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EXECUTIVE SUMMARY

PURPOSE

During the past several decades problems of environmental contamina-
tion have become increasingly important, both from the scientific and
the legal standpoints. In recent years a great deal of attention has
been directed to the potential toxicity to acquatic organisms of chemicals
discharged into water bodies.

The U.S. Army, through activities such as munitions manufacture,
operates a number of plants that produce, consume, or discharge a variety
of chemical substances. Some of these discharges enter bodies of water
inhabited by various aquatic species. Thus the Army must provide the

USEPA with safety data concerning the levels of such discharges and the
possible extent of resulting suface water and ecological contamination.
In order to develop such data the Army conducts both intramural and
extramural programs of aquatic toxicity testing.

Considerable amounts of time, money, and manpower are expended by the

Army in such aquatic toxicity testing programs. To make these programs
more efficient and more effective, the need has been felt for a reexamina-
tion of some of the standard methods used. This has been especially true
of statistical methods involved in the design of testing programs and the
analysis of resulting data. Feder and Collins [1] have considered a number

of the statistical aspects of the design and analysis of chronic aquatic
toxicity tests with fathead minnows. The present study considers statisti-
cal aspects of the design and analysis of chronic tests with Daphnia magna.

Many of the statistical methods used in this study were adapted from

those used by Feder and Collins [1] in their analysis of data from fathead
minnow chronic toxicity tests. Other statistical methods discussed and/or
developed in this study do not appear in [1]; some have not been previously
applied to aquatic toxicity data. The methods discussed in [11 and in
this report provide increased information, as compared with standard
methodology, about the structure, relations, and anomolies in the data.
Thus the statistical design and analysis considerations for Daphnia magna
tests discussed in this report, in conjunction with those discussed by
Feder and Collins for fathead minnow tests should improve the design,
reporting, and statistical analysis of data from chronic aquatic toxicity
tests. This will enhance the sensitivity of conclusions that can be
derived from these tests, thereby increasing their efficiency.
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APPROACH

The approach used in this report is much like that used by Feder and
Collins [1]. A variety of topics pertaining to data display, statistical
analyses, and experimental design are discussed in detail. For many of
the topics, alternative statistical approaches and procedures are presented.
All the statistical procedures are illustrated with examples based on real
data from chronic tests with Daphnia magna. The data were kindly provided
by several investigators at different laboratories and represent a number
of variations in the design of chronic Daphnia tests.

The statistical procedures discussed in the body of the report repre-
sent a combination of methods that have been previously applied to aquatic
toxicity data, methods that are in the statistical literature but which
have not been commonly applied to aquatic toxicity data, and methods that
have been especially developed or extended for this study.

RESULTS

A number of procedures for the statistical analysis of Daphnia magna
chronic toxicity are discussed. The suggested procedures are illustrated
with examples based on various chronic toxicity tests. The data used for
illustration reflect a number of the possible variants in test design.
Namely some of the tests are flow-through while others are static. Some
contain multiple daphnids per beaker while others contain individual
daphnids per beaker. Some contain solvent control groups while others do
not. Numbers of daphnids per group vary from ten to eighty while numbers
of beakers per group vary from three to ten.

Data analysis topics discussed include preliminary and residual graphi-
cal displays; preliminary tests of beaker to beaker heterogeneity within

groups for mortality and length responses; adjustments to account for
such heterogeneity; outlier detection tests; comparisons of average
mortality, length, and reproduction levels between water control and

solvent control groups along with conceptual implications of discrepancies
that might be found; overall tests of heterogeneity in response levels
across treatment groups; treatment group-control group pairwise multiple
comparison and confidence interval procedures; the fitting of dose
response curve models to mortality, reproduction, and length responses;
point and confidence interval estimation, based on these fits, of concen-
trations associated with biologically significant increases or decreases
in response levels relative to the controls; statistical precision to be
expected from tests as a function of sample sizes, variability of responses,
and extent of beaker to beaker heterogeneity within groups; a rationale
for unequal allocation of test beakers within treatment groups, with
greater numbers of beakers in the control group and lower treatment groups -

and lesser numbers of beakers in the higher treatment groups; analysis of
time trends in reproduction; analysis of time to death.

p7 iii. ,
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CONCLUSIONS AND RECOMMENDATIONS

Several of the conclusions and recommendations from this study are similar
to those arrived at by Feder and Collins [1]. We state some of them again
here for completeness.

1. Standardized conventions and formats for reporting test design,
laboratory conditions under which the test was carried out, and test
results would facilitate communication among investigators, labora-
tories, and government regulatory agencies and would lead to greater
reproducibility of test results across laboratories and across time.

2. Some of the "standard" methods currently used for analyzing data
from aquatic toxicity tests can and should be modified. The data
should first be graphed, outlying observations or groups of
observations should be located and the reason for their aberrant
behavior determined, and tests for heterogeneity among beakers

within groups should be carried out. Subsequent comparisons of
response levels across groups should take into account such
heterogeneity or aberrant values.

3. Whenever solvent controls are included in the test their responses ,
should be compared with those of the water controls. If no dif-
ferences are evident, the two control groups may oe combined for
comparisons with the treatment groups. If there is evidence of
differences among the groups then the solvent control group would
usually be used for comparisons with the treatment groups. However
the test results are then at best tentative since there is no way
to determine whether the observed toxic effects were due to the
toxicant, to the solvent, or to some interaction between them.

4. If hypothesis tests are to be used to compare the treatment group
and control group responses they should be one sided tests which
are sensitive to alternatives in a particular direction, rather than -

overall analysis of variance type "shotgun" tests.

5. Multiple comparison procedures and confidence intervals procedures
should be used to determine specifically which treatment groups have
responses which differ from the control group responses and whether
the differences are of biological significance. Significance tests, - -

by themselves, are not adequate to define an MATC*. Confidence
bounds should be routinely constructed at the MATC to determine
just how much worse than the control group the response at that
concentration could conceivably be. In general, confidence intervals
impart much more information than hypothesis tests and should be
routinely used.

6. A way to impose monotonicity or smoothness structure on the
responses, to smooth the data, and to convert a hypothesis testing

problem into an estimation problem is to fit dose response curve
models to the data and to define the "safe"concentration as that
which results in no more than a specified increment in response

*Maximum acceptable toxicity conccentration.

iv
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from the control group. Dose response curves for mortality
responses may be based on standard probit or logit models or
nonstandard generalizations of these; dose response curves for
length, reproduction, weight, or other quantitative responses
may be based on multiple regression models such as polynomials
or mechanistically motivated nonlinear forms.

7. Statistical power and precision depend on the number of daphnids
per group, the number of beakers per group, and the extent of beaker to
beaker and daphnid to daphnid response variability. In the presence
of substantial beaker to beaker heterogeneity, the effective sample
size per group may be closer to the number of beakers than to the

number of daphnids. It is thus good design practice to divide the
daphnids within each treatment or control group among as many beakers

as can be accomodated within cost and logistical constraints.

8. Under certain circumstances it is sensible to allocate experimental
resources so that the control group and lower concentration groups
receive more beakers and daphnids than the higher concentration
groups. This may result in greater inference sensitivity in the
region of the MATC. Proportional diluters now have the capability
to permit such asymmetrical allocations.

9. Statistical power or statistical precision goals should be stated
as part of the protocol for each individual toxicity test and
sample sizes should be determined accordingly.

10. Useful information can be obtained by studying concentration related
trends in growth of reproduction with time and in time to death.
Since these two responses are routinely determined under standard
protocols at least three times per week, they should be reported
at the intervals at which they're observed, to permit statistical
analysis of the above responses. Costs premitting, consideration
should be given to reporting reproduction and mortality on a more

frequent basis than three times per week; perhaps daily.

V
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INTRODUCTION

During the 1960's and 1970's, environmental contamination in general
and water pollution specifically, became increasingly important as legal
and scientific problems. Regulatory agencies needed scientific data to
support the notion that a problem existed and also needed factual informa-
tion for establishing tolerance limits for levels of chemical discharges
into surface waters. From that need evolved numerous standard toxicity
tests.

Aquatic toxicologists and biologists developed, refine,, and standard-
ized many of the biological, chemical, and operational factors pertaining
to such tests. However the statistical aspects of test desigi. and analysis
of the resulting data have lagged behind.

Operational activities of the U.S. Army (e.g. munitions manufacture)
involve the production, use, and/or discharge of a variety of commercial
chemicals. Safety data must be provided to USEPA concerning surface
water contamination due to discharges of chemical intermediates or the
final product. The Army conducts both intramural and extramural programs
of aquatic toxicity testing to develop such data.

Considerable amounts of time, money, and manpower are expended by the
Army in such aquatic toxicity testing programs. To make these programs
more efficient and more effective, the need has been felt for a reexamina-
tion of some of the standard methods used. This had been especially true
of statistical methods involved in the design of testing programs and the
analysis of resulting data.

This report represents the results of the second phase of a study of
statistical methods in aquatic toxicology. The first phase pertained to
chronic tests with fathead minnows; the results are presented in Feder
and Collins [1]. The present study considers statistical aspects of the
design and analysis of chronic tests with Daphnia magna.

Many of the statistical methods used in this study were adapted from
those used by Feder and Collins [1] in their analysis of data from
fathead minnow chronic toxicity tests. Other statistical methods dis-
cussed and/or developed in this study do not appear in [1]; some have

not been previously applied to aquatic toxicity data and some have been
especially developed or extended for this study. The suggested procedures
are illustrated with examples based on various Daphnia chronic toxicity
tests. The data used for illustration reflect a number of possible
variants in test design.

Topics discussed include preliminary and residual graphical displays;
preliminary tests of beaker to beaker heterogeneity within groups; adjust-
ments to account for such heterogeneity; outlier detection tests; compari-
sons of average mortality, length, and reproduction levels between water
control and solvent control groups along with conceptual implications of
discrepanies that might be found; overall tests of heterogeneity in
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response levels across treatment groups; treatment group-control group
pairwise multiple comparison and confidence interval procedures; the
fitting of dose response curve models to mortality, reproduction, and
length responses; point and confidence interval estimation, based on
these fits, of concentrations associated with biologically significant
increases or decreases in response levels relative to the controls;
statistical precision to be expected from tests as a function of sample
sizes, variability of responses, and extent of beaker to beaker hetero-
geneity within groups; a rationale for unequal allocation of test beakers

within treatment groups, with greater numbers of beakers in the control
group and lower treatment groups and lesser numbers of beakers in the
higher treatment groups; analysis of time trends in reproduction; analysis
of time to death.

It is hoped that the results obtained in this study will contribute
to better, more reliable toxicity tests and data analyses. This is turn
should provide improved tools for the regulation of toxic chemicals in
aquatic environments and should suggest fertile areas for further study
and development.
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I. CHRONIC DAPHNID TOXICITY TESTS - BASIC DATA

The data that we will be concerned with pertain to 21 day chronic

Daphnia studies. There are a number of variations across laboratories in
the way the tests were carried out and the types of responses that were
recorded.

Some of the variations in technique do not affect statistical analysis
of the data, although they are very important from a biological standpoint.
Dr. William van der Schalie has compiled a collection of these biological
parameters, which we indicate below in Table I.1.

Other test parameters strongly affect the responses that can be measured
and the kinds of data analyses that can be carried out. Among these are:

Number of replicate beakers (test chambers) per treatment level
Number of daphnids per replicate beaker (test chamber)

individual daphnids
multiple daphnids

Randomization procedures
test chamber to position

random, systematic, blocking
daphnids to test chambers

complete randomization

blocking - e.g. on broods
Responses measured and frequency measured

live/dead - measured frequently or only once or twice
during test measured

numbers of offspring produced - (total offspring or frequently or
live offspring) only once or

per replicate twice during
per female test

lengths
Number of control groups

water control
solvent or carrier control

p3



TABLE I.1 BIOLOGICAL, PHYSICAL, AND CHEMICAL SUMMARY PARAMETERS OF CHRONIC
DAPHNIA TOXICITY TESTS (COMPILED BY DR. WILLIAM VAN DER SCHALIE)

Test Data Source:

Toxicant (Name or Code):

Daphnid Chronic Toxicity Test Data Sheet

Culture Information

Food Composition:

Frequency of Feeding:

Water Flow (static renewal, or flow-through):

Indicate frequency of renewal or flow rate in tank volumes/day:

Age of Adults used to obtain test Daphnids:

Temperature (average and range):

Photoperiod and Lighting (quality and intensity):

Was culture water used the same as for the test dilution water?

If not, how did the water quality differ:

Test Information (If same as for brood culture, please enter "same")

Food Composition:

Frequency of Feeding:

Water Flow (static renewal, or flow-through):

Indicate frequency of renewal of flow rate in tank volume/day:

Age of Daphnids at start of test:

Dilution Water Quality (indicate average and range during test, if
possible):

Source (tap, well, river, reconstituted, etc):

pH: Conducitivity:

Alkalinity: Temperature:

Hardness: Other:

Dissolved oxygen:
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TABLE 1.1. (Continued)

Duration of Test:

Type of Test Container and Volume:

Nominal Concentrations:

Dilution Factor Between Concentrations:

Duration of Test:

Type of Test Container and Volume:

Number of Treatment Levels:

Number of Replicates per Treatment Level:

Number of Daphnids per Replicate:

Describe randomization procedures (daphnids to test containers and
* test containers to position):

Indicate which of the following biological endpoints were measured
and the frequency measurement:

Survival :

Growth:

Days to t ir!,t voting:

Yo in _ pr,)dtt~i t ion:

T,, t. iI VOII per replicate:

*'(! OtinA pe r t emitle per reproductive day:

YIn) per brood:

.Dtad or aborted young:

* Other:

Control responses (indicate to 21 or 28 days)

Mortality ( )

Young per female:

Were ephippia formed:

55



The data sets we have received represent a number of variations on

the types of tests that are run. We have received five data sets.

1, 2. Gerald LeBlanc - EG&G Bionomics - Compounds "A" and "B"

Flow-through test - 21 day test
water control group, solvent control group, 5 treatment groups
4 replicate test chambers per group
20 daphnids per beaker to start
Responses measured

7, 14, 21 day survival
7, 14, 21 day cumulative offspring per surviving female
7, 21 day lengths (on individual daphnids)

Concentrations determined in two of four test chambers on
days 0, 7, 14, 21 - Average concentration determinations
used for analysis

3. Bill Adams - Selenium

Static renewal test - 21 day test
1 control group, 7 treatment groups
3 replicate test chambers per group
5 daphnids per beaker to start
Responses measured

2, 4, 7, 9, 11, 14, 16, 18, 21 day survival
2, 4, 7, 9, 11, 14, 16, 18, 21 day cumulative offspring .

per surviving female

no length data
Averages of measured concentrations will be used for analysis

4. Gary Chapman - Beryllium

Static renewal test - 21 day test
water control group, solvent control group, 6 treatment groups
10 replicate test chambers per group
individual daphnids per test chamber
Responses measured

3, 5, 7, 10, 12, 14, 17, 19, 21 day survival
3, 5, 7, 10, 12, 14, 17, 19, 21 day # offspring (both live
and dead) and # broods

21 day lengths

Averages of measured concentrations used for analysis

5. Clyde Goulden - Isophorone

Static renewal test - 21 day test
control group, 5 treatment groups
10 test chambers per group

7 beakers with individual daphnids - to determine
individual production figures

3 beakers with 5 daphnids per beaker - to get survival
information

Responses measured
2, 4, 6, 8, 11, 13, 15, 18, 21 day survival data

6



2, 4, 6, 8, 11, 13, 15, 18, 21 day # offspring (live)
from the daphnids in the beakers with just one
daphnid per beaker

no length data
Nominal concentrations used for analysis

Note on Concentrations Used for Analysis Purposes

The various control groups and treatment groups correspond to nominal
toxicant concentrations. As part of good experimental practice, periodic
determinations are made of the chemical concentrations in the various beakers.
The variation in these determinations is due in part to fluctuations over
time in toxicant concentrations within the beakers and in part to analytical
errors. Furthermore there may be variation in concentration levels among
test chambers within groups due to random variations in the delivery system
(e.g. partially blocked tubes) or varying amounts of settling out of
toxicant in the various test chambers. However chemical determinations
are not made in all chambers at equal intervals. We adopt the (somewhat
arbitrary) conventions that:

1. If no chemical determinations are made during the experiment
or if the results are not reported, we utilize the nominal
concentrations in subsequent statistical analyses.

2. If chemical determinations are made within each group in
representative test chambers at periodic intervals, then we
associate the average of all these determinations with the
concentration in each beaker within the group. That is, we
utilize a single toxicant concentration over time and

across beakers within groups.

In flow through tests, theoretically all beakers within a group
receive the same water and so should have the same concen-
trations. In static tests, this may not be so.

The problem of how to account for fluctuations in toxicant concentrations
in the statistical analysis is an interesting one, however we will not
pursue it here.

Different investigators and different laboratories report their data
in different formats, in different styles, and at varying intervals. For
example LeBlanc reports survival and production at days 7, 14, 21 while
Adams, Chapman, and Goulden report them at more frequent intervals. LeBlanc
and Chapman report lengths while Adams and Goulden do not. Some investiga-
tors report cumulative production versus time while other investigators
report current production versus time. Some investigators report measured
toxicant concentrations while others report only nominal concentrations.

Recommendation: A standardized data reporting format should be adopted,
analogous to that discussed for the fathead minnow tests (Feder and Collins).
A good start in that direction is the experimental categorization summary
sheets prepared by Dr. William van der Schalie, which is shown in Table I.I.

7
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In order to carry out statistical analyses and data displays, the data
first had to be computerized. As the data were reported in a number of
different formats, the data first needed to be recoded in a somewhat uniform
manner, amenable for analysis. The approach we took is indicated in the
figures below, which show computer listings of the various data sets.

Figures I.1 to 1.4 are based on LeBlanc's tests on Compounds A and B.
Figures 1.1, 1.3 contain 7, 14, 21 day survival and cumulative productivity,
and day 0, 7, 14, 21 measured toxicant concentrations. Note that the
concentrations given in the third field are nominal concentrations. Note
also that since only two concentration determinations per group were made
on each occasion, the "measured" concentrations on each day in each group
are really two duplicates rather than four measured values. Figures 1.2,

b1.4 contain seven day and 21 day length determinations on surviving adults

at that point. (Note the 21 day length in beaker 7A but no corresponding

7 day length. This value should be associated with beaker C.)

Figure 1.5 pertains to Adams' test on selenium. The concentrations
indicated are nominal concentrations. Survival data is given corresponding
to days 2, 4, 7, 9, 11, 14, 16, 18, 21. Cumulative fertility per surviving
adult is indicated for these same days.

Figure 1.6 pertains to Chapman's test on beryllium. Concentrations
indicated are averages of measured concentrations for each treatment group.
Since just one daphnid is contained in each test chamber, various responses
can be measured that are not feasible with multiple daphnids per beaker,
as in the LeBlanc or Adams tests. Thus time to death of each daphnid (50
represents a censored value--i.e. survives beyond day 21), number of broods,
time to first brood, numbers of live young on days 3, 5. 7. 10, 12, 14, 17,
19, 21, and lengths are given. Note that in contrast to the LeBlanc and
Adams productivity data, these productivity values represent current
rather than cumulative values.

Figures 1.7 and 1.8 pertain to Goulden's test on isophorone. The concen-
trations indicated are nominal concentrations. Figure 1.7 contains survival
data for each of the test chambers on days 0, 2, 4, 6, 8, 11, 13, 15, 18,
21. Figure 1.8 contains production data for the daphnids in beakers 1-7
within each group (individual daphnids per beaker). Time to death (50
represents a censored value), number of broods, time to first brood, and
numbers of live young on days 2, 4, 6, 8, 11, 13, 15, 18, 21 are also
given. As with the Chapman data, the production figures represent

current rather than cumulative values.

8
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INVESTIGATORS EG AND G BIONOMICS -- TEST A
21 F1 -THU . HTE T -WIH APNA _ -_

I CONTROL GROUP (1, 1 SOLVENT GROUP (2), 5 TRX GROUPS (3-7)
k RFAKER fI ROUP--fIlIwMAT (T A I *1(IV -Fr-/6,TI; - I J.IAI Fr3- | I

GRP9 REPL'ONC 4G/L NO. TESTED, NO. LIVE (7,14921), CUM. FERT. (7,,21),
MEASURF CONG (6k.-.i,,a_ .21----
I A 0.0000 20 20 1? 17 2.0 48.0 84.0 0.00140 0.00069 0.00120 0.00068
a_ B 0.--nn 2ft 20 7-n- --- : -0 3800 94-.n  :-ni-O 4---00069 n0:-10 n-0-0--C---
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7f J n_000 00 0 n 9 19 6 n,_0 6.01-n60-0 0 0.-i O il A5an0 O-.005 f 0.00058
3 A 0.0031 20 20 20 20 3.0 62.0149.0 0.00330 0.00330 0.00310 0.00210
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1, A 0.t10A2 -;) n 0 7fl 2~ '1130 6Z* n 1!65* 0 -00440 0*00430 Do On 4290 001lO
4 C 0.0062 20 20 19 17 0.0 52.0113.0 0.00080 0.00420 0.0!260 0.00110
4 n n.n nr%7 ?n 2n iQ 19 n .n snf.nns.n n .n nn nann ,pn n. ntiirn n nn ln
5 A 0.0120 20 20 20 1 7.0 77.0189.0 0.00900 0.00680 0.00780 0.00470
5B0--n _- - a0--- 20-n -0 370o0L-0 0 lG0068G 017800.00 6ZOn _O -

5 C 0.0120 20 20 18 16 0.0 35.0i12.0 0.00960 0.00880 0.03840 0.00420
5.- 0l--.2 2- 20-- 24-- 149-- 3. n --Z-,-Il 51O -- O-Og nO- -O4Go0 0 -_On- ni.o a - -420-
6 A 0.0250 20 20 19 18 0.0 30.0103.0 0.01800 0.01800 0.01?00 0.00770
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6- 0.0250- 20 - 1 1. 2.4-6-.-Cl3.-0-- (12& 5.-25a I IO - -900.fl-0800
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Figure I.1. LeBLanc - lest A. Survival, cumulative fertilitv, measured toxicont concentratijns
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* INVESTIGATORS EG AND G BIONOMICS--TEST a
21_AIJA F LOW LHRO3UGH__TFE.T .WI__ OAPHNIA MAGMA-- .....
I CONTROL GROUP (1), 1 SOLVENT GROUP (2)t 5 TRX GROUPS (3-7)
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II. PRELIMINARY GRAPHICAL DATA DISPLAYS

Graphing the data is generally considered to be a good first step in
statistical analysis. Graphs provide insights into the structure of the
data and reveal the presence of possibly unanticipated relations or anomolies.
This section contains preliminary display. of survival, production, and
length responses versus group and versus concentration.

Figures I1.1 to I1.10 display trends in 21 day mortality (or survival)
with group and with concentration for the LeBlanc, Adams, Chapman, and
Goulden tests.

Figures 11.1 to 11.4a pertain to LeBlanc's tests with Compounds A and

B respectively. These tests consist of a water control group, a solvent
control group, and five treatment groups, with four replicate test chambers
per group. Figures 11.1, 11.2, and II.2a show both a higher mortality level
and a higher average measured concentration in the water control group than
in the solvent control group for test A (15 percent versus 3.75 percent

mortality and 0.0010 mg/Z versus 0.0006 mg/Z concentration respectively).
There is no trend in mortality among the first three treatment groups (up

to nominal concentration 0.0120 mg/ and then a rather rapid rise as the
nominal concentration level is doubled and then redoubled from that point.
No outlying observations are evident, however there is some question of the
homogeneity of responses across replicates in group 6. Figures 11.3, 11.4,
and II.4aa show virtually no trend in mortality with increasing concentra-
tion in test B, up to group 6. There is then a substantial increase in
mortality between group 6 and group 7. No outlying results are evident,
but there is question about homogeneity of responses across replicate test
chambers in group 7.

Figures 11.5 and 11.6 pertain to Adams' test with selenium. This test
consists of a control group and seven treatment groups with three replicate
test chambers per group. There appears to be no trend in mortality (and
very little mortality) in groups I to 4. There is then a sudden jump in
mortality between groups 4 and 5 and mortality remains at 100 percent
thereafter. No outlying responses are evident. We conclude from these

graphs that the dose response relation is very steep.

Figure 11.7 pertains to Chapman's test with beryllium. The test consists
of water and solvent control groups and six treatment groups. There are
individual daphnids in each beaker. The mortality rates plotted represent
average mortality over the ten beakers within each group. There appears

to be no systematic trend in mortality with increasing concentration nor
does there appear to be any outlying responses.
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Figures 11.8, 11.9 and II.10 pertain to Goulden's test with isophorone.
The test consists of a control group and five treatment groups. Seven of
the ten beakers per group contain individual daphnids while the other three
beakers per group contain multiple daphnids. Note that survival is plotted
in these figures rather than mortality. For each group or concentration,
the average survival in the seven individual beakers along with individual
survival in the remaining three beakers is plotted. It is seen that in four
of the six groups, individual survival exceeds multiple survival. There
appears to be a downward trend in the survival rates associated with the
beakers containing multiple daphnids. However for the individually housed
daphnids there is no trend in survival rates. They remain at about 100 percent
in the first five groups and then rapidly jump down to about 15 percent.
Thus these plots suggest differences in mortality rates between the in-
dividually and multiply housed daphnids. There is also a suggestion of a
possibly outlying response in group 5. This needs to he investigated further.

Figures II.11 to 11.25 display trends in 21 day production vs group and
vs concentration for the LeBlanc, Adams, Chapman, and Goulden tests. For
the LeBlanc and Adams tests (with multiple daphnids per beaker) the fertility
measure used is cumulative production per surviving adult per beaker. For
the Chapman and Goulden tests (with individual daphnids per beaker) the
fertility measure used is cumulative production for each individual daphnid
that survived to the end of the test.

Figures II.11 to 11.14 pertain to LeBlanc's tests with Compounds A and
B. Figures 11.11 and I.12 show an increase in productivity of the solvent
control group in test A as compared to the water control group. There is
then a decrease in production with increasing concentration. The highest
treatment group has almost complete mortality (just one survivor of 80 -

daphnids that began the test) and no offspring. Figures 11.13 and 11.14
show first (among the treatment groups) an increase in production with
increasing concentration and then a decrease. One of the values in group 3

appears to be a possible outlier. There does not appear to be hetero-
geneity of variance with increasing mean level.

Figures 11.15 and 11.16 pertain to Adams' test with selenium. We pre-
viously observed 100 percent mortality in groups 5 through 8 and we now see
that there is no production in these groups either. (Virtually all the
deaths in these groups occurred by day 4, well before any of the daphnids
in the test were mature enough to produce offspring.) There appears to be
a downward trend in average production with increasing concentrations in
groups I to 4. There is also a suggestion of increase in variability.

Figures 11.17 to 11.20 pertain to Chapman's test with beryllium.
Figure IT.17 displays total young produced bv each adult surviving to
the end of the test. The water control and solvent control groups appear
to be comparable and higher on average than the six treatment groups. There
is no suggestion of heterogeneity of variance or of outlying values. There
is no apparent trend in production levels among the six treatment groups.
Figures TI.18 and 11.19 display average total production for surviving
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adults versus group number and versus loglo (concentration). In both plots
we see that the control groups' production levels are much higher than the

treatment group production levels, the solvent control group has higher
average production level than the water control group, and the treatment
group average production levels show no trend with increasing concentration.
Figure 11.20 shows the standard deviation of 21 day production levels of
survivors plotted against average production levels. There is an increasing
relationship between standard deviation and average level.

Figures 11.21 to 11.25 pertain to Goulden's test with isophorone.
Figure 11.21 displays individual 21 day production for all daphnids, both
survivors and nonsurvivors. Recall that production data were recorded
only on the seven individually housed daphnids per group. We see a
definite quadratic trend in the plot, first increasing and then decreasing.
Figures 11.22, 11.23, and 11.24 display 21 day production for all in-
dividually housed daphnids that survived to the end of the tests. Figure
11.22 is nearly identical in appearance to Figure 11.21 since there was just
one death among individually housed daphnids in groups 1 to 5 and in group 6
there was no production among any of the seven daphnids, whether or not
they survived. Figure 11.25 displays standard deviation of production
versus average production for the surviving daphnids. No trend is evident.
Note that group 6 is not represented in this plot since there was just one

surviving daphnid and so the standard deviation was not calculated.

Figures 11.26 to 11.34 display trends in average 21 day lengths and in
variation within beakers and among beakers within groups for the LeBlanc
and Chapman tests. Adams and Goulden do not report length data.

Figures 11.26, 11.27, and 11.28 pertain to LeBlanc's test with Compound
A. Figure 11.26 shows a higher average length among survivors in the
solvent control group than in the water control group. No trend in either
average length or variability of length is evident in groups 3 to 6. The
point in group 7 corresponds to just a single daphnid, the only survivor
in that group, and is relatively stunted. Figure 11.27 displays the within
beaker standard deviations of length versus the within beaker average
lengths. A negative trend can be seen, indicating that variability
decreases with increasing length! This is opposite to what occurs with
most physical phenomena. Figure 11.28 displays standard deviations
among beaker averages within groups versus means of beaker averages.
A clear, strong negative trend is evident; that is, decreasing varia-
bility with increasing length.

Figures 11.29, 11.30, and 11.31 pertain to LeBlanc's test with Compound
B. Figure 11.29 shows a lower average length among survivors in the solvent
control group than in the water control group. This is opposite to what
was observed for the Compound A test. This suggests that no universal
relation is appropriate. There is little trend in either average length
or in variability of length in groups 3 to 6. The lengths in group 7 are
clearly stunted. Figure 11.30 displays the within beaker standard devia-
tions of length versus within beaker averages. There is little trend in
the plot. If any exists, it is slightly negative. Figure I.31 displays
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the standard deviation among beaker averages within groups versus mean of
beaker averages. A negative trend is evident, although not as strong as
for Compound A. The point to the far left of the plot corresponds to
group 7, which is not typical of the other groups. However a negative
trend exists even without this point.

Figures 11.32, 11.33, and 11.34 pertain to Chapman's test with beryllium.
Figures 11.32 and 11.33 show about the same average lengths in the solvent
control and in the water control groups and a decreasing trend in average
length with increasing concentration. The variability among lengths
decreases as the average among lengths increases. This is the same phenom-
enon that we saw with Compound A. Figure 11.34 displays the standard
deviation among lengths within groups versus average legnth. There is a
clear negative trend.

We thus conclude that the variability of daphnid lengths decreases as
average length increases. This type of phenomenon would be compatible
with a biological upper limit on daphnid length that the adult daphnids
are approaching. The distribution of daphnid lengths would then be
skewed to the left.
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III. TESTING FOR BEAKER TO BEAKER HETEROGENEITY
WITHIN TREATMENT GROUPS - SURVIVAL DATA

A. BACKGROUND

Toxicity tests with Daphnia magna generally include several replicate
beakers per treatment or control group in order to be able to assess
variability of response. An important preliminary inference is to deter-
mine if there is any statistical evidence of variation in response rate
across beakers within groups. For survival data, it is of interest to
determine whether the variation in mortality rates across beakers within
groups is compatible with that to be expected based on binomial theory or
whether it is in excess of that. In the former case the data may be pooled
across beakers and subsequent analyses can be carried out based on binomial
theory (i.e. on a per daphnid basis). However if beaker to beaker variation
exists then standard errors based on binomial theory will underestimate the
true variability of responses. This would lead to hypothesis tests that
falsely reject the null hypothesis more often than the nominal level (i.e.
inflated type 1 error), confidence intervals that are too short (i.e.
attained confidence level lower than nominal), and simultaneous inference
procedures arriving at no effect levels that are too low.

To account for possible beaker to beaker heterogeneity, variability
estimates are generally based on sample variances of the observed survival
rates in the replicate beakers with groups. Such variability estimates
are appropriate whether or not beaker to beaker variation exists, however
they are based on relatively few degrees of freedom and so reduce the
sensitivity of subsequent analyses in the event that there is in fact no
extra binomial variation. There i3 thus a tradeoff between possible under-
estimation of variability on the one hand and possible loss of sensitivity
on the other. A reasonable compromise procedure is to first carry out a
test for beaker to beaker heterogeneity among beakers within groups. If
the test accepts the null hypothesis of no heterogeneity, we pool data
across beakers and base subsequent analyses on binomial theory (i.e. per
daphnid analysis). If the test rejects the null hypothesis of no hetero-
geneity, we either base subsequent analyses on sample response rates within

each beaker (i.e. per beaker analyses) as is usually done or else adjust
the sample sizes downward to effective sample sizes and then pool the
adjusted data across beakers. The latter approach has been described
and illustrated for fathead minnow data in Feder and Collins [1],
Sections VII, VIII and IX and will be further illustrated in this report
for Daphnia magna data. In this section we confine attention to testing

0 for heterogeneity among beakers. We discuss adjustment procedures in
subsequent sections.

Feder and Collins [11] Sections VII and VIII remark that problems
can arise with some of the "standard" procedures for testing for beaker to
beaker variation within groups. These tests are based on asymptotic theory
and sometimes are based on a specific form of dose response model. There

are two possible types of difficulties with the usual asymptotic chi square
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tests of goodness of fit. First, the weights used in the denominator of
the chi square statistic are inappropriate if the assumed form of dose
response model is inappropriate. This may bias results. For example a
chi square test statistic for heterogeneity among beakers within groups
based on a model of constant mortality rates across treatment groups has
constant probability weights across groups in the denominator and thus
would be inappropriate if in fact there is a trend in mortality rate
with increasing group number. Similarly a chi square test statistic for
heterogeneity based on a probit model has probit based weights in the
denominator and so would be inappropriate if the probit model is inappro-
priate, etc.

A second possible problem with the "standard" heterogeneity tests results
from their asymptotic nature. The validity of the asymptotic chi square
theory on which they are based is dependent on expected response frequencies
being large enough. If just a single response is observed in a group with
very small expected frequency, the contribution of that group to the overall
chi square value can be dominant and can strongly bias the resulting test
of heterogeneity among beakers. This situation was demonstrated byFeder
and Collins, Tables VII.l and VII.2. Thus the relatively small sample
sizes coupled with response rates close to 0 or 1, that are fairly
common in aquatic toxicity tests, result in small expected frequencies
and therefore often invalidate the assumptions underlying heterogeneity-
tests based on asymptotic theory

To account for these two problems, Feder and Collins carry out separate
chi square heterogeneity tests within each concentration group without
imposing any structure on the form of the concentration-response relation.
The test results are then pooled across groups to result in an overall test.
The tests are based either on asymptotic theory or on exact, small sample
theory depending on whether the expected response frequencies within
each cell are large or small. The convention we have used has been to use
heterogeneity tests based on exact, small sample theory if any expected .7

response frequencies are less than 5. A computer program, EXAX2, has been
developed to carry out tests of heterogeneity of mortality rates among
beakers within groups, based on exact, small sample theory. This program
is described in detail and illustrated with data based on fathead minnow
tests in Feder and Collins, Section VIII and in Feder and Willavize
[2]. See those reports for details of the program. In this section we
illustrate the use of EXAX2 on several sets of data from toxicity tests
with Daphnia gna to test for beaker to beaker heterogeneity in mortality
response rates within groups.

B. APPLICATION OF EXAX2 TO TEST FOR HETEROGENEITY AMONG BEAKERS
WITHIN GROUPS WITH DAPHNIA MAGNA DATA

In this subsection we illustrate the results of EXAX2 comparisons of
21 day mortality rates among replicate beakers with- n groups using data
from a number of toxicity tests. The EXAX2 outputs are shown in the
referenced figures. The observed and expected cell frequencies are indi-
cated. If any of the expected cell frequencies are lower than the (user
specified) cutoff of 5, exact distribution theory is used for the compari-

son in that group. The exact distribution of the chi square statistic,
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conditional on the marginal totals, is enumerated and displayed. The - -i

observed value of chi square, the observed significance level A.
-2/n Ai, E(-2/n Ai), Var(-2en A i) are calculated. The separate independent
tests for each treatment or control group are combined by summing -2tn Ai, -. 4

E(-2/n Ai), and Var(-2/n A i) over groups and calculating the standardized
test statistic, Z, which is then compared to a standard normal distribution.

We now illustrate this procedure.

LeBlanc Test A 21 day Mortality

There are a water control group, a solvent control group, and five treat-
ment groups. There are four replicate test chambers per treat group, 20
daphnids per chamber to start. The results from the EXAX2 calculations
are shown in Figures III.1 to 111.7 and are summarized below. The mortality
results are displayed graphically in Figure II.l. It is obvious from
Figure II.1 that there is great heterogeneity of mortality rates in group 6
and that group 3 possibly exhibits some heterogeneity. Other than that,
the results appear to be homogeneous across beakers within groups. These
conclusions from Figure II.1 are supported by the results in the EXAX2
output. Figures 111.1, 111.2, 111.4, 111.5 and 111.7 show no significant
heterogeneity of mortality across beakers within groups 1, 2, 4, 5 and 7
respectively. Figure 111.3 shows marginal evidence of heterogeneity
across beakers, with beakers 3 and 4 having somewhat greater mortality
than beakers 1 and 2. Figure 111.6 shows substantial heterogeneity of
response across beakers. Beakers 3 and 4 have better than 75 percent
mortality while beakers 1 and 2 have less than 20 percent mortality. This
is of course both highly statistically and highly biologically significant.
The pooled significance level calculations are presented below the results
for group 7. Z is highly statistically significant since the probability
of a standard normal deviate exceeding 5.553 by chance is essentially 0.

LE BLANC TEST A 21 DAY MORTALITY

Trt Method Chi Sq Ai  -2/n Ai  E(-2/n Ai) Var(-2tn Ai)

1 exact 0.0000 1.0000 0.0000 1.6609 3.6367
2 exact 3.8095 0.6105 0.9869 0.8687 1.6419
3 exact 7.7714 0.0757 5.1619 1.5750 3.4893
4 exact 4.2270 0.3445 2.1312 1.5068 3.1226
5 exact 5.4795 0.1975 3.2436 1.5068 3.1226
6 asymptotic 41.2000 0.0000 37.8863 2.0000 4.0000
7 exact 3.0380 1.0000 0.0000 0.0000 0.0000

Z -2en Ai = 49.410 Z E(-2/in Ai) = 9.1183 Z Var (-2/n Ai) 19.0129
Z = 5.553
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The highly significant pooled result is due to group 6. Without this group,

the value of Z would be just 1.00. We thus conclude that there is overall
strong statistical evidence of beaker to beaker heterogeneity within groups
and this is due primarily to the strong dichotomy of mortality results in
group 6.

It is interesting to note that in both group 3 and group 6, where
dichotomies in mortality exist, beakers numbered 3 and 4 exhibit somewhat
greater mortality rates than beakers numbered 1 and 2. One cannot help
but wonder whether this is a coincidence or whether there is some systematic
difference between beakers having different numbers. This could be related
to source of test daphnids, placement or handling of beakers, connections
to proportional diluter, or some other factors associated with experimental
technique. These issues should be discussed in detail with the investigator
and any systematic effects should be taken into account in subsequent
analyses and interpretations. However we leave this issue here and do not
pursue it in this study.

LeBlanc Test B 21 day Mortality

The set up of the test is the same as that for Test A, namely water and

solvent control groups, five treatment groups, four beakers per group, 20
daphnids per beaker to start. The results from the EXAX2 calculations
are summarized below. The mortality results are displayed graphically
in Figure 11.3. The pattern of results is remarkably like that in Test A.
It is obvious from Figure 11.3 that group 7 exhibits the same kind of

substantial dichotomy of mortality rates that group 6 exhibited in Test A.
Some of the other groups show some suggestions of heterogeneity.

LE BLANC TEST B 21 DAY MORTALITY

Trt Method Chi sq Ai  -2tn Ai  E(-2Zn A i) Var(-2/n A i)

1 exact 7.7778 0.0711 5.2879 1.5361 3.4424
2 exact 1.0103 0.9089 0.1911 1.7273 3.6654
3 exact 4.2105 0.3222 2.2652 1.1245 2.3815
4 exact 5.7600 0.1591 3.6768 1.3590 2.6405
5 exact 1.7451 0.7153 0.6702 1.7273 3.6654
6 exact 4.4444 0.2521 2.7562 1.5361 3.4424
7 asymptotic 26.6667 0.0000 23.7637 2.0000 4.0000

Z -2tn Ai = 38.6110 E E(-2tn A i)  11.0104 F Var(-2tn Ai) = 23.2375
Z =3.9863

- 6
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The pooled significance level calculations are presented below those for
group 7. Z is highly statistically significant since the probability of
a standard normal deviate exceeding 3.9863 by 'hance is about 0.0001. The
highly significant pooled result is due to group 7. Without this group
the value of Z would be just 1.165. We thus conclude that there is overall
strong statistical evidence of beaker to beaker heterogeneity within groups
and this is due primarily to the strong dichotomy of mortality results in
group 7.

It is curious that the patterns of beaker to beaker heterogeneity are
so similar in Tests A and B. Each test has one group with a very sub-
stantial dichotomy of mortality rates, while the other groups demonstrate
little or no heterogeneity.

Adams-Selenium 21 Day Mortality

This test is a static renewal test. There are a control group and seven
treatment groups. There are thiee replicate beakers per group and five
daphnids per group to start. The results from the EXAX2 calculations are
summarized below. The mortality results are displayed in Figure 11.5. We
see that in each group the.e is nearly no mortality or complete mortality.
The middle portion of the dose response curve undoubtedly lies between the
concentrations in groups 4 and 5. There is of course no suggestion of
heterogeneity within groups.

ADAMS-SELENIUM 21 DAY MORTALITY

Trt Method Chi Sq Ai -2tn Ai E(-2tn Ai) Var(-2Yn Ai)

1 exact 2.14286 1.000 0.0000 0.0000 0.0000
2 table degenerate 1.000 0.0000 0.0000 0.0000
3 exact 2.14286 1.000 0.0000 0.0000 0.0000
4 table degenerate 1.000 0.0000 0.0000 0.0000
5 table degenerate 1.000 0.0000 0.0000 0.0000
6 table degenerate 1.000 0.0000 0.0000 0.0000
7 table degenerate 1.000 0.0000 0.0000 0.0000
8 table degenerate 1.000 0.0000 0.0000 0.0000

E -2tn A. = 0.000 E E(-2/n Ai) = 0.000 E Var(-2tn Ai) = 0.000
Z is indeterminate

In brief we see no beaker to beaker heterogeneity within groups since there
is essentially either no mortality or complete mortality within each group.
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Goulden-Isophorone 21 Day Mortality

This test is also a static renewal test. There are a control group and
five treatment groups. Each group consists of 10 beakers. Beakers 1-7
contain just individual daphnids. These are intended primarily to measure
productivity. Beakers 8-10 contain five daphnids each. These are intended -..

to estimate survival. Several different EXAX2 runs were carried out
In one run, mortality rates in beakers 8, 9 and 10 were compared against
one another separately within each group. This is to determine whether
there is any evidence of beaker to beaker heterogeneity among the multiple
daphnid beakers within groups. In another EXAX2 run mortality was pooled
across beakers 1-7 and this pooled mortality was compared with mortality
pooled across beakers 8, 9 and 10 within each group. This is to determine
whether there is any evidence of differences in mortality rates between
singly housed and multiply housed daphnids within each dose group. The
survival results are displayed graphically in Figure 11.8. The pooled
survival rates for the individually housed daphnids are plotted with the
plotting symbol "7". The survival rates for the beakers with multiple
daphnids are plotted with the plotting symbol "*". If two multiple daphnid
survival rates coincide, their common value is plotted with a "2". If one
or two "*"'s coincide with a "7", their common value is plotted with an
"8" or "9". We see that with the exception of group 6, there is just one
death among singly housed daphnids. The multiply housed daphnids appear to
have somewhat greater mortality. The results from the EXAX2 calculations
comparing mortality rates among the multiply housed daphnids are summarized
below.

GOULDEN-ISOPHORONE 21 DAY MORTALITY - COMPARISONS
AMONG BEAKERS WITH MULTIPLE DAPHNIDS

Trt Method Chi Sq Ai -2Zn Ai E(-2/n Ai) Var(-2/n Ai)

1 exact 1.1539 1.0000 0.0000 0.7159 1.2812
2 exact 2.1429 1.0000 0.0000 0.0000 0.0000
3 exact 2.1429 1.0000 0.0000 0.0000 0.0000
4 exact 2.5000 0.7253 0.6424 0.7821 1.6103
5 exact 6.9643 0.0676 5.3883 1.2813 2.9369
6 exact 1.1539 1.0000 0.0000 0.7159 1.2812

E -2/n Ai = 6.0307 E E(-2/n Ai) = 3.4952 E Var(-2/n Ai) = 7.1095
Z = 0.8221

The probability that a standard normal random variable exceeds 0.82 is about

0.20. We see that there is thus no statistical evidence of heterogeneity
among beakers within groups. Most of the heterogeneity that is observed is
that from group 5, where there is marginal suggestion of beaker to beaker

heterogeneity.
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We now pool mortality results across beakers with multiple daphnids -
and compare these with mortality results for the individually housed
daphnids. There are thus two subgroups per treatment group. The mortality
rates for the individually housed daphnids are based on a sample of size 7 -

while the mortality rates for the multiply housed daphnids are based on a
sample of size 15. The EXAX2 output is given in Figures 111.8 to 111.13.-
and the results are summarized below.

GOULDEN-ISOPHORONE 21 DAY MORTALITY - COMPARISONS
BETWEEN POOLED MORTALITY RATES FOR INDIVIDUALLY HOUSED DAPHNIDS

AND POOLED MORTALITY RATES FOR MULTIPLY HOUSED DAPHNIDS

Trt Method Chi Sq Ai -2n Ai E(-2en Ai) Var(-2ln Ai)

1 exact 1.0267 0.5455 1.2123 0.9870 1.7847
2 exact 0.3352 1.0000 0.0000 0.9870 1.7847
3 exact 0.4889 1.0000 0.0000 0.7287 1.1379
4 exact 1.6211 0.5227 1.2974 1.1614 2.2462
5 exact 5.8667 0.0225 7.5912 1.4030 3.0042
6 exact 0.0037 1.0000 0.0000 1.1614 2.2462

E -2ln Ai 10.1009 E E(-21n Ai) = 6.4286 E Var(-21n Ai) = 12.2040
Z = 0.9329

The probability of a standard normal random variable exceeding 0.9329 is
0.175. Thus except for group 5, there is no statistical evidence of differ-
ences in mortality rates between individually and muitiply housed daphnids.
The statistically significant result in group 5 is due to the single beaker
in which all five daphnids died. Without this beaker the mortality results
would be

Live Die

Individual 7 0 7

Multiple 7 3 10

14 3 17

An approximate two-tailed probability of observing as extreme a result
just due to chance is, by the hypergeometric distribution,

2-O!O 2 =0. 35
(17) 17H=03

36
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We conclude that there is no statistical evidence of overall differences
in mortality rates between individually and multiply housed daphnids. The

interpretation of the significant difference in group 5 depends on the
reason for complete mortality in one of the multiple beakers. It should
be noted however that in four of the six groups the individually housed
daphnids had lower mortality rates than the multiply housed daphnids and
the rates were essentially the same in a fifth group. Thus a significant
difference might have shown up had the sample sizes been greater.

The previous chi square based test is a two sided test. We can attain

greater power for testing for effects if we carry out a one sided test that,
for example, mortality is lower among individually housed daphnids than
among multiply housed daphnids. One way to carry out a test of equality
of mortality rates against a one sided alternative, based on asymptotic
theory, is to perform an arc sin transformation and carry out a normal
theory based test. Although the assumption of asymptotic normality is
stretched a bit with the small sample sizes in this example, we carry out
the test for illustrative purposes.

Within each group, the transform 2 arc sin pl/2 has an asymptotic

normal distribution with mean 2 arc sin ph 2 and standard deviation l/nl/2.
If singly and multiply housed daphnids have the same mortality rates then

differences among their arc sin transforms will have mean 0.

Singly Housed Multiply Housed

Group 2 arc sin I/2 Var 2 arc sin i/2 Var

1 0 0 0.143 0.133 0.748 0.067
2 0.143 0.775 0.143 0.067 0.522 0.067
3 0 0 0.143 0.067 0.522 0.067

4 0 0 0.143 0.20 0.927 0.067
5 0 0 0.143 0.533 1.638 0.067
6 0.857 2.366 0.143 0.867 2.394 0.067

Taking differences within each group yields

Group DIFF (Mult - Single) Std Err (DIFF)

1 0.748 0.458
2 -0.253 0.458
3 0.522 0.458
4 0.927 0.458
5 1.638 0.458
6 0.028 0.458
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Under the null hypothesis, DIFF is asymptotically normal with mean 0 and
std err 0.458. The average difference is 0.602 with a standard error of
0.458/61/2 = 0.187. Thus the one sided test demonstrates a statistically
significantly greater mortality rate among the multiply housed daphnids
then among the singly housed daphnids. If we exclude group 5 because of
the beaker with no survivors, the average difference in the remaining five
groups is 0.394 with a standard error of 0.458/51/2 = 0.205. The prob-
ability of a standard normal deviate exceeding 0.394/0.205 = 1.922 is 0.027.
Thus even without group 5, this one sided test suggests some statistical
evidence for greater mortality among the multiply housed daphnids. However
the validity of the asymptotic theory in this example is questionable. The
validity of this one sided asymptotic test should be studied in greater
detail.

