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INTRODUCTION

Research during FY 1984 has considered four areas, concerned with the

mechanical behavior of materials: monolithic ceramics, ceramic matrix

composites, ceramic/metal bonded systems, and polymer matrix materials.

Water drop impact damage on brittle systems has also been investigated.

The research on monolithic ceramics represents the conclusion of

several years of study related to the fracture toughness of

polycrystalline ceramics. The emphasis of the present research (Paper I)

has been on the development of a comprehension of microcrack toughening

in single phase anisotropic ceramics, such as A1 2 0 3. The study

illustrates how the stress, strain characteristics of a microcracking

system can be derived and then used to predict trends in the fracture

toughness. The dilatational strain associated with the microcracking is

thereby determined to be the major toughening mechanism. The dilatation

is, in turn, related to the thermal expansion anisotropy and the grain

size.

Thermal fracture studies (Paper II) describe a technique for

evaluating edge flaw populations in ceramic devices: notably, multilayer

capacitors. The study, performed on standard capacitors, revealed that

the edge flaws are more serious than the surface flaws and hence, that

capacitor fracture upon soldering or thermal cycling is strongly

influenced by edge damage. The concept of thermal stress testing to

obtain flaw populations is also shown to be applicable to other

components, such as turbine valves and turbochanger rotors. The

procedure may be used for evaluation or proof testing purposes.

The research on ceramic matrix composites (Papers III & IV) presents

an analysis of the mechanical behavior of a SiC/LAS composite with

1.

0 ?

..........



uniaxial reinforcement. The study reveals that the tensile properties

are dictated by a matrix cracking stress and an ultimate tensile

strength, whereas the fracture toughness is not a relevant material

parameter. Comprehensive investigation of matrix cracking indicates

that, in this composite, the good tensile properties derive from an

absence of chemical bonding between the fiber and matrix. Furthermore,

the matrix cracking stress is determined to vary with the frictional

shear resistance of the interface, the fracture toughness of the matrix

and with the thermal expansion difference between fiber and matrix (via

the residual stress).

Studies of the mechanical properties of ceramic/metal bonded systems

(Papers V, VI, VII) have begun to investigate the effects of thermal and

elastic anisotropy and of metal plasticity on the mechanical strength.

In particular, plasticity in the metal is determined to profoundly effect

several aspects of mechanical behavior. For example, crack blunting has

been observed at the interface of A1 203 /Nb, due to plastic flow in the

metal, resulting in interface strengthening. Additionally, stress,

strain hysteresis due to metal plasticity has been used to eliminate

residual stress in A1 2 0 3 /Cu strips. The influence on fracture behavior of

stress concentrations at edges, due to mismatch in elastic modulus, has

also been studied.

Polymer matrix particulate composites exhibit toughness

characteristics similar to those previously studied in ceramics (viz,

transformation and microcrack toughening). Hence, models of rubber

toughening and glass toughening of polymers have been developed (Papers

VIII, IX) using concepts based on stress, strain hysteresis. In these

instances, the dilatation of the material due to plastic expansion of

2



the matrix around debonded, or cavitated, second phases has been studied

and used to predict trends in the toughness. The trends reveal

synergistic effects. Particularly strong synergism was identified in

rubber toughened systems wherein toughening by rubber stretching across

the crack faces ws determined to be multiplicative with debonding and

shear banding in the process zone.

Finally, the research studies on water drop impact damage have

involved the development of schemes for statistical damage

characterization, pertinent to the influence of the damage on infrared

transmission losses. Three aspects of this issue have been addressed.

Techniques developed for characterizing the spatial variation in crack

damage (Papers XI, XII) allow experimental results evaluated for a wide

variety of impact conditions and target materials to be unified. In

particular, the inner damage radius and the number density of cracks have

now been fully characterized. Theoretical studies (Paper X) have

involved the development of a computer model to simulate the crack

damage. The model is based on the fracture mechanics of cracks engulfed

by the short stress pulse generated by drop impact. Inertial effects of

the crack faces are a particularly important aspect of the model. The

computer scheme thereby allows the stress pulse to activate statistically

distributed, small pre-existing surface cracks and create a distribution

of crack damage. The simulation has, thus far, successfully predicted

the number density of cracks in the damage zone, by incorporating stress

pulse attenuation.
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CHAPTER I-a

SOME EFFECTS OF MICROCRACKS

ON THE MECHANICAL PROPERTIES

OF BRITTLE SOLIDS

I. Stress-Strain Relations

Y. Fu and A. G. Evans

5

S I



SOME EFFECTS OF MICROCRACKS ON THE

MECHANICAL PROPERTIES OF BRITTLE SOLIDS 0

I. STRESS, STRAIN RELATIONS

by 0

Y. Fu and A. G. Evans

Department of Materials Science and Mineral Engineering,

University of California, Berkeley, CA 94720

ABSTRACT

An analysis of microcracking in a brittle polycrystalline

aggregate is presented. The analysis is based on the combined

influence of the residual stress and the applied loads. Microcrack 0

densities are predicted as a function of load and correlated with

acoustic emission measurements. The non-linear characteristics of the

stress-strain curves of microcracking materials are calculated, as S

required for subsequent evaluation of microcrack toughening in brittle

materials.
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i. INTRODUCTION

Localized residual stresses typically form in polycrystalline

brittle solids, due to thermal expansion anisotropy. 1- 4  The residual

field often induces a stress intensity of sufficient magnitude that •

microcracks nucleate,5 especially when present in conjuntion with

appreciable applied stresses. The resultant microcracks influence the

mechanical oroperties of the material, in addition to having important S

effects on optical and thermal properties. The intent of this article

is to describe the source of the microcracks and to evaluate the

stress, strain response of materials subject to stress induced S

microcracking. The associated effects of microcracks on crack

propagation are presented in a companion paper.6

In the present paper, the stresses that result from expansion S

anisotropy are firstly assessed. Then, fracture concepts that account

for observations of thermal microcracks are discussed. Thereafter, the

concepts are used to predict the microcracking that occurs upon

application of applied loads and hence, to predict stress, strain

relations for microcracking brittle solids. Experimental measurements

that relate to stress induced microcracking are, where available, S

correlated with the predictions.

2. RESIDUAL STRESSES •

The analyses of the residual stress caused by expansion anisotropy

were originally concerned with the stresses induced within grains. The

results of such analyses, obtained using variational principles, •

7



revealed stresses of the form,
2

aij = Mijkl (akl)o

(Cij)o = C ijkk (ao - (1k) (i)

where a is the thermal expansion coefficient of the polycrystalline 9

aggregate and Ck is the thermal expansion coefficient along the

k-axis of the grain, aT is the cooling range, Cijkl is a compliance

tensor and Mijkl is a relaxation tensor. However, since microcracks 9

in polycrystalline brittle solids typically occur along grain

boundaries5'7 , the stresses along boundaries are deemed more pertinent

for present purposes. 9

Grain boundary stresses are conveniently analyzed using the

Eshelby procedure. 5 ' 8  In this procedure, the first step entails

removal of the microstructural entities, followed by unconstrained 0

straining. Then, surface forces are applied to restore the entities to

their original shape, whereupon they are reinserted into the body.

Finally, interface tractions are imposed to establish stress continuity 0

in the system. For polycrystalline solids subject to thermal expansion

anisotropy, it can be shown 9 that the grain boundary stresses may be

adequately assessed using four anisotropic grains, contained within an •

isotropic matrix with the average properties of the polycrystal (fig.

T
1). With this approach, the stresses o. within each grain, due to

ai

application of surface forces, are given by

8



T
T = EAobT cos2 9/(i+)zz n

a T= EAc±NE cos2e /(1+V)
yy n

G = EAacT sin2 n/(1+V) (2)
°xyn

where,

A= CL - (x1 + a2 ) / 2

= a2 - I + a2) /2 ;

the subscripts 1 and 2 refer to the principal strains, and n is then

angle between the axis of maximum contraction in grain n and the 0

grain boundary plane.

These stresses are modified during the final step in the

sequence, when interface tractions Pi (fig. 2) - equa' in magnitude 0

but opposite in sign to the surface forces - are applied around the

grain boundaries after insertion into the matrix. Resultant stresses,

evaluated for two dimensional grain arrays, with several grain 0

orientations, are presented in fig. 3.

The stresses can be considered to comprise of two principal

components: uniform stresses at the grain facet center and singular

stresses near the grain corner. The uniform stresses, i , originate
ij

from the mismatch between the two grains adjacent to the grain boundary

of interest and are given by; S

9
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6. CONCLUDING REMARKS •

An approach for predicting the trends in microcracking with

applied stress has been developed. The model is restricted to two

dimensional grain arrays and excludes interaction between neighboring •

microcracks. Nevertheless, the model appears to provide information

regarding the influence of thermal microcracks on the elastic

properties of brittle solids, consistent with the grain size dependence •

of Young's modulus. In addition, predicted trends in microcrack density

with applied load are in qualitative accord with acoustic emission

measurements. •

Finally, the analysis predicts non-linear loading and linear

unloading characteristics, with load cycle hysteresis. Such non-

linearities are deemed to be important in the evaluation of toughening, •

as discussed in the companion paper.
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facets, f. Hence, from eqn (23), trends in 6 are expected to satisfy

the relation,

8 xm(a 1 - ath)(l+%)/E (27)

where X is a dilatational parameter which characterizes the strain

relieved by microcrack formation. This permanent strain also has an

important influence on the crack growth resistance of a microcracking

material. 6

Direct experimental observations of tensile+ non-linear stress,

strain behavior (and of the associated permanent strain) have not been 6

reported in tests on brittle materials. The inability to obtain such

observations derives from the premature incidence of tensile failure,

that occurs due to the localized coalescence of microcracks, before an

appreciable net density of microcracks has been created by the applied

stress. However, large densities of microcracks are more probable in

the process zone around major cracks, where microcrack coalescence does 6

not induce complete failure, due to the constraint of the uncracked

elastic matrix. The stress, strain characteristics of the process zone

are thus expected to exhibit non-linearity as discussed in the 0

accompanying paper. 6

+Compression tests reveal substantial non-linearity, due to 0

microcracking. However, different effects exist in compression

obviating a direct correlation with the tensile behavior emphasized in

the present analysis. 6

21



microcrack density (eqn 24). The overall principal strains deduced in

this manner are (a > Cy );1 th

e1 = s [1-kv(l+C-Bs )]/(l+C-Bs I) (26)

e2 = s2 [1-v(l+C-Bs 2 /k)/k]/(l+C-Bs2 /k) I

where e = (I+v)/AcLAT, with

B = pgm 3/9

and,
C = B 4s /7 - I)

The stress/strain response is linear below the threshold (fig.

12), but thereafter becomes nonlinear, since the microcrack propensity

increases continuously with stress. The nonlinear loading response

resembles that of a work-hardening material. However, since the 9

elastic modulus is reduced by the irreversible microcracking process,

unloading occurs with a reduced secant modulus, as depicted

schematically in fig. 13. The stress, strain curve thus exhibits 9

hysteresis, and the associated energy dissipation is the source of wake

effects on the crack propagation resistance, as discussed in the

companion paper.6  9

Another feature of the stress-strain curve, that can be addressed

only qualitatively with the present analysis, is the existence of a

permanent strain (fig. 13). The permanent dilatation derives from the 0

relief of the residual tensile stress by the facet microcracks, as

depicted in fig. 8. Furthermore, the permanent strain 6 should scale

with the residual strain, AaAT, and with the fraction of microcracked 9

20
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where the coefficient m between 0 and 2 that depends on the grain 0

geometry and the ratio, k /al. The microcrack density N may thus

be obtained as

N - pgm(a - C th)(+v)/2EA a6T (24)

Evidence for the incidence of microcracking during the application

of stress has been obtained using acoustic emission measurements.2 0  0

These measurements indicate the existence of a microcrack threshold and

suggest that the fraction of cracked facets, significantly above the

threshold, satisfies the relation, 5

AC1  (25)

20
where q and A are coefficients. Dqtzu for A1 2 0 3  yield q 10. 0

The facet fracture predictions obtained with the present analysis,

plotted using logarithmic axes (fig. 11), suggest similar post-

threshold behavior, with q -- 3 to 10 (at least over the narrow range 5

of facet fracture probabilities typically encountered prior to specimen

fracture, f <5%). However, additional acoustic emission data are

clearly needed to permit adequate assessment of the implications of the 0

present analysis.

5.4 The Stress/Strain Curve

The strain response due to microcracking can be estimated by

coupling the relations for the elastic moduli (eqn 14) with the

19
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is expected to increase. Following the general relation for the

effective stress (eqn 18), it may be specified that microcracking

occurs at facets where the configuration parameters, 91, a2 and -

satisfy the relation

H(O , 2,€ sit s )  > Z Sl (20a)

subject to,

(cos2v 1 +cos2v 2 )
- 2 + sls in  + s2 cs24 > 0 (20b)

The corresponding points in the configuration domain (fig. 9) occupy a

volume V, that depends on Sl,S2 and i/is. The fraction f of facetsC

microcracked is

f = V / 3  (21)

and the microcrack density N is

3!

N = pgV/2n 3  (22)

Numerical integration, based on both Gaussian and Monte Carlo methods,

may be used to calculate f and hence, N, from eqn (20). The results

are shown in figs. 10.

Inspection of fig. 10 reveals that the fraction f of

microcracked facets is approximately proportional to (a - ath) , such

that

f m(a1 - ath)(l+v)/EAaAT (23)

.1

18
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S

where

2 2 2H(v1, v2, *, S, s2) -1/2 + (1/2)cos(2v,-2v2) + sin s s 2  4

-cos2v cos2v 2 (s 1 sin 2 + s2cos 
2)

+(sin2v +sin2v 2) (sl-s 2)sincos

with Si = ai(l+v)/EAaAT and s2 o2(1+v)/EActAT.

5.2 The Threshold Stress S

When the grain facet size in the material is less thar the

critical size ts stress induced microcracking initiates at a threshold

stress, ath. This threshold pertains to the grain facet subject to the .

maximum normal tension, due to superposition of the applied and

residual fields. Hence, if a is the maximum principal tension, the

effective stress at the cracking threshold becomes,

a = aI + EAcAT/(I+v) (18)

Hence, from eqn (8), the threshold stress can be deduced as S

ath = ( /- ) EAaAT/(1+V) (19)

5.3 The Microcrack Density

As the applied stress, ci exceeds cth, additional grain facets

satisfy the microcracking criterion and the microcrack number density N .

17
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Stress induced microcracking arises because the stresses on the

grain boundaries associated with the applied loads superpose on the

residual stress and exceed the critical condition. The trends in

microcracking can be analytically determined for two dimensional grain 9

arrays (fig. 1). Such arrays are characterized by the crystallographic

orientations of the adjacent grains, 81, 92, and the angle, ¢ , between

the facet and the stress axis. With 0< e1 e2, ¢< T, all possible 4

combinations of 61,e2and occupy a cubic domain (fig. 9). Each

volume element in the domain is equally populated with facets having

the corresponding 61 P a2 and . The applied stresses, resolved •

onto the grain facet, are thus given by

ca = sin 2 + a2Cos2

axya ( - 02) sine coso (16)

These stresses are linearly superimposed upon the residual

stresses (equation (3)) to obtain the total stresses

EAcAT (cos201 + cos2e 2) + si2+ Cos2°yy 1~ 2 l i 2

([7)

EAcAT (sin2e1 + sin2Q 2)°xy 1+ 2+ (ai-0 2 sin~coso

such that the effective stress becomes

1/2
a - [H(e 1, 02, I, Sl, s2)] EAaAT/(I+v) (18)

16
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If it is now assumed that the number density of microcracks in the two 0

dimensional grain array (eqn 12) is of approximate applicability to the

three dimensional polycrystal, the elastic modulus of a polycrystal

containing facet-sized cracks ( z 2a), becomes

E/E - 1 - (2.g-. Cos '/Z (15)

A comparison of eqn (15) with experimental measurements 18 (fig. 7)

indicates that the modulus trend is adequately predicted, by adopting

pg z 20/Z 3 as the facet density. However, for a typical equiaxed

structure, with 12 facets per grain, the facet density is more closely 0

approximated by pg = 6/Z 3. Consistency between the data and the

present model is thus incomplete. The discrepancy is due, presumably,

to the two dimensional nature of the facet cracking analysis. S

Nevertheless, the relatively close prediction of modulus trends, based

on the facet density used in fig. 7 should provide a reasonable basis

for further analysis of stress induced microcracking.

5. STRESS/STRAIN RELATIONS

5.1 General Considerations S

The formation of microcracks reduces the elastic modulus of a

material, as described in the preceding section. Consequently, stress

induced microcracking necessarily results in a non-linear stress strain

curve, as depicted in fig. 8. Furthermore, load cycle hysteresis

develops, and contributes to the toughening, as discussed in the

companion paper.6  S

15

. . . . S



The number of microcracks per unit volume in the two dimensional array

is thus,

N p(g/2 )cos - 1 ( (12)

where p is the number of facets per grain and g is the number of

grains in unit volume.

4. THE ELASTIC MODULI

Modulus measurements 1 8 provide a useful basis for validating

predictions of thermal microcracking. A randomly oriented three

dimensional array of circular microcracks of radius a modifies the

elastic properties in accord with the relations
19

E 16 (- 2)0-3) .N<a3 > q
E 45 (2-)

(13)
, I 32 (1-;)(5-;5) 3,N a

0 15 (2-v)

where u is the shear modulus and E, v , and u refer to the

microcracked body. Furthermore, over the important range, E 0 0.2E,

the following approximation pertains,

E/E /v 1 - (16/9)N<a 3> (14)

14
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I

subject to; 0

cos20 1 + cos20 2 5 0

The preceding criterion can be used to evaluate the number density 0

of cracked facets in a polycrystal provided that crack interaction

effects are neglected+ . Specifically, in a material with a large number

of randomly oriented grains of uniform facet size Z , all possible S

facet configurations (e, e 2 ) in a two dimensional array occupy a square

domain (fig. 5), and each area element in the domain is equally

populated. Points in the domain that satisfy equation (9) correspond to S

microcracked grain boundary facets. Hence, the fraction f of

thermally microcracked facets is

f AI/A (10)

where Al is the area encompassed by equation (9) and A is the total 0

area (7 2 ). Integrating over A,, yields the relation plotted in fig.

6,

1 S/f ,, icos-i 7T (11)

*The residual compression between cracked facets (fig. 4) tends to

inhibit coalescence, except in a few localized regions of the

microstructure. •

13
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effective stress and 6 is a coefficient. In particular, since first S

cracking obtains on boundaries subject to the maximum residual stress,

a = EAaAT/(1+v), the critical facet size is;

9

Zs [EAaAT/(1+v)]2 = 8(Kb)2 (6)
c C

Comparison with experimental measurements reveals that eqn (6) indeed

affords an adequate description of microcracking, with 9

S3.5.
5,710,15

Trends in microfracture on facets larger or smaller than Zs may beC

assessed by noting that crack extension, along grain facets, 16 is 0

generally predicated on an effective stress+ ,

aa2 +2 (7)

y yy xy (7)

Such crack extension occurs provided that the tensile normal stress,

ayy > 0. Hence, the fracture of facets larger than the critical size

can be expected to proceed in accord with the inequality

/ [EaAT/(1+v)] a

- [EAcAT/(I+v)]2 [(aM y)2 + (am) 21 (8)
yy xy

0 Inserting the stresses a from eqn (3), yields the microcrack

criterion pertinent to a two dimensional grain array,

* i/is 2[1 + cos(29 1-282)]- (9)

+Coplanar crack extension typically occurs when the strain energy release

rate exceeds a critical value and hence when the normal and shear stresses
satisfy eqn (7).
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size undoubtedly depends on the scale effect contained in the

logarithmic singularity, Zn(/x), which allows the stress to be

sustained over a larger area of brtin facet as Z increases.5

Consequently, larger grain facets, subject to the same residual stress

amplitude, are more susceptible to microfracture. However, the details

of the nucleation subject to the logarithmic singularity are not well

known. One postulate 5 , 7 is that the stress singularity acts in

conjunction with an extrinsic inhomogeneity (e.g. voids, second phase

inclusions) at the grain junction. Then, when Z is large enough,

the precursor becomes unstable and nucleates into a microcrack.

After nucleation, the microcrack propagates along the grain facet,
M an MH  Fnly h

motivated by the net residual stresses, cy and a Finally, the
yy xy

microcrack is arrested at the neighboring junctions, because the I

adjacent boundary facets are generally subject to residual compression

(fig. 4).

Detailed knowledge of the microcrack nucleation mechanism is not U

an essential prerequisite for selecting a viable microcrack nucleation

criterion. An adequate criterion may be obtained by dimensional

analysis and expressed in terms of the critical facet size Z Sanalsisand xprsse in erm ofthe ritcalface sie c and the
C

M
uniform stress a.. . Specifically, the parameters involved in

iJ

fracture have dimensions that suggest facet cracking subject to the

inequality,5,
1 0,15

Za 2 3 (Kb) 2  (5)

9 where Kb is the fracture toughness of the grain boundary, a is an

p II



:a yy _E.AcAT(cos26 1 + cos2 2 )/2(1+v)

a M = EAaAT(sin281 + sin262)/2(1+v) (3)

The stresses near the facet corner exhibit a logarithmic singularity,

such that

*1 1M13ya (x) = [I+F(e 1 982 ,a3 )Zn(Z/x) ]oM y

M

where Z is the grain facet length and F1 , F 2 are functions of the

grain orientation parameters en

The singular stresses are of obvious importance in determining

microcrack nucleation.5' 7 However, the singular terms introduce major

complexity when analyzing multiple microcracking in polycrystalline

arrays. Consequently, since the singular stresses scale with the

uniform stresses (eqn 4), the potential for using the non-singular

stress to predict microcrack trends, is explored in the subsequent

* section.

3. THERMAL MICROCRACKING

Experimental observations indicate that thermal microcracking

occurs when the grain facets exceed a critical size, Zs. The intentc

of the present section is to establish a generalized microcracking

criterion, using Zs as a parameter. The existance of a critical facet

10
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FIGURE CAPTIONS

Fig. 1 The four anisotropic grains with an isotropic matrix used

for residual stress analysis. S

Fig. 2 A summary of the interface tractions, Pi, imposed to achieve

stress continuity in the final step of the Eshelby sequence.

Fig. 3 Stress distributions calculated for four grain arrays with 0

three different relative grain orientations.

Fig.4 A schematic illustrating the tendency for the residual

stress to alternate between tension and compression on S

adjacent facet pairs. The compression induces crack arrest

and allows for stable microcracking.

Fig. 5 A schematic illustrating the grain facet configurational 0

domain and the configuration points corresponding to

thermally microcracked facets: R R EATAc/(1+v).

Fig. 6 A plot of the trend in facet microfracture with facet 0

size, above critical, zs
C

Fig. 7 Trends in the elastic modulus with grain facet size

predicted by the analysis, compared with data for MgTi205  0

(,s - 1.5 wm, E = 248 GPa) and Fe2TiO (Z
s _ 1.5 u E = 172 GPa).

C 2 5 "

Fig. 8 A schematic stress-strain curve for a microcracking brittle

solid. S

Fig. 9 The configurational domain used for the analysis of stress

induced microcracking.
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LS

Fig. 10 The effects of stress on the microcrack density a) uniaxial

stress, (b) biaxial stress.

Fig. 11 A logarithmic plot of the trend in microcrack density with

stress, indicating approximate linearity above the

threshold, within the data range, qualitatively consistent

with acoustic emission measurements.

* Fig. 12 A predicted stress-strain curve for a material with a grain

facet size below the critical value for thermal

microcracking, subject to an equibiaxial stress (k = 1).

0 Fig. 13 Stress-strain curves for complete loading cycles

illustrating the hysteresis.
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considerations. In particular, the translation of the microcrack

zone that accompanies crack advance results in energy dissipation,

associated with the energy changes that occur in the remote, fully

unloaded, elements of the zone wake (x = - '). This energy change is 4

characterized by a residual energy density U(y), derived directly from

the hysterisis in the stress/strain curve and the permanent strain

(fig. 3), such that the change in toughness is given by;2 6  4

(1-V2 )(Km) 2/E =(1-1 2)(K 2 /E + 21 U(y)dy (7)

0

where h is the process zone width. 4

Evaluation of the toughening due to the energy deposited in the

process zone wake requires further comprehension of relationships

between the process zone width and the crack tip stress field, as well

as trends in U(y) with distance from the crack surface. A detailed

determination of these relationships requires explicit calculation of

the crack tip stress field in the presence of the process zone. Such 0

calculations are beyond the scope of the present analysis. However, in

the analagous problem of a martensitic crack tip process zone,

Budiansky et al. 2 6 established that the stress field in the vicinity of 0

the process zone boundary can be expressed in terms of the linear crack

tip field relations, but with a stress intensity factor dictated by the

mean value between the remote and local stress intensities, 0

K = (K- + K )/2 (8)

It is assumed that similar behavior obtains at the microcrack process 0

51
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Kc [1-v 2 (1-2Ns Z3 /9)] / 2 (1-f)

Ko0 (i_ 2- ) 1/2(1-2 N  Z3/9 ) I/ 2

C s

where Ns is the microcrack density at saturation. Further refinement

is achieved by assuming that about half of the facets are subject to

microcracking at saturation + , whereupon . 1/4, fs 0.5

and Ns g 3/z 3 . With this choice of saturation parameters, the

toughness ratio becomes

K c- t 0.9 (6)

K0 0
C

Thus, there is a slight decrease in toughness in the presence of a

frontal microcrack zone irrespective of the grain facet size, the

microcrack process zone size and the permanent strain. Consequently, it

is concluded that the frontal process zone is ineffective as a

toughening mechanism.

3. STEADY STATE PROPAGATION

3.1 General Considerations

In steady state, the microcrack process zone is of uniform width

(fig. 4), characteristic of the asymptote in the R-curve. The fracture

toughness in this configuration can be determined from energy balance

+This assumption is consistent with the notion, introduced above, that

the residually compressed facets do not microcrack, in a discrete

sense, prior to macrocrack extension.
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microcracking and fs is the fraction of microcracked facets in the

saturation zone. However, the subsequent results are not particularly

sensitive to the specific choice of the degradation function.

The crack growth criterion, used in conjunction with an analysis 9

of the local stress intensity in the presence of the process zone,

permits evaluation of the influence of the frontal microcrack zone on

the fracture toughness. The near tip field can be ascertained by

noting that J is path independent for the frontal process zone,

because all volume elements experience monotonic straining. Hence, if

a contour is taken outside the process zone,

j _ (I 2 )(K) 2/E (2)

where K is the stress intensity associated with the applied loads,

v is Poisson's ratio and E is Young's modulus. The corresponding J

for a contour within the saturation zone at the crack tip, is;

J = (I-V)(K) 2/E (3)
S(S

where K is the local stress intensity. Equating J from eqns (2)

and (3) and setting K equal to the critical value for the degraded

material, KcZ the measured toughness, Kc becomes,

Kv- 2) 1/2
0= - (1-f) (4)

C

Using the moduli and Poisson's ratios determined for microcracked

material (eqn (14) in part I), we obtain
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equals the threshold stress I , a Close to the crack tip, the stress
eqi

field and the microcrack density vary rapidly. The material response

in this region, although critical to the analysis of crack extension,

is not well understood. For present purposes it is assumed that

microcracking saturates, such that the stress-strain response exhibits

linearity at large strains (fig. 3) - with a slope dictated by the

modulus E s of the microcrack saturated material. This assumption

allows the near tip crack field to be characterized by a stress

intensity factor, K , and thereby, permits a rational choice for the

crack growth criterion, as discussed below. This assumption is

predicated on the notion that those facets subject to appreciable

residual compression I will not be amenable to stress induced

microcracking, prior to extension of the primary crack tip. 16 The

alternate approach (required in the absence of a saturation condition)

would entail the use of J to characterize the crack tip field,

coupled with an appropriate crack growth criterion.

The microcracks in the process zone immediately ahead of the crack

tip deteriorate the local fracture resistance. An estimate of this

deterioration, expressed in terms of a critical stress intensity factor

Kc , establishes a tangible criterion for the prediction of crack

growth. Studies on porous glasses 2 7 indicate that an appropriate

choice might be;

K£  K°[1-f ] ()C C S

where Ko is the fracture resistance of the material without
c
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A recently established continuum mechanics description of

martensitic transformation toughening
25 2 6 has features similar to

microcrack toughening: specifically, the existence of nonlinearity and

hysteresis in the stress/strain response of the process zone26 (Fig.

2). Studies by McMeeking and Evans 2 5 and Budiansky et a126 revealed

that R-curve behavior is inherent in martensitic transformation

toughening, originating from the gradual unloading of the process zone

wake which forms during crack propagation. The purpose of the present

study is to establish a similar continuum mechanics description of

microcrack toughening, as needed to quantify the toughening process, to

identify the physical origin of the R-curve and to clarify the

toughness measurements obtained with various tests. For this purpose,

the non-linear characteristic of a microcracking medium is used.1 The

fracture energies may then be calculated both at the initiation of

crack propagation and at the steady-state crack propagation stage,

corresponding to the two extremities on the R-curve. Correlations

between the results of the theoretical analysis and experimental data

are also presented.

2. INITIAL CRACK PROPAGATION

The configuration of the system at the initiation stage of crack

propagation is shown schematically in Fig. 2. The macrocrack is

originally in a microcrack-free medium and a frontal microcrack zone

develops as the load gradually increases. The microcrack zone is

enclosed by the contours on which the maximum principal stress

47
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I. INTRODUCTION

In single phase anisotropic polycrystalline materials, the

occurrence of microcracking is associated with the microstructural

residual stresses arising from thermal contraction mismatch among

randomly oriented grains, as discussed in the accompanying paper.I In

the presence of a discrete macrocrack, subject to load, the crack tip

stress field induces microcracks at the nearby boundary facets to form

a microcrack process zone. This process zone is expected to modify the

fracture toughness. 2 - 1 6 In particular, the microcracked process zone

is more compliant than the un-microcracked region. 1 6 Hence, the crack

tip stress singularity is relaxed. However, the microcracks adjacent

to the macrocrack tip deteriorate the local fracture resistance of the

medium.11,16 Counteracting effects are thus in evidence.

An important characteristic of the microcrack toughening process

is the existence of resistance (R) curve behavior9 '1 2 - 15 (Fig. 1),

wherein the fracture resistance is a monotonically increasing function

of the crack tip advance distance Aa, rather than a single-valued

parameter. Several experimental observations of prominent R-curve

behavior have been reported.14 ,15 Yet, the basis for its existence has

not been well established and confusion often arises among experimental

toughness measurements obtained with different tests 1 7 - 2 4 (e.g. notch

beam and double cantilever beam tests) which monitor fracture

instability at different stages of crack propagation. Furthermore,

most of the theoretical analyses7 , 8 , 1 0 , 12 attempting to simulate

microcrack toughening have not incorporated the R-curve effect.
4
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SOME EFFECTS OF MICROCRACKS ON THE

MECHANICAL PROPERTIES OF BRITTLE SOLIDS

II. Microcrack Toughening

by

A. G. Evans and Y. Fu 0

Department of Materials Science and Mineral Engineering

University of California, Berkeley, CA 94720

ABSTRACT

The stress-strain characteristics of a microcracking material are

used as the basis for computations of the fracture toughness, by

applying a line integral formulation, pertinent to frontal and steady-

state microcrack process zones. The calculated toughness is used to

predict the trends in toughness with grain size and specimen geometry.

The trends are correlated with experimental data.
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ON THE MECHANICAL PROPERTIEZ
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zone boundary. With this assumption, the width of the process zone can

be related to the threshold stress, such that

(K¢ + c

h + (9)

16a-h 0

Within the process zone, y < h, the linear crack field relations

also indicate that each strip element, dy (fig. 4), experiences a peak

stress, o , in the vicinity of the crack tip (fig. 5). This peak

stress is of pararr:unt significance because it dictates the residual

energy density, U(y), ascribed to each element (fig. 6). For present

purposes, it is assumed that a reasonable estimate of ; can also be

obtained from the linear field relations, with amplitude determined by

the mean stress intensity. This assumption gives;

K (10)
2Vy

It is recognized that this approximation is most appropriate near the

zone boundary (y - h), but inappropriate near the crack tip (y , 0

where the field is dominated by Kc . The result obtained with eqn (10)

should thus constitute an upper bound. Furthermore, the results

derived in this way only have validity when the process zone h is

fully contained within the test specimen. Hence, the analysis is

restricted to conditions wherein, Oth > 0.

