveguide structure the gain

of the gyro-TWA devices becomes smaller as the number of the harmonic goes

M ) N M

higher.

In conclusion, the gyvro-TWA with the out-ridged waveguide has a simple struc-

ture and up to « = 4, the gyro-TWA with this waveguide structure demonstrates the
advantages over the gyro-TWAs with other waveguides. However, if the harmonic
number is higher than 4, perhaps the magnetron-type waveguide is still a better

choice than other existing waveguide structures for gyrotrons at higher harmonics.

6.2 Conclusion

In the previous chapters, the linear and the nonlinear theory of gyrotron travel-

ing amplifier have been developed with a general beam-waveguide model. With this

unified theory, if the eigenvalue and the field in the waveguide have been found, the
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beam-field analysis can be accomplished either by the numerical solution to that set
of the nonlinear equations or by applying the analytical results of gyrotron kinetic
theory developed in Chapter 3. The general gyrotron dispersion equation is derived
both from kinetic theory and from that set of the nonlinear equations which are
derived from the equations of motion of the electrons in the electromagnetic field
in the waveguide in the frame of the weakly irregular waveguide theory. The linear
and the nonlinear theory are valid for the fully relativistic electron beam and for
large orbit motion of the electrons. From the linear theory it has been proved that
the gyrotron interaction at the s—th barmonic is associated with the 2s—th order
of the multipole field in the waveguide, if the field is expanded around the guiding

center of the electrons.

From the computed gain-frequency curves for the specified electron beam pa-
rameters, it is seen that the gain of the gyro-TWA with any waveguide structure
becomes smaller as the number of the barmonic goes higher, since the components
of the higher order multipole field become smaller. This concludes that in general
the gyrotrons working at higher harmonics demand higher beam energy, especially
in the transverse direction. The waveguide structure in a gyro-TWA plays a very
important role. This has been demonstrated by the analysis and the computed ex-
amples in the previous chapters. In this work, and also by the reported experiments

of microwave generation at higher harmonics of the gyration frequency.

Through the numerical results of the examples, the advantages of the gyro-TWA
with the proposed out-ridged waveguide have been demonstrated. These include
the simplicity in the configuration comparied to magnetron-type waveguide; the
lower operating mode but still with high gain per unit length; the alleviation - -f the
mode competition problem by the good separation of the lower modes. For a gyro-
TWA with the out-ridged waveg uide, when the number of harmonic goes higher, the
gain per unit length decreases much slower compared to the gyro-TWA with circular
waveguide and to the gyro-TWA with the rectangular waveguide. Comparing to
the waveguide utilized in ‘peniotron’, the out-ridged waveguide is free from the local

modes or ‘trough’ modes. This is very important for the stability and efficiency of
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the devices.

Another obvious advantage of the out-ridged waveguide is its high power han-
dling ability compared to the magnetron-type and the ‘peniotron’ waveguide. Due
to the two pairs of the ridges in the waveguide used in the ‘peniotron’, the power
handling capability of the device may be reduced, so it may not be suitable for high
power microwave generation or amplification.

The rectangular waveguide has a simple configuration and is also easy to man-
ufacture, for the second harmonic operation, the coupling between the field and
beam is just slightly smaller than that for the out-ridged waveguide but is poor at
higher harmonics. The gyrotron traveling amplifiers with the out-ridged waveguide
can achieve relatively high gain up to 4-th gyration harmonics with the moderate
electron beam energy.

The configuration of the circular waveguide is simple and it has been widely
utilized in gyrotron devices. From the theoretical prediction and from the exper-
imental demonstration, the gyro-devices with the smooth circular waveguide can
not go to higher gvration harmonics as beyond 3 or 4. Furthermore, the overmode
operation will have a big problem of mode competition especially for wide waveband

amplification.
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Appendex I Derivation of the Dispersion Relation
for TM Mode of the Out-ridged Waveguide

In this derivation we still adopt the notations in Fig.5.
For TM modes, the solution of the axial electrical field in the waveguide is
assumed in the form E, = E2e’(“'~%:2) then E? is governed by the equation

2 2 )
A AR 12 (1.1)

(522 + 52

subject to the boundary condition on the perfect conducting wall

where

- k? (1.3)

The axial electric field in region I and region II can be expanded into the series of

the eigenfunctions in that region.

