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SUMMARY

This memorandum describes a method for extracting 2-Dimensional and

3-Dimensional shapes from scenes made up entirely of straight line segments.

A new approach to extracting boundaries is discussed, and a methodology for

defining geoemtrical shapes in PROLOG illustrated. Emphasis is placed on
the structuring and control strategy for efficient implementation, and the

applicability of IKBS methods to this is demonstrated. *1
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1. INTRODUCTION

Image understanding is concerned with the important area of interpreting
the output of a sensor and initiating an appropriate response to the

perceived scenario. This might mean rejecting a component on a production
line because of some defect, selecting the highest value target accessible

to a missile, or sending a meaningful message down a narrow bandwidth
channel. Current device and software technology will enable very high-
performance computers to have widespread use in a vast range of new
products. In most cases this computing power will need to interact
directly with the environment rather than through a human input, and image
understanding techniques provide the mechanism to bypass this human
bottleneck. These techniques must be capable of representing a large body
of knowledge and experience in order to cope with the variability and

complexity of unconstrained environments.

Even in fairly simple situations, the combinatorial implications can be

suji 6i6g~0 demanding: a typical TV frame can represent over
10 '  distinct patterns, and a sketch of 100 lines can be linked
to form millions of potential polygons. Not only is it necessary to
define shapes or objects in a unique way, it is also necessary to find a
way of analysing image data which avoids the need to consider all possible

outcomes, or even a very small fraction thereof. The methods associated
with the labels "IKBS" or "Al" have much to contribute to this aspect of
the problem, for as well as providing a convenient formalism for
representing knowledge, they provide methods which allow definition of

processes which manipulate this knowledge, form problem solving
strategies, and give the programmer control at progressively higher orders

of expertise.

The ability to easily define the problem domain itself, and also to define
higher domains concerned with representing problem solving knowledge,
clearly separate Al methods from those associated with statistical
classification or associative memories. Statistical classifiers can
extract relationships between data items and can therefore deduce
knowledge about the problem domain, but they cannot exploit higher level
knowledge, such as generalisation or analogy. The ability to form a
"system of knowledge" using higher level processes is critical for vision
systems. Without it vision is an ill-formed problem: the dimensionality

of the problem space usually far exceeds that of any conceivable training
set.

The image understanding approach described in this paper forms such a
"system of knowledge" by a hierarchy of model forming stages, each level
using methods which have strong IKBS/AI foundations. This hierarchy S
(Figure 1) serves a number of purposes:

- It enforces an order into the way image data is analysed which
maps onto the way we want to describe objects. This reduces the
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combinatorial factor and simplifies the addition of new expertise.

- It allows knowledge to be separated into independent databases.

- It allows different problem solving (and learning) methods to be
used in different places.

- Each model forming stage is a candidate for a separate processor
in a concurrent implementation.

The flow of information between the model forming stages of Figure 1 is
quite complex, and makes use of both forward data driven processes and
backward goal driven process as indicated by the arcs between the boxes.
In general, data driven processes are used to form cues which guide a goal
driven process, the latter playing the main role in inferring the outcome.
The forward processes do not necessarily influence the outcome, but play
an important role in determining how quickly the right model is applied.
The goal directed path is used to carry out the main part of the inference
operation because of the nature of image description. The number of
possible goals is usually very much smaller than the amount of input data,
a situation which favours backward reasoning, especially as the input data
may have many distinct interpretations depending upon the context.
Without a model to impose suitable contexts the problem explodes
combinatorially; with the right choice of model it is tractable. Our
choice of models, and therefore the detail of the boxes in Figure 1, has
been driven by the need to avoid combinatorial instability. In developing
this system we have frequently encountered combinatorial problems, but we
have always been able to re-define the hierarchy to overcome these [There

may be a formal way of identifying and eliminating combinatorial

instability, but we have not yet tackled this interesting piece of

theory].

