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SUMMARY OF RESEARCH COMPLETED

Research on gyrotrons under this contract was carried out over a four-

year period with support by the Office of Naval Research. The central

emphasis of the research was to expand the theoretical base underlying

gyrotron-type amplifying mechanisms and oscillators, and to test the theory

and explore new mechanisms by direct experimentation.

The most notable advances include the following:

1. Complete formulation of the linearized theory of gyrotron

slow-wave amplification for TE and TM -modes including
on on

effects of finite beam geometry and finite thermal velocity

spread.

2. Experimental demonstration of slow-amplifi:ation for TE 0 1

modes, with observed gain of 53 db, power output of 20 kW,

and electronic efficiency of 10% at 6 GHz.

3. Experimental operation of quasi-optical gyrotron oscilla-

tor, with power measurements on harmonics up to the ninth,

giving sub-millimeter wave oscillations using magnetic fields

below 15 kG and beam energies below 20 kV.

Copies of all major publications and reports which resulted from this

research program are appended to this report. The list of these follows:

1. "Linear Theory of Gyro-Slow-Wave Amplifier for TEon-Modes in a
Dielectric-Loaded Cylindrical Waveguide," Soo Yong Park, J. Mark Baird,
and J. L. Hirshfield, unpublished.

2. "Linear Theory of Gyro-Slow-Wave Amplifier for TMon-Modes in a

Dielectric-Loaded Cylindrical Waveguide," Soo Yong Park, J. Mark Baird,
and J. L. Hirshfield, unpublished.

3. Invited paper. "Theory of a slow wave cyclotron amplifier," K. R.
Chu, A. K. Ganguly, V. L. Granatstein, J. L. Hirshfield, S. Y. Park,

and J. M. Baird, Int. J. Electronics, 51, 493 (1981).
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4. "Measurements of Gain for Slow Cyclotron Waves on an Annular Electron
Beam," H. Guo, L. Chen, H. Keren, and J.L. Hirshfield, Phys. Rev.
Lett. 49, 730 (1982).

5. "Cyclotron Harmonic Maser," J. L. Hirshfield, International Journal of
Infrared and Millimeter Waves 2, 695 (1981).

6. "Space Charge Effects in a Gyrotron Employing a Solid Electron Beam,"
H. Keren and J. L. Hirshfield, International Journal of Infrared and

Millimeter Waves, 2, 1097 (1981).

7. "Bernstein-Mode Quasioptical Maser Experiment," N. A. Ebrahim, Z.
Liang, and J. L. Hirshfield, Phys. Rev. Lett. 49, 1556 (1982).

8. "Bernstein Mode Quasi-Optical Gyroklystron," Z. Liang, N. A. Ebrahim,
and J. L. Hirshfield, International Journal of Infrared and Milli-
meter Waves 4, 423 (1983).
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Hirshfield, unpublished.
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LINEAR THEORY OF GYRO-SLOW-WAVE-AMPLIFIER FOR TEon-MODES
IN A DIELECTRIC-LOADED CYLINDRICAL WAVEGUIDE

I. INTRODUCTION

Recently much interest has been shown in gyrotron-type microwave generatinq

(or amplifying) devices[l ] utilizing transverse electron beam energy in a

strong guiding magnetic field. An electron gyrating in a magnetic field

shows negative mass response in its rotational motion when it interacts

with an electromagnetic Wave. This negative mass behavior leads to an

azimuthal bunching and thus induces a negative mass instability.

There are two types of instability driving forces; a direct electric force

E and a magnetic pondromotive force v x B ; the former one leads to the

famous cyclotron maser instability (CMI)[ 2] and the latter one leads to

the Weibel instability[3]. Chu and Hfrshfield[ 4] analyzed both mechanisms

in a unified treatment for a plane wave in a uniform (unbounded) plasma

and showed that they are competing with each other -- the cyclotron maser

instability dominating in a fast wave region and Weibel instability

dominating in a slow wave region. For a plane wave in an unbounded system,

the electrons in the plasma itself play the role of active medium to make the

phase velocity fast or slow. This requires a very dense electron beam.

In practice, it is desirable to provide this separation in a more efficient

• way. A fast wave can be easily achieved by a waveguide with a bare conduc-

ting wall because the phase velocity in a wavequide is always greater than

the speed of light in a free space. Conventional gyrotrons operate near the

cutoff region where the cyclotron maser instability is dominating. In order

to provide a slow wave where Weihel instability is dominating, one must

-1-



*. introduce a slow wave structure inside the waveguide -- either a periodic

* structure or dielectric layers.

A dispersion curve for a waveguide with slow wave structure shows a nearly-

straight section with a gentle slope within the range of moderate electron

beam energy over a wide range of frequencies. Then the electron beam line

can be chosen to be parallel and close to this section of the dispersion

curve inducing strong instability over a wide range of frequencies. This

broad band instability may provide us with a wide-band amplifier or slow-wave

gyrotron-type device.

The dispersion curve with dielectric layers shows an almost unlimited nearly

straight section, while the one with periodic structure bends over becoming

periodic which limits the intrinsic bandwidth. Of course, even with dielectric

layers the coupling between electron beam and electromagnetic wave is

substantially reduced at higher frequencies limiting its bandwidth. However,

this limitation seems to be less severe than that for waveguides with periodic

structure. Another advantage of dielectric layers over periodic structure

may be its simplicity in fabrication and theoretical analysis. In this

paper we restrict the analysis to an amplifier with dielectric layers.

We consider a hollow electron beam, initially with each electron gyrating in

an equilibrium orbit in a uniform guiding magnetic field, introduced into

an interaction region of a cylindrical waveguide loaded with an arbitrary

number of concentric dielectric layers. The electrons now interact with the

electromagnetic wave, get modulated and exchange energies. The development

of the electron state and the electromagnetic wave along the interaction tube

is completely determined by coupled Maxwell-Vlasov equations.

-2-
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With our primary interest in the theory for an amplifier, we assume that the

system is stationary in time (no absolute instability) and then one can reduce

the problem into a one-dimensional boundary value problem which can be analyzed

by Laplace transformation. The coupling between the input signal and the

beam modes is completely determined by the boundary condition at the input

end of the amplifier which means that one can calculate the insertion loss.

In this paper we wish to carefully develop a gain theory of an amplifier with

dielectric slow wave structure for TEon-modes. Whenever assumptions are made

we point out their motivation and limitation. Throughout this paper we

assume that electrons and electromagnetic waves are described by linearized

Vlasov-Maxwell equations and that the space charge effect can be neglected.

Furthermore, we make two more technical assumptions: the coupling through the

electron beam between TE and TM modes, and between different radial modes, is

negligible; otherwise the analysis is completely general.

In Section 2, an expression for the perturbed electron distribution function

in terms of the integral over unperturbed characteristics is obtained for

an arbitrary electromagnetic wave.

In Section 3, the linearized Maxwell equations with a source term from the

perturbed electron beam are discussed. The TEon-mode is separated out

and the dispersion relation including the source term is derived. Here we

extensively use the results of a general analysis[6] for an empty waveguide

loaded with multilayers of dielectrics obtained previously.

In Section 4, the source term for a hollow electron beam is calculated.

The calculation is straightforward but tedious, and two appendices at the end

-3-



are given for this section. Two major complexities are due to the finite

geometry of the electron beam and the non-harmonicity of electromagnetic

waves seen by electrons. The former one was often neglected in earlier work

and the latter one requires a harmonic expansion using the Graf's Addition

Theorem for Bessel functions.

in Section 5, the dispersion relation is solved to calculate gains. Some

specific examples are calculated for various sets of parameters. In the last

section, the physics learned from this work is discussed.

-

I
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II. LINEARIZED VLASOV EQUATION

Consider that a hollow anular electron beam (such as from a magnetron injec-

tion gun) is introduced along a guiding magnetic field into one end of a

cylindrical waveguide which is loaded with an arbitrary number of concentric

dielectric layers. The electron beam is assumed to be sufficiently tenuous

so that its space charge effect can be neglected initially in its

equilibrium state in a uniform magnetic field, and thus each electron is

gyrating about its guiding center at r = R with its Larmor radius r LL

The electrons now interact with an electromagnetic wave and azimuthal bunching

occurs, leading to a negative mass instability if the conditions are right.

Neglecting the collision effect between electrons, the dynamical development

of the electron state in an electromagnetic field is qoverned by the Vlasov

equation. With the electron distribution function f(*,U;t) in the phase

space, where

= $/m = 'Y and thus -= (1-v2 1c2 )"1/2 = ( + u2 /c 2 )1/ 2 ,

the relativistic Vlasov equation reads

af/at + iIy Vxf - e/m (E + i./c- x H) V uf = 0 (2.1)

which is coupled to the Maxwell equations through E and H.

Generally, it is not possible to solve such a problem analytically. However,

in a strong magnetic field, one can linearize the equations by considering a

-5-
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and

J (k) -- Ne fd 3u u cos f1 (k) (4.6)

The source term Pn(k) in (4.4) represents the amount of radiation in the

n-th radial waveguide mode due to the induced current J (k). The normali-

zation factor CN in (4.5) defined by (3.16) is related to the total power

flow throughout the waveguide. The first step in solving (4.4) is to calcu-

late the Laplace transformation of the perturbed electron distribution function

fl(k).

fl(k): Perturbed Distribution Function

Let us first consider the perturbed electron distribution function (2.12)

with the fields for TEon-mode (3.10):

(4.7)
e t dteiWt'{, afu(, afo 0 .ao

f (W - _ dte [E (z')-_- +uc afl ) 1 Z (Ian lr')cos '
f(z e u + Hr(z') EU T c au 1  Z1 u I
t-z/V11

( ult r Hz(Z, uj. Z~lIn'r)isino,]L afo -[(E(z') + Hr(Z') Ir'z1(I )cos X' + H(z') Zo(an

cyz' u ll Z~n cY

where the integration is to be carried out over the characteristic ("particle"

trajectory) given by:

Z' E z + v (t'-t)

i, + W (t'-t)
r' - (R2 + r 2 2Rr CO '1/2

rL L (4.8)

Uc r = u-9-Vii -TY 'c L a'$c
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IV. LAPLACE TRANSFORMATION

An unstable system can be correctly analyzed by Laplace transformation

(not Fourier analysis) defined by

0 -ikz
F(k) = o Ze' F(z) (4.1)

where k is a complex variable with a sufficiently large negative imaginary

part to guarantee that the integral (4.1) can be well defined. (Recall that

in unstable system F(z) can be an exponentially growing function of z.)

The Laplace transformation of derivatives of function requires information on

boundary values at the input end (z = 0) as

dF (k) = ikF(k) - F(o)

(4.2)

d2F (k) S -k2 F(k) - ikF(o) - g.E (o)
dz2 d

Applying the Laplace transformation on the Maxwell equations (3.12) and (3.15)

with the boundary condition (3.17), i.e., E0 (o) = o, one obtains

- Hr(k) = -kE (k)

W (4.3)
c H z(k)  - lI'n j:e(k)

and

(k2 _ kn2 )E (k) - Pn(k) - d (o)n T (4.4)

where iwt4e 1 f2rdr Z4(w n1r)J0(k)P (k) -t -e c CN  1td j~

(4.5)

-18-



Substituting (3.14) into (3.12) one obtains the equation for the n-th radial

modes:

- d2E (z)/dz2 - k2 Ee(Z) = Pn(z) (3.15)

where

Pn(z) 1/CNf2rrdr ZI (Ian.Ir) i w/c eiw t 4ff/c JO.

f ri .
C 2.J 2rrdr [Aiz 1 (anlr) + Wif I (lanlr)] 2  (3.16)

N 1rin 1

(A1 = 1, 1 = 0).

-17-



and

[- d2 EO(z)/dz 2 - k2 EO(z)] Z 1 (IanIr) : i w1c ei wt 47r/c Jo
n=1

2 2/2 
(3.12)

where

JO e 3u u f (3.13)
Jr = Jz = O.I

The condition, Jr = = 0, is an artifact of the assumption iv) which

allowed us to concentrate on TE-mode field (Ez = Er = HO = 0). Actually,

if one calculates Jz and Jr using the same fl in JO, they are not small,

however, what is small is their coupling with fields. From (3.8), Jz and

Jr are the sources of TM type fields (Ez, Er, HO) and lead to a possible

coupling to TM-mode. But, due to the assumption iv), the TM-modes are completely

mistuned and their coupling to the TE-field is small. Therefore as far as one

can neglect TE-TM coupling, one can neglect the condition Jz = Jr = 0.

Furthermore, with the assumption v), one can expand the source term in (3.12)

in terms of radial modes as

/ c/c eiwt 47r/c JO = Pn(Z)Zl (Ianlr) + Pn,(z)Z I (Ian'Ir) (3.14)

and keep only the first term since that is the only term which couples to the

n-th radial mode resonantly. The expansion of the source term in radial

eigennodes (3.14) can be easily done by applying the projection operator

1/CNf27rrdr Z1 (lnjr) on the source term (CN is a normalized constant).

-16-
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and no assumption was made on the z and r dependency of the fields.

- However, for convenience, we have expanded the radial function in terms of af-!
complete set of radial eigenmodes in empty waveguide. In practice radial

eigenmodes with different n are well-separated and one can tune the electron

* beam so that it can interact resonantly with only one radial mode. Then one

can neglect the coupling between different radial eigenmodes. So far, we

have assumed:

* i) linearity - small perturbation

ii) tenuous electron beam - neglect the space charge effect

iii) stationary in time - amplifier theory

iv) cylindrically symmetric TE-mode

v) only n-th radial mode is excited

The first two assumptions, i) and ii), are essn;,,ial within the scope of the

present work and the last two assumptions, iv) and v), are technical simpli-

fying assumptions which could be easily removed as will be discussed in a

separate work. The third assumption, iii), is for a true amplifier without

absolute instability which will also be discussed in a separate paper.

These are all the assumptions we make in this paper.

We emphasize that we have not made any assumption on the z-dependency of

the fields. This will be completely determined by the dynamics and the boundary

conditions at the input end.

Substituting (3.9) into (3.7), one obtains

i w./c Hr(Z) = - dEO(z)/dz

0w/c Hz(Z) = : nnI Ee(z)

-15-



Since we are interested mainly in an amplifier theory, we assume that the

system is stationary in time, and then one can write the most qeneral fields

for TE- mode (Ez = Er= H6 = 0) as

00

EO e1iitl E0(z)Z 1 (Ianjr)
n= 1

00

i ~ n= =e&) Hz(Z)Zo (IanIr)

it00 
(3.9)

Hr e I1t Hr(Z)Zi (IIr)
n=1

nc~w 2 c - kn)

in the innermost region, and

EM e -~ [Ei) (z)l (Ia'Ir) + TOi) (z)fl (Iaijr)]E0i 6: 0 n 0 1 n
n= 1

* ~iHMi e-'wt Y[H() (z)ZO (Ic'Ir) + ~()()~ f~jr)]
Z n=1 0 nZ(3.10)

Hr =eWtj [H(i) (z)Zl (Ia'Ir) + IRs) (z)fi (I'Ir)]

(a12 C p 2C2-_ k2)

where kn is a wave number determined by the boundary conditions of the empty

waveguide and Z1, Z, denote Bessel functions according to

*Ix Zjx)= J(x) if02>0
ZJ~x(xn

The fields in (3.10) are connected to those in (3.9) via a "transfer matrix"

as shown in Paper 1. Note that, in (3.9) and (3.10), the assumption of

stationary in time allowed us to consider a sinqle frequency (.-e-iwt) behavior

6 -14-



substantially alter the dynamic character (beside a possible small shift in

the resonance frequency).

Now, let us study the perturbed part of electromagnetic field (RF part) given

by (3.5) and (3.6). In the case of azimuthally symmetric states (9/a 0),

the Maxwell equations (3.5) can be grouped into two parts: TE-rode part,

which involves (E0 , Hz, Hr;JO),

* - BE 6 / z = - 1/c Hr/at

1/r a/ar (rE6 ) = - 1/c BHz/9t (3.7)

Hr/BZ - BHz/Br = 1/c BE0 /t + 4ir/c JO

and TM-mode part, which involves (He, Ez, Er; Jr, Jz),

BEr/ z - aEz/Br = 1/c BH9/Bt

* - BH9/Bz" = 1/c BEr/at + 47/cJr (3.8)

1/r a/ar (rH) = 1/c BEz/Dt + 4ir/c Jz.

In general, these two sets of equations are coupled to each other through the

source terms. In Paper I, we have shown that, for the azimuthal symmetric

case, the boundary conditions between dielectric layers and on the conducting

wall do not mix TE and TM modes. Therefore, in the azimuthally symmetric

case the only place where TE and TM mode coupling can occur is through the

source term. However, if the electron beam is sufficiently tenuous and the TE

and TM modes are well-separated so that the electron beam can couple resonantly

with only one of the modes, one may neglect the mixing. In this paper, we

will concentrate on the TE-mode given by (3.7), neglecting the coupling to the

TM mode.

-13-



First, by substituting the perturbation expansion (2.2) into (3.1) and (3.2)

and separating the zeroth and the first order parts, one obtains, in the zeroth

order,

P - efd3Ufo = 0

0 -efd3u ,I- fo= 0

and, in the first order.

V x I= - /c i/t V. 11 = 4(3P

vx H1 = 1/c DE1/3t + 4ir/c J1 "H1 = 0

*i where

1" _!3uf 1p f 3u4.(3.6)

_ =-efd3u U/V fl*

Obviously, the condition (3.4) on the equilibrium part of electron distribution

function cannot be fulfilled for a pure electron beam. This is because we

have neglected the space charge effect which prohibits a simple perturbation

expansion such as (2.2). With the space charge effect of the electron beam,

the zeroth order fields in the perturbation expansion (2.2) should include

.O the part of the static electric field and static diagmagnetic magnetic field

in addition to the guiding magnetic field Bo . This again requires redefini-

tion of the unperturbed beam function fo and leads to a whole new problem which

is beyond the scope of this work. Therefore, throughout this paper, we assume

that the electron beam is sufficiently tenuous so that one can neglect the

space charge effect compared with the strong guiding magnetic field. Since

we are mainly interested in instability properties which are due to a resonant

interaction, one expects that such a static space charge effect may not

-12-
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Figure 3.1 Cross-sectional view of the cylindrical wavequide loaded with an

arbitrary number of dielectric layers. A hollow annular electron beam is

confined only in the central vacuum region.

C,,

In case of no source term present (empty waveguide), the problem has been

solved completely in the previous paper[6J which will be referenced to as

Paper I from now on. Without source terms, the cylindrical symmetry allows

us to use a Fourier transformation along z and the axial wave number k

is an orthogonal eiqenmode numbter. Furthermore, for azimuthally symmetric

fields, TE and TM modes are decoupled. However, with the source terms which

can in general couple all possible modes, one must be careful to make such a

reduct ion. Since the source terms are present only in the innermost vacuum

*region, in this paper, we will concentrate on the Maxwell equations (3.1)

* with source (3.2) while referrinq to the Paper I for the part which can be

handled in the same way as in the empty waveguide.

,-1



III. MAXWELL EQUATIONS

Consider a circular cylindrical waveguide loaded with an arbitrary number of

concentric dielectric layers which serve as a slow wave structure. We assume

that the innermost region is a vacuum (E = = 1) where the hollow annular elec-

tron beam is present as shown in Figure 3.1.

Maxwell equations in the innermost region,

Vx E = -1/c aH/at V. E = 47rP+ 0-.-(3.1)
Vx H = 1/c aE/3t + 41/c J V . H = 0

are coupled to the Vlasov equation through source terms,

P= -efd3u f

J = -efi3u u/V f. (3.2)

Electromagnetic fields in a dielectric layer satisfy sourceless Maxwell

equations,

V x M(i) = _ i/c a(i)iat Ei v. o(i) =

Vx 1(i) = Ei/c -(i)/at Li i. j(i) = (3.3)

(i = 2, 3, ..., N).

These equations are supplemented by boundary conditions: The fields in one

region are connected to the fields in the adjacent region through the boundary

conditions that Ez , E6 , Hz and Ho be continuous (Er and Hr are related to these

through Maxwell equations). Also fields in the innermost region must be

regular on the axis and the fields in the outermost region satisfy the boundary

condition that Ez and Ee vanish on the conducting wall (again, the condition

on Hr is not independent).

4-10-
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notational convenience, we will suppress the subscript 1 in E and H ):

t

fl elmft-zlv ' ( Ef afolau,, + E " afolau, +

60 e (ulIcy afolaul - u l/cy afolau.L) + (-E.L - e (2.11)

-. A A
+ H. " R u,,/cy + H' e• R ul/c-y) 11n c afo/aRl .

The first term in (2.11) is the driving term for a conventional TWTA insta-

bility, the second term is for the famous cyclotron maser instability and

the third term for the Weibel instability. Notice the characteristic

asymmetric derivative in the third term which picks out only the anisotropic

part of velocity distribution in fo. Finally, the last term represents all

the effects of a bounded and spatially non-uniform plasma. In terms of

Svariables given in Figure 2.1, one can write (2.11) as

t
fl = elmf dt'fE 8folau, + (Eaf sint' + Ej cost') afo/3u.

t-z/vll

+ (-H cos ' + H sin ') (u c/ afo/au ll - ull/cy 8af0/ 8u ) (2.12)

+ [(-E. sin X' + E cos x') + (H' cos x' + H sin X') u11/cy

*e - H sin 0' U1 /cy] 1/flk afo/8R .

In order to carry out the integral over the characteristics, one needs to

study the possible electromagnetic waves in the waveguide which are governed

by Maxwell equations and boundary-conditions.

-9-J
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BO A
A

e 0

Figure 2.1. Cross-sectional view of the "unperturbed" characteristics (an

electron "trajectory" in a uniform guiding magnetic field). 0 is the common

S* center of the hollow annular electron beam and the waveguide, G is a guiding

center of an electron and E' is the position of the electron at t.

A set of the invariants of the unperturbed characteristics can be easily found:

the longitudinal velocity component vil, the magnitude of transverse velocity v1

(and thus Y) and the radius of guiding center R. These are three independent

invariants convenient to use to represent a realistic equilibrium electron

distribution function, fo = fo (ul, u_, R).

Noting the relation R = (r' 2 + r2 - 2r'rLcost')1 /2 , the velocity gradient can

be written as.

7 u'fo = A afo/aU, + A, afo/aU + (vu,R) 8f o/aR

Vu'R = 91 aR/au, + "' 1 (2.10)

- 1A'c (el cose'- e sinO')=- 1A-k)

F where the capped quantities represent unit vectors for the corresponding

variables. Substituting (2.10) into (2.8), one obtains (for the sake of
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Equation (2.6) tells us that fo is an arbitrary function of invariants of the

characteristics and equation (2.7) can be written as an integral form:

jo

fl (x" i' t) = e/mf dt' (Ei + iT'/cy x .) Vu'f; (2.8)
t-z/v

1

from which it is clear that the electron beam is introduced from one end of

the guide in its equilibrium state and the perturbation grows in the direction

of the velocity gradient of the equilibrium distribution function as the

beam moves along the waveguide. The "unperturbed" characteristic, (2.5),

which is nothing more than a "particle" trajectory in a uniform magnetic

field, can be easily solved to be

u =b, u= 1  A+= Z U ll+ e. U..

= (t) + A u1 /7 (t' - t) + (O- )r (2.9)
L

where

A, AAe1  X cosO' + y sinO'
'A, A +A A

e -x sinO' +ycos'

0' =- (t) +c WCtW - t), WC---C/

and r s u/z = v1c (vL = uj/-) is the Larmor radius.
4 L

The geometrical representation of the characteristics is shown in Figure 2.1.

The relation between angles is given by r w/2 - (0' - V'), r 1r/2 + (0' -e)

and X'a 9-o'.

-7-
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small perturbation about an equilibrium state in a strong uniform magnetic

field;

f= fo + fl

H = Bo + I (2.2)
SE' = El.-
r=

Substituting (2.2) into (2.1) and separating it into the equilibrium part

(zeroth order) and the linear perturbed part (first order), one obtains

Sfo/at + uJ/Y "xf o + 2Cc z X i/,Y V ufo =0 (2.3)

and

a/t + u V/ "xfl +c zC A X'/ •U ufaf1  f Vf u(2.4)

elm (4' + /c-y x H) Vuf 0

where£c = eBo/mc is the cyclotron frequency of an electron in its rest frame.

,- Following a well-known technique[5], one can cast the left-hand side of both

(2.3) and (2.4) into total derivatives along an "unperturbed" characteristic,

' - ' (V(t), (t); t'-t) and u- 1t" (-x(t), d(t); t'-t) defined by

d '/dt' = iP/y' (2.5)

d-'/dt' = 12c z x '

such that ' = ( it) and UP = (t) at t' = t.

Therefore one can write (2.3) and (2.4) as

df;/dt' 0 (2.6)

and

* dfj/dt' - e/m (E + u/cT' x Hj) Vu'fo (2.7)

where the primed quantities are the values at a point on the characteristics

defined by (2.5) and the total derivative is taken along them.

-6-



It will be convenient to introduce scale variables as

a - IIR, aL InIrL -I an U.L
1%( (4.9)

,:xv lanir', al -=U.

and then the geometric interpretation of the characteristics (4.8) in terms

of these scale variables can be represented by a triangle as shown in Figure 4.1.

aa.

x

Figure 4.1 Triangle formed by the center of the waveguide 0 (also the

center of the hollow annular electron beam), the guiding center of an

electron G and the electron position E' at "time" t'.

It will also be convenient to introduce a sign factor c as

2 2 f1 fa 2n> 0

a ~- Et / nf a 2 < 0n /(4.10)

S

2 w2 2
n c n

-20-



Recalling that the Bessel function ZI(IcinIr') represents either JI(I n jr')

or I(lanlr') depending on whetheran2 is positive (fast wave) or negative

(slow wave), one can write Bessel function relations as

: L2z;-(x 'iz(x) 2 ) ,xz 'Wx + I Z W + "C -2-zW
x x 2

2 z - - Y (4.11)

1 -(z 1 (x) + Wz+1 (x)) = Z(x)
2 -I

Z_ (x) = (-a),ZI(x)
Q

One can write (4.7) in terms of the scale variables, (4.9), and convert the

t'-integration into z'-integration using the characteristics, (4.8), as

i Z dz- W clan I  fa,, af °
f1(e) =- J w EE,(z-) n a 0 Lmc e f e sc aa+ r(Z')(y aa

aL afo Zl(X ')COSE' - I Ez') n+ H (' 0-Zl(X')COSX' +

z') ak Z °  (4.12)
H (z')-z Zl1(X')islnO' ] aT

Using the Graf's addition theorem of Bessel functions applied to the triangle

shown in Figure 4.1 renders us

Zl(X')COS;' = W c cs Zs+l(aL)Zs(a)cos sO'
5=-a

(4.13)

0 Q"S+leis'Z,(aL)Zs(a)

-21-



z (x')cosx' = . s Z5~ (a) Z (a)csEP

S L-

- ~ 5+l5ZP (a)Z~a)(4.13) (Cont'd)

Z0 (x')isin*' S Zs (ai)ZS (a)cos Wzk isinP'

0- s+1 is4)'(Z- (a Z Z(a) + L- Z~ (a )ZsZ (a)

4Substituting (4.13) into (4.12) and using (4.8) for 0', one can cast (4.12)

into the form

f1(z) c 2: a e e t ~Se1fdzI G(z-z')F(zl)

(4.14)

G~z-') e (w-wc~z-zI
vII

where

rClcanI afo a,1 af0  aL al'0 '1z'(a )z (a)L(z') -E--z,) 2 -+aa Hr~'( @a, L S

cl a'
+ [(Ez(z') --a1%I + Hr 11 ~) zs(a L)Zs'(a) (4.15)

a a
- ~(z) L~ (ZSI(a ) -Zs(a) + !- Zs(aL)Z (a))j 02

The Laplace transformation of (4.15) can be readily obtained by the convolution

t he orein

il(k) - - 1- e'1- wt e+15G(k)F(k) (.6

Km.c



where

Y
G (k) i %-(k) ; (k) wy- s% - ku

ci f a af a Lafo\Zs()z()
F(k) = [e(k) Q Bc H r(k) Y aa Y ) Ls

(4.17)

E (k C + Hs(k s (a L)Zf

H (k) L (Z ( >(a Zs(a) + 1L Zs (a L (3 0

* Using the Maxwell equations (4.3) in (4.16) with (4.17), one obtains the

final expression

e e-iwt lanllac

fl(k) = "iEe(k)imEet --;/c M S+leiSP

1 [ afo  afo  f o af ,
- -r(.,, aL " aa-- )Jzs(aL)Zs(a)) g5LL~ a (4.18)

SSc a, afo+ -OSk) a Zs L)Zs (a) - Zs(aL)Zs(a) aa

The first term in the first bracket is from E.L(CMI) , the second term is from

Vx H1  (Weibel), and the second bracket represents the effect of non-uniform

plasma.
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J (k): Induced Current

The integration in the induced current J (k) given by (4.5) and (4.18) requires

a specific form of beam function fo (U11, ul, R) while we still want to maintain

Its generality. One can do this by considering the following identity, for

an arbitrary function fo(u,, u1 , R);

f0(U,, ,uL,R) = duo, 27uidu° 2RodRfO(u °I ,ui, R
0 )f(u,, ,uLR) (4.19)

where

fo(u, _UL9,R) F, F (u , ,U_L) F2(R)

(4.20)0 1 6 (u 0u )
Fl(u  u uL) - (u 0

u 1 r u -ui

1

F2 (R) R 6(R-R°

A

*J Observe that the "6-distribution" function fo represents a "cold" beam with

infinitely "thin" guiding center distribution and is normalized to be one

electron per unit length. Equation (4.19) merely shows that an arbitrary

beam function fo(ull, u., R) can be constructed out of "6-distribution"
A 

0  0

function fo with the "weight" function fo(Ull, u° , R0) which contains all the

information on the beam spread. The main advantage of using such a represen-

tation is that it allows us to carry out the required integration in (4.5)

without introducing any specific assumption on the beam function fo"

With (4.19), one can write (4.5) with (4.18) as

Je(R) fu° 2udu 27R 0 dR° fo Cu° uR°) je(k) (4.21)

• -- 24-



where

Ne 2 ei~t 00 S13u a L iso

* (k) iE0 (k) c 2. '-'~s=-- 3 casLei
mc W/S =-W

(i (F 3F I ap1 I\ ~ a (4.22)
W (s JL aaL ,aL. ua 1 , )JF 2 Zs(aL)Zs(a)

T[kT - Zs (a )(a) -Z(aL)s (a)]F F 2

represents the induced current for the "S-distribution" function.

Recalling the relation, R = (r 2 + r2- 2rrLcos4)1/2, and thus

aRa = 1/R rrLsinq, one can write

F(R) =1 0 A(r;r+2 r Lsin o  _

z z 2 (4.23) _i
OSL 0<

(co~ r2+rL-R° (4.23

Cs 0 2rrL 0
LJ

where "step" functionA(r; r+) is defined by

0 a(r;r+) if r r <r
-- otherwise

(4.24)

(r+ Ro +rL)
0 L

In terms of the scale variables, (4.9), one can write (4.22) with (4.20) and

(4.23) as
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0

k = E0k) e i t Ne2  In 1 as+ a c

J (k) iE )M /c mc 27r rL  =_ da L d& o
e~~~~ =es=-~aL o~

S r aF1  aF1  aF
[~k W'~ - k 1\ aL a Z(a L) Zs()

(SL LaL Ia (4.25)

r sc aL aI-2
+ 7k Z s(a L)Z s(a) -'Z s(a L) Zs(a)] F1  B

where

F (a, 1 1-aO )6(a -aL)

F,.2 L L (4.26)

2~ a L Z'asin 0 Z~L ~ z

(x.+ a 0 +aL)

Defining velocity angle integrals,

F fs jd~cos~e isZ(a)F2

7t iso 3a2
*51 -Z 5sa,(a) Da (4.27)

s+1 7

* Oe can write (4.25) as,
2 a 2

(k) = E (k) 1da L
D w/c c it r a

s TIlY=  k(d
1

c -s -e i@Zs+1(a) ) (4.28)

L LRT Ja L ,, L

s- -- 26-



I V *. V. T. V

+ a~k aLZ s(a L) 4S Zs Z(aL sv F,

(4.28) (Cont'd)

Z S (aO )C*The integrals in (4.27) are calculated in Appendix to give,

Z a CO+z (a).L-COI + S±2 C0+ + LSO,
~Is+1 1 ZsaoC 0 s +1 0ao[a s1 -a s- s* L L -aL ~lJ(4.29)

where

Co 0 2coso Cos so A (x;x+)
s a sin

(4.30)

S 2 sin sO A (x;x+)
aL

ire The remaining integrations in (4.28) are trivial with FPI given by (4.26):

e-iWt Ne 2 IanI 1 As+1S() -iE (k)ae e w/c mc 2ir Twra
L S=-

o2

(4.31)

a 2 n
L a Z (a 0+ z (a Z5 0(a

L~ () Ls L S I S )
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where the superscript o ensures that the quantities are evaluated at u =u

and u - ur. One can still trace back to the origins of the terms in (4.31);

the first term is from E-L-force (CMI). The second term is from vx H (Weibel),

and the last term is due to the non-uniformity of (electron) plasma.

Lastly, one can observe that the induced current J0 (k) can be put into the form

e eJ(k) = a(k)iE (k) 
(4.32)

where dynamical conductivity of the electron beam F(k) can be immediately

KI read off from (4.21) and (4.31).

Pn(k): Source Term

Substituting (4.21) into (4.4) one can write

Pn (k) =fdul 21Tujdu21rR dR f0 (u° ,u., R°)Pn(k) (4.33)

where

Pn(k) = i e T 1(
P (k) i E ec-FfrI7r dr Z (cjr)J6(k) (.4

and Jo(k) is given by (4.31) with (4.29) and (4.30).

Define <A> for an A(x) as

S.s+

<A> - t dxZ I (X )A (X )  (4.35)
2w

and one can write (4.34) as
47tv 1¢

Pn(k) = e(k) CN  aL

(4.36)
2

k0 uL Zs (0 >

a L2 ~c )* ~ ~ ~ 0
a- "k a u(a < Z << s

0 5'Y o s ,+ cO<o>
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whe re

,.Ne 

2

2 (4.37)
nc2

is the Budker parameter.

In the Appendix, we have calculated

40 0 > -Z I(a )Z2 (a
* 4 s> s L) s0

<S+ ZSI(aL) (,I-0L (4.38)

<1 ?> Z(a L) [Zs T 2 (a.) s' (c- )Z'(a.)]

and therefore

P P(k) E (k) - -
n N )~L s=-

2

k - Z L))ZS(a.)

(4.39)

-a L aL ~.Z(L) ( (a)V - (Z2(aL))(Zs (aL)L o(k) a0  0 s~ s

0S (

-29-



It is now straightforward to carry out the differentiation recalling that
° coyo - ku ° - sfk and Z"(x) + 1/x Z;(x) +( A- s 2x 2 ) Zs(x) = 0 and

one can finally obtain

2 2

P (k) =E(k) -L c c 2 a* Z12(ao )Z2 (a)n C C. [ o2( ) L s L so0
• a.Z2 (a°L Zs (a °

(s c  0 ° (Z(a)Zao

(4.40)

L(k) ao s(ao )

s

+ 2(ZS (eL))( (a.) - a a02 s a)

With (4.33) and (4.40), one can now solve (4.3) as

dE
" "zB3-(o)

E (k) k2_k2 S (k) (4.41)

n n

where

S (k) =fJu0 2udUL 200 R0dR0 fo(U, ,Ui, (k)

(4.42)

and 2

(k) ~ ~ ~ (k)c Q +Q
Sn(k) = S ..(I~-(k) i,1 Q2  + k)

(4.43)

(°°(k) w- s% kuo,, )

-30-
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where

41v aL '2 2Q2 -- aLZs (aL)Zs(a°)

Q 4 iva L s 2 (Z2a Z2a a ) (Z2(fl
- CN 0 a a ( L a ) a 0sL'Zsao (a L) s (ao))

L2  
(4.44)

Q0 -C (aL) a 2 )Z s(a0 )

+ (2(ao) - - s) s(ao))
Z 

a0

Lastly, the normalization constant CN defined by (3.16) can be easily calculated

to be
C N C(i)

N CN
i=1 (4.45a)

where

ri

CM 2r (AiZl( a ir)+ Ala Ir)) 2  (4.45b)

ni p1

- (Aio ainlr) + Aijo(j ilr) AiZ2 ja i r) +  AiZ2(ja i jr) ri.

i2

iffa >0
n

c4, Inr) 2  [(AiZlICa4 Ir + Ti 1(Iainlr))2

- (A IZ(a'Inr)- Ti '( I r))(AiZ 2( Inr) T ,1 2 (IIr))]r

-31- i
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Beam Spread Effect

Now let us consider the effect of beam spreads (velocity spread and guiding

center spreads) in (4.42). In practice, the velocity spreads are non-thermal;

mainly determined by the imperfact cathode surface, space charqe effects, and

electron optics from the acceleration stage to the beginning of the interaction

region. The spreads in guiding centers are mainly determined by the finite

size of electron emitting strips in addition to the same causes of velocity

spread. The resulting distribution is close to the "water-bed" shape rather

than Maxwellian. The water-bed shape distribution function may be best

represented by a generalized Lorentzian distribution function:

FCp 2p (4.46)Fp X; -3r .2p + 62p

where Cp is a normalization factor. When p = 1, (4.46) reduces to the stan-

dard Lorentzian distribution and the higher value of p gives the flatter

shape. In the limit p-. , (4.46) represents "box" distribution. Choosing

x as u0 , u0  or R0 with an appropriate p and 6 , one can construct

realistic distribution functions. The beam spread effect of the type (4.42)

can be done analytically by contour integrals.

From the structure of (4.42) and (4.43), one can immediately see that the

most sensitive one is the parallel velocity spread in u0 through the resonance

denominator, 120 -wyo - kuO -sf2c. It is worth noting at this point that the

Laplace transformation variable k which was introduced by (4.1) is a complex

variable with sufficiently large negative in k to quarantee that the Laplace

transformation (4.1) well-defined, and, therefore, the integral of (4.42) is

wel l-defined.
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• - , -. . - . "- :. , 4 - -v w vrfln i - - r -- -

In this paper, we will demonstrate the technique for the parallel velocity

spread function, Cp 2p  -
C Au

fo(U °, ) = Fp(, Cu Au ) p-f ( F(u AuE ° - 2p +u2p
0= d u 

(4.47)
= du F Au .

where the normalization constantC is defined byp

Then, the integral (4.42) can be written as

Sn(k) Go= du 0 Fp(u t 0 AU, )S(k;u ° 0 4.8

By writing (4.40) as

C u -up (4- l "' '1.49)-
fo =  2p Au,

One can identify that fo has poles at

k - e17 2k-1 in the upper-half C-plane

e -i 2k+1 . in the lower-half c-plane (4.50)

k e  p

(k=0,1,..., p-1)

Closing the contour in (4.47) by an upper-half circle or a lower-half circle,

one can determine normalization constant Cp by

Au, 1

Cp 2p a -p-T(4.51a)

or, k0

pU. 2w _ " _ (4.51b)
Cp 2p p-I

ICk -33-k-0



From (A.5), one can immediately obtain ..

