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Abstract. Different algorithms, based on Gaussian elimination, for the solution of dense linear
systems of equations, are discussed for a multiprocessor ring. The number of processors is assumed
not to exceed the problem size. A fairly general model for data transfer is proposed and the
algorithms are analysed with respect to their requirements of arithmetic as well as communication

* times.
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1. Introduction

This paper discusses various algorithms, based on Gaussian Elimination, for the solution of
dense linear systems of equations,

Ax =-b,

on a linearly connected ring of general purpose processors.
In multiprocessor systems, the total time to perform a sequence of computational tasks does not

only depend on when a task is completed but also where (i.e. in which processor) it is accomplished.
This in turn implies a great richness in the class of algorithms, in terms of the assignments of tasks
to processors and the assumed topology of the processor communication network. For a particular
task it is now important in which processor its input data are situated (ie, how long it takes to
move them to the requesting processor) and when they are available.

As the number of processors will not exceed the problem size, and will usually be much smaller,
the algorithms differ in the way the matrix A is distributed among the processors.

1.1. Overview
The approach taken here for the development and analysis of algorithms acknowledges that

times for data transfer communication are not negligible and may in fact dominate the times for
actual arithmetic. A fairly general communication model is proposed, and all algorithms are char-
acterised and compared with respect to their requirements for arithmetic as well as communication.

Following the classical approach, methods for triangular system solution are discussed (sec-
tion 3) before introducing schemes for the Gaussian elimination (section 4). To begin with, however,
the second part of this section presents a summary of the requisite hardware features, based on
which various ways of transferring data can be devised (section 2).

To avoid long, non-descriptive formulae in favor of simpler results, the derivation of arithmetic
and communication times will contain merely high order terms (in the problem size and the proces-
sor count). Furthermore, only a few representative methods will be described in detail to illustrate
their analysis, while other, obvious variations, will be listed in tables.

Surveys of (general) parallel algorithms for the direct solution of dense linear systems of equa-
tions appear in [3, 9, 10]. Probably the earliest paper to realise that 'data movement, rather
than arithmetic operations, can be the limiting factor in the performance of parallel computers
on matrix operations' is [2]. There, lower bounds for matrix multiplication and matrix inversion
are determined for arbitrary processor interconnection schemes where each processor can hold one
matrix element. In (1], the communication requirements of some numerical methods, such as tridi-
agonal system solution by substructuring, ADI, FFT and fast Poisson solvers, are analysed with
respect to shared-memory multiprocessors and highly parallel non-shared-memory MIMD systems.
A probabilistic model for predicting iteration time and optimal data allocation when solving linear
systems via iterative methods is presented in [6]. Its application in [7] prompts the conclusion
that 'a broadcast bus architecture can effectively reduce the expected computation time for solving
sparse linear systems.'

Gaussian elimination for dense systems on a multiprocessor ring is discussed in [8] Lawrie and
Sameh [4] present a technique for solving symmetric positive definite banded systems, which is a
generalization of a method for tridiagonal system solution on multiprocessors; it takes advantage
of different alignment networks for allocating data to the memories of particular processors. How-
ever, the analysis in both is based on the assumption that the time for transmitting one floating
point number from a processor to its nearest neighbor does not exceed the time for an arithmetic

.. ration.
This paper lays no claims to being either exhaustive or complete. Its objective is to compare

a variety of algorithms, which are fairly reasonable to program and to analyse, for the solution -p.. -
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Figure 1: Ring of k - 8 Processors. .

-- " ~ of a single problem on a certain class of parallel architectures, thereby leading to a more realistic
approach to future algorithm development on multiprocessor machines.

1.2. The Multiprocessor Ring
The multiprocessor architecture under consideration, depicted in Figure 1, was introduced in

[11] and consists of

" a 'ring' of a small number of k linearly connected general purpose (possibly pipelined) proces-
sors, each with its own memory (the processors in the ring will be consecutively numbered P
through Ph),

" a fast bus used mainly for broadcasting or transferring data at high speed,

" local interconnections linking each processor to its nearest neighbors (the ring).
It is assumed, that any processor is capable of writing to one neighbor while reading from

the other, using the local links. For purposes of estimating the computation time, processors are
considered to work in lock step where one step corresponds to the computation time of the slowest
processor.

In order to discern the merits and disadvantages of the local links on one hand and the
broadcast bus on the other, they will be used separately and analysed one at a time. •

Assume the bus has a speed of RB words per second while the local links can transfer data at
a rate of RL words per second. The inverses of RB and RL are denoted by TB and rL respectively.
To be general, each transfer of a data packet is associated with a constant start-up (set-up) time of
)3B and 13L, respectively, which is independent of the size (the number of words) per packet. Often,
the start-up times are (much) larger than the elemental transfer times, that is,

OB > TB, 13L rL.

2
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The time to broadcast a packet of size N via the bus is

tT,B =13B + NrB,

while the time to send it from a processor to its neighbor by using the local links is

tT,L - 1 L + NTL.

On a single processor, a linear combination of two vectors of length N takes time

tA - /+ Nw,

where -1 is the pipe fill time (it is zero for non-pipelined machines), w the time for one scalar
operation and -y _> w (again, the start-up time dominates the elemental operation time). In this
paper, tT,B denotes data transfers times for the bus, tT,L refers to those involving the local links
and tA stands for arithmetic times. For any algorithm the sum of its transfer and arithmetic time,
tT,. + tA, is simply called its computation time.

Whenever convenient, we assume without loss of generality that the problem size N is a
multiple of the number of processors, k.

2. Data Transfers

In this section we consider different ways of transferring data among processors which are
important in subsequent computational algorithms. We assume that a vector can be divided up
into 'packets' of arbitrary size (subject to the vector length, of course).

