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ABSTRACT

SIGMA is a set of FORTRAN subprograms for solving the global optimization
problem, which implement a method founded on the numerical solution of a
Cauchy problem for stochastic differential equations inspired by quantum
physics.

This paper gives a detailed description of the method as implemented in
SIGMA, and reports on the numerical tests which have been performed while the
SIGMA package is described in the accompanying Algorithm.

The main conclusions are that SIGMA performs very well on several hard

ﬂ' test problems; unfortunately given the state of the mathematical software for
3 global optimization it has not been possible to make conclusive comparisons
t with other packages.

AMS (MOS) Subject Classifications: 65K10, 60H10, 49D25

Key Words: Algorithms, Theory, Verification, Global Optimization,
Stochastic Differential Equations ,
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SIGNIFICANCE AND FXPLANATION

The paper reports about a new and very successful method for finding a

\

"global" (or "absolute"} uainimnun ol a luacticn of N real variables, i.e. the

1

point x in N-dimensionel s2ac: -0 pLol'Y, oo I the points) such that not
oniy the function increases .: one moves away !from x in any Jdirection,
("local" or "relative” min‘~ - m), but 3lsc such that no otler poi-t exists

where £ has a lower value.

The method, which was rir=+ -~roposed by the presert authors in a paper
which is to appear in the Journal »f Optimizatisn Theory and Applications, is
rhased on ideas from statistical me-chaniss, and looks for a point of global
minimum by following the solution trajectorias of a steochastic differential
equation representing the motion of 2 particle {in N-gpace) under the action
of a potential field and of a randcm perturbing force.

The paper gives a detailad description of the tomple+e algorithm based on
auchn a metnod, and summarizer ~he resultsg 2f extensive numerical testing of
the FORTRAN program implementing the algerithm {the FORTRAN program is
described in a companion pape<r of the same authcrs: Algorithm SIGMA. A
Stuchastic-Integration Glckal Minimizatien Algorithm).

The tests have been performed by running the program on an extensive sget
of carefulily selected test problems of varying difficulty, and the performance
ras heen remarkably successful, even on very hard problems (e.g. problems with
a sirgle point of global mirimum and up to about 1010 points of local
minimum,. )

The method is now being successfully tested on some real-world problems
in appiied chemistry, concerning the analysis of complex molecules, where one
iowrs fo: spatial patrterns which are not only stable (local minima of
poteoiial enerqgy). but have also an absolute minimum of the potential energy.

More generally there are many problems in which the solution depends on
the velues of several parameters, and the quality of the solution can be
neasured by a single "performance figure" (which is therefore a function of
Lie palalerers), e.g. a cost, or a loss, or a cost/effectiveness ratio, which

huld be low, or a gain, a utility, which should be high.

<]

In such sitiations the method can be usefully applied if ore is not
satisfied by finding a "subh-ontimal" solution, i.e. a snlution which is the
best amnong many other solutions, but one reaquires a truly optimal solution,
i.e. the pest among all possible solutions.

Tt 15 fiaally to be noted that the majority of the optimization methods
rrecse-ns v »varilable deal with the lncal optimization problem, and that no
mrthods of comparable power seem to bhe available in the field of global
CRtainlizsticon.

The rocogs

Ve
3

ibility for the wording and views expressed in this descriptive

et e]
sumrary, lies with MRC, and not with the authors of this report.
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A GLOBAL OPTIMIZATION ALGORITHM USING
STOCHASTIC DIFFERENTIAL EQUATIONS

Filippo Aluffi-Pentinil, Valerio Parisi’, and Francesco Zirilli’

1. Introduction.

In (1] a method for solving the global optimization problem was
proposed. The method associates a stochastic differential equation with
the function whose global minimizer we are looking for.

The stochastic differential equation is a stochastic perturbation

of a ''steepest descent'' ordinary differential equation and is inspired
by quantum physics. In [1] the problem of the numerical integration of

the stochastic equations introduced was considered and a suitable ''stochas-

YT

tic" variation of the Euler method was suggested.
SIMA is a set of FORTRAN subprograms implementing the above

method.

b In sect. 2we describe the method as implemented in SIGMA; in sect.

53 we give a general description of the method and some details on the

implementation; in sect. 4 some numerical experience on test problems is
E presented and in sect. 5 conclusions are given.
- Unfortunately, given the state of the art of mathematical software
. in global optimization, it has not been possible to make conclusive com-
parisons with other packages.

The SIGMA package and its usage are desCribed in the accompanying

Algorithm,
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2. The method.
N \
let R be the N-dimensional real euclidean space and let fm£\+ﬁl

e a real valued function, regular enough to justify the following con-

In this papcr we consider the problem of Yinding a global minimizer
1

. . . N . .
of £, that is, the point X ¢ R (or possible one of the points) such
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and we propose a method introduced in [1] inspired by quantum physics to
compute nuwierically the global minimizers of f by following the paths
of a stochastic differential equation.

