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ABSTRACT

We develop methodology for performing time dependent

quantum mechanical calculations by repres'enting the wave function

as a sum of Gaussian wave packets (GWP), each characterized by a

set of parameters such as width, position, momentum and phase.

The problem of computing the time evolution of the wave function

is thus reduced to that of finding the time evolution of the

parameters in the Gaussians. This paramete'r motion is determined

by minimizing the error made by replacing the exact wave function

in the time dependent Schroedinger equation with its Gaussian

representation approximant. This lea-ds to first order

differential equations for the time dependence of the parameters,

and those describing the packet position and the momentum of each

packet have some resemblance with the classical equations of

motion. The paper studies numerically the strategy needed to

achieve the best GWP representation of time dependent processes.

The issues discussed are: the representation of the initial wave

function; the numerical stability and the solution of the

differential equations giving the evolution of the parameters;

and the analysis of the final wave function. Extensive

comparisons are made with an approximate method which assumes

that the Gaus'sians are independent and their width is smaller

than the length scale over which the potential changes. This

approximation greatly simplifies the calculations and has the

advantage of a greater resemblance to classical mechanics, thus

being more intuitive. We find however that its range of

applications is limited to problems involving localized degrees

of freedom that participate in the dynamic process for a very
short time. Finally we give particular attention to the notion

that the GWP representation of the wave function reduces the

dynamics of one quantum degree of freedom to that of a set of

pseudo-particles (each represented by one packet) moving

according to a "pseudo-classical" (i.e. classical like) mechanics

whose "phase space" is described by a position and momentum as

well as a complex phase and width.

.-...
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I • INTRODUCTION .- :
In a series of papers Heller 1 1 0 developed a scheme for

computing and interpreting time dependent quantum mechanical

processes by representing the wave function as a superposition of

Gaussian wave packets. Since each packet is characterized by

several parameters, (the position and the momentum of the

packet's center, a complex width and a complex phase) the

calculation of the time evolution cf the wave function is reduced

to that of the time evolution of these parameters.

In his applied work Heller used a version of his method

(which we call here the simplest Heller method (SIM) which is

based on two simplifying assumptions. (1) The first assumes that

if we must represent the wave function by a sum of Gaussians, we

* can propagate each Gaussian independently. This means that the

equations of motion for the parameters of a Guassian G are not

allowed to depend on the parameters of another Gaussian G We

* call this the Thdependent Gaussians approximation or IGA. (2) It

is further assumed that throughout the (i.e., collision or photon

absorption) process the width of each Gaussian is smaller than

the length over which the potential changes. This allows the

use, at each time step, of a second order Taylor expansion of the

potential around the instantaneous center of the Gaussian. We"

call this the locally harmonic approximation (LHA).

SHM was used successfully by Heller to analyse a variety of

time dependent processes such as atom-diatomic collision I photo-
9 9

dissociation7 , photoabsorption , Ram-an scattering and atom

diffraction by surfaces. 10 The method provides accurate results

as well as a novel and beautiful interpretation of quantum
dynamics in terms of a classical language. A common feature of

these applications is that they all deal with the short time

dynamics of localized quantum degrees of freedom; in a way their

success reflects mostly H-eller's skill in identifying important

problems that fit the SHM validity conditions, rather than the

* .4....'--
C. . .. b 9 -* -N - - *- - - -- -
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generality of the method.

The purpose of this paper is to explore the use the

Gaussian wave packet (GWP) representation 'eyond the domain in

which SHM is valid, by abandoning IGA and LHA. This is done in

the spirit of Heller's work and requires mostly a revision of the

-,. manner in which his ideas are implemented.

For simplicity we consider one degree of freedom only

(other cases will be discussed in future work) and assume that

the wave function can be represented as a sum of Gaussians. This

can always be done profitably if the degree of freedom is

localized throughout the process of interest. The reduction of

the propagation of the wave function to the propagation of the

parameters describing Lhe Gaussians is achieved by using what we

call the minimum error method (MEM) (Section II); essentially

this applies least square fitting type methods 11 to this

particular problem and it contains a known "time dependent

12
variational principle"'I as a particular case. The latter was

also used by Heller 1 2 c in the context of propagation of

Gaussians.

The MEM equations, giving the time evolution of each

Gaussian's parameters, give an accurate solution of the time

dependent Schrodinger equation as long as the sum of Gaussians is

a good repr'4sentation of the wave function; that is, as long as*

the Gaussians provide an adequate basis set. In Section III we

compare the MEM equatiods to those obtained by making the LHA and

the IGA approximations (i.e. SUM). We show that MEM works very

well in situations in which SHM has serious difficulties. Since r
one of the remarkable advantages of SHM is its ability of

describing quantum.processes in terms of classical concepts we

pay special attention to the classical like physical picture

underlying MEM, which we call here a pseudo-classical mechanics,

.. . . . .. . . . . . . . . .' ". " '. .-. 4..d.-. . . ,. .. .... =:,-...-.-,-.-,
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The re.mainir|g sections a-re concerned with more practical

matters: the initial c'hjoice of the Gaissian representation

('Section IV), the final state analysis (Section V) and the '..'

numerical stability of the MEM equations.

It is our feeling that the use of a Gaussian wave packet

representation as implemented here, is likely to be very useful

in treating quantitatively problems In which localized quantum

degrees of freedom are involved in dynamic processes of

moderately long duration. It is particularly suited to problems

in which such degrees of freedom are coupled to a large number of

classical variables whose state is specified only statistically

(e.g. through a temperature) since the coupling of classical and

* quantum degrees of freedom presents. in this framework, no

" conceptual difficulty.

,... ..

-.

*1 "



-Z . rrrn n- - ,-

II PROPAGATION

11.2 Miathematical Prelminlaries

h2 A The m:nimum error method (MEM) th or"

We are concerned with equations of the form

where is an unknown vector in a Hilbert space and A is a known

Atime independent (this restriction is not necessary) operator•.-.

We assume that we know a physically motivated way of writing f(t)

in the form

O,(x;t) -: (x;{ M )}) (11.2)

where the explicit functional dependence of the approximant * on

the parameters X 1 ... is known and the time dependence of .

takes place exclusively through X (t)...... X (t). Thus we can

derive the time evolution of ' by finding the parameter -.

trajectories >.i(t) which satisfy

* X. = A . (11.3)

(Repeated indices are summed over). Since we know the explicit

dependence of *. A and 3 /B i on x and ), we can use (11.3) to

develop the following iteration scheme. We assume that Xi (t), i

= 1 ..... N are known and use (11.3) to compute Xi, i=1, .... N;

then we can detcrmine X (t+t), for small T, from

2
X= Xi(t) + . +i O( 2 ) . (II.4)

and repeat the procedure. The scheme can be started at the

initial time t=O for which we know- the wave function, therefore

the values of Xi(O), 1 =1 . ... N.

..'.'.'.'.' ' :V.'.:.':'..'c..'.''..:".-.-. .,'.\.".",,..:-"-.'-"-'-", .".". .C"" " " " "'"'"''- -:- " " '- -" ' " *."' "
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The equation (11.3) providqs us with an infini'te numnber of

* equations (one for each value of x) for the N unknowns >.(t). To

deal with this situ'ation we discretize the problem by using Eq.

(11.2) at a finite number of points xn n=1 , M. M N.

Thus, we have

If we denote C ni=3 (x )/3%. and B =A (x )the matrix equation
n n n

C> = B is a set of M linear equations with N unknown and M e N.

Such equations appear in the "calculus of observations" )_

whenever the number of data points taken by overly industrious -

experimentalists exceeds by far the number of unknowns to be

determined. A customary, but not unique, way to get the "best"

solution is to minimize the quantity

EW(C -B) (C B) (II.6a)
nn ni I n nJi jn

with respect to the unknowns The weight W Is included to
I n

allow us to de-emphasize the role played by the less reliable

hpoints n, or to enhance the influence of the reliable ones. The

extremum (hopefully a minimum) conditions asiai =o (for
I

simplicity we assumne real parameters) lead to a N x N equation

0 (Z W C' C )).=B (II. 7a)
j n in nj j

%' n

4o +

where C is the adjoint matrix of C and C. C .. This equation
in ni

has a solution If the rank of the matrix D e C C equals N.
ij n Wn in nj

Since D is the Gram matrix of C the rank of D is equal to the

rank of C. Thus, the parameters can be determined if the M x

N matrix C 1  = Wx p.)Iax. has one N x N minor whose
ni n

determinant is non-zero. By taking the continuous limit (the ,"x.

axis is divided in M segments of equal length Ax N x nis taken in
n -

""*ha a ouini h ako h ari ~= n[nn j eul .,

SinceD Isthe................e.r.k.ofD..sequa ,.o~ the .,.N

--------------- , the parmeter .- I c anb deerind h Mn~ x .." -
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the middle of the corresponding segment and M- w) and using W .

X Ax we can rewrite (11.6) asnn

&f Sdxx(x)) ( ) -A) ). - AF.) (II.6b)t

'- and (11.7) as

This minimum error method (MEM) with the particular

implementation given above reduces (when we take X(x) = 1) to the ''i

time dependent variational principle previously used in quantum
12

mechanics. The change of the point of view introduced by the

above presentation has a "liberating" effect since: (a) it shows

the tremendous richness and flexibility resulting from the

existence of a large number of legitimate and resonable

definitions for the "error" &, each leading to different

equations for the propagation of Xi(t); (b) it indicates that

this is a mathematical procedure that can be applied to the

propagation of any observable, not a physical principle tied to

the wave function and the time dependent Schrodinger equation.
Its main function is to reduce the propagation of f(x,t) in the

N
Hilbert space to the computatio.n of N trajectories X.(t) in R .

II.2.B. A Perturbation Theory Approach

The propagation scheme presented above seems to be of first

order in-the time step T, since it solves Eq. (II.7b) for >. and

then uses (11.4) to find. )(t+r). We can attempt to use large

time steps by considering that (II.7b) is a first order

differential equation and by applying the Runge-Kutta (RK)

method. However if Eq. (II.7b) is a first order expression in T

the use of a high order RK procedure would be incorrect, for the

reasons explained below. Let us consider the equation X = f(t) .

0(-C ) and compare it to ;. = f(t). The RK method applied to Z --
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f(t) uses the expansion

)X(t) i(t)T (t) -2/2 , (t) -3/3, 0(

(II .8a)

= X(t) + f(t)T + i(t)* /2 + Y (t)T /31 + 0(c4 )  (II.8b)

2However if the equation is =f(t) + 0(- 2 ) the expansion (II.8b)

misses the third order tern '0(T 2 ) as well as the higher order
terms originating from (2) and 0 (r2)

To check whether the use of RK method to solve Eq. (II.7b)
is legitimate we can compute (II.8a) by perturbation theory and

compare it to the equation (II.8b) used by the RK method. We

find that the two procedures coincide only when a certa.in

definition of the error & is used.