<% > = ZsZ(ao)<C°> : "Z(ao)ZS'(aL) (A.15) -

and from (A.9), (A.16)
0a<cO i>  s-I Co > <SO.1 >

<IsI> = ;Zs(a 0 )<C > + Zs'1(a°) 9TL -s -'1-  s-l> a L "s1

Using the Bessel equation, Z"(x) + I/x Zk(x) + ( - 22/x2 ) Z(x) = 0, and

the recursion formula, Zj(x) - R/x Z2(x) = -2 ZV+I(x), it is straightforward

to simplify (A.16) as

<s- -Z (ao ) + Zs. 1  o)Zs~a
s-i > -s( 0  + Zia)Z(L) (A.17)

Simi larily,

< *' >(z (a) - &> (ao)' Z'(a)
s+l ( as+1 o sL) (A. 18)

Then, from (A.17) and (A.18), one obtains

(s-> -, <4

= "aZ (ao) + -2 2_(ao + Zl(ao), ZsL (A.19)

Z 42(a o) (a- zs+1 (a  ZS

" a ao  )Zs (a ) ]Z A.)

0

and + <s.i

'(Z2_.1 (a0 ) - s'+1(,),(, (A.20)

S 172

a SLi8 'SaL) A-4



Using the recursion fomulas ZQ(x) - 2/x Z2 (x) = -&Z+ 1 (x) and (A.7), it

is straightforward to obtain from (A.8),

)ZaCO ji4 ~ . (A.9)

*S-1= so s S-lao)(U- L COs-1- aL - 1 - 1L s-1 (

Similarly,

z (a) a a 51 CO1+ i So+ (A.10)
+1= -Zs(a 0 )Cs + + Z ) (a) -LC s  + C +S a S+

s+ o~a Ls+ aL s L aL

Radial Integration

Define a radial integration for a function A(x), that

s+1

<A> E-- 2 1---dxZ1(x)A(x) (A.11)

Then, noting that from x = (a2 + a2 - 2aoaL cOS0 0)112, dx = 1/x aoaL

sin ;o dPo = aL sino diPo, one can write the radial integration of CO

given by (A.4)

c s l a d+ (A. 12)
<C°O> = a f d ° 2cos&oZ l (x)cos s o

(

Applying Graf's addition theorem and (A.5), one obtains

<cO> - 2 1 : s a ' I (aL)z (ao d 0  2cos s'V 0  cos s OO

(A.13)

= -Z (a0 )Z' (aL)

Similarly,

.s+ x+
<SO>" 9 -f d ° 2sin&° Z1 (x)sin s O

(A. 14)

Zsa) Zs(aL)
aL A-3



where

2cos o
C 0o s sao  A As a Ls i n~o

(A.4)

ss 0 2 sin s%
s a L 0

Using the above relations and Graf's addition theorem, one can easily show

that

- fd cosC e is Z (a) F2

- 0 L Z s,+s(a L)z s,(X)C s,_ .A..

Z (a )C0

Consider

fd cos e Zsl(a) 
"

(A.6)

aF2

='d{ cos& ei(S-)')Zs 1 (a) • e aa

Fra a = x+ ak - 2 xaL as t)1/2, a zaaL sing and 1/aL a/EI sin ;P

one obtains

o a _ 'F2 a 2 i T (A.7)

aa L  a L a

Using (A.7) and the Graf's addition theorem, one can write (A.6) as

's-1 " s  l Z Sl(a )z s W ( ) \aaL +  L " -
Ss '  (A.8)

A-2

• ' . : . , : . " ... . ,. .* ~ .



APPENDIX

Velocity Angle Integrations

For the velocity-angle distribution function

6(C-&o) + 6(&+&o )  (A.i)
F2  aLsin o A(x;x+)

where

2 2  2C & = x +a ao  (o &.. < _.

cOS~ = 2xaL

define

Cs,= f d cos& e i s '  F2

2cos& Cos S' . A

aLsin 0o 0

(A.2)

Ss - f d& - sin~e1 0 F2

2 2 sin s~t Aa L S

Using Graf's addition theorem of Bessel function, one obtains the following

identities:

szs' Zs+s (aL)z s ' (x)Cs, 0

(A.3)

s o Zs 4 s(a s (x)S (ao)S s

A-1

----------------------------------- ,------........--..--.- ..
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The effect of velocity spreads and the spreads in the guiding center of

the beam are analyzed for generalized Lorentzian distribution which we

believe represents more accurately the realistic situations. We have

shown that the case of two waveguide modes and two beam modes applies to

a "cold" beam or a standard Lorentzian distribution. A more realistic

beam would require a generalized Lorentzian distribution which gives multiple

beam modes and, in the limiting case of a box-shaped distribution, the

number of beam modes will be infinitely many, all clustered on a branch

cut.

The loss due to a dielectric layer and an imperfectly conducting wall is
6

easy to take into account and is briefly mentioned in the text.
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VI. DISCUSSION

In this paper, we have presented a careful analysis of the gyrotron-type

amplifier. The theory is based upon linearized Vlasov-Maxwell equations

in a strong guiding magnetic field. The space charge effect is neglected

and possible absolute instabilities are assumed to be absent. Then the

theory can be cast into a two-dimensional (axial and radial direction)

boundary value problem in the case of azimuthal symmetry. The dynamical

growth of the electron states and the electromagnetic fields along the

interaction tube is analyzed by Laplace transformation rather than Fourier

transformation as often found in earlier works. Fourier analysis, in the

case of instabilities such as the amplifiers (also oscillators), is not

only ill-defined, but also makes no connection to the boundary conditions.

In contrast, Laplace transformation is well-defined, even in the case of

strong instabilities, and also allows us to make a connection to the bound-

ary values. This way we can make definite determination of all the modes

(waveguide modes and beam modes) in terms of boundary values (input coupling

to the signal).

We have tried to carefully separate out TEon-modes, noting exactly how TE

and TM modes could couple and how the different radial modes mix each

other. Analysis on the TM-modes will be presented elsewhere and the mixing

of the radial modes would be more interesting in the case of an azimuthally

non-symmetric situation such as the case of whistler modes. One important

technical feature of the analysis of a microwave device is that the electron

beam has a finite geometry which prevents the use of plasma theory for an

unbounded uniform plasma. The finite geometry of the electron beam introduces

an extra term which we have carefully identified. This term is important in

the determination of bandwidth, etc.
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0

* -. "The loss due to the dielectrics and the finite conductivity of the wall can

be easily taken into account by considering a complex dielectric constant

E = E' + iE". (Note that a conducting wall can also be considered as a

dielectric layer with a large imaginary dielectic constant.)

0
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can concentrate the z-dependency alone. With the radial function A(r) which

is a common factor, one obtains the power flow

S - - E (z) dz 'A(r) (5.10)
z~ T Re E (5.10

where EO(z) is qiven by (5.6). Separating the power flow inward (Re k<O) and

outward (Re k>0), one obtains (5.11)

L~ 0 *(k) ikz(Z c A(r) Ido 1Re[ e-Rk~ e k .

+ - r w/c dz 2o) e eiz -- )(ki k. ikURLk) N(ki) )* G'* IG
c A~r) dE 2 ikizN (k i ) ikiz N(ki )

P (k) edz D e
D eki<0 ) ek<0

In case 1) where the input signal is introduced at the gun end (z=O), the

gain for the tube length L is given by

G(dB) = 10 IOglo(P+(L)/P+(o) (5.12)

and in case 2) where the input signal is introduced from the output

pot, the gain is given by

G(dB) - 10 lolo(P+(L)/P.(L) (5.13)

In general, these two methods of input signal coupling give nearly the same

result when the loss is small, since the coupling of backward traveling waves

to the electron beam is small in most amplifier applications. However,

when a certain loss is introduced into the tube (either for stable operation

or due to the dielectric and wall loss), method 2) suffers a substantial

loss and method 1) would be preferred.
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W "* - q , 7 M s - .

It is also interesting to notice that, since (5.6) with (5.4) must satisfy

the boundary conditions at z=O, Eefzo = 0 and dEe/dzlz= 0 = dEO/dz (0), one

obtains sum rules.

4 N(k.)

(5.8)
4 N(ki)k: ki Dk :

1=

Power Flow and Gain

Having determined the fields as a function of z by (5.6) and (5.7), it is

easy to calculate the gain of the amplifier. The gain is defined by the

ratio of the output power to the input power and tnus requires calculation of

the power flow into the system (backward wave) and out of the system (forward

wave).

Depending on the method of introduction of input signal, we consider

*two different cases: 1) the input signal is introduced at the gun end

(z=O) and, 2) the signal is introduced from the output port (z=L) through a

circulator.

The first step to calculate the gain is to calculate the power flow inward

and the one outward. Consider the time averaged Poynting vector

z x Ref( ) (5.9)
8nr

for the fields given by (5.6) and (5.7). For calculating the gain, we are

interested in the ratio of power flows as a function of z and therefore one
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and Sl0 = o ku - ss" c with u1( is replaced by u,, + iAu1 according to

0(4.54). Then, Eo(k), given by (5.3), possesses poles given by roots of the

dispersion relation

D(ki) 0 (55)

which is a quartic function giving four roots and E(k) is given by (5.2)

as

dEe  4 ik iN(ki) (5.6)E (z) z- z (o) e e i z  5

Clearly, Eo(z) is a superposition of four modes: two empty waveguide modes

moving to the forward and backward, and two beam modes. If there is no

velocity spread ("cold" beam), D(k) is a quartic function with real coeffi-

*P cients giving two complex conjugate roots, representing one growing mode

(ki with Im ki < 0) and one decaying mode (kl). With beam spread, the

coefficients of D(k) are no longer real and therefore the complex solutions need

not be complex conjugates of each other. Physically one expects that the com-

plexity of the coefficients of D(k) through the shift in u0 = +iU

tends to reduce the growing part (Im ki < 0) more. Once again, we emphasize

that the two-foldness of beam modes (in addition to the two waveguide modes) in

(5.6) is true only for the "cold" beam or standard Lorentzian distribution.

Havinq determined Eo(z) as (5.6), the other non-vanishing fields are given

by (3.12) as

dE e(z)

c r(Z) dz (5.7)

w H (Z) - nE (Z)

cz IcnI CZ
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Fields

Applying the Bromwitz formula (5.1),
E .. kz " (

E0 (z) =lRes(eikz ie(k (5.2)[.{k=k i  pol es

and therefore, the problem is essentially reduced to find poles of E0 (k).

From (4.41), (4.53) and (4.43), it is clear that there are, in general, an

infinite number of poles in E0 (k) when all the harmonics in (4.43) are

included. In practice, however, for a reasonably strong magnetic field,

different harmonics are fairly well-separated and the parameter can be

chosen to tune to only one of the harmonic modes. For a given harmonic

mode, there are 2 + 2p poles in EO(k) with generalized Lorentzian distribu-

tion of order p in u0 . Two poles represent two empty waveguide modes

while 2p-poles represent beam modes. In the limit p -- o, that is for the

"box" distribution, the infinite number of these poles is compactly distrihuted

between u0 + Aui forming a branch cut. Only when p=l (the standard Lorentzian

distribution) are there four modes, as in the "cold" beam case.

For simplicity, from now on, we will consider the case p=1 for a specific

harmonic mode s. In this case E9 (k), given by (4.41), can be written as a

*quotient of two polynomial functions,

dE
Ee (k) 2 - (o) (5.3)

where

N(k) - 2 (k 2

• Cs

D(k) =  ( 2k - + Q 0 +  Q ) (5.4)
S k 2 1 n%(k)
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V. INVERSE LAPLACE TRANSFORMATION

Let us now consider the inversion of the Laplace transformation of E6(k)

given by (4.4) to obtain the field as a function of z, E6 (z). The inverse

Laplace transformation (4.1) is given by the Bromwitz inversion formula:

= 1 i C+a ikz

F(z) - dk e F(k)

Res (~deik

eT k iF(k) 
(5.1)

• = -Res (ei iF(k

i k=k i : poles

Where the contour integral is done along C as shown in Figure 5.1.

Imk

Ik

\Rek

SC -ic

Figure 5.1 The contour integral for the inverse Laplace transformation.

c must be chosen to be large enough to include all the poles in E0(k).
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In terms of C-variable, (4.48) can be written as

C
Sn(k) = Aut _ jd4 2p PS n (k; u + Cu, ) (4.52)

C +1

Recalling that Im k<o, one can show that the function Sn given by (4.43) has

a pole in the upper t-plane if w>swc and in the lower t-plane if W<sw c. The

contour in (4.52) can be closed to exclude this pole so that only the poles

in the distribution function contribute to (4.52). Then, using the normali-

zation constant Cp given by (4.51a) or (4.51b) accordingly, one obtains

p-1 * /p-l *
Sn (k) = x=0I Sn(k; u,, + Ck AUa I Ck

k=0 Ik~O (4.53a)

if W>sWc and

S n(k) = Ck Sn(k; -l= + YKAUl, / k (4.53b)

if LI<swc, where tk and 4 are given by (4.50). In the case of the standard

Lorentzian distribution for p = I, to = i and therefore, one obtains very

simple results:

Snk I n (k;  U1'  "  iAu ''  if= W> sw c

=n (k) + iAu,, if (4.54)Sn~; ,- iAU, ) if w < Smc

In other words, for standard Lorentzlan distribution, the effect of spread in

parallel velocity is merely shifting the center velocity to the complex one

as (4.54). For generalized Lorentzian distribution p > 1, the effect is the

average of the shifts by kAUI orrkAUll.
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I. INTRODUCTION

A gyrotron is a microwave generating or amplifying device utilizing transverse

energy of an electron beam gyrating in a strong dc-magnetic field. The

basic mechanism responsible for this is the negative mass instability of

rotating electrons resonantly interacting with the RF field. Due to the

fact that the relativistic cyclotron frequency, wc = cY c e-eBo/mc),

is inversely proportional to the total energy of an electron, the rotational

motion (angular velocity) decelerates when it gains energy and accelerates

when it loses energy, resulting in azimuthal bunching in phase space. This

azimuthal bunching induces a strongly enhanced coherent radiation (typically

1011-12 times over the incoherent radiation level).

A general analysis shows that there are three types of instability driving

forces. The first one is a transverse electric force directly modulating the

rotational motion of an electron and responsible for the familiar cyclotron

mas er instability (CMI). This is proportional to the transverse velocity

gradient of the electron beam distribution function and is dominant in the

fast wave region. The second force is a magnetic ponderomotive force due to

a transverse magnetic field (linear combination of v. x H, and v,, x H,) and

is responsible for the Weibel instability. This force is effective only when

the electron distribution function has an anisotropy in the velocity space.

In a gyrotron, this effect usually competes with the CMI and becomes dominant

in the slow wave region. The third kind is an axial electric force (therefore,

not present for TE-modes) and is proportional to the axial velocity gradient

of the electron distribution function. Unlike the CMI and Weibel which are

proportional to v2, this is the only instability driving force which survives

in the limit v1 -,o, leading to a type of conventional traveling wave tube

with dielectric slow wave structure (or Cerenkov radiation device).
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In addition to all these major instability driving forces, a careful analysis

shows additional terms due to the inhomogeneity of the electron plasma for an

electron beam with finite geometry. This geometric term gives a weak contri-

bution to a case tuned to the top of resonance but it affects the detuning

factor and bandwidth.

Previously, we have analyzed a gyrotron amplifier for the TEon-mode. Here we

report a similar analysis for the TMon-mode. In many respects, the TMon-mode

analysis (with Ez, Er, H6 ) is complementary to the one for the TEon-rode

(with Hz, Hr , E6 ). However, one major difference in the analysis for the

TMon-mode is that one must solve a coupled equation for Ez and Er since there

are two sources (Jz and Jr), both strongly coupled to Ez and Er. This

requires more care in projecting out the n-th radial mode radiation from a

radially finite source which, in principle, could radiate in all radial

modes. For this purpose we have derived an orthonormality relation in

Appendix A which is used in projecting out the desired radial mode. The key

factor which allows us to concentrate on a single radial mode at a time is

that the radial mode dispersion relation is usually well-separated and only

one of these modes is resonantly interacting with the electron beam in a

controlled device. Bearing this difference in mind, we can proceed with the

analysis much in parallel to the one for the TEon-mode. In Section II,

we have derived, from Maxwell equations, a coupled wave equation for Ez and

Er with source terms Jz and Jr- Using the properties of radial eigen-

* mode functions derived in Appendix A, we project out the n-th radial mode.

As we have emphasized in the TEon-mode analysis we use Laplace transformation

which is suitable for an analysis dealing with instabilities. The Laplace

* transformation correctly accounts for the boundary values at the input end

so that this analysis includes the insertion loss in a natural way.
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In Section III, we calculate the source terms from a linearized Vlasov

* equation. The algebra is quite involved, mostly due to the cylindrical -

geometry we are interested in, but is rather straightforward, and freely uses

Graf's addition theorem for Bessel functions. Appendix B is devoted to some

*of the integrals used in this section. Axial velocity spread is included

in the source terms. A detailed discussion of this is included in the

previous analysis for the TEon-mode interaction.

In Section IV, we combine the results from Sections II and III to derive a

complex dispersion relation and determine the fields as a function of z in

I.Iterms of the input boundary values. This is done easily by an inverse Laplace-]

transformation which, essentially, picks up pole contributions in the Laplace

transformed fields. The complex dispersion relation leads to four poles (two

beam and two waveguide modes), and the residue at each pole determines the

relative strength of each mode. As a result, the present analysis allows us

to determine completely the fields in terms of input boundary values. Thus,

one can inmediately calculate the gain vs. frequency for an amplifier

application.

Some numerical examples are shown in Section V. These sample results (not

yet optimized) show that the TMon-mode interaction is comparable to the one

for the TEon-mode, at least in a slow wave region.

-3-
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II. MAXWELL'S EQUATIONS

Consider an annular electron beam introduced along a strong uniform guiding

magnetic field into the innermost (vacuum) region of a waveguide loaded with

multilayer, concentric dielectric slow wave structure as shown in Fig. 1.

As we are interested in an amplifier theory for Thon modes, we assume that

Sthe system is in a stationary state (with time dependence-le-lwt) and is

azimuthally symmetric (a/ae = 0). However, since the EM fields can grow or

decay along the direction of propagation due to the interaction with the

electron beam, one must leave the z-dependency to be determined consistently

by the coupled Maxwell-Vlasov equations. Also, due to the presence of a

radially localized source (the electron beam) which, in principle, can radiate

into all radial modes, one cannot assume that the fields are given by a

single radial elgenmode in the waveguide. Since the radial eigenmodes form

a complete orthonormal set, one can certainly expand any radial function

(satisfying the waveguide boundary conditions) in terms of these. Therefore

-4-



one can write a general ansatz as, in the i-th dielectric region,

E irzt -it ~-znz (i)
z Irz, -e" Enz ez,n (r)

E(i (2.1
r*.-z, r,n(Z) er,n (r)(21

He ir,z,t) i e 40Jenz) ho,n (r)
n

whee heraia egemoesez(i) (re(i) (rh(i)
* whre he adil egennods en ( r , m r ,n (r) and their properties

are given in Appendix A. Substituting this ansatz into Maxwell's equations,

V x E = ip w,/c H and V x H = -iE w/c E + 41w/c J, one obtains

( Er,n er,n +Ez,n ez,n - Pi H~ R~ ho,n) 0=2.a

H h(1 ) e (ic'/ r) 47r/c e~i~tJr (2.2b)
n

C_ / r i) eCi) i4rcetJ(.)I 'O,n hr(h,n)' + et w/C Ez,n z,n) i 4 / eitz (.

where -Md/dz and ' Sd/dr. Note that the source terms Jr and Jz are localized

only in the innermost vacuum region (1 = 1). This is why one needs all the

radial modes on the left-hand side of (2.2b) and (2.2c).

In practice the radial eigenmodes are fairly well separated, therefore,

*one can tune the system so that the electron bean interacts resonantly with

only one specific radial eigenmode (n'). One would like to project out the

n'-th radial eigemiode from (2.2). This can be done easily by using the
t~p orthogonality relation (A.19) derived in Appendix A. First, one writes the

radial fields in (2.2) in terms of hO,n using the relations given by CA.3);

-5-



(i) 1

Ii E1wlc ezn =kin hG,n (2.3)

(i)(i )2  ()
(1/r (r h,)' = - k1, he,(

to cast (2.2) into

-d..,' i.~n Eh + H6 ,,61 ) k,,,F, h0, (2.4a)

HI3 (+ Yf rT n k l,n) hO6 n 4 - r/c e r (2.4b)
n

En+H 1  k,. k1 , h2 M i 47w/c eiuWtj' (2.4c)

n

Now we multiply (2.4) by Jon/Eitgae rdr and sum over all

dielectric regions. Using the orthonormality (A.19) and (A.20), one obtains

2
k1,,n' 'zn' = EI n k,,,ni + TTO,n' (0/c (2.5a)

i +O~ Er,no k = -, 4r./c elw 1/CJfordr h ' ir (2.5b)

*C' f rn I

tr,n' +' ,n' k.,# -i 47r/C e i/c;1 trdr h6 M Xz /k , ,n (2.5c) -

N ri (1)2

1=1 r rdr h~II
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where we have used the fact that the source terms Jr and Jz are nonvanishing

only in the innermost region (vacuum, E1 = j1 =1). By integration by parts on

the right-hand side of (2.5c) and using (A.3b) and (A.3c), one can write

(2.5) in a more transparent form as (dropping the subscript n' from now on),

2 2

ki Ez =i Er k + H 2/C (2.6a)

i lR,(z) + k,, -Er(z) : - Pr(z) (2.6b)

i Er (z) + k,, H(z) = - Pz(z) (2.6c)

where

Pr(Z) =- 4rIc ei~ t wIc/k,, T-r(Z)IC n  27

r n (2.7)

Pz(z) = i 4r/c ei t w/c/k,, Jz/Cn

N

and

r.]

Jr (z) frdr erJr

r!

rdr ezJz (2.8)Jz Wz of

N fri Mi (i) :

(Cn  rdr er,n hn).i ri-I

The physical meaning of the source terms Pr(z) and Pz(z) is clearly that they

are proportional to the work done by the induced current interactinq with EM

fields which are normalized to the total power flow through the waveguide.

The set of differential equations (2.6) can be converted into a set of

algebraic equations by a Laplace transformation defined by

-7-
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F(k)-f dz e- ikz F(z)fo (2.9)

F(k) = ik F(k) - F(o)

with Im k sufficiently large and negative to make the transformation integral

(2.9) well-defined even in the case of F(z) exponentially increasing. Note

that for a system involving an instability, the usual Fourier transformation

is not well defined. A bonus of using the Laplace transformation rather

than the Fourier transformation in the present case is that it completely

determines the growth of the field from the boundary values at the input

end.

Applying (2.9) to (2.6), one obtains

kE (012 k ( 2  
2 1k (0 ErM1)

k Ez,n r,n k,,nllkj,n HOn L ,n "Er() k.,,nlk n

-k Er,n + k,,,n HO,n 2/cfCn Wz + i Er,n(O) (2.10)

k,,,n Er,n - k HO,n = 2/c/cn r + i R'O,n(o).

8
II
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III. VLASOV EQUATION (LINEARIZED)

The perturbed electron distribution function fl (from its equilibrium state fo)

under the influence of EM fields is given by

fl ( ,-,*t) = e/m dt' (E' + u'/cY x H') *Vu'fo . (3.1)

The integration path is over the unperturbed characteristics -- a particle

trajectory in a uniform magnetic field as shown in Fig. 3.1.

A

o E

8o m A
0
e

Figure 3.1. 0 is the center of waveguide; G is the guiding
center of an electron; E' is the position
of the electron at t'; rL E Ul/fc is Larmor
radius; and wc w 2c/Y( c2 eBo/mo) is
relativistic cyclotron frequency.

The primed quantities represent the values at t' and the position given by

z' = z + v, (t' - t) and 0' = 0 + wc(t' - t). Note the relation between

angles in Fig. 3.1: t' = -7r/2 - (o' - o'), 0' = iT/2 + (0' -9) and X' =E-'

A realistic equilibrium beam function fo can be constructed from three

invariants, u,,, u, (U = p/m = 'Yis a momentum variable) and the guiding

center radius R = (r'2 + r - 2r'rL cos4')1 /2 . In terms of the angles

shown in Fig. 3.1, f1 with TM - field components (Ez, Er, He) can be written

as

-9-



t
f= elmf dt' {E afo/au,, + [Er afo/au1 + H6 (u/cv afo/au,,

- u,,/c afo/au)] sin' + (Er' - H6 u,,/cv) iA2c afo/aR sin x'.(3.2)

Note that the last term in (3.2) is essentially due to an inhomogeneous plasma

such as annular electron beam. Substituting the ansatz (2.1) and noting

that we have assumed that the electron beam is only in the innermost vacuum

region of the waveguide, one obtains

elmi dz'/v 1  n -zn(Z, ) afo/au,, Zo (iki,nlr,)

- C~r,n(Z' ) k ,n/ Ikin I af0/a u I + HRe,n W ) /c/ I ki n I (u1/cY a f0/au,

- [Er,n(Z') k,,,n/Ik ( i 
-

f

i~n en W wlcl ki I u,n l (u/nc a fo/au,,j

( ik  ,njr') i sin x I. (3.3)

An immediate difficulty in carrying out the integral is due to the complexity

of z'-dependency introduced by the arguments of the Bessel functions. This

can be easily overcome by exploiting Graf's addition theorem for Bessel

functions which allows us to expand in harmonic functions.

Consider a triangle shown in Fig. 3.2, with scale variables defined by

x8----IkL Ir' , aL Ik MIr , a IkLMIR

i~n L 1, L1,

(i)2 (i) 2
and j kn/Iki,nI . Graf's addition theorem reads

- 10-



4

Z,(x') e = k: ' ei101 Zs,+ I(aL) Z1'(a)

(3.4)

Z1(x,) ei2X' = ~ A~. eli'' ZI,+ 1 (a) Zj'(aL)'

I =I

a a -1
XeX

X. X

0 0 0 1

Figure 3.2. Triangles for Graf's addition theorem of

Bessel function at various stages of
integration.

AJ
Using (3.4) with Z.I(x) = (-k) ZI(x), one obtains the desired harmonic

expansion as

Zo(x') = k s eS' Zs(aL) Zs(a)

Zl(x') i sin ' = kS+leisO' s/a Zs(a) Zs(a)
S=-o L L

Zl(x') i sin X' z kS+lets ' Zs(a ) s/a Zs(a)

(4' "~ 4+ Wc (z'-z)/v,,)

and therefore, suppressing the obvious index n for notational simplicity,

- 11 -
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first harmonic (s=1). Instead, the zeroth harmonic s=O, which, of course,

requires a steeper beam line to cross the dispersion line, gives a gain with

narrow bandwidth. This is Cerenkov radiation from the axial energy of an

electron beam rather than transverse energy as in the gyrotron. Certainly a

more careful comparison study is necessary to compare the performance of a

TMon-mode amplifier to a TEon-mode amplifier. However, the indication

so far is that the TMon mode amplifier seems to be at least comparable to

the TEon-mode amplifier.
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.4

V. RESULTS AND DISCUSSION

Based upon the analysis discussed so far, we have developed a computer code

to calculate and graph gain vs. frequency for a variety of parameters.

Some sample cases (not yet optimized) are shown in Figures 5.1 through 5.5.

For all these figures, we have considered a cylindrical waveguide with two

dielectric layers surrounding the central vacuum region with designated

parameters: rI = 1.55 cm, r2 = 1.75 cm, r3 = 2.033 cm and c1 = 1.0, E2

= 4.6, 3 = 19. (This particular choice of a waveguide is for comparison

to the Yale TEon mode experiment.) The annular electron beam is assumed

to carry a current I = 5.2 Amp with a guiding center radius R = 0.72 cm in a

magnetic field corresponding to the cyclotron frequency wc/c = 0.75. All these

examples show the first harmonic interaction (s=l) with the TMon-mode for

different velocities and the axial velocity spreads. For example, Figure 5.1

shows the gain vs. frequency for various axial velocities v11/c = 0.17 +

(n-i) x 0.005 (n=l, ..., 4) with a = vj/v,, = 2 and v,, = 0. Compared to

the similar results for the TEon-mode, the gain is comparable. Figure 5.2 shows

the same case except the velocity spread (v,) is now 2%. It is obvious

that the slow wave amplifier is sensitive to the axial velocity spread,

particularly at higher frequencies (thus large k,). The next graph (Fig. 5.3)

shows the same case as Figure 5.2 except with slightly higher axial velocities

given by v,, = 0.185 + (n-1) x 0.005 (n=1, ..., 4). The gains are slightly

improved with smaller bandwidths. Apparently there seems to be a trade-off

between gain and bandwidth. Figure 5.4 shows the same case as Figure 5.3

except with a higher velocity spread Av,, - 4%. The last figure (Figure 5.5)

is similar to Figure 5.1 except that a is 1 now. The gain is a very sensitive

function of the transverse velocity. This is a general characteristic of any

gyrotron device. In the limit a-.O, we do not get any positive gain for the

- 23 -



Applying (4.9) to (4.6) and noting that there are four poles corresponding

to the four roots in the complex dispersion relation

d(ki ) = o, (4.10)

one obtains
I (r(Z) 4 eikiz I~(ki)/

= d'(k i ) (4.11)
ez) i=1 \NO(ki)) /

whereI
(Nr(k) __ . (k ) 1-()kl,,- S12)+ _r(O) ((1 + S10 ) - S20(k,, - S12)

N(k) (k + S1r2 (1 + S10) + S20(k + S11 )

(4.12)

Note that the relative field amplitude of each of the four possible modes is

completely determined by the residues at the poles as a function of boundary

values (-H,(o) and "Er(o)).

Having determined the fields as functions of z, one can immediately calculate

the gain as a function of interaction length r from the power flow comparedL

to the input,

G(dB) = 10 log10  (Sz(L)/Sz(o)) (4.13) 4

where

Sz(L)/Sz(o) = Re (Er(Z)HZ(z))/Re (Er(o~)H(O))Iz=L

= Re ( .eikiL Hr(ki)/d'(ki)) (e'ik*L N*(ki)/d'(k*))/i I

Re ( i Nr(ki)/d' (ki)) ( N*(ki)/d' (ki))*
i I

taking the summation over only Re (kj) > o for the forward gain, and Re (ki)< o

for the backward gain.
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and

11S22 - S12S21= (2/cn) 2  s ck,,/Ik 112 1 / 2w 2 /c2/1k1
2 s~ck,,/Ik,1

2

- t t c /1k 12 wc/lc]•

It is important to note that one can rationalize (4.6) by multiplying by

-2(k) in the denominator and numerator. Then the denominator

d(k)=i-(k) det(D(k) (4.8)

is a quartic polynonial in k.

The fields as functions of z can be immediately obtained from (4.6) by

inverting the Laplace transformation. The Brownwitz inversion formula for

the Laplace transformation (2.9) reads

1 2 i c + G*

F(z) = /27r-c-a dk eikz F(k)

= 1/2i dk eikz i F(k) (4.9)

Res (eikz i F(k))I
I Ik=ki :poles

where sufficiently large positive c guarantees that all the pole contribu-

tions in the contour integral shown in Fig. 4.1 are included.

lik

Figure 4.1. Contour integral for (4.9).
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A2  -- 1/2i (cw2 /c 2 - k2 ) ctclk 1 12 - llS k /clk/c- 2 / so/cu ,,/c

A0 = - i k,/1k 1
2 (wIc , - kcVo)

B - /s k. kc^I /kj2B 2  -- C/ o/c/Ik±12 (o °yo _ s 2c)

B0  - i/fs k,,c' 0o/lk, 1
2  (4.4)

(nS- -=Yo - SS2c - ku,,)

Substituting (4.2) into (4.1) one obtains

ok + S11  -kI + S12 (r (1 +

, S21 k + S22/ 1H/ r20

(4.5)

n which can be immediately soluable by matrix inversion as

'-E'r(k k, S 12
1-.•: : 11det(D(k)). fi-q (o)

a \He(k) k S 11

(1 + SI0) + S20
+ 1Er (0) ( (1 + SI0) + S20

(k,, - S12)
(4.6)

(k + Sli)

where

e ( k + SI1 -k + S12
-k, + S21 -k + S22

= (k2 - k2) + k(S11 + S22) + k,,($ 12 + S2 1) + $11S22 -12S21

- 20-
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* IV. DISPERSION RELATION AND GAIN

Let us go back to Maxwell equations (2.10) and write them in a matrix formr as

WI

(~k, ~ ) (~ ) (2/c)/Cn ( +z i 38eo)(o) + i Tr(o)) (4.1)

with the source terms calculated in the previous section, (3.27) with

(3.29). in the source terms, all the possible radial and temporal harmonicsI. of TMon-niode are included so far. However, each radial and temporal

harmonic is weighted with resonance factor -/2 and 1/1T5 with

S2s wY k,.,n u,, - sS~ and, in practice, one can tune to only one of them

since the radial modes and temporal harmonics are fairly well separated.

Therefore, considering only this resonant mode term in the source term and

Susing the relation (2. ), one can write (3.27) as

=z S 1 1) )S2/cCS 1  12 E (Er() (4.2)
', Wr/ (S21 S22 H/ (20/

ICI

* where

A A

2/Cn k (u: A1 + 81) ~ 1 /ak (u0 A2 + B2)

* 2= /ns~k,/1k112 A1  S2 2/Cn snk /kj1 2 A2  (4.3)

Le us( g bk t A + B0) e a os 2/Cn /ki i A0

A , ri i2 
-o~o) + ki) "E/ok(.1

- 2lffs5 k~c 0/%2C

-19 -
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-.

which is the desired result for a "cold" beam with 6 - function guiding center

distribution. Beam spread effects should be included at this stage, according

to (3.11). This has been discussed in detail in Ref. 1, and here we quote

the result for the most important velocity spread effect in u,, for a Lorenzian

distribution

(u) 1/7T u:/((u,-u,,) + (&u,)2) . (3.28)

We have shown in Ref. 1 that the result of this velocity spread effect is to

merely replace u* in (3.27) by

u -A - iAu sin 1 (3.29)

-[.4
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The remaaning integration in (3.24) with gj given by (3.17) can be done

trivially by integration by parts,

(~~~~~~ wzk j~m' Z(aO) kE
Wr(k) / Z

" s/a0 (Er k11/1k~l a/auO + He w/c/IkjI (q7/cvYo a3lu- uO/c-Y0 a/au-))J
LJ

+s/a0 (Z(a0 ))' (Er k,/jkjj - He w/c/ik±i (uOIcy0 ) ik1IAOcI

Z2( a )/S2 (k)(3.25)

Defining

ti Ne2/MC2-Y 2~a)Z(a0)+sa Z(oI (.6

Ne2/mc2 ^y [Z2(aO) s/ao 'Z2 'a' L s/a LZ( .Z(o]

one can further reduce (3.25) to

1/c Clk/ (~,/ 12 1 2  (- k ?z (cs/c u kcY0 )r(k) ) flY I( -

+ (Er k, - He k)Mcw jj

IfI

( lA.zc ( -, 0 - eCo/ J

+ (-') r1 n(k (-k E~ V H0 S~cac/Ik±I2)

(3.27)

-17-



Defining the radial integrals as

Tj T XI Ij(x))
( -)~ s/27r dx Zo(X )

T2 o12 (x)

ill) ,(3.21)13 AT3 ^ 13(x)

---- k S / 2 7r f d x Z I( x )i;" 4  o14(x)l

one can write (3.20) with (3.19) as

(- Ne 2 /m 2 (du,, dul u1 /u'/s(k) Zs(aL)

4, Wr(k) / n,s L

:O (3.22)

(ku '' (FH I -F1 12 )

(-k k,,/kj Iu1 ) (FH T3 + F T4)

The radial integrals (3.21) are carried out in Appendix C giving very simple

results,

= , = i T1  (3.23)TI0 ZsZaL az2(ao  T 4

T2 = - Zs(a L) s/a (Z(a)) 4 s/a T2

and one obtains

['o(k) -ku,,
" =.Ne21m fdu,,duI u1/ulm/s(k) Z2(aL)

[- "Wr(k) n c k,/Ik 12 L

(FH Zs(ao) , F, s/ao (Z2(ao)') (3.24)

where FH and F1 are given by (3.16).

* - 16-



CO

g1 (u. ul)~ 6 (u,, u) (u.1  u u0

g2 (4) (6(4- O) + 6(Q+40))/a sin4 0 A (r) .(3.17)
L

Defining the following phase angle integrals as-4

(11(x) ZS a)9

12(x) (s/a Zs(a) 21a) d~e1~ Z5 () g 8g2aaI(3.18)
13(x) a) 92)

fd 1i Sint eisO(ZA

one can write (3.15) as -
e rs k ]du 1du, u,/u1'/ns(k) ZS(a)3r(k) n= eL)tN 2 m ~ Ik/2)r~+(-u (FH I1(x) - F 12(x)\

U, (FH 13(x) - j 14(x)) (.9

The integrals in (3.18) are calculated in Appendix B and the remaining

integral in (3.19) is trivial, resulting in a rather complicated expression

for the induced currents. However, what is interesting to us is the work

done by fields on the induced current, given the source terms in the Maxwell

equations (2.10).(Wz(k) i er ( e(1)(r) eiwt YJ(k))(.0

/ ) f er(1)(r) eiwt Jr(k)

-15-
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With R = (r2 + r2 - 2rr cost )1/2, one can consider g2 (R) as a function
L L

determining the angle distribution and given by

g2 (R) = 1/21rr (6(9-40) + 6(4+4 0 ))/r sin to A(r) (3.13)
L

where cbT o-(r 2 + r2 - R2 )/2rr (see Fig. 3.2) and
L 0 L

( if r_ < r < r+
o otherwise 

(3.14)

(r, Ro * rL)
L

Putting all of this into (3.10) and understanding that the beam spread

effects (both in velocities and guiding center) will be taken into account

later (as dictated by (3.11)), one obtains

= -i e- i wt Ne2/m Y Ikl/(27) 2 r ks+l rdu,, du, dt uil/uV/s(k)

J (k)

elS4D(u ' snt)'Zs(aL)

(FH(k) Zs(a) ^2 - ?I(k) s/a Zs(a) a82/aa) (3.15)

where
A w a/ a W

FH(k) M-kEz agl/au,, - s/aL [Er k,,/Ik11 a91/au1 + H0 w/c/1k11

(u1lcv/lU, - u,,IC al/aU1 )]

FI(k)= gl(Er k,,/1k I - H w/c/Ikij u,,/cv) Ikul/c (3.16)

-which represents the part for a homogeneous plasma and an inhomogenetty,

respectively, and

- 14-



The induced currents (Laplace transformed) are given by

i0 (k),
Ne Jc3u ( 'Y fl(k) (3.10)

Jr(k)) u/' Sint

where N is number of electrons per unit length.

In order to carry out the integral over momentum space, we need to know a

more specific form of the beam function fo. This can be done without making

any further assumption, other than fo being an arbitrary function of u,,, u1

and R, by invoking the following identity:

f(U,,, u, R)-fdu 21r u- du* 27r R-dR° fo (u, u-, R') ? (u, u, R)

(3.11)

with

fo (u,,, u19 R)_ gl (u, u.) 92(R)

g1 (u,,, u) m 6(u,,- u*) 1/2iu 6(u 1 - u ) (3.12)

g2 (R)- 1/27rR: 6(R - R°).

A
Note that fo represents a "cold" beam function with 6- function guiding

center distribution and is normalized to be one electron per unit length.

Equation (3.11) allows us to include the beam spread effects both in the

velocity and the guiding center at the end of the calculation and to
A

concentrate for the moment on the 6- function type of beam function fo

without losing any generality.