The interest of the global optimization problem both in mathematics
and 1n many applications is well known and will not be discussed here.

We want just to remark here that the root-finding problem for the
system g(x) = 0, where gﬂRN +JRN can be formulated as a global optimi-

|- 1,

zation problem considering the function F(x) =[g(x) |5, where
is the euclidean norm in .Rs.*
Despite its importance and the efforts of many researchers the

global optimization problem is still rather open and there is a need for

methnds with solid mathematical foundation and good numerical performance.

*

The present authors have considered this idea both from the mathematical
noint of view (for a review see {21) and from the point of view of producing
good software (see [3], [4])). The method implemented in [3), [4]) is in-
spired by classical mechanics, uses ordinary differential equations, and can
ne regarded as a method for global optimization.
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Much more satisfactory 1s the situation for the problem of finding
the lecal minirizers of f, where a large body of theoretical and

aunerical results exists; see for instance [5], [6) and the references

Orammary ditferential equations have been used in the study of the

-

lccal optimization problem or of the root finding problem by several
1’ t’ 5 b,

authors; for a review see [2].

‘
|
!

~buw e methods usuaily obtain the local minimizers or roots by
feliowing the trajectories of suitable ordinary differential equations.
However, since the property (2.1) of being a global minimizer is a glo-
bal one, that is, depends on the behaviour of f &t each point of ZRN,
and the methods that follow a trajectory of an ordinary differential
equation are local, that is, they depend only on the behaviour of f

3icng the trajectory, there 1s no hope of building a completely satis-

. . - - ! - - . - . .
taZtory methed for global optimization hased on ordinary differential

2quations.
The situation is diffevent if we consider a suitable stochastic
soviurbaticn of an ordinars differential equation as explained in the \
K ) fellowing. *
Let us {irct censider the (Ite) stachastic differential equation 1
' N A5 = -VE(E)dt + cdw
4
.- -~ r.ooN - + a3 . h
oy Vi ¢ the gradizat of f and »[") 1s & standard N-Zimensional .
. - )
el Pu T JICUESS ) e k4, 1
. Zguaticn (2.4) 1s known as the Smoluchowski-Kramers equation [7)5
tnis equation ls a Singliar iimat of the Langevin's equation when the ]
inorTial terms are noglodted, i
L4
‘
R R R T By




C At ety . R . . TP . . - Tt e
a8 PR v DR WP S P - SR TS U

The Smoluchowski-Kramers equation has been extensively used by
solid state physicists and chemists to study physical phenomena such
as atomic diffusion in crystals or chemical reactions.

In these applications (2.2) represents diffusion across potential
barriers under the stochastic forces edw, where ¢ = J/zgi , T s
the absolute temperature, k the Boltzmann con;tant, m a suitable mass
coefficient, and f 1is the potential energy.

We assume that

(2.3) lim f(ﬁ) = + ®

lixly +
in such a way that:

r .
(2.4) e S gy < w Yo e (R\{0})
]RN

and that the minimizers of f are isolated and non degenerate.
It is well known that if .ge(t) is the solution process of (2.2)

starting from an initial point x the probability density function

0?
p°(t,x) of £°(t) approaches as t -+ the limit demsity p°(x)
where

. - 2,

(2.9) P = A e
where A is a normalization constant. The way in which pe(t,g) for
a class of cne-dimensional systems approaches pi(ﬁ) has been studied

in detail by considering the spectrum of the corresponding Fokker-Planck

operators 1n [8].
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We note that p: is independent of x, and that as € + 0 p:

becomes more concentrated at the global minimizers of f. That is,

(2.6) lim £5(t) = £ in law

t»

where _gi has a probability density given by (2.5) and

-

o e Akl

(2.7) lim £ =&’ in law

e~+0 -
where ‘Q: is a random variable having as its probability density a

weighted sum of Dirac's deltas concentrated at the global minimizers of f.

%
g
-9

For example if N =1 and f has two global minimizers X,y X,, with

2
%-5 (xi) =c; >0, i-= 1,2, we have (in distribution sense)

(2.8) lim pz(x) =y S(x-x,) *+ (1-v) &(x-x,)
e+0

where y = (1+vc,/c, )'1. In order to obtain the global minimizers of £ y
as asymptotic values as t -+ « of a sample trajectory of a suitable sys- ,
tem of stochastic differential equations it seems natural to try to perform ﬁ
J

the 1limit t + « (i.e. (2.6)) and the limit € + 0 (i.e. (2.7)) together. 4
That is, we want to consider: ]

(2.9) df = -VE(E)dt + e(t)dw 3
e

with initial condition 5 .
: / 1

.

