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" By using conjugate directions a method for solving convex quadratic f%
programming problems is developed. The algorithm generates a sequence of Ii
feasible solutions and terminates after a finite number of iterations. :.

Extensions of the algorithm for nonconvex and large structured quadratic
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programming problems are discussed.
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SIGNIFICANCE AND EXPLANATION ?

The quadratic programming problem is the following: Given n x 1 E

vectors ¢, aq,ees,py, numbers b1,...,bm and an n x n matrix C, find £

an n x 1 vector x which minimizes the quadratic function ?

c'x + i x'Cx , -~
subject to the inequality constraints
aix < bi' i=1,...,m.

If C is the n x n zero matrix, then the guadratic programming problem

reduces to the linear programming problem.

In recent years quadratic programming has become an important tool in
optimization. It has wide applications in areas such as statistics,
struétural engineering, economics and portfolio analysis.

The contribution of this work is an algorithm which solves the quadratic
programming problem in a finite number of steps. Furthermore, an extension of
the algorithm is given which can be used to solve large structured quadratic

programming problems.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.
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A QUADRATIC PROGRAMMING ALGORITHM
f> M. J. Best* and K, Ritter**
e 1. Introduction
We consider the quadratic programming problem
. . 1, . -
min{c'x + »x Cx!aix < bi’ i=1,...,m , (1)

;Q where c, x, 3ys---,8, 2re n - vectors, C is an (n,n) symmetric matrix
;j and bl”"’bm are scalars. Prime is used to denote transposition.
3 Let F(x) = ¢'x + %x‘Cx denote the objective function for (1) and

P o)
i

{xla%x < bi’ i=1,...,m '

denote the feasible region. x* satisfies the Karush - Kuhn - Tucker

conditions for (1) if there are numbers Uyseeeslp satisfying
: X* € R,
- - * =
¢ - Cx u1a1+...+umam , uz20,
Cyk o = i =
ui(aix bi) 0, i 1,...,m .

If C is positive semi - definite, these conditions are both necessary

and sufficient for x* to be a global minimizer [1]. Let
I(x*) = {1la%x* = bi’ 1<4i<sm

If C is indefinite and in addition to the Karush - Kuhn - Tucker conditions

x* also satisfies

®
' u; > 0, allie€I(xx),
* Department of Combinatorics and Optimization, University of Waterloo,
PR Waterloo, Ontario, Canada N2L 361,
) ** Institut flir Angewandte Mathematik und Statistik, Technische Universitat
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and

s'Cs > 0 for all s # 0, with a%s =0, all i € I(x*)

then x* is a strong local minimizer for (1).

We first consider the case when C is positive semi - definite and
present an algorithm for the solution of (1) which, in a finite number
of éteps, determines either an optimal solution or that the problem

is unbounded from below. The algorithm is based on a new updating
procedure for conjugate directions when the set of active constraints
is changed. A general description of the method is given in Section 2

and a detailed formulation is given in Section 3.

In Section 4, we discuss the case of C being indefinite. Provided
suitable initial data is used, the algorithm of Section 3 will
determine a local minimizer of (1) in a finite number of steps. A
procedure is then given which will ensure that the initial data

requirement will be met.

In Section 5, we consider the structured quadratic programming probiem:

Minimize

Fl(xl)-+F2(x2)+ ...+Fp(xp)-+F0(y) (2a)
i-fi subject to
'.j’ 1 ' . -
;. ax; +bvyst, v-mi_1+1,...,m1. (2b)
o5 for i =1,...,p and
. .
-
- ' - -
g bvy < Bv’ v = mp-fl,...,m . (2¢c)
L4 .
o Since (2) is a special case of (1), it can be solved using the algorithms
i'f presented in Sections 3 and 4. However, the number of variables may be
’~. large and the computational expense high. Therefore, it is appropriate
Eff. to develop an algorithm which takes advantage of the structure of (2).
P}'- This is done in Section 5.
&
| @
b g
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. _General Description of the Algorithm

X is a quasi - stationary point for (1) if X € R and ¥ is an optimal

solution for
mingF(x)]alx = b., all i € I(x))

To ensure finite termination, the algorithm determines a sequence of

quasi - stationary points having decreasing objective function values.

