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ABSTRACT

By using conjugate directions a method for solving convex quadratic

programming problems is developed. The algorithm generates a sequence of

feasible solutions and terminates after a finite number of iterations.

Extensions of the algorithm for nonconvex and large structured quadratic

programming problems are discussed.
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SIGNIFICANCE AND EXPLANATION

The quadratic programming problem is the following: Given n x 1

vectors C, a,......am, numbers bii..gb m and an n x n matrix C, find

an n x 1 vector x which minimizes the quadratic function

C'X + X1CXg

subject to the inequality constraints

a'x < bit

If C is the n x n zero matrix, then the quadratic programming problem

reduces to the linear programming problem.

4 In recent years quadratic programing has become an important tool in

optimization. It has wide applications in areas such as statistics,

* structural engineering, economics and portfolio analysis.

The contribution of this work is an algorithm which solves the quadratic

programming problem in a finite number of steps. Furthermore, an extension of

* the algorithm is given which can be used to solve large structured quadratic

programming problems.

The responsibility for the wording and views expressed in this descriptive
summary lies with MEC, and not with the authors of this report.



A QUADRATIC PROGRAMMING ALGORITHM

M. J. Best* and K. Ritter**

1. Introduction

We consider the quadratic programming problem

Imi fc x t 2x'Cxla'x !< bi i = 1'..,m} )

where c, x, a1,...,a are n-vectors, C is an (n,n) symmetric matrix

m

and b1,... ,bm are scalars. Prime is used to denote transposition.

1
Let F(x) = c'x + -zx'Cx denote the objective function for (I) and

R = {xla'x <_ bi, i = 1,...,m}

denote the feasible region. x* satisfies the Karush- Kuhn -Tucker

conditions for (1) if there are numbers u1 ,...,um satisfying

x*ER,

-c-Cx* =ua +...+ua , u 0,
11m m

u '(a'x* - b) = 0, i =
i

If C is positive semi -definite, these conditions are both necessary

and sufficient for x* to be a global minimizer [1]. Let

I(x*) i Ia x* = b, 1 i < m}

If C is indefinite and in addition to the Karush- Kuhn- Tucker conditions

x* also satisfies

u. > 0 , all i E I(x*)
1

* Department of Combinatorics and Optimization, University of Waterloo,

Waterloo, Ontario, Canada N2L 361.
** Institut ftr Angewandte Mathematik und Statistik, Technische Universitat

ML]nchen, Arcisstrasse 21, 8000 Mu]nchen 2, West Germany.

Sponsored by thE United States Army under Contract No. DAAG29-80-C-0041 and in
part by the Natural Sciences and Engineering Research Council of Canada under
Grant Nos. A 81 89 and E 55 82.
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and
s 'Cs > 0 for all s *0, with a's =0, all i E I(x*)

then x* is a strong local minimizer for (1).

We first consider the case when C is positive semi -definite and

present an algorithm for the solution of (1) which, in a finite number

of steps, determines either an optimal solution or that the problem

is unbounded from below. The algorithm is based on a new updating

procedure for conjugate directions when the set of active constraints

is changed. A general description of the method is given in Section 2

* and a detailed formulation is given in Section 3.

In Section 4, we discuss the case of C being indefinite. Provided

* suitable initial data is used, the algorithm of Section 3 will

* determine a local minimizer of (1) in a finite number of steps. A

procedure is then given which will ensure that the initial data

- requirement will be met.

In Section 5, we consider the structured quadratic programming problem:

* Minimize

F (X 1 )+F 2 (x 2 ) + .+Fp(X )+F O(y) (2a)

subject to

a,~xi + b> ; V m~.. + 1,.. (2b)

for i =1,...,'p and

V 51 v m P+1, .m. (2c)

Since (2) is a special case of (1), it can be solved using the algorithms

presented in Sections 3 and 4. However, the number of variables may be

large and the computational expense high. Therefore, it is appropriate

* . to develop an algorithm which takes advantage of the structure of (2).

*This is done in Section 5.
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2. General Description of the Algorithm

x is a quasi -stationary point for (1) if x F R and x is an optimal

solution for

min{F(x)laix : bi, all i E I(x))

B1

" To ensure finite termination, the algorithm determines a sequence of

* quasi -stationary points having decreasing objective function values.