(2.10) £(0) = x, = ]
where “{ :
i h

(2.11) lim e(t) = 0. p
o= n by

fil

X

9
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In physicél terms condition (2.11) means that the temperature T
1s decreased to 0 (absolute zero) when t + =, that is, the system is
"frozen'.

Since we want to end up in a global minimizer cf £, that is, a

glcbal minimizer of the (potential) energy, the system has to be frozen

DAt AT e S 2

very slowly (adiabatically). The way in which e(t) must go to zero,

in order to have that when t -+ =, the solution £(t) of (2.9) becomes
concentrated at the global minimizers of f, depends on f. In par-
ticular, it depends on the highest barrier in f to be overcome to
reach the global minimizers.

This dependence has been studied using the adiabatic perturbation
theory in [1]. Similar ideas in the context of combinatorial optimization
have been introduced by Kirkpatrick, Gelatt, Vecchi in [9].

In this paper we restrict our attention to the numerical implemen-
tations of the previous ideas, that is, the computation of the global
minimizers of f by following the paths defined by (2.9), (2.10), dis-
recarcing mathematical probliems such as the difference between the con-
vcrgenﬁe in law of §g(t) to a random variable concentrated at the global
ninirdzers of f, and the convergence with probability one of the paths
cf £(t) to the global minimizers of f.

We consider the problem of how to compute numerically these paths
keeping in mind that we are not really interested in the paths, but only
in thelr asymptotic values.

We discretize (2.9), (2.10) using the Euler method, that is gﬁtk)
1> approximated by the solution Ex of the following finite difference

eguations:
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(2.12) Eop " & T M VE(E)) et e, -w) k=01,2, ... ;
k‘-.l:‘) _E_O = >\°
|
k-1 ]
Where tO = O, tk = izo hl’ h-k > 09 and h"k = h(tk)’ k = 0’1’2) O

The computationally cheap Euler step seems a good choice here

since in order to obtain the global minimizers of f as asymptotic

values of the paths e(t) should go to zero very slowly when t + =,
and therefore a large number of time integration steps must be com-

puted.

On the right hand side of (2.12) we add the random term
E(tk)(ﬁk+1 - Ek) to the deterministic term -hk Vf(ék), which is com-
putationally more expensive (e.g. N+1 function evaluations ir a
forward-difference gradient is used), so that the effort spent in evaluat-
ing Vf(gk) is frequently lost.

In order to avoid this inconvenience we substitute the gradient
Vi(g) with a "'random gradient' as follows. Let r be an N-dimensional
random-vector of length 1 uniformly distributed on the N-dimensional unit

sphere. Then for any given (non-random) vector X.enfq its projection

along r 1is such that:

O
[ o)
o4
-~
S—t

NE(<ry>n) =¥

~here E(+) 1is the expected value, and < -,+« > 1is the euclidean inner
‘ : N
pr-cduct 1n R'.
Sc that in order tc save nunerical work (1.e. functions evaluations)

in (2.12) we substitute Vf(ik) with the ''random gradient"

.............
I~ e I U N P S W D e S e S




N<r, VE(E,)

> T.

(2.15) v(€,)

we note that since zjgk) is the directional derivative in the direc-

Z =

tion 1, 1t is corputationally much cheaper (e.g. when forward differences
are used, only Z function evaluations are needed to approximate Y(§)).
Therefore, the paths are computed approximating® g(tk) with the solution

of the following differences equations:

2k

(2.16) Eop 5 = M TG + ety -w) k=012,

(2.17) £, = X,

where i(ék) is a finite difference (forward or central) approximation
to (g ).

The complete algorithm is described in the next section.
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3. The complete algorithm.

we give in sect. 3.1 a general description of the algorithm, while

irplementation details are given in sect. 3.2.

3.1. General description of the algorithm. .

The basic time-integration step (eq. (2.16) and sect. 3.2.1) is
used to generate a fixed number NTRAJ of trajectories, which start at
time zero from the same initial conditions with possibly different values
of €(0) (note that even if the starting values ¢€(0) are equal the
trajectories evolve differently due to the stochastic nature of the inte-
gration steps).

The trajectories evolve (simultaneously but independently) during
an '"'observation period" having a given duration (sect. 3.2.5), and with-
in which the noise coefficient of each trajectory is k=pt at a constant
value ep, while the values of the steplength hy and of the spatial

discretization increment Ax, for computing the random gradient (eq.

k
(2.15}Iand sect. 3.2.2) are automatically adjusted for each trajectory
by the algorithm (sects. 3.2.3 and 3.2.4).