Let xj denote the iterate at iteration j. Suppose xj is not a quasi -
stationary point. Assume for simplicity that the first q constraints
are active at xj. We begin by looking for a quasi - stationary point
at which only the first q constraints are active. If such a point

exists, it is an optimal selution for
min{c'x +%x'Cx|a1!x =b.,, i=1,...,q} . (3)

We write this point in the form X5 - sj, where Sj is to be thought of

as a search direction. sj may be determined as follows. Let

Dj = [61,.:"aq’ ch+1""’ccn] ’ (4)

and assume that

-1 _
Dj = [CI,-‘.,Cqs Cq+1,...,cn] . (5)

Dgl has columns Cisevenlye By definition of the inverse matrix,
cq+1""’cn are a set of normalized conjugate directions which are

orthogonal to the gradients of the active constraints (normalized in
the sense that c{Cci =1, i = q+1,...,n). Let 9; = c-+ij denote the

gradient of F at xj. Define

. . e . R LT
b o lich Py T TP PV Sl NPT TN ST S - LYV SRRy

e ,-v‘.‘!
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]
) (6) :
S. = (gic.)c. , .
J i=q+1 J 1 t-‘
;
and o4
5
5
02 R T g
Since g;., = 95 - Csj, ﬂ
)
g .C g:c, - (gic.)ciCc
J+17k Jk j=q+l JU Tk
= gjck - 93¢ = 0, k=aqtl,...,n. (7)

Since the columns of 03 are linearly independent, there are scalars

! Ays-eoady with
9j+1 = A1a1-+...-+Aqaq-+Aq+1CCQ+1-+...-+AnCcn .
| For k = 1,...,n, take the inner product of both sides of the above

with Cp - By definition of the inverse matrix,

‘ 9541% = A -

With (7), this implies

i gj+1 = (gj+1c1)a1 + ... 4 (gj+1cq)aq . )
E Provided xJ.+1 satisfies the remaining inequality constraints for (1), &
i then it is also a quasi - stationary point for (1). Furthermore, the X
4

! multipliers for the active constraints are given by N
Uj = =93¢ > 1= 1,...,9 . (8) :

ol
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Because Ty is optimal for (3), 55 is called the Newton direction.

Next suppose that xj is a quasi - stationary point. Let Dj and 031 be

as in (4) and (5). Then gjci =0, i =gqg+l,...,n. Let Uss i=1,...,9 be
defined by (8). If u 20 fori=1,...,q then xj satisfies the Karush-
Kuhn - Tucker conditions for (1) and is thus an optimal solution. Otherwise,
suppose uq < 0. We proceed by deleting constraint q from the active

set. Suppose first that céch = 0. Then we set Sj = cq and observe that

F(x,

5T osj) = F(xj) - ogjsj .

Since uq = —gjsj <0, F(xj - csj) is a strictly decreasing linear

function of o. Either Xj - osj is feasible for (1) for all o > 0 in which
case (1) is unbounded from below, or for sufficiently large o, some
previously inactive constraint becomes active. Next suppose that

c'ch > 0. Then by definition of the inverse matrix, (cc'lch)*lcq
together with Cq+1,...,Cn form a set of normalized conjugate directions
which are orthogonal to al""’aq-l' From (6), the Newton direction is

_ 1 ' -1
Sj = (gjcq)(chcq) Cq -

In fact, it is more convenient to use Sj = cq, which is parallel to
the Newton direction and account for the scalar (gJ'.cq)(c(;ch)-1 in the
stepsize calculation. Thus when either céch =0, or, céch > 0, it 1is

appropriate to set Sj = cq.

Assuming Xy - Sj is feasible for (1), we wish to modify Dj so that

Dj+1

An appropriate way to do this is to replace column q of Dj with

and D;il are related as in (4) and (5) but without constraint q.
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d = (c'Ce )'1/2Cc . Let the new matrix be denoted by D! . and let
qQ°q q J+1
—1 - ”n "~
Dj+1 = [Cl""’cn]

The Sherman - Morrison formula [4] asserts

- d'ci
Ci =€y ~=—C. > for i =1,...,n, 1 £ q .
d'c. 9
q
Because Cq+1,...,Cn are conjugate directions,
N c'Cc.
c. = C. - —ﬂt—l-c = ¢, for 1 = q+l,...,n ;
i i cq cq q i”?

i.e., the normalized conjugate direction columns remain unchanged by

the updating. Furthermore, the Sherman - Morrison formula again asserts

that

~ . -1/2
= C .
cq (cq cq) cq

Define

93°;
Egtgg . if stsj >0,

Ql
u

to if siCs. =0 .
J J

Then EG is called the optimal stepsize and F(xj - osj) is a strictly
decreasing function of o for 0 < o < 83. So far we have made the
assumption that x, - o.s.
>ump NI B X
this is no longer the case. Let Oj denote the largest value of o for

€ R provided stsj > 0. We now suppose that

which x, - os. € R. It is usual to call aj the maximum feasible stepsize.