3.2 The Energy Density

The energy density U(y) in eqn (7) can be obtained directly from

the area under the stress-strain curve (fig. 6), as
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(1+k)o h / t h2

U(y) ( E { ol:th) + 2 2c - (1+2,c) }
2 ~2

+ 0ath)a t1'2 h1+k) a/2 2
+ 6E -

a 2 2 2) (
OhX m ( 1+v (3 12
36E(-v) a t )

0 where x is a dilatational coefficient of order unity, m is a

microcrack density parameter in the range I/4 to 2, k is a

coefficient determined by the principal stress ratio, ai/o 2 , and C is

a facet size parameter, as defined in Part I. The first term in eqn

(11) is due to the unloading of the more compliant microcracked

material elements (fig. 6), while the other two terms are provided by

the residual energy in the wake, due to the permanent dilatation. It

is noted that U(y) decreases as a/oth decreases and tends to zero at

the zone boundary (0 = Oth, or y = h), because there can be no stress-

* strain hysteresis or permanent dilatation as the microcrack density

approaches zero.

3.3 The Steady State Toughness

The energy deposited in the process zone wake can be ascertained

by integrating the energy density (eqn 11) over the zone width, h. For

0 this purpose, it is noted that, within the saturation zone (y < h.), the
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peak stress a s is approximately invariant with y (U(y) U(h s)), while

in the remainder of the zone (hs < y < h), the peak stress decreases with

y, as expressed by eqn (10). It is thus convenient to evaluate the

residual energy in two parts,

fh hs hh

U(y)dy = U(y)dy + U(y)dy (12)

O- 0 h
S

Hence, incorporating U(y) from eqn (11), cy from eqn (10) and h from

eqn (9), integration of eqn (12) gives;

- 2  1+k Q(GD,)- (I+k)xm
E K 4(-( 2 ) 6 (1-) nD

0~~ (14-v))

+ (Xm) 2 (+V) (D-I-2knD) (13)
144(1-v) 

2

where K is given by eqn (8),

D 2 2(1-D)
Q(CD., )= I+C-C/D + 2v C(1-2znD) + I+(

2C

- (1-2v 2C)(2-D) 2 2 Zn [(I+C)D-C]
(+C)

and

D 2a th 'h s/K
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Inserting eqn (13) into eqn (7) the energy balance relation becomes

2 I-
1-V2  2 1-v Z (K 2 + 1V 2 I1+k

= (K) + (K + K) Q(C,D,,)
E Es 4(1-v 2)

(1+k)xm ZnD + (xm)(D - 1 - 2nD)
6(1-v) 14 4 (1-v)2 (

and the toughness PEr in the presence of a steady-state process zone

is given by

Ko
c S/8 + V4/S-11S/80 (15a)

Ko  I-S/4
C

where

S = (+k) Q(C,D,v) - (1+k)xm

4(1-\ 2 ) 6(-v)

+ (Xm)2 (1+V) (D - 1 - 2ZnD)
144(1-v) 2

The corresponding fracture energy V= is;

C

19C_ S/8 + /[s-11s/80 (15b)
o 1-S/4

VC

Final solutions for the trends in toughness require that further B

information be provided regarding the saturation zone width, hs . The

most plausible assumption, as noted above, regards saturation as a

state defined by a saturation density, Ns? of microcracks. With this
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assumption, a saturation stress can be derived from eqn (24) in part I

which, in conjunction with eqn (9) gives,

K/2ath .. a)

and thus

2m(vi5 /Z-I)
D = (16b)

1+2m (' k S79-1)

Substituting D from eqn (16) into eqn (14) determines the toughness.

Specific results are presented in the following section.

4. TRENDS IN TOUGHNESS

4.1 Effects of Grain Size on Steady State Toughness

The general solution for the toughness (eqn 15) can be used to

predict variations in fracture energy with grain size, based on eas aC
material parameter, as plotted in fig. 7, for specific choices of the

coefficient m and assuming fs = 0.5. The trends, schematically

illustrated in fig. 8, indicate two opposing influences. The permanent

dilatational component of the toughness (the second and third terms in

S) increases with increase in grain size, while the toughening

attributed to the increased compliance (the first term in S) increases

with decrease in grain size. Consequently, a minimum toughness

obtains.
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Additionally, as Z Z . , the microcrack zone boundary reachesc

the specimen boundaries. Some of the permanent strain induced residual

energy is thus relaxed and the toughness becomes smaller than the value

predicted by eqn (15). Furthermore, when Z > Z , a proportion of the 0

microcracks form thermally. These microcracks do not contribute to the

toughness, because they do not participate in the stress-strain

hysteresis. Consequently the toughness must diminish with increase in 9

grain size, beyond Zc.  Hence, a toughness maximum must occur at Zs
S c

as schematically represented on fig. 8.

The trend toward an increase in toughness with increase in grain

size, due to dilatation, is reflected in the corresponding changes in

the threshold stress ath and the zone width, h. As z increases,

0th decreases, and the permanent dilatation increases, causing the

residual energy per unit thickness of process zone to decrease.

Meanwhile, the zone width increases (eqn 16b). The net effect is a

total eiergy, integrated through the process zone, that becomes larger

as z increases. Consequently, the change in zone width dominates the

trend in toughness. Similar behavior is encountered in transformation

toughening2 6 and in ductile fracture.

The preceeding dilatational effect contrasts with that for

compliance toughening. For the latter, the energy density varies more

strongly with a , due to the increased compliance on unloading (fig. •

6). Consequently, in this instance, the energy density changes more

rapidly with grain size than the zone width, resulting in a toughness

that decreases with increase in grain size. 9
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Another grain size feature concerns the ability of a crack to

sustain a discrete microcrack process zone. A prior analysis 16

revealed that, in single phase polycrystals, the grain size was

required to exceed -0.41 s in order to permit process zone development.

The preceding toughness characteristics should thus be considered

subject to truncation when 0.4s , unless modes of microcracking
C

other than thermal expansion anisotropy are present (e.g twins or slip

bands).

4 .2 Effects of Specimen Geometry

Fracture toughness tests conducted with a sawn notch, such as the

single edge notched bend (SENB) specimen, entail an initial

configuration with no microcrack process zone (except for microcracks

introduced by sawing). Consequently, initial growth from the notch

occurs with only a frontal process zone and hence, the measured

toughness should be similar to the intrinsic toughness. Conversely,

with cantilever beam tests (DCB, DT etc), experiments are frequently

conducted with a precrack, formed by prestressing or by stable crack

extension. A microcrack process zone forms over the surface of the

precrack. Further crack growth during the toughness measurement

process is thus conducted in the presence of a process zone wake.

Hence, the steady state toughness should be more pertinent. This

difference in fracture behavior, in the presence of an initial process

zone wake, is considered to be the principal reason for the discrepancy

between the SENB and DCB toughness measurements on A1 2 03 and other
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anisotropic oxides.17
- 2 4

4.3 Comparison with Experiment

Experimental measurements of the variation of toughness of an 0

anisotropic oxides with grain-size, using cantilever beam methods,

generally indicate the existence of a peai. toughness I0 (fig. 7).

Recalling from the preceding section that cantilever beam methods yield 9

steady state behavior , the peak in toughness should coincide with the

critical grain size for thermal microcracking (fig. 8). On this basis,

comparison with the predicted toughness (fig. 7) indeed suggests that 0

the toughness below the peak can be reasonably attributed to the

dilatation caused by the microcracks in the process zone. However, the

data do not confirm the existence of the compliance toughening 0

predicted at small grain size.

5. CONCLUDING REMARKS

An analysis of toughening based on the non-linear, irreversible

stress-strain characteristics of a microcracking solid has been

presented. An important contribution to the toughness due to

the microcrack induced dilatation has been predicted at grain sizes

below the size at which thermal microcracking initiates. The trends

are apparently consistent with experimental data. However, the 0

comparison with experiment has required the assumption that discrete

microcracking saturates near the crack tip when about half of the

facets have failed. Thereafter, macrocrack propagation procedes by the 6
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failure of the remaining facets. This assumption is based on the
0

recognition that about half of the facets along the crack front are

subject to residual tension and thus, are amenable to discrete

microfracture. However, additional study of this concept is clearly

demanded before further progress can be achieved.

A predicted increase in toughness at small grain sizes, due to a

compliance effect, is not confirmed by experimental data. It has been

presumed that the effect is not observed because a discrete microcrack

zone cannot be sustained at small grain sizes. Observations of

microcrack process zones are needed to further investigate this issue.

Finally, it has been noted that a peak in toughness should occur

at grain sizes equivalent to the grain size for thermal microfracture,

s'Z C This peak obtains because the thermal microcracks do not
C

contribute to the toughening. The specific trend in toughness above ZS
C

could be predicted using the procedures described in this paper,

provided that the density of thermal microcracks is known at each grain

size.
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Figure Captions

Fig. 1 A schematic of a resistance (R) curve in which the fracture

energy increases monotonically as the crack advances.

Fig. 2 Frontal process zone configuration which forms at the

initiation of crack growth in an originally microcrack-free

medium.

Fig. 3 The nonlinear stress-strain characteristic of elements inside

the process zone. At saturation, Es remains constant, as

dictated by the microcrack number density Ns .

Fig. 4 Extended process zone configuration during steady state crack

propagation.

Fig. 5 Normalized principal stress distribution along the dashed

strip in fig. 4.

Fig. 6 The energy density associated with each str.p corresponds to the

shaded hysteresis area.

Fig. 7 Predicted trends in toughness with facet size for two values of

m. Also shown are data obtained for A120 3 . Rea- -1 e •
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agreement at Z< < obtains for m 2.
C

Fig. 8 A schematic illustration of trends in toughness with facet

size.
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tio of - 0.92 (Fig. 5). However, in the as-indented state the corner cracks

LYe appreciably lower strengths than the surface cracks (strength ratio 0.84), 0

,esumably because of differences in the residual fields. Therefore, since the

ipacitors were tested in the as-indented state, the strengths of the corner

aws were taken to be 0.84 of the strength of the equivalent surface flaw. S

ith an additional factor of 0.9 to account for the relative strengths of Knoop

id Vickers surface flaws, 8 the strength of the corner flaws is given by Eq. (1)

ith A = 1.527. Thus, with 5 N Knoop indentation corner cracks in the capaci- S

)rs, a critical temperature difference of 395*C was measured and a strength of

3 MPa was calculated.

III. THERMAL STRESS ANALYSIS

1) Calculation at Peak Stress S

The thermal stress caused by an imposed temperature differential AT can

e expressed in the general form:9

[EAT/(I v)] fl(bh/k) f2 (kt/Cpb
2) f3(z/b, r/b, a/b) , (2)

here a is the thermal expansion coefficient, k the thermal conductivity, C the

pecific heat, o the density, h the heat transfer coefficient, t the time, b the

pecimen width, a the jet width, z and r are position coordinates, and fl, f2

nd f3 are configuration dependent functions. If the parameters a, k, C and h

re independent of temperature within the AT range selected, Eq. (2) becomes,

or a given test configuration and material, and a given time:
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ig's modulus, and H is the hardness. The toughness and hardness parameters

obtained from the dimensions of the indentation cracks and the contact

•ession5 (Kc = 1.0 MPa.m 1 /2, H = 10 GPa). With these values and E = 147 GPa

BaTiO 3, Eq. (1) yields S = 70 MPa for P = 5 N. The corresponding value of

was found to be 3850C. 9

Controlled corner flaws were also introduced by indentation. In this

the capacitors were mounted in pairs with their edges butted together.

i a Knoop indenter was loaded with its tip between the two capacitors, such

. one of the long diagonals of the indenter contacted each capacitor normal

the edge. This technique produced well-defined corner cracks. Further ex-

iments were then done to establish an empirical relation between the

engths of corner and surface flaws (an expression analogous to Eq. (1) for

strength of corner flaws is not available). For this purpose, two sets of

glass flexure bars were prepared. One set were indented in the center of the

spective tensile test surfaces with a Knoop indenter at 12 N load. The other

were indented on their edges using the same method employed to produce
S

ner cracks in the capacitors. In this case the load on the Knoop indenter

N) was chosen such that the radii of the corner and surface cracks were

al. Half of the bars in each set were broken in four-point bending in the

indented state, and the other half were annealed to remove residual contact

esses prior to strength testing. The results are summarized in Table I. The

ference in strengths of annealed and as-indented specimens reflects the

luence of the residual stress. For the annealed bars, the small strength

ference between corner and surface cracks (strength ratio = 0.96) is consis-

t with existing stress intensity factor analyses,6, which suggest a strength
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prior to fracture was used to define the critical temperature differential,

ATC . The failure probabilities for corner and surface flaws are plotted as a S

function of ATc in Fig. 3.

A special technique was required for the optical detection of cracks. 2
(Cracks oriented normal to the as-received surfaces of the capacitors are not

visible using conventional optical microscopy, unless dye penetrants are used.)

The method, which is generally suitable for translucent materials, is

illustrated in Fig. 4. Direct illumination is restricted to a small region

within the field of view, and the crack is placed outside that region, in an

area which is indirectly illuminated by backscattered light from within the

material. Scattering from the crack surfaces causes a change of contrast across

the crack (Fig. 4).

(2) Calibration Experiments

Both the analytical and the finite element stress calculations (Sec-

tion 3) require experimental calibration. This was achieved by measuring ATc

for capacitors containing controlled flaws with known failure stresses.

For the surface flaw configuration, the controlled flaws were created

by indenting the central test area with a Vickers pyramid at a load of 5 N. The

fracture c - - for Vickers indentation flaws is given by4

S A VE)/ 6 P-I 3 (

where A = 2.02, Kc is the fracture toughness, P is the indenter load, E is the
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eries of thermal shock tests, which involved heating the capacitor to a tem-

erature AT above ambient, impinging a rapid flow of helium at ambient tempera-

ure to the desired area, and determining the critical temperature differential,

,Tc, to cause fracture. The corresponding thermal stresses were determined using

in analytical approximation for the peak stress and finite element analysis for

iore detailed stress distributions.

1) Test Procedure and Results

Tests were conducted by inserting the capacitors into a holder which

)rovided thermal insulation (using fibrous SiO 2) to all surfaces except the

ipper test surface (Fig. 2). The test surface was then positioned (by means of

i translation stage) beneath the gas jet nozzle within a preheated furnace. For

)valuation of the surface flaws, the gas was delivered to the center of the test

;urface by an alumina tube (1.5 mm inner diameter). For corner flaws, the

)erimeter of the test surface was exposed to the gas jet by using a tube of

-ectangular section with an insert to protect the central portion of the surface

From the direct gas flow. After permitting the temperature to equilibrate, the

ielium flow was initiated by a solenoid valve, and allowed to impinge into the

:apacitor for - 60 s. The capacitor was then removed from the furnace and

inspected for cracks in an optical microscope.

An incremental test sequence was used for each capacitor. Specifi-

:ally, the temperature was increased in 10% intervals until subsequent optical

examination revealed a fracture. The fracture event was always characterized by

the appearance of a single crack about I - 2 mm in length passing through the

test area directly beneath the gas stream. The maximum temperature reached
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I. INTRODUCTION

Evaluation of the mechanical reliability of ceramic components requires

knowledge of flaw populations.1,2 Generally, this information is obtained from

statistical analysis of mechanical strength measurements, using specimens of

simple shape such as flexure bars. This approach is based on the assumption

that the flaw population in the bars is the same as that in the component. The

inability, in general, to verify this correspondence represents a severe short- S

coming of the approach.

In this paper a method for evaluating strength characteristics of sur-

face flaws, directly on actual components, is described. The strength measure-

nents are obtained by applying a well-defined transient thermal stress to the

surface, using an impinging gas jet. 3 The thermal stress can be applied to

selected localized areas, thus enabling spatial variations of flaw populations

to be assessed. The method is demonstrated by evaluating flaw populations at

two locations in multilayer BaTiO 3 capacitors. The results are then used to

predict the reliability of the capacitors in typical service conditions.

II. EXPERIMENTAL

The capacitors were plates with dimensions 6 x 5 x 1 mm. They were

tested in the as-received state, with surfaces which had been exposed to a

tumbling treatment (Fig. 1). Flaw populations were assessed in two locations;

in the center of the faces of the plates (surface flaws) and along the perimeter .

of the faces (corner flaws). This was done by subjecting each capacitor to a
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ABSTRACT

A thermal stressing technique has been applied to evaluate two distinct S

flaw populations (surface and corner) in BaTiO 3 multilayer capacitors. The

mechanical reliability of the capacitors was deduced by relating the thermal

stress response to the mechanical strength of the material. The surface flaw

population alone yields relatively high survival probabilities, whereas incor-

poration of the corner flaw population severely reduces the probability of

survival.
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CHAPTER II

EVALUATION OF RELIABILITY IN BRITTLE COMPONENTS

BY THERMAL STRESS TESTING

D. B. Marshall, D. Johnson-Walls, M. D. Drory, A. G. Evans and

K. T. Faber
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:xAT , (3)

where X is a configuration dependent constant. The constant X can be calibrated

using the measurements in Section 11(2) to give expressions for the peak

stresses for each of the test configurations (the peak stress must occur at a

fixed time after commencement of the gas flow if k, C and p are independent of

temperature within the pertinent range). The data in Section 11(2), combined

with Eq. (3), give x = 0.182 MPa.C "1 for the peak stress in the surface flaw

configuration and X = 0.134 MPa.oC"I for the peak stress in the corner flaw

configuration.

(2) Finite Element Calculations

The thermal stress distribution for the surface flaw test was deter-

mined using a finite element technique. The following material properties were

used in the analysis; k = 2.93 Js-lm -1 C-1 , c : 8.5 x 10-6 C-1, C = 418.6 J Kg"1

C"I, o = 4900 Kg m-3 , and E = 147 GPa. Initial calculations indicated that the

tensile stress in the vicinity of the jet center is maximum (;) at t = 2 s (Fig.

6a). This is the stress that dictates the onset of thermal fracture at the

critical temperature ATc. Therefore, all subsequent calculations were done at

t=2s.

The stress calculation requires a calibration of the pertinent heat S

transfer coefficient, h. The calibration was obtained from the control thermal

shock tests using precracked capacitors, in combination with computations of

for various values of h at the critical temperature difference ATc measured
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for the precracked capacitors (ATc : 385C). A plot of the computed a versus h

is shown in Fig. 6b. The calibrated value of h, determined by setting a equal 6

to the strength of the indentation crack (a = 70 MPa), is h = 2560 J s-lm "I C-1 .

Subsequent calculations using the calibrated h provided the required

stress distribution (Fig. 6c). It is noted that the peak tensile stress occurs

directly beneath the jet and is approximately uniform and equibiaxial over a

central radius of - 0.6 mm (i.e., approximately half of the jet radius). Beyond

this region the tangential stress decreases rapidly with radial position and

becomes compressive outside the jet perimeter. Therefore, failure would be ex-

pected to originate predominantly from the central region, in accord with the

experimental observations.

IV. FAILURE PROBABILITIES

(1) Flaw Populations

The strength characteristics of the surface and corner flaws can be

deduced from the measured critical temperatures (Fig. 3) and the calibrated

relations between the peak stress and ATc (Eq. 3). The resulting failure proba-

bilities are plotted in Fig. 7. In equating the peak stress to the flaw

strength in Fig. 7, gradients in the thermal stress (Fig. 6d) have been neglec-

ted. However, over the range of strengths in Fig. 7 the corrections due to

stress gradients were found to be less than 4%.

S S
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I

The data in Fig. 7 may be used to evaluate the statistical parameters

that characterize the flaw distributions. For weakest link statistics using the

Weibull assumption, the cumulative failure probability is given by
0 "

P = - exp[ f (S/So)m dA1 (4) •
A

where A is the area tested, m is the shape parameter, and So is a scale param-

eter. In the present experiments failure originated from within an area of uni-

form biaxial stress in the surface flaw test and from an area of uniform uniax-

ial stress in the corner flaw test. Therefore, Eq. (4) reduces to

m

exp[As(S/Sl) s] , (5a)

for the surface flaw tests (As is the area of uniform biaxial stress) and

m
P 1 - expCLe(S/Se) e]  (5b)

for the corner flaw tests (Le is the length of edge tested). The data in

Fig. 7, plotted according to Eqs. (5a) and (5b), provide the statistical

parameters summarized in Table II.

(2) Capacitor Reliability

Capacitors are subject to in-service failure during thermal cycling. A

finite element analysis of the stresses that develop during typical cycling

indicates that the stress on the upper surface, au, is approximately uniform
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(~ 10 MPa) and the stress on the lower surface is given approximately by
1 1

a a(1 + Ix/2bI) (6)
1. 0

where o - 20 MPa is the stress at the center line (OY, Fig. 1) of the capacitor

surface.

The mechanical reliability of the capacitors can be estimated by

inserting this stress distribution and the statistical parameters into Eq. (4).

The survival probability thus becomes:

m b
S)ms

-Zn(l- P) 2w(ao/So  [1 + (x/2b)] sdx + 2bw(au/SS)m s
0

(7)
+ 2(co/Se)me f CI + (x/2b)] edx + 2b(au/Se)m (

0

where w is the capacitor width (Fig. 1). The first two terms represent the

survival probability associated with the surface flaw population at the lower

and upper surfaces, while the last two terms refer to the corner flaw popula-

tion. The failure probability evaluated by substituting the statistical param-

eters from Table II into Eq. (7) is 5 x 10-4 . This value is consistent with

practical experience. It is noted that the failure probability evaluated from

Eq. (7) by considering the surface flaw population alone is only 6 x 10-8.

Therefore, the failure of the capacitors during this thermal cycling is domi- - -

nated by the corner flaws.
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a

These estimates of failure probability involve extensive data

extrapolation, from the strength levels - 55 - 85 MPa used for experimental

characterization to stresses < 30 MPa. Such extrapolation introduces several

uncertainties. First, alternative flaw populations can, in general, emerge at

strength levels outside the data range. Second, at the lower strength levels

the strength-controlling flaws are larger than the flaws used for the data

collection, and thus more likely to be influenced by stress gradients. However,

the agreement between calculated and observed failure probabilities suggests

that these effects are not important in the present experiments.

V. CONCLUSIONS

A thermal stress method for evaluating surface flaw populations in

ceramic components has been demonstrated. The stress is applied using gas jets

to induce local thermal transients, and the stresses are deduced from calibra-

tion tests using controlled precracks. The method can, in principle, be applied

to components of complex shape to evaluate statistical parameters in situ and to

perform proof testing. It can also be used to evaluate multiple, spatially

separated flaw populations.

In the present experiments on multilayer capacitors, corner flaws were

identified as the primary source of failure during typical in-service thermal

cycling. This result implies that the cipacitor reliability could be improved

by modifying fabrication procedures to reduce the severity of corner flaws.
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Figure Captions

Fig. 1 Ceramic (BaTiO 3) multilayer capacitor on substate showing surface crack

(S), and corner crack (C).

Fig. 2 Schematic of thermal shock test for evaluating (a) surface flaw

population and (b) corner flaw population.

Fig. 3 Thermal shock results (probability of failure vs ATc) for surface and

edge flaw tests.

Fig. 4 Optical technique for detection of cracks. (a) Schematic of crack

placed outside the directly illuminated region, in an area illuminated

by backscattered light from with the capacitor. (b) Optical micro-

graph of thermal shock induced crack, obtained using the method in (a).

Fig. 5 Normalized stress intensity factors as a function of angular orienta-

tion for semi-circular surface and corner cracks (after Refs. 6 and 7).
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Fig. 6 Finite element stress calculations:

(a) Variation of peak stress with time after commencement of gas flow,

using dimensionless coordinates.

(b) Variation of peak stress with heat transfer coefficient, for ATc =

385 0C.

(c) Variation of radial and tangential stresses with radial distance

on the test surface.

(d) Variation of radial stress with distance below the test surface.

Fig. 7 Weibull plots of strength distributions for surface and corner flaw

populations (data from Fig. 3).

q
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Table I
0

Bend Strengths of Glass Flexure Bars Containing Controlled Flaws

Sannealed

Flaw Type As-Indented Annealed Sas-indented

Surface 39.4 t 3 MPa 48.4 ± 5 MPa 1.23

Corner 33.2 ± 4 MPa 46.6 ± 5 MPa 1.41

R = Scorner/Ssurface 0.84 0.96

Table II

Statistical Failure Parameters

Flaw Population m So(uniaxial) So(equibiaxial)

Surface 18 38.5 MPa (m2)1 / 18

Corner 9.3 39.0 MPa m
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ABSTRACT

Mechanisms of failure in a unidirectional SiC-fiber/glass-ceramic com-

posite are investigated using in situ observations during tensile and flexural

loading. These experiments show that failure in tension occurs in several

stages (similar to certain other brittle fiber composites): multiple matrix

cracking, followed by fiber fracture and pullout. In flexural loading the fail-

ure process is more complex. Consequently, the flexural test cannot be used for

measurement of tensile strength (although it can be used for measurement of the

stress for matrix cracking). The application of conventional fracture mechanics

to describe tensile failure is discussed. The in situ observations provide

direct indication of the importance of frictional bonding between the matrix and

fibers. Some novel methods for measuring the frictional forces and residual

stresses are investigated, and the influence of surface damage on strength is

assessed.
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1. •INTRODUCTION

The reinforcement of brittle materials with high strength fibers can

yield composites of very high "toughness". This was first demonstrated using

carbon fibers in glass and glass-ceramic matrices.1-3 More recently, the

availability of continuous SiC fibers has led to development of glass and glass-

ceramic composites 4 "6 which are more resistant to high temperature oxidation

than the carbon fiber composites. Since the motivation for developing these

materials is to utilize their high "toughness" in structural applications, an

understanding of the mechanisms by which they fail is needed, both for material

evaluation and as a basis for design.
S

The failure of the SiC/glass-ceramic composite under mechanical loading

is so unlike the failure of monolithic ceramics that the role of convention-'

fracture mechanics concepts in describing the failure is unclear. The cc eX-

ity of the failure process can be seen in Fig. 1, which shows specimens I - two

tests that are commonly used to evaluate these materials; beams loaded in four-

point bending for strength measurement and a notched beam loaded in bending for

fracture toughness measurement. In the strength tests failure occurs either in

compression or in shear but never in tension, so calculation of a tensile

strength from this loading configuration is clearly invalid. In the fracture

toughness test failure occurs by delamination parallel to the fibers and normal

to the notch. Therefore, calculation of a fracture toughness using fracture

mprhanics r-lations 'AsPA on coplanar extension of a single crack from the notch

is also invalid.
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The aim of this paper is to investigate the mechanisms of failure in a

SiC/glass-ceramic composite under tensile loading, and to define test configura-

tions that give meaningful measurements of material properties. Direct in situ

observations are used to define failure mechanisms and to indicate the role of

fracture mechanics. These observations show that fracture mechanics can be use-

fully applied in the initial stage of tensile failure. An analysis will be re-

ported separately. 7 Frictional slipping is observed at the fiber/matrix inter-

face in the presence of matrix cracks, thus providing strong circumstantial

evidence that there is no chemical bonding between the fibers anu matrix. Novel

methods for measuring the frictional stress between the fibers and matrix are

explored. Finally, since residual stresses are generally expected in

composites, owing to differences in thermal contraction between the fibers and

matrix, methods for estimating such stresses are briefly assessed.

II. EXPERIMENTAL

Specimens for flexure and tension testing (Fig. 2(A)) were cut from a

plate of a composite material consisting of c-proximately 50% uniaxially aligned

SiC fibers in a lithium alumino silicate glass-ceramic matrix.* All specimens

were oriented with the fibers parallel to the prospective applied tension, and

the test surfaces were polished with diamond to allow observation of cracking.

A schematic of the experimental arrangement used to observe the surface

of the tensile test specimens during loading is shown in Fig. 2(B). The speci-

mens were accurately located in set positions in the grips and held by both

*United Technologies Research Center.
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The present results also emphasize that the peak load bearing capacity

and ultimate separation of a tensile specimen are not controlled by the exten-

sion of a single crack. Therefore, fracture mechanics parameters based on the

extension of a single crack (e.g., fracture toughness, work of fracture, etc.)

cannot be defined in relation to this stage of the failure process. Rather,

prediction of the peak load requires statistical analysis of fiber fracture and

pullout, including the effects of frictional forces exerted by the matrix on the

fibers.17

Finally, some remarks are made concerning the bonding at the fiber/

matrix interface. The present measurements of the frictional shear stress, the

matrix cracking stress, the crack spacing, and the residual matrix stress are

largely consistent with an unbonded interface. This conclusion derives from the

realization that, to obtain the observed crack spacing (2d = 400 pm) in the

presence of bonded fibers, debonding must occur over length > 200 pm. Calcula-

tions 15 indicate that such debond lengths could only be achieved at the observed

matrix cracking stress (290 MPa), (and for the small residual tension that

exists at the interface), if the debond toughness, Gd, is < 10-2 Gcm, i.e.,

Gd < 0.4 Jm"2 . Such small levels of fracture resistance are unknown in covalent

and ionic bonding. An unbonded interface (or perhaps a very weak Van der Waals

bond) is thus implied.
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mi

where K m is the toughness of the matrix. With t 2.0 MPa and Kcm 2

MPa.ml/ 2 ,16 Eq. (7) gives a = 307 MPa. This is in reasonable agreement with the

stress measurements in Section 111(l) (290 ± 20 MPa).

Flexural tests can be used for measurement of the stress at which

matrix cracking occurs, for this is the first damage to occur (provided that the

ratio of loading-span to beam-thickness is sufficiently large). However, once

the first crack forms the uniformity of the beam is destroyed and the stresses

in the beam are no longer related solely to the applied load and specimen dimen-

sions. Then the relation between the peak load and the failure stress (compres-

sion or shear) is obscure. If this nonuniformity of the beam is ignored an

apparent paradox arises when apparent strengths in tension and bending are com-

pared. The observation of compressive failure in a uniform flexure beam would

imply that the strength in compression is lower than the strength in tension.
I

However, the apparent compressive strength measured in the bend test is higher

than the tensile strength obtained from a tension test (800 MPa vis-a-vis 500

MPa). Similar results have been obtained in a study using another SiC/glass-

ceramic composite (magnesium-alumino silicate),8 where it was suggested that the

strength difference in the two tests may be due partly to flaw statistics. How-

ever, the strain gauge measurements in Fig. 7 show that when the matrix is

cracked the true stress on the compressive surface is higher than the apparent

stress calculated from the flexural load. (And the stress on the tensile sur-

face must be lower.) Thus, the maximum load bearing capacity is - 1300 MPa in

compression, and 500 MPa in tension.
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are determined by fiber failure and pullout. This failure sequence is charac-

teristic of several other brittle composites, and requires the strength of the

fibers to be sufficiently high to support the full applied load when the matrix

fails, 12 ,1 3 and the bonding between the fibers and matrix to be purely fric-

tional or sufficiently weak for substantial debonding to occur ahead of the

crack. 1 4 Irthe tension tests described in Section Ill(1) matrix cracking

occurred at an applied stress aa = 290 MPa, and the volume fraction of fibers

was 0.5. Therefore, after a crack passed completely through the matrix the true

stress in the fibers where they bridged the crack was - 600 MPa. This stress is

considerably lower than the as-fabricated strengths of the fibers (- 2 GPa 6 ).