The hierarchy of models shown in Figure 1 starts with the image input
which is analysed into line segments using a two stage model, one is
concerned with the conditions which must be satisfied if a line is to be
extended to include a particular point, and one with determining the local
properties around points which are candidates for extension. These
processes are driven by backward inference from the line model, but there
is a controlling forward route to guide the line model's operation. The
line segments are then analysed into straight line segments and arcs (arcs
are not yet implemented), which are expressed as a PROLOG database for the

subsequent analysis by an expert system concerned with the identification
of two dimensional polygonal shapes. Again this is done by a model driven
process, but with a strong forward control method which, although not
participating directly in the solution, does enable the correct model to
be applied approximately 50 times more quickly. Note that all polygonal
shapes present are identified, individual lines being used any number of
times to form different shapes. The two dimensional shapes so found are
analysed further to assert other latent shapes. For example, a rectangle
with one corner obscured can be identified by a rule concerned with shapes
having three right angles, and shapes which are split can be re-joined.
Finally, two dimensional shapes which meet in a way consistent with a
three dimensional interpretation are found and the positions of the
vertices identified. We now have a database which consists of three
dimensional shapes, two dimensional shapes, and the underlying boundary
segments. These form the input to the highest stage in the image
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understanding process where candidate objects are tried for

consistency with this database. In some cases the database will
P* directly define the object, in others it will only suggest a range of

possible objects and orientations to be examined in detail using the "6

boundary database. This part of the process has yet to be developed,
but it is intended to use a three dimensional matching process similar
to that of Hogg (Sussex) and Sullivan (Plymouth Polytechnic) to test
for the existence of objects which have been cued in the way described
here.

2. DETAILS OF THE NODEL FORMING STAGES

2.1 Finding Boundaries.

Images are made up of regions of differing intensity and texture. The
location of the boundaries between these regions contains most of the
information in an image, as illustrated by artists such as Aubrey
Beardsley. Finding these boundaries is not an easy process. This is

because although boundaries have a few features in common, the detail
of their makeup is extremely variable. In addition to noise and

blurring, edges can be sharp or gradual, they can be straight or wavy,
demark two regions of similar texture but different intensity, or
areas of different texture but identical mean brightness. The
complexity of boundaries have forced some workers to suggest that low
level boundary extraction is an impossible task, and that a high level

model must be imposed before any interpretation can be formed. Others

have largely ignored the richness of boundaries and relied on simple
gradient operators (eg Sobel, Narr-Hildreth) which in-accurately
capture only a subset of boundary types, in the hope that the
confusion caused by missing or extraneous lines can be removed by
higher level operations. In contrast to both these approaches, we
have attempted to develop methods which can distinguish the variety of
boundary types without any high level input, passing a boundary

description to the higher level processes to use as they wish. The
key philosophy here is to avoid introducing high level information at

the pixel level (because of combinatorial implications), but instead
to use a large amount of information local to the task of robustly
identifying boundaries.

S

It is possible to find and discriminate boundaries by a number of

methods, including direct pattern matching, statistical classifiers
and rule based descriptions. Pattern matching requires an
inconveniently large number of templates because of the extreme

variability of boundary types. Statistical classifiers are a feasible
candidate, but the choice of appropriate features is made difficult by
the differing scales, texture and sharpness of boundaries. In

comparison, a rule based approach offers several advantages. It is
possible to specify the particular features which discriminate one
type of boundary from an other in a form which has a direct
relationship to our (human) understanding of what demarks a boundary.
As In the description of plant or animal types, where particular •
attributes, such as the nutwber of points on a leaf, are used

distinguish a species, it is possible to to construct a system of
description which interrogates only the critical features to identify
the properties within a portion of the picture. Not only does this

Si



provide a suitable way of entering knowledge into the system, it can

reduce the number of features which must be evaluated compared with
pattern matching or statistical approaches, which cannot be selective
in the choice of features relevant to an individual case. Another

important advantage comes from the natural way that 'scale' can be
accommodated. The boundaraies usually occupy a region which is about
5x5 pixels, but is some cases it can be much larger, especially if
texture is involved. The decision tree of rules can vary its region
of analysis according to the local data, and appropriately classify an

edge, say, having a large uniform region around. This avoids the

complexities of evaluating at a variety of differing scales, a method
advocated by other workers.

The approach which has been adopted here starts by evaluating a small
number of measures around the centre of a region of interest, and

these are used to select appropriate features to identify possible
boundary types and orientations. Rules examine these features and
hypothesise the existence of a boundary type, which if doubt remains
is confirmed by suitable additional measures. In this way the system

searches a tree of options until a conclusion is confirmed. The
nature of this tree is such that this decision is usually reached very

quickly.

The present implementation expresses the rules as simple conditionals
in POP. This leads to a fast run speed but is cumbersome to modify.

A more general (but slower) form of production system is being written
which will allow rules to be applied in a more transparent fashion and
will contain the basis for automatic addition of rules for a learning

system. This production system could then be used to generate the

simple conditionals to regain the required speed.