In summary, the exact small sample heterogeneity test based on the chi
square distribution reveals no overall heterogeneity among the mortality
responses in the beakers with multiple daphnids. It also reveals no overall
heterogeneity between average mortality per group for the individually and
the multiply housed daphnids. The one sided, asymptotic test of hetero-
geneity reveals some statistical evidence of differences in mortality
between the individually and multiply housed daphnics. The conclusions
about differences in mortality between singly and multiply housed daphnids
are thus tentative.

C. APPLICATION OF EXAX2 TO TEST FOR HETEROGENEITY AMONG BEAKERS WITHIN
GROUPS AFTER ADJUSTING FOR EARLY LIFE STAGE MORTALITY

The mortality comparisons among beakers within groups discussed in the
previous subsection were all based on 21 day mortality. This measure of
mortality is an overall measure and encompasses both early and later stage
mortality. In each of the data sets discussed in this study, mortality is
measured at a number of points in time during the course of the test.
LeBlanc measures mortality at 7, 14 and 21 days. Adams measures mortality
at days 2, 4, 7, 9, 11, 14, 16, 18 and 21. Chapman and Goulden also ...
measure mortality at nine time points during the test. These intermediate
mortality responses can be used to separate inferences about overall
mortality into inferences about early life stage mortality and later life
stage mortality. One simple way of doing this is indicated below. While
no new statistical issues arise, the additional information obtained can
add biological insights and support or refute various conjectures about
causes of mortality and causes of variation in mortality among beakers.

LeBlanc measured mortality on days 7, 14 and 21. Thus the overall 21
day mortality can be decomposed into 7 day mortality (early life mortality)
and 21 day mortality conditional on survival for 7 days (later life
mortality). This second measure of mortality eliminates the influences
of the early mortality. Similarities or differences in the patterns across
beakers and groups of these two components of mortality would tend to
support or refute various conjectures about the reasons for the observed
mortality. For example we observed strong dichotomies in 21 day mortality
rates among beakers in group 6 of LeBlanc's Test A and among beakers in
group 7 of LeBlanc's Test B. Did these dichotomies occur in early stage
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mortality, in later stage mortality, or in both? To study conditional 21
day mortality given 7 day survival, we simply define mortality rates as 1
minus number live after 21 days divided by number live after 7 days. We
then proceed as before. The only technical difference might be unequal
"sample" sizes among beakers within groups or among groups. Of course,
we could also condition on 14 day mortality.

We illustrate the use of such conditional measures of mortality by
testing for beaker to beaker heterogeneity within groups in LeBlanc's
Tests A and B using EXAX2.

LeBlanc Test A Day Mortality Conditional on 7 Day Survival

The results from the EXAX2 calculations are shown in Figures 111.14 to
111.20. They are summarized below.

LE BLANC TEST A 21 DAY MORTALITY CONDITIONAL ON 7 DAY SURVIVAL

Trt Method Chi sq Ai -2Zn Ai E(-2tn Ai) Var(-2en Ai)

1 exact 0.0000 1.0000 0.0000 1.66087 3.63660
2 exact 3.8095 0.6105 0.9869 0.8687 1.6419
3 exact 7.7714 0.0757 5.1619 1.5750 3.4893
4 exact 4.2270 0.3445 2.1311 1.5068 3.1226
5 exact 5.4795 0.1975 3.2436 1.5068 3.1226
6 exact 12.5778 0.0069 9.9396 1.9265 3.9809
7 exact 2.0000 1.0000 0.0000 0.0000 0.0000

E -2tn Ai = 21.4632 E E(-2tn Ai) = 9.0447 E Var(-2tin Ai) 18.9938
Z 2.2433 P(Z >2.2433) = 0.0124

We can determine 7 day survival from the "TOTAL" column in Figures 111.14
to 111.20. Figures 111.14 to 111.18 show that there was no observed early
mortality in groups 1-5. Figure 111.19 shows a strong beaker to beaker
dichotomy in 7 day mortality, very similar to that observed in the 21 day
mortality. Figure 111.20 shows almost complete mortality in group 7 by the
seventh day. Thus the results in groups 1-5 and 7 with respect to conditional
21 day mortality are in complete agreement with those for unconditional 21 day
mortality, namely no evidence of beaker to beaker heterogeneity, except per-
haps a suggestion in group 3. The heterogeneity chi square in group 6 is
very large and highly statistically significant, although no where near as
large as that for the unconditional 21 day mortality. This is quite impor-
tant because it tells us that the observed high mortality rates in beakers
C and D and the relatively low rates in beakers A and B represent a persist-
ent pattern throughout the entire duration of the test. Namely, of the
seven survivors beyond day 7 in beaker C two died (i.e. 29 percent condi-
tional mortality rate). Of the four survivors in beaker D three died (i.e.
75 percent conditional mortality rate). Beakers A and B had 1U percent and
6 percent conditional mortality rates respectively. Thus whatever caused
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the dichotomy in mortality rates occurred either early in the test (there-
by stressing the daphnids early) or else persistently throughout the test.
Beaker D experienced by far the worst mortality rates, both in the early
and the later stages of the test.

Overall there is evidence of significant beaker to beaker heterogeneity,
due primarily to group 6. (P[Z >2.243] = 0.012). We will study the magni-
tude of this variation in greater detail in later sections.

LeBlanc Test B 21 day Mortality Conditional on 7 Day Survival

The situation is similar to that for Test A. There is little 7 day
mortality in any of the beakers in groups 1-6. Namely, the observed numbers
of deaths at 7 days, by beaker, for each of these groups are (0, 1, 0, 0),
(1, 2, 1, 1), (0, 1, 0, 2), (0, 0, 0, 0), (0, 0, 0, 0) and (0, 0, 0, 0).
The conditional and unconditional 21 day mortality results should thus be
similar in those groups. The results from the EXAX2 calculations are
summarized below. Those for group 7 are shown in Figure 111.21.

LE BLANC TEST B 21 DAY MORTALITY GIVEN 7 DAY SURVIVAL

Trt Method Chi sq Ai -2tn Ai E(-2tn Ai) Var(-2tn Ai)

I exact 9.0690 0.0312 6.9371 1.8166 3.7415
2 exact 1.1096 0.8640 0.2925 1.8466 3.8394
3 exact 3.0928 0.4805 1.4658 1.0412 1.4213
4 exact 5.7600 0.1591 3.6768 1.3590 2.6405
5 exact 1.7451 0.7153 0.6702 1.7273 3.6654
6 exact 4.4444 0.2521 2.7562 1.5361 3.4424
7 exact 16.0178 0.0021 12.3604 1.8417 3.8074

E -2yn Ai 28.1589 E E(-2 n Ai) = 11.1686 E Var(-2 n Ai) = 22.5580
Z = 2.7647 P(Z >2.7647) = 0.0028

Figure 111.21 shows a strong beaker to beaker dichotomy in 7 day
mortality in group 7, with beakers A and D exhibiting substantially higher
mortality than that in beakers B and C. Beakers A and D also exhibit
substantially greater later stage mortality rates, especially beaker D.
It is very interesting to note again that the beakers that exhibit the
greater early stage mortality also exhibit the greatest later stage

mortality. Thus the cause of the dichotomous mortality rates either
occurred early in the test or else persisted throughout the test. These
results are in direct correspondence with those from group 6 of Test A,
thereby leading to a conjecture of a common cause for the dichtomous results

*in each group.

Overall there is evidence of statistically significant beaker to beaker
" heterogeneity, due primarily to group 7. We will study the magnitude of

this variation in greater detail in later sections.
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IV. TESTING FOR BEAKER TO BEAKER HETEROGENEITY
WITHIN TREATMENT GROUPS - LENGTH DATA

A. BACKGROUND

It the previous section we discussed the comparison of mortality rates
across beakers within groups to test for heterogeneity of responses. Similar
comparisons might be made for the production and length responses. There is
difficulty however with respect to comparisons of production measurements.
Since production is determined and reported on a beaker basis, there is just
one determination per beaker and no internal estimate of its variability.
In order to test for beaker to beaker heterogeneity we either need internal
estimates of variability among daphnids within beakers, such as we have for
the length data, or else we need external estimates of variability based on
a theoretical model, such as we have for the survival data (i.e. binomial
model). Thus unless we can hypothesize a theoretical statistical model
that should govern production as a function of dose and time, we have no
alternative but to carry out further statistical analyses on a beaker basis.

The situation is different with respect to length data. Lengths are
measured and reported on a per daphnid basis. We can thus compare average

lengths across beakers by analysis of variance techniques, using variability
among daphnids within beakers as an error yardstick. We carry out such
comparisons below for LeBlanc's Tests A and B. Adams and Goulden report no
length data. In Chapman's test there is just one daphnid per beaker, so

there is nothing to compare.

B. ANALYSIS OF VARIANCE TESTS FOR HETEROGENEITY AMONG BEAKERS

WITHIN GROUPS IN LE BLANC'S TESTS A AND B

In this subsection we illustrate the comparisons of average 21 day

lengths among replicate beakers within groups.

LeBlanc Test A 21 Day Lengths

There are a water control group, a solvent control group, and five
0 treatment groups. Group 7, the highest treatment group, had just one

survivor. There are thus no comparisons to be made. Comparisons among
beakers within groups can be made by fitting a two way nested analysis of
variance model to the data. Alternatively one way analysis of variance
models can be fitted separately to the responses within groups and the

results pooled across groups. This was done for the data from groups 1-6.
The results of these calculations are shown in Figures IV.I to IV.7 and
are summarized below. The average lengths within beakers are displayed
graphically in Figure 11.26 and the standard deviations are displayed in
Figure 11.27. The standard deviation plot is not suggestive of any parti-
cular standard transformation to be carried out on the lengths before
analysis. We carry out comparisons on the untransformed lengths.

C'5
S



LE BLANC TEST A 21 DAY LENGTHS

Between Within Within Group
Trt Beakers SS d.f. Beakers SS d.f. Significance Level

1 1.2335 3 8.1753 64 0.029
2 0.1941 3 7.0090 73 0.571
3 1.9310 3 8.3227 66 0.003
4 0.5636 3 4.8759 69 0.055
5 0.8066 3 8.3178 69 0.092
6 0.1708 3 5.4292 36 0.770

4.8996 18 42.1299 377

ANOVA TABLE (NESTED)

Source d.f. Sum of Squares Mean Square

Between Groups 5 5.5815 1.1163
Between Beakers Within Groups 18 4.8996 0.2722
Within Beakers 377 42.1229 0.1118
Total 400 52.6110

We test for significant beaker to beaker variation within groups by comparing
the between beakers within groups mean square to the within beaker mean

square. This ratio has an F distribution with 18 and 377 d.f. under the
null hypothesis of no beaker to beaker variation.

0. 2722
F = 0.118 = 2.435. Significant at a = 0.001

There is thus strong statistical evidence of beaker to beaker variation in

lengths within groups. This is not a property of just one group or just

one beaker since four of the six groups show significant F ratios based

on Just the data within these groups.

LeBlanc Test B 21 Day Lengths

The layout of the test is similar to that for Test A. Since treatment
group 7 has more survivors in Test B than in Test A, we include it in the
comparisons here. As before, one way analysis of variance models were fitted
separately to the responses within groups and the results pooled across
groups to yield a nested two way analysis of variance. The results of these
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calculations are shown in Figures IV.8 to IV.15 and are summarized below.

The average lengths within beakers are displayed graphically in Figure 11.29

and the standard deviations are displayed in Figure 11.30. The standard

deviations do not seem to vary with length and we again perform no trans-

formations on the length.

LE BLANC TEST B 21 DAY LENGTHS

Between d f. Within d.f Within Groups
Trt Beakers SS d Beakers SS d Significant Level

1 0.1633 3 6.5761 68 0.641

2 1.6418 3 7.5000 63 0.006

3 1.6130 3 14.8211 72 0.058

4 0.3889 3 9.7439 71 0.424

5 0.1878 3 6.4462 63 0.610

6 1.4236 3 11.0764 68 0.041

7 0.266 3 3.b130 26 0.598

5.6844 21 59.7767 431

ANOVA TABLE (NESTED)

Source d.f. Sum of Squares Mean Square

Between Groups 6 1.7490 0.2915

Between Beakers Within Groups 21 5.6844 0.2707

Within Beakers 431 59.7767 0.1387

Total 458 67.2098

We test for significant beaker to beaker variation within groups by comparing

the between beakers within groups mean square to the within beakers mean square.

This ratio has an F distribution with 21 and 431 d.f. under the null hypo-

thesis of no beaker to beaker variation.

F = 0.2707 1.952. Significant at a = 0.006

0.1387

There is thus strong statistical evidence of beaker to beaker variation in

lengths within groups. This result is in direct agreement with that for

Test A. .
In summary, we have evidence of beaker to beaker variation in lengths

in both Tests A and B. Subsequent analyses will have to account for this.
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V. ADJUSTMENTS TO ACCOUNT FOR BEAKER TO BEAKER
HETEROGENEITY WITHIN TREATMENT GROUPS

A. BACKGROUND

In the previous two sections we have discussed procedures to test for
beaker to beaker heterogeneity within treatment groups for survival and for
length responses. In both sections we found statistical evidence of beaker
to beaker heterogeneity. In this section we discuss either adjustments in
the data or adjustments in the statistical procedures used, in order to
account for this heterogeneity. As remarked in the previous section, we
need not adjust the productivity data since this is measured and reported
on a per beaker basis and there is no obvious theoretical model upon which
to base variability estimates. We thus carry out statistical analyses on
a per beaker basis. In the subsections below we discuss procedure to adjust
the mortality responses and the length responses prior to comparison across
groups.

B. ADJUSTMENTS TO ACCOUNT FOR HETEROGENEITY OF MORTALITY RESPONSES

We tested for beaker to beaker heterogeneity in mortality in Section III.
We found some evidence of heterogeneity in the data from LeBlanc's Tests A
and B. There was no heterogeneity of responses in Adams' data (also
virtually no partial kills). Chapman's data consists of just a single
daphnid per beaker, so beaker to beaker variation cannot be determined.
Goulden's isophorone data show no evidence of heterogeneity of responses
within groups, among the beakers with multiple daphnids. We thus need
to account for beaker to beaker heterogeneity in mortality in LeBlanc's
data but not in Adams', Chapman's or Goulden's data.

The most commonly used approach for the comparison of mortality rates
across treatment groups is to carry out an arc sin variance stabilizing
transformation on the observed mortality rate within each beaker and then
use the mean square for variation among beakers within groups (pooled over
all groups) as an error yardstick. If there are I groups, J beakers per
group, then this error yardstick has I(J-l) degrees of freedom associated
with it.

This is a conservative approach. Although the beakers within groups
mean square is correct whether or not beaker to beaker variation in mortality
exists, it is based on relatively few degrees of freedom and thus can lead

to diminished sensitivity of inferences (i.e. lowered power of tests,
increased lengths of confidence intervals) if I(J-l) is small. For
example if I = 6, J = 3 then I(J-l) = 12. The sensitivities of the
analyses would be improved if the degrees of freedom for the error
yardstick could somehow be increased.

Feder and Collins [1), Section IX discuss an approach to accounting
for the increased variability introduced by tank to tank heterogeneity
in fathead minnow mortality rates by reducing actual sample sizes per
group to effective sample sizes and than disregarding the tank effects.
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A very similar situation exists for the Daphnia mortality responses and so

we adopt a similar approach here. Following Feder and Collins, suppose
that there are 20 daphnids per beaker and a "true" mortality rate of p.

Under binomial theory the variance of p, the estimated mortality rate,
should be p(l-p)/20. Suppose however that the responses within each

beaker are positively correlated due to beaker to beaker heterogeneity and
this increases the variance of ^ by 20 percent to 1.2p(l-p)20. Then we

can regard the effective sample size within that beaker as 20/1.2=16.67.
To maintain the observed response rate at its level p we adjust both the

number dead and the number live by the same factor. For example if the data
as reported show 5 deaths in 20 daphnids, we would ajdust this down to

5/1.2 = 4.17 deaths in 20/1.2 = 16.67 daphnids. Beaker to beaker hetero-
geneity is then ignored, effective numbers of responses and daphnids are

pooled across beakers within groups, and standard binomial based procedures
are applied to the adjusted data as if no beaker to beaker variation within
groups existed.

We now consider the calculation of adjustment factors. Adjustment

factors can be calculated separately for each group or a single adjustment
factor can be calculated for all the groups combined. We first consider

the calculation of a single adjustment factor and then consider displays

that suggest whether single or separate adjustments are called for.

Motivation for the adjustment procedure comes from the form of the beta

binomial model [Williams [31]. Suppose X.. is the number of responses in

beaker j of group i (e.g. number dead afte 21 days). The beta binomial

model extends the binomial to allow for beaker to beaker variation within

groups. Following Feder and Collins [1], Section IX we assume that

Xij % Binomial (Nij, pi-) where Nij is the sample size within beaker j

of group i and pij is tNe response probability there. Further, it is
assumed that Pij u Beta (ai, i) where ai and Si are unknown parameters.
Let

U 
i 0

+ +

Then it is known that Xi. has a beta binomial distribution with parameters

(Nij, i, 0i)" See Williams for details. In particular it can be shown
directly that

E(Xij) = Nij vi

1 + N. .ii

Var(X) = Nij Ii(l-vi) 1 + a 0 <i <

We see that the variance of Xij is inflated over and above binomial variance

by a multiplicative factor.
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Suppose that Ni j,..., Ji. This assumption is otten reasonable

in Daphnia tests, wNere Nij represents the number of daphnids in the beaker

at the outset of the test. In fact the assumption Nij - N is often reason-

able also. (Note that in tests containing beakers with single daphnids

and beakers with multiple daphnids, we are referring just to the beakers

with multiple daphnids. e.g. In Goulden's test, this discussion would

refer just the three beakers per group containing five daphnids each.)

Then the multiplicative factor is (1 + Ni Oi)/(l + Oi ) - Ki, j=l,..., Ji.

Thus Var(Xij) = Ni Ki pi(l-pi) where 1 < Ki < -. Define pij - Xij/Ni.

Pij is the observed response proportion. Therefore

K.

Var(P i = (-P) j=l .... J
ij N. 1 1 I1

Thus the effective sample size per beaker in the i-th group is Ni/K i . As

the extent of beaker to beaker variation approaches 0 (i.e. as i - 0), K i

approaches 1 and so Ni/Ki approaches N i . As the extent of beaker to beaker

variation gets greater and greater (i.e. as Pi -- o), K i approaches N i and

so Ni/Ki approaches 1. These two extreme situations call for carrying out

analyses on a per daphnid basis (aftr pooling responses across beakers

within groups) or carrying out analyses on a per beaker basis. In general

some middle ground is appropriate. Note that if Ni - N and Oi - 0 for all i,

then Ki H K for all i and K should be estimated based on results from all

the groups.

The procedure discussed below for calculating adjustment factors is

motivated by the beta binomial theory results. A full fledged maximum

likelihood procedure to fit the beta binomial model to the data might

be developed, but we decided to use a simpler procedure based on the

method of moments.

Let Xij, Ni denote the number of responses and the total number of

daphnids respectively within beaker j of group i. Let Pij - Xij/Ni. The

variance inflation factor, Ki, is defined as

Var(P.i.)

p = [ J (l-pi)/Ni]

This suggests that Ki be estimated by substituting the sample analogues

of Var(Pi) and Pi in the expression above. If the Nii's are not in fact

exactly the same within each beaker then use the average sample size in

the expression for K i . (Use the harmonic average if the Nij's differ by

much.)

Suppose there are I treatment qnd control groups, Ji beakers per group.

Within the i-th group let Ni  -l j- yj Nij, pi - Ji - I "i pi, Var(pi) 

(C-1) - 'j(Pii - i denote the average sample size, the average observed
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response rate, and the sample variance of response rates respectively.
The N. . 's are generally nearly equal, if not exactly equal, in daphnid

toxicl~y test data. We estimate Ki as

K i = Var(p ij)/[Pi(l-Pi)/Ni --

We either pool the Ki's across groups to obtain an overall adjustment factor,
R, or else we use separate adjustment factors within each group. We will
describe later in this subsection a graphical procedure for comparing the
Kits across groups. For now we consider an overall adjustment factor based
on all the groups.

Let Ki denote the inflation factor within the i-th group. If we take

Pi as essentially pi (this is reasonable, unless pi is very close to 0 or
to 1, since Pi is an average value over all the daphnids in the group) then
Ki can be regarded as distributed approximately as Ki X2 l/(Ji-l). If
Ki = K, i~l,..., I then we can obtain a pooled estimate 1 of K as

K = E(J i -l) K /E 0
ii i i

If Ji J for all i then the expression for K reduces to the simple average,
Ei Ki/I. Under the above assumptions, k is approximately distributed as
K Xi(Ji1 )/Zi(Jii-l). This distributional result can be used to provide an

upper confidence bound on K. Namely, a 95 percent upper confidence bound
on K is

K < K.. × (0.05)

2 (0.05)(

where Xzi(J.0) is the 5th percentile of the chi square distribution with

Ei(Ji-l) d.f. Denote this upper confidence bound by Ku.

The suggested adjustment procedure is to reduce the etective sample
size within theij-th beaker to Ni /K in such a way that Pii is unchanged.
(The ratio Nij/K is constrained to lie between I and Ni.) Then
ignore beaker to beaker variation, pool results across beakers within
groups, and carry out subsequent analyses based on pooled results within
groups.

When comparing treatment effects based on the adjusted data, how many
degrees of freedom should be associated with the error yardstick corre-
sponding to variation among daphnids within groups? If we use binomial
theory, then we are assuming an infinite number of degrees of freedom
for this yardstick. This would be appropriate if and only if K were
known, which is not usually the case. At the other extreme, we could
argue that K is based on Ei(Ji-1 ) degrees of freedom and so this should
be associated with the error yardstick. If Ji = J for all i, this becomes
I(J-1) degrees of freedom. Adjusting the sample sizes by K and then using

Ei(Ji-l) or I(J-l) degrees of freedom as the case may be, is very close
to Finney's (4] suggestion of using a heterogeneity factor based
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on the residual mean square from the (probit) model fit. This is a con-
servative viewpoint and uses no information about the relation between
the observed beaker to beaker variation and that predicted by binomial
theory. Diminished sensitivity can result when l(J-1) is small. This
can happen particularly if J=2 or 3.

A middle ground between the two extremes discussed above could be based
on reasoning as follows. (Assume for the purpose of discussion that Nil E N,
Ji E J . This simplifies notation. However the ideas are more general.)
Since we are assuming an effective sample size of JN/K per group and pooling
data across beakers, each group provides JN/K-1 degrees of freedom for
estimating variability. Now Ku is an upper confidence bound on K. Since

K is unknown, we substitute this upper bound for it and thus assume
JN/Ku-I degrees of freedom per group, or I(JN/k-I) degrees of freedom
altogether. If Ku = 1 then we have I(JN-I) degrees of freedom and we have
made no adjustment. If Ku = N then there is effectively one observation
per beaker and so we have l(J-1) degrees of freedom, just as we associated
with Der beaker analyses or with using a heterogeneity factor. The ratio
I(JN/ku-l) is constrained to lie between I(J-l) and I(JN-l).

As an alternative to adjusting the sample sizes to effective sample
sizes, N/K, we can carry out comparisons on a per beaker basis (after
performing an arc sin variance stablizing transformation) and use the mean
square for beakers within groups as an error yardstick. The usual practice -

is to associate I(J-l) degrees of freedom with this yardstick. A less
conservative practice would be to compare the magnitude of this yardstick
with that expected based on binomial theory and pool this information to
arrive at the increased number of degrees of freedom I(JN/Ku-I). This will
increase the sensitivity of comparisons among treatment effects, particularly

when l(J-1) is rather small. Note that N/Ku is constrained to lie between
1 and N.

We now apply this procedure to the mortality data from LeBlanc's Tests A
and B. From the preliminary tests of beaker to beaker heterogeneity in
Section III we concluded that there is strong statistical evidence of
heterogeneity in each test. (However the heterogeneity may be in just a
single group in each case.)

LeBlanc Test A 12 'l

Group 1: 0.15, ,0.15, 0.15,PI = 0.15, p1 = 0.15,

N =N =N =N N 20= a .0
11 12 13 14 1 20, Var(ij) 0.00,

Pl (1-Pl)/N1 0.00638
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Var(pij) 0.00
K = - 0.00638 0.00
1 [Pl(1- l)/N 1 ]

Gru 2: 0.0 ,.0'5

Group 2: P2 1 = 0.10, P2 2 = 0.00, P 23 
= 0.00, P2 4 = 0.05, P2 = 0.0375,

N21 = N22 = N23 = N24 = N2 = 20, Var(P2 j ) = 0.0023,

P2 (1-p2 )/N2 = 0.00180

Var(p 2*) _ 0.0023
K2 = 2_n 0.0018 1.28

[P2(l-p2)IN 2]

Group 3: p3 1 = 0.00, P32 = 0.05, p3 3 = 0.25, p3 4 = 0.20, P3 0.125,

N31 = N3 2 = N3 3 = N 34 = N3 = 20, Var(p3 j) = 0.0142,

P (1-p3)/N3 =0.0055

Var(P3 ) 0.0142

[p 3 (I-p 3 )/ 3 ] 0.0055

Group 4: P4 1 = 0.15, P42 = 0.00, P4 3 = 0.15, P44 = 0.05, P4= 0.0875,

N41 = N42 = N43 = N44 = N4 20, Var(p4 j ) = 0.0056,

p4 (l-p4 )/N4 = 0.0040

= Var(p4 j) 0.0056
K4  - 000 =1.40

[p 4 (i-p 4 )/N 4 ]

Group 5: p5 1 = 0.10, p52 = 0.00, p5 3 = 0.20, p54 = 0.05, p = 0.0875,

N51 N 52 = N53 = N54 = N = 20, Var(P 5. ) = 0.0073,

5(1-p5 ) / 5N= 0.0040

Var(p5.) 0.0073K 5j 0.007 1.825
K5 =-0.0040=.2

[p5 (1-p5 )/N51
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Group 6: P6 1 = 0.10, P 6 2 = 0.20, P6 3 = 0.75, P 6 4 = 0.95, P 6 = 0.50,

N6 1  N6 2 = N63 N 64 = N6 = 20, Var(p6j = 0.1717,

S(l-P6N6= 0.0125

Var(p6 ) 0.1717
K = _ 0.0125 =13.76

[p6 (l-p6)/ N6]

Group 7: p7 1 = 1.00, p7 2 = 1.00, P 73 = 0.95, P74 = 1.00, P7 = 0.9875,

N71 = N72 = N73 = N74 = N7 = 20, Var(p7.) = 0.00063,

py(l-py)/IN7= 0.00062

SVar(Pj) _ 0.00063 1.02
K7 = 0.00062

[P7 (l-p7 )/N7 ]

It is obvious that the inflation factor from group 6 dominates all the
others. However if we ignore this for the moment for the sake of illustra-

tion and calculate an overall inflation factor, we obtain

7-" Ki
--̂  i=l i 0.00 + 1.28 + 2.58 + 1.40 + 1.83 + 13.76 + 1.02". K- 7 7 =3.12

K= 7

Under the (rather dubious) assumption that all the K.'s are equal, the

distribution of K may be approximated as K X /IJ-1) = K X2I/21. A

95 percent upper confidence bound on K would Rhen-be

K < K I(J-l)/X (J 1 )(0.05) = (3.12)(21)/X21(0.05) = (3.12)(21)/11.6 = 5.65

The suggested adjustment procedure is to reduce the effective sample

size within each beaker to 20/3.12 = 6.41 while maintaining the observed

mortality rates, disregard beaker to beaker variation and pool results

across beakers within groups, and carry out subsequent analyses based

on the pooled results within groups.

When comparing treatment effects we associate I(JN/Ru-I) = 7((4)(20)/

5.65-1) = 92.1 z 92 degrees of freedom with the error yardstick.
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LeBlanc Test B

Group 1: p11  0.05, p 2 =0.10, 13 00, p14 =0.25, p1, 0.10,

N N N =N =N =20, Varp .017
11 = 12 13 14 1 ~ rp. .17

pi (1-p1 )/N 1= 0.0045

Var (p11 ) _001

-1 0.0045=26

Group 2: P2 1 =0.15, p22 =0.20, P23 = 0.20, p24 =0.10, P2 =0.1625,

N21 N 22 N23 =N24 =- 2 = 20, Var~p 2j, 0.0023,

P2(lp2)IN 0.0068

Var(p 2 ') _0. 0023
K = =0.3368
2 - 0.0068

[p2 C-p2)N 2]

Group 3: p 31 = 0.00, p 32 = 0.10, = 3 0.00, p 34 =0.10, p3 =0.05,

L31 = 32 = 33 = 34 3  = 0 a(p3j) =0.0033,

P3 1-P3 )IN = 0.0024

Var(p3.
K 3j 1.7
31.7

[p3 (l-p 3 )IN 3]

Group 4: p4 1 =0.15, p42 =0.00, =4 0.00, p4 4 =0.10, P4 =0.0625,

N~ 41 N42 N43 = N=4 20, Var (p4.j 0.0056,

p4(1-p4)IN 4 =0.0029

KA Var(P4 ) =19
4i______ 0. 0056

4 0.0029[(1-p4)IN4 I
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Group 5: p5 1 = 0.10, p5 2 = 0.15, p5 3  0.25, p5 4 = 0.15, P5 = 0.1625,

N N = N =N N 20, Va~p 000051 52 53 54 5 5ar5 ) = 0.0040,.

I = 0.0068

K= 5(p 5 ) 5 ___
Var (p5j) 0.0040K 5  r -!% - 0.006 8 0.588

[P5 (1-p5 )/N51 6 5

Group 6: P6 1 = 0.10, P6 2 = 0.00, P63  0.20, p6 4 = 0.10, p 6 = 0.10,
N61 = N62 = N63 = N64 N 6 = 20, Var(P6j = 0.0067,

P6 (l-p6 )/N6 = 0.0045

Var(P 6) 0.0067 1.49K 6 -!t - 0.0045 1.4
[P6 (I-p6 )/N6 ] 0

Group 7: p71 = 0.85, p72 = 0.30, p 73  0.40, p74 = 0.95, P 7 = 0.625,

NN = N =N N=20, Vrp 0.0271 72 73 74 7 0 ar(P7 ) = 0.1042,-
p(-py)/N= 0.0117

Var (p7 ) 0.1042
K - = 00117=8.906

[p7 (1-p7)/N 7
]

It is obvious that the inflation factor from group 7 dominates all the
others. However, we ignore this for the moment for the sake of illustration
and calculate an overall inflation factor.

E 7 K 260 + 0.34 + 1.384 + 1.93 + 0.59 + 1.49 + 8.91
K= 7 7 = 2.46

7• 7

Under the (dubious) assumption that all the Ki's are equal, the distribu-
tion of K may be approximated as K X2(J-)/I(J']) =K X 1/21. A 95 percent

upper confidence bound on K would then be

~2
K < K I(J-1)/xI(J_1 )(0.05) = (2.46)(21)/11.6 = 4.45

The suggested adjustment procedure is to reduce the effective sample
size within each beaker to 20/2.46 = 8.13 while maintaining the observed
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mortality rates, disregard beaker to beaker variation and pool results
across beakers within groups, and carry out subsequent analyses based on -..

the pooled results within groups.

When comparing treatment effects we associate I(JN/Ku-l) = 7((4)(20)/
4.45-1) = 118.8 z 119 degrees of freedom with the error yardstick.

The model upon which adjustment calculations were based assumes that

the extent of extrabinomial variation (i.e. the Ki's) is constant across
groups. Before applying adjustments based on this assumption one should
determine whether it is realistic. There were indications, mentioned above,
that the significant beaker to beaker heterogeneity observed in LeBlanc's
Tests A and B may all be due to the extreme heterogeneity in group 6 for
Test A or group 7 for Test B respectively. If the heterogeneity among
beakers differs from group to group, then separate adjustment factors should
be used within each group.

We discuss below a procedure for determining whether the extent of
observed beaker to beaker extrabinomial variation is the same for all groups
or is greater for some groups than for others. The procedure consists of
calculating separate inflation factors, Ki, within each group and comparing
them across groups. Under the assumption of a common theoretical inflation
factor K across groups, these estimated inflation factors are distributed
approximately as K x_l)/ (J-l) (unless Pi is very close to 0 or to 1).
We should thus see a straight line or at least a smooth curve when the
ordered inflation factors are plotted on chi square probability paper. If
one or two points are far removed from the others, this suggests differing
amounts of extrabinomial variation across groups. This situation would
need to be reflected in subsequent analyses.

The results for LeBlanc's Tests A and B are summarized below in
Tables V.1 and V.2. In these tests J=4 and 1=7. The rank is the order
of the inflation factor, from smallest to largest. The plotting position
for the inflation factor with rank i is 100(i-0.5)/7.

TABLE V.1. LE BLANC TEST A--VARIANCE INFLATION FACTOR BY GROUP

Group Factor (Ki) Rank Plotting Position

1 0.00 1 7.14
2 1.28 3 35.71
3 2.58 6 78.57
4 1.40 4 50.00
5 1.83 5 64.29

6 13.76 7 92.86
7 1.02 2 21.43
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TABLE V.2. LE BLANC TEST B--VARIANCE INFLATION FACTOR BY GROUP
'II

Group Factor (Ki ) Rank Plotting Position

1 2.60 6 78.57
2 0.34 1 7.14
3 1.38 3 35.71
4 1.93 5 64.29

5 0.59 2 21.43
6 1.49 4 50.00
7 8.91 7 92.86

The inflation factors are plotted versus their plotting positions on
chi square probability paper with 3 d.f. The results for Tests A and B
are shown in Figures V.1 and V.2 respectively. The reference lines in

heplots correspond to the theoretical c.d.f, with distribution 1/3 .those p o s c r e p n o t e t e r t c l c d f i h d s r b t o / 3
The two plots look remarkably similar. The factors corresponding to
group 6 in Test A and group 7 in Test B are substantially out of line
with those from the other groups. The probability that the maximum of
7 independent random variables, each distributed as 1/3 X2 exceeds 8.91
is 5x10- 5 and the probability that it exceeds 13.76 is 4xO - 8. Thus these
extreme factors are certainly incompatible with beaker to beaker homogeneity
and appear to be incompatible with the heterogeneity observed in the re-
maining groups. Apart from the extreme factors, the remaining groups
appear to exhibit beaker to beaker heterogeneity in excess of that to be
expected on the basis of binomial theory. The factors all seem comparable
across groups. The average inflation factors, excluding the extreme groups
are 1.35 for Test A and 1.39 for Test B. The test statistic, Z, in EXAX2
that tests the hypothesis of overall beaker to beaker heterogeneity is
1.00 in Test A and 1.165 in Test B after the extreme groups have been
separated. Under the hypothesis of no beaker to beaker heterogeneity, Z
has a standard normal distribution. Thus Z is significant at the 16 percent
level in Test A and at the 12 percent level in Test B. These results, in
agreement with those in Figures V.1 and V.2 are suggestive of some beaker
to beaker heterogeneity but do not provide strong statistical evidence.
Two reasonable approaches would be to adjust the data in the extreme groups
by an inflation factor based only on the responses from those groups and
then either apply no adjustment to the remaining groups or else apply the
adjustment factors calculated immediately above to these groups. The
second approach is slightly more conservative than the first and we adopt
it here.

The suggested adjustment procedures for Tests A and B are as follows:

Test A

Group 6: K6 13.76, Ku = K6 (J-l)/X Ji) (0.05) = (13.76)(3)/x (0.05)

(13.76)(3)/0.352 = 117.27
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2

Remaining groups: K = 1.35, Ku  K (J-l)(0.05)

= (1.35)(18)/9.39 = 2.59

Thus we reduce the effective sample size per beaker in group 6 to
20/13.76 = 1.45 while maintaining the observed mortality rates. We reduce
the effective sample size per beaker in the other groups to 20/1.35 = 14.8
while maintaining the observed mortality rates. The degrees of freedom
per group are max [(JN/Ku-l), (J-l)]. We thus associate 3 degrees of
freedom with group 6 and (4)(20)/2.59-1 = 29.9 : 30 degrees of freedom
with each of the other groups.

Test B
Group 7: = 8.91, = K7(J-2)/x j-1)(0.05) = (8.91)(3)/0.352 = 75.94

Remaining groups: K = 1.39, Ku = K(I-I)(J-I)/x 1 1)(J 1)(0.05)

= (1.39)(18)/9.39 = 2.66

Thus we reduce the effective size per beaker in group 7 to 20/8.91 =

2.24 while maintaining the observed mortality rates. We reduce the effec-
tive sample size per beaker in the other groups to 20/1.39 = 14.4 while
maintaining the observed mortality rates. We associate 3 degrees of
freedom with group 7 and (4)(20)/2.66 - 1 = 29.1 29 degrees of freedom
with each of the other groups.

The results of the adjustment procedures applied to the data from Tests A

and B are presented in Tables V.3 and V.4 respectively. These adjusted
values are used as basic input "data" for subsequent analyses. We then

proceed as if there is no beaker to beaker heterogeneity within groups.

The extrabinomial variation has been accounted for by the adjustment
procedure.

C. ALTERNATIVE MEASURES OF MORTALITY

In the previous subsection we calculated adjustment factors to account
for beaker to beaker heterogeneity in mortality responses within groups.
All the examples considered there pertained to 21 day mortality. However
in Section III we noted that there are alternative measures of mortality

which are of importance to study such as 7 day mortality, 21 day mortality
conditional on 7 day survival, etc. Each such measure provides information

about mortality during different life stages and thus helps to distinguish
among the various causes of mortality--biological and experimental.

It is not clear a priori whether or not the extent of beaker to beaker
heterogeneity within groups observed and adjusted for in the 21 day
mortality responses is also applicable for other mortality responses. If
that is the case then the adjustment factors calculated for 21 day mortality
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TABLE V.3. EFFECTIVE SAMPLE SIZES AND RESPONSES IN LE BLANC
TEST A 21 DAY MORTALITY DATA AFTER ADJUSTMENT
FOR BEAKER TO BEAKER HETEROGENEITY

Group Beaker A Beaker B Beaker C Beaker D

1 Dead 2.2 2.2 2.2 2.2
Live 12.6 12.6 12.6 12.6
Total 14.8 14.8 14.8 14.8 30 d.f.

2 Dead 1.5 0.0 0.0 0.7
Live 13.3 14.8 14.8 14.1
Total 14.8 14.8 14.8 14.8 30 d.f.

3 Dead 0.0 0.7 3.7 3.0
Live 14.8 14.1 11.1 11.8
Total 14.8 14.8 14.8 14.8 30 d.f.

4 Dead 2.2 0.0 2.2 0.7
Live 12.6 14.8 12.6 14.1
Total 14.8 14.8 14.8 14.8 30 d.f.

5 Dead 1.5 0.0 3.0 0.7
Live 13.3 14.8 11.8 14.1
Total 14.8 14.8 14.8 14.8 30 d.f.

6 Dead 0.14 0.29 1.09 1.38
Live 1.31 1.16 0.36 0.07
Total 1.45 1.45 1.45 1.45 3 d.f.

7 Dead 14.8 14.8 14.1 14.8
Live 0.0 0.0 0.7 0.0
Total 14.8 14.8 14.8 14.8 30 d.f.
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II

TABLE V.4. EFFECTIVE SAMPLE SIZES AND RESPONSES IN LE BLANC
TEST B 21 DAY MORTALITY DATA AFTER ADJUSTMENT
FOR BEAKER TO BEAKER HETEROGENEITY

Group Beaker A Beaker B Beaker C Beaker D

I Dead 0.7 1.4 0.0 3.6
Live 13.7 12.9 14.4 10.8
Total 14.4 14.4 14.4 14.4 29 d.f.

2 Dead 2.2 2.9 2.9 1.4
Live 12.2 11.5 11.5 12.9

Total 14.4 14.4 14.4 14.4 29 d.f.

3 Dead 0.0 1.4 0.0 1.4
Live 14.4 12.9 14.4 12.9

Total 14.4 14.4 14.4 14.4 29 d.f.

4 Dead 2.2 0.0 0.0 1.4
Live 12.2 14.4 14.4 12.9
Total 14.4 14.4 14.4 14.4 29 d.f.

5 Dead 1.4 2.2 3.6 2.2
Live 12.9 12.2 10.8 12.2
Total 14.4 14.4 14.4 14.4 29 d.f.

6 Dead 1.4 0.0 2.9 1.4
Live 12.9 14.4 11.5 12.9
Total 14.4 14.4 14.4 14.4 29 d.f.

7 Dead 1.91 0.67 0.90 2.13
Live 0.34 1.57 1.34 0.11
Total 2.24 2.24 2.24 2.24 3 d.f.
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would also apply to comparisons based on other mortality responses. If the
extent of heterogeneity differs for the various mortality responses, then
separate adjustment factors need be used for each mortality response
studied. To get some indication of which situation is the case, we cal-
culate heterogeneity adjustment factors for the responses 21 day mortality
conditional on 14 day survival in LeBlanc's Tests A and B. The procedure
used for calculating the adjustment factors is very similar to that dis-

cussed and illustrated in the previous subsection.

LeBlanc Test A - 21 day mortality conditional on 14 day survival

Group 1: pl = 0.00, P1 2 = 0.00, P1 3  10.056, p 4 = 0.00, = 0.014,

N N12 = N14 = 17, NI3 18, NI = 17.25,

Var(p = 0.000784, pl(1-pl)/N 1 = 0.00080

rVar(p,) ____

K VrPj 0.000784
S (I ) 0000800098

Group 2: p21 = 0.10, p2 2 = 0.00, P2 3 = 0.00, P24 = 0.00, P 2 = 0.025,

N21 N 22 = N23 = 20, N24 = 19, N2 = 19.75,

Var(P2 j) = 0.0025, P2 (l-P2 )/N2  0.00123
Va(P2j •2lp2

^=) = 0.0025

K2 - - - 0.00123 2.03
[P2(I-P2)/IN 2 1

Group 3: P3 1 = P3 2 = P 3 3 = P3 4 : P 3  , N = 20 N = 19 N3 = 15,

34 3 r16, N = 17.5, Var(P3j) = 0.00, PB(1-PB)/N3 = 0.00

^Var(p3j)0 0
K = ar 3  = 0.00 indeterminate. Define K to be 1.00.

[p3 (-P)N 3] 0.00 3

Group 4: 1= P4 2 = P4 4 = 0.00, P4 3 = 0.111, P4 = 0.028, N4 1 = 17,

4 =20, N =N 4 4  19, N4 = 18.75, Var(P4.) = 0.0031,N4243 44 pj

P4 (l-p4 )/N4 = 0.00145
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S4= =2.14

[p4 (l-p4 ) /N4 1

Group 5: p5 1 = 0.10, p 52 
= 0.00, p5 3 = 0.111, p5 4 = 0.050, P 5 = 0.0065,

N51 =N 52 = N 54 = 20, N53 = 18, N5 = 19.5,

Var(p3 j) = 0.0026, p5 (l-p5 )/N5 = 0.00312

^ ._ _ 0.0026
K5 0 000312 0.833

[p5 (l-P5 )/N5] 0

Group 6: Delete beaker D from the calculation since it has just one live
daphnid on day 14. Thus p6 4 cannot be estimated very precisely.

P61 = 0.053, P62 = 0.00, P63 = 0.167, P6 = 0.073, N6 1 = 19,

N62 =16, N63 = 6, N6 = 13.67, Var(p6j) = 0.0073,

6 (l-P6 )/N6 = 0.0050

= Var(P6j) 0.0073
K6 -_n_ 0.0050 1.46

[P6 (lP 6 )/N6]i

Group 7: We omit this group from the calculations since the 14 day sample
sizes are very small in all 4 beakers (0,0,1,1) and so the p7j's
cannot be estimated very precisely.

An overall inflation factor based on the results from groups 1-6 is

7
E Ki=l i 1 0.98 + 2.03 + 1.00 + 2.14 + 0.83 + 1.46

K= = 1.41
6 6

Note that K6 does not appear to be far removed from the other Ki's as
it was for the unconditional 21 day mortality. We present a chi
square probability plot to determine whether the extent of observed

beaker to beaker extrabinomial variation is the same for all groups or
is greater for some groups than for others. See the discussion in the
previous subsection for a more detailed description of the procedure.
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The results for LeBlanc's Test A are summarized below in Table V.5
and are plotted in Figure V.3. The majority of the ki's lie above the
cumulative distribution function of al1/3 x distributed random variable.
With the exception of the very large Ki for group 6 in Figure V.1, the
plots for the unconditional and the conditional mortalities (i.e. Figures
V.1 and V.3) look rather similar. In fact, the suggested adjustment factors
are K = 1.35 for the unconditional responses (excepting group 6) and K = 1.41
for the conditional responses. In brief, there again appears to be a small
degree of extrabinomial variation among beakers within groups but the

extent is not too great.

TABLE V.5. LE BLANC TEST A--21 DAY MORTALITY CONDITIONAL ON 14 DAY
SURVIVAL--VARIANCE INFLATION FACTOR BY GROUP

Group Factor (Ki ) Rank Plotting Position

1 0.98 2 25.00
2 2.03 5 75.00

3 1.00 3 41.67
4 2.14 6 91.67
5 0.83 1 8.33

6 1.46 4 58.33

LeBlanc Test B - 21 Day Mortality Conditional on 14 Day Survival

Group 1: l = 0.05, 2 = 0.053, P3 = P = 0, Pl= 0.026, N = 20,

N =19, N =20, N =15, N =18.5,
12 '13 '14 '1

Var(p1 j ) = 0.00089, pl(l-pl)/Nl = 0.00137

0.00089
I= 0.00137 0.65

Group 2: P21 = 0.056, P22 = P2 3 = 0.111, P24 = 0.053, P2 = 0.083,

N N =N =18, N =19, N = 18.25,
21 22 23 24 2

Var(p = 0.00107, p(1-p2 )/N 0.00417

K = 0.001072= 0.260. 00417 0.26
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Group 3: P3 1- =p 3 3 = p34 = 0.00, p32 =0.053, p3 =0.013, N31 20,

N = N = 19, N =18, N 19, Var(p)= 0.00070,32 33 '34 3 ' 3j

P3(lp3)IN 0.000675

0.00070 10
3 0.000675 10

Group 4: p4 1  0.150, p4 2 =p 4 3 =0.00, p44 = 0.053, p4 =0.051, N 41

N42 = N43 =20, N 4= 19, N 4 =19.75, Var(p 4.) 0.0050,

p IN 0.00245

0.0050.
K4 0.00245 20

Group 5: p5 = 0.053, p 2 =0.105, p5 3 =0.211, p 54 =0.150, p 5 =0.130,

N 51 N 52 N 53=19, N =420, N 5= 19.25,

Var(p5. 0.00450, p5(-p)N 5  0.00588

0.00450
K = 0.77
5 0.00588

Group 6: =6 =6 0.10, = 6 0.00, =6 0.20, p6 0.10, N =6 N 62

N63 =N 6 4 =N 6 =20, Var(p 6.) 0.0067, p 6(1-p6)IN 6 =0.0045

0.0067
K =--- =1.49

6 0.0045

Group 7: Delete beaker D from the calculation since it has just one live
0 daphnid on day 14. Thus

p4cannot be estimated very precisely.

=0.40, p7  7  .0 7 =0.133, N7  5, N7  14,
N7 = 12 N 7 = 1 0 ' 717

N73 1, N7 1.33 ar (p7. 0.0533, p7(1-p7)IN 7 =0.0112
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0.0533 4.76

7 0.0112

The inflation factor from group 7 is somewhat larger than the others.
We will check graphically below whether or not it appears to be in line
with the others. We present a chi square probability plot to determine
whether the extent of extrabinomial variation (if any) appears to be the
same for all groups.

The results for LeBlanc's Test B are summarized below in Table V.6
and are plotted in Figure V.4. The Ki's lie above the cumulative distribu-
tion of a 1/3 X2 distributed random variable. The factor for group 7

3appears to be substantially out of line with those of the other groups.
A straight line fitted to the Ki's from groups 1 to 6 has a slope 1.36
times that which would be associated with a 1/3 Xi distributed random
variable. Note that the appearance of Figure V.4, based on mortality
conditional on 14 day survival, is very similar to that of Figure V.2,
based on overall mortality. This suggests that the heterogeneity in
group 7 is not just an early life stage phenomenon but persists to
later stages of the test.

The appearance of Figure V.4 suggests that we calculate a common infla-
tion factor for groups 1-6 and a separate factor for group 7. The common
factor for groups 1-6 can be based on the average of the Ki's. Namely

1 7
K Ei= K =1.04

The factor for group 7 would be K7 = 4.76. Note that K is slightly smaller
than the slope estimated from Figure V.4 (i.e. 1.04 versus 1.36). K may
be biased downward a bit by the deletion of the largest value from the
average. The question of which estimate is better (i.e. average value
or slope from probability plot) is a matter for further detailed research
and is not pursued further here. For the purpose of definiteness we
suggest using K. Thus we recommend no adjustments in effective sample
sizes in groups 1-6 and adjustment by a factor of 4.76 in group 7.