The formation of the first crack in the matrix is amenable to analysis

by fracture mechanics.7,12,15 An important result of one of these analyses7 is

that, with the crack being bridged by unbroken fibers, the applied stress

required to extend the crack hecomes independent of the crack size. This im-

plies that the stress for matrix cracking is not degraded by the existence of

large flaws, in contrast to the response of monolithic ceramics. This conclu- . ....

sion is supported by the results in Section 111(3), where the introduction of

large controlled flaws did not degrade the matrix cracking stress. The fracture

mechanics analysis provides a relation between the matrix stress and micro-

structural parameters;7,12,15

21/

1.82 [Kcm EfV f2Vm(1 + EVEV 2 /EmR] /38)
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fibers at various orientations relative to the fibers (ranging from radial to

tangential), without systematic deflection of the cracks. These results suggest

that the residual stresses normal to the fibers are small.

Residual stresses parallel to the fibers influence the opening of p

matrix cracks (Appendix). Thus, in principle, measurements such as those in

Fig. 9 can be used to determine the magnitude of the residual stress. This is

most conveniently done by extrapolating the linear portions of the loading and

unloading curves to zero strain, to give intercepts uo and uc. For zero

residual stress uo = -uc, whereas for a residual stress aRm in the matrix

(Appendix)

uo + uc 4 md/E (7)

The accuracy of the data in Fig. 9 is limited by optical resolution, and is only

sufficient to give broad limits for ORm. Noting that uo = 0.2 ± 0.4 ii and uc

-0.2 + 0.4 pm (from Fig. 9), Eq. (7) gives aRm = 0 ± 80 MPa, confirming that

residual stresses, if they exist, are indeed small (it can be shown from these

results that the residual stress normal to the interface is less than 20 MPa).

IV. DISCUSSION

The observations of Section Il(1) show that failure of the unidirec-

tional SiC glass-ceramic composite, in tensile loading parallel to the fibers,

occurs In several stages. After initial linear elastic loading to a critical

stress, multiple regularly spaced cracks form in the matrix. Further load

increase is nonlinear, and the peak load-bearing capacity and final separation
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Noting that 2d = 400 pm, (from Section Ill(1)), Vf = Vm = 0.5, Em = 85 GPa, R

8 pm, and 6 = 0.5 ± 0.1 pm (Fig. 9), Eq. (5) yields T = 2.4 1 0.5 MPa.

A third estimate of the frictional stress can be obtained from the

spacing of the matrix cracks. The crack spacing is given by1
2

2d ft cR/ 2 tVf(1 + EfVf/EmVm) . (6)

With cc = 290 MPa (from Section IIl(1)), Eq. (6) gives T = 1.7 MPa. Thus, the

three independent estimates of the frictional stress are consistent, within

experimental accuracy.

(5) ReSidual Stresses

Residual stresses in composites arise both from differences in thermal

contraction of the fibers and matrix and from unrelaxed volume changes

associated with crystallization and phase changes. These stresses influence

matrix fracture in two ways. Stresses parallel to the fibers superimpose

directly on the applied stress, whereas stresses normal to the fiber axes affect

the frictional forces between the fibers and matrix.

Residual stresses can be detected on a small scale by monitoring their

effect on controlled cracks introduced by indentation.8  This method proved to

be unsuitable for use on longitudinal sections because of disruption of the

crack pattern by subsurface fibers of unknown location. However, indentations

on transverse sections provided information pertinent to stresses normal to the

fiber axes. Examples are shown in Fig. 12. The indentation cracks approach
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the corners of the indentation contacted the matrix at the edge of the hole left

by the depressed fiber, as shown in Fig. 10:

u = (b-a) cot , (3) -

where 2(, is the angle between opposte edges of the indenter (2 = 740 for the

Vickers pyramid). The force applied to the fiber was calculated from the

dimension of the residual hardness impression on the fiber surface

F = 2a2 H (4)

where the hardnes.s, H = 13 GPa, was obtained by indenting other fibers at lower

loads which did not cause the indenter to touch the matrix. For the example in

Fig. 10(B), F = 0.23N and u = 3.0 pm, giving J = 1.7 mm (smaller than the speci-

men thickness, t = 7 ni) and T = 2.0 MPa. Similar measurements from twenty

other fibers gave -r = 2.5 ± 0.9 MPa.

A second estimate of the frictional stress can be obtained from the

hysteresis in the crack opening (Fig. 9). Within the range where the crack

opening curves are linear the difference in opening, A, at a given strain during

the loading and unloading half cycles is (Appendix)

= 4d2  Vf/RVmEm  (5)

where 2d is the spacing of the multiple matrix cracks, Vf and Vm are the volume

fractions of fibers and matrix, and Em is the Young's modulus of the matrix.
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indented configuration in Fig. 11(A). Only at a higher flexural load (Fig.

11(B)) did one of the indentation cracks normal to the applied tension extend

to form a matrix crack.

(4) Frictional Stress

The magnitude of the frictional stress at the fiber/matrix interface

can be measured directly using an indentation method,11 which is illustrated in

Fig. 10. In this technique a Vickers indenter is loaded onto the center of a

fiber in a polished section normal to the fiber axis. The force applied to the

fiber causes sliding and depresses the surface of the fiber a distance, u, below

the matrix surface. The frictional stress, r, and the distance, Z, over which

the matrix and fiber slide can then be calculated from measurement of the

distance u, and the force, F, applied to the fiber:
11

= F2/4t2 u R3 Ef (1)

and

= 2%R2uEf/F (2)

where R is the fiber radius and Ef is the Young's modulus of the fiber (Ef = 200

GPa6 ). Equations (1) and (2) require I to be smaller than the specimen

thickness, t, and much larger than the fiber radius.

The value of u in Eqs. (1) and (2) is the fiber depression at maximum

load. This was conveniently measured by choosing the indentation load such that
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(2) Matrix Cracking

Observations of cracks during an unload/reload cycle (Fig. 8) provide a

direct indication of the influence of the reinforcing fibers on matrix cracking.

From a comparison of Figs.8(B) and 8(D) it is clear that the crack opening, at a
S

given strain, is larger during unloading than during loading. More extensive

measurements of crack surface displacements during the load/unload cycle are

shown in Fig. 9. These observations imply that the fibers exert frictional

forces on the matrix, which tend to oppose crack closure during unloading and

resist crack opening during loading. Therefore, frictional forces must play an

important role in inhibiting the initial extension of the first crack through

the matrix. Several estimates of the frictional shear stress are presented in.

Section Ill (4).

*P
(3) Effect of Surface Damage on Matrix Cracking

Some flexural tests were done with the tensile test surfaces containing

controlled flaws introduced by Vickers and Knoop indentation. Indentation loads

ranged from 2 to 100 N. The lower loads produced cracks smaller than some of

the fiber spacings, whereas the high loads produced cracks and chipping which

extended across more than ten fibers. In all of these tests the stress at which

the first matrix cracking occurred was not altered by the presence of the inden-

tation flaws. In fact, in most cases the first matrix crack did not even initi-

ate from the indentation. This is illustrated in Fig. 11(A) which shows the

tensile surface of a beam loaded in flexure to the stage at which the first

matrix crack formed. The surface also contains cracks generated by Vickers

indentation at 5 N load. These cracks have not extended beyond their as-
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tirely by the intact fibers bridging the crack. Further small increase of load

caused formation of multiple regularly spaced cracks in the matrix throughout

the central test area (Fig. 4). The spacing of the cracks was about 400 Pm.

After the formation of multiple cracks, further loading caused occasional addi-

tional cracks in the central area and in the areas further from the center where

the cross section became larger (Fig. 2(A)). A large part of the additional de-

flection was due to pull out of the fibers from the matrix and the associated'

increase in crack opening. The peak load was determined by fiber failure, which

continued in the region of relatively rapid load drop beyond the peak. At de-

flections beyond the peak the opening of one of the cracks became very large

(Fig. 5(A)), and final separation involved the pulling of broken fibers through

the blocks of matrix formed by the multiple cracking.in the central test area

(Fig. 5(B)). The response in the flexure test was similar, except that the

matrix cracks penetrated only to about the midplane of the beam (Fig. 6), and

the crack openings on the tensile surface did not become large enough to cause

complete fiber pullout before compressive failure occurred in the opposite

surface.

The formation of multiple matrix cracking in only half of the flexure

bar has important consequences. In particular, the cracks destroy the macro-

scopic uniformity of the beam and render calculation of stress based on a

uniform beam invalid. This is illustrated by a comparison of the compressive

stresses calculated from beam bending formulae with the stresses indicated by a

strain gauge on the compressive surface (Fig. 7). The apparent compressive

strength calculated from the bending load would be 780 MPa, whereas the

compressive strength obtained from the strain gauge is 1330 MPa.
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these materials the appearance of being very "tough." Similar curves have been

reported for flexure tests of a SiC/magnesium-alumino-silicate glass ceramic
9

and carbon-fiber/glass-ceramic composites.
1

Although the general appearance of the load-deflection curves for

flexure and tension are similar, several important details differ. On each of

the plots in Fig. 3 an apparent stress scale is indicated as well as the load

* Oscale. For the flexure test this stress refers to the tension (or compression)

calculated from the measured load using the relation for a uniform beam in bend-

ing. 10 For the tension test the apparent stress was obtained from the measured

load divided by the cross-sectional area of the test section. In both tests the

onset of nonlinear deflection occurred at the same stress, ac = 290 ± 20 MPa.

However, the peak apparent stress was higher in bending than in tension (800 MPa

* vis-a-vis 500 MPa). Also, the onset of nonlinear deflection in the tension test

was marked by a distinct load drop, and was followed by other load drops at

higher loads, whereas in the flexure test load drops were not detected. The

curves also differ in the relative deflections in the regions of linear load

increase, nonlinear load increase, and decreasing load. Therefore, calculation

of the work done by the loading system to cause failure (i.e., "work of frac-

ture") clearly does not give a quantity which is a material property,

independent of loading configuration.

The direct observation of the tensile surfaces during loading provides

insight into the characteristics of the load/deflection curve. In both the

flexure and tension tests the onset of nonlinear deflection coincided with the

formation of a single matrix crack. In the tension test this crack passed com-

pletely through the central test section, and the applied load was supported en-
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Ill. RESULTS

(1) Failure Mechans.,ts

Initially some general features of the flexural failure of the SiC/

glass-ceramic composite are examined. In tests where the ratio of the separa-

tion of the inner and outer loading points, d-e, to the beam thickness, h, is

large (i.e., (d-e)/h > 8) failure involves buckling of the fibers and fragmenta-

tion of the matrix on the compressive side of the beam (Fig. I(A)). When the

ratio (d-e)/h is small (i.e., less than ~ 5) failure occurs by cracking along

the neutral plane between the inner and outer loading points, where the shear

stresses are highest (Fig. I(B)). This change of fracture mechanism is consis-

tent with the change in the ratio of the maximum compressive stress to the maxi-

mum shear stress as the loading configuration changes. The ratio of maximum

compression to maximum shear in four-point flexure is 4(d-e)/h, and the failure

mode is determined by whichever of these stresses first exceeds the correspond-

I* ing strength. Therefore, small values of (d-e)/h tend to induce failure by

shear. Similar reasoning might suggest that the observed compressive failure in

Fig. I(A) is consistent with a higher strength in tension than in compression

(since maximum compression and tension in a uniform rectangular beam are equal).

However, other observations indicate that the beam does not remain uniform

during the flexure test.

The general features of the load/deflection curves for flexure and

tension tests are shown in Fig. 3. In both cases an initial linear elastic

region is followed by nonlinear load increase to a maximum, followed by

continuous load decrease. It is the noncatastrophic decrease in load that gives
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clamping and epoxy glue. The grips were loaded through balls located at posi-

tions colinear with the specimen axis, thus ensuring good alignment. The grips

could be set either in a loading fixture on the stage of an optical microscope,

or on a conventional tensile testing machine. When used in the horizontal posi-

tion on the microscope stage the weight of the grips was counter-balanced by

springs, and force measurements were made using a strain gauge load cell in the

load train.

In the tests used to observe flexure bars during loading, the fixture

could be mounted in several positions on the microscope stage to allow obser-

vation of either the tensile surface or the side of the bar. The inner and

outer loading points in these experiments were separated by 13 mm and 45 mm, and

the specimen dimensions were about 50 x 6 x 3 mm. Some specimens were tested

* with as-polished surfaces. Others had controlled flaws introduced into their

polished test surfaces by. loading with Vickers or Knoop indenters.

Two sets of experiments were performed using Vickers indentations on

* polished sections normal to the fibers. In one experiment the fiber/matrix

bonding was investigated by loading the indenter in the center of a fiber and

measuring the relative displacements of the fiber and matrix at a given load.

In the other experiment the indentation was located in the matrix and the radial

cracks generated by the indentation were used to investigate residual stresses. 8

105

"( , - =.- ' -. -. Z ' . ' "*-"-"-"-"."."-"-"."-. ,."-"-"."- .". -.-.- •" ' -.-.. ' ' ' ' ...-...... .-... '''- ''. -

wmim w m-=- mh li m|,1 dl . -.-.. . . . . . . . . ." . . . . . ..". . . . .." " ,"



15. B. Budiansky, A.G. Evans and J.W. Hutchinson, to be published.

16. B.J. Pletka and S.M. Wiederhorn; pp. 745-59 in Fracture Mechanics of

Ceramics, Vol. 4. Edited by R.C. Bradt, D.P.H. Hasselman, and F.F. Lange,

Plenum, New York, 1978.
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APPENDIX

Calculations of Crack Opening During Loading and Unloading

Consider a section of composite between two matrix cracks of spacing 2d

(Fig Al(A)). Before the cracks are formed the residual stresses a, and -d

exist in the fibers and matrix, such that the sections of fiber and matrix are

respectively extended and compressed from their relaxed states (Fig. AI(B)) by

2z = 2(/)d and 2z = 2( /Em)d. The application of stress, ca, larger than

a critical value, cc, causes matrix cracking and slipping between fibers and

matrix over a distance d, as illustrated in Fig. Al(C). The average strain in

the composite is ec = z/d (Fig. A1(C)), and the crack opening can be written

u= 2(z -6- zm) 2d(E - 6/d -om/E) (Al)
0 C O

where the distance 6 is given by

6 = CVfd 2/RVEm  . (A2)

Further increase of the applied stress to a peak value r u, followed by a reduc-

tion to (a, causes reverse slipping between the matrix and fibers. Reverse slip

initiates at the crack surface and extends along the interface as the applied

stress is reduced. Budiansky et al. 15 have shown that, for aa< au - ac, the

reverse slip extends fully over the length d, as depicted in Fig. Al(D). Then

the crack opening is
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m) 2(z + 6 z)= 2d(c - -+J/d Em) (A3)li~~ Uc 'R m( -z

Thus, Eqs. (AI) and (A3) represent the linear portions of the loading and

unloading curves in Fig. 9 (except that the strain in Fig. 9 is measured on the

compressive surface and, therefore, differs by a constant factor from the

average strain on the tensile surface, tc).

The frictional stress -r can be evaluated from the difference in crack

opening at a given strain, (Eqs. Al to A3);

*=u c -uo0 4 Vfd2 /RVmEm (A4)

The residual stress in the matrix can be obtained from the sum of the

(extrapolated) crack openings at c= 0 (Eqs. Al and A3);

+m 
"

uc + "o 4d R/Em (A5)
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5

FIGURE CAPTIONS

B

Fig. I Specimens of SiC/glass-ceramic composite after flexural testing.
(A) Rectangular beam tested in 4-point loading. Separation of inner
and outer load points is 16 mm, specimen thickness is 2 mm. (B) As in
(A), but with specimen thickness 3.5 mm, separation of inner and outer
load points 10 mm. View shows right half of specimen with load points
indicated by arrows. (C) Rectangular beam containing a notch (cut with
a diamond saw) and tested in 4-point loading with the notch in the
center of the tensile test area.

Fig. 2 Schematic diigrams of (A) the tensile test specimen, (B) the tensile
test fixturc used for in situ observations.

Fig. 3 Load-deflection curves for (A) flexure and (B) tension tests. An
apparent stress is also indicated on each plot. For the flexure test
this was calculated from the measured load, assuming a uniform beam in
bending. For the tension test it was obtained from the measured load
divided by the cross-sectional area of the test section.

Fig. 4 Tensile surface of a flexure specimen, loaded beyond the linear region
of the load-deflection curve. Width of field 1.5 mm. Brightly
reflecting regions are polished cross sections of fibers, grey regions
are the matrix.

Fig. 5 (A) Matrix crack in tension specimen, loaded beyond the peak load
(apparent stress : 200 MPa). Width of field 550 An. (B) Tensile test
specimen extended far beyond the peak load condition. Width of field
12 mm.

Fig. 6 Side view of area between inner load points of a flexure beam, showing
matrix cracks confined to the tensile half of the beam.
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Fig. 7 Comparison of apparent stresses in the compressive surface of 3 flexure
beam, one calculated from strain gauge measurements, and the other
calculated from the measured load assuming a uniform beam in bending.

Fig. 8 Sequence of optical micrographs showing a matrix crack on the tensile
surface of a four-point flexure beam during an unload/reload cycle.
(A) to (C) decreasing load; (C) to (A) increasing load. Stresses
obtained from strain gage on compressive surface; (A) 600 MPa,
(B) 210 MPa, (C) zero, (D) 210 MPa, (E) 600 MPa. Note that the crack
is not visible in (C), and that the crack opening is larger in (B) tnan
in (D). Width of each micrograph 166 um.

Fig. 9 Plot of separation of crack surfaces in tensile surface of a flexure
beam during loading, unloading, and reloading. Measurements from
optical micrographs similar to Fig. 8. Strains obtained from strain
gage on compressive surface. Note that absolute accuracy of crack
opening measurements is limited by optical resolution (- ±0.4 am).
However, since all micrographs were taken under effectively identical
conditions, the uncertainty in the differences is considerbly lower
(provided that the crack openings are > 1 pm).

Fig. 10 (A) Schematic of indentation method used to measure matrix-fiber
frictional stress. (B) Scanning electron micrograph showing a fiber
that was indented with a Vickers pyramid at 0.5 N load. The edges of
the pyramid contacted the matrix at the edge of the hole left by the
indented fiber. Width of field 32 pm.

Fig. 11 Vickers indentation in tensile surface of flexure beam (A) apparent
stress = 300 MPa. Note crack in matrix near the indentation, but the
indentation crack has not grown. (B) Apparent stress = 310 MPa. The
indentation crack has extended partly through the matrix. Width of
field 534 Ifn.

Fig. 12 (A) and (B); Indentation cracks in matrix, formed by loading a Vickers
pyramid at 2 N. Note that the cracks are not deflected as they
approach the fibers.
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Fig. Al. Schematic showing relative displacements of matrix and fibers between
two matrix cracks. f
(A) Single fiber and surrounding matrix before cracking. am and ,R

are residual stresses. Prospective crack planes are
AA' and BB'.

(B) Displacements required to relax residual stresses.
(C) Displacements of fiber and matrix after applying stress ca to the

composite (oa8 > ac). P

(D) Displacements of fiber and matrix after increasing aa to au, then
reducing aa to a value < (au - cc).
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intensity method. Finally, several implications of the analysis for matrix

cracking in various composite systems are discussed.

2. STRESS INTENSITY FORMULATION OF MATRIX CRACKING

Separation of the surfaces of a matrix crack which is bridged by

uniaxially aligned reinforcing fibers (Fig. 1) requires some sliding of the

matrix over the fibers. In general, this would require debonding followed by

sliding against frictional forces. However, it appears that in successfully

reinforced ceramic composites, there is no chemical bond between the fibers and

matrix. The present analysis is concerned with such unbonded composites, in

which the sliding of the matrix over the fibers is resisted only by frictional

forces.

The restraining effect of the fibers causes a reduction in both the

crack opening and the crack tip stresses. Relations between these quantities

and the remotely applied stress, a., can be evaluated by imagining the crack in

Fig. I to be formed in two steps. First, all of the bonds across the prospec-

tive crack plane (in the fibers as well as the matrix) are cut and the stress

y. is applied (Fig. 2a) causing the crack to open. In the second step trac-

tions, T, are applied to the end of each fiber. The magnitude of T is chosen

such that the fiber ends displace relative to the matrix and allow the fibers to

be rejoined (Fig. 2b). In a continuum approximation (c >> fiber spacing) this

procedure is equivalent to applying a distribution of closing pressure p(x) to

the crack surfaces:
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generally deterministic, but rather are sensitive to distributions of flaws.

Second, the energy balance analysis was based on a comparison of energies before

and after complete cracking of the matrix, whereas a rigorous thermodynamic

treatment of crack growth requires examination of energy changes that accompany

incremental changes in crack length. These deficiencies are addressed in the

present study.

It is convenient to distinguish between large and small cracks as a

basis for further analysis. Large cracks experience a crack opening, u, which

asymptotically approaches (but cannot exceed) the equilibrium separation, U., of

the completely failed matrix (i.e., two half planes connected by fibers (Fig.

1)). This limiting separation is approached beyond a characteristic distance,

cog from the crack tip. Within that region the net force in the intact fibers

that bridge the crack must exactly balance the applied force. In this case the

crack tip stress concentration is induced exclusively over the length co , and

the stress needed to extend the crack must be independent of the total crack

length. Crack growth in this region is referred to as steady state growth.

Conversely, for short cracks (i.e., c < co ) the entire crack contributes to the

stress concentration, such that the stress required to propagate a crack is

sensitive to the crack length (as it is in monolithic materials).

Crack growth can be evaluated using either energy balance or stress

intensity considerations. The general formalism for the stress intensity

approach is presented in the following section. Then Lie steady state crack is

examined using both stress intensity and energy balance approaches in order to

establish the equivalence of the two independent methods of analysis. The

growth characteristics of short cracks are then evaluated using the stress
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1. INTRODUCTION

The reinforcement of brittle materials with high strength brittle

fibers can yield composites that undergo large tensile strains prior to failure.

In such materials prefailure damage initiates with the formation of multiple,

regularly spaced cracks in the matrix.1 This damage mode requires the strain-

to-failure of the matrix to be less than that of the fibers, and the fibers to

have sufficient strength to remain intact after a crack passes completely p

through the matrix. Materials that have been observed to behave in this manner

include cement and plaster reinforced by glass, steel, or asbestos fibers, 2 6

and glasses and glass ceramics reinforced by carbon 7-9 and SiC 10 ,11 fibers.

The ultimate load bearing capacity of the composite may substantially

exceed the load for matrix cracking. Nevertheless, the first matrix crack is of

prime concern because matrix fracture signifies the onset of permanent damage,

the loss of protection provided by the matrix against corrosion and oxidation of

the fibers, and the likelihood of an enhanced susceptibility to degradation due

to cyclic loading. Despite the importance of the first matrix crack, a complete

fracture mechanics analysis does not exist. Some aspects of the problem have

been addressed by Aveston, Cooper and Kelly.1  Specifically, assuming that the

matrix possesses a characteristic strength, independent of strength-controlling

defects, they rationalized the regularity of the matrix cracking. They also

used an energy balance analysis to introduce a dependence of strength on

microstructure and account for certain increases in matrix strength observed in

systems containing small diameter fibers. However, this analysis has two

limitations. First, the cracking strengths of glasses and ceramics are not
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ABSTRACT

Matrix fracture in brittle-matrix fiber composites is analyzed for

composites that exhibit multiple matrix cracking prior to fiber failure and

which have purely frictional bonding between the fibers and matrix. The stress

for matrix cracking is evaluated using a stress intensity approach, with the

influence of the fibers that bridge the matrix crack being represented as clo-

sure tractions at the crack surfaces. Long and short cracks are distinguished.

Long cracks approach a steady-state configuration, for which the stress intens-

ity analysis and a previous energy balance analysis are shown to predict iden-

tical dependence of matrix cracking stress on material properties. For short

cracks an approximate analytical solution is derived and used to estimate the

range of crack sizes over which the steady state solution applies.
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p(x) T(x) Vf (1)

where x represents the position on the crack surface (Fig. 2b) and Vf is the

volume fraction of fibers. The closure induced by the pressure p(x) opposes the

opening due to the applied stress a.. The influence of the applied stress on

the crack tip stress intensity can be exactly evaluated by regarding the

stresses as a uniform opening pressure, c, acting along the crack surfaces.

Therefore, the crack surfaces are subjected to net pressure (a. - p(x)), such

that a composite stress intensity factor for a straight embedded crack in an

infinite medium can be defined as;12,13

KL = 2(c/t) 1/2 f [c.- p(X)](l - X2 )- 1/2 dX '2)

0

where X = x/c. The corresponding equation for a penny crack is given in

Appendix 2.

The stress i'tensity KL characterizes the composite stress and strain

fields in the region immediately ahead of the matrix crack. In this region, net

relative displacements between the fibers and the matrix are not permitted.

Consequently, the matrix and fiber strains must be compatible, whereupon the

stresses exhibit the composite relationship

M
a /Em = a./Ec (3a)

where d4 is the matrix stress and Ec is the composite modulus,
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Ec =EmV +EfVf

JS

with Em and Ef referring to the Young's modulus of the matrix and fibers,

respectively and Vm (= 1 - Vf) the volume fraction of matrix. The matrix and

composite stress intensities must scale with the stresses, such that

KL = KM E c/Em  (3b)

where KM is the stress intensity factor in the matrix. In the absence of

environmental effects the condition for equilibrium crack growth is given by

setting KM equal to the critical stress intensity factor, KcM, for the matrix.

Equivalently, the criterion for crack growth can be expressed in terms of KL;

KL K L KM E/E . (4)
c c m

Thus, Eqs. (2) and (4) relate the matrix cracking to the applied stress 3.

Evaluation of KL in Eq. (2) requires a separate calculation of the

pressure distribution p(x). Analysis of fiber pullout from the matrix (Appen-

dix 1) reveals that the closure pressure is related to the crack opening at a

given location:

p = 2[urVf2 Ef(1 + )/R]5)
fI
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where -n EfVf/EmVm, R is the fiber radius, and x is the sliding frictional

I stress as the interface. However, the crack opening at a given position is

determined by the entire distribution of surface tractions 16

2 c s -p(t)] dt
U(x) - 4( -v )  p s p dS (6)

c x /so vs7 - to

where v is the Poisson's ratio of the composite. Therefore, analysis of matrix

cracking by the stress intensity approach requires solution of Eqs. (5) and (6)

to obtain the crack surface tractions, followed by evaluation of the integral in

Eq. (2) and combination with Eq. (4).

1-4
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3. STEADY STATE CRACKS

The intent of this section is to demonstrate that the energy balance

and stress intensity approaches predict equivalent dependence of the stress for

steady state crack growth, ao, on microstructural parameters. The energy

balance solution derives from the earlier analysis by Aveston et al., but is

expressed in terms of incremental crack extension. The stress intensity

approach has not been considered previously.

3.1 Energy Balance Analysis

The energy changes occurring in the specimen and loading system during

an incremental crack extension define the crack growth behavior. These energy

changes can be calculated by employing the hypothetical operation depicted in
U

Fig. 3 to extend the crack by dc. A strip of material of width dc ahead of the

crack (area AA'B'B) is removed, a cut is made in the matrix along CC', the ma

.rix is allowed to relax causing the ends of the strip to displace, and the

strip is attached at the mouth of the crack. When the cut is made in the ma-

trix, the matrix must slide back over the fibers while the fibers also extend.

When this occurs work, dUs, is done against frictional forces, the strain energy

in the matrix decreases by dUm, the strain energy in the fibers increases by

dUf, and the potential energy of the loading system decreases by dUL. These

energy changes can be calculated from the results presented by Aveston et al. 1;
I

dUs =[ 3  R/6r EfVf 2 (1 + n)2]dc (7a)

If
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dU [am R n/ 3 r EfVf2 (1 ? l)]dc (7b)

3 23
dUf = [ R(3n + 1)/6t E fV2 (1 + -q) ]dc (7c)

dUL [a,3 R/2t EfVf2 (1 + n)2 ]dc (7d) 9

The net energy change of the system resulting from the incremental

crack extension is

dU 2rmVmdc +dU5 + dUf dUm dUL (8)-

m tM2  2> >

where 2I'm : Gc  Kc  (1 - )/Em is the fracture surface energy of the matrix.

Setting a.: o at Griffith equilibrium (dU/dc 0 0) and combining Eqs. (7) and

(8) yields a crack extension stress:

o 5[(1 - v)KC r EfVv m(I + )2/E mR]I 3  (9)

where 6 = 61/3.
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3.2 Stress Intensity Analysis

A simple dimensional analysis is used in this section to demonstrate

that the crack extension stress obtained from stress intensity considerations

exhibits the same form as Eq. (9). Specific numerical quantities for the

steady-state crack will be obtained in the following section.

The stress system for a steady state crack is depicted in Fig. 4. As

noted previously, the closure pressure exactly balances the applied loading in

the region x < c - co (i.e., the net crack surface tractions, a - p, are zero).

However, over the area c - co < x < c, p is smaller than a,, such that net open-

ing tractions exist. In this region p(x) must vary smoothly between zero at x

= c (where the matrix/fiber slipping is zero) and a at x : c - co, i.e.,

p : f(p) p 1 (10)

where p = r/co = (c - x)/c o and f(p) is a function that varies between zero at

p 0 and unity at o = 1. Thus, for steady state cracks (c >> co and ( - p)

0 for r > co), Eq. (2) reduces to

KL = (2/r.)I/2 c[ p(r)]r - I 2 dr (.1)
0

v /2

where v is a dimensionless constant (v (2/n)1/2 1[1 - f(p)]pl/ 2 dp).

The length co is evaluated by considering the crack opening displace-

ments within the range r 4 co . For the steady state crack Eqs. (6) and (10)
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reduce to

u~)=2(1 v a C) co 0C 1 1 E11 f(,)] dod (2

where o t/c. and X= sic0. An alternative expression for u(p) is obtained

from Eqs. (5) and (10),

u(P) = aca [f(p)]2 R/4 r V fEf(1 + n) .(13)

Thus, equating Eqs. (12) and (13) yields

Co =waE R/Vf2 Ef(I + n~)(1 -
2) (14)

where w is another dimensionless constant

w if(Pfl 2 /8[f f d]) .

The matrix cracking stress, a., is now obtained by evaluating KL from

Eqs. (11) and (14) and setting a. = a0 at K L L = K KM E c/Em

2
0 V'( 2 V)M r E V 2V (+ r~2 E R 1/3  (15))c f f VM(1+ / m R

where

6' w 2) -1/3

(wV

153



Comparison of Eqs. (9) and (15) indicates that the energy balance and stress

intensity analyses predict identical dependencies of matrix cracking stress on

microstructural parameters.
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4. SHORT CRACKS

Evaluation of KL for short cracks requires explicit determination of

the crack opening displacements from Eqs. (5) and (6). However, rigorous

analytic solutions for u(x) cannot be obtained. Even numerical solutions in-

volving more simple p(u) relations require iterative procedures. 17 Neverthe-

less, considerable insight into the mechanics of crack growth can be obtained by

adopting an analytical approximation for u(x).

The approximation involves an assumption that, at small crack sizes,

the crack profile does not differ greatly from that of a crack subject to uni-

form pressure. Then an analytical solution for u(x) is obtained from Eq. (6),

in terms of the net stress intensity factor KL;

2)KLc1/2( 2 2/E 1/2 6

u(x) = 2(1 - )K c - x2/c2 ) /E c .n1

The actual pressure distribution is obtained by combining Eris. '5) and 16.

p(x) =[KLcl/2(1 - x2/c2)1/2 1 /2  Va)

where

a 8(1 - v2).rVfEf(l + n)/ECR I1/2 17b)
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For x. c, Eq. (16) is an exact solution for the present problem (since dis-

placements near the crack tip must be a unique function of KL). However, it is

clearly not appropriate at small x in large cracks, because as already noted the

crack opening must asymptotically approach uo, whereas the opening in Eq. (16)

is unbounded at large c. The limiting displacement is given by setting p =

in Eq. (5)

u0 =a 2R/4TVf2Ef(I + T) (18)

and the corresponding transition crack length co is given by Eq. (16) with u

uo and x =0;

4 2 L2co = a. (19)

Therefore, the displacement expressed by Eq. (16) is used only for cracks

smaller than co (i.e., u < Up). For larger cracks an approximate limiting

solution is obtained from a crack profile that is uniform (u = up) near the

center (x < c - co ) and governed by a pressure distribution in the near tip

region (x > c - Co) that is the same as for a crack of length co . The final

result will be shown to be insensitive to the exact value of crack length at

which the crack opening is truncated.