If we take a time step T, causing a parameter change

8* X(t)equal to

6(t) = i(t)r + K (t)r
2/2 + 0(-) (II.9)

the approximate wave function changes by

2 22
6 (t) = +(t T) - (r)X + T ) K-2 + ( (XT2 0( 3

2 2 2 2X+~) 0'

(II.10)
The same change can be written as

1i2 2 36 (t) = A( (t)T + -j A2@(t)- + 0(-r ( I.

by expanding formally (t+r) = exp(AT} *(t). Since the two

expressions must coincide order by order we have

= A (II.12a)

and

N-
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2 2 2
Ths corresponds to u'sing //t- A5 and .a2 4/Zt A as two

independent equations. We can now apply the minimum error method

to them.

We have two infinite sets of equations to determine 2.N

unknowns and X1 ' Eq. (II.12a) is the same as (11.3) (thus

giving the false impression that (11.3) is valid in first order

only), but Eq. (I1.12b) has not yet been used. To apply MEM to

these two equations we define

.36.
9, dx%(x)[rX X. - Ca X. A ) (11.13)

and use a&1/3>. = 0 to compute . This leads to Eq. (II.7b).
1 1

Then we define

a ,Xxx[ _x)(t) (11 .14) , "&2 3>xx) 3>.()] t X . ,.

with

t A2 (11.16)

and use 38/. = 0 to determine i ( ;s already known by solving
2

(II.7b)). This leads to

fx(x) 3 dx J'dxx(x) - ¢(x;t) (11.17)

Note that we could have legitimately defined the error as &

& & and used 3&/a> = 0 and 3&/3X = 0 to generate equations

for % and X. The equations obtained in this way are different

from (II.7b) and (11.17). In particular, they do not give for >-

the same value as the time derivative of Eq. (I1.7b).

%..9-9

~ ~ -.. d 9j~ - - . . . . .• h
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'We can now turn to our original question: is ~.computed by

taking derivatives of Eq. (II.7b) identical to the value of K. .

given by Eq. (11.17)? A straiihtforward calculation shows that

this is thc case. Therefore a n-th .order RK procedure applied to

the first order "variational" equation (11.3) is equivale"t to

the use of a n-th order perturbation theory wit'hin MEM and is

thus wholly justified. This is a pleasant result since the use

of the existing RK programs, which compute the needed derivatives

internally, can save a large amount of labor. Note, however,

that the use of the error & 1 +,l& 2 with the equations 3&/3i 0

and &/X=0 leads to equations for >. and X which are not

equivalent to the RK expansion of Eq. (11.7b). This is true for

other e-rror definitions that we have considered.

II.2.C A Global Minimun Error M~ethod

The applications of MEM discussed so far were all made by

using errors defined locally in time. Below we discuss an

extension of the method which has a truly variational character

since it determines the trajectories Xdi(t) which minimizes the

error functional

T
5 T dtn(t) Sdxx(x){ - ..- . AO~) . (11.18)

0~
fThe local method var-i s the numerical value of (t) so that the

error 5(t) made at time t, Is minimized. In (11.18) the whole

Scurve (t) is adjusted to give a minimum value to . The weight

n(t) has been incorporated to permit us to emphasize or

deemphasize, as desired, the importance of some of the points on
Sotheraeory. akingtn the functional derivative ;9/3 ,(t1) and

equating it to zero leads to

,-7.'*

'u gr see%%. time.Bo dc a .-'-..-

.5 55. extension of55.. th:ehdwihhsatul1aitoa hrce
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-(dn/dt)Re<(3/3X )((4/3x A >)-)

2 (QR <(3 X 2 ]>

-. n(t)Re<ASl/ [1, A19)

Tie first term appears because we have not specified any

constraints for the variations 8%i(T) and 8X (0) at the ends of

the trajectory. We can eliminate it by taking n(T) = n(O) = 0.

The second term is zero if n(t) is a constant; if the first two

terms are thus eliminated n(t) disappears from the equation.

The equation obtained above is rather different from the

preceeding ones and there are no theoretical grounds for

rejecting one in favor of the other. The existence of so many

ways of generating the trajectories in the parameter space

originates from the fact the the "best" solution of an infinite

set of equations having a finite number of unknowns is not

uniquely defined.

-4[
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11.3 PHYSICAL APPLICATIONS OF MEM

II.3.A The propagation of the wave function.

In the application -presented below MEM is identical to a
3,1.2

known "variational principle". Its application to the

propagation of Gaussian wave functions has been briefly discussed
3d

by Heller. Therefore we present it here with a minimum of

details which are indispensable for understanding what follo'ws.

We consider a representation of the wave function of the .

form

NG

4i(x;t) = A GA (x; (AAa ;r ) ) (11.21)
A=1 A Ax'A

where the-parameters A (t) , c = 1,2, ... CA are complex

functins of time and r (t), a=1, 2, .... R are real functions
Aa A

of time, and C A and R A are integers. The equation (11.21)

represents the wave function f(x;t) as a sum of localized

"fragments" GA whose explicit dependence on the parameters A and

r is known. For a variety of reasons, well summarized in Heller's
1-10

papers, the use of complex Gaussians for GA is particularly

* advantageous. Other functions of the form

:[.~ (T nt X (t))n)GA, ;{~},(~} '.

n 0

where Qn (t) and n(t) are functions whose time dependence is to

be determined and G is a complex Gaussian, have similar
A

advantages and greater flexibility.

To calculate the parameter trajectories (i.e. the time

dependence of A and F) we use MEM with the definition (II.6b)
Aa Aa -

for the error & and the operator A = ( i1)-H, where H is the

Hamiltonian.
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The use of the weighting function X(x) require s-ome comment

since previous applications of the "variational principle" use

x(x)=i. In most dynamic problems we are not interested in

computing the wave function, but its projection on some given,

time independent state I'(O)>. For example in computing the

total absorption cross section for an electronic excitation of a

molecule by light we must propagate in time the nuclear wave

function T(x;O) = <xIT(O)> of the electronic ground state on the

final electronic energy surface (Franck-Condon approximation is -

implied), to obtain the wave function T(x;t) - <xlT(t)>: the

Fourier transform of <T(t)JT(O)> with respect to t gives the

total absorption cross section. One can show in fact that such

quantities are generalizations of the one partiple Green's

functions used in many body theory from the case of a quasi-

particle excitation to that of a transition from one many-body ..-.

state to another. If our intent is to compute such overlaps we

might as well weight the error & accordingly by taking X(x) = _

T(x;o) t,(x;O). Thus he determine AA an-d rA so that the wave

function tf(x;t), given by Eq. (11.21), has minimum error for

those values of x where x(x), hence T(x;O) is not zero. If

r(x;o) is very localized this procedure should allow us to fit

'(x;t) with fewer fragments GA(x;(A),(r) than in the cas.e when

we try to fit the wave function in the whole space.

Applying. ME,I to the approximant defined by (11.21) and the

error defined by (II.6b) gives

* * %

A All;AIg' AA Ap' CAa;A'a' Aa. Ala'
BA r ' A' .;?'.

BA;A'a' A A'a' B Ag;A'fg' AAL A'a'

-D A D A E P EAV Ap V A AA Aa Aa Aa Aa (11.22)

SZi>

.................................. .. '.....

. . . . . . . . . . . . . . .-.. ---
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with

AA A<B = a <I A)> (I I.23a)

2
BAp;A'a' A % < 3 A VA (GA'/8-A'a')> ,(I .3 ).:_[>

= h 2 <(30AlA a )1(3GA,/FA , ) (11.23c)CAn ;Ala' A aa A' Ala'.

D g = iti<(3GA/3A g) ]H > ,(II.23d)-..,

EAa = il<aGA/Far)IHq> , (II.23e)

and

<E(x)lx)> -dx x(x)I(x)l(x) (11.24)

To minimize & with respect to the complex parameter's, as required

by MEM, we can use A as independent variables and generate one

complex equation (for AA and 'Aa) from each condition ;&/A =

0., The condition 3&1r = 0 for the real unknown PA leads to

one real equation. These equations are

A A B r. D (II.25a) i

Bp;Al AVl Bp;Aa Aa

and

(ReCBbA) rA + Re(BAl +bAA) Re EBb =0 (II.25b)

Previous work treated all parameters as if they were complex thus

generating one unneeded equation for each real parameter. In all

the cases that we are aware of this does not lead to errors or

serious complications since the superfluous equations can be

eliminated by inspection; they are linear combinations of the

other equations. For more complicated representations of l(x;t)

it is easier to use the procedure described here, which gives

only the necessary equations, thus avoiding the extra work needed

to carry out the eliminati-on mentioned above.

'-%



II.3.B The propagation of various obser-ablei

Since the wave function contains all the information we can

possibly want to know about the system, it contains superfl'uous

inforanation whenever we are interested in.a small number of

observables. Assuming that there is some prcportionality between

the amount of information wanted and the effort required to get
13it We might hope to save labor by determining the parameter

trajectories that give the best fit to the observables of

interest only, rather than by fitting the whole wave function.

In the case already mentioned, when we want the overlap of l(x;t)

with a localized function T(x;O)., we can hope to need fewer
"pieces" G (e.g. Gaussians) if we determine f(x;t) only in the

A
spatial region where T(x;O) Is large. Similarly, if the

variation of the wave function l(x;t) with x, at a fixed post-

collision value of t, has a broad hump on a length scale L with

small wiggles on the scale 1 superimposed on it, then a matrix

element with a planar wave 'unction of momentum of order '2Tr/l is

totally indifferent to the existence of the hump; it is however

very sensitive to the details of the wiggles. Therefore a

calculation that gets the w-iggles right and misses the hump is

quite satisfactory. Again, one can hope that such diminished

demands on the quality of the wave function requires less work

(i.e. fewer Gaussians) than the case when we attempt to fit

f(x;t) with wiggles, humps and wbatever else.

Since MEM is a method of solving differential equations,

rather than a variational principle specifically tied to 13ip/3t

- Ht, we can apply it to generate parameter trajectories that

give adequate results for some observable. Several examples,

which should provide ample illustration on how to proceed in

general, are given below. For simplicity we confine ourselves to

the case of one approximant (rather than a sum, as in Eq.

(11.21)) and several real parameters X.. The generalization to

I

*'.* *S*.**'~, . .. . . . . . . . . . . . . .. . . . . . . . . . . . . . .
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the case (11.21) is straightforward.

(a) ThEr use of the transition probability to determine the

parameter -trajectories.

Let us assume that at pbst-collision times we are

interested In the probability that the systems dt.scribed by f(t)

is in a continuum state 1k>. Taking the time dei-ivative of the

probability

'P(k;t) = I<k'tf(t)>I (11 .26)

using Eq. (11.2) to approximate f(t), and the Schrodinger

equation to compute , we obtain

P(k;t) (BP/;Xi)Xi (2/h) Im <klH><1Jk> f(k;t)

(11.27)

Since this must be satisfied for all values of k (spanning the

continuum) we have again an infinite number of equations and N

unknowns " MEM determines the unknowns by generating an NxN

equation for them. This is obtained by minimizing

P = Sdk X(k) {(P/3Xi)x1  - f(k;t)}2 (11.28)

with respect to X The result is

- p P • p'..
(fdk x(k) - -* -jX : !dkx(k)(- i-) f(k;t) . (11.29),.:[!]