In conclusion, the results in this subsection suggest that different
degrees of beaker to beaker heterogeneity hold for different measures of
mortality. Therefore separate adjustment factors should be calculated
and applied for each measure of mortality studied.
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TABLE V.6. LE BLANC TEST B--21 DAY MORTALITY CONDITIONAL ON 14 DkY
SURVIVAL--VARIANCE INFLATION FACTOR BY GROUP

Group Factor (Ki) Rank Plotting Position

1 0.65 2 21.4
2 0.26 1 7.1

3 1.04 4 50.0

4 2.04 6 78.6
5 0.77 3 35.7

6 1.49 5 64.3

7 4.76 7 92.9

D. ADJUSTMENTS TO ACCOUNT FOR BEAKER TO BEAKER HETEROGENEITY
OF LENGTH RESPONSES

In Section IV we tested for beaker to beaker heterogeneity within groups
for length responses in the data from LeBlanc's Tests A and B. In both
tests, statistically significant heterogeneity was found. The tests were
carried out by means of a two way nested analysis of variance, the components
of which are indicated below. It is assumed in the ANOVA table that there
is a balanced situation with I treatment and control groups, J beakers per
group, and N daphnids per beaker. This assumption of balance is usually
pretty nearly satisfied in aquatic toxicity test length data, except perhaps
in those groups which experience high mortality. In particular in LeBlanc's
data, all but the highest treatment groups analyzed (i.e. group 6 in Test A
and group 7 in Test B) have nearly the same sample sizes.

COMPONENTS OF ANOVA TABLE TO TEST FOR BEAKER
TO BEAKER HETEROGENEITY IN LENGTHS

Source d.f. Expected Mean Square

Groups I-1 a + N J+ 2
c b I-1 i i

2 2
Beakers Within Groups (J-l) ac + N ab

2Daphnids Within Groups IJ(N-I) 3

In agreement with the notation used in Section IV, ai represents the fixed
group effect, a2 represents the variance of the random beaker effect within
groups, and rc represents the variance of the random daphnid effect within
beakers.
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It is clear from the ANOVA table that the mean square for beakers
within groups provides a correct error yardstick for inferences about group
effects, whether or not beaker to beaker heterogeneity exists. In fact
basing inferences on this error term is equivalent to analyzing the length
data on a per beaker basis (i.e. analyzing only average lengths within
beakers). This is currently the most commonly used approach for the
analysis of such data. This is a conservative approach.

However, although use of the beakers within groups mean square is
correct, it is based on relatively few degrees of freedom (I(J-l)) and
thus can lead to reduced sensitivity of inferences about lengths if
I(J-l) is small. This would be the case particularly if J was 2 or 3.
It would be beneficial for the sensitivity of the analyses if the number
of degrees of freedom available for the error yardstick could be increased,
perhaps by somehow combining information from that in another mean square.
A scheme for doing this is discussed below.

The usual approach to combining information from several mean squares
in analysis of variance is based on a preliminary test. Namely first test

the hypothesis that ab = 0 by comparing the mean square for beakers within
groups to the mean square for daphnids within beakers. If the hypothesis

is rejected, use the beakers within groups mean square with I(J-l) degrees
of freedom as an error yardstick. If the hypothesis is not rejected, then
combine the two sums of squares for a2 and use a pooled error estimate
based on I(J-l) + IJ(N-I) = I(JN-I) degrees of freedom. This procedure
corresponds to either carrying out comparison of lengths across groups
on a per beaker basis or else pooling data across beakers within groups
and carrying out comparisons on a per daphnid basis, ignoring the existence
of replicate beakers. This approach is somewhat dichotomous. One of two
somewhat different procedures is carried out, depending on whether the
preliminary test rejects or accepts. It would be desirable to use a
procedure which provides a continuum of options between the above two
extremes and that does not rely on the outcome of a preliminary test. We
now describe such a procedure.

2 2
Each individual length has variance oc + ab. Since the lengths from

the same beaker are correlated due to the beaker effects, the average over
all NJ lengths within a group has variance (ac + N ao)/NJ ac/NJ + b /J.
Suppose we wish to account for the within beaker correlation by reducing
the effective sample size within beakers from N to x and then treating
the "adjusted samples" as if they were independent, with variance a2 + C12

c bWe would thus disregard beakers and carry out analyses on a per daphnid
basis. To determine the effective sample size, x, per beaker we equate
the variances of sample averages under the true and hypothecated situations.
Namely

02 + 2 a2  2
c b c b

Jx JN

Thus

2 2N(a + a)
c bx = 2 and so 1 < x < N

2 2_a +N ac b

133



We treat the data as if there were Jx independent observations per group.
The degrees of freedom to estimate error would then be I(Jx-l). Now

2 22 + a2.:,.

I(Jx-l) = I (N 2 2 1)
a +N ab

It is easy to see that

l(J-l) < l(Jx-l) < I(JN-I)

the extremes occurring as u2  or a2  0. Thus using I(Jx-l) degrees ofb b
freedom is a compromise between using I(J-l) d.f. and I(JN-l) d.f.

In order to calculate x we need to know a2 and a2 . In general these
quantities are unknown, however they can be estimated from the data. Let

MSI = mean square for beakers within groups.
MSE = mean square for daphnids within beakers.

Then

^2 2 2 2 2 1 1
a MSE, a + N a= MSI a + a - MSI + (1 - MSE

c c b c b N N

Thus

^ MSI + (N-i) MSE i + (N-i) MSE/MSI

MSI

We constrain x to be bounded by N. Namely we take -

x = m rl + (N-i) MSE/MSI, N]

Since there is uncertainty in x, a very conservative assumption would be
to take x to be its minimum value of 1. This would correspond to using MSI
as an error yardstick with I(J-l) d.f. Thus there is no pooling of infor-
mation from MSE. A less conservative assumption would be to use I(Jx-l) d.f.
We use max(MSI,MSE) as the error yardstick, but utilize the information from
MSE to increase the degrees of freedom assumed from I(J-l) to I(Jx-l). A
compromise between these two values of x would be to calculate a lower con-
fidence bound for x and use this value in the expression for degrees of free-
dom. Let denote a 95 percent lower confidence bound on x. We use
I(J -l) degrees of freedom in conjunction with max(MSI,MSE).

A lower confidence bound on x corresponds to an upper confidence bound
on a2 /u2 since

b c

x N(l + a b/a )/(l + N 2/2) y 1 + (N-1)1(1 + N a b Cy

Now

2 2
MSI/MSE % (I + N a /a ) Fb c I(J-l), IJ(N-l)
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Thus

MSI/MSE (0.95)

F (0.05) IJ(N-_), l(J-1)FI(J-I), IJ(N-I) "''

2 2is an upper 95 percent confidence bound on (1 + No a ). Therefore
b c

x =min I + (N-I)/[MSI/MSE] F (0.95) N

The suggested compromise procedure is to use max[MSI,MSE] as the error
O yardstick but to increase the effective degrees of freedom to I(Jx-1).

In subsequent comparisons among treatment means we use(max[MSI,MS ]/JN)
I/2

as the estimated standard error of treatment group averages and we associate
I(Jx-l) d.f. with it.

This procedure has intuitive appeal as means of increasing the sensitivity
of inferences about lengths when I(J-1) is small. Its precise theoretical
properties need to be investigated in greater detail, perhaps by a Monte
Carlo study.

We now apply this procedure to the length data from LeBlanc's Tests A
and B. Although N is not entirely constant across beakers, especially in
the highest treatment groups, we use the above expressions with an average
value of N.

LeBlanc Test A

From Section IV, MSI = 0.2722, MSE = 0.118, I=6, J=4, N N = 401/24 =

16.71. Thus IJ(N-I) = 377, l(J-1) = 18, F 37 7 , 18(0.95) = 1.93, MSI/MSE =

2.435. Therefore

x = 1 + (15.71)/[2.345)(1.93)] = 4.34

= 1 + (15.75)/2.435 = 7.47

We thus see that the point estimate of the effective number of daphnids
per beaker is 7.5 and a 95 percent lower confidence bound on this is 4.3.
We associate I(Jx-l) = 6((4)(4.34)-1) = 98.2 z 98 d.f. with the mean
square for beakers within groups. This compares with 6(4-1) = 18 d.f.
associated with this mean square if we pool no information from the within
beakers mean square.

LeBlanc Test B

From Section IV, MSI = 0.2707, MSE = 0.1387, 1=7, J=4, N - N = 459/28 =

16.39. Thus IJ(N-I) = 431, 1(J-i) = 21, F (0.95) = 1.84, MSI/MSE =

1.952. Therefore 431, 21

x = 1 + (15.39/[(1.95)(1.84)] - 5.28

x 1 1 + (15.39)/1.952 = 8.88
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The point estimate of the effective number of daphnids per beaker is 8.9
and a 95 percent lower confidence bound on this is 5.3. We associate
I(Jx-l) = 7((4)(5.28)-l) = 140.84 Z 141 d.f. with the mean square for beakers
within groups. This compares with 7(4-1) = 21 d.f. associated with this
mean square if we pool no information from the within beakers mean square.

The model upon which the adjustments in degrees of freedom in LeBlanc's
Tests A and B was based (i.e. upon which the within and between mean squares
were effectively pooled) assumes that the components of variation are the

same across groups. Namely it is assumed that there is random beaker to
beaker variation with variance a2 and there is random within beaker varia-
tion with variance o . Before applying adjustments based on this model
one should determine whether all the groups appear to have the same vari-
ability or whether there are one or two groups with variability substantially
higher than the remainder, that inflate the overall estimates of variability
for the other groups. If that were the case, separate variability estimates
would need to be calculated for the group or groups with large variability
and subsequent analyses would need to take this into account, perhaps by
using weighted least squares.

We discuss below a graphical procedure for determining whether the
observed beaker to beaker variation is due to all groups or whether it is
due just to one or two and we apply this procedure to the length responses

from LeBlanc's Tests A and B. The procedure consists of calculating the
mean square for beakers within groups separately within each group and
normalizing these values by the pooled mean square for daphnids within
beakers. Under the assumption of common variance structure across groups,
these normalized ratios estimate 1 + Noa/uj and are distributed approxi-
mately as (1 + NoG/o2) X2 1/(J-l). We should thus see a straight line or
at least a smooth curve when the ordered normalized ratios are plotted on
chi square probability paper. If one or two points are far removed from
the others, this suggests differing variability structures across groups
and subsequent analyses would need to reflect this.

The results for LeBlanc's Test A are summarized below. In this test
J=4 and 1=6. The rank is just the order of the ratios, from smallest to
largest. The plotting position for the ratio with rank i is 100 (1-0.5)/6.

TABLE V.7. LE BLANC TEST A--NORMALIZED MEAN SQUARE RATIOS BY GROUP

Group Normalized Ratio Rank Plotting Position

1 3.678 5 75.00
2 0.579 2 25.00

3 5.757 6 91.67
4 1.680 3 41.67
5 2.405 4 58.33
6 0.509 1 8.33
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The normalized ratios are plotted versus their plotting positions on - -

chi square probability paper with 3 d.f. The results are shown in Figure
V.5. The reference line in that plot corresponds to the theoretical c.d.f. - "]
of a random variable with distribution 1/3 X1 . The points are seen to fall

on a straight line with slope substantially In excess of that which would
be expected if there were no beaker to beaker variation. We conclude that
this plot suggests the presence of beaker to beaker variation in lengths 4
and that the variation structure is constant across groups.

The results for LeBlanc's Test B are summarized below. In this test
J=4 and I=7. The terms rank and plotting position have the same meaning
as for Test A.

TABLE V.8. LE BLANC TEST B--NORMALIZED MEAN SQUARE RATIOS BY GROUP

Group Normalized Ratio Rank Plotting Position

1 0.392 1 7.14
2 3.946 7 92.86
3 3.876 6 78.57
4 0.935 4 50.00
5 0.451 2 21.43
6 3.421 5 64.29
7 0.639 3 35.71

The normalized ratios are plotted versus their plotting positions on chi

square probability paper with 3 d.f. The results are shown in Figure V.6.
The reference line in that plot corresponds to the theoretical c.d.f. of
a random variable with distribution 1/3 X2 . The ratios seem to fall into

3
two distinct subsets. The lower four values appear to be compatible with
the absence of beaker to beaker variation in their groups. The upper
three values are separated from the others and indicate the presence of
beaker to beaker variation. This graph should be discussed with the
investigator to determine if any identifiable experimental factors could
explain the apparent dichotomy between the variability in groups 1, 4, 5
and 7 on the one hand and that in groups 2, 3 and 6 on the other. If so,
separate variability estimates might be used for these two subsets of
groups. In the absence of such information we will use the overall adjust-
ment results derived earlier in this subsection.
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VI. OUTLIER DETECTION PROCEDURES

A. BACKGROUND

Another preliminary analysis of importance is the detection of responses
which do not appear to be in conformance with the substantial majority of
responses. Such exceptional responses are often referred to as "outliers".
Outlier detection procedures are used to decide how extreme a response must
be in order to rule out the possibility that its value is reasonably likely
to be due just to random variation. Feder and Collins [1], Section X
and Subsection XVII B, discuss outlier detection procedures for the analysis
of mortality and length data from toxicity tests on fathead minnows. The
discussion here is patterned after that.

Before discussing the details of outlier detection procedures for the
various responses considered here, we need to discuss an important conceptual
issue. Outlier detection procedures look for responses which differ from
a priori comparable responses more than would be expected based on random
variation. In the previous section we estimated the extent of beaker to
beaker variation and adjusted for this variation by utilizing the differences
in responses observed in a priori comparable beakers (i.e. within the same
treatment groups). The presence of outliers will inflate the estimates of
beaker to beaker random variation. Conversely, the presence of random
beaker to beaker variation might cause extreme but naturally occurring
responses to appear as outliers. Thus the notions of outliers and of
inflated beaker to beaker random variation are somewhat confounded and
obscure one another. If an individual observation or a beaker average
looks extreme there is no way to tell, based on the data alone, whether
that response represents natural variation or whether it comes from a
separate population, due perhaps to some deviation in biological material
or experimental technique. This is a matter for judgement on the part of
the investigator. Statistical methods can point to the extreme or out of
line responses. They cannot determine the reasons for this behavior or
whether the observations in question should be retained, deleted, or dis-
counted.

Outlier detection procedures and beaker to beaker heterogeneity adjust-
ment procedures impact on one another. Consider the mortality responses
for LeBlanc's Tests A and B plotted in Figures II.1 and 11.3 and for
Goulden's isophorone test plotted in Figure 11.8. The responses in group 6
of LeBlanc's Test A, group 7 of LeBlanc's Test B, and group 5 of Goulden's
isophorone test appear to be widely separated from one another. Is the
separation due to natural random variation or are one or more beakers out
of line from the others? Based on the appearances of the plots, the dif-
ferences among these beakers in the LeBlanc tests appear to be due to
r;indom variation. Two of the four beakers show relatively low mortality
while the other two show relatively high mortality. None of the responses
ire out of line with those from other groups. The situation in group 5
! (:,)J1den's survival data is a bit different. The beaker with 100 percent
.rt:,jlitv appears to be out of line with the other two multiple daphnid

. ri and with the seven individual daphnid beakers in its group. This
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suggests that it may be a possible outlier. However it must be stressed that
these interpretations are subjective and may differ among investigators
or among data analysts.

Perhaps as a rule of thumb, extreme deviations should be regarded
as evidence of random beaker to beaker variation unless there is specific
evidence to the contrary. This is a matter for further discussion.

We adopt the following order of analysis. Based on the appearance of

the preliminary scatterplots, any responses that are out of line and whose
deviations can be traced back to faulty biological material, departures in
procedure from test protocol, accidents, etc will be screened out. The
remaining responses will be tested for beaker to beaker heterogeneity and
appropriate error yardsticks will be calculated or data adjustments made.
Outlier detection tests will then be carried out incorporating the pre-
viously calculated error yardsticks and data adjustments.

We illustrate the outlier detection procedures below.

B. OUTLIER DETECTION PROCEDURES APPLIED TO MORTALITY DATA

The procedure followed is similar to that discussed in Feder and Collins [1],
Section X. Consider the i-th group. Let (Xi1 , Ni), Xi2, Ni2 ),...,
(Xijj, Niji) denote the numbers of responses and die'number of daphnids
in the various beakers j=l,..., Ji. Delete the subscripts i in subsequent
discussion, for ease of notation. Note that (Xj, N-) denote the effective
numbers of responses and daphnids respectively, after adjusting for beaker
to beaker heterogeneity, rather than the original numbers. The arc sin
variance stabilizing transformation is first carried out. In particular
let pj, p denote the response probability estimates for the j-th beaker
and for the group respectively. It can be shown that 2Njl/2(I-NlN/N)-I/2

[arc sin (p'I/ 2) arc sin ( i/2)], j=l,..., J have approximate standard
normal distributions as the Nj's approach -. Graphical and numerical
outlier detection procedures are based on these standardized values. For
formal inferences we account approximately for the correlations among the
standardized values within groups (approximately -1/(J-l) if the Nj's are
about equal) by treating the J standardized values within each group as
if they were J-1 independent values. This of course has the most effect

when J=2.

We now apply these transformations to construct graphical outlier
detection displays based on normal probability plotting and associated
formal outlier detection tests.
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LeBlanc Test A

1=7, J=4 (i.e. 7 groups, 4 beakers per group)

1 1 2
X. N. p. p N N Np Q

Group 1

Beaker A 2.2 14.8 0.149 0.149 0.25 2.205 0.0
Beaker B 2.2 14.8 0.149 0.149 0.25 2.05 0.0
Beaker C 2.2 14.8 0.149 0.149 0.25 2.205 0.0
Beaker D 2.2 14.8 0.149 0.149 0.25 2.205 0.0

Group 2

Beaker A 1.5 14.8 0.101 0.037 0.25 0.548 1.154
Beaker B 0.0 14.8 0.0 0.037 0.25 0.548 -1.720
Beaker C 0.0 14.8 0.0 0.037 0.25 0.548 -1.720
Beaker D 0.7 14.8 0.047 0.037 0.25 0.548 0.222

Group 3

Beaker A 0.0 14.8 0.0 0.125 0.25 1.850 -3.211
Beaker B 0.7 14.8 0.047 0.125 0.25 1.850 -1.269
Beaker C 3.7 14.8 0.250 0.125 0.25 1.850 1.441
Beaker D 3.0 14.8 0.203 0.125 0.25 1.850 0.942

Group 4

Beaker A 2.2 14.8 0.149 0.086 0.25 1.273 0.877
Beaker B 0.0 14.8 0.0 0.086 0.25 1.273 -2.644
Beaker C 2.2 14.8 0.149 0.086 0.25 1.273 0.877
Beaker D 0.7 14.8 0.047 0.086 0.25 1.273 -0.703 •

Group 5

Beaker A 1.5 14.8 0.101 0.088 0.25 1.302 0.198
Beaker B 0.0 14.8 0.0 0.088 0.25 1.302 -2.676
Beaker C 3.0 14.8 0.203 0.088 0.25 1.302 1.477
Beaker D 0.7 14.8 0.047 0.088 0.25 1.302 -0.734

Group 6

Beaker A 0.14 1.45 0.097 0.500 0.25 0.725 -1.303
Beaker B 0.29 1.45 0.200 0.500 0.25 0.725 -0.395 . -

Beaker C 1.09 1.45 0.752 0.500 0.25 0.725 0.734
Beaker ) 1.38 1.45 0.952 0.500 0.25 0.725 1.570
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X. N. p. p N./N N p QJ J .

Group 7

Beaker A 14.8 14.8 1.000 0.988 0.25 14.622 0.975
Beaker B 14.8 14.8 1.000 0.988 0.25 14.622 0.975
Beaker C 14.1 14.8 0.953 0.988 0.25 14.622 -0.966
Beaker D 14.8 14.8 1.00 0.988 0.25 14.622 0.975

To prepare the normal probability plot we order the standardized values
and plot the i-th smallest against the plotting position 100 x (i-0.5)/28
on the probability scale. These values are indicated below.

1 2 3 4 5 6 7 8

Ordered
Value -3.211 -2.676 -2.644 -1.720 -1.720 -1.303 -1.269 -0.966

Plotting
Position 1.8 5.4 8.9 12.5 16.1 19.6 23.2 26.8

i 9 10 11 12 13 14 15 16

Ordered
Value -0.895 -0.734 -0.703 0.0 0.0 0.0 0.0 0.198

Plotting

Position 30.4 33.9 37.5 41.1 44.6 48.2 51.8 55.4

i 17 18 19 20 21 22 23 24

Orde red
Value 0.222 0.734 0.877 0.877 0.942 0.975 0.975 0.975

Plotting
Position 58.9 62.5 66.1 69.6 73.2 76.8 80.4 85.9

i 25 26 27 28

Ordered
Value 1.154 1.441 1.477 1.570

Plotting
Position 87.5 91.1 94.6 98.2

X., N. represent effective values, after adjustment for beaker
t; beaker heterogeneity.

( /-N IN) 2 [arc sin / - arc sin
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The normal probability plot of these points is shown in Figure VI.l.
A theoretical N(0,1) distribution line is drawn in for reference. It is
evident that the standardized values lie on a smooth curve which is definitely
not normal. The lack of normality is undoubtedly due to the relatively small
(effective) sample sizes per beaker coupled with the relatively extreme
average mortality rates within each group (i.e. close to 0 or to 1). Note
that the minimum expected frequencies min (N-p, N-q) within each group
(based on effective sample sizes) are less than 2in all but the first
group where the minimum expected frequency is 2.2. I. fact, three of the
seven groups have minimum expected frequen ies less than 1. The validity
of the normal approximation to arc sin (p l2) is questionable for such
small expected frequencies. Furthermore the five smallest standardized
values correspond to observed frequencies of 0 deaths per beaker, where the
normal approximation is least reasonable.

Despite the lack of normality the smooth and continuous nature of the
curve in Figure VI.I suggests no evidence of outlying responses. The extreme
discrepancies among mortality rates observed in group 6 have been attributed
to random beaker to beaker variation and have been accounted for by adjust-
ing the effective sample sizes downward very extremely. Thus the standard-
ized values from these groups do not appear to be outliers. Without such

prior adjustment they undoubtedly would have.

It should be noted that confirmatory tests should be carried out before
declaring a beaker response to be an outlier, based just on the appearance
of the normal probability plot. This is especially true when the response
corresponds to small observed frequencies (especially 0) where the normal
approximation is most questionable. Such confirmatory tests for mortality
responses are discussed in Feder and Collins [1], Section X. In parti-
cular, an exact confirmatory test, based on Poisson theory, is discussed
for the case when average group response rates are less than 0.1 or greater
than 0.9. This is the case in four of the seven groups in the Test A
mortality data and two of the other three groups are close. In other cases,
chi square tests of homogeneity can be carried out, with adjustments for
small expected frequencies or based on exact small sample theory (e.g.
Fisher's exact test).

In brief, we conclude that there is no evidence of outlying mortality
responses in this data set.

We now consider some of the other data sets. The pattern of the
mortality responses in LeBlanc's Test B is very nearly the same as that in
Test A, which we have just discussed in detail. We thus omit discussion

of outlier detection in Test B. The results will undoubtedly be very
similar to thcse from Test A--namely no outliers. Since Chapman's test
consists of just one daphnid per beake- we cannot ccmpare mortality response
rates among beakers within groups in this test. The mortality patterns in
Adams' test with selenium are quite consistent among beakers within groups.
The first four groups have essentially no mortality in any beaker while
the last four groups have 100 percent mortality in each beaker. (See
Figure 11.5.) There is thus no suggestion of any outlier resp.. es in this

test and so we omit discussion of outlier detection procedures.
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The situation with Goulden's test with isophorone is a bit different.
(See Figure 11.8. Note that survival rates are plotted in this figure rather
than mortality rates.) The beaker in group 5 with 100 percent mortality
appears to be out of line with the others in that group. This extreme
response may be due to random variation or to some identifiable cause that
would make it an outlier. There is no way to distinguish between these two
possibilities solely on the basis of the data. The test records must be
thoroughly reviewed and biological judgement must be brought to bear. How-
ever we note that there is just one beaker apparently out of line with the
others and there is no overall evidence of beaker to beaker heterogeneity
within groups among the beakers with multiple daphnids (see Section III).
We will thus treat this response as a potential outlier and carry out
graphical and analytical outlier detection procedures to confirm or refute
this conjecture. We could have alternatively adjusted the effective sample

sizes downward in all the beakers in group 5 to reflect random beaker to
beaker variation in this group only. The decision to carry out the outlier
detection procedure rather than the heterogeneity adjustment procedure is
somewhat subjective.

Goulden - Isophorone

Since there is a suggestion of greater mortality among the multiply

housed daphnids (see Section III) we compare mortality rates only among

the beakers with multiple daphnids.

1=6, J=3 (i.e. 6 groups, 3 beakers per group)

1 1 2
X' N. p. p N./N N.p 0

Group 1

Beaker A 1 5 0.20 0.133 0.333 0.667 0.495
Beaker B 1 5 0.20 0.133 0.333 0.667 0.495
Beaker C 0 5 0.00 0.133 0.333 0.667 -2.045

Group 2

Beaker A 1 5 0.20 0.067 0.333 0.333 1.105
Beaker B 0 5 0.00 0.067 0.333 0.333 -1.434
Beaker C 0 5 0.00 0.067 0.333 0.333 -1.434

Group 3

Beaker A 1 5 0.20 0.067 0.333 0.333 1.105
Beaker B 0 5 0.00 0.067 0.333 0.333 -1.434
Beaker C 0 5 0.00 0.067 0.333 0.333 -1.434
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X. N. p. p N./N N.P Q2

Group 4

Beaker A 2 5 0.40 0.200 0.333 1.000 1.211
Beaker B 1 5 0.20 0.200 0.333 1.000 0.000

Beaker C 0 5 0.00 0.200 0.333 1.000 -2.540

Group 5

Beaker A 5 5 1.00 0.533 0.333 2.667 4.121
Beaker B 2 5 0.40 0.533 0.333 2.667 -0.732
Beaker C 1 5 0.20 0.533 0.333 2.667 -1.943

Group 6

Beaker A 4 5 0.80 0.867 0.333 4.333 -0.495
Beaker B 4 5 0.80 0.867 0.333 4.333 -0.495
Beaker C 5 5 1.00 0.867 0.333 4.333 2.045

To prepare the normal probability plot we order the standardized values
and plot the i-th smallest against the plotting position 100 x (i - 0.5)/18
on the probability scale. These values are indicated below.

i 1 2 3 4 5 6

Ordered Value -2.540 -2.045 -1.943 -1.434 -1.434 -1.434
Plotting Position 2.8 8.3 13.9 19.4 25.0 30.6

i 7 8 9 10 11 12

Ordered Value -1.434 -0.732 -0.495 -0.495 0.00 0.495

Plotting Position 36.1 41.7 47.2 52.8 58.3 63.9

i 13 14 15 16 17 18

Ordered Value 0.495 1.105 1.105 1.211 2.045 4.121
Plotting Position 69.4 75.0 80.6 86.1 91.7 97.2

Xj, Nj represent actually observed values, with no adjustments for

beaker to beaker heterogeneity.

2 Q = N) - /2 2 AT [arc sin 0 - arc sin ]o,
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The normal probability plot of these points is shown in Figure VI.2.
A theoretical N(0,1) distribution line is drawn in for reference. All but

the largest standardized values lie approximately on a straight line with
slope slightly greater than that based on the assumptions of no beaker to
beaker heterogeneity and no outliers (slope is about 1.5 as compared with

1.0 for the theoretical N(0,1) line). The departure from the standard
normal distribution line is probably due to the small expected frequencies

within each group (for the most part less than one) since the EXAX2 compari-
sons in Section III revealed no beaker to beaker variation, except possibly I
in group 5.

The largest standardized value, corresponding to the beaker in group 5
with 100 percent mortality, lies somewhat above a straight line fitted to
the other points. This suggests that it is larger than what would be
expected of the extreme of the remaining values and thus may be too large
to be due just to chance; i.e. it may be an outlier.

The extreme point corresponds to Beaker A of group 5. The observed
mortality rate there is 100 percent, where the normal approximation is least
reasonable. Thus before we infer that the point is in fact an outlier we
should compare the observed mortality rate in this beaker with that in its
companion beakers to determine if there is any statistical evidence of
differences. One such comparison was made among the three beakers in group 5
as part of the EXAX2 analysis in Section III. There was a significant dif-
ference at the a = 0.07 level. Such a significance level does not offer
much statistical evidence of an outlier, especially when compared with what
might be expected of the -iost extreme significance level of six independent
tests, even when nothing was going on. We construct several more sensitive
comparisons below.

Consider the results in group 5.

Group 5

Replicate

A B C '___

Dead 5 2 1 8

Live 0 3 4 7

5 5 5 15

Beaker A is the suspected outlier. Compare its results to those from the
other two beakers pooled.

151

.. .. . ........ . .



Replicate

A BC _ _

Dead 5-x 3 8

Live 0 7 7

5 10 15

We can carry out an exact test of homogeneity of responses by means of the
Fisher-Irwin test. (See Lehmann [5], Section 4.5, Lieberman and Owen [6].)
If Beaker A in fact has the same mortality probability as B,C the probability
of observing a table as extreme as the one above just due to chance can be
calculated from the hypergeometric distribution as

P (X > 5) = (8/1)= 0.0186

Thus the approximate observed two tailed significance level is 2(0.0186) = 0.037.

Now Beaker A was not chosen a priori. Taking selection into account we
have, assuming homogeneous mortality probabilities,

P (most extreme of 3 beakers more significant than 0.037 level)
P (at least one beaker more significant then 0.037 level) < 3(0.037) = 0.11

Thus there is perhaps marginal statistical evidence that the response rate
in Beaker A of group 5 differs significantly from the response rates in the
other beakers in that group.

Now group 5 was not chosen a priori. Taking selection of group 6
into account we have, assuming homogeneity among beakers within groups, for
all groups,

P (most extreme of 6 groups more significant than 0.11 level) < 6(0.11) = 0.66

Thus when we account for selection of both group and beaker within group
we must conclude that there is no statistical evidence of an outlying
response.

A somewhat more powerful test, but one based on much more tenuous assump-
tions, can be constructed as follows. Based on the calculated response
probabilities within each group and on the appearance of Figure 11.8, suppose
we assume that there is no trend in response probabilities in groups 1-5.
(This is a very strong assumption.) Then we can pool the results across
14 beakers to compare with Beaker A of group 5. This results in the
following table.
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Fourteen other
5A beakers in groups 1-5

Dead 5=x 10 15

Live 0 60 60

5 75 75

We again carry out an exact test of homogeneity of responses by means of
the Fisher-Irwin test. If Beaker 5A in fact has the same underlying
mortality probability as those in each of the other 14 beakers in groups
1-5, the probability of observing a table as extreme as the one above just
due to chance can be calculated from the hypergeometric distribution as

(5) 
-

P (X > 5)= 5)= 1.74 x 10

Thus the a proximate two tailed significance level is 2(1.74 x 10-4)

3.48 x 10. Now Beaker 5A was not chosen a priori. Taking selection
of beakers into account we have, assuming homogeneity of response rates
among all beakers in groups 1-5,

-4P (most extreme of 15 beakers more significant than 3.48 x 10 level)

-4< 15 (3.48 x 10 - ) = 0.0052

Thus, under the assumptions of this test, there is strong statistical
evidence that the response in Beaker 5A is an outlier. However the assump-
tion of constant mortality rates across all five groups is a bit too strong.
In particular Beakers 5B,C show a 30 percent average mortality rate while
the beakers in groups 1 to 4 have an average 12 percent mortality rate.
While these rates are not statistically significantly different, they do
at least suggest that the assumption of constant mortality rates across

the first five groups is questionable.

In summary, the classification of the response in Beaker 5A as an outlier
is equivocal. With the small sample sizes at hand the outlier tests are not
significant (except under quite stringent assumptions). Thus in the absence
of specific reasons to the contrary we will consider the responses in this
beaker to be valid. Furthermore in the absence of overall beaker to beaker
heterogeneity within groups we do not make any data adjustments. We carry
out subsequent analyses with the data as presented.

C. OUTLIER DETECTION PROCEDURES APPLIED TO REPRODUCTION RESPONSES

Offspring are counted on a per beaker basis. Thus in the absence of a
theoretical model upon which to base variance estimates (analagous to the
binomial model for mortality data) or an assumption about the magnitude of
beaker to beaker variation (e.g. that it is no greater than that for lengths)
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there is no basis on which to augment the beaker to beaker variation esti-
mates with information about within beaker variation (such as we did for
mortality and length responses). Since such assumptions about theoretical
models or about beaker to beaker variation are at best tenuous, we do not
attempt them here and instead calculate variability estimates based on
total results within each beaker (i.e. on a per beaker basis).

Outlier detection procedures are based on the residuals from one way
analysis of variance models. Let Ri. denote the 21 day cumulative offspring
per survivor in the j-th beaker of te i-th group. (In Chapman's test, with
individual daphnids per beaker, attention is confined to those individual
daphnids which survived for 21 days.) The one way analysis of variance model,

R+ij= i ... , I j J

was specified where Rij denotes the total offspring, ai is the fixed group
effect, and cij is the experimental variation. It is assumed that Eij are
independent N(0, a2). The model was fitted to the data using the computer
program BMDPIR in the BMDP statistical computing system [7]. The model
fits and associated residual displays for the various data sets are presented
below.

Figures VI.3 - VI.5 display the analysis of variance fit to the 21 day
cumulative reproduction data in LeBlanc's Test A, the residuals plotted by
group, and a normal probability plot of the ordered residuals. The individual
responses are shown in Figure II.11. One of the residuals in group 5 stands
out from the others in Figure VI.4. This residual does not lie on a straight
line fitted by eye to the remaining residuals in Figure VI.5. It must thus
be considered a potential outlier. To determine whether there is any
statistical evidence that this extreme observation is in fact an outlier
we can test whether the most extreme of 18 independent normally distributed
random variables with mean 0 and standard deviation 20.64 is likely to exceed

49.25 in absolute value. (The extreme value is 189 and thus corresponds to
a deviation of 49.25 from its group average. The four responses correspond-
ing to group 7 have been deleted from the calculations below because there is
virtually 100 percent mortality in group 7 and so reproduction patterns may
not be comparable to those from other groups. The standard deviation estimate
is thus ((9667.25 - (49.25)2)/17)1/2 = 20.64. We account for the correlations
among the residuals from the same group by treating the J24 correlated
residuals as if they were J-1E3 independent normal deviates). Thus

P [most extreme of 18 independent random deviates is greater than 49.25 in
18 49.25 18

absolute value] = 1 - [p (-49.25 < X < 49.25)] 18 = 1 - [2i 20.64/ - 1]

118 18
= 1 - [2D (2.386) - 1] 1 

= - (0.9830) = 0.27 .

There is thus no statistical evidence that this extreme value is greater than
what may be expected just due to random variation.
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Figures VI.6 - VI.8 display the analysis of variance fit to the 21 day

cumulative reproduction data in LeBlanc's Test B, the residuals plotted by
group, and a normal probability plot of the ordered residuals. The individ-
ual responses are shown in Figure 11.13. One of the residuals in group 3
stands out from the others in Figure VI.7. This residual does not lie on a
straight line fitted by eye to the remaining residuals in the normal prob-
ability plot in Figure VI.8. It is thus a possible outlier. To determine
whether there is any statistical evidence that this extreme observation is
in fact an outlier we can test whether the most extreme of 7(4-1) = 21
independent normally distributed random variables with mean 0 and standard
deviation 18.56 (i.e. [(9697.5 - 532)/2011/2) is likely to exceed 53 in
absolute value. (The extreme value is 169 and thus corresponds to a devia-

tion of 53 from its group average.) Thus

P [most extreme of 21 independent random normal deviates is greater than

21 2
53.0 in absolute value] = 1 - [P (-53 <X<53)] = 1 - [20 (53/18.56) - 1] 2 1

= 1 - [20 (2.856) - 1) 2 1 = 1 - (0.9957)2 1 = 0.09

This is at most marginally statistically significant and the situation is
borderline. We will retain this observation in future analyses.

It is interesting to note the great similarity in reproduction results
in Tests A and B. In each case the potential outlying value was on the
high side. Perhaps the characteristics of these two daphnids and conditions
in these beakers should be noted and repeated in future tests, to the extent
possible, so as to obtain increased productivity.

Figures VI.9 - VI.II display the analysis of variance fit to the 21 day

cumulative reproduction data in Adams' selenium test, the residuals plotted
by group, and a normal probability plot of the ordered residuals. The
individual responses are shown in Figure 11.15. Since groups 5-8 have 100
percent mortality we delete the residuals from these groups from the normal
probability plot. None of the residuals in groups 1-5 stand out from the
rest. There is thus no suggestion of outlying responses.

Figures VI.12 - VI.14 display the analysis of variance fit to the 21 day

cumulative reproduction data in Chapman's beryllium test, the residuals
plotted by group, and a normal probability plot of the ordered residuals.
The individual responses are shown in Figure 11.17. Since in this test
the daphnids are housed individually, the reproduction figures pertain to
individual daphnids. Comparisons are restricted to those daphnids that
survived to the end of the test. None of the residuals stand out from the
group. There is thus no suggestion of outlying responses.

Figures VI.15 - VI.17 display the analysis of variance fit to the 21 day
cumulative reproduction data in Goulden's isophoroae test, the residuals
plotted by group, and a normal probability plot of the ordered residuals.
The individual responses are shown in Figure 11.22. Attention is confined
to the individually housed daphnids that survived to the end of the test.
Since just one daphnid in group 6 survived to the end of he test (and

155

Z --- ' -~~.. ... ........ .. .¢....'....... .-- .. '.-. ¢- -. ........



produced no offspring), this response is deleted from the calculations below

because the fertility patterns in this highest concentration group may not
be comparable with those from the other groups. In groups 1-5, just one
individually housed daphnid died. One of the residuals in group 1 stands
out from the others in Figure VI.16. This residual does not lie on a
straight line fitted by eye to the remaining residusls in Figure VI.17. It

is thus a possible outlier. (This point corresponds to a daphnid that
produced 135 offspring, while the average production in the control group
was 77.29.) To determine whether there is any statistical evidence that
this extreme point is in fact an outlier we can test whether the most extreme
of 5(7-1) - 1 = 29 independent normally distributed random variables with
mean 0 and standard deviation 14.38 (i.e. [(9120.548 - 57.712)/28]1 / 2) is
likely to exceed 57.71 in absolute value. (135 - 77.29 = 57.71). Thus

P [most extreme of 29 independent random deviates is greater than 57.71 in

29 29
absolute value] = 1 - [P (-57.71<X< 47.71)] = 1 - [2P (57.71/14.38) - 1]

= 1 - [2D (4.013) - 1]2 9 = 1 _ (0.9999)29 = 0.002

(Note that it might be argued that 14.38 is an underestimate of variability
since it excludes the extreme residual, 57.71. If we repeat the above
probability calculation using the standard deviation estimate 17.73 (from
Figure VI.15), the extreme point is significant at the a = 0.03 level).

0 There is thus statistical evidence that this point is in excess of what is

to be expected just due to random variation.

The above calculations, coupled with the appearances of Figures I.22,
VI.16 and VI.17 suggest that this point be deleted from subsequent compari-

sons. This decision may well impact on whether groups 4 and 5 are considered

to differ significantly from the control group. As such, the decision as
to whether to include or exclude this point from subsequent comparisons

should also be based on biological judgement and knowledge of experimental
details. If the extreme result represents normal biological variation then
perhaps the response should be considered with the others. Outlier detection
procedures are merely screening devices to direct attention to those places
where biological judgement should be applied.

For the sake of illustration we have chosen to exclude this observation
from subsequent comparisons. In actual statistical analyses to support
regulatory applications or regulatory decisions the subsequent analyses
might be carried out both with this point in and out. Any biologically
important differences in analysis results would need to he resolved on
biological grounds.
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D. OUTLIER DETECTION PROCEDURES APPLIED TO LENGTH RESPONSES

Lengths are measured at periodic intervals on individuals daphnids. In
the data sets discussed in this report, length determinations were made by
LeBlanc (in Tests A and B) on days 7 and 21 and by Chapman (in his test on
beryllium) on day 21. In LeBlanc's tests we can think of outlying beaker
averages relative to their group averages as well as outlying individual
lengths relative to their beaker averages. In Chapman's test each beaker
contains just a single daphnid and so we need only consider outlying individ-
ual lengths around their group means.

We first consider outlier detection procedures for the beaker averages
about their group means in LeBlanc's Tests A and B. From the discussion in
Subsection V.D we associate with the beaker averages estimates ol variability
based on the mean squares for beakers within group 5, with degrees of freedom
I(Jx-1) as discussed there. Let N- denote the sample size within the j-th
beaker of i-th group, N = Ej Nj, and let a2 , ac denote the Components-of
variance due to beakers and daphnids with teakers respectively._ Let Xj
denote the average length within the j-th beaker and X = Ej Nj Xj/N denote
the (weighted) average daphnid length within the i-th roup. The standard
error of Xj is [(a 2 + N. U2 )/N.]I /2 . We approximate c + Ni a by the mean

square for beakers within groups, MSI, as discussed in Subsection V.D. (This
approximation would be exact if all the sample sizes, Nj, were equal across
beakers and across groups.) The values of MSI were calculated in Subsection
V.D to be

Test A: MSI = 0.2722 with 98 degrees of freedom
Test B: MSI = 0.2707 with 141 degrees of freedom

The residuals of the beaker averages about their group averages can be
calculated from Figures IV.2 - IV.7 for Test A and from Figures IV.9 - IV.15
for Test B. The standard errors of the residuals are approximated by
[(1 - Nj/N) MSI/N1]1/2. (This approximation would be exact if all the Nj's
were equal across beakers and across groups.) Tables VI.1 and VI.2 contain
the ordered residuals multipled by the factors NjI/2 (I - Nj/N)-/ 2, so as
to have approximately constant variance. These tables also contain group
and beaker identification and plotting positions appropriate for preparing
normal probability plots. The normal probability plots of these standard-
ized residuals appear in Figures VI.18 and VI.19. The reference lines on
these plots correspond to normal distributions with mean 0 and with
variance MSI. In both tests the beaker averages conform nicely to the
reference lines. Thus there is no suggestion of outlying average beaker
lengths within any treatment or control group.

We next consider outlier detection ?rocedures for individual (21 day)
beaker lengths. In I.eBlanc's tests thi:s involves studying the deviations
of individual lengths within each beaker about their beaker averages. In
Chapman's test this involves studying the deviations of individual daphnid
lengths about their group averages.

The approach is much like that used for outlier detection with repro-
duction responses. Namely the outlier detection procedures are based on
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. -- .

the residuals from one way analysis of variance models. For LeBlanc's --

Tests A and B consider each beaker (with one or more survivors at 21 days)
as a separate classification, irrespective of group. Thus for Test A there
are 25 classifications while for Test B there are 28 classifications. Let
Ljk denote the 21 day length of the k-th surviving daphnid in the j-th beaker.
For Chapman's test, with just one daphnid per beaker, let Ljk denote the
21 day length of the k-th surviving daphnid in the j-th (treatment or -.

control group. The one way analysis of variance model

Lj j jk j =,...,J k =,...,K.

was specified where Ljk denotes the 21 day length, aj is the fixed beaker
or group effect, and cjk is the experimental random variation. It is
assumed that the Ujk are independent N(O, a2). The model was fitted to
the data using the computer program BMDPIR in the BMDP statistical computing
system [7]. The model fits and associated residual displays are presented
below.

Figures VI.20 - VI.22 display the analysis of variance fit to the 21
day lengths of survivors in LeBlanc's Test A, the residuals plotted by
classification, and a normal probability plot of the ordered residuals.
None of the residuals appear to stand apart from the others in Figure VI.21.

A straight line fitted by eye accomodates all the residuals in Figure VI.22.
The residuals thus appear to follow an approximate normal distribution and
there is no suggestion of any outlying lengths.

Figure VI.23 - VI.25 display the analysis of variance fit to the 21 day
lengths of survivors in LeBlanc's Test B, the residuals plotted by classi-
fication, and a normal probability plot of the ordered residuals. Again,
none of the residuals stand apart from the others in Figure VI.24 nor
deviate from the straight line in Figure VI.25. Thus there is no suggestion -:

of any outlying lengths in Test B. -

Figures VI.26 - VI.28 display the analysis of variance fit to the 21
day lengths of survivors in Chapman's beryllium test, the residuals plotted
by group, and a normal probability plot of the ordered residuals. Four of
the residuals (one from group 5, one from group 6, and two from group 7)
appear to be removed from the others, on the low side, in Figure VI.27.
These residuals are also removed from a straight line fitted to the remain-
ing ones in Figure VI.28. There is thus a definite suggestion that the four
daphnids corresponding to these cases may be outliers on the low side. That
is, those daphnids may be dwarfed, relative to their group averages, more
than could be expected of the most extreme of 63 deviations just due to
chance. To determine whether there is any statistical evidence that the
most extreme of these residuals is in fact an outlier we can test whether
the most extreme of 63 - 8 = 55 independently normally distributed random
variables with mean 0 and standard deviation 0.275 (as determined from
the straight line drawn to the majority of the values in FIgure VI.28) is
likely to exceed 0.8167 in absolute value. (The extreme length is 3.0000 mm
and the group average is 3.8167 mm.) Thus
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P [most extreme of 55 independent random normal deviates is greater than

0.8167 in absolute value] = 1 [P (-0.8167<X<0.8167)]
5 5

551 I-24D (0.8167/0.275) - 1)-.-

= I - [2D (2.9698) - 11 1 - (0.9970)55

= 1-0.85 = 0.15 j

T4

borderline. Let's consider the second most extreme residual. This residual

has value -0.7900.

P [second most extreme of 55 independent random normal deviates is greater i

than 0.79 in absolute value]

55
= 1- [P (-0.79 < X < 0.79)]55

- 55 [P (-0.79 < X < 0.791 5 4 [2P (X > 0.79))

= 1 - [2D (0.79/0.275) - 11 5 5

54
- 55 [2D (0.79/0.275) - 1] [2 (1 - D(0.79/0.275))1 = 0.02

Thus the second extreme residual is more highly statistically significant.

This suggests that there may be some physical reason underlying the extreme
values on the low side. Basic records should be checked by the investigator
to try to identify a reason. The proper action would depend on the physical
explanation. In the absence of such information we choose to regard these
observations as valid and carry out subsequent analyses incorporating them.
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VII. COMPARISON OF WATER CONTROL AND SOLVENT CONTROL GROUPS

A. INTRODUCTION AND BACKGROUND

The toxicant under study may not be water soluble or may be soluble only
at concentrations lower than those used in the test. In such a situation
the toxicant must be dissolved in a solvent to prevent it from precipitating
out of the water during the course of exposure. The substance under study
is thus a combination of the toxicant of interest and the solvent used.
The usual method of procedure is to prepare a relatively highly concentrated
toxicant-solvent solution and utilize successive dilutions with water to
arrive at the appropriate test concentrations. Thus the solvent is diluted
along with the toxicant among the various test groups.

The utilization and successive dilution of solvents complicates the
interpretation of toxic responses observed in a test. Since the solvent
and toxicant are paired and diluted together, there is no way to sort out
whether the observed effects are due to the toxicant, to the solvents, or
to the pair. There is really no way to infer, solely on the basis of tests
utilizing solvents, how the toxicant would act in the field in the absence
of a solvent. (Note that concentrations above solubility levels can occur
in the field due to effluents or spills.)

A partial solution to this dilema can be obtained by studying the effects
of the solvent alone. If the solvent by itself produces no toxic responses
at the concentrations utilized in the test, the assumption is made that any
toxic effects observed in the test can be attributed to the toxicant. This
assumption may or may not be valid in any given situation. The effects of
the toxicant and the solvent may superimpose upon one another or even inter-
act. The determination of the presence or extent of such joint effects
would require special studies and special statistical analyses.

Since data from tests to study joint solvent-toxicant effects are not
available and since exploration of this question is beyond the scope of this
project, we content ourselves with a much more limited treatment of the
problem. Namely, preliminary statistical tests are carried out to compare
the average survival, length, and reproduction responses between the solvent
and water control groups. If no statistically significant differences are
found then we act as if there are no differences and we pool data across
control groups. The combined responses are used for comparison with the
treatment group responses. If statistically significant differences are
found then treatment group responses are compared either just to the solvent
control group responses or else separately to both the water control group
and to the solvent control group responses. Although this is a commonly
used approach to dealing with this question, it leaves much to be desired
;ind raises a number of important conceptual issues.

190

......... . ~.. .. '.. .. ,*.*-.*.



S

First of all, the presence or absence of statistically significant
differences in responses between water and solvent control groups is not
the same thing as the presence or absence of biologically significant dif-
ferences in responses between these groups. Statistical significance is a
function of sample size as well as magnitude of effect. Thus the absence

of a statistically significant difference between those groups does not
imply that no difference exists. A biologically important difference might
be revealed with use of greater numbers of daphnids or beakers.

Secondly, if the solvent is shown to have an effect, as evidenced by
(statistically significant) differences between the solvent control group

and water control responses, then even greater conceptual issues arise.
Namely the toxicant effects and the solvent effects are confounded and
there is no way to sort them out. The interpretational problem is further
complicated if responses in certain treatment groups are significantly
(biologically or statistically) different from one control group response
but not from the other. Which comparison should be utilized? We side step
the problem in this report by comparing both to the solvent and the water
control groups if differences exist. We then note any differences in
conclusions. However this does not answer the fundamental question of
which comparison is more appropriate for regulatory or reporting purposes.
That question cannot be answered solely on statistical grounds based on
the test data available. Biological judgement must be used and/or additional

tests must be carried out to study the effects of the solvent by itself. For
our purposes we simply note the differences between the two control group
responses, carry out separate comparisons with each control group, and
remark that the results of the test are somewhat ambiguous. Any further
interpretation would require additional testing and/or biological judgement.

