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ABSTRACT

We develop methodology for performing time dependent

quantum mechanical calculations by representing the wave fuanction
as a sum of Gaussian wave packets (GWP), each characterized by a
set of parameters such as width, position, momentuam and phase.
The problem of computing the time evolution of the wave function
is thus reduced to that of finding the time evolution of the
parameters in the Gaussians. This parameter motion is determined
by minimizing the error made by replacing the exact wave function
in the time dependent Schfoédinger equation with its Gaussian
representation approximant. This leads to first order
differential equations for the time dependence of the parameters,
and those describing the packet posjition and the momentum of each
packet have some resemblance with the classical equations of
motion. The.paper 'studies numerjically the strategy needed to
achieve the best GWP representation of time dependent processes.
The issues discussed are: the representation of the initial wave
function; the numerical stability'and the solution of the
differential equations giving the evolution of the parameters;
and the analysis of the final wave function. Extensive
comparisons are made with an approximate method which assumes
that the Gaussians are independent and their width is smaller
than the length scale over which the potential changes. This
approximation greatly simplifies the calculations and has the
advantage of a greater resemblance to classical mechanics, thus
being more intuitive. We find however that its range of
applications is limited to problems involving localized degrees
of freedom that participate in the dynamic process for a very
short time. Finally we give particular attention to the notion
that the GWP representation of the wave function reduces the
dynamics of one quantum degree of freedom to that of a set of
pseudo-particles Qeach répresented by one packet) moving
according to a "pseudo~classical” (i.e. classical like) mechanics
whose "phase space"” is described by a position and momentum as

well as a complex phase and width.
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1. INTRODUCTION : X S
-10

In 2 series of papers Heller1 developed a scheme for ;
computing and interpreting time dependent gquantum mechanical
processes by representing the wave function as a superposition of wZ
Gaussian wave packets.. Since each packet is characterized by
several parameters, {(the position and the momentum of the
packet's center, a complex width and a complex phase) the
calculation of the time evolution c¢f the wave function is reduced

to that of the time evolution of these parameters.

In his applied work Heller used a version of his method i
(which we call here the simplest Heller method {SHM) which is ! ﬁ;
based on two simplifying assumptions. (1) The first assumes that :ﬁf
if we must represent the wave function by a sum of Gaussians, we ’:é:
can propagate each Gaussian independently. This means that the %Sﬁ
equations of motion for the parameters of a Guassian GA are not . k;}
allowed to depend on the parameters of another Gaussian GB' We Ej:
call this the independent Gaussians approximation or IGA. (2) It Eﬁ}
is further assumed that throughout the (i.e., collision or photon ﬁ;ﬁ
absorption) process the width of each Gaussian is smaller than %Ei
the length over which the potential changes. This allows the ;ii
use, at each time step, of a second order Taylor expansion of the %j?
potential around the instantaneous center of the Gaussian. We Si&:
call this the locally harmonic approximation (LHA). '53;

o

SHM was used successfully by Heller to analyse a variety of
time dependent processes such as atom-diatomic collisionl, photo-
dissociation7, photoabsorptiong, Raman scattering and atom

diffraction by surfaces.10 The method provides accurate results

as well as a novel and beautiful interpretation of quantum
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dynamics in terms of a classical language. A common feature of

‘%
'

«
wt
3

1
Eal g W

these applications is that they all deal with the short time
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5 dynamics of localized quantum degrees of freedom; in a way their

success reflects mostly Heller's skill in identifying important
- problems that fit the SHM validity conditions, rather than the
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generality of the method.

The purpose of this paper is to explore the use the
Gaussian wave packet (GWP) representation 'seyand the domain in
which SHM is valid, by abandoning IGA ang LHA. This is done in
the spirit of Heller's work and requires mostly a revision of the

manner in which his ideas are implemented.

For simplicity we consider one degree of freedom only
{other cases will be discussed in future work) and assume that
the wave function can be represented as a sum of Gaussians. This
can always be done profitably if the degree of freedom is
localized throughout the process of interest. The reduction of
the propagation of the wave function to the propagation of the
parameters describing Lhie Gaussians is achieved by using what we
call the minimum error method (MEM) (Section II); essentially
this applies least square fitting type methods11 to this
particular problem and it contains a known "time dependent

variational princ;iple"12

as a particular case. The latter was
also used by Hellerlzc in the context of propagation of

Gaussians.

The MEM equations, giving the time evolution of each
Gaussian's parameters, give an accurate solution of the time
dependent Schrodinger equation as long as the sum of Gaussians is
a good representation of the wave function; that is, as long as’
the Gaussians provide an adequate basis set. In Section III we
compare the MEM equatiorMs to those obtained by making the LHA and
the IGA approximations (i.e. SHM). We show that MEM works very
well in situations in which SHM has serious difficulties. Since
one of the remarkable advantages of SHM is its ability of
describing quantum processes in terms of classical concepts we
pay special attention to the classical like physical picture

underlying MEM, which we call here a pseudo-classical mechanics.
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N The remaining sections are econcerned with more practical Cyb
g ’ matters: the initial choice of the Gaussian representation ;ﬁb
-g (Section 1IV), the final state analysis (Section V) and the F}ﬁ
xS . —
numerical .stability of the MEM equations. -
It is our feeling that the use of a Gaussian wave packet ?f&
representation as implemented here, is likely to be very useful T
in treating quantitatively problems in which localized quantunm :
degrees of freedom are involved in dynamic processes of ﬂff
moderately long duration. It is particularly suited to problems ?Z
in which such degrees of freedom are coupled to a large number of :fj

classical variables whose state is specified only statistically ot
({e.g. through a temperature) since the coupling of classical and E
. quantum degrees of freedom presents, in this framework, no .
conceptual difficulty. ey
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II, PROPAGATIOH

11.2 Mazthematical Prelimiraries :_Q
N [ A

I1.2.A. The minimum error method (MEX) f?i
We are concerned with equations of the form R

¢ = AY (I1.1)

where ¢ is an unknown vector in a Hilbert space and A is a known
time independent (this restriction is not necessary) operator.
We assume that we know a physically motivated way of writing ¢(t)

in the form

Plxit) = d(xi{x, (1)) (11.2) b
where the explicit functional dependence of the approximant ¢ on ijg
the parameters xl. e xN is known and the time dependence of ¢ R

takes place exclusively through kl(t), .o an XN(t). Thus we can
derive the time evolution of ¥ by finding the parameter
trajectories Xi(t) which satisfy

T S L
/3t = 55— X, = Ad . (I1.3) 0K

i

(Repeated indices are summed over). Since we know the explicit

dependence of ¢, A9 and 3¢/3ki on x and X\, we can use (11.3) to i}ﬂ
develop the following iteration scheme. We assume that ki(t). i —
=1, ..., N are known and use (II.3) to compute xi. i=1, ..., N; :“i
then we can detecrmine ki(t+T), for small T, from . :ﬂg
i

A (teT) = A (1) + X1 o+ 0(x) . (11.4) ‘o=

..
s

P

B R
Wttt

and repeat the procedure. THhe scheme can be started at the

L,
’
R
W Sale

initial time t=0 for which we know the wave function, therefore
the values of ki(o). i =1, ..., N.
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The equation (II1.3) provides us with an infinite number of
equations (one for each value of x) for the N unknowns ii(t). To .

deal with this sitwation we discretize the problem by using Eq.

(11.3) at a2 finite number of points X n=1, ..., 4, M 2 N, ﬁ:s
Thus, we have g
(3¢(x 5 () /X = adlx s 0)) (11.5) ot

If we denote Cni = -3¢(xn)/3ki and Bn = A¢(xn) the matrix equation
CX = B is a set of M linear egquations with N unknown and M 2 V.

Such equations appear in the "calculus of observations"11 ;éj

whenever the number of data points taken by overly industrious i‘f
experimentalists exceeds by far the number of unknowns to be i{}

. . determined. A customary, but not unique, way to get the "best" ?ﬁ:
- solution is to minimize the quantity ﬂil
q * . b

Eﬁ & = i Wn(cnik1 -Bn) (ankJ—Bn) {({I1.6a) :TK
Ej with respect to the unknowns ii' The weight W is included to ;ii
- allow us to de-emphasize the role played by the less reliable e
Ei points n, or to enhance the influence of the relliable ones. The 33;
Ei extremum'(hopefully a minimum) conditions as/aii=o (for ﬁ;:
;: simplicity we assume real parameters) lead to a ¥ x N equation ii;
{:?_. LT W c:nlcnj)ij =B, (I1.7a) T
jon R
? where c+ is the adjoint matrix of C and C;n = C;i‘ This equation gZi
;& has a solution If the rank of the matrix Dij=§ WnC;nCWj equals N. Th:
¥ ' Since D is the Gram matrix of C the rank of D is equal to the Sﬁ;
;2 rank of C. Thus, the parameters ii can be determined if the M x :éﬂ

N matrix Cni = 3¢(xn{X})/3ki has one N x N minor whose

determinant is non-zero. By taking the continuous limit (the x

[y

axis is divided in M segments of equal length Axn, xn is taken in
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the middle of the corresponding segmeat and M - ®w) and using wn = Ry
X 4% ~we can rewrite (II1.6) as . .:Hﬁ:
. * . “:‘:::
& = Jdxx(x) (ﬂ— X, = Ad) (39— X, - Ad) (11.6b) RS
Ix i 3N J ;
1 3 L s
and (I1I.7) as ;;3
3d ¥ 3 Q 3 * SO
saxx(x) (3297 32 £, - raxx(x) @297 A . (11.7b)
axi 3lj 3 axl N
{
This minimum error method (MEM) with the particular ::,-

implementation given above reduces (when we take x{x) = 1) to the
time dependent variational principle previously used in quantum

mechanics.12

The change of the point of view introduced by the
above presentation has a "liberating" effect since: (a) it shows
the tremendous richness and fleiibility resulting from the
existence of a large number of legitimate and resonable
definitions for the "error" &, each leading to different
equations for the propagation of ki(t); (b) it indicates that
this is a mathematical procedure that can be applied to the
propagation of any observable, not a physical principle tied to
the wave function anéd the time dependent Schrodinger equation.
Its main function is to reduce the propagation of $(x,t) in the
Hilbert space to the computation of N trajectories xj(t) in RN.

11.2.B. A Perturbation Theory Approach t?y

The propagation scheme presented above seems to be of first e

order in-the time step T, since it solves Eg. (II.7b) for X and

then uses (II.4) to find.xi(t+1). We can attempt to use large
time steps by considering that (II1.7b) is a first order <

differential equation and by applying the Runge-Kutta (RK) Y G
method. However if Eq. (11.7b) is a first order expression in T 3;?
the use of a high order RK procedure would be incorrect, for the E?i
reasons explained below. Let us consider the equation A = f(t) = ?ﬁf

0(12) and compare it to X = f(t). The RK method applied to X =




‘}"}:'-:._

PN

PL:
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8 :ii

b

f(t) uses the expansion e
. . 2 e 3 4 y ":52

At+T) = X(t) + X(t)Tt + X(t) v°/2 + X (t) TV/3! + O(%1" ). Ny
(II.8a) ==

. 2 . 3 4 d '.. ‘

= A{t) + £(t)t + £(t)r°/2 + £ (t)T /3! + O(7 ) (I1.8b) o
However if the equation is X = f(t) + 0(12) the expansion (Il1.8b) ;il
misses the third order term 10(12) as well as the higher order Lrﬂ
terms originating fronm 6(12) and 3(12). NS
To check whether the use of RK method to solve Egq. (II.7b) ' fﬁﬂ

is legitimate we can compute (II.8a) by perturbation theory and :f'
compare it to the equation (I1.8b) used by the RK method. We e

find that the two procedures coincide only when a certain . :;
definition of the error & is used.

.

If we take a time step T, causing a parameter change ?ﬁ?
6X(t)equal to . ?jﬁ
. o 2 3 ’ ?‘
SA(t) = X(t)r + X (t)T%/2 + O(1™) (11.9) 5
the approximate wave function changes by :ﬁ}
2 2 o2 s
86(t) = o(t+T) - o(5) = 22 (X1 + X T « 2 312 ({22 43 A
3 2 2 2 2
X
] : (I1I1.10)
The same change can be written as
s0(t) = Ad(t)T + 3 A%9(t)7? 0%y o (11.11)

by expanding formally &(t+71) = exp{At} ¢(t). Since the two

- ' expressions must coincide order by order we have ?Z:
= 20 5. - A (11.12a) R
- 3Xi i o

and y °
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2 P 29 ; 52 = A% (11.12b)
PN

This corresponds to using 3¢/3t = A and,32¢/3t2 = A2¢ as two
independent equations. We can now apply the minimum error method
to thenm.