I*

Since we know the functional dependence of on Xi(t) we _

can compute the matrix elements appearing in (11.29) whenever we

know the values of all the X. at t. This allows us to determine2... q.."

>i(t) and Xi(t+T)- X%(t)+X (t) , providing us wit'h ah iteration

scheme to get ).(t) at all subsequent times. If is a Gaussian

and !k> a planar wave then <(Ik> is a Gaussian and <kMH >

*-.'

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . ... . .
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contains moments of a Guassian (from the kinetic energy operator)

and integrals of the form fdx exp(-ikx)(x-x ) V(x)@(xY. The
t

latter can be performud analytically If V(x) is-fitted by

Gaussians, exponentials, polynomials or any combination of them.

The same procedure can be applied when we are interested in
2P (t) = I<nif(t)>I , where n is a discrete state. The equation

n
of motion is

(aPn/xi) = (2/h) Im<nJH><41n> f n(t) (II. O)

If the number of wa-ve functions In> used in Equation (11.30) ig

larger than the number of unknowns >. (this is always the case in

a Hilbert space of infinite dimension) then MEM gives

[z Xn (aPn /3X)( aP n /BX) E X n 3% f n '
n n m

where Xn is a weighting factor.

Note that the projection on discrete basis sets to give the

probability P is of interest in bound state dynamical problems

(e.g. a semi-classical external field drives the system into a

steady state which is a superposition of the eigenstates of the

system). In collision theory we need probabilities of the form

J<kJ<nif(t)>J2 P nk(t) in which k describes the relative

translational motion and n the internal states of the fragments.

MEM can be applied to such situations (to compute trajectories

determined for the best fit of these probabilltes) with no

additional conceptual difficulty.

(p) The use of expectation values to-tetermine the

trajectories.

If we are interested in knowing the expectation value of an

operator 0 at time t we can use it to generate trajectory

..
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equations. We have

d dP)n()t) = 0- 0 f (t) (11.32)
d- nn dt nn n

where P is defined by (11.20) and f by (11.27) (we assume here

n . n
that the discrete basis set provided by the eigenvectors of 0 can

describe adequately the dynamics, thus only 0nn <nIOjn>

appears). We can now use the error

( n (P n I (11.33)7. (nn) {( p /;X ) -fn(t))f..

n

in which the probability equations (11.30) are weighted by the I-J. -

matrix elements of the opera'.tor 0. Thus the importance of the

states likely to contribute more to the mean value of 0 Is

emphasized and the others are weighted down or multiplied by

zero. By equating with zero derivatives of e with>. we obtain

(11.31) with the w,:ight :Xn <nlOIn>.

w-,' ', . . . . . . . ...- .,,.. . , - • . . .-,.,,.-. "- " ", ,".',, N -- v,,,- , - o-- I
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III. Appi-oxiLate Propa~atiou Schemes

I11.1 Introductory Reniarks

tm The equations (1.25) can in principle be use-d to find the

time evolution of the Wave function by findi.ng the parameter

trajectories. If the physics of the problem fbrces us to use too

many Gaussians we might have to abandon the method or to look for

some simplified propagation schemes.

To see how rapidly the complexity of the method can

escalate let us consider a time dependent quantum mech.nical 7.

problem involving two three-dimensional variables R and 7. We

need nine complex parameters for the width matrix for the -

variable and nine for 7; we must also use terms of the form (R-

t)' ( (- t) to permit correlations between the two degrees of

freedom and this requires nine complex parameters. Thus the

characterization of the width of the Gaussian requires 27 complex

parameters. To this we must add 6 positions, 6 momenta and a

complex phase. Thus if we deal with six correlated degrees of

freedom we need a total of 68 real parameters per Gaussian. For , .-

ten Gaussians we must solve 680 first order differential

equations.

Assuming that in the dumbest possible way we saturate the
space with Gaussians and are willing to solve 700 (or even 7000)

equations, the method could still be used since all the labor

required to carry out the integration to obtain the parameter

trajectories is thus roughly comparable to 'that needed in

molecular dynamics; seven thousand equations corresponds there to

2333 atoms, which is fully within the capability of present day

computers.

The disadvantage of such a brute force attack is the loss

of the simplicity which makes the Heller method so appealing in

the first place. It is not surprising therefore that mest of =

-jI
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.- Heller's effort was directed towards simplfying the parameter

equations of mution. Such s.implifications are physically

motivated and their success depends on the problem being

addressed. Nevertheless some of their features are sach that can

be discussed in a general setting.

All numerical calculations carried out so far have used two

approximations. (1) 1f0 the wave function was constructed as a

sum of Gaussians, it was assumed that matrices AB;A , BBP;Aa

ReCBb;Aa and DA Bb are diagonal in the indeces B and A which

label different Gaussians. This approximation decouples the

Gaussians and we call it here the independent Gaussian

approxiination (IGA). (2) If we assume that each independent

Gaussian is, throughout the collision, narrower than the spatial

range over which the potential changes appreciably, we can

further simplify the matrix elements since th*o7 can be evaluated

by expanding the potential in power series around the center of

the Gaussian and by retaining the first three terms of the

expansion. That is, at time t we use

2 - 2 -~~ 2v('r) ~v(,rt )+-(3v('t)B ;t) r r - t )+(1/2)32V( t )l/3rt2 (r-r t) '-:
t

where r is the center of the Gaussian. In what follows we call

this the local harmonic approximation (LHA). The main appeal of

this approximation is that the mean position (i.e. the center of

the packet) and the mean momentum of packet move according t3
14classical mechanics. As shown by Ehrenfest this property has

nothingto do with the use of Gaussians for GA ( XA} it is

valid whenever the regi.oh over which GA is non-zero is smaller

than the spatial range over which the potential changes. A

further appealing feature of LHA is the fact that the phase yt is

essentially the classical action along the trajectory followed by

the center of the packet, which is in agreement with the eikonal

approximation.

".," - •, , . •. . . . . ..-. . ...'- • ' - - ' -: .. '. --: - . •*. * . *:' .-.. .."" " , - '7
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The theory resulting after making these two approximations

is called in what foliows the simple Heller method (SHM). It has

been successfully applied to a number of problems chosen so that

the risk of SHM break-down wa.s minimized. A beautiful example is

the absorption coefficient of a photodissociating molecule. The

initial state is bound and very localized. The absorption cross

section is given (essentially) by the Fourier -transform with

respect t6 time of the overlap between the initial wave function

and the time dependent wave function obtained by propagating the

initial wave function on the upper state. If the fragments

produced by photo-dissociation separate very quickly (i.e. they

are on a strongly repulsive potential) the overlap becomes zero

very quickly. Therefore they need to propagate a very localized
I..

packet for a very short time; it is not likely that it will have

time to broaden to the extent that will cause LHA to give

substantial errors. By using SHM Heller has developed a

beautifully clear and simple picture of the connection between

the absorption spectrum and the classical motion on the upper

state on which the dissociation takes place. That stimulated
15equally elegant experiments. Other successful calculations

involved harmonic oscillators for which - as we show later - SHM

is exact.
Is6

Recent calculations by Skodje and Truhlar1 6 and by Heather,
17Jackson and Metiu show, however, that the method fails to give

correct values for the time ev.olution of the states of the Morse

oscillator. We are thus led to examine both theoretically and

numerically the two approximations mentioned above. Our

conclusion is that th-ey are justified only under special

circumstances.

*.o*! .
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111.2 The Local Harmonic Approximation (LilA)

I1I.2.A The definition of the aporo~cimation

We consider here the case of one normalized Gaussian, to

isolate the effects of LilA from those of the neglect of the

*Interaction between Gaussians. Using the equations (A.3) -(A.7)

of Appendix A we can write the M*EM equation for the case of the

Gaussian approximant

i(x;t) G(x) =exp((i/h')(ca(x-R) 2+, P(x-R) +(III.la)

as

M 4 (&~+2o: /M) + M2[-firam+P/2m) + V 2= 0 (III.lb)

M (&+2ag2/M) + (-Pk-iho:/m + P /2m) + V =0 (III.lc)

Refl 0 *(III. id)

I mgPt 0(III. le)

with

$1 M 2 (2c(P/rn-R) + P) V 1 =0 (111.2)

M <(x-R) G> (111.3)

and

V <(x-R) nGIVG> .(111.4)

The equation (III.ie) leads to

Rk P/rn (III.5a)

and this together with (I1I.Id) gives

= -/M = <GIVIG> <GI(3V/ax)IG>
P 1 2 B R <GIG> <GIG> .(I.b

The equations (111.5) are more general than the procedure

used here for their derivation. Since R and P are the



expectation values of the poGItion and momentum operators for a
Guassian state the equations (III 5) also Ehrenfest'si theorem 

-\

Combining (II1.1b) and (III 1c) we can write:

.[-PR-ih(o/n) + P 2 /2m) =-(M 4 VoM 2 V 2 )/(M 4 ) (III.5c)

and

* 2 2oa+2 2/m (M2 V -V 2)/(M 4- M (II.5d)

. The LHA assumes that at any time t we can replace the

potential by

-" ~V(x) -V R) + (3V(R)/aR)(x-R(t)) 
.,.-

(111.6)
+ (1/2)(3 2 V(R)/BR2)(xR(t)) 2

Using this expression for V(x) in the equations (111.5) leads to
, the LHA equations:

RP/ , 
(III.7a)

P = -V(R)/R , (11.7b)

- PR - ihce/m + P2/2m + V(R) 0 (II1.7c)

- +2a2/m =-(1/2)a 2V(R)/aR2 (III 7d)

In what follows we attempt to establish the limitations of
the LHA equations (111.7) by comparing them to the MEM equations
(111.5) from a physical and a numerical point of view.

III.2.B The manitude of the * -ror made b, LHA.

Clearly the expansion (III.6) is valid only If V(x) is

.... ... .... ... ... .... ... ........*...** ** . . . . . ..- ... .... ... ...
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practically constant as x varies around R over a spatial range

equal to the width of the Gaussian. A more precise statement can '.
"

be made by retaining the next terms in the potential expansion

and req~irino thzt they should contribute Jess than 10% to the

equation of motion. Adding a third order term to Eq. (111.6) and

using it in Eq. (III.5b) we obtain

(PMM "FSH )/PHA [I(t)2/4][3Sv(R(t))/BR(t) ][3V(RZ(t))/8R(t)]-I
(MEM LHA''LHA lt)2 33-

4
+ 0(1 4 ) (11.8)'

He LHA is given by Eq. (lIl.7b) and P is the MEM value of P
Here M EM

when the third order term is included in the potential expansion.

The length l(t) - [/2Ima(t) /2 is the width of the Gaussian.

The error made by using P instead of P is less than 10% if
LHA MEM

2 3 3(1 /4)(3 V/3R )/(3V/BR) -< 0.1 (111.9)

We have found, by a similar analysis, that the errors In

the other LHA equations are smaller than 10% if (111.9) is

satisfied. In other words, the LHA equation (III.7b) is the one

giving the largesterror.