- 13-



fi e-i" e/m ks1es z've~

$EZ (Z)3fo/aU, A
kZs(a ) Zs(a)

- £r(z') k.,/1k11 af0/auj + iTg(z) W/c/1kil (u1/cvY clfo/au u,,IcvY af/aujJ]

s/a LZs(a L Zs(a)

L L)

~eit e/m 2: ks+1 ei54)J dz' G(z-z') F(z') (3.5)4
n,s 0o

which shows characteristic hysteresis inteqral with Green's function

G (z-z') 1/v,, ei()-swc) (z-z')/v,, (3.6)

The Laplace transformation of (3.5) can be done immediately by invoking

the convolution theorem,4

= 1~~te/m 2: kS e1 S -G(k) F(k) (3.7)
n ,s

with

= jv/nz5(k) tj (k) w 'Y- k u. M (3.8)

and

*F(k) =Zs(aL [k Z(k) Ofo/au,,

-s/a (Zr(k) k,,/1ki1 afo/aul + H6 W/c/1k11 (ul/cV 8f0/au,,
L

g -U1 cly 8f0/auj))] Zs(a)

-(?r(k) kj,/k 11 - -H6(k) w/c/1k11 u,,/cvy) Ikll,',c af 0/aa

*Sf8 Zs(a)I 12 -(3.9)
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APPENDIX A

ORTHONORMAL T~o RADIAL EIGENMODES

We will derive here a complete set of orthonormal TMon radial eigenmodes in

a waveguide loaded with an arbitrary number of concentric dielectric layers

as in Fig. 1. (For more general and detailed treatment, see Ref. 1.)

For azimuthally symmetric modes (a/ao 0), the sourceless Maxwell's equations

in a linear dielectric medium ('D = EE, B = pH, V x E -p/c aHl/at and

V x H = e/C aE/at), form a closed set of equations for Ez, Er, He

* 8Er/3z - aEzIar p ~/c 8H9/at

-aH 0o/az. = e /c a Er/at (A.1)

I/r a/ar(rHo) =e/c BEz/3t

Due to the cylindrical symmetry of the system, one can write the fields

* (stationary in time) as

* Ez(r,z,t) =eliwt eik 1z ez Cr)

Er(riizlt) =i e1"wt ek ,i er(r) (A. 2)

HO(r,zlt) =i e-icit eik,1z ho(r).

* Substitutinq (A.2) into (A.1), one obtains a set of radial equations
w d/dr),

k,er + ez' = p w/c ho (A.3a)

kho - E w/c er (A.3b)

1/r (rho)' + E w/c ez =0. (A.3c)

A-1



Using (A.3b) one can eliminate er in (A.3a), to obtain

k2 h6 = /c e '  (A.4)

Ik P Wj~~c - kit.

From (A.3c) and (A.4), one obtains, by eliminating he,

1/r (rez')' + k2 ez = 0 (A.5)

or, by eliminating ez,

(1/r (rh0 )')' + k2 h0 = 0. (A.6)

Radial Eigenmodes

The solution of (A.5) is given in terms of the Bessel functions of order 0

ez = A Zo (IkIlr) +9 Zo (Ik1Ir) (A.7)

and the solution of (A.6) is given in terms of the Bessel function of order 1,

h0 = B Z1 (Ik1Ir) +B Zj (ik,ir) (A.8)
where

{JRx) YQ(x) if k2>oZIx)- ) , (x) -1Z(x)X) K2(x) if k2<o.

Of course, due to (A.4), the arbitrary constants (field coefficients)

(A,T) and (B,B) are related to each other by
A/

B - k e/c/Ikil A, - w/c/IkIl I (A.9)

since

A
Zo(x) - - k Zl(x) A(k -k2/lkj .
l (x) - - 1l(X) ( ~II)

Therefore, fields in a dielectric medtum are completely specified by two

arbitrary constants (A,K) - the field coefficients. The field coefficients in

one dielectric layer and in another dielectric layer are related to each other

by the boundary condition that ez and he be continuous. This can be shown as

foll ows.
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By defining
" ez (r)l V( A

F(r) v()
[::. he(r)/

-o (Jk±jr) 70 (Ik,1r)
M (r.:\-kc Icllk 1 l Zl(Ik1Ir) - wcllkl 7l(iklr)!

one can write (A.7) and (A.8) with (A.9) as in compact vector form as

F (r) = M(r)V. (A.10)

Consider this relation in the i-th region and the 1+1-st region,

F (r)= M (r)V

; . F (r) = M (r) V

At the boundary r=ri, F(i)(ri) = F(i+)(ri) and therefore one obtains the

connection formula

V(i+ 1) . s(i+l,i)(ri) VMi (A.11I)

*with transfer matrix

. S(l+l,i)(ri) (M(i+l)(ri))-I M()(ri).

By applying (A.11) successively, one can express field coefficients in any

dielectric layer in terms of the field coefficients in a particular dielectric

region (for example, in the innermost reqion).

* Actually, one can prove that the transfer matrices S form a transformation

,' group in a discrete vector space V.

In the innermost region, fields must be finite at the origin (regularity

condition) and therefore

A
i. A- 3

I L * '- -'. -' . . . - .. -' " -'- " • " - . .- - . .- "* ' . -. '*, . .• - " " '. "



vDi) C 10 (A. 12)

By applying (A.11) successively, one can find the field coefficients V(N) in

the outermost region by

V(N) = s(N,1)v(1) (A.13)

where

s(N'I) = s(N'N-I)(rN-I)'",S(291)(rl)".

In the outermost region, the fields must satisfy the boundary condition that

ez(N) must vanish on the conducting wall at r = rN;

ez(N)(rN) =- A(N)NZo(k(N)IrN) + -K(N)lo(Ik(N)IrN) =0

which can also be written in vector form as

p(N)t. V(N) = 0 (A. 14)

where
p(NZ z (N)(Ik (N) jr).i

(Zo0(N) (1k k()r )  .

Combining (A.12) - (A.14), one obtains a dispersion relation

P(N)t. s(N,1) • V(1 ) - 0 , (A.15)

which gives an eigenvalue condition on k,, for a given c. The solutions of

(A.15) for k,, form a discrete set of radial eigennodes characterized by k,,,n

or simply n. Having found the radial eigenvalue, the fields in all the

dielectric layers are completely determined up to an overall normalization

constant C.
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Orthonormal ity

Let us now prove the orthogonality between two different radial eigenmodes

and obtain the appropriate normalization constant for a given mode. This is

an essential step in projecting out the correct Than-component field radiated

from a radially localized source when we introduce an electron beam as in the

text. Denoting the radial eigenmode by subscripts n and n', (A.6) reads, in

the i-th dielectric region,

(1/r (rhO,n)' + k2 h 0n 0; k2' ,n Cipi G2/C 2 _ k2 (A.16)

(1'r~rhon + k h 2 02 2 _k
.j.,n Olin' = ' ki ,n ipi i /C It In

(For notational simplicity, we have dropped the superscript i indicating the

dielectric region on he and k.1.) Multiplying (A.16) by he,ni andhen

respectively, subtracting one from the other and integrating over the

dielectric region, f rdr, one obtains

fri-1

0 Jdr JErh,,n'(i/r(rhq,n)') -rhq,n(1/r(rhO,n' ))]

Itn L± ,n' ho,n i

Ik ,n 2k 2en

[he,ni (rhq,n)' - h8,n(rhO,ni ) ri + '(k -n k U,n) x

f l. rdr ho,no hq,n

and, upon using (A.3c),

k'$, -kill n) Jr rdr hq,n. he il/ci =cJ/C [r(hO,n.ez,n

h,nez,ni)) A.7
ri-i
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Now one can add expressions similar to (A.17) from all the dielectric regions.

Note that the terms in the right-hand sides cancel out at the boundaries

between dielectrics (because both he and ez are continuous) and vanish at

the origin and on the conducting wall.

Thus one obtains

N rri (i) (i)
(k2 - n)1,L) rdr 9,n' h ,n/i = 0 (A.18)

"= ri. I

which is the desired relation.

If k2  k2  i.e. n # n, (A.18) gives the orthogonality relation

,n' 1,n, i e , n

N r d 0 (i)
fJ rdr ho,n, hon/ci = 0 (A.19)

=1 ri 1

and, for r' = n, the field hO,n has a normalization factor

N r i  (1)2
Cn V rdr h,n /i. (A.20).i=-1 fri-1

The physical meaning of this normalization constant Cn becomes more clear if

one writes it as, using (A.3b),

C,, --w/c/k , i5"J rdr hon er,n
i I ri. I

which is nothing more than a quantity proportional to the total power flux

of the entire waveguide, Sz 2rdr Re (c/8fEr H*) = c/ 4  rdr er,n
(1) 1=1 ri-1

he,n, that is,

Cn 4/c w/C/k,,Sz, n .  (A.22)

A-6



APPENDIX B

ANGLE INTEGRALS

The angle integral defined by (3.12) can be calculated straightforwardly

by usinq Graf's addition theorem (3.4) for expanding and recombining

Bessel functions.

Jd o Z() [AL
I,(X)--- d e s  Zs(a) 92M [2Q -.6 )  + 6(4+4o))/a Lsin~o a (x)]

sok so + S(a)L Z51(x) f dtei' 92W~
SA

= 2A/a sino I, k ZS' + siaL) Zs,(X) cos S'4

= Zs(ao) Os(x) [0s(x) 2&/a Lsintocos SoJ . (B.1)

Similarly,

13(x)---- d4 1/i sin eis  Zs(a 92W(.2

= Zs(ao) Ss(x) ; Ss(x) - 2o/aL sin sOO

For 12(x) and 14(x), note that
A

s/a Zs(a) = 1/2 (Zsil(a) + k Zs+l(a))

and

a = (x2 + a2 - 2xa cosg)1 /2

L L

e+-i# a 2/8a = a 2/8a L-- i/a ag21a{

B-i

.................... ........ ...... ...*..



12 Wx fdt e1  s/a Zs(a) a92/aa

=fdt i/2 (ei(s5l) Zs_ 1(a)eiOP a 2/aa k' ei (s+1)0

Zs5 j (a) e-* a 2/aa)

1/2 (1-(x) + k I+ (X) (B. 3)

where

Tx) f _,1(a) eux)d a aq,/a /a8a2/

k S z5 s-l(a ) Z -(x) (8f t e '/ 2/a +ina cossW
slL L L L

= k 2A( sIn) (a ) osszP0 (a/aa + (-1/a ) (a sin o '0s +1L L L L

Z5..1(a0) cos(s-1)o0
A
=k Zs(a 0) 05(x) + Zs-l.(a 0) (a/a (s-l)/a ) 0...(x)

L L
(B.4)

and similarly

=-Zs(a0) Os(x) + Zs+i(ao) (8/88 (s+1)/a ) 0+I(x)
L L

Substituting (8.4) and (8.5) into (B.3), one obtains

12(W 1/2 [Zs-l(a0 ) (a/aa -(s-1)/a )Os-i(x) + k Zs+l(a0 )
L L

3/ + (s+1)/a L Os+i(x)) (B.6)

Li kewi se,

4(~m dt1/i sing ei5 s/a Z(a ag2/ a
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where

1- (X) Zd1isit i(a-)0 zs_.(x e/ sie 1S (2/aL+

so k _,i5 (a L) Zs.(xl) [(;/aa + s'/a L) 24/a Lsin s4

- 1/a L2Acos~o/(a Lsin~o) cos 'O

A
- k 2A/a Zs(a 0) sin s~ + (aa L-(F-1)Ia L) 24/a LZS-1 (80) sin (s-I)zk0

- 1/a L2&cos~0/(a Lsin~0) Zs-l(a0 ) cos (S-1) 00

- k Zs(a 0) Ss(x) + Zs...(ao) [(a/aa - (s-1)/a L) Ss-l(x) - 1/a LC5..1(x)J

(B.8)

with Cs(x) =-2AostoI(a Lsin~0) cos s*0 and

- -Zs(a 0) Ss(x) + Zs+l(a0) [(a/aa + (s+1)/a L) Ss+l(x) + 1/a LC 5+1(x)]

(B.9)

With (B.8) and (B.9), (B.7) gives

14(x) =1/2 [Zs+l(ao) ((a,#%a L (s-1)/a L Ss-..( x) - 1/a LC5...(x))

A
+ k Zs+i(ao) ((3/aa + (s+l)/a L) Ss+l(x) + 1/a LC541(x)))j

(B. 10)
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APPENDIX C

RADIAL INTEGRALS

For radial integration, note that

x =(a2 + a2 - 2a a cos 0 )1/2 ;
0 L 0L

dx =1/x aoa Lsin40 d4,0 = a Lsin40 d4'0

Define

Os 1/27r fdx Z0(x) Os(x) [Os(x)=-2A(x)/(a Lsine'o)]

=112n f dxl(a Lsin 4 0)Z0(x) 2 cos o

sA~ co sI t
k~ Z~ .(a ) Zs.(a 0) 1/27rf 1Td% 2 cos skocss/

A
=ks Zs(a L) Zs(a0) (C.1)

A
where the relation Z-f.(x) = (-k)'Ze(x) was used.

Also,

s 1/2iif dx Zi(x)Ss(x) [S5(x) =-2A(x)/a L sin sJl

X+

= iI2fr J dxl(a Lsin .e0)Zl(x) sin~0 2 sin st/b

Z5.. 1(a ) Zs.(ao) 1/21r f'7 d~ 2 sinsi%0 sin sok 0
s L 50

k s/a LZs(aL) Zs(a 0)(C)

and

Cs 1/2ynfdx Zl(x)Cs(x) CCs(x) =- Mcos4eo/(a L slneo) cos sO

1/217f X+dx/(a sin fo)Zl(x) coseo 2 cos sO
x- L

C-1
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~k s I(aL Zs,(a 0) 1/2nfr'd4. 2 Cos S'0CosSO

- .fs+1 Z .(a ) Zs(a 0) (C.3)

With these, one can easily carry out the radial integrals. From (8.1) and

(B.2),

=ks/2 nf dx Z0(X) 11(x)

-ks Zs(a 0) 6

-Z2(a 0 ) ZS(a) (C .4)

and

*T 3 M ks/21rfdx Zl(x)1 3(x)

-ks ZS(a)

k ZS ,2,) s/a L aL = k s/a LT 1. (C.5)

FoF T2 and T4 , using the recursion relations

*(8/aa -(s-1)/a )Z5..1(a )=-k ZS(a)

L L L L

-9 (s~1)/a ) ZS+1(a )=ZS(a)
L L L L

*one can easily show that

T2 ks/27rf dx Z0 (x) 12 (x)
A

=ks/2 Zs_1 (a0 ) (;/aa L (s-l)Ia L us_ + k Z+(o

(8/aa + (s+l)/a L) 'S

* _ 1/2 (Z2_ 1(a0 ) -Z2 41(a0)) ZS(a)

- S/AO (Z2(a 0))' ZS(a )(C.6)
L
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andj

T4 ks/2nJ dx Zl(x) 14(x)

k -,1 (a) [(a/aa L -(s-1)/a L ~s1- 1 L *S-1]

+ Zs+l(a 0) [(a/aa L+ (s+1)/a L) Ts+j + 1/a L T+1

= k2 Zl(a0) -Zs+ 1(a0)) s/a LZs(a)

ks/a 12 (C.7)
L
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Invited paper

Theory of a slow wave cyclotron amplifier

K. R. CHUt, A. K. GANGULYt, V. L. GRAN.ATTEINf,

J. L. HIRSHFIELD-, S. Y. PARK§ and J. M. BAIRD§

A new type of travelling wave amplifier is proposed which features a slow wave
structure and wide bandwidth optration. It is based on the cyclotron interaction
between a slow electromagnetic wave and helically moving electrons. Gain anti
bandwidths are calculated including the effect of beam velocity spread. It is shown
that a bandwidth as high as 50%, could be achieved with beam velocity spread
<& 1%,.

1. Introduction
We report the concept of a slow wave cyclotron amplifier (SWCA) based

on the cyclotron interaction of a slow electromagnetic wave and a stream of
helically moving electrons. The SWCA has the potential of wideband and
high power operation at millimetre wavelength. As in typical microwave
devices, the basic .mechanism for radiation is electron bunching under the

influence of the RF field. In the case of SWCA electron bunching is caused
by the v. x B Lorentz force, where v1 is the electron velocity and B. is the

magnetic component of the wave field, both transverse to the applied magnetic

field. This mechanism is qualitatively different from the cyclotron maser
mechanism involved in the gyrotron travelling wave amplifier (Gyro-TWA).

A detailed comparison of the present mechanism and the cyclotron maser
mechanism can be found in Chu and Hirshfield (1978). The potential use

of the v. x B. bunching mechanism for high frequency wave radiation has
been suggested and analysed by Hirshfield et al. (1978).

Before proceeding with the analysis, it is instructive to compare the SWCA
with two other microwave devices-the Gyro-TWA and the travelling wave

tube (TWT). The TWT (Pierce 1950) employs a longitudinal bunching
mechanism driven by the axial electric field (E:) of a slow wave structure
such as the helix. The radiation energy in this device is derived from the

electron streaming velocity v: and no cyclotron resonance is involved. In
contrast, both the Gyro-TWA (Granatstein et al. 1980, Barnett et al. 1980,
Symons et al. 1981) and the SWCA depend on the free energy which resides
in the transverse electron velocity, v1. These two devices are similar because
they both extract energy from the beam through electron interactions with the
transverse component of electric field, E,: and they both radiate at the
Doppler shifted electron cyclotron frequency or a harmonic. As described
above (also in § 3) the difference between the two devices is in the mechanism

Received 6 July 1981.
t Naval Research Lalmratory. Washington DC 20375. U.S.A.

Yale University. New Haven. Conn. 06520. U.S.A.
§ BK Dynamics, Inc.. Rockville. Md. 20850. U.S.A.
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494 K. R. Chu et al.

SWCA Gyro-TWA TWT

Wave type Slow wave Fast wave Slow wave

Condition of operation w-k.v.-SQ':cO -kv.-sQ 0 c -kv;: 0
Cyclotron resonance Present Present Absent
Field responsible for B± E E.

electron bunchingField responsible for El E.L E,
energy extraction

Nature of bunching Non-relativistic Relativistic Non-relativistic
mechanism

Free energy V± v± v,

Table 1. Comparison of SWCA with Gyro-TWA and TWT.

which produces the phase bunching. The principal advantage of the cyclotron
- resonance devices over the TWT is that the dimensions of the interaction
0 structures permit much higher power outputs to be obtained at shorter wave-

lengths. The above comparison is summarized in Table 1.
Preliminary results of our studies have been reported in several conference

proceedings (Chu et al. 1978, Sprangle et al. 1979, Baird et al. 1980, Keren
et al. 1980). In this paper, we present a more complete theory of the SWCA.
In § 2, a particular slow wave circuit-the dielectric loaded waveguide-is
examined. In §§ 3 and 4, the dispersion relation of the SWCA is derived
and analysed. On the basis of which a proof-of-principle experiment has
been designed. Finally, § 5 contains a summary of the present work and a
brief review of related work.

2. Properties of the dielectric loaded waveguide
The beam-wave cyclotron resonance condition is given by

cu - kAv - s0( t-- 0 ( 1)

where w is the wave frequency, k. is the wave number, v. is the beam axial
0 velocity, s is the cyclotron harmonic number, and Q, is the electron cyclotron

frequency. Wide bandwidth operation requires that (1) holds over a broad
range of frequencies. Differentiating (1) with respect to k, gives

d, (2)

Hence a wide band circuit is one whose group velocity (d,/dk,) coincides
with the beam velocity over a wide frequency band. One way to realize
such a circuit is to load the waveguide with dielectric material. In this
section, we examine the properties of a dielectric loaded waveguide as shown
in Fig. I (in the absence of electrons). It is well known that TE and TM

* modes are separable only for modes without angular variation. For simplicity,
we shall restrict our consideration to the TEO, modes, where the subscript n

* d.. ; - . . ,. , . . , . , .
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~LINER
pi

WALL

ORI

-_

Figure 1. Cross-sectional view of a SWCA employing dielectric loaded waveguide.
All the electrons have the same guiding centre position and are uniformly
distributed on the circle of radius r0. The applied magnetic field (Boe.)
points toward the reader.

refers to the radial eigen-number. The TEO mode dispersion relation (in
the absence of electrons) is given by

km2 Jl(k,,rd)[J(k.2rw) Yo(k. 2rd) - JO(k .2rd) Y(k. 2 r)]

+ ,jJ(kflrd)[JI(kn 2rd) YI(kn2rw) -J(k. 2rw) Yl(kfl 2rd)] 0 (3)

where

k,, 2  
k. 2

ro(4) ; '
O2

E and p are, respectively the dielectric constant and permeability of the
dielectric liner, rd is the inner radius of the dielectric liner, rw, is the wall
radius (Fig. 1), Jn and Yn are, respectively, Bessel functions of the first and
second kind. For a given k., there are an infinite number of solutions for w,
which are denoted by the mode index n. The electromagnetic fields associated
with the TE,,, mode are

B Jo(k.1r), r <r d (5B, = JJ((5))?< T

laJ(k.2 r) + b Yo(k, 2r), r > rd

(-ik, J,(k,,rf), r <r

H, -- (6)
-:!kz [a.j(kn2r) + b YI(kn 2r)], r >rd

,. . . .
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J iJ(k,,r) r < rd

E =~ (7)

r - [a. I(k,,..r) + b Y, (k, 2r) r, r>r

where

0" 7T
a =- k,2r d kl Jj(k~jraj) Y°(k. r') -aJ°(k.rd) Yl(kn"rd)

b= k 2r a FJo(knlrd)Jl(kZrd) - 2 JO(kf 2r)Jl(kllrd)

and all field components vary as exp(- iw t+ik-z). A noticeable property
of these electromagnetic fields is that (E o, H,) forms an orthogonal pair, i.e.

0 if E, and H,. have the same mode number n
" rEOH,* dr (8)

0 -0 0 if E6 and H, have different mode numbers

but (Ee, EO), (H,, H,), (B.., B:) are not orthogonal pairs.

,--LIGHT LINE

122

I.'1

0 rd .

z r w

Figure 2. (a) w versus k, plots of the TEot mode of the dielectric loaded waveguide.
r,/r',,=0.7 and )= 1. Light line is defined by w=kc. (b) EO versus r of
the same waveguide. Shaded area indicates dielectric region.

S1
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Figure 2 (a) plots the TE0 1 mode dispersion characteristics for rd/rW = 0.7,
= , and three values of the dielectric constant e. The case E = 1 corres-

ponds to an unloaded waveguide. In all three cases, the wave group velocity
(dwl/dk.,) approaches a constant value (condition for wideband operation),
while larger e gives smaller group velocity. The unloaded waveguide (C= 1)
is impractical because its asymptotic group velocity approaches the speed of
light. This is the reason that dielectric loading has been added to lower
the asymptotic group velocity so that the wave could interact with a moderately
energetic electron beam.

Figure 2 (b) shows typical E6 profiles of the TE01 mode (eqn. (7)). As C
increases, E6 tends to concentrate toward the dielectric region. When e is
so large that w/k. < c (i.e. k, 1 becomes imaginary, see eqn. (4)), the electro-
magnetic wave can be regarded as a surface wave on the dielectric. A more
sophisticated model of the dielectric loaded waveguide has been analysed by
Park et al. (1980).

3. Dispersion relation of the SWCA
Figure I shows the present model of the SWCA. The electrons move

along helical trajectories under the guidance of a uniform magnetic field
(B 0oe). We assume that the beam is sufficiently tenuous that its space charge
field can be neglected. Hence, the radial dependence of the RF field is that
of an empty dielectric loaded waveguide (eqns. (5)-(7)). We let all quantities
depend on t and z through exp (- wt + ik-z). The presence of the electron
beam, treated here as a perturbation, modifies slightly either w or k. such
that w or k. has a small imaginary component to give rise to wave growth.
The purpose of the following analysis is to derive a dispersion relation which
determines k. as a function of cu or vice versa. Using (5)-(7) and the Maxwell
equations, we obtain

2_kz'2- kn,2) EOM ) -41rica J,(1)

where the superscript (1) denotes first order quantities and J6(1) is to be
evaluated from the equation

J,(=-e f /(')(x, p, t)vd 3p (10)

and the perturbed distribution function /(1) can be solved from the linearized
relativistic Vlasov equation

(t a xa axBoe;" f( e(E(") +v x B "1) . o (11)

where /. is the equilibrium distribution function, p is the electron momentum,
E" ) and B(1) are given by (5)-(7).

In the above, (9) is the field equation, (11) is the electron dynamics equa-
tion, and (10) serves to connect (9) and (11). To solve (9)-(11), one must
first specify the form of the initial electron distribution function in terms of
the constants of motion of the system, namely, the perpendicular and parallel
momenta p, and p., and the canonical angular momentum P9 . To be
consistent with the usual experimental configuration that all the electron

J.E. 2 c
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guiding centres are approximately located on the same cylindrical surface
defined by r=ro, we choose f, to be of the form (Chu 1978)

/0 = CS(r 2 
- 2P /eB o - r 2)g(p±, p) (12)

where S(x) is the Dirac delta function, rL=pJ./eBO is the electron Larmor
radius, .g(p_, p.) is an arbitrary function of p, and p. satisfying I gd 3p = 1,
and C is a normalization constant chosen to satisfy I / 027rrdrd3p = N, where
N is the number of electrons per unit axial length. Methods for constructing
/. as well as the steps leading to the dispersion relation are similar to those
described elsewhere (Chu 1978, Chu et al. 1980). Here we present the result
directly,

r~,2 K ~p.dp1 f dp-g(p, )= r-

{(_ 2  k2 c )2 )p .2 H,(k,1 ro, k ,rL) (w -k.v)Q (kn1 ro, knrL) (
y73 m 2cl(w - k.v. - s) 2  y(W - k.v- -s2) S(13)

where v=Nr, re =28 x 10-12 cm is the classical electron radius

H,,(x, y) -[JS(X)J'8(y) ]2

Q,(x, y) -2H 8 (x, y) +yJ'(y)j"(y)J8 2(x)(1 +s 2/x 2) + [J'(x)]2}

+ 2s2J.(x)J',(x)J'(y)[yJ'(y) - J.(y)]/xy
and

-2k c5EHC* 
dr

K M-. kr-------- o

Note that K is a quantity proportional to the Poynting flux of the electro-
magnetic wave in the waveguide. Equation (.13) has been written in a form
to lend direct comparison with the dispersion 'relation of the Gyro-TWA
(Chu et al. 1980). In the limit e = 1, eqn. (13) reduces to the dispersion
relation of a TE, mode Gyro-TWA. This is expected because the SWCA
differs in physical structure from the Gyro-TWA only in the addition of the
dielectric liner.

Further comparison of the two devices is illustrated qualitatively in Fig. 3.
Because of the presence of the dielectric liner, the phase velocity of the guide
mode (eqn. (3)) falls below the speed of light at large k.. This consequently
renders the bunching process in SWCA qualitatively different from that in
a Gyro-TWA. The bunching force is magnetic and the bunching mechanism
is non-relativistic in the SWCA, while the bunching force is electric and the
bunching mechanism is relativistic in a Gyro-TWA. The two mechanisms
are in fact simultaneously present in either device and competing with one
another. For fast waves (w/k,>c), the relativistic bunching mechanism
dominates. For slow waves (w/k 5 <c), the non-relativistic bunching mech-
anism dominates (Chu and Hirshfield 1978). Thus, the fact that the SWCA
operates in the slow wave regime and the Gyro-TWA operates in the fast
wave regime (Fig. 3) represents a fundamental difference in the physical
mechanism. As a consequence of this difference, the magnetic field is tuned
such that the guide mode lies above the beam mode for the Gyro-TWA and
below the beam mode for the SWCA (Fig. 3).
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GYRO-TWA SWCA

/
GUIDE MODELGH...="

/.-. LI' NE LINE /

,,,L ,BEAM MODE

/
LIN

- BEAM MODE /

IL W

/ / GUIDE MODE
I I II I

kz kz

*z z

0I

I I I

kz kz

Figure 3. A qualitative comparison of dispersion curves between the Gyro-TWA
and the SWCA. The physical structures differ only in the absence (Gyro-
TWA) and presence (SWCA) of the dielectric liner. The guide mode is
plotted from eqn. (3). The beam mode is plotted from eqn. (1). The growth
rate is calculated from eqn. (13). The main feature is that the Gyro-TWA
operates in the fast wave regime with a smaller bandwidth, while the SWCA
operates in the slow wave regime with a wider bandwidth. Note that in the
region where there is gain, the guide mode line is above the beam mode line
for the Gyro.TWA and below the beam mode line for the SWCA.

4. Calculation of the small signal gain and design of a proof-of-principal experiment

The electromagnetic field in the waveguide varies as exp (ikz), hence in
the small signal regime the output power (P) depends on the input power
(P 0 ) through

P = P 0 exp (- 2kiL)

where k., is the imaginary part of k. and L is the interaction length. The

total gain (G) is then

G=- 10 log P/PO = -8-7kziL dB (14)

Note that (14) gives the interaction gain of a single mode. The real gain
of an actual device is given by (14) minus the input coupling loss. The gain1
per unit length (g) is given by *1

g =GIL= - 8.7k., dB/unit length (15)

where k., is to be evaluated from (13).

2c2

i e : i l l i I l ' t i . .. .L _ _2: * _ . . . . . ." • ._)
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6PZ
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0 .5 L

DESIGN DATA

0.3 -A

0.2

0 [ L I
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Figure 4. Gain/unit length ver-u.; frcelueincy for different beam velocity spread.
The point marked' design data 'has been used in the design example (Table 2).
Parameters used are V,)=60keV, 1,=5A, r,1/r,,'=08, r0 /r,.=051, e=16
and F= 1. The optimized magnetic fields for each curve (for top to bottom)
are B0 = 1-89 kG, ['90 kG, 1.93 kG and 195 kG, respectively.

Figure 4 provides a specific example of the gain calculations for a mono-
energetic electron beam with the following distribution in momentum space

9(P-, Pz) = A 8(y- yo) exp (P.- ] (15)

where S(x) is the Dirac delta function, A is a normalization constant,
V= [I + (P.2+p 2 )rnc 2 12 , yo is the electron relativistic factor, p.0 is the
mean axial momentum, and Ap. is' approximately the standard deviation of
the electron axial momentum.

In Fig. 4, g is plotted as a function of the wave frequency for several values
of momentum (or velocity) spread. The corresponding bandwidth (Aw/w) is
also indicated, assuming a total small signal gain of 20 dB. Parameters
used to generate Fig. 4 are indicated in the figure caption. For each velocity
spread, there is a different optimal magnetic field, also indicated in the figure
caption. One observes from eqn. (1) that a spread in v= tends to spoil the
resonance condition and thereby degrades the operation. Further, the
sensitivity of the resonance condition is proportional to k. as shown in (1).
Since the SWCA operates at a relatively large wave number compared with
the Gyro-TWA (Fig. 3), it is much more sensitive to electron velocity spread.
The -ensitivity is clearly exhibited in Fig. 4. For a perfectly cold beam, a
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maximum bandwidth of 55", is predicted but the bandwidth degrades rapidly
to 17o0 with a 3 .60, velocity spread. In comparison, the Gyro-T\VA can
tolerate a much higher velocity spread (Lau et al. 1981). On the other hand,
the Gyro-TWA, operating near the cut-off frequency of the waveguide, is
known to be susceptible to band-edge oscillations caused by an absolute
instability (Lau et al. 1981). The SWCA operates further away from the
cut-off frequency and consequently is expected to be less susceptible to such
oscillations.

The point in Fig. 4 marked 'design data has been chosen for a proof-
of-principle experiment design. Parameters of this design are shown in
Table 2. Details of experimental considerations (Baird et al. 1978, Keren
et al. 1980) have been described elsewhere.

Central frequency 6.9 GHz
Bandwidth 170
Total gain 20 dB
Gain/unit length 0"36 dB/cm
Beam voltage 60 keV
Beam current 5 A
v.Ljv 2
Applied magnetic field 195 kG
rd 1"427 cm
r, 1-784 cm
r. 0.915 cm
rL 0"405 cm
416

Table 2. Design parameters of a C-band SWCA.

5. Summary
We have presented the concept and small signal theory of the SWCA.

It employs a physical mechanism not yet exploited for coherent microwave
generation. The prospect of high-power, wideband operation at millimetre
wavelength constititutes the main attraction of this device. However, the
degrading effects of electron velocity spread may present a difficult problem
in its implementation.

A dielectric loaded slow wave structure has been chosen to illustrate the
principle of operation. Other slow wave structures, such as the periodically
loaded waveguide and the helix, can also be employed and may even offer
significant advantages over the dielectric structure in terms of high power
and, most of all, the avoidance of loss and space charge build-up on the
dielectric.

In this paper the basic principle is emphasized. Operation at a higher
order (n) waveguide mode or at higher cyclotron harmonics (s) is included
in the model but not analysed. Recently, Park et al. (1981) have developed
a more refined theory of the SWCA and demonstrated some interesting features
of harmonic operation. Gangulv and Chu (1980) have considered a SWCA
model in slab geometry. Uhm et al. (11) have studied a variation of SWCA



5o:.1 loll "IT Ci yclotro~n aiti/i~urr

in which the dielecttric miateial is inisertedl ifl the (centre of the ~i.uiI.
A relatedl device similar to the S\V( A in structuore and to the TWi' In hia
mechanism has (eeo reported by Fe Ich 4ti! 1 9

ACK NO WLE DGM ENTS

Trhe authors are grateful for many valuable dliscussionls with [)r. P. Spi'arigIc
D)r. H. Keren and Dr. B. Arfin. This work was supportedI hy t he Office (if
.Naval Research.

REFERENCES

BAIRD, .. PARK. S. Y., CHU, K. R., KEREN. H., and FIIRSHFIL). .. L.19.
Design of a slow wave cyclotron amplifier. Bull. Alin. Phys. ,Sor.. 25, 911.

BARNETT, L. R.. B.Aavu. .1,.LAv. Y. Y._ Ciu. K. R.. anld tGhANATMTEIN. V. I...
19804. A high gyain single stage gvrotron travelingz wave, am plificr. I-' E /.I!
Tpchnical Digest, p. :314.

C'uu. K. R_. 1978, Theory of electron cyclotron maser interaction in at cavity at t he
harmonic frequencies. Ph y.s. Fluid.q, 21, 2354.

CJt-. K. R.. SPRANGLE, P. .and GRANATSTEIN. V. L.. 1978. Theory of a dielectric
loaded cyclotron traveling wave amplifier. Bull. Am. Phys. Soc.. 23, 748.1

Cau. K. R_. and HIRSIMFLD. .1. L., 147'8, Comparative study of thle axial andI azi-
muthal bunching mechanisms in electron magnetic cyclotron in.stabilities.
Phys. Fluid., 21, 461.

CHU-, K. R., DROBOT. A. T.. Szu. H. H., and SPRANGLE. P.. 1.981). Theory and sintula-
tion of the gyrotron travelling wave amplifier operating at cyclotron harmonics.
I.E.E.E. Trani. microw Theory Tech., 28, 313.

FELCiH. K. L., BUSBY. K. 0.. LAYMIAN, R. WV., KAFILOw, D., and WALSH. .1. E..
1981. Cerenkov radiation in dielectric lined waveguides. Appi. 1hys. Lt..
38, 601.

FERGUSON, P. E., and SYMONS, R. S.. 1981. A C-band gyro-TWT. I.E.E.E. lot.
Electron Dev. Meeting Tech. Digevt. p. 310.

(jANQULY. A. K.. and Cjtr. K. R., 1980, Slow wave cyclotron instability in dielectric
loaded waveguide of rectangular cross section. Naval Research Laboratory

GA Memno Report No. 4215. d FfF 3
GRNASTEIN. V. L., SPRANGLE. P., DRoBo'r. A. T., _"iiv. K.R.. and SE-r. .L

1980, Gyrotron travelling wave amplifier. U.S. Patent 4224576.
HIRSHFIELD. J. L., CHU. K.R.. and KAINER. S., 1978. Frequency up-shift for cYclotron

wave instability on a relativistic electron beam. AppI. Phys. Lett., 33, 847.
KEREN. H.. HIRSHFIELD. Ji. L. P.ARK, S. Y.. CHtT. K. R.. and BAIRD. .1. IL. 19801.

Design of a slow wave cyclotron wave amplifier. Filth Int. ('on!. irarped
and mm Wave. Wur--burg. p. 96.

LAU. Y. Y.. CHT-. K. R.. BARNETT, L. R.. and GRANATSTEIN. V. 1- 181. Gyrotron
traveling wave amplifier. Int. J. Infrared and ?nn? Warps. 2, 395 and :373.

PARK. S. Y.. BAIRD. . .M., and HIRSHFIELD. .1. L., 1980,. General theory of cylindrical
waveguide loaded with multilaver dielectric. Bull, A4m. Phys. Sor.. 25,
910 ; 1981 (to be published).

PIERCE. J1. R.. 19-50, Trav'elling Wave Tubes (Princeton :Van 'Nostrand).
SPRANGLE. P.. COw. K. R.. SMITH. R. A.. 1979. The theory of electron cyclotron

maser devices. Fourth lat. C'onf. Infrared and mnm Waves. Florida. p. 93.
Sy~moN.9, R. S., .JoRY, H. R.. HEGJI. S. .J.. and FERG~USON, P. E.. 1981. An experi-

mental Gyro-TWT. I.E.E.E. Trail.,. micron'. Theory Tecrh.. 29, 181.
Utim.. H. S.. CiiOE. ,J. Y.. and Atts. S., 1981. Tbeory of gyrotron amplifier in a wave'-

g-uide with inner dielectric material. Int. J. Electron. (this issue).



704 Hixshfield

4. F. A. Korolev and A. F. Kurin, Radio Eng. Electron.
Phys. 15, 1868 (1970).

5. L. C. Robinson, Physical Principles of Far-Infrared
Radiation, Academic Press, New York (1973).

6. P. Sprangle, W. Manheimer, and J. Vomvoridis, NRL
Memorandum Report 4366 (1980) (unpublished).

7. G. Landauer, J. Nucl. Energy C4, 395 (1962).

8. F. W. Crawford, G. S. Kino, and H. H. Weiss, Phys.

Rev. Lett. 13, 229 (1964).

9. F. W. Crawford, J. Res. Natl. Bur. Stds./USNC-RUSI
(Radio Science) 69D, 789 (1965).

10. D. E. Baldwin, I. B. Bernstein, and M.P. H. Weenink,
Advances in Plasma Physics 3 (A. Simon and W. B.

Thompson, eds.) Interscience (1969), pp. 87-95.

11. ibid, pp. 1-18.



Cyclotron Harmonic Maser 703

J= 4.72 x 10 8(a)2 amp/cm 2

If Q = 104 we find J. = .72 n2amp/cm2: a 10 ampere,

0.04 cm2 area beam would, according to this criterion,
support oscillations at harmonic value up to and including
the seventh. According to Table II, this would correspond
to frequencies as high as 1035 GHz.

This analysis, based upon an admittedly idealized
model, suggests that the potent high cyclotron harmonic
interactions, studied more than a decade ago in non-Max-
wellian plasmas, may be exploited to generate coherent sub-
millimeter wave power. The model presented here does not
take into account the actual fields of a practical confocal
Fabry-Perot resonator, the practical means of coupling
power out, the actual spatial distribution of available
electron beams, or the non-linear saturation levels for
steady-state oscillations. All of these questions, and
more, will have to be addressed before the cyclotron har-
monic maser can be considered understood. Perhaps experi-
mental demonstration can serve to stimulate interest in
this promising mechanism.
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For the anti-symmetric modes, it is a simple matter to
show that the dispersion relation is given by a relation
similar to Eq. (10), except that the left-hand side is re-
placed by -tanknt/knk. Since for the parameter range of
interest [Z/(L-Z)]cotknZ/knZ << 1, Eq. (10) may be approx-
imated as

Wi

m"T c [F+
nm L-Z L nii) /J

where 6n - cotknZ/knZ for symmetric modes, and 6 n =

-tanknZ/knZ for anti-symmetric modes. The discrete spec-
trum given by Eq. (11) contains two indices; n is the cy-
clotron harmonic number, and m is the resonator mode
number.