At the end of every observation period the corresponding trajec-
tories are compared, one of them is discarded (and will not be considered
any more), all other trajectories are naturally continued in the next
observation period, and one of the trajectories is selected for 'branch-
ing" (sect. 3.2.6), that is for generating also a second continuatien
trajectory differing from the first one only in the starting values for

ap and 8y (sect. 3.2.7), and which is considered as having the same

"past history'" of the first one.
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Let A, be the largest eigenvalue of the (symmetric and non-negative
definite) matrix C. ;

We adopt the updating matrix

FA =8 I-C
where I 1s the NxN identity matrix, 8 > 1 (B = 1.3 in the present i
implementation), and we obtain the updated valu® A' of A by means of
the formula

A" = chF,
where a 1s a normalization factor such that the sum of the squares of
the elements of A’ 1is equal to N (as in the identity matrix).

The matrix F, seems one of the possible re?sonable choices,
since it is positive definite for B > 1, it has the same set of eigen-
vectors as (, 1its eigenvalue spectrum is obtained from the spectrum of
C by reflection around A = E%i- , and it therefore acts in the right
direction to counter the ill-conditioning of £.

The magnitude of the counter-effect depends on B8: the adopted

value has been experimentally adjusted.

The updated bias vector E' is chosen in order that the scaling
at x does not alter X, i.e. in order that |

Ax +b' = ax + b {

3.2.13 Criteria for numerical equality.

The following two criteria are used in a number of places in the :

4

. . . . . 9

algorithm to decide if two given numbers x and y are sufficiently ]
close to each other (within given tolerances) to be considered 'numeri- i

cally equal'.
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~z consider (for each traiectory) the rescaled variable X = Ax + b,
% 15 the rescaling matrix and b 1s a bias vecter, and, instead of

soocanimize with respect to x the function f£(x) = f(X) = f{Ax + b),

.

‘rvoto counter the tll-conditioning of £ with respect to x by

wiueting A f(and b is adiusted in order not to alter X).

-

Y. updating of A 1s obtained by means of an updating matrix PA’

ormed at the end cf an ovservation period if sufficient data

oy

t,

sva..able (see below), and if the number of elapsed observation periods

o non less than a given number K

pasca’ and greater than 7X).

The updating matrix FA

st that the random gradients are the only simply-usable data on the

is computed as described below, keeping in
sl .or of § computed by the algorithm.

Lot i=1,2, ..., Ng’ be the column vectors of the components
¥ eli he NE finite-difference random gradients ¥ (j? or EF)
cviiidated along the trajectory (also for rejected steps) from the last
sTaling.

I¢ sufficient data are available {(i.e. if Ng > 2N?) we compute the

5!

N

AP G

TN s (D)
2 1=1

N
- — ™
= . ) oL - - -v) b
cm L Tyl Gy =) )
g 1=l
booowms to be g rensoneole yndicator, given the available data, of

[ad¥s

cverice 11 conditioning of £, as having the larger eigenvalues

s1ated with the dlrections alone which the second directional deriva-

e of £ 1s, on the average, larger,
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We note that each integration step can be rejected only a finite

nunber of times, each observation period lasts a finite number of accepted

PR G |

integration steps, and there is a finite number of otservation periods in
a trial; since a finite number of trials is allowed, the algorithm will
stop after a finite total number of steps and of function evaluations.

-

3.2.11 Admissible region for the x-values.

JUOW Wiy MR I S VA

In order to help the u;er in trying to prevent computation failures
(e.g. overflow) the present implementation of the method gives the possi-
bility of defining (for any given problem and machine dynamic range, and ]
based on possible analytical or experimental evidence) an admissible region 7
for the x-values (hopefully containing the looked-for global minimizer)

within which the function values may be safely computed. We use an

N-dimensional interval ‘$

R.

MIN MAX
i <xi<1ti , 1i=1,2,...,N,

where the interval boundaries must be given before trial start.
Outside the admissible region the function £(x) 1is replaced by
an exponentially increasing function, in such a way that the values of

f and of the external function are matched at the boundary of the recion.

3.2.12 Scaling.

In order to make ill-conditioned problems more tractable, rescaling

is performed by the algorithm as follows.
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the preceding trial, according to the outcome (stopping condition) of the
preceding trial and to the number t of trials performed from algorithm
start, as compared to the given maximum number of trials NTRIAL
successful stop: a = 103
unsuccessful uniform stop:
10 if t < [[(2/5) NTRIAL]]

107" otherwise,

o

a
where [[x]] 1is the smallest integer not smaller than x
unsuccessful non-uniform stop: a = 107"
The initial point x, is selected as follows:
if t <[[(2/5) NTRLAL]] take the value of x, at algorithm start
otherwise take x, = XopT

where x

X0PT is the current best minimizer found so far from algorithm

start.
All other initial values are those of the first trial, except the
initial values of h and Aa which are the values reached at the end of

the preceding trial.

3.2.10 Stopping criteria for the algorithm.

The complete algorithm is stopped, at the end of a trial, if a
given number NSUC has been reached of uniform trial stops all at the
current foPT level, or in any case if a maximum given number NTRIAL
of trials has been reached.