Let x. denote the iterate at iteration j. Suppose x. is not a quasi -

stationary point. Assume for simplicity that the first q constraints

are active at x.. We begin by looking for a quasi -stationary point

at which only the first q constraints are active. If such a point

exists, it is an optimal solution for

min[c 'x + .,x'Cxla~x : bi, i = 1,...,q) (3)

We write this point in the form xj - sj, where s. is to be thought of

as a search direction. s. may be determined as follows. Let

D' = [al,...,aq, Ccq% ...,Cc  (4)

. 1 q q+1 n

and assume that

D [ (Cl,. ... C, Cq ,cnJ . (5)

D 1 has columns c1 ,...,cn. By definition of the inverse matrix,

cq+l,...,c n are a set of normalized conjugate directions which are

* orthogonal to the gradients of the active constraints (normalized in

the sense that c!Cc i = 1, i = q+1,...,n). Let gj = c+Cx. denote the

0 gradient of F at x.. Define

• . - - . _ " - . . .. .--.. . - .
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n
s. (g'c)c , (6)
j = i=q+l J "'.-

and

x =x ..j+1 ,j

Since gj+l = gj - Cs3,

n

+1  = 'c- k (gci)c'.Ccki=q+l I 1

= gjck - g c 0 , k = q+l,...,n (7)

Since the columns of DV are linearly independent, there are scalars

X19 "'. n with

gj+ 1 = aI + "'"+ a +X Cc + +...+X Cc

+1 11q q q+1 q+1 n nl

For k = 1,... ,n, take the inner product of both sides of the above

with ck. By definition of the inverse matrix,

j+1Ck k

With (7), this implies

gj+l (g'c )al + + j+c q I+q q -

Provided x. satisfies the remaining inequality constraints for (1),
j+1

then it is also a quasi -stationary point for (1). Furthermore, the

multipliers for the active constraints are given by k.

u= -g+ 1ci , i = 1,...,q (8)
_J

I

• -" " ." .-i . ,/ ] L.. .L.. o: _-. - ' , - -,- .- . . .. ,- . ,- - . . , - ,-
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Because x. - s. is optimal for (3), s. is called the Newton direction.

Next suppose that x . is a quasi -stationary point. Let D. and D be

as in (4) and (5). Then g'ci  0, i = q+l,...,n. Let ui, i = 1,...,q be

defined by (8). If u. _ 0 for i = 1,...,q then x. satisfies the Karush-1 3

Kuhn-Tucker conditions for (1) and is thus an optimal solution. Otherwise,

suppose u < 0. We proceed by deleting constraint q from the activeq

set. Suppose first that c'Cc 0. Then we set s. = cq and observe that

F(xj - Csj) = F(xj) - ag's.

Since uq = -gjsj < 0, F(xj - osj) is a strictly decreasing linear

function of a. Either x. - Cs. is feasible for (1) for all a > 0 in which

case (1) is unbounded from below, or for sufficiently large a, some

previously inactive constraint becomes active. Next suppose that

c'Cc > 0. Then by definition of the inverse matrix, (c Cc )Ic
qq q q

together with cq+l,...,cn form a set of normalized conjugate directions

which are orthogonal to al,.. .,aq_. From (6), the Newton direction is

s. (g'c )(CCcq) 1 cq

In fact, it is more convenient to use s. = cq, which is parallel to
-1

the Newton direction and account for the scalar (gjc )Nc ) in the
J q q

stepsize calculation. Thus when either cCcq = 0, or, c4Cc > 0, it is

appropriate to set s. = c
,J q

Assuming x1 - s. is feasible for (1), we wish to modify D. so that
-1

D +I and D,+I are related as in (4) and (5) but without constraint q.

An appropriate way to do this is to replace column q of D' with.3
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* .. 112
d E (qCCq l"2CCq. Let the new matrix be denoted by D' and letq q j+1

Dj+ 1 = c,...,nc •

The Sherman- Morrison formula [4] asserts

ci= ci- d'c Cq , for i = 1,...,n, i * q
q

Because Cq+l ... ,c are conjugate directions,q+1 n

c'Cc.
= ci -q Cq C = Ci , for i = q+l,...,n ;

qq q

i.e., the normalized conjugate direction columns remain unchanged by

the updating. Furthermore, the Sherman-Morrison formula again asserts

that

-1/2
cq =(C'Cc) c

Define

gsjCs if sCsj > 0,

+f 0 if s'Cs. = 0

Then a. is called the optimal stepsize and F(x. - Us.) is a strictly

decreasing function of a for 0 _ a < !.. So far we have made theJ

assumption that x. - a.s. E R provided s'Cs. > 0. We now suppose that
J J J JJ

this is no longer the case. Let a. denote the largest value of a for
J

wnich x. - os. C R. It is usual to call a. the maximum feasible stepsize.
3 . 3J

An explicit formula for a. is readily derived:
J3
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i = m all i = 1,...,m with a's < 01
Sasj i- f

Since F(x. - as.) is a strictly decreasing function of a for

0 _ a :s a., it is appropriate to set x x - ojsj with o. =min{a),o . -
3 j+3 .J 3j i

We continue by assuming that a. = C. < a.. Let t be such thatO O J .

' b 1
oj a 's..'