As mentioned in the previous section, it takes time

tT,B = OB + NrB

to broadcast a vector of length N from one processor to all others using the broadcast bus. Con-
sequently, the time to broadcast a vector is independent of the number of destination processors.

An alternative method consists of using only the local links between the processors and pipelin-
ing the data transfers : while sending one packet to its successor a processor receives the next packet
from its predecessor. Thus, if processor P is to send its data to all other processors, then in step 1
the first packet is sent from P, to P2 . In step j, the first packet is sent from P to P,+ while the
second packet follows up from P-l to Pj, etc.

If the vector is partitioned into v packets of equal size, then the process will terminate after
k + v - 2 steps, when the last packet has reached Pk. With regard to high order terms in k and zV,
the total time comes to

t T,L -- (k + V)PL + (k + v) -7L. (2.1)

The above equation indicates that for large enough v the time required for transferring a vector of
length N is proportional to NrL. However, the larger v, the larger the cost of the set-up times will
be.

Another possibility is to have P send its data 'both ways round' so that processors to the left
and right of PI would receive them at the same time. The according data transfer time comes to

tT,L ; (-k + v) 3L + (ik + N TL,

which is at most twice as fast as the one in (2.1) when data are sent to all k processors. If fewer
than k processors are to receive data, this scheme becomes more complicated and vectors might

3
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have to be partitioned into packets of differing size. Since the difference is only a factor of two, we
prefer to restrict ourselves to the simpler scheme of 'one way data flow.'

From equation (2.1) one observes that an optimal value for v exists and is given by

ope - N-- (2.2)

L.

for which the optimal time becomes

tT,L,op(N) v NrL + k3L + 2 N

_ R + / ) ( 23 ).

Observe, that in practice 1 < v < N, so that formula (2.2) is valid only when

1: ELL < N 2 .
k TL

Otherwise, the optimal time simply becomes

tTL,op(N) P (k + N)(6L + TrL), if E/L <
k rL

and N/6L > 2

tT,L,opM(N) f k(OL + NrL), if - >N2"
kTL

For example, assume that k processors with transmission time rL and a problem of size N
are given. If, with increasing set-up time for data transmission, the transfer time is to remain
optimal, the number of packets must decrease (while their size increases), so that a smaller number
of set-up times is required. Yet, if elemental transmission and set-up time are of the same order of

magnitude, then the packets should each be of size . Sometimes we will make use of the double

inequality
NTL + k/6L < tT,L,opt(N) < 2(NrL + k/$L). (2.4)

Note that the upper bound corresponds to choosing the non-optimal value v = k.
Sending a vector to processors that are not more than a distance of < k away changes the

optimal value of v to
L'opt =- "kN-

T3L

and the corresponding time to

tT,L,.pi(N) (v' 7+ )2 (2.5)

Obviously, it does not pay to divide a vector into packets when using the broadcast bus.
In the case where a vector v is 'uniformly' distributed over the k processors so that the subvector-.--

vi of length f resides in processor Pi, an important operation is (9v, the direct sum of the blocks
v,... vk, which makes the full vector v available in each processor. This obviously requires no
computation but only data transfers.

4
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Using the bus, it is possible to broadcast each vi, one after the other, to all the processors
which requires time

tT,B = k; B + k(-)TB ki 8  + N r.

When employing the local links, the subvectors are 'rotated' in a roundabout fashion in
step 1 we simultaneously send vi from P to P2 , v 2 from P2 to P3, etc, and finally vk from Pk to
PI; generally, in step j, we transmit ul from P to Pj+, v2 from Pji+ to Pi+2 , and vk from Pi-I"
to P (the indices should be taken modulo k). After k of the above steps vi has encountered each
processor. Hence the whole process requires time

N
t TL = k/3L + k(T)rL k/3L + NrL. (2.6)

Consequently, the number of set-up times and elemental transfer times is the same for bus and
local links.

In the algorithms for solution of dense linear systems, not much difference will be apparent in
computation times involving broadcasting or pipelined data transfer. Even though they differ in
the number of start-up times, these times (for broadcasting as well as local links) occur only with
low order terms of the problem size, N, and hence have asymptotically no influence on the high
order terms which are relevant for the overall time estimate. However, the final judgement can be
made only when benchmarks from real multiprocessor systems are available.

3. Solution of Triangular Systems

In sequential machines, a general dense linear system

Ax=b

is efficiently solved by first reducing it to triangular form by Gaussian elimination and then solving
the resulting triangular system. The same approach will be used for a parallel implementation on
the multiprocessor ring. As is classically done, we will start by considering the solution of triangular
systems.

3.1. Partitioning the Matrix into Blocks of Contiguous Rows
Consider the upper triangular system

Uz= b, (3.1)

where U is an upper triangular matrix of size N x N. The simplest idea that comes to mind for
the solution of such a system on a parallel machine, is to partition the rows of U into k blocks each
consisting of N/k rows and to store each block in a processor, as shown in Figure 2. Recall that
the processors are numbered consecutively P1 , P2, ..Pv.

Let processor Pi hold rows (i - 1) -+ 1 to i of U, the corresponding block bi of the right hand
side vector b, and the block xi of the solution vector x. Accordingly, denote by Uq, the N/k x N/k
block matrix in position (i,j) of the matrix U. The algorithm TRB (Triangular system solution
with Block Rows) to solve (3.1) is shown below; proceeding from bottom to the top of the matrix
(i.e., i = k,k - I,...1), processor Pi solves the T X I triangular system with the ith diagonal
block as coefficient matrix. The solution vector xi is then sent to the processors to the left of P
which perform the corresponding matrix-vector multiplications with xi.

Figure 3 graphically illustrates the algorithm, entries in the matrix U denote the time steps
when the corresponding block matrix Ui, is processed.