The system currently uses about 50 rules for the classification of

boundary types and about 10 for the extension of a line into a new

region. The basic structure of these rules is shown in Figure 2.

After finding the boundaries in the image, stored as a linked list of
details about each point, a database of boundary segments is produced

for the subsequent analysis. The present implementation can only
extract straight line segments, but extension to arc segments is not
difficult. Straight line segments are found by looking along the
boundaries for bends or other features which denote a meaningful place
to form a straight line end. These features include sharp changes in

local orientation, excessive deviation from the previous path of a
line, or proximity to the end of another line segment. The boundaries

identified as straight lines in this way are fitted by least squares
and the endpoints, length, mean contrast and mean brightness,

orientation, length, and line type are formed into PROLOC facts, shown
in Figures 3 and 4. This list of facts forms the starting database
which is consulted by the shape finding expert described next.



FIND PIXEL WHERE
BOUNDARY IS LIKELY

eg. next to previous point
or region of high contrastt

FORM INITIAL MEASURES

These are simple measures

always evaluated and used
to guide rule selection

EXAMINE INITIAL MEASURES AND
APPLY SELECTED RULES, EVALUATING

ADDITIONAL MEASURES AS REQUIRED

Evaluations are only performed when

needed but are stored in case they 0
are also used in another part

of the decision tree.

CONFIRM BOUNDARY TYPE USING FURTHER

RULES WHERE NECESSARY

Used to remove ambiguities in

orientation or boundary type

APPLY RULES TO DETERMINE
WHETHER PIXEL IS TO BE ADDED

TO THE LINKED LIST OF

BOUNDARY POINTS

Figure 2. Summary of the Way Rules are Used to Find EBundaries in 0

Images
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I* parameters are: *

/* (line no.. real ends, fitted ends, strenath, angyle, lenath) '

line -sea(lE65,59J,[66,933, E65,593,E65,93),16,180,34.
line -sec7(2.(64,92).(63,60J. 164,92),E64,60),18,0,32).
line sea(3,E79,30J,E65,45J, [79,30J,[65,45J,21,223,21)
line sea(4,E77,107J,E87,106J, [77,1O6Jj8B7,lO6J,l6,9O,lO).
line _sea(5,E57.76J,E57,83), [57,76J,157,83),18,180,7).
line seg(6,E56,5lJ,E56,36), E56,51J,E56,36),18,O,15) .
line _seaq7,78,84,(67,58], [79,84Jj67,58J,22,335,29).
line _sea(8,(79,76].E85.53J. (79,,78),EB5,53),21,13,26)
line sec(9,E5O,63J,E55,75). 150,63J,[56,75J,23,153,13).
line _se'lO.U,102,75]j[77,106J, [102,753,176,1051,21,221,40.
line _sea( ll,t73,109).E66,95J, E74,109J,E66,95J,23,330,16).
line _sea(12,E87,108J.(75,109), E87,108J,E75,lO9),17,265,12).
line _secr(13,E56,75),E56,55J, E56,75),E56,55),16,O,20).
line _sea(14.(l0l,73J,Clll,73), [l0l,73J,Elll,73),18,90,10)
line _sea'15,EllO.753,C104,753, (llO,753,E104,75),17,270,6v.
line _sea(16,E113,76J,[89,lOB), E1l3,76),E89,lO8LlB8,217,40.
line _sea(17,E91,27),El14,75]. E91,27Jj115,751,18,153,54).
line seai18,(8O.27JjE9O,27J, E80,27Jj90,271,17,90,10).
line _sea'.19,C65.41J,[79,27J, E65,41J.[79,27L,21,45,20) .
line sea 20,E64,22),E64,41). 164,22J,E64,41),16,180,19).
line _sea 2l.(21,22J.(63,2i), r2l,23J.E63,22J,13,89,42).
line _sea(22,E18,973A120,23), [19,97J,E19,233,16,0,74).
line sear(23,E65,94J,C19,98), E65,94),E19,98L,18,265,46).
line sea(24,[63,22]jE2l,25J, [63,24Jj21,25),14,269,42).
line _sear(25,E2l,26)j[20,95). E21,26),E20,95],13,181,69).
line sea(26.E21,95J.(63,93), E21,96),E63,93J,15,86,42).
line _sea(27.E67,93J,E73,104), E67,933,[73,104J,21,151,13).
line _sea(28,C74,105),ElOO,73], E74,105J,ElOO,73).19,39,41).
line sea 29,E99.723.E80,30J, 199,72),E79,30J,21,335,47).
line _sea(3O,E82,30J100lO,72J, E81,30J,El0l,72),21,155,47).
line sea(3l,[90,30),(83,29). [90,29),E83,29J,16,270,7).
line seai32,Elll,71).C91,31), Elll,71),E91,31J,19.333,45).
line _sear33,[lll,76),E112,72J, [lll,76J,E112,72),13,14,4.
line _sea(34,(88,105J,CllO.77), (88,1O5)jEllO,77),l8,38,36).
line _sea(35,E57,52JjE58,76J, E57,52J,E58,76J,lO,176,24).
line sea(36,E26,35),E56,33J. E26,36),E56,33).14,84,30.
line _sea(37,E26,87Jj[26,36), E26,87)jE26,36L,13,O,5l).
line _ ec,38,E57,841,E27,87], E57,84),E27,86J,16,266,30).
line _sea(39,E55,36JjE28,38). [55.36JjE28,38Jl5.266,27.
line _sea(4O,E27,39J,E27,83J. [27,39Jj27,831,15,180,44).
line seQ(41jE28,84J,E56,82J, E28,84JjE56,82),14,86,28).
line _sea(42,E56,81J,E47,60J, E57,81J,[47,60),24,335,23.
line _sec 143,148,591,155,52), E48,59),[55,52),20,45,10).
line _sea(44.E70,59J,C76,76eL E69,59J.E78,78),21,155,21).S
l.ine _sear45,E84,53LE71,59J, 184,54JE71,591,19,249,14).
line _sea(46,E67,57Jj8B4,52J. E67,57J.[84,52J,19,74,18).
line _sea(47,E86,53),E79,83), E87,53J,E80,83),21,193,31.
line _sea(48.[56,54J,E50,62J. E56,54J,E50,62),21,217,lO).
line _sea(49,(65,46J,[65,58J. E64,46J.(65,58J,13.175,12).
line _sea(5O,E63,59),E63.46). E63,59),[63,463,18,0,13). 0
line sea(5l,[57,33J,E57,50J, E57,33J,E57,50),15,lBO,17).
line _sea(52,E63,45J,E63,23). E63,45),j63,231,19,0,22.