JJ

Then constraint t, which was inactive at x., becomes active at x
J j+1*

An obvious way to proceed is to obtain D' from D'. by replacing the
j+1 3

q-th column with a . If at is orthogonal to the last (n-q) columns

of Dil, then it follows from the Sherman-Morrison formula that these

conjugate direction columns will be unchanged by the update. However,

there is no reason to expect orthogonality and the updating would then J

destroy the conjugate directions.

In Lemma 1, we introduce an updating procedure which circumvents this

difficulty. We motivate it as follows. Continuing the above discussion,

suppose

ajCq+1 90 )
aici = 0 , i =q+2,...,n;

i.e., at is in fact orthogonal to all but one of the conjugate

directions. Suppose D' is obtained from D'. by replacing column q+1
j+1 3

with aZ. With

D 1 [a. ........V....Cc n ]



the Sherman-Morrison formula asserts that

= [c1,...,c q,Cq+1 Cq+2. ,c n]

the point being that the last n-q-1 columns of D-1 form a set ofj+l

normalized conjugate directions which are orthogonal to the gradients

of the active constraints as well as a . Although constraint q hasq

become inactive, its gradient is still the q-th column of D+ The
j+1"

situation is identical to that when x. is a quasi -stationary point

and constraint q is to be dropped. As previously discussed, we

continue by setting sj+1 = Cq+ 1.

Of course, there is no reason to expect cq+1,... 9cn to satisfy (9).

The critical idea of this section is to replace cq+l...,c n with a
A A

new set of conjugate directions cq+1 ,..,cn which do satisfy (9).

The construction procedure is based on the following lemma. Note

that although we assume in this section that C is both symmetric and

positive semi- definite, the lemma requires only the symmetry

assumption.

Let e denote the v-th unit vector.

Lemma 1

Let P = [p... .pk ] be an (n,k) -matrix satisfying P'CP = I and let

d be an n- vector satisfying P'd 0 0. Let v be any integer with

I _ v _ k. Define

u = P'd ,

U iu , if pd < 0

2 " u , otherwise

'-A.. .. .. . - - - - - --
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= [2(u'u - e2p'd)]-l/2

w = 01(e2e- u) ,

A AA

P P(I - 2ww') --[ 1, . pk

Then

a) Pi = Pi - 2wip, i = 1,...,k, where p = wl1p+ ... +w kpk

b) P'CP = I,

c) d'pi = 0, i = 1,...,k and i * v,

d) span{pl,...,pk) = span{pl,...,pk}.

Proof:

First note that e p'd < 0 so that 81 is well -defined. Let Q I - 2ww'.2 V 3

Then Q is a Householder-matrix with (see e.g. [2])

Q'Q QQ = I (10)

and

Qu = Ilulle . (11)

a) By definition of P,

P = P - 2(Pw)w' = P - 2pw'

i.e.

Pi = Pi - 2wiP, i 1 ,...,k.

b) By (10),

P'CP = Q'(P'CP)Q = Q'Q = I.

c) Using (11) we have
d'P = d'PQ = u'Q = Hlulle

f

from which the assertion follows.
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VFi(x ) E spanfa 1v E J.j} (17)

C c = 0 for every v with a V = 0 (18)

The first condition is satisfied if xJ is a quasi -stationary point for

(16). The second condition can be imposed without loss of generality.

Indeed, since Ci is a positive semi - definite matrix we have CicVi * 0

if and only if cici > 0. In this case DiT. and Jij can be updated

as in Step 3 1 of the algorithm resulting in an a. -1.

For i = 1,...,p define

,c b , (19)

where the summation is over all v such that ai 1. Then

Mija = b for all v E J.. (20)

and, for every y,

ab(xJ+M(yJ-y)) + W v E (21)

VFi(xJ + M. (yj -y)) E spantav lv E Ji. }  (22)

In order to verify (22) observe that

VFi(xi +Mj (yj -y) = vFi(xq) + CiMij(y j -y)

and by (17), (18), and the properties of D-113

c.iVFi(xJ) = 0 and c'.C.M.. = 0

for all v such that c < 0.

V.~
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5. Decomposition

In this section we develop a decomposition method for the problem (2),

which is a generalization of the linear problem studied by Rosen in [3].

For i = 1,...,p we assume that xi is an ni -vector, y is an n-vector and

Fi(xi) = cix i + x' Cxi, F (Y) = c'y + 1 y Cy
i i 0

are convex functions.

In order to avoid some technical difficulties we assume that for each

feasible solution to (2) the gradients of the active constraints are

linearly independent.