An explicit formula for aj is readily derived:

TR

A '-'-"‘—*““' PRSI | 20 300 Bl el A S 3 T al WP S S LEV Y SO

Jiinde.

o 4




.
[T

MR N i AN S S e A i A N S H A SR el e B A e e it e s e it B e o

-

~ 3%y - b 1
o. = min{——é%————— all i = 1,...,m with als. < 0} .
J a].SJ. i 1) f

3
Since F(xj - csj) is a strictly decreasing function of o for

0<os<o., it is appropriate to set x. = X, - 0;5. with . = min 3.,8. .
9 =95 pprop X341 7 %5 7 95 j 0505}

We continue by assuming that o5 = 85 < 83. Let £ be such that

I g
b 3,55 :

Then constraint £, which was inactive at xj, becomes active at xj+1.
An obvious way to proceed is to obtain Dj+1 from Dé by replacing the
q-th column with a,. If a, is orthogonal to the last (n-q) columns

1, then it follows from the Sherman - Morrison formula that these

of D,
J

conjugate direction columns will be unchanged by the update. However,

there is no reason to expect orthogonality and the updating would then

destroy the conjugate directions.

In Lemma 1, we introduce an updating procedure which circumvents this

difficulty. We motivate it as follows. Continuing the above discussion,

suppose

a.c £+ 0
£7qg+l ?
a (9)

a,c. = 0, i=q+2,...,n ;

- ‘hk st i

i.e., a, is in fact orthogonal to all but one of the conjugate
directions. Suppose D3+1 is obtained from 03 by replacing column g+l

with a,- With

D! 1= [al,...,aq,aZ,CCQ+2,...,Ccn] .

J+

......
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the Sherman - Morrison formula asserts that

-1 _ ~ ~ A
Dj+1 = [cl,...,cq,cq+1,CQ+2,....cn] .

the point being that the last n-gqg-1 columns of Dgil form a set of
normalized conjugate directions which are orthogonal to the gradients
of the active constraints as well as aq. Although constraint q has
become inactive, its gradient is still the g-th column of Dj+1. The
situation is identical to that when xj is a quasi - stationary point
and constraint q is to be dropped. As previously discussed, we

continue by setting sj+1 = Cq+1'

Of course, there is no reason to expect CQ+1,...,Cn to satisfy (9).
The critical idea of this section is to replace cq+1,...,cn with a
new set of conjugate directions 2q+1,...,2n which do satisfy (9).
The construction procedure is based on the following lemma. Note
that although we assume in this section that C is both symmetric and
positive semi - definite, the lemma requires only the symmetry

assumption.

Let ev denote the v-th unit vector.

Lemma 1
Let P = [pl,...,pk] be an (n,k) -matrix satisfying P'CP = I and let
d be an n- vector satisfying P'd #+ 0. Let v be any integer with

1 <v <k, Define

Yulu , if p'd <0,
0, = { v

“-vu'u , otherwise ,

ol A B e vl i S ey

i AL A i e S
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a) p, =p; -2w.p, i=1,...,k, where p = w.p,+...+wWp
i i 171 kFk

l,...,k and i # v,

[g]
~—
o
o
I
o
-
-
"

d) span[pl,...,ak} = span{pl,...,pk}.

Proof:

First note that eZPLd < 0 so that e1 is well - defined. Let Q = I - 2ww'.

Then Q is a Householder -matrix with (see e.g. [2])

Q'Q=QQ =1 (10)
and

Qu = llulle, . (11)

a) By definition of 3,
P=pP-2(Pww' =P - 2pw' ,

p. = p; - 2wip, i=1,...,k.

'CP = Q'(P'CP)Q = Q'Q = I.

>

c) Using (11) we have

d'P = d'PQ = u'Q IIuHeV ’

from which the assertion follows.
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J
VFi(xi) € span{avlv € Jij} (17)
Cic,q = 0 for every v witha . =0 (18)

The first condition is satisfied if xg is a quasi - stationary point for
(16). The second condition can be imposed without loss of generality.
Indeed, since Ci is a positive semi - definite matrix we have cicvi # 0

i . ce . -1
if and only if cvicicvi > 0. In this case Dij and Jij can be updated

as in Step 3.1 of the algorithm resulting in an a, = -1.
For i = 1,...,p define 4

M..=Jc.b (19) '
ij vi‘a, . i

where the summation is over all v such that @i 2 1. Then

Y

) _ e
Misa, = b, forallvey, (20) 1
i
1
and, for every y, 1
n
a (X3 +M,.(y-y)) + b'y = B vEJ (21) r
v TG Vv T By ij |
j i_ :
VFi(Xi + Mij(y y)) € span{avlv € Jij} . (22)

In order to verify (22) observe that

el e

J J_yy = J J_ 1

1
J

i

and by (17), (18), and the properties of D;

[ J - ' -
CviVFi(xi) =0 and CviCiMij =0

for all v such that a < 0.

IUNIRT YO
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5. Decomposition

In this section we develop a decomposition method for the problem (2),

which is a generalization of the linear problem studied by Rosen in [3].