Among the data sets considered in this report, LeBlanc's Tests A and B
and Chapman's Beryllium Test utilize both solvent and water control groups.
As will be seen below, significant differences between the solvent and
water control groups in LeBlanc's Test A arise with respect to the survival,
reproduction, and length responses. Subsections B, C and D below pertain to
comparisons between the control groups in LeBlanc's Tests A and B and in
Chapman's test respectively.

B. LE BLANC TEST A

Survival

The mortality rates in the water control group (group 1) and in the
solvent control group (group 2) are compared by carrying out a 2 by 2 contin-
gency table test for homogeneity utilizing the BMDP program, BMDP1F. The
Pearson chi square test, with and without the continuity correction, and
Fisher's exact test are reported. Two tailed tests are used. The output
from these analyses is shown in Figure VII.l.

For the purpose of simplicity, analyses were first carried out based on
the original (i.e. unadjusted for beaker to beaker heterogeneity) responses.
If these comparisons show no differences, then comparisons based on the
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adjusted responses surely would not. If significant differences are found,
then we must redo the analyses after adjusting for beaker to beaker hetero-
geneity (based on the adjustments in Section V.)

We see from Figure VII.l that there was 15 percent mortality in the
water control group (12 of 80) and just 3.75 percent mortality in the solvent . -.

control group (3 of 80). Under the hypothesis of homogeneous mortality rates
in the two groups, the minimum expected cell frequency is 7.5, thus suggesting
that asymptotic theory is reasonable. The uncorrected chi square statistic
is significant at the a = 0.0146 level while the corrected chi square statis-
tic is significant at the a = 0.0300 level, in good agreement with Fisher's
exact test. There is thus statistical evidence of differences in mortality
rates between the two control groups, the solvent control group having a
more favorable rate than the water control group.

The above tests did not account for the presence of beaker to beaker
heterogeneity, which was shown in Section V to exist. From Table V.3 we
see that the effective sample sizes and numbers of responses in groups 1
and 2, after adjustment for the effects of beaker to beaker heterogeneity,
are:

Group Dead Live Total

1 8.8 50.4 59.2

2 2.2 57.0 59.2

11.0 107.4 118.4

2
The uncorrected chi square statistic is Xu = 4.37, which is significant
at the a = 0.041 level. The Yates corrected chi square statistic is
X2 = 3.14, which is significant at the a = 0.081 level. Since we associate
30 d.f. for error with each group (see Table V.3), the "chi square" statistics
are compared to the percentiles of an F-distribution with degrees of freedom
l and 60.

We thus conclude that there is statistical evidence of differences in
mortality rates between the water control and solvent control groups. The
solvent control group has lower mortality than the water control group.

Reproduction

The 21 day cumulative offspring per surviving adult in the water control
group (group 1) and in the solvent control group (group 2) are compared
either by carrying out a two sample, two tailed t-test or equivalently by
a one way analysis of variance with two groups. Output from the latter
analysis, utilizing the SPSS ANOVA procedure, is shown in Figure VII.2.
Recall that these responses are obtained for each beaker by accumulating
daily the total number of offspring produced on that day divided by the
number of daphnids alive on that dv.

192

;. "..... °.. . .-.... %...., .. .. '. .. ".•- . -. • - .-. . • . . .- .'.. °-. . , , - ., - .



The analysis in Figure VII.2 is carried out based on an error yardstick
calculated only from the results in the two control groups (and thus having
6 d.f.). On the basis of this analysis we see that there is very strong
statistical evidence of differences in production rates in these two groups.
The production rate in the solvent control group is about 50 percent greater
than that in the water control group. Thus unless there is some systematic
difference between the water control and solvent control daphnids either
with respect to biological hardiness or experimental handling, it appears
as if the solvent is associated with increased production.

Figure VI.3 shows the results of an analysis of variance fit to all the
groups. On the basis of this fit an error mean square of 460.345 with 21 d.f.
is estimated. This is somewhat greater than the mean square of 278.1667 with
6 d.f. estimated from the firt in Figure VII.2 (although not significantly
greater at a = 0.10). An additional test was carried out using the larger
error mean square. The difference between the production rates in the solvent
and the water control groups is still very strongly significant (a = 0.000).

Length

The 21 day lengths of the surviving adults in the water control group
and in the solvent control group are compared either by carrying out a two
sample, two tailed t-test or equivalently by a one way analysis of variance
with two groups. Output from the latter analysis, utilizing the SPSS
ANOVA procedure, is shown in Figure VII.3.

A basic difference between the length and reproduction responses, at
least for multiply housed daphnids, is that lengths are measured on a per
daphnid basis while reproduction is determined on a per beaker basis.
Thus comparisons of lengths could be carried out on a per beaker basis,
with one degree of freedom per beaker, or on a per daphnid basis, with

one degree of freedom per daphnid (there were a total of 145 surviving
daphnids in the two control groups). It was shown in Subsection IV.B
that there is strong statistical evidence of beaker to beaker variation
in lengths. Thus a per daphnid analysis would not be appropriate without
somehow adjusting for the beaker to beaker heterogeneity. A method for
carrying out such adjustments is discussed in Subsection V.D.

The analysis in Figure VII.3 is carried out on a per beaker basis,
based on an error yardstick calculated only from the results in the two
control groups (and thus having 6 d.f.). On the basis of this analysis
we see that there is very strong statistical evidence of differences in
average lengths in these two groups. The average length in the solvent
control group is greater than that in the water control group. Thus un-
less there is some systematic difference in hardiness or in handling
between the water control and the solvent control daphnids, it appears
as if solvent is associated with increased lengths.

A suggested variability estimate, for comparisons of average lengths
among groups, is discussed in Subsection V.D. The estimate is based on
the variability among beaker averages within groups (actually the mean

193



square between beakers within groups, as discussed in Subsection IV.B) with
degrees of freedom based on pooling information from the variability among

beakers within groups and the variability among daphnids within beakers.
The suggested variability estimate is MSI = 0.2722 with 98 d.f. This vari-

ability estimate is normalized to be on a per daphnid basis. In order to
apply to average lengths within beakers we must divide it by the sample size
within beakers. The average number of surviving adults per beaker in the
two groups is 145/8 = 18.125. Thus the error estimate, normalized to a per
average basis, is 0.2722/18.125 = 0.0150. (This compares with 0.0138 in
Figure VII.3.) An additional test was carried out using the alternative
error mean square with 98 d.f. Using this error yardstick yields the same
conclusions as in Figure VII.3, namely that there is very strong statistical
evidence (a = 0.0005) of differences in average lengths between the two
control groups.

C. LE BLANC TEST B

The comparisons between the solvent and water control groups are carried
out in the same manner as those discussed in the previous subsection for
LeBlanc Test A. The discussion here will thus be less detailed.

Survival

The mortality responses in the water control and in the solvent control
groups are compared by carrying out a 2 by 2 contingency table test for hetero-

geneity. Two tailed tests are used. The output is shown in Figure VII.4.

The analysis in Figure VII.4 is based on the original responses, unad-
justed for beaker to beaker heterogeneity. The conclusion, based on the
chi square test with or without correction or based on Fisher's exact test
is that there is no statistical evidence of differences in mortality rates
between the solvent and water control groups (a = 0.349). Since adjusting
for beaker to beaker heterogeneity would only increase the observed signifi- -.

cance level, it will not change our conclusions. This adjustment is thus
omitted.

Reproduction

The 21 day cumulative offspring per surviving adult in the water control
and solvent control groups are compared in the same manner as was done for
the Test A responses, utilizing either a two tailed t-test or a one way
analysis of variance test. The output appears in Figure VII.5. The
analysis in Figure VII.5 is carried out based on an error yardstick cal-
culated only from the results in the two control groups (and thus having
6 d.f.). On the basis of this analysis we conclude that there is no
statistical evidence of differences in production rates in the two groups.

Figure VI.6 shows the results of an analysis of variance fit to all
the groups. On the basis of this fit an error mean square of 461.786 with
21 d.f. is estimated. If we recalculate the F-ratio using this error
yardstick we obtain

F = 40.50/461.786 = 0.088
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When compared to an F-distribution with degrees of freedom 1 and 21, the
observed significance level is a = 0.770. Thus, the conclusions are
unchanged.

Length

The 21 day lengths of the surviving adults in the water control and
solvent control groups are compared by either carrying out a two sample,
two tailed t-test or equivalently by a one way analysis of variance with
two groups. Output from the latter analysis, utilizing the SPSS ANOVA
procedure, is shown in Figure VII.6.

It was shown in Subsection IV.B that there is strong statistical evidence
hof beaker to beaker variation in lengths. Thus the analysis in Figure VII.6

is carried out on a per beaker basis rather than on a per daphnid basis.
Using the error yardstick calculated only from the results in the two control
groups (and thus having 6 d.f.) we see that the average lengths in the two
groups are not statistically significantly different.

A suggested variability estimate for comparisons of average lengths

among groups, is discussed in Subsection V.D. The estimate is based on
the mean square between beakers within groups with degrees of freedom
based on pooling information from the variability among beakers within
groups and the variability among daphnids within beakers. The suggested
variability estimate is MSI = 0.2707 with 141 d.f. In order for the
variability estimate to apply to average lengths within beakers we must
divide it by the sample size within beakers. The average number of sur-
viving adults per beaker in the two groups is 139/8 = 17.375. Thus the
error estimate, normalized to a per average basis, is 0.2707/17.375 = 0.0156.
(This compares with 0.0173 in Figure VII.6). Using this error yardstick

j we obtain the F-ratio

F = 0.0372/0.0156 = 2.391

We compare this to the percentiles of an F-distribution with d.f. 1 and
141. The resulting significance level is a = 0.124. This is at most
marginal. There is thus a suggestion that the average lengths in the
water control groups are greater than those in the solvent control group,
but nothing conclusive. We will combine the responses from both control
groups in subsequent analyses.

It should be noted that the variability among beaker averages is signi-
ficantly greater (a = 0.04) in the solvent control group than in the water
control group. Figure 11.29 shows that the greater variability in the
solvent control group is due to a single beaker average which is somewhat
removed from the others in that group. Without this relatively high value,
the average length in the solvent control group would be substantially
lower than that in the water control group and there would probably be
a statistically and biologically significant differences between them.
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D. CHAPMAN - BERYLLIUM

Ten daphnids were placed on test in each group, one per beaker. Thus
the sample sizes in this data set are considerably smaller than those in

the LeBlanc data sets. Furthermore, since the daphnids were individually
housed, there is no question of beaker to beaker variation producing corre-
lated responses.

Survival

The mortality responses in the water control and in the solvent control
groups are compared by carrying out a 2 by 2 contingency table test for hetero-
geneity. Two tailed tests are used. The output is shown in Figure VII.7.

Because of the small numbers of daphnids per groups, the expected
frequencies are relatively small. Under the hypothesis of homogeneity, the

expected number of dead daphnids per group is 1.0. This raises questions
about the validity of the asymptotic theory on which the usual Pearson chi
square test is based. We see, in fact, that the observed significance
levels of Fisher's exact test (two tailed) and the chi square test with
correction differ considerably from the observed significance level of the
uncorrected chi square test. The conclusion, based on the chi square test
with correction or based on Fisher's exact test, is that there is no
statistical evidence of differences in mortality between the solvent and
water control group (a = 0.47).

Reproduction

Comparisons between water and solvent control groups are based only on
those daphnids that survived to the end of the test. There were ten sur-
vivors in the water control group and eight survivors in the solvent control
group. The daphnids that died early obviously present a distorted view of
total number of young produced and so their responses are not included in
this comparison. Total numbers of young per individual adult daphnid can
be determined for these data since the daphnids were housed just one to a
beaker.

The output from the comparison appears in Figure VII.8. The analysis in
Figure VII.8 is carried out by means of a one way analysis of variance with
two groups, based on an error yardstick calculated only from the results
in the two control groups (and thus having 16 d.f.). On the basis of this
analysis we conclude that there is no statistical evidence of differences
in production rates in the two groups. However the average production rate
in the solvent control group is about 18 percent higher than that in the
water control group.

Figure VI.12 shows the results of an analysis of variance fit to all the
groups. On the basis of this fit an error mean square of 2365.759 with 55
d.f. is estimated. This mean square is somewhat lower than that in Figure
VI1.8, based solely on the control groups. The plot in Figure 11.17 suggests
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that the control group responses are higher and more variable than the
treatment group responses. (However a two tailed F-test to compare the
error mean square in the treatment groups with that in the control groups
is nonsignificant (F = 1.71, a = 0.17)). If we recalculate the F-ratio
in Figure VII.8 using the error estimate in Figure VI.12 we obtain

F = 3240.00/2365.759 = 1.369

When compared to an F-distribution with degrees of freedom 1 and 55, the
observed significance level is a = 0.247. Thus, the conclusions are un-
changed.

Length

The 21 day lengths of surviving adults in the water control and solvent
control groups are compared by carrying out a two sample, two tailed t-test
or equivalently by a one way analysis of variance with two groups. Output
from the one way analysis of variance appears in Figure VII.9. The analysis
in Figure VII.9 is based on an error yardstick calculated only from the
results in the two control groups (and thus having 16 d.f.). On the basis
of this analysis we conclude that there is no statistical evidence of
differences in average lengths among survivors in the two groups. The
average lengths are virtually identical (4.28 mm in the water control
group and 4.275 mm in the solvent control group).

Figure VI.26 shows the results of an analysis of variance fit to all
the groups. On the basis of this fit an error mean square of 0.108 with
55 d.f. is estimated. This mean square is somewhat greater than that in
Figure VII.9, based solely on the control groups. (A two tailed F-test
to compare the error mean square in the treatment groups with that in the
control groups is significant at a = 0.04). Thus recalculating the F-ratio
based on the mean square in Figure VI.26 would not change the conclusions
arrived at based on the analysis in Figure VII.9.

E. SUMMARY

Three of the data sets under consideration contain both water and solvent
control groups. These are LeBlanc-Tests A and B and Chapman-Beryllium Test.

* Comparisons of the average survival, length and reproduction responses were
made between the two control groups in each of the tests. Statistically
(and perhaps biologically) significant differences were seen for all three .

• responses in LeBlanc's Test A, especially for reproduction and length. No
statistically significant differences were found for any of the responses
either in LeBlanc's Test B or in Chapman's Beryllium Test.

Based on the outcomes of these comparisons, in subsequent sections we
will base comparisons of treatment and control group responses on pooled
water and solvent control group responses in LeBlanc's Test B data and in
Chapman's Beryllium data and we will make separate comparisons with the
water control and with the solvent control group responses in LeBlanc's
Test A. The results of both sets of comparisons in LeBlanc Test A will be
reported. However this will not resolve the conceptual issues of inter- .-

pretation that were discussed in Subsection A.
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VIII. COMPARISON OF LENGTH AND REPRODUCTION RESPONSES

A. INTRODUCTION

A number of toxicologists have informally suggested that there is an
association between the lengths of adult daphnids and the numbers of off-
spring that they produce. If there is in fact a strong positive correlation
between these variables then perhaps it would suffice just to measure the
adult daphnids rather than to count their offspring. The latter task is
much more tedious and time consuming than the former and so the possibility
of being able to do away with measuring reproduction is attractive from
both the cost and work standpoint. However before suggesting this, we
would need to determine whether any information would be lost by relying
solely on length measurements.

Some individuals have even gone a step further (with tongue firmly
implanted in cheek?) and suggested that there is a strong association
between 7 day lengths and 21 day lengths, so that adult daphnids need only
be measured on day 7. Thus to carry matters to the extreme, life cycle
effects could be predicted by 21 day lengths and reproduction, which could
be predicted by 21 day lengths, which in turn could be predicted by 7 day
lengths! That would introduce wonderful economics of operation!

We limit the discussion in this section to briefly studying the associa-
tion between 21 day lengths and 21 day cumulative reproduction per survivor.
Subsection B contains scatterplots of the relations between 21 day lengths
and reproduction. Subsection C contains regression fits relating these
variables, plots of residuals from the fits, and inferences about the
predictability of cumulative reproduction based on lengths. Subsection D
contains a summary and conclusions.

B. PRELIMINARY SCATTERPLOTS

This subsection contains scatterplots that display the associations
between 21 day lengths and 21 day cumulative reproduction for LeBlanc's
Tests A and B and for Chapman's Beryllium Test. In both of LeBlanc's data
sets the daphnids were multiply housed, 20 to a beaker at the outset of the
test. Thus reproduction was determined on a per beaker basis and cannot be
associated with individual daphnids. By contrast lengths were determined
on a per daphnid basis and so can be associated with individual daphnids.
Thus the only comparisons that can be made in LeBlanc's data sets are on a
beaker basis. Namely 21 day cumulative production per surviving adult is
compared to 21 day average length among survivors, for each beaker. Of
course the reproduction and length values are not necessarily based on
exactly the same set of daphnids since those that died before the end of
the test influence the reproduction values but not the average lengths.
In Chapman's data the situation is better. Since the daphnids were housed
individually, 21 day cumulative production and 21 day length determinations
can be associated on a daphnid by daphnid basis.
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Figure VIII.l shows the relationship between 21 day cumulative reprodu-
tion per surviving adult and average 21 day lengths for LeBlanc's Test A.
Each point corresponds to a beaker and plotting symbol is the group number.
Note Lhat the results from group 7 have been excluded from this plot because
of high mortality. Two or more coincident points from different groups are
plotted as an asterisk. There is a definite positive association between
these responses. The trend appears approximately linear for higher length
values and flattens out for lower length values. There is a fair bit of
scatter about the general trend.

Figure VIII.2 shows the relationship between 21 day cumulative repro-
duction per surviving adult and average 21 day lengths for LeBlanc's Test B.
The plotting symbols have the same meaning as in Figure VIII.l. There is
no association between the two responses in this test.

Figure VIII.3 shows the relationship between 21 day cumulative repro-
duction and 21 day lengths for daphnids that survived to the end in Chapman's
Beryllium Test. Each point corresponds to an individual daphnid. Plotting
symbol is the group number. Two or more coincident points from different
groups are plotted as an asterisk. There is a rather strong positive
association between the responses, stronger than that in Figure VIII.I for
LeBlanc's data. The trend appears approximately linear for higher length
values and flattens out for lower length values. There is much less scatter
about this trend than about the trend in Figure VIII.l.

In order to enhance the straight line trend in the lower portion of
the plot, a logarithmic transformation of cumulative production was made.
Figure VIII.4 shows the relationship between logl0 (21 day cumulative
production) and 21 day lengths for daphnids that survived to the end of
the test. There now appears to be a straight line trend throughout the
entire range of length values, however the variability about the trend line
is greater for shorter daphnids than for taller ones. The strength of the
relationship is again very much greater than that in Figure VIII.l.

C. REGRESSION ANALYSES

Based on the appearances of the preliminary scatterplots in Subsection B
it appears that there is at least some association between length and cumula-
tive reproduction. To quantify the extent of this relationship, simple
linear regression models were fitted to predict production from length
in LeBlanc's Tests A and B and in Chapman's Beryllium Test and to predict
lOglo0 (production) from length in Chapman's Beryllium Test. The results of
these regression fits are shown in Figures VIII.5 to VIII.8.

The results in Figure VIII.5 show that there is a significant associa-
tion between length and reproduction but lengths explain just 29 percent
of the variation in production. Thus better than two thirds of the varia-
tion in production is explained by factors other than length. This and
the appearance of Figure VIII.I strongly suggest that 21 day average length
per beaker is not in and of itself a good predictor of 21 day cumulative
reproduction in Test A, although the two responses are related.
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The results in Figure VIII.6 and the scatterplot in Figure VIII.2
show no evidence of any association between 21 day average length per
beaker and 21 day cumulative mortality in Test B.

The results in Figures VIII.7 and VIII.8 and the scatterplots in
Figures VIII.3 and VIII.4 show moderately strong associations between 21
day length and 21 day cumulative production per daphnid in Chapman's
Beryllium Test. The regression in Figure VIII.8 explains nearly 60 percent
of the variability in logl0 (production). This is a much stronger associa-
tion than was the case in LeBlanc's tests. It is interesting to note that
the parameters of the regression model fitted to the Test A data in
Figure VIII.5 are quite similar to those fitted to the Beryllium data in

Figure VIII.7.

In summary, the degree of association is strongest in Chapman's test
and weakest in LeBlanc's Test B. The degree of association differs markedly
from test to test.

D. RESIDUAL DISPLAYS

Residuals are the differences between the observed values of the responses
and the values predicted by the regression model. The residuals reveal
systematic structure in the data that was not accounted for by the regres-
sion fit, departures from model assumptions such as lack of independence or
nonconstant variance, outliers in the data, associations with variables

not included in the fit, etc. Residuals can be studied by preparing
various typ~s of graphical and numerical displays that look for particular
types of structure. If the fitted regression model accounts for all the
systematic behavior in the responses, the residuals should resemble random
noise. Any systematic behavior observed in the residuals suggests that the
fitted regression model is not fully adequate to describe all the structure in
the data.

Plots of residuals versus predicted values, squares of residuals versus
predicted values, normal probability plots of residuals, and scatterplots
of residuals versus group number were prepared. Most of the plots did not
reveal any anomalies or departures from assumptions. However the plots of
residuals by group revealed some systematic structure in the data over and
above that explained by the regression model. These plots are shown in
Figures VIII.9 to VIII.II. If the lengths accounted for all the systematic
behavior in production then the residuals in these plots should be dis-
tributed randomly about 0 with no trends across groups. This is seen
not to be the case.

Figure VIII.9 displays the residuals from the regression fit in LeBlanc's
Test A plotted by group. Recall that the group 7 results were deleted
because of the very high mortality rate. A systematic pattern can be seen.
Namely there is a generally upward trend in the residuals as group number

increases from 1 to 5 and then a sharp drop in the residuals in group 6.
This suggests that average length decreases more rapidly than production

in groups 1-5 and production decreases much more rapidly than length in
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going from group 5 to group 6. Since group number is really a surrogate
for concentration level, this behavior suggests that toxicant concentration
impacts cumulative production in a manner that cannot be fully explained
by its impact on length. That is, concentration is associated with
production over and above the association of length with production.

Figure VIII.IO displays the residuals from the regression fit in
LeBlanc's Test B plotted by group. A systematic pattern is again evident.
There is a curvilinear trend in the average residual within groups, first rising
and then falling. This suggests that for lower concentrations length de-
creases more rapidly than productivity while for higher concentrations

productivity decreases mor rapidly than length. This again shows that
productivity is associated with concentration over and above its associa-
tion with length.

Figure VIII.II displays the residuals from the regression fit in
Chapman's test on beryllium plotted by group. A systematic trend is again
evident. There is a curvilinear trend in the average residual within groups,
first falling and then rising. This trend may be due to lack of fit of the
simple linear regression model or to effects of concentration on production
that are not reflected in effects on length. To assess whether there is
any systematic lack of fit in the simple linear regression relating length
and production, the residuals from this fit were plotted versus predicted
values (which are essentially proportional to length). The plot is dis-
played in Figure VIII.12.

To assess whether there is any systematic trend in the residuals, the
range of predicted values was subdivided so that there would generally be
10-20 points within each interval. The median of the residuals was cal-
culated in each interval and is indicated by the symbol 0. The trend in
these medians is characteristic of trends that reflect departures from
polynomial models. It is interesting to note that the trend in Figure VIII.II
mimics that in Figure VIII.12, although the extent of the dip in the group
means in Figure VIII.II is deeper than the dip in the medians in Figure
VIII.12. Thus at least part of the trend observed in Figure VIII.l1 might
be eliminated by adding quadratic or cubic terms to the regression in
Figure VIII.8 relating loglo (reproduction) and length. This should be
done to determine if it improves the fit and the residuals should be
recalculated. Since this path was not pursued, we cannot comment about
the extent to which the trend in Figure VIII.II reflects quadratic or
cubic effects in the regression relationship between length and loglo
(reproduction) or the extent to which it reflects effects of concentration
on production not associated with effects on length. Sorting this out will
await future work. However the nearly random appearance of Figure VIII.12
suggests that adding nonlinear terms to the regression model will not
markedly improve the strength of the fit. Thus most of the systematic
behavior in Figure VITI.l1 is probably due to effects of factors other
than length.
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E. INFERENCES BASED ON THE REGRESSION MODEL

The adequacy or inadequacy of a regression fit depends on whether
inferences of interest can be made with sufficient precision to be of

practical use. The natural type of inference to be made from a regression model
relating length and production is the prediction of expected production
given length. This might be in the form of a confidence interval on mean
production conditional on length or a prediction interval on the sample

average of say 10 daphnids, conditional on length. We consider the cal-

culation of 95 percent confidence intervals for various values of length.

We illustrate the procedure with Chapman's beryllium data. Let LPROD
denote log 10 (PROD). From Figure VIII.8 we determine that the fitted
regression model is

LPROD = 0 + 1I LENGTH - 0.15515 + 0.46306 LENGTH

Now the average length is 3.96508 mm. Thus the above equation can be

rewritten as
S^

LPROD = LPROD + 1 (LENGTH - LENGTH) = 1.9912 + 0.46306 (LENGTH - LENGTH)

Thus the standard error of LPROD is

^2 2 1/2
[o2/n + a (01) (LENGTH - LENGTH) ]I  (LPROD) =

2 1/2
[0.0241/63 + 0.0024 (LENGTH 3.9651)21

A 95 percent confidence interval on average LPROD is

LPROD + t(0.975; 61) o (LPROD) = LPROD + 2.000 o (LPROD)

We calculate predicted mean productions and 95 percent confidence intervals
for various values of length by exponentiating.

LENGTH PROD LWR 95 PCT CONF BND UPR 95 PCT CONF BND

3.00 35.02 27.67 44.33

3.50 59.68 51.98 68.54

4.00 101.72 92.92 111.34
4.50 173.35 149.12 201.52

4.75 226.30 185.53 276.03
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The upper confidence bounds are about 50 to 60 percent greater thanthe lower confidence bounds at the extremes of the range (i.e. 3.00 and

4.75 mm) and about 20 percent greater in the middle of the range (i.e.
4.00 mm). Such precision (or lack of precision) may be adequate for
assessing general trends in production with increasing length, but is
probably not adequate for using lengths as a surrogate response for produc-
tion.

F. SUMMARY AND CONCLUSIONS

We have studied the relationship between nroduction and length in three
data sets. We saw that the extent of association varied considerably in
the different tests. This suggests that no generalization can be made
about the association between these variables across tests. In some tests
they will be more strongly associated than in others.

Both prediction and length responses pertained to beakers in the LeBlanc
data sets but pertained to individual daphnids in the Chapman data set.
The degree of association between production and length was much stronger
in the Chapman data than in the LeBlanc data. This suggests that responses
should be collected on a per daphnid basis rather than on a per beaker basis
if the two variables are to be associated by regression models.

Just 21 day production and 21 day lengths were used in the regression
models fitted in this section. Perhaps better association could be attained
if increments of production were related to intermediate values of length

and changes in these values. Such an effort, involving perhaps 7, 14 and
21 day lengths and production, would be somewhat more complex than working
just with 21 day responses.
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IX. TESTING FOR CONCENTRATION RELATED EFFECTS ON MORTALITY

A. INTRODUCTION

After we have carried out preliminary graphical displays, tests for beaker
to beaker heterogeneity within groups, outlier detection procedures, and

adjustments to account for beaker to beaker heterogeneity we are ready to
proceed to the main portion of the data analysis. This involves comparing
responses across treatment groups to arrive at interferences about what
constitutes -in "acceptable" concentration. In this and subsequent sections
we discuss a number of hypothesis testing and estimation procedures to com-
pare the responses obtained in the treatment groups with those in the control
group(s). Comparisons are made for mortality, length and reproduction

responses. We first discuss comparisons of mortality rates across groups.

This section discusses a number of hypothesis testing procedures to

make inferences about which treatment groups are statistically significantly
different from the control group(s). The chi square test for homogeneity,
the measure of association tests based on various Goodman and Kruskal measures,
the Cochran Armitage test and extensions, and Williams' test are discussed
and illustrated. The chi square test is an overall, shotgun type test while

the other tests are one sided tests, tailor made to be sensitive to monotone
alternatives. They would thus be expected to be more sensitive than the chi

square test to the types of alternative hypothesis to be expected in aquatic
toxicity data.

The following sections discuss dose response curve estimation based on
probit models, inferences based on these fits, and confidence interval

inferences to compare treatment group and control group responses, based
either on unadjusted response rates or on response rates smoothed across
groups by fitting dose response curves.

As discussed in Feder and Collins [1], inferences based on hypothesis
testing procedures have several severe drawbacks. First of all they are
based on the notion of "statistical significance" and do not account at all
for "biological significance". The notion of statistical significance is
dependent on the sample size and on the variability of the responses as
well as on the magnitudes of the effects observed in the test. Thus effects
of considerable biological importance could be declared not statistically

significant if the sample sizes are too small or the variability of responses
is too great. Conversely, biologically trivial effects could be strongly

statistically significant if the sample sizes are very large.

Inferences based on dose response curves can take biological significance
into account by formulating the statistical problem as determining that
toxicant concentration that results in a 10 percent or a 25 percent,

etc. increase in mortality over the control group rate or a decrease of
0.5 mm or 1 mm, etc in average length as compared to the control groups, or
a decrease in production of 25 or 50, etc offspring per adult as compared
with the control group.
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Furthermore the effects of small sample sizes or variable responses
on estimates of "safe concentrations" are opposite depending on whether
tests of hypothesis or dose response curves are used as the basis of
making inferences. Namely if the "safe concentration" is defined as the
highest concentration whose response rate is not statistically significantly
different than the control group rate, then small sample sizes or variable
responses will result in not rejecting H for moderate differences between
treatment and control group responses. This, in turn, will produce an
increase in the reported "safe concentration". The smaller and less pre-
cise the toxicity test is, the greater will be the reported "safe concentra-
tion". By contrast, if the "safe concentration" is defined as the lower
confidence bound on that concentration which produces a given increase,
for example 10 percent, in mortality above the control group rate or a
given decrease in length or production as compared with the control group,
then small sample sizes or variable responses will result in longer con-
fidence intervals and therefore reduced lower bounds. This, in turn, will
produce a decrease in the reported "safe concentration".

Thus inferences based on the percentiles of dose response curves yield
more conservative estimates from toxicity tests with limited information
than from toxicity tests with ample information. Inferences based on tests
of hypotheses yield less conservation estimates from toxicity tests with
limited information than from toxicity tests with ample information.

Opinion: Inferences based on estimated percentiles of dose response
curves are more appropriate than those based on hypothesis tests because
they explicitly incorporate the notion of biological significance into
the reported value and because they yield more conservative estimates
from toxicity tests that provide limited information.

B. ADJUSTMENT OF DATA

Section V contains adjustment procedures to account for the presence
of beaker to beaker heterogeneity in mortality and length responses.
Mortality responses were adjusted by reducing the actual numbers of
responses and daphnids per beaker to effective responses and sample
sizes. Effective degrees of freedom were also calculated. Inference
procedures on lengths were adjusted for beaker to beaker heterogeneity
by carrying out inferences on a per beaker basis but augmenting the
degrees of freedom associated with error estimates by utilizing informa-
tion about the extent of variation in responses among beakers within
groups in relation to the variation among daphnids within beakers.

In this section we illustrate the use of various hypothesis testing
procedures on the mortality data from LeBlanc's Tests A and B and Goulden's
Isophorone Test. The adjusted sample sizes, numbers of responses, and
degrees of freedom for LeBlanc's Tests A and B are displayed in Tables V.3
and V.4, respectively. Goulden's isophorone mortality data show no evidence
of heterogeneity of responses within groups among the beakers with multiple
daphnids. Thus no adjustments are needed.
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C. SEQUENTIAL TESTS

The classical approach to carrying out overall tests of hypothesis is
to include all groups in the test statistic. If the test fails to reject
then conclude that there is no statistical evidence of concentration related
increases in mortality. If the test rejects then follow up with a multiple
comparisons procedure such as Dunnett's or Williams' procedures to determine
which treatment groups differ significantly from the control group and thereby
arrive at an MATC. This two part procedure can be combined into a single
procedure utilizing a sequential testing approach. This approach can be
applied for any test procedure. The test is first carried out using all
the treatment groups. If the test rejects the null hypothesis, the highest
treatment group is deleted and the test is repeated on the remaining groups.
No simultaneity adjustments are made. Each time the test rejects, another
group is deleted. This process is continued until the test no longer rejects.
The highest remaining treatment group is declared to be the MATC. If the
mortality rate is a monotone increasing function of concentration, then any
group for which the mortality rate is the same as the control rate has prob-
ability at most a (where a is the type I error level) of being declared signi-
ficantly different from the control group. This holds simultaneously for
all such groups. This is because any group with a mortality rate the same
as the control rate can be declared significantly different from the control
group only if the highest concentration group among those not different from
the control group is; this has probability at most a. The idea of carrying
out tests in a sequential manner was communicated to me by Dr. David Schoenfield.

D. CHI SQUARE TEST OF HOMOGENEITY ACROSS TREATMENT GROUPS

The most commonly used, although not the most appropriate, overall test
for differences in mortality rates across treatment and control groups is
the chi square test for homogeneity. It is analagous to the "shotgun"
analysis of variance F test for quantitative responses. It is not entirely
appropriate for testing homogeneity of mortality responses in aquatic
toxicity tests because the treatment groups have a natural ordering (i.e.
concentration level), the anticipated alternative may be of a particular
type (e.g. increased mortality), and the magnitude of response may be
monotone increasing or decreasing with increasing group number (e.g.
increasing mortality or decreasing average production with increasing
concentration). The chi square test is not designed to take any of this
structure into account. It is thus relatively inefficient compared to
other test procedures that are designed to be sensitive to such one sided,
monotone alternatives. Several such alternative tests are discussed in
later subsections.

The form of the chi square test is well known and is discussed in a
number of books, papers, and reports. Feder and Collins [1], Subsection
XI.B present expressions for the test statistic. Standard textbooks such
as Dixon and Massey [8], pp. 240-243 or Freund [91, pp. 287-290 discuss
the chi square test in detail and illustrate its application. The test
is implemented as a standard feature in most statistical computing systems.
For example, the procedure PROC FREQ in the SAS system (Barr et al [101) or
the program BMDPIF in the BMDP system (Dixon and Brown, [7]), can be used
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to carry out this test. The EXAX2 program (Feder and Willavize, [2]) will
also carry out the chi square test, using asymptotic or exact, small sample
theory depending on the magnitudes of the expected cell frequencies.

We present below applications of the chi square test of homogeneity
to the mortality responses in LeBlanc's Tests A and B and in Goulden's
Isophorone Test. In LeBlanc's Test A we carry out separate comparisons,
using the water control and using the solvent control groups as standards.

We carry out separate comparisons against the two control groups rather
than combining them because we demonstrated in Subsection VII.B significant
differences in their mortality rates.

Dl. LeBlanc Test A - Comparison With Water Control Group

We adjust for the effects of beaker to beaker heterogeneity within
groups by reducing the actual sample sizes and numbers of responses to effective

sample sizes and numbers of responses, as shown in Table V.3. Group 6 is
discounted more than the others due to the widely disparate mortality rates

among the four beakers. We pool the adjusted sample sizes across beakers
within groups and carry out the usual chi square test as if there was no
beaker to beaker heterogeneity. The estimated degrees of freedom for each
group is given in Table V.3 and so the pooled degrees of freedom is 30 x 5

+ 3 = 153. We should compare the "chi square" statistic to the
upper 95 percent point of five times an F-distribution with degrees of
freedom 5 and 153 rather than to a chi square distribution with 5 degrees 2
of freedom. Since the difference between the percentiles corresponding

to 153 d.f. and infinite d.f. is so minute, we ignore this adjustment.

Program BMDP1F would not accept the nonintegral "sample sizes" and

numbers of "responses" that result from the adjustment process. It trun-
cates all frequencies down to the next lowest integers. This program could

therefore not be used to compare adjusted frequencies across groups.
It should be noted that there is no theoretical reason for the program
to carry out such truncations.

The EXAX2 program does allow the use of noninteger "frequencies" and so
we used this program for the examples below. Figure IX.I contains the
results of the chi square test of homogeneity across groups for the LeBlanc
Test A 21 day mortality responses. The test is based on the adjusted

responses and sample sizes, as discussed previously. The water control
group is used for comparison purposes. Although the expected adjusted
frequencies in group 6 are less than 5.0, we base the test on asymptotic
chi square theory since most of the cell frequencies are rather large

and those in group 6 are moderate.

The observed chi square value of 177.63 (with 5 d.f.) is very highly

significant. It is quite clear that the response rate in group 7 differs
from those in the other groups. Perhaps the response rate in group 6 does

also.

We delete group 7 from the data and recalculate the test statistic.

Figure IX.2 contains the results of this test. The observed chi square

value is reduced to 9.47. The test, based on asymptotic theory, is
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marginally significant (a = 0.05 or a = 0.06 depending on whether the chi
square distribution with 4 d.f. or the F-distribution with 4 and 123 d.f.
is used for comparison). There is thus borderline statistical evidence
of differences in response rates among the groups. Based on the appearances
of Figures IX.2 and II.1, it is clear that the response rate in group 6
differs from those in the other groups.

The procedure could be continued by deleting group 6 and continuing.

However, based on the appearance of Figure II.1 and the significance level
in Figure IX.2, it is clear that the resulting chi square test would be
nonsignificant. The process was thus stopped at this point and group 5
was declared to be the MATC group.

D2. LeBlanc Test A - Comparison With Solvent Control Group

The data and the adjustments are the same as those discussed in para-
graph Dl except that the solvent control group (group 2) is used for com-
parisons in place of the water control group (group 1). The tests are again
carried out with the EXAX2 program. The results are similar to those
obtained by using the water control group.

Figure IX.3 contains the results of the chi square test of homogeneity
across groups for the LeBlanc Test A 21 day mortality responses, using the
solvent control group. The test is based on asymptotic theory. The ob-
served chi square value of 199.14 (with 5 d.f.) is very highly significant.
The response rate in group 7 differs from those in the other groups.

We recalculate the test statistic after deleting group 7 from the data.
Figure IX.4 contains the results of this test. The observed chi square
is reduced to 14.14. This is still very highly significant (a = 0.007).
Thus there is still strong statistical evidence of differences in response
rates among the groups. Based on Figures IX.4 and 11.1, it appears as if
the response rate in group 6 differs from those in the other groups.

We recalculate the test statistic once more after deleting both groups
6 and 7 from the data. Figure IX.5 contains the result of this test. The
observed chi square is now 2.99 with 3 d.f. which is not statistically
significant (a = 0.39). The process is thus stopped at this point and
group 5 is again declared to be the MATC group.

D3. LeBlanc Test B - Comparison With Combined Water and Solvent
Control Groups

The adjusted sample sizes and responses are shown in Table V.4. The
adjustment is very similar to that for the Test A data. Group 7 is dis-
counted more than the others due to the widely disparate mortality rates
among the four beakers. Since there was no statistically significant
differences between the mortality rates in the water and solvent control
groups, these two groups were combined into a common control group for the
purpose of comparison with the treatment group responses. Other than that,
the tests were carried out in the same manner as those for LeBlanc's Test A
data. In particular the tests were carried out using EXAX2 and asymptotic
analyses.
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Figure IX.6 contains the results of the chi square test of homogeneity
utilizing all the treatment groups and the combined control groups. The
observed chi square value of 27.13 (with 5 d.f.) is very highly significant.
The response rate of group 7 differs from those in the other groups.

We delete group 7 from the data and recalculate the test statistic.
Figure IX.7 contains the results of this test. The observed chi square
value is now 5.82 with 4 d.f. which is not statistically significant
(a = 0.21). The process is stopped at this point and group 6 is declared
to be the MATC group.

D4. Goulden Isophorone Test

Attention is confined to the three beakers per group containing multiple
daphnids (5 daphnids per beaker). It was shown in Subsection III.B that
there is no statistical evidence of heterogeneity among beakers within
groups for this test. Thus we do not adjust the sample sizes and numbers
of responses prior to pooling data across beakers within groups and carrying .1
out comparisons of response rates across groups. As there is just one 4 1
control group (group 1), there is no issue about the comparability of
results in water and solvent control groups. Other than those considera-
tions, the tests were carried out in the same manner as those for LeBlanc's
data from Tests A and B. In particular, the tests were carried out using
EXAX2 and asymptotic analyses. -J

Figure IX.8 contains the results of the chi square test of homogeneity
utilizing all the treatment groups and the control group. The observed
chi square value of 36.50 (with 5 d.f.) is very highly significant. The
mortality rate in group 6 is considerably higher than those in the other
groups.

We delete group 6 from the data and recalculate the test statistic.
Figure IX.9 contains the results of this test. The observed chi square
has been reduced to 14.17 (with 4 d.f.), which is still highly significant
(a = 0.007). The mortality rate in group 5 appears to differ from those in
the other groups.

We delete group 5 from the data and recalculate the test statistic.
Figure IX.IO contains the results of this test. The observed chi square
is now 1.78 with 3 d.f., which is not statistically significant (a = 0.62).
The process is stopped at this point and group 4 is declared to be the
MATC group.

E. ONE SIDED, MEASURE OF ASSOCIATION TESTS FOR ORDERED CONTINGENCY TABLES

The shotgun chi square test, although the most commonly used test of
homogeneity of response rates, is not the most appropriate test for applica-
tion to aquatic toxicity data. The reasons for this were discussed at the
beginning of Subsection D, above. Tests of hypothesis that are designed
to detect one sided, monotone alternatives are more sensitive to and thus
more appropriate for the kinds of alternatives relevant in aquatic toxicity
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tests. One approach to the construction of one sided tests is by means of
measures of association for ordered contingency tables. Goodman and Kruskal
[11,121 have derived and reported on a number of measures. Feder and Collins
[1], Subsection XI.C, discuss a number of these measures and inferences
based on them in some detail. Measures discussed there include Goodman
and Kruskal's gamma, Kentall's T Stuart's T and Somer's d.

These measures can be thought of as ordered contingency table analogs
of correlation coefficients for quantitive responses. However for a given
table each of these measures take on different values and so it is difficult
to ascribe physical meaning to any of the values. Thus we do not recommend
using the values of these measures as indicators of the strength of a toxi-
cant. However for each of the measures a value of zero means no monotone
association between group number and mortality rate. Positive or negative
values of the measures mean positive or negative associations, respectively.
It should be noted that, just as with correlation coefficients, a measure of
monotone association can be zero in the presence of a strong but nonmonotone
association. Thus these measures of association can be used to test null
hypotheses of homogeneity of mortality rates across groups against alterna-
tives of one sided, monotone trends. Procter [13] has shown that such

I tests are much more powerful against one sided, monotone alternatives than
is the shotgun, chi square test.

In order to use estimates of measures of association for statistical
inferences, it is necessary to know something about their distribution, in

particular their variability around the population value. Goodman and
Kruskal [12] derive asymptotic (normal) distributions of these estimates -

by means of the delta method and present asymptotic standard errors. Brown

and Benedetti [14] calculate improved standard error estimates for the
various measures, that are more appropriate studentizing factors for testing
the null hypothesis that those measures are zero. They show empirically

that their standard error estimates yield better approximations to the
nominal type 1 errors in small and moderate samples than do the Goodman and
Kruskal standard error estimates. Furthermore, a very interesting attribute
of the Brown and Benedetti standard error estimates is that even though each
of the measures of association in general have different numerical values,
the "t ratios" formed by normalizing the measures by their respective stan-
dard errors have identical values. Thus there is just one t-ratio associated

with all five measures (y, Tb , Tc, and two d's). This t-ratio can thus be
interpreted without ambiguity.

Brown and Benedetti report, based on a simulation study, that for sample
sizes in excess of 100, the "t-ratios" can be treated as normal random
variables for the purpose of tesf'.ng hypotheses about the significance of
the relation. For sample sizes, N, less than 50 they recommend comparing
the t-values to a t-distribution with approximate degrees of freedom 0.4N.
See the Brown and Benedetti paper for further details.

Feder and Collins empirically illustrate the increased sensitivity

to monotone alternatives, of the measure of association test relative

to the chi square test by applying both tests to several sets of artificial

data constructed to reflect mild, moderate, and strong trends. In each

case the measure of association test is much more highly significant. See

Feder and Collins for details.
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The measure of association tests have been incorporated in the BMDP
program, BMDPIF [7]. As remarked in the previous subsection, this program
will not accept nonintegral values for sample sizes and numbers of responses.
Thus this program cannot be used directly on the adjusted data values. An
indirect method of adjusting the test procedure for the presence of beaker
to beaker heterogeneity is to carry out the test on the original, unadjusted
values and then modify the estimated standard error upward and the t-ratio
downward by a factor reflecting the heterogeneity adjustments. Degrees of -'-

freedom would be based on the degrees of freedom arrived at in the adjust-
ment process. Consider for example LeBlanc's Test A data. There were
7 x 4 x 20 = 560 daphnids used in this test. The adjusted sample sizes,
numbers of responses, and numbers of degrees of freedom are displayed in
Table V.3. The adjusted number of daphnids is 6 x 4 x 14.8 + 4 x 1.45 = 361
and the adjusted number of degrees of freedom is 6 x 30 + 3 = 183. We thus
carry out the measure of association test based on the unadjusted frequencies,
inflate the estimated standard errors of the various measures by the factor
[560/36111/2 = 1.25 and reduce the calculated t-ratio by this same factor.
The resulting value is compared to a normal distribution. This indirect
adjustment procedure, while intuitively reasonable, has not been studied
theoretically. Its theoretical properties are therefore unknown.

We illustrate the application of Lhe one sided measure of association
test on the mortality data from Goulden's test on isophorone. Only the
responses from the beakers with multiple daphnids were used. Since there
was no statistical evidence of beaker to beaker heterogeneity within groups,
no adjustments were carried out. The responses were pooled across beakers
and comparisons among groups were based on 15 daphnids per group. The test
was carried out in a sequential manner, as discussed in Subsection C. The
results are shown in Figures IX.ll - IX.13.

Figure IX.ll displays the results of the chi square and measure of

association tests applied to all the data. Recall that the chi square test
is a two sided test whereas the measure of association test is a one sided
test. The chi square test statistic is compared to a chi square distribu-
tion with 5 d.f. and is seen to be very highly significant. The measure
of association t value is compared to a t-distribution with 90 x 0.4 = 36
d.f. The value, 5.730, is significant at a = 0.0000. Thus both tests show
strong statistical evidence of a concentration effect.

We delete group 6 from the data and recalculate the test statistics.

The results are shown in Figure IX.12. The chi square test statistic, with
4 d.f., is significant at a = 0.007. The measure of association t-value
is compared to a t distribution with d.f. 75 x 0.4 = 30. The value, 2.583,
is significant at a = 0.007. Thus both tests show strong statistical
evidence of a concentration effect and at about the same alpha level.

We now delete group 5 from the data and recalculate the test statistics.
The results are shown in Figure IX.13. The chi square statistic, with 3 d.f.,
is significant at a = 0.6195. The measure of association t-value is compared
to a t distribution with d.f. 60 x 0.4 = 24. The value, 0.472, is signifi-
cant at ri = 0.32. Thus neither test shows any statistical evidence of a
concentration effect. However the a-level for the one sided test is much
smaller than that for the chi square test, probably due to the increased
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mortality in group 4. The process is stopped at this point and group 4 is -

declared to be the MATC group. In this example the chi square and measure
of association tests arrive at the same conclusion.

F. TREATMENT GROUP VERSUS CONTROL GROUP PAIRWISE COMPARISONS--
WILLIAMS' TEST

A common approach to pairwise comparisons between the control group and

the treatment groups is with Dunnett's or Williams' procedures. Within each
group the observed frequencies are adjusted for beaker to beaker hetero-
geneity and then pooled across beakers. The response rate is calculated
based on the pooled data. For qualitative response rate data such as mor-
tality rates, an arc sin variance stabilizing transformation is carried
out on the response rate within each group and comparisons are based on

these transformed values. Dunnett's and Williams' procedures are discussed
in a number of references (15,16,17,18,19]. Feder and Collins [1] discuss
these procedures in Section XII. Chew [19] briefly describes Williams'
test and presents tables for its implementation.

Williams' procedure is to be preferred to Dunnett's procedure if the
mortality rate is a monotone increasing function of concentration, as it
takes account of this monotonicty and is thus more sensitive in detecting
weak to moderate trends. Williams [17], Section 4, compares the power of
his test (which he calls the t test) to that of a one sided t-test and to

Dunnett's test. The distribution theory is sufficiently complex, that
the power comparisons must be carried out by Monte Carlo methods when
there are three or more treatment groups. However Williams concludes on
page 113, based on the results of the Monte Carlo experiments, that "It
is evident...the superiority of the Y test over both the one sided t-test...
and Dunnett's one-sided test becomes more marked as k (the number of
treatment groups-P.F.) increases. There is no doubt that the Y test should
be used in preference to these two tests...".

We illustrate Williams' method with several examples based on analysis
of the 21 day mortality data. Consider first the 21 day mortality data
from LeBlanc's Test A and compare treatment group responses to those in
the water control group. We wish to determine which treatment group ex-
hibit significantly greater mortality rates than the water control group.
We adjust the sample sizes for beaker to beaker heterogeneity within groups,
as indicated in Table V.3. The degrees of freedom assumed is 30 x 5 + 3 =

153. The basic and transformed responses, pooled across beakers within

groups are:

Group (i) l(Control) 3 4 5 6 7

Sample Size (n.) 59.2 59.2 59.2 59.2 5.8 59.2

Response Rate (i) 0.15 0.125 0.086 0.088 0.50 0.988

2 Arc Sin pViP X, 0.79 0.72 0.60 0.60 1.57 2.92
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Since these estivaLes are not in monotone sequence they need to be adjusted.