Figure 4. Line segment database for Figure 3(a).



onto three parallelograms. An assumption that boxes will been seen in this
way can be justified from a most general viewpoint argument. It the solid
angle over which the projection will consist of only one or two rectangles
is considered, it is seen to be small in comparison.

0

For particular images of a box, in view of the uncertainties involved in
joining lines and measuring their orientations, it is inevitable that
lower level processing will describe some parallelograms as rectangles.
This will occur, of course, only when they are close to rectangular. This
type of effect must be catered for by a level of tolerance in the
processing; this will be realized in the form of flexibility of
description at the higher level. So, to find a box in the image, the
knowledge base could contain a description of a box in terms of three

connected parallelograms and also a description in terms of two butted
parallelograms and a rectangle. Alternatively, it could contain the
relationship between rectangles and parallelograms, namely that the former
is a specific version of the latter. For the rest of the discussion, the 0
ability to reason that a rectangle is a parallelogram will be assumed.

The requirement th t the constituent parts of the object connect in a
certain way, is described in terms of the way common vertices are arranged
in the image. A specific algorithm was developed to check these
requirements in a meaningful order. As a precursor to this, the corners of S
the three shapes under study were converted back to the internal
representation derived for the sketch form of the image. This allows a

svmh ,lic matching of coordinates to be performed.

Three parillograms are selected from the shape database. In principle,
these could be joined by considering all possible orientations and any 0
arrangement which matched all of the connectivity requirements would be
asserted as evidence for a box in the image. If the match is unsatisfied,
then one of the three parallelograms can be rejected, and a new one
considered. Again, all orientations would be tried for a match. As usual
with such a backtracking strategy, if no box can be found with the last
para]]elogram replaced, alternatives for the second parallelogram can be !
tried. Finally, if this is to no avail, alternatives for the first
parallelogram can be considered. However, a general matching approach is
not particularly efficient. By ordering the way in which the important
vertices are found the procedure can be enhanced. First a candidate is
found for the central vertex (Figure 13(a)). Next, the three possible
outer triple vertices are considered, and finally the remaining corners. A O
representation of a shapes corner coordinates as a list structure allows
the program to 'peg down' the centre and move along the list to access the

adjoining vertices.