We have two infinite sets of equations to determine 2N
unknowns ii and ii' Eq. (I1.12a) is the same as (I1.3) {thus
giving the false impression that (I1I1.3) is valid in first order
only), but Eq. (ILl.12b) has not yet been used. To apply MEM to

these two egquations we define
= 3 5 *3% 5 .
. &1 = IdXX(x)[BX x Ad] [a)~ X Ad] (11.13)

and use 3&1/3l = 0 to compute X This leads to Eq. (II1.7b).

i
Then we define

8, = Jaxx () (52 X - 00317152 KX - a(en (11.14)
with
2, _ 3%¢ .2
d(t) = A"¢ - — (11.16)

3

and use 3&2/3i = 0 to determine X (X is already known by solving
(II1.7b)). This leads to

3 *
Fx(x) -g—gi—%-g dx X = Fdxx(x) g: S(x:t) . (11.17)

Note that we could have legitimately defined the error as & =
&1 + &2 and used 3&/3X = 0 and 38/3X = 0 to generate equations
for X and X. The equations obtained in this way are different

00

from (II.7b) and (II1.17). In particular, they do not give for X

the same value as the time derivative of Eq. (II.7b).
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HWe can now turn to our original question: Is x computed by 3ﬁ§i
taking derivatives of Eq. (Il.7b) identical to the value of X . tg;;
given by Eq. (II.17)? A straightforward calculation shows that F .
this is the case. Therefore a n-th .order RK procedure applied to 'f;i
the first order "variational" equation (II.3) is egquivalent to :i%ﬁ
the use of a n-th order perturbation theory within MEM and is :%%I
thus wholly justified, This is a pleasant result since the use er
of the existing RK programs, which compute the needed derivatives féff

internally, can save a large amount of labor. Note, however,
that the use of the error & = &1+&2 with the equations 38/3x = 0
and 3&/3x = 0 leads to equations for X and X which are not

~equivalent to the RK expansjon of Eq. (II.7b). This is true for
other error definitions that we have considered.

I11.2.C A Global Minimum Error Method

- The applications of MEM discussed so far were all made by
using errors defined locally in time., Below we discuss an

extension of the method which has a truly variational character

since it determines the trajectories ki(t) which minimizes the
error functional

- ;mr?w -
-,‘ -' l‘l *

v.
™~

T
& = roatn(t) faxx(x) (3%, - a1 (3 %, - ag1 . (11.18) i
0 1 i

The local method varidies the numerical value of ii(t) so that the

SIS E SN
{ ¥

error &(t) made at _time t, is minimized. In (I1.18) the whole

curve ki(t) is adjusted to give a minimum value to &. The weight

. n(t) has been incorporated to permit us to emphasize or Pansda
deemphasize, as desired, the importance of some of the points on Kﬂf
the trajectory. Taking the functional derivative 8&/8l1(t') and '??

equating it to zero leads to
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n(t)Re<a¢/axp|((3¢/axj)ij-A¢)>[5(t-r)-s(t)]

-2(dn/dt)Re<(3¢/3xu)l((3¢/ax )ij-A¢)>

J

Y

. v 3¢ .
j 1*5 + 3N ki - A3lj kj 1>

—2n(t)Re<A3¢/3x“|[(3¢/3Xj)ij—A¢]> = 0 (11.19)

-2n(L)Re<(3¢/3xp)|[(32¢/3kiax

The first term appears because we have not specified any

constraints for the variations Sxi(T) and Ski(O) at the ends of
the trajectory. We can eliminatg it by taking n(T) = n(0) = O.
The second term is zero if n(t) is a constant; if the first two

terms are thus eliminated n{t) disappears from the equation.

The equation obtained above is rather different from the

preceeding ones and there are no theoretical grounds for

rejecting one in favor of the other. The existence of so many

ways of generating the trajectories in the parameter space
originates from the fact the the "best" solution of an infinite
set of equations having a finite number of unknowns is not

uniquely defined.
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IXI.3 PHYSICAL APPLICATIONS OF MEY
II.3.A The propagation of the wawe function.
In the application presented below MEM is identical to a

3,12

known "varlational principle”. Its application to the

propagation of Gaussian wave functions has been briefly discussed
3 : s s
by Heller. d Therefore we present it here with a minimum of

details which are indispensable for understanding what follows.

We consider a representation of the wave function of the

form
NG
p(xit) = 2 GA(X‘(AA:: ):(FAa)) (I1.21)
A=1
where the -parameters AAa(t)' « = 1,2, ..., CA are complex
functions of time and TAa(t). as1, 2, ..., RA are real functions
of time, and CA and RA are integers. The equation (II.21)

represents the wave function $(x;t) as a sum of localized

"fragments" GA whose explicit dependence on the parameters A and
I' is known. For a variety of reasons, well summarized in Heller's

1-10

papers, the use of complex Gaussians for G, is particularly

A
advantageous. Other functions of the form

m

n .
(20 () (empy (0)M)0, (3 1A ) (T,))

where Qn(t) and pn(t3 are functions whose time dependence is to
be determined and GA is a complex Gaussian, have similar
advantages and greater flexibility.

To calculate the parameter trajectories (i.e. the time
dependence of AAa and PAa) we use MEM with the definition (11.6b)
for the error & and the operator A = (ih)-IH. where H is the

Hamiltonian.
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The use of the weighting function x(x) require some comment
since previous applications of the "variational principle" use
x(x)=1. In most dynamic ppoblems we are not interested in
computing the wave function, but its projection on some given,
time independent state |T(0)>. For example in computing the
total absorption cross section for an electronic excitation of a
molecule by light we must propagate in time the nuclear wave
function T(x;0) = <x|T(0)> of the electronic ground state on the
final electronic energy surface (Franck-Condon approximation is
implied), to obtain the wave function v(x;t) = <x|T(t)>;: the
Fourier transform of <t(t)|T(0)> with respect to t gives the
total absorption cross section. One can show in fact that such
quantities are generalizations of the one partirle Green's
functions used in many body theory from the case of a quasi-
particle excitation to that of a transition from one many-body
state to another. 1If our intent is to compute such overlaps we
might as well weight the error & accordingly by taking x(x) =
T(X;O)*T(X;O). Thus we determine AAa and rAa so that the wave
function Y(x;t), given Dy Eq. (I1.21), has minimum error for
those values of x where x(x), hence T(x;0) is not zero. If
T(x;0) is very localized this procedure should allow us to fit
p{x;t) with fewer fragments GA(x;{A).{P}) than in the case when

we try to fit the wave function in the whole space.

Applying MEd to the approximant defined by (I@.21) and the
error defined by (I11.6b) gives

. . B o o
= Aiarp®ap A A T Caasarartaalarar
AT i A T :
BAp;A'a'AAg Parar BAH;A’H' A CA'a'
« X x . . x* .
D D

ap Pap “ Pap Aap  Eaalaa t EBaalaa (11.22)
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with ] g}ﬁ
. . '-.‘-“
5 .
AAp;A'g' R <(3GA/3AAH)|(36A,/3AA,p,)> . (11.23a)
- 2 ~ ™~ ) [ :::.‘-"I::
BAp;A'a' R <(3GA/3AAp) ‘(°GA'/3‘A'a')> , {I1.23b) . G?K
2 .
cAa CAval R <(3GA{3rAa)I(3GA'{3FA'a')> , (I1.23c) e,
I"Lw
DAp = iﬁ((aGA/al\Ap)IHL]J> ' (11.234) ':':;::f
Y
EAa = 1h<3GA/3FAa)|H¢> . {11.23e) T
and S
N e
<P (x)P{x)> = fdx x(x)d(x)P(x) (I1.24) AR
. ) .'- n'
To minimize & with respect to the complex parameters, as required W
'* -\",'
by MEM, we can use AAp as independent variables and generate one }ﬁi
Ny 2 .* '.A"k~
complex equation (for.AAa and rAa) from each condlfion 3&/<3AM1 = ‘fz}
0. The condition 3&/?Aa = 0 for the real unknown rAa leads to y;{
one real equation. These equations are ;
ot
ABs;Ap AAp + BBS;AarAa + DBP = 0 (I1X1.252) }ix
-
and ) ?;.
F ~ . + X ':‘.&"
E:: (RecBb;Aa) I'Aa + Re(BAp;BbAAp) + Re EBb = 0 (I1.25b)
i: Previous work treated all parameters as if they were complex thus :?i
i' generating one unneeded equation for each real parameter. In all o
- ;
. the cases that we are aware of this does not lead to errors or ?Tf
- serious complications since the superfluous equations can be e
é: eliminated by inspection; they are linear combinations of the _ﬂg
5 other equations. For more complicated representations of Y(x;t) :tE
it is easier to use the procedure described here, which gives ?T
N
only the necessary equations, thus avoiding the extra work needed *ﬁ}
to carry out the elimination mentioned above. T
i
-
—_
%
] L
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11.3.38 The propagation of various obseryables -

Yol

-y

Since the wave function contains all the information we can

oy

-
s
L' T

possibly want to know, about the system, it contains superfluous

L

information whenever we are interested in.a small number of

Yo

observables. Assuming that there is some prcportionality between Ek

the amount of information wanted and the effort required to get g:

it13 we might hope to save labor by determining the parameter f;

trajectories that give the best fit to the observables of ri

f; interest only, rather than by fitting the whole wave function. :}

?E In the case already mentioned, when we want the overlap of ¥{(x;t) E

ﬁ: with a localized function T(x;0), we can hope to need fewer ti

Ef "pleces" GA (e.g. Gaussians) if we determine Y(x;t) only in the tf
Eﬁ spatial region where T(x;0) is large. Similarly, if the

E; variation of the wave function ¢(x;t) with x, at a fixed post- {;

ti collision value of t, has a broad hump on a length scale L with -

;f‘ small wiggles on the scale 1 superimposed on it, then a matrix ;;

C; element with a planar wave function of momentum of order h2w/1 is 5‘

éi totally indifferent to the existence of the hump; it is however ;ﬁ

:& very sensitive to the details of the wiggles. Therefore a %:

k?j calculation that gets the wiggles right and misses the hump {s ;;

i‘ gquite satisfactory. Again, one can hope that such diminished -

Ei demands on the quality of the wave function requires less work j;

;i (i.e. fewer Gaussians) than the case when we attempt to fit Sj

i; P(x;t) with wiggles, humps and whatever else. :é

3 =

Since MEM is a method of solving differential equations, g

rather than a variational principle specifically tied to ih3¢/3¢ ' 55

= HY, we can apply it to generate parameter trajectories that éf

give adequate results for some observable. Several examples, i

which should provide ample illustration on how to proceed in ' ;?

general, are given below., For simplicity we confine ourselves to .ﬁ

the case of one approximant (rather than a sum, as in Eq. zj

(IT.21)) and several reaf parameters ki. The generalization to fi

ot

; I

b

A e S e e e
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the case (II1.21) is straightforward.
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(¢) The use of the transition probability to determine the

parameter ~trajectories. el

Let us assume that at pdst-collision times we are f}'
interested in the probability that the systems described by ¢(t) o
is in a continuum state |k>. Taking the time derivative of the L

probability

‘P(kit) = !<kMJ('C)>I2 , (11.26)

using Eq. (II1.2) to approximate Y(t), and the Schrodinger

equation to compute é. we obtain

P(k;t) = (ap/axi)ii = (2/R) Im <k|Hd><d|k> = f(k;t)
(11.27)
Since this must be satisfied for all values of k (spanning the

continuum) we have again an infinite number of equations and XN

unknowns ii' MEM determines the unknowns by generating an NxN

equation for them. 7This is obtained by minimizing

& = fdk x(k) ((3p/ax%X; - £(x;t))? (11.28) o
with respect to ii' The result is ) v
. . 3 %
(Fdk x(k) 2E— 225 = pdks(x) (22—) f(x;t) . (11.29)

3N, OX.'77] N, e

i J i r
since we know the functional dependence of ¢ on X, (t) we —
can compute the matrix elements appearing in (I1.29) whenever we :ﬂﬁ
know the values of all the xi at t. This allows us to determine ;iﬁ
U U \'."4
ki(t) and ki(t+r)=xi(t)+ki(t)r, providing us with ah iteration ﬁﬁj

scheme to get ki(t) at all subsequent times. If ¢ is a Gaussian i
o
and k> a planar wave then <dlk> is a Gaussian and <kiH¢> , S
|
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contains moments of a Guassian (from the kinetic energy operator)