^ ^ 0.79 + 0.72 + 0.60 + 0.60 0.68
1 3 4 5 4

M6  1.57, M = 2.92

We declare the group i response rate to be significantly different from

the control rate if

M. - > t (1/ni + 1/n1

The factors t can be obtained from Williams' tables (e.g. [181, Tables 1 and
3) corresponding to a = 0.05 or a = 0.01 and to v = 153. This yardstick
is based on the asymptotic approximation that the variance of 2 arc sin p
is 1/n. For simplicity, we use the values of t appropriate for equirepli-
cated treatment groups, even though the effective sample size in group 6
is somewhat smaller than those in the other groups. We use the cutoff
points corresponding to v = 120 d.f. and choose the 's sequentially,
corresponding to the number of treatment groups.

Group 7 versus Group 1: k = 5, M 7 - X = 2.92 - 0.79 = 2.13,

t + /nl)(2/5.2)1/2
t (1/n n = 1.772 (2/59.2) = 0.326.

Thus M 7 is significantly greater than X1 .

Group 6 versus Group 1: k = 4, M - X = 1.57 - 0.79 = 0.78,

t (1/n 6 + 1/n1) = 1.765 (1/59.2 + 1/5.8)

0.768. Thus M is significanly greater than

6

X (but just barely).

Group 5 versus Group 1: k = 3, M - X = 0.68 - 0.79 < 0. Thus M55 15

is not significantly greater than X
1,

We thus stop the process and declare group 5 to be the MATC group. This

result agrees with that previously arrived at based on the chi square
test for homogeneity.

We apply this same procedure to the 21 day mortality data from LeBlanc's
Test A, but comparing to the solvent control group rather than the water
control group. We again adjust the sample sizes based on the results in
Table V.3. The basic and transformed responses, pooled across beakers
within groups are:

234



Group (i) 2(Control) 3 4 5 6 7

Sample Size (ni ) 59.2 59.2 59.2 59.2 5.8 59.2

Response Rate (p.) 0.037 0.125 0.086 0.088 0.50 0.988

2 Arc Sin /'. E X. 0.388 0.72 0.60 0.60 1.57 2.92I

M. 0.388 0.64 0.64 0.64 1.57 2.92

M - x 1  0.25 0.25 0.25 1.18 2.53

Since the X.'s are not in monotone sequence they need to be adjusted to the
1

Mi's. The comparisons and yardsticks used are directly analagous to those
discussed previously.

Group 7 versus Group 2: k = 5, t (1/n7 + 1/n2)1/2 = 1.772 (2/59.2)1/2

0.326 < M 7 - XI. Thus M7 is significantly

greater than M2 .

1/2

Group 6 versus Group 2: k = 4, t (1/n6 + 1/n2) 1

1.765 (1/59.2 + 1/5.8) = 0.768 < M6- Xl" Thus

M 6 is significantly greater than M 2

Group 5 versus Group 2: k = 3, t (1/n6 + 1/n2)1/2 = 1.754 (2/59.2)1/2 -

0.322 < M - XI. Thus M is not significantly
5 1,5

different from M1 .

We thus stop the process and declare group 5 to be the MATC group. This
result agrees with that arrived at above based on comparisons with the
water control group. It also agrees with the MATC arrived at based on the

chi square test for homogeneity.

We now apply Williams' procedure to the 21 day mortality data from
LeBlanc's Test B, based on comparisons to the combined solvent and water
control groups. We adjust the sample sizes based on the results in
Table V.4. The basic and transformed responses, pooled across beakers

within groups are:

235. ..



Group (i) 0(Control) 3 4 5 6 7

Sample Size (ni) 115.2 57.6 57.6 57.6 57.6 8.96

Response Rate (pi) 0.13 0.049 0.063 0.163 0.099 0.626

2 Arc Sin VPi E X. 0.74 0.44 0.51 0.83 0.64 1.826

M. 0.608 0.608 0.608 0.735 0.735 1.826i

M - X0  -0.132 -0.132 -0.005 -0.005 1.086

We use the t values appropriate for equireplicated treatment groups, even
though the effective sample size in group 7 is smaller than those in the
other groups. Since the control group sample size is at least twice that
of any of the treatment groups, we utilize the adjustment suggested by
Williams [18, Section 2] to account for increased control group replica-

tion. Namely let c denote the control group sample size, let r denote
the average treatment group sample size, and let w = c/r. In our example
c = 115.2, r = 47.87, w = 2.41. Williams recommends adjusting t downward
to f - 10-2 B(I - i/w), where values of 8 are given in Table 1, corresponding

to k and v. We use v = 120 d.f.

Group 7 versus Control: k = 5, t (1/n7 + /n )1/2

1/2
1.743 (1/8.96 + 1/115.2) = 0.605 < M= XO.

Thus M 7 is significantly greater than M0."

Since all the other M.'s are less than X 0 , we conclude that M 6 is not signi-

ficanly different from M0 . We thus stop the process and declare group 6 to
be the MATC group. This result agrees with that previously arrived at
based on the chi square test for homogeneity.

As the final example in this set we apply Williams' procedure to the 21
day mortality from Goulden's Isophorone Test, using the data from the
multiply housed daphnids. There was no evidence of beaker to beaker hetero-
geneity so we carry out comparisons based on the unadjusted sample sizes.
The basic and transformed responses, pooled across beakers within groups

are:
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Group (i) l(Control) 2 3 4 5 6

Sample Size (n.) 15.0 15.0 15.0 15.0 15.0 15.0

Response Rate (pi) 0.133 0.067 0.067 0.200 0.533 0.867

2 Arc Sin X. 0.75 0.52 0.52 0.93 1.64 2.39

M. 0.60 0.60 0.60 0.93 1.64 2.39

M X -0.15 -0.15 -0.15 0.18 0.89 1.64

We use the t values appropriate for equireplicated treatment groups and

= 14 x 6 = 84 d.f.

Group 6 versus Control: k = 5, t (1/n 6 + 1/n1 ) 1/2 = 1.79 (2/15) 1/2

0.650 < M6 - X I. This M 6 is significantly

greater than M1 .

t +1/ 1)1/2 1/2
Group 5 versus Control: k = 4, t (1/n 5 + 1/n = 1.773 (2/15) 1 /

0.647 < M 5 - XI , Thus M 5 is significantly

greater than M

Group 4 versus Control: k = 3, t (1/n 4 + 1/n1 )1/2 = 1.762 (2/15)1/2 .

0.643 < M 4 - X. Thus M 4 is not significantly

greater than M1 .

We thus stop the process and declare group 4 to be the MATC group. This

result agrees with that previously arrived at based on the chi square test

for homogeneity.

In summary in all the examples we have considered, the chi square test

and Williams' test lead to the same conclusions about the MATC. This is

because there is generally either low mortality or high mortality observed,
with few groups falling in the middle of the dose response curve. In such

cases there are no borderline situations and so most reasonable test pro-

cedures will arrive at the same conclusion. This situation of course, does

not hold in general.
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G. ONE SIDED COMPARISONS BASED ON THE COCHRAN-ARMITAGE TEST

In the previous subsections of this section we have considered several
procedures to test for the presence of statistically significant differences
between treatment group and control group mortality rates. In Subsection D
we considered the overall, analysis of variance type Pearson chi square test.
In Subsections E and F we considered one sided tests that are designed to
be more sensitive to monotone alternatives. In this subsection we consider
a generalization of the chi square test, due to Cochran and Armitage, that
is also more sensitive to one sided, monotone alternatives.

The Cochran-Armitage test is appropriate when the experimental groups
possess an intrinsic ordering, such as is the case in aquatic toxicity

tests. A score is attached to each group, so that an ordered scale is
created. These scores are treated as predictor variables and the null
hypothesis of equal response probabilities across groups is tested against
an alternative of some type of trend of response probabilities with in-
creasing score. Let XO, XI, X2,..., Xk denote the scores assigned to the
control group and the k treatment groups. Let P0l P0 I''' Pk denote the
mortality probabilities in these groups. Then the hypothesis can be
expressed as

H0 : P0 = P1 = " =Pk

versus

H = + B X +  X2 + + 8 Xr

Cochran and Armitage chose the simplest type of trend, a straight line trend,
to test against but this test can be extended to polynomials of higher order.
Thus we will test H 0 against the alternative hypothesis

H1: i = + 81 Xi

This test has been described and illustrated in a number of references.
Snedecor and Cochran [20], Section 9.11, Steel and Torrie [21], Section 22.10,
Fleiss [22], Section 9.2, Cochran [23], and Armitage [24] discuss this pro-
cedure in some detail. In essence the homogeneity chi square with k degrees
of freedom is partitioned into a single degree of freedom component to test
for a straight line trend and a residual component with k-l degrees of
freedom to test for departures from linearity. The residual component can
be further decomposed, if desired, into quadratic components, cubic compon-
ents, etc. Expressions for the decomposition are given by Fleiss [22],
Section 9.2, Equations (9.17) - (9.26).

The Cochran-Armitage procedure can be carried out rather easily utilizing
any linear regression computer program with capabilities of performing weighted
least squares fits. Namely the regression model

P= + a1 X + Ei N(O, pq/n i )
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is fitted to the data. The Pi's are the observed mortality rates based on
an effective sample size of ni daphnids. The Ei's are independent variables,
representing the random variation with mean 0 and variance p/n i . The prob-
ability p is the common value of all the pi's under the null hypothesis
and = i-P. It is estimated by the total (effective) number of deaths
among all the groups divided by the total (effective) number of daphnids in
all the groups. Thus the weight, wi, for the i-th group is ni/pq.

This procedure was carried out using the BMDP polynomial regression
computer program, BMDP5R. See Dixon and Brown [7] for a detailed descrip-
tion of this program. Cubic polynomials were fitted rather then straight
lines, however the Cochran-Armitage test can be carried out based on this

output. The tests were carried out sequentially.

The chief objection to the Cochran-Armitage test and its generalizations
is the somewhat arbitrary assignment of scores. However Snedecor and
Cochran [20], page 246, report that moderate differences in the conclu-

systems usually would not produce substantial differences in the conclu-
sions from the analyses. We have used two sets of scores that seem

6natural-namely group indexes and logarithmic concentration. Since the
concentrations were selected to be approximately equally spaced in the
log domain, one would expect approximately the same results with both sets
of scores.

We present below applications of the Cochran-Armitage test to the
mortality responses in LeBlanc's Tests A and B and in Goulden's Isophorone
Test. In LeBlanc's Test A we carried out separate comparisons, using the
water control and using the solvent control groups as standards.

Gl. LeBlanc Test A - Comparison With Water Control Group - Scores
are Group Indices

We adjust for the effects of beaker to beaker heterogeneity within groups
by utilizing the sample sizes and numbers of responses shown in Table V.3.
The estimate of p is 88.1/301.8 = 0.292. The n4 's are 59.2 except for
group 6 and n6 = 5.8. The scores assigned to the groups are X, = 1,

X3 = 2, X4 = 3, X5 = 4, X6 = 5, and X7 = 6. Group 2, the solvent control
group, is excluded from the analysis.

We fitted a cubic polynomial with weighted least squares using weights
wi = ni/M, as described above. The output showing the details of the

straight line submodel fit and goodness of fit tests for the linear,
quadratic, cubic, and departures from cubic models is displayed in
Figur, IX.14. The estimate, 61, of the slope 6, is 0.15720 and appears
at the upper right of the figure. A standard error estimate, 0.06390,
appears to the right of , but this value must be modified before being

used. Namely the model fitted by the weighted least squares program is

Pi =0 + 61 Xi + Ei i N(O, 02 w i)
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22Under binomial theory, a 1 1. However the algorithm estimates a by the
residual mean square error, namely 2 = 17.66954 and incorporates a in all
the standard error estimates and thus in all the t-ratios. We normalize
the standard error estimate back to a=l by dividing it by a. Thus, under
binomial theory

1/2
std err (03) = 0.06390/(17.66954) 0.01520

The appropriate "t-value" is

t = 0.15720/0.01520 = 10.341

This value can also be calculated by multiplying the stated t-value by a.
Namely (2.46)(17.66954)1/2 = 10.341. To test H0 : 61 = 0 versus Hl: a, > 0
we compare t with the percentiles of a standard normal distribution. A

one tailed test is appropriate. Thus 61 is significant at the a = 0.0000
level and so we strongly reject HO .

The sums of squares at the bottom of Figure IX.14 can also be used to
test hypotheses about the homogeneity or trend in the pi's. The sum of
squares corresponding to degree 0 represents the variability explained by
fitting a cubic polynomial to the Pi'S over and above a constant term.
(Note that the entires in the column labeled "Sum of Squares" are to be used
for inferences rather than the entries in the column labeled "F" since under
binomial theory the residual mean square is known to be 1). The sums of
squares corresponding to degrees I and 2 represent the variability explained
by fitting a cubic polynomial to the Pi's over and above linear and quadratic
polynomials, respectively. The residual sum of squares represents departures
from a cubic polynomial. These sums of squares can be used to form various
test statistics:

Degree 0 + Resid = 176.964 + 0.670 f 177.634 with 3 + 2 = 5 d.f.

This represents the deviation from the model of homogeneous probabilities.
That is, it is the usual Pearson chi square statistic. We see that this
agrees with the chi square value obtained in subsection DI and is highly
significant.

Degree 0 - Degree 1 176.96388 - 70.00806 = 106.956 with 3 - 2 = 1 d.f.

This represents the variation explained by a linear trend term in the pi's.
This sum of squares is compared to the percentiles of a chi square distri-
bution with 1 d.f. and is highly significant. This test for linear trend
is essentially equivalent to the Cochran-Armitage test. Note that
(106.956)1/2 = 10.342, which agrees with the t value calculated previously,
except that it is a two tailed test rather than a one tailed test.

Degree 1 + Resid =70.00806 + 0.67011 =70.678 with 2 + 2 =4 d.f.

fhfs represents deviation from the model of straight line trends. It is
,l'Kh[v ;igntficant. There is thus evidence of departure from a straight

, rend. The above decomposition is that which is usually referred to
. t 1 t.4 2 = X2  + X2

tot slope linearity'
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Degree 2 + Resid = 5.96232 + 0.67011 = 6.632 with I + 2 = 3 d.f.

This represents deviations from a quadratic model. It is significant at
a = 0.08 and so represents just marginal suggestion of departure from a
quadratic trend. There is no evidence of departure from a cubic trend.

Since the Cochran-Armitage test is highly significant using all the
groups, we delete group 7 from the data and recalculate the test statistics.
The output appears in Figure IX.15. The meanings of the various estimates
are directly analogous to those in the previous figure and so need not be
explained again in detail. The weights need to be recalculated because
p is different than before.

The slope estimate, 8I, is now negative and very close to 0; namely

a1 = -0.00353. The standard error is 0.03189/(3.14541)1/2 = 0.0180. Thus
the t-value is

t = -0.00353/0.0180 = -0.196

which is nonsignificant.

The decomposition of the Pearson chi square statistic is

2tot = 8.733 + 0.742 = 9.475 with 4 d.f.

2
Xslope = 8.733 - 8.695 = 0.038 with 1 d.f.

2
Xlinearity 8.695 + 0.742 = 9.437 with 3 d.f.

The total chi square is marginally significant (a = 0.05). The slope chi
square is not significant. The departure from linearity chi square is
significant (a = 0.024). The departure from quadratic chi square is also
marginal (a = 0.07). We thus conclude that there is some statistical
evidence of departure from homogeneity, but the heterogeneity is not linear.
We see from Figure II.1 that the mortality rate is about constant in groups

1-5 and then increases in group 6. This is not a straight line trend,
especially since the group 6 responses are discounted so heavily relative
to those in the other groups.

Since the overall and the departure from linearity chi squares are
significant, we delete group 6 from the data and recalculate the test
statistics. The output appears in Figure IX.16.

The slope estimate is again negative and very close to 0; namely 81 =

-0.02247. The standard error is 0.00530/(0.08299)1/2 = 0.0184. Thus the
t-value is

t= -0.02247/0.0184 = -1.221

which is significant. (It is almost significant in the wrong direction.)

The total chi square is nonsignificant (a 0.35), the slope chi square is
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not significant (a = 0.22), and the departure from linearity chi square is
not significant (a = 0.92). The process is thus stopped at this point and
group 5 is declared to be the MATC group. This agrees with the results
from the chi square test and from Williams' test.

The tests that were carried out in the previous analyses were based on
the normal and the chi square distributions. A slight refinement of this
procedure would be to base these inferences on the t and F distributions,
using denominator degrees of freedom calculated from Table V.3. These
degrees of freedom are 153, 123, and 120 for the three sets of comparisons.
They are sufficiently large that use of the normal and chi square distri-
butions makes little difference.

The Cochran-Armitage test was recalculated using the solvent control
group for comparison instead of the water control group. The results were
similar to those above and are not shown. Group 5 was declared to be the
MATC group. The only difference in outcomes was that the Cochran-Armitage
test was significant (a = 0.04) after the data from group 7 were deleted.

G2. LeBlanc Test B - Comparison With Combined Water and Solvent Control
Groups - Scores are Group Indices

We adjust for the effects of beaker to beaker heterogeneity within groups
by using the sample sizes and numbers of responses shown in Table V.4.
Since there was no statistically significant difference in the mortality
rates in the solvent and water control groups, the responses in these two
groups were combined for comparison with the treatment groups. The estimate
of T for all the groups is 42.5/354.54 = 0.120. The ni's are 57.6 except
for group 7 and n7 = 8.96. The scores assigned to the groups are XI=I,
X2=1, X3=2, X 4=3, X5=4, X6=5 and X 7=6.

The models fitted are the same as those discussed for Test A, namely

cubic polynomials in the scores. The interpretations of the computer
printouts are also the same as those for Test A and so need not be explained

in detail.

The output showing the details of the straight line submodel fit and good-
ness of fit tests for the linear, quadratic, cubic, and departures from
cubic models is displayed in Figure IX.17. The slope estimate is Bi =

0.01744. The estimated standard error is 0.02761/(6.24926)1/2 = 0.0110"
Thus the t-value is

t = 0.01744/0.0110 = 1.579

Comparing t with the precentiles of the standard i..rmal distribution, we
see that t is marginally significant at (the one tailed) a = 0.057.

The decomposition of the Pearson chi square statistic is
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2
x = 15.394 + 12.097 = 27.491 with 3 + 2 = 5 d.f.
tot

2
Xslope = 15.394 - 12.900 = 2.494 with 1 d.f.

2
Xi= 12.9000 + 12.097 = 24.997 with 2 + 2 = 4 d.f.Xlinearity •ii-

The total chi square and departure from linearity chi square are not highly
significant. The slope chi square is at best borderline (a = 0.11), re-
flecting the marginally significant slope discussed above. Thus there is
marginal statistical evidence of departures from homogeneity of mortality
rates across groups. The sums of squares in Figure IX.17 suggest that the
trends in the pi's are reflected mostly in the quadratic component and in
departures from a cubic polynomial (e.g. fourth degree term?). We see from
Figure 11.3 that this behavior is due to the substantial increase in mortality
rate in group 7 after being relatively constant in groups 1-6. This re-
sembles either quadratic or quartic trend.

Since the Cochran-Armitage statistic is marginally significant, the
departure from linearity chi square is highly significant, and Figure 11.3
reveals a sharp upward trend in mortality rates at group 7 we continue the
process. We delete group 7 from the data and recalculate the test statistics.
The output appears in Figure IX.18. Note that the weights for this analysis
differ from those used before, since the estimate of P, based on groups 1-6
is 36.9/345.6 = 0.107. The models fitted and the interpretations of the
computer printouts are the same as before. The slope estimate is 1 =1
0.0000. The estimated standard error is 0.01552/(1.939)1/2 = 0.011. The

* t-value is of course 0. Thus there is no linear trend whatsoever in the
"- mortality rates in groups 1-6.

The decomposition of the Pearson chi square statistic is

2
= 5. 28888 + 0.52815 = 5.817 with 4 d.f.Xtot

2x slop e = 5.28888 - 5.28888 = 0 with 1 d.f.

2Xlinearity 5.28888 + 0.52815 = 5.817 with 3 d.f.

The total chi square and slope chi square statistics are each nonsignificant
(a = 0.21 and a = 1.0 respectively). The departure from linearity chi
square is perhaps marginal (a = 0.12). Breaking this chi square up into
quadratic, cubic, and residual terms we see that the cubic component domi-
nates the other two and is significant at the a = 0.04 level. This a
marginal level of significance and might simply be the result of selection.
Since there is a nonsignificant total chi square, no linear component to
the trend, a nonsignificant quadratic component (a = 0.28), a marginal
cubic component, and no monotone trend evident in Figure 1I.3, we conclude
that there is no discernible upward trend in mortality rates in groups 1-6 -

and we stop the process. Group 6 is declared to be the MATC group. This
agrees with the conclusions from the chi square test and from Williams' test.
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G3. LeBlanc Test B - Comparison With Combined Water and Solvent Control
Groups - Scores are Log (Concentration)

We repeat the analyses carried out in paragraph G2 above, but basing
group scores on log (concentration) rather than on group indices. Other-
wise everything else stays the same. The aim of this reanalysis is to
determine if the use of these two different sets of scores leads to different
conclusions.

The output showing the details of the straight line submodel fit and
goodness of fit tests for the linear, quadratic, cubic, and departures from
cubic models is displayed in Figure IX.19. The slope estimale is l
0.00743. The estimated standard error is 0.04346/(6.82295)1/2 = 0.0166.
Thus the t-value is

t = 0.00743/0.0166 = 0.447

This value of t is nonsignificant (a 0.33) based on the upper tail of the
normal distribution.

The decomposition of the Pearson chi square statistic is

2 = 20.171 + 7.320 = 27.491 with 3 + 2 = 5 d.f.
xtot
2 - -

x 2 20.171 - 19.972 = 0.199 with 1 d.f.slope

Xlinearity 19.972 + 7.320 = 27.292 with 4 d.f.

The total chi square and departure from linearity chi square are each highly
significant. The slope chi square is nonsignificant (a = 0.66). Comparing
Figures 11.3 and 11.4 we see that the linear trend is steeper when scores

are based on indices rather than log (concentration) since the control group
is then much less separated from the treatment groups. Based on the sums
of squares at the bottom of Figure IX.19 we see that the major components
of the departure from linearity chi square are the quadratic (x2 = 14.82)
and departure from cubic (X2 = 7.32). We see from Figure 11.4 that the
trend in mortality rates with increasing concentration resembles a quadratic
or a quartic curve.

Since the departure from linearity chi square is highly significant

and Figure 11.4 reveals a sharply upward trend in mortality rates at group 7
we continue the process. We delete group 7 from the data and recalculate
the test statistics. The output appears in Figure IX.20. The slope estimate
is now negative, a1 = -0.01111. The estimated standard error is 5 = 0.02170/
(1.78317) /2 0.016. The t-value is

t = -0.01111/0.016 = -0.684

This is nonsignificant (a = 0.75 is the one tailed level). Thus there is

no statistical evidence of linear trend in the mortality rates in groups 1-6.
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The decomposition of the Pearson chi square statistic is

2
2 5.817 with 4 d.f.Xto t •.

2
Xslope = 0.467 with 1 d.f.

2
X2inearity 5.350 with 3 d.f.

The total, slope, and departure from linearity chi squares are each non-
significant (a = 0.21, a = 0.49, and a = 0.15 respectively). The largest
component of chi square is the quadratic component (X2 = 2.524) which is
at best marginal (a = 0.11). Furthermore no monotone trend is evident in
Figure 11.4. We conclude that there is no discernible upward trend in mor-
tality rates in groups 1-6 and we stop the process. Group 6 is declared to
be the MATC group. This agrees with the conclusions from the chi square
test, from Williams' test, and from the Cochran-Armitage test using group
indices as scores.

G4. Goulden Isophorone Test - Scores are Group Indices

We consider a second data set to compare the results of applying the
Cochran-Armitage test with scores based on group indices to the results
with scores based on log concentration. We confine attention to the three
beakers per group containing multiple daphnids (5 daphnids per beaker).
Since there is no evidence of beaker to beaker heterogeneity within groups,
no adjustments of sample sizes were carried out. There is just one control
group.

The details of the straight line submodel fit and goodness of fit tests
are displayed in Figure IX.21. The interpretation of the entries in the
output are the same as those discussed previously for the LeBlanc data.
The slope estimate is Bl = 0.1486 and its estimated standard error is
0.04395/(2.36554)1/2 = 0.0286. Thus the t-value is

t 0.1486/0.0286 = 5.200

This value is very highly significant, based on the upper tail of the normal
distribution. The goodness of fit chi squares reflect the highly statisti-
cally significant linear trend component, as well as significant (a = 0.01)
departures from linearity. The trend in mortality rates is clearly evident
in Figure 11.8.

Since the Cochran-Armitage statistic and the depature from linearity
chi square are both highly significant and Figure 11.8 reveals a trend in
mortality rates, we continue the process. We delete group 6 from the data
and recalculate the test statistics. The output appears in Figure IX.22.
The slope has been reduced from 0.1486 to 0.0933 but this is still highly
significant. The t-value is 2.857, which is significant at the a = 0.002
level. The departure from linearity chi square is marginal (a = 0.11).
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Since the Cochran-Armitage statistic is significant and Figure 11.8
reveals a trend even after deleting group 6, we continue the process. We
delete group 5 from the data and recalculate the test statistics. The
slope estimate has now been reduced to 0.02 and is no longer significant
(a = 0.29). The departure from linearity chi square is also nonsignificant.
(a = 0.49). We thus stop the process and declare group 4 to be the MATC
group. This agrees with the results of the chi square test, the measure of

association test, and Williams' test.

G5. Goulden Isophorone Test - Scores are Log (Concentration)

We repeat the analyses carried out in paragraph G4 above using the same
data but with scores based on log (concentration). In particular since
the control group is at (nominal) concentration 0, we define the scores
to be log (1 + concentration).

The computer outputs corresponding to all the groups, group 6 omitted,
and groups 5 and 6 omitted are displayed in Figure IX.24, 25, and 26
respectively. Based on all the data, both the Cochran-Armitage test and
the departure from linearity chi square test are significant (a = 0.01,
a= 0.0000 respectively). After deleting group 6, both these statistics
are still significant (a = 0.025, a = 0.0002 respectively). After
deleting groups 5 and 6, neither of these statistics are significant

(a = 0.41, a = 0.18 respectively). We thus stop the process at this point
and declare group 4 to be the MATC group. This result agrees with that
obtained based on using the group indices as scores and with those obtained
based on the chi square, measure of association, and Williams' tests.

In summary we have illustrated the Cochran-Armitage test and generaliza-
tions on three data sets. On two of the data sets we used scores based
both on group indices and on log (concentration). While there were some
relatively minor differences in detailed results, both sets of scores led
to the same conclusion about the MATC group in both data sets. This suggests
that the results of the Cochran-Armitage procedure are not too sensitive to
moderate differences in scores, such as in the two sets we used. Thus the

Cochran-Armitage test appears to be a reasonable procedure to use for the

comparison of mortality rates in chronic daphnia tests. This matter needs
further empirical or theoretical study utilizing a number of other data
sets and choices of scores.
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X. DOSE RESPONSE CURVE ESTIMATION-PROBIT ANALYSIS
OF MORTALITY RATES

A. INTRODUCTION. DOSE RESPONSE CURVE ESTIMATION VS HYPOTHESIS TESTING.
DESCRIPTIONS OF MODELS

An alternative approach to hypothesis testing and multiple comparisons
for the determination of acceptable concentrations with respect to mortali-
ty is through fitting dose response models to the mortality data and
estimating the concentrations, CL, which result in incremental mortality of
at most L over and above the background level. The problem of determining
a safe concentration has been transformed from a hypothesis testing problem
(determine which treatment group mortality rates are statistically
significantly different from the control rate) to an estimation problem
(obtain point estimates of and confidence intervals on CL).

The hypothesis testing and dose response curve estimation problems are
conceptually different and have different implications. A number of these
differences were discussed by Feder and Collins [1], Section XIV.
Hypothesis testing procedures provide information as to whether treatment
group responses are statistically significantly different than control
group responses. They say nothing about biologically significant
differences. Namely the differences between treatment group and control
group mortality rates may be highly statistically significant but yet
biologically trivial, if the sample sizes are great enough. Conversely,
biologically important differences may not be supported as being
statistically significant if the sample sizes are too small. By contrast,

dose response curve estimation procedures estimate those concentration
levels that produce biologically significant changes in response.
Biological significance is quantified by stating the increments from
control rates that are considered to be important--for example 10 percent,
25 percent, etc., increases in mortality. Point and confidence interval
inferences about concentrations associated with such differences are then

constructed.

An additional conceptual difference between the two types of procedures
is reflected in the effects on inferences of changes in sample sizes. With
the classical hypothesis testing formulation the larger and more precise
the experiment the more powerful will be the hypothesis test. Thus lower

concentration levels will yield responses that are statistically signifi-
cantly different then the control group response. The MATC will be
decreased. Conversely the smaller the experiment is and the more variable
the responses are, the greater will be the MATC. The effects of increased
sample sizes and precision on inferences based on dose response curves are
exactly the opposite. The larger and more precise the experiment, the

tighter will be the confidence bounds on CL (the concentration associated
with an incremental response of L). Thus the lower confidence bound on CL
will be increased.
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We feel that the latter situation is as it should be. The more
extensive and the more precise the supporting evidence, the more liberal
should be the determinations of safe concentration. Thus inferences about
acceptable concentrations based on dose response curves depend on sample
size in the manner they should whereas inferences based on hypothesis tests
depend on sample size in a manner opposite to what they should.

Feder and Collins [1] discuss these conceptual differences at greater
length. They illustrate a number of different dose response models and
computer programs for fitting such models. In particular they illustrate
probit models to describe trends in mortality rates with increases in
either concentration or log (concentration). See Sections XIV, XV, XVI of
Feder and Collins for details. Some of the topics discussed in those

sections include:

* Fitting probit models in concentration or log concentration using
the special purpose probit analysis module, PROC PROBIT, in the SAS
statistical computing system [10].

. Fitting probit and logit models in concentration or log concentra-
tion using the general purpose SAS nonlinear regression model, PROC
NLIN.

0 Fitting adjustments for background mortality using Abbott's
correction and alternatives.

0 Fitting nonparametric dose response models that yield conservative
lower confidence bounds on safe concentrations without assuming
specific parametric forms for the response curve.

In this section we discuss fitting three parameter probit models to the
21-day mortality responses, using either concentration or log concentration
as the independent variable, as appropriate. Background mortality is
accounted for by Abbott's correction. See Finney [41 for a detailed
description of this model and associated inferences.

Feder and Collins [1] discuss the tradeoffs involved in not adjusting
for background mortality. That is, a two parameter probit model,
incorporating the assumption of zero background mortality, could be fitted
to the data. If background mortality is in fact present, then the
estimated mortality rates based on these two parameter models would be
biased downwards toward zero, especially at the low mortality end of the
curve. However the standard errors of the estimates there would be
reduced. Therefore if the background mortality is in fact nonzero but is
not too far different from zero, the resulting increased precision might
more than offset the downward biases, thus resulting in more accurate
estimates.

This suggests that a special study should be made to determine how
large the estimates of background mortality would need to be before

background adjustments would be called for. The greater the quantity and
the more precise the data, the less background variation that could be
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tolerated before background adjustments were needed. In the absence of the
results of such a detailed study, we have adopted here the somewhat
arbitrary rule that if the estimated background mortality rate parameter in
a three parameter probit fit is significantly different from zero at the 5
percent level, then we will retain it in the model, thereby adjusting for
background.

The background mortality rates in the various data sets we have looked

at are generally fairly high, often in excess of 10 percent. In the
combined vehicle and water control groups in LeBlanc's tests A and B, 15 of
160 and 21 of 160 daphnids died, respectively. In Adams' test, 1 of 15
control daphnids died. In Chapman's test, 2 of 20 control daphnids died.
In Goulden's test, 2 of 15 of the multiple housed control daphnids died.

We fitted three parameter probit models to the 21-day mortality data
from LeBlanc's tests A and B and from Goulden's isophorone test. In each
case the background rate was significant at the 5 percent level; we thus
retained these corrections for background.

All probit fits were carried out using the general purpose BMDP non-
linear regression program, BMDPAR. See Dixon and Brown [71 for a detailed
description of the computer program. See Jennrich and Moore [251 for a
discussion of the theory underlying the use of nonlinear regression methods
to perform maximum likelihood probit analysis fits. Although using
nonlinear regression programs to fit probit dose response models is a bit
more fussy than using special purpose probit analysis programs, there are a

number of advantages to this approach. These include:

* Program availability. A user may not have a special purpose
computer program accessible that will fit three parameter probit
models. In particular, SAS PROC PROBIT is available only to SAS

users. By contrast, any nonlinear regression program with the
capability of calculating weighted least squares fits with
iteratively recalculated weights can be used to fit probit models in
the manner discussed in this section.

e Flexibility of models. Various functional forms 8ach as probit,
logit, or generalizations of these such as discussed by Prentice
[26] can be specified. Transformations of concentration such as
logarithm, square root, etc., can be specified. Alternatives to
Abbott's correction for background can be specified (see e.g., Feder
and Collins [1], Section XV), such as specifying background as an
effective addition to the toxicant concentration. Centering and
scale constants can be included in the models to reduce correlations
among model terms and to improve the numerical convergence
properties. Dose response curves resulting from different
experiments oin be compared with one another.

o Enhanced residual analysis capability. Predicted and residual
values can be saved and further studied with subsequent statistical
analyses and data displays.
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We have fitted standard three parameter probit models with either
logarithmic (common logs were used) or untransformed concentration levels.
These models can be expressed as

p(conc)=PO+(1_po) P( O+ 1(z-m)) ..

where po,p(conc) are the response rates at concentrations zero and "conc"
respectively, z is either "conc" or log 10 (conc), m is a fixed centering
constant to reduce the correlation among model terms and thereby improve
convergence, D(.) is the normal c.d.f., and PO,6O, I are unknown parameters
to be estimated from the model fit to the data.

An alternative adjustment for background mortality would be the model

p(conc)=,(a 0+ 1log 10 (conc+c))

where p(conc) is the response rate at once, c is the effective additive
background concentration, and ao,al,c are unknown constants to be estimated
from the model fit. We decided not to use this alternative functional form
because the shapes of the concentration-response relations displayed in
Figures II.1-II.10 do not reflect this behavior. The wide range of
concentrations at the low end of the mortality curve with nonzero but
essentially constant mortality contradict the relationship that an additive
background concentration would predict. We thus confined attention to
Abbott's correction for background; however the alternative model would be
no more difficult technically to specify and fit then the standard probit
model.

Beaker-to-beaker heterogeneity within groups was accounted and adjusted
for by reducing the actual sample sizes and numbers of responses to
effective values, as discussed in Subsection VB, and carrying out subsequent
analyses using these adjusted values. If desired, the t and F distributions
with degrees of freedom based on those given in Tables V.3, V.4 might be
substituted for the normal and chi square distributions when making
inferences from the probit fits. However for LeBlanc's data sets these
degrees of freedom are sufficiently large that the substitution would
produce no differences of practical importance.

B. MAXIMUM LIKELIHOOD PROBIT ANALYSIS BY NONLINEAR LEAST SQUARES
REGRESSION

Jennrich and Moore (25] show that for distributions in the exponential
family, maximum likelihood estimation can be carried out by means of
nonlinear least squares regression. This applies, in particular, to models
based on the binomial distribution. Both BMDP [71 (P3R and PAR) and SAS
[101 (PROC NLIN) contain nonlinear regression modules that can be used to
fit various dose response curve models. Any nonlinear regression program
with an iteratively reweighted least squares capability would suffice.
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We fit the three parameter probit model discussed in the introduction,
namely

p(conc)=pO+(1-pO)(3O+ 3
1(z-m))

where z is conc or log 10 (conc) and m is a fixed centering constant. The
theory underlying the fit is discuF'ed in general by Jennrich and Moore
[251 and specifically for the probit model by Feder and Collins [11,
Section XV. We discuss the details of the model fits and the resulting
estimates below. We consider fits to the 21-day mortality responses from
LeBlanc's Tests A and B and Goulden's Isophorone test. Under the
assumptions of the nonlinear regression model, the dependent variable, Xi,
has mean ui(e) and variance a2 (e), where e=(po, o, 1 ), Ni is the effective
sample size in the i-th group, and

pi(0):Pi(0)=p(conci)

2Gi(0)=Pi(0)(1-Pi(e))/Ni

We now consider the details of the fits to each of the lata sets in turn.

LeBlanc Test A - Solvent Control Group - Logarithmic Concentration

We first discuss the details of the model fitting procedure using
BMDPAR. (We used this program rather than BMDP3R because with BMDPAR we do
not need to specify the functional forms of the derivatives of p(6)). The
BMDPAR program commands needed to generate the fit are given below. See
the BMDP manual [7], pp 484-514 for further details. Various lines in the
program command file are numbered. These numbered lines are explained
further below.

Line I instructs the computer system to list the basic data prior to
analysis.

Lines 2 attach the appropriate BMDP program and instruct it as to
where the data are to be found. Note that the systems instructions above
this point pertain only to CDC systems and undoubtedly differ at other
installations.

Lines 3 are the basic input data. The four variables represent group
number (one control and five treatment groups), concentration, effective
sample size, and effective number of responses.

Lines 4 are a FORTRAN subroutine that specify the form of the dose
response function and the form of the caseweights for the least squares
fits. In this example, F is the probit dose response function, PHI is the
standard normal c.d.f., and X(6) is the caseweight which is I/a(6).

Lines 5 are standard BMDP control language commands which specify the
source, form, identifiers, and desired transformations of the data. In
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this example the centering constant, m, is denoted as ZBAR and is set equal
dto -2.113.

Lines 6 and 7 specify the dependent variable , P, and the weight
variable, CASEWT. The observed P corresponds to the predicted F in the
subroutine. The variable CASEWT is identified with X(6) in the subroutine.
X(6) and F are evaluated for each case, for every iteration in the fitting
procedure.

Line 8 is a technical fine point which instructs the fitting algorithm
to find a stationary point rather to minimize the residual sum of squares.
These two objectives differ because of the weights that depend on the
unknown parameters. The distinction corresponds to the theoretical dis-

btinction between a maximum likelihood estimate and a minimum chi square
estimate. While of theoretical interest, this detail is not of too much
practical importance and so will not be pursued further. See the BMDP
manual [71 or Jennrich and Moore [25] for further discussion.

Line 9 tells the program that the variances as specified in the model
should be used for the calculation of the standard errors. More precisely,
we specified caseweights equal to I/ai(e), or equivalently variances of the
dependent variable equal to ao(O). However the least squares algorithm
usually assumes that the variances are kai(p) where k is estimated from the
residual mean square. The command in line 9 instructs the program to set k
equal to 1.

Line 10 specifies the initial parameter values with which to start the
iteration. These values are often estimated from a preliminary analysis or
graphical display of the data. In this case they were based on the last
set of parameter values from a previous run (not shown) which did not
converge. The previous run was started with initial values based on

ON graphing the data.

Line 11 specifies that observed, predicted, and residual values are to
be plotted vs concentration and log concentration.

The output from these commands appears in Figures X.1 to X.4. Figure
X.1, top, contains summary information about the problem specifications and
input variables. The second portion of the figure contains the summary
results of the iterative Gauss-Newton procedure. For each iteration the
(weighted) residual sum of squares and updated parameter values are shown.
The algorithm converges to a stationary point after 20 iterations. At this
point, incremental changes in the residual sum of squares function are
essentially zero. Thus this point corresponds to the maximum likelihood
estimates. Note that this point does not minimize the residual sum of
squares function, which was smaller at the starting values. This fine
point was discussed in the introduction. The bottom portion of the figure
contains statistics based on the model converged to. Parameter estimates
are given for the three parameters in the model. Namely, Po=0. 083, ,0=-
-2.521, i=8.108. The fitted model is
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['.1

p(conc)=PO+(1-P0)D( 0+ 81(log10(conc)+2.113))7j

The estimated asymptotic standard errors of the parameter estimates are
given beneath the estimates. These values are used for inferences.

Figure X.2 contains, for each case, the observed, predicted and
residual values based on the fit. Also given are the estimated standard
errors of the predictions and the values of the various input variables for
that case. The plots in Figures X.3 and X.4 show good agreement between
observed values and predictions based on the model. The greatest
discrepancies occur at the control group and at the lowest concentration
group, where the observed responses are most ragged. However even here,
the discrepancies are not large.

The residual sum of squares is 3.01107 with 3 degrees of freedom. This
value represents the chi square statistic for goodness of fit of the model.
If the model fits the data then this statistic should have a chi square
distribution with 3 d.f. Alternatively, using the residual degrees of
freedom, 153, calculated from Table V.3 we might compare the residual mean -

square to the percentiles of the F-distribution with 3 and 153 degrees of
freedom. The upper 90 percent point of the chi square distribution with 3
degrees of freedom is 6.25. There is thus no evidence of lack of fit.

An important purpose of fitting the probit model is to calculate point
and confidence interval estimates of acceptable concentrations. Feder and
Collins 111, Section XV, present a method of calculating approximate
confidence intervals by means of Fieller's Theorem (Finney [41, pp 78-79).
We present below an alternative method of calculating approximate
confidence intervals by means of the delta method (Cramer [271, pp 366-
367). We wish to calculate a point estimate and confidence interval on the
concentration, CL, such that (0+a1(log10CL+2.113))=L, where L is some
specified incremental response rate over and above the control rate (e.g.,
L=0.05, 0.10, 0.25, etc.). L represents the response rate attributed to
toxicant (over and above background level).

Let ZL=l0g10CL+2.113. We first calculate point and confidence interval
estimates of zL, and then translate them into corresponding estimates of
CL. The point estimate, zL, is

Let t denote the estimated asymptotic variance-covariance matrix of
0 0,9I). Then

Var(zLW=-I/B1i 2-f )

An approximate 1-a confidence interval interval on zL is

Z L + E /2 [Var6z) 01 (t,u)

where E,/2 is the upper a/2 percentile of the standard normal distribution.
The theoretical justification of these expressions is given in Appendix AX.
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The values of are obtained from the BMDPAR output, in particular
from Figure X.l. The corresponding estimate and confidence interval for CL
is

CL:10L-2 .113 and CL e (lo-2.113,10u-2.113)

For the LeBlanc Test A solvent control data, A0=-2.52089,B 1=8.27337

= 1.20098 0)( .0000 -0:9546)( .20098 0(i 1.4235 -2.85541

0 2.49065)0.9546 1.0000/ 0 2.49065)=2.8554 6.2033)

The results of the calculations are given below.

LeBlanc Test A - Solvent Control Group-Point Estimates and
95 Percent Confidence Intervals on Various Percentiles of

the Probit Fit--by Delta Method

lower upper
conf conf

L fL -1 (L) ZL 1 u CL bound bound

0.05 -1.645 0.1059 -0.1198 0.3315 0.0098 0.0059 0.0165

0.10 -1.282 0.1497 -0.0522 0.3516 0.0109 0.0068 0.0173

0.25 -0.674 0.2232 0.0597 0.3868 0.0129 0.0088 0.0188

0.35 -0.385 0.2582 0.1118 0.4045 0.0140 0.0099 0.0196

0.50 0.000 0.3047 0.1797 0.4297 0.0155 0.0117 0.0207

These results show that the dose response curve rises very rapidly between
the estimated 5th and 50th percentiles. In fact the upper confidence bound
on C-05 exceeds the estimate of C5 0 . Thus dose response curve perecentiles
with very different biological implications cannot be well separated based
on the results of this test.

We carried out similar analyses using the water control group rather
than the solvent control group. The three parameter probit model fitted to
logarithmic concentration again fitted the data well. The details of the
fit are not shown, however the estimated background mortality rate is 0.117
(with a standard error of 0.021) as compared to 0.0831 (with a standard
error of 0.018) based on the solvent control group. These adjusted
background mortality rates are not significantly different (statistically or
biologically).

The results of the percentile estimates and confidence interval calcula-
tions are given below.
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LeBlanc Test A - Water Control Group-Point Estimates
and 95 Percent Confidence Intervals on Various

Percentiles of Probit Fit

lower upper
conf conf

L fL (D-1 (L) CL bound bound

0.05 -1.645 0.0103 0.0062 0.0172

0.10 -1.282 0.0114 0.0072 0.0180

0.25 -0.674 0.0134 0.0092 0.0194

0.35 -0.385 0.0144 0.0104 0.0201

0.50 0.000 0.0160 0.0120 0.0212

The results are the same, for practical considerations as those based on the
solvent control group. Thus even though the unadjusted mortality rates in
the water and solvent control groups are (statistically) significantly
different, the estimates of dose response curve percentiles are virtually
unaffected.

LeBlanc Test B--Combined Control Groups

We now consider the results of fitting the three parameter probit model
to the 21-day mortality results from LeBlanc's Test B. The results in the
water and solvent control groups were combined and used for comparison
purposes. The measured concentration levels in these two groups were
averaged. Effective sample sizes and numbers of responses, as shown in
Table V.4, were used in the analysis.

We first attempted to fit a probit model using logarithmic concentra-
tion. The results are shown in Figures X.5-X.7. The algorithm would not
converge when the increment halving option was removed. Thus the values
converged to are not strictly maximum likelihood estimates. However the sum
of squares is nearly at a stationary point and the parameter estimates have
settled down. The plot in Figure X.7 shows about as good a fit as can be
expected to such nonmonotone responses. The residual sum of squares, 5.7839
with 3 degrees of freedom, is large but not statistically significant. (The
upper 90 percent point of the chi square distribution with 3 degrees of
freedom is 6.251.) Thus we will use these estimates. The parameter
estimates in this model are so highly intercorrelated that standard error
and correlation estimates cannot be properly calculated. This is the reason
for the message at the top of Figure X.6. The reason for this intercorre-
lation is clearly seen in Figure X.7. The response curve is flat throughout
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most of the range of concentrations. Only the highest treatment group has a

mortality rate substantially in excess of the control rate, and the
effective sample size in that group is just 8.96. Thus there is very poor
information about the slope of the response curve.

We next refitted the probit model using the same data but with untrans-
formed concentration. In particular, the model fitted was

p(conc)=pO+(1-pO)(i 0 +3 1(conc-O.0250))

The results are shown in Figures X.8-X.1O. As in the first attempt, the
algorithm would not converge when the increment halving option was removed.
This option was therefore retained and so the values converged to are again
not strictly maximum likelihood estimates. However, as the iteration pro-
cess has pretty much settled down and since the fit appears to be good (see
Figure X.1O), we will use these estimates. The residual sum of squares,
5.8748 with 3 degrees of freedom, is again large but not statistically
significant. The intercorrelation among the estimates has been reduced to
the extent that estimated correlations and standard errors can at least be
calculated. Note that the estimated slope is 15.9695 with a standard error
of 12.9349. Thus I is not significantly different from 0. This high
standard error may be due to the very high intercorrelation between the
slope and intercept estimates. This in turn is due to the very limited
information about the slope. The mortality rate is essentially constant
throughout most of the range of concentrations.

The parameters from the model fit wf,'e used to calculate point estimates

of and confidence intervals on the dose response curve percentiles. The
results of these calculations are given below.

LeBlanc Test B - Combined Control Groups-Point Estimates
and 95 Percent Confidence Intervals on Various

Percentiles of Probit Fit

lower upper
conf conf

L fLz¢ - 1 (L) CL bound bound

0.05 -1.645 0.1332 -0.0435 0.3099

0.10 -1.282 0.1559 0.0130 0.2989

0.25 -0.674 0.1940 0.1036 0.2844

0.35 -0.385 0.2121 0.1420 0.2822

0.50 0.000 0.2362 0.1803 0.2921
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The confidence intervals, particularly those corresponding to the lower

percentiles, are so wide as to be useless. This is undoubtedly due to the
high degree of uncertainty in the parameter estimates, as indicated by their
very large standard errors. We thus conclude that we cannot make very
strong inferences, based on the results of this test, about the

concentrations corresponding to various levels of mortality.

The final example pertains to the 21-day mortality data from Goulden's
test on isophorone.

Goulden Isophorone Test--Logarithmic Concentration

As there was just one control group in this test, there is no question
about which control group or combination of control groups to use for
comparison purposes. The dose response curve is estimated from the results
only on the multiple housed daphnids. As there is no evidence of beaker-to-
beaker heterogeneity within groups, there is no need to adjust the sample
sizes and numbers of responses. The model fitted was

p(conc): p0+(1-po)>(B 0 +B1 (log10 (conc)-1.8352))

Let zL denote log10CL-1. 8352.

The results from the probit fit are shown in Figures X.11-X.13. The
Gauss-Newton algorithm converged to the maximum likelihood estimates shown

in iteration 15 in Figure XI.11. The residual sum of squares, 0.6486 with
3 degrees of freedom, is very small. The fit looks quite good in Figure
X.13.

The parameters from the model fit were used to calculate point esti-
mates of and confidence intervals on the dose response curve percentiles.
The results of the calculations are given below.