We shall illustrate the nature of solutions to Eq. (10)
by reference to a specific example. Suppose the electron
beam thickness is such that XQ/W = Z/rg = 10, where rg is
the electron gyration radius. Then knk = Zn k/W = lOzn.
Furthermore, we take (L-Z)/Z = 20 and Z = 0.1 cm. Table II
shows then, for each harmonic, the spectrum of frequencies
predicted by Eq. (10), together with the associated mag-
metic field value. Only that portion of the spectrum avail-
able for magnetic field values below about 53 kG are given.

Of course, the existence of modes which satisfy the
equation of real parts given by Eq. (10) does not insure
that oscillations will in fact start. A rough criterion is
that the rate of growth for the instability be balanced by
the rate of energy dissipation into finite cavity losses.
This is expressed as

ImW 1-- > - (12)
Rew 2Q

where Q is the resonator quality factor. If we take
Imw/Rew = 0.3Ww p/nc, from Eq. (4), then Eq. (11) can be
used to find a start-oscillation current density Js. This
can be expressed as

(2
J - 1.65 x 10~ ___

s 1 1/2 3
2

where Js is in amperes/cm, B is in kG, V is the beam
energy in kilovolts, and a = W/U is the momentum ratio.
For B - 50 kG, V = 30 kV, and a = 2, we have
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E 3/2 z
Ex W " nj (7)

y p n(n

This expression shows our approximation of nearly longitud-

inal polarization to remain valid throughout the range of
parameters of interest.

We must now consider the matching of the fields with-

in the electron beam (0 < :xI < )

E.(x,t) = ('xEL + vE T)cosk nxcost (8)

to the fields outside the beam (Z < ixI < L)

E (x,t) - e E sin[ (L - jx )]cosut (9)-oyo C

Eq. (8) gives the symmetric modes LE.(-x) = E.(x)]; the

anti-symmetric modes may be develop A in paratlel. Eq. (9)
gives the vacuum field which matches the requirement of

vanishing taigential electric field on the conducting bound-

ary at ixI . At Ixi - Z, tangential electric field and
its normal derivative must be continuous. Thus

E cosk Z = E sin[L(L - Z)]
T n o c

and k E sink Z -E cos[!(L -Z.)]
niT n co 0 c

so that the dispersion relation which must be satisfied for

the beam in the resonator is

n = tan[.(L. (0)

c J
For the k which have already been specified as leading ton
the maximum growth rate for the instability, Eq. (10) gives

the corresponding discrete values of w. We shall find ap-

proximate roots of Eq. (10) by assuming Imw - Rew, and

Imkn << Rekn. Then Eq. (10) holds for the real parts, to

lowest order; Imkn may then be found from Imw using a

Taylor's expansion of Eq. (10) about its roots for real
values. These complex corrections to the km are not of

great consequence in what follows.

-I
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E E- 12 (3)
E 2

-Y + EP 11
2

and for y = EP1 1 is thus nearly longitudinal. Let us
first analyze the relation y2 = P1 1 , which is the disper-

sion relation for purely longitudinal waves propagating

across B ("Bernstein" modes). These modes are unstable
with approximate maximum growth rate for the lowest wave-

number such that Jn(z) = 0. We designate this value as

zn. In this case y2 = II gives

W= y (4)3/2 L Z -(

The value of nJ (z )/z is slowly varying with n; it has

the approximate value of 0.3 for n up to 20. The growth

rate given by Eq. (4) can thus be relatively large for par-
ameter values of practical interest, even for quite high

harmonic number n.

Anticipating instability for the wavenumber correspond-

ing to zn at each harmonic, we can examine the full disper-

sion relation at this particular wavenumber. Here Xll=

X2= Y2 = Y21 = Y 22  1, and X=2  - inJn(zn)Jn4(zn),
Thus P 1 = - [y/(y - n/y)] 2YII, P 2 2  0, and P1 2 =
i[y/(y - n/y)]X 1 2 . The full dispersion relation is then

2 2 
'E, 22

[2 ] + E2 = 0 (5)

L 1J WX2  y 12

For nearly longitudinal slow waves czn/W >> y, and Eq. (5)
becomes

_+nil ia. p  WFJn(Zn__ F1 -nn2Jn,2z] 6
Y 3/2 C Z JL (-

Clearly for n2 E << 1, Eq. (4) is accurate. In this aprox-

imation Eq. (3) becomes
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TABLE I

Elements of the dyadics X and Y for the distribution--n =n

function fo(u,w) = (N/2nW)6(u-U)6(w-W). Here Jn = J n (z)

and J' = dJ (z)/dz.

ij Xij y2Yij

2 2
11 ( n 21 n n2 W 1 2

z n 2 2 n
C Z

12 in in 2 1 j i,
z n n 2 z n n

c

13nU _(2 ). U W i 2
W n c cz n

21 ( Jin n 2 1*z n n 2z n nc

1, 2,2, W2 j,

22 -.(z 2' 2)1 n ,
z n 2 n

c

23 -i U(zn -i H E i j,
nn cc n n

U 2, UWlj2
31 n -(J)

'  n U J 2

W n c cz n

32 i U(z JI)' i U Wj ,

3U 2  2 U 2

33 z -() 2 jnW2  n C

-"-U• " ..
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momentum to be cold, i.e. fo(u,w) (N/2W)6(u-U)6(w-W);
and we assume that linearized interaction of this beam with

electromagnetic radiation is governed by the dispersion re-
• lation for plane waves in uniform hot plasma (11). The

model should be viewed as an idealization, probably un-

achievable in the laboratory, since we assume the electron
beam to be a uniform slab with sharp boundaries and we im-
pose no boundaries along z. This model allows one to form-

ulate a tractable theory which still retains the critical
physics describing significant harmonic operation. For

excitations which are independent of z, i.e. for k,. = 0,

the dispersion relation for these excitations (Eq. 1-99

of Ref. 11) reduces to det R = 0, where

R=-2 I Y y z Z
= y-+

r (1)

2, 2with Q - eBolm, y = w/, z = k WlQ, and e = pl)yQ • The

elements of the dyadics Xn and Yn are given in Table I.

For electron beams of practical interest e << 1, so that

the solutions to Eq. (1) may be found harmonic-by-harmonic.

That is, the summation may be suppressed and the harmonic

number n considered as a parameter. We present a solution

here in the beam frame, where U - 0. Then X1 3 X23
X3 1 - X32 - X33 - Y1 3 - Y2 3  Y 3 1  Y 3 2 - Y3 3  0.
Eq. (1) then becomes

(2)

C z-_ 22+c zP2 2 ~22

where PIj - [y/(y - n/y)]Xij - fy/(y - n/2)]2Yij

The fis square bracket in Eq. (2) set to zero gives
W2 . k c + w 2 for waves polarized along z (ordinary waves);

p
since our interest is with waves polarized in the x-y plane
we shall henceforth disregard this. The curley bracket in

Eq. (2) set to zero gives the dispersion relation for waves
of mixed x-y polarization (extraordinary waves). The
polarization is

4P.
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cyclotron maser at the fundamental and second-harmonic,
with a view towards high-power millimeter wave operation.

Operation of cyclotron masers at higher frequency
would seem to demand stronger wave-particle coupling at the
higher harmonics than has heretofore been demonstrated. In
other contexts, however, high harmonic cyclotron resonance
effects have been long observed in laboratory and ionospher-
ic plasmas with non-Maxwellian velocity distributions. Thus
Landauer (7) has reported observations of upwards of 40
harmonics in noise emission from low pressure discharges.
Crawford, et al. (8) have observed about 10 resonances in
transmission across a plasma column. These observations,
together with multiple harmonic observations in ionospheric
top-side soundings have been reviewed by Crawford (9).
These multiple harmonic interactions have been explained in
terms of coupling, at the plasma boundary, between long
wavelength electromagnetic modes, and short wavelength elec-

trostatic modes (10). The model presented in the present
paper is for a suggested means to exploit these multiple
harmonic couplings to produce useful cyclotron maser oscil-
lations at the higher harmonics. In this way it may be
possible to extend the useful frequency regime for cyclotron
masers to above 1000 GHz, using available laboratory mag-
netic fields.

Fig. 1. Geometry for ideal-
ized cyclotron harmonic
maser. Plane mirrors are at

*x = ±L; the uniform slab
electron beam fills -Z < x <
Z; the static magnetic field

.L -£ L is aligned along z; modes of
interest are polarized in

the x-y plane.

Our basic model is shown in Fig. 1. The electron beam

is guided by a uniform static magnetic field B - A B ; we
take its distribution of parallel (u) and perpendicular (w)
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A cyclotron resonance maser configuration is proposed which
may allow operation at the higher cyclotron harmonics. In-
stability growth rates at the higher harmonics are shown to
be significant when coupling between transversely- and lon-

gitudinally-polarized waves occurs at the electron beam
boundary, for radiation propagating across the static mag-

netic field. With experimental parameters well within
practical ranges, oscillation in a single device, tunable
from about 100 to 1000 GHz, is shown to be possible.

Some of the earliest discussions of the cyclotron
resonance maser gain mechanism stressed the existence of

gain at the cyclotron harmonics, as well as at the funda-
mental (1). However, most device development in the past
few years has been limited to fundamental or second-har-
monic interactions. This, of course, would limit the ap-
plicability of cyclotron resonance masers to frequencies
below about 300 GHz, corresponding to second-harmonic oper-
ation in a 53.6 kG magnetic field. At the shorter milli-
meter- and sub-millimeter wavelengths, quasi-optical struc-
tures must be employed to provide good mode selectivity
without undue mode competition. Both theory (2,3) and de-
vice development (4,5) have appeared in which quasi-opti-

cal structures are employed. A recent work (6) reformu-
lates linear and non-linear analysis for a quasi-optical
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st and then inserting whatever series attenua- = 1.215 cm-'. Notable in Fig. 2(b) is the sensi-
tion was required to return the fast-rise-time tivity of gain to velocity spread in the slow-wave

* iutput crystal-detector voltage to its value with region. The examples shown are for conditions
t:ie electron beam off. This method of measure- of intersection between the dispersion curve and
ment is independent of the detector linearity and the beam line w = Q/y +k,u, where Q2 =eB, m.
is limited in accuracy only by the calibration ac- Two such intersections are shown in Fig. 2(a) for
curacy of the attenuators used. Calibrated attenu- fast- and slow-wave couplings. Examples are

rs were placed in both the input and output not shown here for cases of grazing incidence be-
..udes to insure both linearity and absence of tween dispersion and beam lines, a circumstance

spurious oscillations, known to give rise to slow-wave gain characteris-
A detailed small-signal theory has been devel- tics with wide bandwidth, even for moderate

oped for spatial amplification on axisymmetric parallel velocity spread.5 This is because no
wave guides penetrated by tenuous electron beams substantial gain could in fact be observed for the

in a uniform magnetic field. 9 This theory applies grazing-incidence condition, a point we shall
* to dielectric-loaded waveguides supporting TEd,, attempt to explain below.

TM, ,, and EH,,, modes and to empty waveguides The experimental results obtained are shown in
with finite wall conductivity supporting TE=, and Fig. 3. Six sets of data (A-F) are given, cor-
TM.. modes. The theory allows arbitrary input responding to six combinations of gun voltage and
and output boundary conditions to be specified, magnetic field (values listed in the caption to Fig.

so that the so-called input coupling loss arising 3). Both fast-wave (f< 5.8 GHz) and slow-wave
from division of the input signal amongst several (f>5.8 GHz) interactions were observed, but

copropagating modes in an amplifier is auto- gain at 5.8 GHz (where w =k,c) was not observed,
matically taken into account. Actual beam geom- as predicted by theory. Experiments above -6.6
etry (i.e., thick annulus, solid beam, radial den- GHz could not be performed, because of limits
sity profile, etc.) may be included. Finite axial on the magnet power supplies; the tuning width
velocity spread is also included, modeled accord- in the slow-wave region is thus greater than the
ing to the equilibrium distribution function 700 MHz shown in Fig. 3, i.e., greater than 11%.

, u) A, 6(y,- i 0 )(Au)'[(u-Uo)2 +(Au) 2
1

-
t, The instantaneous -3 dB bandwidth for curve D

is 220 MHz, or 3.7%, at a peak gain of 32 dB. In
where y is the total electron energy in units of the fast-wave region (curve A) a bandwidth of 150
rnc 2, u is the axial velocity variable, 2Au is the MHz, or 2.7%, was observed at a peak gain of

I full width at half maximum for the distribution, about 30 dB. These values compare favorably

yo and u. are constants, A, is a normalizing con- with gain and bandwidth values reported6 for fast-
stant, and s is a parameter which governs the wave gyro traveling-wave amplifiers, i.e., 24 dB

smear info: For s = 1 the distribution is Lorentz- and 1.4%.
ian with its extended wings; as s - - the distribu- It remains to explain why the anticipated wide-
tion approaches a box function, zero outside the

t interval uo± Au. Examples of the predictions of
this theory for the geometry of the apparatus 40

described here are shown in Fig. 2(b), in which
gain in decibels versus frequency is shown for 3 /

two different sets of operating conditions (fami- 20

lies of curves A and B) and for five values of C

• parallel velocity spread 2Auu 0 . (The five cases 1- A

meld together for family A.) The distribution
with s = 2 was chosen for these examples as one 5.4 5.6 58 6.0 8.2 84 866

which could reasonably approximate that pro- 5.m4OUrNC H,6

duced by the electron gun used in the experiments.
From the dispersion curve [Fig. 2(a)] one can FIG. 3. Measured electronic gain vs frequency for

determine that 5.80 GHz is the frequency at which sx values of cathode voltage I- V (kV) and axial mag-
k, =ic; the gain curves of family A are thus netic field 1B, (kG)]. A: V34, d,.1.90; B: V39.7,

S, = 1.95; (.: V=39.7, B, =2.00; D: V, 42.0, ,= 2.06;
for fast waves (wic < 1.215 cm-) and those of E: V=42.0, B, =2.12; F: V =45.4, 8, =2.17. For all
family B for slow waves (w/c > 1.215 cm-'). As cases 1 =5 A. Solid curves connect measured points.

remarked earlier, gain is not predicted at wic Typical error bar is shown.

732
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to a cylindrical copper waveguide of radius 3.7 (a) I
cm. A mica vacuum window sealed with a , -1d "252 =2.12 kG

0 ring provided reflection-free output coupling, V =42kV
and a Marid coupler provided output conversion 6

from TEo, circular mode to TE1 o rectangular
* mode. The Pyrex tube was coated on its interior

with a thin carbon film (deposited from a dilute 5 a=32
Alkadag solution) to drain off intercepted electron 8z =1.95 kG

charge. The dc resistance of the film along the V =35.5 kV

entire tube length was about 2 Mf. The film was 4 1

scraped off in thin axial stripes to minimize 0 0.10 0.20 0.30 0.40

" attenuation for the TEO, circular mode (TE,, and kz/27r (cm"1)

TM modes were heavily attenuated). Microwave (b) 45 ........

. input signals (5-8 GHz) could be injected in the 40 2Au/u=

output guide or by means of a two-port coupler 35 A 0
(shown in Fig. 1), with ports driven 180' out of 30 0 .02
phase to allow selective coupling to the TEO , 25 004

mode. Dielectric pyramids were used to aid in 0.0

coupling into the dielectric layer. Even so, the 2

cold input coupling loss was about 10 dB, and the 1 15

*- cold tube insertion loss was also about 10 dB. 10\', -

The measured dispersion characteristic for this
0

dielectric-loaded waveguide is shown by the heavy 1.12 1.16 1.20 1.24 1.29 1.32 1.36 1.40 1.44
curve in Fig. 2(a); it is indistinguishable from the W/C (cm")
calculated curve. Mode filters were used to in- FIG. 2. (a) MeaSUred dispersion curve (heavy line
sure that TEO, was the only propagating mode, and typical beam lines .i = 1/ - . for fast- and slow-
both in cold and hot operation. The dispersion wave couplings. (b) Calculated gain characteristics in
curve was obtained by inserting a thin metal foil the fast-wave (A) and slow-wave (B) regimes, for five
cylinder between the Pyrex and the dielectric values of parallel velocity sp:ead 2Aa/u0 , for the ap-
annuli; this foil acted as a movable short circuit paratus described. For curves A, u = 0.0920c, a =4.2,

" allowing measurement of the guide wavelength I = 8.0 A, l/c = 1.10 cm" 1 (i.e., V = 45.8 kV, B = 2.043

at each frequency. kG); for curves B, u=0.0920c, a =5.0, 1 =8.0 A, Ql*yc

The annular electron beam was injected along =1.17 cm-1 (i.e., V=67.6 kV, 8=2.259 kG). INote:The nnulr eectrn bam ws inectd alng f (GHz) =4.775(w/c) (cm-1).J
the dielectric-loaded waveguide from a magnetron

injection gun. This gun, procured from an in-
dustrial manufacturer, 7 was built to operate at rent was measured with an integrating current
60 kV, 5 A, 10- duty cycle under which condi- transformer, and cathode voltage was measured
tions it was designed to produce a beam of mean with a compensated capacitive voltage divider.
radius 0.95 cm, annular thickness 0.75 cm, a Before and after cathode activation the entire
= U I. v,, = 2.0, and relative (rms) parallel velocity apparatus was baked at 250 C for 48 h. System
spread of 57. As shall be seen, the gun operat- pressure, under continuous turbomolecular pump-

ing conditions under which the data shown in this ing, was -10 " Torr with the gun off, and < 5
paper were obtained were different from the A 10- 7 Torr with the gun under full power. The
specified values. The gun was driven with -5- electron beam was formed and guided along a

* sec pulses at 100 sec-' derived from a MIT magnetic field provided by five independently
model 9 modulator8 feeding a 4:1 step-up pulse energized solenoid coil systems. Along the 60-
transformer. The gun's intermediate anode volt- cm interaction region a -2-kG field was adjusted

age was derived from the cathode voltage with a to *2-G uniformity. Three coils around the gun

resistive voltage divider, and operated typically provided the requisite broad field minimum of

between 40% and 60% of cathode voltage. The about 400 G at the cathode surface. Four-place
beam collector was insulated, so that cathode digital measurement of all coil currents was

* current and transmitted current could be con- essential for reproducibility.
tinuously monitored; for the data to be presented Electronic gain was measured for this apparatus
here the two were indistinguishable. Cathode cur- by injecting cw power at each frequency of inter-

* 731
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Measurements of Gain for Slow Cyclotron Waves on an Annular Electron Beam

H. Guo, L. Chen, H. Keren,(3' and J. L. Hirshfleld
* • Applied Phvsics Section, Yale University, e',c Have",. Conrecticut Oo,;2n

and

S. Y. Park(b) and K. R. Chu
Naval Research Laboratory, Washinglon, D. C. 2037,5

tRoceited I June 19- 2,

Gain was measured for tast anid slow '%aves propagating in a cdielectric-loaded TEP, axt-.
syrime'ric %aieguide penetrated by an annular electron beam. This measurement is the
first rtported ir the slow-wade regime, where axial vuloctty modulation auminates tne
Ill. 'hal hullcht . Srmall-si,,nal gain at 6.0 GHz of over jOi dB, instantane, us band odihl.

., . . .J runtn-r haiid% idth oi %er 11 t are re ooveCd 1!: .t feedback-avi I)litter uunii u:-

ation paiv e) 33 (lB. powr olitput Of 20 kW, and 10 electronic efficiency are also re-
0 ported.

PAL'S numbers. 41.70.+t, 52.35.Hr, 65.10.Hy

Considerable effort over the past decade has device.

been directed towards understanding the convec- The apparatus built to study the slow-wave
tive instability for fast cyclotron waves interact- interaction is shown schematically in Fig. 1. The

ing with electrons on orderly helical orbits in a electromagnetic wave was guided by an axisym-
uniform magnetic field.' This interaction is metric structure consisting of a precision-bore
fundamental to the design of novel millimeter- Pyrex tube (interior diameter 3.10 cm; wall
wave gyrotron ampliliers. 2 The physical mechan- thickness, 0.20 cm), surrounded by a high-per-

ism responsible for electromagnetic gain for mittivity dielectric annulus (thickness, 0.29 cm),
this system originates with relativistic mass In turn surrounded by a helix waveguide formed
variations with energy which give rise to azi- by a closely spaced winding of No. 34 AWG cop-

muthal phase bunching for orbiting electrons.3  per wire. The helix waveguide was used to sup-
A competing physical mechanism, originating press lower modes, such as TELL. At one end
with axial velocity modulations, tends to oppose this composite waveguide tapered out gradually

the azimuthal phase bunching, but the former

mechanism dominates the latter so long as the
wave's phase velocity exceeds the light velocity. INPUT

These mechanisms have been carefully examined
and contrasted by Chu and Hirshfield. 4

For waves with phase velocity below the light

velocity, the two mechanisms interchange their =4 7

roles and the mechanism due to axial velocity
modulation dominates the electromagnetic growth.

This paper reports results of the first experiment
deliberately designed to demonstrate this gain

mechanism for slow electromagnetic waves. In
fact, both slow and fast waves could be studied 4
on the apparatus and their properties compared.
The slow-wave mechanism has the potential for

allowing wide-bandwidth operation,' a property INPUT

not shared by the fast-wave interaction. How- FIG. 1. Schematic outline ui experimental mitiur:i-

ever, a tapered-structure, tapered-field variant tin ttot to scale). Magnetron injection gun it let

based on the fast-wave mechanism has shown a generated annular olecrrun heam twiglv linesp Ahich

bandwidth of 137 at 35 GHz6; gain is limited to tierrt rtd dielectric-loaded TEn circilar waeide
% ;th ti-cr. unib)rn length. The 13 re% , t I,, - 4.7- is

about 20 dB for these fast-wave devices because Sur't'.O)1CIC 1). a cielectric layer t. = 191, i ih in turn
of the need to use signal injection at the output I,, surrounded 1. a fine-pttc lie Ial i% tnding of No .24
in order to access the amplifying region in the A\G c,)lppr % Itc

* 730 © 1982 The American Physical Society
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SPACE CHARGE EFFECTS IN A GYROTRON
EMPLOYING A SOLID ELECTRON BEAM*

H. Keren and J. L. Hirshfield

Section ofApplied Physics, Yale University
P.O. Box 2159, Yale Station, New Haven, Connecticut 06520

Received September 1, 1981

The influence of space charge forces on the performance of
a single cavity gyrotron oscillator which uses a solid

*electron beam was investigated. It was found that space
charge effects cause a large efficiency degradation as the
beam current is increased, if the other experimental para-
meters are unchanged. A small increase in the magnetic
field,however, can restore the efficiency to higher values.

Key words: microwave generators, space charge effects,
gyrotrons.

I. Introduction

The present work deals with the influence of space
charge forces on the operating characteristics of a single
cavity gyrotron oscillator. This problem was studied in
the linear regime by several authors (1-5). Here we pre-
sent results of simulations which cover both the linear and
the non-linear regimes. We calculate the response of a
solid electron beam with transverse gyrational motion, as
it passes through a cavity structure. Gyrotron experiments

* 1 along these lines are now under way (6,7). The parameters
used in our calculations are those of a 35 GHz gyrotron
oscillator which uses solid electron beams. The electron

, beam enters the cavity with substantial transverse gyra-
tional motion for the beam electrons. The charge density

U• 1097

0195-9271/81/1100-1097$03.00/0 0 1961 Plenum PublSilng Corooratlon

14P



1098 Keren and Hinheld

across the solid beam is approximately constant, and thus
gives a situation in which space charge effects can be
studied conveniently. Treating the space charge problem
for a gyrotron using an annular electron beam, which is
commonly used in experiments (8), is more complicated since
in that case the charge density across the beam is not
constant.

11. Model

Figure 1 shows the configuration of the system under
study. It consists of a solid electron beam propagating

Sol,

Rw

I -,L -- !

(a)
conducting

wall

RWwo

(b)

Figure 1. Side view (a) and end
view (b) of the 35 GHz gyrotron
oscillator cavity model. The solid
electron beam is axisymmetric about
the z-axis.

- ~ ."



Space Chirp Effecb in a Gyrotroc 1099

inside a circular cross section cavitv (radius R, and length
L). The electrons, guided by an appiied uniform magnetic

field Boz, move along helical trajectories. The electrons
Chave a substantial part of their kinetic energy in the form

of transverse gyromotion and the balance in the form of
axial motion. Inside the cavity, the electron beam gives

up a portion of its energy through interaction with the
electromagnetic fields. For fast wave cyclotron maser inter-
actions it is well known (9) that the beam couples much more

strongly with the TE mode than the TM mode. We thus restrict
* our consideration to the TEont cavity mode, where n and Z

are the radial and axial eigenmode numbers respectively. J
The field components of the TEonk cavity mode are:

E = Eo J (k nr)sinkz zcoswt (1)

B = (k /w)E J (k r)cosk zsinwt (2)r z ol1 n z

and Bz = -(k nME J (k nr)sink zzsinwt , (3)

where kz -ir/L, kn = Xn/RW, Xn is the nth nonvanishing
root of Jl(X) = 0, and w = (kA + k2)1/2 c is the cavity

resonant frequency.

The electron motion is governed by

dpdt - - eE- (e/my)p x B (4)

and dr/dt - I/my (5)

where p - ymv is the momentum, v is the velocity,

y M (I - v2 /-2)-1/2, and r = Axx + 4yy + Zz. In case of
an axisymmetric solid electron beam, with negligible
longitudinal gradients in the beam radius and electron

density, we can study fairly simply the influence of space
charge forces on the electron orbits. We shall assume that
the charge density across the beam is uniform and that the

space charge forces are purely radial. Under this approxi-
mation one obtains from Gauss's law, for the static elec-
tric field of the beam:

E N'er (6)ES R2  r

0

. ... .. - ' --- --- -'-, -.. .d ." ' - . ,. , ,-. -, .,. ._ ,I. ,. .,i-,. -.--



1100 Kenn and Hir&zheld

where R is the radius of the beam envelope and N' is the
beam density per unit length which is I/evz, where I is

the beam current and vz is the axial velocity of the beam

electrons. Thus Eq. (6) becomes

E Ir a (7)--s 2v r
e R v

0 z

It should be pointed out that according to this model
the electrons move in an average space charge field and not
in the exact self-consistent field.

III. Particle Dynamics

* The results presented in the present paper deal with
solid electron beams interacting with the fields of a TE011
cylindrical cavity. The axis of symmetry for the solid
electron beam at the cavity entrance is the z-axis (see
Fig. 1). The cavity axis of symmetry, where the azimuthal
electric field is zero, is parallel to the z-axis but dis-
placed from it such that the azimuthal electric field has
its maximum values on the z-axis.

A three dimensional trajectory code, in cartesian co-
ordinates, was written to solve Eqs. (4) and (5). Explic-
itly, this code solves the following seven coupled equa-
tions as an initial value problem:

dPx/dt - - eE - (e/ym)(pyB - pzBy) (8)
x x y z z y

dp/dt - - eE - (e/ym)(pzB - pxBz) (9)

y y z x x z

dpz/dt - - (e/ym)(p B -pB) (10)
z x y y x

dx/dt - p x/YM (11)

dy/dt - Py/Ym (12)

dz/dt - p z/ym (13)

S

0
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and y2 I + (p2 + p2+ p 2/mc2 (14)
B X y z

In these equations

Bx  (k,,/w)EoJ (kr)cosk,,zsin(wt + )cos0 (15)

B - (k,,/)Eo 1 (kr)cosk,,zsin(wt + *)sine (16)

Bz " - (k./w)E0 J0 (k.r)sink,,zsin(wt + 0) (17)

E - EJ (k.,r)sink,,zcos(wt + )sin0 - I&/E R 2V (18)
x ol10

E- EoJ (k r)sink1zcos(wt + O)cos8 - I/o R 2V . (19)
y 0 1. 0 z

In Eqs. (15) - (19) * is the temporal phase of the
cavity fields at t - 0 when the electron enters the cavity

* structure at z 0 0; 0 - tan-l(;/) is the spatial angle at
the instantaneous electron position r = (x2 + y2)1/2;
x = Xo + t, y yo + ; (xo, Yo 0 0) are the coordinates
of the solid beam axis, and (&,) are the coordinates rela-
tive to this axis; ki - (W/c)Z - k, and k,, = iT/L. We have
a priori chosen x. = 1.84/k. so that the beam axis is

6 located at the peak value of the cavity electric field.

The initial values are Pxo - -Yomv osino, PyoS-Y mv-40o°SeoI Pzo = -7ozVovto Xo 7_roC°S~o' Yo 0 0o9~o

z O  -O; here v,,0  -vo(l + 2 -1/2 and vYo = -2si /,
C oVo(l + C2 - 7 2 with no vjo2 v,,o, vo =-c
and Y0 - 1 + eV/mc2 (V is the beam voltage). The axial
velocity of the electron is but weakly influenced by the
cavity fields. Moreover, the beam diameter remains approx-
imately constant, since on the average we shall find that
about 30% of the rotational energy is extracted from the
beam. Therefore both vz and R appearing in Eqs. (18) and
(19) were assumed to be constants.

The amount by which an electron gains or loses energy
to the field is determined by monitoring the relativistic
energy factor y. The efficiency n of the energy conversion
for an electron with an initial value yo is given by
n ( y)/(yo 1 I). In order to determine the oscilla-

pI
14P
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tor efficiency, it is necessary to average the results over
the initial phases 0 and e0 . The effect of axial velocity
spread on the calculated efficiency can be studied by addi-
tional averaging over the initial velocity ratio ao; in the
present work we have not done this.

IV. Electron Trajectories

4 We demonstrate our calculations for a set of experi-
mental parameters which characterize a 35 GHz gyrotron
oscillator. These parameters are su-mmarized in Table I.

Table I. Design Parameters of the
35 GHz GyromonotronS

Cavity Mode TEOil

Cavity Length 4 cm

Cavity radius 0.525 cm

Cavity Q 300

Beam voltage 10 kV

Beam current 1 Amp

Velocity ratio 2.0

Magnetic field 12.5 kG

Larmor radius 0.024 cm

Beam radius 0.048 cm

Efficiency 30%

(a) Small beam current. Fig. 2a shows the trajectory
of an electron which propagates from left to right along
the cavity, in the limit of zero current and for Bo =
12.5 kG. Fig. 2b shows the projection of this trajectory
on the x-y plane in the cavity. It can be seen that this
electron continuesto gyrate close to the beam axis of
symmetry. Initially this electron gains a small amount of
energy from the field; later on, when it becomes matched
in phase with the oscillating field, the electron loses
most of its rotational energy, mainly in the region where
E8 is large. The orbit depicted in Fig. 2 is for a value

* 4

i
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ELEC. TRAJEC. OF S0LID ELECTRON BERM
.030 ----- r-i-r-r-wrr--rr-r-

CP 
.025

.020

.015

.010

SLU

Z '_

.000

-. 015

-. 020

-. 03a .0 .5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

A AXIAL DISTANCE ZICM)

Figure 2a. The trajectory of an electron which
propagates from the left to the right along the
cavity, in case where I 0 Amp and Bo = 12.5
kG. Entrance phase was - 4ff/3. Also shown
is a normalized amplitude profile of the cavity
azimuthal electric field, proportional to
sin(Tz/L).

of entrance phase 0 - 4n/3; for this phase the energy
given up is larger than for other phases.

(b) Space charge case. Fig. 3 shows the projected
trajectory of an electron which grazes the beam boundary
at the cavity entrance, and enters the cavity in the same
phase as the electron shown in Fig. 2, but now for a beam

D current I - 1.0 Amp and B. - 12.5 kG. It can be seen that
in addition to the gyrational mtion, this electron drifts
around the z-axis due to the E x B drift. Initially this
electron loses a significant part of its rotational energy

*i
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ELEC. TRAJEC. OF SOLID ELECTRBN BERM
.00 rTry r r-i 1 Y n rrri r vIr rrrrrn1 in rT 

n r r,

LI 0

-.

-. o 0

a" I " I" I" I

X CM)

Figure 2b. The projection of the trajectory
of Fig. 2a on the x-y plane along the cavity.

as in the case of no space charge, but later on it regains
most of it due to mismatch in phase with the fields. A
small increase in the guide magnetic field, by only 1%,
changes the last situation dramatically (see Fig. 4); the
electron continuously transfers its energy to the cavity
field, similar to the case shown in Fig. 2. It should be
mntioned here that calculated trajectories of other elec-
trons, including the space charge forces, showed that the
axis of symmetry for the travelling solid electron beam
along the cavity remains the z-axis. Thus we can justify
the earlier assumption that inclusion of space charge
forces still leaves the beam axisymmetric with respect to
the z-axis.

4
0 ' ° - . . - . . ... -

_" . . .. - . . . . . _ . . - . . .. . .. . . . . , . ... .. .. . .. .-, . .. . . , . .. , - 4
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ELEC. TRAJEC. OF SOLID ELECTRON BERM

.04-

.03-

.02-

.01-

L~ 0

-. 02

-. 03-

-.05 -. 04 -. 05 -. 02 -. 01 0 .01 .02 .03 .04 .05

Figure 3. The projected trajectory of an elec-
tron which grazes the beam boundary at the
cavity entrance, and enters the cavity in the
same phase of the electron shown, in Fig. 2,
in cases where I I 1 Amp and B0 12.5 kG.
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ELEC. TRAJEC. OF SOLID ELECTRON BERM

.01

.0

-. 02

.4

-. 03

-. 04-

-. 05
04 -. 03 -. 02 -. 01 0 .01 .02 .03 .04

x (CM)

Figure 4. Same as Fig. 3 except an increase
of about 1% in the cavity static magnetic
field, i.e. Bo 12.65 kG.
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V. Discussion

We recall that the kinetic energy of an electron is
given by (y - 1)mc2, so the energy transfer rate from the
electron to the cavity field is determined by monitoring y.
This transfer rate is twice the wave growth rate. Our
calculations cover both the linear regime and the non-
linear regime close to saturation. We shall define the
energy growth rate as the time derivative ofy, where a
negative sign for the derivative indicates transfer of
energy from the electrons to the field, and vice versa.

Figure 5 shows y as a function of time for the case

ELEC. TRRJEC. OF SOLID ELECTRON BERM
1.024 -y---t--*r ------ ---r - - "- -r- r---- -'-

1.02

1.012
O.0

1.010

1.00

1.008

a .2 .4 . .a 1.0 1.2 1.4

TIME CNSEC)

Figure 5. y as a function of time for the case shown

in Figs. 2a and 2b, i.e. I = 0 and B0 = 12.5 kG.
This electron enters the cavity at a time t - 0 and
leaves the cavity at t 1.4 nsec with 22% of its
initial kinetic energy.
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shown in Figs. 2a and 2b, i.e. 1 0 and Bo - 12.5 kG.
This electron enters the cavity at a time t = 0 and leaves
the cavity at t = 1.4 nsec with 22% of its initial
kinetic energy. Fig. 6 shows in curve (a) y as a function

ELEC. TRRJEC. OF SOLIO ELECTRON BERM

1.024

1.00

1.012

1.001-

1.000 a .2 .4 .8 .8 1.0 1.2 1.4

TIME (NSEC)

Figure 6. Trace (a) shows y as a function of time
for the case shown in Fig. 3, i.e. I - 1 Amp and
Bo = 12.5 kG. Trace (b) is related to Fig. 4,
i.e. I - 1 Amp and B0 - 12.65 kG.

of time for the case shown in Fig. 3, i.e. I = 1 Amp and
BO = 12.5 kG, and curve (b) y versus time for the case
corresponding to Fig. 4, as in I - 1 Amp and Bo  12.65 kG.
It can be seen that at a guide magnetic field of 12.5 kG,
the electron is trapped earlier by the cavity field and,
as a result, the electron leaves the cavity without losing
any of its kinetic energy. A small increase in the axial



Space Chxre Effects in a Gyroaron 1109

field, by only 1%, restores the energy loss of the electron
to 76%.

Efficiency calculations for the above described gyro-
tron were done by averaging ) over eight electrons
entering the cavity at eight different phases in space and
at three different phases with respect to the oscillating
field (see Fig. 7). These calculations predict 30%

40

3-
V20 - b .

10 j
12.3 12.4 12.5 12.6 12.7 12.8

Bz (kG)

Figure 7. The gyromonotron efficiency as a
function of the cavity static magnetic field
without inclusion of space charge forces
(curve a) and with space charge forces due to
beam current of I Amp (curve b).

efficiency for the case of I - 0 and Bo - 12.5 kG, and
only 4% efficiency in the case of I = 1 Amp and Bo - 12.5 kG.
However, about 1% increase in the magnetic field, i.e.
Bo - 12.56 kG, predicts efficiency of 31% in the case of
1 - i Amp. Fig. 8 correlates our calculations with the
prediction of th- linear theory. This example showsy in
in a short time interval (0.4 nsec) for an electron which
enters the cavity with phase corresponding to energy

iI

...~- I
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ELEC. TRRJEC. OF SOLID ELECTRON BEPM

1.0195

1.019

1.0175b1.0180

1.0185

1.0180

L ... L. L [J . . . L ,,A ."L ."ls . . .....

0 .05 .10 .15 .20 .2 .30 .35 .1
TIME (NSEC)

Figure 8. y as a function of time in a short
time interval (0.4 nsec) for an electron which
enters the cavity with phase corresponding to
energy transfer to the oscillating wave. Curve
(a) corresponds to the case I - 0 and curve (b)
for I = 1 Amp, both for same Bo .

transfer to the oscillating wave. Curve (a) corresponK.
to the case of I = 0 and (b) for I = 1 Amp, both for same
Bo . The oscillatory behavior of these traces, clearly seen
on this time scale, shows that the gyrating electron is
strongly coupled to the azimuthal electric field only part
time in each period of oscillation. It can be seen that
the average growth rate in that short time interval, i.e.
the total decrease in y, is higher for the space charge
case, as predicted also from the analytical expressions of

the linear theory (1-4). At a later time, in the case of
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ep,ro2E02  nJ (U ) 02 m (n -

-00 2 n0exp L2P z 0 4p 2

z

" sinll + -m- (nP~ - -y W) L1 fdy f(v) (31)
0 pZ 0 jg -

- Tr

Cos(kig n -)J [qcos(ky - n

The power transfer from the electron beam to the wave is

P = AWI b /e

Finally, we have

Ip / Ib'-ro2E0 nJn( O)

AP I b 0sin[¢ + m0n_ (n.Q - y0 w)L]
Pz 80 0  Z0

r ro2 m 2(n 2-YOW) 2 f
r 22 2

mexp 0 42 0 f dy1 f(y ) (32)

4z

× cos(ky - n J)J qcos(ky - n -)I

III. Cyclotron Harmonic Gyroklystron Based On

Electromagnetic Interactions

The physical configuration in this analysis is identi-

cal to that described at the beginning of Section II except
that now we consider a TEo 0 mode in a quasioptical Fabry-

Perot cavity. We have for the electric and magnetic field
components

E = Eoexp(-z 2 /r2)sinktycoswt (33)

B = Eoexp(-z2/r 2)cosk-tysinwt (34)

where kic
-1 .(35)

Using the same procedure as we used in Section II, we

obtain the following equations.
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where _ nJn(B O

11reE n 0 L 2 2q ' r ewE 01  B0  P±0r 0 1L (n -  )2  m r 1

q22 exp ol (25)
Pz2c 24p 2

PC z

In Eq. (24) the variable z has been redefined so that z=0
is now at the center of the second cavity.