For i = 1,...,p we assume that X is an n, - vector, y is an n - vector and

) = cixy +%x; Cxin  Foly) = cly +vlgy'Cy

Folx; o

1

are convex functions.

In order to avoid some technical difficulties we assume that for each
feasible solution to (2) the gradients of the active constraints are

linearly independent.
For fixed yJ, (2) can be partitioned into p subproblems of the form

] ' 1 J _
min{F. (x;)|ax; S By = bly’y v =m _;+1,...,m} (16)

which can be solved by the algorithm described in Section 3. If the

feasible set of (16) has extreme points and i¥ Fi(xi) is linear we can

assume that the optimal solution xg is an extreme point. Then the active

constraints can be used to eliminate the X; variables. If Fi(xi) is a
quadratic function then an optimal solution xg to (16) is in general

not an extreme point. In order to eliminate all X; variables we use

appropriate columns of the matrix D;} associated with xg.

J p-1l._ -
More generally let X3 Dij = (cli""’cnii)' Jij = ﬁlli""’an.i} be a

feasible solution for (16), the associated matrix and index set, respectively,

such that
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Following 3), it may be necessary to return to 1) and 2). This

process may be repeated several times if necessary. It must terminate
after a finite number of steps, however. At each application of 1), 2)
.'s having value zero is decreased by at least

J
one. Furthermore, application of the algorithm cannot increase the

or 3), the number of a,

number of these aij's. Therefore, after a finite number of steps, a

Karush - Kuhn - Tucker point xj must be obtained with either aij # 0

fori=1,...,n, or

0, foralliwitha,,=0, (14)

c!.Ce ij

13771
and

'.Cc_ . =0 i i .=a . =0,
ckJCcpJ , for each pair k,p with ORJ obu 0 (15)

Assume xj satisfies the strict complementary slackness condition. We

claim that if 4 5 + 0 fori=1,...,n, then xj is a strong local :i
minimizer and if a5 = 0 for at least one i then xj is a weak local

minimizer. In the former case, the argument is identical to the proof

of Theorem 5. In the latter case, let s be any n- vector with a%s =0, ’%

all i € I(xj). From Lemma 2c), there are numbers Wi such that

s= ] W...+ ) wce
=-11 1 =g |
°'1'j 1 q_ij 0

ij |

From Lemma 2a), 2b), (14) and (15)

from which the assertion follows.

.............




1) If N = 0 and cijckj > 0, update using Step 3.1.

2) If akj = 0 and ijcckj < 0, set Sj = ij and proceed with
the algorithm until a new Karush - Kuhn - Tucker poirt is

obtained.

Repeat 1) until c%jccij < 0 for all i with a;; = 0 then perform 2).

Repeat this process until

Cijccij =0 for all i with aij =0,

Additional calculations may be required to determine whether or not xj

is a local minimizer.

3) If there are p and k with oy = akj = 0, cijcpj = cijckj =0

and ¢' .Cc, . # 0,
pJ kJ set

. . { cpj + ckj , if cpJ.Cckj <0
J _ .

cpj ckj » Otherwise ,

and proceed with the algorithm using Sj’ setting

Yol = %54l T 0 in Step 3.2, until a new Karush - Kuhn - Tucker

point is determined.

If s, i i ‘Cs. = ', .
s 1s constructed as in 3), then sJCsJ |2|cpJCckJ < 0, and

F(x.

2.,
- 0s.) = ) + 'Cs, .
j ch) F(xJ) o sJCsJ

Thus F(xj - osj) is a strictly decreasing function of o for all o> 0

and xj is not a local minimizer.
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a%s =0, all i € I(xj). Then from Lemma 2c), there are numbers w.

such that
s = ] W.C.. .
T R
aij' 1
From Lemma 2a),
2
s'Cs =} (w:)" .
a..=-1 1

LB

At least one of the wi's must be non - zero. Therefore s'Cs > 0 and xj

is indeed a strong local minimizer. We have proved

Theorem 5

Let C be indefinite and let Xq be an extreme point. Then the algorithm
terminates in a finite number of steps with either the information that
(1) is unbounded from below, or a Karush - Kuhn - Tucker point xj. In the
latter case, if xj satisfies the strict complementary slackness condition

then xj is also a strong local minimizer for (1).

The assumption that Xq is an extreme point is quite strong. Indeed, R
may not possess an extreme point. We now remove the assumption. Let Xo
be an arbitrary feasible point and suppose the algorithm has been employed

to obtain a Karush - Kuhn - Tucker point xj. Let D}l

and Jj be the associated
data determined by the algorithm. The property stated in Lemma 4 may not be
satisfied. Further calculations must be made in order to either determine
that X5 is a local minimizer or find a local minimizer with a better

objective function value. Consider the following two steps.