Success is claimed by the algorithm if at least one uniform stop

occurred at the current fOPT level.

N . < - PN C G .
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and the best minimun function falue fopT found so far from algorithm
start:  if frpqy and fOPT satisfy at least one of the above criteria,
with the same tolerances, the trial is considered successful at the level

£ otherwise the trial is again considered unsuccessful.

oPT’
Checking of the stopping criteria is activated only if a minimum

-

given number NPMIN of observation periods has been reached.

3.2.9 Characteristics of the successive trials.

The operating conditions which are changed when another trial is
started are:
- seed of the random number generator
- maximum duration of the trial
- policy for choosing 'ep for the second continuation of a branched
trajectory
- value of ep at trial start
- initial point Xx,.
The maximum duration of a trial, i.e. the maximum number Ny,
of observation periods, is obtained as follows:
if the preceding trial had a uniform stop (sect. 3.2.8) take the
value of the preceding trial
- otherwise take a value obtained by adding to the preceding value
a fixed given increment INPMAX'
The policy for selecting ep for the second continuation of a
branched trajectory was described in sect. 3.2.7.
The value of ep at the start of a new trial is obtained by means

of a multiplicative updating factor o applied to the starting value of

(Al e

e Mmcionin’
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The updating factor F_  for ® is as follows:
for the first trial and for any trial following an
unsuccessful trial
F, - 10 where x is a random sample from a
standard normal distribution
for all other trials
F o= 2% \here y 1s a random sample from a

standard Cauchy distribution, i.e. with density
£(y) = 1/(n(1+y?))

The updating factor for ax, is:

3z

F._ =10

Ax where z 1is a random sample from a standard

normal distribution.

3.2, Stopping criteria for a trial.
pping

A trial is stopped, at the end of an observation period, and after
having discarded the worst trajectory, if all the final function values
cf the remaining trajectories (possibly at different points x) are
"nunerically equal', i.e. if the maximum, fTFMAX’ and the minimum,
fTRﬂIN’ among the trial final values satisfy at least one of the criteria
in sect. 3.2.13, the relative difference criterion with a given stopping
tolerance  Tpp, and/or the absolute difference criterion with given
stopping tolerance T,pc ("uniform stop at the level frman' -

The trial 1is also anyway stopped, at the end of the observation

ericd, if a maximum given number NPMAX of observation periods has been
1cached.

In the latter case the trial is considered unsuccessful, while in

the former case a comparison is made between the final value fTFMIN
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From the point of view of the noise coefficient: sp a trajectory
with larger € is considered better if the comparison is made in an
early observation period (as long as kb < Mp-Ib, vhere kp is the
nunber of elapsed observation periods, and L&J,Ib are defined below)
and worse otherwise.

A basic partial ordering of the trajectories is first obtained on
the basis of past function values, and a final total ordering is then ob-
tained, if needed, by suitably exploiting the noise-based ordering.

The discarded trajectory is always the worst in the ordering, while
the trajectory selected for branching is usually not the best one, to
avoid to be stuck in a non-global minimum. .

Normal branching is performed on the trajectory which, in fhe order-
ing, occupies the place I (a given integer); exceptional branching,
where the best trajectory is selected, occurs for the first time at the
end of observation period kpo’ and then every Mp periods (kpo and
M_ are given integers); i.e. exceptional observation periods are those

numbered

(G =0,1,2, ...)

3.2.7 The second continuation of a branched trajectory.

While the first (unperturbed) continuation of a trajectory that
undergoes branching starts with the current values of Ep and 5%, the
second continuation starts with values obtained by means of multiplica-

tive random updating factors applied to the current values.

< s e~ Y . - L I .
- s e aa) PPN, W T S U R e U R U Pk

ke ad ke

A A e am. a2 m e a

]
i

cncalie s

F O




TR
"
-

............

S0 "R e "R U Ao i, Al i)

In.phase 6a: y =0.1
We finally remark that h, and &x  are bounded by suitable con-

stants to avoid computational failures.

3.2.5 Duration of the observation period.

-

The duration of observation period numbered kp from trial start,
defined as the number th of time integration steps in period kb’ is
computed as a function of kp by means of a formula which must be chosen

before algorithm start among the following three formulas:

("'short" duration)

D Ny =1+ [log, (k)]

2) th [kp]

N, =k
3) hp p

("mediun-size' duration)

("long'" duration)

where k

1,2,
P

, and [x]

3.2.6 Trajectory selection.

‘in order to decide, at the end of an observation period, which tra-
jectory is to be discarded, and which one should be selected for branch-
ing, we compare the trajectories on the basis of the values of their noise
coefficient in the observation period, and of the funmction values obtained
frﬁm trial start.