For an exponential potential V(x) =e Eq. (111.9) gives

12 X 2  -S 0.4 (111.10)

and for a repulsive Lennard-Jones potential

2 2
12 1 3 .14/R T < 0.4 , (111.1)

where R is the value of R at the turning point (where we expect
T

EHA to have more difficulties). For a kinetic energy of 0.05 eV
50 12(thermal for lie), a = 4A, e!k : 54°K and V(x) = 4e((a/x) -

6
(aix) ] we find (from (111.11)) that LHA is satisfactory (within

10%) if 1 -< 0.08 A. Roughly the same result is obtained from

. .. .--
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(II.10) for X -  - 0.2A (a rapidly varying "hard wall"

potential). Less stringent conditions are required in the

sm6'other regions of the potentials.

In our calculations of scattering of He from solid
18surfaces 8 we find that 1 exceeds this value in all cases, even

though we have varied the initial width (both Re a and In a~) in

an attempt to obtain narrow packets in the interaction region.

To get a better understanding of the breakdown of LHA we

carried out several calculations in which the Gaussian wave

packet (GWP) (III.la) is propagated in the Morse potential

V(x) = D(l+exp[-2X(x-xo)] -2 exp[-X(x-xo)] (III.12a)

In Fig. 1 we plot l(t) as a function of time, for a normalized,

initially narrow low energy wave packet. Since the Morse

potential is the sum of two exponentials (one of which has the

length scale (2X) ) the validity condition for LHA is given by

Eq. (III.10) (with >. replaced by 2>). This leads to IX = 0.31.

We expect LHA to work best either for a low energy GWP, which

samples the lower part of the potential which is nearly harmonic,

or for packets which are initially sufficiently narrow. We see

that more than half of the time Xl(t) is above 1). = 0.31,

indicating that the conditions for the validity of LHA are not
fulfilled.

It is important to realize that in order to be a useful

approximation LHA must be uniformly accurate; that is, if f e(t)

and f a(t) are the exact and the approximate values of a parameter

we must have 1jf e(t)-f a(t)Idt<E as well as max

i re (t)-fa(t)I< E2 for te[O,T). Here T As the time interval over

which we need to know the evolution of the packet, and eI and

" are small numbers specifying the error we are willing to

tolerate. The reason for this can be understood by considering

.-............................. ,......,....................-. '% _
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the trajectory of the center of the packet. Let us assv:me that

LHA gives us the incortect force only for te[t i, tI+A]. This

will distort the trajectory for the remainder of the t'ime, even

though the force -is computed correctly at all t 2 t1 + A, because

the values of R(t +A) and P(t +A) are erroneous, and therefore

the trajectory will stray from the correct path at t > t + A.

A more pI'ecise test of LHA's accuracy is made in Fig. 2

where we plot - V /M 2 and.- 3V(R(t))/3R(t), which are the right

hand sides of the MEM and LHA equations (III.5b) and (III.7b),

respectively, giving the evolution of the mean momentum. Thus we

are comparing the expectation value of the operator - 3V/Zx to

t-he classical force; if LHA works these two quantities must be

equal. Again, we see that this is not the case.

In evaluating the LHA accuracy we must keep in mind that

the trajectories of R and P are not measurable in a quantum

experiment. Normally we measure the projection of the asymptotic

wave function on a set of final states. It is conceivable that

such projections are not very sensitive to errors in trajectories

and LHA might be better than an analysis of the trajectory might

. suggest. On the other hand these trajectories are used to give a

qualitative description of the dynamic process in a language that

- is close to classical mechanics; large errors in the trajectory

would lead to a misleading qualitative representation of

dynamics.

III.2.C A comparison between the pseudo-classical mechanics

generated by MEM and the classical mechanics (given by LHA).

The MEM Equations (III.5a-b) have some resemblance to the

classical equations of motion for the coordinate and momentum;

when LHA is used they reduce to Hamilton's equations with the

classical potential V(R(t)). To emphasize both the fact that the

MEM equations (III 5.a-b) are quantum eguations for the

.7;
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expectation values of the position and momentum operator in a

Gaussian state and the fact that they resemble classical

equations, we call them pseudo-classical equations; and we use

the term pseudo-classlcal mechanics for the motion of R(t) and

P(t) generated by. thei. For a single Guassian the diffe' ence

between MEM and LHA is thus equivalent (as far as R(t) and P(t)

are concerned) to the difference between the pseudo-classical and

the classical mechanics. Since these trajectories are used to

interpret quantum dynamics in a pictorial, classical-like

langu-age, it is instructive to examine them in detail.

III.2.CI The Potentials

The "pseudo-classical potential" v <GIVIG>/<GIG>

appearing in (III.5b) can be written as

-1/2 2
v = T " dy exp[-y V[R(t)+l(t)y] (111.13)

1/2where l(t) = [h/21ma(t)] is the width of the packet.

Since the greatest contribution to the integral comes from

the values of y between zero and one the center of a packet

. loc.ated at R(t) is abted upon by the values of the classical

potential between the points R(t) and R(t) + 1(t), "averaged"
2with the Gaussian distribution exp(-y2). A more precise

statement can be made for the exponential potential V(x) = exp[-

- Xx] for which

v = exp(->,[R-Xl2 /4]} (111.14)

Thus, for this particular case, the pseudo-classical potential

acting on the center R(t) of the packet is equal to the classical

potential at the point R-,l 2/4. The packet moves as if it is a

.- *.*-..-. . . . . . . .. . . . . * J-............
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"ball" with a tim-- dependent "radius" ).12 /4; its center interacts

with the potential before it reaches the interaction region of the

classical potential; and'it turns around before it reaches the •,

classical turning point. Note that the "radius" of the "ball"

varies in time and depends on both the width of the Gaussian and

the rate of spatial variation of the potential at the site where

the packet is located.

The physical origin of this behavior is the same as that of

the Heisenberg uncertainty relation. The "radius" of the packet
2 2is given by 1 /2 = <GI(x-R) IG>/<GIG> which is a measure of the

quantum fluctuations of the position operator in the Gaussian

state. To bring the classical and the pseudo-classical poten-

tials into agr'eement we must have l(t) -* 0, which means Im->c. In

this case, however, the .mean kinetic energy <Gj(-hi /2m)
2 2

a /ax )IG>/<GIG> becomes infinite and so does the expectation

value of the energy operator. This happens because the length 1

" and the quantum fluctuations of the momentum are related through

the Heisenberg relation (Ap.l -5 h/42 with a minimum uncertainty

equality when Rea=O).

The pseudo potential v = <GIVIG>/<GIG> corresponding to the

classical Morse potential (III.12a) is

v = D{l+exp[-2%(R-x -X12 /2)] -2exp(-X(R-x -Xl /4)])
0 0

We compare v and V in Fig. 3 for various values of Ima (i.e. 1

(t)) sampled from values that occur in the-MEM calculations.

Since 1(t) varies in time in the course of packet propagat'ion, v

is time dependent. The drawings in Fig. 3 show the instantaneous

values of the pseudo-potential for various values of 1.

The values of the potential and the pseudo-potential

energies as a function of time are shown in Fig. 4.' These are

obtained by propagating R and a according to the MEM and LHA

.-.: ~~~.. ... . .......-. ....... - ...- ..-.......... ....-.
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equations, re'spectively. Thus v depends on the MEM values

R(t) and lr,(t) while V depends on the LHA (i.e., classical)

values of R(t). It is important to note that the dependence of

the pseudo-potential .v on Ima.(t) hds no classical analog. The

appearance of Ima(t) reflects the quantum fluctuations of the

position operator which makes the average value of the classical

potential different from the classical potential at the average

position (i.e., <GIV(x) G> - V(<G:x;G>) where x is the position

operator). This reflects Heisenberg's uncertainty principle. If

we want to think of the pseudo-classical motion in classical

terms we must accept the fact that the variables P and R are ,.

coupled to a "classical time dependent field Imc(t)" whose time

evolution is prescribed by the MEM equations (111.5).

The graphs in Fig. 4 show that the time evolution of the r" '
pseudo-classical and the classical potential energies v and

V(R(t)), respectively, is rather different. A detailed analysis

inaicates that they differ both because'MEM and LHA give

different results for the time evolution of R(t) and because

- l(t), which enters in v but not in V, varies gr.eatiy in time. it

is interesting to note several of the effects of the "field" 2
Ima(t) on v which make its time evolution very different from
that of V: v does not vary periodically in time; the point where

v is maximum is not the turning point of R(t); the point where v

is minimum is not the point of maximum kinetic energy. * .

III.2.C2 The classical and the oseudo-classical energies.

Further difference between the pseudo-classical and the

classical mechanics can be seen by examining energy conservation

in the two theories. Because the pseudo-classical equations

resemble the classical ones we can apply to them the procedure

used in classical mechanics to derive the energy conservation

condition. That is we multiply b = -3v/;R with P/m, replace P/n ..

by I in the right hand side and rewrite the equation in terms of

"-: .--
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a total time derivative. The result is

d p2 v dI
& { - v(R)) dt 'l1I• 6)

2The quantity P /2m - v &(t) is conserved only if dlm:/dt 0

(i.e. frozen Gaussians) or 3v/ZImo = 0.

In general the pseudo-classical energy &(t) is not

conserved. There are several useful ways of stating the reason

for this. Since the.pseudo-classical potential v depends on the
"external time dependent field" Imx(t), the systems of equations

(IIISa-b) is not conservative; the "particle" (i.e. the

trajectory) exchanges energy with the field. Another insight in

the behavior of &(t) is gained by examining the total quantum

energy of the stAte G:

<G;H!G>/<G!G> &(t) - !2/2mIm (II .17)..

Since this quantity must be conserved, the pseudo-classical

energy &(t) varies in time to compensate for the time evolution

of r:l- 2/2m Ima. The latter quantity is equal to <G (P-

<G! PG>)2 ,G>/2mn<G G>) which is the momentum fluctuation I z he

state 'G> (P denotes the momentum operator and <G'PG> = P(t)).

The presence of this term in the total energy is a purely quantum

effect which reflects Heisenberg's uncertainty principle. The

term is very large when the packet is localized in the coordinate

representation.

The time evolution of <H> E <G H'G>/<GG> for MEM and LHA

is plotted in Fig. 5. together with 8(t) given by the two

theories. We see that <H> is conserved in MEM but not in LHA,

which conserves the classical energy. In many cases it is useful

to monitor <H> in LHA calculations since its change with time is

a fairly sensitive indication that LHA is breaking down.
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111.3 THE INDEPENDENT GAUSZIAN APPROXIMATION (IGA) .

III.3.A The Description of the Apptoximetion

This approximatioi.' is obtained by cancelling in the equa-

tions (A3-A7), (giving the time evojlution of the parameters) all

the integrals of the foLrm dxX-R)n (x-R )m GGB M(AnBm) andGAG -- A(n~ )an --

Adx(x-R ) ) V(x)GB(x) - V(AnIBo) in which A differs from B.

In the compact matrix notation of the equations (A.9)-(A.12) this

amounts to retaining o.nly the diagonal part of the matrix Vand

eliminating the V(AnIBo) terms (A B) from v. This decouples the

components of the vector X and leads, after a little algebra, to

the equations (III.5a-d) for each Ga ussian. There is thus no

coupling between the parameters belonging to different Gaussians.