FS and integrqls of the form fdx exp(—ikx)(x—xt)nv(x)¢(x). The e
Eﬁ latter can be performecd analytically if V(x) is-fitted by ' ;?
E: Gaussians, exponentials, pdlynomia}s or any combination of them. E;i
The same procedure can be applied when we are interested in ' :ff
Pn(t) = |<n|¢(t)>|2, where n is a discrete state. The equation ;E

of motion is -

(apn/axi)ii = (2/h) Im<n|Ho><p|n> = £ (1) (11.59) e
If the number of wave functions |n> used in Equation (II.30) i§ ;k;
larger than the number of unknowns ii (this is always the case in ;;

a Hilbert space of infinite dimension) then MEM gives .
. 3P
[i xn(apn/axi)(apn/axj)]xj = i Xn 3{: fn(t) ) (11.31) i3
o

where Xn is a weighting factor. ?i

Note that the projection on discrete basis sets to give the ﬁg

probability Pn is of interest in bound state dynamical problems gi

(e.g. a semi-classical external field drives the system into a b

steady state which is a superposition of the eigenstates of the &C

system). In collision theory we need probabilities of the form f
|<k|<n{¢(t)>|2 = pn,k(t) in which k describes the relative -

translational motion and n the internal states of the fragments. -

MEM can be applied to such situations (to compute trajectories 'i

determined for the best fit of these probabiliites) with no . ?iz

additional conceptual difficulty. 'f;

2 () The use of expectation values to <determine the ;?
; trajectories. 3}
;
X If we are interested in knowing the expectation value of an l:{
operator O at time t we can use it to generate trajectory if

T
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equations. We have .
dp
: 4 ] nle)
- ST o<e(t)]olp(t)> = T 0~ =T o f(t)  (Il.32)
n n
where P is defined by (II.26) and £ by (II.27) (we assume here L
that the discrete basis set provided by the eigenvectors of 0 can }55
describe adequately the dynamics, thus only 0nn = <n{0jn> L
appears). W¥We can now use the error v
: & =2 (0 )2((3p_/ax )%, - £ (t))2 (11.33) -
- n nn n i'1 n

in which the probability equations (I1.30) are weighted by the

matrix elements of the operator O. Thus the importance of the

- states likely to contribute more to the mean value of 0 is
emphasized and the others are weighted down or multiplied by
zero. 3By equating wi;h zero derivatives of & with ii we obtain

(I1.81) with the weight x_ = <n|0fn>. s
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I11. Approximate Propasation Schenmes T
ITI.1 Introductory Remarks - . ;?i
g
The equations (11.25) can in principle be used to find the ] g&?
time evelution of the wave function by finding the parameter —
trajectories., If the physics of the problem fdOrces us to use too
many Gaussians we might have to abandon the method or to look for :f
some simplified propagation schemes. -
To see how rapidly the complexity of the method can Ei:
escalate let us consider a time dependent quantum mech.nical ' ii}
problem involving two three-dimensional variables R and T. We ﬁi‘
need nine complex parameters for the width matrix for the F;~
variable R and nine for ?; Wwe must also use terms of the form (ﬁ— '
Kt)-?? -(?—?t) to permit correlations between the two degrees of ' }ﬁé
freedom and this requires nine complex parameters. Thus the D
characterization of the width of the Gaussian requires 27 complex ;:‘
parameters. To this we must add 6 positions, 6 momenta and a E?:
complex phase. Thus if we deal with six correlated degrees of ;j;
freedom we need a total of 68 real parameters per Gaussian. For "23
ten Gaussians we must solve 680 first order differential ;3;:
equations. :::

Assuming that in the dumbest possible way we saturate the

space with Gaussians and are willing to solve 700 (or even 7000)

equations, the method could still be used since all the labor
required to carry out the integration to obtain the parameter
trajectories is thus roughly comparable to ‘that needed in

molecular dynamics; seven thousand equations corresponds there to

2333 atoms, which is fully within the capability of present day

computers.

The disadvantage of such a brute force attack is the loss
of the simplicity which makes the Heller method so appealing in

the first place. It is not surprising therefore that mest of
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Heller's effort was directed towards éimplfying the parameter

equations of motion. Such simplifications are physically

notivated and their success depends on the problem being E}_
addressed. Nevertheless some of their features are sach that can f*h
be discussed in a general setting. s

All numerical calculations carried out so far have used two
approximations. (1) If the wave function was constructed as a
sum of Gaussians, it was assumed that matrices A
ReC

BgiAun ' BBs:Aa !
Bb;Aa and DAp;Bb are diagonal in the indeces B and A which
label different Gaussians, This approximation decouples the
Gaussians and we call it here the incdependent Gaussian
approximation (IGA). (2) If we assume that each independent
Gaussian is, throughout the collision, narrower than the spatial
range over which the potential changes appreciably, we can
further simplify the matrix elements since they can be evaluated

by expanding the potential in power series around the center of

the Gaussian and by retaining the first three terms of the
expansion. That is, at time t we use o
-> -> ->

V(T) = V(?t)+(3V(rt)/3rt

)(r-?t)+(1/z)aZV(?t)/a?t2 (F-F,)*

where ?t is the center of the Gaussian. In what follows we call

this the local harmonic approximation (LHA). The main appeal of

this approximation is that the mean position (i.e. the center of

the packet) and the mean momentum of packet move according t> Lmary
classical mechanics. As shown by Ehi‘enfestl4 this property has ﬁﬁ%
nothing to do with the use of Gaussians for GA(?,(XA}); it is %f?
valid whenever the regioh over which Gy is non-zero is smaller &E‘
than the spatial range over which the potential changes. A —
further appealing feature of LHA is the fact that the phase T is ;ﬁ{
essentially the classfical action along the trajectory followed by N
the centér of the packet, which is in agreement with the eikonal ( i;?

approximation.
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The theory resulting after making these two approximations o

is called in what foliows the simple Heller method (SHM). It has ﬁii
been successfully applied to a number of problems chosen so that x:j
the risk of SHM break-down was minimizgd. A beautiful example is ;E;
the absorption coefficienf of a photodissociating molecule. The —
initial sctate is bound and very localized. The absorption cross ’ :?E
section is glven (essentially) by the Pourier -transform with :ﬁ}
respect to time of the overlap between the initial wave function Qi*
and the time dependent wave function obtained by propagating the T
initial wave function on the upper state. If the fragments .
produced by photo-dissociation separate very quickly (i.e. they ?;:
are on a strongly repulsive potential) the overlap becomes zero 5 j
very quickly. Therefore they need to propagate a very localized i
packet for a very short time; it is not likely that it will have e

]
4
»

time to broaden to the extent thét will cause LHA to give
substantial errors. By using SHM Heller has developed a

beautifully clear and simple picture of the connection between

the absorption spectrum and the classical motion on the upper

state on which the dissociation takes place. That stimulated

equally elegant expeniments.15 Other successful calculations ﬁa
involved harmonic oscillators for which - as we show later - SHM Eﬁi
is exact. L;ﬁ
Recent calculations by Skodje and Truhlar16 and by Heather, f§$
Jackson and .‘vietiul7 show, however, that the method fails to give k}g

correct values for the time evolution of the states of the Morse i'
) oscillator. We are thus led to examine beth theoretically and »E?
f: numerically the two approximations mentioned above. Our E:;
;% conclusion is that they are justified only under special - f;i
- circumstances. =
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bos.
I111.2 The Local Harmonic Approximation (LHA) '£§
I1I1.2.A The definition of the approximation {bﬁ
We consider here the case of one normalized Gaussian, to i
isolate the effects of LHA from those of the neglect of the :?3
interaction between Gaussians. Using the eguations (A.3) -~ (A.7) ﬂ}i
of Appendix A we can write the MEM equation for the case of the ?2{
Gaussian approximant f“;
i P(xit) = 6(x) = exp((i/f){e(x-R)2 + P(x-R} *+ 7]} (I11.1a) b
. as G
~ #;
! . 2 . » 2 e
?: M4(a+2a /m) + Ma[y-PR—iﬁa/m + P%/2m] + V2=0 ) (ITI.1b) o
- ' o
. M,(&+2e%/m) + [¥-PR-1ha/m + PZ/2m) + v =0 , (I11.1¢) O
Y ';;..-
ReQ = 0 , (I11.1d) b
InQ = 0, (I11.1e) i
with o
. i
Q = M_[2x(P/m-R) + P] + V, =0 , (111.2) s
2 1 . s
- M, = <(x-R)" 6l6> , (I11.3) NS
i and i
s: n *:.
[ V_ = <(x-R)"G}VG> . (111.4)

The equation (Il1I.1e) leads to

;

o R = P/m , (IIi.Sa) &;
2 ' . o
y and this together with (III.1d) gives i:
»
% Py - - i e - Saree (131.5b)
The equations (III.5) are more general than the procedure -
used here for their derivation. Since R and P are the ﬁ?




m)‘““i"'\"',"

g e e mm"v“r‘mm“—' STINT TR, DY e Wie Rl N

_ P T S T T T Y T R N T VA A R T ST TR e LT LS S AN AR A vt ‘,,_>~"

P W L - . - - ! PO I DL i S -t

{‘_- N LRI T . 0 e

. o

-« \ = ORI

LI LR

e (Y

i -

- Furnment
L +
» . ’ 3

' .

)

P

N .

» x *

Y

K

108 = DU 4 25
n
»

t¢ expectation values of the position and momentun eperators for a ;itz
o Guassian state the equations (IIT.5) also follow from Ehrenfest's {Eﬁ-
fo 14 N
- theorem. REV

Combining (II1.1b) and (III.1c) we can write: e

v ’ 2 - 2
(7-PR-if(a«/m) + P“/2m] ——(M4VO~M2V2)/(M4-M2) (I111.5¢c)

and

c 2 2 ‘ e
a+2a/m (M2V°-V2)/(M4-M2) . (I11.5d) A

The LHA assumes that at any time t we can replace the
potential by

LA
R T
LU
LI

V(x) = VIR) » (3V(R)/3R) (x-R(t))

L
gty

M R FL e

I

LAV

(i11.6)

L]
-

+ (1/2)(3%v(R)/3R?) (x-R(t)) 2

o F
2t
*y

.

Using this expression for V(x) in the equations (II1.5) leads tao

the LHA equations: )
R = P/m, (I11.7a)
P = -3V(R)/3R , (I11.7b)
Y = PR - tha/m + P%/2m 4 W(R) = 0 , (111.7c) —
. 2 2 2 i
« +2ax " /m =-(1/2)3°V(R)/3R (I1I11.7d) Y
In what follows we attempt to establish the limitations of ?;J
the LHA equations (I11.7) by comparing them to the MEM equations —
(III.5) from a physical and a numerical point of view. _33
I11.2.B The magnitude of the . .ror made by LHA. e
r
Clearly the expansion (III.6) is valid only Lf V(x) is ;
by
et S S R R SR e
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practically constant as x varies around R over a spatial range
equal to the width of the Gaussian. A mére precise statement can
Le made by retaiming the next terms in the potential expansion
and requiring. that they should contribute less than 10% to the
equation of motion. Adding a third order term to Eq. (111I.6) and
using it in Eq. (III.5b) we obtain

. . . _ 2 3 3 -1
(Pypy = Prua)/Prya =[1(E)7/41037V(R())/3R(£)7IIIV(R(L))/3R(L)]

+ o1y (I11.8)
Here PLHA is given by Eq. (I1I.7b) and PMEM is the MEM value of P

when theé third order term is included in the potential expansion.

The length 1(t) = [h/z.tmoz(t)]l/2 is the width of the Gaussian.
The error made by using PLHA instead of PMEM is less than 10% if
2 3 3
(1°/4)(3°V/3R")/(3V/3R) = 0.1 (111.9)

We have found, by a similar analysis, that the errors in
the other LHA equations are smaller than 10% if (111.9) is
satisfied. In other words, the LHA equation (III.7b) is the one
giving the largest-error.