Goulden Isophorone Test-Point Estimates and 95 Percent
Confidence Intervals on Various Percentiles of Probit Fit

lower upper
conf conf

L fLE ¢- I(L) CL bound bound

0.05 -1.645 89.20 59.21 134.38

0.10 -1.282 99.71 70.76 140.51

0.25 -0.674 120.17 94.55 152.74

0.35 -0.385 131.32 107.65 160.19

0.50 0.000 147.80 125.75 173.70
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These confidence intervals are fairly wide, probably due to the small--
sample sizes in the test. Greater precision in the estimation of these
percentiles must await the results of more extensive tests.
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XI. TESTING FOR CONCENTRATION RELATED EFFECTS

ON REPRODUCTION AND LENGTH

A. INTRODUCTION

In Sections IX and X we considered the comparison of mortality rates
across groups. Section IX was concerned with hypothesis testing and
multiple comparison procedures while Section X was concerned with fitting
dose response curves and estimating safe concentrations based on the
percentiles of these curves. A directly analogous situation holds for
quantitative responses such as length and weight. In this section we
consider hypothesis testing and multiple comparison procedures and in the
next section we consider dose response estimation and associated inferences
based on multiple regression models.

While the procedures employed to analyze the length and reproduction
responses are for the most part similar to those used to analyze mortality,
there are a number of conceptual and technical differences in the problems.
Several of these are discussed below.

An important issue is related to mortalities censoring the nonlethal
responses. That is, measurements such length, reproduction, weight, brood
size, etc. obviously can only be determined on survivors. Thus the daph-

nids upon which the determinations of nonlethal doses are based are not
chosen at random, but rather are the hardiest in the groups, since they
survived. This can potentially give rise to biased comparisons among
groups since at high concentrations the weaker daphnids would be killed off
while at low concentrations these weaker daphnids would survive and
register inferior lengths or reproduction. This could mask dose response
effects or even show reverse effects (e.g., greater average lengths among
the survivors at the high concentrations than at the low).

There are no completely satisfactory ways to eliminate such potential
biases. One partial solution is to regard the responses in a heirarchy.
Mortality would be a first order effect. Any concentration which results
in "substantial" mortality would be considered unsafe, irrespective of any
other responses. Sublethal effects such as reductions in length or
reproduction would be considered second order. Among concentrations which
pass the mortality screen, any that result in biologically and statis-
tically significant nonlethal effects would be considered unsafe. Thus
before testing hypotheses about, or fitting dose response curves to length
or reproduction responses, we delete those groups with "substantial"
mortality. We have not precisely defined "substantial" for this purpose.
An operational definition such as 20, 30, 50, etc., percent increases in
mortality above background might be used. Gelber, et al [281, suggest
deleting all groups at concentrations beyond the MATC "...to achieve
comparable numbers of survivors per tank...". Rather then adopting such a
formal approach, we made individual decisions on a test-by-test basis. In
particular, we deleted the length and reproduction results from Group 7 in
LeBlanc's Test A, from Groups 5, 6, 7, 8 in Adams' Selenium test, and from

p
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Group 6 in Goulden's Isophorone test. The consequences on interpretation of
results of deleting these high mortality groups from comparisons of nonlethal
effects requires further discussion and study among toxicologists.

Another difference between the inference problems associated with
mortality and those associated with nonlethal responses is related to the
monotoniqity or lack of monotonicity of the response levels with increasing
concentration. The inference procedures for mortality are based on the
assumption that mortality rate increases (or at least does not decrease)
with increasing concentration. The measure of association test, the
Cochran-Armitage Test, Williams' Test, and the probit model all require
monotonicity. Such monotonicity does not necessarily hold for length and
reproduction. Figures II.11-II.14 and II.21-II.24 show that reproduction
levels in LeBlanc's Tests A and B and in Goulden's Isophorone test first
increase and then decrease as concentration is increased. Figure 11.29
shows that average lengths in LeBlanc's Test B first increase and then
decrease as concentration is increased. Thus the inference procedures used
must be valid for nonmonotone trends.

Inference procedures for mortality are generally based on the binomial

distribution. Such procedures tacitly assume that the variances of

responses are certain specified functions of the means. Thus variance
estimates need not be supplied. However for quantitative responses such as
length and reproduction, the comparable procedures are based on regression
analysis and analysis of variance which do require estimates of
variability. The question thus arises as to how these variability
estimates will be calculated. They should simultaneously account for
possible beaker-to-beaker heterogeneity within groups, yet utilize all the
information in the data. In Chapman's and in Goulden's data sets, length
and reproduction responses are measured on daphnids housed one per beaker.
Thus variability of responses is estimated based on observed individual
daphnid-to-daphnid variability per group. In LeBlanc's and in Adams' data
sets, reproduction responses are measured on a per beaker basis. Thus the
basic responses are numbers of offspring per beaker, normalized to reflect
the numbers of surviving adults. Thus variability is estimated based on
observed beaker-to-beaker variability per group. The situation for the .
length responses in LeBlanc's tests is a bit more complex. Daphnids are
multiply housed within beakers; however lengths are measured on individual
daphnids. Thus we would like to somehow use the variability among
individual responses. Yet these individual responses are possibly
correlated due to beaker-to-beaker heterogeneity within groups. A scheme
for pooling estimates of variability among beaker averages within groups
with estimates of variability among daphnids within beakers was discussed
in Subsection V-D. This approach uses variance estimates based on
variability among beaker averages but augments the degrees of freedom to
reflect the information about daphnid-to-daphnid variability within groups.
The pooling of information has the greatest impact when there are few
degrees of freedom for variance estimation based on beaker averages within
groups and there is little beaker-to-beaker heterogeneity.

We now consider various hypothesis testing and multiple comparison
procedures to compare length and reproduction responses across groups.
Each of the hypothesis testing procedures considered in Section IX for
mortality responses has directly analogous counterparts appropriate for
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quantitative responses such as length and reproduction. Chi square tests
correspond to analysis of variance tests. Measure of association tests
correspond to inferences about the correlation coefficient. The Cochran-
Armitage Test corresponds to a test based on straight-line regression
trend. Dunnett's and Williams' multiple comparison procedures carry over
directly. However, since the trends in responses are not necessarily
monotone we do not carry out the test procedures in the same sequential

manner that we did for mortality responses--namely peeling off the highest
treatment group and retesting after each significant result. Also,
Dunnett's procedure is used for multiple comparisons rather than Williams'
procedure.

B. REPRODUCTION RESPONSES--ANALYSIS OF VARIANCE AND MULTIPLE COMPARISON

PROCEDURES

The analysis of variance procedures are based on the one-way analysis
of variance model. We used this procedure in Subsection VI-C when we were
looking for outliers. See for example Figures VI.3, VI.6, VI.9, VI.12,
VI.15. The tests we use in this section are directly analogous except that
we delete some groups or some individual responses because of excess
mortality or because of outliers. The beaker is the basic response unit.

We present several illustrative examples below.

LeBlanc Test A--Water Control Group--Group 7 Deleted--Analysis of Variance

There are 4 treatment groups and a control group, with 4 beakers per
group. There are thus 4 degrees of freedom for comparisons among groups
and 15 degrees of freedom with which to estimate error. The analysis of

variance test is a "shotgun test", in the same manner as the chi square
test for mortality responses. The analysis of variance table is

21 Day Cumulative Offspring Per Surviving Daphnid

b

Source D.F. Sum of Squares Mean Square F Ratio

Between Groups 4 4787.3 1196.825 1.969

Within Groups 15 9115.25 607.68

Adjusted Total 19 13902.55
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The upper 90 percent point of the F distribution with degrees of freedom 4
and 15 is 2.27. Thus there is no statistical evidence with this test of

differences in reproduction rates among groups, after excluding the very
high mortality group.

LeBlanc Test A--Solvent Control Group--Group 7 Deleted--Analysis of

Variance

The framework is the same as that above, except that the solvent
control group responses are substituted for the water control group
responses. The analysis of variance table is

21 Day Cumulative Offspring Per Surviving Daphnid

Source D.F. Sum of Squares Mean Square F Ratio

Between Groups 4 6002.7 1500.675 2.633

Within Groups 15 8550.25 570.017

Adjusted Total 19 14552.95

The upper 90 and 95 percent points of the F distribution with degrees
of freedom 4 and 15 ar 2.36 and 3.06 respectively. Since the observed F
ratio falls between these values we conclude that there is a suggestion,
but not strong statistical evidence of average differences in reproduction

rates among groups.

Note that there is a somewhat different outcome with this test,
depending on whether the solvent or the water control group is used.

LeBlanc Test B--Combined Control Groups--Analysis of Variance

The framework is similar to that for Test A except that no treatment
groups are deleted and the solvent and water control group responses are
combined into a single group. The analysis of variance table is
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21 Day CUmulative Offspring Per Surviving Daphnid

Source D.F. Sum of Squares Mean Square F Ratio

Between Groups 5 2542.714 508.54 1.149

Within Groups 22 9738.000 442.64

Adjusted Total 27 12280.714

The upper 90 percent point of the F distribution with degrees of freedom 5
and 22 is 2.13. Thus there is no statistical evidence based on this test
of differences in average reproduction rates among groups.

Goulden Isophorone Test--Group 6 Deleted--Outlier in Group 1 Deleted--

Analysis of Variance

These comparisons are based on the reproduction responses from the
individually housed daphnids in each group that survived to the end of the
test. There were 7 such daphnids per group at the outset of the test. All
but one of these daphnids survived. Beaker 5 in Group 1 was determined in
Subsection VI-C to have an outlying response and that was also deleted.
The comparison is thus based on the individual responses from 33 daphnids.
The analysis of variance table is

21 Day Cumulative Offspring for Each Daphnid
Surviving to the End of the Test

* Source D.F. Sum of Squares Mean Square F Ratio

Between Groups 4 26414.46 6603.62 35.32

Within Groups 28 5234.45 186.95

Adjusted Total 32 31648.91

This F ratio is of course highly statistically significant. Ther is thus
strong statistical evidence of average differences in reproduction levels

among groups. This is not very surprising, based on the appearance of
Figure 11.22.
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The previous discussion in this subsection has been based on one-way
analysis of variance tests. These tests are overall, "shotgun" tests and
so are not the most sensitive to the types of departures from homogeneity
that are of most importance in toxicity tests. In particular, it is often
desired to carry out a series of pairwise treatment group-control group
comparisons and determine which treatment group responses are significantly
different then the control group response. Since such pairwise comparisons
focus in on the effects of interest, they are more sensitive tests then the
overall chi square test.

Two commonly used procedures for carrying out treatment-group control
multiple comparisons are Williams' test and Dunnett's test. See Williams
[17,181 and Dunnett [15,161 for detailed descriptions of their use and for
appropriate tables. We have applied Williams' test to study the mortality
data. Williams' test assumes that the response curve varies monotically
with concentration. Since this assumption is not necessarily valid for
reproduction, we use Dunnett's procedure instead. We present several
examples below, based on the same data sets as those discussed above with
the analysis of variance tests.

LeBlanc Test A--Water Control Group--Group 7 Deleted--Dunnett's Test

The numbers of beakers and the average cumulative offspring per beaker
within each group are

Group 1 3 4 5 6
N 4 4 4 4 4
Average 102.5 128.25 129 139.75 101.25

The standard errors of these averages, basedon the analysis of variance
fit are (r2/4)1/2=(607.68/4)l/2=12.33. Let Xi denote the average in the i-
th group.

We apply Dunnett's procedure to determine which groups have (statistic-
ally) significantly lower average reproduction then the control group. We
declare the group i average reproduction to be significantly lower than the
control average if

Xi-X1<-t(2
2/4)1/2

The factor t is obtained from Dunnett's tables of one-sided factors and is
derived under the assumption of equal group sample sizes. In this example,
y
2 is estimated with 15 degrees of freedom. The value of t corresponding
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to 15 degrees of freedom, 4 treatment groups, and u=0.05 is T=2.36.
Therefore the critical value is

X1-T(2o 2/4)1 /2=I02.5-(2.36)(17.431)=61.36

Thus none of the treatment group averages are significantly lower than the

control group average. Thus the results of this test agree with those

based on the analysis of variance test.

LeBlanc Test A--Solvent Control Group--Group 7 Deleted--Dunnett's Test

The numbers of beakers and the average cumulative offspring per beaker

within each group are the same as shown above, except that Group 2 is

substituted for Group 1. The values for Group 2 are N=4 and Average=154.
The standard errors of these averages, based on the analysis of variance

fit are (o2/4)1/2=(570.017/4)=11.94. Let Xi denote the average in the i-th
group. The group i average reproduction is significantly lower than the
control average if

Xi-X 2<-t(2a
2/4)1/2

As above, the estimated variance a2 has 15 degrees of freedom. The T

factor, corresponding to 15 degrees of freedom, 4 treatment groups, and
a=0.05 is t=2.36. Thus the critical value is

X2-t(2a2 /4)1/ 2=154-(2.36)(16.88)=114.16.

This implies that the average reproduction rate in Group 6 is significantly
smaller then that in the solvent control group at a=0.05. We can repeat
this test after deleting Group 6 and adjusting t to correspond to 3 treat-
ment groups. The new critical value is 154-(2.24)(16.88)=116.19. Thus no
other groups have significantly lower average reproduction then the solvent
control group.

We come to different conclusions, depending on whether the water
control group or the solvent control group is used for comparison. This L
raises important conceptual problems, as discussed in Section VII.

LeBlanc Test B--Combined Control Groups--Dunnett's Test

There are 5 treatment groups and a (combined) control group. The
numbers of beakers and the average cumulative offspring beaker are
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Group 1 and 2 3 4 5 6 7
N 8 4 4 4 4 4

Average 109.25 116 134.5 128.25 119.25 108

The estimated error variance, based on the analysis of variance fit, is
y2=442.64 with 22 degrees of freedom. Let Xi denote the average in the i-th -

group. The group i average reproduction is significantly lower than the
control average if

Xi-Xo<-E k(I/Ni+I/No)i/2

rL

where Xo,N o are the average reproduction and the number of beakers in the
combined control group. In this example, Ni=4,No=8.

The tabulations o' Dunnett's factors are based on the assumption of
equal sample sizes in each group. Since the control group has twice as
many beakers as any of the treatment groups, the appropriate values of t
must be obtained from tables of the multivariate t distribution.
Krishnaiah 129], pp 789-800 has published tables of this distribution. For
i#j the correlation between Xi-X o and Xj-X o is 1/3. We must enter the
tables of the multivariate t distribution at 22 degrees of freedom, 5
groups, and correlation p=0.33 to find the upper a=0.05 point.
Interpolating in Krishnaiah's tables between p=0.2 and p=0.4 yields t=2.43.

Thus the critical value is

Xo-;(1/Ni+1/No)1/2:109.25_(2.43)(21.04)(0.61)=77.94 .

Since the control group has one of the lowest reproduction rates among all
the groups, there are obviously no groups significantly lower then the
control.

Goulden Isophorone Test--Group 6 Deleted--Outlier in Group 1 Deleted--
Dunnett's Test

The numbers of beakers and the cumulative offspring per beaker within
each group are

Group 1 2 3 4 5
N 6 6 7 7 7

Average 67.667 86.833 90.857 69.000 13.286
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Each beaker contains just one daphnid and attention is confined to those
daphnids that survived to the end of the test. The estimated error
variance, based on the analysis of variance fit, is ;2=186.95 with 28
degrees of freedom. Let Xi denote the average in the i-th group. The
group i average reproduction is significantly lower than the control if

Xi-XI<-t(1/Ni+1/NI)1/2

Even though the sample sizes are not exactly equal, they are almost equal,
and so we use Dunnett's factors as an approximation. Thus the critical
value is

X1-tay(1/Ni+1/N1)1/2=67.667-(2.26)(13.67)(1/Ni+1/6)
1/2

=49.83 if i=2
=50.48 if i=3,4,5

Thus Group 5 has a significantly smaller reproduction rate then the control
group. Obviously none of the other groups do.

C. LENGTH RESPONSES--ANALYSIS OF VARIANCE AND MULTIPLE COMPARISON

PROCEDURES

The situation for comparisons of lengths across groups is similar to
that for comparisons of reproduction, except that lengths are measured on a
per daphnid basis whereas reproduction is measured on a per beaker basis.
Thus unless there is just one daphnid per beaker, less information is
obtained on reproduction than on lengths.

A basic technical difficulty associated with directly analyzing the
individual length determinations is due to the correlations among responses
from daphnids in the same beaker. This intercorrelation results from the
beaker-to-beaker heterogeneity within groups. A common practice is to
summarize the individual length measurements within each beaker by the
average length and then analyze the averages on a per beaker basis, as was
previously done for the reproduction responses. This is essentially
equivalent to fitting a two-way nested analysis of variance model to the
data, as was explained and illustrated in Subsection IV-B, and using the
mean rjuare for variation among beakers within groups as the error term for
making inferences about treatment effects.

If the mean square for beakers within groups is no greater than the
mean square for variation among daphnids within beakers then the two mean
squares are sometimes pooled and used as a common error term. The latter
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mean square usually has many more degrees of freedom than the former. In
Subsection V-D we discussed a scheme for pooling information from these two
mean squares in a continuous manner. Basically, the mean square for
beakers within groups is used as the error yardstick but information from
the within beaker mean square is used to augment the degrees of freedom in
a continuous manner. The closer are the two mean squares, the greater are
the degrees of freedom. See Subsection V-D for details. The results of
this pooling procedure applied to the length responses from LeBlanc's Tests
A and B are:

Test A: C2=0.2722 with 98 degrees of freedom (excluding Group 7)

Test B: a2=0.2707 with 141 degrees of freedom

We use these error estimates in subsequent analyses.

The analysis of variance procedures are based on the two-way nested
analysis of variance model. Although we should separate the control groups
in Test A, combine the control groups in Test B, and re-estimate the error
variances from the modified data, we utilize the analysis of variance fits
shown in Subsection IV-B to illustrate the calculation of the analysis of
variance tests. Although these analyses of variance do not test quite the
right hypotheses, they do illustrate the appropriate methodology.

LeBlanc Test A--Analysis of Variance Test

From Subsection IV-B, mean square between groups =1.1163 with 5 degress
of freedom. Mean square for beakers within groups =0.2722 with 98 degrees
of freedom. Thus

r F =1.1163
F 1 = 4.101 with 5 and 98 degrees of freedom.

0.2722

This F ratio is statistically significant at a=0.002. Thus there is strong
statistical evidence of differences in average lengths among groups. From
Figure 11.26 it appears that average length in the solvent control group is
somewhat greater than the average lengths in the other groups.

LeBlanc Test B--Analysis of Variance Test

From Subsection IV-B, mean square between groups =0.2915 with 6 degrees
of freedom. Mean square for beakers within groups =0.2707 with 141 degrees
of freedom. Thus

F 0.2915 1.077 with 6 and 141 degrees of freedom.
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This F ratio is significant at a=0.38 . Thus there is no statistical
evidence of differences in average lengths among groups. The relatively
small lengths in Group 7 do not show up in this test. See Figure 11.29 for
a graphical display of the group-to-group variation in lengths.

We now carry out pairwise comparisons of treatment group and control -

group average responses using Dunnett's test. Lengths were measured by
LeBlanc in Tests A and B and by Chapman in his Beryllium test. For the
LeBlanc data we use the variance estimates and degrees of freedom arrived
at in Subsection V-D, namely ;2=0.2722 with 98 degrees of freedom for Test
A (excluding Group 7) and 02=0.2707 with 141 degrees of freedom for Test B.

Before considering the examples below, we must address a technical
issue concerning the estimation of the average responses within each group.
There are two components of variation, a beaker-to-beaker component and a
daphnid-to-daphnid component within beakers. The question arises as to
whether we should calculate a simple average of all the daphnid responses
within each group, calculate the average of the average beaker responses,
or perhaps some compromise between these two averages. In the balanced
situation where each beaker has the same number of daphnids these two
averaging processes yield the same results and there is no ambiguity.
However in the unbalanced case those averaging processes can yield very
different results. In LeBlanc's Tests A and B, most of the beakers within
groups have between 15 and 20 daphnids and so averaging processes based on
the balanced case should be quite reasonable. We thus use unweighted

averages of the individual responses in these groups. However the
situations in Group 6 of Test A and in Group 7 of Test B are different.
The sample sizes in the four beakers in Group 6 of Test A are 18, 16, 5,
and 1 and sample sizes in the four beakers in Group 7 of Test B are 3, 14,
12, and 1. These are very highly imbalanced. Thus how should the average
responses be estimated, in these groups? A complete answer to this
question is a research problem in its own right and we will not attempt
that here. However an intuitively reasonable approach would be to

.. calculate that average of the responses that most precisely estimates mean
length within the group. Let a2, 2 denote the variance components due toL e 2~~c~beakers and daphnids respectiveiy and let p=S/ e . suppose there are J
beakers, Nj daphnids within the j-th beaker, and the average response in
the j-th beaker is Xj. Then Var(Xj)=, 2+ 2 /Nj . We consider estimates of
the form e

P= wjXj with wj>0, ZJ  wj1-
j=1 1

We choose the weights so as to minimize the variance of P. This is a
* Lagrange multiplier problem. The solution is to choose wj proportional to
• "Nj/(I+Njp). As p approaches o, we tend to average individual responses and

as p approaches infinity we tend to average group averages. The general
situation is a compromise between these two extremes. In the LeBlanc data
sets, p is estimated to be 0.09 in Test A and 0.06 in Test B. Since these
values of p are small, we use the simple averages of the individual
observations for weighting purposes, although the "optimum" weights call
for assigning lower weights to the beakers with relatively large numbers of
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daphnids. The variance of this simple average is a2/ZNj+aEZNj2/(ZNj) 2 . We
use this variance expression for the two groups witg highly unbalanced
samples sizes. For the other groups, we use variance expressions
appropriate for the balanced case as these should be reasonable
approximations. A more rigorous analysis could be based on maximum
likelihood methods, but even here the theory holds only asymptotically.

We now consider several examples.

LeBlanc Test A--Water Control Group--Group 7 Deleted--Dunnett's Test

The numbers and average lengths of surviving daphnids within each group
and the standard errors of the mean are

Group 1 3 4 5 6
NJ 68 70 73 73 40
Average 4.9676 4.9743 5.1027 4.9658 5.0000
Std Error 0.063 0.062 0.061 0.061 0.080

The standard error estimates in Group 1-5 are based on the square root of
the beakers within groups mean square shown in Subsection V-D, divided by -
NA. The standard error estimate in Group 6 is based on the expression in
t e paragraph preceding the example. We associate 98 degrees of freedom
with these standard error estimates. Let X i denote the average in the i-th
group. The group i average length is significantly lower than the control
average if

Xi-X1<-t(std err 2+std err2 )1 / 2

The t factor, corresponding to 98 degrees of freedom, 4 treatment groups,
and a=0.05 is t=2.19. Thus the critical values are:

Group 3 vs Control: 4.9676-(2.19)(0.0632+0.0622)1/2=4.774
Group 4 vs Control: 4.9676-(2.19)(0.0632+0.0612)1/2=4.776
Group 5 vs Control: 4.9676-(2.19)(0.0632+0.0612)1/2=4.776
Group 6 vs Control: 4.9676-(2.19)(0.0632+0.0802)1/2=4.745

Since none of the group averages are below their critical values, we
conclude that there is no statistical evidence that any of the treatment
groups have significantly lower average lengths then the water control
group.
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LeBlanc Test A--Solvent Control Group--Group 7 Deleted--Dunnett's Test

The numbers and average lengths of surviving daphnids within each group -.
and the standard errors are the same as those shown above, except that
Group 2 is substituted for Group 1. The values for Group 2 are ENj=77, - "
Average=5.2753, Std Error=0.059. The group i average length, Xi, is
significantly lower then the solvent control group average if

Xi-X 2<-t(std erri
2+std err2

2 )11 2

The t factor is again 2.19. Thus the critical values are:

Group 3 vs Control: 5.275-(2.19)(0.0592+0.0622)1/2=5.088
Group 4 vs Control: 5.2753-(2.19)(0.0592+0.0612)1/2=5.089
Group 5 vs Control: 5.2753-(2.19)(0.0592+0.0612)1/2=5.089
Group 6 vs Control: 5.2753-(2.19)(0.0592+0.0802)1I/2=5.058

The averages in Groups 3, 5, and 6 are below their critical values and so
these averages are significantly lower then the control group average.

Since Groups 3, 5, and 6 differ significantly from the control group,
we recalculate the critical value for Group 4 based on just one treatment
group (i.e., the usual Student's t distribution). The t factor changes
from 2.19 to 1.66. Thus the critical value for Group 4 vs Control is

5.2753-(1.66)(0.0592+0.0612)1/2=5.134

The Group 4 average is lower then this value and thus is also significantly
lower then the control.

We conclude that all of the treatment groups have significantly lower
average lengths than the solvent control group, at the a=0.05 level of
significance.

Note that we have arrived at diametrically opposite conclusions, de-
pending on whether the water control group or the solvent control group is
used for comparison. This situation is clearly seen in Figure 11.26. As
remarked previously, these contradictory conclusions lead to important
conceptual problems in interpreting the results of the test.

LeBlanc Test B--Combined Control Groups--Dunnett's Test

The numbers and average lengths of surviving daphnids in each group and
the standard errors of the means are
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Group 1 and 2 3 4 5 6 7
Nj 139 76 75 67 72 30

Average 4.8907 4.8645 4.9360 4.8358 4.8333 4.7267
Std Err 0.044 0.060 0.060 0.064 0.061 0.088

The standard error estimates in the control group and in treatment Groups 3-6
are based on the square root of the beakers within groups mean square shown in
Subsection V-D, divided by ENj. The standard error estimate in Group 7 is
based on the expression in the paragraph preceding the first example in
this series. We associate 141 degrees of freedom with these standard error
estimates. Let Xi,X o denote the average in the i-th treatment group and in
the combined control group respectively. The group i average length is
significantly lower than the control average if

Xi-Xo<-t(std erri2+std erro2 )1 / 2

The t factor, corresponding to 141 degrees of freedom, 5 treatment groups,
and a=O.05 is obtained from Krishnaiah's tables of the multivariate t
distribution, pp 789-800. Since the number of beakers and daphnids in the
combined control group is about twice that in the treatment groups (except
for Group 7), the correlation between Xi-X o and Xj-X o is about 1/3 for
i#j#7. We enter Krishnaiah's tables at 141 degrees of freedom, 5 groups,
and correlation P=0.33 to find the upper a=0.05 point. Interpolating
between (:0.2 and ;:0.4 yields t2.37. (The table actually goes up to only
35 degrees of freedom.) Thus the critical values are:

Groui. 3 vs Control: 4.8907-(2.37)(.00442+0.0602)1/2=4.714
Group 4 vs Control: 4.8907-(2.37)(0.0442+0.0602)1/2=4.714
Group 5 vs Control: 4.8907-(2.37)(0.0442+0.0642)1/2=4.707
Group 6 vs Contro]: 4.8907-(2.37)(0.0442+0.0612)1/2=4.712
Group 7 vs Control: 4.8907-(2.37)(0.0442+0.0882)1/2=4.658

Since none of the group averages are less than their critical values, we
conclude that there is no statistical evidence that any of the treatment
groups have significantly lower average lengths than the combined control
group. The appearance of Figure 11.29 bears out this conclusion, except
for Group 7 which is a bit lower. However it is not significantly lower.
The analysis of variance test gave the same conclusiors.
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XII. DOSE RESPONSE CURVE ESTIMATION-MULTIPLE REGRESSION
ANALYSIS OF LENGTH AND REPRODUCTION DATA

A. INTRODUCTION

In the previous section we considered hypothesis testing and multiple
comparison procedures to test for the presence of differences among groups
in average length and reproduction. These testing procedures are analogous
to those considered in Section IX for mortality responses. In this section
we consider fitting multiple regression dose response models to the length
and reproduction data to estimate the concentrations, CL, which result in
reductions of L relative to the control group levels. These multiple
regression procedures for quantitative responses are directly analogous to
the probit analysis dose response model for qualitative responses that was
considered in Section X.

The conceptual distinctions between the hypothesis testing procedures
of the previous section and the multiple regression procedures of this
section are the same as the distinctions between corresponding procedures
for mortality data that are discussed at the beginning of Section X. In
brief, inferences based on the multiple regression procedures incorporate
biological significance as well as statistical significance and tend to
result in tighter confidence bounds on safe concentrations (and thus in

more liberal lower bounds) as the amount and precision of the data
increase. We feel that this approach to inference has more appeal than
hypothesis testing.

The two principal technical differences between the multiple regression
models appropriate for studying length and reproduction responses and the
probit model appropriate for studying mortality responses relate to the
nonmonotone nature of the trends in length and reproduction and the need to
supply estimates of variability. Both of these considerations were
discussed in Subsection XI-A and so need not be repeated here.

Feder and Collins [11 discuss fitting multiple regression models to
weight gain data from early life stage tests with fathead minnows, in
Subsection XVII-C of their report.

We now discuss the specific models that were fitted to the data. Let
x=log10 (concentration). (Since the regression models will be fitted only

0 to the treatment groups, there is no problem with the logarithm of 0.) Let
m,s denote location and scale standardization factors respectively. (Note
that these are not necessarily the mean and standard deviation.) Let vz(x-
m)/s denote the standardized version of x and let y denote the response
(average length or cumulative reproduction per surviving adult). Let I
denote an indicator function of the treatment groups. That is, I=1 for

treatment groups and I=O for control groups. The models fitted are:
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Straight Line

Y=P+ oI+S 1IV+F-

Quadratic

Y=11+ oI+ IIV+B 2Iv
2 +S

In these model specifications i represents the control group average,

9o,1, and (possibly) 2 represent the coefficients of the polynominal
trend in the region of the treatment groups. By the parameterization of
the model, the polynominals 0+ iv or 0+ 1v -2v

2 represent the difference
between the treatment group expected response at v and the control group
average. Since the average length and reproduction levels in the control
groups generally differ from zero, they must be adjusted for in our models.
We wish to estimate the value of v where

6o+81v=c

or

60 +81v+ B2v2=c

and place a confidence interval on this value. The theory underlying the
point and confidence interval estimation procedure is discussed in Appendix
AXII.1. A computer program to carry out the calculations is described in
Appendix AXII.2.

We now discuss fitting regression models to the reproduction responses
and to the length responses in turn.

B. REPRODUCTION RESPONSES

In this subsection we fit multiple regression models to study trends in
cumulative reproduction as concentration increases. We fit linear or

quadratic models, as appropriate, to the treatment group data and estimate
concentrations resulting in specified decreases from the control group in
average reproduction. The same approach could of course be extended to fit
cubic models, exponential models, etc., to the data. Such extensions have
not been explored, but are straightforward. Since reproduction responses
are measured on a per beaker basis, there are no questions of or
complications due to beaker-to-beaker heterogeneity. In the Chapman and
Goulden tests, reproduction was measured on individually housed daphnids.
Only the daphnids that survived to the end of the test were included in the
analysis. We now consider the details of the fits to the various data
sets.
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LeBlanc Test A--Water Control Group--Group 7 Deleted

There are four treatment groups and a control group. The concen-
trations corresponding to the lowest two treatment groups, Groups 3 and 4,
are virtually identical. We are thus fitting a quadratic model to
essentially three distinct concentrations (recall that we have excluded the
control group). The model fitted is

Y=W+BoI+ 1 Iv+8 2 Iv
2+

Where v=(x+2.257)/0.311 (i.e.,m=-2.257 and s=0.311). The results of this

fit are shown in Figure XII.I. The observed and predicted values are
plotted in Figure XII.2 vs log 10 (concentration). The estimated regression
coefficients and their estimated variance covariance matrix are shown in
Figure XII.1. Figure XII.2 shows a nonlinear trend in average response
within the range of the treatment groups. The quadratic coefficient in
Figure XII.1 is marginally significant (a=0.08). We thus base estimates of
acceptable concentratio s on the quadratic model.

The output from CONFINT applied to this model is shown in Figures
XII.3,4. We calculate point and confidence interval estimates of
concentrations corresponding to 10 percent and 20 percent reductions in
average reproduction, relative to the control group. Since the estimated
cumulative reproduction rate in the water control group is 102.5 offspring
per adult, the values of c specified are -10.25 and -20.5 respectively.
Two roots are shown in each Figure. The smaller roots, -2.76 and -2.81 in
logarithmic concentration units, are obviously inappropriate based on the
appearance of Figure XII.2. We thus confine attention to the larger roots.
These correspond to roots no. 1 in the two outputs. From the bottoms of
Figures XII.3,4 we read these as

10 percent decrease: conc=0.0168 95 percent conf interval (0.0107, 0.0262)
20 percent decrease: conc=0.0187 95 percent conf interval (0.0116, 0.0300)

These point estimates both exceed the concentration in the highest
treatment group. Thus they represent extrapolations beyond the range of
the data, with the consequent possibility of extrapolation biases.
However, since the amount of extrapolation is very little, this should not
be a problem in this example.

LeBlanc Test A--Solvent Control Group--Group 7 Deleted

The framework is the same as in the previous example except that the
solvent control group (group 2) is substituted for the water control group.
There are again essentially three distinct treatment group concentrations.
The model fitted Is the same as that in the previous example. The
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standardization factors are also the same. The results of this fit are
shown in Figures XII.5 to XII.8. The quadratic fit to the treatment group
responses is the same as in the previous example but the control group
average is somewhat greater (154.0 vs 102.5).

The output from CONFINT applied to this model is shown in Figures
XII.7,8. Since the estimated cumulative reproduction rate in the solvent
control group is 154.0 offspring per adult, the values of c corresponding
to 10 percent and 20 percent reductions are -15.4 and -30.8 respectively.
As in the previous example, the larger of the two roots in each output are
the ones of biological importance. These correspond to roots no. 1 in the
outputs. From the bottoms of Figures XII.7,8 we read these as

10 percent decrease: cohc:0.0077 95 percent conf interval (0.0023, 0.0254)
20 percent decrease: conc=0.0110 95 percent conf interval (0.0064, 0.0189)

Note that the confidence interval for the concentration associated with the
10 percent decrease is much wider than that associated with the 20 percent
decrease. This is because the point estimate, x=-2.11, lies near the
stationary point of the curve. Thus the slope of the curve is very gentle
in this region and so small changes in the curve correspond to large
changes in concentration.

Comparing the concentrations associated with 10 percent and 20 percent
decreases based on the solvent control group with those based on the water
control group, we see substantially lower point estimates with the solvent
control group than with the water control group. The confidence interval
associated with 10 percent decreases from the solvent control group
response is so wide as to be useless. The other three confidence intervals
span a factor of three in concentration levels and so are also too wide to
provide very precise estimates. However, the confidence interval associ-
ated with 20 percent decreases from the solvent control group is
substantially lower than that associated with 20 percent decreases from the
water control group. (The endpoints for the water control interval are 60
percent to 80 percent higher than those for the solvent control interval.)

It appears that although the confidence intervals are rather wide, they
are precise enough to conclude that qualitatively different results are
obtained depending on whether the water control group or the solvent con-
trol group is used for comparison. This results in important
interpretational ambiguity.

Chapman-Beryllium Test

The data consist of water and solvent control groups and six treatment
groups. Since the daphnids were individually housed, individual reproduc-
tion determinations were made and these are used for analysis. Responses
only from daphnids that survived to the end of the test are included in the
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analysis. The results from the two control groups were combined for
comparison with the treatment groups. The results of the analysis are

shown in Figures XII.9 to XII.13.

The quadratic model that was discussed previously was fitted to the
data. The independent variable, v, was defined as v=(x-1.276)/0.551
(i.e.,m=1.276 and s=0.551). The results of the fit are shown in Figure
XII.9. The observed and predicted values are plotted in Figure XII. 10 vs
log10 (concentration). The quadratic term is nonsignificant ( 2=-6.042
with estimated standard error=8.433). There appears to be no trend in average
reproduction with increasing concentration displayed in Figure XII.10. The
quadratic term was deleted from the model and the straight line model
y=I+8oI+ 1Ix+ was fitted to the data. The results are shown in Figure
XII.11. The linear term is nonsignificant (I=5.816 with estimated

standard error 13.165). We thus conclude that there is no significant
trend in reproduction within the range of the treatment group
concentrations. It is therefore meaningless to estimate concentrations
associated with specified reductions from the control response. If we go
ahead anyway and formally carry out the inference, we get results such as
shown in Figure XII.12. The confidence interval on the concentration
associated with a 10 percent reduction from the control group average
ranges from 0 to infinity. It is thus of course meaningless.

Because of the lack of trend among the treatment group responses,
observed in the regression outputs and in the display in Figure XII. 10, we
calculate an overall level of reproduction within the treatment groups for
comparison with the reproduction rate in the control groups. In particular
for the N=45 surviving daphnids in treatment groups 3-8, the mean and
standard deviation are

Y1 =92.844 ;i=43.242

For the N=18 surviving daphnids in control groups 1-2, the mean and
standard deviation are

YO= 162.5 ;O=57.8 35

Comparing the treatment group and control group averages by means of a (one
tailed) two sample t-test we obtain

Y- Y
Y1 0 92.844 - 162.5 5-

[(44i + 17 )/61 (1/45 + 1/18)11/2 13.32 5.
1 0

with 61 degrees of freedom. This statistic is significant at a:0.0000.
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There is thus strong statistical evidence that beryllium diminishes
reproduction. It appears that it is a substantial reduction. Since there

Ais no response trend among the treatment groups, we conclude that the
concentration at the lowest treatment group produces a (biologically and
statistically) significant reduction in reproduction. This concentration
is 2.60 mcg/l.

Goulden-Isophorone Test--Group 6 Deleted--Outlier in Group I Deleted

There are a control group and four treatment groups (2-5). As with the
Chapman data, individual reproduction determinations are used for analysis.
Responses only from daphnids that survived to the end of the test are
included in the analysis. The outlying value (on the high side) in beaker
5 of group 1 is deleted. The previously discussed quadratic model was
fitted to the data. The independent variable, v, was defined as v=(x-
1.745)/0.443 (i.e., m=1.745, s=0.443). The results of the fit are shown in
Figure XII.13 and the observed and predicted values are plotted vs log 10 (I
+ concentration) in Figure XII. 14. The quadratic term is seen to be highly
significant ( 2=29.84 with estimated standard error 4.22) and strong
quadratic trend is evident in Figure XII.14.

The output from CONFINT applied to this model shown in Figures XII.15,
16. Since the estimated average cumulative reproduction rate in the
control group is 67.67 offspring per adult, the values of c corresponding
to 10 percent and 20 percent reductions are -6.77 and -13.53 respectively.
As in previous examples, the larger of the two roots in each output are the
ones of biological importance. These correspond to roots no. 1 in the
outputs. From the bottoms of Figures XII. 15, 16 we read these as

10 percent decrease: conc:94.571 95 percent conf interval (77.730, 115.060)
20 percent decrease: conc:I03.136 95 percent conf interval (85.841, 123.915)

Due to the steepness of the response trend, both the concentrations
associated with 10 percent and with 20 percent reductions in reproduction
are reasonably precisely determined. However, because of this same
steepness in trend, these two concentrations are close to one another and
cannot be well separated by the information from this toxicity test.

C. LENGTH RESPONSES

0

The situation is essentially the same as for reproduction responses
except for the need to adjust for the effects of beaker-to-beaker
heterogeneity in those cases when the daphnids are multiply housed (e.g.,
LeBlanc's Tests A and B). These considerations have been discussed in
detail in previous sections (see e.g., Subsection XI-C) and so need not be
discussed again here. The models fitted and the notation used are the same
as those for the reproduction response. We consider several examples.
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LeBlanc Test A--Solvent Control Group--Group 7 Deleted

There are four treatment groups and a control group. The
concentrations corresponding to the two lowest treatment groups, Groups 3
and 4, are essentially the same. The quadratic model fitted is

Y=+ oI+ lIv+B 2Iv
2+E

where ve(x+2.257)/0.311. The results of this fit are shown in Figure
XII.17. The observed and predicted values are plotted in Figure XII.18 vs
log 10 (concentration). The quadratic term in Figure XII. 17 has the wrong
sign (positive), is small, and is nonsignificant. The display in Figure
XII.18 shows no concentration related trend in average length within the
range of the treatment groups. All the treatment groups appear to have
substantially lower average length than the solvent control group.

The analysis shown in Figure XII. 17 was carried out on a per beaker
basis. That is, average lengths were calculated within each beaker and
regression models were fitted to these averages. This of course resolves
the issue of correlated responses within beakers. The residual mean square
in Figure XII. 17 corresponds conceptually to the mean square for beakers
within groups that was discussed in subsection V-D. If the data had been
completely balanced (i.e., equal numbers of daphnids per beaker) and if the
same regression models had been fitted to the data (an analysis of variance
model was used in Subsection V-D and a quadratic regression model was used
in this analysis) then the two mean squares would be exactly the same.
Since this data set is nearly balanced (except for two beakers in Group 6
with small numbers of daphnids), the two mean squares should be very close.
This is in fact seen to be the case. The mean square for beakers within
groups was calculated in Subsection VD to be MSI=0.2722. The average
number of daphnids per beaker is N=16.7. When MSI is normalized to
correspond to the variability of beaker averages, the estimated variance is
approximately MSI/N=0.2722/16.7=0.0163. This is very similar to the error
mean square value of 0.0176 calculated in Figure XII17. Thus the
discussion in Subsection VD about augmenting the degrees of freedom of MSI
based on pooling information from the variability among daphnids within
beakers, also holds for this analysis. We might thus assign 98 degrees of
freedom (i.e., the number calculated in Subsection V-D) to the error mean
square rather than the 16 degrees of freedom obtained directly from the
regression output. This would reduce the observed significance level for
the F test for the quadratic coefficient from 0.265 to 0.251. If we used
the mean square value 0.0163, from Subsection VD, this would further reduce
the observed significance level to 0.233. Since such minor changes are of
no practical importance, we do not pursue this possibility further.

The quadratic term was deleted from the model and the straight line
model Y:=P+oI+j 1Ix+E was fitted to the data. The results are shown in
Figure XII.19. The linear term is essentially 0 and is nonsignificant
(81=0.029 with estimated standard error 0.111). We thus conclude that
there is no significant trend in reproduction within the range of the
treatment group concentrations. This is confirmed when we attempt to
estimate concentrations resulting in specified reductions in average length
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relative to the control group. As shown in Figure XII.20, the confidence
interval on the concentration associated with a 10 percent reduction from
the control group average ranges from 0 to infinity. It is thus
meaningless.

Because of the lack of trend among the treatment group responses, we
calculate an overall average length within the treatment groups for
comparison with that in the control group. For the N=16 beakers in
treatments groups 3-6, the mean and standard deviation of the beaker
averages are

Y1=5.023 oi=0.140 32

For the N=4 beakers in the solvent control group, the mean and standard

deviation of the beaker averages are

GY0=5.2775 G0=0.5852

Comparing the treatment group and control group averages by means of a (one

tailed) two sample t-test we obtain

Y 1 Y0 5.0231 - 5.2775
t 2 ~2 1/.03[(15a1  + 3a2 )/18 (1/16 + 1/4)]1/2 0.0732

with 18 degrees of freedom. This statistic is significant at a=0.001. If
we had used the mean square calculated in Subsection VD, namely 0.2722/16.7

0.0163 with 98 degrees of freedom, then t would be equal to -3.565 with
98 degrees of freedom. This is significant at a=0.0003. Thus the conclu-
sions are unchanged for all practical purposes.

There is the strong statistical evidence that the toxicant in Test A
diminishes average length in the treatment groups relative to that in the
solvent control group. Whether the magnitude of decrease is of biological
importance is a matter for biological judgement. Since there is no trend
in response among the treatment groups, we conclude that the concentration
corresponding to the lowest treatment group produces a statistically
significant reduction in reproduction relative to the solvent control
group. This concentration is 0.00290 mg/l.

Regression models fitted to these data with the water control group in
place of the solvent control group would yield similar results except that
the treatment group responses do not differ from the water control group
response.
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Chapman-Beryllium Test

The setup is the same as that for the reproduction responses. Since
daphnids are individually housed in this test, there are no complications
due to beaker-to-beaker heterogenity. The results of the analysis are
shown in Figures XII.21 to XII.25.

The previously discussed quadratic model was fitted to the data. The

independent variable, v, was defined as v=(x-1.276)/0.551. The results of
the fit are shown in Figure XII.21 and the observed and predicted values
are plotted in Figure XII.22 vs log 10 (concentration). It is evident from
both these displays that the trend within the treatment groups is linear,
i.e., the quadratic component is essentially 0. The quadratic term was
thus deleted from the model and the straight line model Y=p+.oI+BiIx+c was
fitted to the data. The results are shown in Figure XII.23. The linear
term is very highly significant, as is evident from Figure XII.22.

The output from CONFINT applied to this model is shown in Figures

XII.24,25. We calculate point and confidence interval estimates of concen-
trations corresponding to 10 percent and 20 reductions in average 21-day
length, relative to the control group. Since the estimated average 21-day
length in the control group is 4.278mm, the values of c specified are
-0.428 and -0.856. Since we are dealing with a straight line model, there
is just one root. From the bottoms of Figure 11.24,25 we read these as

10 percent decrease: conc=17.58 8  95 percent conf interval (5.10, 60.59)
20 percent decrease: conc=359.205 95 percent conf interval (49.31, 2616.57)

The point estimate of the concentration corresponding to a 20 percent

reduction in length exceeds the highest treatment group. It thus
represents extrapolation beyond the range of the data, with the consequent
danger of extrapolation bias. The confidence intervals are too wide to be

useful. The ranges of concentrations in these intervals span factors of 12
and 53 respectively. We must therefore conclude that the results of this
test do not provide enough iniormation to precisely estimate the concentra-
tions associated with 10 percent and with 20 percent reductions in average
length relative to the control group.
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XIII. CONFIDENCE INTERVAL PROCEDURES FOR COMPARISON OF

EFFECT LEVELS BETWEEN TREATMENT AND CONTROL GROUPS

A. INTRODUCTION

In Sections IX-XII we considered the comparisons of effect levels in
the treatment groups with those in the control groups for survival,
reproduction, and length responses. We utilized hypothesis testing,
multiple comparisons, and dose response estimation procedures. In this
section we construct confidence intervals to quantify the extent of the
differences between the treatment group and control group effect levels.
The values contained within the confidence intervals indicate the extent of
biological significance of these effect differences. The widths of the
confidence intervals indicate the degree of precision in the data for
estimating these differences. Narrow confidence intervals signify precise
estimates while wide confidence intervals signify imprecise estimates. By
contrast, hypothesis testing procedures merely state whether the null
hypothesis was accepted or rejected; they give no indication of the extent
of the effect.

Confidence interval comparisons of treatment group and control group
average responses are also a very useful adjunct to hypothesis testing
procedures, particularly at the MATC. After an MATC has been determined,
it is worthwhile to calculate a confidence interval there. The upper
confidence bound (for mortality) or the lower confidence bound (for length
or reproduction) indicate how much worse than the control group, the MATC
could conceivably be. If this confidence bound is biologically very
undesirable, then the MATC might be too high a concentration even though it
is not statistically significantly different than the control. Thus it
might make sense to be more conservative and report a concentration lower
than the MATC. Such a phenomenon will occur most frequently if the
hypothesis testing procedure has very poor power. Thus the calculation and
utilization of confidence intervals at the MATC can help to alleviate one
of the principal weakness of the hypothesis testing approach to determining
safe concentrations.

Confidence interval procedures are discussed in a number of places.
Feder and Collins [1], Section XIII, discusses a number of approaches for
placing confidence intervals on the ratios of treatment group mortality rates
to control group rates in fathead minnow early life stage tests. In this
section we use some of these methods, as well as others, to place corfidence

*0 intervals on pairwise treatment-control ratios and differences in surxival,
length, and reproduction effects observed in 21-day chronic Daphnia tests.
We account for possible beaker-to-beaker heterogeneity of effects within
groups by the adjustment techniques discussed in Section V.

We illustrate confidence interval calculations using unsmoothed effect
levels (i.e., using average observed effect levels within each treatment
group, unadjusted for those in the other groups) and using smoothed effect
levels (i.e., using effect levels based on the predictions from regression
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models fitted to all the treatment groups). We illustrate these approaches

for each of survival, length, and reproduction.

B. MORTALITY--UNSMOOTHED RESPONSES

Feder and Collins [11 discusses three approaches to the construction of
confidence intervals for mortality data. These are based on large sample
normal theory, exact small sample theory based on the noncentral
conditional distribution of the 2 x 2 contingency table, and on Poisson
theory, (most appropriate when the response probabilities are small). We
illustrate here the asymptotic approach, the Poisson approach, and a
variant on the exact approach due to Thomas and Gart [301. We illustrate
these procedures with 21-day cumulative mortality data from several of the
examples considered previously.

Asymptotic Approach

Let Pc,Pt denote the (population) mortality probabilities in the
control group and in a treatment group respectively and let q=1-p. Let
Nc,Nt denote the associated (effective) sample sizes in these groups, let
i Etn(pt/pc), and let Pt,Pc, denote estimates of these quantities. Feder
and Collins [1], Subsection XIIIB, state that an asymptotic 95% confidence
interval on c is

4-1.96 NcPc + Ntpt < P< $ +1.96 NcPo + NtptJ

This interval is valid as Nc,Nt - - with Pc,Pt fixed.

In the case of LeBlanc's Test A the effective sample sizes and observed
mortality rates in the solvent control group and in treatment Groups 5 and
6 are

N2=N5:59.2,N6:5.8, P2:
2 .2/59.2=0.037, p5=5.2/59. 2O0.0 8 8 , p6:0.50.