With this approximation the stress intensity factor for c 4 co is given

!y substituting Eq. (17a) into Eq. (2)

.. . . . . .. . . . . . . . .
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e

KL a C=l (4a/-t) '(K) 1  c3" I c 4 c 0  ,(20a)

where 2 : n1/2 and

1
I f (1 - X2)"1 /4 dX = 1.20 (20b)

0

The mechanics of crack growth can be investigated by setting KL KL in

C

Eq. (20a) and solving for am to obtain an equilibrium-stress/crack-size

function;

a m KL/Qcl/ 2 + [4K c 12 /I 2 ]1 / 2 c1/4  (c < co) (21)

This function can be conveniently expressed in normalized form,

-1/2 1/4a/a = (1/3)(c/cm) + (2/3)(c/C )l/4 (c co) , (22)

where

cm ( aI 2)2/3 (23a)

= (3/Q)(KL A2 1/3 =3KL/x 1/2 (23b)m c c m

Equation (23) provides a relation between normalized stress and crack length

parameters, S d a/am and C C/Cm, without explicit reference to material and

microstructural properties (these properties enter only in their influence on
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the normalizing factors cm and am). Thus, the mechanics of crack growth may be

examined independently of the specific composite system.

For c > c 0 the region of crack where u = u0 does not contribute to the

stress intensification at the crack tip. Therefore, for a straight crack, which

maintains geometrical similarity as it extends, the stress intensity factor for

c > co is given by Eq. (20) with c = co . The corresponding equilibrium stress,

a, which is independent of crack length, is given by Eqs. (19) and (21);

a o = [(rKL) 2 /Q(1 - 21/Qn112 )]1 /3  (24a)

10 c

which, with substitution from Eqs. (4) and (17b), can be expressed

2 M 2 22 1/ao 5 a"[(1 - v )(KM2 -EfVf2Vm(1 + n) 2 /EmR] I /  (24b)

I

where

" = [8/Qt1/ 2(1 1/ 3

The relative values co/cm and a/am are obtained from Eqs. (19), (22a), (22b)

and (24a):

co/cm : [I/ 112 Q(I - 21/n 11 2 )] 4 / 3  1.88 (25a)

ao/am [02r~l2(1 - 21/Q 11 2 )] 1 /3/3 = 1.02 (25b)
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s, in the normalized form these stress and crack length parameters also are

explicitly dependent upon material or microstructural properties.

The complete equilibrium-stress/crack-size function is plotted in

• 5 (solid curve). It is noted that the stress required to propagate a

rix crack is almost independent of crack length (within about 2%) for cracks

ger than about Cm/3 . This defines the range of crack sizes for which steady

te conditions pertain. The crack response in this region contrasts with the

iavior of cracks in unreinforced brittle materials, where the strength

reases with c-1 /2. For cracks shorter than - Cm/3 the equilibrium stress

:reases, with a crack length dependence resembling that of a monolithic

ttle material. It is also noted that, since the stress/crack-size function

c C co is very flat in the vicinity of c = co, the curve in Fig. 5 is not

isitive to the use of the truncated form for the crack profile as an

)roximation to the true profile.

1'-



5. IMPLICATIONS AND DISCUSSION

One of the important results of the present analysis is the definition

'he approximate crack dimensions over which the transition from short crack

ivior to steady-state response occurs. The matrix cracking stress approaches

steady-state value for crack lengths > Cm/3 (Fig. 5). The crack length cm

be evaluated from Eq. (23a), in conjunction with Eq. (17b):

cm = (,t/41 4 / 3 )[KM E V 2(1 + )R/TV 2Ef(I - v2)]2/3 . (26)
mc m m ff

ues of cm calculated for two composite systems in which the parameters of

(26) are known with reasonable accuracy are shown in Table 1. For both

posites, cm/ 3 is several fiber spacings. Since the sizes of inherent flaws

brittle materials are usually about the same as microstructural dimensions,

se results imply that the stress for matrix cracking in these composites is

reduced by the further introduction of larger flaws during fabrication or

vice (e.g., mechanical contact damage), or by the extension of pre-existing

ws in thermal shock or environmentally assisted slow crack growth. It is

o noted that, with the continuum approximation adopted in Section 4, the

lysis holds only for crack lengths larger than several fiber spacings, i.e.,

is not valid in the region where the a(c) curve in Fig 5 rises with decreas-

C.

The crack size independence of the matrix cracking stress at c > Cm/3

tifies, in part, the earlier analysis of Aveston et al, 1 for it is now
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FIGURE CAPTIONS

g. 1 Schematic representation of a steady-state matrix crack in a fiber
composite.

g. 2 (A) and (B) Hypothetical operations used to evaluate the closure effect
of the fibers in the stress intensity analysis.

g. 3 Steady-state crack configuration used for enerqy balance analysis.

g. 4 Net surface tractions acting on steady-state crack.

ig. 5 Equilibrium-stress/crack-size functions for matrix crack in composite
and for a monolithic matrix.

ig. 6 Analysis of fiber pullout mechanics.

ig. 7 Equilibrium-stress/crack-size functions for penny crack.
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Table I

Fiber/Matrix

SiC/Glass Ceramic(a) Carbon/Glass(b)

Measured Properties

KcM 2 MPam 1/2  0.75 MPa.m I/2

Ef 200 GPa 380 GPa

Em 85 GPa 70 GPa

Vf 0.5 0.4

R 8 pm 8 m

2 MPa 10 MPa

Matrix Cracking

Stress 270 - 300 MPa 340 MPa

Calculated Properties

cm 313 ;,m 68 pm-.

CO  307 MPa 361 MPa

(a) Data from Refs. 10 and 11.
(b) Data from Refs. 7 to 10.
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factor) maintains geometrical similarity as the crack extends beyond co, such

that a steady-state condition exists. The corresponding region of a penny

crack, on the other hand, does not maintain geometrical similarity. In this

case the region that determines the stress intensity factor can be viewed as an

annular crack around a cylindrical hole. At c zz co this configuration ap-

proaches a penny crack, whereas at large crack lengths c >> co it approaches an

edge crack. Therefore, co and co vary between these two limits as the crack

grows. The relative values of co and co for straight cracks and penny cracks

are 0.97 and 0.87, respectively (Eqs. 19 and 24). Since the difference between

the values of ao for these two geometries is very small, calculations for

intermediate configurations are not deemed necessary.

The complete equilibrium-stress/crack-size function for penny cracks is

plotted in Fig. 7. The curve is almost the same as the corresponding result for

straight cracks (Fig. 5).
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APPENDIX 2: PENNY CRACKS -

For a penny crack the stress intensity factor and crack opening

relations (Eqs. 2 and 5) become
1 3 ,16

1/2 1
KL = 2(c/n) f Ca - P(X)]X(I - X2)"1 2 dX (AIO)

0

2 c 1 s C - p(t)] t dt

u(x) f4(1 - _
2 )

__I ds . (All)XE x s' 7=77 o '/s - tz

These differ from the corresponding relations for straight cracks by the factors "

X and t within the integrals. In the limit of steady-state cracks these equa-

tions reduce to Eqs. (10) and (12) (i.e., the same result as for straight cracks).

Therefore, the analysis of Section 3.2 holds for both crack configurations.

In the analysis for short cracks (Section 4) some numerical differences

appear. The approximate crack profile, when expressed in the form of Eq. (16),

pertains to both crack geometries. The stress intensity factor relation and all

other equations in that section are also of the same form, except that Q.

2/n1/2 and the dimensionless integral I (Eq. 20b) becomes

I = x(1 - x2 ) 1/4 dx = 2/3
0

With these values we obtain co = cm from Eq. (25a), and c = a from Eq. (25b).

For crack growth beyond co an additional difference appears. For a

straight crack, the region c - co < x < c (which determines the stress intensity

167

.......................................... o°



6/t = 1Ri-r/A ME M(U4)

(+ T)/ = /Ef + itRyz/AfEf (A5)

where A f MR i 2 is the fiber cross-sectional area and Am is the area of matrix

per fiber. The requisite relation between T and u is then obtained from Erqs.

(AI) to (M5). First, Eqs. (Al) to (A3) combine to give

T = 2XVdl + q1)/R (A6)

where n EfVf/EmVm. Then Eqs. (AI), (A2), (A4) and (A5) combine to give

1 u RE /t(l + (A7)

Finally, from Eqs. (A6) and (A7) we obtain

T =2[uE ft(l + 71)/R]J/ (A8)

and, with Eq. (1),

p =2[u-01V2E (1 + n)/R]1/ 2  (A9)
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APPENDIX 1: MECHANICS OF FIBER PULLOUT

The application of tractions T to the end of the fiber in Fig. 6 causes

sliding between the matrix and fiber over a distance 1, and allows the fiber to

pull out of the matrix a distance u. For a purely frictional matrix-fiber bond,

the sliding distance is be determined by the length over which the interface

shear stresses exceed the frictional stress c. A relation between T and u is

req-ired for the stress intensity analysis.

The mechanics of fiber pullout can be conveniently analyzed by applying

tractions Tm and Tf, equal and opposite to the stresses in the matrix and fibers,

along the plane AA' at the end of the slipped region, and removing the section

A'C'C'A (Fig. 6b). If we neglect the effect of shear stresses above AA' in

Fig. 6a (i.e., assume that the strains in the matrix and fiber are equal above

AA') these tractions are related by

TM/E m = T f/Ef (Al)

Equations relating the stresses and displacements in Fig. 6b are obtained by

considering the equilibrium of the matrix and fiber separately and also by cal-

culating the extensions 6 and 6 + u of the matrix and fiber:

T A = 2R (A2)
m m

TAf = 2tRu + TfAf (A3)
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which is not strongly influenced by -. Increasing Ki increases both ao and

cm. Thus, a maximum Kcm could be dictated either by the fiber failure stress or

by the requirement that cm be less than pre-existing flaw sizes.

The preceding restrictions account for the brittle response observed in . -

a number of fiber or whisker reinforced brittle systems, and place important

bounds on the design of optimum microstructures. Furthermore, implicit in the

ability to design materials and to interpret results within the context of the

present analysis is the availability of methods for measuring r, Kcm and ab.

Developnents pertinent to such measurement have been reported in recent studies.
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Concluding Remarks

d The principal implications of the present analysis concern the pre-

dicted transition to a crack length independent matrix cracking stress, co, for

cracks longer than a characteristic length - cm/3, and the associated trends in

matrix fracture. The matrix cracking stress (i.e., the first deviation from

linearity in the stress strain curve) should be both damage tolerant and inde-

pendent of specimen size, provided the characteristic length cm/3 is smaller

than preexisting flaws in the matrix. In this sense ceramic matrix composites

can be more like metals than ceramics in their tensile mechanical behavior.

The analysis indicates that the attainment of steady state cracking at

high stress levels is likely to be restricted to a narrow range of microstruc-

tures. These restrictions arise from the requirements that cm be sufficiently

small and that the fibers remain intact after a crack passes completely through

the matrix (i.e., ro < abVf, where ab is the bundle strength of the fibers in

the presence of additional stresses due to frictional forces). Thus, uniaxially

reinforced composites, in which Vf can be large, offer the potential for optimum

properties (increasing Vf increases both ao and abVf and decreases cm). In

multiaxially reinforced systems (such as 3-0 or random whisker composites) the

smaller volume fraction of fibers aligned in any direction limits the value of

ao that can be achieved without causing fiber failure and increases cm, making a

crack-length-dependent matrix fracture stress more likely. The existence of

optimum values of matrix toughness, Kcm, and interfacial shear resistance, r,
Sc

can be inferred from the analysis. Increasing T increases ao and decreases cm,

but a maximum acceptable increase is defined by the fiber failure stress, bVf,
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results can be obtained by estimating the dimensionless constant, wv2 , in Eq.

(15) from the analysis of Section 4. Thus, from Eqs. (5) and (24b) we obtain

wv2 = 2.21 which yields a stress - 20% higher than that obtained from the energy

balance analysis. This represents reasonable agreement in view of the simplifi-

cations which underlie the analyses (e.g., assumed crack profile, representation

of frictional forces as tractions applied to the crack surfaces rather than

distributed along the fibers).

Predicted values of the stress for matrix cracking (from Eq. 9) in the

SiC/glass-ceramic and carbon/ glass composite systems are shown in Table 1. In

both cases good agreement with experimentally measured values is evident.

Hence, the predicted relation between the critical stress for matrix cracking

and microstructural parameters appears to provide a basis for design of optimum

1P microstructures. Specifically, the critical stress increases with the toughness

of the matrix, the modulus and volume fraction of fibers, the frictional stress

at the fiber/matrix interface, and decreasing fiber diameter. However, it

V should also be appreciated that, as the interface frictional resistance

increases, the net tensile stress on the fibers ahead of the crack also tends to

increase. This stress enhancement must eventually result in fiber failures

ahead of the advancing matrix crack and a consequent change in the failure

node. An optimum frictional resistance is thus anticipated, coincident with the

maximum matrix cracking stress that prohibits fiber failure. This aspect of the

problem remains to be resolved.
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*

possible to define a matrix cracking stress as an intrinsic property.of the

composite, as required for their explanation of the regularity of the multiple

matrix cracking. Moreover, for steady state crack growth their analysis based

on a comparison of the energy of the uncracked system and the energy after

complete cracking is valid, and the result is equivalent to Eq. (9). However,

their analysis differs in one important respect from the present work. They

prescribed the matrix cracking strain em as a characteristic of the matrix
16

rather than the composite, and proposed that Eq. (9) applies only at small fiber

diameters for which ao exceeds the stress corresponding to em . Such a

restriction is not required in the present analysis which takes into account the
* e

crack length dependence of the strength of the unreinforced matrix. In fact,

the reinforcing effect of the fibers can be inferred directly from Eq. (21).

The first term on the right side represents the product of the strength of the

unreinforced matrix (K /Qc 1  ) and the modulus ratio, Ec/Em . This term is

plotted, along with the matrix cracking stress for the composite, in Fig. 5.

The difference between these two curves represents the reinforcing effect of the

fibers for a composite with equal fiber and matrix moduli (Ef = Em). For

typical composites the fiber modulus is the larger, and the matrix cracking

stress of the composite is always higher than the strength of the unreinforced

matrix, for a given crack length. However, for composites with Ef < Em the

relative strengths are dependent upon the crack length.

The energy balance and stress intensity analyses provide equivalent

*relations between the steady-state matrix cracking stress and microstructural

parameters, as indicated in Section 3.2. A quantitative comparison of the two
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CHAPTER V

ON THE MECHANICS OF FAILURE

IN CERAMIC/METAL BONDED SYSTEMS
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ON THE MECHANICS OF FAILURE IN CERAMIC/METAL BONDED SYSTEMS

ii

ANTHONY G. EVANS* AND M. RUHLE**
*Department of Materials Science and Mineral Engineering,
University of California, Berkeley, CA 94720
**Max Planck Institut fur Metallforschung, Institut fur
Werkstoffwissenschaften, Stuttgart, Federal Republic of Germany

ABSTRACT

Stress concentrations that develop in metal/ceramic bonded systems have
been evaluated and shown to encourage crack propagation at, or near, the edge
of bonded interfaces. Experimental indentation observations on Nb/Al203
confirm the existence of the predicted stress concentrations. In this
system, failure was invariably observed to initiate in the ceramic, such that
quasi-static cracks located at the interface exhibited crack blunting.
However, substantial dynamic reductions in the crack growth resistance of the
interface are inferred from fracture surface observations. Implications for
the optimal strengths of ceramic/metal bonded systems are presented.

INTRODUCTION

The mechanical response of a system is governed by the stress
distribution and by the fracture characteristics of each material
constituent. Both aspects must be separately investigated before devising an
approach for optimizing mechanical strength. Consequently, investigation of
the mechanical behavior of ceramic/metal bonded systems requires
consideration of the stress state, as dictated by the applied loads and the
elastic and thermal expansion mismatch, as well as the individual fracture
characteristics of the ceramic, metal and interface. The limited available
research on ceramic/metal bonded systems indicates that fracture in the
ceramic, adjacent to the interface, is a frequent failure mode (1,2).
Interfaces with a greater fracture resistance than the ceramic thus appear
to be attainable. Consequently, an issue of greater present concern is the
state of stress associated with bonded systems. The intent of this article
is to examine various problems associated with the growth of cracks at, or
near, the interface in ceramic/metal bonded systems, as a basis for
understanding mechanical strength.

The strength issues are illustrated by experiments conducted in the
A120 3/Nb system. This system has the attractive features that thermal
expansion mismatch is minimized and that discrete interfaces can be achieved
(3). However, mismatch in elastic modulus provides unique failure modes,
typical of ceramic/metal bonded systems. In particular, failure frequently
initiates at edges, due to substantial stress concentrations (4). Edge
effects are thus afforded special emphasis.

The mechanical response of the system is probed using indentations placed
at various sites adjacent to, and remote from, the interface. The
indentation method has been selected because it simulates the fracture
behavior induced by machining damage (5) and by inclusions (6) - two of the
most deleterious defect types in high strength material systems (6).
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EDGE EFFECTS

Stress Concentrations

When a mismatch exists in either thermal expansion or elastic modulus,
edges and corners are major sources of fail ure. The basic nature of the
edge problem is illustrated for the configuration depicted in fig. 1. When
the metal strip has either a larger thermal expansion coefficient or a lower
modulus than the matrix; the unconstrained metal develops a smaller lateral
dimension than the ceramic (fig. ib). Hence, to simulate the stress state in
the bonded system, the unconstrained metal must be uniformly extended by the
appl-cTicaon of edge tractions (fig. ic). Then, surface forces (equal in
magnitude but opposite in sign) must be applied to the metal, in the bonded

state, to achieve stress free conditions at the surface (fig. id). This

latter step induces large normal and shear stresses near the edge, which
typically act over a distance similar to the thickness, h, of the metal.
Furthermore, the stresses are frequently singular (4).

In the presence of elastic mismatch, the stresses near the edge, induced
by an applied stress a., exhibit a singul,.r form (4"-T7 -T"ipane strain
conditions, the edge stresses can be expressed as

- f(ci,8) (1)

where 'a ()where (iUi/i 2)(l-v2) - (1-v1)

- (U/~U2)(1-V 2) + (l-v I )

(U 1/U2)(1-2v 2) - (1-2yl)
8 " 2(u1/u2)(1-v 2) _ 2(1-vl )

CERAMIC

.

METAL 2.
CERAMIC

01 INITIAL STATE IIl STmESSED UNCOMSTRA INE

c) UPCONftrAPIEO 41 SURFACE FORCES AkfIEi.
DISPLACEMENT FOR STRESS PIE S~EACr
CONTINUI T Y AT AEOUIREMENTS

IO TER ACE

Fig. 1 - A schematic illustrating the development of interfacial stress
concentrations due to elastic (or thermal expansion mismatch).

182

A,



is the shear modulus, v is Poisson's ratio, f is a function,Y is a
coefficient (<1) and r is the distance from the edge, along the interface. - -

Some typical results (4) are plotted in fig. 2. Very large tensile and shear
stresses thus exist over small regions adjacent to the edge.

CERAMIC

i413

METAL

0.8

0.4 rz dO'

0 0.1 0.2 0.3 0.4
r/h

Fig. 2 - Stresses near a free surface at the interface between a bonded
system for the condition ul/u 2 = 0.11, v1  v2 = 1/2 (a= -0.8, = 0)(4). The
maximum shear stress occurs just beneath the surface.

Thermal expansion mismatch has a similar effect, by virtue of large
residual stresses created near the edge. Specifically, if the elastic
properties are the same for the metal and ceramic, the interface stresses are
given for a bonded cylinder by (7);

E~T 1~(r Id) (2)

where d is the diameter of the cylinder and the function Q is plotted in
fig. 3.

A mismatch in modulus generates interfacial tensile stresses Gzzat the
edge, irrespective of the sign of the mismatch and thus, invariably, enhances
the propensity to fracture. Thermal expansion mismatch induces tensile
stresses just outside the interface, within either the metal or the ceramic,
depending upon the sign of the thermal expansion and the elastic mismatch.
Generally, the metal has the larger thermal expansion coefficient and the
expansion mismatch then induces ozz tensile stresses in the ceramic, adjacent
to the interface, and encourages failure in the ceramic. Large shear
stresses always exist along the interface, near the edge, in the presence of
elastic r-thermal mismatch. A substantial mode II contribution to edge
failure should thus be anticipated in all situations.
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Fig. 3 - Stresses induced by a thermal expansion mismatch in a bonded
cylinder. The shear stresses are at the interface, whereas the tensile
stresses are in the ceramic cloase to the interface (z/d = 0.05). The normal
stresses immediately at the interface are zero. The maximum shear stress
occurs just beneath the interface.

Crack Propagation

The propagation of cracks from an edge along, or adjacent to, the
interface is governed by the appropriate strain energy release rate (8,9).
For example, the total strain energy release W for an interface crack in the
absence of thermal mismatch has the general form (10,11,12)

WE /o~a = g(;,a/h) (3)

where Ec is the composite modulus (12),

1/E 1++-+2
C

such that, for plane strain, x = 3-4v, the variable C is given by,

- 2+X2.

and g is the function plotted in fig. 4. An approximate analytic
expression for W , deduced from fig. 4, is (10),

WECoa = (hla) + X2 (4)
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Fig. 4- The variation in the normalized strain energy release for an
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Fig. 5 - Trends in the interface crack growth stress within crack length for
values of the singularity either smaller or larger than unity.
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X1,2 are coefficients and 0 is an exponent. When 9 dictates crack
at some critical level,(5 (dictated by the lower value for either the
ice or the ceramic), theCequilibrium crack growth stress has the
on less form

c (5)a Ii/(5E c - A(a/h)()

k is the function plotted in fig. 5. It is of interest to note that
,1, the crack grows stably under increasing load and reaches an
lity at a critical stress, ac, given by

aci X (6)

1 2

,%%

II

11S

-Optical micrographs of indentation cracks before and after loading
ominal stress of 80 MPa. (a) an indentation remote from the interface,
indentation remote from the i nterf ace but close to the edge, (c) an
ation near the center, close to the interface.
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The observed failure stress associated with edge flaws is dictated in
this instance by the metal layer thickness, rather than the initial crack
size (anal agous to the-eWaor observed at indentations (5)). The metal
layer thickness thus emerges as a preeminent fracture controlling parameter,
consistent with practical experience (2).

An important limitation of the preceding analysis is the implicit
assumption that all of the strain energy is available for crack propagation.

6 Experience with delamination in polymer matrix composites (9) reveals that,
frequently, the opening mode component,, , is more important than the total
V. Such behavior is indicative of minimal coupling of the shear component of
the strain energy release raterA, to the fracture mechanism. Consequently,
since a substantial contributionlkto 9 ,for interfacial edge cracks, derives
from the shear stress (section 2.1), it is deemed improper to presume that

W the total W is the pertinent crack driving force. Careful experimental
studies of the respective influence of 01 and WI, on the growth of
interface cracks are required before fully specifying an acceptable fracture
criterion.

Thermal expansion mismatch imposes additional edge stresses that also
contribute toV(13). Computations of if cracks have not yet been conducted.

* The relative influence of the elastic modulus and thermal expansion mismatch
on the netcrack driving force thus awaits further investigation. In this
context it should also be recalled that strain energy release rates are not
additive. Interaction terms must also be included, based on computations of
9I and 1 for each problem.

EXPERIMENTAL OBSERVATIONS

Test Procedures

Four point flexure specimens consisting of thin (-1 mm) strips of Nb,
diffusion bonded to polycrystalline alumina, were prepared and carefully

IP polished on the tensile surface. Vickers indentations were then placed at 7
various locations with respect to the interface, but within the uniformly
stressed regions of the flexure specimen (viz., between the inner loading
rods) and the indentation cracks characterized by optical microscopy (fig.
6). Thereafter, the specimens were loaded to -80 MPa and unloaded. Changes
in the indentation crack lengths induced by the load were determined and
related to local stress concentrations. Subsequently, the specimens were
loaded to failure. Fracture origins were then identified and used to assess
crack configurations at the failure instability.

Observations

Indentation cracks remote from the interface (fig. 6a) exhibited little
extension, except at indentations close to an edge (fig. 6b). However, on
the same specimen, indentation cracks placed adjacent to the interface
experienced substantial growth (fig. 6c). The comparative extension provides
a direct measure of the stress concentration factors, as described in the
subsequent section. Maximal crack growth occurred at indentations placed
near the interface, at the specimen edge.

Observations of cracks that terminate at the interface reveal slip band
formation in the Nb and crack blunting (fig. 7a,b), indicative of appreciable
ductility in the Nb adjacent to the interface. The large plastic stretch
observed at other crack tips (fig. 7c) substantiates that the Nb can sustain
extensive plastic strain. Yet, observations of the fracture surface, away
from the initiation site, indicate that rapid crack propagation to failure
has occurred at the interface, with no evidence of plastic deformation in the
Nb (fig. 7c). This paradox appears to be explicable based on more detailed
observations of fracture initiation sites. Indentation cracks that either

187

" - " ". .- - "," i --"- .. "." "." " - .--. '.-''" "- " ." " "' " "-" "-*- " " - " "" ".



terminate at the interface, or grow stably to the interface during loading,
invariably exhibit crack tip blunting and never initiate the final failure S
(fig. 8). Failure always initiates from cracks in the A120 3 which becomes
unstable while still contained within the ceramic (fig. 8). Further,
unstable, growth of the crack then entails attraction of the crack to the
interface, whereupon interface propagation occurs in a nominally brittle
mode. These fracture characteristics are -deemed to be consistent with a
velocity sensitive (c for the interface crack, as discussed in the following P
section.

One final feature of the failure that merits consideration is the
observation that indentations emplaced very close to the interface (fig. 9)
result in low failure loads. An accompanying observation is the substantial
residual openings exhibited by the indentation crack, and the extensive
deformation of the Nb adjacent to the interface (fig. 9). These observations I
are shown to be consistent with the development of residual stress, due to
the localized plastic deformation of the Nb, and the effects of the residual
stresses on crack propagation in the Al203.

metal 10 '

interface 5

ceromicl crack
metal metal surface

interface

r a p id" 3 ... :
fracture .

cer surface - plastic stretch. C

Fig. 7 - Crack tips at the interface showing near ban~s and crack tip blunting
(a) crack normal to the interface (b) a crack inclined to the interface (c) the
plastic stretch zone after removal of the ceramic by rapid fracture. The rapid
fracture surface on fig. 7c indicates lines where the A120 grain boundaries
intersect the interface, but there is no evidence of plastic deformation at the -
interface away from the stretch zone.
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F ig. 8 -Two indentations o n the same specimen but on opposite sides of the
Nb Ilayer. The indent which becomes unstable in the Al1203 is the fa ilIure
origin: (a) and (b). The indent with an initial crack tip at the interface
does not cause failure: (c) and (d).

Fig. 9 An indentation close to the interface causes premature failure Note
the substantial residual opening of the crack in the A1203 and the deformation
of the Nb.
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Analysis

The relative extensions of indentation cracks at various locations
throughout the test specimens may be used to estimate stress distributions
(Appendix I) using;

1/02 = (a2/al)
1 /2 [(1-R 1 2 )/(1-R 2 ] (A4)

This formula is only strictly valid for cracks in isotropic material and
thus, has minimal utility for cracks very close to the interface. With this
restriction, estimates of stress ratios from fig. 6 reveal that edge stresses
within 100 m of the interface exceed the applied stress byN1.6, consistent
with the calculations by Bogy (4).

DISCUSSION

Various experimental (14) and theoretical studies (15) of rapid crack
propagation in b.c.c. metals have indicated that f decreases rapidly with
increase in crack velocity, due to the strong siress dependence of the
dislocation velocity. Such behavior explains, for example, the existence of
unstable brittle failure in steels, after initial crack tip plastic blunting
(viz. in the upper transition range). A comparable rate dependencelc
should be expected in the Nb, especially if appreciable amounts of oxygen are
in solution near the interface. Furthermore similar rate dependent
plasticity effects should be experienced by a crack tip located at the
Nb/Al203 interface (albeit to a reduced extent, because of the constraint
exerted by the non-deformable A1 203 ). It is thus proposed thatvf for the
interface exhibits the crack velocity dependence depicted in fig. 10. At
high crack velocities, plastic deformation of the Nb is essentially inhibited
and 9Fc for the interface,(f1), is smaller than that for the polycrystal line
A1203 (iC). In this situation, v is largely dictated by the interfacial Z.

energy associated with the interface structure, viz;

if/ICf " (yNb + YA0- Yin) 2 Al2 0 3  (7)

where the y are surface energies and Yint is the interface energy. At lower
velocities, plastic zones can be activated by. the crack tip stress field and
the associated plastic work contributes to W. A large increase in if thus
ensues, such thatifQsubstantially exceeds Sc (which is known to be
insensitive to crack velocity (16)). c

The preceding trends in i9 for the composite system are fully consistent
with the experimental observations. Specifically, stationary cracks at the
interface invariably blunt (fig. 7) due to the large associatedf, and have,
consequently, never been observed as failure initiation sites (fig. 8).
Failure always occurs from cracks which become unstable in the A1203. The
rapidly moving crack, thus formed in the A1203, subsequently extends
preferentially along the interface, where i now exhibits its minimal value,
due to the absence of plasticity in the N% (fig. 8). Validation of this
hypothesis, of course, requires crack growth studies as a function of
velocity. However, the associated implication for the mechanical strength of
the bonded system is that, for most situations, the interface fracture
resistance 91 is entirely adequate, viz., fracture is not limited by the
interface. (Problems may arise at high loading rates, but such conditions
are infrequently encountered).

Another important influence of plasiticity in the metal concerns the
development of residual stress. The presence either of machining damage or
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of inclusions* in the ceramic immediately adjacent to the interface is likely
to induce plasticity in the metal, comparable to that observed around the
indentation depicted in fig. 9. Residual stresses of order, 4Y/3, are thus to
be anticipated (Appendix I) in the ceramic, where Y is the yield strength.
The residual stresses superpose on the concentrated applied loads at the
edges and cause premature failure. Such highly deleterious failure
characteristics can be averted by avoiding near-interface defects of this
type and/or by selecting a metal with a low yield strength.

CONCLUDING REMARKS

The indentation experiments reveal the sensitivity of the interfacial
zone to the presence of defects in the adjacent ceramic by virtue of the
large associated stress concentrations. The processing of high quality
bonded sytems thus requires that great care be excercised in the avoidance of
defects in the interfacial zone, near the surface. Specifically, excessive
inclusions or voids in this zone would be most damaging. Furthermore and
perhaps, most importantly, machining damage in the ceramic near the interface
(a phenomenon closely simulated by the indentation cracks (5)) would be
extremely deleterious. Machining conditions thus demand careful control.

Several remarks concerning the influence of plasiticity on the mechanical
properties are also deemed worthy of consideration. Plasticity in the metal
at low loading rates implies that interfacial cracks are likely to be
susceptible to fatigue. Fatigue crack growth rates (da/dN vs.W) should thus
be measured, as well as fatigue crack initiation effects. Plastic
deformation in the metal is also expected to induce complex behavior in
notched specimens. In this context, it should be recalled that notched beam
tests (e.g. Charpy tests) and JIC tests in steels can yield opposite trends
in failure load with microstructure, due to the difference in the scale of
the plastic zone relative to the microstructural scale at which the fracture
mechanisms operate (17).

NO PLASTICITY IN Nb

.0

I SUBSTANTIAL
IPLASTICITY IN Nb

-...

4 ".

15 A1203, -INTERFACE,¢C

I I I

0 50 100 1SO ZOO

IC

Fig. 10 - Postulated trends in sc with crack velocity.