For an exponential potential V(x) = e~)”x Eq. (III1.9) gives

1% £ 0.4 (111.10)

and for a repulsive Lennard-Jones potential

12 13-14/R§ < 0.4, (II1.11)

where RT is the value of R at the turning point (where we expect
LHA to have more difficulties). For a kinetic energy of 0.05 eV
{thermal for He), o = 4A, e/k = 54°K and Vix) = 46[(0/3)12 -

(c/x)G] we find (from (II1I.11)) that LHA is satisfactory (within

10%) if 1 = 0.08 A. Roughly the same result is obtained from
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(I11.10) for A~! ~ 0.24 (a rapidly varying "hard wall” e
oty
potential). Less stringent conditions are required in the e
smoother regions of the potentials. EI?Q
. -",
In our calculatiens of scattering of He from solid }}ff
surfaces18 we find that 1 exceeds this value in all cases, even j:ﬁ
though we have varied the initial width (both Re « and Im «) in e

an attempt to obtain narrow packets in the interaction region. o

To get a better understanding of the breakdown of LHA we
carried out several calculations in which the Gaussian wave

packet (GWP) (IlI.la) is propagated in the Morse potential

V(x) = D(1+exp[—21(x—xo)] - 2 exp[—l(x—xo)]} . (111.122)

In Pig. 1 we plot 1(t) as a function of time, for a normalized,
initially narrow low energy wave packet. Since the Morse
potential is the sum of two exponentials (one of which has the
length scale (21)_1) the validity condition for LHA is given by
Eq. (IIT1.10) (with X replaced by 2X). This leads to 1Xx = 0.31,
We expect LHA to work best either for a low energy GWP, which

rrrranﬂw LR
. LN o * fala

samples the lower part of the potential which is nearly harmonic,

TRy
“ o

) or for packets which are initially sufficiently narrow. We see
g that more than half of the time X1(t) is above 1X = 0.31,

& indicating that the conditions for the validity of LHA are not )
fulfilled. ?

[

g _ e

It is important to realize that in order to be a useful A
approximation LHA must be uniformly accurate; that is, if fe(t) ?ffl
and fa(t) are the exact and the approximate values of a parameter f;J

we must have Ilfe(t)-fa(t)ldt<e1 as well as max =

ire(t)—fa(t)|<e2 for tef{0,T]. Here T is thp time interval over
which we need to know the evolution of the packet, and €, and

e, are small numbers specifying the error we are willing to {“'

tolerate. The reason for this can be understood by considering o
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the trajectorQ of the center of the packet.

¥
ISR IR 20,

Let us assume that
LHA gives us the incortrect force only for te[tl, t1+A]. This

A
1]
"' 4
g, 0
e

Py
.
s
»
.

will distort the trajectory for the remainder of the time, even ?*5

though the force d4s computed correctly at all t 2 t1 + A, becavse }::

the values of R(t1+A) and P(t1+A) are erroneous, and therefore :ﬂﬁ

the trajectory will stray from the correct path at t > t, * A, :&Q

A more precise test of LHA's accuracy is made in Fig. 2 %\;

where we plot - V1/M2 and - 3V(R{t))/3R(t), which are the right ;%;

hand sides of the MEM and LHA equations (III.5b) and (III.7b), ANy
respectively, giving the evolution of the mean momentum. Thus we :iﬁ

are comparing the expectation value of the operator - 3V/3x to Ert

N the classical force; if LHA works these two quantities must be :fﬁ

equal. Again, we see that this is not the case.

et

r
te fa-s

AN

In evaluating the LHA accuracy we must keep in mind that f*

the traijiectories of R and P are not measurable in a quantum ?;:

experiment. Normally we measure the projection of the asymptotic &:i

wave function on a set of final states. It is conceivable that :fi

such projections are not very sensitive to errors in trajectories Fﬁl

and LHA might be better than an analysis of the trajectory might ?f

:i suggest. On the other hand these trajectories are used to give a ii‘
Eﬂ qualitative description of the dynamic process in a language that ij
Ei is close to classical mechanics; large errors in the trajectory ;if
ﬁ; would lead to a misleading gualitative representation of %:‘
" dynamics. -

. II1.2.C A comparison between the pseudo-classical mechanics

generated by MEM and the classical mechanics (given by LHA).

R
g The MEM Equations (III.5a-b) have some resemblance to the ;i
i: classical equations of motion for the coordinate and momentum; [Qi
- when LHA is used they reduce to Hamilton's equations with the K;

classical potential V(R(t)). To emphasize both the fact that the

MEM equations {(III 5.a-b) are guantum egquations for the !

Y Nt *
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expectation valqes of the position and momentum operator_ in a éﬁi
saussian state and the fact that they resemble classical éfé
equations, we call them pseudo-classical equations; and we use \ -

the term pseudo-classical mechanics for the motion of R(t) and
P(t) generated by them. For a single Guassian the difference
between MEM and LHMHA is thus equivalent (as far as R(t) and P(t)

are concerned) to the difference between the pseudo-classical and pﬁi

-
the classical mechanics. Since these trajectories are used to -
interpret quantum dynamics in a pictorial, classical-like e
language, it is instructive to examine them in detail. Ef:
II1.2.C1 The Potentials : P

The "pseudo~-classical potential” v = <G|V|G>/<G|G>
appearing in (III.S5b) can be written as

+00 :
v =1 %5 gy expl-y2] VIR(t)+1(t)y] (111.13)
-0)
. 1/2 .
where 1(t) = [R/2Imx(t)] is the width of the packet. R
T
Since the greatest contribution to the integral comes from :Q;
the values of y between zero and one the center of a packet $i_
located at R{(t) is acted upon by the values of the classical }j
potential between the points R(t) and R(t) + 1(t), "averaged” }“
with the Gaussian distribution exp(-yz). A more precise fum
statement can be made for the exponential potential V(x) = exp(- i
Xx] for which -
. i
v = exp{-A[R-X1"/47}) . (IIX.14) oy
Thus, for this particular case, the pseudo-classical potential :3?
acting on the center R(t) of the packet is equal to the classical :i}
potential at the point R-x12/4. The packet moves as if it is a }'
)

.......
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"ball" with a time dependent "radius" k12/4: its center interacts
with the potential before it reaches the interaction region of the
classical potential; and it turns around before it reaches the
classical turning point. Note that the "radius" of the "ball"
varies in time and depends on both the width of the Gaussian and

the rate of spatial variation of the potential at the site where
the packet is located.

The physical origin of th{s behavior is the same as that of
the Heisenberg uncertaint& relation. The "radius" of the packet
is given by 12/2 = <G|(x-R)2|G>/<G|G> which is a measure of the
guantum fluctuations of the position operator in the Gaussian
state, To bring the classical and the pseudo-classical poten-
tials into agreement we must have 1l(t) - 0, which means Ime>»x. In
this case, however, the .mean kinetic energy <G|(-h2/2m)

32/3x2)|G>/<GlG> becomes infinite and so does the expectation
value of the energy operator. This happens because the length 1
and the quagntum fluctuations of the momentum are related through

the Heisenberg relation (Ap-l = A/d2 with a minimum uncertainty
equality when Rex=0),.

The pseudo potential v = <G|V[G>/<G|G> corresponding to the
classical Morse potential (III.12a) is

v = D{1+exp[-2k(R—xo-k12/2)] -2exp[—x(R—xo-x12/4)])

We compare v and V in Pig. 3 for various values of Ime (i.e. 1
(t)) sampled from values that occur in the MEM calculations.
Since 1(t) varies in time in the course of packet propagation, v
is time dependent. The drawings in Pig. 3 show the instantaneous

values of the pseudo-potential for various values of 1.

The values of the potential and the pseudo-potential
energies as a function of time are shown in Fig. 4. These are

obtained by propagating R and « according to the MEM and LHA
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equations, respectively. Thus v depends on the MEN values Las,
. R(t) and Imx(t), while V depends on the LHA (i.e., classical) o
values of R(t). It is important to note that the dependence of f&’
the pseudo-potential .v on Ima(t) hds no classical analog. The :&ﬁ
—
appearance of Imx(t) reflects the quantum fluctuations of the .
position operator which makes the average value of the classical fﬂf
potential different from the classical potential at the average o
position (i.e., <G|V(x)IG> ® V(<Gix;G>) where X is the position Ot
E: operator). This reflects Heisenberg's uncertainty principle. if r
il we want to think of the pseudo-classical motion in classical : }ﬁ'
o terms we must accept the fact that the variables P and R are ?\i
= coupled to a "classical time dependent field Im«(t)” whose time ﬁ:?
L evolution is prescribed by the MEM equations (III.53). }il
E‘ koo
}: The graphs in Fig. 4 show that the time evolution of the ;ﬁj
- pseudo~-classical and the classical potential energies v and oy
- V(R(t)), respectively, is rather different. A detailed analysis ;;E
1
indicates that they differ both because "MEM and LHA give et
different results for the time evolutioan of R(t) and because iyﬁ
1(t), which enters in v but not in V, varies greatly in time. it o
is interesting to note severai of the effects of the "field"” ﬁf:
. . . . . prnsod
Imx(t) on v which make its time evolution very different from '
that of V: v does not vary periodically in time; the point where ?;:
v is maximum is not the turning point of R(t); the point where v ?@'
is minimum is not the point of maximum Kkinetic energy. }ﬂ;
2‘: >
fﬁi—d&.
1711.2.€2 The classical and the pseudo-classical energies. S
Further difference between the pseudo-classical and the iij
classical mechanics can be seen by examining energy conservation E)
S

in the two theories. Because the pseudo-classical equations

s
vt
et

resemble the classical ones we can apply to them the procedure

roa o,
€t i

o G

used in classical mechanics to derive the energy conservation

condition. That is we multiply P = -3v/3R with P/a, replace P/m

«
Ce'x"e

(e AL
v 5 o

gy

by R in the right hand side and rewrite the equation in terms of
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: a total time derivative. The result is
4 (gi = v(R)} & v, dinx (E1T1T.16
dt ‘2m 3inmx dt ' -18)

The quantity P2/2m - v 2 &(t) is conserved only if dima/dt = 0

(i.e. frozen Gaussians) or 3v/3Img = O,

In general the pseudo-classical energy &(t) is not
conserved. There are several useful ways of stating the reason
for this. Since the.pseudo-classical potential v depends on the
"external time dependent field"” Imx{(t), the systems of eruations

(III5a~b) is not conservative; the “particle" (i.e. the

!
Pl

trajectory) exchanges energy with the field. Another insight in s

[
’1“¢

the behavior of &(t) is gained by examining the total quantum

¥ e 2t
)

¥

energy of the state G: i

Pl

’y
.

<GIHIG>/<G!G> = &(t) = A «l?/2nInc . (I11.17)

Since this quantity must be conserved, the pseudo-classical

energy &(t) varies in time to compensate for the time evoiution

of h,a52/2m Imx, The latter quantity is equai to <G (P- F“

~ oy
<G§P!G>)2;G>/2m<GiG>) which is the momentum fluctuation iz the s
state 'G> (P-denotes the momentum operator and <G P!G> = P(t)). 2

W
LN
o

R
. .
LI

. e T

The presence of this term in the total energy is a purely gqguantum

effect which reflects Heisenberg's uncertainty principle. The N
term is very large when tye packet is localized in the coordinate E:?
representation. E;f
The time evolution of <H> = <G_HjG>/<GEG> for MEM and LHA . 5??
. is plotted in Fig. 5. together with &(t) given by the two :?7
N theories. We see that <H> is conserved in MEM but not in LHA, Eﬁi
: which conserves the classical energy. In many cases i%t is useful ::ﬁ

e h
PR

to monitor <H> in LHA calculations since its change with time is -

]
1
)

S

a fairly sensitive indication that LHA is breaking down.
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%

N ITI.3 THE INDEPENDENT GAUSSIAN APPROXIMATION (IGA)

\ ITI.3.A The Description of the Approximation

)

S This approximatiol) is obtained by cancelling in the equa-

tions (A3-A7), {(giving the time evolution of the parameters) all
the integrals of the fornm Idx&x—RA)n(x—RB)m G:GB = M(An|Bm) and
J’dx(x-—RA)n G:(x) V(x)GB(x) = V(An}Bo) in which A differs from B,
In the compact matrix notation of the equations (A.9)-(A.12) this
amounts to retaining only the diagonal part of the matrh(ﬁ?and
eliminating the V(An|Bo) terms (A=B) fronm 3. This decouples the
components of the vector § and leads, after a little algeéra. to
the equations (III.5a-~d) for each Gaussian. There is thus no

coupling between the parameters belonging to different Gaussians.

The IGA achieves a considerable saving of both programming
labor and computer time. Its validity is however suspect on
physical grounds. On one hand, the assumption Y(x;t) =
z GA(x:{k(t)}) requires the Gaussians to add up Poherently to the
correct wave function at all times, while on the other hand IGA
eliminates all the matrix elemehts through which the time
dependent Schroedinger equation forces the Gaussians to
influence each other. Unless very special circumstances are at
work, it is hard to believe that independent Gaussians can act in

concert to construct an accurate expression for {.