5
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Processor P

Figure 2: Block-Row Partitioning of a Triangular System.
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Figure 3: Sketch of Algorithm TRB for k = 8.
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ALGORITHM TRB (Triangular system solution with Block.Pnwa)

1. Solve in Pk
UkkXk =t

2. Fori= k- 1,k-2,...1ldo

(a) Send xj.,. from Pj~ to P,,P,... . ____

bi: i- ujiii(3.2)

(c) Solve in Pi

Ujjxj = bi. (3.3)

At each step i of Algorithm TRB a vector of length N/k must be transferred from Pi~1 to
Pi * , .P, which, according to (2.5), requires time

N Nr Li_0L (yr 0 :5~ 2NL+ ) (3.4)
-T-r + L 2  -1 YTLI3L =~--L t 3 ) 2--r~IL

using the local links and
N

/38 + (3.5)

using the broadcasting bus. Summing up over steps i =k - 1, k - 2,... 1 yields the total times
required for data communication

tT,L sNTL +/L+ !F- O k r k 1 -L3 3
2 3 kT~, L L

:5 2NrL + k2/3L, (3.6)

and
tT,B ;z: Nr8 + k/3, (3.7)

where the approximations
k1 k-1 2 ~3/2(38

have been employed, which are valid only when k is sufficiently large.
Now consider the time spent doing arithmetic. At each step in (3.2) a matrix-vector multipli-

cation involving

N + N(3.9)
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steps is performed in each active processor. The cost of solving the triangular system in (3.3),

Rx=f,

on a pipeline machine requires time

I N- -/ (3.10)

because xi, 1 <i < 'v, is obtained by

£3 = -x

and

XN/k = Aflk/rNlk,

where the indices are relative to the sub-block. The term in brackets constitutes an inner-product
and can be performed in time (' - i - 1)w + -1. The division is incorporated into the pipelining
of the inner-product so that there is no need for an additional start-up time. However, for some
machines (the FPS-164, for instance) this may have to be revised as divsions are significantly more
expensive than additions or multiplications. Summing (3.9) and (3.10) over k - 1 steps gives an
arithmetic time of

3 N'
tA , -- w + 2N-y. (3.11)

2 k

3.2. Partitioning the Matrix into Blocks of Contiguous Columns
In a block column-oriented partitioning scheme each of the k processors contains N adjacent

columns, that is, processor P contains columns (i - 1)-N + 1 to i of U, as well as b, where Uq.
is again the - x ' block matrix at position (i,j) of U. Although this algorithm will turn out to
be the most inefficient one presented in this paper, it is described on account of its simplicity and
in order to better illustrate related improved versions.

During each step, a triangular subsystem of order IV x "- is solved, whereafter all matrix vector
products yij = Uij, for the next higher block row are performed in parallel and the partial sums Yij . ."-

are sent to the processor responsible for the subsequent triangular system solution. Algorithm TCB"
(Triangular system solution with Block Columns) is graphically sketched in Figure 4 where the
entry for Uij contains the time step at which it participates in a computation. The algorithm is
formulated for data transfers involving the local links, the modifications for the bus are obvious.

. .. ..



P1 P2 P3 . P. ..

15114 14 14 14 14 14 14
113 12 12 12 12 12 12

11 10 100 10 1098888 I

7666

544

3 2

Figure 4: Sketch of Algorithm TCB for k -8.

ALGORITHM TCB (Triangular system solution with Block Columns)

1. Solve in Pk
UkkXk =bk

2. For i = k- 1,k- 2.... I do

(a) Forj=k,k- 1,...i+l do inP

Yij :uijxj (3.12)

(b) For j =k,k- I .... i+ I do in P
Send yij to Pj-"

(c) Solve in Pi
k

Uixj =bi - Yi,. (3.13)
j=i+1

Observe that the solution vector parts zi are never transmitted, only the matrix-vector prod-
ucts yij. The communication time with the local links for 2(b) in step i comes to

(k - i - 1)(13L + N L

since all yq, can be sent at the same time via the local links. For k - 1 steps this makes 0
12 1 .V(.4 '

tT,L 0k 1L + -kN L (3.14)

Because different vectors yi" must be sent to one processor P at the same time, broadcasting bears
no advantage over the local links and

t T,kB ;-2:IkB + -kNrB.
2 2
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P1 A A . . . P

15114 131 .1 10 9 8
1312 1110 9 8 7 1

1119 8 7 6
9 8 7 6 5

7 6 5 4

54 3
[32

Figure 5: Sketch of Algorithm TCBG for k - 8.

The arithmetic time can be easily determined by observing that in each step the matrix-vector
multiplications which are all done in parallel are followed by a triangular system solution. Hence,
from (3.9) and (3.10) the time per step is

2N + 3 N)2

and for k steps it is given by (3.11). The time for the vector additions in 2(c) is

2k 2(- +Nw)
2 k

and hence, 12 3N 2  N
tA = (2N + 1k2), + ( 3-N + N

2'2 k k
However, compared to method TRB, the communication time of TCB is worse by a factor of

k. The reason being that the k - i matrix vector multiplications in (3.12) of step i are all executed
in parallel, and completed at the same time. Consequently, in step 2(b) k - i - 1 vectors are sent
to one processor, which can only receive them in sequence.

It would seem that the computation time could be improved by performing the vector summa-
tions of step 2(c) in a 'logarithmic' fashion, since more computations and transfers could be done
simultaneously. In that case, however, the distances to the destination processors would increase.
to as much as 1k for the last summation. The fastest way might be, for a given i, to compute the
first fi, f, < log(k - i), summations in logarithmic fashion and then send the partial sums and the
remaining log(k - i) - f; vectors to one processor for the computation of the final yi.