*Thermal expansion mismatch between the inclusion and the matrix induce
matrix deformation that may exceed the yield strength of the metal; thereby
causing residual stress.
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APPENDIX I

Growth Characteristics of Indentation Cracks

An indentation crack of radius, a, contained in an isotropic body
exhibits a stress intensity factor, K, given by (18);

K - C aa1 /2 + C 2a3/2 (Al)

where CI and C2 are constants for a given indentation load and a is the
applied stress. Hence, the stress and crack length are related by;

K K/C1 a/ 2 - C2/C1a
2  (A2)

However, Kc is also related to the initial crack radius, ao, at zero applied
stress by, Kc C2ao/. Consequently, from eqn (A2), the stress is given
by;

K 1- (ao/a) 3/21 (A3)

Furthermore, if similar indentations are placed at two different locations
within an isotropic brittle solid the ratio of stresses developed at those
sites is

/ (A4)

a1  I 3/2
a 2  (T.' -R

where R is the crack length ratio, ao/a. Stress variations within a body .
may thus be estimated from indentation crack length ratios, without requiring
knowledge of either material parameters or geometric constants.

APPENDIX II

Residual Stress Effects

Residual stress effects and their influence on crack extension can be
illustrated using the pressurized spherical cavity as an example (19). When
two connected materials with different elastic and plastic properties are
subject to internal pressure, such that the inner material is immune to
plastic yielding, the outer material first experiences plastic deformation
when the normal compression at the interface exceeds, p = 2Y/3, where Y is
the yield strength. Further plastic deformation results in the radial stress
distribution depicted in fig. 11, with a minimum occurring at the interface
and a maximum at the elastic/plastic boundary in the outer material.
Unloading requires that the elastic stress distribution be subtracted from
the stress at peak pressure (fig. 11), resulting in the residual field
depicted in fig. 11. The residual radial stress exhibits a peak tension at
the interf ace.

However, for relatively low yield strength material, reverse yielding
occurs and the peak residual tension is then (19), aR - 4Y/3.
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Fig. M. Residual stresses created by expansion of an elastic spherical
shell into an elastic/plastic matrix.
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ABSTRACT

Residual stresses that develop during cooling of a metal/ceramic

strip are calculated analytically. It is shown that the metal may

behave elastically or plastically (with full or partial plasticity)

depending on the mechanical properties, the thickness of the two

constituents and the mijmatch in thermal expansion. Residual stresses

are also calculated for a sequence consisting of constrained

undercooling, removal of the constraint and reheating. It is

demonstrated that reheating, which results in elastic stress

relaxation, may be used to eliminate the residual stress. The optimum

undercooling and reheating conditions needed to produce a stress free

strip, at the operational temperature, are calculated and specific

results are presented for the Cu/A1203 system.

197



I. INTRODUCTION

A number of applications in microelectronics involve combinations

of metal and ceramic constituents. These constituents are subject to

residual stress due to thermal expansion mismatch. The stresses that

develop depend on the configuration of the system. A metal cylinder

imbedded in an infinite ceramic matrix has been previously analyzed1 ,

as appropriate for a conducting element in a microelectronics package. 2

A metal/ceramic strip, pertinent to a metallized substrate in hybrid

power electronics, 3 has also been analyzed, 4 but only for a non-

hardening metal. The present paper extends the stress analysis for the

strip configuration to include work hardening and to identify the

existence of an important partially plastic condition. Furthermore, a

.. thod of eliminating the residual stresses in the strip configuration

is presented and analyzed.

Residual stress elimination can be achieved if the metal/ceramic

strip is undercooled and reheated. Stress elimination is further

facilitated if the strip is constrained from bending during cooling,

allowed to undercool in the constrained state, and then reheated to

the operational temperature. Judicious selection of the undercooling

temperature permits the strip to be stress free at the operating

temperature. The requisite undercooling is calculated in the present

study.

The evolution of the residual stresses in the metal/ceramic strip

is calculated, subject to the premise that bonding is conducted at

elevated temperatures, where the longitudinal stresses are fully
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the metal starts to yield in compression, initiating from the

metal/ceramic interface. The optimum undercooling needed to straighten

the strip and eliminate the residual stresses upon subsequent heating

is predicted from the present study. Finally, a comparison of

unconstrained with constrained cooling indicates that the curvature and

the residual stresses that develop during the latter are significantly

lower. The use of constraint is thus of general desirability with

regard to the minimization of residual stresses in metal/ceramic

strips.
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boundary and the curvature of the strip, with the mismatch in thermal

expansion, the mechanical properties and the thickness of the two

constituents as variables. It is specifically demonstrated that, for

a metal with a high work hardening rate, fully plastic deformation is

suppressed, because of the stress redistribution caused by bending. It

is also noted that, for a perfectly plastic metal, once the Oully

plastic condition has been achieved, the curvature and the stresses do

not change with further cooling. Brittle fracture tendencies of the

ceramic are thus reduced by using a non-hardening metal strip.

The calculations presented above refer to the stresses within the

beam, away from the free ends, where the interface is stress free (i.e.

no normal or shear stresses at the interface). At the ends, the

requirement that the surfaces be stress free perturbs the stress field

to a distance about three times the strip thickness. 7 Within this

region, shear stresses develop at the interface and exhibit a peak

about one strip thickness away from the end. Large normal stresses

also develop at the interface, which may be singular at the end. These

end effects often result in debonding at the interface.

A constrained cooling procedure for the elimination of residual

stress has also been analysed. During constrained cooling, the strip

is prevented from bending and uniform tensile and compressive stresses

develop in the metal and the ceramic, respectively. As the constraint

is removed bending occurs due to the asymetric stress. Upon reheating

the curvature and the residual stresses initially reduce, as the strip

becomes straight. However, further heating causes reverse bending and
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1000C. It can be deter,-,ned from the figure that undercooling of the

strip by AT e  -1044 C and subsequent heating by ATh = 44C would

straighten the strip and eliminate the residual stresses. The critical

cooling and reheating temperature needed to straighten the strip (Eqs.

r4 and C5 are plotted in fig. 13 as functions of the relative metal

thickness and work hardening rate. It is noted that the higher the

work hardening rate, the lower the critical undercooling temperature,

and hence, the higher critical reheat temperature (fig. 13).

It is also interesting to compare the residual stresses that

develop in the strip with and without a cooling constraint (section 2).

The comparison evaluated for a nonhardening metal (H=O) is plotted in

Fig. 14 for tm/t c = 1. It is noted that both the curvature and the

residual stresses at a specific undercooling are significantly lower

when constraint is imposed. The imposition of constraint is thus of

general desirability for the minimization of residual stress during

undercooling and hence, inhibits the development of cracks, or other

modes of damage.

4. CONCLUSIONS

A stress analysis has been conducted for a linear work hardening

metal in a metal/ceramic strip. Stresses develop during cooling to

room temperature, due to the different mechanical and thermal

properties of the materials. This asymmetry results in bending and

stress redistribution. The calculations illustrate trends in the

stresses, the locations of the neutral axis and the elastic/plastic
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axis (x tn), is zero. Residual stresses computed for the Cu/Al203

system are summrized in Figs. 8 and 9 for the case, tm/t : 1 and a

- -1200C. After constrained cooling, uniform tension and compression

develop in the metal and ceramic, respectively (Fig. 8a). As the

constraint is removed, bending occurs and the stress distributions are

modified (Fig. 8b). Then, upon reheating, the residual stresses are

initially reduced (Fig. 9a). However, further heating results in

reverse bending and an increase in the residual stresses (Figs. 9b).

Eventually, compressive yielding of the metal initiates from the

metal/ceramic interface, such that partially (Fig. 9c) or fully (Fig.

9d) plastic conditions may develop.

The reheat temperature needed to straighten the strip and

eliminate the residual stresses (eqn C3) is evaluated as a function of

the relative metal thickness, tm/tc and plotted for several cooling

temperatures in fig. 10 (the essentially linear variation is attributed

to the relative magnitude of the deformation parameters for Cu, for

which H << EM).

The variation of the curvature with the reheat temperature (for

tm/tc = 1 and ATc = -12000) is plotted in Fig. 11. The regions of

elastic, partially plastic and fully plastic response of the Cu are

indicated. It is noted that the curvature and residual stress exhibit

relatively large changes while the response is elastic. Conversely, .'--

quite small changes occur when the Cu becomes fully plastic.

An example of optimum undercooling is illustrated in Fig. 12,

using a temperature difference between bonding and room temperature of
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h - E c + n r amAT h  (16a)

(-tin_< x S -ty)

h n

h [ + n mATh H m i"

(16b)

(-t Y< x O)

where -ty is the position of the elastic/plastic boundary. Finally,

for a fully plastic metal (ty = tm), eqn (16) reduces to,

h + x-tO+O [ (17)Om r C'mAh - H YJ +--

(-t ' x O)

The total residual stresses are the sum of the cooling stresses

and subsequent stresses due to loss of constraint and reheating, such

that

am c  + Oh
m m (18a)

C h
a -a + ac c C (18b)

The stresses are obtained subject to solutions for the constants: c,

tn and r (and t y for partial yield). These constants can be solved

(Appendix III by imposing the following boundary conditions (section

2). The sum of the bending stresses (terms involving (x-tn)/r) is

zero. The sum of the total stresses is zero. The stress at the

elastic/plastic boundary (x=-ty), equals -Oy (for partial yield only).

Finally, the sum of the bending moments, with respect to the neutral
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h C + (x-tn)/r (13)

(-t <x<t )
C

where c is a constant (to be determined), tn is the position of the

neutral axis and r is the radius of curvature (r is positive when the

metal is on the concave side).

The stresses a h and ch can be derived directly from the strains.
m C

In the linear elastic ceramic, the stress, Ch , is directly related to
C

the strains by

a E + = ECATh ( + x _ a (14)
OC C rC C r c h(0 _< x < t C)

In the metal, plastic strain may also be involved. Specifically,

the metal may yield in compression during reverse bending.

Furthermore, since the metal near the metal/ceramic interface is --

subject to the largest compressive stress, yield initiates at the

interface (x=O). The relations between the stress and the strain that

develop in the metal are thus formulated for three cases, depending on

the material properties and the reheat temperature: elastic, partially

plastic and fully plastic.

The elastic stresses are simply,

h Em c + - amATh (15)°m =m r (-mh x 0 )' '''',:,. :l .

In the partially plastic case, the stresses may be deduced as

(Appendix II),
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c maC t c + a m tm M (0),'.

the stresses become,

oc m [c-a) Tc + 1+ + .. + (12a)

aC . - acc t /t (12b)

3.2 Relaxation and Heating

Removal of the constraint after undercooling induces bending, with

the metal on the concave side of the strip (Fig. 7c). Subsequent

heating relaxes the residual stresses, and reduces the curvature of the

strip until the strip is straightened (Fig. 7d). Further heating then

causes reverse bending and raises the residual stresses, such that the

metal eventually yields in compression (Fig. 7e). Consequently, during

heating the metal can either behave elastically, or be partially or

fully plastic, depending on the material properties and the reheat

temperature.

To evaluate the stresses that develop due to loss of constraint

and reheating, the bending strains are regarded as being proportional

to the distance from the neutral axis and inversely proportional to the

h
radius of curvature. 5  Then the strain, e, becomes
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o* (fig. 6a). However, overstraining followed by relaxation can

appreciably reduce the final stress, because the stress relaxes

elastically. By suitable choice of the overstraining stress 0 , the

final stress can be reduced to zero (fig. 6a).

A similar sequence obtains for the undercooling and reheating

process (fig. 6b). The metal/ceramic strip is stress free at the

bonding temperature. Elastic stress develops during initial cooling.

Yielding of the metal then occurs and the stress increases at a

diminished rate. Furthermore, by undercooling and reheating to room

temperature, the residual stress can be eliminated (fig. 6b).

3.1 Constrained Cooling

The metal/ceramic strip is bonded at elevated temperature and then

undercooled, with an external constraint imposed, over a temperature

range LTC (LTC is negative), as depicted in Fig. 7a and b. During this

step, bending is prohibited and the metal is amenable to plastic

deformation. Uniform tensile, r and compressive, mc , stresses
m

develop in the metal and the ceramic, respectively (for a metal with a

larger thermal expansion coefficient than the ceramic). The cooling

stresses, cc and cc , are determined, subject to strain uniformitym

within the strip, such that

C C C

C + acATC - E H amATc (10)
E cc Em H
C m

Then, by noting that the total force on the system is zero, such that
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fully plastic, it complies with the strains within the ceramic and the

curvature does not alter with further decrease in the temperature. .

Some trends in the stress distributions are plotted in fig. 5 for

the elastic, partially plastic and fully plastic cases. It is evident

from fig. 5b that while partial yielding conditions apply, the stress in

the ceramic is relatively unaffected by the plasticity in the metal,

being similar for H=O (no work hardening) and H = (rapid work

hardening). However, once fully plastic conditions develop, the

plasticity of the metal exerts a profound influence on the stress in the

ceramic (fig. 5c), as also apparent from the curvature (fig. 4). Most

importantly, the maximum tensile stress in the ceramic is considerably

smaller for the non hardening metal. Brittle fracture of the ceramic is

thus suppressed by using a non hardening metal constituent. Finally, it

is also noted that for a metal with high work hardening rate, fully

plastic deformation is suppressed and the metal surface can yield in

compression, because of the high compressive stress caused by bending

(fig. 5d).

3. ELIMINATION OF RESIDUAL STRESSES

The procedure used for elimination of the residual stress by

undercooling and reheating can be exemplified and simulated by

considering a standard elastic/plastic material subject to a sequence

of overstraining and relaxation (fig. 6). Upon straining, the stress

increases linearly until yield, whereupon the stress increases at a

reduced rate (dictated by the work hardening rate) to a final stress
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conditions (Appendix I). However, for partial yield, analytic solutions

of the four simultaneous equations (Eqs. 6 to 9) are too complex.

Essential trends, are thus elucidated (Appendix I) for two limiting

cases: H = (zero plastic strain) and H = 0 (perfect plasticity).

Specific residual stresses are computed for the Cu/A1 2 0 3 system (figs. 2

to 5) by substituting the constants: co, tn, r and t into Eqs. (2),

y

(4), and (5) and using the material parameters 2 : Em = 1.2 x 105 MPa,

Ec = 3.5 x 10 5 MPa, am = 17 x 10-6C-I1 ac = 6.5 x 10- 6 C- 1  and ay

35 MPa.

The conditions of temperature and thickness ratio that determine

elastic, partially plastic and fully plastic behavior in the metal are

summarized in Fig. 2. Note that the fully plastic condition is

suppressed as the work hardening rate increases, or as the metal layer

thickness increases. This trend can be appreciated by recognizing that

bending generates compressive stresses on the metal surface, which reduce

the tensile stresses induced by the thermal mismatch.

The locations of the neutral axis and the elastic/plastic boundary

are plotted on fig3, as a function of the temperature change, -A.T. For

a metal and ceramic of equal thickness, the neutral axis is observed to

be always located within the ceramic, since the ceramic has the higher

Young's modulus. Furthermore, for a metal with a high work hardening

rate, note that the elastic/plastic boundary never reaches the metal

surface and hence, conditions of partial plasticity always occur.

Trends in the curvature with the temperature change are shown in

Fig. 4. For a perfectly plastic metal (H=O), once the metal becomes
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(- )r-l 
-xf Em(X-t)r-ldx + J (X-tn) [4 + ) - *dx

- m -t m (6)
ic )-. y

+ E (x-trn  . dx - 0

The stress at the elastic/plastic boundary equals the yield strength

(partial yield),

E m [Co - (ty + tn)/r ]  c y (7)

The net stress is zero,

E odx + ( + i- + dx +JE[e +(am-a)AT~dx

-tm  -ty 0
m y

-0 (8)

The sum of the bending moments with respect to the neutral axis (x~t n ) is

zero, -

f Em[0+(x-t n)/r](x-tn )dx + [Co ay/H +(X-tn)/r](X-t d

-t -tmY

t

1 -1 tC rj
(t+ *dx + E[e)A + (x-t )/r](x-t ).dx

I f CL o+(am~cJ n n
m 0

(9)

General solutions can be obtained for both the elastic and fully plastic

cases by evaluating the constants, Eo, tn, and r from the boundary
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the Prandtl-Reuss relation.6 For the present geometry,

ep - O)/H (3)

qP Wwhere H is the work hardening rate and am  is the stress in the metal.

Hence, for fully plastic deformation of the metal,

Em0+y + n\) + (4)

* am = Em ( o+H )

whereas, for conditions of partial plasticity the stresses in the elastic

region are

am E M[o + (x - tn)/r] (5a)
-- t m : x : - t )

m y

while in the plastic region,

-0e 0 (1.H)

S(-ty _< x _< 0)

where tm is the thickness of the metal and x -t is the plane of they

elastic/plastic boundary.

The stresses are contingent upon the magnitudes of the constants:

F' tn and r (and t for partial yield), which can be determined from the0 n y
following boundary conditions. +  The sum of the bending stresses (terms

involving (x-tn)/r) is zero,

Equations (6) to (9) are explicitly formulated for a metal subject to

partial plasticity.
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where t n  is the position of the neutral axis, r is the radius of

curvature, and c is a constant.

The bending strains tend to reduce the stress in the metal.

However, the reduction is appreciably larger at the metal surface than at

the metal/ceramic interface. This behavior may induce partial yield in a

strip adjacent to interface (fig. 1), i.e. when the effective stress in

this region exceeds the yield strength. Three deformation

characteristics of the metal must, therefore, be considered: elastic,

fully plastic and partially plastic. These three conditions are

evaluated in the subsequent analysis.

The stress, c  , in the linear elastic ceramic, can be invariably

related to the strain by simply applying the relations, --

cc  E c -acAT) (0 S x S t C)

or,

ac E c [eo + (aM-ac)AT] + c(X - tn)/r (2)

where tc is the thickness and Ec is the Young's modulus of the ceramic,

aeAT and am&T are the thermal strains in the ceramic and metal

respectively and o  is a constant (Eo = c - amAT).

In the metal, plastic strains may also be involved. The metal is

assumed to satisfy the Von Mises criterion6 , such that yield occurs when

the effective stress equals the yield stress, cy. Furthermore, linear

work hardening is assumed, whereupon the plastic strain, Fp, satisfies
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{7

relaxed. Specific stresses and curvatures are calculated for the 0

technologically important system: Cu/A1 2 0 3. For purposes of stress

elimination, the strip is constrained during cooling, whereupon

spatially uniform stresses of opposite sign develop in the metal and

ceramic. After cooling the constraint is released, bending occurs due

to the asymmetric cooling stress, and spatially varying residual

o stresses result. Subsequent heating then straightens the strip and

relaxes the residual stresses.

rD

2. THE RESIDUAL STRESSES

The residual stresses are determined incrementally upon cooling by

* invoking the following analytic logic for each temperature decrement.

The two constituents experience an unconstrained differential

shrinkage, as depicted in Fig. 1. Uniform tensile and compressive

*e stresses are then imposed on the metal and the ceramic, respectively,

to achieve displacement compatability, while the total forces still

remain zero. Finally, bending is allowed to occur to balance the

bending moment induced by the asymmetric stresses in the previous step.

Naturally, these processes occur simultaneously in the actual strip.

The bending strains in both materials are prescribed, by bending

theory, as being proportional to the distance from the neutral axis and

inversely proportional to the radius of curvature. 5  The strains, e

in a strip can thus be expressed (fig. 1) by,

S"(X - tn / + c(1,

n(1
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APPENDIX I

Stresses and Curvatures In a Ceramic/Metal Strip

The various bending conditions described in section 2 may be used to

evaluate the bending constants tn, E , 11r and ty and hence, to

determine the stresses. The essential results are summarized in the

text.

For the elastic case, the bending constants subject to the

requirement, am(x=O):5oy, are

2 _ Et2
c c mm(A)

n 2(Emtm + Et) (Al

Ec (=c-am )ATtc
o  Emt + Ect

m m c c

I6EmE c t mtc (t m + t c ) (c-am) LT

r E2t4 + E2t4 + 2EEctmtc(2t2 + 2t2 + 3t t)
mm c C m C c c

Partial plasticity requires that om(xO) > c y and a m(x=-tm <aY;

whereupon, for a metal with a large work hardening rate (H a.),

2 2
Ecr - Emt

n - 2(Emtm + Ect c )
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1 Ectc(tc+2 ty) Emtm(tm- 2ty) o
= 2r Emt m + Ect c  Em

1 6EmEctmt c (tm~t c ) (ac-am) AT

2r 2 4 2 2

r mEtmm + E~t~c  + 2EE tt (2t2 + 2t~c + 3tmt )

4E m t m + E4+c tc +2Em E ctmtc (2tm+2tc+3tmtc) y

+ EEc[Ect 4 + Emt 2 t (4tin+ 3t)] amt)AT
ty 2 tMm (A2)

6E 2Ect t (t +t )(am-ac)AT

and for perfect metal plasticity (H=O),

(2 2

E1 t 
2 - E (t 2 -ty)

1 c c m y
tn  E - (tm-ty ) + EEct c

S Ec t c(tc+2ty)-Em ( mt

2r Emm + E c tc

(E t +E t )a + E E ct c (a m -ac )AT

mm y mcc c

24 24 +2+ 2
m m cc c m c m c y y m mc c

3(E.. .2 -E . . . E t 2. .. E E (a -a )AT [t (E 3 + 3E . 2 t +
. . cc. m mc m c c c c mm c

4E t) +6E t t t (t +t -E t t (2t +3t )](A3)
m m m mc y m c m cy y c
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Finally for the fUlly plastic case (am(x=-t m) >y)

Et 2 _ (L+1\'2E t tm

t n 2(+ tm + Ectc

Ect (am-ac)bT + ( + ) tm

( + t + E tc

6E Ect tc(t +t )  + (ac-a.) AT + ]-
r 2 E -1 -1

ccmc "

+ 4+E2 + 2E E t t C(1+ (2t +2t+3tmtc)

(A4)

Note that, in the absence of work hardening (1=O) the curvature reduces

to,

1 6tm(tm+tc) a y
r 3

c c

and the stresses become;

t t2 1=-o - + (x- .-c y t R Xr
c

m  y (A5)
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* The fully plastic solutions for a non-hardening material have previously

been derived by Wittmer et al.4
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APPENDIX II

Relations between stress and strain for reverse yieldin in the metal

When the metal yields in compression upon reheating, the plastic

strain, ep, is

p (m + ay)/H (BI)

where a. is the total stress in the metal. The total strain that

develops during this step is, c + (x-tn)/r (eqn 13), and the thermal

strain is czmTh. The reheat residual stress in the metal, Ch  is

thus;

h X tE c n H. oly~
a m C+ n AmTh - (B2)

The total stress is the sum of the cooling and reheating stresses,

c h
Om 0m + .-

m m m (B3)

Hence, combination of eqns (B2) and (B3) gives,

Xot ac
am + n mL ET + f+ (B4)

Substitution of eqn (B4) into eqn (B2) then gives;

h + 1_ 1 + (B5)m a .h E H,
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Appendix III

Stresses and Curvatures In a Constrained Metal/Ceramic Strip

The boundary conditions described in section 3 may be used to

evaluate the bending and curvature terms that determine the stresses in

a strip after constrained cooling. For elastic bending of the metal,

upon loss of constraint and reheating, the constants can be explicitly

determined as

t1  - (E1:2 E t 2)/'2(E t + E t

c (Emamtm + Ecttc)ITh/(Emtm + Ectc) (Cl)

[ + E Ectc (ac-am)ATh 6tm(tm+tc
) (Emtm + Ect c )

L E2t 4 + E2t 4 + 2E E t t (2t2+2t2+3t t)m m C C n c ml c m c m C...

subject to the condition

am (=O) a (C2)

Note that the relation between the critical undercooling AT and

reheating AT needed to produce a flat strip (1/r = 0), when the metal

behaves elastically upon reheating, can be derived from eqn (Cl) as
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T +
ATh H+ (c_-c)H 1- tm

Em t Ec
ml C C

At this critical temperature, the strip is free from residual stress.

It is noted that, since the stress relaxation is elastic, the reheating

ATh (eqn (C3 is essentially the same as can be derived from section

3.1 (without removing the constraint). It is also possible to derive

the critical undercooling ATc and reheating 'Th associated with a given

temperature difference, ATo, between the bonding temperature and room

temperature;

AT* -(AT AT*) (C4)
C 0 h

where

ATm [T 0+ ( Y- f_][ + %M ] (05)

For partial plasticity in the metal, the solutions are complex and can

be determined from the four simultaneous equations:
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m (- / dx+ f (x-t n) [( + r )r] + E c(x-t n)/r *dx o

f y (-aAT dx + caAT + d
jEcm h m fClh H m H ~-+J

-t m fty

0

aC c mAThu -a (C6)

c+ Em [+ X - amTh] (X-t )dx

+ c+ E! Oa + -a -! (X-t dx 
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subject to the conditions

a (x-O) :-5y (C7)

am (X-t M ) _- y

For complete plasticity in the metal, m(x=-t M) y- oy, specific

solutions can be derived, as given by;

n 2 +1 Iy-t

+ t + Eat

+ +a tm + E a t  AT + c + t m (

i7 + tn + Ectc .-.

+ =m +  c -aA h +E

+ tc n [,c + Ec(C-acATh ]

L ) + tm  +n m + 2 + EaCt c  - tnt c + t 2
Em H3 nm n 3-nc"
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The residual stresses are obtained by substitution of the constants,

t n, cl t and r into eqns (14) to (18).
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Figure Captions

Fig. 1 The metal and ceramic strips in the stress free initial

condition. After cooling, the strips would exhibit unconstrained

differential shrinkage. However, residual stresses allow dis-

placement compatibility. Finally, bending stresses develop, to

balance the bending moment.

Fig. 2 The temperature regimes for elastic, partially plastic and fully

plastic deformation of the Cu in a Cu/A1203 strip.

Fig. 3 The position of the neutral axis and the elastic/plastic boundary

of a Cu/A1 203 strip as a function of the temperature change, -AT,

for tm/tc = 1.

Fig. 4 The curvature of a Cu/A1203 strip as a function of the temperature

change, -AT, for tm/tc 1.

Fig. 5 The stress distribution within Cu/A1203 strips for three

different deformation responses of the Cu: (a) elastic at

-AT = 48.3C, (b) partially plastic at - AT 122C and (c) fully

plastic for H=O (perfect plasticity) at -AT 227C. Also shown

(d) compressive yield occurring at the metal surface for H

at - AT = 225C, for tm/t c = .

Fig. 6 A schematic showing reduction of stresses by (a) overstraining

and relaxing and (b) undercooling and reheating, also showing

the effects of work hardening rate.
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Fig. 7. (a) The metal and the ceramic are bonded at high temperature.

(b) Constraint is imposed on cooling to prevent bending:

cooling temperature, ATc .

(c) Release of the constraint induces bending.

(d) The strip is straightened by reheating.

(e) Further heating results in reverse bending.

Fig. 8 Stress distributions within a Cu/A12 03 strip for tm/t c = 1

and AT0 = -1200 C showing (a) uniform tension and compression

in the metal and the ceramic, respectively, after constrained

cooling and (b) residual stresses modified by bending after

removing the constraint.

Fig. 9 Stress distributions within a Cu/A1 2 03 strip for tm/t c = 1

and ATc = -1200 C showing (a) that the residual stresses are

reduced by heating to ATh = 40C (b) reverse yielding occurs

and increases the residual stresses at ATh 90C (c) partial

yielding of the metal at ATh = 180C and (d) full plasticity of

the metal at ATh = 225C.

Fig. 10 The critical heating temperature to straighten the strip as

a function of the relative metal thickness for AT0  -500 C,

-I000C and -1200C.

Fig. 11 The normalized curvature as a function of the reheating
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temperature for tm/t c  1 and ATc -1200C. Also shown are

the regions of elastic, partially plastic and fully plastic

deformation response of the metal.

Fig. 12 The normalized curvature as a function of the undercooling

temperature for tm/t c = 1. The temperature difference

before cooling and after heating is 1000 C.

Fig. 13 The critical cooling and heating temperature to straighten the

strip as a function of the metal thickness for the temperature

difference between the bonding and the room temperature equals

1000 C, H = 600 MPa and 6000 MPa.

Fig. 14 Stress distribution within a u/A120 3 strip for tm/tc 1,

H 0 for constrained and unconstrained cooling.
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CHAPTER VII

ON RESIDUAL STRESSES AND CRACKING

IN METAL/CERAMIC SYSTEMS FOR MICROELECTRONICS PACKAGING

C. H. Hsueh and A. G. Evans

241



ON RESIDUAL STRESSES AND CRACKING

IN METAL/CERAMIC SYSTEMS FOR

d MICROELECTRONICS PACKAGING
S

by

K I I

C. H. Hsueh and A. G. Evans

Department of Materials Science and Mineral Engineering

University of California, Berkeley, CA 94720

ABSTRACT

Residual stresses that develop in a metal/ceramic system due to

*I thermal expansion mismatch have been calculated for a work hardening

metal. The calculations have been conducted for a cylindrical

configuration, pertinent to certain microelectronics packaging

systems. Experimental measurements of the stress have also been made

on a Cu/cordierite ceramic system, using an indentation technique. It

is shown that porosity in the metal can plastically expand and provide

a mode of dilatational relaxation. Porosity in the metal thus emerges

as an important stress relaxing mechanism.

242

.- 'I



6' I. INTRODUCTION

A number of applications in microelectronics involve combinations

of metal and ceramic constituents. These constituents are typically

subject to residual stress due to thermal expansion mismatch. The

residual stresses may result in cracks, that impede the electrical

performance of the device. The intent of this article is to evaluate

0 the residual stresses that develop (for a sample configuration) and to

examine the implications for cracking.

The metal constituent is generally amenable to plastic deformation

and hence, the stress analysis is inherently an elastic/plastic

problem. The residual stress is thus expected to exhibit dependence on

the yield strength and work hardening coefficient, as well as the

*0 mismatch in thermal expansion. However, the specific influence of

these material variables on the residual stress depends on the

configuration of the system. For present purposes, a cylindrical

* geometry (fig. 1) is considered, as pertinent to the conduction element

in a microelectronics package. I

Residual stresses are calculated for the cylindrical

configuration, subject to the premise that processing is conducted at

elevated temperatures, where the stresses are fully relaxed. Stresses

thus develop upon cooling due to thermal expansion mismatch. Specific

stress amplitudes are computed using the material properties for the

technologically significant system: copper/cordierite ceramic. The

calculations include considerations of temperature dependent plastic ..

properties and of the influence of porosity, especially in the metal
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conducting element, on the residual stress.

The residual stress computations are compared with experimental

measurements obtained for the copper/cordierite ceramic system. The

localized residual stresses are determined using indentation

techniques, with indentations placed in the ceramic, adjacent to the

metal/ceramic interface (fig. 2). The plastic properties of the metal

required for stress determination are also assessed using indentation

methods.

Finally, the implications of the stress analysis for various modes

of mechanical failure in the device are discussed. In particular,

cracking of the ceramic, debonding of the interface and ductile

fracture/fatigue of the metal are explored using specific failure

criteria pertinent to each situation.

2. RESIDUAL STRESS ANALYSIS

2.1 The General Approach

The residual stresses are determined by the usual procedure of

firstly allowing the two constituents to exhibit an unconstrained

differential shrinkage, as depicted in fig. 3 (for a metal with a

larger thermal expansion than the ceramic). Then, equal but opposite , "

radial, a, and axial, az, tractions are placed around the metal and

ceramic surfaces (fig. 3c) in order to restore displacement continuity

at the interface. The tractions are subject to the requirement that the

resultant average axial stress be zero since there is no external force

on the system and furthermore, in the specific case of an infinite
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ceramic matrix, the matrix-axial stress, cc 0.

The attainment of displacement continuity induces elastic strains

in the ceramic matrix and both elastic and plastic strains in the metal

cylinder. The induced strains in the metal cylinder consist of a

dilatation and a shape change. The dilatation contributes stresses

that depend primarily on the thermal mismatch strain, while the shape

change induces stresses dictated largely by plastic flow stress. These

two components are evident in the final solutions for the residual

stresses.