’-';’ul .ty v
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is a quasi - stationary point and the lemma again holds at the next

quasi - stationary point. If 05 = Gj and the updating proceeds via
=0and g

# 0, Furthermore, a. 0

koj+1 3#41%, §+1 i,3+1
for all i = 1,...,n with i # k. At iteration j+l, the algorithm will

Step 3.2 then a

choose sJ.+1 in Step 1.1, parallel to column k of 0311. Successive
iterations will choose the search direction, according to Step 1.1,
parallel to the k-th column of the current inverse matrix. Each time
the updating uses, Step 3.2 or 3.3, some new constraint becomes active.
In at most n steps therefore, either an extreme point is located or
the optimal stepsize is used. In the latter case, the k-th column

of the new inverse matrix is a conjugate direction. In either case,
the next iteration is a quasi - stationary point for which the lemma
holds. The assertion of the lemma for all quasi - stationary points now

follows by induction.

The finite termination argument of the previous section did not require
that C be positive semi - definite. Therefore, with the non - degeneracy

assumption of Section 3, the algorithm will terminate in a finite number

of steps when C is indefinite. Now consider the case when termination I}
occurs at iteration j. Then xj satisfies the Karush - Kuhn - Tucker

conditions with multipliers

S

uaij = -gjcij , forall i withl < aij <m, :

-

and E
u, =0, otherwise .

Assume that X5 satisfies the strict complementary slackness condition; K

i.e. u; > 0 for all i € I(xj). Let s be any non - zero n - vector with

-~ - T - 4"-. \'. P
R T e W
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4. The Non - Convex Case

We now consider (1) when C may be indefinite. In this case, (1) may
possess several local minimizers and we consider the problem of modifying
the algorithm of Section 3 to obtain one. Because C is no longer positive
semi - definite, it may occur in Step 2 that stsj < 0. But then

F(xj - osj) is a strictly decreasing function of o for all o 2 0 and
setting 33 = + is appropriate. Suppose we begin the algorithm with an
extreme point X, for (1). We will show that with no further modifications,
the algorithm will terminate with either a local minimizer or the

information that (1) is unbounded from below.

Lemma 4

1

Let X, be an extreme point and let x., DE and Jj be determined at the

Jj-th iteration of the algorithm. Then for each quasi - stationary point

xj either 1 aij < mor “ﬁj =-1fori=1,...,n.

Proof:

Since X, is an extreme point, the lemma is verified for the first quasi -
stationary point. We proceed by induction. Assume that xj is a quasi -
stationary point and that the assertion of the lemma holds for it and

all previous such points. The algorithm proceeds in Step 1.2 by examining

the Lagrange multipliers u = -g:ic.. for each active constraint a,..
a5 Joij ij
Let k be as in Step 1.2 with gjckj > 0. Then sj = ckj' If 05 = °j’ then

X is a quasi - stationary point, the updating proceeds via Step 3.1,

j+l
o j41 ° -1 and the lemma holds for the next quasi - stationary point.
If °j = aj and the updating proceeds via Step 3.3, then a

1 >1, xj+1

k,J+

.................
a ™




for at most n iterations. Suppose then, that Sj is constructed from

Step 1.2. From Step 1.1 either there is no i with aij = 0, or,
‘c.. =0, for all i witha,. =0 . 13
9545 ra ith o, (13)
Let Dj = [dlj""’dnj]' By definition of the inverse matrix,
n
. = ‘c..)d.. .
9; 1-EI(QJ i39 5

With (12) and (13) this implies

9 = )} (9
lsaUSm

‘c..)a
i,

which implies that xj is a quasi - stationary point.

Suppose again that Sj is constructed from Step 1.2. If 05 > 0, then
F(xj+1) < F(xj) and the next quasi - stationary point determined will
have an objective function value strictly less than F(xj). Then the
associated set of active constraints can never be repeated. Since

there are finitely many subsets of the integers 1,2,...,m, termination
in a finite number of iterations is assured. If °j = 0, some constraint
which is active, but not in the active set, is then added to the
active set. This could happen on several consecutive iterations. With

the non - degeneracy assumption, however, in no more than n steps all

active constraints must be in the active set. Then a strictly positive

s stepsize must be obtained and the previous argument applies,

Al A A S ® .2 A & &

Al CoEEEAY £ 3

o _p e -
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ai,j+1 = aij . for all i with i « k .

Replace j with j+l1 and go to Step 1.1,

The critical properties of the matrix Dgl are summarized in Lemma 2.

They are easily proved using Lemma 1-and the Sherman - Morrison formula.