3.3. Partitioning the Matrix into Blocks of Contiguous Columns : A Second Approach
Note that in Algorithm TCB all processors are waiting for the diagonal block-system, which

is triangular, to be solved, so that all matrix vector products of one block row can be computed in
parallel. However, in this second version of the column oriented method. TCBG (Greedy Triangular
system solution with Block Columns), which might be regarded as a 'greedy method', each processor
performs its matrix vector multiplications as soon as possible, see Figure 5. Again, processor P
comprises columns (i - 1)- to i- of U.

10
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4.6. Gauss-Jordan Elimination
The Gauss-Jordan algorithm is one of the simplest approaches toward attempting to improve

the arithmetic efficiency of Gaussian elimination on multprocessors. We consider a system par-
titioned in k blocks of m contiguous rows as shown in Figure 8. As was observed earlier, in the
Gaussian elimination algorithm proposed in Section 4.1, we could use the idle processors to con-
tinue the elimination on the rows above the current pivot row thus maximizing the number of active
processors, at any given step.

To estimate the transfer time, we observe that at each step we must send the pivot row to all
processors. This results in a time identical with that of row scattered Gaussian elimination, i.e.
given by (4.5). Similarly, the arithmetic time is identical with that of Gaussian elimination with
block row partitioning, i.e. it is given by (4.4).

The obvious advantage of this method over that described in Section 4.1, is that we no longer
have to solve a triangular system. Clearly, scattering of the matrix across the processors will not
result in any gain here because all processors are busy during the whole elimination.

5. Partial Pivoting

So far, the issue of pivoting has been put aside in order to simplify the description of our
algorithms. In fact as we now show, partial pivoting can be incorporated, at little extra cost.

First consider the block row method described in Section 4.1. At the JLh step, we need to
search for the element of largest absolute value, among the elements aiji = j,..N. This can be
achieved in two stages. In the first stage the maximum element is found in each processor. We refer
to these as the local maxima. Then a comparison must be done between these local maxima to
obtain the global maximum. The first step costs 'J where w' is the time for doing one comparison
within any processor. For the second stage, using nearest neighbor connections, a round robin type
comparison between the local maxima requires a communication time of at most i(TrL + tL) where
i is the number of processors involved in the jth step of Gaussian elimination , i.e. i = k - [j/m].

The same number of comparisons is also needed and this requires time iw'. A similar approach
using the broadcast bus is to broadcast each local maximum in turn to the i - 1 other processors
and do the comparisons for the global maximum in each of the i processors, in parallel. This would
lead to similar times for communication and for identical times for arithmetic. Summing up the
above over the N - 1 steps of the Gaussian elimination algorithm, one finds that the overhead for
partial pivoting in the block-row scheme is

tP"BR L2-.- + N k) w'+(r + ) (5.1)

where r and / represent either rtL and 1L, or TB and 3B depending on which, the local links or the
bus, is used.

For the block-column scheme, all of the j1 h column resides in one processor, so there is no need
for transferring data. However, all comparisons are done in one processor while the others are idle.
It is therefore clear that the resulting overhead time is

N 2
tPBC ' . (5.2)

2

The scattered scheme of Section 3.5 is similar to that of the block row scheme, except that the
comparisons of the second stage now take place among all k processors instead of only i = k - [i/n]

as above. As a result the overhead time for pivoting is double that of TRB, i.e.
2

t,BRS L YL + Nk ' + Nk(r + /3). (5.3)

24
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Figure 10: Block Diagonal Scattering of a Linear System
Across Eight Processors.

Note that the preceeding time is twice that of most other distributions, because data must be sent
in two directions, West-East and North-South.

Using the broadcast bus, the only difference is that each piece of length m can now be moved
simultaneously to all processors at the cost of MrB + 3 B. The resulting total transfer time is

trB ; N2rB + Nk3B.

We consider now the arithmetic complexity of this method. In step j of the algorithm we

perform N - j eliminations each of which is split into several linear combinations of vectors of
length m taking place in a different processor. The processor most delayed in performing these
linear combinations is P, which holds the diagonal blocks. Processor P performs exactly N - j
linear combinations of length m each. Hence the arithmetic time at step j is

(-V - A)(MW + 1).

and the total arithmetic time is N'3  N 2 (48

A -w + "-

We note that it is possible to extend this scheme by considering blocks of size mxm with
I < m < N/k and scattering them by diagonals, i.e. by assigning all the blocks on the same

diagonal cyclically to processors P1 , P2 , ..Pk, Pj,P 2, ....Pk ... The purpose of this scattering is to
improve efficiency by chosing the parameter m so that the total computation time is minimized.

However. this will not be considered as it leads to complicated formulas and does not result in a
significantly better algorithm.

23
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Using the approximation

and summing over j, we have 1 N 3  1 N 2

t ---- w + ---
Observe that as before the start-up time is reduced by a factor of k. Also note that the above
formula is only valid for k << N, because approximation (4.6) was used.

Scattering the columns of the matrix across the processors does not change the communication
time (4.5). Analogous to (4.7), the arithmetic time is

N 3  N2

2-w + -- 'tA 3

where the start-up times are independent of k.
The communication time for scattered partitioning is always larger than that of the 'contiguous'

partitioning of section 4.1. For large a, it is roughly twice as big. When a is small, the two times
are comparable. Furthermore, scattering makes the arithmetic computation time consistent with
the sequential case, ie, for k = 1 the arithmetic time reduces to that of the sequential evaluation.

4.4. Reduction to a DDB scattered matrix
As was mentioned in Sections 3.4 and 3.6, it is important to have diagonal blocks that are

diagonal matrices. Such matrices can be obtained in the same time as regular upper triangular
systems by simply taking advantage of the idle time of the processors in the regular versions. The
result is a triangular system whose solution requires less communication and start-up times, see
Section 3.