The radial and tangential stresses in the infinite ceramic matrix,

subject to interface tractions, a , are given by, 2

a = a(a/r)
r

(1)

C -al/r) 2

where a is the cylinder radius and r is the distance from the axis

of symmetry. The corresponding stresses in the metal are,2

m m
r= a0  

(2)

The interface, a , and the longitudinal, a2 , stresses are

dictated by the boundary conditions and the thermal, elastic/plastic

properties of the material. The present analysis examines the 'plane

strain' condition+ , pertinent to the stress away from the surface,

+This condition is sometimes referred to as the 'free end' condition.
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wherein planes parallel to the surface remain planar after deformation

(fig. 4). For this condition, a substantial axial stress exists in the

metal cylinder.

The total strain within the elastic matrix is the sum of thermal

and elstic strains, such that,

C2
Cr cAT + C

c (1+ v )a 2
C acAT E 4

£z ff cA"

where a is the thermal expansion coefficient, AT is the

temperature change, ( AT is negative for cooling), Ec and v. are

the Young's modulus and Poisson ratio respectively. C .

In the metal, plastic strains are also involved. These superpose

on the thermal and elastic strains given by

mt mt mt •-
fiC = f i a AT

r z m

me E Cme [(1-v )a vm m E (4)
Cr = [ m)O - ]/Em (4)

e ,- 2vmm/ + E
z
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The plastic strain is computed by assuming that the plastic

deformation in the metal cylinder satisfies the Von Mises criterion,3

1 m m2 m m m2
aeIIa- ) + (a -a) + (a ~ar

(5a)
= 0

Y

where ae is the effective stress and Oy is the yield stress, such

that

m
a M -G

e z (5b)

Furthermore, linear work hardening is assumed, whereupon the plastic

strain satisfies the Prandtl-Reuss relation,
3

mp 3

di 2j 'aijdae/GeH (6)

where H is the slope of the work hardening curve and 'oaj are the

deviatoric stresses:

1
'a J = cij- - akk iJ (7)

In the present case

m mao = ae=5 ( - z
r e (aa)

(8)

m - 2 m -az z"( o . .
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such that,

mmo)

r 0 2H
(9)

d(am -a)

z H

The stresses can be determined from the strains, subject to the

requirements that the displacements be continuous at the interface,

in CU r U r (r-a)

(10a)

m c
U - Uz z

such that,

m CC E (r-a)

(lOb)

m = C '

z z

2.2 The Residual Stresses

The residual stresses can be readily evaluated from the preceding

relations, subject to the requirement that the plastic strain

EP, (after yielding initiates) increases monotonically with decrease

in temperature, i.e.

dIj;P/d(-AT) 0 (1 a)
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or,

d(am - a - a )/d(-AT) 0 (11b)
y -

For this case, the zero plastic strain condition can be referred

directly to the yield stress at the current temperature, T.

Consequently, integration of eqn (9) for a material with a temperature

independent H, gives the plastic strains;

mP (T) = EmP(T) - [om(T) - a(T) - ay(T)ll2Hr e Z Y

(12)

EmP(T)z = [atm(T) - a(T) - a (T)]/H
z Z y

The stresses can now be obtained directly from eqns (3,4, 10 and

12) at temperature T, as;

[(l+Vm) H] (I-2vm ) ay(T) ..

-(c%-adAT[V1+vM) + -(l
2 ) (TE H]-c )A 2E H

a (T) m __.__ _.__
(l-2vm) (1+vm) 3(1-2v M) (1+v d

E2E + E E"m m " "-

(13)

-(a m-CL d AT E + + + + +

In m (+) 21 1v) (T) [1- m :c1
Z (1-2v +)(l+v 3(1-2v 1+V

2E H E

... . '''''
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where ay is the yield strength at the current temperature, T. Terms

that relate to the thermal stress (a -a )AT and to the plastic flowm ci

properties (ay, H) are evident.

The radial and tangential stresses can be obtained by substituting

a from eqn (13) into eqns (1) and (2). In the absence of work

hardening (elastic/perfectly plastic material) the stresses reduce to,

1-2vm
m-3 (am-ac) AT -cly E

C = 3(1-2vm) 2(l+vc)

E + Em C (14)

1-2 m + ]
-3 (am-a) AT + 2ay -. m+ +i

Z 3 (l_2vm) 2(1+v -

+ E-
Em E

M.C

Furthermore, if the temperature change is not large enough to

induce plastic deformation of the metal, the stresses are given by the

elastic solution,

E (am-ac)LT Er Ec  E- m m -- c+ 9)
1-2v +Vc + 

.-

mm
(15)

E (a -a EmT 1 [ E E1m - m c [ m c +
a - 1 -2v [.+V~ l+V J [+ c (1+V m)(1-2v M
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This solution applies subject to the condition,

-E (+vm) (1-2 vm) __Cy (16)
& T -C 1 yml ) m _ c - AT e (16)ii

The trends in residual stress with yield strength, at fixed AT,

predicted by eqns (13), (14) and (15) are plotted in fig. 5. In the

elastic range, the axial tension exceeds the interfacial stress, by an

amount that depends on the relative elastic properties of the metal and

ceramic,

= + (E /E) [(l+V )/(l+v M) (17)
z mc C C m

However, when yielding initiates (smallo or large -AT), the stressy

difference diminishes due to plastic relaxation of the shape change

(fig. 5). Ultimately, as ay - 0 full plastic relaxation of the shape

change occurs and for a perfectly plastic material (fig. 5b) the axial

and interface stresses converge. The convergent stress a* is

dictated by the dilatational component of the thermal mismatch, such

that (for H 0),

a* =-3(tm -ac )AT/[3(-2M)/EM + 2(1+vc)/Ec] (18)

The corresponding trends in the residual stress for a material

with a temperature independent yield strength are plotted in fig. 6.

Yielding initiates at a critical temperature change, -ATc (eqn 16).

However, the stresses continue to increase with further decrease in

temperature, due to the increase in dilatational mismatch. Also, note
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that for materials that exhibit a large work hardening rate, H , the

axial stress is enhanced and the interfacial stress reduced.

2.3 Some Effects of A Temperature Dependent Plastic Flow Stress

The preceding formulation of the residual stresses pertains, as

noted above, provided that the metal exhibits continuous plastic

straining upon cooling. Some conditions that satisfy and violate this

requirement are schematically illustrated in fig. 7. A specific

assessment is conducted for the copper/cordierite ceramic system by

assuming a linear temperature dependence (fig. 8), with ay varying

between zero at the bonding temperature and 110 MPa at room

temperature. For this case, the stress difference, am - c , deducedz

from eqn (13) (with U replaced by ai) satisfies the inequality

d( a - a-.)/d(- AT) > 0 (fig. 9) at all temperatures. Consequently,z

for this material system, the residual stress formulae based on the

current yield strength should be strictly applicable.

2.4 Effects of Porosity

The presence of porosity in the metal (see fig. 10) may modify the

residual stress, by allowing dilatation of the metal, via plastic hole

growth.5 - 7  This relaxation effect could be substantial for the

present, cylindrical geometry, because of the relatively high mean

stress.

Approximate account of the role of dilatation may be ascertained

by invoking the solution for plastic hole growth in a non-hardening
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material. Specifically, an isolated spherical pore with volume V

subject to an effective remote strain rate, ce, exhibits a volume

expansion rate, V , given by6-7

[3a
". _("9,

0.85e exp (19)

Assessment of effects of porosity, based on eqn (19) can be achieved if

an expression for the relaxation of the mean stress am, by the pore

expansion be incorporated into the analysis. This is attained, most

simply, by replacing the expansion coefficient of the metal with an

effective value otm, that remains to be determined by further analysis.

This approach assumes, of course, that the pores do not affect the

yield criterion, based on the effective stress (eqn 5). With this

premise, the means stress can be obtained from eqn (14) as;

-9(a-c )ATE + 2o (1+V)
a (20)
m 6(1+v )

C

The equivalent effective plastic strain is given by
3

EP J3 = i-m-c)AT (21)
e

The plastic strain increment may thus be determined. For the

simplified condition of a temperature independent * (see eqns (24b)Om

and (25)).

d = -(c*a )dAT (22)
e mc
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nee, the pore expansion rates becomes;

V ATb * [-9(a-)ATE'
Tb -085 -c )exp 9 + - d(AT) (23)

' V 0 8 5 m C I4a (1+V ) 2

0y
V

0

ere Vo  is the initial pore volume at the bonding temperature (AT=)

d LTb is the temperature change from the bonding temperature to room

mperature.

Incorporating the temperature dependent yield characteristics of

e metal phase (fig. 8), the total volume strain in the metal,e , can

evaluated for non-interacting pores, as

e - f[V/V - 1]
0

or x~ 1  m c b -aE cA-c)E AT. b
f termalxp 4 (a*io)AT exp ( * (24a

• 3 b 425)

or

=9 ( -a ) A T

6m c)ATbf exp M(1+ C b (24b)

ere f is the volume fraction of initial porosity in the metal. The

'fective thermal expansion coefficient of the metal then becomes, #

idependent of temperature, consistent with our initial premise.
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Metal Ceramic At bonding temp.
Cylinder Matrix

(b)

Metal Ceramic At room temp.

Cylinder I Matrix unconstrained condition

c m C

(c) Z

X BL 8312-6674

Fig. 3
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Tangential
-to 4-- Compression

Ceramic
Matrix

XBL8312-6673

Fig. 2
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Metal Cylinder

X BL8 312-6 672

Fig. I
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Fig. 16 Critical strain, Er, for the onset of plastic flow

localization in an infinite band perpendicular to the
00

direction of maximum principal stress, az, versus pore S

volume fraction in the band, f, for various stress triaxiali-

ties (see ref. 11).

2

I
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plastic strain remains constant when T _ TV.

Fig. 8 Schematic showing the variation in yield strength with

temperature (see ref. 4) and the linear approximation used in

the present study (G is the shear modulus).

Fig. 9 The requirement d(am - a - a )/d(-AT) > 0 is satisfied for
z y

the copper/cordierite ceramic system when * > 3.5 x 10-6 C- 1

Fig. 10 A scanning electron micrograph (with sample tilt 400) of

pores located on (a) a cracked interface, (b) a failure

surface of Cu.

Fig. 11 The effective thermal expansion coefficient of copper, CLm

as a function of the initial volume fraction of pores, f.

Fig. 12 The stresses that develop in the Cu/cordierite ceramic system

as a function of the temperature change, -AT, assuming a linear

approximation for the yield strength (see Fig. 8), using

:17 x 10-6 C-1 and c 4 x10 6 C1.CmOm =4xI -  ..

Fig.13 Indentations emplaced (a) in the cordierite ceramic remote

the copper, showing straight radial cracks; and adjacent to

the copper, showing (b) normal and (c) longitudinal sections

of Cu/cordierite ceramic.

Fig. 14 Stress-strain curves of copper alloys obtained from

indentation tests.

Fig. 15 (a) Perfect bonding of metal/ceramic; and failure modes in

metal/ceramic showing (b) interface decohesion (c) ductile

failure of the metal.
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S

Figure Captions

Fig. 1 Geometry used for residual stress analysis: a metal cylinder

in an infinite ceramic matrix.

Fig. 2 A schematic illustrating the effect of residual stress on

indentation cracks.

Fig. 3 (a) The metal and ceramic bonded at high temperature.

(b) Unconstrained differential shrinkage at room temperature.

(c) The residual stresses that develop to allow displacement

and stress continuity due to the expansion mismatch

between the metal and ceramic.

Fig. 4 At a sufficient distance from the free surface, a plane

parallel to the free surface remains parallel during

cooling and the axial stress in the infinite ceramic matrix,

z is zero.

Fig. 5 The interface stress, a , and the axial stress in metal, a

as a function of the yield stress of the metal, Oy, for

(a) elastic/plastic material (b) elastic/perfectly plastic

material.

Fig. 6 The interface stress, c , and the axial stress in metal, a
z

as a function of temperature for constant Gy; also shown

are the effects of the work hardening rate, H.

Fig. 7 A schematic illustrating stresses that satisfy (a and b) or

violate (c) the requirement that the plastic strain increases

monotonically with decrease in temperature. In (c) the
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Table I

The Physical Properties of the Cu and Cordierite Ceramic

E (Mpa) v a( C-1) i(MPa)

Cu Alloy 1.3 x 105 0.34 17 x 10-6 620 5

Cordierite Ceramic 1.3 x 105 0.25 2 x 10- 6

Table 2

The Plastic Strains Generated by Indentation a

ndenter Angle 0 600 900 120* 1400 1600

Plastic Strain c 0.3 0.25 0.17 0.1 0.06

pp
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10. A. G. Atkins and D. Tabor, "Plastic Indentation in Metals with

Cones,"J. Mech. Phys. Solids, 13 (3) 149-164 (1965).

11. N. Ohno and J. W. Hutchinson, "Plastic Flow Localization due to Non-

Uniform Void Distribution," J. Mech. Phys. Solids, 32 (1) 63-85

(1984).

12. C. H. Hsueh and A. G. Evans, "On Residual Stresses in Metal/Ceramic

Bonded Strips: II. Elimination of the Residual Stress," to be

published.
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triaxiality is relatively large in this case, a/c 0.67, premature

ductile rupture would be encouraged by local void clusters in the

copper. A homogeneous distribution of initial porosity in the copper

is evidently needed to inhibit local ductile rupture, while still

permitting stress relaxation.

4. CONCLUSIONS

A stress analysis has been conducted for a linear work hardening

metal cylinder embedded in an infinite ceramic matrix. The bond

between the metal and ceramic is established at high temperature and

stresses develop during cooling to room temperature. The calculations

show that the stresses depend on the mismatch in thermal expansion, the

elastic properties and the yield strength and work hardening rate of

the metal. Experimental measurements of the surface stresses have also

been made on a Cu/cordierite ceramic system, using an indentation

technique. A comparison reveals that the calculated stresses in the

plastic strain condition are appreciably larger than the measured

surface stresses, indicating an important difference between the plane

stress and plane strain residual stresses. However, it is also shown

that porosity in the metal can plastically expand and permit

substantial dilatational relaxation of the plane strain residual

stresses. Conversely it is noted that pore clusters are capable of

initiating ductile rupture, by means of a plastic instability, in the

presence of appreciable triaxiality. A homogeneous distribution of

porosity in the metal is thus needed.

258 A



the copper and cordierite ceramic to compute the 'plane strain'

residual stresses, from the analysis presented in section 2. An

interface residual stress , o = 1500 MPa is obtained. This stress is

substantially in excess of the measured stress (o 130 MPa), because

the residual stresses have been measured on the surface, where plane

stress conditions (az = 0) apply. For plane stress the stresses are

determined exclusively by the plastic flow stress, as confirmed by the

similarity in the present measurements of the residual stress and the

plastic flow stress (fig. 14). However, the 'plane strain' residual

stress may also be appreciably less than the calculated stress of 1500

MPa, due to plastic dilatation of the pores in the copper (fig. 15).

As estimated in section 2.4, porosity in excess of \, 0.01 can reduce

the residual stress by a factor of -.8; a reduction which coincidentally

results in a stress similar to the measured stress. It is thus

concluded that porosity in the copper should allow appreciable

relaxation of the residual stress in the 'plane strain' region.

The residual stress can be further minimized by undercooling and

then reheating the system.12 The final stresses are the sum of eqn

(13) (with AT as the undercooling temperature) and eqn (15) (with ATh,

the positive reheat temperature).

Initial porosity in the copper may also have the detrimental

effect of inducing premature ductile rupture (fig. 15c). Void clusters

are capable of initiating ductile rupture by means of a plastic

instability.1 1 The rupture strain depends on the initial fraction of

voids and the triaxiality (fig. 16). Consequently, since the
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3.2 Flow Stress of Metal

The flow stress of the metal cylinder can also be estimated using

indentation techniques. In this instance, impressions are made with

pyramidal indentors having various profiles, with included angle, .

Then the flow stress of is related to the load, P , and the

indentation cross section, A , by
9

af -- P/3A (29)

while the corresponding plastic strains, ep, for each included angle,

* , are given in Table 2.10 Data obtained using included angles

between 600and 1600 result in the flow stress trends summarized in

fig. 14.

3.3 Mechanical Damage

Two primary modes of damage have been observed in the

copper/cordierite ceramic sytem. Interface decohesion (fig. 15b) has

been identified at a small fraction of normal and longitudinal

sections. Ductile fracture of the copper has also been detected (fig.

15c) at various axial locations. These modes of damage are induced by

the tensile residual stresses in the radial and axial directions,

respectively. Appreciable porosity is also observed throughout the

copper phase (fig. 10).

3.4 Remarks on Residual Stresses

The plastic flow properties of the copper measured at room

temperature can be used in conjunction with the elastic. properties of
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K = ~1/2 -73/2 a*(7K X*P(E/h) a~ SI 1/2 (7

where Q is a coefficient that depends on the uniformity of the

residual field (for a uniform field, = 2/-p). The residual stress,

a R , can be related to the metal/ceramic interface stress, a , by

aR = o(r/a)-2 (28)

Hence, by firstly evaluating K. from indentations placed at

locations remote from the metal (fig. 13a),the interface residual

stress, a, may be estimated from radial crack lengths measured at

indentations placed at various radial positions, adjacent to the

interface.

Inspection of cracking patterns around normal and longitudinal

sections reveals (figs. (13b) and (13c)) that the circumferential or

axial cracks are relatively enlarged, while the radially oriented

cracks are suppressed. A condition of radial tension and

circumferential compression is thus implied, consistent with the larger

thermal expansion of the copper.

Determination of the toughness of the cordierite ceramic from

remote indentations indicates that Kc = 1.4 MPaf-i. With this

toughness, the interfacial residual tension can be determined from the

radial crack lengths (as measured on the normal section) as,

a 130 MPa (X = 0.009).
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* The trend in am with the initial volume fraction of pores, in a
mI

Cu/cordierite ceramic system, deduced from eqns (24a) and (25), is

plotted in fig. 11. Note that, for f>0.01, c m ' 4 x 10-6C " I .

* Dilatational effects are thus capable of reducing the stress (fig.

12) by a substantial factor, u8, at relatively small initial porosity

levels. Small amounts of porosity in the metal can thus cause

appreciable stress relaxation, by acting as nuclei for plastic

dilatation.

3. EXPERIMENTAL STUDIES

3.1 Residual Stresses

Residual stresses have been estimated for a copper/cordierite

* ceramic system, using an indentation technique. With this technique,

small Vickers indentations are placed in the ceramic, adjacent to the

metal/ceramic interface (fig. 13). Then, the relative extensions of

the radial cracks provide information pertinent to the sign and

magnitude of the residual stress. Specifically, in the absence of

residual stress, indentation at a load, P , creates a radial crack of

radius, c , related to the toughness of the ceramic, Kc , by;8

KC = xP(E/h) 1/2 c-3/2 (26)

where E and h are the modulus and hardness of the ceramic and x

is a coefficient 0.016. In the presence of residual stress, the

crack length and geometry are modified, such that the residual stress,

R, and the crack radius, c, , are related to the toughness by;
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ABSTRACT

A method is presented whereby various potential contributions

to the toughness of rubber toughened polymers can be quantified.

The tendencies toward either synergism or additivity amongst

mechanisms is emphasised for rubber stretching,

cavitation and shear banding. The method reveals that specific

experimental measurements of microstructural changes near a

crack tip, in the crack wake, are needed to unequivocally

r ascertain the dominant toughening mechanisms.

L
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1. INTRODUCTION

Substantial enhancement of toughness can be achieved by

dispersing rubber precipitates within a polymer matrix. Various 0

mechanisms have been proposed to account for this phenomenon. These

include crack bridging by rubber precipitates intersected by the

crack and enhanced plastic deformation of the polymer matrix, 0

2
induced by the precipitates2 . However, the manner in which the

mechanisms combine, to determine the full toughness, has not been

afforded detailed consideration. The intent of this article is to

provide a rational basis for considering mechanism combinations.

The essential background for considering toughness is based on

an appreciation that two general categories of toughening mechanism

3exist The first category includes processes that occur along the

crack plane, such as crack bridging These mechanisms exert a

direct influence on the stress intensity factor, K , and on the lp

local crack propagation resistance, K , of the material. The

second category influences toughness by means of events occurring

in a process zone 3  , of width h (Fig.1), such as a phase

transformation, plastic hole growth, etc. Mechanisms of this type

result in a toughness that typically scales with the width of the

process zone. Specifically, the enhancement in the criticalJ generally "

increases in direct proportion with the zone width3- 5 (cf. eqns.25 and 31),

C

where B is a coefficient that depends on the characteristics of

the non-linear mechanism that operates in the process zone. The

process zone width, in turn, depends upon the magnitude of the net

toughness, such that for plane strain conditions
4 ,5
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2

h = -= (2)

y

where a is the yield strength, E is Young's modulus and g 1/4y

Noting that,

J J0 + A , (3)
C 0 c

where J0 is the fundamental toughness in the absence of a process

zone, eqns.(1), (2) and (3) can be combined to give,

= 0/[1 - SE / 4a2  . (4)

The final toughness J thus scales with the fundamental toughness,c

J . Process zone effects are thus rZatipZicative and not additive.
0

The importance of process zone scaling to the toughening of rubber

toughened polymers is amply demonstrated in subsequent sections.

Other examples of this type of toughness scaling in the literature

include transformation toughening4 '5 and various embrittlement

ohenomena.

2. GENERAL METHOD OF TOUGHENING ANALYSIS

The change in toughness induced by a specific mechanism can be

formally treated by considering the energy changes that occur in

each volume element of material as the crack translates through the

3,5,6system For this purpose it is convenient to commence with a

small element dxdy of unit width that translates along a plane

parallel to the crack plane, distance y from that plane (Fig.1).

The energy change experienced by that element as it translates

from x = - to x = - dictates the contribution of the strip

dy to the toughness. Specifically, the change in toughness due to

energy changes in the strip is given by3'5'6
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3

dJ = U(y)dy , (5a)

where U(y) is the energy increase per unit area of plane associated

with the transfer of the element dx from a region well in front of

the crack to a region in the remote crack wake. Integration of this

energy over the process zone width then gives the total change in

toughness,

AJ = 2 U (y) dy . (5b)

Furthermore, J associated with the applied loads, J , is related

to J at the crack tip, J£ , by,

J =J + 2 U(y) dy , (6)

where

AJ= -J

Hence, the net toughness can be ascertained by equating J£ to the

fundamental toughness J0 (i.e. the crack propagation resistance

of the material 'at the crack tip) giving,

Jc J 0 + 2 U(y) dy (7)

The energy density U(y), in general, consists of

contributions from residual strains in the wake (e.g. transformation4'
5

7or microcrack toughening), plastic work expended in the crack tip

process zone and the energy of free surfaces (disbonds or microcracks)

created by the crack tip stresses. The quantity U(y) can be

3,6 -determined either from explicit thermodynamic considerations or

from knowledge of the stress/strain curve of the material that

3,5translates through the process zone . The latter approach is

generally more direct and less susceptible to ambiguity.
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i
3. TOUGHENING MECHANISMS

The toughening mechanisms considered in this paper are based

on several experimental observations of crack propagation in rubber

toughened polymers which produce the effects sumarised in Fig.2.

Firstly, crack growth is generally accompanied by the development

2of a zone of 'whitened' material over the crack surfaces. This

zone is considered to contain void space (that affects light

adsorption) in the form of either debonded or cavitated rubber

precipitates. The creation of voids requires that diZatation be

occurring within this zone (Fig.2), resulting in a toughening process

similar to the effects of dilatation in transformation and microcrack

5,7 -toughening5. Secondly, the non-linear stress/strain curves

obtained in these materials are indicative of macroscopic plasticity.

Furthermore, observations of shear bands between rubber precipitates

in deformed material suggests that the deformation occurs

heterogeneously. The shear deformation (Fig.2) constitutes an

additional source of toughness, analogous to toughening by mechanical

3twinning .

Specific calculations of the dilatational and shear band

toughening are conducted in the following section, subject to certain

conjectures regarding these processes. Debonding or cavitation of

the rubber precipitates are assumed to be initiated by plastic flow,

as the precipitates enter the crack tip plastic zone (Fig.1). The

net dilatation is then presumed to be plasticity dominated, similar

8to plastic hole growth in ductile metals . The material within the I.

'whitened' zone is thus treated as a porous plastic continuum, as

reflected in the strain/strain characteristics of the material.
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5

This simplification is deemed reasonable provided that the zone

contains a large number of holes and shear bands. The formation of

shear bands is assumed to occur in orientations aligned with the

maximum shear strair within the crack tip field, such that each shear

band provides the maximum possible contribution to the toughness.

Assessment of the utility of this premise requires careful study of

the process zone shear band orientation at the instant the shear bands

initiate. Evidently, certain features of the models will require

modification should these conjectures prove invalid.

The diZatational toughening is associated with the plastic work

expended by the volume expansion of the porous plastic zone.

Specifically, as each volume element approaches the crack tip, a non-

linear volumetric expansion occurs in response to the mean stress

(Figs.1,3). Furthermore, elastic unloading of the element occurs in

the wake, behind the crack tip, as dictated by the bulk modulus of

the porous material (Fig.3). The resultant hysteresis in the

stress/strain curve, integrated over each strip, dy, in the plastic

-one (Fig.1) determines the change in J induced by the dilatation,

as expressed by eqn.(7). (Alternatively, thechange in J can be

considered to derive from the constraint exerted on the expanding

4plastic zone, which induces closure tractions on the crack surfaces4.)

The shear band toughening is provided by the plastic work

involved in creating the shear band strain. This is manifest as a

non-linear increase in the net shear strain with crack tip shear

stress, followed by elastic unloading in the wake, and again,

integration of the stress-strain hysteresis over the shear band zone

determines the change in J

It is important to note that the deviatoric and dilatational

energy densities are strictLy additive . Hence, the change in the
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critical energy release rate determined for the plastic dilatation and

shear band components of toughening can be added together to obtain

the total toughness induced by the zone associated toughening phenomena,

AJ = Jpd + AJsb (8)

Furthermore, rubber stretching across the crack surfaces, by those

precipitates intercepted by the crack, constitutes an additional

contribution to the toughness. Specifically, since the contribution

to toughening from plastic dilatation and shear bands both scale with

the process zone size they are multiplicative with rubber bridging across

the crack surface. Consequently, a synergistic combination of

processes seems to determine the rubber toughening of polymers. This

synergism distinguishes the substantial toughening that occurs in the

presence of rubber from the modest influence of holes.

4. ANALYSIS OF TOUGHENING

4.1 Rubber Stretching

The contribution of rubber stretching to toughness, as
I

demonstrated by Kunz et al. , can be deduced by evaluating the work

done in stretching the rubber particles to failure, per unit area of

fracture surface. This work is dissipated in those precipitates

ntercepted by the crack, and thus yields a change in toughness

given by,

Ar = if <R> (X2 + 2/X -3) (9)
rs f f

where X f is the extension of the rubber precipitates at failure,

u is the shear modulus of the rubber and <R> is the mean radius of

the precipitates. This toughness change simply superposes on the

toughness J governed by the growth of the crack front through the
0
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matrix containing rubber precipitates. Regarding the rubber

precipitates as impenetrable obstacles (a requirement for operation

10
of the rubber stretching mechanisms), J should be of the order 0 ,

00J0 J*(1 + f ) (10)"-."

where J* is the matrix toughness, f is the volume fraction of

rubber precipitates and a is a coefficient. Hence, the total

toughness in the presence of rubber stretching is,

aI
J = Uf <R. (A2 + 2/X - 3) + J*(1 + f ) (11)
rs f f

4.2 Plastic Dilatation

i) The volume change

The debonding (or cavitation) of the rubber precipitates allows plastic

dilatation of the matrix, within the plastic zone, similar toplastic hole

growth in ductile metals. The volume increase dV is especially prominent

in regions of high mean stress, a. This is evident from the solution

for the growth rate of an isolated hole, in a 
plastic continuum 8

dV/V = 0.84 dc exp[3a /2ae] (12)
in e

where a e and e are the equivalent stress and equivalent plastic

strain, respectively. The existence of appreciable mean stress near

the crack plane suggests that significant dilatation occurs around

debonded rubber precipitates within the plastic zone (Fig.4). This

dilatation attains a maximum as the crack front extends beyond the

precipitate (Fig.4) and is essentially retained (except for elastic

unloading) in the wake of the crack. The associated dilatational

plastic work constitutes a source of toughness, as described in

section 3. It is noted here that dilatation is expected to be much
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more prominent in the crack tip zone, where the mean stress is

relatively large, than in uniaxial tension. This issue is discussed

in more detail in section 5.

The expansion of the matrix around precipitates contained in a

strip dy , distance y from the crack plane (Fig.1), is evidently

determined by the crack tip stress and plastic strain fields. For

a material with a macroscopic stress-strain law,

n
C = Cy (ae/ y) , (13)

where c is the uniaxial yield strain, a is the uniaxial yield
y y

stress, and n is the work hardening exponent, the stress and strain

fields near the crack tip11 are given by

a., = F ni. (e,n)

13Yy ynril(J )i

(14)
F J n/(n+ l )  IV

Cij Ey EyCyr ij (,n)

where (r,e) are the polar coordinates with respect to the crack

tip, a (6) and (6) are dimensionless functions (se, Fig.5) and

I is a numerical coefficient (I = 100.13 +I/n - 4.8/n) . These
n n~

stress and strain fields may be used in conjunction with eqn. (12) to

predict the plastic dilatation of an isolated hole as a crack

extends past the hole.

Hole growth is assumed to initiate at the elastic/plastic

boundary where the plastic flow causes immediate debonding (or

cavitation) of the rubber precipitate. For this case, the expansion

of the hole is obtained from eqn. (12) as,

When the plasticity is inhomogeneous, these stress and strain fields
should be regarded as average values within near crack tip volume
elements, viz. when the plastic strain is confined to shear bands,
local variations in stress often occur around the bands.
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B

FIGURE CAPTIONS

Fig.1 A schematic illustrating the process zone and the

stress/strain characteristics of an element dxdy as it

traverses across a strip dy within the zone.

Fig.2 A schematic illustrating the proposed modes of deformation

in rubber toughened polymers. Shear bands between

precipitates provide a net shear strain to each loaded

element, while debonding (perhaps initiated by the shear

bands) results in dilatation. Both the shear and the

dilatation contribute additively to the toughness.-

Fig.3 The variation in mean stress with volumetric strain for a

material subject to plastic hole growth.

Fig.4 A schematic illustrating the dilatation of a strip dy
I

due to plastic hole growth around debonded precipitates,

as the strip passes through the crack tip process zone.

Fig.5 A plot of the dimensionless crack tip field parameters

arr ' aee and ae for a material with a hardening

exponent, n = 5, 10, 20 and 100.

Fig.6 The variation in hole volume V/V with distance into theO

plastic zone, x/y , for various values of the dimensionless

distance ey/J £ is the yield strain: n = 10

Fig.7 Trends in the peak hole volume, V/V and in energy

density U(y) with normalised distance from the crack

plane, J/a y : n = 10 .
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TABLE II

Hole volume and energy density parameters

Work hardening q z
coefficient, n

5 0.008 2.4 0.0009 3.3

10 0.01 2.3 0.0014 3.0

20 0.05 2.0 0.014 2.4

100 0.22 1.6 0.10 1.9
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TABLE I

The values of xy at the peak hole volume

0.6 5

0.43 10

0.25 20

0.22 100
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applied herein to plastic dilatation (and elsewhere7 to micro-

cracking). However, for this purpose, a basic relation between

the mean stress and the volumetric strain is required, analogous

to the expression (eqn. (12)) used to describe plastic hole growth.

6. CCNCLUDING REMARKS

The analysis presented in this article provides a

quantitative basis for assessing trends in toughness in rubber

toughened polymers. However, comparison with experimental data

is premature since many of the requisite microstructural parameters

have not been independently measured. Further understanding of

this phenomenon can be achieved, based on the concepts introduced

herein, by measuring parameters such as the dilatation under

triaxial tension, the shear band density in the process zone wake

and the zone wake thickness. Such measurements can then be used

in conjunction with eqns. (25) and (31) to provide a critical

evaluation of the most important contributions to the toughness,

for each material system.
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zone wake is oply a prerequisite for toughening when the crack tip

advance mechanism remains invariant.