From the point of view of past function values a trajectory is con-
sidered better than another if it has attained a lower function value than

the other (excluding a possible initial part common to both trajectories).

......
.........
......
...................

1s the largest integer not greater than x.
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We test £, and %k =f ¢+ Efk for numerical equality according

to the relative difference criterion (sect. 3.2.13) with tolerances

-11 = -5
R1 10 and 22 10 7,

A

g =2 if fk and f

T and take

" 1 3 .
 are equal' within T

=1 3 2 " 0ot ets -
B =131 if f and f, are not "equal within o2 {

-

3 =1 otherwise.

The interval (10'11, 10'5) has been adopted since it contains both
the square root and the cubic root of the machine précision of most com-
puters in double precision (the square root is appropriate for forward

differences, while the cubic root is appropriate for central differences).

Updating factors Yy for hk .

In phase 4a:

Y

1/1.05 for the first attempt to the first half-step i

y = 1 for the second attempt

vy = 1/10 for all other attempts

e e a’ et

In phase 5 the value of Y depends on the current number a of accepted

time integration steps in the current observation period, and on the cur-
rent total number 1 of half-steps rejected so far in the current trial

(excluding those possible rejected while attempting the first step).

: If 1>0 y
_ y=1 (if a < 2r)
° . y = 1.1 (if 2r<a < 3r) #
- y =2 (if 3r < a) s
| If 1 =0 ]
P y = 2 (if a =1) i
| y = 10 (if a> 1) *
]
o 1
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oa. If the half-step is rejected: reject also the first half-step,

0b. Otherwise: accept the whole step and try the next one.

1
|
l
|
|
!
update (decrease) hk’ and go back to 1. !
i

Note however that if the same half-step is rejected too many times
the half-step is nevertheless accepted in order*not to stop the algorithm;
this 1s not too harmful since several trajectories are being computed,

ard a "bad" one will be eventually discarded (in the present implementation

the bound is given explicitly for the first half-step (50 times), and im-
4 piicitly for the second half-step (if hk becomes smaller than 10'3°)),
O .
S 3.2.4 The wpdating of h, and A&x,.
& The time-integration steplength h, and the spatial discretization

increment tx,  for the trajectory under consideration are updated while
perfoerming the integration step, as described in the preceding section.
Updating is always performed by means of a multiplicative updating
facter which is applied to the old value to obtain the new one.
The magnitude of the updating factors, as used in the various

phases of the sequence in the preceding sect. 3.2.3, is as follows:

Updating factors £ for bxy
10°

In phase 1b: B8

n

[n phase Za: 8 =10

In phase 4b: g = 107%

In phase 5 the value of 8 depends on the magnitude of the current esti-

~F ~C

nated function 1ncrement Afk = lnkl Axk (where My 1s m or n . as

appropriate), and the function value £ = f(ék)'
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All attempts are with the current (i.e. updated) values of hk
and Ax, .
The sequence of attempts is as follows:

1. Pick up a random unit vector T, .

la., Compute the random increment S (sect. 3.2.2).
b, If Sy (and therefore Axk) is too small (i.e. if the square
of the euclidean norm of the difference between the computed i

values of Ek * 5 and Ek is zero, due to the finite arithme-

tics of the machine): update (increase) bx, and go back to la.

(%]

Compute 7 (eq. (3.2.2.2)).

W
L}

T
. »
. cy AN

2a. If the computed value of (ﬁf;)2 is zero (due to the finite
arithmetics): update (increase) bx, and go back to la.
3. Compute the first half-step with ;.
Compute 4'f, (eq. (3.2.3.1)).
' ~F
3a. If A'f < || ax

accept the first half-step and jump to 5.

~C

Compute the first half-step with Yoo

of Axk.

Compute A’fk (eq. (3.2.3.1)).

to check the appropriateness

' ~F _ «C
4a. If A'f > Ink nkl bx,,

7 l“! bt Bt “Y—Y‘ ‘r,; v,'(‘-) "
OIS O Xk
>

ﬂf reject the half-step, update (decrease) hk, and go back to 1.

4b. Otherwise: accept the half-step, and update (decrease) o, .

5.  Update (increase) hy. E

Update (decrease) bx, - 4

]

. 6. Compute the second half-step. 1

. Compute A"fk (eq. (3.2.3.2)). H
.
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and the forward- and central-differences random gradients

= N ﬁF T 7C

~F - ~C
(3.2.2.3) Y x Tk Yy = N e Ty

. -F ~C ~ . . )
We use y, or Y. for xﬁgk) in the first half-step as described

in the next section.

3.2.3 Accepting and rejecting the half-steps.

The computation of the first half-step can be attempted with the
forward- or central-differences random gradient (jz or jﬁ eq. (3.2.2.
as described below,

In either case the half-step is accepted or }ejected according to

the function increment
’ - AT
(3.2.3.1) A fk = f(gk) f(gk)

Since A'fk should be non-positive for a sufficiently small value
of h_ the half-step is rejected if A'fk is "numerically positive',
i.e. larger than a given positive small tolerance.