4.5. Partitioning the Matrix into Block Diagonals
Now consider a scheme which leads to the diagonal scattering of Section 3.7 by partitioning

the linear system into square blocks of size m x m each, where m = N/k. Again, A,, represents the
block matrix in position (i,j) of A. The data are scattered so that block Aij belongs to processor
number 1 + [(i -j) mod k], 1 < i,j _< k. The above distribution is illutrated in Figure 10, where a
matrix entry denotes the processor to which the corresponding block matrix is assigned. The right
hand side b can be considered as an additional column of A and is distributed accordingly among
the processors.

The motivation for considering such distributions, is the ease with which local link-data trans-
fers can be overlapped, since any two contiguous blocks of A belong to neighboring processors.

At each step j of Gaussian elimination, the multipliers must be transferred downward. All
processors holding that row will simultaneously communicate to those beneath them one piece of
size m = N/k of that row. This is possible because of the way the matrix is distributed. Only
transfers from processor P to processor 1 (i-l) od kJ are necessary. These transfers are repeated
until each piece reaches the processor which holds the corresponding piece of the last block row.
This requires exactly L(N - j)/mJ such transfer steps. Each of these steps consists of sending
in parallel from one processor to a direct neighbor a vector of length N/k. Hence the time for
communicating the jih row is approximately

N J (mrL + $L) = (N -j)rL + N - JL3L
m m

Once the pivot row is available in all processors, the pivots also need to be transmitted, i.e., the

jth column to the right. Clearly, this involves the same amount of time as above. All this results
in a total transfer time of

tTL I N 2rL + Nk z.
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A b

row 1 Processor PI
row 2 Processor P2

row 3 Processor P3

row 4 Processor P4

row 5 Processor P

row 6 Processor P2

row T Processor P3

row 8 Processor P4

Figure 9: Gaussian elimination with Scattered Rows for k - 4.

4.3. Scattering the Rows and Columns of a Matrix
As in Section 3.5, the matrix A is partitioned into blocks of k rows or columns. However, now

the processors do not contain blocks of contiguous rows or columns, but the rows (or columns)
are scattered 'cyclically' across processors P ... Pi. This scheme will be referred to as 'scattered
Gaussian elimination.'

The scattering of rows is depicted in Figure 9. At step j, the pivot row must be available to
all processors for purposes of elimination . Sending a row of length N - j to all processors (see
Section 2) takes time

( N - j) -L + k 0L + 2 Vk Tt. L INvf-- j.
Summing this expression for j = 1, 2,... N - 1 and using the approximations (3.8), we find an

approximate total communication time of

tT,L PS r + kNI3L + 2 /LThE (N 3/2) = -rL ( I + 8a+ 2ck2) (4.5)

where a is defined by (4.3).
As for arithmetic, there are N - j elements to be eliminated during step j, and since the

rows are scattered across the k processors, each processor will perform about f(N - j)/kl linear
combinations at the cost of -f + (N - j)w each. Therefore, step j consumes time

[N][-Y + (IV - j)W].-
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which can be written as
tT,L ;t Ll"L (I + oa) 2 , (4.2)N2 2

with

of = V /Y (4.3)

Using the bus to broadcast a row of length (N - j) to an arbitrary number of processors
requires the time

OB + (N - j)r

and therefore the total communication time when using the bus is given by

tT,B = NO B + !N2TB.
2

To determine the time for arithmetic, we note that at step j a processor performs at most N

elimination s which takes time
N -y + (N - j),w).

Summing up over N - 1 steps,
N3  N

tA - + -- y. (4.4)
t 2k k

The reduction of the start-up time N2 ,1 by the factor k in the above formula, comes from the fact
that the active processors simultaneously eliminate (at mcvt) f elements per column by computing p
linear combinations of rows of length N - j.

4.2. Partitioning of the Matrix Into Blocks of Contiguous Columns
Similarly, if the matrix is divided up into blocks of contiguous columns, then P' contains

columns (i - 1)* to i I of A. For simplicity, the vector b is considered to be another column of
A and hence stored in Pk. At step j, column j, which contains the multipliers is in Pi, must be
transmitted to P41 .. . Pk. This consumes roughly the same amount of communication time as for
the block row partitioning, (4.2) and (4.3). The arithmetic operations during step j take time

NS
(N - J) +

as each processor forms N-j );near combinations of rows of length 'V. The total time for arithmetic
operations comes to I N 3 1 2

iA 2k 2+

Unlike (4.4), the start-up time is not reduced by k, since the number of elements each processor
has to eliminate per column is independent of k.

Recall that on a sequential machine the time for Gaussian elimination is proportional to 'N 3W..-
In the preceeding schemes, use of k processors will not speed up the computation by a factor of
k, no matter how fast the communication, because processors are often idle. There are several "-'".
ways of improving the efficiency of these algorithms. We could keep processors busy by having idle
processors continue the elimination on rows above the pivot row instead of remaining inactive; this
is the Gauss-Jordan method, to be discussed later. An alternative is scattering of rows or columns
across processors as was done already for the solution of triangular systems.
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A b

Processor P1 (Idle)

Processor P2 (Idle)

Processor P3 (Active)

Processor P4 (Active)

Processor Pk (Active)

Figure 8: Gaussian Elimination on a Block Row Partitioned
Matrix.

4. Gaussian elimination
In this section we describe parallel implementations of Gaussian elimination on a dense N x N

matrix A for solving the linear system
Ax = b. (4.1)

It is assumed that no pivoting is required. The issue of pivoting will be discussed in the next
section.

4.1. Partitioning the Matrix into Blocks of Contiguous Rows
The simplest way to implement Gaussian elimination is to subdivide the matrix A into k blocks

of rows each and assign one such block to each processor, cf Section 3. 1. Let processor Pi hold
rows (i - 1)1 + 1 to ifv of A and the corresponding components of the right hand side vector b,
see Figure 8.