I11.3.B The role of the coupling between Gaussians. in the

pseudo~classical mechanics.

To understand the implications and the consequences of 1GA

it is useful to examine the role of the neglected coupling from
the point of view of the "mechanics” controlling the motion of L‘
the center of the packets. We continue to call this a pseudo- }i
classical @echanics even though when a sum of Gaussians is used ’
to represent Y(x;t) the resemblance to classical mechanics is

diminished. The motion of one real, physical particle whose wave
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yq function is described by a sum of N Gaussians is represented in w0y
E the resulting pseudo-classical mechanics by the trajectories of N :33
3 i,
K "pseudo-particles", tracing the motion of the centers of the o

Gaussians. In the MEM equations ‘these trajectories are coupled
te each other and to the "external time dependent fields" &, and
7A (i.e. the width and the phase of each Gaussian). IGA
eliminates the coupling between the trajectories; LHA eliminates

Chmn i s glie O o -
A
[N
£
v “
g
s

the coupling to the "external fields". e
L

In what follows we examine the motion of the coupled giﬁ

pseudo-particles by considering two Gaussians only. That is, we &i;

consider the wave function w(th) = GA(x) + GB(x) satisfying the f{l

time dependent Schrodinger equation with H = -(ha/Zm)V2+V(x), and f%?
look at the equations for éA' éA' éB and ﬁB' The latter are :if

given by the third and the fourth rows of the matrix equation X =
(ﬁ)’1-3 (see Eqs. (A.10-A.13)) and are

Q . e ~] > -
2aA(PA/m - RA) + PA = (M v)3 = F3 (111.18)
and
o o > 1 -» _
s ZQB(PB/M - RB) + PB = (M v)4 = F4 (111.19)
ﬁi The right hand sides of these equations are very complicated -xi
S; complex functions (through M(An|Bm) and V(An|BO)) of all the ?}j
EL parameters of the two Gaussians. Taking the real and imaginary e
Eﬂ parts of Eq. (II1.18) we can solve for éA and ﬁA to obtain N
I-':;: oo
. S
- e ) -1 i)
E RA = PA/m (ZImaA) ImF3 (111.20) :_:_:_
. . po- o
o and o
PA = ReF3 - (ReaA/ImaA) Im[-'3 (I11.21) :E:
These equations ‘take simpler forms under the conditions :“4
discussed below. The one-Gaussian terms in'? and v (i.e., the o
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terms of the form IGA(x)*f(x) GA(x) dx, with f{x) a resl function

such as (x—RA)n(x-RB)m or (x*RA)nV(x), are real and the two R {
\ . .

Gaussian terms, i.e., fGA(x) f(x) GB(x) dx with A # B, are

- -

P

2 v r
PR ]

complex. Therefore, iIf we neglect the imaginary parts of the two R
Gaussian terms we obtain ImF3=0 which leads to‘(from Eq. Qf
(111.20)) RA = PA/m which has the classical form. Furthermore, :;i
from (I1I1.21) we obtain PA = ReF3 where F3 depends on the para- 755
meters of all the Gaussians. This is very different from the e
classical equation of motion bA=-3v(RA)/aRA and from the pseudo-~ r?a
classical equation for one Gaussian Py = - <G|3aV/3x|G>/<G|G>. A ;;-
further simplification can be obtained by setting all two ifﬁ

Gaussidn integrals equal to zero (i.e., we make the IGA). In
that case we obtain the equatfons (III.5a-d) for each Gaussian.

A complete decoupling occurs and each Gaussian evdlves
independently according to the pseudo-classical equations
(1¥1.5). Thus, within the IGA the wave function can be described
as composed of the coherent sum of packets whose centers are
moving independently on the potential surface according to the
pseudo-classical equations of motion under the influence of a
force given by"the time dependent mean potentials v, =

A

<GAIVIGA>/<GAIGA> and vg = <GB|V|GB><GB|GB>. The widths and the

phases of these Gaussians are also uncerrelated.

. As we have already mentioned, the pseudo-~classical
mechanics generated by a two packet wave function deals with two
"“pseudo-particles" moving on two coupled trajectories. Each

pseudo-particle has its own potential VA or VB’

A and Im«B; besides, the pseudo-

particle A is acted upon by forces neglected by IGA which depend

on PB-PA, RA-RB. ImaA—ImaB, ReaA—ReaB and YA-YB‘ The non-

classical nature of such forces is obvious.

which depends on
the time dependent fields Imx

It is interesting to note that im the early days of quantunm

" Ty couiey
..«d.'.‘T'TM’”I-.-....IW',.

mechanics it was popular to represent the time evolution of one

particle wave functions in terms of the flow of a continuous
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distribution of classical like "particles" endowed with well

defired trajectories and momenta and interacting thr&ugh an

effective stress tensor.10 The multiple trajectory pseudo-

classical representation proposed here is in many ways similar to
the representations proposed in these early works.

The use of multiple Gaussian wave functions can be easily
justif&ed by the greater flexibility (i.e. larger number of
parameters in the least square fit) of the basis set, which gives
hope for greater accuracy; There are however many important
situations when the use of multiple, coupled Gaussians must be
used even if a crude but qualitatively correct description of the
scattering process is desired. This happens in multiple channel
problems in which the channels are not overlapping in either the
coordinate or the momentum space. One example, provided by
surface-atom scattering, is the case when one channel is a
particle trapped at the surface and the other is a particle back-
scattered into the wvacuum. Another example is provided by the
curve crossing problems in which an atom in the "ionic" channel
has in the classical limit a different momentum than the atom in
the "neutral” channel. Such events cannot be described - even
gualitatively -~ by one Gaussian packet. Therefore, in such
situations the multi-pseudo-particle description of the dynamics

is the only reasonable "classical like" picture of the quantum
process,

111.83.C The validity conditions for IGA.

Given the great simplification introduced by IGA it is
important to have a :lear idea under what circumstances we expect
it to work. We discus. first the case when IGA is used together
with the local harmonic approximation (LHA) (we call this the’
simple Heller method (SHM)) and show that if LHA is made then the

-wave packets become decoupled and IGA is exact. We consider this

to be a rather striking result since we could not find
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Ve
intuitively any link between the two approximations: one of then :E?
has to do with the relationship between the width of each ;53
ininidual Gaussian and the rate of change of the potential with . ﬁi
x; the other with the overlap between different Gaussians. Since
we believe that LHA is likely to fail im some (or many?) "
practical cases the above observation is not of much pracgdcql -
help. It does however explain why Heller was so successful while E_.
using the IGA method in problems invelving harmonic oscillators. rﬁ
If LHA is not made one can show that the Gaussians might become };y
cdecoupled when the packets do not overlap, or when they have very i;i
different momenta, or when Qheir phases vary extremely rapidly in fa:
time. f;h
I
II1.3.C1 The simple Heller method (SHM = LHA + IGA)
There is numerical evidence that harmonic oscillators have f;:
special properties with respect to the Gaussian propagation &Tﬁ
method discussed here. One of the very first calculations ’ ;ig
carried out by Heller studied the excitation of a harmonic J?}
oscillator hit by an atom. He described the initial oscillator t;?
wave function as a sum of Gaussians, used SHM to propagate thenm E::
and obtained satisfactory results. One the other hand both ﬁﬂﬁ
Skodje and Truhlar16 and Heather, Jackson and Metiul7 have shown i}?

that SHM or IGA gives inaccurate results when applied to

propagate states of a Morse oscillator. This is the case even

; b

for low energy states which are nearly harmonic. - 0

In order to understand why Heller's calculation was so E;{

successful we have investigated the effect of LHA on the coupling ;?“

between Gaussians. We have found that LHA decouples the e

Gaussians exactly. As a corollary, in the case of a harmonic f“~

; oscillator, where LHA is exact, the simple lHeller model (LHA and }i{
b N '-',
. IGA) is exact! o
. ’-:
To show how this is proven we consider, as an example, the :?E
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L
equation (A.3). For two Gaussians this can be written as: ‘i:
2 . . N
(PA/Zm - P,R, - in«A/m + yA) M(B1|AO) + (111.22) o
e
~R s N . ¥z
[2aA(PA/m RA) + PA] M(B1]A1l) + s
. : e
[ZQB(PB/m - RB) + PB] M(B2|BO) =+ 'i}
. 2 ;.::4

[aA + 2aA/m] M(B1]A2) =+ -
V(B1]AO) + V(B1]BO) = 0 S
The notations M and V have been specified in the Appendix A. ;2
L‘-"L
The discussion proceeds now as follows. Let us assume that yﬁ
the two Gaussians move according to the simple Heller model ﬁﬁ
(SHM); that is the quadratic approximation of the potential is ;j
made and the Gaussians are assumed to be independent. This means -
that we assume the SHM equations (III.5a) and (II1.7b-d) for the EH
parameters RA' PA' YA and o, and RB' PB' Tg and ®p - If these :f
equations are inconsistent with (III.22) then by introducing them }{
in (I11.22) we must obtain a non-zero result whose magnitude Pﬁ
K—-:-
indicates the eXtent of the error made by SHM. Making the o
substitution just mentioned leads to -
= -V *6 d av/3 6.4 o

Error = - (RA) J(x=R;)6,6,dx - (3V/3R,)F(x-Rp)(x-R,)G, G,dx 3

(3V/3R.) ¢ (x-R.) 2676 dx - (1/2)(32V/3R2) ¢ (x-R.) (x-R.)26°6G. dx
B - B B B A ‘ B A B A 7

* d £ d .
+J‘(x—RB)GBVGA X + J‘(x—RB)GBVGB X =0 . (I11.23) -

Now let us make the local harmonic approximation to evaluate the
integrals present in the error expression. If we expand V{(x) in

the last integral in powers of (x-RB) and V(x) in the integral

before the last in powers of (x—RA). we find that the error is
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exactly zero (if we retain only the quadratic teras iy 1>

expansion). Therefore once we accept LHA the Pnd=y

I-'
-
€
LiX
.

Gaussians follows!
111.3.C2 The General Case

While in general the coupling between Gaussians must be
taken into account, there are several situations in which it can

be neglected, even if LHA is not made.

(x) The most obvious one is when the Gaussians do not
overlap. This can happen when dealing with problems in which the
wave function tends to split into spatially separated pieces. A
trivial example is the low energy state of a double well
potential. A more interesting one is provided by atom scuattering
from a moving surface. There is a finite probability that during
the collision the incident particle excites phonons and is

trapped at the surface; there is also a finite probability that
e

cr
e

the particle is scattered back into the vacuum. Therefore th
atomic wave function "splits"” into a component bound to the
surface and an outgoing frec particle component. If the wave
function is approximated by two Gaussians they wiil best mimic
this situation if one of them is trapped at the surface and the
other is reflected. Except for the early times during the
collision, when nothing much happens, the overlap betweaen these
Gaussians should be fairly poor and a calculation ignoring'the

coupling between them has a fair chance of success.

(g) Another interesting situation takes place when the

integrands in the quantities M{aAn;B8m) and V(An:BQ) appearing in

the equations of motion {A.9-12) (or the Equation (I11.22) which

is one particular example) oscillate very rapidly around zero. ]
Since all such terms are of the form jdx G: Gs £{x) with f(x) a

real function (of the form (x—RA)n (x-RB)m or (x—RA)nV(x)) :he

oscillatory behavior arises from the phase of the product GA GB'

If the wave length of this oscillation is much smaller %han the

x
width of the Gaussian 6, G_ the integral is practically zero.
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*
One term in the phase of GA GB is [(PB-PA)/E]X. which gives the
X
wave vector Kk = (PB PA)/B. Since the width of GA G, is 1 =

IAlB/(li*lg)l/z. the integral tends to zero if 2%w/k << 1. This
is easy to undfrstand on physical grounds. 1If PB and PA are wvery
different, the packets GA and GB are segments of planar waves
having very different wavelength. As is well Known such waves
are poorly coupled, which means that their matrix elements TN

S
f{x) G, dx are very small.

B
(v) Finally, we point out that it is possibie thal :iwo
Gaussians become decoupled if their two-Gaussian integrals
oscillate rapidly around zero with time. To explain this we can
use Eq. (I1¥I1.22) as an example. The integrals M{(An Bm) and
V(An'B0) are complex and therefore have the form a(t)e_ié(t).
where a(t) and &(t) are real functions of time. The structure of
these integrals is such that they will have the same phase siuce
that is determined by G: GB which appears in all integrands. To
simplify matters consider the schematic representation of Eq.