Lemma 2

-1_ - .
Let Dj = [clj,...,cnj] and Jj ﬁzlj,...,ahj} be determined by the

algorithm. Then

Ve ammmas

a) cjjleiy =1, cisley =0 forall ik with i+ kandagy=ay = -1, :
b) c;jCckJ. =0, for all i,k withOso.ijsmand o = -1, i
c) aaijckj =0, foralli,kwithl<a,, s.m and k + i , j
d) aaijcij =1, for all i withls STELE i
Theorem 3

The algorithm terminates in a finite number of steps with either an

C B ¥ Al P 2o

optimal solution for (1) or the information that (1) is unbounded from

below.

Proof:

For each iteration j, it follows from Lemma 2a) and b) and Step 3 that

c AMENAr s g

gjcij =0 for all i with Qs = -1. (12)

If Sj is constructed by Step 1.1 then either 0311 contains an additional
conjugate direction column (05 = 53) or the number of active constraints

increases by one (05 = Sj). Therefore, Step 1.1 can be used consecutively

.........

T SR TR L. SR, ST, SR i . W VL i .

.............
''''''
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). = f azcij , 1if aij = -1,
1 0 , Otherwise .

-1, if (y.) >0
U, = { IV

+1 , otherwise ,

E
"

-1
s 1y lley = w3117 uyllyslley, - v)

©
n

Lo Micy

Ci5 ° 2(w, )1p , for all i with a4 = -land i # v

y, 541 ° (aé(cvj - 2(w) PV Heys - 200)p,)

Ci 41 = (alc )cv ,j+1° for all i with 0 < %4 5 <m,

= q, for all i with i + v and i # k

A5,5+¢1 - %5
o'v,j+1 =L,

%47 0

Replace j with j+1 and go to Step 1.1.

Step 3.3: Set

- 1 -1
Ck’j"‘l - (a ij) C - .

£C1J] . s .
Ci,j+1 cij [ 3 kJJ Kj * for all i with i # k
and 0 < Q4 5 <m,

-1,

for all i with aij

|
(9]
-

Ci,j+1 = ij

I L S

IR

S P e L . .
. e et m e ®. - . et < T
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If Gj = 85 = +o, print the message "objective function is

unbounded from below" and stop. Otherwise, set °j = min{33.85]

and go to Step 3.

. -1
Step 3: Computation of xj+1, DJ.+1 and Jj+1
Set xJ.+1 = xj - OjSJ, 9i41 = C ¥ Exj+1. Compute
Jj+1 = {al’j+1,..., n,j"’l} and Dj = [Cl.j+1,oco,cn’j+1]
as follows. If o; = 33, then go to Step 3.1.and otherwise
go to Step 3.2.
Step 3.1: Set
(et -1/2
c = feij) for all i with i # k
i!j+1 ckJJ kJ ’
and 0 < a; ij <m
Ci,j+1 = cij s for all i with aij = -1,
O, j+1 = 71
°i,j+1 = aij ’ for all i with i # k .
Replace j with j+1 and go to Step 1.1.
Step 3.2: If aij 20 fori=1,...,n, then go to Step 3.3.

Otherwise, let v be such that
| ¢ J| = max{]a ¢ ] | al1 i with ey = -1}

If a; = 0, go to Step 3.3. Otherwise, for i = 1,...,n,

!.v
set

e G WO

-

_a_

SO N ST

y
".-1
!
8
3
g
]
i
4
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Step 1: Computation of Search Direction Sj

-1 )
Let Dj = [clj,...,c ] and Jj Bllj’

nj

RN . N |

nj

Step 1.1: If there is no i with a;j = 0, go to Step 1.2.

Otierwise, let k be such that

]gjckjl = max{]gjcijl | all i with a;

= 0}

If gjckj = 0, go to Step 1.2 and otherwise set

- { ij’ if gjckj >0,
'ij’ otherwise,

and go to Step 2.

Step 1.2: If there is no i with 1 < g < m, then stop with

solution xj. Otherwise, let k be such

YCp . = ‘C. . i with 1 <a..
chkJ max{ch1J ] a1l i with 1 a5

If g'.ckj < 0, then stop with solution

J

set sy = ¢ and go to Step 2.

kJ

Step 2. Computation of Stepsize 9;

Compute s!'Cs.. If s'Cs. < 0, then set o,
P i 3% ;3

Otherwise, set

that

<m

xj. Otherwise

"
+
8

If a%sj 20 fori=1,...,m set g. = +o,

Otherwise, compute £ and 8j such that

. a,x: - b a:x. - b.
o= L3 . qind T G withats, <0 L.
J 3gS; 1 CH %3 f

..............
.......
........................
..............................

LNt e .
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D;I form a set of normalized conjugate directions. We temporarily

augment the given probiem constraints with the constraints .

dix = dixj . i=qg+l,...,n,

and proceed by dropping these before any original problem constraint

» memmma. . . .

is dropped.