If at step j, row j is stored in Pi, it must be sent to P/+ ... Pk in order to perform the
eliminations in each of them. In section 2 it was shown that if only the local links are used, theu
the transfer of a row, j, of length N - j to i - k - i processors approximately requires time

(V/( njLI+ f) ,

where i depends on j
=k- j k( - ).

This yields an approximate communication time for step j of

(N -j) + -IL,2

After summation from j = I to N - 1, this yields

N2% 2

tTL TlfZ+ kL)

2.,.".".+
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Method tA t TL tTB

TRB w + 2N-1 2NtL + k2 09L NrB + k/3B

TCB (3,V12 + N)W + k2+ 2N)-y NT + PkN rB+k 2

TDB 3rw + 2N..y 3NTL + 7)3 kNa + -O

ITRB/DDB Tw+ 2N-y 2NrL + k2 lL, NTB + kI3B

TCB/DDB +)w+ + 2N)-y -rL+ T/3L - TTB

TDB/DDB ffw+ 2N-y 3NrL + PI3 rB + P OB

TRS (~N (+ N)y kNrL +kN#L NB + NOB

TOS +A~ 2+2N)w + (N +3N) VT+ 2N3L + _rB+ (kN + N)OB

TRSDDBN 2  N2

TR/D w + -2' NrL + N/IL NTB + NOB8

TCS/DDB + -2)w T + N)-' ~-rL + NA3 T-r + NO3B

TRBG 22w+ 2N-y 2NTL + 2k13L IcNrB + V 2 3

TCBGw + 2N-1 2NTrL + 20IL kNrB+kiB

Table 1: Computation Times for Several Triangular System
Solution Algorithms.
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" When the number of processors, k, is much smaller than N (with the exception of the column
scattering scheme, TCS) communication times are of lower order than arithmetic times.

" In general, the scattered schemes seem to show better arithmetic than communication perfor-
mance. This is because fewer processors are idle than in block methods, which in turn results
in increased data transfers.

" Broadcasting, it appears, is best done with row-oriented schemes and/or 'greedy' methods. For
a small number of processors TRBG and TCBG, and otherwise TRS/DDB are to be preferred.

" Communication on local links is fastest with row-oriented schemes, such as TRB/DDB and
TRB, as well as with the diagonal block method TDB. For a large number of processors,
k _ N, the row scattering schemes also fare well.

" The merit of an algorithm regarding arithmetic depends very much on the relation of pipe-fill
times to elemental operation times and the number of processors. For example, for non-
pipelined machines the row scattering scheme, TRS/DDB seems to be most attractive. For
large pipe-fill times and a small number of processors the block DDB methods look good.

" The block schemes might be better suited for pipelined machines than the scattering schemes
since their coefficients for pipe-fill times are lower.

" DDB matrices do not improve the performance of greedy methods, TRBG and TCBG, since
simultaneous matrix-vector multiplications conceal the improvement in triangular system so-
lution.

" Disappointingly, the diagonal block scheme, TDB, did not deliver the expected compromise
between block schemes (faster communication) and scattering schemes (faster arithmetic).

To summarize, for fast solution of triangular systems on a multiprocessor ring, row-oriented methods
seem to be superior to column-oriented algorithms. In particular, when communicating on local
links the block row DDB method, TRB/DDB, and also TDB/DDB, are recommended; if the number
of processors is proportional to N, then the row scattering algorithms, TRS and TRS/DDB should
also be considered. A row-oriented scheme, TRS/DDB, or greedy scheme, TRBG or TCBG, should
be chosen when data transfer is done via broadcasting.

17
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using the local links. However, this expression can be simplified by using the upper bound
2(V'rL + i/3L) derived from (2.4), which corresponds to splitting the data into a non-optimal
number of packets. Using the broadcast bus, the transfer time is just

OB + T ..

* In step 2(b), - matrix-vector multiplications of length v, in time

" In step 2(c), sending the result of step 2(b) from one processor to its neighbor can be done
using the local links simultaneously for all processors in time

N

ofL + Tn,

but must be sequenced when using the bus,
.N

iB + , rB.

o Solving the system (3.27), which requires time

N +
~ .-.+-w,.

Hence, the communication and arithmetic times for algorithm TDB are

tTL f 3NrL + k20/L

tTB % 1kNr8 + k 2rB
2 2

3 N
2

tAf -T' + 2N-Y.

The arithmetic and local link communication times are comparable to those of the block row
method, TRB, while the broadcast transfer time is the same as for the block column algorithm,
TCB.

Analogously to the other block schemes, for a DDB matrix only the arithmetic time is reduced,
to N 2

tA + 7 w2N-Y.

3.8. Summary
The complexity bounds for the various algorithms considered in this section are summarized

in Table 1. Under the assumption that high order terms realistically reflect the time behavior of
the methods, the following conclusions can be drawn.
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Figure 7: Block Diagonal Scattering of a Triangular System
for k = 8.

ALGORITHM TDB (Triangular system solution with Diagonal Blocks)

1. Solve in Pk
UkhXk =t

2. Fori k -1, k -2,..1ldo
(a) Send x,.. 1 from Pk to Pk-.1,Pk-.2 . .. Ph-,
(b) For k -i, k - i+1,..k - 1 do in Pi' (yiL bi)

Yj+1,i -ji1UliIT~ (3.26)

(c) For j =1, 2....i do in P,
Send yij+ia to P+

(d) Solve
Uiixi = Y'i- (3.27)

At each iteration in the above algorithm the following has to be done

*In step 2(a), transfering the vector x,.+ 1 from processor PL., where it has just been computed,..
to i other processors, in time

15



Adding (3.22) and (3.21) results in an arithmetic time of
(IN

N2  IN 2

tA At ( L + N)w + + N)-. (3.23)

In a comparison with methods TRB, TCB and TCBG on the one hand, the coefficient for the
elemental operation time w in TRS is the smallest; on the other hand, the coefficient for the pipe-fill
time -y is increased by I( )2, which makes the contribution of -y in TRS always larger than in the
other schemes.