Substituting p2 A2,p5,45,06,6 for the corresponding parameters in the
confidence interval expression we obtain the following results:

Group 5 vs Solvent Control: --n(55 /2)=tn2.364:0.860

95% confidence interval on p:(0.860-1.96(0.784), 0.860+1.96(0.784))=
(-0.677,2.397)

95% confidence interval on p5/P2=(e
-0 -677, e2 .39 7)=(0.51,10.99).
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Group 6 vs Solvent Control: ;=.en13.514=2.604

95% confidence interval on c=(2.604-1.96(0.589),2.604+1.96(0.589))=
(1.4418,3.759)

95% confidence interval on P6/P2=(e1. 448 ,e3 "759)=(4.26,42.91)

We conclude from these confidence interval calculations that:

* P6 is significantly different from P2 at the 5% level of
significance but P5 is not (since the latter confidence interval
includes 1 while the former does not).

* P6 is substantially greater than P2 (since the lower confidence

bound on the ratio is 4.26).

* Neither P5/P2 nor P6/P2 are determined very precisely. The data are

compatible with P5 being just half of P2 or being ten times greater
than P2. The data are compatible with P6 being anywhere between 4.3
and 43 times greater than P2. Thus these ratios are not even
determined to an order of magnitude.

It is interesting to note that these results are compatible with those
obtained in Section IX, based on various hypothesis testing procedures,
where it was shown that Group 5 is the MATC.

With Goulden's Isophorone data there was no adjustment of sample sizes
due to beaker-to-beaker heterogeneity. The sample sizes and observed
mortality rates among the multiply housed daphnids in the control group
and in treatment groups 4, 5, and 6 are N1:N4=N5 =N6:15, 1=0.133,4.
0.200,p5:0.533,P6=0.867. Thus the point estimates of and asymptotic 95%
confidence intervals on P4/Pl,PS/Pl,P6/Pl are:

Group 4 vs Control: p4/P1=1.50
95% confidence interval on P4p1:(0.29,7.76 )

Group 5 vs Control: p/61:4.00
95% confidence interval on p5/p1=(1.01,15.87)

Group 6 vs Control: p6/p1= 6 .50
95% confidence interval on p6/P1=(1.7 6 ,24 .09)

We conclude from these confidence interval calculations that:

0 P6 and P5 are significantly different from Pl at the 5% level of
significance but P4 is not.

* P6 and P5 may be about the same as P, or may be an order of
magnitude greater.

e None of the ratios P4/PI,PS/Pl, or P6/pi are determined very
precisely. These ratios cannot be determined by these data even to
an order of magnitude.
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Poisson Approach

The previous paragraph discussed the construction of confidence

intervals based on asymptotic normal theory. The normal approximation to
the binomial distribution is certainly valid if Np>5 and Nq>5 for each
group. For several of the groups however, the expected frequencies were as
low as 2. Thus the validity of the asymptotic theory is brought into
question.

Another approximate approach to constructing confidence intervals on

ratios of mortality probabilities is based on the Poisson approximation to
the binomial distribution. This approximation is best when both the
control group and treatment group probabilities are small, about 0.10 or
less. The approximation holds for both small and large sample sizes.
Feder and Collins [1], Subsection XIIID, discuss this approach. Following
Nelson [311 they state that if Xc,Nc and Xt,Nt are the (adjusted) responses
and sample sizes in the control and treatment groups respectively, if Pc,Pt
are the response probabilities in these groups, and if XC=Ncpc,xt=Ntpt,
then an approximate 1-a level two sided confidence interval on Xt/Xc is

F • [ Xt  1 ,Xt+1 F(2Xt+2,2Xc;I-2):."Y[+ F(2X,+2,2Xt;1-a1) X.

where F(Vl,V 2 ;Y) represents the upper Y-th percentile of the F-distribution
with degrees of freedom vl,v2 and where ai+a2cz. Now

Thus multiplying the above confidence bounds by Nc/Nt yields confidence
bounds on pt/Pc.  Note that if Xt=0 the lower bound is 0 while if Xc=O the

upper bound is infinite.

Nelson [311 presents charts which facilitate the construction of two

sided 90%, 95%, or 99% confidence intervals. These charts are illustrated
and their use is discussed in Feder and Collins.

We illustrate the Poisson based confidence interval procedure with
several examples. First consider the comparison of treatment group 5 with
the solvent control group in LeBlanc's Test A. In this case N2 :N5 :59.2,
X2:2.2, X55.2. Thus 62,65 are both less than 0.10. As indicated in the
discussion on asymptotic confidence intervals,

p5/P22.3
6 4

Substituting X5 ,X2 for Xt,Xc respectively and ul1t 2 :0.025 in the confidence
interval expression, we calculate an approximate 95% confidence interval on

P5/P2 . Namely

5.2 _,_______ 6.2 F(2444.95]1 . 1 6. _ 8__.1912

3.2 F(6.4,10.4;.975) 2.2 .2 3.9-- 2. 98 (-2,.2]
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The percentiles of the F-distribution with nonintegral degrees of freedom
were obtained by linear interpolation.

This confidence interval is qualitatively similar to but slightly wider
than the asymptotic theory confidence interval.

We next consider the comparison of treatment Group 4 with the control
group in Goulden's Isophorone test. The observed mortality rates in these
groups are 0.200 and 0.133 respectively so we are stretching the Poisson
theory a bit. However, the errors made should be on the conservative side
(i.e., overly long intervals). In this example N1 =N4=15,X 1=2,X 4 =3. Thus

P46=1.50

Substituting X4 ,X1 for Xt,Xc and at=a2 =0.025 in the confidence internal
expression, we obtain

{3 1 -4 F(8,4;0.975)] 15 2 2(8.94)j (0.17,17.84)

This interval is very much wider than the asymptotic confidence interval.
Thus the Poisson interval is not consistent with the asymptotic interval in
this example. We will be able to determine the relative merits of the
asymptotic and Poisson confidence intervals for this example when we con-
sider below the calculation of exact confidence intervals.

Exact, Small Sample, Conditional Approach

If the sample sizes are not sufficiently large to apply the asymptotic
confidence interval procedure and if response proportions are not suffi-
ciently small to apply the Poisson confidence interval procedure, then
confidence interval comparisons between the treatment groups and control
group(s) can be made by an exact, small sample procedure based on the
nonull distribution of Fisher's exact test, conditional on the margins of a
2-by-2 contingency table.

Let Pt,Pc denote the response (mortality) probabilities in the treatment

and control groups respectively and let q=l-p. Feder and Collins Ill],
Subsection XIIIC, discuss procedures for placing exact, small sample
confidence intervals on the odds ratio

-pt/qt

based on an algorithm by Thomas [32]. Thomas' algorithm has been
implemented in EXAX2 [2]. Thomas and Gart (301 have extended this
procedure to place exact confidence intervals on differences and ratios of
response probabilities, based on the confidence interval on the odds ratio.
They present tables of such confidence intervals for a wide variety of
possible outcomes of 2-by-2 contingency tables.
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We illustrate the small sample, conditional approach with several
examples based on Goulden's Isophorone test. The odds ratios and
associated 95% confidence intervals are calculated by EXAX2. Results for
pairwise comparisons of Groups 4, 5, and 6 with the control group are shown
in Figure XIII.1.

Group 4 vs Control: p=0.615

95% confidence interval on p is (0.045,6 .484)=(PL,PU)

Let XL,XU denote the numbers of dead control animals that would
correspond to odds ratios PL,P U conditional on the marginals of the
table. Following Thomas and Gart we have (for m:5,N1 =N4=15)

xL 5-xr _5 _ / 5 -xi
PL T - /j 15-(5-xL) OU 15-xU 15-(5-x U )

This results in the quadratic equations

(r PL-1 )XL2-(10+20PL)xL+75PL =0

(P U-1 )xU2 -(10+20PU)xU+75PU:0

Substituting the values of OL,PU, solving the quadratic equations, and

retaining the roots that lie between 0 and 5 yields

XL=0.3008

Xu=4.16 14.

These values yield confidence bounds on p4/Pl by noting that P4/Pl is
estimated by (5-x)/x. Thus, ((5-xU)/XU,(5-XL)/XL) constitutes an exact,
small sample 1-a level two sided confidence interval on P4/Pl . This
yields the interval (0.20,15.62). This interval is a bit shorter than
the Poisson based interval, but is very similar. It appears that the
asymptotic interval is too short in this example. However the
asymptotic, Poisson, and conditional intervals all lead to the same
qualitative conclusions that there is no statistical evidence that P,
and P4 differ and that the ratio P4/Pl cannot be determined very
precisely based on just the pairwise treatment-control comparison.

Group 5 vs Control: P=0.135

95% confidence interval on p is (0.0118, 1.0012) (rL,PU)

Let XL, xU have the same interpretations as in the comparison of Group
4 with the control. Using the same procedure as discussed there, we
obtain the quadratic equations

(PL-1)XL2-(5+25PL)xL+150PL=0

(pU-l 2(5+25Pu)xu 1500U=0
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This yields XL=0.316 8 , xU=5.0019. Since P5/Pl is estimated by (10-
x)/x, we obtain the 95% two sided confidence interval on P5/P1 to be
(01-xU)/xU,(10-xL)/xL)=(0. 999 ,30.57 ). The lower end point of this
interval is in good agreement with the asymptotic interval but the
upper endpoint is much greater. However, both intervals lead to the
same qualitative conclusions, namely that P5 is statistically
significantly greater than Pl (at the one sided 0.025 level) and the
ratio P5/P1 cannot be determined very precisely based on the pairwise
treatment-control comparison.

Group 6 vs Control: p=0.024

95% confidence interval on p is (0.0018,0.2511) ( L,2U)

Using the same relations discussed previously, xL and xU are determined
as the roots of the quadratic equations

(PL-1 )xL2-30PLXL+2 25PL=O
( U-1 )xu230PUXU+225PU=0

that lie between 0 and 15. This yields xL=0.6063, xU=5.007 6 . Since
P6/Pi is estimated by (15-x)/x, we obtain the 95% two sided confidence
interval on P6/Pl to be ((15-xU)/xU,(15-XL)/xL))=(1. 9 95,23.7 4). This
interval is in rather good agreement with that based on asymptotic
theory. This confidence interval shows that there is strong
statistical evidence that P6 is greater than Pl; however the ratio
P6/P1 cannot be determined very precisely based on the pairwise
treatment-control comparison.

We have discussed a procedure for constructing exact, small sample
confidence intervals on the ratios of mortality probabilities and have
compared the results from this procedure to confidence intervals based on
Poisson or on asymptotic theory. The asymptotic confidence intervals
appear to be too short when the group sizes are as small as those in the
Goulden test (N=15) and the mortality probabilities are relatively small.
However, all the confidence interval procedures yielded the same
qualitative conclusions. All the confidence intervals constructed
indicated that ratios of mortality probabilities could not be determined
very precisely based on unadjusted pairwise treatment-control comparisons
with the numbers of daphnids per group and the magnitudes of mortality
probabilities encountered in these tests. Note that we have not adjusted
for simultaneity. Such adjustments can be easily carried out using
Bonferroni's method.

The preceding approach can also be easily adapted to constructing
exact, small sample conditional confidence intervals on the differences
between the treatment group mortality rates and the control group rate.
Again, following the notation in Thomas and Cart [30] we let Nt,Nc denote
the sample sizes in the treatment and control groups respectively and
Xt, Xc denote the number of dead animals in these groups. Conditional on
Xt+Xc=m, the difference between the proportions dead in the treatment group
and in the control group is estimated by
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a-m-Xc --
Nt Nc

Let xL,xU denote the numbers of dead control animals that would correspond
to the lower and upper 95% confidence limits pL,PU on the odds ratio. Then

RM-_11U 2Um-xy - !Nt Ne Nt Nc)

constitutes an exact, small sample 1-a level two sided confidence interval
on Pt-Pc. Substituting the values of NcNt, m,xL,xU appropriate for the
treatment group-control group comparisons in Goulden's Isophorone Test, we
obtain:

Group 4 vs Control(m=5,Nl=N4=15,L=0.3008,xu=4.1614): 95% confidence
interval on P4-Pi is (-0.22,0.29) and the point estimate is 0.067.
Thus there is no statistical evidence that Pl and P4 differ.

Group 5 vs Control (m=10,N1=N5=15,XL=O.3168,Xu=5.0019): 95% confidence
interval on P5-Pl, is (-0.0003,0.62) and the point estimate is 0.40.
Thus P5 is significantly greater than Pl at the 0.025 level, but we
cannot determine the difference very precisely.

Group 6 vs Control (m=15,Nl:N6=15,xL=0.6063,xU=5.0076): 95% confidence
interval on P6-Pi is (0.33,0.92) and the point estimate is 0.73. Thus --

P6 is significantly greater than Pl, but the difference cannot be
determined very precisely.

C. MORTALITY--SMOOTHED RESPONSES

The confidence intervals in the previous subsection were based on
comparisons of the actually observed response rates in the treatment and
control groups, without imposing any structure on the mortality probabil-
ities. However a number of assumptions about the behavior of these
probabilities with increasing concentration may be quite reasonable. It
was seen in the preliminary plots in Section II that the mortality rates
generally increase with increasing concentration, they generally increase
in a smooth manner, and the trend curves are generally S-shaped. This is
typical behavior that is observed for such responses, with many different
compounds and many different animal species.

Such structure can be accounted for in the construction of confidence
intervals on treatment group-control group differences. One way to do this
is to fit regression models to describe the trends in mortality rates and
base confidence interval calculations on predictions from these models.
One commonly used model is the probit model. Probit models in concentra-
tion or in log concentration were fitted to the mortality data in Section
X. In this section we use the results from these probit fits to construct
confidence intervals on pairwise differences between the treatment group
and control group mortality rates. Such confidence intervals would be
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expected to be more precise than the intervals constructed in the previous
subsections. However they are based on a greater number of assumptions. A
detailed comparison of the theoretical properties of the confidence
intervals based on the smoothed probability estimates with those based on
the unsmoothed estimates might be carried out, but is beyond the scope of.
this report.

It should be noted that the inferences discussed in this subsection are
based on asymptotic theory. Since the predictions of the regression models
are based on averaging responses from all the groups in various ways, it
might be expected that the asymptotic theory is more valid for the smoothed
estimates than for the unsmoothed estimates. This too needs to be investi-
gated in greater detail.

The confidence intervals in this subsection were constructed to compare
differences between treatment group and control group mortality rates.
Directly analogous procedures can be used to construct confidence intervals
on the ratios of these rates.

The confidence intervals are based on the standard three-parameter
probit models (in either logarithmic or untransformed concentration levels)
that were fitted to the data in Section X. These models can be expressed
as

p(conc)=Po+(1-Po)o( o+a1(z-m))

where po,p(conc) are the background mortality rate and the rate at concen-
tration conc respectively, z is either concentration or log 10 (concentra-
tion), m is a fixed centering constant, ¢(') is the standard normal c.d.f.
and po,6oa1 are unknown parameters to be estimated from the model fit to
the data. The confidence interval calculations are based on the estimated
parameters from this model and their estimated variances and covariances.
The details of the procedure are contained in Appendix AXIII. We apply the
procedure below to the 21-day mortality responses from several of the data
sets.

LeBlanc Test A--Solvent Control Group--Logarithmic Concentration

Here z=log10 (conc), m=-2.113. From Figure X.1 we obtain

Po=0.08313 fo=2.52089 i=8.27337

^ (po):0.018428 &(Ao)=1.20098 a(A1)=2.49065

1.0000 -0.2071 0. 1886"\
R=-0.2071 1.0000 -0.9546)

(o.1886 -0.9546 1.0000/
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The control group is Group 2. The differences and their estimated
standard errors are

Group 3 4 5 6 7
Difference 0.0000" 0.0000" 0.004 0.419 0.905
Std Error 0.0000" 0.0000" 0.0131 0.2025 0.0224

Thus 95% confidence intervals on the treatment group-control group
differences are

Group 3 vs Control (0.0000,0.0000)
Group 4 vs Control (0.0000,0.0000)
Group 5 vs Control (-0.021,0.030)
Group 6 vs Control (0.022,0.816)
Group 7 vs Control (0.861,0.949)

There is thus statistical evidence that Groups 6 and 7 have greater
mortality rates than the control group. However the extent of these
differences cannot be well determined. Note that the Group 6 vs Control
confidence interval on P6-P2 above gives a somewhat different impression of
the relation between these probabilities than the asymptotic confidence
interval on P6/P2 in Subsection B. The interval in this subsection sug-
gests less information about the extent of difference between P6 and P2
than does the interval in Subsection B. Most of the discrepancy is due to
the fact that the smoothed background mortality estimate is 0.083 while the
unsmoothed estimate is 0.038. The remainder of the discrepancy is probably
due to slightly different assumptions built into the asymptotic distribu-
tions that were used. While both intervals lead to the same qualitative
differences, the implications of the interpretational differences of the
lower endpoints need to be further investigated. Subjectively, I would
prefer the interval in this subsection since it uses more information from
the data.

LeBlanc Test B--Combined Control Groups--Untransformed Concentration

Here z=conc, m=0.0250. From Figure X.8 we obtain

Po=0.10 94 4  3o:-3.37287 1=15.9695

a(po):0.020227 ( o):2.80322 a(i):129349( 0000 -.- . .].521

: .5474 1.0000 -0.9868
.5291 -0.9868 1.0000/

The slope and intercept are not well determined in this example. Their
estimates are highly intercorrelated. This is undoubtedly due to the
nearly constant dose response relation, except for Group 7.

* These values are zero to at least four decimal places.
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The control group is Groups 1 and 2 combined. The differences and
r their estimated standard errors are

Group 3 4 5 6 7
Differe. -e 0.0001 0.0003 0.0017 0.0096 0.5022
Std Error 0.0011 0.0031 0.0124 0.0489 0.1637

Except for Group 7, the treatment group-control group differences are
negligible. 95% confidence intervals on the treatment group control group
differences are

Group 3 vs Control (-0.002,0.002)
Group 4 vs Control (-0.006,0.006)

6 Group 5 vs Control (-0.023,0.026)
Group 6 vs Control (-0.086,0.105)
Group 7 vs Control (0.181,0.823)

There is thus statistical evidence that Group 7 has greater mortality
rates then the control group. However, the extent of this difference
cannot be well determined.

Goulden Isophorone--Logarithmic Concentration

Here z=log10 (conc), m=1.8352. From Figure X.11 we obtain

*po0 .0 90 58  B0
= -2.50889 1 =7.50132

(po) =0.04258 5(Bo)=0.95596 ( I)=2.51776

1. .,U 00 -0 3238 0.2590~
0(= .3238 1.0000 -0.9633)
.2590 -0.9633 1.0000

The control group is Group 1. The differences and their estimated standard

errors are

Group 2 3 4 5 6
Difference 0.0000 0.0002 0.0924 0.4722 0.7619
Std Error 0.0000 0.0009 0.0932 0.1051 0.0884

95% confidence intervals on the treatment group-control group differences
are

Group 2 vs Control (negligible)
Group 3 vs Control (-0.002,0.002)
Group 4 vs Control (-0.090,0.275)
Group 5 vs Control (0.266,0.678)
Group 6 vs Control (0.589,0.935)

There is statistical evidence that Groups 5 and 6 have greater mortality
rates than the control group. However the extent of these differences
cannot be well determined.
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It is interesting to compare these intervals with those obtained in
Subsection B based on exact, small sample theory using the unsmoothed
mortality estimates. Direct comparisons are available for Groups 4, 5, and
6 in Goulden's Isophorone Test.

Exact, Small Sample Asymptotic Confidence
Confidence Intervals, Interval, Probit Based

Unsmoothed Mortality Estimates Mortality Estimates

Group 4 vs Control (-0.22,0.29),0.067 (-0.090,0.275),0.092
Group 5 vs Control (-0.0003,0.62),0.40 (0.266,0.678),0.47
Group 6 vs Control (0.33,0.92),0.73 (0.589,0.935),0.76

The smoothed and unsmoothed point estimates are similar. However the
asymptotic confidence intervals are much shorter than the small sample
confidence intervals. The discrepancies are particularly at the lower
endpoints of these intervals. The reason for good agreement of the upper
confidence bounds but poor agreement of the lower confidence bounds is not
well understood and should be studied further.

D. LENGTH--UNSMOOTHED RESPONSES

Subsections B and C were concerned with various approaches to construc-

ting confidence intervals for the comparisons of treatment group and
control group mortality rates. Confidence intervals can also be
constructed to compare length and reproduction responses botween treatment
and control groups. Since the procedures for length and for reproduction
are quite similar, we consider lengths only. In this subsection we work
with unsmoothed lengths and in the next subsection we work with lengths
smoothed by regression models. Recall that in several data sets we deleted
groups from the length and reproduction comparisons because of excessive
mortality. This includes Group 7 in LeBlanc's Test A and Group 6 in
Goulden's Isophorone test.

Nonsimultaneous confidence intervals are based on the t-distribution.
Adjustments for simultaneity can be based on Dunnett's procedure in the
balanced case (i.e., equal numbers of beakers per group and equal numbers
of daphnids per beaker) or more generally on Bonferroni's procedure. We
will not pursue either procedure here. We consider several examples.

LeBlanc Test A--Solvent Control Group--Group 7 Deleted

We use the average lengths and estimated standard errors contained in
Subsection XI.C. The standard error estimates are based on the interaction
mean square in the analysis of variance fit discussed in Subsections IV-A
and V-D. The average lengths and estimated standard errors are (see
Subsection V-D for details)
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Control
Group 2 3 4 5 6
Average 5.2753 4.9743 5.1027 4.9658 5.0000
Std Error 0.059 0.062 0.061 0.061 0.080

We associate 98 degrees of freedom with the interaction mean square (after
augmenting information from the within beaker mean square).

The 1-a level two sided nonsimultaneous confidence intervals are
o±to2+ 2)]/ 12,where Yi,Yo are the average lengths, where to is the upper

a/2 point of the t-distribution with 98 degrees of freedom, and ai,ao are
the estimated standard errors of the treatment and control group averages
respectively. If 1-a=0.95, the t factor is 1.99. Thus the confidence
intervals are

Group 3 vs Control (-0.471,-0.131)
Group 4 vs Control (-0.341,-0.004)
Group 5 vs Control (-0.478,-0.141)
Group 6 vs Control (-0.473,-0.077)

Since none of these intervals contain 0, they provide statistical
evidence that the average 21-day length in the solvent control group is
significantly greater than those in the treatment groups. The average
differences are between a tenth and a half of a millimeter. Whether or not
such reductions in lengths are of biological significance is a separate
issue. This result is in direct agreement with the appearance of Figure
11.26 and with the multiple comparisons calculations carried out in
Subsection XI.C.

Chapman--Beryllium--Combined Control Groups

Analyses are carried out only on lengths corresponding to daphnids that
survived to the end of the test. Since the test was carried out with just
one daphnid per beaker, there is no complication due to beaker-to-beaker
variation within groups. This component of variation is confounded with
the daphnid-to-daphnid variation.

The estimated standard deviation, based on the residual sum of squares
from a one-way analysis of variance (not shown) is a=0.325 with 56 degrees
of freedom. The average lengths per group, numbers of daphnids, and
standard errors are

Control
Group 1 and 2 3 4 5 6 7 8
Number 18 8 6 6 9 10 6
Average 4.278 4.125 4.000 3.817 3.900 3.590 3.650
Std Error 0.077 0.115 0.133 0.133 0.108 0.103 0.133

Nonsimultaneous 95% confidence intervals are calculated just like in the
LeBlanc Test A example. These confidence intervals are
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Group 3 vs Control (-0.429,0.124)
Group 4 vs Control (-0.585,0.029)
Group 5 vs Control (-0.768,-0.154)
Group 6 vs Control (-0.643,-0.113)
Group 7 vs Control (-0.945,-0.431)
Group 8 vs Control (-0.935,-0.321)

These intervals provide statistical evidence that the average lengths in
Groups 5-8 are statistically significantly lower than those in the control
group. This is in reasonable agreement with the appearance of Figure
11.32.

E. LENGTH--SMOOTHED RESPONSES

The confidence intervals in the previous subsection were based on

comparisons of the actually observed average lengths within each group,
without imposing any structure on these averages. Regression models were
fitted to the lengths in Subsection XII.C that assumed smooth trends in
average lengths with increasing concentrations. It is interesting to note
that these trends are not necessarily monotone. That is, low toxicant
concentrations sometimes enhance average lengths.

The confidence intervals in this subsection were constructed to compare
differences between treatment group and control group average lengths.
They are based on polynomial regression models (linear or quadratic) in
log 10 (concentration). Since the control group is generally far removed
from the treatment groups in terms of logl0 (concentration), it was felt

advisable to fit the polynomials only to the treatment group responses.
The control group responses are unadjusted. The specific form of the
models fitted is discussed in detail in Subsection XII.A. See that

discussion for further details. We utilize the results of these models in
the calculations below.

We illustrate the construction of confidence intervals on treatment
group-control group average differences with several examples.

LeBlanc Test A--Solvent Control Group--Group 7 Deleted

There are four treatment groups and a control group. A quadratic
regression model in log 10 (concentration) was fitted to the treatment group
responses. The results are shown in Figure XII.17. The quadratic term in
Figure XII.17 has the wrong sign (positive), is small, and is nonsignif-
icant. The plot of length vs group in Figure 11.26 shows no trend among
the treatment groups. The quadratic term was deleted from the model and a
straight line trend was fitted to the treatment groups. The results are
shown in Figure XII.19. The slope coefficient is essentially zero and is
nonsignificant. Based on this and the appearance of Figure 11.26, we
conclude that there is no trend in average lengths among the four treatment
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groups. We thus calculate an overall average length across the treatment
groups for comparison with that in the control group. The average length
among the 256 surviving daphnids in the 4 treatment groups is 5.0125 mm
with a standard error (based on the overall interaction mean square) of
0.0326. (The average of the 16 beaker averages is 5.0231 with a standard
error of .035, based on these 16 values.) The average length among the 77
surviving daphnids in the solvent control group is 5.2753 mm with a
standard error (based on the overall interaction mean square) of 0.059.
(The average of the four beaker averages is 5.2775 mm with a standard error
of 0.029, based on those 4 values. The averages are similar but the
standard errors differ. We use the larger value below, but this should be
considered further.)

A 95% confidence interval on the difference of the treatment group and

solvent control group average lengths is

(5.0125-5.2753)+2(.03262+.0592)1/2=(-0.40, -0.13)

This interval is tighter than the individual confidence intervals calcu-
lated in the previous subsection and it summarizes the trend information
more succinctly. We feel that this is a better representation of the
results.

Chapman--Beryllium--Combined Control Groups

There are six treatment groups and a (combined) control group.
Analyses are carried out only on lengths corresponding to daphnids that
survived to the end of the test. A quadratic trend model in log10 (con-
centration) was fitted to the treatment group responses. The results of
the fit are shown in Figure XII.21. It is evident from Figures XII.21 and
XII.22 that the quadratic trend is negligible. The quadratic term was thus
deleted from the model and a straieht line model was fitted to the data. The
results of this fit are shown in Figure XII.23. The linear term is highly
significant and we use this model to construct confidence intervals.

The parameterization of the regression model is discussed in detail in
Section XII. The portion, Bo+61x, of the model represents the difference
between the predicted average length at x (=log10 (concentration)) and the
average length in the control group. This is estimated for the i-th
treatment group as 8o+A1xi where oA I are the I and IX coefficients in
Figure XII.23 and xi is 0.4150, 0.7931, 1.1377, 1.4294, 1.7370, 2.0456 for
treatment Groups 3, 4, 5, 6, 7, 8 respectively. The standard error of
Bo+81xi is estimated as

Gi:[ (I,xi) $(I,xi) '1 1/2

where is the estimated variance-covariance matrix given at the bottom of
Figure XII.23. A 1-a two sided nonsimultaneous confidence interval on the
treatment-control difference is Ao+B1xi~tai, where t is the upper a/2
percentile of the distribution with the appropriate number of degrees of'
freedom. In our case a=0.05, d.f.:56, t=2.00. The confidence intervals on
the differences for the individual treatment groups are:
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Group 3 vs Control (-0.391,0.078)
Group 4 vs Control (-0.478,-0.082)
Group 5 vs Control (-0.573,-0.212)
Group 6 vs Control (-0.699,-0.307)
Group 7 vs Control (-0.785,-0.392)
Group 8 vs Control (-0.913,-0.465)

These intervals are qualitatively similar to the unsmoothed intervals
calculated in the previous subsection. However they are somewhat shorter,
since they incorporate information from all the groups. Groups 5-8 are
statistically significantly lower than the control group. Group 4 is seen
to be borderline significant on the basis of either the smoothed or
unsmoothed intervals.
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XIV. EXPERIMENTAL DESIGN CONSIDERATIONS

In this section we consider a number of aspects of the design of
chronic Daphnia toxicity tests. Topics discussed include limitations on
test size, precision to be expected as a function of test size, allocation
of daphnids among beakers and beakers among groups, criteria for judging
the adequacy of a test, and blocking considerations. Feder and Collins
[1], Section XIII discuss some experimental design issues related to early
life stage tests with Fathead Minnows. Portions of the discussion in this
section extend that material and adapt it to Daphnia tests.

A. INTRODUCTION

The principal limitations on the size of a toxicity test are the amount
of dilution water that can be supplied by the particular proportional
diluter being used, the number of replicate beakers per group into which
this water can practicably be split in a uniform manner, and the maximum
number of daphnids that can be accommodated in the available amount of
water and that can be monitored for survival, reproduction, and length with
the available amount of laboratory personnel and technology. The extent of
these limitations depends on the available equipment and people resources
and this will vary considerably among test facilities. Thus no absolutes
can be stated about universal numbers of daphnids, numbers of beakers,
etc., that need be used. However, we can estimate the precision to be
expected as a function of test size and we can state some general
guidelines for allocating daphnids among beakers and allocating beakers
among groups.

B. ALLOCATION OF DAPHNIDS AMONG BEAKERS WITHIN GROUPS

Experimental equipment, facilities, and technique place upper bounds on
the numbers of beakers that can be used in each treatment or control group.
Water supply and technician availability place upper limits on the number
of Daphnia that can be used. We recommend that as many daphnids as
feasible be used for studying toxicant effects on survival. Furthermore as
many beakers as possible should be used within each test group, so that the
numbers of daphnids per beaker can be made as small as possible. However
equal numbers of daphnids should be allocated to each beaker within each
test group, so as to keep effects of competition, food and oxygen supply,
contagion, and handling as constant as possible across beakers.

Utilizing larger numbers of replicate beakers per group with smaller
numbers of daphnids per beaker has many advantages. Some of these are:

1. There will be less competition among the daphnids within each
beaker. This should result in healthier daphnids, should reduce
nontoxicant related mortality and morbidity, and should thereby
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improve sensitivity for determining toxicant related effects on
survival, growth, and reproduction.

2. There will be less contagion among the daphnids within each beaker.
Thus fungii, bacteria, etc., that can invade a beaker will affect
fewer daphnids. Similarly any fluctuations in experimental
conditiots in the beaker will affect fewer daphnids.

3. Estimates of effects within groups are based on averages of the
observed average effects within each beaker. The presence of
beaker-to-beaker heterogeneity degrades the precision of such
averages. However, averaging over replicate beakers tend to
balance out the beaker-to-beaker heterogeneity. Another way of
saying this is that for a given number of daphnids on test per
group and for a given degree of beaker-to-beaker heterogeneity per
group, the more beakers and the fewer daphnids per beaker that are
used, the more precise will be the estimates. In the terminology
used in previous sections, the effective sample size per group
increases as the number of beakers increase.

4. The number of degrees of freedom for estimating the extent of
beaker-to-beaker variation within groups increases with the number
of beakers. Thus not only is the effective sample size and
therefore the precision increased, but the ability to estimate that
precision is improved. Feder and Collins [1], Section XVIII
recommend that at least 12 degrees of freedom be available for
estimating variability.

The principal limitations on the numbers of beakers that can be used
per group are the ability to deliver uniform water quantity and quality to
large numbers of beakers and to maintain the beakers under uniform
laboratory test conditions. These problems increase as the size of the
test increases.

We now perform calculations that illustrate how effective sample sizes
per group depend on the allocation of beakers and daphnids within each
group. We illustrate such calculations for survival, length, and
reproduction responses.

Suppose that a particular test (or control) group contains J beakers
and n daphnids per beaker. The total sample size is N = Jn. We calculate
effective sample sizes as J (and therefore n) varies with N fixed.
Effective sample size calculations for determing survival rates are based
on Williams' beta binominal model [31 while effective sample sizes for
determining average lengths or reproduction are based on components of
variance calculations.

We first consider survival. Following the discussion in Feder and Collins
[1], Subsection XVIIIB we let Xij denote the number of dead daphnids (e.g.,
after 21 days) in beaker j of group i. For notational convenience we
suppress the subscript i in the discussion below. Thus Xij is referred to
as Xj. We assume Xj is binominally distributed with parameters (n, pj) and
p in turn has a beta distribution with parameters (a, 6). This mode •
allows for random variation of mortality rates among the beakers within .- ,
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TABLE XIV.1 EFFECTIVE SAMPLE SIZE PER GROUP AS A FUNCTION OF NUMBER OF DAPHNIDS (N)
NUMBER OF BEAKERS (J), AND DEGREE OF BEAKER-TO-BEAKER HETEROGENEITY (6)

N=10 e 0 0.01 0.02 0.04 0.07 0.10 0.20 0.30 0.50 0.75 1.00 1.50 2.00

J=l 10 9.2 8.5 7.4 6.3 5.5 4.0 3.3 2.5 2.1 1.8 1.6 1.4
2 10 9.6 9.3 8.7 7.9 7.3 6.0 5.2 4.3 3.7 3.3 2.9 2.7
5 10 9.9 9.8 9.6 9.4 9.2 8.6 8.1 7.5 7.0 5.2 6.2 6.0

10 10 10 10 10 10 10 10 10 10 10 10 10 10

N=15
J=1 15 13.2 11.8 9.8 7.8 6.6 4.5 3.6 2.7 2.1 1.9 1.6 1.5
3 15 14.4 13.9 13.0 11.9 11.0 9.0 7.8 6.4 5.5 5.0 4.4 4.1
5 15 14.7 14.4 13.9 13.2 12.7 11.3 10.3 9.0 8.1 7.5 6.8 6.4

15 15 15 15 15 15 15 15 15 15 15 15 15 15

N=20
J=l 20 16.8 14.6 11.6 8.9 7.3 4.8 3.7 2.7 2.2 1.9 1.6 1.5
2 20 18.4 17.0 14.9 12.6 11.0 8.0 6.5 5.0 4.1 3.6 3.1 2.9
4 20 19.2 18.6 17.3 15.9 14.7 12.0 10.4 8.6 7.4 6.7 5.9 5.5

10 20 19.8 19.6 19.3 18.8 18,3 17.1 16.3 15.0 14.0 13.3 12.5 12.0

N=30
J:l 30 23.3 19.1 14.2 10.4 8.3 5.1 3.9 2.8 2.2 1.9 1.6 1.5
2 30 26.4 23.5 19.5 15.7 13.2 9.0 7.1 5.3 4.3 3.8 3.2 2.9
3 30 27.6 25.5 22.3 18.9 16.5 12.0 9.8 7.5 6.2 5.5 4.7 4.3
5 30 28.6 27.3 25.2 22.6 20.6 16.4 16.4 13.9 11.3 9.6 8.6 6.9

10 30 29.4 28.9 27.9 26.5 25.4 22.5 20.5 18.0 16.2 15.0 13.6 12.9

N=40
J=2 40 33.7 29.1 23.1 17.8 14.7 9.6 7.4 5.5 4.4 3.8 3.2 2.9
4 40 36.7 34.0 29.7 25.2 22.0 16.0 13.0 10.0 8.3 7.3 6.3 5.7
8 40 38.5 37.1 34.7 31.7 29.3 24.0 20.8 17.1 14.7 13.3 11.8 10.9

10 40 38.9 37.8 35.9 33.4 31.4 26.7 23.6 20.0 17.5 16.0 14.3 13.3
20 40 39.6 39.2 38.5 37.5 36.7 34.3 32.5 30.0 28.0 26.7 25.0 24.0

N=50
J=2 50 40.4 34.0 26.0 19.5 15.7 10.0 7.7 5.6 4.4 3.9 3.3 2.9
5 50 45.9 42.5 37.1 31.5 27.5 20.0 16.3 12.5 10.3 9.1 7.8 7.1

10 50 48.1 46.4 43.3 39.6 36.7 30.0 26.0 21.4 18.4 16.7 14.7 13.6
25 50 49.5 49.O 48.2 46.9 45.8 42.9 40.6 37.5 35.0 33.3 31.3 30.0

N=75
J=3 75 60.5 51.0 39.0 29.2 23.6 15.0 11.5 8.3 6.7 5.8 4.9 4.4

5 75 65.9 58.9 48.8 39.2 33.0 22.5 17.7 13.2 10.7 9.4 8.0 7.3
15 75 72.1 69.6 65.0 59.4 55.0 45.0 39.0 32.1 27.6 25.0 22.1 20.5
25 75 73.5 72.2 69.6 66.3 63.5 56.3 51.3 45.0 40.4 37.5 34.1 32.1

N=100
J=2 100 67.3 51.0 34.7 23.8 18.3 10.9 8.1 5.8 4.6 3.9 3.3 3.0
4 100 80.8 68.0 52.0 38.9 31.4 20.0 15.3 11.1 8.9 7.7 6.5 5.9
10 100 91.8 85.0 74.3 62.9 55.0 40.0 32.5 25.0 20.6 18.2 15.6 14.3
20 100 96.2 92.7 86.7 79.3 73.3 60.0 52.C 42.9 38.8 33.3 29.4 27.3
25 100 97.1 94.4 89.7 83.6 78.6 66.7 59.1 50.0 43.8 40.0 35.7 33.3
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each group and thereby quantifies the extent of beaker-to-beaker

heterogeneity.

Let ic/(x +8) I/(+B) 0 1,00<"

Then

E(pj) -p Var(pj)=p(1-i)6/(1+0)

The unconditional distribution of Xj, accounting for the random variation

of pj, is beta binominal with mean and variance
1+neE(Xj)=np Var(Xj)=n(1-)T +O

Thus

p = ZjXj /N E(P) : Var( ) =1u -____) 1+n _

N 1+e

In Subsection VB we defined the variance inflation factor as

K[ Var(p)

and the effective sample size as

Neff E N/K

Thus, under the assumptions of the beta binomial model,

K:1+n0 and Neff- 1+0
1+0 1+no

The parameter 0 quantifies the extent of beaker-to-beaker heterogeneity
within groups. As 0 approaches 0, there is less and less beaker-to-beaker
heterogeneity and so Neff approaches N, the number of daphnids. As 0
approaches infinity, there is more and more beaker-to-beaker heterogeneity
and so Neff approaches J, the number of beakers. The general situation is
a compromise between these two extremes. We also see that for fixed N and
fixed 8, Neff increases as n decreases (i.e., as J increases). We tabulate
values of Neff in Table XIV.1, corresponding to various combinations of N,
J, and 0. Table XIV.1 shows that depending on the specific combinations of
N, J,0 the effective sample size can be anywhere between J and N. This has
important implications on the sensitivity of the test. The added precision
due to having additional beakers is most pronounced when the extent of
beaker-to-beaker heterogeneity is relatively large and the number of
beakers per group is relatively small.

What values of 6 arise on daphnia toxicity tests? A partial answer to
this question can be obtained by reference to several of the data sets - "
analyzed in previous sections. No evidence of beaker-to-beaker
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heterogeneity was present in either Adams' selenium test or in Goulden's
isophorone test. However, the relatively small group sizes in these tests
(J=3, n=5) did not permit sensitive determinations of such heterogeneity.
LeBlanc's Tests A and B had larger group sizes (J-4, n=20). Both of these
tests showed strong statistical evidence of beaker-to-beaker heterogeneity
within groups (see Subsection III-B). It was estimated in Subsection V-B
that the variance inflation factors are:

LeBlanc Test A K = 1.35 for Groups 1-5, 7
K = 13.76 for Group 6

LeBlanc Test B K = 1.39 for Groups 1-6
K = 8.91 for Group 7

Using the relation K (1+no)/(I+ ) and n=20, we obtain the following
estimates of 0.

LeBlanc Test A e = 0.02 for Groups 1-5, 7
o = 2.04 for Group 6

LeBlanc Test B 0 = 0.02 for Groups 1-6
o 0.71 for Group 7

Referring to the portion of Table XIV.1 corresponding to N=75 and 0=0.02,
we see that Neff can vary a moderate amount as J varies between 3 and 25.
The effective sample size at J=25 is about 40 percent greater than that at
J=3, based of course on the same number of daphnids tested. The situation
for 0=0.75 or for 6=2.00 is much more extreme. The effective sample size
varies between 6.7 and 40.4 for 0=0.75 and between 4.4 and 32.1 for 9=2.0
as J varies between 3 and 25. Thus having had allocations with more - -

beakers and with fewer daphnids per beaker would have greatly increased the
effective sample sizes in Group 6 of Test A and in Group 7 of Test B.

C. SAMPLE SIZE AND POWER CONSIDERATIONS FOR QUALITATIVE SURVIVAL DATA

In the previous subsection we calculated effective group sample sizes

as a function of number of beakers per group, number of daphnids per
beaker, and extent of beaker-to-beaker heterogeneity. In this subsection
we calculate the power to be expected for pairwise comparisons between
treatment groups and the control group. These power calculations are based
on one sided, two sample hypothesis tests without any smoothing of the
treatment group responses by means of fitting regression models. Such
smoothing would undoubtedly improve the power of treatment group-control
group comparisons.

The power calculations in this subsecton are an extension of those in
Feder and Collins [I1, Subsection XVIII.B. They are based on adjusting the
sample sizes within each group to effective sample sizes and then carrying
out comparisons across groups based on per daphnid analyses. The
calculations are an extension of those in Feder and Collins, but the sample
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sizes are modified to be more applicable to Daphnia tests. Feder and
Collins examined the consequences of allocating greater numbers of daphnids
to the control group than to each of the treatment groups since the control
group enters into each pairwise comparison while each treatment group
enters into just one. Thus extra allocation to the control group should
improve the resulting power. The calculations in Feder and Collins show
that the power is indeed improved; however the extent of improvement is not
sufficiently great to warrant the additional logistical and administrative
effort involved. Thus the power calculations below are based on the
assumption of equal allocations of daphnids in each group (treatment or
control). Adjustments for simultaneous testing are ignored in the power
calculations.

The power calculations are based on the hypothesis test of Ho:pp o vs
Hl:p>po where p,po corresponds to the average mortality rates in the treat-
ment and control groups respectively. We adjust the effective sample sizes
down to Neff in each group to account for beaker-to-beaker heterogeneity.
We assume that N,J,O are the same in each group so that Nef f is also the

same across groups. We estimate p,po by the sample mortality rates 0,0o,
we carry out the variance stabilizing transformations 2 arc sin /v and 2
arc sin /5o, and we reject Ho at significance level a=0.05 if

2 arc sin Vp-2 arc sin v'7o> 1.6452-/Nef f .

The power of this test is calculated for various combinatons of Neff, P,Po

that are appropriate for Daphnia tests. Based on the calculations in Table
XIV.1, Neff varies between 1 and 100 as N,J,e vary over different combina-
tions of values. It is assumed that an infinite number of degrees of
freedom are available for error estimation.

The observed control group mortality rates in LeBlanc's, Adams',
Chapman's, and Goulden's (combined) control groups were 0.09, 0.13, 0.07,
0.10, and 0.13 respectively. We thus assume a range of control group
mortality rates between 0.05 and 0.15. The calculations are shown in Table
XIV.2.

If we (somewhat arbitrarily) regard 0.80 as a reasonable level of
power, we see that tests conducted under ASTM guidelines (i.e., 3 beakers
per group to test survival, 5 daphnids per group) are sensitive for
distinguishing between 10% and 50% mortality but not for distinguishing
between 10% and 30% mortality, even if there is no beaker-to-beaker
heterogeneity. Any beaker-to-beaker heterogeneity would degrade the
sensitivity of the test since it would reduce the effective sample sizes.
For example, for 0=0.71 (the estimated heterogeneity of Group 7 of LeBlanc
Test B), Table XIV.1 shows that the effective group size is degraded from
15 to about 6. Table XIV.2 shows that with a group size of 6, the test
cannot come close to distinguishing between 10% and 50% mortality rates.
Thus even without taking heterogeneity into account, the ASTM guidelines
appear to be too minimal for many reasonable survival rate comparisons of

biological importance.
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TABLE XIV.2 POWER OF ONE SIDED PAIRWISE COMPARISONS OF SURVIVAL RATES BETWEEN
CONTROL GROUP AND TREATMENT GROUPS AS A FUNCTION OF Ne??.p.p.. a=0.05

Neff  1 2 14 6 10 15 25 50 75 100

p=O.O75 0.06 0.06 0.07 0.07 0.08 0.09 0.10 0.13 0.16 0.18
0.10 0.07 0.07 0.09 0.10 0.11 0.13 0.17 0.25 0.32 0.39
0.15 0.08 0.10 0.12 0.15 0.19 0.24 0.314 0.53 0.68 0.79
0.20 0.10 0.12 0.17 0.21 0.28 0.37 0.52 0.77 0.88 0.96
0.30 0.13 0.17 0.26 0.34 0.48 0.62 0.82 0.97 1.00 1.00
0.140 0.16 0.23 0.37 0.48 0.66 0.81 0.95 1.00

P=0.10 0.06 0.06 0.06 0.07 0.07 0.08 0.09 0.12 0.114 0.15
0.15 0.07 0.08 0.10 0.11 0.13 0.16 0.21 0.33 0.43 0.52
0.20 0.08 0.10 0.13 0.16 0.21 0.27 0.37 0.59 0.74 0.84
0.30 0.11 0.15 0.22 0.28 0.38 0.50 0.69 0.92 0.98 1.00
0.40 0.14 0.20 0.31 0.41 0.57 0.72 0.89 0.99 1.00

p=O.15 0.06 0.07 0.08 0.08 0.10 0.11 0.13 0.19 0.24 0.28
0.20 0.07 0.09 0.11 0.12 0.16 0.19 0.26 0.141 0.54 0.64
0.30 0.10 0.13 0.18 0.23 0.31 0.41 0.57 0.83 0.94 0.98
0.40 0.13 0.18 0.27 0.35 0.49 0.63 0.82 0.98 1.00 1.00
0.50 0.16 0.24 0.37 0.48 0.67 0.82 0.95 1.00

2O=0- 5
p=0.20 0.06 0.07 0.07 0.08 0.09 0.10 0.12 0.16 0.20 0.24

0.30 0.08 0.10 0.13 0.16 0.20 0.26 0.36 0.57 0.72 0.82
0.40 0.11 0.14 0.20 0.26 0.36 0.47 0.65 0.89 0.97 0.99
0.50 0.14 0.29 0.38 0.54 0.68 0.86 0.99 1.00 1.00

373

.............................................................................
"Z , .,L: , .Z : " ".' ."." .". "'. ,". -. " ""' ": .-. "''' ...-...-.-. ''' .... ,, .

. - '
. -" . ,- ' " ,": -" , .



Note that ASTM guidelines suggest running 7 additional beakers per
group, with just one daphnid per beaker. These additional daphnids are
intended for assessing changes in productivity with increasing concentra-
tions. We recommend that these seven individually housed daphnids per
group should not be combined with the 15 multiply housed daphnids per group
for assessing mortality rates. The mortality rates will in general differ
for singly and for multiply housed daphnids. This was seen to be the case
in Goulden's data.

Chapman's beryllium test was conducted with 10 beakers per group and
one daphnid per beaker. The intent of this design was to obtain good
information about reproduction. Table XIV.2 shows that this test was too
small to provide good sensitivity for inferences concerning mortality.
(Note that the test was not designed for this purpose.)

LeBlanc's tests were somewhat larger. They consisted of N=80 daphnids
per group, divided among J=4 beakers. In most of the groups the degree of
beaker-to-beaker heterogeneity was small (i.e., 0=0.02). Table XIV.1 shows
that the effective sample size per group is reduced to about Neff=60.
Table XIV.2 shows that with effective group sizes of 60, we can expect to
distinguish reasonably precisely between 10% and 30% mortality. However in
Group 6 of Test A and in Group 7 of Test B the degree of beaker-to-beaker
heterogeneity was somewhat greater. The estimated values of e for these
groups are 2.0 and 0.7 respectively. Table XIV.1 shows that with N=80
daphnids and J=4 beakers per group, the effective sample sizes are
approximately 6 and 9 respectively. If this degree of beaker-to-beaker
heterogeneity had been present in all the groups then Table XIV.2 shows
that we could not expect to distinguish well even between mortality rates
of 10% and 50%.

We thus see that the sensitivity of a test depends heavily on the
extent of beaker-to-beaker heterogeneity within groups as well as on the
number of daphnids per group. In turn, the effects of beaker-to-beaker
heterogeneity depend on the number of beakers per group. The larger the
number of beakers and the smaller the number of daphnids per beaker, the
less will be the decrease in precision.