For fixed yJ, (2) can be partitioned into p subproblems of the form

min{Fi(xi)jaxi < B - by j , V = m i_1 + ,...,m i}  (16)

which can be solved by the algorithm described in Section 3. If the

feasible set of (16) has extreme points and if Fi(xi) is linear we can

assume that the optimal solution x3 is an extreme point. Then the active

constraints can be used to eliminate the xi variables. If Fi(xi) is a

quadratic function then an optimal solution x. to (16) is in general*1

not an extreme point. In order to eliminate all x. variables we use1

appropriate columns of the matrix D
1 associated with x.
j si

More generally let xta Dt' ij =  (li" "'Cnii) ni =  { i" 'n i} b

feasible solution for (16), the associated matrix and index set, respectively,

such that



-21-

Following 3), it may be necessary to return to 1) and 2). This

process may be repeated several times if necessary. It must terminate

after a finite number of steps, however. At each application of 1), 2)

or 3), the number of aij 's having value zero is decreased by at least

one. Furthermore, application of the algorithm cannot increase the

number of these ij 's. Therefore, after a finite number of steps, a

Karush -Kuhn-Tucker point x. must be obtained with either *ij 0

for i = 1,...,n, or

C .Cc.j = 0 , for all i with ai. = 0 , (14)

and

c'.Cc " = 0 , for each pair k,o with xkj = aj = 0 (15)

Assume x. satisfies the strict complementary slackness condition. We

claim that if aij * 0 for i = 1,...,n, then x. is a strong local

minimizer and if aoij = 0 for at least one i then x. is a weak local
minimizer. In the former case, the argument is identical to the proof

of Theorem 5. In the latter case, let s be any n-vector with a's = 0,

all i E I(x.). From Lema 2c), there are numbers w. such that

s w ic liij +  w wi c i
ij = - i =  J "

From Lemma 2a), 2b), (14) and (15)

s'Cs = - o I 0 -1aij

from which the assertion follows.

I ..............~. .... ...... ,......•."......-......"......."."....'
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1) If kj = 0 and c jCCkj > 0, update using Step 3.1.

2) If (Lkj = 0 and C'kjCCkj < 0, set s.j = ckj and proceed with

the algorithm until a new Karush -Kuhn -Tucker poirt is

obtained.

Repeat 1) until c'. . = 0 then perform 2).

ljCij _ 0 for arl 2)i

Repeat this process until

cijCcij = 0 for all i with i= 0

Additional calculations may be required to determine whether or not xj

is a local minimizer.

3) If there are p and k with apj = .kj = 0' c' Ccpj = CajCck. = 0

and c'jCc 0 0 set
pj kj

f cpj +Ck - if CjCCkj < 0

sCj - otherwise

and proceed with the algorithm using si, setting

a k,j+l = ap,j+l = 0 in Step 3.2, until a new Karush-Kuhn-Tucker

point is determined.

If sj is constructed as in 3), then sjCsj = 2jCc.j < 0, and

F(x. - as.) = F(x.) + a2s'Cs.

Thus F(x. - Gs.) is a strictly decreasing function of a for all a 0

and x. is not a local minimizer.

• 'i ., i / . .-.. . ".. . . 4.' .4 - " " "
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as = 0, all i E I(x.). Then from Lemma 2c), there are numbers wi

such that

s= W.c.
Cij I " :i

From Lemma 2a),

2
s'Cs = (wi)

%13

At least one of the wils must be non-zero. Therefore s'Cs > 0 and xj

is indeed a strong local minimizer. We have proved

Theorem 5

Let C be indefinite and let x0 be an extreme point. Then the algorithm

terminates in a finite number of steps with either the information that

(1) is unbounded from below, or a Karush-Kuhn-Tucker point x3. In the

latter case, if xj satisfies the strict complementary slackness condition

then x. is also a strong local minimizer for (1).
J

The assumption that xo is an extreme point is quite strong. Indeed, R

may not possess an extreme point. We now remove the assumption. Let xo

be an arbitrary feasible point and suppose the algorithm has been employed

to obtain a Karush-Kuhn-Tucker point xj. Let and J. be the associated

data determined by the algorithm. The property stated in Lemma 4 may not be

satisfied. Further calculations must be made in order to either determine

that xj is a local minimizer or find a local minimizer with a better

objective function value. Consider the following two steps.

• ', ' - .k ".'' "" .
' ' '  
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is a quasi- stationary point and the lemma again holds at the nexto*"

quasi- stationary point. If cj = aj and the updating proceeds via

Step 3.2 then =k,j+I 
= 0 and g+iC k,j+l * 0. Furthermore, oLij+l * 0 1

for all i = 1,...,n with i * k. At iteration j+1, the algorithm will

choose s in Step 1.1, parallel to column k of D Successive

j+l"

iterations will choose the search direction, according to Step 1.1,

parallel to the k-th column of the current inverse matrix. Each time

the updating uses, Step 3.2 or 3.3, some new constraint becomes active.

In at most n steps therefore, either an extreme point is located or

the optimal stepsize is used. In the latter case, the k-th column

of the new inverse matrix is a conjugate direction. In either case,

the next iteration is a quasi- stationary point for which the lemma

holds. The assertion of the lemma for all quasi -stationary points now

follows by induction.