The expected role of dilatation in the toughening of rubber

toughened polymers also requires further consideration. Uniaxial

tests on several rubber toughened systems indicate that, in the

absence of crazing, the dilatation is very small and essentially

13,14
all of the deformation occurs by shear . However, it should not be

inferred from these measurements that dilatation does not occur in

the plastic zone near the crack, tip, where the mean stress is

substantially larger. In fact, the behaviour of ductile metals can

be used as an effective analogy, to illustrate the importance of

the mean stress. In uniaxial tests, significant void initiation

and growth only begins after necking. Furthermore, the voids are

confined to the necked region, where a triaxial state of stress

develops. Hence, the dilatation is limited to the neck and is

difficult to measure. By contrast, substantial void nucleation and

growth occurs in the plastic zone around a crack, leading to the

widely observed void coalescence (ductile dimple) mode of failure.

Consequently, failure strains pertinent to the crack tip region

can only be obtained by comparison with macroscopic data obtained

in triaxial tests: uniaxial failure strain data substantially

overestimate the peak strains experienced at the crack tip 5  We

conclude, therefore, that the role of dilatation in the toughening

of rubber toughened polymers can only be directly assessed either

16from observations of debonding/cavitation in the crack tip region

or from triaxial deformation experiments.

Finally it may be important to note that the considerable

dilatation that accompanies crazing in certain systems (e.g. in HIPS)

can be incorporated into the general dilatational toughening scheme,
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between holes are quite restrictive. However, incorporating these

effects into the analysis would require quite complex numerical

computations. The assumption of homogeneous plasticity is not

considered to be such a serious limitation, provided that the plastic

zone is large enough (e.g. > 10 precipitate spacings) to permit

the material behaviour within the zone to be adequately characterised

by a macroscopic stress/strain law (eqn.(13)). Despite the above

restricticis, it is hoped that the analysis provides physical

insights regarding the dilatational component of toughening, capable

of guiding further research on this topic.

Another feature of the analysis that requires elaboration is

the 'steady-state' nature of the plastic dilatation and shear band

toughening. The derived toughnesses only apply when the process zone

4,5extends appreciably into the crack wake A loading zone contained

ahead of the crack tip provides no toughening The measured

toughness thus depends on the manner in which the initial crack is

introduced. Generally, the method of introduction of the sharp

precrack (e.g. tapping with a razor blade) induces a process zone

wake because the crack forms subject to J - J . Steady-statec

values of J then apply. However, cracks introduced by fatiguec

would not exhibit a fully developed wake. Subsequent propagation in

the Jc test is then characterised by a JR -curve4'7, and the

measured toughness is dictated by the instability length, as

governed by the slope of the JR-curve and the specimen geometry.

The preceding remarks should not be misconstrued to imply that

a zone wake is always needed to induce toughness. Effects such as

plastic crack tip blunting, which induce a change in the actual

meohanism of crack tip advance (e.g. from brittle rupture to hole

coalescence),provide toughness without a plastic zone wake. The
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J (1-f)

Jsb = (34)
1b - 2bybfbE/Tc

The reduction due to the weakening effect of the shear bands in the -

crack plane thus appears in the numerator and the toughening due to

the bands in the process zone appears in the denominator.

-

5. DISCUSSION

The framework for considering the toughness of rubber toughened

polymers presented in the preceding sections is quite general and

can accommodate any suggested mechanism. However, quantifying a

proposed mechanism requires careful experimental evaluation of

various microstructural features associated with that mechanism.

Some of the important microstructural parameters have been elucidated

for three prominent toughening mechanisms: rubber stretching, plastic

dilation due to debonding or cavitation of the rubber particles, and

shear banding between- rubber particles. Insufficient data are

available at present to permit confident statements regarding the

dominant mechanisms. Furthermore, in view of the synergistic nature

of toughening by rubber stretching, when occurring in conjunction

with the other mechanisms, it seems unlikely that a single mechanism

should be dominant.

The contribution to the toughening by plastic dilatation has

been afforded primary attention in the specific analysis of

toughening mechanisms, because the mechanism can be the most

extensively analysed with available knowledge. Certain conjectures

have still been required to obtain a final result and hence, some

caution should be exercised before applying these results in a

fully quantitative sense. In particular, neglect of the influence

of the holes on the plastic crack tip stress field and of interactions
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contains shear bands. Then, with the further restriction that no

further deformation can occur within the band (after the initial

formation), the change in toughness due to the shear bands becomes,

Asb 2 2c o y (Y)fb (y )dy (30)

where h is the width of the shear band zone. Hence, even for this

relatively restricted case, experimental details regarding yb(y)

fb(y) , h and rc  are needed before the role of this toughening

mechanism can be assessed. Such experimental studies are strongly

urged.

It is also noted that shear bands formed within the plane of

the crack tend to reduce the local crack propagation resistence of

the matrix, by weakening the material within the band. Hence, the

increase in toughness represented by eqn. (30) will be partially

offset by a reduced fundamental toughness. The net trend in toughness

is illustrated for the simple case where yb  and fb are independent

of y , whereupon eqn. (30) becomes,

AJsb- 2Tcb fbh (31)

Noting that h is related to the critical stress (cf. eqn. (24))

by
4 ,5

l:lsbE
h -- -- E(32)

2
c

where E is Young's modulus and b is a coefficient = 0.2 , the

change in toughness reduces to,

2bybf Jb (33
bsbs

Hence, supposing that the fundamental toughness J is reduced, due
0

to the shear bands, to J (1-f the net toughness becomes,
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where J is, again, the fundamental toughness. Consequently, if
0

plastic dilatation and rubber stretching operate simultaneously,

eqns. (11) and (26) may be combined to give a net toughness, J
C

J [Uf<R>(X2+2/XE-3) +J*(1+f )]J o (27)
C(1-f)

The synergistic effects of dilatation and stretching are thus evident

by virtue of their emergence as the numerator and denominator of

eqn. (27) respectively.

By contrast, the toughening in a porous poLhmer without rubber

precipitates is appreciably smaller, because the pores degrade the

fundamental toughness, by a factor7 of - (1-f) . The net toughness

is thus,

J*(l-f) (28)
c (1 -if)

,,

4.3 Shear Bands

An individual shear band formed between bonded or unbonded rubber

precipitates, contained in a volume element dV , experiences a net

shear strain yb * This strain occurs at some critical value of the

shear stress, T , imposed on the element boundaries. A zone of shear

bands thus develops around the crack and the net energy change
'I

associated with shear band formation may induce toughening. The

toughening can be deduced subject to the proviso that the shear band

strain orients with the crack tip shear strain at the instant of

formation, so that the work done on the element containing the shear

band, as it forms, is simply,

dW TYbfb dV (29)

where f is the volume fraction of material within the element that
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K11 "

U (Y) Z feP
0

p (..2.. (22)
y

where c and z are coefficients that depend only on n (Table II).

The change in toughness, deduced from eqn. (7), is thus,•h
A ~pd 20fapep [f 2  fY-z dy

y y- Ldy
y

- zY y (h-z - 2 1-z) (23)

where h is the plastic zone width and I is the precipitate

spacing. However, h is related to J by11

h = g(n) J /c~p (24)pd y y

where g(n) is a coefficient of order 1/4 , determined by n11

jg The change in toughness thus becomes, for z > 1 (Table I),

pd "z-1 h i:

a f) fJp (25)

Recall that the quantities 0 , g and z are determined only by

the work hardening coefficient, whereas h depends on the yield

strength (eqn.24). Thus, the toughness appears to depend both on the

yield strength of the system and the work hardening coefficient.

However, incorporation of interaction effects between voids and of

the effect of the voids on the stress field within the plastic zone

will undoubtedly modify the predicted dependence on a
y

The change in toughness is related to the net toughness by

pd + Apd

- J (1 -Snf) (26)
0
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Ln(V/Vo ) - (18)
0 Y'

where 4 and q are functions of the work hardening coefficient,

as listed in Table II.

ii) The toughening

The change in toughness induced by plastic dilatation can be

estimated from the above solution for the expansion of an isolated

hole if interaction effects between holes are neglected. With this

tsimplification, the volumetric strain d8 experienced by each

volume element of material, containing a volume fraction f of

rubber precipitates is simply

d8 - f dV/V (19)

The hysteresis in the stress/strain curve (Fig.3), if the small

elastic recovery due to unloading in the wake is neglected, gives an

energy density,

U(y) f J d

fJ a dV/V (20)

0

Hence, inserting dV/V from eqn. (12), the energy density becomes,

rm
U(y) = 0.84 f 3 exp m) de (21)

~y

where Jp is the yield strain and i is the stress at the peak hole

volume, . Adopting the further simplification that the holes do

not affect the stress field in the plastic zone, inserting the

stresses from eqn. (14) and integrating yields the results plotted in

Fig.7. These results may be expressed in the form
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fV = 0.84 j exp( 2a ) de (15)V C Ta e
oy

where V is the initial hole volume. Integration of eqn. (15) for0

a material with low work hardening rate, typical of most rubber

toughened polymers, i.e. n >> 1 , gives

V ( 3e [1 3cn( = 0.84 e + 2+n-1ae (-)
0 ye

- i+ 2(m) exp( ) (16)o Yy, y

where a* is the mean stress at the elastic/plastic boundary.
m

Substituting the stresses from eqn. (14), the hole growth becomes,

ZnCo) = 0.84 ( y y (l+(x/y)2)n/2(n+l) + re

0__ n /n+) yn e3

3a (+a) 3(a* +a* ).y 3(&* +a*rexp( rr+e 1 -rr exp rr ee
4& e  (l+(X*/y)2) n / 2 (n + l ) 4(n-11 4

(17)

where * refers to the values of the parameters at the elastic/

plastic boundary and x is the distance from the crack tip (Fig.1).

The volume expansion can be evaluated from eqn. (17) for specific

values of the work hardening exponent. The plastic zone shape

11
can be determined from Rice and Rosengren , and the magnitude

of the parameters at the elastic/plastic boundary may be deduced

from Hutchinson 2 . With these parameters, V/V°  can be

determined for various values of the dimensionless variable,

J/£y yy , as plotted in Fig.6.

The hole volume reaches a maximum V at the x/y listed

in Table I, such that (Fig.7),
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ABSTRACT

An approach for predicting trends in the toughness of particulate 5

filled polymers has been presented. The approach is based on independent

knowledge of the constitutive law that describes the non-linear behavior

in the process zone. An idealized law is used to demonstrate expected

trends with particulate volume fraction and size. The trends are

correlated with experimental data. Some discussion of the non-linear

process zone mechanisms, such as debonding and microcracking, is

presented as a basis for develop-*ng more realistic constitutive laws and

hence, providing superior predictions of toughness.
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1. iNTRODUCTION

The toughness of polymeric solids can be enhanced by the

incorporation of glass, or other hard second phases.1,2 ,3 The toughening

has been attributed to a number of different mechanisms, such as crack

bowing, debonding and microcracking. The present article attempts an

interpretation predicated on the recent observation3 that substantial

debonding of the second phase occurs around the crack tip and hence, that

the toughening relates in some manner to the extent of debonding.

Debonding results in a non-linear stress-strain curve and a reduced

secant modulus 3 , 4 as depicted in fig. 1. Representation of this

deformation behavior by a constitutive law allows computation of the S

toughness, without detailed knowledge of the associated microstructural

processes. 5 ' 6 Specifically, during initial propagation of a sharp pre-

crack, a frontal process zone develops as the load is applied and

material elements within the process zone experience monotonic straini.ig

(fig. 2). For this condition, J is generally path independent 5 and thus,

J. determined on a contour remote from the crack tip (in the elastic

zone for small scale yielding) and Jt for-a contour in the immediate

vicinity of the crack tip (fig. 2) are equal:

J-. Jt (1)

The stress intensity factors are thus related by:

K /E - K /E (2)CO t T'

where E is Young's modulus and ET is the tangent modulus of material
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elements at the crack tip. Consequently, since ET < E (fig. 1),

Kt < K, and hence, the crack tip stresses are reduced in the presence

of the debond process zone. However, the reduced stress does not

necessarily coincide with an enhanced toughness, because the debonding

process degrades the material in the process zone ahead of the crack. 6

Countervailing influences thus operate within a frontal process zone.

Propagation of the crack into the debond zone results in a process

zone wake (fig. 3), because the stress-strain relation is non-reversible

(fig. 1). In the presence of a steady-state wake (fig. 3), the energy

density associated with a contour passing through the wake differs from

that for a crack tip contour, such that:
5

Jt + 2f U(y)dy (3)
0

where h is the width of the debond zone (fig. 3) and U(y) is the

residual energy density in a strip dy in the remote wake. The energy

density U(y) is simply the area under the stress-strain curve given in

fig. 1. The change in J induced by the wake is, in fact, a direct

measure of the hysterisis in the stress-strain curve, because material

elements that traverse from the front of the crack to the remote wake

(viz. the energy change brought about by crack advance) are exposed to a

complete stress-strain cycle (fig. 3).

Computations of the stress-strain hysterisis in the debond process

zone can be used to predict the change in Jt The increase in

toughness can then be determined by equating Jt to the local crack

propagation resistance of the debonded material. The computations are

strictly valid when the components of the stress tensor are consistent
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with a path independent J for the frontal zone. Such conditions are

assumed to be approximately valid for the polymer systems of present

interest.

The analysis presented in this article is based on the stress-strain

characteristics of the material, as outlined above. However, some

consideration is first given to the debonding and deformation mechanisms

that determine the observed stress-strain relations.

2. NON-LINEAR STRESS-STRAIN RELATIONS FOR FILLED POLYMERS

Recent studies have revealed that the onset of non-linearity in the

stress-strain curve for filled pulymers coincides with the debonding of

the second phase. 3 , 4 Debonding presumably occurs when the applied strain

at the interface overcomes both the initial thermal contraction mismatch

strain and the decohesion strain. For a relatively rigid second phase, P

such as glass, the principal strain concentration in the polymer occurs

in the regions between closely spaced particles (fig. 4). Specifically,

since nearly all of the strain is accommodated by the polymer, a

uniaxial applied strain Cm is magnified in the region between the

particles by:

/ -& (1-2R/) - 1 (1)

where Z is the centre-to-centre spacing between particles and R is

the sphere radius. For example, strain concentrations in the range 4 -

10 frequently occur in materials with a volume loading of 0.3. Such

strains are well into the non-linear deformation response regime of the

matrix (fig. I). 4  It seems reasonable, therefore, to regard debonding as

a phenomenon that occurs primarily in regions between closely spaced
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particles and, furthermore, that appreciable permanent deformation of the

intervening matrix occurs after debonding. Plastic deformation of the

debonded matrix (analagous to plastic hole growth 7 ) should result in

permanent debonding and hence, the presence of residually debonded

particles. A concommittent dilatation is expected in the process zone

wake.

Experimental observations substantiate that debonding predominates

in the region between particles 4 (fig. 5). -Furthermore, evidence of

optical interference in the wake 4 is consistent with the presence of

residual debonding. It is thus concluded that the non-linear loading

features of the stress-strain curve (such as the tangent modulus) are

dominated by matrix plasticity between debonded closely spaced particles;

whereas the unloading (secant) modulus is governed by the elasticity of

the composite containing debonded particles.

Micro-cracking or crazing of the matrix may constitute an

alternative non-linear deformation mechanism. In this instance, the

residual misfit strain due to differential shrinkage between the matrix -.

and the particles results in residual tangential tensile stresses.

Consequently, since the applied load imposes additional tangential

tensile stresses, the potential for matrix microcracking between

particles is readily visualized. Such microcracks would relieve the

residual stress and be subject to residual opening. 6  Hence, non-linear

behavior accompanied by permanent dilatation and a reduced secant modulus

would, again, be expected.

The observed stress-strain characteristics of particulate filled

polymers are thus qualitatively explicable in terms either of enhanced

plasticity of the matrix between debonded particles or of microcracking
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FIGURE CAPTIONS

Fig. 1 A non-linear stres-strain curve typical of a particulate filled

polymer.

Fig. 2 A frontal process zone with an associated stress-strain curve for

elements within the zone; also shown are two J contours.

Fig. 3 An extended process zone indicating the hysterisis in the stress

strain curve for material elements in the wake.

Fig. 4 The strain concentration between closely spaced particulates and

the associated interface debonding.

Fig. 5 A micrograph illustrating debonding between closely spaced

particulates in the crack tip process zone.

Fig. 6 A comparison of trends in toughness predicted from the present

analysis with experimental data. The toughness of the system

with 10% of 40 im radius spheres is taken as the reference.
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TABLE I

EXPERIMENTAL DATA FOR GLASS SPHERE FILLED EPOXY 4

0.2 mnri

SYSTEM I <R> 30 umn

f r (MPa) E(GPa) JIC(Jm-2) h(iirn)

0.1 40 3.5 430 240

0.2 35 4.5 510 470

0.3 25 5.5 590 1290

SYSTEM11I <R> 13ur

ft a (MPa) E(GPa) j-)hl)

0.1 40 3.5 550 300 -

0.2 35 4.5 690 630

0.3 25 5.5 900 2000

4Measured h (f -0.25, <R> 30 urn) -600 Umn.
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5. CONCLUDING REMARKS

A method of relating the toughness of a particulate filled polymer

to an independently determined stress-strain curve for the composite has

been demonstrated, using an idealized constitutive law. The analysis

illustrates trends in particulate volume fraction and size and seems to

predict behavior consistent with measured trends.

Further understanding of particulate toughening based on the present

concepts requires a superior characterization of the non-linear behavior

in the process zone, based on micromechanics models of the debonding,

microcracking and plasticity. More realistic constitutive laws can then

be derived and used in a quantitative mode to predict trends in

toughness. It would also be expedient to obtain direct measurements of

the process zone width in the crack wake. Such determinations would

constitute a superior measure of the utility of the present approach, as

well as providing an independent assessment of the deformation

characteristics within the process zone.
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formula (eqn 15), subject to the availability of independent n

determinations of the zone height, h. Such determinations have not been-

conducted, except in one instance 4 (table I). In lieu of direct

determinations of h, estimates may be obtained from eqn (16), provided

that trends in modulus and yield strength are independently determined.

Appropriate data are available for a glass filled epoxy (table I).

Note that, in the one instance for which h has been independently

measured, the agreement with the value predicted from eqn (18) is

relatively good. The toughness may be deduced from these data by

combining eqns (15) and (16) to give;

J-/Jo I - + (18)

Before proceding with the prediction, the choice of the reference

toughness, Jc must be considered. It is inappropriate to select the

toughness of the unfilled polymer because, in the absence of

particulates, alternative inelastic toughening mechanisms (e.g. craze

growth) are activated. Predictions afforded by eqn (18) only pertain

when the same inelastic process zone mechanisms operate. The application

of eqn (18) must, therefore, be restricted to the prediction of trends in

toughness amongst particulate-filled systems. Consequent ly, one

particulate system is used as a reference and the relative behavior of

the other systems is determined. The reference system selected is the

material containing 10% (by volume) of the larger (R> 30 tim) glass

spheres. The toughnesses relative to this system are predicted from eqn

(18) and plotted in fig. 6. A comparison with the measured toughnesses

(fig. 6) indicates good consistency for both particle radii. The

approach thus appears to have merit and warrants further investigation.
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n 0.2. With this choice for n , the upper bound toughness becomes:

cJ+ -f 0.8en(h/R)]. (15)

where the zone width, h , can be approximately related to the yield

strength, via the plane strain relation:
8

h = [...-] g(n) (16)

where g 1/4 for n 0.2.

A more complete solution for the steady state toughening can be

obtainad from eqn (10) as;

j = j0  i - L + (n-- n(h/R) - (n+1) C 1 - -h i)/ Lnn}

(17a)

which for n 0.2 becomes:

0 Y Co
C i -1 + 0.8 Zn (h/R) -0.06 (. (17b)

The specific dependence of J on h/ contained in the preceding

formulas can be directly attributed to the selected form of the

constitutive law (eqn 5). More realistic constitutive laws would

undoubtedly yield a different functional dependence. 5 '6 ' 7  However, the

general trends should be unaffected.

4. COMPARISON WITH EXPERIMENT

Trends in the toughness with the volume fraction and size of

particulates can be most expediently predicted using the upper bound
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most convenient estimate for further analysis.

d a

3.3 The Toughness

(i) Initial growth

The fracture toughness for initial growth of the crack, with a

frontal process zone is simply obtained by equating Jt in eqn (1) to

J in eqn (12) giving:

- J0
0 (1-f) . (13)

The toughness is thus predicted to be slightly reduced, due to the a

degradation of the material by debonding. However, as noted above, the

degradation is not likely to be as substantial as that given by eqn (12).

Hence, circumstances could be envisaged wherein the reduced near tip

stresses (eqn (2)), allow a small increase in toughness. Nevertheless,

the effect should be small and, for all practical purposes, it is

concluded that initial growth occurs at a toughness similar to that of

the unreinforced matrix.

(ii) Steady state growth

When the crack has extended substantially into the debond process

zone, the crack growth resistance approaches the steady-state solution.

The upper bound toughness is deduced by obtaining J from eqns (3) and

(11) and equating Jt to J (eqn (12)) to give:

0I 2.---) 2n+29h/R] ]
j j f+ j!L(14)c + 1 I n

Typically, for filled polymers the work hardening rate is low, 3 , 4

324

-.i ....... .._ . .,. ,, - _, .,, - ., , . , .. .= . ... . . ,. .. .., , .. ,., ,.,- ,. ,.. ..., .. ,. ,. ... ,,



An upper bound energy (that neglects the recovery of elastic energy on

unloading) is thus:
f . 2~n+1 j.

U ' (n+1.) In nh (11)

The magnitude of J now requires further consideration. As evident

from eqn (3), J varies within the zone from Jt to J,, due to the

presence of the wake. However, since the deformation closest to the

D crack plane has the maximum influence on the net energy (M(y) - - as

y - 0, eqn (9)), Jt is selected for present purposes.

3.2 Material Degradation

The presence of debonding in the process zone degrades the local

crack propagation resistance of the material, because cracks deflect into

the debonded material at the poles of the particles. If debonding occurs

at all particles immediately ahead of the crack tip, the area fraction of

debonded material along the crack plane will be of the order of the

volume fraction, f , of particles. Debonding represents a loss of

section and hence, the simplest expression for the toughness degradation

is :

J Jc0 (-f) (12)

where J is the degraded fracture resistance and Jc 0  is the

reference fracture resistance of the matrix.

The degradation will not normally be as large as that determined by

eqn (12) because some particles may not debond and a local toughening due

to crack bowing1 0 may then occur. Nevertheless, eqn (12) is used as the
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element within a strip, dy, distance y from the crack plane. The

present choice of e. is predicated upon the non-linear solution for the

principal strains in a crack tip field. For the present, idealised

stress-strain law, the inelastic strains are;' 9

= i n r zij () (7)

where r is the distance from the crack tip, I n  10 F0n- 4.8n,

and Z(8) is the non-dimensional parameter given in ref. 9. Hence, the

peak inelastic strain on the y plane becomes:
1/ (n+1)

**Ii 2 (8)

The energy density is thus:

2c 
,~ ( 9 

(°l 
-nl 

/ n l

U(y) -(n+l)I n  2y \E)())

and the net energy in the wke is:

U U(y)dy

2 r1+ -n~ Er0)2 J[ n+
_ .n-1) / ( (n-l)/(n+l)

(10)

where r o  is the minimum distance from the crack plane at which the

matrix between debonded particles experiences permanent deformation or

microcracking. This distance should be of the order of the particle

radius, because a crack typically deflects around one pole of the

particle, leaving the deformed matrix at the opposite pole, in the wake.
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between particles. Specific distinction between these processes is not

attempted in the subsequent analysis.

3. THE FRACTURE TOUGHNESS

3.1 The Energy Density in the Wake

The energy density and hence, the toughness, may be computed from

the hysterisis in the stress-strain curve provided that an appropriate

constitutive law can be specified. For simplicity, the loading curves

pertinent to both the shear and dilatational deformation of the

particulate filled polymers are assumed to exhibit a common form,

suggested by the uniaxial stress, strain curve, viz.,

a - y(ij) n  (5)

where ej is the inelastic strain, ay is the uniaxial yield strength,

and n is a unique hardening coefficient. Unloading is assumed to be

linear, with a secant modulus, Es . With this idealization, many of the

complexities of the toughening analysis5 "7 are eliminated, while still

providing a useful perspective on trends in toughness with

microstructure. The energy density based on eqn (5) has the form

U(y) - iij dij

2 2n
aany n+ 2 y

*~~ *~4 (6)-2E

(n+ 1 2E

where . is the maximum inelastic strain experienced by a material
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Abstract

A computer simulation is presented for the water drop impact

damage process. The simulation first assigns initial flaw positions

and lengths on a surface. These precursor flaws are then liable to

activation by an impact-generated stress pulse. The crack growth and

arrest equations involve the crack incubation time, thereby including

crack inertial effects in the analysis. The graphical features of the

simulation are demonstrated, as well as the agreement between

experimental data and the simulation.
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1.. INTRODUCTION

The impact of high velocity* water drops or jets on the surface of

brittle materials produces an annular damage ring above a damage

threshold. 1- 3 The damage, which typically comprises several hundred

circumferential cracks (fig. 1), exerts a major influence on the

optical properties of the material. 3 - 5  The stochastic nature of

brittle fracture suggests that it will not be possible for a model to

exactly reproduce the details of crack length and position for a given

impact event. Rather, the model should predict the correct spatial and

length distributions for the crack array. Predictions of the influence

of material properties on optical transmission could then be addressed.

This paper describes a recently developed computer simulation that

provides both statistical and graphical information on a calculated

crack array. The simulation is based on a prior simulation developed

by Van der Zwaag and Field. 6  However, the present simulation differs

in both intent and in the details of the crack growth and arrest

criteria, as described below.

pI

0Depending on the material, the impret damage thrrshold velocity, vft,
typically lies in the range 150 ms- 5vftlOOO ms-
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2. IMPACT SIMULATION

The simulation introduces a statistical array of pre-existent

small cracks into the surface of the solid. A stress pulse,,

characteristic of the impact induced Rayleigh wave 7 - 9 , is then imposed

onto the surface and allowed to propagate radially outward from the

impact center. The stress pulse activates crack growth in accord with

an initiation criterion and permits crack arrest subject to an arrest

criterion. The product of the simulation is thus an array of

relatively large impact activated cracks centered around the impact

site (see fig. 5).

A relatively large number of initial flaws, N , typically between

100 and 1000 is used for the present simulation. This number is

appreciably larger than that used in the prior study (20-40). Each

initial flaw, of radius a, is selected from a Weibull distribution,10

m/a-p2 m ap2\f(a) - L I expPl- J

This distribution has been selected, not only for its versatility, but

also because it has been established as the extreme value distribution

that most closely describes the large flaw size extreme in brittle

solids. 
11

Flaw positions are assigned randomly over an annular sector,

bounded by polar angles emin and emax, at radial distances

a s r < b (figure 3). The flaw positions are subject to the spatial

limits rmax (Appendix) which prescribes the maximum radial distance at

which cracks are likely to be activated by the stress pulse.

The stress pulse imposed on this crack array has an initial

amplitude, ao, given by; 6
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Go azv (2)

where z is the acoustic impedence of the drop, v is its velocity

and 8 is a constant of order unity. The pulse is allowed to

attenuate as it propagates. For present purposes, an experimental

attenuation is used,
12

a(r) = a [exp-a(r-r,) (3)

where a is the surface acoustic wave attenuation coeffecient and ro is

the radial distance from which the stress is launched (Appendix). This

form is characteristic of material attenuation, due to scattering by

grains, surface cracks, etc. An alternative choice, a 't r-1/2, would

be more pertinent if geometric spreading were the predominant

attenuation mechanism. The stress pulse is assumed to be rectangular

with an initial duration At (a position dependent duration can be

readily incorporated, as required).

When the propagating stress pulse reaches one of the surface

cracks, the quasi-static stress intensity factor 13

i
K = 1.1(2/)(Y) a (4)

is first compared with the material toughness KIC. When KI_<KIc ,

crack growth is prohibited. However, cracks subject to the condition

KI ) KIC are considered liable to propagation. In the prior

simulation6 , crack growth was invariably considered to occur when

K, > KIc and to arrest when the stress pulse had propagated past the

crack plane. Additional considerations are invoked in the present

simulation, based on a previous recognition 14 that inertial effects are

likely to be important, especially with regard to crack extension after
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the stress pulse has passed the crack plane. Specifically, three

temporal regimes are considered: an incubation time r , a crack

acceleration phase, - < t < At, 14-17 and a crack deceleration phase,

t > Lt. The incubation time is the time interval between the instant

the stress wave intercepts the crack and the instant the crack growth

begins.15 ' 16 Consequently, if r > At, the crack does not grow. When

t < At, the changes in crack length, a, and a2 , that occur during

the acceleration and deceleration phases, respectively, are given by 14

Aa1 = Vr r (Po - 1 - 2n(po)) (5a)

and

Aa - I l+p) - 4 - 2y +n (5b)if (1 -'i)

where vr is the Rayleigh wave velocity for the material, Po is At/T

and Y is (po - 1)/(po + 1). The incubation time r is in turn given

by

r =  X L Vr Z•. 
.

G.

where V is the Poisson's ratio of the material (1).

The preceding crack growth relations (equations 5) are

sequentially applied to each flaw in the initial flaw population that

satisfies K1 > KIC. For simplicity, crack interaction is neglected in

this preliminary simulation. The program thereby provides a

statistical analysis of the final crack population for non-interacting

cracks, along with a graphical output of the final crack length and

position (see fig. 5). The graphical capabilities allow a rapid

appraisal of results, and aid in the iterative refinement of the
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simulation.

3. RESULTS AND DISCUSSION

Two applications of the impact simulation are presented. First,

the capabilities of the program to examine graphical changes in the

crack field resulting from the temporal spreading and attenuation of

the applied stress pulse are presented. Then, the spatial distribution

of cracks in the simulated damage field is compared with that observed

in photomicrographs of impact damage.

As an example of the graphical features of the simulation, the

affect of changing the attenuation and temporal spreading of the

initial stress pulse can be readily explored. Schematics of the

evolution of a rectangular stress pulse for a non-attenuating constant

duration pulse, an attenuating constant duration pulse, and a pulse

with both attenuation and a linearly increasing duration are presented

in fig. 4. A sequence of computer-generated plots that demonstrate

the affects of such changes is presented in fig. 5 using axes that are

arbitrary, but constant throughout the sequence. A crack array is

computed for the case of no attenuation and no temporal spreading of

the pulse, so that the initial and final pulse durations are both At.

The corresponding array induced by a constant pulse duration At (no

temporal spreading), but stress amplitude attenuated (equation 2) such

that at a radial distance r 100, the pulse amplitude is reduced by

102 is depicted by fig. 5b. Note that the spatial extent of the crack

field in the attenuated case (figure 5b) is much reduced with respect

to the non-attenuated case (figure 5a). Trends associated with the

linear spreading of the pulse duration from an initial value of At to

final values of 3At (figure 5c) and 9At (figure 5d) indicate that the
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crack lengths become progressively longer as the pulse duration

increases.