By finding the only possible centre, the number of combinations and
orientations is vastly reduced. The matching of three parallelograms can 0
then be terminated if they fail to satisfy rules describing the triple
corners, or if some of these turn out to be identical. If these vertices
can be found they completely define an instance of a box. It only remains
to check that the remaining corners are non-coincident before a cube is
identified. Before asserting it into the object database, any previously
found cubes in the database are examined. In this way, duplication is S
avoided.
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Figure 11. Interpretation of image including obscured rectangle.



concentrates on how partially obscured shapes might be proposed, and how
supportive evidence may be used to corroborate these hypotheses. A
specific example of the use of these ideas from the current work is given.
For the purpose of this discussion the image of Figure 3(a) will be used.
It contains a partially obscured rectangle, which is split into a pentagon
and a triangle. The pentagon will be used to suppose a rectangle, and this
will be supported by the existence of the triangle. Currently the software
suite only deals with rectangles obscured in such a way as to produce a
pentagon in the image, but this is readily extensible to cater for other
obscurations as the method employed relies on evidence for the existance
of a rectangle and not on the shape containing the evidence.

A pentagon produced by covering part of a rectangle will still display
three right angles at consecutive corners. If these can be identified, then
the underlying rectangle can be supposed and asserted. To do this the
program makes a list of facts for each vertex in the shape under
consideration. The elements of this list are the propositions 'true' and
'false', and the value of each element depend on whether the current
vertex is, or is not, a right angle. The list is extended by adding the
first two elements on to the end of the list; if this new list has three
consecutive 'true' elements then the shape has the required form to
suggest a hidden rectangle.

Two methods can be used to find the hidden corner of the rectangle. The
coordinates of the three right angled corners of the shape are recalled,
and are used to predict the fourth corner of the rectangle. Alternatively
the line segments pointing toward the missing vertex can be continued, and
used to predict the position. This is done using the procedure developed S
for finding the position of a known vertex from the lines forming it for
shapes which are not obscured. The software is capable of using either
method. Whichever is used, the suggested rectangle is asserted into the
shape database, and then looked for.

To see if a suggested rectangle is further supported by the image 0
database, a vertex at the hypothesised corner position is required. If the
image database contains a vertex with the right properties, the existance
of a rectangle is asserted into the shape database. An interpretation of
the shape database after the obscured rectangle in Figure 3(a) has been
identified is shown in Figure 11.

A natural extension of this idea is to incorporate further possibilities
for the obscured shapes. The list based algorithm described above is able
to cope with this generalization as the length of the list is not
determined a priori; it only remains to describe more shapes in the
knowledge base. Work with this aim is already underway.

2.2.5 Hypothesis of 3-D objects from shape database.

This section describes the method employed to suggest the existence of
three dimensional objects in the image. The technique has been applied to
the image under discussion, Figure 3(a). 0

Of the many possible images of a rectangular box, hinted at in Figure 12,
by far the most likely is the view of Figure 12(a). The box is projected



Figure 10. Reconstruction of image from shapes found.



rectanarle([27. 85), [57. 81), [56. 34), [27, 37)).
rectanc~le([20, 96). [65. 93), [63, 22), [21, 24)).

P gran([88. 107), [111. 75), [102, 743, E76, 107)).
P cramw[101, 73), 1111, 74), [91, 293, E81. 29)).
pentacfon([65, 45). E66, 933, [74, 106), [100. 73). [80, 29)).
trianaleu:56, 53). [56. 77), [49, 613?.
trianaleUC79. 81), [69. 58]. [85, 533).

Figure 9. Database of shapes found.
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*shapes. The arc pairs are found and those which close on themselves are
removed. The rest are asserted into the database. The same is done for arc

triples; those in which an end point is degenerate with one of the
interior point are removed. The concept of pairs and triples limits the
shapes which can be considered easily to have less than six sides. However
by allowing arc groups this can be extended.

The next step in the processing is to find the most general shapes in the
image; namely the triangles and quadrilaterals. These are then made more
specific by renaming them as parallelograms or rectangles. To find
triangles, arc triples which form closed shapes are considered. Any for
which two sides are collinear are retracted from the image database. The
rest are certain triangles and are left subject to checking for

degeneracy, in which case only one copy of the triangle is left.
Quadrilaterals are formed from two arc pairs which join the same points

and have distinct intermediate vertices. Again, collinearity of lines is
checked and one copy of each well formed quadrilateral is kept. For

pentagons an arc pair and an arc triple are joined, subject to all
vertices being distinct.