3. Detailed Formulation of the Algorithm )

We now give a detailed statement of the algorithm. The initial data

Ll i AC AT 8:

required is a feasible point X an ordered index set Jo = 0:10,...,ah°]

Tol

. -1 _ ; .
and an (n,n) matrix D0 = [Clo""’cno]' Letting Do = [dlo""’dno]’ the

initial data must satisfy 0 < Q;, <m for i = 1,...,n and for each i

e,

R with 1 <a. <m, we requirea’ x =b_ andd. =a_ .
i . ) A
“ ° %0 % %o 10 %4

At a general iteration j, the algorithm has available xj, the ordered

TP S

. _ S
index set Jj = ﬂalj,...,ahj} and the (n,n) matrix Dj [clj""’c .J.

nJ

i . o . ]
?ig Letting Dj = [dlj""’dnj]’ for each i with 1 < @ 5 < m, constraint aij
Li" is active at X3 and its gradient is the i-th column of Dj. A1l i3 for
ke :
b which a;; = -1 form a set of normalized conjugate directions which are
b
rJI orthogonal to the gradients of the active constraints.
e
s . . :
e We assume that each x € R is non - degenerate; i.e., the gradients of
b -
». those constraints active of x-are linearly independent.
?' With initial data x_, D;I and J , we set j = 0 and the steps of the ﬂ

algorithm are as follows.
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d) The result follows from P = PQ and BQ = P(QQ) = P.

ef fiq

Pl ]
.

Yol

n:‘
1
\
X
\

» o
» '4-
*'-
b

Continuing the previous discussion, we can use
P‘_' [Cq+1,.-.,cn] 9 d=a£

and then apply the lemma to get

~

P = [cq+1,...,cn] .

Part a) gives Ei in terms of the c, and a,, part b) shows that the

c; are normalized conjugate directions, and part c¢) shows that (9)

is satisfied. Parts b) and d) show that if 03 is replaced with

Dj = [al,...,aq,ch+1,...,Ccn] s

then

-1_ A~ ~
Dj = [cl,...,cq,CQ+1,...,cn] .

It is possible that q = n; i.e., exactly n constraint are active at

Xj’ or, that a, is orthogonal to cq+1,...,cn. In this case, we obtain
. . -1 . . -1
¢t f . . D, .
4 DJ+1 rom DJ by replacing aq with a, DJ+1 is obtained from DJ and
?ﬁ; a, using the Sherman - Morrison formula and the conjugate direction
S columns of D 1 remain unchanged.
} J
9
;13 We allow the algorithm to begin with an arbitrary feasible point xo.
?? ' Suppose constraints 1,2,...,q are active at X+ Let
P
@
5_., D0 = [al,...,aq,dQ+1,...,dn] .
(-
p": . .
E&. where dq+1""’dn are any n - vectors such that D0 is non - singular.
r. If ¢ < n, we cannot in general assume that the last n-q columns of
L
b"
é
d
@
-
| "
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Substituting

x; =} 4 My -y) (23)

into Fi(xi) and the remaining constraints of (16) we obtain

Qij(Y) = Fi(Xg + Mij(yj"y))

and

' j j_ - !
av(x]-+M1-J-(y y)) =8B, - by

or

LN | - ' J J
(by —aMisdy < B, = a (xy+M; %) .

This leads to the following master problem:

Minimize

P
Q(y) ¢= 1£101J(.Y) + Fo(.Y)

S J
o |
& subject to 1
S vaSBv’ v=mp+1,...,m ‘
t and E
? 7 .
Voot - Al J J
E? (b)) avMij)y < Bv av(xi-+Mijy ) :
. .
! for i =1,...,pand all veE {m. ,+1,...,m.} such that v ¢ J. .. y
{ i-1 i ij ‘
» j+1 -1 |
® Il 4oL = :
;:~. Let y [ Dj+1 (Ci,j+1,'..’cn,j+1)’ and Jj+1 {al"]+1’-o-,an,j+l}
:ﬂ be an optimal solution to the master problem and the associated matrix
E; and index set, respectively. Define the sets Ij’ Ilj’ ...,ij such that
.!! r € Ij if and only if r € Jj+1 and r € {mp+ 1,...,m}; r € Iij if and only
i

- .
......
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ifre .JJ.+1 and r € {m, _;+1,...,m.].

Since gradients of active constraints of (2) are assumed to be linearly
independent, it follows that the gradients of the active constraints

of the master problem are 1inearly independent. Thus we may assume that

j+l

the gradients of all constraints which are active at y are among

the columns of Dj+1.
Use (23) to define

Jj+1 _ ] j _Jtl .
SARER Mij(yJ vy, i=1,...,p.