The IGA achieves a considerable saving of both programming

labor and computer time. Its validity is however suspect on

physical grounds. On one hand, the assumption f(x;t) =

Z GA(x;(X(t))) requires the Gaussians to add up coherently to the

correct wave function at all times, while on the other hand IGA

eliminates all the matrix elemetts through which the time

dependent Schroedinger equation forces the Gaussians to

influence each other. Unless very special circumstances are at

work, it is hard to believe that independent Gaussians can act in

concert to construct an accurate expression for , :"

III.3.B The role of the coupling between Gaussians. in the

pseudo-classical mechanics.

To understand the implications and the consequences of IGA

it is useful to examine the role of the neglected coupling from

the point of view of the "mechanics" controlling the motion of

the center of the packets. We continue to call this a pseudo-

classical mechanics even though when a sun of Gaussians is used

to represent q(x;t) the resemblance to classical mechanics is

diminished. The motion of one real, p'hysical particle whose wave
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function is described by a sun of N Gau.ssians is represented in

the resulting pseudo-classical mechanics by the trajectories of N
"pseudo-particles", tracing the motion of the centers of the

~ Gaussians. In the MEM equations these trajectories are coupled -

to each other and to the "external time dependent flelds" cA and

VA (i.e. the width and the phase of each Gaussian). IGA

eliminates the coupling between the trajectories; LHA eliminates

the coupling to the "external fields".

In what follows we examine the motion of the coupled

pseudo-particles by considering two Gaussians only. That is, we 4.

consider the wave fu-nction f(x;t) G A(x) + GB(X) satisfying the

time dependent Schrodinger ecuation with H = -(r2/2m)V2+V(x), and

look at the equations for RA PA' RB and PB" The latter are

given by the third and the fourth rows of the matrix equation X =

(M) -v (see Eqs. (A.lO-A.13)) and are

2CA(PA/m A + C* = - (111 .18)

and

2 cB(PB/m - RB) + PB (***4 - ) =  F4  (111.19)
B B.

The right hand sides of these equations are very complicated

complex functions (through M(An[Bm) and V(AnIBO)) of all the

parameters of the two Gausslans. Taking the real and imaginary

parts of Eq. (111.18) we can solve for R and P to obtain
A A

R n-- 1 (11.20

A A (2 ImcA) ImF (111.20)

and

A R (ReaA/ImaA) ImF 3  II1'.21

These equations *take simpaler forms under the conditions

discussed below. The one-Gaussian terms in and (i.e., the

. .%
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terms of the form XGA(x)*f(x) GA(X) dx, with f(x) a real function

such as (x-RA) (-RB or (x RA)nV(x), are real and the two

Gaussian terms, i.e., SA (x) f(x) GB(x) dx with A N B, are

complex. Therefore, if we neglect the imaginary parts of the two

Gaussian terms we obtain ImF 3=O which leads to (from Eq.

(111.20)) R P /m which has the classical form. Furthermore,

from (111.21) we obtain P ReF where F depends on the para-

meters of all the Gaussians. This is very different from the

classical equation of motion PA=- 3V(RA)/aRA and from the pseudo-

classical equation for one Gaussian P = - <GI8V/axJG>/<GIG>. A
A

further simplification can be obtained by setting all two

Gaussian integrals equal to zero (i.e., we make the IGA). In

that case we obtain the equatfons (III.5a-d) for each Gaussian.

A complete decoupling occurs and each Gaussian evolves

independently according to the pseudo-classical equations

(111.5). Thus, within the IGA the wave function can be described

as composed of the coherent sum of packets whose centers are

moving independently on the potential surface according to the

pseudo-classical equations of motion under the influence of a

force given by the time dependent mean potentials vA

<GAIVIGA>/<GAjGA> and vB <GBIVIGB><GBIGB>. The widths and the

phases of these baussians are also uncorrelated.

As we have already .mentioned, the pseudo-classical

mechanics generated by a two packet wave function deals with two

"pseudo-particles" moving on two'coupled trajectories. Each

pseudo-particle has its own potential V or V. , which depends on
A B

the time dependent fields ImcA and ImcB; besides, the pseudo-

particle A Is acted upon by forces neglected by IGA which depend

on P B -P A' RA- RB , ImaA-ImaB , Rea A-ReaB and yA-YB . The non-

classical nature of such forces is obvious.

It is interesting to note that in the early days of quantum

mechanics it was popular to represent the time evolution of one

particle wave functions in terms of the flow of a continuous

.

• !." . • "o ~~.o .. - .. . - , .* * *, *,:- c
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distribution of classical like "particles" endowed with well

defie'ed t rajectories and momenta and interacting thro'ugh an

effective stress tensor. The multiple trajectory pseudo-

classical represefitation proposed here is in many ways similar to

the representations proposed in these early works.

The use of multiple Gaussian wave functions can be easily

justified by the greater flexibility (i.e. larger number of

parameters in the lea~t square fit) of the basis set, which gives

hope for greater accuracy. There are ho.ever many important

situations when the use of multiple, coupled Gaussians must be

used even if a crude but qualitatively correct description of the

scattering process is desired. This happens in multiple channel

problems in which the channels are not overlapping in either the

coordinate or the momentum space. One example, provided by

surface-atom scattering, is the case when one channel is a

particle trapped at the surface and the other is a particle back-

scattered into the vacuum. Another example is provided by the *5.:

curve crossing problems in which an atom in the "ionic" channel ,.

has in the classical limit a different momentum than the atom in .5.'

the "neutral" channel. Such events cannot be described - even

qualitatively - by one Gaussian packet. Therefore, in such

situations the multi-pseudo-particle description of the dynamics

is the only reasonable "classical like" picture of the quantum

process.

III.3.C The validity conditions for IGA.

Given the great simplification introduced by IGA it is

important to have a d-lear idea under what circumstances we expect

it to work. We discus. first the case when IGA is used together

with the local harmonic approximation (LHA) (we call this the'

simple Heller method (SHM)) and show that if LHA is made then the

*wave packets become decoupled and IGA is exact. We consider this

to be a rather striking result since we could not find
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Intui.tively any link between tbhe ,two approximations: one of thea-

has to do with the relationship between the width of each

individual Gaussian and the rnte of change of the potential with

x; the other with the overlap between different Gaussians. Since

we believe that LHA is likely to fail In some (or many?)

practical cases the above observation is not of much pract-ical

help. It does how.ever explain why Heller was so successful while

using the IGA method in problems involving harmonic oscillators.

If LHA is not made one can show that the Gaussians might become

decoupled when the packets do not overlap, or when they have very

different momenta, or when their phases vary extremely rapidly in

time.

III.3.Cl The simple Heller method (SHM= LHA + IGA)

There Is numerical evidence that harmonic oscillators have

special properties with respect to the Gaussian propagation

method discussed here. One of the very first calculations

carried out by Heller studied the excitation of a harmonic

oscillator hit by an atom. He described the initial oscillator

wave function as a sum of Gaussians, used SHM to propagate them

and obtained satisfactory results. One the other hand both
16 17

Skodje and Truhlar and Heather, Jackson and Metiu have shown

that SHM or IGA gives inaccurate results when applied to

propagate states of a Morse oscillator. This is the case even

for low energy states which are nearly harmonic.

In order to understand why Heller's calculation was so

successful we have investigated the effect of LIHA on the coupling

between Gaussians. We have found that LHA decouples the

Gaussians e.xactly. As a corollary, in the case of a harmonic

oscillator, where LHA is exact, the simple Heller model (LHA and

IGA) is exact!

To show how this is proven we consider, as an example, the

N;
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equation (A. 5) For two Gaussians this can be written as:

(P /2m - PARA -Ina/m + A M(BlIAO) +(I 1. .22)

[2o:A(P A /m-kA + A' M(B I Al)

(2a B(PB/m - RB) + P ] M(B2IBO) a

+ 2ce2/m] M(BIA2) +

V(BlIAO) + V(BlIBO) =0

The notations M and V have been specified in the Appendix A.

The discussion proceeds now as follows. Let us assume that

the two Gaussians move according to the simple Heller model

(SHM); that is the quadratic approximation of the potential is

made and the .Gaussians are assumed to be independent. Th-is means

that we assume the SliM equations (I11.5a) and (III.7b-d) for the

* parameters RA~~'~ and &A and RP% and If these

equations are inconsistent with (111.22) then by introducing them

in (111.22) we must obtain a non-zero result whose magnitude

Indicates the ektent of the error made by SHM. Making the

substltuti-on just mentioned leads to

Error -V(R) .(x-R )G Gdx - (ZV/GR )(x-R )(x-R )G G dx
A B BA A B AA B A

-(aV/ZRB)JIx-R 2 GB*G dx - (1/2)(3 V/3R 2)Jix-R )(x-R 2 G*GA dx

BBAB A B B

Now let us make the local harmonic approximation to evaluate the

integrals present in the error expression. If we expand V(x) in

the last integral in powers of (x-R) and V(x) in the integral

before the last in powers of (x-RA we find that the error is
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exactly zero (if we retain only the quadratic te:'- , ""

expansion). Therefore once w'e accept LHA the I

Gaussians follows!

III.3.C2 The General Case

While in general the coupling between Gaussians must be -

taken into account, there are several situations in which it can

be neglected, even if LHA is not made.

( ) The most obvious one is when the Gaussians do not

overlap. This can happen when dealing with problems in which the

wave function tends to split into spatially separated pieces. A

trivial example is the low energy state of a double well

potential. A more interesting one is provided by atom scattering

from a moving surface. There is a finite probability that during

the collision the incident particle excites phonons and is

trapped at the surface; there is also a finite probability that

the particle is scattered back into 'the vacuum. Therefore the

atomic wave function "splits" into a component bound to the

" surface and an outgoing free particle component. If the wave

function is approximated by two Gaussians they will best mimic

this situation if one of them is trapped at the surface and the

other is reflected. Except for the early times during the

collision, when nothing much happens, the overlap between these " -.

Gaussians should be fairly poor and a calculation ignoring the

coupling between them has a fair chance of success.

( ) Another interesting situation takes place when the

integrands in the quantities M(An!Bm) and V(An!BO) appearing in

the equations of motion (A.9-12) (or the Equation (111.22) which

is one particular example) oscillate very rapidly around zero.

Since all such terms are of the form Sdx G G f(x) with f(x) aA B xwi f"
real function (of the form (x-RA)n (X-R.) or (X-RA) V(x)) the

oscillatory behavior arises from the phase of the product G G
A B%

If the wave length of this oscillation is much smaller than the

width of the Gaussian G G, the integral is practically zero.
A B
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One term in the phase of GA 6 is ((P BA )/.]x, which gives the

wa ve vector k,= (P - )/. Since the width of G G is
2 a2 1, 2 A B

IAIB/(I A  B the integral tends to zero if 2,,/k << 1. This

is easy to understand on physical grounds. if PB and PA are ,very
different, the packets G and G are segm;:nts of planar waves

A B
having very different wavelength. As is well known such waves

are poorly coupled, which means that their matrix elements $G A

f(x) GB dx are very small.