To further classify shapes into rectangles, parallelograms and so forth,
the line segments making up each shape found are checked. The angles of

the various lines must be compared to see if they are parallel or lie at
right angles. Rules containing a description of, for example, a rectangle
as a particular type of quadrilateral are present in the analysis
knowledge base. Having found these specific versions of shapes they are
asserted into the image database and their less specific versions are

removed. This is permissable as any higher level reasoning over shapes
will know that a rectangle can also be viewed as a parallelogram and a
quadrilateral.

Having found all simple shapes, these are put into a file of shapes for

use in reconstructing the image. An example of such a file is shown in
Figure 9, which has been generated from the image displayed in Figure
3(a). A philosophy adopted throughout this work has been that, at all

stages of processing, the altered image should be available to the user so

that, if required, a visual check can be made. The existence of this file
does just this. It should be noticed that that file is quite small, and
this reflects the data reduction which is achieved in performing the
analysis.

The structure of the shape file is a set of PROLOG facts. These facts
detail the type of each individual shape, as well as the coordinates of
the vertices of the shape. These pieces of information are available to a
POP-l shape drawing routine. A reconstruction of the image at this stage
is shown in Figure 10. The shape vertex coordinates are iound by producing m
the lines from which the shape is constructed, and calculating the point
at which the lines meet. This method will also be useful in joining

otherwise unconnected shapes together as will be seen in the next section.

2.2.4 Hypothesising Partially Obscured Shapes.

In the previous section a description was given of how simple shape
primitives could be found from the image database. This section

18
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c) Generating graph representation of image. The line segment and

nearness relation databases can be used together to generate a
simplified image database; the simplified database itself is used to
steer the shape finding system. The image can be viewed as a graph,
made from two distinct kinds of arcs. One set of arcs is simply the
line segments themselves, and the other is the set of nearness
relations which also link together the ends of line segments. The
nearness relation arcs form clusters on the graph, which are
themselves joined by the line segment arcs, as suggested in Figure
8(a). By collapsing these clusters down to single entities and
remarking the relevant line ends as being at these nodes, the graph
is simplified to a connected line sketch of the original image. The
collapsed image line end groupings are assigned a symbolic label,
which is carried forward into the rest of the processing; this makes
the nodes look, in effect, like that shown in Figure 8 (b). It is
interesting that a similar procedure could be used over the resulting
graph representation of the image, using the line segments as the
arcs, to extract unconnected objects in the scene. This would allow
entirely separated parts of the image to be put into different
databases and processed, in effect, as distinct images.

The algorithm used to separate the clusters can be viewed as follows.
A node is chosen and marked with a star. All nodes joined to the
marked node are then examined. If they are unmarked they are marked
with a dagger and a star, if the are marked with a star the are left
untouched. When all descendants of the chosen node are so dealt with,
another node with a dagger is chosen. This dagger is removed and the
process of considering descendants starts again. When no nodes are
left still marked with a dagger, the entire of the node cluster has

been found and are all marked with stars. These can then be collapsed
and the process restarted with another unmarked node. When no nodes
are left, then algorithm is terminated, and the image has been
simplified. The newly found and collapsed nodes are then renamed and
a new image database generated. The algorithm has been programmed in
PROLOG; the sketch is, as usual, a set of PROLOG facts.

Having made explicit the relationships between the ends of lines, the
collinearity of lines and having simplified the database to a sketch form,
work can now start on the task of finding shapes in the database. This is
the topic of the next section.

2.2.3 Shape Finding.

The method employed to find shapes is to locate closed paths within the

image database. Of course, this method only accounts for complete, closed
shapes in the image. For a variety of reasons, shapes may not be present
with sufficient boundary contrast for them to be complete. As is discussed
later, work is in hand to extend the technique to non-closed shapes, where
lines have to be supposed.

As the main shapes of interest in this work are triangles, quadrilaterals
and pentagons, a suitable algorithm for use is to first find all arc pairs

and triples in the sketch graph, and then join these to form the required
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accepts the line database as its input and creates an internal
nearness' array. Any line ends which are close to each other cause
the program to produce nearness relations, any which form parallel
pairs are noted as such, and these are fed back into the image
database in the form of PROLOG facts. This information was previously

implicit in the database.

A closeness criterion is chosen to include all pairs of line ends
which could meaningfully form part of a shape, but reject most
combinations which could not. Looking at the statistics of the
distance between line ends, several peaks are seen, as in figure 7.
The peak at the lowest distance is due to the distribution of
separations within the junctions in the image. The underlying more
widely spread structure is due to the distances between line ends

over the entire image. As the distance threshold is increased, up to
a point, the processing includes more of the relevent near line ends.
Eventually, if the distance threshold is too large, irrelevent

connections are included. The boundary processing is assumed to be
robust enough to be free from large gaps, and it has been found that
a nearness criterion of about 6 pixels works well.