Then it follows from (21) that

j+1 _j+l j+1 j+1
AR ARPRRR AR (24)

is a quasi - stationary point for the problem (2) if there are numbers

Av, wiv’ and Air such that

j"‘l) =

“F  (x3 ...p (25)

1]
e
o+
>
-
[]
—

i+1
J)...

[
t~

>

o

+
o~TO

_VFo(y WPy 1‘=1[V€Z‘J”¢;>1.\)t>v+ ) )\irbr],(%)

vely ij ij

We will first show that (24) is a quasi - stationary point if the following

condition is satisfied.
a. € span{avlv € Jij} for all re Iij’ i=1,...,p. (27)

Indeed, it follows from (22) and (27) that there are numbers Tiv and Py

such that



Y vy
» f
.
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. J+ly _
VF(xy) = Tivdy (28)
vVEJ, .
1
-2, = I3, forallrel, i=1,...,p. (29)
ved. .
1J
1

Furthermore, because yJ+ is an optimal solution to the master problem

there are A 2 0 and A, 2 0 with
v ir

j+1
I

- 8 o0yt - 08 -

'VQJ' (y i21

J Ab + E T A, (b -Ml.a). (30)
vV .2 irr ur

Using (29) we have

-1 A A =- A, ! .p.a =
irr ir rvwv
rGIU relij vedu
=- F ( ) A P )a
iwrrv v
vEJ].J. re€ i
With
Oy T Tt L Ao VE I (31)
r€I1.J.

it follows then from (28) that the equality (25) holds. Observing that
_ J+ly _ Jj+1
inj('y )-MijVFi(x'i )

and using (28) and (20) we obtain

J+1, _ ' =
ij(y ) = vEZJ _TivMijav - vEZJ Tivdy - (32)

ij ij

vQ

AL




:—_:]

!

By (29) and (20) we have for i = 1,...,p, “f
Mija, = I e b, forallvel.. (33) -

vEJ, . -i

1]

. :J

Hence, (26) follows from (30) - (33). e1

In order to compute a quasi - stationary point for problem (2) we,
therefore, solve the subproblem (16) and then formulate and solve the fﬁ

master problem. Finally, we use Step 3.2 of the algorithm to update

D 71 by incorporating as many gradients a e € I i into D'

iJ
possible. Denote the new matrix and index set by D lJ+1 and J,

i,j+1°

respectively. If,

J

541 =93y fori=l...p,

then (27) holds and (24) is a quasi - stationary point. If J.

i,j+1 * Jij

to formulate and

Jj+1 -1
for at least one i, we use x1 . Di,j+1’ and J1, 41

solve a new master problem. Since this iteration strictly increases the

total number of positive elements in the index sets, a finite number of

iterations suffices to generate a quasi - stationary point.

Now let us assume that (24) is a quasi - stationary point, i.e., equalities

(25) and (26) hold. We have seen that Av 2 0 and Air 2 0. Thus (24) is

1 -1
J+1

an optimal solution if«niv 2 0. Using the properties of D; and D}

deduce from (28) - (30) that

.. = -C. VF.(xq+1) s VEUJ,.

v 1v 1 1 g ~|J’ is= 1""'p ’ (34)

o_. = -C, a , v € Jij’ i=1,...4P »

rv ivr

= -Ci . ij(.Yj+1);

Aw i,5+1 rEIﬁ, i=1,...,p .
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(22 | DN

'S

Thus the multipliers w;,, can be computed from (31). ]

-v—w-w

"l"a"

.
'

For i = 1,...,p determine ki with
wiki = m1n{wivlv € Jij}

and define the set ij < {1,...,p} such that i € fj if and only if . H

W < 0. Then (24) is an optimal solution to (2) if and only if fj = 0.
i

Let i € ij. Then further progress can be made if the constraint with index

ki is dropped from the set of active constraints. Since (21) shows that W
{ every constraint with v € Jij 1s treated like an equality constraint we

have to delete the gradient a, from the matrix D%.. If Iij =@, it

k. J
i .

[?F follows from (31) that Tk, = 95 < 0, which by (34) implies that x2+1 r
- i i

is not an optimal solution to the subproblem

. ' Chiodtl
mln{Fi(xi)Ia X, < Bv bvy R

o5 v=m.1+L”.mg

]-

Thus we can use the algorithm of Section 3 with initial data xg+1,
-1

Dij’ and Jij to compute an optimal solution.

e .

If Iij + @, choose any £ € Iij and update D;; as in Step 3.3 of the

algorithm by replacing aki in Dij with ap-

Y

t After modifying the matrix D;; in this way for every i € fj we define

f and solve a new master problem. Continuing as described above we will

. obtained a new quasi -stationary point which gives a smaller value of
:" the objective function (2a) than the previous point (24). Thus the method
f ' will terminate after a finite number of iterations.

.
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