(y) Finally, we point out that it is possible that two

Gaussians become decoupled if their two-Gaussian integrals

oscillate rapidly around zero with time. To explain this we can

use Eq. (111.22) as an example. The integrals M(An.Bm) and

V(An'BO) are complex and therefore have the fotm a(t)e •

where a(t) and (t) are real functions of time. The structure of

these integrals is such that they will have the same phase since

that is determined by G G which appears in all integrands. To
A B

simplify matters consider the schematic representation of Eq.

(111.22) provided by

a( t e- t x, t )  'M M t)X (t) = V(t) e-i (t)b(t) 7 . T .24)

Here the terms with the phase ¢(t) are two-Gaussian integrals,

M(t) and V(t) are one-Ga~ussian integvals and X (t) and X2 (t) are

combinations such as 2aB(PB/m - RB) PB or &A -
2 ,CCAIn, et,c. _f we can neglect all the two-Gaussian fntegrals

then the Gaussians becomb decoupled. Consider now a s'zuat:on in

which (t) varies in time faster than al! other quantities. f

S, we analyze the behavior of the Eq. (I1T .24) in the neighborhood

of a time t we can expand 0(t) 0 ) 0 (to).'8to)(t-o '1

The exponential term ei  ) oscillates (in the neighborhood of
to) with the period T = 2 "T/(a(to)'Sto]. I- this is smalle -

zhan ',e t'me scale - over which Xj(t), M(t), V(t), a(t) -ind blt)

change .appreciably we can integrate the equatIon (1TT,24) from

t - T/2 to t - T,'2 and obtain M(t) X2(t) V(t). Thus the two
0 0 .2

:7..
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Gaussian integrals which cause the coupling between the Gaussiaiis

disappear from the 6quation of motion and the Gaussians evolve

independently. We see that pseudo-classical motion behaves just

like the classical one: it tends to ignore forces that act at

frequencies vastly different than the rate of changc of the _

parameters being propagated.

One can derive an expression for (t) and show that in the

cases when the two Gaussians overlap well 9 - ReyB - ReyA; thus ,

the phase of the integrals is proportional to the difference

between .the phases of the two Gaussians. Within LHA these phases

are proportional to the classical actions along the trajectories

of the centers of the two Gaussians. So, tWo Gaussians following

trajectories having classical actions that change ranidly in

time, are weakly coupled.

*, . - .

9-:.
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IV. The Choice of Initial Wave Function

IV.1 Introductory. Remarks

The choice of the initial wave function is in principle

very simple: it must fit as closely as possible the experimental

conditions of interest. The practical implementation of this

idea in the context of GWP propagation was done In a manner which

causes ambiguities and (sometimes) trouble.

The first difficulty appears because of' the practice of

writing the initial wave function as a sum of Gaussians in a way

that leaves us free to choose certain parameters (i.e. width,

momentum, etc.) almost at will. This "asymptotic freedom"

permits us sometimes to affect substdntially and arbitrarily the

final wave function; this is not a desirable feature in any

theory.

The second difficulty is more subtle and is common to all

methods using a pre-selected basis set to represent the wave

function throughout the collision process. A set might be

flexible enough to represent the initial state well, but be

incapable to describe the intermediate or the final wave function

with the desired accuracy, The problem is particularly

interesoting in cases with many channel final states of the kind

that can be intuitively described by multiple classical

trajectories that cover different regions of configuration space.

Such situations cannot be represented by a single Gaussian

packet. The desired flexibility can be achieved by increasing

the number of Gaussians used to fit the wave function. There is

however a limit to this and our experience, drawn from a variety

of numerical studies, .is that we cannot mindlessly add more and

more Gaussians until the results converge, since in the course of

collision the Gaussians often overlap causing over-completeness;

when this happens the differential equations propagating the

parameters become singular and intractable.

-v -. t-,- - - - - -. . . . . . . . . ..- *
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IV.2 The Asymptotic Freedo-,

To understand how this problem arises it Is best to examine

several examples. The first is the representation of a planar

wave as a sum of Gaussians, which has been used in all the GWP
10, 18

diffraction calculations published so far. 'Re start with
10

the identity

-1/2 C J d r eA (p-r h' ) •

+ i .(- ' - ik. ' r ---

where C is a normalization constant.

To obtain an approximate representation of the planar wave

as a sum of Gausslans we discretize the integral. This gives

-1 /2 exp1i/.2] = C Z exp{(I/.i)[(- p) -A *-r
z p p

(IV.2)

p p

The number of Gaussians and their mean positions are fixed by the

accuracy we impose when we represent the integral by a sum. The

momentum of each packet is hk and the phase is real and given by

.p However the method gives no prescription for fixing the
p-).

initial- values of the width matrix A. It is reasonable to take S

the Initial off diagonal elements zero and assume that the

diagonal ones are equal, becduse of the isotropy of space. These

decisions still leave th'e complex diagonal element c- of the width

matrix unspecified.

The exisiting pract4+ce has been to argue that since ('V.2)

represents the initial s'tate well for any reasonable choice of.

we can use the "asymptotic freedom" to select a value of a that

would make our life simpler. IAf we plan to use SHM (which has

'.. 

.



42

been the case so far) we should select Ima so that the pauket

will be narrow when it collides with the hard wall of the

potential. This should increase the accuracy ot LHA (which is

used in SHM). However since Imc(t) is controlled by the

equations of motion we.can not fix it.s value at the wall by

selecting the initial value. The practice has been to use the
equation of motion for Imc(t,) in free space and to select Imcx(O)

such that lni,(t) at the wall location would be large if the

packet moves in free space. While this gives some guidance

concerning the choice of Imac(o) it leaves Reca(o) unspecified and

this is taken to be zero.

18

Unfortunately detailed numerical studies show that this

choice of the width does not achieve its stated goal: no matter

how we choose Imc(o) the potential broadens the packet beyond the

values for which LHA can be safely applied. Furthermore, we find

that the final results depend sometimes on the choice of Ima(o).

While in the case of diffraction changing Irm(o) does not lead to

large deviations from the known quantum results, we feel rather

uncomfortable in using such a strategy for cases where the
"exact" results are unknown.

Another example is Heller's integral representation of a

harmonic oscillator wave function

T mi2
(Y) = C " dt exp(-(.- ) (y-y(t)-) + (i/h)p(t)(y-y(t))n n 2-1

(IV.3)

+ (i/2)(p(t)y(t) - p(o)y(o)) + inwt)

* Here p(t) and y(t) satisfy the classical equations of motion of

the oscillator mome-ntum and position, T = 21T/w, and p(o), y(o)
are the initial conditions for the momentum and position of the

oscillator. We can now represent n (y) as a sum of N Gaussians

by discretizing the integral. This gives

v_- "-I"-
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" N 2
.n(y) = Cn exp(-(mcj/2h)[y-y(t )]2  + (i/h) p(ta)[y-y(ta)]

.. (IV,4)

+ (i/2h)(P(t )y(t) - p(o) y(o)) + inct }

- with t = (2Tx)/(Nu).

The prescription tells us that the points p(t ),y(t ) lie on the

classical trajectory at equally spaced time intervals. The

" initial p(o), y(o) are not however specified so the phase of the

"° classical oscillatory motion giving p(t), q(t) is arbitrary.

A similar situation occurs in the representation of the

rotational wave functions, where group theory tells us how to

construct the wave function as a sum of Gaussians whose centers

are located on the surface of a srhere. The other parameters in

the Gaussians remain at our'disposal. In more general cases the

asymptotic wave functions n (x;o) are represented as linear
n

combinations of N Gaussians

N

n(x;O) Z CAn GA (x;{X(O))A) (IV.5)
A=1

whose parameters, symbolized in (IV.5) by {X(o)), are chosen
A

before the linear coefficients C are determined. The latter
An

are found by minimizing the total energy of the asymptotic

system; in the course of this minimization the parameters

{X(O))A are frozen. This procedure also suffers from the fact

that it provides no objective method for chosing (O)} A'

In what follows we discuss a procedure which is more

efficient and more satisfactory conceptually and practically: we

represent the initial wave function n (x;O) by a sum of Gaussians
n

whose parameters are chosen by a non-linear least square fitting

(LSF) procedure. That is, we minimize

..o.. . . . . . . . . .
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AI,.., XIA=N) --.dx x(x)K(#r(x;o) - EG
A 1

(IV.6)

with respect to the parameters (X}A. The ided is so simple that

it would not mer'it further discussion except for the fact that it

brings about a number of dramatic improvements.

(a) The number of Gaussians required for obtaining a good

fit by Eq. (IV.6) is much smaller than that required by other

methods. Consider for example the fit of a low lying Morse state

by using Eq. (IV.5). We can make a reasonable choice of

Gaussians as follows. If we assume that the low lying Morse

states are nearly harmonic we can use Heller's equation (IV.4) to

select the parameters {>%A (i.e. position, momentum and phase) in

GA(X{)s}A). Taking linear combinations of these Gaussians, I ke

in (IV.,), we can find the linear coefficients C by minmiz.ing

the energy with respect to them and keeping {X)A frozen. We can

get very good fits of the low lying states by usi.ng eight

Gaussians. By using Eq. (IV.6) we obtain an equally good fit

with only two Gaussians. -_

(p) The non-linear least square fit method has the

adVantage that it fixes all the parameters objectively. The

number of Gaussian is predetermined by the choice of the error

tha.t we are willing to tolerate in the initial wave function and

the flexibility required during propagation.

( ) It is interesting to note that lowering the number .f

Gaussians is not a matter of efficiency only. We find tha: it is
very difficult to propagate wave functions coposed of a large

number of coupled Gaussians because in the course of their

evolution they can overlap and the set becomes overcompiete. As

a result the differentia! equations propagating the parame-ers

become nearly singu:ar and give very large errors. As an example

- * *. , *.:-... - 4 -
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propagated a linear combination of eight Gaussians representing

the third Morse state and a three Gaussian non-linear least

square fit (i.e. Eq. IV.6) to the same function. In the first

case the computer fails to solve the MEN differential equations

propagating the parametevs, because the matrix M coupling the

Gaussians becomes singular. The reason for this seems to be the

overcompletness of the set, which we detect by diagonalizing the

matrix formed with the Gaussian overlap integrals; the singular

behavior of N is always preceeded by the decrease of one or more

- of the eigenvalues of the overlap matrix. A calculation using a

sum of three Gaussians to fit non-linearly the initial Morse ,.

state has no difficulty.