(II1.22) provided by

a(0)e % (6) = wiox, () = vie) = T h() (ziraw

Here the terms with the phase $(t) are two-Gaussian integrals,

- PB nr aA -

M{t) and V(t) are one-Gaussian integrals and Xi(t) and Xz(t) are
2 B)
2«A!m. etge. If we can neglect all the two-Saussian integrals

combinations such as 2«B(P8/m - R

then the Gaussians become decoupled, Consider now a siwuation in
which &(t) varies in time faster than all other quantities. If
we analyze the behavior of the Eq. (III.24) in the neighborhood
- (3p(t ). 3¢ t-¢ .
) {39 ( 0) »o)( to)
te

in the neighborhood of

of a time to we canh expand &(t) = ${¢
The exponential term el¢(‘) oscilla
)

(
to) with the period T = 2 ﬁ/iaé(to /3t }. If this is smaller
than <.e time scale T over which X, (t), M(t), V(z), a(t) and b(%)
change .appreciably we can integrate the equation (III.2:) from

to - T/2 to to ~ T/2 and ob%ain M(t) xo(t) = V(t). Thus the two
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Gaussian integrals which cause the coupling between the Gaussians

disappear from the
We

like the classical

équation of motion and the Gaussians evolve
independently. see @hat pseudo-classical motion behaves just
one: it tends to ignore forces that act at
frequencies vastly different than the rate of change of the

parameters being propagated.

One can derive an expression for ¢(t) and show that in the
cases when the two Gaussians overlap well ¢ = ReyB ReyA; thus
the phase of the integrals is proportional to the difference
between .the phases of the two Gaussians. Within LHA these phases
are proportional to the classical actions along the trajectories
of the centers of the two Gaussians. So, tWwo Gaussians following
trajectories having classical actions that change raridly in

time,

are weakly coupled.
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Iv. The Cholice of Initial Wave Function Lﬁ’
IV.1 Introductory Remarks SEE
R

The choice of the initial wave function is in principle . aié

very simple: it must fit as closely as possible the experimental -
conditions of interest. The practical implementation of this :?E
idea in the context of GWP propagation was done in a manner which :f?
causes ambiguities and (sometimes) trouble. ng
o

b

The first difficultg appears because o{ the practice of ;{:
writing the initial wave function as a sum of Gaussians in a way ;Qf
that leaves us free to choose certain parameters (i.e. width, E$Q
momentum, etc.) almost at will. This "asymptotic freedom" b

permits us sometimes to affect substdntially and arbitrarily the
final wave function; this is not a desirable feature in any
theory.
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The second difficulty is more subtle and is common to all

methods using a pre~selected basis set to represent the wave

> o=

function throughout the collision process. A set might be
flexible enough to represent the initial state well, but be .
incapable to describe the intermediate or the final wave function zj
with the desired accuracy. The problem is particularly

interesting in cases with many channel final states of the kind 5
that can be intuitively described by multiple classical
trajectories that cover different regions of configuration space.
Such situations cannot be represented by a single Gaussian
packet. The desired flexibility can be achieved by increasing
the number of Gaussians used to fit the wave function. There is
however a limit to this and our experience, drawn from a variety
of numerical studies, .is that we cannot mindlessly add more and -
more Gaussians until the results converge, since in the course of :
collision the Gaussians often overlap causing over-completeness; ;:
when this happens the differential equations propagating the ?y

: i
parameters become singular and intractable. T
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IV.2 The Asymptotic Freedox

To understand how this problem arises it is best to examine
several examples. The first is the representation of a planar

wave as a sum of Gaussians, which has been used in all the GWP

diffraction calculations published so far.w'18 Ne start with
the identity'®
-1/2 —E <> X ! > ! > - !
kz exp[ik.r] = ¢ § dr _exp{(i/R) (p-r )+ & +(r-1r )
1 ' (Iv.1)
‘ + ik (F-F ) - ik:T )

where C is a normalization constant.

To obtain an approximate representation of the planar wave

as a sum of Gaussians we discretize the integral. This gives

-1/2

K exp[ik-T] = C & exp{(i/a)[(?-?p) -“K*.(?-?p) -
P
(1V.2)
-> > > -> >
k (r-rp) ik-rp).

The number of Gaussians and their mean positions are fixed by the
accuracy we impose when we represent the integral by a sum. The
momentum of each packet is ﬁ? and the phase is real and given by
K'?p. However the method gives no prescription for fixing the
initial values of the width matrix A. It is reasonable to take
the initial off diagonal elements zero and assume that the
diagonal ones are equal, because of the isotropy of space. These
decisions still leave the complex diagonal element « of the width

matrix unspecified.

The exisiting practice has bYeen to argue that since {IV.2)
represents the initial state well for any reasonable choice of «.

we can use the "asymptotic freedom” to select a wvalue of « that
F

would make our life simpler. If we plan to use SHM (which has

e e e S e

- R AR |
Byt T T !

.
e

| -SSP
.

- »

.’“-'l

.l

. -
Lo
-‘l »
PR
LT

. »
e
e
"l ..
TeTk oo
’ "4' l‘f
i" l,

“y s W
'y -

%
o
¢

RN |
PR A R )

(L & AU
.

SRRl
[ e

. N e

. "»

ckve
DD RN

[

' -
LI ',
[T -t
., '
Ry
-

.I." .-' .-.
o Ta )
‘-.\'.I

"3 e

‘
P

-8 ¥
{‘ [
[

»

CONE
B
L)
-‘\u’_.‘
AN At
Falta
ANAT .
N
-
s a2 s e e m a4 mtAc- PR xta a* LR RPN RS B A T U T P
e, A N e e e T T S S AR N R NN IO
P I I I LS “ . . a - vt ] e e e LN LT L




o
e
e
i
42 ‘
bime -
been the case so far) we should select Imx so that the patket ES&
will be narrow when it collides with the hard wall of the liEﬁ
potential. This should increase the accuracy of LHA (which is FS?
used in SHM). However since Imx(t) is controlled by'the f*A
equations of motion we_ can pot fix its value at the wall by TTT
selecting the initial value. The practice has been to use the -

equation of motion for Imax(t) in free space and to select Im«x(0)
such that Inmx(t) at the wall location would be large if the ;*"
- packet moves in free space. While this gives some guidance hf:
E concerning the choice of ima(o) it leaves Rea(o) unspecified and Fi;
3 this is taken to be zero. D
1 Unfortunately detailed numerical studies18 show that this E,:
ﬁ choice of the width does not achieve its stated goal: no matter E:i
o how we choose Imx(o) the potential broadens the packet beyond the Ef%
-‘ values for which LHA can be safely applied. Furthermore, we find ::5
that the final results depend sometimes on the choice of Imx(o). ;ﬁ:
- While in the case of diffraction changing Ima(o) does not lead to ;ﬁ?
E large deviations from the known guantum results, we feel rather ?;}
:k uncomfortable in using such a strategy for cases where the :}g
3 "exact" results are unknown. pe

",
DL

2l

RS A &
¥

- Another example is Heller's integral represenvation of a ;3
3 harmonic oscillator wave function Eﬂﬁ
- 0
. g (y) = ¢ J dt exp(-(-nal%) (y-y(£))% + (i/R)p(t) (y-y(t)) o

° (1V.3)
o + (i/28) (p(1)¥(t) - p(o)y(e)) * inwt) e
: . Here p{(t) and y(t) satisfy the classical equations of motion of i:
N the oscillator momentum and position, T = 2%w/w, and p{o), y(o) 521
%j are the initial conditions for the momentum and position of the -ﬁ%
7£ oscillator. We can now represent y (y) as a sum of N Gaussians %ﬁg
by discretizing the integral. This gives 1;

v
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N
wn(y) =C Z exp(-(mw/ah)[y—y(ta)]2 + (i/R) p(tq)[v—y(ta)]
=1
(I1V.4)
+ (i/2h)(P(ta)y(ta) - p(e) y(o)) + inmta} '

with ta = (27wx)/(Nw).

The prescription tells us that the points p(td),y(ta) lie on the
classical trajectory at equally spaced time intervals. The
initial p(o), y(o) are not however specified so the phase of the
classical oscillatory motion giving p(t), g(t) is arbitrary.

A similar situvation occurs in the representation of the
rotational wave functions, where group tﬁeory tells us how to
construct the wave function as a sum of Gaussians whose centers
are located on the surface of a srhere. The other parameters in
the Gaussians remain at our disposal. In more general cases the
asymptotic wave functions ¢n(x;0) are represented as linear

combinations of N Gaussians

¢n(x;0) = CAn~GA(xz{k(0)}A) (1v.5)

™M=

A=1

whose parameters, symbolized in (IV.5) by {l(o))A, are chosen
before the linear coefficients CAn are determined. The latter
are found by minimizing the total energy of the asymptotic
system; in the course of this minimization the parameters
{k(o))A are frozen. This procedure also suffers from the fact

that it provides no objective method for chosing {X(O)}A

In what follows we discuss a procedure which is more

efficient and more satisfactory conceptually and practically: we
represent the initial wave function ¢n(x;0) by a sum of Gaussians

whose parameters are chosen by a non~linear least square fitting

(LSF) procedure. That is, we minimize
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(IV.6) ik

»

with respect to the parameters (X)A. The idea is so simple that
it would not merit further discussion except for the fact that it

brings about a number of dramatic improvements.

f .
. [
PR S

[,
) (a) The number of Gaussians ra2quired for obtaining a good E?f
fit by Eq. (IV.6) is much smaller than that required by other :i&
methods. Consider for example the fit of a low lying Morse state %:?
by using Eq. (IV.3). We can make a reasonable choice of E;ﬁ
Gaussians as follows. If we assume that the low lying Morse Eff
states are nearly harmonic we can use Heller's equation (iVv.4) to tig
select the parameters (X)A (i.e. position, momentum and phase) in i:j
GA(x;{x}A). Taking linear combinations of these Gaussians, iike ﬁ;i

in (IVv.Z), we can find the linear coefficients CAn by minimizing

the energy with respect to them and keeping (x)A frozen. We can

? get very good fits of the low lying states by using eight

'-I

N Gaussians. By using Eq. (IV.6) we obtain an equally good fit

ﬁ with only two Gaussians. -

f (p) The non-linear least square fit method has the -

T
.

advantage that it fixes all the parameters objectively. The

=

L an
yey v .
o

number of Gaussian is predetermined by the choice of the error o

ey

that we are willing to tolerate in the initial wave function and

T i

L4 ”
s e 0w
. » . .

the flexibility required during propagation. .

[k

{(vy) It is interesting to note that lowering the number of
£
i

Gaussians is not a matter of efficiency onlily. We find that It is

. very difficult to propagate wave functlions conposed of a large
v number of coupled Gaussians because in the course of their
“, evoiution they can overlap and the set becomes overcomplete. Aas

-

-

a result the differential equations propazating the paramesears

become nearly singular and give very large errors. As an exanmple
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propagated a linear combination of eight Gaussians representing
the third Morse state and a three Gaussian non-linear least
square fit (i.e. Eq. IV.6) to the same function. In the first
case the computer fails to solve the MEM differential equations
propagating the parameters, because the matrix'ﬁ coupling the
Gaussians becomes singular. The reason for this seems to be the
overcompletness of the set, which we detect by diagonalizing the
matrix formed with the Gaussian overlap integrals; the singular
behavior of ﬁris always preceeded by the decrease of one or more
of the eigenvalues of the'overlap matrix. A calculatlion using a
sum of three Gaussians to fit non-linearly the initial Morse
state has no difficuity.