Work to improve this has already pointed the way to image dependent

methods. Ideally, a distance criterion would be chosen so as to give
a good interpretation of the image by capturing all meaningful
shapes. Initially a small distance could be chosen, and this would be
increased as the processing proceded, and as the system felt
neccessary. By looping round tinder high level control, shapes and
object would be found in an order reflecting the closeness of the
vertices of which they are composed. Once a satisfactory
interpretation had been reached, the looping would terminate.
Alternatively, a choice for the distance threshold could be made
based directly upon the statistics of the image content. From the
above description, Figure 7, showing the distance statistics in the
image, suggests that a threshold could be placed at the first dip in

the distribution; this would separate out genuinely near line ends.

Further enhancement is possible if allowance is made for prefered
directions at junctions; if two lines are virtualy collinear then
they are more likely to require joining. A further useful impact
could be made by incorporating ideas from Gestalt visual psychology
into the processing.

b) Rejoining separated line segments. In addition, long straight
lines which have been broken by the lower level processing must be
rejoined and asserted into the image database; the constituent parts
are not removed as they may form part of an important shape in the S
image. This is performed using the nearness relations and the
Inter-line parallelism. Two lines which are parallel and join to each ]
other are either a bar in the image, or are to be made ilito a longer

line segment. In fact both cases lead to an extra entry in the image
database. For the case of the longer line, the parallelism of the
constituent lines to others is bestowed on the new line, and the
nearness relations for the outer ends of the two lines are given to
the required ends of the longer line.

14 j



/A A rectangle is defined
as a closed shape made of right angles

rectangle(Pointl .Point2,Point3.Point4)
right ancrle(Pointl,Point2,Pojnt3),
ricrht-angle(Point2,Point3,Poiit4),
right ancle(Point3,Point4,Point5),
near(P ointl .Point5).

/A Definition of right angle as
two lines meetingr at 90 degrees

right -angle(Endl,Corner,End2)
line(Endl ,Corner .Parametersl),
line(CornerEnd2,Parameters2?.
anqle(Endl,Corner.End2,90).

/A Line segment database

lin~trled~aaees

iS] line(startl,endlparametersl).

line(start2.end2.parameters2).

Figure 6. Simple example of top-down PROLOG rules.
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Figure 5. Example of representation hierarchy.



2.2 SHAPE AND OBJECT FINDING.

2.2.1 Approach to Shape and Object Finding.

A particular view of an object forms an image which is composed of several
shapes; knowing the object these shapes can be predicted from the viewing
direction. The shapes themselves are either general shapes like, for
example, quadrilaterals or ellipses, or may be more specific, like squares
or circles. They are, in turn, made from particular instances of vertices
composed of lines meeting. This structural hierarchy is illustrated in
Figure 5 for the image of a box.

The hierarchy immediately suggests the use of a top-down search in finding
shapes and objects from a database of lines. Each object can be set as a
goal to be satisfied by finding the shapes which compose it; the
constituent shapes naturally give rise to further subgoals in terms of
vertices and lines. This scheme is readily expressed in PROLOG, as
suggested in figure 6 for a rectangle finder. This approach has been tried
by the author [I], and very quickly leads to a combinatorial explosion for
all but the simplest images. This happens because the same line segments
are considered time after time in different contexts; they form parts

0 which must be considered for all polygons, for example.

One way to overcome this difficulty to some extent is to use a bottom-up

methodology. In such a system shapes are found by finding first all
vertices present in the database, combining these to form closed shapes,
and then restricting the shape categories t be more specific in nature.

0 During the processing, therefore, extra knowledge of the image is
generated as intermediate entities such as vertices are found and
asserted; this knowledge is used in the search for other shapes. At any
stage, most inference is performed on information from the preceding level
of the structural hierarchy. This section of the paper describes how such
a bottom-up approach has been successfully implemented using a suite of

0) PPROLOG rule bases. Note that the current work described here is concerned
solely with shapes made from straight line segments.

2.2.2 Database Restructuring.

The database of line segments presented to the suite of software is in the
form of PROLOG facts such as the one shown in Figure 4. Each fact details
the start and end coordinates of the line, the orientation of the line, as
well as other parameters such as the line strength, length and type. This
database forms the only input to the software suite from the boundary
finding processing of the image. It is therefore the initial database from

* which all reasoning about image content will be performed.