3.6. Scattering the Rows of a Diagonal-Diagonal-Block Matrix
Scattering the rows of a DDB matrix decreases both the arithmetic and the communication

times. For each of the f steps, the time (3.21) can now be subtracted from the total arithmetic
time, yielding

I 2A + I*1E)N"7. (3.24)

Since no triangular system has to be solved, each processor contains exactly one element of the
vector xi+l in (3.18). Yet, prior to performing the operations in (3.17), the entire vector x,+1 must
be made available in all processors. Thus, a direct sum of k 'vectors' of length one, as described
in section 2 ought to be performed. From (2.6) the transfer time for operations (3.17) is therefore
k(rL + #L) per step on the local links. For all 1V steps this makes

tT,L P N'L + N/3L. (3.25)

For the broadcast bus, the time is obviously similar,

tT,B s NrB + NB.

Observe that only here and in algorithm TRS with the broadcast bus, neither the transfer
nor the arithmetic time increases with the number of processors, k. Among the methods discussed
so far, the contribution of the elemental operation time w in the DDB scattering scheme is the
smallest while that of the pipe-fill time -y is the largest when k < v/N.

3.7. Partitioning of the Matrix into Block Diagonals
Scattering of block diagonals instead of rows or columns will be considered in this section.

The matrix is partitioned into blocks of size IV x I. As before, Ui3 represents the block matrix in
position (i,j) of U. The matrix is scattered so that processor P- contains block superdiagonal i
of U,i = 0, ..k - 1; in particular, the main block diagonal (superdiagonal 0) is contained in Pk.

Formally, Pk-i contains block matrices Ujj+j, for j = 1,2, .., k - i. This scheme is described in
Figure 7, where the matrix entries denote the processor in which the corresponding block matrix is
contained. Initially, corresponding elements of the right hand side b and the last column of U reside
in the same processors. The triangular system can then be solved with algorithm TDB (Triangular
system solution with Diagonal Blocks).

14
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ALGORITHM TRS (Triangular System Solution with Scattered Rows)
I. SolveN

Ummxm ---- bin, where m N

2. For f - 1,'T - 2,.... I do. ..
(a) For j = 1,2, ... i do

b: bj - Uji+lxi+l (3.17)

(b) Solve
Ux.T = bi. (3.18)

There are two main tasks in the loop of the above algorithm, solving the k x k triangular
systems (3.18) and performing the matrix-vector multiplications (3.17).

Note that during the triangular system solution each row of the matrix Uji system is contained
in a different processor. Therefore one can use the results of Section 3.1 with N = k, i.e. - .

Observe, that it is most efficient to send each newly found element of the solution vector directly
to all other processors. However, since only one scalar at a time is transmitted, the data transfer
time comes to k(rL +/8L) for the local links; for each triangular system the amount of transfers
comes to

k 2 (TL + '6L).

Since broadcasting does not depend on the number of processors to be addressed, the solution of
(3.18) requires a number of data movements proportional to

k(,B + B).3

For N linear systems the communication cost is thus

tT,L P Nk(rL + OL) (3.19)

and
tT,B P N(ra + ,6B). (3.20)

Once the system (3.18) is solved, each processor contains all known elements of the solution vec-
tor. In contrast to the previous schemes TRB, TCB and TCBG, which partition the matrix into
contiguous parts, the coefficient of the start-up times 8 in the scattering scheme grows with the
problem size (for broadcast bbs as well as local links).

The arithmetic time for the solution of a k x k triangular system is k(-) + w), resulting in a
total of approximately

N('y + w). (3.21)

Once the vector xi+, is available in all processors, each processor will subtract from its com-
ponent of bj the inner-product of its row of U with x,+1 in time Iy + kw, j = 1, 2,... i. Hence the
arithmetic time in step i of algorithm TRS is i(-t + kw) and the total over all steps in (3.17) comes
to

I (N) (-y + kw). (3.22)
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Figure 6: Scattering the Rows of a Triangular System for k - 4.

Note, that the computation time is not diminished when TCBG is applied to a DDB matrix,
because the simultaneous matrix-vector multiplications conceal the improvement in the triangular
system solution.

3.5. Scattering the Rows of the Matrix
The previous algorithm is arithmetically not efficient since many processors are idle during

an important part of the process. A remedy is to simply scatter the rows of the matrix U across
the processors in a cyclic way so that the work is divided more evenly and processors become
idle only during the last k steps (this is termed 'torus wrap' in [51). Clearly, one can expect the
communication time to increase somewhat, while the arithmetic time should decrease.

Let the rows of U be scattered in such a way that P. contains rows i, i+k, i+2k .... i+ (IV - 1)k.
This time the matrix U is divided up into blocks of size k each (separated by bold lines in Figure 6)
instead of as in Section 3.1. Let b, bN,..., bl/k and XI, X2,..., ZN/k be the blocks of the right hand
side b and the solution x, respectively, corresponding to the above partitioning. After all processors
have participated in the triangular system solution, they perform matrix-vector multiplications
with the newly found part of the solution vector which each of them contains. Algorithm TRB is
modified as follows.

12
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Proceeding from bottom to top of the matrix, i- k, k - 1,... 1, processor Pi solves the IV x N

triangular system associated with the ith diagonal block and then, successively, performs a matrix-
vector multiplication with xi and each matrix block 'higher up' in the column. In the mean time,
the neighboring processor to the left can start solving its triangular system, followed by matrix-
vector multiplications of all matrix blocks in the corresponding column with the solution vector
part.