D. UNEQUAL ALLOCATION OF TESTING EFFORT AMONG TREATMENT GROUPS

Feder and Collins [11, Subsection XVIIIE suggested that under certain
circumstances it might be sensible to have an asymmetric allocation of
beakers and daphnids to the various experimental groups. In particular
they state ". .. if on the basis of either a priori scientific information or
previous testing some information was available concerning mortality rates
to be expected at the various treatment groups, then unequal allocation of
experimental effort would be preferable. In particular at the higher
treatment groups, where mortality would be expected to be substantially
higher than the control rate, it is easy to detect differences from the
control. Thus the experimental effort should be decreased at these groups.
At the lower experimental groups, where it is more difficult to detect
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differences from the control group, the experimental effort should be
increased to improve sensitivity. Thus the degree of experimental effort
should in general decrease as the toxicant level increases..."

We discuss here an approach for arriving at an unequal allocation.
This procedure leads to equal allocations across groups when there is a
priori total ignorance about response levels to be expected. The greater
the degree of prior information or beliefs about expected response levels,
the more asymmetric will be the allocation.

The use of prior knowledge or information in designing tests seems
quite sensible. With all the accumulated experience in the aquatic
toxicology literature, there is no need to act as if each test being run is
the first test ever. Using equal allocations of beakers within groups is
essentially saying that.

We now discuss the details of a procedure for arriving at unequal
allocations. We illustrate the procedure with a hypothetical example, but
one bearing similarities to several of the data sets we have studied.

Suppose there is a control group and I treatment groups (denoted as
Group 0 and Groups 1 to I respectively). Let Po,Pl,...,PI denote the
average mortality rates in these groups. Based on prior knowledge,
information, or belief we can place bounds on these rates. Namely
fopPo-- 1 <1PU1, /2 P2iU2,... , tl pl ul. The Z's and u's are specified
quantities. Total ignorance would correspond to o =...I=O, Uo=U=...=
ui=1. We wish to test the hypotheses Ho:pi=po against the one sided
alternative H1 :pi>po. We stipulate that it is important to reject Ho
whenever Pi is A or more above the control group mortality rate (e.g.,
A=.10 or A=.20, etc.).

We further assume that cost, experimental, and logistical constraints
have placed limits on the total number of beakers and the total number of
daphnids to be used in the test as well as the numbers of daphnids to be
placed in each beaker. Each beaker throughout the test (that is used for
determining survival rates) contains the same number of daphnids, n. We
assume that the extent of beaker-to-beaker heterogeneity is constant across
groups. Thus neff, the effective sample size within beakers, is also
constant across groups. We allocate the available beakers across groups.
In the course of determining the numbers of beakers per group we do not
take into account limitations imposed by the proportional diluter appa-
ratus. If a suggested group allocation exceeds the maximum number of
beakers that the diluter can handle in one group then use the maximum
number possible in that group and reallocate the remaining beakers by the
procedure discussed below.

375

....................7



For purposes of planning the allocation of experimental effort among
treatment groups, make the conservative assumption that Po=Uo, pl=l,-

.. pl=/l. We calculate the sample sizes necessary to attain specified
power when Pi=max (uo+A,/i) i1l .. I. If Ei<u,+A for all i, then an
equal allocation plan is called for. The tighter the bounds around the
Pi's are, the more unequal will be the allocation scheme.

Suppose ty3e I error level a and power 1-a are desired. Let 0o 2
arc sin [uoI1/7 and Oi 2 arc sin [max (uo+A),.Cili/ 2 i=l,...,I. Let no,
nl,..., nj denote the number of daphnids in each group and assume for
discussion purposes that there is not any beaker-to-beaker variation.
Let ZI.., ZI_8, denote the upper 1-a and upper 1-6 percentiles of the
standard normal distribution respectively. Then the sample sizes must
satisfy the relation

1 1 (e1 - eo)2-- + --- = i+l ,

ni  no (ZI-a + Zi_ 6 )
2 i ...

Consider a hypothetical example. Suppose 1=5, A=.10, a=.05, 1-6=.90.
Then Z.9 5=1.645, Z.90 =1.282, and

0 < po K .05 uo  uo = .05 eo=.45

F1 0 < P1 K .10 max(uo+A,el)=.15 el=.80
12 10 < P2 < .20 max(uo+A,/ 2 )=.15 62=.80

13 .20 < P3 ( .30 max(uo+A,t3 )=.20 e3=.93
Z4 z .40 < P4 < .70 max(uo+A,e4)=.40 64=1.37
t5 .80 K P5 K 1.00 max(uo+A,/-5 )=.80 eo=2.21.

The group sample sizes ni satisfy the relations

1/n1 + 1/no = (.80-.45)2/(l.645+l.282)2 = .0143

i/n2 + I/no  = .0143

1/n3 + 1/no  = .0269

I/n4 + 1/no  .0988

i/n5 + 1/n o  .3616.

Thus no must be at least 70. The treatment allocations that satisfy
the above relations and that approximately minimize the total numbers
of daphnids required are:

no=175, nl=117, n2=117, n3=48, n4=11, n5=2.

If a beaker contains 25 daphnids, this suggests having 7 control beakers,
and 5,5,2,1,1 beakers allocated to the treatment groups (going from low
to high concentrations).
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XV. SPECIAL TOPICS. ANALYSIS OF TIME TRENDS IN
PRODUCTIVITY. ANALYSIS OF TIME TO DEATH

A. INTRODUCTION

This section discusses several specialized topics. The analyses
discussed here provide information concerning aspects of the data that
were not considered in the previous sections.

Subsection B is concerned with the repeated measures analysis of
time trends in productivity data. The analyses in Sections XI and XII
pertain to the total numbers of offspring from the surviving daphnids
and the variation in these total numbers among concentration groups.
The analyses in this subsection consider the time patterns according
to which these offspring were produced and the variation of these time
patterns among concentration groups.

Subsection C is concerned with the analysis of time to death and
the variation of the distributions of time to death among concentration
groups. The analyses in Sections IX and X pertain to the numbers of
surviving daphnids at various points in time. They do not utilize
information about time to death. Such information increases the sen-
sitivity of comparisons. The use of both parametric and nonparametric
models is illustrated.

B. REPEATED MEASURES ANALYSIS OF TIME TRENDS IN PRODUCTIVITY

Goulden's data on isophorone are displayed in Figure 1.8. The
numbers of live offspring corresponding to days 2, 4, 6, 8, 11, 13, 15,
18, and 21 are shown for each group. Since there were no offspring and
just one surviving daphnid in group 6, that group is deleted from com-
parisons of time trends in productivity. The data corresponding to the
daphnid in ]rou;; 2, beaker 1 are deleted from the comparisons because
that daphnid died while on test. There were no offspring observed on
days 2, 4, and 6 and just two daphnids produced offspring on day 8.
Thus the comparisons of time trends in productivity were restricted to
days 11 to 21, except for the two daphnids that produced offspring on
day 8; the day 8 values were used for these daphnids.

The analyses of time trends in productivity require special analysis
techniques since the numbers of offspring produced by the same daphnid
at different points in time would be expected to be correlated. That is,
some daphnids might produce relatively large numbers of offspring at
each time point while others might produce relatively few offspring at
each time point. Such data, consisting of responses over time for each

377

. . . . . . . .i



rAsubject, are often referred to as repeated measures data or longitudinal
data. A large number of techniques, of varying degrees of gnerality and
complexity, are available for analyzing such data. The methods discussed
in this section correspond to a relatively simple model and are readily
applied.

Figure XV.l displays the results of a repeated measures analysis of
variance on the numbers of offspring produced on days 11, 13, 15, 18, and
21 by the surviving daphnids in groups 1 to 5 in the Goulden test on iso-
phorone. The display was prepared with program P2V in the BMDP statistical
computing system.

There are six panels in the analysis of variance table. The first
panel corresponds to an analysis of variance on the average productivity
of each daphnid across all five days. The three lines--MEAN, GROUP, and
ERROR--correspond to a standard one way analysis of variance with five
groups. This analysis of variance table is analagous to that discussed
for the Goulden data in Section XI.B. The discussion there pertains to
totals rather than averages and one observation is deleted form Group 1,
but otherwise the results are analagous. Daphnid to daphnid random
variability would be expected to be reflected in the average values across
time and thus in the error sum of squares.

The second to fifth panels correspond to analyses of variance of
various contrasts in the numbers of offspring across time. The notations
N(l), N(2), N(3), N(4) correspond to the linear, quadratic, cubic, and
quartic orthogonal polynomial components of the time trends in offspring.
The top line in each panel coresponds to the overall effect across treat-
ment groups, the second line corresponds to the interaction with groups,
and the third line is the error term corresponding to that component.
If the first mean square (e.g., N(l)) is statistically significant, this
provides evidence of a significant overall polynomial trend component
(e.g., linear component). If the second mean square (e.g., N(1)G) is
statistically significant, this provides evidence that the values of
the polynomial component vary from group to group. The manner in which
they vary across groups needs to be studied further.

The sums of squares in the bottom panel are the sums of the corres-
ponding sums of squares in the second to fifth panels. This panel
represents a combined test of the presence of an overall time trend in
numbers of offspring (NYNG effect) and the interaction of this time trend
with group (NG effect). The pooling of the sums of squares for the ortho-
gonal polynomial components assumes that these components are statisti-
cally independent and have the same variance. Two adjustments to the
error degrees of freedom in the bottom panel account for departures
from this assumption. The Greenhouse-Geisser and Huynh-Feldt adjustment
factors are given at the bottom of the figure and their effects on the
significance levels of the overall tests are shown to the right of the
bottom panel.
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riThe results in Figure XV.l show very strong statistical evidence of
group to group differences in average numbers of offspring on days 11 to
21. This is in direct correspondence with the results shown in
Section XI.B. There are significant overall linear, quadratic, and cubic
time trend components as well as a significant interaction between the
linear component of time trend and concentration group.

Since the results in the second to sixth panels are based on con-
trasts across time, at least a portion of the daphnid to daphnid random
variability would be expected to be eliminated from these components.
Thus two error terms (denoted as 1 and 2 in the left most column of
Figure XV.l) are shown. The first is used for comparing average values
across time and the second is used for comparing contrasts within daphnids.

The analysis of variance calculations show the presence of time
trends and the presence of group to group differences in the productivity
responses; however they do not show the nature of these trends and dif-
ferences. Additional analyses were carried out to characterize the
nature of the differences and trends. For each daphnid, average responses
over time and orthogonal polynomial contrasts were calculated. Let P8,
Pll, Pl, P15 , P18, and P21 denote the numbers of offspring produced by
a daphnid on days 8, 11, 13, 15, 18, and 21. respectively. For those
daphnids with zero productivity on day P ne orthogonal polynomial
contrasts were defined as

AVG =(Pll+P13+P15+P18+P20/51/2

LIN = (-2Pll-Pl 3+Pl8+2P2 1)/lO1 2

QUADR = (2Pll-Pl3-2Pl 5-Pl8+2P21 )/14I
/2

CUBIC =(-P+2P31
1 2

The quartic contrast was not calculated because of its nonsignificance
in the analysis of variance calculations in Figure XV.I. Contrasts
analagous to those above (but including P8) were calculated for the two
daphnids that had offspring on day 8.

Histograms, summary statistics, and analysis of variance comparisons
among groups are displayed for the AVG, LIN, QUADR, and CUBIC components
in Figures XV.2 to XV.5, respectively. These displays were prepared with
program P7D in the BMDP statistical computing system.

Figure XV.2 shows a quadratic like trend with concentration for the
average numbers of offspring across time per daphnid. This trend is
directly related to that displayed in Figure XII.14.
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The overall mean values of the LIN, QUADR, and CUBIC components ...
across all groups combined are substantially greater than their standard
errors (see lower left portions of Figures XV.3, XV.4, XV.5). This
reflects the significant linear, quadratic, and cubic main effects shown
in Figure XV.l.

Figures XV.3 and XV.5 show significant group to group differences in
the linear and cubic components, respectively. Figure XV.4 shows a sig-
nificant difference among groups when the possibility of unequal variances
is taken into account (Welch statistic) but not otherwise. The histograms
in these three figures suggest linear trends with concentration or log
concentration for each of the orthogonal polynomial components. The
trend slopes are positive for the linear and quadratic components and
negative for the cubic component.

Based on the results shown in Figures XV.l to XV.5 polynomial regres-
sion functions were fitted to describe the trends in productivity across
time and across concentration groups. As shown in Figure XV.l, separate
error estimates are appropriate for analyzing the average (or total)
productivity across time for each daphnid and for analyzing the contrasts
that represent the time trends in productivity for each daphnid. These
separate error estimates are referred to there as components I and 2,
respectively.

Let Pi denote the number of offspring for a daphnid on the i-th day
and let F denote the average number of offspring for that daphnid across
all days. Then

P + (Pi- )

We fit separate response curves to P and to Pi-P.

The dose response curve fit to P is directly analagous to the dose
response curves that were fitted in Section XII to the total productiv-
ity responses. In particular refer to Section XII.B and Figures XII.13,
XII.14 for the fit to the Goulden data. Thus we need not repeat this
discussion here.

The response curve fit to the Pi-P values reflects the trends in
productivity both across time and across concentration groups. Although
the Pi-P values within a daphnid are slightly negatively correlated,
we treat these values as approximately independent for the purpose of
the analysis illustrated below. This approximation can be refined by
using generalized least squares or multivariate analysis techniques.

Let C denote concentration. Let D denote day and let D,sd denote
the mean and standard deviation of D. Define
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AP P.-

X = logl0 (l+C)

d = (D-D)/sd -

As suggested by the significance of the polynomial trend components
in Figure XV.l and by the natures of the concentration related trends
displayed in Figures XV.3 to XV.5, we fit the following regression model
to the trend data:

AP.. d d X+6X 2 2 d3  +
ijk = o+ldi+a2Xj+3 i+4di+5 ij+ 6 i + 7diXj+i ijk

The indices i, j, k correspond to day, concentration, and replicate
number, respectively. The term Eik corresponds to the error term,
which is assumed to be approximateliy independent with constant variance.

The results of this fit are shown in lable XV.6. All the estimated
coefficients except those for the Xj and d1X terms (X,IDY2X) are sig-
nificant. The multiple R-square is just O.21. Thus there is definite
statistical evidence of the presence of time trends in the production
of offspring and of the variation of these time trends with concentration;
however most of the variation in numbers of offspring is random variation
from daphnid to daphnid and is not explained by this systematic trend
model.

We note from the signs of the regression coefficients that the
concentration related trend in the linear time trend term (IDYX) is
positive, that in the quadratic time trend term (IDY2X) is positive,
and that in the cubic time trend term (IDY3X) is negative. This agrees
with the concentration related trends observed in Figures XV.3 to XV.5.

Various inferences concerning the time trends in productivity ana
their relation to concentration can be based on the fitted regression
model. For example it might be of interest to estimate the day associ-
ated with maximum productivity and its relation to concentration. The
first time derivative of the regression function is zero at the time of
maximum productivity and the second time derivative is negative. Let
Dmax denote the time of maximum productivity. Let dmax (Dmax-D)/sd.
Thus dmax satisfies the relations

3(B6+ 7X)d + 2 dmax (64+" 5X)dmax + (61+ 3X) 0

6+B7 max + 2(B4+ 5x) < 0
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Substitution of the estimated regression coefficients shown in Figure XV.6
into these relations, along with the values of X corresponding to the
concentrations C, results in the following estimates of Dmax.

Concentration, C max (days)

0 12.7
10 12.8
50 13.2
100 14.0
150 15.7

The estimated times of maximum productivity are seen to increase with
increasing concentration.

Approximate standard errors for these estimates can be calculated
based on the variance-covariance matrix of the regression coefficients .
(not shown) and the delta method. The 1983 versions of the P3R and PAR
nonlinear regression programs in the BMDP statistical computing system
can directly calculate estimates of such nonlinear functions of the
regression coefficients, along with associated standard error estimates
and confidence intervals.

C. ANALYSIS OF TIME TO DEATH AND ITS RELATION TO CONCENTRATION

Sections IX and X contain analyses of the mortality responses. The
statistical methods applied in those sections focus on one or on several
study days and compare the mortality rates observed up to and including
those days across groups. The methods and models applied in those sec-
tions do not utilize the specific time to death; just whether or not the
death was prior to the day under consideration. These methods are based
on the binomial or on the multinomial distribution.

Many investigators compile the (approximate) times to death.
Analysis procedures exist that utilize such information. Such analysis
procedures utilize more information than the binomial based procedures
and thus might increase the sensitivity of inferences. We illustrate
several such procedures in this subsection.

Figure XV.7 displays the observed times to death in Chapman's
21 day test on chromium. The columns in that figure contain the group
number, the average measured concentration in each group, the day of
death or of survival, the censor code, and the number of daphnids
associated with that case (frequency). The censor code indicates
whether the day indicated is associated with a death or with daphnids
that survived to the end of the test. For daphnids that survived to
the end of the test, the times to death are known just to the extent
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that they exceed 21 days. Such data are referred to as right censored.
The days associated with cases having censor code I represent numbers of
days to death. The days associated with cases having censor code 2
represent survival beyond that number of days. Statistical procedures
to analyze time to death data must account for such censoring.

Two aspects of the Chapman data shown in Figure XV.7 should be
noted. First, the water control and the carrier control groups were
combined for the purposes of the analyses in this subsection and are
denoted as Group 1. There are 20 daphnids in this group; one died on
day 10, one died on day 21, and 18 survived to the end of the test
(i.e., beyond day 21). Secondly, the times to death shown are approxi-
mate. The beakers were examined on days 3, 5, 7, 10, 12, 14, 17, 19,
and 21. The daphnids reported as dead at each time point actually died
some time between the successive inspections. Thus a death indicated
as day 14 could in fact have occurred on day 13 or 14; a death indicated
as day 10 could in fact have occurred on days 8, 9, or 10. Such data
are called interval censored; their values are known to lie in an inter-
val. Statistical methods exist for analyzing interval censored data
(Meeker and Duke,L 33J). However for purposes of illustration we treat
the times to death as if they occurred on the days indicated. If it is
desired to utilize the times to death for statistical analysis purposes
then the test beakers need to be inspected more than three times per
week; they should probably be inspected daily.

Figure XV.8 contains comparisons of the 21 day mortality rates

across treatment groups. Two tests are shown, the chi square test of

homogeneity and the Cochran-Armitage test of linear trend. Both of .-

these tests were discussed and illustrated in Section IX.

Both tests indicate strong statistical evidence of lack of homo-
geneity of 21 day mortality rates across treatment groups. The differ-
ence of the test statistics is 18.095-15.344=2.75], based on 6-1=5 d.f.
The difference provides a test of nonlinear trends in mortality rates.
Thus there is strong statistical evidence of a linear trend in mortal-
ity rates, but no statistical evidence of higher order trends.

The estimated standard errors of the 21 day mortality estimates are
approximately as follows:

Group 1: N = 20, p = 0.1, s 0.067
Groups 2,3: N = 10, p = 0.1, s 0.095
Group 4: N = 10, p = 0.3, s 0.145
Groups 5,6,7: N = 10, p = 0.5, s 0.158

We now consider two approaches to the statistical analysis of the
times to death; one is parametric and the other is nonparametric. We
first consider the parametric analysis.
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Preliminary probability plots (not shown) of the times to death (see
Meeker and Duke,E 33]) indicate that the distributions of times to death
in each group can be approximated by the normal distribution. We fit a
succession of regression models to describe the distributions of times
to death and to compare these distributions among treatment groups.

The regression models are fitted to the data by maximum likelihood
techniques using the CENSOR program (Meeker and Duke,[ 33]). CENSOR has
the capability to accommodate censored values among the times to death,
corresponding to the daphnids that survived to the end of the test. The
models fitted to the mortality data assume that time to death is normally .

distributed with constant variance across groups. The mean time to
failure depends on the treatment, in a manner specified for each model.

The first model fitted is an analyses of variance type model. It
assumes different mean times to failure in each concentration group,
with no assumptions concerning the form of the trend. This is an eight
parameter model--a mean time to failure in each group and a common scale
parameter. The results of fitting this model to the data are shown in -

Figure XV.9. The coefficient B0 represents the estimated mean time to
death (i.e., the 50th percentile) in Group 1, the control group. This
is 35.59 days and is well beyond the end of the test. The coefficients
B1 to B6 represent the differences between the estimated mean times to
death in Groups 2 to 7 and that in Group 1. The estimated mean times
to death in these groups are thus:

Group Conc. Mean Time to Death (Days)

2 13 35.59 - 3.16 = 32.43
3 29 35.59 - 3.16 = 32.43
4 66 35.59 - 10.30 = 25.29
5 132 35.59 - 18.00 = 17.59
6 294 35.59 - 14.16 = 21.43
7 655 35.59 - 14.54 = 21.05

The 95 percent confidence intervals on B4, B5, and B6 do not contain
a. Thus the mean times to death are significantly lower in Groups 5, 6,
and 7 than in the control group at the five percent level of significance,
if adjustments are not made for simultaneously. After adjustment for
simultaneous inferences by Bonferroni's techniques, only B4 is signifi-
cantly different from 0.

The second model fitted is a linear regression model. Let C denote

the concentration. This model assumes that

Mean Time to Death = B0 + Blloglo(l+C)
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Group N Preg Std Errreg Pbin Std Errbin

1 20 0.083 0.050 0.1 0.067
2 10 0.224 0.056 0.1 0.095
3 10 0.282 0.055 0.1 0.095
4 10 0.349 0.058 0.3 0.145
5 10 0.411 0.065 0.6 0.155
6 10 0.486 0.078 0.5 0.158
7 10 0.561 0.092 0.6 0.155

The two estimates of 21 day mortality are reasonably comparable for
groups 1, 4, 6, and 7 and differ somewhat, due to smoothing, for groups
2, 3, and 4. The standard errors of the regression estimates are much
reduced relative to those for the binomial estimates. For example for
group 7 the estimated 21 day mortalities are similar whether the regres-
sion estimate or the standard binomial estimate is used. However the
ratio of the standard errors of estimates is (0.155/0.092) = 1.685.
This implies that it requires (1.685)2 = 2.84 times as many daphnids to
obtain comparable precision with this binomial based estimate as would
be obtained with the regression estimate. The corresponding squared
ratios for all but group 1 are close to or in excess of 3.

Thus utilizing the actual times to death and regression models to
relate these times to death across concentrations, can result in substan-
tially improved inference sensitivity as compared with the standard
binomial theory estimates based on 21 day mortalities. Statistical pro-
cedures based on the times to death also provide mortality estimates at
time points other than 21 days, such as 7 days or 14 days.

A normal probability plot of the residuals from this fit (not shown)
was prepared and shows no evidence of departures from the model
assumptions.

The previous techniques were based on a parametric regression model
to describe the distribution of time to failure and to relate it to the
level of test concentration. The previous models were based on the
assumption that time to death was normally distributed, with constant
variance across groups.

Cox[ 34] proposed a regression model that does not require speci-
fying the form of the distribution of time to death. Let X denote a
predictor varaiable; in our case X would be some function of concentra-
tion, such as log(l+C). Let Fx(t) denote the cumulative distribution
function of time to death of daphnids associated with predictor variable
X and let fx(t) denote the corresponding probability density function.
The hazard function, hx(t), is defined as

hx(t) : fx(t)/[l-Fx(t)]
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with a conmon scale parameter in each group. The results of fitting
this model to the data are shown in Figure XV.lO. The coefficient B0
represents the estimated intercept, and in this case coincides with the
estimated mean time to death in the control group (37.37 days). The
coefficient B1 represents the regression slope; it is negative and sta-
tistically significant at the five percent level.

The maximum value of the log likelihood under the eight parameter

model fit shown in Figure XV.9 is -115.5285. The maximum value of the
log likelihood under the three parameter model fit shown in Figure XV.l0
is -117.3918. Under the hypothesis that the linear regression is adequate
to describe the trends in mean time to death, -2 times the difference of
the log likelihoods is asymptotically distributed as chi square with
8-3=5 d.f. This provides an asymptotic test of the adequacy of the
linear regression model. Namely

-2[-115.5285-(-117.3918)] = 3.7266

Since this value is not significant according to chi square distribution
with five degrees of freedom, we accept the hypothesis of the adequacy of
a linear regression model.

An additional fit was carried out in which a single distribution of
time to death was fitted to all seven groups. The maximum value of the
log likelihood under this two parameter model is -123.6182. Under the
hypothesis that Bl = 0 in the previous linear regression model, -2 times
the difference of the log likelihoods is asymptotically distributed as
chi square with 3-2=ld.f. This provides an asymptotic test that Bl 0.
Namely

-2[-117.3918-(-123.6182)] = 12.4528

Since this value is highly significant according to the chi square distri-
bution with one degree of freedom, we reject the hypothesis that B1 = 0.
We thus base estimates of mean time to death and of probability of death
before various times, on the model fit shown in Figure XV.I0.

Figure XV.ll contains estimates of the mean time to death for each
concentration group and of the probabilities of dying by 7, 14, or 21
days. These estimates are based on the linear regression model fit.
Each group can be identified by the transformed value of its concentration,
loglo(l+C), shown under C1 .

The estimated probabilities of death by 21 days and their associated
standard errors according to the linear regression model and according
to the standard binomial estimates are:
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Cox[ 34] proposed the proportional hazards regression model

hx (t) = e Xh0 (t)

where h (t) is the hazard function associated with a reference distribu-
tion. The form of the ho(t) or its associated Fo(t) do not need to be
specified. In this sense the model is nonparametric. The proportional
hazards model implies that the cumulative distribution functions of time
to death are related by

l-Fx(t) = [lF 0 (t)]e X

This model can be fitted to the data using a conditional maximum
likelihood analysis suggested by Cox. This model was fitted to the
times to death in Chapman's chromium data using the P2L program in the
BMDP statistical computing system. The results of this fit are shown
in Figure XV.12. The estimated value of B is = 0.8427 and is
statistically significant.

The fitted model is thus

0.8427X
l-F x(t )  = [1-Fo0(t)]

where X = loglO(l+C). The survival probabilities shown in Figure XV.12
correspond to X = X = 1.4825. Thus l-F5(21) = 0.7654 and

1-F (21) = (07654)23226
(x X )

x

Substituting the values of X corresponding to each test concentration
yields

Group Conc. X-Y 1-Fx (21) F (21)

1 0 -1.4825 0.926 0.074
2 13 -0.3364 0.818 0.182
3 29 -0.0054 0.766 0.234
4 66 0.3436 0.670 0.330
5 132 0.6414 0.632 0.368
6 294 0.9873 0.541 0.459
7 655 1.3344 0.439 0.561
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These estimates are similar to those obtained from the parametric
normal theory simple linear regression model.
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APPENDIX A.IV NESTED ANALYSIS OF VARIANCE MODEL TO TEST

FOR BEAKER TO BEAKER VARIATION WITHIN GROUPS

In this appendix we specify the nested analysis of variance model that -.

was used to test beaker to beaker variation within groups. This model is
a nested model with beakers nested within groups and daphnids nested within
beakers. Groups are fixed effects while beakers and daphnids are random
effects.

Let i - group i = I,..., I.
j - beaker j = 1..., Ji
k +-+ daphnids k = ,... Nij

Let Yijk denote the length of the k-th daphnid within the j-th beaker

of the i-th group. Then

Yijk =  i b j(i) Ck(ji) + 'ijk

ind 2 ind 2 ind 2
=i 0, b N (0, ob) k(i) N(0, ), cijk N(0, 

The ai's are the fixed group effects. The bA(i)'s are the random beaker
effects. The Ck(ji)'s are the random daphni s effects due to biological

variation and to experimental variation. The Cijk's are random measurement
errors. Since we measure each daphnid just once, this source of variation
cannot be separated from the biological and experimental variation and so
we incorporate it into the daphnid to daphnid variation in subsequent
discussion.

Let Y ij'= Ek Yijk/Nij, Ni+ j •Nij, N++ E i Ni+,

Y. N E iN /Ni+ Y E N Y /N
1j :j ij. i i ..

Single, double, and triple bars over the b's and c's have analagous inter-

pretations.

The analysis of variance table is given on the next page. In the

special case of a balanced design (i.e. Ji = J, Nij = N for all i,j) the

expected mean squares are

2 _ JN 2 2 2 2 2a +- a + No a + No and G
c i i bC c b

Under t e null hypothesis of no beaker to beaker variation within groups
(i.e. Cb = 0) the F-ratio has a central F distribution with degrees of
freedom Ei(Ji-1) and Ei Zj(N..-1). Under the alternative hypothesis it
has a complicated, nonstandar distribution. However in the balanced
special case, the alternative distribution is (1 + No/o2) times a central
F distribution with degrees of freedom l(J-l) and IJ(N-I). .'
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APPENDIX AV. ALTERNATIVE ADJUSTMENT PROCEDURE TO ACCOUNT FOR
HETEROGENEITY OF MORTALITY RESPONSES IN THE
PRESENCE OF UNEQUAL SMPLE SIZES ACROSS BEAKERS
WITHIN GROUPS OR ACROSS GROUPS .

In subsection A we discussed a relatively simple procedure for adjusting
sample sizes to reflect heterogeneity of mortality rates among beakers within
groups. That procedure was based on an assumption of equal numbers of
daphnids per beaker within each group. Such an equal sample size assumption
is often reasonable in toxicity tests with daphnids because beakers are
usually started with equal numbers of daphnids at the outset of the test.
In particular this was the case in LeBlanc's Tests A and B and in Adams
test with selenium. There are however some situations when the assumption
of equal sample sizes might not be valid. For example in Goulden's test
with isophorone there are ten beakers per group. Three of those beakers
start the test with five daphnids each while the other seven start the
test with just on daphnid each. If we wish to combine mortality results
from the individually housed daphnids with those from the multiply housed
daphnids then we may need to adjust for heterogeneity across beakers having
unequal sample sizes. Similar situations arise when inferences for a given
response are to be based on survivors up to a certain stage. For example
in the fathead minnow early life stage tests the fry surviving for 30 days
were examined for abnormality. Tank to tank variation in 30 day mortality
within groups casues unequal sample sizes with respect to the fry abnor- ...

mality response. A similar situation would arise in the analysis of data
from toxicity tests with Daphnid if it is of interest to compare conditional
mortality across groups. For example it might be of interest to compare
mortality rates across groups based only the latter part of the life stage.
Thus 21 day mortality might be compared across groups using responses only
from survivors after 14 days. This would estimate the probability that a
daphnid survives for 21 days given that it has survived for 14 days.
Variation in 14 day survival among beakers within groups causes unequal
sample sizes with respect to conditional 21 day survival.

Adjustments in the presence of such unequal sample sizes can be carried
out with a full maximum likelihood fit based on the beta binomial model
(Williams [3]). Namely within the i-th group, it is assumed that Xij
has a beta binomial distribution with parameters (Nij, pi, 0l). The
probability function of Xij is then

(ii Be + x, + N.- x)
P( ij x ) N Be Ii ij

P =x) x = 0,1,.., N..
x e(. i l-vii).

Be 6'Oi/i'

The parameter (wi, 0i ) can be estimated by maximum likelihood analysis.
This would require specialized computer programs. The hypothesis
H0 : 1 = 2= ... = can be tested based on asymptotic maximum
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likelihood theory. Adlustments can then be carried out using separate
estimates 61, 2''', 81 or a common estimate e. The adjustment factor
within the j-th beaker of the i-th group is then

I+N.. _I + N E
Kij or KKij ..

i+ . l+e

The responses within each beaker are then adjusted based on these factors.

If the Nij =- Ni are approximately constant within groups but vary across
groups then Kij = Ki = (1+NiO)/(1+0). Equal degrees of extrabinomial varia-
tions across groups would imply that Ki =.(I + Ni 0)/(1 + 0). We obtain a
pooled estimate of 0 by calculating Ki - Var(Pi)/[i (l-vi)/N il as before
(bounding it between 1 and Ni) and calculating i - (Ki-l)/(Ni-Ki). We pool
the O!s across groups by calculating the weighted average.

t h e . ( J 1 ) .i i
zi (Ji - l)

The adjustment factors

I+ N. 0
Ki  -- _ __- 

,

are then used within each group.
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APPENDIX AX. CONFIDENCE INTERVAL ON CONCENTRATION THAT CORRESPONDS
TO A GIVEN LEVEL OF INCREASE IN MORTALITY RATE OVER

CONTROL GROUP RATE

This appendix is patterned after Appendix AXV in Feder and Collins [11.

After we have fitted the probit model to the mortality data by non-
linear regression we wish to calculate confidence bounds on the concentra-
tion, CL, that results in an increase in mortality of L above the control
group rate, PO" Schematically,

V PO+l"--

L
I O

> CONC

Let z log 10 (conc) - m,zL log 10 CL-m. We fit a probit model in
terms of z. We want a point estimate and confidence interval on CL, such
that 0(O0 + 8 1 zL ) = L. Let 0 - (pO, BO. i1). We estimate 0 by 0, the
maximum likelihood estimate based on the probit model p (0; conc) PO +
(1-PO)4(0 0 + I z) using the program BMDPAR. Thus zL satisfies the

equation

0 + I z L  D -1 (L) fL

or

zL  A f- O)/B1 g(Bo, B1; L)

We construct a confidence interval on zL based on the estimate zL and the

delta method (Cramer [27],,pp.^366-3 67). Asymptotically, as sample size
increases, the function g(0, B1; L) can be approximated by a first order
Taylor expansion about S0 and

. ZL ZL + (0-0) g/3BO + (I- I) g/1"

Under certain standard regularity assumptions, the asymptotic distribution
of (appropriate standardizations of) zL can be shown to be the same as that
of its Taylor approximation, namely normal with mean zL and variance
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where Zis the estimated variance-covariance matrix of (60,jj) and 119ao
j/ jare the first derivatives of g evaluated at %O and 1 The matrix

E is determined from the BMDPAR output. The derivatives of g are

2

The asymptotic 1-a~ confidence interval on zL is thus

ZL C. ZL ± /2 [Var (zL) i ,

. . . . .

where E,/ is the estim ad varinte-cov rie arix normal di .....

Testre d cacuatons cae asl bePA prgamutoput. h eiai e o re

calculaor=-/.
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APPENDIX AXII.l

THEORY UNDERLYING POINT AND CONFIDENCE INTERVAL
ESTIMATION OF CONCENTRATIONS ASSOCIATED WITH

SPECIFIED REDUCTIONS IN AVERAGE REPRODUCTION OR
LENGTH RELATIVE TO THE CONTROL GROUP
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APPENDIX AXII.1 THEORY UNDERLYING POINT AND CONFIDENCE INTERVAL
ESTIMATION OF CONCENTRATIONS ASSOCIATED WITH
SPECIFIED REDUCTIONS IN AVERAGE REPRODUCTION OR 2
LENGTH RELATIVE TO THE CONTROL GROUP

Let x-log10 (concentration), v: (x-m)/s, I=indicator of treatment
groups. We fit the regression model

Y=P+BoI+6 IIx+6
or Y=P+ 0I+81 Iv+ 2 Iv 2+

where e represents the random variation, assumed to be independently
distributed with mean 0 and variance u 2 . Let c denote a specified
incremental response from the control group average. We wish to estimate
the value of v such that

3o+*1v=C

or

Bo+Blv+02v2:c

and place confidence intervals on this value. The starting point for these
inferences is the output from the regression analysis program which
provides estimates of model parameters ( o,) or (o,Rl, 2) and the
estimated variance-covariance matrix of these parameters, which we denote
as f. Let v denote the residual degrees of freedom. We consider, in turn,
the straight line and the quadratic cases.

* Straight Line Case

We solve the equation

( o-C) +h3v=0

thus

vc -(1o-C)i..

The point estimate, Ve, of vc is thus
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vc =-(60-C4I

We construct an approximate confidence interval on v c by use of the
delta method (sometimes referred to as propagation of errors). Let vc-
g( O, l). Then 'c=g(o0,61). Expand g( 0,al) in a first order Taylor
expansion about (0,1 ). Thus

Vc--g(a0,81) = g(SoB1)+(B O-aO)Dg/36 0+(8 1- 61 ) g/aB1 + r e ma i n d e r

The remainder becomes small asymptotically as the sample size gets large.
Approximating vc by the first order terms in the expansion, we obtain the
result (loosely stated) that vc is asymptotically normally distributed with
mean vc and variance

Var vc) - (3glaao,a gla81)$ (a gla8o, glal3 1 ) '

We approximate~this asymptotic variance by substituting i for $ and by
substituting (00,1 for (80,) in the expressions for Dg/ao,ag/aj I. Let
Var (vc) denote this estimated variance.

To complete the characterization of the asymptotic distribution of Vc,
we need to specify the functional forms of the derivatives. These are

Dg/a8 o  -I/81 ag/aa1 (ao-C)/812

An approximate 1-a confidence interval on v, is

VcEVc+t(bI-d2 ;v)[ ar(vc)J I/2 -( £,vu)

where t(1-a!2;v) is the upper a/2 point of the t distribution withy
degrees of freedom.

To translate this point estimate and confidence interval to an estimate
and confidence interval directly on concentration, we use the relation

cone = 0m + sv

thus

conec 10m+Svc, conc= 10msvt, coneu 10m+svu
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These are the inferential values of interest.

Quadratic Case

This is conceptually very similar to the straight line case however
there are several technical complications due to the greater complexity of

the model.

We solve the equation

2
(a0 -C)+6 1V+6 2v =0

There are two roots to the equation:

+[2 _ 0 1/2
l'±[61 -46,,26-c0

v c = 22 if 62#0

_(0o-C ) •
= if 620

c 61 -

We considered the 2:0 case in the discussion of the straight line case.
We therefore assume below that a2#0.

The point estimate, Vc, of Vc is
_4i+[ ^  2 -4 ]1/2

Y1 4 g(8-c)]A 2

= 2 2 if 6200, 12-46 2(60 -c)>0

We will generally be interested in the larger root. Which root is largest
depends on the values of the coefficients. Rather than attempt to choose
the appropriate root a priori, we will calculate point and confidence
interval estimates of both roots and then will choose which is most
appropriate from the context of the problem.

We construct an approximate confidence interval on vc by use of the
delta method, much as we did in the straight line case. Let

-61- [6 1
2 -462 ( 0 -c) 1/2

v_ f (ao,1,82) 262

_ 1+[6 12_4 2 (a0 _c)]i/2
V+ E f+ (0 1,2) 2
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Dein 2[1(8oc)a 2I1/2. Expand f ( ^,1,8 2 ), f+(8o,81,1 2) in first
order Taylor expansions about (0,1,82). Thus

V+ + 2~ + (80,81)2) +( 0 -6 )3f /36 + h

+ (a2-82) f +Aa 2 + remainder

-f ( 8O, 81, 82) = f ( 80, 81, 82) + ( A _ O f / a B + ( 8I _8I) af _/ 1

+ (82-2)f_/a 2 + remainder

Approximating v+, v_ by the first order terms in the expansions, we obtain
the result that , , &_ are asymptotically normally distributed with means

v and variances

Var(v ) "Mf_ IaO, af_/Bl, a f/j a2 $ ( /a lao

S2)

Var(v) = (f +/DO af /a8l, aff/32)  f +/l-

0' ~ ~ a + 1 / or an

We approximate these asymptotic variances by substituting for and
Qo,81,y Sor (Bo,61,82) in the expressions for the derivatives. Let
Var ( ),Var (+) denote these estimated variances. Approximate 1-a
confidence intervals on _ are

-Ev t(l-a/2;v)[Var(v )] (IV)

v~v +± t(1-a/2;v)[Var(v) 1/2 6(
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where t(1-cV2;v) is the upper a/2 point of the t distribution withy
degrees of freedom. We then transform these estimates and confidence
intervals in the usual manner to obtain estimates and confidence intervals
directly on concentration. Namely we use the relation

conc_1om+sv

To complete the characterization of the asymptotic distributions of V_
v+, we need to specify the functional forms of the derivatives.

These are

-1-V- 1  v- (a0-c) 81+Vafha / V8 = - afW / 1 2 f/82 B + 2
--_ 2a2 - 82 2622

f/a -i - 1 -V-I(So-c) 61-V

+- -_2 af+/B2 = + I_+ 22 + 2 2

- 4
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APPENDIX AXII.2

CONFINT--A COMPUTER PROGRAM TO CALCULATE POINT AND
CONFIDENCE INTERVAL ESTIMATES OF CONCENTRATIONS
ASSOCIATED WITH SPECIFIED REDUCTIONS IN AVERAGE

REPRODUCTION OR LENGTH RELATIVE TO THE CONTROL GROUP
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APPENDIX AXII.2 CONFINT--A COMPUTER PROGRAM TO CALCULATE POINT AND
CONFIDENCE INTERVAL ESTIMATES OF CONCENTRATIONS
ASSOCIATED WITH SPECIFIED REDUCTIONS IN AVERAGE
REPRODUCTION OR LENGTH RELATIVE TO THE CONTROL GROUP

In Appendix AXII.1 we discussed the theory underlying the construction
of point and confidence interval estimates of concentrations associated
with specified reductions in average length or reproduction by means of the
delta method. In this appendix we describe the features and use of a
computer program to implement that theory. The program was written by
Claire Matthews. Applications of the program are illustrated in the body
of the section.

General Description

CONFINT is a FORTRAN computer program which calculates a point estimate
and 95 percent confidence interval for the concentration producing a

specified change, c, in the average response relative to the control group
average. The program assumes that the response parameter of interest (y)
has a linear or quadratic dose-response relationship with logarithmic
concentration x), among the treatment groups. Therefore the underlying
model is y=v for the control group data, and

y~f(x) :P+ o+ ] x ()

or y~f(x) '+ o+8 ix+B2x _ (2)

for treatment group data, depending on whether a linear or quadratic model
is appropriate. The program calculates the root(s) of the equation
f(x)=P+c, where c represents the extent of change relative to the control
group response, as specified by the user.

Estimates of the coefficients of the above model are input requirements
to CONFINT. The most straightforward way to obtain these estimates is to
first run a standard multiple linear regression analysis, using any
standard statistical package. To incorporate data from both the control
group and the treatment groups in the same regression run, define an
indicator variable I where I=1 for treatment groups and 0 for control
groups. Then create independent variables I, Ix, and Ix2 , and use the
regression program to fit the model

Y =7 y+6oI+a1 Ix+c (IA)

or y=W+8oI+61 Ix+6 2 Ix
2+c (2A)

This yield values of the estimates.

In addition to the regression coefficient estimates, CONFINT requires

the estimated variance covariance matrix of the { i} coefficients. The
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S

SPSS regression program e.g., can print out this matrix through one of its
regression output options.

It is often desirable, from a numerical analysis standpoint, to rescale
the x values to v=(x-m)/s in Equations (1A) and (2A) in order to reduce

correlations among the regression coefficients and to scale the regression
coefficients and variance covariance matrix elements so that they are all
about the same order of magnitude and that none are so large or so small
that significant digits are lost in the regression output. Any values can
be chosen for m and s. However they must be recorded, since they must also
be specified as input parameters to CONFINT. A convenient choice of m and
s, although not the only one, is the mean and standard deviation,
respectively, of the x-values of the treatment group observations.

Program Input Specifications

The input specifications for each problem, read into CONFINT on (input
unit) TAPE5, consist of a set of six or seven cards depending on whether a
linear or quadratic model is used. For each set of input parameters the
program will calculate one set of point estimates and 95 percent confidence
intervals corresponding to the user-specified change, c, from the mean
control response.

The input cards are to be arranged as follows:

Card Columns Format* Variable

1 1-80 lOA8 any title occupying any of the 80 columns
2 1- 5 15 no. of degrees of freedom for error in the

regression fit
6-10 (blank)
11-20 F1O.0 regression estimate for va
21-30 F10.0 regression estimate for 0o
31-40 F1O.0 regression estimate for B1
41-50 F1O.0 regression estimate for 82 --leave blank

if a straight line model is used
3 1- 5 15 ISCALE=O if no scale charge was used for x

1 1 if a scale change of the form

v=(x-m)/s was used
6-10 (blank)
11-20 F10.0 value used for m leave blank if
21-30 F10.0 value used for s ISCALE = 0.

4 1- 5 15 IUNIT = 1 if c is given in absolute units;

= 0 if c is given as a decimal
(proportion relative to the
control mean).

6-10 (blank)

11-20 F1O.0 value for c, which can be either positive

or negative. For example, if one is
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interested in the concentration
associated with a 50 percent reduction
from control group average (i.e., an
EC5O), use IUNIT=O and C=-0.50

5 1-10 F10.0 variance ()
6 1-10 F10.0 covariance (0,AI)

11-20 F1O.0 variance (B1)
7** 1-10 F1O.0 covariance (o,)

11-20 F10.0 covariance ( 1 ,8 2 )
21-30 F1O.0 variance (2)

1 1-80 1OA8 Title card for a new problem if necessary.
etc. etc. etc. Cards 1-7 can be repeated as many times as

desired for any number of problems. An
7 end-of-file card should follow the last

problem.
(or end-of-file card)

*Note: An "F10.0" format indicates that the user should enter a floating point
number in the field of 10 columns (not necessarily right-justified); a decimal
point must be punched, although it can appear anywhere in the number. Variables
having the "15" format, however must be entered as right-justified integers
ending in column 5.

**Card 7 should be omitted if a linear model is used. Note that cards 5-7 are

set up to contain the lower diagonal portion of the variance-covariance matrix
for the {8i} regression coefficients.

427

------------------------------.--.--..-,.'--------------;-'..-,.DX--,. -------.-



Program Output

A separate output is produced for each problem inputted to CONFINT.
Each output first includes a printout of the input specifications,
including the model chosen by the user, regression coefficients, rescaling
transformation (if any), error degrees of freedom, and the estimated .-

covariance matrix of the { i} regression coefficients. The value of c is
printed in absolute y units; if c was read in as a decimal using relative
units, then the program recalculates c as c.j before printing it back.

The program reports calculations for both roots of the equation
f(x)=P+c if a quadratic model is used and if two roots exist. (If no roots
exist, the program prints out a message to this effect before going on to
the next problem.) The partial derivatives of the polynomial roots with
respect to the si's are printed out. From these derivatives and the
estimated variance covariance matrix, the estimated variances of the roots
are calculated and printed out.

Finally, the program prints out the point estimates of the roots and
their associated 95 percent confidence intervals, in three different

scaling systems:

(1) in rescaled units, if x was rescaled to v E (x-m)/s.

(2) in log-concentration units (regular x units), and

(3) in raw concentrations, where antilogarithms are taken of all the

values reported in (2).

In the event that x already represented raw concentrations, the values
reported for (3) should be ignored.

It should be noted that whenever the quadratic model yields two roots,
the smaller of the two roots may be much lower than the lowest treatment
concentration. It is calculated and printed out for mathematical
completeness, but it should probably be disregarded ecause it may be
totally unrealistic in the physical context of the experiment. The
specific root to be used depends on the context of the problem, but it will
usually be the larger root.
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APPENDIX AXIII

THEORY UNDERLYING THE CONSTRUCTION OF CONFIDENCE
INTERVALS ON TREATMENT GROUP-CONTROL GROUP MORTALITY

RATE DIFFERENCES BASED ON THE RESULTS OF THREE PARAMETER
PROBIT MODEL REGRESSION FITS
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APPENDIX AXIII. THEORY UNDERLYING THE CONSTRUCTION OF CONFIDENCE INTERVALS
ON TREATMENT GROUP-CONTROL GROUP MORTALITY RATE
DIFFERENCES BASED ON THE RESULTS OF THREE PARAMETER PROBIT
MODEL REGRESSION FITS

Let

p(conc)=Po+(1-po)¢P(6o+ 1(z-m))

denote the three parameter probit model. The notations are the same as
those discussed in the body of Subsection XIII.C. The model is fitted to
the data by maximum likelihood estimation, as discussed in detail in
Section X. Let Po,Bo,I denote the parameter estimates and let
a(po),G(Wo),(3 1 ),R denote their estimated asymptotic standard errors and
the asymptotic correlation matrix. These estimates are obtained directly
from the outputs describing the probit model fits. Several such outputs
are illustrated in Section X. The estimated asymptotic variance-covariance
matrix of po,Ao,A1 is thus

o((o o 0 p o o) o
o WO) o( k 0oo) 0(

00 a( )0 0 0 )

Let Z0,Zi denote the Z-values corresponding to the concentrations at
the control group and at treatment group i respectively. The difference
between the mortality rates at these two groups is

f (PooB I ;Zo, Zi) (-7 Po ) [ 4 (0 o + l ( Z i - m) ) - ID( o + il ( Zo - m ) ) ]I'.

This difference is estimated by substituting 0 , o,3 1 in the above
expression.

To construct a confidence interval on the difference we must calculate
the asymptotic standard error of the estimated difference. This is done by
the delta method. Namely

0f/ap o = -[(So+ 1(Zi-m))-(8o+B1(Zo-m)]

Df/n o = (1-Po)[((o+ 1(Zi-m))- (Bo+61(Zo-m))]

0f/a1 (1-Po)[(Zi-m) (Bo+B1(Zi-m))-(Zo-m)¢(Bo+B1(Zo-m))]

Std err(f)=[Var(f)]
1 /2

In the above expressions, f,3f/lpo,/3flBo,D/a3B are obtained by sub-
stituting Po, o, I for poio,wI. The expression (.) denotes the standard
normal probability density function. If logarithmic concentration is used
and if concentration is 0 at the control group then (6 0+ 1(Zo-m)),
P( 0+a1 (Zo-m)), and (Zo-m)(Bo+B1 (Zo-m)) are set identically to 0.
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A 1-a level two sided confidence interval on the difference is

constructed as

(- S err (),f+ - /
2 Std err(f))

where I- /2 is the upper a/2 percentile of the standard normal -

distribution.

Simultaneity can be adjusted for by Bonferroni's method, but has not

been done so for these intervals.
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