The second half-step is rejected if the corresponding function

increment
(3f2.3.2) A”fk = f(§k+1) - f(gé)

is positive and too large (greater than 100 eé in the present implemen-
tation).
The sequence of attempts affects the updating of hk and ox,  as

Jdescribed below; the amount of the updating is described in sect. 3.2.4.
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The basic step (3.2.1.1) 1s actua’’v performed in two half-steps

(3.2.1.2) g =g - h T8 (first half-step)
and
(3.2.1.3) Epap =B * Ep/E;-Ek . (second half-step)

Both half-steps depend on hy while the first depends also on the
current value Ax, of the spatial discretization increment used in com-
puting i(ék).

Either half-step can be rejected if deemed not satisfactory, as

described in sect. 3.2.3. .

3.2.2 The finite-differences random gradient.
Given the current value Axk of the spatial discretization incre-

ment for the trajectory under consideration, we consider the random in-

crement vector

where T is a random sample of a vector uniformly distributed on the

unit sphere in Rh, the forward and central differences

AF£

[}
(a2}
~~

k

(3.2.2.1)

Acfk HE(

the forward- and central-differences directional derivatives

- -F _ ,F C _,C
(3.2.2.2) A =0 fk/Axk g = b fk/Axk
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The set of simultaneous trajectories is considered as a single trial,
which is stopped as described in sect. 3.2.8, and is repeated a number of
times with different operating conditions (sect. 3.2.9).

The stopping criteria for the complete algorithm are described in
sect. 3.2.10,

-
The use of an admissible region for the x-values is described in

sect. 3.2.11, scaling is described in sect. 3.2.12, and criteria for

nunerical equality in sect. 3.2.13.

3.2. Implementatilon details.

3.2.1 The time-integration step.

The basic time-integration step (eq. (2.16)) is used, for the tra-

Faiin aul 22

jectory under consideration, in the form
(3.2.1.1) Bper =& "M IE) v e, Ay k=012, ...

where hk and sp are the current values of the steplength and of the
noise coefficient (the noise coefficient has a constant value € through-

out the current observation period (sect 3.1)); Y is a random vector

sample from an N-dimensional standard Gaussian distribution, and

Py BT W X
r. due to the properties of the Wiener process.
b
b . [ . . ~
L The computation of the finite-differences random gradient y(gk)
b X
- is described in the next section.
. @
P
b
h
3
.o
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a) Relative difference criterion
-yl < g (x| + IyD)/2

b) Absolute difference criterion
Ix-y| < TABS

‘here T a T are given non-negative tolerances.
wher REL nd ABS given n gat 1
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4. Numerical Testing.

SIGMA has been numerically tested on a number of test rpoblems run
on two computers. The test problems are described in sect. 4.1, the com-
puters in sect. 4.2 and some numerical results arereported in sect. 4.3,

4.1, Test problems,

The set of test problems is fully described in [10] together with
the initial points; the test problems are:

1. A fourth order polynomial (N = 1)

2. Goldstein sixth order polynomial (N = 1)

3. One dimensional penalized Shubert function W = 1)

4. A fourth order polynomial in two variables (N = 2)

5. A function with a single row of local minima (N = 2)

6. Six hump camel function (N = 2)

7. Two dimensional penalized Shubert function 8 =0 (N = 2)

8. Two dimensional penalized Shubert function B8 = 0.5 (N = 2)

é. Two dimensional penalized Shubert function B =1 (N = 2)
10. A function with three ill-conditioned minima a = 10 (N = 2)
11. A function with three ill-conditioned minima 2 = 100 (N = 2)
12. A function with three ill-conditioned minima a2 = 1000 (N = 2)
13. A function with three ill-conditioned minima‘ a = 10000 (N = 2)

14, A function with three ill-conditioned minima a = 10° (N = 2)

15. A function with three ill-conditioned minima 105 (N

s8]
]

2)

16. Goldstein-Price function (N = 2)

. 17. Penalized Branin function (N = 2)
E?' 18. Penalized Shekel function M =5 (N = 4)
.
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Penalized Shekel functicn M

Penalized Shekel function M

7

10

N =

(N =

Penalized three dimensional Hartman function

Penalized six dimensional Hartman

Penalized Levy Montalvo
Penalized Levy Montalvo
Penalized Levy Montalvo
Penalized Levy Monialvo
Penalized Levy Montalvo
enalized Levy Montalvo
Penalized Levy Montalvo
Penalized Levy Montalvo
Penalized Levy Montalvo
Penalized Levy Montalvo
Penalized Levy Montalvo