The finite termination argument of the previous section did not require

that C be positive semi- definite. Therefore, with the non -degeneracy I
assumption of Section 3, the algorithm will terminate in a finite number

of steps when C is indefinite. Now consider the case when termination

occurs at iteration j. Then x. satisfies the Karush-Kuhn-Tucker

conditions with multipliers

u = -gc.. , for all i with 1 <5ij _ mai j "-, i
3 1J

and A

u. - 0 , otherwise*1

Assume that x. satisfies the strict complementary slackness condition;
J

i.e. u. > 0 for all i E I(xj). Let s be any non-zero n-vector with
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4. The Non-Convex Case

We now consider (1) when C may be indefinite. In this case, (1) may

possess several local minimizers and we consider the problem of modifying

the algorithm of Section 3 to obtain one. Because C is no longer positive

semi- definite, it may occur in Step 2 that sCs < 0. But then

F(x. - as.) is a strictly decreasing function of a for all a 0 and

setting a. = +a is appropriate. Suppose we begin the algorithm with an

extreme point x0 for (1). We will show that with no further modifications,

the algorithm will terminate with either a local minimizer or the

information that (1) is unbounded from below.

Lemma 4
-j1

Let xo be an extreme point and let xj, D and J. be determined at the

j-th iteration of the algorithm. Then for each quasi -stationary point

x. either 1 :xij a. m or ij = -1 for i = 1,...,n.

Proof:

Since x° is an extreme point, the lemma is verified for the first quasi -

stationary point. We proceed by induction. Assume that x. is a quasi-

stationary point and that the assertion of the lemma holds for it and

all previous such points. The algorithm proceeds in Step 1.2 by examining

the Lagrange multipliers u = -g'cij for each active constraint ai..

Let k be as in Step 1.2 with gickj > 0. Then s. If .y = -a, then

xj+ 1 is a quasi- stationary point, the updating proceeds via Step 3.1,

Xk,j+1 = -I and the lemma holds for the next quasi-stationary point.

If a. = aj and the updating proceeds via Step 3.3, then k,j+l 1, x j+

3 + +

• " " " " ' ' - --. , " ' . " -. " •' " " . ,S." -" ,. ',, .' .,v , -' ., " -' .- '.-
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for at most n iterations. Suppose then, that s. is constructed from3

Step 1.2. From Step 1.1 either there is no i with cL = 0, or,

gjcij = 0 , for all i with cij = 0 . (13)

Let D' = [d ... ,d By definition of the inverse matrix,
l j'" nj

n
gj= (gjcij)dii=1 13

With (12) and (13) this implies

g= (gcij ,)a
S_ ij<m 3 1J

which implies that x. is a quasi -stationary point.3

Suppose again that s. is constructed from Step 1.2. If a. > 0, then

F(xj+l) < F(xj) and the next quasi -stationary point determined will

have an objective function value strictly less than F(x.). Then the

associated set of active constraints can never be repeated. Since

there are finitely many subsets of the integers 1,2,...,m, termination

in a finite number of iterations is assured. If aj = 0, some constraint

which is active, but not in the active set, is then added to the

active set. This could happen on several consecutive iterations. With

the non-degeneracy assumption, however, in no more than n steps all

* active constraints must be in the active set. Then a strictly positive
mstepsize must be obtained and the previous argument applies.

0 ' . . . -"--.'-' " " "- i . - . .
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a1ij 1 :ai ' for all i with i * k

Replace j with j+l and go to Step 1.1.

The critical properties of the matrix D"I are summarized in Lemma 2.3

They are easily proved using Lemma land the Sherman-Morrison formula.

Lemma 2
Let D- c ,. .1I and J (C l be determined by the

Di =( 13 " 'n . .,c,.~nj

algorithm. Then

a) c i Cc , c' 0 for all i,k with i * k and aij kj

ib) Ckc 0 , for all i,k with 0 < ij m and =Lki -1ij kj ikj

c) a* iCkj = 0 , for all i,k with 1 _i < m and k * i
13

d) a ijci 1, for all i with 1 :i m .

Theorem 3

The algorithm terminates in a finite number of steps with either an

optimal solution for (1) or the information that (1) is unbounded from

below.

Proof:

For each iteration j, it follows from Lemma 2a) and b) and Step 3 that

i = 0 for all i with a.ij = -l . (12)

-i
If s. is constructed by Step 1.1 then either Dj+ I contains an additional

conjugate direction column (a. = cj) or the number of active constraints

increases by one (aj = aj). Therefore, Step 1.1 can be used consecutively

:2:.:. ..
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(v~i = ic 1  if C. . 1
'J'I . o ,otherwise

Set

-1 , if (yj . > 0

~ +1 ,otherwise

=j a (w.).c..

c ij+i =i c1 - 2(w i)ipj, for all i with a.1ij -1 and i v

c a( - 2(w.) p.)) (c .- 2(w) p.J'+ j iv J vJ JvJ

=i -jj i (alc.i )cv~j+i. for all i with 0 :5 a.ij : m

=~ 'j+1 O *i for all i with i *v and i *k

V'j+1

0'k,j+l

Replace j with j+1 and go to Step 1.1.