The energy that the electron transfers to the wave
fields as it moves through the second cavity is

jW = =vyEydt jI E dz (26)p ydy Pz Y

where 2 2
Ey = E exp(-z /r 02 )sinkycos(wt - (27)

02 02

E02 and r02 are the electric field amplitude and the mini-
mum spot size in the second cavity, respectively. 0 is
the temporal phase shift between the two cavities. Assum-
ing w ni/y, we obtain

AW=- e -- E02 cos(kay - n
Pz B0  g 2 (28)

dzsin[n6 + + 6ne]exp(-z 
2 /r2 )

Substituting for Ane, we obtain

ep'uOr 0 2E 0 2  nJ(B 0 )
- B cos(kyg n -)

x sinne0 + 0 + m_-_ (ni - Y0w) L + qsinne0  (29)L Pz
222

nr' 2 rom 2(ml - yOW
) 2

n}[(r02m 2
x cos(ky g (nO 4p 2

The average energy loss for a uniform distribution
in 60 and arbitrary distribution f(yg) in yg becomes

SW fdnE fWf (yg)dyg (30)

Substituting tAW into Eq. (30) we obtain
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If we assume w 2 n /y and note that to lowest order
d /dt = /y, Eq. (18) can be reduced to

n~J (8)

dp_ = emYE exp(-z 2/r2 ) n sin(t-n )cos(kygn 1) (19)
dz p 0 0

Introducing the slowly varying phase angle ne = n - wt,
Eq. (19) is reduced to

nJ (8)
dp _ emy Eoe2)(_z2/r ) r
Tz - - E 0exp(-z/ sinnecos(kLy -n ) . (20)

We can linearize Eq. (20) by setting p_ = p_10 + PLI, and
since P-_O - pl, we obtain
dP_ ~ e oex(z/l ) nn(O)
dEexp(-z 2 /r2 ) 0 sinnecos(ky -n -) (21)
dz pz 0101 $ 2

where 80 = k_LP_ 0 /m0, E0 1 and rOl are the electric field
amplitude and the minimum spot size in the first cavity
respectively.

From Eq. (14) we obtain ne = ne0 + m(nQ - yw)z/pzo
where nO0 is the slow phase angle at the center of the
first cavity. Using nO in Eq. (21) and assuming a weak
electric field amplitude in the first cavity, we can calcu-
late p~l, the change in the transverse momentum p_ that a
particle undergoes as it moves through the first cavity.

nJ (8 ) emy 0 r kI

P EI Q E 01  a 0 Pz - n ) (22)
[ (n - 22 2

sin(n0)exp _ 4) r01m

In the drift region we have

dnO ( P~oP--' \W)m (3

dz8 l ~ 0 W 2 2 (23)
mc Pz

Substituting for P,l in Eq. (23) and integrating this
equation in a drif-t region of length L and a uniform magne-
tic field, we obtain the change in the slow phase angle
AnO as

An6 -(nQ - yow)(z + L) + qsinne6cos(k,yg n (24)
Pz
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where 41 is the electron cyclotron frequency.

Equations (9-11) then reduce to

dp. = - emy E cos - em' E sin (13)
dz Pz x Pz Y

d emy (Ecos E sin + e (B + B) (14)
dz P-ZP x y cp z

dy 9p yB

dz Qp z x pB (1B0

Since E >> Ex, we have
y x

dp -emy E exp(- z2/r )sinkjysincoswt (16)
d . Pz 0 2/0

Substituting Eq. (11) into Eq. (16) we get

dp ~ emy E exp(- z2/r 2 )coswtsinpsin(k-Ly -cos) (17)
dz Pz 0 0 g

where 8 = kp,/m2.

In order to make simplifying approximations in Eq.
(17), we note that the wave particle interaction is strong
only for w = n 2/y where n is an integer. The right hand
side of Eq. (17) will then be the sum of rapidly and slowly
oscillating terms in z (9). To first order in E/(cBO ) we
can neglect the rapidly oscillating terms and only retain
the slowly oscillating terms in Eq. (17). Using the
identity

sink,(y - --coSP) = sink-uyg[J 0 (8)+2 2 (-l)zJ2 j8)cos2P]
g mQ 02

2coskLy g (-l) J 2Z()cos(2N+l),

we obtain g

dp - emy Eoexp(-z 2 /r2 )coswtsinp{sink_

p 0 0 9P~z

[Jo(B) + 2 g(-l)J2(B)cos2Z]-2cosky
(l (-l))J+ JB)cos(2Z+l)] (18)

Z.=
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are slow waves, the wavenumber k. and frequency w must
satisfy kc/w > 1. Also from Maxwell's equations, we can
write

B k4_c Eox _2 2(3
B E- exp(- z /ro)cosk ysinwt (3)

The vector equation of motion for an electron is

dp =_ e[ + v× ](4)

dt c

which in Cartesian coordinates reduces to the following
set of equations

dp vdx -eE - e -y (B 0 + B )(5)

dtx c 0 z

S=.-eE + e - (Bo + B) (6)
dt y c 0 z
dP 

zdt 0 (7)
dt

where Ex, Ey, and Bz are given by Eqs. (1-3). From Eq.
(7) we can imediately write

P = po constPz PZO

and __ _P p zO (8)dt MY MY'

where pzO is the initial value of the parallel mpmentum
upon entering the first cavity, y = (1 - v2 /c2)N- and yo
is the input y.

Following the analysis of Ref. 9, we use p., , xg,
and yg as dependent variables in the equation of motion,
where these variables are related to Px, py, x and y
respectively by

Px = pjcosp (9)

py = psinp (10)

PxYg~ Y+-q (11)

x X x (12)
g M2
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It has recently been suggested (6) that for high order
cyclotron harmonic operation, coupling to the Bernstein
modes on the electron beam should be possible, since these
modes exhibit strong wave-particle interaction even up to
the 20th cyclotron harmonic for device parameters easily
achievable in the laboratory. The first Bernstein mode
maser experiment (7), in which operation of a quasi-optical
gyromonotron was demonstrated up to the fourth cyclotron
harmonic, generally tends to support these theoretical
predictions. On the other hand, the operation of a gyro-
klystron with two open cavities has recently been analyzed
by Ganguly and Chu (8). Their analysis demonstrates that
the prebunching of the beam not only enhances the inter-
action efficiency but also improves mode stability. Thus
it is of some interest to investigate the performance of
a gyroklystron based on the Bernstein modes, particularly
for high order cyclotron harmonic operation. Such a
device is analyzed in this paper.

The paper is organized as follows. In Section II we
analyze the gyroklystron based on the Bernstein modes,
give the basic equations and derive the linear power out-
put. In Section III we analyze the quasi-optical gyro-
klystron based on electromagnetic interactions alone. In
Section IV comparisons on performance are made between the
two gyroklystrons, followed by a discussion.

II. Cyclotron Harmonic Gyroklystron Based On

Electron Bernstein Modes

The quasi-optical gyroklystron configuration is depic-
ted in Fig. 1. The gyrating beam electrons rotate in the
x-y plane and stream along the external magnetic field B0
which is directed along the z axis. In this analysis, we
assume that all electrons have the same transverse momen-
tum p_ and parallel momentum Pz as they traverse the cavi-
ties from cavity 1 to cavity 2. For nearly longitudinal
standing waves across L0 (Bernstein modes) the electric
field components are (6)

E = Eexp(- z 2 /ro)sinkyvcoswt (1)

Ex = cEexp(- z2 /r2)sinkvcoswt (2)

where w is the radiation frequency, E0 is the field ampli-
tude at the origin, r0 is the minimum spot size of the
radiation envelope and Ije << 1. Since Bernstein modes

t
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The performance of a quasi-optical cyclotron harmonic
gyroklystron operating on electron Bernstein modes is
investigated. An expression for the linear power output
has been derived. It is found that, for high order cyclo-
tron harmonic operation, a gyroklystron involving the
Bernstein modes has higher linear efficiency than a corre-
sponding gyroklystron based on electromagnetic inter-
actions alone.

Key words: quasi-optical gyroklystron, electron Bern-
stein waves.

I. Introduction

In the past few years, there has been a great deal
of interest in a high order cyclotron harmonic maser,
because of potential applications in the millimeter and
submillimeter regimes (1-4). However, most device develop-
ment has been limited to fundamental or second harmonic
interactions. Recently, McDermott, et al. (5) have demon-
strated high harmonic gyrotron operation using a 200 kV
rf-accelerated axis-encircling electron beam. However
it would seem that operation of a high order cyclotron

* harmonic maser at lower voltages (< 50 kV) demands stronger

wave-particle coupling than has hitherto been demonstrated.
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dius. magnetic field showed no abrupt cutoff in collec-

The start oscillation conditions for the two in- tor current, suggesting that these experiments
stabilities for the first four harmonics at 62.4 were not conducted in a parameter regime close

IM GHz are shown in Fig. 2, for several different to the mirroring point of the beam electrons,
values of the momentum ratio cr. The operating where large values of a might be expected.
values of the beam current observed experimen- With use of the linear theory of the cyclotron

tally when oscillations were sustained in the cav- maser instability, to calculate the small-signal
ity are also shown for comparison. For reason- efficiency, it can be shown that the output power

able experimentally achievable values of the at the nth harmonic normalized to the output pow-

momentum ratio the low values of starting cur- er at the fundamental is given by
• rent favor the Bernstein-mode instability as the In((

gain mechanism in these experiments. The ex-

perimentally observed values of the beam cur- where n is the harmonic number and n - 2. The
rent are larger than those predicted for the Bern- normalized power according to Eq. (4) for the
stein-mode coupling because the experimental first four harmonics shows a very rapid decrease
values are operating values rather than the mini- with harmonic number. For instance, for a = 2,

mum values required to start oscillations. In (0,o =0.243), the power output at the second har-
the present setup the beam current cannot be monic is 2.8% of the fundamental power, at the

easily varied independently of other beam param- third harmonic it is 0.2%, and at the fourth har-

eters. Although higher values of a(- 10) lower m' nic it is approximately 0.02% of the power at
the starting conditions quite significantly, it is the fundamental. On the other hand, the experi-

extremely unlikely that a momentum ratio of 10 mentally observed detector output normalized to
was obtained in these experiments. Orbit calcu- the fundamental showed a much slower decrease

latlons for the experimental conditions gave a than that predicted by the cyclotron-maser in-
value of a of 1.6. Furthermore, measurements stability theory. Experimentally observed signal

of the collector current as a function of the kicker at the second harmonic is 40% of the fundamental

signal, at the third harmonic it is 6%, and at the
fourth harmonic it is 1%. These comparisons

are consistent with the observations that the pres-
ent experiments have been in a regime where

3 a. collective effects and mode conversion at the

a.2 beam boundary determine the electromagnetic
gain.

102 The results reported in this Letter confirm that

monics is possible for very modest values of elec-

tron-beam currents. Our present interpretation
10' is that this is due to the much larger instability

a-b0 growth rates at the higher harmonics for the elec-/._ trostatic modes (Bernstein modes) compared to0°_ ""the case of electromagnetic interaction alone.

This previously unexplored mechanism may have
/ - practical applications in the development of high-

--7...... harmonic cyclotron masers operating at modest
a- 2 magnetic fields.

4 _We are grateful for the excellent technical sup-
port of R. Downing, J. H. Kearney, P. Trosuk,

". -D. Crowley, and G. Vogel. This research was

3 sponsored by the U. S. Office of Naval Research.1 2 ' 3 4'

N
FIG. 2. Start oscillation current vs the harmonic

numher. Solid curves calculated from Eq. 11. Tri-
angles, calculated fronm Eq. (j). Squares, experiment- J. L. Hlrshfield, in Infrared and Millimeter Waves,
tal measurements of the operating current. edited by K. R. Button iAcademic, New York, 1979),
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TABLE I. Conditions under which coherent output signals were ob-
served and the frequency of the observed output. Intermirror spacing
L =3.125 cm, intermode frequency A/= 4.8 GHz. y = 1.0371, _ ,\.l) '
2r.-,, P 0 = Beo/mo. f _ are the resonant modes of the Fabry-Perot.
B 0 is in kilogauss and all frequencies are in gigahertz. .\ is the harmonic
number.
HARMONIC fF-P 62.4 672 72"0 768 816 864 91 2 96 0 1008 1056

NUMBER Mode -- -- "

(N) No.m 13 14 15 16 17 18 19 20 21 22

8o 23-2 24-9 26,7 28.6 304 322 340 36 2 38 1 400

fo 62-6 67-2 72-1 772 821 869 91 8 97 7 102 9 108 0

ao 11-5 12-4 133 143 152 161 17 1 180 188 198
2 t, 62-.1 67-0 71.8 77"21 82"1I 86"9 92 3 97-2 1015j 106-9

ao 7.7 8'3 8.9 9'6 10,1 10"7

fo 62,4 672 72-1 778 818 867

8 o  5-7

fo 61.6

monic at 7.7 kG (f,= 62.4 GHz), and fourth har- Q of the empty Fabry-Perot is slightly greater

monic at 5.7 kG (fo = 61.6 GHz). The small dif- than 10 over this frequency range but that Q

ferences between the estimated cyclotron-har- drops at higher frequencies because of increased
monic frequencies and frequency of the resonant Ohmic and coupling losses. It is estimated that

* mode of the Fabry-Perot could be due to the ac- microwave output power levels of 1-2 W have

curacy of the axial magnetic field measurements been observed at the fundamental frequency at 86
(on the order of 2%) or to slight pulling of the GHz although the system was operated at condi-
resonator frequency by the electron beam. Be- tions which were far from optimum.

tween 67 and 86 GHz observations were made of The linear and nonlinear theorya for the cyclo-

up to the third cyclotron harmonic for every reso- tron maser instability has recently been formu-

* nant mode of the Fabry-Perot cavity, and be- lated for a quasioptical system of very similar

tween 91 and 105 GHz we have observed up to the geometry to that employed in the present experi-
second harmonic. At the high values of the axial ment. With use of the linear small-signal effi-
magnetic field, the lower electron-beam currents ciency at the xth harmonic it can be shown that

could only sustain up to the second harmonic. It the start oscillation conditions for the beam cur-

should be noted that the estimated quality factor are given by

"I,(' ) (2N'n I roBo)2wL(I - I/vo)exptEo2(aw/w) 2/2j { 2(kp , /mor4) 2("-1t[ 0
2L~o2 ( A/,'w)/2 - n ](2 TQV) ',

(1)

C mw)m, = [n + (n2 + 42 .,4)i2 I/ 2 2, (2)

where t,=(rw/c)/1,,0 , . = eBo/moc, Y(l +p
j /mo2C2)1/2, p is the electron momentum vector, stein modes and their coupling to Fabry-Perot

w is the angular frequency, r o is the radiation modes presented in Ref. 6, one can determine

spot size, B0 is the axial magnetic field, #A is the starting current from the requirement for

the normalized transverse component of the elec- steady state, Imw/Rew = 1/2Q, where f is a

tron velocity, 3,, is the normalized parallel corn- geometric filling factor. This reduces to

ponent of the electron velocity, V is the electron ( 6.6 Xl04 (nDBo, a)V-/2(l + Z2)/12a-2 A,
energy, Q is the Fabry-Perot quality factor ~104,6
and Aw = w- nfl/y o is the frequency mismatch. (3)
We have assumed a value of Aw/w, which gives a where D is the radiation waist radius in centi-

minimum value for the starting current 1,. meters, B, is in kilogauss, V is in kilovolts, and

By contrast, from the analysis of unstable Bern- f is taken as rb D with r, the electron beam ra-
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- perimental observation of coherent higher-cyclo- The millimeter resonator was a confocal Fabry-
- tron-harmonic oscillations for a system in which Perot resonator with a fixed intermirror spacing
* the aforementioned mode conversion can occur. L = 3.125 cm, mirror radii of curvature 11 cm,I" The parameters of the experiment quantitatively and intermode frequency spacing -f= c 2L =4.8

support the previously published simplified model GHz. The mirrors were made of polished oxygen-
for the mode-coupling interaction.6 The results free high-conductivity copper with a coupling hole
suggest that a previously unexplored mechanism and WR-10 waveguide machined into the output
may now permit the development of higher-har- mirror to couple the millimeter-wave output from
monic cyclotron masers for submillimeter and the system. In cold tests of the Fabry-Perot
far-infrared application requiring modest mag- with a sweep oscillator, the complete longitudinal
netic fields. mode spectrum between 62 and 105 GHz was

The schematic of the experimental configuration measured, with typical power coupling into the
is shown in Fig. 1. The solid laminar-flow elec- resonator of approximately -3 dB at 91 GHz. The
t tron beam from a space-charge-limited Pierce resonator was designed for operation in the low-
gun was injected along the axis of a cylindrical est transverse mode with the polarization of the
stainless steel vacuum vessel located in the bore electric field vector transverse to the axial guide
of a superconducting solenoid. The gun,' designed magnetic field.
to operate at a maximum of 20 kV, 5.6 A, 10 "' Table I summarizes the conditions under which
duty cycle, with a nominal beam radius of 0.3 cm, coherent millimeter-wave output signals were
was driven with 5-gsec, 10-sec " ' pulses from a observed in the frequency range 62-105 GHz. The

* MIT model 9 modulator. The cathode and trans- low-frequency limit was determined by the low-
mitted currents were measured with Pearson inte- frequency cutoff of the WR-10 waveguide used in
grating transformers, these experiments which was about 59 GHz. The

Immediately downstream of the gun exit, the upper frequency wag limited by the maximum
beam electrons underwent nonadiabatic passage value of the axial magnetic field used in these
through a spatially localized transverse magnetic experiments which was about 40 kG. Since co-
field ("kicker") provided by a pair of tailored herent microwave output at several cyclotron
Helmholtz coils which imparted controlled trans- harmonics was expected for a given value of the
verse momentum to the beam electrons. The sub- axial magnetic field at which the cyclotron fre-
sequent passage of the beam through the increas- quency coincided with a resonant mode of the
ing axial magnetic field resulted in an increased Fabry-Perot, the axial magnetic field was varied
value of the transverse-to-axial momentum ratio slowly until oscillations were established in the
a, if one assumes the motion to be adiabatic. cavity. The output frequency was then estimated
Computer calculations of single-particle trajec- by use of a series of waveguide cutoff filters.
tories in combined axial and kicker fields showed Thus, for the Fabry-Perot mode at 62.4 GHz,
that momentum ratios a of the order of 2 could four cyclotron harmonics were observed corre-
easily be achieved in this apparatus for kicker sponding to the fundamental mode at an axial
fields of the order of 100 G in axial guide fields magnetic field of 23.2 kG (f0=62.6 GHz), second
of up to 10 kG. harmonic at 11.5 kG (f 0=62.1 GHz), third har-

MAGNETIC ELECTRON
SHIELD DEWAR BEAM COLLECTO,.

/ ' FABRY PEROT

POLYAMIDE RESONATOR POLYAMIDE
ELECTRON ' INSULATOR INSULATOR
GUN .

11 n OBSERVATION
I IJ.'J; l ... .. " , , l~l II WINDOW

AD PUMPING PORT
* HOLE-COUPLED OUTPUT

MIRROR A WINDOW

(- 20kV )WAVEGUIDE
K ICKER SUPERCONDUCTING
POLEPIECE SOLENOID SYSTEM

FIG. 1. Schematic diagram of the experimental arrangement.
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Bernstein-Mode Quasioptical Maser Experiment

0 N. A. Ebrahim, Z. Liang, and J. L. Hirshfield

Applied Physics Section, Yale University, New Haven, Connecticut 06520

(Received 15 July 1982)

Experimental observations of coherent, millimeter-wavelength, higher-cyclotron-har-
monic oscillations are reported for a system of an electron beam in a magnetic field
traversing a Fabry-Perot resonator. The parameters of the experiment tend to support
the interpretation that the strong multiple-harmonic interaction results from mode con-
version of short-wavelength electrostatic waves (Bernstein modes) to long-wavelength
electromagnetic resonator modes at the beam boundary.

PACS numbers: 42.52.+x, 41.70.+t, 52.35.Fp, 85.10.Hy'I
Recently there has been a great deal of interest monic.'

in electromagnetic gain mechanisms at millime- On the other hand, it is well known that short-
ter wavelengths, because of potential applications wavelength electrostatic waves (Bernstein modes)
to plasma heating in tokamaks, plasma diagnos- can propagate perpendicular to a magnetic field

tics, radar, and far-infrared astronomy. One wit' loss in a collisionless plasma.4 It is
* such mechanism is the electron cyclotron maser thought that the conversion of these modes to

instability, in which the relativistic mass de- long-wavelength electromagnetic modes at a

pendence of the electron cyclotron frequency re- plasma boundary is responsible for multiple-

sults in azimuthal bunching of electrons gyrating harmonic interactions which have been observed

in an external magnetic field.' A companion in low-pressure discharges and ionospheric top-
mechanism arises from the axial electron veloc- side soundings.5 A recent analysis of this prob-
ity modulation in the wave propagation direction.2  lem suggests that when mode conversion occurs

Although electromagnetic gain has been predicted at an electron beam boundary, the instability

at the fundamental as well as the cyclotron har- growth rates at the higher harmonics can be

monics, practical devices have been restricted much larger than for electromagnetic interac-
to operations at the fundamental or second har- tions alone.6 This Letter reports the first ex-

1556 © 1982 The American Physical Society
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Space Charge Effects in a Gyrotron II!

I = 1 Amp, the electron is trapped earlier by the cavity
field and the overall result is energy gain by the electron,
while in the case of I = 0 the electron still loses some

of its energy to the wave.

VI. Conclusions

We have studied the influence of space charge forces

on the performance of a single cavity gyrotron oscillator
0O which uses a solid electron beam. It was found that space

charge effects cause a large efficiency degradation when
the beam current is increased while holding other experi-

mental parameters unchanged. A small increase in the mag-
netic field, however, causes the efficiency to be restored
to its higher value. Our calculations for the linear
regime are consistent with analytical results of others
from linear theory which predict higher wave growth rate
for the finite space charge case.

Although our results were derived for a gyrotron using
solid electron beams, we believe that it is also applicable
for the annular beam configuration which is widely used in

0 gyrotrons. Our quantitative results were not derived from
a self consistent treatment of the space charge problem.
Rather, they serve as a useful guide for the experiment and
also for full scale simulations.

The authors would like to acknowledge helpful dis-
40 cussions with Dr. K. R. Chu, who offered important inspira-

tion and critical advice in the solutions presented here.
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dpj= emy cosE (36)

dz Pz x

eB emysinE
dz = + c + X (37)
dz Pz CPz P-LPz

dy e- E - B B (38)

dz pzQ x Pz B0

And as before Eq. (36) reduces to

dp..- _ --E exp(-z 2 /r )Jn(B)cos(wt-n,)cos(k.yv -n -), (39)

dz Pz 0 0ng 2

where

SkLp-L (40)~mo

Finally, the average energy loss from the electron to the
wave fields for a uniform distribution in e0 and arbitrary
distribution f(yg) in yg, we obtain

_ epr E r r 2m (nQ - yow)
T-W Z in '02E02 (Oep 0

pZ n 4p 2]Pz Jn 4)ep -z

x sin(40  + -m__ (n 2 - yow)L]f dygf(yg)COs(kLYg - -4)
z

x Jl[qcos(y - n

where W k P 0(

SewEoJ 0 )Pr 0 1  (n2 yW) 22 2

q2 2 2 exp - 2 m
pzc 4pz -

and Jn(BO)= dJ n(B)/dB =
n 

0



Bernstein Mode Quasi-Opticl Gyroklystron 431

Setting n=1 and noting that Jj(30) 1/2, we find

r pr 02E r1
2 Pz 0p 2

z

xsin[ 0  + s- -yw)L] fdygf(Y) (44)

x sink ygJ 1 (qsinkVg)

Hence for n=l, Eq. (44) is identical to Eq. (III-7a) of
Ref. 9, as expected. Finally, we can find the power trans-
fer from the electron beam to the wave fields, as

P _ " bP ro2 EO 2  Jn( )exp -r 2 m n o
z 4p2

x sinl 0  + !_ (nQ2 - Y ow)L] dygf(yg) (45)

c eos(ky - n Z) Jl[qcos(ky - n -1)]
g 2 1 g 2

IV. Comparison Between Gyroklystrons With and
Without Coupling to Bernstein Modes

aTo make the comparison easy, we assume that

f(y ) = 6(yg - YgO )

cos(kyg0 - n 2.) = 1

sin[o + m (ns - y w)LJ = 1

The first assumption corresponds to specification of a thin
sheet beam of thickness one gyration diameter; the second
places this beam at the standing wave maximum. The third
corresponds to the best feedback phase between two cavities.

From Eqs. (32) and (45) we can write the expressions

o . "'. . .
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for the power transfer from the electron beam to the wave
fields for the two types of interaction as follows:

nJn (0)AP B  AE0 BO J(qB (46)

B 02 0 1B

nJ (0O )
q DEoL t  B0 (47)

B 01 B0

ApL_ = AEo 2Jn(O)JI(qT) , (48)

qT = DE oLJn(O 0 (49)

where

ro2m2(n -YOr) 1
A ; IbP LOr0 2 exp 2 2

A = -4p

ex 222
Ar ewporo1  r (na - yw) m r

D= 22 4p
2

pzc 4pz

and subscript B refers to Bernstein modes and T refers to
the TEMo0 electromagnetic mode.

For small signal operation

1
Jl(q) - q (50)

Substituting Eqs. (50) and (47) into Eq. (46),we obtain

1nJ(BO) 12

APB = 2 ADE01 Eo2L O (51)

Similarly for the electromagnetic interaction we obtain.
S 2

AP = ADE E LJ ) (52)
T 2 01 02 nO0
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We should point out that in Eq. (51) E0 1 and E0 2 are polar-
ized along the y-axis,which is also the direction of wave
propagation (longitudinal waves) whereas, in Eq. (52) E0 1
and E02 are polarized along the x-axis with wave propaga-
tion along the y-axis (transverse waves). Thus Eq. (51)
and Eq. (52) can be rewritten as

1 [nJn(BO) ] 2
APB =2 A 0 1y 0 2 yL 0 J(53)

1 [j(0 2
APT = 2 ADE0 1 Eo2 L [J1 (j)1 (54)

For the Bernstein modes we find that (6)

E E W nJ" )1
Olx 02 = vI P n 0(

SE 0 1 y E0 2 y - Y0 0

where w, is the plasma frequency. Substituting Eq. (55)
into (5 ), we have

APrn n (-0E 2  (
B = E2 01x 02x 1 a (56

[nJn(aO)/Bo] has the approximate value of 0.3 for n up to
20. For an electron beam of modest power i/E2 is of the
order of 106 for fundamental operation. As n increases up
to 10, l/C2 decreases gradually to about one tenth of the
fundamental value. On the other hand [Jn(SO)] decreases
very rapidly as n increases.

Figure 2 shows the linear high harmonic power outputs
normalized to the output at the fundamental for several
cyclotron harmonics for gyroklystrons with (APBn/APBI) and
without (APTn/APTl) coupling to Bernstein modes. The calcu-
lations in Fig. 2 have been performed for radiation fre-
quency f = 65 GHz, beam voltage Vb = 19 kV, beam current
density J = 5A/cm 2 and a transverse to parallel momentum
ratio a - 2. These calculations show that for a gyrokly-
stron based on electromagnetic interaction only, the nor-
malized power output decreases very rapidly at the higher
harmonics. On the other hand, for a gyroklystron based
on the Bernstein modes, the normalized power output shows

0

S: . .. . . . , _ ..i . :: : : : . . . . i ; :: i . 5 , ii :,"
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a very weak dependence on the harmonic number up to very
high harmonic numbers.

In Fig. 3 we show the linear power output for the
Bernstein modes over the linear power output for electro-
magnetic interaction only (APBn/Apmn), as a function of
the harmonic number, for the same parameter regime as in
Fig. 2. We observe a significant increase in linear
power output at the higher harmonics for a gyroklystron
based on the Bernstein modes compared to one based on
electromagnetic interaction alone.

From our analysis, we can draw three major conclusions.
Firstly, since I/E2 is of the order of 105 ". 106, a gyro-
klystron based on the electron Bernstein modes has a
higher linear efficiency than a corresponding gyroklystron
involving only the electromagnetic interactions. Secondly,
since both [nJn(%)/60I and l/c2 decrease slowly as the
harmonic number n increases, the linear efficiency of the
gyroklystron involving the Bernstein modes will decrease
slowly for high order harmonic operations. Finally, since
[JA(0o)] decreases very rapidly as the harmonic number n
increases, the linear efficiency of a gyroklystron based
only on electromagnetic interactions will decrease very
rapidly for high order harmonic operations.'

In the present analysis we have developed a simple
theoretical model which takes into account the basic
physics of a quasi-optical gyro-klystron based on the elec-
tron Bernstein modes. The model is idealized, in that

0 several real effects have not been treated in this analy-
sis. For instance, the model does not include the veloc-
ity spread in the electron beam. This velocity spread
could either result from a spread in energy (i.e. spread
in y) or a spread in pitch angle (i.e. spread in a), and
for most practical devices, the spread in a is expected
to be more important. However in the geometry of the
present model, the resonance condition is w nly
(i.e. kz 0) and the relevant wavenumber k k_±. Thus
the velocity spread is not expected to be serious. A
second limitation of this analysis is that the theory
presented here is linear and although it can predict near
threshold behavior well, it does not account for the non-
linear saturation levels for steady-state oscillations.
Finally, the present model assumes the electron beam to
have sharp boundaries. A more realistic beam profile

|°
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would be one with a more gentle boundary, and this could
give larger values of c and hence lower linear efficien-
cies than those predicted above.

Nevertheless the present analysis has been motivated
to some extent, by the need to stimulate interest in

electromagnetic gain on the Bernstein modes and perhaps a
formulation of a more elaborate and realistic theory. It
may even stimulate experimental demonstration of some of
the predictions of the present theory.
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Electron Prebunching and High Harmonic Interaction in a

Bernstein Mode Quasi-Optical Gyrotron

N. A. Ebrahim, Z. Liang, and J. L. Hirshfield

Applied Physics Section, Yale University, New Haven, Conn. 06520

Abstract

Experimental evidence shows that prebunching the beam elec-

trons in a two-cavity quasi-optical gyrotron gives stronger wave-

particle interaction at high cyclotron harmonic Bernstein modes

than was observed previously without prebunching in a one-cavity

experiment. Coherent oscillations up to the ninth harmonic,

increased output power, and significant decrease in start-oscilla-

tion currents have all been observed. Output at 0.96 mm wavelength

at a magnetic field of 14.4 kG was obtained using 20 keV electrons.

PACS Numbers: 41.70.+t, 52.35.Fp, 85.10.Hy
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I

Interest grows in investigations of electromagnetic gain mechanisms in

the millimeter and submillimeter wave regimes, not only because of the fun-

damental importance of such mechanisms as new scientific phenomena, but also

as a result of applications in several areas of physics. Some of these appli-

cations are in the electron-cyclotron resonance heating (ECRH) of fusion

research plasmas, in high resolution imaging radars or simply as sources of

rf radiation in fundamental research in astronomy and condensed matter

1
physics. In the conventional electron cyclotron maser mechanism the

azimuthally phase-bunched electrons in an axial magnetic field radiate

coherently at the frequency w = NQ 0/y, where Q0 = yeB =

-* 2 2 1/2 -
(1 + p P/mC ) , p is the electron momentum vector, B0 is the axial

magnetic field, w is the angular frequency and N is an integer denoting the

harmonic number. In order to generate submillimeter waves (f > 300 GHz) at

the fundamental cyclotron frequency (N = 1) an external magnetic field in

excess of 107 kG is required. Although such fields are provided by special-

ized superconducting coils, present practical cw uses are limited to magnetic

fields less than about 60 kG. On the other hand, with pulsed systems,milli-

meter wave output at 0.8 mm has been reported recently using a pulsed

2magnetic field of 150 kG. Unfortunately, certain applications such as

ECRH demand long pulse or cw operation which would rule out these

latter systems. Thus, if large magnetic fields are to be avoided, inter-

action at the high cyclotron harmonics becomes especially important.
3

However, for the electron cyclotron maser mechanism, the higher the cyclo-

tron harmonic, the higher the threshold beam power; hence excessively large

beam currents would be required. As a result, threshold conditions can

become difficult to achieve for higher cyclotron harmonics.

Since the higher harmonic interaction is essentially a finite Larmor

I+
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radius effect, one solution to this problem is to employ a beam of large

orbit electrons which interact with a high order cavity resonator mode.

Although this approach lowers the value of the axial magnetic field by a

factor equal to the harmonic number, the threshold condition is highly sen-

sitive to beam transverse electron energy; high harmonic emission has been

4
observed based on this idea for electron energies greater than 250 keV. An

alternative approach demonstrated in a recent experiment with 20 keV electrons

showed that high order harmonic interaction is possible by coupling to the

Bernstein modes on the electron beam, since these modes are unstable and

exhibit strong wave-particle interaction up to very high harmonics even for

modest beam currents.5 The first Bernstein mode maser experiment demon-

strated harmonic interaction up to the fourth cyclotron harmonic with beam

5currents less than two amperes.

In this Letter, we report the first experimental observations which

show that even stronger wave-particle interaction at the higher harmonics

is possible with the electron Bernstein modes by electron prebunching in a high

quality factor quasi-optical Fabry-Perot resonator which preceeds the inter-

action and power extraction cavity. Not only do we observe interaction at

higher harmonics (up to the ninth harmonic) but we also observe a signif-

icant increase in output power and significant lowering of the threshold

5
condition, as compared with previous experiments without prebunching.5

Furthermore, submillimeter wave output at 0.96 mm has been observed with a

magnetic field of only 14.4 kG at the eighth harmonic, with beam energies

of less than 20 keV. The present experiments suggest that no feedback

circuit is necessary in order to optimize the relative phase angle between

the two cavities for efficient interaction. The second cavity automati-

cally assumes the optimum phase, such that maximum energy transfer from
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the beam to the wave field occurs. To this extent, and but for the fact

that the coupling in the present experiments is on the electron Bernstein

modes, the present experiment may suggest a quasi-optical analogue to the

complex cavity gyrotron experiment recently reported.
6

The schematic of the experimental configuration is shown in Fig. 1; it

5
is similar to that used in our earlier work. The gyrating electrons are

produced by a combination of a solid laminar-flow electron beam from a space-

charge-limited Pierce gun and a spatially localized transverse magnetic field

("kicker") from a pair of Helmholtz coils. This system yields a beam of

electrons gyrating in an axial magnetic field with a transverse-to-axial

momentum ratio a of the order of 2.

The interaction region consists of two confocal Fabry-Perot resonators

with fixed intermirror spacings L = 3.4 cm, mirror radii of curvature 11 cm

and intermode frequency spacing Af = c/2L = 4.4 GHz. In cold tests of the

Fabry-Perot resonators with a sweep oscillator, a complete longitudinal

mode spectrum between 60 and 72 GHz was carefully measured. The resonator

spacings were then adjusted so that the mode frequency mismatch in the two

cavities Aw/w < l/Q 2, where Q2 is the lower of the two quality factors of

the cavities. The first cavity was designed to have a very high quality

factor Q 1 2 x 10 . This was achieved by not having a coupling hole in

this cavity, since it is the output coupling hole which determines the

overall Q of this cavity. On the other hand the second cavity (cavity #2)

has a low quality factor Q2 800 in order to obtain high output coupling.

Table I summarizes several representative conditions under which

coherent millimeter and submillimeter wave output signals were observed in

the frequency range 60-320 GHz. The lower frequency limit in this experi-

ment was set by the low-frequency cutoff of the WR-10 waveguide section used

4
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which was about 59 GHz. The upper frequency was limited by the highest

frequency cutoff filter available to us, which was about 300 GHz. Thus

observations with axial magnetic field values above about 25 kG were

unnecessary. Observations of coherent microwave output were made by tuning

the axial magnetic field until the cyclotron harmonic frequency coincided

with a resonant mode of the Fabry-Perot, at which point oscillations

appeared in the second cavity. The output frequency was then estimated by

use of a series of waveguide cutoff filters. At 66.3 GHz, for instance,

we have observed a total of eight cyclotron harmonics at the following

magnetic fields; 24.9 kG (N = 1), 12.5 kG (N = 2), 8.3 kG (N = 3),

6.2 kG (N = 4), 5.0 kG (N = 5), 4.2 kG (N = 6), 3.6 kG (N = 7), 3.1 kG

(N = 8). The small difference between the estimated cyclotron harmonic

frequencies and the frequency of the resonant Fabry-Perot mode is probably

due to the accuracy of the axial magnetic field measurement (on the order

of 2%) and to slight pushing of the resonator frequency by the electron

beam. At 158.4 and 198.0 GHz we have observed up to the ninth harmonic,

whilst at the Fabry-Perot mode number of 71, we have observed up to the

eighth harmonic at a frequency of 312.4 GHz, in the submillimeter region.

We have also observed what appear to be the tenth and eleventh harmonics

in excess of 140 GHz, although frequency estimates show these modes to be

associated with higher order transverse modes. It is estimated that maxi-

mum microwave output power levels of approximately 30 watts in the funda-

mental have been observed at 62 GHz, an increase of nearly 15 dB from the

levels observed in the single cavity experiment. No attempt has been made

to optimize the system in terms of beam quality or magnetic field contour-

ing. Between the fourth and ninth harmonic, we did not observe a substan-

tial change in the output signal to within a factor of 2, so that the out-
.1
:!
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put power at the higher harmonics is estimated to be in the range 0.1-1%

of the power at the fundamental.

In a previous study, it was shown that the start oscillation condition

for the beam current at the Nth harmonic for a single cavity could be obtained

from a linear theory uf the cyclotron maser instability. 5 ,7 Similarly, the

start oscillation conditions for the unstable electron Bernstein modes could

also be obtained. 8  In Fig. 2, the start oscillation conditions for the two

instabilities for a single cavity (Q 800) for the first eight harmonics

at 66.3 GHz are shown for several different values of the momentum ratio a.

The curves were obtained using Eqs. 1-3 of Ref. 5. The start oscillation

current experimentally observed for stable oscillations are also shown for

comparison. From Fig. 2, it is clear that for a = 2, the predicted stu:t

oscillation currents from the electron cyclotron maser instability theory

are orders of magnitude higher than the experimentally observed currents.

Although higher a (% 10) would tend to bring closer agreement between

experiment and that theory, the near equality of measured cathode and col-

lector currents would rule out a momentum ratio of 10 for a sizable frac-

tion of the beam electrons. A further important observation from Fig. 2

is that experimentally observed values of the beam current are now substan-

tially lower than those predicted for the Bernstein mode coupling in a

single cavity. This is in contrast to the results of the single cavity

experiment, where the operating beam currents for various harmonics, although

consistent with those predicted by a Bernstein mode theory, were generally

higher than the predictions.

Thus the observations of Table I and Fig. 2 strongly suggest the exist-

ence of a mechanism which substantially lowers the threshold currents,

increases the output power and results in the observations of harmonic inter-

action up to the ninth harmonic. Theoretical analysis of quasi-optical
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have been performed and the results have surpassed those of the conventional TWA

devices.P-]

The gyrotron pioneers Schneider and Hirshfield used the quantum theory to

,redict the conditions required for stimulated emission to exceed absorption. '."]

However, this approach is mainly of academic interest since, for the frequencies

at which the cyclotron maser interaction is most interesting, one electron may fall

through up to 1VO quantum states to give up its energy to the electromagnetic field.

Therefore, the classical discription is sufficient.

Hirshfield et al. first employed plasma kinetic theory to analyze the gyrotron

interaction. This method treats the electron beam in the magnetic field as an

electron plasma. The Maxwell-Vlasov equations form the basis for this approach.

The electron distribution function (in space and momentum) has to be specified.