The spatial distribution of impact damage cracks is now examined

in the context of recent research 3 . This research has shown that an

exponential distribution of the form

f(n) = exp[-An] (7)

describes the crack number density for water drop induced damage. A

single value of the scaling parameter, A , adequately describes the

crack distributions for several materials and for damage induced by two

different laboratory techniques (water jet and water drop impact). The

analysis entails mapping the inner and outer radii of the damage

annulus (rmin and rmax, respectively) into a transformed coordinate

system n such that r min nmn' rmax max'

For twelve polycrystalline specimens representing seven different

materials (ZnS, 3A1 2 0 3 , 2GeO 2 , 3A1 2 0 3 2Si0 2 , MgF, MgO, Si 3 N, and ZnSe)

the following relation yields a satisfactory fit' to the crack number

density data (figure 6)

A 3.4 9/nmax (8)

These results thus form a quantitative basis for comparing the

simulated impact damage to the actual impact damage. On this basis the

crack number density obtained from the computer simulation (fig. 7)

agrees favorably with experimental results. In order to perform this

'For each of the twelve polycrystalline materials, the significance
levels a (obtained from a chi-squared "goodness of fit" test are at
the 0.25 level in most cases, and are a 0.10 in all cases. 3
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comparison in a statistically meaningful way, the experimental data and

the simulation data were sampled in the same way. For the actual

damage, the crack population was sampled by superposing a polar grid

upon optical micrographs of the damage field, followed by location of

the radial position of each crack that intersects a grid line (figure

8). A subroutine included in the damage simulation sampled the I

calculated crack array in an identical fashion. Subsequent to the

crack sampling, the data set obtained from the micrographs and the data

set resulting from the simulation were analysed by the same statistical

program.

4. CONCLUSIONS

A simulation of the water drop impact damage process has been

developed which incorporates both graphical and statistical

capabilities. The graphical facility allows rapid assessment of the

simulation results, while the statistical facility provides a tool for

analysing some of the details of the crack distributions.

The present computer simulation of water drop impact damage will

be extended and refined by a number of program changes. For example,

the simple rectangular stress pulse profile will subsequently be

replaced by stress pulse profiles that evolve according to

analytical19,26 and numerical 2 1 ,22 predictions. A variety of surface

stress wave attenuation mechanisms and functional forms will be

considered, including geometrical spreading6' 9 , "leaky" surface

modes 2 3 ,2 4, temperature-dependent phonon scattering25 '2 6, and

scattering from grains 12 , surface irregularities2 3 , and from localized

defects such as pre-existing cracks.2 7 -29
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APPENDIX

DERIVATIONS OF OUTER BOUND FOR SIMULATION

At a radial distance rm x the amplitude of the stress pulse has

sufficiently attenuated that crack extension can no longer occur. It

is important to make a prior estimate of rmax to avoid inclusion of a

substantial number of inactive cracks at r > rmax and hence, to avert

an inefficient simulation. An upper bound estimate of rmax, referred

to as rbound, can be obtained from the critical stress intensity, KIC,

the maximum flaw length, amax, and the form of the surface wave

attenuation. If "IC is considered constant over the modeled region,

then for a given flaw population, the flaw of length amax will not

extend at a stress < Ob given by

KIC

-b 1 i/2 (Al)2 (area x )

The stress amplitude, a , at radial distance r is

a = aoexp[-a(r-ro)] (A2)

where ro  is the radial distance from which the stress wave is D

launched. The inclusion of ro  in equation (A2) acknowledges that the

stress waves (produced by the impact event) separate from the expanding

contact zone of the drop only after some small radial distance, ro, has

then traversed2 0 '2 1 . To a first approximation, ro  may be

approximated by rmin , the inner radius of the damage annulus 3 0 .

Thus the stress amplitude at rbound is

C b = aOexp[ -a(rbound-rmid] (A3)

Hence, from equations (Al) and (A3)
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Fig. 3
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Fig.1
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5c. Computer-generated impact crack array, for both amplitude attenu-

ation and temporal spreading. (In this case, at r = 100,

At = 3At o  and oa_ 0.1 ao, where Ato is the initial stress pulse

duration.

5d. Computer-gene-ated impact crack array, where at r 100,

Lt = 9At o  and a 0.1 o.

6. Probability density functions for the crack number density of

impact damagp cracks as a function of normalized distance, n. In

each graph, the solid line indicates f(n) = xexp(-Xn), where

X= 0.349.
0

7. A comparison between crack number densities predicted by the

simulation, and crack number densities obtained from optical

micrographs of impact damage. The solid line indicates f(n)

Xexp(-xn), where x = 0.349. 0

8. Schematic showing crack sampling method used for optical micrographs

of impact damage.

3
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Figure Captions

1. Optical micrograph of impact damage for polycrystalline ZnS

impacted by a water jet having a 4.5 mm equivalent water drop

diameter and a velocity of 350 msec - .

2. Schematics showing errors that result from improper choices for b,

the outer radius of the surface region included in the simulation.

If b >> rma x , the simulation is quite inefficient, as only a

small fraction of the total initial flaw population is included in

the region where crack growth can occur (r _< rmax), as shown in

(a). If b << rmax, (b), then the crack field is truncated in an

unrealistic fashion.

3. The annular sector over which initial flaws are distributed, which

is bounded by polar angles 8min and emax, at radial distances

a _< r_5b.

4. Temporal evolution of the initial stress pulse, for (a) no

attenuation, constant pulse duration, (b) non-zero attenuation

with constant pulse duration, and (c) both attenuation and a

linearly increasing pulse duration.

5a. Computer-generated impact crack array for the case of no amplitude

attenuation and no temporal spreading of the initial stress pulse. I

5b. Computer-generated impact crack array, for no temporal spreading

of the stress pulse ( t is a constant), but with attenuation

coefficient c such that at radial distance r 100, the stress

pulse amplitude a _ 0.1 co (where ( o is the initial stress

pulse amplitude).
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2- KIC

r log + r (A4)rbound a - 2 0 Iama /2 + min

o 2~v(amax)
1 lo zv i (a max ) /

SL + rmin  (A5)

- KIC

Equation (A5) provides an analytic method for setting size limits

for the region to be modeled in the damage simulation, which is of

vital importance in the computer modeling process. For example, if the

initial flaws are distributed over a circular region having area S1

and radius b, then none of the flaws in the annular region described by

rmax< r-5 b (and having area S2 ) will grow as a result of the impact.

Assuming a constant surface number density of initial flaws, the

fraction of the initial flaw population that is ultimately utilized in

the damage simulation is given by the ratio of the area S1  to the

total area, S t , included in the simulation, or

S1 S r (A6)
S t  SI1+S 2  -b

If b had been chosen so that b = 5 rmax, then only 4 percent of the

initial flaw population would lie in the region r5 rmax subject to

crack growth. The remaining 96 percent of the initial flaw population

is essentially superfluous to the damage simulation.

0 ! U
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Infrared transmitting materials are susceptible to surface damage

upon impact by water drops or water jets. This damage, manifest as

circumferential cracks (fig. la) and near surface plastic deformation,

can result in appreciable transmission losses (fig. ib) at wavelengths

of practical interest (4-20 im) [1]. The magnitude of the loss is

dictated by the complete damage spectrum. Hence, methods for

characterizing the damage spectrum are needed in order to relate impact

conditions to transmission loss and thereby, to determine the role of

the important material parameters. A characterization scheme, and its

utility, are investigated in this study. 0

Prior assessment of damage has focused on one, or a few, cracks

within the crack field. In particular, measurements have been made of

the maximum subsurface crack length or the crack length at the minimum

distance from the impact center [2,3]. These measurements are

pertinent to strength degradation, but not to transmission loss

assessment. A more satisfactory approach for purposes of transmission

loss analysis is to use the statistical distributions of crack length

or radial position to characterize the damage state. Most of the

cracks in the damaged region then contribute to the analysis.

The surface damage* resulting from impact by water jets or water

drops has been investigated for 13 individual specimens of eight widely

different materials** (Table 1). Among the thirteen specimens, the p

The subsurface damage characteristics are explored in a subsequent
investigation.

Micrographs of water drop damaged specimens were taken from a study by
Adler [4). Water Jet damaged specimens were obtained by one of the -
authors (E. D. Case) at J. E. Field's water jet facilities, Cavendish
Laboratory, Cambridge, England.
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e

area included in the damage annulus, Ad , varies by more than two

orders of magnitude, indicating a wide range in the spacial extent of

the damage.

The crack population is sampled by superposing a polar grid on

optical micrographs of the damage, followed by location of the radial

position, ri , of each crack that intersects the grid line (fig. 2).

The number of cracks contained within each radial interval yields a e

measure of the crack number density, from which the probability density

function can be evaluated.

Applying a simple coordinate transformation to the radial distance

coordinate, r , produces a striking consistency among the dist ibution

functions (fig. 3), considering the wide range of materials and impact

conditions represented by the data (Table 1). The transformed

coordinate, n, is obtained by setting the inner radius rmin , to zero,

and the outer radius, rmax, to a fixed integer nmax

Furthermore, if the data are censored to only include those

measurements at radial distances equal to or beyond the mode (or

maximum), node, a unified function emerges for all materials and

impact conditions, given by

f(T)) = ?exp-X(n - r mode )

or equivalently $

= exp(- Xnc ) (1)

Different values of a have been used to mitigate against the
possibility of a foruiTos choice of max affecting the data.

367

- .. . . . . ~ ;- .... -.. .. . . . - . . -



where is the radial distance to the crack in censored coordinates. 0

The scaling parameter, AX may be estimated from the mean of the

censored data,<nc> , such that

A - /<nc> (2)

Alternatively, X depends on Amax' such that the following relation

yields a satisfactory fit to the data for each of the polycrystalline

materials (fig. 4) for both the water drop and water jet impacted

specimens

A = 3 .4 9 /nmax (3)

The current statistical sampling technique (fig. 2) yields only about

100 to 150 observations (crack positions) per specimen, which is

equivalent to about 10 percent of the total population. Thus, the

relative error in the crack number density is large enough that it is

difficult to determine whether there are small differences among the

Is for the various specimens. The A values based on data from

individual specimens (Eq. 2) agrees with the "average' (Eq. 3) to

within a multiplicative factor of 1.4, for all polycrystalline S

specimens. However, in terms of the crack number density (Eq. 1)

neither estimate yields a clear "best fit" for a given specimen (fig.

5). Table II summarizes the significance levels, ,, obtained for a

chi-squared "goodness of fit" test, using A values computed by both

equations 2 and 3. Both equations apply to all polycrystalline

materials at the 0.25 significance level in most cases, and a
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significance level of 0.10 in all cases. However, for the

borosilicate glass, an appreciably smaller X (2.5/nmax) is needed to

correlate the data.

It is noted here that, although the exponential probability

density function, exp(-Xn), asymptotically approaches zero for large

n, it is never identically zero. Consequently, the actual crack

distribution terminates at a radial distance rmax (or n max in

transformed coordinates).'

The uniformity of the spatial distribution of circumferential

cracks for such a wide range of materials and impact conditions has

several important implications for damage characterization. A

comparison of initial interest is the similarity of the damage

distributions for the water drop and jet impacted specimens when viewed

in the transformed coordinates.** This indicates a fundamental

similarity in the damage created by these two test procedures, in the

near-surface region, beyond the mode of the distribution. It remains,

of course, to compare the relative sub-surface features.

These results, however, have much more importance than just the

similarity between the water drop and the water jet technique. The

results show that, for materials as dissimilar as ZnSe and Si3N4, a

For X = 3.49/ x, the probability of finding a crack in the radial
distance intervat 1.5r, < n < - is only 0.0053. If N = 120, then
,0.64 cracks are expec e in the entire interval 1.5nmax : < .

Adler compared water drop and water jet damage characteristics, and
concluded the test procedures are not similar in the untransformed
coordinates. However, Adler did not attempt comparisons for transformed
or normalized coordinates [5].
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"scaling law" is operative in the impact damage problem, such that,

subject to the proper coordinate transformation, the crack number

density curves can be made to coincide. For discussion purposes, we

presume that the existence of a unifying distribution indicates a p

spatial distribution of surface damage that depends on a stress field

chara teristic; such as the change in the stress pulse profile with

radial distance from the impact center.

The dependences on material and impact parameters must be embodied

within the expressions that map nmi n and %max back into real

coordinates r min and rmax* A key remaining problem thus entails

deriving explicit functional forms for rmin and rmax in terms of such

parameters as the critical stress intensity factor, the attenuation

coefficient for surface acoustic waves, the impact velocity, drop size, b

etc. These relations, coupled with equation (1) would allow

predictions of the surface damage characteristics for any set of

material and impact conditions. 3
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TABLE I

2Specimen Impact Velocity Drop Size** Ad(mm2)***
Label Material (m/sec) ( M)

Zi ZnS 494 3,07 6.49
3.19
3.36

Z2 ZnS 513 3.65 19.10
p

73 ZnS 540 2.30 3.36

Z4 ZnS 505 1.44 7.84
2.02

I

Z5 ZnS 542 1.73 2.571.79

GI 3A1203
. 2GeO2  759 3.07 3.61

S1 3A1 20 3"2Si0 2  762 3.10 3.25

M1 MgF 578 2.32 1.53

M2 MgO 715 2.04 2.50

BorosiIicateBIgls 469 2.41 0. 17 ..-
glass." -:

N1* Si 3 N4  925 4.00 5.80

N5* Si 3 N4  925 4.00 12.59

E3* ZnSe 375 4.00 7.70

Water jet impacted specimens

When two numbers are stated for a given drop, they indicate the minor and
major axis for a quasi-ellipsoidal drop. A single entry for drop size indicates
the diameter of a spherical drop [4], or in the case of the water jet impacts,
the size indicates an equivalent spherical diameter [3].

2 2
Ad, the area of the damage annulus, is given by i (r -r ), where r andax min

rmin are, respectively, the outer and inner radii of twe damage annulus.max
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TABLE II

?cimen Label X(eg. 2) a (eq._2) X(eq.. 3) (eg. 3)

Zi 0.344 0.25 0.349 0.25

72 0.488 0.10 0.25

D3 0.334 0.10 0.10

Z4 0.470 0.25 0.25

Z50.358 0.25 0.25

Gi 0.323 0.25 0.10

Si 0.380 0.25 0.25

Mi 0.348 0.10 0.10
If9

M2 0.344 0.25 0.25

BI 0.248 0.10 It0.01

Ni 0.364 0.10 0.25

N5 0.356 0.10 0.25

E3 0.399 0.25 0.25
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Figure Captions

Figure la. Optical micrograph of impact damage for polycrystalline

ZnS impacted by a water jet having a 4.0 mm equivalent

drop diameter and a velocity of 350 msec-1 .

Figure lb. A Fourier Transform Infrared (FTIR) spectrograph showing

the transmittance ratio Tdamaged/rundamaged as a func-

tion of wave number for a 6.8 mm thick ZnSe specimen

impacted by a water jet having a 4.0 mm equivalent drop

diameter at a velocity of 375 msec -1 .

Figure 2. Schematic showing the crack sampling method used.

Figure 3a. Crack number density as a function of radial distance for

water drop-impacted specimens.

Figure 3b. Crack number density as a function of radial distance for

water jet impacted specimens Ni, N5, and E3. Water drop

impacted specimen Z1 is shown for comparison.

Figure 4. Probability density functions for crack number density

data censored such that only n2 rimode, where n is

the transformed radial distance, and nmode indicates

the location of the mode, or maximum, of the

distribution. In each graph, the solid line indicates

f(n) exp(-nx) and X 0.349.

374



Figure 5. Crack number density as a function of radial distance

for three polycrystalline specimens. For each specimen

the predicted number density is shown for both

computed from Eq. 2 (dotted lines) and from Eq. 3

(solid lines). Specimens Z2 and Z4 are the two poly-

crystalline specimens for which the two X estimates

differ most (Table II).
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Fig. la
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Fig. lb
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Fig. 3a

00

0 410

0 0 040

- - torn 0 .00 <

en

N UnN 0 40 3-

w

0z
< MI

000 '0

d d
AiJSN30 83VwJfN A3V8iD 'A3N3flO38 3AUV.138

379



Fig. 3b
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Fig. 5
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CHAPTER XII

INNER RADIUS OF WATER DROP IMPACT DAMAGE FIELD

E. D. Case and A. G. Evans
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INNER RADIUS OF WATER DROP

IMPACT DAMAGE FIELD

D

by

E. D. Case and A. G. Evans

Abstract

Expressions are presented for the inner radius of the crack damage

field induced by water drop impact. The inner radius is expressed as a

function of drop size, impact velocity and Rayleigh velocity of the

target. Calculated and observed minimum radii agree well for a wide

spectrum of impact conditions and target materials. Furthermore, this

radius is indendent of the laboratory technique used to induce the damage

(iater drop, water jet, and nylon bead techniques).
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1 . INTRODUCTION

Impact by high velocity water drops can produce annular damage

fields consisting of hundreds of individual cracks (figure 1). The inner

and outer radii of the damage field (labeled here as rmax and rmin,

respectively), are thus two measures of the physical extent of the impact

damage. The characterization of this damage is closely linked to the

analysis of infrared transmittance losses suffered by IR windows (figure

2). For example, the optical and diffractive effects due to a given

crack of simple geometry may be approximated by the solution of the

electromagnetic wave equation, while multiple and non-linear interference

effects can probably be determined by iterative numerical procedures

already applied to ensembles of interacting electromagnetic scatterers

(1). Such calculations presuppose that the scattering centers themselves

(the impact cracks, in this case) have been adequately characterized.

Consequently the strong link between crack characterization and

transmittance calculations is established.

One step in the characterization of water-drop impact damage has

been to show that an exponential distribution function of the form

f(r) - Aexp[-An] (1)

describes the crack number density for crack fields induced by water drop

impact (2). A single value of the scaling parameter, Xs' adequately

0
For the purposes of this paper, "high velocity" impact refers very

roughly to the range between about 200 m/s and 100 m/s.
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describes the radial crack number density distributions for several

different materials (figure 3). Moreover, differences between the

distributions observed for damage induced by two different laboratory

impact techniques (the water drop and water jet techniques) are

insignificant. The analysis entails mapping the actual inner and outer

radii of the damage annulus (rmin and rmax, respectively), into a

transformed coordinate system n , such that

rmin " nmin

rmax n max

Consequently, to fully utilize the crack number density analysis,

explicit functional forms are needed for the inverse mapping of nmin and

max back into rmin and rmax, via material and drop parameters. The

intent of this study is to develop a quasi-empirical expression for rmin

as a function of the velocity and diameter of the impacting drop, and the

Rayleigh velocity of the target material. It will thereby be

demonstrated for a set of 50 specimens (four different glasses, seven

polycrystalline materials) and impacts via water drop, water jet and

nylon bead techniques that calculated values of rmn agree quite well

with measured values.

2. EXPERIMENTAL PROCEDURE

The data encompass a wide spectrum of materials (table I) and impact

conditions. For the 50 specimens, impact velocities and drop sizes

.
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ranged from 240 ms- 1 to "'1000 ms- 1 and 1.6 mm to 4.5 mm, respectively.

The corresponding rmin span nearly an order of magnitude, from %0.1 mm to

,0.8 mm. While most of the specimens (39) were impacted via the water

drop technique (3,4), seven specimens were impacted via water jet and

four specimens were nylon bead impacted (3).

Table I Materials Investigated

Polycrystalline Materials:

ZnS (31 specimens)

ZnSe (2 specimens)

Si 3N 4  (2 specimens)

MgF (2 specimens)

3(A1203) 2(GeO 2 ) (one specimen)

3(A1 203 ) 2(SiO 2 ) (one specimen)

CaLa 2 S 4 (two specimens)

Glasses:

Germania glass (2 specimens)

Borosilicate glass (2 specimens) 0

Fused silica (1 specimen)

Soda lime silica (4 specimens)

0
These specimens were impacted by one of the authors (E. D. Case) at the

water jet facilities of J.E. Field, Cavendish Laboratory, Cambridge,

England.
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Figure Captions

1. Optical micrographs of water jet impacted ZnS.

2. A Fourier Transform Infrared (FTIR) spectrograph showing the

transmittance ratio - damaged/ undamaged as a function of waver

number for a 6.8 mm thick ZnSe specimen impacted by a water jet

(having a 4.5 mm equivalent drop diameter) at 375 ms

3. Crack number density as a function of normalized distance, n . In

each graph, the solid line indicates f(n) = exp(-W and . =

0.349.

4. A schematic of the water jet apparatus. A stainless steel nozzle

containing a water filled chamber (sealed by a neopreme disk) is

impacted by a pneumatically fired pellet. The water jet formed by

the nozzle orifice then impacts the target.

5. The calculated rin values versus the observed rin values for 50

impacted specimens, including seven different polycrystalline

materials and four glasses. The solid line is locus of points for

which rmin calculated equals rmin observed.

S
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r = In [2Zvo cI+ (A5)
a (a) rin

such that,

r -cn + r (A6)
max a min

Note that at the fracture threshold velocity, vft, rmax must

asymptotically approach rmin,, which in turn requires that

C
vft 2 (A7)

3.
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Appendix

For the calculation of rmax, the maximum radius of the damage

annulus, it is initially assumed that the acoustic waves of interest (the

surface acoustic or, Rayleigh waves) attenuate according to S

a = a0 exp(-a[r-rmin]) (Al)

where 0 is the stress amplitude at rmin and a is the surface acoustic 9

wave attenuation coefficient. The mode I quasi-static stress intensity

factor for the surface flaws at any stage during their propagation can

then be written as (14)

Ks(r) 1.12(2/ )o(4)rc

= 1.12(2/1V) a0 exp(-c[r-r min) (A2)

Solving for r gives

r n _ _ 1 + r (A3)

where KI(r) - a(r)Kc, with K. the fracture toughness.- The function a(r)
S

is defined such that a(r) 1 at r = r and a(r) = a at r r Using

the approximation (8,15), max =

a v z
o 0

where Z is the drop acoustic impedance, and B is considered here to be a

constant of' order unity, then equation (A)becomes .
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body, and the texturing within polycrystalline materials.

6. CONCLUSIONS

The analysis of rmax (appendix) and rmin data provides insight into

the basic impact damage processes, as well as a data base allowing, for

example, intercomparison of impact data and computer simulation of the

damage processes (13). The minimum radius solution provides the basis

for determining the inner dimension of the crack damage field, given the

drop velocity, drop diameter, and the Rayleigh velocity of the target.

Furthermore, the analysis shows, as does the crack number density

statistics (2), that at least to a first approximation', there is little

difference in the rmin values for the water drop, water jet, and nylon

bead techniques. This similarity is encouraging, since it implies that

less complicated laboratory techniques (namely water jet and nylon bead)

may yield data similar to the more sophisticated water drop method.

The expression for rmax links the crack damage equations to the 4 -

initial flaw size statistics and to the surface wave attenuation

coefficient, .
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where e is the spatial interval (measured in the radial direction)
S

that corresponds to a time interval T between the appearance of the

shear wave and the initiation of cracking. The temporal duration, to, of

the Rayleigh pulse at a given time t, is bounded by the difference
S

between t and t., the time at which the Rayleigh pulse comes into

existence (i.e., it separates from the contact zone). In the presence- of

incubation no cracking can occur until,

t - ts _ (13)

I

The expressions involved in determining e depend on whether lateral

jetting occurs at the time the shear or Rayleigh pulse separates from the

contact zone. Analytical expressions for e are now being developed.

The present method of calculating rmin does not require data on the

fracture threshold velocity for a given material, microstructural

parameters such as grain size or porosity, or flaw statistics. Thus,

reln is a relatively weak function of microstructure and flaw statistics.

However, it does not necessarily follow that the entire damage process is

insensitive to these parameters. The outer radius of the damage annulus,

rmax, embodies both flaw statistics and microstructural considerations

(appendix). For example, at radial distances r > rain, the stress (and

hence the stress intensity factor K) is a function of the surface

acoustic wave attentuation coefficient, . The coefficient L is in

turn a function of such microstructural characteristics as the surface

roughness, the size-dependent scattering from grains in a polycrystalline
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where g can be any one of the three vectors vo, d, or CR, and where n

is the number of specimens (50 in this case), Unc is a measure of the

empirical uncertainty involved in measuring g, and N(0,1) is the normal

random deviate (with zero mean and a variance of unity). After each

datum has been perturbed by adding an "error" term UncN(0,1), equation 10

is re-evaluated. The resulting calculated value, from the perturbed or

"noisy" data is termed r The error W simulated by this computer

experiment is then calculated using

e - (11)

Equating the uncertainties in vo, cR and d listed in equation 8 with

the standard deviation of the corresponding measured parameters, gives

errors e very similar in magnitude and distribution to the actual

errors e (Table 2).

Thus, based on two error estimates, the magnitude of the errors in

the rmin computation are in reasonable agreement with errors arising from

the uncertainties in the data.

5. DISCUSSION

The hypothesis that rmin is determined by the Rayleigh wave

separation process ignores the existence of an incubation time, T , for

cracks induced by a stress transient (10,12). A simple generalization

for equation 4 that allows for incubation has the form,

rmn r. e (12)
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Thus, the maximum uncertainties in rmin, Vol d and cR are, for the

purposes of this calculation, assumed to be 10%, 2%, 2% and 10% ,

respectively. The uncertainties in cR arise from at least three sources:

the often imprecise measurement of Poisson's ratio, v , the assumption of

elastic isotropy (upon which equation 6 is based), and errors in the

measurement of the Young's modulus E. Specifically, for materials

having preferential grain orientation, such as the numerous CVD ZnS and

ZnSe specimens included in this study, the appropriate surface plane

values of Young's modulus and Poisson's ratio are not available (only the

bulk aggregate values exist). An error level on cR of 10% may thus be

optimistic in such cases. Given the error bounds presented in equation

9, equation 8 estimates an upper bound error in the calculated rmin of

t 22%.

While the propagation of error estimation only bounds the error, the

following computer experiment can give a rough estimate of the

distribution of the errors. Initially, it is presumed that equation 5

and the vo, d, and cR data are exact (no experimental error). Then r

is calculated from equation 5. For the purposes of the computer

experiment, r is considered an exact value. Each datum vector is then

"perturbed" according to the general relation

g + gi U N(0,1) i 1,2,3 ... , n (10)

The uncertainties in the density, p , should be negligable in most

cases when compared to the other uncertainties in determining cR.
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impact specimens.

The detailed assessment of the present hypothesis for calculating

rmin depends on whether the observed errors (Table 1) fall within the

range of errors that result directly from uncertainties in the data.

Errors introduced by the experimental uncertainties in v., cR, and rmin

data values are calculated via two estimation techniques. First, a

simple propagation of error estimates is considered, and then a computer

"experiment" is employed to estimate the distribution of the relative

errors.

A propagation of error estimate determines an upper bound for the

absolute value of error, estimated from the total differential Af(x,y,z)

for the multivariate function f(x,y,z) using

3x af 3z

where Ax, Ay, and Az are estimates of the error bounds on the variables

x, y, and z, respectively. The individual errors (that is, the

experimental uncertainties) Ax, Ay, and Az, are assumed to be

uncorrelated. The bounds assumed for the uncertainties in each of the

data vectors are:

rmin =0.1 rmin .

v= 0.02 v

d 0.02d

cR 0.10 cR

'Adler formed the nylon beads used in his experimentation from nylon

resin supplied by Rilsan Corporation, Glenbrook, New Jersey (3).
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* where robs is the observed value of r and rca I the value of rmin

calculated from equation 5. The maximum and minimum relative errors

determined in this manner are 0.231 and -0.239, respectively. The

* distribution of the absolute value of relative error, lel , shows that

more than half of the calculated rmin agree with the observed values to

within ±10%. For 43 specimens (86% of the total), the calculated and

* observed values agree to within ±20%. Note that for the entire set of 50

specimens, none of the errors exceeded 25% (Table II).

Although the data represent three different laboratory impact

testing techniques (water jet, water drop, and nylon bead), there are no

systematic differences in the magnitude of the errors with respect to the

three techniques. For example, errors for the four nylon-bead impacted

ZnS specimens are all less than ± 10%, while the errors for the three

water jet impacted polycrystalline specimens (two Si 3 N4 specimens and one

ZnSe specimen) ranged from t5% for the Si3H4 specimens to 20% for the

* ZnSe specimen. Four water jet impacted soda lime silica glass specimens

show a maximum relative error of about 6%. Thus, both the nylon bead and

water jet data seem to display the same rmin trend as that observed using

the water drop technique. No attempt was made to normalize the nylon iI

bead data to account for the differences in density (and, presumably, the

sonic velocity) between nylon and water. The diameter and velocity of

the nylon bead used for the calculation of rmin are the experimental

values recorded by Adler (3). The agreement between the nylon bead and

water drop data presumably stem from a near equivalence in the acoustic

impedance of water and the particular nylon Adler employed for his
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fitting procedure. Consequently, if the exponents of vo, d, and cR are

allowed to be different than unity, the least-squares procedure yields

Avld 2

*ri 0 (5)rmin " Cn3()

R

where exponents n1 , n2 , and n3 have the values nj 0.753, n2  1.662,

0.24 0.90n3 = 0.512 and the constant A - 2.78 sec 02/M . The present data set

includes impact damage information wherein vo, d and rin are measured

values, and Rayleigh velocity cR is calculated from the expression

0.87 + 1.12v E 1/6
CR L 1+V 2p(i+v) (6)

where v, E and p are, respectively, the Poisson's ratio, Young's modulus

and density of the target (4).

4. RESULTS

4.1 The Minimum Radius, Emin

The relation between the observed rmin and that calculated from eqn

(5) is plotted in fig. 5. Evidently in view of the differing materials,

impact conditions, and impact techniques encompassed by the data, the

Rayleigh wave separation hypothesis provides a surprisingly good model

for determining rmin. However, further insight is provided by conducting

a detailed error analysis.

The relative error, e, in the rmin calculations, is defined as

(robs rcal)
em (7)

robs

390

"" " -'S



* nondimensional spatial coordinate R and temperal coordinate T (8,10) by

4cir

k 2  ..'

4 (2)

T - 4c 2 t1k 2

* where k2 
' dvo, and ci is one of the acoustic wave velocities

(longitudinal, shear, or Rayleigh), v0 is the impact velocity, d is the

drop diameter and r and t are respectively, the radial distance along the

sample surface and the time after impact. Furthermore, Blowers (8) shows

that

(2 T" T < 1.

R (3) _
T+I1 T- SI

where T 1 1 (or, thus, R 2) gives the temporal (and spatial)

coordinates for the separation of the contact zone from the acoustic wave

of velocity Ci. The radial distance rs, at which the Rayleigh wave

separates from the contact zone is thus obtained from eqns (2) and (3)

as,

R'v d vod
r - (4)s 4cR  2cR

R!

where R R evaluated at r = rs. By assuming that the first cracks

appear as the Rayleigh wave separates from the contact zone, such that r

Srmin, equation 4 can be used as a trial function for the least-squares
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The water jet impact procedure involves firing a lead pellet into a

stainless steel nozzle containing a water filled chamber (figure 4). A

" neopreme disk seals the water chamber in the rear of the nozzle, and a

small orifice* in the nozzle front forms the jet as the water is ejected.

The water then impacts the target material, held about 1 cm away from the

nozzle orifice. Ideally, the jet has a hemispherical front surface

(5 , 6), leading to a damage similar in several aspects to damage induced

by spherical drops (7). Details of the water drop and nylon bead impact

techniques are given by Adler (3).

3. THEORETICAL CONSIDERATIONS

When a water drop impacts a surface, initially the velocity of the

spreading contact zone exceeds the local sound velocity (8). As the

contact zone expands, the Rayleigh and shear waves separate from the

" leading edge of the contact zone. A two-dimensional Lagrangian finite

difference model by Rosenblatt, Eggum, De Angelo and Kreyenhagen (9)

shows that tensile cracks due to water drop impact propagate in the

vicinity of the shear wave front. The lateral distance at which the

sonic waves separate from the contact zone thus appears as a plausible

estimate of rmin. This distance can be expressed in terms of the

0

The orifice diameter determines the "equivalent spherical diameter" of

the jet. For example, an orifice of ,0.8 mm produces a water jet that

produces impact damage roughly equivalent to the damage caused by a 4.5mm

diameter spherical drop (6).
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Fig.1
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ZnS water jet impact
Impact velocity = 350 rn/sec
Equivalent drop diameter -4.5mm
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Fig. 2 •
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Fig. 3
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Fig.4

Target

0

Water cHamber

405



Fig. 5

*0 = Si 3N 4. water jet impact

4o '- A ZnSe, water jet impact

2:= Soda lime silica glass, water jet impact

-- ZnS. nylon bead impact
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