Step 3.3: Set

c (a'c )-1c* Ckj+1 t aj) Ckj

c - aj cCk for all i with i *k
i'j+1 ij [a c k j

and 0:5a .. m,

c .=Ci j for all i with cL. = 1

Ok,j+l
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Ab

If o. = o. = +=, print the message "objective function is

unbounded from below" and stop. Otherwise, set cj= minojc}.)

and go to Step 3.

Step 3: Computation of x. D and J.

-j+1- j+1- J+1
Setx+ I  x j, i+l = c + Cx Compute

j+ { ' -o , n +1 j+1

J = aCa. )and D = c. .. ,c I= ,j+11 .. "[nj+1 3 ,j+1.1 n,j+1

as follows. If a. = C., then go to Step 3.1.and otherwise

go to Step 3.2.

Step 3.1: Set

Ck,j+1 = (CkjCckj)'I 2ckj ,

c[r c
1  

j c l  for all i with i * k,i,j+I = cij -Lc1CcJkj

and 0 :i <a m
ci,j+1 = cij for all i with aix = -1,

ck,j+l = -1 j
ai j+1 = aij ' for all i with i k

Replace j with j+1 and go to Step 1.1.

Step 3.2: If a.. 0 for i 1,...,n, then go to Step 3.3.

Otherwise, let v be such that

Iajcvj I max(JajcijJ Iall i with ij -1)

If a'c . = 0, go to Step 3.3. Otherwise, for i 1,...,n,
set

41

I-- i~u~j71:t IK
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Ste 1:ComutaionofSearch Direction S

Let D 1 I [c.1--cn and J. = C~ c

Step 1.1: If there is no i witha. =O0, go to Step 1.2.

Otlerwise, let k be such that

jg'ckj = max(jgtc. j Iall i with a... 0)

If g~cj 0, go to Step 1.2 and otherwise set

c if gc > 0

= {ckj otherwise,

and go to Step 2.

Step 1.2: If there is no i with 1 :5 a.. m, then stop with

solution x. Otherwise, let k be such that

g i Ck Q maxjgjc. . all i with 1I a.. 5 Mn)

If g.c~ :5 0, then stop with solution x3  Otherwise

set s c Ckj and go to Step 2.

Step 2.- Computation of Stepsize a.
3J

Compute s'Cs. If s'Cs. : 0, then set -a. +C
33 33 3

Otherwiseset

j s'Cs.
01 3

If a's t 0 for i =1..mset cr.

Otherwise, compute t and a. such that

ajx b f ja~x - b 1A t= min~--- -I1 with a's. < 0.j a's ta s 13
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0 -ll-

D" form a set of normalized conjugate directions. We temporarily

0

augment the given problem constraints with the constraints

d!x = d'xj , i = q+l,..

and proceed by dropping these before any original problem constraint

is dropped.

3. Detailed Formulation of the Algorithm

We now give a detailed statement of the algorithm. The initial data

required is a feasible point xo , an ordered index set Jo =(a1 .o ""°'o}
* -o1

and an (n,n) matrix = [Clo,,..,Cno]. Letting D' = [dlo,..,d no]' the

initial data must satisfy 0 (1io :5 m for i = 1,...,n and for each i

with 1< . -< m, we require a' = b and d. = a
10 10 10i o i 1 l

At a general iteration j, the algorithm has available xj, the ordered
index set J = l ' and the (n,n) matrix D71 = [c,...,C

( cLlj 'c9anj D:1  n

Letting D' = [dlj,...,d n1, for each i with 1 <Lij . m, constraint a..

is active at x. and its gradient is the i-th column of D. All cij for

which a.. = -I form a set of normalized conjugate directions which are

orthogonal to the gradients of the active constraints.

We assume that each x E R is non-degenerate; i.e., the gradients of

those constraints active of x-are linearly independent.

-1
With initial data xo, D and Jo we set j = 0 and the steps of the

algorithm are as 'follows.

m
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d) The result follows from P = PQ and PQ = P(QQ) = P.

Continuing the previous discussion, we can use

P = [c q ...,cn] , d = at* q+1' n

and then apply the lemma to get

P ^q+1'.. n]

- Part a) gives c. in terms of the ci and a., part b) shows that the
a t

ci are normalized conjugate directions, and part c) shows that (9)

is satisfied. Parts b) and d) show that if D' is replaced with

D = [a, ...,a Cc ,Cc I

J 1 q q+1'" n

then

D. = [c ,Cq cq+l, .. Cn

It is possible that q = n; i.e., exactly n constraint are active at

x,. or, that aZ is orthogonal to cq+ I,...,cn. In this case, we obtain

.VD from D'. by replacing a with ae D-+1 is obtained from D and[ . .jot j q " j+1 D- I

aZ using the Sherman -Morrison formula and the conjugate direction

columns of D. remain unchanged.