The perturbed distribution function is found by integrating the linearized Vlasov

equation along the unperturbed trajectories of the gyrating electrons. This has

become a standard approach, though it is a linear theory in gener&i; Like any

other small signal theory, there are a few deficiencies in this approach. At first,

nonlinear phenomena, such as saturation, can not be dealt with. As a consequence,

the efficiency calculation is beyond its scope. The advantage for employing this

linear theory is that it is easier to solve the problem analytically. Furthermore, it

usually gives a good understanding of the basic physical effects. It seems interesting

to mention that P. Sprangle et al.('51 and later K. R. Chu et al.1 61 derived a formula

to estimate the efficiency for TE.,, modes in the circular waveguide within the

scope of the linear theory by deriving the relation between the wave frequency

and the gyration frequency at saturation due to phase trapping, but the energy

depletion mechanism is neglected in that estimate. That formula is given in the

beam frame and can be easily transformed to laboratory frame by performing a

Lorentzian transformation. The estimate from that formula is found to be in a good

agreement with the numerical simulation results"IE except at lower beam energy,

where the depletion of the electron energy is said to be the dominant saturation

mechanism of the device.
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the relativistic change in the electron mass plays a crucial role in the cyclotron

resonance maser mechanism.

Experimentally, perhaps R. H. Pantelll5 I is the first who reported an experiment

involving the electron cyclotron maser mechanism in 1959. But he attributed

the observed beam-wave instability to a longitudinal bunching caused by v x B

forces. He claimed that the radiation was caused by the coupling of the TE,,

waveguide mode with the backward traveling cyclotron wave on the magnetized

electron beam. Thus some questions were still left open as to whether the cyclotron

maser mechanism had in fact been observed in the experiment, since even if the axial

synchronism condition had been satisfied, the results could still have been explained

without involving the cyclotron maser interaction.

J. L. Hirshfield and J. M. Wachtel performed the first experiment that definitely

demonstrated the existence of the electron cyclotron maser mechanism in 1964 (4,5J.

They reported an experiment with 5-kV electrons traveling along an axial magnetic

field. The electron beam was injected into a high Q cylindrical cavity with most of

the kinetic energy transverse to the applied magnetic field.

The early experiments were with low power and low efficiency, but since 1974

the advances in gyrotron research have come at a rapid pace. The advent of the

intense pulsed relativistic electron beam renewed the interest in the cyclotron maser

mechanism as a source of high power microwave radiation. 800 MW at 4 cm61, 350

MW at 2 cmil, 8 MW at 8 mmt I81 have been generated with gyrotrons. Gyrotrons

built by a group of Soviet scientists at Gorkii State University have produced 1.25

MW of 45 GHz radiation with a pulse duration of I to 5 msec, 1.1 MW of 100 GHz

radiation with pulse duration of 100 microsec. The efficiency of these gyrotron

oscillators operating at the fundamental harmonic of the gyration frequency is about

34%191. They accomplished another impressive gyrotron experiment of 120 kW at

375 GHz with pulse duration of 0.1 rnsec.1101 Jory and his group did an experiment

which generated 200 kW CW at 28 GHf. 111. The experiments to heat plasmas in

controlled fusion devices have been done effectively.12 1 Some new configurations

for gyrotrons have been examined in the experiments. The gyro-TWA experiments

.... " : : - . .: -. . :
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Chapter 1 Introduction

Because of the ability to produce or to amplify millimeter and submillime-

ter waves at unprecedented power level with high efficiency, gyrotron devices have

been intensively investigated both theoretically and experimentally in the past two

decades. Their promising applications include plasma heating, new millimeter and

submillimeter wave radar systems, spectroscopy, and advanced accelerators.

This new class of microwave devices is based on the electromagnetic radiation

mechanism known as the electron cyclotron maser instability, which originates from

the electron azimuthal bunching due to the dependence of the electron relativistic

gyration frequency on energy.

The basic configuration of a gyrotron device includes an electron beam travel-

ing along a waveguide (or one or more cavities) which is immersed in the applied

magnetic field. Since the beam-field interaction takes place in the plane transverse

to the direction of wave propagation, the electrons must have a substantial part of

their kinetic energy in the form of gyration motion as they move on helical orbits

along magnetic field lines.

Fig.Ia illustrates the basic configuration of a gyrotron traveling wave amplifier .

(gyro-TWA). The magnetron injection electron gun, which is commonly used in

gyrotrons, is depicted in Fig.lb.
The electron cyclotron maser mechanism was recognized first by an astrophysi-

cist R. Q. Twiss{lI in 1958. He derived the general formula for the absorption

coefficient a,, of the monochromatic radiation of angular frequency w in an ionized

medium with electrons undergoing radiative free-free transitions. Shortly after

Twiss's work, A. V. Gaponov121 published a paper to describe the classical theory

of the cyclotron maser. He investigated the phase relation among those electrons

gyrating in a uniform static magnetic field. It was Gaponov who realized first that
4
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ABSTRACT

THEORY OF GYROTRON TRAVELING WAVE AMPLIFIERS
AT HARMONICS OF THE GYRATION FREQUENCY

Qiangfa Li

Yale University, 1984

• In developing gyrotrons at millimeter and submillimeter wavelengths, a means of opera-

tion at lower applied magnetic fields is desirable because of the size and weight of convetional

magnets, and the expense and complexity of cryogenic magnets. This requirement can be

met by operating the devices at higher harmonics of the electron gyration frequency. In

the present work, a unified theory is developed for the gyrotron traveling wave amplifiers

(gyro-TWA) at harmonics of the gyration frequency, both in the nonlinear regime and in

the linear regime. This theory can be applied to a wide class of waveguide cross sections,

* arbitrary harmonic number, any waveguide mode, and generalized electron beam model.

The fields in the beam-field interaction region in the waveguide are expressed in the form

of an infinite series of multipoles expanded around the guiding center of the electrons. A

set of equations governing the nonlinear behavior of the gyro-TWA is derived. A general

dispersion equation is derived both from that set of nonlinear equations by an iteration

method and from plasma kinetic theory. The latter is employed to analyze gyro-TWA

devices in a systematic and generalized manner. The Laplace transformation is introduced

to allow inclusion of the initial values at the input end of the waveguide. From the linear

theory it is found that for a gyrotron working at 8-th gyration harmonic the electrons can

interact only with the 28-th order multipole field component. It is also found that a higher

order waveguide mode is not always better than a lower order mode for the gyro-TWA

working at higher harmonics. A novel out-ridged waveguide is proposed and analyzed for

the use in gyrotrons. The prominent features of this new waveguide include simplicity of

manufacture, freedom from local modes, good separation of lower order modes, high power

handling ability, and high gain per unit length at higher gyration harmonics. A compari-

sion of the gyro-TWAs with several different waveguide structures, such as the out-ridged,

magnetron-type, rectangular and circular waveguides, is made through numerical examples

of the gain-frequency curves computed from the linear kinetic theory.

.. - .
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HARMONIC fF-P 61-7 663 709 158.4 198-0 312.4
NUMBER Mode
(N) No.m 14 15 16 36 45 71

iBo 23 24.9 25"9
.__ to 62.6 67.7 70.3

Bo  11-5 12"5 13"0ia  2

fo 62.3 67.8 70.7

3 7-7 8.3 8.6 1 9"5

* fo 62"4 67.6 70-1 157.7

4 Bo 5-8 6"2 6-5 14.9 18.3

fo 62-1 67.6 70"4 160.9 197.6

5B0  4.6 5.-0 5"3 11-6 14-7

fo 61.6 67-5 71.4 156-1 198.3

6 Bo 3.7 4.2 43 973 122

fo 60-4 67-9 70.1 157.6 198-3

oBo 3-6 3.7 8.3 10-5 16.5
fo 68-0 70.5 157.2 198.1 311.6

8 13° 3.1 7.4 9.1 14.4

_ _fo 67.0 159.0 196.6 311.0

Bo  6'5 8.1

fo 157.5 196-8

* TABLE I
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CAPTIONS

FIG. 1. Schematic diagram of the experimental arrangement.

FIG. 2. Start Oscillation current versus the harmonic number.

S Calculated from Eq. (1), Ref. 5 (excluding Bernstein modes);

0 Calculated from Eq. (3), Ref. 5 (including Bernstein modes);

O Experimental measurements of the start oscillation current.

TABLE I. Conditions under which coherent output signals were observed and

the frequency of the observed output. Inter-mirror spacing

L 3.4 cm, intermode frequency Af = 4.4 GHz. y = 1.0371,

fo NQ N0/27y, 9 0 = Je0 /m0" fF-P are the resonant modes of the

Fabry-Perot. B is in kG and all frequencies are in GHz.
0

*O N is the harmonic number. Note: although harmonics 1-2 at

158.4 GHz, 1-3 at 198.0 GHz and 1-6 at 312.4 GHz are not shown,

they were clearly obtained in this experiment.

0
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gyro-klystrons based on either the electron Bernstein modes or electro-

10magnetic interactions both demonstrate that prebunching of the beam

significantly enhances the interaction efficiency, but threshold currents

with electromagnetic interactions alone are orders-of-magnitude higher

than the values observed experimentally. The results reported in this

Letter are therefore consistent with the conclusion that stronger wave-

particle interaction at the higher harmonics is possible on the electron

Bernstein modes by electron prebunching.

Finally, since a gyrotron based on the electron Bernstein modes is

characterized by coherent output in a large number of spectral lines span-

ning a broad spectral range, it may have very important applications in

areas where tunability is essential.

We are grateful for the excellent technical support of R. Downing,

• J. H. Kearney, P. Trosuk, and G. Vogel. We also thank Ted Kozol of Baytron

for assistance with the cold tests of the Fabry-Perot resonators. This

research was sponsored in part by the U.S. Office of Naval Research.
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Another method in analyzing the interaction process is the Lagrangian formula-

tion where one directly solves the equation of motion of the electrons in the applied

and RF fields. For small field amplitudes, we can integrate the linearized equa-

tions for the properties of interest, then average over all the electrons is taken to

obtain the properties of the electron-field interaction. This approach can be either

in the linear frame or in the nonlinear frame. If rigorous relativistic kinetics is

required, such as in the high power or the higher gyration harmonic gyrotron cases,

the caculation has to be accomplished numerically. For the numerical solution, the

computing model can include many factors and gives accurate results, but some

physical insight may be lost. This approach will be dealt with in Chapter 2.

A new approach has been introduced to the Gyro-TWA nonlinear analysis. This

approach is based on the concept of the soliton. The soliton is a solitary wave in

a nonlinear, dispersive medium. This powerful theory can treat nonlinear, time

dependent problems analytically.[17 i

OP
In developing gyrotrons at millimeter and submillimeter wavelength for plasma

heating, radar system and some other purposes, there is an increasing necessity to

reduce-the weight and size of the devices, and consequently, to reduce the magnetic
4 0field substantially. For the amplification or generation of submillimeter waves, an

impractically high applied magnetic field would be required if the device is operated

at the fundamental cyclotron harmonic. For a gyrotron operating at the same

frequency range but at the s-th harmonic of the gyration frequency the applied

magnetic field is reduced approximately by a factor of a. This is of great importance

especially for uses in compact radar systems and for some other applications, where

the device size and weight are critical to the system.

However, most gyrotron oscillators and amplifers reported are at the funda-

mental cyclotron frequency except a few at second harmonics. Only recently, some

papers theoretically investigated the properties of the magnetron-type waveguide

structure to serve gyro-devices as the RF structure.la8,1I Papers on the utilization

of the whispering gallery modes in the circular waveguides and some modes of the

rectangular waveguides for the gyro-devices working at higher cyclotron harmonics
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were also published.

Experimently, Destler et al. used a magnetron-type waveguide with 12 vanes

and a 2 MV, 2 kA electron beam, and generated an output power of 250 MW most

concentrated in the 12-th cyclotron harmonic.2 °l The preliminary experiments

on the microwave generation at higher gyration harmonics with low beam energy

have been proposed and performed at Yale21,221 and at University of Maryland12 31

recently.

However, a theory on the beam-field interaction at higher harmonics is still

to be developed in a generalized and systematic manner. Some basic features at

the higher cyclotron harmonics still need to be explored. Since the waveguide

transverse fields can be repressented by solutions of Laplace's equation, the fields

in the waveguide, and consequently the forces on the electrons, can be expressed by

an infinite series of multipole components expanded around the axis of the electron

helical trajectories. This makes the analysis, both linear and nonlinear, capable of

handling several different shapes of waveguide cross section for the RF structures

- :- in the gyro-TWA devices.

The waveguide structure is very important for the operation of gyrotrons at

0higher harmonics. A good waveguide structure may creat a suitable field pattern

in the cross section of the waveguide for the beam-field interaction. Therfore, some

novel waveguide structures still have to be studied.

*0 It has been realized in general that the RF field transverse inhomogeneity in the

waveguide is responsible for the interaction between the electron beam and the field

in gyrotron devices at the harmonics of the electron gyration frequency.[9,241 In the

* present work, the analytical results both from the nonlinear theory and linear kinetic

theory prove that the electron beam interaction with the field at 8-th harmonics is

associated only with the multipole field of order 2e in the waveguide, if the field is

expanded around the guiding center of the electrons. In order to achieve a good

coupling between the waveguide field and the beam, the operation of gyrotrons

at higher gyration harmonics in general requires the waveguide to work at higher

waveguide modes because the higher order multipole field components are bigger in

0
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the higher modes. Also, a bigger beam energy is requied for gyrotrons working at

the hiher harmonics. However, in this work we find that it does not always mean

that a higher waveguide mode is better for a gyrotron device to work at higher

harmonics than the lower waveguide mode, even though the higher waveguide mode
has a higher transverse inhomogeneity in the transverse RF field. The distribution

of the modes of the waveguide structure is very important for the stable and efficient

operation of the devices at higher harmonics of the gyration frequency.

* In this work an out-ridged waveguide structure is proposed as the new candi-

date for gyro-TWA (and gyrotron oscillator as well) working at higher cyclotron

harmonics. This novel waveguide structure and the gyro-TWA with it are ana-

lyzed in Chapter 4. One of the features of this out-ridged waveguide is its bigger

power handling ability compared to the waveguide used in the 'peniotron', since

the introduction of two paires of the intruding ridges for the latter reduces the

0 power handeling ability of the waveguide. Furthermore, these two paires of the

ridges bring about locally trapped modes. The other prominent features of the

out-ridged waveguide include the simplicity in manufacture, the free of the local

modes, the good separation of the lower modes, and high gain per unit length at

higher gyration harmonics.

In Chapter 2, by imploying the weakly irregular waveguide theory and expand-

ing the waveguide field into an infinite series of the multipoles around the gyration

centers of the electrons, a set of the equations to describe the nonlinear evolution of

the electron motion in a self-consistent manner is derived. A dispersion equation

is derived by iterating the solution of that set of equations. Chapter 3 is devoted

to kinetic theory. The introduction of the Laplace transformation alliows one to

treat the initial value problem. The small signal gain-frequency relation is obtained

through the inverse Laplace transformation. The eigenvalues and the associated

eigenfunctions of the proposed out-ridged waveguide and the beam-field analysis of

the gyro-TWA with the out-ridged waveguide are found in Chapter 4 by applying

the analytical results from Chapter 3. In Chapter 5, the small signal gain-frequency

curves for gyro-TWAs with several other waveguide structrures, such as rectangu-



lar, magnetron-type and circular waveguides are computed. The advantages of the

out-ridged waveguide over other waveguide structures in gyro-TWAs are demon-

strated in the computed examples. Chapter 6 is devoted to a comparision of the

gyro-TWAs with different waveguide structures through some examples computed

from the small signal theory and some conclusions are made from the present work

for the gyro-TWAs at higher harmonics of the gyration frequency.

0

!
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Chapter 2 Local Field Expansion

6and Nonlinear Theory

This chapter is devoted to the formulation of the basic equations for the gy-

* rotron analysis and to the gyrotron nonlinear theory. With the equations of motion

of an electron in the elecomagnetic field and the local field expansion technique, the

gyrotron equations are rederived in section 2.2. In section 2.3, hi3o starting from

the equations of motion of an electron in the electromagnetic field, a set of nonlin-

ear equations, which can be applied to the gyrotrons with different waveguides, is

derived in a self-consistent manner. The general gyrotron dispersion equation is

derived from that set of nonlinear equations with iteration method.

40
2.1 Basic Equations

Maxwell's equations with sources are the basis of all the approaches of gyrotron

0 analysis. In Gaussian units these equations are written as

V.B=0 (2.1)

IxB 1E 4 7rc x B + _j (2.2)c Ot c

V-E 4Op f2.3)
I OB

V x E= (2.4)c at

In this analysis, all the RF fields are assumed to be time harmonic. From

Eqs.(2.1), (2.2) and (2.4), an inhomogeneous Helmholtz equation for the magnetic

field can be derived as

m ~V2B + 2- = 4r x 12s
!B-B--V x (2.5)

C2 C

For TE waveguide modes, i. e. , for E. =0, where z is along the axial direction of

the waveguide, with the assumption I fLnB, c 1, we may write the axial component
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of the magnetic field in the following form:

B, = F(z)B°(rt)ej 'w (2.6)

where r, is the transverse coordinates, and F(z) is in general a complex function of z.

In the gyrotron analysis, I a4 IlnB, I< I is a good approximation since the beam-wave

interaction is strong only in a frequency range that is close to the cutoff frequency

of the interacting wave mode, where the waveguide wavelength is long compared to

the scale length of the beam-wave interaction.

If the operator V is written in the form V = V + e,A, then V2  + V2 , and

from Eq.(2.5), an equation for B, may be written into the form

(V+ ± k )F(z)B° + 2 2--- - kx)F(z)B (2.7)

A parameter k, has been introduced in the above and it will be determined later.

Since Bz is written in the form of Eq.(2.6) and with the assumption of the neglect of

space charge effects, for TE modes, the eigenvalues and the associated eigenfunctions

of the waveguide can be obtained by solving the equation

(V2 + k ,)BO =0 (2.8)

subject to the perfect conducting boundary condition on the wall of the waveguide

n. VgB? =0 k2.9)

where n is a unit vector normal to the waveguide wall surface.

Thus, for the function F(z) we have the following equation

,,2 k4!)F(z) = (V x J).e,(B,)A (2.10)
-+ -)

where

N = fBO(BO)dA (2.11)

(BO)" is the complex conjugate of BO, and the integration is over the cross section

of the waveguide.

0.- ..-.. . .. , .. . ... . . ... .
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The transverse field components for TE waveguide modes can be derived from

the Maxwell equations in the form

B 1 = I8 F(z) VBooAI (2.12)

Et = L-F(z)e, x VtBej (2.13)

Thus, we can write the components of the field in Cartesian coordinates from

Eqs.(2.12) and (2.13) as the following

E. = -j (z)2 -B ei (2.14)

EB = W FI Bej't (2.15)

1 3F(z) a
B1 = T28z - Boe"' t  (2.16)By=I aF(z) 0_ BedW (2.17)

In this way, the problem for determining the fields in the waveguide with moving

electrons reduces to Eq.(2.8) which is the same equation as that for the empty

waveguide; and to Eq.(2.10) which involves the electron beam and the fields in the

waveguide.

For Eq.(2.10), we can have several different ways to obtain its right hand side.

In this chapter and Chapter 3, three different approaches to obtain the right hand

side of Eq.(2.10) will be analyzed.

It should be pointed out that if the right hand side of Eq.(2.10) is set to zero

but k, is assumed a function of z, then under the single mode assumption, Eq.(2.10)

can be the basic equation for slow-varying waveguides used in gyrotrons26-31).

2.2 Local Field Expansion

For TE waveguide modes, in the cross section of the waveguide, in a region small

compared to the wavelength in the waveguide, we can expand the axial component

of the magnetic field in the polar coordinates

B°?= A. r' e-*

= A.(R (2.18)
ma

'-.". " . . i - ,''. , . ." -- ,' .. "-, ,,. - .- ': ",/ , . : ,.:'.: '," .',:,, .. .-,- ,,': . . • - -
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where R = z +jy = re. Then Eq.(2.10) can be written as

+ 12) F z)= dAJ. (E )' (2.19)
+ -k.)~)=~I

In the polar coordinate system, in the transverse cross section of the waveguide, the

synchronous field has a quasi-static structure

El = -jAV(R)' (2.20)

The equation of motion of an electron in the electromagnetic field is

d
-P + floP x e, = -eEt (2.21)

where 0, = ,B B is the total magnetic field and P is the momentum of the electron.

In Cartisian coodinates, the three components of this equation are

d-jP. + OePy = -eE. (2.22)
d
_ - O.P, = -eE, (2.23)

d

-P- = 0 (2.24)

And the electron energy variation in time is governed by

d
m = -eE 8 .v (2.25)

Eq.(2.22) + jEq.(2.23) gives

P - jnP = -e(E, + jEy)

dt

= ck2 F(z)(- +ia )B(z, y) (2.26)

where P = P, + jP,. Let the electron beam have infinitesimal cross-section, then the

wave excitation in the right hand side of Eq.(2.19) becomes

f dAJ E = (Av -ge-jwt ),

= jA. -. V(R')-

.~)fi,,A.(~- -)' }(2.27)

. ..
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where A is the charge density per unit length, Pt = Pae, + P e., and (p')a = (P"),,

means taking the average of pR over one period, and to is the time when the

electron enters the interaction region.

Setting P pe- 'V, E= E. +iE,, then Eq.(2.10) may be written as

+ - k)F(z) = x(pe-!"). (2.28)

where

Sx = (229)

while

eEj = eFlz)Ej e' t

= = F(z)(p')-, (2.30)

and
f j, enA. (2.31)

* If the electron gyration frequency is approximated as

eB -yo

'YomC -t

+p ___ p2)

0 + 2M 2 (2.32)

then the left hand side of Eq.(2.26) becomes

dP dlp n

dp +j{W - 0[11+ ) (2.33)

Furthermore, we introduce four dimensionless quantities
Pt

q = -p-- (2.34)
IPO
2 w - n0c

2 - n(o (2.35)

40 -'ZeO

2 ks vs (2.36)
- o2 (2.3

2 v, "
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Where Oo = , Oto = in, and a is the initial cyclotron resonance mismatch.

Setting

f. = -j 2m c2 p- 4 F(z) (2.38)

then we may manipulate Eq.(2.26) into the form

dq 1+jq(A+ q _ 1) jfs(q")U-l (2.39)

In the same way, Eq.(2.19) can be rewritten in the following form:

df 2+t r fe "- '~'),t2.40)

where
4elov, 2 2 Y2(n-i)

and f. describes the longitudinal variation of the field in the waveguide. Eq.(2.39)

and (2.40) form a set of gyrotron equations widely used in the Soviet literature, i.

e., the Yulpatov gyrotron equations.32,s3l From the approximations made in the

derivation of the equations, it is easy to see that the famous Yulpatov gyrotron

- . equations are the first order approximation in the electron gyration frequency and

S- in the field expansion and are good only for weak relativistic electron beam cases.

We will require some more exact formalism to analyze the gyrotron interaction at

harmonics of the gyration frequency.

2.3 Nonlinear Tieory

Starting from the relativistic equation of motion of electrons in the electro-

magnetic field, in this section we derive a set of equations governing the nonlinear
behavior of the gyro-TWA devices. Essentially, this set of equations is a set of the

particle orbit equations coupled, via the source term, to the inhomogeneous wave

equation in a self-consistent manner.

With the two-plate transmission line and sheet beam model, Zhurakhovskiy

and Rapoport 13 3 1 later Spranglel[ 13 derived a set of the equations to analyze the

nonlinear evolution in the gyrotron devices. Fliflit et al.1361 used the method in 134,351

to carry out the formulation of the numerical nonlinear analysis with a more realistic

.'. . " : _. - .: , : . -.. . . ,. , .
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circular waveguide and annular beam model. The approaches used by Destler et

al.1371, Grewal et al.[s38, Lindsay[3 9I and Laul'01 with their own special and simplified

waveguide-beam models can also be classified into this ballistic method commonly

used in the analysis of the conventional microwave devices. Actually, not only can

the equations derived with this approach describe the nonlinear behavior, such as

the saturation mechanism and the efficiency of the device, but it can also be used

to get some linearized results. For the nonlinear analysis, usually we integrate that

set of the derived equations numerically. Even though the nonlinear theory can

offer more information on the beam-field interaction behavior, which is especially

necessary for the high power gyrotron devices, the linear theory offers the basic

understanding of the physics.

The assumptions made in this nonlinear analysis include the single wave model,

the neglect of the space charge effect, and the initially monoenergetic electron beam.

In the tenuous beam case, the single vacuum waveguide mode is a very good de-

scription which has been confirmed by the experiments[9.11-

The velocity spread of the electron beam can also be included in the nonlinear

analysis, as in [15,341.

For this nonlinear analysis, the beam and waveguide model is still that depicted

in Fig.2. In this model, the beam can be either annular or concentric. Moreover,

the shape of the waveguide cross-section is restricted neither to circular nor to

rectangular, it can be applicable to several different shapes. In this analysis, no

assumption about beam energy is made, therefore, this analysis is valid even for

the fully relativistic electron beam. Of course, it can be simplified to treat field-

beam interaction in the weak relativistic cases. In the following analysis, the

field components in the waveguide are expanded into a series of Bessel function.

The form of the coefficient in the expansion is given by the proposed out-ridged

waveguide in general (see Chapter 4). When the analytical results are applied

to some other waveguides, the only change that needs to make is the expansion

coefficients of the fields.

Since the momentum P = mv, for the electrons in the electromagnetic field, the

p!
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relativistic equations of motion

dP - 1g+ X-- = -e(E+ 1v x B) (2.41)dt C

M = -ev. E (2.42)

can be written into the following equations for three components of the electron

velocity in Cartesian coordinate system

dv, d -e 1
-= _v In - + -(v2 B1 - vYB.)] (2.43)

Wt dt M c
dv. d e I
-= - -v, In -Y - [Ez + -(v 1B, - v.B.)] - V,lC (2.44)
dt,- d e

dvM _ In d - - [Ey + !(VZB 2 - VZB,)I - VZflc (2.45)
dt Vdt c'

In the above, -f 11 (v.2 + V, and 0, = ,B. is the electron relativistic

gyration frequency.

For TE modes, the fields in the waveguide can be expressed as

B = (B0 + Bz)e, + B,%e + Bee, (2.46)

E = Eze2 + Ee (2.47)

where Boe, is the applied magnetic field.

From the equation for - in Eq.(2.42), it is seen that the energy change of the

electrons for the TE waveguide modes is entirely from the interaction of the trans-

verse velocity of the electron with the waveguide transverse electric field.

In general, we can express the waveguide field into an infinite series in the

following equation. The coefficints B,. and A.,. in the series are dependeut upon

the shape of the waveguide cross section.
00

to

00

= B. :81 (k..z) cos, nir - h)]

S00 W

=, , A.,,,Jm(kr)em- (2.48)
%=0 m=-00

where the coefficient A., for the out-ridged waveguide is given by (see Chapter 4)

A.m = B.,. [e.[ °'. + ( l) emjk.hC oB1- ] CoS(mA.) (2.49)

".-" .': . -.. -:" -: :' "- - . """:" ":"2
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For other waveguides, A,,m is given through the waveguide analysis.

Setting v = v, +jv, then we have v, = 1 (v + ve), v, = :!(v - v*), where v is the

complex conjugate of v. Furtheremore, if the solution of v is assumed in the form

v = vi " f

Where r = t- to, to is the time when the particle enters the interaction space,

vt = (vv*)i, and the phase angle

flr = tan-,( v Y )
V3

= -tan-i t VO)

With reference to Fig.3 and from Eqs.(2.7), (2.8), on use of Graf's Bessel function

addition theorem, we have

v- E = v.E. + v.E.

= -F(z) [V( _ +i)Bew

St' 00 00

k-Fz A,,. R- (2.50)

VBY~~ I3B v + v*)B,, + ( v*)B,
v, By -- O, m =00 9=-O

="[,, - .,B) - v'(B. + +,)]
2

j aF aa a e a+a Oe,,,

00 0 0 0 C
ve aF E E A.Jc(kR)J(kl)el(w-'c)+tOI (2.51)I

2k, a .=O m=-OC #=-cc

Making use of Eqs.(2.50), (2.51), then Eqs.(2 42) and (2.43) can be written into
d M000 00

F(z) E -" E .,.(kR)J'(~rl),1E-cb)+wtI (2.52)

d s eve W*, a1), - ( _1-- +  j ) r~ z)
dt ' r mc-yk, c- (9

X - A.,Jm.,.ekcR)J0(kcT)eI t '' -fl)V+wto l  (2.53)
%=O r-- o 9=-c

And Eq.(2.44) and (2.45) can be combined into one equation as
dr' d e _
dV -, + -[(E.+jZ)+,v(B.+jB,)]
dt dt M1C

jeBv (2.54)

mc-Y
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Fig.3 The projection of an electron trajectory on the cross section of the waveguide.
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In Cartisan coordinates, by equating the real and the imaginary part on both

sides of Eq. (2.54) correspondingly, we obtain the following two equations:

i = Vt d In " +c? [(E,+ (E + - B,) sin(O:)

kQW d n- -V ~)[o(~) sin (0 r) .. B e4" (2.55)

--s"'- [(Ez - t B,)sinlflcB) + (4 + Bzcos(l1,r) + eB

e Uk - VB) F(z) [sin (0, -) COS(flr) - Be" t

(250
m-yk2j F yLeB0 ejt (2.56)
me3Y

With reference to Fig.3 and on use of the Graf's addition theorem again, we have

[co(fICr)T- sin(f~), -JBFe"

~jAm...-(kR)J.k~~J~~l~~tJ (2.57)- -- M -0 f -C

k,000-00 -00

E E E_ AJn.(kR)J(kcr)ji~w"n)r? tI (2.58)

%=O m-0-o 
-- 00

Then Eq.(2.56) can be written as

e WV2 8
2mc-k -,, -)F(z)vt =2mc"yk c2  - 8:

00 00 00

*~ ~E E A..J.,(k.R)J.(keI~e(m-c)v+ d.J (2.59)
ft0 =-oo v=-oo

If a slow time scale variable is introduced as

A = -1(w - 0f0)r + wto],

then Eq.(2.56) takes the following form:

e 1 + ' - 'OeUW A 2m'v Oz Fz) [sin 0,r)- m1lr)mB,-y aB

e2mck (j w - v, k.v)F(z)

00 00 cc
O0 AiimJ'-'lkeR)Je(kcrileJA + - n.o (2.60)

aA. J.-0 (k R-.0kr
802.0
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* Where A and t denote the time derivatives of A and v, respectively. However, there

is still a problem. That is the function F(z) involved in the equations obtained

above. In order to get F(z), we have to observe Eq.(2.10). On the right hand side .

of Eq.(2.10), the current density in the waveguide can be written as

J = -AV

= -A(vfe, + ve, + ve,) (2.61) j

For the integral of the right hand side of Eq.(2.10), on use of Eq.(2.12) and Eq.(2.13),

it can be cast as

LdAV x J.eB, = L dAIV.(J x Be 2)+ V x (B~e,). J)

= -k- dAVE (2.62)

It is seen from Eq.(2.62) that the axial component of the current does not contribute

to the above integration and this integral is just proportional to the electron beam

energy change rate averaged over the waveguide cross section. If the electron beam

is idealized as having a single guiding center R, we can approximate the linear charge

density as
I, o

Vs

In most cases, the beam energy is not too high, and k, is very small, therefore, we

can approximate v, = v,o, therefore, A = __ is approximated as the linear charge

density in the waveguide. Furtheremore, for a single gyration harmonic 8,

Ao [7,c)r + ,A0

JAAwhere Ao = t0, r = t -to. Then we may continue writing Eq.(2.62) as

IA= dA~v.E

2 -Fz)E E A.amJm_.kcR) fdAAvt J,(k r)e
2=0 m=-o

0=O0 m0-V0

F(z) F, Io Antfj dAo!LJ _.(k.,R)J.(k (2.63)
2 = %-o -0 0 v



From Eq.(2.16), (2.63) we can have the following equation

+!- - k2 - $)F(zC2 (2.64)

where

sj?'o F Aiim] dAo -J-.(kcR)J'(kcrl)e(@A-k") (2.6)
2 =O m=-00 "

And N is the norm of the axial RF magnetic field given by Eq.(2.11).

In the above equations, the Larmor radious is r, .

Therefore, we obtained a set of the nonlinear differential equations consisting

from Eqs.(2.53), (2.59), (2.60) and (2.64), that describes the nonlinear evolution of

the electrons in the gyro-TWA devices. Eq.(2.64) is a secondary differential equa-

tion for one electron. If we solve this set of the differential equations numerically

and consider M electrons projected on the gyration circle in a unit length of the

waveguide, we have to solve a system of order 3(M + 2). But, if we assume there is

no reflection at the output end of the waveguide, the order of this system will be

reduced to 3M+3. For an unbunched 'cold' electron beam, the initial values are the

- . transverse velocity, axial velocity, initial phase angle, and the initial values of F(O),

F'(O). If the initial phases are assumed to be uniformly distributed, we can specify

AO, = / for the i-th electron (i = 1,2,...,M). By computing the parameter -y as the

function of time, therefore as a function of z, and taking the average over phases

and ensemble, the energy transfer efficiency from the electrons to the waveguide

fields can be obtained, and the saturation process can be determined.

Leaving this ambitious task here and what follows, we derive the linear disper-

sion equation for gyrotrons by iteration method.

If all the waveguide RF field components are neglected, then we obtain the

lowest order solution which corresponds to the motion of the electron in a uniform

static magnetic field Bo, v, = vto, v = v,= - fl)r, = o, and from Eq.(2.60)

we can have

F(z) = e-jk''  (2.66)

where n, = !; is the electron gyration frequency. In writing Eq.(2.66), only the

forward propagating wave is considered since we assume that there is no reflecting

iS i - .-> .'. '> ..., i . - ,.-.-. .- "> - .,.. -. ,, " -.-, ':°: i . .-.-- "> - > -- -
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* wave at the output end of the waveguide, and k, = [( )2_ k Ii. The electron

trajectory can be gotten by integrating the equation once more.

z = X + r sin(flr) (2.67)

= Y + ri cos(flr) (2.68)

Substituting the zero-th order solution into the nonlinear equations and integrating

over t, for single harmonic number a, we obtain the solutions of the first order

* approximation as

e(w - kzvz0) o
Vt = Vto 2mc-k-. E A.. J. _o.(k, R)J'l(krl) sin(A - kz) (2.69)

9%=0 m=-- VZO

! "Y="o 2mw'kcfl. a=0-o A"mJm-e(kcR)Jekcr)cOs(8lA - kzz) (2.70)

v. 2V0 + 2mceok, v' Asm,.(,k, RlJ~(k r, lsinl* - k~z) (2.71)L0 00

z = VYO e E A,m,3_(kcRlJkcrg cos(aA - kz) (2.72)
* 2mcy°kjI2& .M=-00

A =1- - lor+o

2mflnok F, E Aa,Ja-(kcR)J.(krT)os(A - kz)

Vz ~ ~ --- = , + -- o(271

*yok--=-O rn= --oo

e Vw - Fkevtok 00 k 00 AmJm..(kR) J(cr) cos(aA - )(.2
2mc-jo/cV&ol =0 M=-00 kz .3

Making use of af w- at cyclotron resonance and the above first order approxima-

tions, considering tbat the second order quantities are much smaller than the first

order quantities, we use the approximation sinrq t, cos. _. 1 for small angle ,1, then

we may write

sin( A - k Az) - sinln)r + Ao) - 1." -,2______n_

00 2mcyok00fl0

• tF.r + Ao) 2E ]- A.m....(k:cR)(Akc,,)
3=0=0 mM-00

e(w - kzv, - k-vuo) (

2reC-o ke vgo fl,

• cos2l(or+AlE E Am..e-,kcRlJ, lkct) (2.74)
* 0 =--0

In the above equations,

fi, = - f+o - kov o (2.75)
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- Substituting the above first order approximation of v,, v, and Eq. (2.73) into

Eq.(2.52) and keeping the second order approximation terms only, we obtain

1 d-_ ewvto 00 00 00

v. "dt = 2m kc~2  E _- A.,,,J.-.(keR)J (kcrj)ein(flra + Ao)
v, d 2m~v~ . = M0 -- 00

4m 2 voc 4k2 -yo {2 -
00 00

CO "cos2 (O.r + Ao) 1 IAt 2 [J,.-.(kcR)J.(k~r)12

"=0 m=-00

(W - kzvzo) 2in2 (0.t + Ao) 00 Z iA..12IJ-.)(keR)J;(kcrt)1 2

R=0 M-00

+ (w - kzvzo - kovfo) cos2 (n.r + Ao)
0 O0

[A Z ]j Im14(kR) Jkr)akt (2.76)
M~ =00

The first term in the big braces in Eq.(2.76) is proportional to V. There are two

parts in this term. If k, = 0, then this term is entirely due to the transverse force by

the transverse field components, this is from the electron cyclotron maser instability;

Another part which is proportional to k2 is due to the force in z- direction, that

is, due to the Weibel instability. This Weibel part causes a change of the phase

velocity of the electron motion. This can be made clear by observing Eq.(2.71).

If k, = o or vt = 0, then v, = vo and Weibel instability will disappear. Thus, a

conclusion we can make is that the existence of the Weibel instability is always

associated with the electron transverse motion and with the propagating RF wave

in the waveguide. The electron cyclotron maser part and the Weibel part always

oppose each other, since their signs are different from each other. When W2 >

C2 k, the cyclotron resonance instability dominates; otherwise, the Weibel instability

dominates. When k, # 0, there is a frequency shift due to which the amplification

or oscillation frequency is shifted away from 80,o. We have seen that the energy

* . change of the electrons is completely due to the interaction between the transverse

field and velocity for TE mode interaction. The second term in the big braces is

due to the change of the transverse velocity and proportional to the inverse of 0,;

while the third term, which also inversely proportional to 0,, is associated with the

change of the gyration phase velocity. These two terms set a threshold for the
0
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instability. The right hand side of Eq.(2.62) may be written into the form

IA dAV x J.e,B, =A dA(V x eB,.J)

= e dA(O)Y. E .- :'

=WJA Vz
ncS k. Iof2  d-y

=A- 0  dA (2.77)
e . v, dt

Substituting Eq.(2.76) into Eq.(2.77), and taking an average over a period of the

slow time scale, that is, integrating nor from 0 to 2s and the phase A0 from 0 to 2r,

from Eq.(2.65) we obtain the dispersion equation as

wj2 2 2 eTidaw {2(w2 k k2C2 ) £00 1 14NmcvovvO =O =-oo

- - =koV~o 0 W ]2[m -' ( k cR )E E [A .1l._(k.,R)Jl . , ) -

%=O m-00

W k. kv. - kevo~'2D
+ - _ A, I. _(kR)J(krt)J,(kcrj)j (2.78)

%= M=-00

J_

where Ot =

We can write the dispersion equation into the form

k e?1o [k?(W2 k c 2 )H _-k Q] (2.79)

-- - 4Nmc-0ovo "l2  "=,

where

H = [A..,IJm,-(kR)J.(k.r) 2  (2.80)
mt--0tv m-- oo""

Q = H -(1 --- /vo ) E [Aam.,,] J._°(kcR)J:(kcr)lJlkr,! (2.81)".
Sk aOm=oo

In the circular waveguide case, for TE., mode, k,= where a is the radius of the

waveguide and P,, is the m-th root of the Bessel function .,(z); and in the above

dispersion equation the coefficient A.." equals unity and there is no summation
involved. Comparing this dispersion equation with that derived by Chu et al.Jl61
For the circular waveguide TE.,, mode, we find that the function H is the same as

Ho,,, in 1161. From Bessel equation, the first term in the function Q in Eq.(2.81)

can be made the same as that in 1161. However, there is some difference in the rest

of Q in Eq.(2.80) from the rest in the function Q.. in 1161. The difference is due

- - - ,," 5 ", "' : .. - " ." : "•".:_ ": ..': -, 4/
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to the different approximations made in the two different approaches to derive the

dispersion equation. As pointed out in 116], in the dispersion equation the term

with Q., involved imposes a threshold beam energy for the instability. At higher

harmonics, that term is very small compared to the term proportional to H and it

can be neglected.
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Chapter 3 Gyrotron Kinetic Theory

With the field components written in the forms of Eqs.(2.7) and (2.8), in

Chapter 2 for nonlinear theory we derived an equation for function F(z) in Eq.(2.10)

which has to be solved simutaneously with other equations. In this chapter we em-

ploy plasma kinetic theory to solve this equation to get F(z), furthermore, to obtain

the small signal gain-frequency relation for the gyro-TWA.