It is important to note that the non-linear fitting is not

entirely free of ambiguities, since-several "best fits" can be

obtained, depending on the starting point and the minimization

strategy pursued. Consider for example the third Morse eigen-

function which the non-linear least square fit program can

represent very well by a sum of three Gaussians. Let us assume

now that we decide to try a four Gaussian fit. We find that for

certain starting parameters the LSF program makes the amplitude

of one Gaussian nearly zero and fits the wave function with the

remaining three Gaussians. Fven though we get a very good fit

this sum is a very bad inicial function since the MEN program

cannot propagate it; the matrix in Eq. (A.1O) is. nearly

singular because of poor overlap between the nearly zero

amplitude Gaussian and the others. towever it is quite possible

to get a satisfactory four Gaussian initial wave function if we

constrain the width Imc A and the normalization Im(VA) for each

Gaussian to stay within reasonable limits. The MENM program

propagates this function rather we!:.
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IV.3 The Optiiux Number of Gau-';sians

In many cases we would like to use the smallest number of'

Gaussians, and fo' this the non-linear LSF of the initial wave

function is v.ery helpful. There are however cases when such a

choice would be physically unsound. Consider a Morse oscillator

colliding with an atom. We can fit the initial wave function

(the ground state of the Morse oscillator) well with one

Gaussian. However, if the kinetic energy of the incident atom is

comparable, but smaller, th-an the dis~opiation energy, the final

state is a linear combination of several Morse functions. One

Gaussian cannot describe correctly such a wave function; it can

at best give the average energy transferred but we could not

expect correct state occupation amplitudes. It is therefore a

good idea to try to fit the initial state with several Gaussians.

This is a -general situation in most cases in which the final

state is very different from the initial one.

Another situation requiring a fit to many Gaussian

functions Is that in which the final state has several channels

which are qualitatively different. One simple example is atom

surface collisions in which surface trapping Is of comparable

likelihood with surface reflection.

These situations are too subtle and rich in physical

consequences to be treated profitably in the general setting of

this paper. Several specialized studies of photodissociation,

vibrational excitat'ion of diatomics, curve crossing and surface

trapping, which provide interesting and detailed illustrations

for the importance of chosing correct multiple Gaussians

.. representations of the wave function, will be published shortly.

...-
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V. FINAL STATE AXALYSIS

Generally scattering theory requires the knowledge of the

eigenstates of the zero order HamlItonian and the computation of

var-ious matrix elements involving them.. One of the advantages of

the Gaussian Wave packet approach Is that we can calculate easily

the matrix elements needed for the propagation of the wave

function: most potential energy functions can be fitted to

polynomials, exponentials, Gaussians, or to sums or products of

such functions, so the integrals can be done easily: the matrix

elements of the kinetic energy operator require the calculation

of integrals involving a .product of Gausslans and polynomials.

Part of this advantage is however lost if we must analyse

the scattered wave functions by calculating the matrix elements " "

f *n(x)'f(x,t)dx with the elgenstates of the final zero.th order

Hamiltonian. From a practical point of view in many situations

we don't have simple formulae for W(X) and we must generate them
n

numerically, which makes the calculation even more tedious. And

sometimds (x) are known only very approximately.

We present below a very simple and rather general idea that

permits the analysis of the final wave function by using the

program that propagates the MEM equations. Since the overlap of

planar waves with Gaussian functions is a Guassian in momentum

space we need no special procedure for th'e analysis of the final

translational state. We concentrate therefore on analysing the

internal states only.

Let us assume that at the time t when the projectile
0

target interaction -stopped we have a scattered wave function

(internal state) given by

O x;t Z. G (x;{(t )}.) "(1)o A o A
A

We can use the MEM equations to propagate this wave function with

. .. . . ... * ..* .. . *:



48

the zero order Hamiltonian of the internal -states. If we denote

by f(x:t) the propagated wave function we can easily show that

C(w) a dt e S'q (x t) (x;t )dx (V.2)
t 0
o
0

satisf ies

n •

Re C() Z -- , (V .3)n=O ( jW 2n) 2

and

Im C(U) =C I (n V2 . "4n ( _c)2 (v.4)"'

n

Here n runs over the bound (internal) states of the system.
C2

- n, is the occupation of n-th state (i.e. the probability that

the scattering process takes the system into its n-th state) and

jW is the energy E of that state. The quantity X is at our
n n

disposal. If we make it much smaller than w the pea'ks in ReC(w)
2

are well separated and w are given by peak positions and 'C
n n

by the peak height. The zeroes of Im C(w) are close to

However, if % is too small then we must propagate the wave

function %f(x;t ) for a long time t such that t % >> 1. A0

compromise can be reached by using an intermediate value for .

and determining :C2 and w by a least square fit of C(U) to the
n n

forms (V.3) and (V.4).

T6:

From a physical point of view the quantity C('w) is a

Green's function for a fictitious absorption process (or'

fluorescence) which is used to resolve the post-collision state

l(x:t) into spectral components.

p....
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\Sometimes the propagation procedure is not rel ab-e ug,

to be comfortably used for a very long time. In such occassions,

we can define CT(U) by using Eq. (V.2) with the upper integration

limit equal to T. it is easy to 9how that

Re22 2n 2 T

T() = L :cnn.(- n 2 . 1 -

andn

i[% CsT ( W) )T n 2 s n )T]2 i-_
n n n

ann

n V .
[Xsin(w-wn)T (W-Wn)COS(W-Wn)T) --.--

nV.6)

We can use these equations and a least square fit procedure to

find w and :C -2
n n

By using a fast Fourier transform we find that this

procedure is both effic'-it and reliable. An example was shown

in Fig. 7. This was obtained as follows: we made the linear

combination

$(X;to) ao a a a0 1' a2 2  a3

where n is the n-th Morse eigenfunction; we then fitted tais S

function to four Gauss-ans and pretended that this is our post-

collision function; we propagated the Guassians with the Morse

Hamiltonian and the MEM equations (solid curves). The graph

shows ReC(M) calculated by using Eq. (V.2). The least square fit

analysis of these curves gives the eigenvalues and spectal
,2 .2

composition ;a ... ,' a0 3,

,.S -.

:.:-

............. * - - -. N - *. :-...-.--..
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VI STABILITY PROBLEMS IN THE PROPAGATION OF THE MEN EQUATIOSS

VI 1 Introductory reonarks.

In principle MEM would permit the propagation of hunidreds

of Gausslans, making many localized time de-pendent quantum

problems within the reach of today's computer power.

Unfortunately our numerical experience has revealed some

limitations which are summarized in this section.

The first limitation as a numerical instability in the

propagation of the Gaussian's widths. This was encountered by
Heller in his use of SHN1 and he circumvented it by us'ing what we

call here a P-Z transformation. We show that, not unexpectedly,

the same difficulty .Is present in MEM and that, fortunately, the

MEM equations can be written in a form which permits the

application of the P-Z method.

The second limitation appears when we attempt to use a

large number of Gaussians. We find that in the course of time

'the Gaussians often evolve in a way that makes one (or more) of

them redundant. When this happens the MEX equations become -

singular and cannot be solved. Superficially this may seem a

pleasant problem, to be solved by reducing the initial number of

Guassians. Unfortunately the optimum number of Gaussians is not

a uniform function of time: as the collision proceeds the wave

function contracts or spreads (in coordinate and/or momentum,1.

representation) so that the number of necessary Gaussians goes up

and down in time. While at some g:iven time N Gauss;ans may be
too many and cause trouble, they may be needed at other times,

We found no simple, general method of dealing with this problem,

but we designed a useful strategy that is present here.

Since in most problems of interest to us the exact auantum

solution is not known we test for errors in the propagat-.

scheme by looking for internal inconsistencies. Practically we

'=.

S--. , ,.- ., ,.. .. at,- - -,a.. ., , . ... , , .a. . . .- .,. - . a. ' .-.-... '. " .. - - , .-. ., a. . .-., .- .- . .-.. .-;--.-- -': ',.- ,- ."
,--* - . ,. . ... *, . . , . .. . .,, ..- . :.,.,, . .',.a.'. .,'.',...... .'. '. . .= ,. . ,..,,. , ,• -. - -. -.--.
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use three crit-eria: (1) we require <f(t)'(t)> to be time

indepenxien.t; (2) we reaujre <( t)'Hp(t)> to be time Independent;

and (3) we require 'S dt exp[+iwt -Xt] <f(t) '(o)> (which

satisfies Eqs. (V.3-4)) to give values of :C which add up to
n.

one (when <f(t)'!D(t)> 1) and correct values for the eigen-

energies r'1n

VI.2 The P-Z Transformation

The P-Z transformation was designed by Heller to solve

difficulties connected with the propagation of the width matrix

a. in SHM the difficulty appears in the equation c:

-2/ I - (1/2) 2V/BR2 (Eq. (111.7)) propa'gating the w'dth

panameter a. This has an oscillatory behavior which causds a lot

of trouble if we apply usual numerical methods (i.e. Runge-Kutta

or pred-ictor-corrector) to Eq. (111.7). In the best situations

this can be cured by using an extremely small time step. In L1
other cases erroneous values are'obtained even for the smallest

time steps. Our experience has been that both diffraction and

curve-crossing calculations with SHM require the use of the P-Z

method.

The MEM calculations carried out by us so far show that a

direct, numerical solution of the MEM equations lead to dramatic

failures, 'much more rapidly and frequently t-han in the case of

S RM

Fortunately the P-Z transform can be applied directly to

the MEM equations if they are written in the proper form. We

start with the equations (A.1O-13) written as

X 7 V -- (V . I

The only equations !,n the above system that require modification

are those containg, the components of X havirng the form -A

.. . .
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I 2A/m. For example, in the one-dimension'al two-Gaussian case

* discussed in Appendix A, there are the components X_ and X
* 6

in Eq. (A.11). For three-dimensional Guassians these equations

have the matrix form

a cc
-A A (vA 2- --- F A(VI .2

where a is the three dimensional matri.x appearing in the term

S(/h) (' - '(t)).' (.-(t)) at the exponent of each of the

three dimensional Gaussian; FA(t) is a nown function of time.

We can remove the non-linear term 2 a A .1m by Introducing

two new variables Z and P (where P is not to be confused with the

momentum) through

= P . z /2. (VI.3)

The time derivative of a is given by

2a = P P d('-T )idt
(Vi .4)

.-1 - .-
':P Z P • Z Z

If we now define

(V .5)

and use (VI.3-5) in (V1.2) we obtain

* ' = 2 . Z (vI .6)

The P-Z methods solves (VI.5) and (VI.6) and uses the

results to compute a from (VI.3).

We find that the use of this procedure cures dramaticaliy

_6%
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some of the problems appearing when we tty to solve (Vl.2)
directly.

*-.%

VI.3 The tingular behavior of the MEM equations

To solve the MEM equations we must invert the matrix

appearing in (A.1O). Its elements are various moments M(Bn'Am)

of the Gaussians used to fit the wave function. For a one-

dimensional two-Gaussian Wave function the matrix is given by

(A.12). The left-hand upper corner of that matrix is the overlap

matrix between the Gaussians used to make the fit. This suggests

that if the overlap matrix becomes singular it may be difficult

to invert M. Empirically we find this to be the case. As we

solve the equations of motion for the parameters we also solve

for the eigenvalues of the overlap matrlx. We find that whenever

one eigenvalue becomes very small the determinant of'* becomes

small and large propagation errors appear. For problems with a

small number of parameters it is better to diagonalizelm.