It is important to note that the non-linear fittin

ct
e

is not
entirely free of ambiguities, since 'several "best fits” can be
obtained, depending on the starting point and the minimization
strategy pursued. Consider for example the third Morse eigen-
function which the non-linear least square fit program can
represent very well by a sum of three Gaussians. Let us assume
now that we decide to try a four Gaussian fit. We find that for
certain starting parameters the LSF program makes the amplitude
of one Gaussian nearly zero and fits tpe wave function with the
remaining three Gaussians. Fven though we get a very good fit
this sum is a very bad inicial function since the MEM program
canpot propagate it; the matrix ﬁ'in Eq. (A.10) is nearly

singular because of poor overlap between the nearly zero

amplitude Gaussian and the others. However it is guite possible
to get a2 satisfactory four Gaussian initial wave function if we
constrain the width ImaA and the normalization Im(yA) for each

Gaussian to stay within reasonable iimits. The MEM progran
propagates this function rather well.
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IV.3 The Optimum Number of Gaussians . )
. In many cases we would like to use the smallest number of ﬁﬁ%
Gaussians, and for this the non-linear LSF of the initial wave Fé;
function is very helpful. There are however cases when such a ifi
. choice would be physicall§ unsound. Consider a Morse oscillator wﬁz
colliding with an atom. We can fit the initial wave function &f;
(the ground state of the Morse oscillator) well with one ?ﬁl
Gaussian. However, if the kinetic energy of the incident atom is ‘ h;;
comparable, but smaller, than the dissociation energy, the final :éf
state is a linear combination of several Morse functions. One 32:
Gaussian cannot describe correctly such a wave furction; it can }Sf
at best give the average energy transferred but we could not ;ﬁ:
expect correct state occupation amplitudes. It is therefore a ;iﬁ
good idea to try to fit the initial state with several Gaussians. i:;
This is a general situation in most cases in which the final :?1
state is very different from the initial one,. ::
o
Another situation requiring a fit to many Gaussian ikﬁ
functions is that in which the final state has several channels ;ﬁ;
which are qualitatively different. One simple example is atom 'é;
surface collisions in which surface trapping is of comparable E?
likelihood with surface reflection. ?g
These situations are too subtle and rich in physical S
consequences to be treated profitably in the general setting of ‘%?
,i this_paper. Several specialized studies of photodissociation, éﬁf
?:. vibrational excitation of diatomics, curve crossing and surface %%
?' trapping, which provide interesting and detailed illustrations ?F%
ﬁi . for the importance of chosing correct multiple Gaussians e
;E representations of the wave function, will be published shortly. ;&
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V.  FINAL STATE AXALYSIS o

Generally scattering theory requires the knowledge of the ) égﬂ

eigenstates of the zero order Hamiltonian and the computation of E;i

various matfix elements involving them.. One of the advantages of ) ?~»

the Gaussian wave packet approach is that we can calculate easily ?f?

the matrix elements needed for the propagation of the wave ;:2

function: most\potential energy functions can be fitted to :?if

. . polynomials, exponentials, Gaussians, or to sums or products of ;~i

such functions, so the iqtegrals can be done easily; the matrix %ﬁg

eiements of the kinetic energy operator require the calculation ?5;

of integrals involving a product of Gaussians and polynomiails. i?;

ey

Part of this advantage is however lost if we must analyse Eqi

the scattered wave functions by calculating the matrix elements ig:

§ ¢, (x)b(x,t)dx with the eigenstates of the final zeroth order 3;;

Hamiltonian. From a practical point of view in many situations ;aﬁ

we don't have simple formulae for ¢n(x) and we must generate then E::

numerically, which makes the calculation even more tedious. And Sgﬁ

sometimés ¢n(x) are known only very approximately. &Eﬁ

We present below a very simple and rather general idea thax i?“

permits the analysis of the final wave function by using the :SZ

g program that propagates the MEM equations. Since the overlap of ;?i

% planar waves with Gaussian functions is a Guassian in momentunm 3:§

% space we need no special procedure for the analysis of the final gf@

= translational state. We coﬁcentrate therefore on analysing the - T

- internal states only. :gff

3 e

; Let us assume that at the time t, When the projectlle &:;

target interaction 'stopped we have a scattered wave funcition : %7f

- (internal state) given by ) Eﬁﬁ

:’ ,._'_‘

g Blitg) = 20, (xs O E) ) (v.1) o
R We can use the MEM equations to propagate this wave function with ’

) ‘,';.'_'.'_-_._\,:. eSS _'.!"- . ) Cele A A PN R S S R L AR IS :.‘-'.'t:.:;.'; et A e T
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P

the zzro order Hamiltonian of the internal states. If we denote ey

. A

by ¥(x;t) the propagated wave function we can easily show that oy

b

: m sifo-iX](e-€ ) -y A

C(w) = § dt e o (xit) d(x;t )dx (vV.2) AT

%o e

satisfies t?i

.

o e fa S

Re C(w) = I 5% ’ (V.3) oo

n=0 (w-w_ ) - A o

n See

and Q&l

-

. . ; 2 ( O-Ww n ) -:.:':.

Im C(0) = £ jC ! > 5 - (v.4) o

- n (w~w )" + X - e

P n o
Here n runs over the bound (internal) states of the system. !

:Cniz is the occupation of n-th state (i.e. the probability that ﬁ%ﬁ

. the scattering process takes the system into its n~th state) and :3?

. hmn is the energy En of that state. The quantity X is at our t{f

disposal. If we make it much smaller than W, the peaxs in ReC(w) ﬁﬁQ

are well separated and wn are given by peak positions and iCn'z p

by the peak height. The zeroes of Im C{(w) are close to I :?}

However, if X is too small then we must propagate the wave {?b

function w(x;to) for a long time t such that t X >> 1, A ;f

compromise can be reached by using an intermediate value for X oy

and determining :Cn:2 and wn by a least square fi!{ of C(w) to the ﬁj{

o forms (V.3) and (V.4). i

< pa

: : o

r-ﬁ,

- yom

%o From a physical point of view the quantity C(w) is a &?:

2 Green’'s function for a fictitious absorption process (or’ ytf

. fluorescence) which is used to resolve the post-collision state .f?

W(x;t) into spectral components.

|

1
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T \Sometimes the propagation procedure is not reliable enough

to be comfortably used for a very long time. In such occassions,

we can define CT(U) oy using Eq. (V.2) with the upper integration

limit equal to T. It is easy to show that .

VA 2 o 2 . 2,-1 -1 =3
ReC.(u) = § €, Mlo-w )% = X177 {1 =~ X Te AT

(V.3)
‘XCos(w—wn)T - }w—wn) sin(m-wn)T]}
and
. - . - _ 2..2,-1 - - -1 =AT
im CT(J) i ‘cn‘ (v mn)[(w wn) 2] T{i1-(w wn) e
(Vv.6)

[Xsin(u—wn)T - (m—wn)cos(w-wn)T)

We can use these equations and a least square fit procedure to

find ©_ and jC_'2
n n

By using a fast Fourser transform we find that this
procedure i{s both effic.~:1t and reliable. An example was shown
in Fig. 7. This was obtained as follows: we made the iinear
combination
Ylxity) = agd, - ad, - a,d, + 2509,
where én is the n-th Morse eigenfunction; we the
function to four Gaussians and pretended that this is our post-
collision function; we propagated the Guassians with the Morse
Hamiltonian and the MEM equations (solid curves). The grapn
shows ReC(w) calculated by using Eg. (V.2). The least square {it
analysis of these curves gives the eigenvalues and spectrcal

s . .2 . : 2
composition :ao. .....,as; .
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= A STABILITY PROBLEMS IN THE PROPAGATION OF THE MEM EQUATIONS Bl
* ., N
2 VI.1 Introductory remarks. L
t-“ T t‘-_:\.
.\ h‘\v«‘:
* 3 s . 3 v *:d

In principle MEM would permit the propagation of huridreds '
. of Gausslians, making many localized time dependent quantum }fﬁ
., e
., problems within the reach of today's computer power. S
- Unfortunately our numerical experience has revealed some L
limitations which are summarized in this section. f*;
1] -
;: The first limitation is a numerical instability in the iﬁk
f propagation of the Gaussian's widths. This was encountered by ;6{

Heller in his use of SHM and he circumvented it by using what we ;
call here a P-Z transformation. We show that, not unexpectedly,
the same difficulty 4s present in MEM and that, fortunately, the
MEM equations can be written in a form which permits the
application of the P-Z method.

The second limitation appears when we attempt to use a
large number of Gaussians. We find that in the course of tinre

"the Gaussians often evolve in a way that makes one {or more) of

them redundant. When this happens the MEM equations become

- singular and cannot be solved. Superficially this may seem 2 I

e 48

pleasant problem, to be solved by reducing the initial number of

D

2 Guassians. VUnfortunately the optimum number of Gaussians s not k?;
- a uniform function of time: as the collision proceeds the wave e
function contracté or spreads (in coordinate and/or momentun ;ﬁ?

3 _ representation) so that the number of necessary Gaussians goes up :%E
o ' and down in time. While at some given time N Gaussians may be ﬁjﬁ
- too many and cause trouble, they may be needed at other times, .F;X
% ' Ye found no simple, general method of dealing with this problen, hﬁt
N but we designed a useful strategy that is present here. ﬂlﬁ
ir s_‘...:.
'; Since in most problems of interest to us the exact aguantum ) ;;&
' selution is not known we test for errors in the propagat.. i ;:ﬁ

., scheme by looking for internal inconsistencies. Practicaliy we : :-?
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use three criteria: (1) we require <Y(t);¢9{t)> to be time

independent; (2) we recguire <¥{t) H,p(t)> to be time independent;

and (3) we require 'y dt expl[+iwt - Xt] <¢({t) ¢{o)> (which

satisfies Eqs. (V.83-4)) to give values of :Cn§2 wihich add up to

one (when <$(t)!%(t)> = 1) and correct values fopr the

pigen~
energies Ewn.

Vi.2 The P-Z Transformation

.
»

The P-Z transformation was designed by Heller to solve

difficulties connected with the propagation of the width matrix

*. In SHM the difficulty appears in the equaticn « =
~2e2/m - (172) 3°v/aR% (Eq. (I11.7)) propagating the width

parameter «. This has an oscillatory behavior wnich causés a lot
of trouble if we apply usual numerical methods (i.e. Runge-Kutta

or predictor-corrector) to Eq. (III.7). 1In the best situations

this can be cured by using an extremely small time step. In

other cases erroneous values are'obtained even for ths smallest
time steps. Our experience has been that both diffraction and

curve-crossing calculations with SHM reguire the use of the P-2Z
method.

The MEM calculations carried out by us so far show that a

direct, numerical solution of the MEM equations lead to dramatic
failures, much more rapidily and frequently than

in the case of
SHM.

Fortunately the P-Z transform can be applied directly to

the MEM equations if they are written in the proper

form. We
start with the equations (A.10-~13) written as
T (Y. v (VI.1)

The only equations in the above system that require modification

b
5
> ) . N
are those containing the components of X havimg the form x, -
e ¥ A
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zai/m. For example, in the one-dimensional two-Gaussian case
discussed in Appendix A, there are the components Xs and XG
in Eq. (A.11). PFor three-dimensional Guassians these equations
. have the matrix fornm
4—@-} 4--&—-)'
> A A -> .
&, * 2 E— = FA(”) (vi.2)
e . . . . R
where « is the three dimensional matrix appearing in the tern
. e -> > > > >
(i7a) (x - R(t))+ e + (x-R(t)) at the exponent of each of the
three dimensional Gaussian; ?A(t) is a known function of tinme.
. & - .
We can remove the non-linear term 2 aAoaA/m by introducing
o t &
s two new variables 2 and‘F {where P is not to be confused with the
:f momentum) through
s & =T T e (VI.3)
. . o .
The time derivative of « is given by
. . -1 -1 .
2 x = P Z - P d{ Z y/dt
(Vvi.a)
‘ -1 -1 -1
L e A 2eus o —> ‘P ‘P >
= P YA - P Z YA YA
o If we now define
Z = P /nm . (VI.3)
- and use (VI.3-3) in (VI.2) we obtain
. H . 2P . T (VI.6)
:; The P-Z methods solves (VI.5) and (VI.6) and uses the
- results to compute & from (VI.3).
a e find that the use of this procedure cures dramaticalily
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. b
N some of the problems appearing when we try to solve (VI.2)} ﬁﬁﬁ
Il": R o Al
N directly. A
A wond
T
L)
Moy
VI.3 The singular behavior of the MEM equations S v
. , € o
To solve the MEM equations we must invert the matrix M S
appearing in (A.10). 1Its elements are various moments M(Bn‘Anm) ﬁ&
of the Gaussians used to fit the wave function. For a one- N

X . . . . o . ¢

dimensional two-Gaussian wave function the matrix M is given by b
{A.12). The left-hand upper corner of that matrix is the overiap §:
3 I3 -" w4
’ matrix between the Gaussians used to make the fit. This suggests -

that if the overlap matrix becomes singular it may be difficult

<
to invert M. Empirically we find this to be the case. As we

ol
I“l

solve the equations of motion for the parameters we also solve

~r e
PG
I3

AP R

for the eigenvalues of the overlap matrix. We find that whenever

» .
('S
'

.
0

. <
one eigenvalue becomes very small the determinant of M becomes

v oz
v
gy
f.

small and large propagation errors appear. For problems with a

Il

.
L
et v

small number of parameters it is better to diagonalize<§.