All steps of Algorithm TCBG consist of a triangular system solution followed by matrix-vector
multiplications and additions, after each of which at most k/2 processors simultaneously transfer
a vector of length N via the local links to their left neighbor in time

N
2-rL -+ 2 /3L.

Since this communication takes place only between pairs of processors, the vector is not divided
into packets of smaller size and the number of start-up times is reduced by more than a factor of
k compared to TRB and TCB. After k - 1 steps the time for data communication is about

tr,L ; 2NrL + 2kL.

In case of broadcasting no simultaneous transfer is possible anymore and the upper bound per step
increases to kN2 (frB + ,6B) =NrB + OBs,

bringing the total time for data exchange to

tT,B ;z kNrB + k2I6B,

which, as expected, exceeds by a factor of k the communication time involving local links.
The communication time in TCBG with local links is superior by a factor of k to the one in

TCB. If it comes to broadcasting, TRB is the preferred scheme. Hence, the row-oriented scheme
would benefit from broadcasting while the column-oriented scheme would be better off with data

exchange on the local links.
For the arithmetic operation time, note that in contrast to TCB, matrix-vector multiplications

and linear system solutions are overlapped. As the processors are assumed to work in lockstep and
a matrix-vector multiplication needs twice the amount of time of a triangular system solution of
the same size, the arithmetic operation count is proportional to

• N2

tA , 2-N-w + 2N-y, (3.15),
k

which is larger than the one for TRB or TCB. Moreover, at any given time never more than half

of the processors are active, cf Figure 5.

3.4. Partitioning a Diagonal-Diagonal-Block Matrix into Contiguous Blocks of Rows or Columns
The solution of the triangular systems in TRB and TCB can be avoided and the arithmetic

time reduced by about 50% when the diagonal blocks of U are N diagonal matrices. Such
matrices are referred to as diagonal-diagonal-block (DDB) matrices. The communication times

remain the same while the arithmetic time for both TRB and TCB is reduced to
lt N2

tA - -w + N-t (3.16).
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Note that for the row-oriented schemes, as is the case on a sequential machine, there is no
need to actually permute the pivot row with the jth row, i.e. to physically move the two rows to
new locations among the processors. All that is needed is to associate with each row an integer.
indicating the actual position of this row with respect to the resulting upper triangular system.
The result will be an upper triangular system whose rows are scattered in a random way accross
the processors, each processor holding N/k rows. However, this will not only complicate the orga-
nization of the solution of the resulting triangular system but will also increase the communication
time.

To be concrete let us outline an analogue of the TRB algorithm of Section 3.1 for solving
an upper triangular system whose rows are randomly scattered as a result of the above pivoting
technique. The first step consists in computing the last component v of the solution x (cost
= 1- + W), in the processor holding the last row (therefore each processor must check whether it
contains the last row but we neglect the cost for these tests). Then the component ,v is sent to
all processors (cost = k(OL + rL) ; (,3B + rq)), which will then perform the analogue of step 2.(b)
of Algorithm TFIB, i.e. they will subtract from the right hand side their part of the last column
of U times the last component ,v just received. Since each processor holds at most N/k elements
of any column of U, this will take at most -w + -1. Next N-i is computed in some processor
and the above is repeated. Because of the random scattering of the rows, each component must
be sent to all processors at any step. Also, since the number of rows contained in each processor
is only known to be at most N/k at any given step, the arithmetic time required for each step is
upper bounded by -.w + 7. If we sum up over N steps, the total time for solving such a randomly
scattered triangular system comes to

tT,L kN(TL + /L)

or
tT,B N(TB + 3S)

for communication and
N2

tA < + N)w+ 2N ,

for arithmetic. Observe the increase of the contribution from latencies in the communication time
when the local links are used.

The complexity of the algorithm itself is a non-negligible difficulty. However, the column
schemes do not present these drawbacks since the rows can be permuted without any data move-
ment. The Gauss-Jordan algorithm will not lead to the above difficulties as the resulting system
is diagonal, but it will remain potentially unstable. In view of the fact that the above costs for
solving triangular systems are small in comparison with those of Gaussian elimination, it appears
that on the whole the column scheme is by and large more attractive when pivoting is necessary.

6. Discumlon

The performances of the Gaussian elimination algorithms considered in Section 4 are summa-
rized in Table 2. The following observations can be made by examining the results of Sections 3,
4, and 5.

* The communication times axe low order terms as compared with arithmetic times when k <<
N.

* Both the arithmetic times and the communication times of those of the triangular system
solution algorithms are low order terms in comparison with those of Gaussian elimination.
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Method tA 1T,L tT,B

"-GE/BC N N2

-£ + N2TJA-1( + c )2  TTB + N/5B

GE/RS N3  N2  N2

- +BN 2  (1 + + + 2 2 ) rrB+N 3
B

GE/CS N3  N2  N2L1~c+o 2

GE/DDB N3 ' N2  + N 2

-Tr + -r + -2c ) + NOB

T T B+

GJ -w+2 + N 2riL.(1 + Ia + 2 2) N2

yT rB + N;3B

Notes:

1) 1V =) N

2) We have the following upper bounds:

EC1+ o W+ N2 rN + kN2+L.

ENBL(I + + V + 2N2) 2 N(L + 2kNo+L.

Tahble 2: Timings for several Gaussian elimination algorithms

* The scattered schemes have better arithmetic performances but worse communication perfor-
manoes.
The communication times are better with the bus than with local links, which is to be expected

since pivot rows must be broadcast to several processors at any given step.

* The diagonal scattering of data results in poor overall performance.T The overhead of pivoting is small as compared with the cost of Gaussian elimination. It isal-i
however of the same order of magnitude as that of triangular system solution. 'er""

c Pivoting is les expensive for the row-oriented schemes.
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