Because of its relative simplicity and its easy understanding of the physical re-

suits obtained, kinetic theory has been widely used in gyrotron analysis. As a

standard approach in plasma physics, the linearized Vlasov equation can be solved

by the method of characteristics, and the initial value may be included by intro-

* ducing a Laplace transformation. Through an inverse Laplace transformation the

function F(z) which describes the profile of the RF field along the waveguide with

the presence of moving electrons is obtained, then the gain of the power flow of the

device can be caculated. Park at al.111l have used this approach to analyze the slow

wave gyrotron amplifiers for the circular electrical waveguide modes. However, the

analysis in this chapter is with a generalized waveguide-beam model shown in Fig.2

and for any TE waveguide modes.

As usual, we just find the first order perturbation of the electron distribution

function. Therefore, this is a linear theory. In doing this analysis, several assump-

tions are made. First, it is assumed that the space charge effect can be neglected;

Second, the electron beam and the RF wave in the waveguide are described by

the linearized Maxwell-Vlasov equations; Third, this is a single mode analysis, the

coupling with the neighboring wave modes is assumed to be negligible.

The nature of the electron helical motion in the waveguide makes the cylindrical

coordinate system most suitable for this analysis. But, it is desirable that this

analysis be a generalized one and can be applicable to the gyro-TWA ,evices with

different shapes of the waveguide cross section. Therefore, this analysis is carried
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out in the Cartesian coordinate system first, then a transformation to the cylindrical

coordinates is made naturally by using some Bessel function identities.

Section 3.1 to 3.4 are with the derivation of the small signal gain of the device.

Still in the frame of kinetic theory, the efficiency of the devices is estimated in

Section 3.5. Section 3.6 is devoted to a brief discussion on the beam velocity

spread problem.

3.1 Perturbed Electron Distribution Function

In addition to the Maxwell equations Eq.(2.1) to (2.4), the Vlasov equation

8f u e 1
Vf - (E -u x B).V.f = 0 (3.1)

and two coupling equations
J = -e fd-u f3 = -efdu~f(3.2)

p = -ef dS Uf (3.3)

together form the basic equations for plasma kinetic theory. Here f(u,r,t) is the

electron distribution function in momentum, space and time, u = 71, -Y = (1 + u2)2

and i stands for time derivative of r. With the assumptions I f 1-c fo I, I B, I:I B0 I,

setting f = fo + fl, E = El, B = Bo + B, and substituting these into Eq.(3.1), we

h ave

---t +- - ×( Bo)' V fo -0 (3.4)
ou e u t

fn + vf - ( xBo).Vuf 1 = (E1 + -xB 1 )-Vfo (3.5)

t "1 mc m

The perturbed electron distribution function can be obtained by the method of

characteristics, viz, by integrating the equation along the unperturbed electron

trajectory,

f1 = -- I dt'e-""'(El + n x B 1 )'V.fo (3.6)
'PS

With reference to Fig.3, we write

u = ufe, + use,



e= e. cos 4 + e. sin 0

t= (U +U

For R, the guiding center of the electrons, we have

V.R=-~ee

=e, sin 8 -e. cos O (3.7)

Fu:thermore, we may write 4
Ofo Ofo afo

V.f0 = e.- +et - + -VR

= e, -fo + e. (cos 0 A- + sin E Ao: "au,- a -'t si R -

+ e.(sin IOfo 1 cos ) (3.8)

where n, = is the electron relativistic gyration frequency. In the Cartesian

coordinate system, from Eq.(2.7), (2.8) we can write

(El + x BI). Vfo = ut (B, cos$ + B. sin 0) -.
c-1 c-y au.,

IE +9 1 o 1 f
[E. + (ucB sin- uB,)](cosO5- + -'sin @-)

+ [E, I(utB, cos 0 z - u,B.)] (sin - -cose-) (3.9) .

The waveguide field components in the beam-field interaction region can be written

in the following series form in general regardless of the shape of the waveguide cross

section. However, the coefficients in the series are dependent upon the geometry

of the cross section of the waveguide. Here we can use the series for the out-ridged

waveguide (analyzed in Chapter 4) as the general expression. For the axial RF

magnetic field in the beam field interaction region in the waveguide, we write

u0oo sin n
B1. (k.' z ., - h))(30

where the notations h., h are in Fig.5. in the following analysis, we take the lower

cosine sign in Eq.(3.10) only. For the upper sine sign, it only needs to make a

simple change in the coefficient A.,,, as we will see in Chapter 4.

_ .-- '. > _ -., ... .. ' _ : - .. ... .. i ._' .' .. ... ... ... . ... .: ...... ...... .. . ...... ..... .... ..:. ... .. .: : ........... ....
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From Eqs.(2.12) and (2.13) we can further write Eq.(3.9) into
I ar 1F(z), 8fo zf F

+ ac I afo, a a )o-)F(zl)-- - (cos +sine E)B
a OcaR az a 91

+ k-- F(z) sin '9 -o B}. (3.11)

Setting k,,. = kc sin A., k . = cos A, and using two Bessel identities

eler in (B+).) = E Jm(kcr)ejm(+A) (3.12)
r=-00

00

e-ke'l E (-1)mJm(kcr)ejm(e+x) (3.13)
m= -00

then from Eq.(3.10) and with reference to Fig.3 we have

a ak, 0
(i cos 4t B,. = - A"j[J + (kd')e - Jm-l(k7)e -eInw (3.14)

rm -o

ax *ay 2k _
(Cos a + sine )B,,. = -- A,,,mJ,,+i(kr)e + J,_(kr)-If"l'"je (3.15)ax ayM=0

m=00
sin SB12 ,,= -} Amm,,,(kc7)(el' ) - e-')ime (3.16)

m oo

where the coefficient An,, and A, for the out-ridged waveguide are given by (see

Chapter 4)
A,,,, = B2 ,,1 [,j,h cos A. + (_1),. khc0)] cos(mA,) (3.17)

. = ¢oS- (kv,) (3.18)

From Fig.3 and the electron orbit at equilibrium, we have a relation

, , (z - Z') (3.19)
Vt

Substituting Eqs.(3.11), (3.14), (3.15), (3.16) and t - -, into Eq.(3.6), we

obtain the integral of the perturbed distribution function

A= -e f dt'e-)w"(Ej + u x B)-V.fo
Jt- AL C-I

elwt 0000 j A.,,me I dz'G(z - z')Q(z/) (3.20)
ack O ,r m-00 =-00
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For the high power gy.'ro-TWA devices, the efficiency is one of the most im-

portant considerations for the performances. Since the caculation of the efficiency

involves saturation, which is a nonlinear process, the efficiency optimazation usually

is resorted to the numerical simulation in the multiple parameter space. But, as

mentioned in Introduction, an analytical efficiency scaling relation has been derived

in the frame of linear theory by analyzing the phase relation at saturation.1161 Since

in general the beam line

w - kzvz - 190 =0

and the waveguide dispersion equation

W2- k2C2 - k'C 2 = 0

intersect near at grazing angle, in the beam frame, ' = 0, this grazing condition

implies that

S" 8 ' = ck, (3.82)

From the linear tbeory, the following condition is expected at the onset of the

instability.,

Aw = , - 80'C  (3.83)

As the saturation occurs, we expect the following relation to be held

Aw' = w- (3.84)
<-ye>

Where < , > means taking the average of -1 over the beam ensemble at saturation.

From the efficiency relation and with the assumption that -. -c -)0, we have

'7 I i

-YO, -

2' A )' (3.85)

For fast wave devices, the second term in the right hand side of Eq.(3.79) is neg-

ligible. Setting , = . + .. ', k, = ko, where .,4 and k1o are obtained from solving

the beam line and the waveguide dispersion equation and substituting these into

Eq.(3.76). we obtain
A,,' ,, ~ u -,k J,-,_-(kR)J;2(k ) )

=A Z Z-,m ' 2yN' (3.86)
21i N L-c,
0CI
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with any shape of the cross section can be obtained. Since the solution to Eq.(2.18)

may be assumed to be of the form eik-8 and k, is understood as real, we change "

into k, but the frequency w is assumed to be complex, as a common approach in

plasma physics, we obtain a gereral dispersion equation for the gyrotron traveling j
wave amplifiers as the following

c M .O A r - k,) 2AtJ,'(kr,...kRI12
- -T- = k-

C- - kN f ,
2

Vt=O m=-OC &=00 

"-

kr, [2fl,(1 - - J,2n -. (kR).(kri) - +

n. 
(3.77)

where
= - 8kU - (3.78)

-V

From Bessel equation we have

and note that afl, w - -'-, then the generalized dispersion equation takes the form

U2 2 7rvA
2

, _2_(_2_-_k2_C2 (w - kvo)-kkt(Q2Z H -Q,(3.79)

where

H = An, 2[J,_,(kR)J,(kr1 )12  (3.80)
%=0 M=-00

-'= 2H - Z I [v4r22kcrLn_.(krR)d(krj)J;(k7,) - c (3.81)

Putting the coefficients A,,m to unity and removing the summations in Eq.(3.80) and

(3.81). then we have a dispersion equation suitable for the TE,m mode of the circular

%aveguide, if k, is set to E-,-_. Comparing to the dispersion equation derived for the

TEm mode of the circular waveguide in 1161, we find that H is the same as H,. in

[161. As to the function Q' in Eq.(3.81) and Q,,, in [16], the difference is between \V+

in Q' and the last two terms in Q,,,,. In Q', the Bessel function J,±i(krj), J,± 2(krt)
and .]_° (cRJ,,,_(..)(k,R) are also involved. In [51,521, DMhler explained that

these may be important for 'peniotron' interaction. But it is still to be discussed

the role of the Bessel function of order ±2 contained in Q, in Eq.(3.81).
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Where P(L) is the power flow at the output end of the waveguide and P(O) is the

power flow at the input plane of the waveguide.

Obviously, the gain is the function of all the beam and waveguide parameters,

also a function of the frequency. Thus, we can compute the gain as a function of the

frequency with all the specified electron beam and waveguide parameters involved.

The commonly used 3dB bandwidth of the gain for an amplifier is defined as the

frequency interval between the two frequencies where the gain drops down 3dB from

the gain at the center frequency. Due to the fact that the cyclotron maser radiation

is strong only when the frequency is close to the cutoff frequency of the operating

waveguide mode, the g.ro-TWA devices with uniform waveguide, a relatively small

bandwidth is expected, usually just 1-3%. But, since this is a distributed interaction

in the waveguide, some methods can be taken to alleviate this and a much bigger

bandwidth can be achieved. Y.Y. Lau proposed a tapered instead of a uniform

waveguide as the beam-field interaction space. Simutaneously, the applied magnetic

field also is tapered to mantain the synchronization between beam and the field

along the waveguide. Both from the theoretical and experimental investigations,

the gyro-TWA device with tapered waveguide can achieve about 15% bandwith

centered at 35 GlIz frequency.25 1

Another method to increase the bandwidth is to decrease the applied magnetic

field slightly below the grazing line, as many people have pointed out and confirmed

in the experiments. P' l

Through the derivation of a dispersion equation to analyze the instability is a

generall. used approach in plasma physics. Here we can easily obtain a general

dispersion equation from Eq.(3.50) for the gyro-TWA. The third term on the right

hand side of Eq.(3.59) is proportional to the square of fl,(K) and is much smaller

compared to the other two terms near cyclotron resonance, this makes the neglect

of that term on the right hand side of Eq.(3.59) permissible. Therefore, if D(K)

in Eq.(3.57) is set to zero and the electron beam inhomogeneity is neglected, i. e.,

only the first two terms in the expression of D10(K) in Eq.(3.r,)) are taken, then for

gyrotron devices a generalized dispersion equation which . ap, -cable to waveguide
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Once F(:) has been found, all the components of the field in any cross section in

the waveguide can be obtained through Eq.(2.7) - (2.8).

3.5 Gain-Frequency Relation and Efficiency

One of the most important performances for an amplifier is to achieve certain

gain in a frequency interval of interest. For high power devices, the efficiency is a

chief consideration. This section is used to deal with these two aspects.

Since the field components in the waveguide are assumed to be in the form

in Eq.(2.7). (2.8), (2.9), and F(z) is given by Eq.(3.68), so the power flow in the

waveguide can be found by integrating the axial component of the Poynting vector

over the cross-sectional area of the waveguide.

P(z) = I Re dAe, -(Et x B)
2 JA

= 1Re-jF(z) -F4 -[ dAVB.(VtB 0 )1j t3.72)
2 a ,z k. JA .ZL.

For a uniform waveguide, that part in the brackets in the above equation is

independent of z. If we denote

Lit-= /- dAVBo (VB) (3.73)
2ck f A

then we can write the power flow at z and at z = 0,

Dt~e~jF(z)2
P(z) = DtRedjFlz) ]

D { z(K.) [K;, DI(Z }(3.74)
P(O) = DjRejjF(0)I! 9

[ (KI[ ..N(hK,)"

D t K ' ___ (3.75)

If the beam-field interaction length is L, the gain in dB is defined as

G= 10log P(L)
P(O)

I~ jK. L ; ] [ I KpejKL N(K)I0 log{ ____ } (3.76)
..-.= N (K

jPr K
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ml
- j j Re. Ir""F(K, )i (3.66)

where K, is the i-th pole in the integrand. From Eq.(3.56) for F(K), the poles of

function F(K) are the roots of its denominator D(K) in Eq.(3.57).

6For a generalized Lorentzian distribution in uz

fo(uz) = D (3u.2'
(u, - UZ)2F + (Aj,) 2 p (3.6)

and a single gyration harmonic number e, there are 2 + 2p poles in F(K) with the

Lorentzian distribution of order p in u2 . In the case p = 1 and also in the 'cold'

electron beam case, D(K) in Eq.(3.57) is a quartic function, and it is readily seen

that all the singularities in F(K) are order of one. Since F(K) is in the form of

Eq.(3.56), so we can write F(z) in the following form by using the residue theorem.
4

F(z) = eiK,z N(K,)
D(=K (3.68)

where D'(K) is the derivative of D(K) with respect to K in Eq.(3.57). At the input

plane z = 0, if we set F(0) to unity, then we have a relation
4 ., N (Kj

=1 (3.69)

Therefore, the problem of getting the function F(z) is reduced to finding the poles in

the function F(K), or the roots in D(K). Moreover, if the output of the gyro-TWA

device is well matched to the load, the wave propagating in the negative z-direction

can be neglected, therefore the corresponding coefficients in Eq.(3.68) and (3.69)

must be zero. N(K) is given by Eq.(3.58) and D'(K) can be found by taking the

partial derivative of function D(K) in Eq.(3.57) with respect to K.
2

From Eq. (3.59) we have

2K, ,W -

D'0o(K) - 2K? J,(kcr)J,( .k)RK
CC

+kerju, [2fle~ (1 - *k2e^

$22

"- -. K)[2yk,,,(1 - s(,,s,.,n ,

, a 1+ ]D.(k ,) (3.7 )

[y J

.,.~ ~ ~ ~ ~ ~ ~~~~~~~= "n-0 ...-.. 0.-0...,i. . .i / .i -: "
:~~Fo -q(.9 we.,,, have-, , -- '.d,.'- ,o -:.-- :.
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where o is the pitch angle of the electron, v, is the Brillouin angle of the wave mode,

which is defined as tan-' ,, = *.

It is clear that if vsin ¢,sin o is very small compared to c, the speed of light in

free space, i. e., if the electron beam is non-relativistic or moves with a small pitch

angle or both, then the Bessel function has an argument much smaller than its order

I Since the higher the order of the Bessel function a is, the bigger the argument

it needs to reach the first peak of the function value, and the peak value of the

Bessel function also becomes smaller when its order increases. Therefore, when the

harmonic number 8 increases, the coupling between the field and the electron beam

becomes weaker. It is crucial to have bigger Larmor radius for higher harmonic

operation. This explains why in general the gyrotrons operating at higher gyration

harmonics demand high electron beam energy and big a ! to have a larger portion

of the electron kinetic energy in the transverse direction.

The waveguide structure is also critical for gyrotrons working efficiently at

higher gyration harmonics, since a good waveguide structure can achieve a much

bigger component of the desired multipole field at the order of the harmonic number,

therefore, a much bigger beam-field coupling.

3.4 Inverse Laplace Transformation, Fields

The Laplace inverse transformation of F(K) gives the function F(z), with the

frequency, the electron beam parameters and the waveguide parameters involved.

The Laplace inverse transformation is defined as

F(z) = dKe K F(K) (3.65)

where the contour C must be large enough to include all the poles of the function

F(K). The contour of the integration is depicted in Fig.4.

The inverse transformation integral may be carried out by using residue theorem

in complex variable theory.
-JC+00

F(z) =dKejKT(K)
-C-
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In the simple circular waveguide case, Eq.(3.61) reduces to the common form

H,' = [J(krr)J.-.(kR) 2  (3.62)

used in many papersPl6,24, 42 .

In the expression of D1 0 in Eq.(3.59), the first term, which is proportional to

H,, is the source term; the second and the third terms impose a threshold to the

instability. From this analytical result, if H, vanishes, clearly both the cyclotron

maser instability and the Weibel instability will vanish.

Since I Jo() 15 1, 1 Jm(Z) ! I, we conclude that for the same beam energy,

the same waveguide structure, the same wave mode, and the same frequency of

operation of the devices, the concentric beam has a bigger coupling with the fields

than the annual beam. This offers a simple explanation for the utilization of the

rotating electron layers instead of the annular beams in the most reported microwave

generation experiments at higher harmonics of the gyration frequency. In the case

* of concentric electron beam, R = 0, H, #= 0 only if m = a. Therefore, for a single

harmonic number e, the beam-field coupling coefficient becomes

00

H = E (A.) 2 [j(kcri)1 2  (3.63)

For the concentric beam, this means that if a gyrotron device operates at s-th

gyration harmonic, the electron beam can have efficient interaction only with that

order of the field multipoles which equals the harmonic number. For the other

beam model, this statement is also valid if the field is expanded into multipoles

around the guiding centers of the gyrating electrons.

Since near the cyclotron resonance fl, t - k, - " sin ', rl = and"

v. = v sin o, we can write the argument of the Bessel function as124

k r svsin0sin 0 (3.64)C -u cos Ocos O "

and the small argument approximation of the Bessel function can be used

. -:-..-.: .: : ..: :: -:. .: . . -:,. . .... .. . - .. .q
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rt2 -J2-.kR).ki

+ [(m - 8)J.'+1 (kcrn) + r J.+ I(kr) Jm_-.+,) (kcR)
a-1

+ [(m - a)J', (ker,) + kra J,. I(kri)]Jm.-(-. (k.R)

- rJ+2 kc r _i.+2)(kR)

rkcr J.-_2 (kCr)J.m_-(.-_2 )(kcR)}. (3.54)

i+ k; f[(m )- ,J;+, (kcr,) + 8 J.+,(kcr,)IJm-(e+l)(kcR)

- jim - ()J'_,krj)+ Ja-1)p(kcrj)IJm-(.-.)(kCR)

1 *
I kcr J.+2(kcrt)J~m+2)kcR

+ -kjrJ ,_2(kr,)J .(..2)(kCR)}. (3.55)

Finally we get T(K) in the quotient form

F'K' - N(K)
'' D(K) (3.56)

w here n
D )K-k, )n';(K) TV- I( (3.57)

R=0 m=-o0 #-0

N(K)=jFO)[K- F T -' nn Doo(K)] (3.58)
R=0 m=--0 8=-x

where v = is the Budker parameter and
;
2 
.

2

D 1 o(K) = (K 2 
- -J

- k~ri,(K) [20(1 -82 )J.(kcrj)Jm2-.(keR) - J;(krj)
- 2(K 2kI,1 - -- -

-( r )J,(k)Jm,-,(kR) - _ -J,(kr,) (3.591Ku,2

Doo(K) I K [ , [ )J,_.(kR) 2

yI2((K) 12 l

+ 21 2 1. (K) J.(k. rt) J(k, rl ) m . ,R

20, (K).(k~j~i_(3.60)

Similar to the commonly used beam-field coupling coefficient, for a single gyra-

tion harmonic number 8, we define a beam-field coupling coefficient
00 00

He= (Amm) 2[J(kenr)J.-.(keR)12  (3.61)
%=-ao vm--oo
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- ;- 1 {-kcrJm. (keR) cosl(m - a)' -

- k, rJ,-.+ 2 (k.R) cos[(m - a + 2)4* -

- rkc,Jm,-,_(kR) cos[(n - a - 2)4* + f]

+ (m - a - 1)Jm.._. (kcR )cos[(m - a - 1)( .-4

+ (m - e - 1)J.-.+, (kR) cosl(m - a + 1)4 - ]}. (3.48)

4,+ =e -" *' 1 E{2 kcrtJm-.+2(kcR)cosI(m - a + 2)*4 -airr 'sin (

• - ~k,,rJ.-.-2(k R) cos[(m - s-2)*,- ]

+ (mn - - 1)Jm,_.-, (kR) cos[(m - a - 1)4 -l

- (m-s- I)Jm_.+, (kcR)cos[(m - a + 1)%P - E}" (3.49)

3.3 Derivation of -(K)

With ij(K) and J'(K) obtained in the previous section, in this section we work

out the integral over the cross section of the waveguide on the right hand side of

Eq.(3.36). In cylindrical coordinates, the integral is over r and e. Making use of

the relation dr = r, sin fd4l, we may convert the integral over r into an integral over

4'. After evaluating the integral over *, and e, we get

(W-2 -kK(O 2- d
- K 2 )F(K) - KF(O) - F(O)

00 00 2N, iA2. K)maTKE N A [T(K) (K) - 'F(O)To (K)] (3.50)
= ~i2..w Lv rc 2 Nkeul%=O m=-00 *---

where

T,(K) = [ - j + (wI J+]

+ . J.J(k.r)* + -k J. (k, rL)4+ (3.51)
2-y ~ 22O1fl,tK)

To8u (K JUj 1  4b+

SUtu J.(k,,)*_ (3.52)

and

+= kJ.2_.(k.R)J.(k.r7) (3.53)
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r- Ro ± ri

and rt = ' is the electron Larmor radius in the applied magnetic field, f, is an arbi-

trary function of u,, u,, and R. The Dirac delta distribution function f, represents

the 'cold' beam with infinitely thin guiding center distribution and is normalized

to be one electron per unit length. For 'cold' electron beam distribution function

fo = h, after perfoming the integral, 7,(K) is obtained as
oo o ooNe2A~mQ(

(J,K) A Q, (K) - jQo(K)j (3.2)

where

Q , (K ) = ) I [ "U + 1(0+-
1 ~ q 49 U,- ut ]tY+,. (K)

U2 ', ,r,

+ J.(kcrl)*- + u- J.(krj)*+ (3.43)
Ti0(K-il(K

Q0 (K) =F(O) (U, 0 y U J.(k r)-1 5 u, "I ut'. (K)

t uxJ(k, ,- (3.44)

, (K) is obtained by replacing 0+ with _ 0 in the expression of Jd(K)

correspondingly.

In the above, (see Appendex II)

j = e- jM 17 I Jm.(kR) cosl(m - ,)* ±] (3.45)Srrr sin

- - 7rr {-krJm.(kR) cos[(m - 8)* + J]

-keriJm_..+2 (kR)cos[(m - a + 2)* + El
2

- kr, Jm._-2 (keR) cosl(m - a - 2) * + Cl

+ (m -e + I)Jm..m+, (kcR) cos[(m - a + 1)%Y + E4

+ (m - a + l)Jm_._.{(kcR) cosl(m - 8- 1)* + }. (3.46)

* + -e-irI rrr sin f ({ kcrtJn,-.+2 (kR) cos[(m - a + 2)%k + Cl

* ~~kc-t!m....._._ 2 (kR)C¢osltn - a - 2)4' + El

- (rn-e + 1)J,-.+ (kR) cosl(m - a + 1)* + E]

+ (m - o + l)Jm_ (kR)cosl(m - a - 1)4 + }. (3.47)
0347
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the Laplace transformation of Eq.(2.17) may be manipulated further as

- - K 2 )F(K) - jKF(O) - F(o)

= - PV xJ(K).eBo

f4A,,, JO do rdr'{w 'rJ,(K)] - Jo(K)}Jm(k.r)
R=O M=-00ofoTrT

= - I -Nc dO] drkrc7,(K)Jm-,(kcr)-i (K)Jm+(kcr) (3.36)

In the last step in writing Eq.(3.36), integration by parts has been used. Then

from Eq.(3.34), we have

7,(K) =-e dsue' 7, (K)

=-, £ E rock, ei-8 dujduzd eJR-LG(K)Q(K) (3.37a)
1=0 m=-00 #=-0

.4(K) -=-e d3ue-'47,(K)
f o 7o c f

Ne 2A,, e- ju dutduzdfej'*e- j( Ht - K)Q(K) (3.37b)F, E E ,,,c k, e
X=O m-00 *-0mkJo

where i(K) is given by Eq.(3.27).

For evaluating 7,(K) and YJ(K), the electron distribution function has to be

specified. In order that the distribution function is general, we write it in the

following form

fo(u, ut, R) - f,(u', u?, RO)f.(uz, ut, R) (3.38)

fc(uo, u, IRo) - f,(uO, u~t )fR(R ° ) (3.39)

Furthermore, we write

f. = - (Ut - U?) (U, - ,,) (3.40)
1

fR = -6(R - Ro)
2xR I

b2 - fo) - 6( + fo)]I A(r) (3.41)

where
r-1 r < r+~

tor otherwise.

• " . . . . . ..
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Making use of the convo! "ion theorem, the Laplace transformation of the perturbed

electron distribution function is obtained as

fI(K) = ellE E (3.30)
*=O m=-0o0 &- mc

Where O(K) and q(K) ar given by Eq.(3.26) and (3.27) respectively.

3.2 Perturbed Current Deneity

This section is for the derivation of the perturbed current density in the waveg-

uide. Under this formalism of analysis, the axial component of the pertubed current

does not contribute to the gyrotron interaction for TE wave modes, so it will be

ignored.

The Laplace transformation of the perturbed current density is defined as

j(K) = "j(K)ee + 7,(K)e, (3.31)

From Eq.(3.2) and the notations in Fig.3, we have the two components of the

perturbed current density as

,(K}=-e [dSu-cos(K) (3.32a)

(K) (3.32b)

If we introduce two quantities

J.l (K) = 70 (K) + j-J, (K) (3.33a)

(K) = 7.(K) - jJ,(K) (3.33b)

then we have

= -e dSu ' e(7,(K) (3.34a)

* Since in general the axial RF magnetic field in the waveguide in the interaction

region can be expressed in the form

B,.= A.mi(kr)ej :  (3.35)

; -0

S', _ i . ._ " , ,., , . .. . . ._ : _ . : .. . . -
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where N. is the electron number per unit axial length, and

G(z - zo')= (3.21)vz

_OF) afo ut afaifo1
Q(z) [(jwF -- , )f -ofoauF f

"+(jw - " j7 c"F)J _- ( kkc R)J kc rL) Ic aR

+ 2u- 
J " -O- l (k.R) + J.-.+ (kR)]J(krs), 3.2o)

The Laplace transformation T(K) of function F(z) is defined as

( = F(z)e-Kzdz (3.23)

where the imaginary part of K is chosen to be positive and large enough in magni-

tude so that the convergence of the integral be guaranteed.

The following two formulas for transformation are necessary to be used here.

LdF(z) _ jKT(K) - F(O) (3.24)
dz
a F(:)dF(O)

L ( = -K 2 -F(K) - jKF(O) - (3.25)
dz 2  dz

Thus we have the transformation for G(z) in Eq.(3.21)

G(K) =
-  002

GO (3.26)

where

0,(K) w - K u -a3"

The Laplace transfomation of Q(z) in Eq.(3.22) is given by

i(K) = i 1 (K)+ Q0(K) (3.27)

where

Q (K) =jF(K){ [(W - Ku,}O-o + Kut f _ R kI' aut -Y L9u,

+ I .(K ) J ".{.,k R )J.(ka,) - 8fo

+k u [Jm1_,_ (kR) + Jm-,+i (keR)] J'(kcrt f } (3.28)

o(O9u, oUt Ufo JJ_Q0( ) () I L- -'c~=
us, k R 1 fo

+ -, ) , (3.29)

. - - . " .- .. . . ."- . .'. ' '" ", .
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Inserting .,: into Eq.(3.79) we get the efficiency of the gyrotron traveling amplifiers
C

as
2"5°Aw' (3.87)

10 - 1

In Eq.(3.87) a correcting factor of 1.25 has been multiplied in order to get a good

agreement with the numerical simulation results.1eI This scaling relation is valid

only under the tenuous beam assumption and when the beam energy is much higher

than the threshold condition for the instability. The efficiency in the laboratory

* frame can be obtained by a Lorentzian transformation. However, for lower beam

energy, especially at fundamental cyclotron harmonics, due to neglecting the energy

depletion mechanism in the saturation, this scaling relation has a bigger discrepancy

with the result of the numerical simulation.

3.6 Electron Beam and Velocity Spread

For high power, efficient gyrotrons, the electron optical system must provide
large current I, big a = Y- but small beam velocity spread. The beam velocity spread

'I,

deteriorates the beam bunching, therefore decreases the possible output power and

W' the efficiency of the device. The electron beam velocity spread in gyrotrons is

characterized by the relative parallel and orbital velocity spread I. and Q where

f,, it are the mean values of v, tv respectively. Since the electrons basically excercise

helical motion in passing through the waveguide in a conservative field, the only

spread in the electron total energy is due to the space charge potential depression in

the drift region, therefore a ver' small total energy spread can be expected, and the

spread in t., and in vt are correlated. As a consequence, the spread in the gyration

frequency of the electrons is very small. However, the spread in the Doppler-shifted

cyclotro, frequency through the spread in v, can be significant.

The electron initial thermal velocity results in the orbital velocity spread. Ac-
cording to [431. the thermal velocity spread is estimated as

,,t't rM t'
2

4t Vf 2 1T.
QV

> ._.. - . . .- T .-
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where e is the electron charge in coulomb, Th is the cathode temperature in K and

v, is the anode voltage in volt.

The roughness of the emitter surface also results in the velocity spread in the

thermal velocity manner. Assuming the cathode surface grains have the form

of a hemisphere of radius ro and h is the height of the first vertex of the electron

trajectory above the cathode surface, according to [43,441, the orbital velocity spread

is estimated as

It is seen that even a very small surface roughness of the cathode can cause a

significant velocity spread, especially at millimeter wavelength since h is small.

A slightly departure of the axial symmetry of the electron beam also causes

velocity spread. With the assumption of small azimuthal drift in the region of the

gun. this effect is estimated as1431

" 6vt
=2a cos V/d

where a is the radial shift of the cathode, o is the angle between the cathode and z-

axis and d is the anode-cathode gap (see Fig.lb). The electron beam space charge

* field playes an important role in the distribution of the electron beam velocity spread

in the interaction space and also in the near emitter region since there either the

transverse or parallel velocity of the electrons is small.

From the expression of D(K) in Eq.(3.59) it is readily seen that the most sen-

sitive effect is the spread in v, through the Doppler shift frequency w - kv,. The

following brief discussion on the beam axial velocity spread is under the assump-

tion of Lorentzian distribution of the beam axial velocity and is chiefly based on

S. Y. Park's approach in [41]. If we assume the distribution of u, in fo is the

generalized Lorentzian distribution

(jU) 2 ' (3.98)

f (u, - I) 2 'P + (Au) 2
p

Where i, is the mean value of u,. Changing the variable U. into

U s - Us (3.89)

AU,
SO



47

Then we can write the distribution function

fo(f) - D (3.90)

and D is the normalization factor given by

D-  d f dufo(u.,Au,)
=_ dQ./2 2-' (3.91)

Here D can be determined by the coutour integral in the upper half of the complex

C-plane and we have

D (3.92)

From Eq.(3.59), we obtain

D1 (K) = f du,.f.(u,,Au)DjO(K)

au, df 2DjoK, u, + f u,) (3.93)

For Ir(K) < 0, if w > eOh, D1o(K) has a pole in the lower half f- plane and if W < NO,

D1 0(K) has a pole in the upper C- plane.

Clearly, from Eq.(3.90) we can see that fo() has poles in the upper half - plane.

= (i - 1,2,..., p) (3.94)

Therefore, using the expression for D in Eq.(3.91), we can write

D, (K) - ,o(K, u, + CA.)/t fl (3.95)
g=1 =

If the parallel velocity is the standard Lorentzian distribution with p = 1, then C =

thus we can obtain a very simple result as

{h(K) o , - =A,,) (W > 80C-

D) DoK,z, + ujAu,) (W < On',)

This means that the effect of the spread in V, is equivalent to a shift of the average

real velocity to a complex velocity i, :tjau,. In the general case when p > 1, the

velocity spread effect is the average of the shifts by (,au, or c;au2 .-
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Chapter 4 Gyro-TWA with Out-ridged Waveguide

This chapter is devoted to the proposed gyro-TWA with out-ridged waveguide.

Section 4.1 is for the derivation of the dispersion equation and the field configura-

tion in the out-ridged waveguide; Secton 4.2 is devoted to the numerical solution

of the eigenvalue spectrum and the associated field components in the out-ridged

waveguide by adopting the Ritz-Galerkin method. With Ritz-Galerkin method,

the field components in the waveguide can be obtained in the form of the series of

the eigenfunctions. Section 4.3 describes the computation of the gain-frequency

curves of the amplifier by applying the analytical results of gyrotron kinetic theory

obtained in Chapter 3 and the results in Sections 4.1 and 4.2.

Once the field structure of a certain mde in the waveguide has been obtained,

the nonlinear analysis of this gyro-TWA with out-ridged waveguide can be done by

integrating that set of the nonlinear equations derived in section 2.3, but it has to

be resorted to numerical computation.

4.1 Out-ridged Wavegulde Dispersion Equation

The cross section of the out-ridged waveguide is illustrated in Fig.5. The cross

section of the waveguide is assumed to be symmetrical about axis y = 0, but no

assumption about axis z symmetry is made. A detailed analysis will be presented

here for TE modes only. The derivation of the dispersion equation for TM modes

is given in Appendix 1.

For TE waveguide modes, if the solution to the axial magnetic field is asssumed

in the form B, = B0(z,yi)e I t- k , ), where k, is the axial wave number, then the

equation that governing BO is

a + -- + k )B =0 (4.1)

*i 4
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Fig.5 The cross section of the out-ridged waveguide.



subject to the boundary condition on the perfect conducting waveguide wall

n. VB, =0 (4.2)

where
= - -k2 (4.3)

And n is the unit vector normal to the waveguide wall.

For this proposed out-ridged waveguide structure, in the convenience for ana-

lyzing beam-field interaction in the generalized approach developed in Chapter 3,

we adopt the standard Ritz-Galekin method to obtain the eigenvalues and the as-

sociated eigenfunctions. According to this method, the solution is expanded into

the series of the eigenfunctions, each eigenfunction satisfies the boundary condition

on the waveguide wall, and it is also required that the resultant expression be oth-

ogonal to each expansion function. Then the eigenvalue problem is reduced to a

system of algebraic equations.

With reference to Fig.5, the solution in region I (-a, _5 r < ai) may be written

in the form
00

= "Z'Y BI.:' (k.I~r)cosIJ"!(y - h)I (4.4)
=0 4

where the upper and lower functions correspond, respectively, to the magnetic and

electric symmetry about y-axis and h. = h + h'.

The solution written in the form in Eq.(4.4) satisfies the boundary condition

O Eq.(4.2). Furthermore, we define

- 1-)2 (k,> I'.

kz2= (4.5),

In region II (ra < < -a, and a, > z < s) the solution to Eq.(4.1) can be written as

the following
00 a n

B',(ry)- B 2mcosIk, 2m(Z .. ) Cos[ b (4.6)
m=0 2 b

and similar to Eq.(4.5), k,.,, is defined as

I k Z2 M (4 .7 )
. -j /( ):~ -k,7 (k, <-)

.
,

.. .-. . - - . ' -. . . ' - : - -- . .. ._ : -. .. ... " - " • . ., , .:
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The other field components in region I can be derived from the Maxwell equations.

00
E,. = jZh j BIN( Co, (k.,. m (z) ( - h)] (4.8)

•k2 h.' Cos h

C%=Ely = jZ, p- o BIN.k, ._(ki.z),in[ (y - h)] (4.9)

O =

=6=
B .= - ly (4.10)

4By = El., (4.11)

0 The other fi.-ld components in region II are

E2. = -iZh~ Z B 2 . (-b) cos(kz2 m Z) si )] (4. 12)
CM=

00k M Wo.m?

E2 = jZh B2- mkmsinl(k.2mX) COS[---y )] (4.13)
M=O

1
B2. = E 2 , (4.14)
B21 = -E23" '

=t (4.15)

I' In the above, Zh = - is the wave impedance for TE modes. At z = a, the

continuity for B, requires

N

:CS -x (,Y0SB13 CO(kzI~aI)cs h )]

0

2l b2

The E, continuity at z = a, gives
IV Cos CO. nr

F__ B,,k.R _ sin (kl 1 al)cos (z,-h)]

N=0

It should be noted that in Eqs.(4.16) and (4.17) the infinite series have been trun-

cated into finite summations, and N, M are integers.

Setting

Dm = B2mkx2m aSil k.2.,(aI - a11 (4.18)

then from Eq (4.16) we have

N M W

Blhkzlu (k31 0)cosI-(ii h)j= D Dk.2v.cos- (y- -)I (4.19)

.i -. ,.. h .. b 2
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Multiplying both sides of Eq.(4.19) with cos[l(y - h)j and integrating from -P to
2 2

over y , we obtain
[CosAd

B1.k~1. (kzj 3a1)c~h@ Dm E,,(420
$ in (.0

[". o--O

where

E-.r= dcosIl(y - h)] cos1( -

h,b 1 1 [ (b - 2h) (b + 2h)x]
-m 2 (b + nh, + mb - nh. [Si 2h, + 1 sin -2

Eoo = b (4.22)

and

12 (n 0)

S{1 (n # 0)

Multiplying both sides of Eq.(4.16) with cosl(u- t)1 and integrating from -t to_
2 2

over y yield
[.I N~ ~ sin a){b{.3

B,. (k,,.ai)Eq,. = B2, CoS[k 22 q(ai -)Ifqb (4.23)
ft=O 0

Substituting Eq.(4.18) into Eq.(4.22) gives

I. "N i D q cb a
B (k.,ai)Eq. cos[k:2q(al - -)] (4.24)

From Eq.(4.20) we have

F, M -0 Dm Em,Bin m=)cb (4.25)

* Inserting Eq.(4.25) into Eq.(4.24) and moving the right hand side of Eq.(4.24) to

its left hand side, we obtain a system of the equations which is the system of the

dispersion equation for the out-ridged waveguide.

E Dm{Z kmn q, t(k z a 1)- cotk,2,(al - =0 (4.26)
M=O n=O kzh cot 2q

Eq.(4.26) can be written into a matrix form as the following

Too To, ... To, Do

T1o T,1 ... Ti, D,
= 0 (4.27)

T, T. ... T.. D,

- -. ... . . . --.. ....... . " t. "t ;;'-' .. " * :" ". t -::"::": - "
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where the element Tm, of matrix IT] is

TqErnR Eq% tanl ,6 c bq a
Tmil = ~ ki.al) -9'b COtIkz2 ,(a 1 - )] (4.28)k21%f.ho -cot fla - k.2--- ctl=qa 2} .S

and ID] is a n-vector.