'-'
'

!‘- » « »

P
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Thetre are a variety of methods which we use to cure this

[
’

problem. (a) 1In some cases the problem is created by the way in i
. which the sum of Gaussians represent the initial state. As a E;
= simple example consider the case when we want to fit a very broad g?
x Gaussian 6 with four narrower Gaussians GA A=1,...4. We do this rﬁ;
; by varying the parameters in the Gaussian so that ?ﬁ
E = ?:b - E GA;: is minimized. 1If we do not interfere, the ;ﬁ

minimization program might decide to vary the parameters in G )

[Ty

and make it identical to G, while simultaneouslily making Imy ..., . ?é
Im'y4 so large that 62. Gs, G4 have very small values. Any ) Si
attempt to propagate the function g GA obtained in this way by . %7
MEM leads immediately to catastrophic errors. One cah easily }3
prevent the above events by minimizing E and keeping Im(y)A below i;
a preset value. The type of behavior exemplified above tends to :i}
be general. We find, for example, that as we increase the number B

X

of Gaussians used to fit the second excited state of a Morse
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oscillator an uncohstrained four Gaussian fit makes the amplitude ég;
of one Gaussian verwy small and the propagation of the resulting Eﬁ?
wave function fails very rapidly. 1If we constrain the amplitudes SEQ
we get a four Gaussian fit which can be propagated successfully. LE;
We note that symmetry can play an equally important role. Eig

For example, consider an initial wave function which'is symmetric }f&
around Ro' A four Gaussain fit might use one Gaussian centered :Ei
at R, and two placed symmetrically, and make the amplitude of the fe s
fourth nearly equal to zero. If we keep the centers of the :“ 
Gaussians symmetrical around Ro' all four Gaussians are used but f&é
the fit may be of poor quality if, for example, the wave function th
peaks at Ro. tf;
While such poor starts can be easily identified and cu;ed, :fi

there are cases when in the course of its time evolution the :33

spatial extent of the wave function shrinks causing more serious

nz‘T
I,A_'

L

difficulties. If N Gaussians are required to fit the wave

13
5

Dl o
-~

function at times when it has a large spatial extent, they may be

-
LI Ao
e n

redundant when the function shrinks. In such a case the

o

.
=l‘l‘.‘..l

't

propagation program may either make the Gaussians linearly
dependent or make the amplitude of one of the Gaussians zero. In
all these cases we find that the provagation gives large errors

or stops altogether,

A cure for this problem can be provided by monitoring. ihe

. ] . T . \
evolution of the overlap matrix (or the M matrix) eigenvalues in

Ut it |
s e
et
P

time and by removing one Gaussian, when one eigenvaliue becomes

P
P B

13
N

small. This can be done by fitting the current N Gaussian wave
function ¢(x-t) = § G (x {(X(t)), ) to N¥-1 Gaussians whose
parameters (k (t))A are fltted to minlmlze

€ = ! § GA(x,{x}A - N;l G (x (k ) ),;. This removes the

A -y -
., et
: .

. "
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LI S

s
v 'au % U
«h e e
. .
.

problem but it can create a new one latter: if the wave function

¥

.
¥

expands spatially we may find ourselves with insufficient

Gaussians to describe properly this expansion. We can however
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:ti

T

add a Gaussian by using the reverse procedure: fit,the current &;ﬁ

; N-1 Gaussian wave function having the parameters (x'}A to a sum ’ E:gs
. of N ney Gaussians, by adjusting the paramters {X)A to minimize . ﬁﬁiﬁ
&. We know that additionm of more Gaussians is needed when the ' -:'

eigenvalues of the overlap matrix are all close to one.

This procedure is useful, but unfortunateiy requires a

programmer's supervision and interaction in the course of
propagation; one cannot do research and play tennis

simultaneously, and this can only diminish the popularity of the
method.

T

Vi.4 The use of frozen Gaussians

We should mention that many of these difficulties are eased

by the use of Gaussian wave functions with fixed widths which

L£2 A it e

Heller calls frozen Gaussians. Since the width is not changing,
the P-Z transform is not required. Empirically we also find that
the numerical étability of the MEM equation with frozen Gaussians
is greater. At this time our opigion is that more cogplex
problems will be attacked more successfuily by using frozen
Gaussians. The lack of flexibility caused by the use of a fixed
width can be compensated by increasing the number of Gaussians

(without necessarily increasing the number of equations).
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APPENDIX A
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b’ e 2 2

The_Propagation of qpltiple Gaussian.wage functions.

x

In this Appendix we derive a set of equations frequently
used in the text. They give the MEM propagation equations for
the case when the wave function is expressed as a sum of

Gaussians:

Plxit) = 2 0,5 (o (6), 7, (6)), (Ry(1), 2, (6))) (4.1)
with

G (xi{e, (), 7,(t)) ,{R,(t), P,(t))) =

exp{(1/h) [, (x-R,(£))% + P, (=R (£))+ 7,1} . (4.2)

If we compare with the general equation of section II1.3.A we have

Bag = @0 B = Y Ty = Ry Ty = Py

A &A. éA and ﬁA for all
the Gaussians we use the equations (II1.25). The calculations are

In order to obtain equation$ for &
lengthy but straightforward. The results are listed below.

For Bg (in Eq. II.25.a) corresponding to the width

parameter «, of the Gaussian B we have:

B

o )
. )

2 ’ 2
i {<(x - RB Gal(x—RA) GA>(czA - aaA/m)

2 . . . po
, +<(x-RB) GB]GA>(7A—PAR - iﬁaA/m : PA/am)
2 . . .
+<(x-RB) GBI(x-RA)GA> [2aA(PA/m - RA) + PA]
- 2 I =
+ <(x-Rg)“Ggl V 6,5} o . (A.3)

If Bp (in Eq. I11.25.a) corresponds to the parameter 78 of
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the Gaussian B we have:

2 . 2
z {<GB|(x-RA) 6,> (&, + 2c,/m)

A

. ° . . z
+ <GB|GA> (7A. pARA 1th/m + PA/2m)

+ <GB|(x—RA) GA>[2aA(PA/m - RA) + PA]

+ <GB|V GA>) =0 . (A.4)

If Bb in Eq. (1I.25.b) is the parameter PB of the Gaussian
B we obtain

Re @ = 0 . (A.5)
with
Q=35 (<(x-R,) G, |(x-R,)%6,> (& + 2&>/m)
A B B A A A A
. . ) 2
+ <(x-RB)GB|GA>(yA— PARA - ihaA/m + PA/Zm)
+ <(x-RB)GB|(x—RA)GA>[2aA(PA/m - RA) + PA]
+ <(x—RB)GB|VQA>) = 0 (A.6)
Finally if Bb in Eq. (II1.25.b) is the parameter RB of the
Gaussian B we obtain
ImQ =0 . (A.7)

The physical significance of these equations, the method of
solving them and various approximations are discussed in the
text.

For a variety of reasons, specified in various places in

the paper it i's useful to rewrite the quations of motion for the
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trajectories in a different form. To do this we use the notation
M(An|Bm) = fdx(x-R,)™ 6. (x-R.)™ @ (A.8) :
- ‘ A A B B ‘
V(An|Bm) = fdx(x-R )nG’(x) V(x)(x-R_)™6_(x) (A.9) 52:
Al CA B’ °B '
We can then summarize the equations (A3-A7) as };;
by
AEREEIE SN : (A.10) i
. L
where N
#p po - P b - : o
! PA/Zm PARA ihaA/m + Yy Ln
2 (] . l::z:
. Pg/2m - PgRy - ihaB/m * Y S
ZGA(PA/m - RA) + PA (A.11) *
X = 2. (P./m - R ) + P
= &p(Pg/m B B =
. 2
&, + 2dA/m
. 2 \
op + 2“8/"" \ XG,
- M(AO|AO) M(AO|BOY) 0 M(AO|B1) M(AO|A2) M(AO|B2)
N M(BO|AO) M(BO|BO) M(BOJA1l) 0 M(BO|A2) M(B0|B2)
“ —> )
5 M = 0 M(A1|BO) M(A1]Al) M(A1lB1) 0 *  M(A1]B2) (A.12)
' M(B1]|A0) 0 M(B1]|Al) M(B1|B1) M(B1]A2) 0
- M(A2|A0) M(A2]BO) 0 M(A2]B1) M(A2]A2) M(A2!B2) :
s M(B2|AO0) M(B2]|B0) M(B2[Al) 0 M(B2|A2) M(B2]B2) i‘
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V(AG[AO) + V(A0|BO
V(BOJAO) + V(B0|BO)

V(A1{A0) + V(A1|BO)

<y
1
1

V(B1]AO) + V(B1]BO) v (A.13) ‘

V(A2[A0) + V(A2(BO) Vs -
fe .
v(B2[A0) + V(B2|BO) 6 Lo

Another useful form is . o

%

w v~

with o

X, + V(RA)

X, + V(RB)

3
]
<
+

s * 3V(R,)/3R, (A.14)

b
X, * 3V(RY3R, , 4
2 2
Xs + (1/2)3 V/aRA
X + (1/2)32V/QR§
- -
andnz’is obtained from ¥ by replacing V(An|Bm) with
Yan(Bn) = sax((x-R,)" 6 (x)[V(x) ~ V(Ry) -

2 2y p 12
T(3V(RG)/3RY) (x-Ry) - (1/2)(3%V(Ry)/3R) (x-Ry) 2]

n
-(x-RB) Ga(x)}

» >
Thus SHM is obtained by taking X:= 0.
3
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Figure Captions

The "length", defined as 1(t) = (h/ZIma(t))lxe, of a
normalized, initially narrow, low energy Gaussian
wave packet propagated in a Morse potential (Eq.
(I1I.12a)) using the MEM equations (Eq. (II1.3))

(

). 1(t) is in units of X! and time is in

/ - -
units of T = (2m/D) "% ® 27!, where » = 1.846 &%
and D = 4.334 a.m.u. 22/10 2% 5ec? are the Morse

potential range parameter and well depth,
respectively, and m = 0.5 a.m.u. is the reduced mass
of the oscillator. For values of 1 higher than .22,
the LHA equation for the force is in error by more
than 10%. 1Initial values of the wave packet

parameters are: Re(«) = 0.0 a.m.u./lo-14 sec; Im(«)

= 8.0 a.m.u./10 % sec; P = 0.0 a.m.u. A/10 % sec:
R = 0.20 3; Re(y) = 0.1878 a.m.u. 22/1071% sec; and
-14

Im{(y) = -0.0696 a.m.u. A2/10 sec.

The force (in units of DX) exerted on the center of
the wave packet whose parametgrs are defined in Fig.
1, propagated using the MEM equations (IIT1.3b)
(=——) and the LHA equations (III.7b) .

(= = -).

The Morse potential averaged over Gaussians of

different width, <G V' G>/<G53'G> {in units of D), as
a function of R (in units of k-l) using I ='0.60
(<= — ==), 1 = 0.829 (+——:), and ! = 0,147
(---);we also plot the Morse potential V(R) (—).

The potential energy V(R(t)) (in units of D) as a
function of time for the wave packet of Fig. 1
propagated using the MEM equations {———) and the

_..).

LHA equations (--
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Figure 5. The quantum energy, <G|H|G> (in units of D), as a

R N
*.-Nh'u'l
.
’
]
«
rr

b

function of time for the wave packet of Fig. 1 N
bropaguted using the MEM equétions (=—=) and the LHA
-y,

equations (-~

flale,

“ .

Figure 6. The “"classical energy," <G|V|G> + P2/2m (for MEM) or
V(R) + P2/2m (for LHA), as a function of time, for the

1,

wave packet of Fig. 1. propagated using the MEM

equations { } and the LHA equations (-~ =————r =-=).

Figure 7. The real part of the Fourier transform of
<¢(x;t)|¢(x:to)>. Eg. (V.2), where the initial wave
function Y(x;t ) = 0.5 ($_(x) + ¢ (x) + $,(x) + $,(x))
is represented by four wave packets, ¢n(x) are the
Morse eigenstates, and ¢(x;t) is propagated using the
MEM equations (——), and the uncoupled IGA equations
(-- — ~=). The peaks of Réc(w) are related to the
probability of being in eigenstate ¢n(x) by Eq. (V.3).
In this plot T = 5.0, X = 1.06.

Figure 8. The square of the projection of the wave function (Eq.
111.25) propagated by IGA onto the Morse eigenstates,
i.e., |<¢n|¢(t)>|2, versus time for n = 0 (——),

n=1 (--), n=2 (- + -) and n=3 (-- — --).
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