We allow the algorithm to begin with an arbitrary feasible point x.

Suppose constraints 1,2,...,q are active at xo. Let

D' C al, ... ,a q dq+l,...,d n ] ,
0•= ..

where dq+ 1 .... ,d are any n - vectors such that D is non-singular.
.>. ., n 0

* If q < n, we cannot in general assume that the last n-q columns of

|.
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Substituting

x JX + M..(yJ -y) (23)I 1 ij

into Fi(xi) and the remaining constraints of (16) we obtain

IQ. .(y) F. (x + M. .(yJ -y))
1 1j 1 i

and

a'(x+M.(yJ-y)) < -by
V 1 13

or

(b'-aM i)y 5 _ Bv  a'(xM+ My)
V V13 V V 1

This leads to the following master problem:

Minimize

p
QJ(y) := iQij (y) + F (y)

subject to

b y - +l,..m

p

and

(bv a'Mi .)y _5 5 a'(x +M.y 3 )

for i = 1,...,p and all v E {m il+ 1,.. such that v J.

Let y j+1 D- I= cadJ1 X
, Dj+ 1 = (ci,j+.. n,j+l) and +l = ,+ '"n,j+l

be an optimal solution to the master problem and the associated matrix

and index set, respectively. Define the sets Ii, I , -, such that

. r E I. if and only if r E Jj+ and r E {mp+ 1,...,m); r E Ij if and only
3 np

4.-- 1 .:-> ,":"." S '" - ; ; > ? -> ' _.-> : - i i ..._ , L --
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if r E J and r E (i. + 1 .. ,m. .j+1 i-i '* I

Since gradients of active constraints of (2) are assumed to be linearly

independent, it follows that the gradients of the active constraints

of the master problem are linearly independent. Thus we may assume that

j+1
the gradients of all constraints which are active at y are among

the columns of D4+.

Use (23) to define

xJ1 x + M (yjy~j+1) , i =1.,p1 = i M+"

Then it follows from (21) that

:j+1 j+1 j+1 yj+1 (24)(x1  ,x2  ,...,yp

is a quasi-stationary point for the problem (2) if there are numbers

A., iv and X such that

-VFi(xi+ 1) = . a + x Xirar, i =1,...,p (25)
vEJii rE lij

-VF o(Y+I = bv + 11[v V b + ir. b J (26)
vXEj i= E J rE Iij

We will first show that (24) is a quasi -stationary point if the following

condition is satisfied.

ar E span~a Iv E Ji.) for all r E Iij, i = 1,...,p. (27)

Indeed, it follows from (22) and (27) that there are numbers -ri and prv
iv r

such that

,, ..." .i. .-'.-. - ...i . . " I L .- - .i ..- .".i. .- 2-. i.- .. * .2 '- .. . - .
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1V~ 1 i Tvav (28)
vEJ.

-a = pvav for all r E I.. =1.. * (29)
-~ r V E J jv 1

Furthermore, because y +1is an optimal solution to the master problem

there are X 0Oand X 2:O0with

-VQ .(yJl -vQ..(y VF) - + =

A Vb V+ X i (b r-M!..a r (30)
v V E I rELI i r j

0 Using (29) we have

r ir. r~ . irV . prvav.13 13j r13 EJ

v EJ. (r EI. i rprv) V
I* 3

With

rWi. 13 pv i (31)

it follows then from (28) that the equality (25) holds. Observing that

- -- V 1Q(J ) M! V F.(x'~'

0and using (28) and (20) we obtain

j+1
VQ..(Y ) T= Wr .av T iv ~bv . (32)

13 vEJ. V1 V vE J.



-27-

By (29) and (20) we have for i = 1,..

-M!a = p b for all v El. (33)
vEJ. YV V

Ij

Hence, (26) follows from (30) - (33).

In order to compute a quasi -stationary point for problem (2) we,

therefore, solve the subproblem (16) and then formulate and solve the

master problem. Finally, we use Step 3.2 of the algorithm to update

Dij by incorporating as many gradients ar, r E Ii., into D! as

possible. Denote the new matrix and index set by D-  and Ji,j+1 ij+1'

respectively. If,

Ji,j+ = Jii for i =1...9p ,

then (27) holds and (24) is a quasi -stationary point. If J ij+1 j *i
j+l -1for at least one i, we use xi ' D ' and Ji. to formulate and

i~j+1' i.j+

solve a new master problem. Since this iteration strictly increases the

total number of positive elements in the index sets, a finite number of

iterations suffices to generate a quasi- stationary point.