4.2 Waveguide Computation

The requirement that the system of equations, Eq.(4.26) has non-trivial solu-

tions is that the delerminant of matrix T(k,) be zero. If the determinant of matrix

IT(k,)J is viewed as a function of k,, then the roots of this function are the eigenval-

ues. This problem is then reduced to finding the roots of the function of k , which

is denoted by DT(k,). This can be accomplished numerically. Due to the behavior

of function DT(k,) which is shown in Fig.6b, and the fact that the algorithm of the

most root finders converge locally, it is necesary to give a good initial quess for the

root finding subroutine. Therefore, it is convenient if we scan the roots at lower

order by simply computing function DT(k,) vs. k, and take the intersections of that

curve with the axis of k, as the guesses for higher order computation of the roots.

Here the Muller's method['-' is employed in making the root finding subroutine.

If an eigenvalue of the waveguide has been found, the elements in the associated

eigenvector may be obtained through the partitioned matrix equation.

[Dk = -ITkkl-'1 1jo1DO (4.29)

D, can be arbitrary but subject to the subsequent normalization of the entire eigen-

vector [DI. In Eq.(4.29), the matrix IT&,,] is the partitioned matrix of matrix IT],

IDk] is the vector that formed from vector ID] with Do removed.

As an example of the out-ridged waveguide, the low order approximation of the

determinant of matrix 171, function DT(k,), is plotted in Fig.6b . The first few

eigenvalues are shown in Fig.15a along with those for an rectangular example and

for an magnetron type waveguide example. For one eigenvalue (TE1, mode), the

convergence when the order gets higher is demonstrated in Table I by the computed

results.
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Table I

N M I k,(TEo2 mode)
10 10 .91778
15 15 .91624
20 20 .91591
25 25 .91555
30 30 .91542
35 35 .91528
40 40 .91521

The solution of Eq.(4.26) may not be acceptable in case Do is not the dominant

component in th. eigenvector. Therefore, we may have to force any component in

the vector [D(kc)] to be arbitrary (for convenience we may put it to unity) in the

computing program. In order to estimate the accuracy of the solution, we define

an error vector if] through the following equation

IT(ke)J[D = l (4.30)

The maximum norm of the error vector may be roughly interpreted as the number

of the significant digits in the components in [D].[ 6I Then, the approximations to

all the field components in region I and region II can be obtained by substituting

the corresponding eigenvector into Eq.(4.12) to (4.20). The electrical field compo-

nents for the fundamental mode TEO, are plotted in Fig.7a to 7d for the out-ridged

waveguide with its dimensions listed in Fig.lIa. The E, field at a = a, for low order

and for high order approximation are illustrated in Fig.6c and d respectively. The

edge effect can be seen in the vicinity of the corners of the waveguide.

In comparision. one of the eigenvalues for this example of the out-ridged waveg-

uide is also solved numerically by employing a PDE package PLTMG which can be

used to solve boundar. value problems in the form

V(au) + f(z, y, u, Vu, )) = 0 in (2

u = P1 (z,) on 01

(a~u).n= g2(z,yu, ) on ( 0- =f112

where n is a connected region in R2, n is a normal unit vector on the boundary.

ard A is a parameter. The coefficient functions a,f,g, can be chosen so that the
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above equation is a linear elliptic, a mildly nonlinear elliptic or a linear elliptic

eigenvalue problem. Here our problem is the last case. 1171 The package PLTMG uses

finite element discretization based on CO piecewise linear triangle finite elements,

adopted a procedure of a combination of inverse iteration and a multilevel iterative

technique. Iterated to level 4 with the number of triangle vertices 531, the result

of the eigenvalue for TE,, mode gives k, = 0.9122. In order to check the accuracy of

the result from this PDE solver at the same iteration level, the same equation on a

unit circle domain subject to the same boundary conditon as Eq.(4.2) is also solved

using this PDE solver since this boundary value problem has an exact analytical

solution kc - 3.831706 (which is the second root of the Bessel fuction Jo(z)). For the

unit circle domain, from this PDE solver when it is iterated to level 4 with vertices

number of 542, the result is kc = 3.81..

Comparing to the double ridged waveguide, which has been utilized for mi-

crowave heating, peniotron RF structure and some other purposes, this out-ridged

waveguide structure is free from the trough modes. This is of big importance for

gv.rotrons, especially for those working at higher harmonics where the mode com-

petetion becomes a big concern both to the stability and to the efficiency of the

device. The local trough modes exist in ridged and double ridged waveguides.46.461

It can also be seen from the eigenvalue spectrum of the out-ridged waveguide that

the lower eigenvalues separated from each other very well compared to that of the

magnetron-type waveguide. This lends merit to the out-ridged waveguide with a

reduced mode competetion problem in gyro-TWA even when the bandwidth of the

ampifier is wide.

4.3 Computation of the Gain-frequency relation

In the previous two sections the eigenvalues and the associated eigenfunctions

for the out-ridged waveguide have been solved. This section deals the computation

of the gain-frequency relation of the gyro-TWA with the out-ridged waveguide.
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Fig.7 The ek-ctr I al field transverse distribution of the TEO, mode.
in the outridired waveu ide:
a) E, in region 1, b) E., in region II,
c) E, in region 1, d) E, in region HI.



A 
Ii

''/4 I j

z

a) b)

J..1/.. Ey

c) d)
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a) E, in region I, b) E, in region 11,
c) Fin region 1, d) E, in region II.
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Fig.12a) The cross section of the magnetron type waveguide,
b) - d)The gain-frequency curves for ; 2,e f 4 and 6 respectively.
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waveguide (or combined with conical waveguide) as the RF structure. Usually, an

analytical dispersion relation is derived or a partical simulation code based on di-

rectlly solving the equation of motion of electrons in the waveguide field and applied

magnetic field is used to get the neccessary theoretical properties for the analysis

or for the experiments in the publications.

It is well known that for TE,,,, modes, circular waveguide has the expression for

the axial magnetic field component

B,= BJm (kr)e (5.28)

Where k, = , , is the n-th root of the Bessel function J'(z) = 0, and a is the

radious of the circular waveguide. The norm of the axial magnetic field is

N = 2(1 --- )(ka) (5.29)
2 PM

In applying the analytical results of gyrotron kinetic theory in Chapter 3, the g,-

rotron traveling wave amplifiers with circular wavegide is the simpliest case since

there is no summation in the obtained equations and all the coefficients A,, are

just simply put to unity in the analytical results obtained in Chapter 3.

The numerical program to compute the gain-frequency functional relation with

any waveguide mode and two beam models (the annular beam and the rotating

electron layer beam) for circular waveguide is max'e available. In the example

= 2, the waveguide radious is chosen to have the same cutoff frequency as that

of the out-ridged waveguide in Fig.lOa and TE22 the mode is chosen since for the

rotating electron layer beam model the beam-field interaction can take place only

when m = . For = 4, the operating waveguide mode is TE41 and the computed

gain-frequency curve is in Fig.14c along with the beam parameters and the applied

magnetic field value.

• 4
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axis, i. e., for the rotating electron layer beam, the electron-field coupling defined

in Eq.(3.61) is nonzero only for m = e. This means that there is actually no A
interaction between electron and the waveguide field for even harmonic numbers;

A similar conclusion can also be made for TE wave modes with even n: there is no

interaction taking place for odd number cyclotron harmonic numbers. The norm

N of the axial magnetic field for rectangular waveguide is

N dAB{(B, )

ab (5.26)
4

Where
2 (q =0)

'ii =q0)(5.27)

In the purpose to facilitate the comparison the gyro-TWA with rectangular waveg-

uide to that with the out-ridged waveguide, in computing the gain-frequency curves

of the g-yro-TWA with rectangular waveguide, we choose the waveguide dimensions

such that the cutoff frequency of its TEO. mode is the same as that of the TEO,

mode of the out-ridged waveguide; Moreover, we choose the same beam parameters

as those used for out-ridged waveguide cases. The computed gain curves are plot-

ted in Fig.13b to d with beam parameters and the applied magnetic field listed in

the figures. The waveguide geometric parameters are in the below of Fig.13a.
A

Due to the simplicity in manufacture, the rectangular waveguide is a good choice

for being utilized as the RF structure in the gyro-TWA or the gyrotron oscillators -

at relatively lower harmonics of the gyration frequency. Another advantage to use

the rectangular waveguide in gyrotrons is that the output of the device does not

have to have a mode transformer in some cases. But at higher harmonics, the gain

is low, as illustrated in Fig.13.

5.3 Gyro-TWA with Circular Waveguide

Due to the relative simplicity for theoretical analysis and easiness for manu-

facture in the experiments, most gyrotron oscillators and amplifiers use circular
4
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shown in Fig.12b) to d) for 8 = 2, a = 4 and 8 = 6 correspondinly. Fors = 2 and 8 = 4,

since the 2r mode is the best mode to choose in the magnetron-type waveguide

to work as the beam-wave interaction space in the gyrotrons, we set N4 = 8. Fur-

thermore, we use the same beam parameters for the rotating electron layer beam

as those in the computation of the gain-frequency curves for the gyro-TWAs with

other waveguides for 8 = 2 and a = 4; For a = 6, the beam parameters are chosen

the same as those in [18], but the waveguide dimensions have been scaled to those

listed in Fig.12d from those in [18] in order to have the same frequency range of

the amplifiation.

5.2 Gyro-TWA with Rectangular Waveguide

The eigenvalues and the field solution are well known for the rectangular waveg-

uide. For TE., modes, the axial magnetic component can be expanded into a series

of the Bessel function by the same approach used in Chapter 4 for the out-ridged

waveguide. Since the axial magnetic field of TEq, mode in the rectangular waveg-

uide is expressed as

B, Bo cos[E!(z. a), Co,,,(z- b
a 2 b

E AmvJ(kcr'"', (5.22)
In = -

"e can obtain the coefficients A,,, in the above expansion simply by setting h = 0

in Eq.(3.17) in Chapter 3 and we have

I kB0 [-,bAo,. + (-)Re' ° A -] cos(m,

Bo cos('.) cos(rnA.) (m - even)

jBo sin( )cos(mA.) (m - odd)

where h. = and

k, + (n," +( )2 (5.24)

a bAn=cos- l  Mk-'r (5.25)

It is readily seen that, for odd n and q = 0, A. = . if m is even, then the coefficient

.4.= 0. For the electron beam with all the guiding centers on the waveguide
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In order to be able to compute the gain-frequency curve, we have to evaluate the

norm of the axial RF magnetic field for the magnetron-type waveguide over its

whole cross section. The integral of the norm of the axial magnetic field can be

carried out as below.

N =jdABD (B)

'Aa B.I(BI) + dA 2Bz 2 (Bz)

=11+12 (51)

where A1 ,A 2 denotes the area in region I and region II respectively, and

2= f dAB,(B°Bj"

JA2

2 _ 2 (ka)
1B= 21 (k) i (k )[1 -1 (1- -) (k,)] (5.17)

1= L ABzBz

= N, ioBo~{l 2i+l~ j 12 - -- ~j(k~6) 14(5.18)

2,2 = a JOJ(kc a+ J Jk, (a - [J(kb) + Jb(k)bk] (5.19)a2  (5219)

j1 = l' 1
2(k~a) + }oJ(kca)I - -j' 1

2(kcb) + Yoj~kcbl](.'0

2  b2l:,= - [Jo(k~a)Vo(k~a) + Ji(kca)1i,(kca)I - -i[o(k~b)Yo(k~b) + .J,(kcb)1i,(kb)l (5.21)

From the waveguide field expansion given in Eq.(5.1) to Eq.(5.10), it is clear that

in the general analytical results obtained in Chapter 3, for the gyro-T"WAs with

magnetron-type waveguide, T(K) is given by Eq.(3.45) with Fm being replaced by

Er but no summation with n, and with the coefficients A,,, in Eq.(3.45) being re-

placed by Ar. The programs for computing the magnetron-type waveguide eigenval-

ues. the coefficients in the field expansins and the gain-frequency functional relation

have been accomplished. In order to facilitate the comparision to the properties

of the gyro-TWAs with the other waveguides, especially those with the out-ridged

%aveguide, the beam parameters, applied magnetic field and the cutoff frequency of

the operating waveguide mode are set the same for the gyro-TWAs working at the

same harmonic of the gyration frequency. The computed gain-frequency curves are

I--- -- > i.-".. ~ .~- - -~
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= -X ArJr(kreldr (5.2)
£r-=-oo

B, = E ArrJr(kr)erT  (5.4)
r=-oo

- BA[r(rr)r 0 kr)1e0(M  I (5.6)

0=00

EM. = J ) ---' _ ArrJrkrr* (5.7)

- ~ B ~ [g' (kr) J(kb) (5.8)
0=--

In region 11 (a < r < b), the field components can be expressed as
B7 (2) B. [Jo.( r;k b)- - *VGl(k,,)]ejo0_,w) (5.6)

o0

Btiet = , B. [J.(kcr) I in o.-)e ,Jok r5.)
k 00

Ea() B - J .o [)(k0,) - Y.,(k,o) [ O (5.91)

o 00 J, (k,)°  '

In the above,
2 1- 1 Oo ( . 1

' = N + r 2 (5.13)

hIt is requre d that at r B a nd E be continuous. If in only 0 term in
the field expansion in region If is taken, in the same way as that in section 4.1 for

the out-ridged waveguide, we obtain the approximate dispersion equation for the
magnetron-type waveguide as the following:

Ar rJ(kc a) 1',kjb) - (kb) Yo (kca) N( o JNrre(kca)i S (. 4

A kiJa)( (kcb) - JOk'b) J(k,a) - J J-(k --a) (-5.15)
When 0' =2n r + 8, the solution must be single valued. This demands

r n + mNdt (5.13)

where r and n, m, Nd all are integers. Nd is the number of the slots along the

periphen' of the waveguide. Then we can have

0..................................................................
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I.

Chapter 5 Gyro-TWA Devices with Other Waveguides

The g-rotron kinetic theory in Chapter 3 is a generalized one which can be

applied to different waveguide structures. In Chapter 4 the gyro-TWA with the

out-ridged waveguide has been analyzed and some gain-frequency curves have been

computed. This chapter is devoted to the computation of the gain-frequency curves

for gyro-TWAs with several other different shapes of the waveguides, still by apply-

ing the results obtained in Chapter 3.

5.1 Gyro-TWA with Magnetron-type Waveguide

The properties of the gyrotrons that utilize magnetron-type waveguide as the RF

structure have been investigated both theoretically and experimentally.,19,3743 1 It

has been demonstrated by the experiments on microwave generation with

magnetron-type waveguide open resonators that this class of the gyrotrons can

achieve reasonable efficiency at higher gyration harmonics even with a modest elec-

tron beam energy. The following simple analysis of the magnetron-type waveguide

field reveals that a high beam-field coupling may be achieved if the waveguide di-

mensions and the waveguide mode are chosen correctly.

Fig.12a illustrates the cross section of a magnetron-type waveguide with the

projection of the electron rotating layer inside the waveguide.

The Ritz-Galerkin method is employed here again to obtain the eigenvalue spec-

trum and the associated eigenfunctions for TE wave modes. The axial magnetic

field and other field components in region I (r < a) are expanded into the series as

the following

c

= j ArJr(kr~e r" (5.1)
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in a certain frequency range and at the same harmonic number, the waveguide di-

mensions must be much bigger for the higher mode than the waveguide dimensions

for the lower mode. But, the same beam energy gives the same Larmor radius, the

beam occupies a much small portion of the waveguide cross section and has a much

weaker coupling with the fields at the higher mode even though the higher mode

contains more higher order multipole field. Mathematically, this can be understood

by observing the behaviors of the higher order Bessel function of small argument.

6 As a comparision with the lower mode, we take TE6,2 as an example. The electric

field components of this mode in the cross section of the out-ridged waveguide are

shown in Fig.9a to d . It is seen that the field is quite inhomogeneous in the

waveguide. For the out-ridged waveguide having dimension as that in Fig.IOa

the cutoff wavenumber of TE6 2 is 32.24; For TE.2 mode, the cutoff wavenumber is

10.7. For a gyro-TWA designed to operate at 51.2 GHz, then the waveguide has the

dimensions listed below Fig. 10a, if it operates with TEo2 mode; the dimensions

have to increase to those listed below Fig. I Ia, if the gyro-TWA is still operated at

51.2 GHz but at TE62 mode. With all the same beam parameters as those specified

for the corresponding harmonic for TE02 mode, tl i linear gain-frequency curves for

gyro-TWA with out-ridged waveguide at TE62 mode for s = 2 and e = 4 are computed

and shown in Fig. lib and c correspondingly. It is seen clearly that the gain is

lower than the corresponding one at TE0 2 mode. The first ten coefficients in the

expansion of the field in the waveguide in Eq.(4.4) are listed in Table 3.

Table 3 The Coefficients B1 . of TE6. Mode

, Blo B 1  I B12 Bjs B14
-0.4847 -. 5127 x 10- ' 1.090 -. 9778 x 10- 16 I -3.218

B13 B16 B17  B18  I Big
0.1283 x 10- '1 9.623 I 0.1558 x 10- 11 -0.1431 x 10- ! 0.8756 x 10- 20
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Eq.(4.25), the corresponding coefficient A.. is equal to zero. For TE02 mode, the

first ten coefficients in Eq.(4.4) are listed below. It can be seen that the odd n

coefficients actually are equal to zero, only even n terms exist.

Table 2 The Coefficients B1. of TE02 Mode

B1 0  B11  B12  B1s B14

-0.7654 1 -. 9707 x 10- " 1.000 -. 2937 x 10- 1 -0.8546 x 10- 3 I
B 15  B16  B17  I Big Big

-0.8612 x 10'u j -. 1283 x 10 0.4692 x 10' " -0.7586 x 10 0.4973 x 10-

We may conclude that for rotating electron layer beam at this waveguide mode

the beam-field interaction is practically possible only for even cyclotron harmonic

number s.

However, for some other modes, for example TE11 mode, for even n,Bo, = 0.

In this case, the cyclotron interaction can take place only for odd cyclotron harmonic

numbers. This is also the consequence of the coefficients. It is worth noting

that from the analysis on peniotron149.soJ, they conclude that the device can only

operate at even gyration harmonics in their analysis when their electrostatic field

configuration approximation is used.

In order to achieve a good coupling between the waveguide field and the beam,

the operation of gyrotrons at higher gyration harmonics in general requires working

at higher order waveguide modes because the higher order multipole field compo-

nents are bigger in higher order modes. But this does not always mean that a

higher order waveguide mode is better than a lower order mode for operating a

g-yrotron at the higher harmonics. Since the higher order mode has a higher cutoff

frequency than the lower order mode for the same waveguide geometry, if one wants

to operate the device at the same harmonic with the same waveguide, one has to

operate the device at higher fequency, and in consequence, apply a higher magnetic

field to the device than one operates the gyrotron at a lower order waveguide mode;

If the electron beam energy is kept the same, the higher magnetic field decreases

the electron Larmor radius very much. As a result, the coupling between the beam "1

and the fields becomes weaker; On another hand, if one wants to operate the device
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The onset of oscillations may be troublesome in developing a high power gy-

rotron traveling amplifier. The reflection in the waveguide, due to the discontinuity,

tapered section or some other reasons, is significant in the vicinity of the cutoff fre-

quency of a waveguide model301 ; And also, both from the linear theory and the

nonlinear theory, the cyclotron resonant interaction is strong if the frequency is

close to the cutoff frequency. Except for mode competition, these two factors per-

haps are chiefly responsible for the instability of the gyrotron amplifier operation.

Adopting some techniques developed for the conventional traveling amplifiers, such

as the introduction of the waveguide wall loss to the amplifier, may subdue the

instability of the gyro-TWA devices due to the reflections and absolute instability.

If the waveguide wall has some loss due to the finite conductivity or due to the

coating "ith lossy material on the wall, the attenuation of the waveguide in general

is a function of frequency and this frequency dependence is different for different

wave modes. But in general, the attenuation is most significant at the vicinity of

the cutoff frequency of that mode. Therefore, it is possible to chose lossy material

and to distribute it on the waveguide wall in such a way that the frequency depen-

dence of the waveguide attenuation cancels the effect of the reflection and the over

high gain near cutoff. Then we can gain the benefit in two folds: not only does

it overcome the oscillation problem, but also increases the bandwidth significantly.

Of course, the correct choice of the applied magnetic field and the beam parameters

is also very important for the stable operation of a gyro-TWA. A comprehensive

study of the stability of the gyro-TWA has to resort to the multimode analysis. In

doing the numerical computation, the single mode analysis of the open resonators

can offer the Q values and the reflection coefficient at the end of the tapered waveg-

uide for all the possible oscillation modes.12 '-01 However, there is no intention to

study the stability of the gyro-TWAs in detail here. In the computing program, we

put the waveguide attenuation into consideration by simply adopting the formula

* given by the perturbation method for the empty waveguide analysis.

From the numerical results of the waveguide computation, for the operating

TEo. mode, the coefficient in the field expression, for odd n, B,. = 0, and from

.0 . , . '
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Fig. la) The cross section of a Vro-TWA with the out-ridged waveguide, N
b) - c)With 7E6, mode, the gain-frequency curves fore = # and, = 4

respectively.. !.I
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In computing the gain-frquency dependence by applying the analytical results

developed from plasma kinetic theory in Chapter 3, in the caculation of D(K) in

Eq.(3.55), we need to caculate the norm N of the axial component of magnetic field

of the out-ridged waveguide. This can be accomplished by evaluating the following

integration -of the axial magnetic field expression in section 4.1.

=dABO(BO)

=I dABo,(Bo) + I dA,,BO2 (B,,)'

Oc 8 , h 

= B dz dycos(kziIz)cos2["(I -h)j
n=0 =- =-hl h

+2 Bm dc - a 2m.r b

=04

h, 2) (o2--j( -

4 A i t h ara o re i n I[. 4 .~~~~~=o B .2,L -kl

Wh eo i dvp inht , a l psil and f c ie ni-. + fl w Bth dc -n,)+ o ..2.T

SIn che oeT the coefficient Am is given by Eq.(3.21) and c4 n is the area of region

sc, A is the area of region o.

c With the formalisim developed in Chapter 3, a numerical program is written and
supplemented with a program solving eigenvalues and field coefficients in the series

in _e.(44), following the descripon in section 4.2. The dimensions of the example
of the out-ridged waveguide are listed in the below of Fig.10a. The operating mode

-$ is chosen to be TEo. The distribution of the electric field components in the cross

[. • .section of the waveguide for this mode are plotted in Fig.8a to d. The reason for

chosing this mode is simple. This is a relatively lower mode and it has a very good

separation from the neighboring modes so the mode competition of the amplifier

would not be a serious problem. The spectrum for the eigenmode is shown in Fig.

15a.

The computed gain-frequency curves are plotted in Fig.10b to d with the beam

parameters for 8 = 2,P = 4 and e = 6 respectively.

For a higher mode TE,6 , gain-frequency curves are plotted in Fig. 9b to d witl

the beam parameters for e = 2, s - 4 and s - 6 respectively.

" - . -- " .-. - . - . .-- . :. . . .' . . : i: . .A " " :
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Fig.g Tbe electrical field transverse distribution for TE. 2 mode
in the outridged waveguide:
a) E, in region 1, b) E, in region fi,
c) E, in region 1, d) E, in region U.
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is) -c)Tbe gain-frequency curves for .=2 and a4 respectively.
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out-ridged waveguide
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Fig.15 The distribution of the first few eigenvaluus.
(the numbers below the lines are the TE mode indexes).

a) The rectangular waveguide,
* b) The out-ridged waveguide,

c) The magnetron-type waveguide for N=6.
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Chapter 6 Comparision and Conclusion

In this chapter, Section 6.1 is devoted to a comparision of the gyro-TWAs with

several different waveguides analyzed in the previous chapters. In Section 6.2 some

conclusi ins are made for the gyro-TWAs from the analysis in the present work.

6.1 Comparision

In the previous chapters, the gyro-TWAs with several different waveguide struc-

tures have been analyzed and the gain-frequency curves for some examples of the

gyro-TWAs have been computed. This section is devoted to a comparision of the
S gyro-TWAs with different waveguides through the computed gain-frequency curves.

Even though the numerical programs are able to deal with both the annular

beam and the rotating electron layer beam, all the computed examples of the gain-

frequency curves are with the rotating electron layer beam only. The reason for

doing this is that Eq.(3.61) indicates that the rotating electron layer beam has

a bigger beam-field coupling than the annular beam; Furthermore, most of the

reported experiments of microwave generation at higher harmonics of the gyration

frequency utilized the rotating electron layer beam. Also, although we can treat the

beam velocity spread for the Lorenzian distribution, in all the examples computed

for this comparision only the 'cold' beam model are used, since the gain-frequency

functional relation is not sensitive to a small velocity spread in the electron beam

for fast wave devices.

For the gyrotron traveling wave amplifiers with the out-ridged waveguide and

that with the rectangular waveguide, in the computation we set the same TE02

operating waveguide mode, the same cutoff frequency, the same beam parameters,

and the same beam-field interaction length. Along with the waveguide geometric

Le
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parameters listed below Fig. i0a, the gain-frequency curves are plotted in Fig.lOb

to d for the examples of the gyro-TWAs with the out-ridged waveguide at a = 2,

a = 4, and s = 6 respectively. The gain-frequency curves in Fig.13b to d are for

the examples of the gyro-TWA with rectangular waveguide at 2 = 2, o = 4, and

= 6 correspondingly, while the waveguide geometric parameters are in the below

of Fig.13a.

It is seen from the computed results that, at a 2, the gain at the center fre-

quency of the band of the gyro-TWA with the out-ridged waveguide is 3 dB higher

than that of the gyro-TWA with the rectangular waveguide at 40 dB gain level. Of

cource, this is not a big difference. However, at a = 4, the difference of the gain

at the center frequency of these two amplifiers is about 6 dB at 25 dB gain level.

For a = 6, at 12 dB gain level, the difference in the gain is 3 dB which is a very

big difference. This is to say that, as the harmonic number , goes higher, these

results demonstrate that the gain of the gyro-TWA with the out-ridged wavegb le

decreases much slower than the gain of the gyro-TWA with the rectangular waveg-

uide. Therefore, the gyro-TWA with the out-ridged waveguide is much better to

operate at higher harmonics than the gyro-TWA with the rectangular waveguide.

1 For the gyro-TWA with the magnetron-type waveguide, we always use 2r mode

in the computation examples. Therefore, we set a = Nd for all the examples. The

gain-frequency curves are plotted in Fig.13b to d.

Comparing these curves in Fig.13b to d with- those in Fig.lOb to d, we see that at

= 2 the gyro-TWA with the out-ridged waveguide at the center frequency has a gain

5 dB higher than that of the gyro-TWA with the magnetron-type waveguide at 40 db

level. At a = 4, still with the same beam parameters as those for the gyro-TWA with

the out-ridged waveguide at a = 2, the gain of the gyro-TWA with the out-ridged

waveguide is 10 dB higher than that of the gyro-TWA with the magnetron-type

waveguide at 20 dB level. But, comparing the gain in Fig.lOd with that in Fig.13d at

= 6, it is seen that the gain of the gyro-TWA with the magnetron-type waveguide

"" having 6 slots along the periphery of the waveguide is higher than the gain of the

gyro-TWA with the out-ridged waveguide even the current in the former is smaller.
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This is because that the magnetron-type waveguide structure has six slots along the

periphery of the waveguide, which is a much more complicated structure than the

out-ridged waveguide, therefore it is better to enhance the beam-field interaction

at =6 than the later.

Comparing the gain frequency curves in Fig.10, Fig.12 and Fig.14, we see that

the gyro-TWA with the out-ridged waveguide and the rectangular waveguide have

a much better ability to achieve higher gain at higher harmonics than that with

the circular waveguide. The gyro-TWA with the circular waveguide even for high

angular number mode TE41 , the gain at a = 4 is still much lower than the gain of

the gyro-TWAs with the out-ridged waveguide and with the rectangular waveguide

though the latter two waveguides are working at the lower waveguide mode TE02 .

It is seen that the shape of the gain curves of the gyro-TWA with the circular

waveguide is different from those in Fig.10 and in Fig.12. This difference is due to

the different frequency dependence of the wall loss in different waveguides, which

0 has been taken into account in the gain-frequency computation by adopting the

formulas given by the pertubation method. In general, from all the computed

gain-frequency curves it is seen that for any specified waveguide structure the gain

of the gyro-TWA devices becomes smaller as the number of the harmonic goes

higher.

In conclusion, the gyro-TWA with the out-ridged waveguide has a simple struc-

ture and up to s = 4, the gyro-TWA with this waveguide structure demonstrates the

advantages over the gyro-TWAs with other waveguides. However, if the harmonic

number is higher than 4, perhaps the magnetron-type waveguide is still a better

choice than other existing waveguide structures for gyrotrons at higher harmonics.
S

6.2 Conclusion

In the previous chapters, the linear and the nonlinear theory of gyrotron travel-

ing amplifier have been developed with a general beam-waveguide model. With this

unified theory', if the eigenvalue and the field in the waveguide have been found, the
SI
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beam-field analysis can be accomplished either by the numerical solution to that set

of the nonlinear equations or by applying the analytical results of gyrotron kinetic

theory developed in Chapter 3. The general gyrotron dispersion equation is derived

both from kinetic theory and from that set of the nonlinear equations which are

derived from the equations of motion of the electrons in the electromagnetic field

in the waveguide in the frame of the weakly irregular wavegide theory. The linear

and the nonlinear theory are valid for the fully relativistic electron beam and for

large orbit motion of the electrons. From the linear theory it has been proved that

the gyrotron interaction at the v-th harmonic is associated with the 28-th order

of the multipole field in the waveguide, if the field is expanded around the guiding

center of the electrons.

From the computed gain-frequency curves for the specified electron beam pa-

rameters, it is seen that the gain of the gyro-TWA with any waveguide structure

becomes smaller as the number of the harmonic goes higher, since the components

of the higher order multipole field become smaller. This concludes that in general

the gyrotrons working at higher harmonics demand higher beam energy, especially

in the transverse direction. The waveguide structure in a gyro-TWA plays a very

important role. This has been demonstrated by the analysis and the computed ex-

amples in the previous chapters. In this work, and also by the reported experiments

of microwave generation at higher harmonics of the gyration frequency.

Through the numerical results of the examples, the advantages of the gyro-TWA

with the proposed out-ridged waveguide have been demonstrated. These include

the simplicity in the configuration comparied to magnetron-type waveguide; the

lower operating mode but still with high gain per unit length; the alleviation ,f the

mode competition problem by the good separation of the lower modes. For a gyro-

TWA with the out-ridged waveg uide, when the number of harmonic goes higher, the

gain per unit length decreases much slower compared to the gyro-TWA with circular

waveguide and to the gyro-TWA with the rectangular waveguide. Comparing to

the waveguide utilized in 'peniotron', the out-ridged waveguide is free from the local

modes or 'trough' modes. This is very important for the stability and efficiency of

6 . • * . •. . '
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the devices.

Another obvious advantage of the out-ridged waveguide is its high power han-

dling ability compared to the magnetron-type and the 'peniotron' waveguide. Due

to the two pairs of the ridges in the waveguide used in the 'peniotron', the power

handling capability of the device may be reduced, so it may not be suitable for high

power microwave generation or amplification.

The rectangular waveguide has a simple configuration and is also easy to man-

ufacture, for the second harmonic operation, the coupling between the field and

beam is just slightly smaller than that for the out-ridged waveguide but is poor at

higher harmonics. The gyrotron traveling amplifiers with the out-ridged waveguide

can achieve relatively high gain up to 4-th gyration harmonics with the moderate

electron beam energy.

The configuration of the circular waveguide is simple and it has been widely

utilized in gyrotron devices. From the theoretical prediction and from the exper-

imental demonstration, the gyro-devices with the smooth circular waveguide can

not go to higher gyration harmonics as beyond 3 or 4. Furthermore, the overmode

operation will have a big problem of mode competition especially for wide waveband

amplification.

- - -
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Appendex I Derivation of the Dispersion Relation
for TM Mode of the Out-ridged Waveguide

In this derivation we still adopt the notations in Fig.5.

For TM modes, the solution of the axial electrical field in the waveguide is

assumed in the form E. = Eoe j ( ' t-kj z), then EO is governed by the equation

(- + - + k~l.=0 I1
492 192

subject to the boundar" condition on the perfect conducting wall

E= 0 (1.2)

where
2

k= k- - (1.3)
C

2

The axial electric field in region I and region II can be expanded into the series of

the eigenfunctions in that region.

E°.(z, ) = E .o (k.,.z) sin[j.- (y -h)] (1.4)
0 9h
O0--a . V b''

2 E 2 mSik, 2m(Z ab (1.5)
0 1,2=1

The other field components in region I are derived from the Maxwell equations

k, Cos ,
1- Ei. { " (k , [ z sin h)] (1.6)

E* =j l?1. (krI.z ... 4 (1.7)

and in region II, the other components are

E = = j E2 . k.,m cos(k 2,Z) in[T (/- 1i] r1.10)

3 k-. . , .
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E0 = ? F, E2.(~ - min (k2 (1.11)

BO23 1TE 2 y (1.13)

where Zm, Lk- is the TM wave impedance.

Using the continuity conditions at z =a, for E, and B,, in the same way as thatI

for TE modes of the out-ridged waveguide in Chapter 4, a dispersion equation can

be obtained for TM modes as

Dm T qn (k~~al - T Icot~k. 2,(al - a =0.

Where

= J diysin[~ti(- h)IsinIn"(y-N)

-h,b I I 1 ,*m(b - 2h)ir + (~3sin m(b +2h)xr (.5
2i b-+ nh. mbT-nh. si 2h. 2h, 1

E0 0 =0 (1.16)

In matrix form, Eq. (1.14) becomes

IT(k.)] [D] =0 (.7

where the element Tm,, of the matrixis

TmI Em,, Eq" tan (.1a )- bqm b - -)1 (1.18) a
k 2 l (shs -cot 1c82, 2

and
2 (W=0)

Then, the roots of the determinant of matrix IT(k,)] give the eigenvalues of the7

waveguide for TM modes. The associated eigenfunction of a eigenvalue can be

obtained by solving a system of the algebraic equations Eq.(I.14). i

LO
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Appendex II Angular Integrals

Some angular integrations in Chapter 3 are derived in the follows. For the sake

of space saving, in some equations in the below the double subscripts or superscripts

may occur. In those cases, the superscript or subscript on the both sides should

be taken correspondingly. From Eq.(3.41),

1
R = 6(R - o)

rR

- 2trrWsin - t3( - -o)-W +)].A(r (I - 1)

where
) r- r<r<r+

0 otherwise.
rk = Ro : 4

Using Graf's addition theorem and with reference to Fig.3, we can have,

, 4) = J: d eCjs*)J .- (keR)fR

"__- ___-_____ Jm -,-t,(l rtg)Jelke r) dE ( "'*1)f3(f + o) + + ( - o)]-A lr)

I. e-" Jm-e(kR) cos[(ni - e* fo[- A(r) (I-2"rr sin G

Since
OR rcost = , = Cosf

L9R r
sin* = rORo $i

we can have

ej t OfiR Of R OR .OfR M

Or, OR Org OR R
0fR .t ofR
Org + O- (r- 3)0

Thus, we have J d~e'S~'., ' n e, i ose 8 )C. A(r) (a' + 2) (l-4)= ,2 sin (o

. .. . . ,: -. . .. .. . . ., : -. , . - . . . . . - .- . , .. . , . .. , -. . ... - .. . -1...7C S.-. .: . .
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1 -1 (kIj

-r- Si O e m{...kcri Jm -,(k, R) cosl (m - a) ' - oJ

-c kr, Jn -, -2 (k R) cosl(m -a- 2)4 CO~

+ (m - 8a I)Jm-...-..(kR) cosl(m - it- 1)4'* ±oI (11-6

'I' =-"'* df e*3Ee(m-$e1)* Jm-,+i (keR)e74 r fR

- C m*{ krJ.- (kR) cos[(m - q) 4' - Cnl
Trq Sin O 2

+ I kcriJm-.+2 (kcR) cost(m - 8 + 2)*1 o

- (rn-a s ±1)J..a+(kcR) cos((m - a8+1)4'* foI} (11 7)

Tbus, we can obtain the following several integrals:

7r sin fo

*F jkctJ..u... 2 (kR) cosI(m - e - 2)4' + tfoJ

+ I kcriJn...+2 (kcR) cosl(rn - a +2)4F + o
2

+ (m - R I )Jm-.-i (AcER) cosl(m - a - 1)4' + o

(m -a± )J..+ (kR) cosI(m - e+1)* +] (11-8

m #- m-+)

xrr72 sin COk~~mekR

{k. rlJ...(k, R) cosl (m - e) * + COI

" (17 - a 1)Jm-.-..(krR) cos[(m - a - I)*' + foI

" (m - a * )J....+i(kcR) cosl(m - a + 1)4' + (01

- keriJm .. 2 (kcR)cosI(m - 8 - 2)4' + fol

~ker, Jm -+ 2 (kR) cos(m - 8+2) * +o} C1-9



rr, Sin to

+kcteJm-.+ 2 (kcR)cos(m - a - 2)*i -to]l

2 -

+ (m - a* 1)Jm-.e (kR) cosI(m - a - i)*I t o]

-(m - vi I)Jm-.+i(keR) cosl(m - a + 1)'I' to] II- 0

I~t sin to

{ktiJm-a(kR) cos[(m - s)4' - to]

+ (m - a *)J.ei(kcR) cosI(m - e - 1)*' to]a

+ (m - 0 *i)J...+i (kcR) cosl(m - 8 + 1)*' - Ca

-r k7Jm.- 2 (keR) cosl(m - s - 2)1' - f o)

2 kcriJ.-.+ 2 (kcR) cosi(m -a+ 2)*I - Co]}(I 9

*~.. . . . . . . . . .',e:



86

Appendex III Radial Integrations

For the sake of saving space, some of the following derivations double subscripts

are used. In any case, the sub- and supper-scripts must be be taken correspondinly.

From the Graff's addtion thorem and with reference to Fig.3, we have

Jm,(kcT)ejm( = Ej Jma(kcR)J.(kcr,) t# (III - 1)

and since dr = rl sin d4', we may write

-4:M f'
2 drkere-'me$... Jm:Fj (kcr)

- m- (kR) f~ e-F) eJ---

-, J CI_.k., J,,*.'(kr)J,(kR) d4e:,(m-S*#)

- kj 2(krR)J:i(keri)(1-)

[i< f drkcreimq' Jm.,fI (ker)

k, {krJ~. .(k. 1) JF1 (k, r1 ) + (m - a~1) Jm.....(kR) J (kj 1l)
Ti

+ - , 1) (kZR-.+ (k )J- rl)

2

e- -kcr, Jm+ 2 (kR) cos[(m - e + 2)4'* } (111 - 4)

14'~*1~ fdrk, re""4W + Jm:FI (k, r)

- m- c (kR)Je;2 (kri

- krJ.....(kRJ+ (kr)

- (M - I) '

2-Ikeri Jm...+ 2 (kR) cosl(m - e +21)*' ( (1-)

Thus, we obtain the following several quantities as
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=2k 2,2R)(kRi) (II! - 6

+ [(in - -) J.'+,(krtl) + + I J.+,(kr)J (kR)

+ [(n-e)J... 1 (kr) + iJ..I (krTj)IJ2,-.+1 (k,,R)

I kerJ.1+2 (kr7t)J,2.-.. 2 (kR)} II-7

-~r +1(rrg + kj

2 k.ri J.+2 (krl) J..-. 2 (kcR)}II-8
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