As the majority of inference of shape and object content of the image will
require information about the interconnection and collinearity of these
line segments, the data is restructured into a sketch form; close line
ends are notionally joined to form a more simple view of the image. This

* is done in three stages:

a) Finding nearness relations. This is done by a PASCAL program which
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As with found shapes, the corner labeling of the box is converted back to
image coordinates from its symbolic representation. Again this allows the
object to be displayed to the user for verification. Figure 13(a) shows
the visual output after the box has been found in the image under
consideration.

The box that has been supposed may, of course, be the image of a peculiar
skewed box-like object. Leaving this debate aside, and assuming that the
object is a rectangular box, as may be justifiable from a priori
knowledge, say, on a production line, further details about the object mav
be calculated. For example, the orientation of the box, or the coordinates
of the hidden corner, may be found from relatively simple geometry. T,,
demonstrate this ability, the program has been extended to allow the
object to be rotated and displayed. Typical views of the cube-like
object in Figure 3(a) are shown in Figure 13.

2.2.6 Extension of the technique.

The above discusion assumed that all shapes present in the image database
are complete; namely closed. Under certain lighting conditions this
assumption may not be a good one. Lines may be missing in the image, and
this may lead to incomplete shapes. The previously described processing is
not able to handle this situation. Defects of this sort can be partly
overcome by hypothesising extra lines to close shapes. Such lines would
not be added in an ad hoc way, but would be added as seemed reasonable.
For example, if a rectangular shape faded slowly into shadow, a U shape
would appear in the image. This shape, although not closed, would give
rise to an arc triple (see Section 2.2.3). A line could be added to the
database, such that it joined the two free ends of the U together, and it
would be labelled as 'unknown'. This addition would produce an extra
quadrilateral, also marked as 'unknown', which could be analysed to
suggest and tentatively assert a possible parallelogram or rectangle,
depending on the arrangement of the firm lines and their orientations. Any
quadrilateral which cannot be made more specific is liable to be
meaningless and would be removed from the database together with the added
extra line. It must be emphasised that this would be a rather uncommon
necessity. The boundary finding processing currently finds almost all
boundaries, and the extensive use of tentative assumptions must always be
avoided.

The technique for finding three dimensional objects has been demonstrated 1
in section 2.2.5 for rectangular boxes. To extend this to further types of
object, rules could be added which describe the new objects in terms of
their projections into two dimensions, namely detailing their properties
under imaging. This process could be mechanized, as the image of a general
object can be predicted from simple geometry. The machine could be given
an internal model of the object, either as a complete three dimensional
construction, or as a description of its constituent parts, and would use
this model to derive views of the object.

By describing all possible images of an object in terms of shapes already
known to the system, and possibly also ascribing each view with a value

for the likelihood that this view will be seen, rules could be generated

which allow that shape to be recognized. The likelihoods contained within

2
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the rules could be used to order all ambiguous interpretations leaving any
final decisions to some higher level processing, using contextual

I( information, for example.

Alternatively, the machine could be shown views of an object, and these
used to either build an internal model of the object, or to directly
derive rules for the recognition of the object within a scene. This would

require the system to have a rich variety of basic shape and object
primitives, and the system would also have to ensure that the newly
acquired object was in some way differentiated from other objects already
known to the system.

3. CONCLUSION

This paper has described an image understanding system with several

interesting aspects which distinguish it from methods based on pattern
matching or btatistical pattern recognition. These include the use of a

hierarchy of models to overcome the combinatorial problems normally

encountered in image analysis, each model using knowledge local to its
layer in the hierarchy; the use of declaritive or rule based expression of
knowledge, including that concerned with the low level interpretation of
the pixels; and the use of problem solving methods which, although
specific and implemented in the structure of the programs, provides a
general methodology for forming inference about images without an

exhaustive search of the problem domain.

Of particular note is the way the image is converted into a PROLOG

database, the ability to recognise partially obscured shapes, and the
inference of three dimensional shapes from the relationship of their two
dimensional projections.

The methodology has been demonstrated with a simple hand drawn sketch.
Extension to more complex shapes and objects is achieved by extending the

knowledge base defining the various models, an activity which is currently

in progress for military vehicles and production line components.

[1] Hearn D.B. (1983)

'Finding rectangles in images using PROLOG rules'

GW Division Working Paper, RSRE, August 1983.
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