Now let us assume that (24) is a quasi -stationary point, i.e., equalities

(25) and (26) hold. We have seen that v ; 0 and Xir 2 0. Thus (24) is

an optimal solution if civ 0 D. Using the properties of and D 1 we

deduce from (28) - (30) that

j+1=i -c,! VF.i(x+i) v E Ji i 1 , (34)

Tiv iv j' '""ry= -c'.,a VF(x ), v E Jij' i = 1,...,p (34

rv= 1v r j y v+ Ii i~ = 1,..

X.ir -ci VQ+(y ( ), r E Ij, 1 .. ,

iL+ j1

• . o. . 'o. , . o ..4
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Thus the multipliers wi can be computed from (31).
iv

For i = 1,...,p determine k. with

11

~i. min~cw Iv E J. I

and define the set I. c fl,...,p} such that i E I if and only if

l i k i < 0. Then (24) is an optimal solution to (2) if and only if I. = 0.

Let i E I. Then further progress can be made if the constraint with index3

k i is dropped from the set of active constraints. Since (21) shows that

every constraint with v E Jij is treated like an equality constraint we

have to delete the gradient a from the matrix D!.. If = 0, it
ki  1" Iij

follows from (31) that -r ik = Wik < 0, which by (34) implies that x

is not an optimal solution to the subproblem

mi n{Fi (xilaxi _V 6V-b'yj+l, V = m +1 ,...,mi

Thus we can use the algorithm of Section 3 with initial data xi
-1D. and J.. to compute an optimal solution.

If Iij 0 0, choose any Z E Ij. and update D.i- as in Step 3.3 of the

algorithm by replacing ak in D' with aZ .

0, -1.
After modifying the matrix Di . in this way for every i E I. we define

and solve a new master problem. Continuing as described above we will

obtained a new quasi -stationary point which gives a smaller value of

the objective function (2a) than the previous point (24). Thus the method

will terminate after a finite number of iterations.

.



-29-

References

[1] O.L. Mangasarian, "Nonlinear Programing", McGraw-Hill,

New York, 1969.

[2] B. Noble, "Applied Linear Algebra", Prentice-Hall,

Englewood Cliffs, 1969.

13) J.B. Rosen, "Primal Partition Programing for Block Diagonal

Matrices", Numerische Mathematik, 6, 1964, pp. 250-260.

[4] J. Sherman and W.J. Morrison, "Adjustment of an inverse matrix

corresponding to changes in the elements of a given column or

a given row of the original matrix", The Annals of Mathematical

Statistics 20 (1949) p. 621.

Dedicated to George B. Dantzig on the occasion of his seventieth birthday.



URITY CLASSIFICATION OF THIS PAGE (When Data Bntere)

REPORT DOCUMENTATION PAGE B EAD) INSTRUCTORSBEFORE COMPLETING FORM
I. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

2776 41)"
4. TITLE (aid Subtitle) S. TYPE OF REPORT & PERIOD COVERED

Summary Report - no specific
A QUADRATIC PROGRAMMING ALGORITHM reporting period

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(&) S. CONTRACT OR GRANT NUMBER(#)

M. J. Best and K. Ritter DAAGZ-80-C-0041
A 81 89 and E 55 82

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
AREA A WORK UNIT NUMBERSMathematics Research Center, University of Work Unit Number 5 -

610 Walnut Street Wisconsin Optimization and Large
Madison. Wisconsin 53706 Scale Systems

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
U. S. Army Research Office December 1984
P.O. Box 12211 13. NUMBER OF PAGES

Research Triangle Park, North Carolina 27709 29
14. MONITORING AGENCY INAME & ADDRESS(it dIfforent ftom Controllinj Office) 1S. SECURITY CLASS. (of thli report)

UNCLASSIFIED
IS.. DECL ASSI FIC ATI ON/OOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstrect entered in Block 20, ift diffrent frow Repot)

IS. SUPPLEMENTARY NOTES

IS. KEY WORDS (Continue on reverse *ide if necessary and identify by block n-n-tber)

Quadratic programming, optimization, conjugate directions, decomposition

20. ABSTRACT (Continue mn reveree tIde If necessary and Identify by block number)

By using conjugate directions a method for solving convex quadratic
programming problems is developed. The algorithm generates a sequence of
feasible solutions and terminates after a finite number of iterations.
Extensions of the algorithm for nonconvex and large structured quadratic
programming problems are discussed.

DD '" 1473 EDITION OF I NOV 05 IS OBSOLETEJO, AN, UNCLASSIFIED
5- SECURITY CLASSIFICATION OP THIS PAGE (When Date fntered)

................... .......... .%...._,.



II

p

. FILMED

* 6-85

• DTIC
... . . . . . . .. . . -. -. .. . ... .. - -.. . .: : : : -.- " -: : : . : : .:

.-. .. -'.. - :.- - .- - -', . .- - . .-- . ...: - .. . . . .... .. ... . . . . . .