There are a va'riety of methods which we use to cure this

problem. (a) In some cases the problem is created by the way in

which the sum of Gaussians represent the initial state. As a

*" simple example consider the case when we want to fit a very broad

"*. Gaussian G with four narrower Gaussians G A=1, . . .4. We do this

by varying the parameters in the Gaussian so that

E = - G is minimized. If we do nut interfere, the

minimization program might decide to vary the parameters in G.

and make it identical to G, while- simultaneously making Im72 ....

tm/ 4 so large that G2 G3, G4 have very small values. Any

attempt to propagate the function Z G obtained in this way by
A A

MEM leads immediately to catastrophic errors. One can easily

prevent the above events by minimizing E and keeping Im(y)A below

a preset value. The type of behavior exemplified above tends to

be general. We find, for example, that as we increase the numbitr

of Gaussians used to fit the second excited state of a Morse
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oscillator an unconstrained four Gaussian fit makes the amplitude

of one Gaussian verly small and the propagation of the resulting

wave function fails very rapidly. If we constrain the amplitudes

we get a four Gaussian fit which can be propagated successfully.

We note that symmetry can play an equally important role.

For example, consider an initial wave fumction which' is symmetric

around Ro. A four Gaussain fit might use one Gaussian centered

at R and two placed symmetrically, and make the amplitude of the

fourth nearly equal to zero. If we keep the centers of the

Gaussians symmetrical around Ro , all four Gaussians are used but

the fit may be of poor quality if, for example. the wave function

peaks at RO.

While such poor starts can be easily identified and cured,

there are cases when in the course of its time evolution the

spatial extent of the wave function shrinks causing more serious

difficulties. If N Gaussians are required to fit the wave

function at times when it has a large spatial extent, they may be

redundant when the func-tion shrinks. In such a case the

propagation program may either make the Gaussians linearly

dependent or make the amplitude of one of the Gausslans ze.o. Tn

all these cases we find that the propagation gives large errors

or stops altogether.

A cure for this problem can be provided by moniuring the

evolution of the overlap matrix (or thetl matrix) elgenvalues it.

time and by removing one Gaussian, when one eigenvaiue becomes

small. This can be done by fitting the current N Gaussian wave
function f(x;t) = G (X;(P(t))A) to N-I Gaussians whose

A A
parameters {. (t)}A are fitted to minimize

e(x)A) G ( G . This removes thero lem b A t c A r a e A A .[:

problem but it can create a new one latter: if the wave function

expands spatially we may find ourselves with insufficient

Gaussians to describe properly this e.xpans.on. We can however
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addia Gaussian by using the reverse procedure: fit.the current

X-I Gaussian wave function having the parameters (X)A to a sum

of N new Gaussians, by adjusting the paramters (%)A to minimize

9. We know that addition of more Gaussians is needed when the

eigenvalues of the overlap matrix are all close to one.

This procedure is -useful, but unfortunately requires aoc t r ca ye
programmer's supervision and Interaction in the course of --

propagation; one cannot do research and play tennis ..

simultaneously, and this can only diminish the popularity of the
method,.,'-

VI.4 The use of frozen Gaussians

We should mention that many of these difficulties are eased

by the use of Gaussian wave functions with fixed widths which

Heller calls frozen Gaussians. Since the width is not changing,

the P-Z transform is not required. Empirically we also find that

the numerical stability of the MEM equation with frozen Gaussians

is greater. At this time our opinion is that more complex

problems will be attacked more successfully by using f!'ozen

Gaussians. The lack of flexibility caused by the use of a fixed

width can be compensated by increasing the number of Gaussians

(without necessarily increasing the number of equations).
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APPENDIX A

The Propagatio. of multiple Oaussian. wave functions.

In this Appendix we derive a set of equations frequently

used in the text. They give the MEM propagatibn equations for

the case when the wave function is expressed as a sum of

Gaussians:

with

G A(x;{(ccAMt. YA (t)) ,(R A(t), PAMt))

exp((ih)[cA (x-RA(t)) 2 P P(x-R (t))+ ~ 1  (A.2)
A A A A

If we compar.e with the general equation of section II.3.A we have

AAl cA A2 ' A# Al = A~ A2 '

In order to obtain equationt for & R# A A and P for all

the Gaussians we use the equations (11.25). The calculations are

lengthy but straightforward. The results are listed below.

For Bp (in Eq. II.25.a) corresponding to the width

parameter oB of the Gaussian B we have:

Z{<(x - RB) 2 GBI (x-RA) 2 GA>(& + 2 M
A

2 G'>**2+<(x-R ) G'A' AA - iiA /M A P/ 2m)

+<(x-R) GBI (x-R )GA> (2~a(PA/M +

S<(x-R )Gi V GA>) -0 .(A.3)

If Bp (in Eq. II.25.a) corresponds to the parameter IB of

B .



the Gaussian B we have: ..

E {<GBI(x-RA) 2 GA> (taA + 2c /m)

BIA A) AA .A A

A r,

B <GIA > (TA""- PARA - ilaA/m + P2/A " ,.

+ <GBI (x-RA) GA>[2cA(PA/m - A) +

+ <GBIV GA>) = 0 (A.4)

If Bb in Eq. (II.25.b) is the parameter PB of the Gaussian

B we obtain

Re 0 =0 (A.5)

with

AA5
A (<(X-RB) GB 2(XRA)2 (cA 2cx /m) -

+ <(x-RB)GBIGA>(' A - PAkA- thcIA/m + P2 /2m)

+ <(X-RB)GBI(x-RA)GA>[2aA(PA/m - kA) + PA]

+ <(x-RB)GBIVGA>) = 0 (A.6)

Finally if Bb in Eq. (II.25.b) is the parameter RB of the

Gaussian B we obtain

Im fl = 0 (A.7)

The physical significance of these equations, the method of

solving them and various approximations are discussed in the

text.

For a variety of reasons, specified in various places in

the paper it i's useful to rewrite the equations of motion for the '-

":,.
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trajectories in a different form. To do this w~e use the notation

M(nIm)=-Xd ~ fl * (xRm G(A.8)

M(AnlBm) a B1xxRA) nGA X(x)(B) GB

V(An~m)A $d~~A m A~ Vx(RB m B(x) (A.9)

We can then summarize the equations (A3-A7) as

M X=v (A.10)

where

p 2/2m - PARA - i /M +hi Y xlA A A A A

p /2m -p P Ii~/ +VBx
B B B tlaB/M B 2

-c (PA/ + Px(A,11)

Xc a ~ (PB~ / R + xBBB B B 4

*2
A+ 2 (x A/m 5

*2
f+ 2c /M

M(AOIAO) M(AoIBo') 0 M(AOIBl) M'(AOIA2) M(A0IB2)

M(BOIAO) M(BOIBO) M(BOIAi) 0 M(BO!A2) M(BOIB2)

M a0 M(AlIBO) M(AiJIi) ili) 0 M(AliB2) (A.12)

M(BlIAO) 0 M(BlIAi) M(BiIJB) M(BiIA2) 0 _

M(A2jAO) M(A21B0) 0 M(A2IBI) M(A2JA2) M(A2lB2)

M(B2IAO) M(B2180) M(B2JAi) 0 M(B2!A2) M(82jB2)
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V(AOIAO) +. V(AOBO v-

V(BOJAO) + V(BO BO) V. -,

V(Al I AO) V(Aio) V

V(BlIAO) + V(B1IBO) V4  (A.13)

V(A21AO) +. V(A2,1BO)

SV(82IAo) + V(B21BO) V

Another useful form is.

4* - -V'

with

x + V(R)

X + V(R8 )

X X3 + 3V(RA)/ZRA (A.14)

4 + V (R yB)/R

2 2X + (1/2)3 V/ 3 RA

x +6 , (1/2); 2 V/aR 2

x6  B

and v is obtained from i by replacing V(AnjBm) with

V(Anjfm) = ldx((x- A A(X)[V(x) V(R B)  .

(V(R)/aR ) (x  - (/2)(a 2 V(R )/3R )(xRB) 2

B B 
A.

Thu (X R ) GB(x) b tak ng 74'

'.Thus SHM is obtained by taking v 0

- . A* - - - - - - --. A.',---.
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Figure Captions

1 .'2
Figure 1. The "length", defined as l(t) = (./21na(t)) , of u

normali-zed, initially narrow, low energy Gaussian .,;.

wave packet propagated in a Morse potential (Eq. -.

(.III.12a)) using the MEM equations (Eq. (111.5))

(-). l(t) is in units of . and tine as in

units of r (2m/D) 1/2 - h 1.846 A-!

and D = 4.334 a.m.u. A 2/10 - 2 8 sec 2 are the Morse

potential range parameter and well depth,

respectively, and m = 0.5 a.rm.u. is the reduced mass

of the oscillator. For values of 1 higher than .22.

the LHA equation for the force is in error by more

than 10.0. Initial values of the wave packet'

parameters are: Re(a) = 0.0 a.m.u./1O -14 sec; Im(o)-14 -14 "
= 8.0 a.m.u./10 sec; P = 0.0 a.m.u. A/1G sec:

R = 0.20 A; Re(y) = 0.1878 a.m.u. A 2 /l0 - 1  sec; and
2 - 14Im(7) = -0.0696 a.m.u. A /10 sec -

Figure 2. The force (in units of D)X) exerted on the center of

the wave packet whose parameters are defined in Fig.

1, propagated using the MEM equations (III.5b)

(--) and the LHA equations (III.7b).

Figure 3. The Morse potential averaged over Gaussians of

different width, <G V'G>.'<G G> (in units of D), as

a'function of R (in units of >-1) using I ='0.60

"- (--), 1 = 0.329 (,- .), and I - 0.147

(---);we also plot the Morse potential V(R) --- ).

Figure 4. The potential energy V(R(t)) (in units of D) as a

function of time for the wave packet of Fig.1

propagated using the MEM equations (---) and the

LHA equations ( -

.'-,", "',%l-" ";-"f - F . '"-,",",,-"-"• -" "-: ;''''"' " " ""'".",'"'".'.""/'". ",- "" " "-. .- ". " ",""



Figure 5. The quantum energy, <GIHIG> (in unitt of ),as a

function of time for the wave packet of Fig. 1

propag-.ted using the MEM equations (-) and the LHlA

equations(-

2
Figure 6. The "classical energy," <GjVj*G> +- P /2m (for MEM() or

V(R) +P2/2m (for LHA), as a function of time, for the

wave packet of Fig. 1. propagated using the NEM

equations (-) and the LHA equations (---

Figure 7. The real part of the Fourier transform of

<qilx;t)1fliX;t0 )>, Eq. (V.2), where the initial wave

function If(x;t )=0.5 ( Wx + W + 4- W
isrpesne 0  for 0 1 x *2( ~ 3(
isrereenedby forwave packets, * (x) are then

Morse eigenstates, and flix;t) is propagated using the

MEM equations (-), and the uncoupled IGA equations

- -- ).The peaks of ReC(w) are related to the

probability of being in eigenstate n (x) by Eq. (V.3).

In this plot T =5.0, X. = 1.06.

Figure 8. The square of the projectiont of the wave function (Eq.

111.25) propagated by IGA onto the Morse eigemstates,
2

i.e., 1<4m jflt)>I versus time f o r n =0 ()

n=1 (),n=2 ( -)and n=3(- -
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