E?,(z.y) ='gElu:i:(kzlnz)Sinl%(y—h)] (14)
ES.(z.9) = Y Eomsin [bszm(z = 5)sin[ 27y - g)] 1)
m=1

The other field components in region I are derived from the Maxwell equations

ko= cos . (n¥
E?z = Jk_; E Einksin —sin(k’"z) Sm[h—.(ll - h’] (1.6)
€ ax=t
E° = ke ZOEE mrsin(k e [nr( -k)] . 1.7)
ly"J";‘E.=) I.TITZOS z1a Z]COS ‘E ¥y ( .
B}, = - Eyy (1.8)
1
B:)V = ZE;, (1.9)

and in region II, the other components are

ks . mr b
E}, = ~ie Y Ermkizm cos(kszmz) sm[T(y- 5)] (1.10)

€ m=1
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ES, = Jk, E E2m( T) - sm(kssz)cos[—-(y - -)] (1.11)
€ m=]
BY, = -ZEQ, (1.12)
1
B, = 5-Eus (1.13)

where 2, = 2+ is the TM wave impedance.
Using the continuity conditions at z =, for E, and B, in the same way as that
for TE modes of the out-ridged waveguide in Chapter 4, a dispersion equation can

be obtained for TM modes as

M N
EmnEgn tan Ogm €qb e _
,,,Z=:o Dm{z_: PRPAD cot (kz1n61) Fore cot[kzz4(e, 2)]} =0. {1.14)

Where

Eam = [ dysin[32(y - W] sin] (v - )

_ R 1 1 . m(b—2h)x a . m(b+2h)n
T 2r (mb + nh, " mb - nh.)[sm 2h, +(=)" sin 2k, ] (1.15)
Eoo =0 (116)
In matrix form, Eq. (1.14) becomes
[T(k)][D] =0 (1.17)
where the element T,,, of the matrixis
EmnEqn t Semegh
Tng = pon _T:“(k,,,.a,) - 'k;' cot]kszq(2; — g)] (1.18)
and _
2 (g= 0)
€= - {1.19)
1 (¢#0)

Then, the roots of the determinant of matrix [T(k.)} give the eigenvalues of the
waveguide for TM modes. The associated eigenfunction of a eigenvalue can be

obtained by solving a system of the algebraic equations Eq.(1.14).
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Appendex II Angular Integrals

{
Some angular integrations in Chapter 3 are derived in the follows. For the sake
of space saving, in some equations in the below the double subscripts or superscripts
may occur. Ibn those cases, the superscript or subscript on the both sides should
be taken correspondingly. From Eq.(3.41), {
1
Jr = 5-58(R ~ Ro)
1
= Zrrrom g0 (€= &) =86+ L) Alr) (11 -1) .
where
1 r-<r<ry
alr) = {
0 otherwise.
re =Roxn (
Using Graf's addition theorem and with reference to Fig.3, we can have
ot _, = / decxr€e=IV J  _(keR) /R :
- _ ‘
1 i A
= Syt L Imeser(henther) [ e e+ 60) + 56 - €l Al
- 1 —-ym¥ - . . -
= rrremEt IMY Jn—o{kcR) cos|(m — 8)¥ % &) A(r) (11 -2) 1
Since 1\
_OR _ r ‘
cosV¥ = "R cos |
3R r .
sip¥ = 736 = ﬁsmf

we can have

wd/r _0frOR 8Ir T

n ~ oR on TR RS i
] .18 ;
- ajr’:‘“?aL: v |
Thus, we bave
T eanye e OJr _ cos(s' £1)€-A(r) (o' +2)
(o'21)€ ¢ Y /R _ =
. dfe’ e 3R = :rrf sin £° s (Il ‘)
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dEe’("*l)‘e'j' aaf,R - _cos(a +1)6-Ar) & (I -5)

- R arrisinéo (&' - 2)

T
=¥ [ ggetreimme-iv (e R)ev 2R
- oR
1

1
- _e=ym¥ g _ _ _
= rrsmbe’ {=5keridm—s(kcR) cosl(m — 8)¥ - £

W:‘:

m—e-—1

= ko a(keR) cosl(m — & — 2)¥ £

+{m - e 1)Jmop-1(kcR) cos|(m — & = 1)¥ £ &)} (IT - 6)

r
e-,mw dfe*:’fei("’""”“'.lm-.“(k.:R)e"%

m-—94]

1 ; 1
=~ emim¥y{_ 7 - -

+ %kc"l-]m-w?(kcm cosj(m — s + 2)¥ % £}

—(m =82 1)Jmogs1(kcR)cos|(m — 2 + 1)¥ % &)} (Ir-1)
Thus, we can obtain the following several integrals:

V, = ‘1’;-.-1 + w;-o+l
1

—_—
nrri sin §o

{-—%kcr;.l,,._,..g(ch)cos[(m - o= 2)¥ + &

-ymV¥

=€

1
+ ékcr, Jm—ess2(kcR)cos|(m ~ s + 2)W¥ + &)

+(m - 82 1)Jm_yoy(kcR)cos|(m = 8 — 1)¥ + &)

-(m-s% 1)J,,.-,+,(ch)cos[(m-a+l)\l’+€o]} (71 - 8)

V.= ‘P;—l-l - \I’;_"H
1
xrresin £

{—km Jm—s(kcR) cos|(m — &)¥ + £}

= e—jm'

{=kcriJm-s(k.R)
+(m=-ex1)Jmpo1{kcR)cos|(m = 8 = 1)¥ + &)
+(m = 8% 1)Jm_ppr(kcR)cos{{m — s + 1)¥ + §)
- %k,nJ,,.-._g(ch)cos[(m -8 =2)¥ + &)

- %kcr.J,,._,.,g(ch) cosf(m - & +2)¥ + ]} (I1-9)
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Vo =V + Voo
1

arri sin §o

{- :l'—)kcr;J,,,-.-g(ch) cos|(m - & - 2)¥ = &

-—ym¥

=€

+ %kcrglm_,+g(k¢R)cos[(m -+ 2)¥ - &)
+(m—ex1)Jm_y-1(kcR)cos|(m—2o-1)¥ - £o)

— (= 8% 1) Imespr (keR) cos](m = s + 1)V = o]}

Ve =V oy — mestl
_
#rrf sin §o
{—kcr, Jm—s(kcR) cos|(m — &)W — €0l

= ¢ ImV {=kertdm—s(keR)

+{m-esx 1)Jm—¢-1(kcR)cos|(m — e - 1)¥ - £o)
4 (m = 82 1)Jmogsr(kcR)cos|(m -2+ 1)¥ ~ éo)
- %kcn o —sz(keR) cosl(m = & = 2)¥ = &)
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Appendex III Radial Integrations

For the sake of saving space, some of the following derivations double subscripts
are used. In any case, the sub- and supper-scripts must be be taken correspondinly.

From the Graff’s addtion thorem and with reference to Fig.3, we have

[ <]
Im(ker)e™E = N T (k. R)u(keri)e?Y (111 -1)
and since dr = r;sin £d¥, we may write

r3 )
[d,:—a]r = drkc"eijQi-.Jm:n(kcr)

.8
k 3
— ﬁ m-a(ch) d¥ e (mFNE gF(m—n)¥
2n —x

k oo . '
= 0—; Jm-n(ch) Z Jm*.l(kcr‘)J',(ch) d\ye;)(m_,t, )W
< = =00 -

n

= kch;.—.(ch)Jl$l(kcrl) (I,I -2)

v-] = / : drkere™ ¥ - Jmz) (ker)
- %{_kcr,.zg,_,(kcnu.;,(k,n) +(m = s )5, (keR)J 2 (kert)
+(m=ex )7, (keR)Jo-s (keri)
- %kc,—,.{?"_,_z(ch)J:I:(kcft)
_ %kcr,J,.,,_,.,,g(ch)cos[(m-0+2)‘1’1501} (111 - 4)
¥ = /' drkre’ ™ ¥ + Jmz: (ker)
- l:—:{(m ~ e )2, (kR)J 2 (kert)
= (m—ex )7, (keR)Jo-2(kert)
- %kcr,Jf,,_,_,(k,R)J:ﬁ(kc'l)
+ skeriImestalkeR) cosl(m = 8 + ¥ £ £o]) (s -s)

Thus, we obtain the following several quantities as

®= IO;--]' - [¢;-n]'
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= 2k J2 _, (k. R)J,(kcrit) (1711 -6)

Vo= Iw—]r - [‘Pc-,v
2k2
ke

+{(m = &) (kert) +

{-ker 22 (ke RV (ker)

e+1
kers

Jorr(ker)] 5oy (kcR)
-1 .

+1m = )iy (kert) + T o (ker )} s (1 R)
(4

- %kcr, i (ker) 2,4 (k-R)
- Skendipalben) B, o(kR)} (111 -1)
Vo= Wl = [Vealr

25 {{(m = o)ty (ker) +

= (m — &)Jo_y(kcrt) +

sa+1
kery

a—1 2

PR Ju—l(kcrl)]Jm-a+l(ch)
1

+ Ekc’l J:-z(kcfl)']:---pz(kck)

= SkenTsatben) Ja_y_o(keR)} (111 - 8)

J..Q,.] (kcn)]J,i_,_l (ch)
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