Penalized Levy Montalvo

function,
function,
function,
fumction,
function,
function,
function,
function,
function,
function,
function,

function,

function (N

typg
type
type
type
type
type
type
type
type
type
type
type

A function with a cusp shaped minima

et - N A e e st ek GINE et g ard

4)
4)

(N =23)

= 6)
1 N=2)
1 (N=3)
1 (N =34)
2 (N=075)
2 (N=28)
2, (N =10)
3, range 10 (N = 2)
3, range 10 (N = 3)
3, range 10 (N = 4)
3, Tange S (N = 5)
3, range 5 (N = 6)
3, range 5 (N = 7)

N = 5)

A finction with a global minimum having a small region

of attraction a = 100

N=2)

A functicn with a global minimum having a small region

of attraction a = 10

(N =5)

we used the above functions, and the standard initial points as

10].
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4.2, Test computers.

We considered two typical machines of ''large'' and ''small" dynamic
range, that is, with 11 and 8 bits for the exponent (biased or signed)
of double precision numbers, and corresponding dynamic range of about

308 and 10*".

10 The tests were actually perﬁgrmed on:

-— UNIVAC 1100/82 witﬁ EXEC8 operating system and FORTRAN (ASCII)
computer (level 10R1) (''large' dynamic range)

— D.E.C. VAX 11/750 with VMS operating system (vers. 3.0)

and FORTRAN compiler (vers. 3) (''small" dynamic range)

4.3, Numerical results.

Mumerical results of running SIGMA on the above problems and on the
above machines are described below. All results were obtained under the
following operating conditiens.

The easy-to-use driver subroutine SIGMA1 (described in the accompany-
ing algorithm) was used, with NSUC =1,2,3,4,5. All numerical values used
for the parameters are set in the driver SIGMA1 and in the other subroutines
which are described in the accompanying Algorithm.

All numerical results are reported on Tables 1, 2, and 3. Table 1
reports some performance data (i.e, output indicator IOUT and number of
fuﬁctions evaluations) as obtained from SIGMA output for each of the 37
test problems and for the testing both on the ''large" and ''small' dynamic
range machines. In order to evaluate the performance of SIGMA we consider
all the cases in which the program claimed a success (output indicator
(IOUT € 0) and — by comparing the final point

IOUT > 0) or a failure
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with the known solutions — we identify the cases in‘which such a claim
is clearly incorrect (i.e. success claim when the final point is not even
approximately close to the known solution, or failure claim when the final
point is practically coincident with the known solution). It is also
meaningful to consider all the cases in which a computational failure
due to overflow actually occurrs at any point 5} the iteration.

Table 2 and Table 3 report for each problem and sumarized for all
problems data concerning the effectiveness, dependability and rcbustness
— in the form of total numbers of correctly claimed successes, correctly

claimed failures, incorrect success or failure claims and total number of

overfiows — for the two machines. ‘
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(continued)

Table 2

VAX

Nsuc

N

NPROB

10
il
12
13
15
16
18
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23
24
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Table 2

(continued)

VAX (continued)

R A A i g

SUC 1 2 3 4 5
NPROB N .
29 2 1 1 1 1 1
30 3 1 1 1 1 1
31 4 1 1 1 1 1
32 5 1 1 1 1 1
33 6 1 1 1 1 1
34 7 1 1 1 1 b
35 5 1 1 1 1 1
36 2 3 3 3 3 3
37 5 3 3 3 3 3
1 = success correctly claimed
2 = failure correctly claimed
3 = incorrect claim
4 =

overflow
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i Conclusions.

The SIGMA package presented here seems to perform quite well on
Th¢ nropesed test problems.
48 1t 1s shown in [10] some of the test problems are very hard;
- eample, Problem 28 (N = 10) has a single g¥obal minimizer and a
cnior of local minimizers of order 10'° in the region ]xil <10

1= 4,0, L., 10,

J&ble Z shows that from the point of view of the effectiveness as
1 woeeitred by the number of correctly claimed successes the performance
‘ LY GIOMA 1s very satisfactory; moreover, it is remarkably machine inde-

seodent (note that completely different pseudo-random numbers sequences

Ty v v

.1e penerated by the algorithm on the two test machines). The results of
(] Tabje 7 alco suggest that the performance of SIGMA is very satisfactory

£y2>. the point of view of dependability (only 2 incorrect claims on the

DR I i )
e

“large” dynamic range machine when Ng.- > 3 and on the 'small'' dynamic

veige machine when NSUC > 4) and robustness (no overflows on both
naohines) .
Unfortunately, given the state of the art on mathematical software

o7 ylobal optimization, it has not been possible to make conclusive com-

- au11sons with other packages.

Finally, we note that a smaller value of NSUC gives a much cheaper

r. c-thod (less function evaluations) at the expense of a loss in effective-

F ‘wreater mumber of fallures).
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